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upravljanje i ugad̄anje. Od 2010. do 2013. bio je predsjednik hrvatske IEEE sekcije za robotiku

i automatizaciju. Bio je predsjednik Hrvatskog robotičkog društva 2005.-2010. (ujedno i osni-
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throughout most of my studies. He is the person who most influenced my decision to continue

my PhD studies. He gave me the opportunity to work with colleagues with similar interests

on interesting topics available in the LARICS laboratory. This sparked my interest in research

work and continued when I changed jobs. With all the work he has, he was always there to offer

useful advice. He was always understanding and would give me guidance or just review ideas

whenever needed. He made my research possible and I want to thank him for that.

I thank AVL for providing the working conditions and support in choosing the topic of the

thesis. I would like to thank the Paprika team for being supportive, nice colleagues and just



friends in general. They have created a comfortable environment that has produced work where

striving for improvement can lead to a PhD. Toni Benussi, Mario Volarević, Tomislav Ljubej,
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Abstract

This thesis proposes the use of an SDF graph (SDFG) to model the computation of a non-

iterative co-simulation. An SDFG is a determinate model of computation with a lot of schedul-

ing research available. A method for creating an SDFG from a co-simulation network, initial to-

kens and simulator step sizes is described. A simulator in the proposed method is a synchronous

data flow actor that is used to model the execution of a co-simulation slave. It is shown that such

an SDFG has consistent rates and uniformly updates the states of all simulators.

To analyze the behavior of numerical errors introduced in the co-simulation, it is assumed

that coupled ordinary differential equations can represent the modeled system. This thesis uses

the numerical defect analysis to formulate a co-simulation quality criterion. The numerical

defect is divided into integration, output and connection defects. Such a defect distribution

reflects the division of responsibility between the co-simulation master and the internal solvers

of the slaves. This work proposes how connection defects can be calculated and output defects

can be estimated. Integration defects are not analyzed as it is assumed that they are controlled

by internal solvers of the slaves. The proposed quality criterion for the co-simulation is based

on the aggregation of the output and connection defects.

The simulator step sizes, the number and values of the initial tokens should be determined

in order to configure the execution of a co-simulation network. A method for calculating the

number of initial tokens based on the simulator step sizes is proposed. It is shown that an

SDFG with such number of initial tokens does not deadlock. Furthermore, a method how to

check whether it can run in real-time is shown. The quality criterion enables an optimization

approach to find the values of the initial tokens. In the proposed approach, the quality criterion

is assessed in a single iteration of the SDFG. The Nelder-Mead algorithm is used to solve the

optimization problem of finding initial token values. To complete the automatic configuration

of the co-simulation, the simulator step sizes must be determined. This is done by reducing the

simulator step sizes until the requested tolerance is met. This thesis proves that connection and

output defects can be controlled by reducing simulator step sizes.

The automated configuration algorithm presented in the last chapter is the main goal of this

thesis. The methods for determining the step sizes of the simulator, the number and the values

of the initial tokens are building blocks of this algorithm. The validity and usefulness of the

proposed algorithm is justified with theorems and examples presented throughout this thesis.

Keywords: co-simulation, synchronous data flow, error analysis, coupled ordinary differ-

ential equations, defect control, automated configuration, model-based development





Prošireni sažetak

Automatizirano oblikovanje neiterativne kosimulacije

modelirane sinkronim protokom podataka

Uvod

Kosimulacija omogućuje simulaciju složenih sustava povezivanjem različitih simulatora na razini

signala. Ova tehnika simulacije je vrlo popularna u praksi jer ne postavlja velike zahtjeve za

implementaciju i omogućuje ponovnu upotrebu već razvijenih modela pojedinih komponenti

sustava. Radi lakšeg povezivanja komercijalnih simulatora, standardizacija sučelja za simu-

laciju uvedena je s FMI (engl. Functional Mock-up Interface) standardom. Dodatna prednost

kosimulacije je u tome što omogućuje razvoj složenog sustava temeljen na modelu. Faze razvoja

temeljenog na modelu su simulacije sa X u petlji (engl. X-in-the-loop simulation), gdje je X

komponenta složenog sustava u razvoju. Ova komponenta može biti model, program (engl. soft-

ware), procesor ili fizička komponenta (engl. hardware), ovisno o trenutnoj fazi razvoja. Ovakav

način razvoja omogućuje podjelu rada izmed̄u razvojnih timova i olakšava njihovu med̄usobnu

komunikaciju. Upotreba simulacije s modelom u petlji brzo otkriva može li proizvod biti razvi-

jen, a zatim daje signalnu specifikaciju za kasnije faze razvoja. U ovom istraživanju razvoj

temeljen na modelu započinje sa simulacijom koja u petlji ima model komponente, a završava

sa simulacijom koja u petlji ima fizičku komponentu. Ostatak petlje smatra se konstantnim ti-

jekom cijelog razvoja. Specifikacijom složenog sustava u razvoju smatra se mreža podred̄enih

kosimulacijskih jedinica koje implementiraju sučelje prema FMI standardu.

Algoritam upravljanja kosimulacijom (engl. co-simulation master) zadužen je za raspored

izvod̄enja podred̄enih kosimulacijskih jedinica i aproksimaciju njihovih ulaznih signala. Jedan

od ciljeva istraživanja je specificirati algoritam upravljanja kosimulacijom koji može upravl-

jati različitim simulacijama sa X u petlji. Poželjno je da taj algoritam jednoznačno odred̄uje

izvod̄enje podred̄enih kosimulacijskih jedinica, odnosno da konačna kosimulacija uvijek daje

iste rezultate ako slijedi njegovu specifikaciju. Uz jednoznačno odred̄eno izvod̄enje kosimu-

lacije i konstantan ostatak petlje, različit odziv dvaju faza razvoja temeljenog na modelu nastaje

isključivo zbog razlika u obliku komponente. Ovo svojstvo omogućuje korisniku kosimulacije

da usporedi razvijenu komponentu s njenim modelom. U praksi se vrlo često mogu pojaviti

razlike zbog različitih platformi koje se koriste u različitim fazama razvoja temeljenog na mod-

elu. Prethodni zahtjev može se interpretirati na način da razlike zbog izvod̄enja na različitim

platformama ne bi trebale postojati.

Primjer jednoznačno odred̄enog iterativnog algoritma upravljanja kosimulacijom dostupan

je u literaturi. Ovaj algoritam zahtjeva sposobnost podred̄enih jedinica da ponove korak simu-



lacije i dostupnost informacija o direktnoj izlazno-ulaznoj med̄uovisnosti. Iako definirane FMI

standardom, ove opcije često nisu dostupne u praksi. Nadalje, fizička komponenta ne može

ponoviti korak simulacije. Jedan od zahtjeva za specifikaciju praktično primjenjivog algoritma

upravljanja kosimulacijom je da od podred̄enih jedinica očekuje samo obavezne mogućnosti

FMI standarda. Nadalje, poželjno je da se njegova primjena može generalizirati na simulaciju s

fizičkom komponentom u petlji. Ovi zahtjevi eliminiraju iterativne algoritme upravljanja kosim-

ulacijom i ostavljaju mjesta samo za neiterativne algoritme tipa Gauss-Seidel ili Gauss-Jacobi s

jednim ili više taktova simulacije.

Sekvencijalni algoritmi tipa Gauss-Seidel pokazuju nešto bolje rezultate u odnosu na par-

alelne algoritme tipa Gauss-Jacobi na testnim modelima, ali ograničavaju mogućnosti distribu-

cije izračuna. U slučaju pojedinih platformi, preporučljivo je kombinirati navedene algoritme

sa simulacijom u više taktova. Jedan od ciljeva istraživanja je utvrditi može li se specificirati

generalizacija navedenih neiterativnih algoritama upravljanja kosimulacijom. Model sinkronog

protoka podataka razmotrit će se kao jedan od kandidata za generalizaciju. Model sinkronog

protoka podataka jednoznačno je odred̄en model izračuna koji je najčešće korišten za opis fiz-

ičkih komponenti. Velika prednost ovog modela je u tome što postoje razvijeni postupci za nje-

govo raspored̄ivanje na jedan ili više procesora. Ovaj pristup modeliranju algoritma za upravl-

janje kosimulacijom spaja dva područja i ima potencijal omogućiti velik broj automatiziranih

postupaka koji olakšavaju razvoj temeljen na modelu.

Idealizirani zahtjev za algoritam kosimulacije je minimiziranje globalne pogreške u kosimu-

laciji. Algoritmi za rješavanje običnih diferencijalnih jednadžbi definiraju približnu mjeru koja

dovodi do smanjenja globalne pogreške. Najčešće mjere su lokalna pogreška ili defekt rješa-

vanja diferencijalne jednadžbe. U slučaju kosimulacije, postojeća literatura analizira lokalnu

pogrešku, ali ne i numerički defekt. Jedan od ciljeva istraživanja je provjeriti praktičnost

upotrebe defekta kao mjere za kvalitetu algoritma upravljanja kosimulacijom. Defekt je korišten

kao mjera za kontrolu pogreške za rješavanje skupa diferencijalnih i algebarskih jednadžbi, ali

njegova praktičnost za kosimulaciju nije detaljno istražena.

Mjera za procjenu kvalitete algoritma za upravljanje kosimulacijom potrebna je za konačni

cilj istraživanja, poboljšanje automatskog traženja kosimulacijske konfiguracije. U postojećim

radovima predloženi su postupci za oblikovanje simulacije s modelom u petlji. Ovo istraživanje

razmatra prijenos konfiguracije na ostale faze razvoja temeljenog na modelu.

Pregled disertacije

Disertacija je podijeljena u šest poglavlja. Prvo poglavlje daje uvod i motivaciju za automatsko

oblikovanje kosimulacije, a posljednje zaključak disertacije. Poglavlja izmed̄u obrad̄uju po-

jedinačne aspekte kosimulacije koji utječu na konačni algoritam automatskog oblikovanja. U

disertaciji su navedeni primjeri napisani u programskom jeziku Python.



Prvo poglavlje daje kratak uvod u disertaciju. U navedenom ukratko su opisani problemi u

oblikovanju kosimulacije. Nadalje, u poglavlju je opisana motivacija za istraživanje algoritma

za automatsko oblikovanje neiterativne kosimulacije. Kroz poglavlje je dan pregled literature u

području istraživanja. Poglavlje je zaključeno kratkim pregledom disertacije.

U drugom poglavlju dan je opis dva modela kompleksnog sustava. Prvo je opisan sustav

povezanih običnih diferencijalnih jednadžbi. Na temelju ovog modela provedena je analiza

utjecaja numeričkog defekta na numeričku pogrešku. Dokazan je teorem koji pokazuje da je

numerička pogreška takvog modela ograničena ako je numerički defekt ograničen. Nakon toga

je definirana kosimulacijska mreža prema FMI standardu. Opisano je kako se pojmovi u FMI

standardu odnose na definiciju u disertaciji. Na kraju drugog poglavlja prikazano je kako se

kosimulacijska mreža može koristiti za modeliranje sustava povezanih običnih diferencijalnih

jednadžbi. Numerički defekt je podijeljen na integracijski, izlazni i defekt konekcije. Podjela

numeričkog defekta omogućuje podjelu odgovornosti izmed̄u algoritma upravljanja kosimu-

lacijom i algoritama za rješavanje jednadžbi podred̄enih kosimulacijskih jedinica.

U trećem poglavlju opisan je model sinkronog protoka podataka i njegovu primjenu za mod-

eliranje izvod̄enja kosimulacije. U prvom dijelu poglavlja model sinkronog protoka podataka

strogo je definiran. Nakon toga je naveden primjer grafa sinkronog protoka podataka i defini-

rano njegovo izvod̄enje. U drugom dijelu poglavlja pokazuje se da je ovaj model jednoznačno

odred̄en. Razlika u odnosu na postojeći dokaz u literaturi je složeniji model izvedbe u kojem

se operacije dijele na potrošnju, izračun i proizvodnju žetona. U trećem dijelu je predstavljen

sekvencijalni algoritam za izvod̄enje grafa sinkronog protoka podataka. Analiza ovog algoritma

daje odgovor na pitanje imaju li med̄uspremnici ograničen broj žetona tijekom izvršavanja i

hoće li doći do zastoja tijekom izvršavanja. Ova je analiza primjenjiva na bilo koji algori-

tam izvod̄enja jer je graf sinkronog protoka podataka jednoznačno odred̄en. Treće poglavlje

završava opisom kako modelirati izvod̄enje kosimulacijske mreže pomoću grafa sinkronog pro-

toka podataka. U ovom su dijelu definirani simulatori za izvod̄enje podred̄enih kosimulacijskih

jedinica i pretvarači stopa potrošnje i proizvodnje žetona. Dokazano je da prilikom izvod̄enja

dobivenog grafa med̄uspremnici imaju ograničen broj žetona. Takod̄er je dokazano da sve po-

dred̄ene kosimulacijske jedinice imaju jednoliku progresiju simuliranog vremena. Ovaj model

je bitan doprinos disertacije.

U četvrtom poglavlju opisana je platforma s neograničenim brojem procesora. Na takvoj

platformi može se izvršiti paralelan algoritam za izvod̄enje grafa sinkronog protoka podataka.

Takav algoritam opisan je u prvom dijelu poglavlja. Takod̄er, opisan je izračun trajanja jedne

iteracije grafa sinkronog protoka podataka. Drugi dio opisuje metodu za izračunavanje broja

početnih žetona u grafu sinkronog protoka podataka. Ova metoda je cilj četvrtog poglavlja i

bitan dio algoritma za automatsko oblikovanje kosimulacije. Dokazano je da graf dobiven na

ovaj način ne dovodi do zastoja prilikom izvod̄enja. Nadalje, dostupna je metoda koja prov-



jerava može li se takav graf izvršiti u stvarnom vremenu. Ova metoda pretpostavlja upotrebu

platforme s neograničenim brojem procesora. Ova provjera daje uvid u to može li se izvesti

simulacija s fizičkim komponentama u petlji.

U petom poglavlju prikazan je izračun numeričkog defekta. U prvom dijelu prikazan je

izračun defekta konekcije. Dokazano je da se defektom konekcije može upravljati smanjenjem

komunikacijskog koraka podred̄enih jedinica. U prvom dijelu prikazana je estimacija izlaznog

defekta. Dokazano je da je ova procjena asimptotski ispravna. U drugom poglavlju dokazano

je da se izlaznim defektom može upravljati smanjenjem komunikacijskog koraka podred̄enih

jedinica. U trećem dijelu definiran je kriterij za procjenu kvalitete kosimulacije. Kriterij je pro-

cijenjen pomoću defekta konekcija i izlaznog defekta. Upravljanje integracijskim defektom pre-

pušteno je podred̄enim komunikacijskim jedinicama s ovom formulacijom kriterija. Upotreba

ovog kriterija opravdana je primjerom u ovom poglavlju i teoremom u drugom poglavlju.

Četvrti dio petog poglavlja opisuje algoritam automatskog oblikovanja za neiterativnu kosim-

ulaciju. Ovaj algoritam je konačni cilj disertacije. Za oblikovanje grafa sinkronog protoka po-

dataka iz kosimulacijske mreže potrebno je odrediti komunikacijske korake simulatora, broj i

vrijednosti početnih žetona. Broj početnih žetona odred̄en je metodom prikazanom u četvr-

tom poglavlju. Vrijednosti početnih žetona odred̄ene su pomoću optimizacije na jednoj iteraciji

grafa sinkronog protoka podataka. Smanjivanjem komunikacijskih koraka simulatora u algo-

ritmu postiže se željena vrijednost kriterija. Ovaj odjeljak daje primjer upotrebe algoritma au-

tomatskog oblikovanja kosimulacije.

Šesto i posljednje poglavlje je zaključak disertacije. U njemu su navedeni doprinosi dis-

ertacije i planovi za budući rad.

Zaključak

Glavni cilj disertacije je omogućiti automatsko oblikovanje neiterativne kosimulacije. U sklopu

disertacije ostvarena su sljedeća tri izvorna znanstvena doprinosa:

•Model sinkronog protoka podataka za izvo d̄enje neiterativne kosimulacije.

•Metoda za evaluaciju kosimulacije pomo ću defekta konekcije i izlaznog defekta.

•Metoda automatskog oblikovanja svih faza razvoja temeljenog na modelu pomo ću simu-

lacije s modelom u petlji.

Model sinkronog protoka podataka za izvod̄enje neiterativne kosimulacije prezentiran je u

trećem poglavlju disertacije. Možda najvažnije svojstvo ovog modela je da je njegovo izvod̄enje

jednoznačno odred̄eno. Nadalje, omogućuje upotrebu postojećih algoritama za raspored̄ivanje

zadataka razvijenih za graf sinkronog protoka podataka. U istom poglavlju prikazani su prim-

jeri i teoremi koji pokazuju valjanost predloženog modela. U teoremima je dokazano da su

stope proizvodnje i potrošnje u dobivenom grafu sinkronog protoka podataka konzistentne, te da

sve podred̄ene kosimulacijske jedinice imaju jednoliku progresiju simuliranog vremena. Ovaj



model je izvorni doprinos i spaja kosimulaciju s istraženim algoritmima za raspored̄ivanje grafa

sinkronog protoka podataka.

Metoda za evaluaciju kosimulacije pomoću defekta konekcije i izlaznog defekta prikazana

je u petom poglavlju disertacije. Metoda se sastoji od proračuna defekta konekcije i estimacije

izlaznog defekta. Pokazalo se da je estimacija izlaznog defekta asimptotski točna. U drugom

je poglavlju dokazano da je kosimulacijska pogreška ograničena ako su integracijski, izlazni i

defekt konekcije ograničeni. U disertaciji se pretpostavlja da podred̄ene kosimulacijske jedinice

upravljaju integracijskim defektom. Ovo je izvorni doprinos koji pokazuje kako primijeniti

numeričku analizu defekta na procjenu kvalitete kosimulacije. U dosadašnjoj literaturi analiza

numeričkog defekta provedena je na diferencijalnim i algebarskim jednadžbama, ali ne i na

kosimulacijskoj mreži.

Metoda automatskog oblikovanja svih faza razvoja temeljenog na modelu pomoću simu-

lacije s modelom u petlji prikazana je u četvrtom dijelu petog poglavlja. Metoda se sastoji

od nekoliko manjih metoda predstavljenih tijekom disertacije. Broj početnih žetona odred̄en

je metodom prikazanom u četvrtom poglavlju. Vrijednosti početnih žetona odred̄ene su po-

moću optimizacije na jednoj iteraciji grafa sinkronog protoka podataka. Smanjivanjem komu-

nikacijskih koraka simulatora u algoritmu postiže se željena vrijednost kriterija. Dokazano je

da se smanjenjem komunikacijskih koraka simulatora može postići ograničenje izlaznog i de-

fekta konekcije. Dobiveni graf sinkronog protoka podataka može se primijeniti na druge faze

razvoja temeljenog na modelu nakon oblikovanja. U nedavnoj literaturi dostupna je metoda

automatskog oblikovanja kosimulacije. Metoda predstavljena u ovoj disertaciji omogućuje

postavljanje različitih koraka kosimulacije i omogućuje modeliranje niza složenih sustava.

Ključne riječi: kosimulacija, model sinkronog protoka podataka, analiza pogreške, povezane

obične diferencijalne jednadžbe, kontrola defekta, automatizirano oblikovanje, razvoj temeljen

na modelu
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Chapter 1

Introduction

Co-simulation enables the simulation of complex systems by connecting different co-simulation

slaves at the signal level [1, 2]. This simulation technique is popular in practice because it al-

lows reuse of previously developed subsystem models. With the Functional Mock-up Interface

(FMI) standard [3, 4, 5], a standardization of the simulation interface was introduced to facili-

tate the connection of commercial simulators. The popularity of co-simulation can be assessed

by observing the increasing number of tools that support FMI for co-simulation [6]. The main

advantage of co-simulation is the distribution of the modeling effort. Each engineering team can

develop a co-simulation slave for the respective parts of the system under their responsibility.

A subsystem model can be developed in a special simulator and easily connected to other simu-

lators. This is the reason why co-simulation is sometimes referred to as simulator coupling [7].

The terms co-simulation slave and simulator can be used interchangeably. A Functional Mock-

Slave 1
                    

Slave 1
                    

Model 1Model 1 Solver 1Solver 1

Slave 2
                    

Slave 2
                    

Model 2Model 2 Solver 2Solver 2

MasterMaster

Figure 1.1: A co-simulation slave (CSL) wraps the model of a subsystem and its solver. A co-simulation
master (CSM) orchestrates the execution of co-simulation slaves.
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up Unit (FMU) for co-simulation is a package that is standardized by the FMI standard [5] for

the exchange of co-simulation slaves. The engineering team can ensure that the co-simulation

slave has a suitable solver for solving its model. A suitable choice of a co-simulation master

(CSM) is then required in order to orchestrate slaves in the co-simulation network (Figure 1.1).

The main goal of this work is to automate the selection of a suitable co-simulation master.

A co-simulation network (CSN) corresponds to a co-simulation, just like an ordinary dif-

ferential equation (ODE) corresponds to a classical simulation. Both are used as simulation

models to predict the behavior of a system [8]. However, both can also be used as a specifi-

cation of a technical system under development. In this case, a CSN becomes a model that is

similar to technical drawings for the design of buildings [9]. Such use of co-simulation can be

observed in the model-based development (MBD) of complex systems [10, 11, 12, 13, 14]. The

specification of a CSN divides the complex system into smaller components that can be devel-

oped separately. It can be discussed whether a co-simulation is mainly used as a specification

of the system to be developed or as a check to see whether an existing specification is able to

meet its requirements*. Regardless of the exact perspective of the MBD user, a hardware in the

loop (HIL) simulation is usually executed. The results are usually compared to the results of the

model in the loop (MIL) simulation. The differences are then analyzed to verify the hardware

implementation. In order to use the co-simulation during such a process, the co-simulation

should be carried out in real time without repeating simulation steps. This thesis describes a

non-iterative co-simulation method that tries to facilitate MBD. A comparison between iterative

and non-iterative approaches can be found in [15].

Typically, the first thing that is associated with MBD is a software development process

that involves some form of UML modeling [16, 17]. In that context, UML models are used to

describe the software system under development from different perspectives [18]. There is a

research showing that such kind of MBD is advantageous when the model design costs are low

enough compared to the production costs of the system [19, 20]. This thesis tries to improve

the development of cyber-physical systems [21, 22, 23] and not pure software systems. Other

modeling techniques are being explored within the community researching such systems [24].

These articles highlight the importance of determinacy. Non-determinate programs can have

problems such as race conditions [25, 26]. This thesis takes determinacy into account when

proposing definitions of models that describe different views of the co-simulation†. An attempt

is made to precisely define the system model, the model of computation (MOC) and the ex-

ecution schedule. The precise definition for different layers of the co-simulation architecture

enables the exchange of individual layers. The proposed defect analysis method works at the

*In practice, the former is usually not explicitly stated, although the modeling of the CSN can be considered as
a form of verification.

†In the author’s opinion, UML is better suited for modeling systems that were developed without a strict soft-
ware architecture. However, determinate models of computation seem to be more useful for designing new systems.
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Figure 1.2: The diagram shows the steps for modeling and executing a continuous co-simulation. First
steps show the creation of a CSN and the last step leads to a numerical solution of the co-simulation.
Various aspects of the co-simulation are presented in intermediate steps

system model level and can be used for both iterative and non-iterative co-simulations. The

MOC allows the execution platform to be exchanged. The results should be the same when the

co-simulation is run on a personal computer or a computer cluster. It is also interesting to note

that SDF can be used to model the behavior of the system developed using MBD [27].

The proposed steps to model and execute a continuous co-simulation are shown informally

in Figure 1.2. The diagram shows the steps of the concept phase as cloud shapes. In the concept

phase, it should be decided how to decompose the overall system model. After the model

decomposition, the subsystem models should be made available via a standardized interface.

The interface chosen in this work is FMI for co-simulation. The concept phase added to the

diagram represents the underlying assumption subsystem models. In this work it is assumed that

the resulting CSN can be represented by the system of coupled ordinary differential equations.

This assumption enables a distributed error analysis of a co-simulation.

A piecewise-continuous prediction of the monitored signals is obtained by computing the

specified CSN. A CSM must be configured to calculate signals specified by the CSN. This thesis

uses SDF [28] as the model of computation (MOC) for the specification of the co-simulation

master. The introduction of a MOC enables the execution platform to be exchanged. This means

the co-simulation can be executed on a personal computer. Since synchronous data flow (SDF)

is a determinate MOC, the results obtained by executing the co-simulation should be exactly

the same regardless of the execution algorithm. If the CSN contains a hardware component, the
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execution of the network can be modeled using SDF. The proposed co-simulation modeled by

SDF enables HIL simulation and facilitates MBD.

In the next section, the research motivation is explained and the last section of this chapter

describes the outline of the thesis.

1.1 Research motivations

Model-based development (MBD) stages are X in the loop (XIL) simulations, where X is a

component of a complex system under development. This component can be a model, soft-

ware, processor or hardware component, depending on the current stage of development. This

mode of development enables distributed development between development teams and facil-

itates their mutual communication. Using simulation with a model in the loop (MIL) quickly

detects whether a product can be developed, and then provides a specification of system be-

havior for later stages of development. In this research, MBD starts with a model in the loop

(MIL) simulation and ends with a hardware in the loop (HIL) simulation. The rest of the loop

is considered unchanged during development. The specification of a complex system under

development is considered to be a network of CSLs that implement the FMI interface.

The co-simulation master is responsible for scheduling the execution of CSLs and approxi-

mating their input signals. One of the goals of the research is to specify a co-simulation master

that can handle different XIL simulations. It is desirable that the execution of this algorithm

is determinate, i.e. co-simulation always produces the same results if it follows its specifica-

tion. With determined co-simulation and unchanged rest of the loop, the different response

of the two model-based development stages is solely due to differences in exchanged compo-

nent. This property allows the co-simulation user to compare the developed component with its

model. Differences and errors in practice may occur because of the different platforms used at

different stages of model-based development.

The previous requirement can be interpreted as saying that performance differences on dif-

ferent platforms should not exist. An example of a determinate co-simulation master is available

at [29]. This algorithm requires the ability of slave units to repeat the simulation step and the

availability of output-input dependency information. Although defined by the FMI standard,

these options are often not available in practice. Furthermore, a hardware component cannot

repeat the simulation step. One of the requirements for specifying a practically applicable co-

simulation master is that it expects slaves to implement only the mandatory capabilities of the

FMI standard. Furthermore, it is desirable that its application can be generalized to HIL sim-

ulation. These requirements eliminate iterative co-simulation masters from consideration [30]

and leave room only for non-iterative Gauss-Seidel or Jacobi algorithms [31], either single or

multi-rate [32, 33].
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Sequential Gauss-Seidel algorithms show slightly better results compared to Jacobi parallel

algorithms on test models [31], but they limit the distribution possibilities of computation. In

the case of single-processor platforms, it is advisable to use the above algorithms with multiple

rates of simulation. One of the goals of the research is to determine whether the generalization

of the mentioned non-iterative CSMs can be specified. The use of synchronous data flow [28]

for this purpose will be investigated. The synchronous data flow (SDF) model is a determinate

MOC [34] most commonly used to describe hardware components. A major advantage of this

model is that procedures have been developed for executing it in one or more processors [35,

36]. This approach to modeling a co-simulation masters combines two areas of research and

has the potential to enable a large number of automated procedures that facilitate model-based

development. It is interesting to note that in [37] it has been demonstrated how to wrap an

SDFG with an FMU. This thesis goes in the opposite direction to introduce a determinate model

of computation (MOC) for non-iterative co-simulation.

Ideally, the co-simulation master should minimize the global simulation error. Algorithms

for solving ordinary differential equations always define an approximate measure that leads

to the minimization of global error [38]. The most common measures are the local error or

numerical defect of solving the differential equation. In the case of co-simulation, the local

error was analyzed in [39, 40]. One of the goals of the research is to test the practicality of

using the numerical defect as a measure of the quality of the co-simulation master. The defect

was used as an error control measure to solve a set of differential and algebraic equations [41],

but its convenience for co-simulation has not been explored in detail.

The title of this thesis suggests that an automated configuration algorithm for non-iterative

co-simulation is the main goal. Research in this area is limited [42, 43]. The authors in [42]

gave an overview of the CSM algorithm, which configures its execution itself in each step. Such

an algorithm may not require much configuration by the user. This work shows an algorithm

that is similar to the one presented in [43]. In this work, however, a more general underlying

model of the system is assumed and the correctness of the algorithm is formally proven.
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1.2 Outline of the thesis
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Figure 1.3: The above figure shows a subset of definitions, theorems, and algorithms that provide insight
into the work done in this thesis. Algorithm 5.1 is the main contribution of this thesis.

Figure 1.3 shows a subset of definitions, theorems and algorithms that can give a short summary

of work done in this thesis. Since definitions, theorems and algorithms are numbered with the

chapter number, the above figure also gives an overview of the chapters. Throughout the thesis

two systems are used as examples to demonstrate different aspects of the co-simulation. The

systems presented are a simple control loop and a two-mass oscillator. The code used in the

examples presented in this thesis can be found at [44].

Chapter 2 describes the model of the system under development that is adopted in this thesis.

It is assumed that the system can be modeled with CODE system (CODESYS) introduced

by Definition 2.2. The co-simulation defect is divided into three parts, and it is shown that the

co-simulation error is limited when these three defects are limited (Theorem 2.12). In the same

chapter, co-simulation network (CSN) is presented (Definition 2.14). A CSN contains a partial

solution from CODESYS. A CSN has a solver for each CSL, as shown in Figure 1.1. Chapter 2

does not contain a CSM specification.

Chapter 3 introduces synchronous data flow (SDF) as the model of computation (MOC)

for non-iterative co-simulation It is proposed to wrap a CSN with an SDFG to model the ex-

ecution of the non-iterative co-simulation. This is a determinate MOC with a large amount

of research into scheduling algorithms. This allows this research to be reused to run a non-
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iterative co-simulation. The proposed wrapping procedure (Definition 3.25) is the specification

for constructing a non-iterative CSM. Theorems proving the validity of the proposed wrapper

are included in the same chapter.

Chapter 4 provides an ideal execution platform (Definition 4.1) for analyzing the real-time

capabilities of the proposed formalism. This analysis suggests a method for configuring the

master with which a non-iterative co-simulation can be executed in real time (Definition 4.8).

This analysis gives an estimate whether a HIL simulation is possible with the given CSLs (The-

orem 4.17). The same chapter shows MBD using examples.

Chapter 5 shows how an estimate of the co-simulation defect can be calculated. This method

provides a quality criterion for evaluating the co-simulation quality. Such a criterion can be used

to determine the initial values of SDFG tokens and step sizes of simulators. Theorems 2.12, 5.4

and 2.17 justify the automatic procedure shown in Algorithm 5.1 for the configuration of the

non-iterative co-simulation. This algorithm is the end result of this thesis. It is included in the

chapter on defect calculation because it depends heavily on the results of the defect analysis.

The last chapter of this thesis lists contributions and topics for future work.
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Chapter 2

System model

According to [45], a model is "something that represents another thing, either as a physical

object that is usually smaller than the real object, or as a simple description that can be used

in calculations". In this section, coupled ordinary differential equations (CODE) are introduced

as a model of a complex system (Section 2.1). When engineers use such a model, their main

concern is to predict the behavior of the technical system under development. The behavior

is represented with signal values obtained by solving the model. In this thesis, one of the

main concerns is to make sure that the prediction of the behavior by means of co-simulation is

reliable, i.e. the co-simulation should deliver results with a small numerical error. From this

point of view, CODE is a model that specifies how the numerical error of the co-simulation

behaves. An error analysis of the co-simulation is shown in Section 2.2.

Coupled ordinary differential equations (CODE) are differential-algebraic equations of in-

dex 1 [46]. Compared to standard notation, algebraic equations are divided into output and

connection equations. This separation of algebraic equations was introduced because the solver

of a subsystem is responsible for solving its output equations and the co-simulation master

is responsible for solving connection equations. The error analysis presented in this chapter

shows how the numerical error depends on the defect of a numerical solution [41, 47]. The

numerical defect analysis highlights that the responsibility for controlling numerical defect dur-

ing a co-simulation is distributed. Distributed numerical responsibility for errors is a natural

consequence of distributed modeling and simulation. The presented error analysis justifies the

measurement of the co-simulation quality introduced in Chapter 5.

A CODE system (CODESYS) consists of state, output and connection equations that model

a complex system. A CODE system (CODESYS) describes a complex system at the equation

level [7]. This chapter also specifies the behavioral description of a system according to the

FMI standard [5] for co-simulation (Section 2.3). In practice, a subsystem of the complex

system is modeled in a modeling tool that is suitable for the technical domain of the subsystem.

The modeling tools can provide a way to export the package that contains the model and its

9
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solver. According to the FMI standard this package is a Functional Mock-up Unit (FMU) for

co-simulation (Figure 1.1). The list of tools that are able to export an FMU for co-simulation

is maintained at [6]. Such a deployment enables an engineer to select a solver which is suitable

for solving the model in the respective technical domain.

An FMU contains modelDescription.xml and files that provide the implementation of

the CSL. The file modelDescription.xml describes the capabilities, ports and parameters

of the FMU. The files that provide the implementation of the slave are either shared libraries

and/or the source code. An FMU can have multiple shared libraries for multiple operating

systems. This can enable the use of an FMU for office simulation under Windows [48] and

for HIL simulation under INtime [49]. An FMU does not have to contain the source code.

This enables the distribution of simulation models while protecting intellectual property. This

property is important for commercial distributions of simulation models. This chapter was

created to connect the research in this thesis with a standard used in practice.

It should be noted that there exists an FMU for model exchange. The difference between co-

simulation and model exchange is explained in [7]. An FMU for co-simulation can be coupled

to other FMUs for co-simulation at the signal level. An FMU for model exchange can be

coupled to other FMUs for model exchange at the equation level. An example of coupling at

the equation level is shown in Section 2.1. The result of coupling a CODESYS (2.4) at the

equation level is (2.13). After such a coupling, a standard ODE or DAE solver [46, 50] can be

used to find a numerical solution. This thesis focuses on co-simulation, i.e. on the signal level

coupling. Although this work does not focus on model exchange, it introduces CODESYS as

a specification for coupling at the equation level. Such a specification is introduced to enable

co-simulation error analysis.

2.1 CODE system

This thesis assumes that the simulated system can be modeled by coupled ordinary differential

equations (CODE). A formal specification of the CODE system (CODESYS) is introduced

in Definition 2.2. This section describes the assumptions that are sufficient for the analytical

solution of a CODESYS to exist and can be uniquely determined (Theorem 2.5). The proof

closely follows the text about differentiable-algebraic equations of index 1 found in [46]. The

error analysis in the next section is based on the same assumptions.

This section presents two examples that are used throughout the thesis. Example 2.6 is

introduced to show how co-simulation can be used to design a simple controller. Examples

of the design of more complex control systems can be found in [11, 51, 52]. Example 2.7 is

introduced to demonstrate the co-simulation of a simple mechanical system. The presented

two-mass oscillator is the system that is often used for benchmarking co-simulation master al-

10
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gorithms [15, 31, 39, 53, 54, 55]. According to [2] the average reported co-simulation scenario

in the surveyed literature includes only two slaves. The two-mass oscillator system was parti-

tioned into three subsystems to emphasize that the methods presented in the thesis generalize to

any number of slaves.

Definition 2.1 (CODE subsystem). A CODE subsystem (CODESUB) is a tuple

M = (f,g,x0) (2.1)

where

• f : RNx → RNx is the state transition function,

• g : RNx ×RNu → RNy is the output function,

•and x0 ∈ RNx is the initial state of the CODESUB.

A CODESUB represents the system of equations

ẋ(t) = f(x(t),u(t)) (2.2a)

y(t) = g(x(t),u(t)) (2.2b)

x(0) = x0 (2.2c)

where

• x : R⩾0 → RNx is the state signal,

• y : R⩾0 → RNy is the output signal,

•and u : R⩾0 → RNu is the input signal.

Definition 2.2 (CODE system). A CODE system (CODESYS) is a tuple

S = (IM,M,L) (2.3)

where

• M is the set of all possible CODE subsystems (Definition 2.1),

• IM ⊂ N is the set of CODESUB labels,

•M : IM →M is the function for selecting CODESUBs based on the label,

•and L : N×N→ N×N is the connection function.

A CODESYS is given by its CODESUBs

ẋi(t) = fi(xi(t),ui(t)) (2.4a)

yi(t) = gi(xi(t),ui(t)) (2.4b)

xi(0) = x0i (2.4c)

11
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and the connection function L : N×N→ N×N

uı̆ῐ(t) = y“ı“o(t), (“ı, “o) = L(ı̆, ῐ) (2.5)

where

• i, ı̆,“ı ∈ {1,2, . . .NM} are indices of subsystems,

• ῐ ∈ N is the index of an input port,

•and “o ∈ N is the index of an output port.

The input signal of a CODESUB is a vector signal

u(t) =
[

u1(t) u2(t) . . . uι(t) . . . uNu(t)

]T

(2.6)

The index of an input port ι is the index of a vector element. The signal at the input port indexed

ι is uι : R⩾0 → R. The analogy holds for output signals.

The signals of all CODESUBs can be further grouped into column vector signals to simplify

the notation

XT (t) =
[

x1
T (t) x2

T (t) · · · xN
T (t)

]
YT (t) =

[
y1

T (t) y2
T (t) · · · yN

T (t)

]
UT (t) =

[
u1

T (t) u2
T (t) · · · uN

T (t)

] (2.7)

Then the equation (2.4) can be rewritten in

Ẋ(t) = F(X(t),U(t)) (2.8a)

Y(t) = G(X(t),U(t)) (2.8b)

U(t) = LY(t) (2.8c)

X(0) = X0 (2.8d)

where the connection matrix L = [lab] ∈ {0,1}NU×NY is formed element by element

lab =

1,
(
“ı, “o
)
= L

(
ı̆, ῐ
)
, a =

(
ı̆−1

)
NU + ῐ , b =

(
“ı−1

)
NY + “o

0, otherwise
(2.9)

Definition 2.3 (Lipschitz continuity). A function F : RNX ×RNU → RNX is said to be Lipschitz

continuous if there exist constant KF > 0 such that for all χχχ1,χχχ2 ∈ RNX ,υυυ1,υυυ2 ∈ RNU:

∥∥F(χχχ2,υυυ2)−F(χχχ1,υυυ1)
∥∥⩽ KF

∥∥χχχ2 −χχχ1
∥∥+KF

∥∥υυυ2 −υυυ1
∥∥ (2.10)
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The constant KF is called the Lipschitz constant of the function F.

Lemma 2.4. If the matrix I−L∂G(χχχ,υυυ)
∂υυυ

exists and is invertible, there exists a differentiable

function H : RNX → RNU where

U(t) = H
(
X(t)

)
(2.11)

Proof. The equations (2.8b) and (2.8c) give

U(t)−LG
(
X(t),U(t)

)
= 0 (2.12)

The statement of the lemma is a direct consequence of the implicit function theorem [56].

Under the conditions of Lemma 2.4, a CODESYS (Definition 2.2) can be reduced to an

ordinary differential equation. This fact makes it possible to formulate necessary conditions for

the existence and uniqueness of a solution for the CODESYS.

Theorem 2.5 (Existence and Uniqueness). Suppose the state transition function F is Lipschitz

continuous (Definition 2.3) with the Lipschitz constant KF. Suppose the matrix I−L∂G(χχχ,υυυ)
∂υυυ

exists and is invertible. Then the solution of a CODESYS (Definition 2.2) exists and is unique.

Proof. Lemma 2.4 states that the system (2.8) has an explicit expression for input signals (2.11).

The system can be transformed to an ordinary differential equation

Ẋ(t) = ΦΦΦ
(
x(t)

)
= ΦΦΦ

(
x(t),H(X(t))

)
(2.13)

Since H is differentiable, it is also Lipschitz continuous with the Lipschitz constant KH. The

function F is Lipschitz continuous with the Lipschitz constant

KΦΦΦ = KF +KFKH (2.14)

Existence and uniqueness of the solution is a consequence of Picard’s theorem for ODEs [57].

r(t)
+

KR

(
1+ 1

TIs

)M1

K
(1+T1s)(1+TΣs)

M2

−

Figure 2.1: The CODESYS presented in Example 2.6.
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Example 2.6 (Control loop). A simple control loop is a CODESYS (Definition 2.2)

S = (IM,M,L) (2.15)

consisting of two interconnected CODESUBs, as shown in Figure 2.1. The set of CODESUB

labels is

IM = {1,2} (2.16)

and the function assigning labels to CODESUBs is

M(i) =

M1, i = 1

M2, i = 2
(2.17)

The subsystem

M1 = (f1,g1,x01) (2.18)

is a PI controller represented by its transfer function in the diagram. Its equations are

ẋ1(t) = f1 (x1(t),u1(t)) =
[

ẋ11(t)

]
=

[
1
TI

r(t)− 1
TI

u11(t)

]
y1(t) = g1 (x1(t),u1(t)) =

[
y11(t)

]
= KR

[
x11(t)

]
+KR

[
u11(t)

]
= KR x1(t)+KR u1(t)

x1(0) = x01 =

[
x11(0)

]
= 0

(2.19)

The subsystem

M2 = (f2,g2,x02) (2.20)

is a simple plant represented by its transfer function in the diagram. Its equations are

ẋ2(t) = f2 (x2(t),u2(t)) =

ẋ21(t)

ẋ22(t)

=

− 1
T1

x21(t)+ 1
T1

u21(t)

1
TΣ

x21 − 1
TΣ

x22(t)(t)



=

− 1
T1

0

1
TΣ

− 1
TΣ

 x2(t)+

− 1
T1

0

 u2(t)

y2(t) = g2 (x2(t),u2(t)) =
[

y21(t)

]
=

[
K x22(t)

]
=

[
K 0

]
x2(t)

x2(0) = x02 =

x21(0)

x22(0)

=

0

0



(2.21)
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The connections are given with the following equation

u21(t) = y11(t), u11(t) = y21(t) (2.22)

or alternatively, with the following connection function

L(i, ι) =

(1,1), (i, ι) = (2,1)

(2,1), (i, ι) = (1,1)
(2.23)

The parameters of the example system are chosen as

K = 1, T1 = 5, TΣ = 1

TI = T1 = 5, KR =
T1

2KTΣ

= 2.5
(2.24)

The previous examples show that a simple control loop can be described by a system of cou-

pled ordinary differential equations (2.4). This example can be generalized for the simulation

of a large number of control systems [58].

Example 2.7 (Two mass oscillator). A two-mass oscillator is a CODESYS (Definition 2.2)

S = (IM,M,L) (2.25)

consisting of three interconnected CODESUBs M1, M2 and M3, as shown in Figure 2.2. The set

of CODESUB labels is

IM = {1,2,3} (2.26)

and the function assigning labels to CODESUBs is

M(i) =


M1, i = 1

M2, i = 2

M3, i = 3

(2.27)

m1

c1

d1

M1

m3

c3

d3

M3M2
c2

d2

Figure 2.2: The CODESYS presented in Example 2.7.
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The subsystem

M1 = (f1,g1,x01) (2.28)

is the oscillator connected to the left wall

ẋ1(t) = f1 (x1(t),u1(t)) =

ẋ11(t)

ẋ12(t)

=

 0 1

− c1
m1

− d1
m1


x11(t)

x12(t)

+[ 1
m1

][
u11(t)

]

y1(t) = g1 (x1(t),u1(t)) =
[

y11(t)

]
=

[
x12(t)

]
=

[
0 1

]
x1(t)

x1(0) = x01 =

x11(0)

x12(0)

=

0.1

0.1


(2.29)

The subsystem

M2 = (f2,g2,x02) (2.30)

is the coupling element between the two oscillators

ẋ2(t) = u2 (x2(t),u2(t)) =
[

ẋ21(t)

]
=

[
u22(t)−u21(t)

]
=

[
−1 1

]
u2(t)

y2(t) = g2 (x2(t),u2(t)) =

y21(t)

y22(t)

=

−c2 0

0 c2

 x2(t)+

 d2 −d2

−d2 d2

 u2(t)

x2(0) = x02 =

[
x21(0)

]
=

[
1

]
(2.31)

The subsystem

M3 = (f3,g3,x03) (2.32)

is the oscillator connected to the right wall

ẋ3(t) = f3 (x3(t),u3(t)) =

ẋ31(t)

ẋ32(t)

=

 0 1

− c3
m3

− d3
m3


x31(t)

x32(t)

+[ 1
m2

][
u31(t)

]

y3(t) =
[

y31(t)

]
=

[
x32(t)

]
= g3 (x3(t),u3(t)) =

[
0 1

]
x3(t)

x3(0) = x03 =

x31(0)

x32(0)

=

0.2

0.1


(2.33)
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The connections are given with the following equation

u21(t) = y11(t), u11(t) = y21(t)

u31(t) = y22(t), u22(t) = y31(t)
(2.34)

or alternatively, with the following connection function

L(i, ι) =



(1,1), (i, ι) = (2,1)

(2,1), (i, ι) = (1,1)

(3,1), (i, ι) = (2,2)

(2,2), (i, ι) = (3,1)

(2.35)

The parameters of the example system are chosen as

m1 = 10, c1 = 1, d1 = 1, c2 = 1, d2 = 2

m3 = 10, c3 = 1, d3 = 2
(2.36)

The previous example shows how a mechanical system can be modeled by a CODESYS.

This example is often used for co-simulation benchmarking. One of the reasons for this may be

that it can easily be generalized to any system that can be modeled by a bond-graph [59].

2.2 Numerical solution

This section contains an analysis of a numerical solution for CODESYS (Definition 2.2). In

the previous section, Theorem 2.5 showed the conditions under which the analytical solution

of a CODESYS is unique. Theorem 2.12 shows that the error of the numerical solution (Def-

inition 2.10) is limited by its defect (Definition 2.8) under the same conditions. The influence

of the numerical defect on the numerical error was investigated for differential-algebraic equa-

tions [41, 47]. This section follows similar steps when analyzing the error of a CODESYS

(Definition 2.2).

Definition 2.8 (Numerical solution). The numerical solution of a CODESYS (Definition 2.2)

satisfies the following equations

˙̃xi(t) = fi
(
x̃i(t), ũi(t)

)
+δ x̃i(t) (2.37a)

ỹi(t) = gi
(
x̃i(t), ũi(t)

)
+δ ỹi(t) (2.37b)

x̃i(0) = x0i (2.37c)

ũı̆ῐ(t) = ỹ“ı“o(t)+δ ũı̆ῐ(t), (“ı, “o) = L(ı̆, ῐ) (2.37d)
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where

• x̃i : R⩾0 → RNxi is the numerical solution for the state signal,

• δ x̃i : R⩾0 → RNxi is the integration defect,

• ỹi : R⩾0 → RNyi is the numerical solution for the output signal,

• δ ỹi : R⩾0 → RNyi is the output defect,

• ũı̆ῐ : R⩾0 → R is the numerical solution found for the input signal,

•and δ ũı̆ῐ : R⩾0 → R is the connection defect.

Lemma 2.9. If the matrix I−L∂G(χχχ,υυυ)
∂υυυ

exists and is invertible then there exists a differentiable

function H̃ : RNX ×RNU ×RNY → RNU where

Ũ(t) = H̃
(

X̃(t),δ Ỹ(t),δ Ũ(t)
)

(2.38)

Proof. The output (2.37b) and connection equations (2.37d) of the numerical solution can be

coupled

Ũ(t) = LG
(

X̃(t), Ũ(t)
)
+Lδ Ỹ(t)+δ Ũ(t) (2.39)

The statement of the lemma is a direct consequence of the implicit function theorem [56].

The statements of Lemma 2.4 and Lemma 2.9 are analogous and it can be shown that

H(X(t)) = H̃(X(t),0,0) (2.40)

Definition 2.10 (Co-simulation error). Suppose a numerical algorithm is solving a CODESYS

(Definition 2.2) and produces a numerical solution (Definition 2.8). The integration error of

the numerical solution is the difference between the numerical (2.37a) and the analytic solu-

tion (2.4a) found for the state signals

∆X̃(t) = X̃(t)−X(t) (2.41)

The output error of the numerical solution is the difference between the numerical (2.37b) and

the analytic solution (2.4b) found for the output signals

∆Ỹ(t) = Ỹ(t)−Y(t) (2.42)

The input error of the numerical solution is the difference between the numerical (2.37d) and

the analytic solution (2.5) found for the input signals

∆Ũ(t) = Ũ(t)−U(t) (2.43)
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Lemma 2.11 (A limited defect ⇒ a limited integration error). If the assumptions of Theorem 2.5

hold then the size of the error satisfies

∥∆X̃(t)∥⩽ ∥∆X̃(tκ−1)∥+
t∫

tκ−1

KF∥∆X̃(τ)∥+δ
(tκ−1,t] dτ (2.44)

where

δ
(tκ−1,t] = max

tκ−1⩽τ⩽t

(
KFKH̃∥δ Ỹ(τ)∥+KFKH̃∥δ Ũ(τ)∥+∥δ X̃(τ)∥

)
(2.45)

Proof. The Lemma 2.9 holds under the assumptions of the Theorem 2.5. Since H̃ is differen-

tiable, it is also Lipschitz continuous with the Lipschitz constant KH̃. The expression (2.38) and

the application of the norm lead to the following inequality

∥∆Ũ(t)∥⩽ KH̃∥∆X̃(t)∥+KH̃∥δ Ỹ(t)∥+KH̃∥δ Ũ(t)∥ (2.46)

The integration error expression (2.41), the integration of the state equations (2.4a) and (2.37a)

result in

∆X̃(t) = ∆X̃(tκ−1)+

t∫
tκ−1

[
F
(
X̃(τ), Ũ(τ)

)
−F
(
X(τ),U(τ)

)
+δ X̃(τ)

]
dτ (2.47)

After the application of the norm and the Lipschitz continuity, the following inequality is ob-

tained

∥∆X̃(t)∥⩽ ∥∆X̃(tκ−1)∥+
t∫

tκ−1

[
KF∥∆X̃(τ)∥+KF∥∆Ũ(τ)∥+∥δ X̃(τ)∥

]
dτ (2.48)

The statement of the lemma is proven by (2.45), (2.46) and (2.48).

Theorem 2.12 (Error bounds). Suppose the assumptions of Theorem 2.5 hold and the numerical

solution is continuous in every sub-interval (tκ−1, tκ ]. Then the integration error satisfies the

inequality

∥∆X̃(t)∥⩽ eKF(t−t0)∥∆X̃(t0)∥+
1

KF

(
eKF(t−t0)−1

)
δ
(t0,t] (2.49)

the input error satisfies the inequality

∥∆Ũ(t)∥⩽KH̃eKF(t−t0)∥∆X̃(t0)∥+
KH̃
KF

(
eKF(t−t0)−1

)
δ
(t0,t]

+KH̃∥δ Ỹ(t)∥+KH̃∥δ Ũ(t)∥
(2.50)
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and the output error satisfies the inequality

∥∆Ỹ(t)∥⩽KG
(
1+KH̃

)
eKF(t−t0)∥∆X̃(t0)∥

+
KG
KF

(
1+KH̃

)(
eKF(t−t0)−1

)
δ
(t0,t]

+
(
1+KGKH̃

)
∥δ Ỹ(t)∥+KGKH̃∥δ Ũ(t)∥

(2.51)

Proof. The inequality (2.44) holds as a consequence of Lemma 2.11. The Gronwall lemma

(Theorem 6 in [60]) shows that for a continuous numerical solution the inequality (2.44) implies

∥∆X̃(t)∥+ δ (tκ−1,t]

KF
⩽ eKF(t−tκ−1)

(
∥∆X̃(tκ−1)∥+

δ (tκ−1,t]

KF

)
(2.52)

Since δ (tκ−1,t] ⩽ δ (t0,t] for all tκ ∈ [t0, t]

∥∆X̃(tκ)∥+
δ (t0,t]

KF
⩽ eKF(tκ−tκ−1)

(
∥∆X̃(tκ−1)∥+

δ (t0,t]

KF

)
(2.53)

The following inequality is obtained by recursion:

∥∆X̃(t)∥+ δ (t0,t]

KF
⩽ eKF(t−t0)

(
∥∆X̃(t0)∥+

δ (t0,t]

KF

)
(2.54)

Since G is differentiable, it is also Lipschitz continuous with the Lipschitz constant KG. By

rearrangement (2.49) is obtained. (2.50) follows from (2.46) and (2.49), while (2.51) follows

from (2.37b), (2.49) and (2.50).

The components of numerical error (2.49)-(2.51) are limited by the error in the initial val-

ues ∥∆X̃(t0)∥, the integration, the output and the connection defect (2.45). If each of the defect

components is controlled and kept low, the error that occurs when simulating a CODESYS

should be small. It is useful to note that a defect is defined independently for each individual

equation (Definition 2.8). In this way, each subsystem can have a different control mechanism

for its integration defect [47, 61], while output and connection defects can be monitored using

the method described in Chapter 5.

2.3 Co-simulation network specification

This section contains a behavioral description of an FMU (Definition 2.13), a co-simulation

slave (CSL) according to the FMI standard [5]. The network of FMUs is also described (Defini-

tion 2.14), which forms the basis for the CODE system wrapper (SYSW) presented in the next

section.
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Definition 2.13 (Co-simulation slave). A co-simulation slave (CSL) according to the FMI 2.0

standard is a tuple

F = (IU,U, IY,Y,V ,v0,set,get,doStep) (2.55)

where

• IU = {1,2, . . . ,NU} is the set of input port labels,

• U is the set of sets of input values,

•U : IU → U is the function that assigns a set of values to the input port,

• IY = {1,2, . . . ,NY} is the set of output port labels,

• Y is the set of sets of output values,

•Y : IY → Y is the function that assigns a set of values to the output port,

• V is a set of internal states,

• v0 ∈V the initial state of the FMU,

•set : IU ×V ×Z →V the function which sets the input values,

•doStep : R>0 ×V →V the function which calculates the state update,

•get : IY ×V →Z is the function which returns the output values.

Suppose the slave is updated with the sequence of communication step sizes h : N→R>0. The

sequence of communication points t :N0 →R⩾0 is determined by the communication step sizes

t (n) = t (n−1)+h(n), t(0) = 0 (2.56)

Values are assigned to the input ports

v1(n) = set(1,v(n−1),u(n,1)) , vι(n) = set
(
ι ,vι−1(n),u(n, ι)

)
(2.57)

The order of the ports has no influence on the final state after the input values have been updated.

The internal state of the slave after the nth update is

v(n) = doStep
(
vNU(n),h(n)

)
(2.58)

The input signal reconstructed at the port labeled ι is a piecewise defined signal

uι(t) = u (n, ι) , t(n−1)< t ⩽ t(n) (2.59)

The output signal reconstructed at the port labeled l is a piecewise defined signal

y
l
(t) = y (l,n) = get(l,v(n)) , t(n−1)< t ⩽ t(n) (2.60)

The naming of the terms used to define the CSL is similar to the C-API defined in the FMI

standard [5]. The comparison of the analogous terms is shown in Table 2.1. The definition above
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Definition 2.13 FMI standard [5]

IU, IY value references

U(ι), Y(l)
fmi2Real, fmi2Integer,

fmi2Boolean, fmi2String

V fmi2Component

v0 fmi2Instantiate

set
fmi2SetReal, fmi2SetInteger,

fmi2SetBoolean, fmi2SetString

get
fmi2GetReal, fmi2GetInteger,

fmi2GetBoolean, fmi2GetString

doStep fmi2DoStep

Table 2.1: Comparison of analogous terms

does not include the output-input dependency information. This information is necessary for the

iterative co-simulation master presented in [29] and can be used to optimize the sequential co-

simulation [31]. This choice limits the ability of the proposed co-simulation method to handle

hybrid co-simulation requirements [62]. This thesis examines how the co-simulation can be

improved in view of the minimal information provided by CSLs.

In this thesis the signal reconstruction is defined by (2.59) and (2.60). The CSLs use ZOH

to reconstruct the input and output signals during the state update. Higher order extrapola-

tion techniques are not included in this thesis to ease the notation. However, it should be a

straightforward task to generalize the research in this thesis to use them*. The FMI standard [5]

provides the means to reconstruct signals using higher order extrapolation techniques.

Definition 2.14 (Co-simulation network). A co-simulation network (CSN) is a tuple

C = (IF,F,L) (2.61)

where

• IF ⊂ N is the set of CSL labels,

• F is the set of all possible co-simulation slaves,

•F : IF →F is the function for selecting CSLs based on the label,

•and L : N×N→ N×N is the connection function.

The connection function provides indices of the source slave output port (“ı, “o) connected to the

*However, this task can be time consuming.
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given destination slave input port (ı̆, ῐ)

(“ı, “o) = L(ı̆, ῐ) (2.62)

Signals obtained from the input port uῐ : R⩾0 →Z and the connected output port y
“o

: R⩾0 →Z

should be equal

uῐ(t) = y
“o
(t) (2.63)

All of the slaves in the network are weakly connected, i.e. there is an undirected path between

any pair of co-simulation slaves.

During the co-simulation, a CSM (Figure 1.1) determines the communication points of each

wrapper (2.56) and solves the connection equation (2.63). If a complex system is modeled with

a CSN, the solvers and the CSM share responsibility for the numerical solution.

2.4 CODE system wrapper

In practice, a complex system is often described at the signal level. This means that the equa-

tions of the CODESYS (2.4) are not available. If subsystem models are available as CSLs, an

engineer can use a CSN as a model for the complex system. This approach is useful because it

enables distributed modeling. The engineer who creates the CSN can reuse the models exported

from various simulation tools [6]. In this way, engineers developing subsystem models can use

the most appropriate simulation tools for their domain. This section describes a CODE system

wrapper (SYSW) in Definition 2.16. An SYSW is a CSN (Definition 2.14) generated from a

CODESYS (Definition 2.2).

In practice, SUBWs are block boxes due to the protection of intellectual property. Exam-

ples 2.18 and 2.19 show the influence of the solver on the integration defect. For these reasons,

the engineer who creates an SUBW should ensure that a suitable solver is selected. The con-

nection defect is introduced by the CSM (Figure 1.1) when solving (2.63). The co-simulation

master (CSM) proposed in this thesis is described in Chapter 3 and its connection defect is

analyzed in Chapter 5.

The output defect of an SUBW is analyzed in Theorem 2.17. While responsibility for min-

imizing integration and connection defect is clear, responsibility for minimizing output defect

is shared. The internal SUBW solver solves the output equation. In addition, an SUBW defines

the reconstruction of the signal (2.60). However, the output defect depends on the size of the

communication step assigned to the slave (Theorem 2.17). The master can estimate the output

defect as shown in Chapter 5. In this way, a CSM master can minimize the output defect.
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Definition 2.15 (CODE subsystem wrapper). A CODE subsystem wrapper (SUBW) is a CSL

(Definition 2.13) that solves a CODESUB

F = (IU,U, IY,Y,V ,v0,set,get,doStep)

= subsystemToSlave(M,solver)
(2.64)

where

• F ∈F is a SUBW,

• M ∈M is a CODESUB (Definition 2.1),

•solver : M×V ×R>0 →V is a function solving the CODESUB,

•and subsystemToSlave : M×VM×V×R>0 →F is a function that constructs the SUBW.

Input port labels of the SUBW are

IU = {1,2, . . . ,Nu} (2.65)

The function labeling input port sets of the SUBW is

U(ι) = R, ι ∈ IU (2.66)

Output port labels of the SUBW are

IY =
{

1,2, . . . ,Ny
}

(2.67)

The function labeling output port set of the SUBW is

Y(o) = R, o ∈ IY (2.68)

The set of internal states is the set of tuples

V = RNu ×2R (2.69)

The initial state of the SUBW is

v0 =
(
0,x0

)
(2.70)

Input values of the SUBW are set using (2.57) where

vι−1(n) =
(
u (n,1) , . . . ,u (n−1, ι) , . . . ,u (n−1,Nu) , . . .

)
(2.71)

and

vι(n) =
(
u (n,1) , . . . ,u (n, ι) , . . . ,u (n−1,Nu) , . . .

)
(2.72)
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Output values are obtained using (2.60) and the output equation (2.2b) holds for all communi-

cation points

get
(
o,v(n)

)
= go

(
x̃
(
t(n)

)
, ũ
(
t(n)

))
(2.73)

The state update of the SUBW is

doStep
(
vNU(n),h(n)

)
= solver

(
M,vNU(n),h(n)

)
(2.74)

A SUBW wraps a CODESUB with the function solver (Figure 1.1). The interface of two

different solvers is shown in Figure 1.1. Such a definition enables the implementation of a

large number of ODEs [50, 63] and DAE solvers [46]. The work in this thesis is limited to

CODESUB to simplify numerical analysis.

Definition 2.16 (CODE system wrapper). A CODE system wrapper (SYSW) is a CSN (Defi-

nition 2.14) that solves a CODESYS

C = (IF,F,L) = systemToNetwork(S,subsystemSolvers) (2.75)

where

• S ∈ S is a CODESYS (Definition 2.2),

•and subsystemSolvers : IM →VM×VM×V×R>0 is the function that assigns a solver to each

CODESUB.

The set of CODESUB labels is

IF = IM (2.76)

The CSLs are SUBWs (Definition 2.15)

F(i) = subsystemToSlave
(
M,subsystemSolvers(i)

)
(2.77)

The connection function L is defined by the CODESYS (2.5).

The previous definition shows how a CSN network can model a complex system. Sub-

systems are modeled as CSLs (2.77) and coupled with the connection function L. This is an

example of coupling at the signal level [7]. The main difference between signal level coupling

and equation level coupling (2.13) is that each SUBW contains a solver (Figure 1.1). Such a

SUBW is sometimes called a simulator, and coupling at the signal level or co-simulation is also

called simulator coupling. In practice, due to legacy software, it is often much easier to couple

simulation tools at the signal level than at the equation level. In addition, by using the cou-

pling at the signal level, one of the subsystem models can be replaced by the actual hardware.

The co-simulation can be adapted to the HIL simulation and facilitate model-based develop-

ment (MBD). Hardware components cannot communicate with the rest of the simulation at the
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equation level.

In practice, engineers treat SUBWs as black boxes and combine them to create an SYSW to

use as model of the complex system. The equations of an SYSW and its underlying CODESYS

are different due to introduction of solvers. Whenever each SUBW solves its CODESUB equa-

tions it leads to integration and output defects

ẋi(t) = fi(xi(t),ui(t))+δxi(t) (2.78a)

yi(t) = gi(xi(t),ui(t))+δyi(t) (2.78b)

xi(0) = x0i (2.78c)

The output defect of an SUBW is caused by ZOH extrapolation (2.60). The asymptotic analysis

of the output defect is shown in Theorem 2.17. The integration defect caused by a simple solver

is calculated in Example 2.18. The integration defect is negligible† if the wrapper equations are

simple enough to enable the analytical solution (Example 2.19). An SYSW does not introduce

a connection defect in the connection equation (2.63). However, a CSM that controls the co-

simulation does this. This will be shown in the next chapter (Theorem 5.2).

Theorem 2.17 (Output defect). Let M be a CODESUB (Definition 2.1) and

F = systemToNetwork(S,subsystemSolvers) (2.79)

Suppose the function g is continuously differentiable

x(t) = x
(
t(n)

)
+

dx(τ)
dτ

∣∣∣∣
τ=t(n)

(
t − t(n)

)
+O

(
h2(n)

)
(2.80)

Then the output defect of an SUBW is

δy(t) = O
(
h(n)

)
(2.81)

Proof. From (2.80) and the fact that g is continuously differentiable, it follows that

g
(
x(t),u(t)

)
= g
(

x
(
t(n)

)
,u
(
t(n)

))
+

dg
(
x(τ),u(τ)

)
dτ

∣∣∣∣∣
τ=t(n)

(
t − t(n)

)
+O

(
h2(n)

)
(2.82)

The expression (2.81) follows from (2.59), (2.60), (2.73) and (2.78b).

Theorem 2.17 shows that the output defect can be reduced by the CSM. The CSM can reduce

the communication step size to reduce the output defect of an SUBW. An SUBW influences the

output defect by choosing the extrapolation method (2.60). For this reason, the responsibility
†Floating point arithmetic prevents the integration defect from falling to zero.
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for the output defect is shared between the CSM and the SUBW. The next chapters show how

the proposed CSM can estimate and reduce the output defect.

Example 2.18 (Control loop). The control loop model S (2.15) shown in Example 2.6 is a

CODESYS partitioned into two CODESUBs. This example is a continuation of Example 2.6

and shows how to get an SYSW (Definition 2.16) from the given control loop equations. Let

euler : M×V ×R>0 →V be a forward Euler solver

v(n) = euler(M,v(n−1),h(n)) (2.83)

where the internal state after the integration is

v(n) =
(

u
(
t(n)

)
,x
(
t(n)

))
(2.84)

and

x(t(n)) = x(t(n−1))+h(n) f
(
x(t(n−1)) ,u(t(n))

)
(2.85)

A continuous extension [61] of the state signal produced by the forward Euler solver is

x(t) = x(t(n−1))+(t − t(n−1)) f
(
x(t(n−1)) ,u(t(n))

)
, t(n)−1 < t ⩽ t(n) (2.86)

The integration defect (2.78a) of the forward Euler solver can be calculated using the continuous

extension

δx(t) = O
(
h(n)

)
, t(n)−1 < t ⩽ t(n) (2.87)

Both SUBW solvers are forward Euler solvers

subsystemSolvers(i) = euler (2.88)

The control loop SYSW is

C = systemToNetwork(S,subsystemSolvers) (2.89)

Example 2.19 (Two mass oscillator). The two-mass oscillator model S (2.25) shown in Exam-

ple 2.7 is partitioned into three CODESUBs. This example is a continuation of Example 2.7

and shows how to get an SYSW (Definition 2.16) from the given two-mass oscillator equations.

Let analytic : M×V ×R>0 →V be an analytic solver

v(n) = analytic(M,v(n−1),h(n)) (2.90)
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where the internal state after the integration is

v(n) =
(
u(t(n)) ,x(t(n))

)
(2.91)

and

x(t(n)) = x(t(n−1))+
∫ t(n)

t(n−1)
f
(
x(τ) ,u(τ)

)
dτ (2.92)

In general, an analytical solver cannot be coded. The equations of the subsystem are solved

symbolically and the expressions for the analytical solver are hard-coded. Such a solver has no

integration defect

δx(t) = 0 (2.93)

All SUBW solvers are considered analytical solvers

subsystemSolvers(i) = analytic (2.94)

The two-mass oscillator SYSW is

C = systemToNetwork(S,subsystemSolvers) (2.95)
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Chapter 3

Synchronous data flow

This chapter introduces synchronous data flow (SDF) as the model of computation (MOC) for

non-iterative co-simulation. A MOC describes how computation, memory, and communication

between components are organized [64]. This makes co-simulation network wrapper (CSW)

introduced in Definition 3.25 a specification for modeling a CSM.

An SDF graph (SDFG) (Definition 3.2) is a determinate MOC. This means that any valid

execution should produce the same results. Section 3.2 shows a proof for the determinacy of

SDFG. Since SDFG is determinate, a CSW can be used as a layer between the CSN and the

execution platform. This means that the execution details are abstracted from the CSW. A

co-simulation engineer does not need to know the details about the execution platform. This

engineer only needs to know if the execution platform can run the generated SDFG.

An SDFG specifies execution on multiple execution platforms. It is the responsibility of

the platform developer to ensure that the SDFG is properly executed on the execution platform.

The advantage of modeling a non-iterative co-simulation with SDF is that extensive research of

planning algorithms is available [35, 36, 65]. It is interesting to note that research on scheduling

multi-rate co-simulation on multi-core platforms is available [66]. This thesis proposes to solve

the scheduling problem by modeling a non-iterative co-simulation with an SDFG. In this way

a large toolbox for solving scheduling problems becomes available. Section 3.3 explains how

to execute an SDFG sequentially on a single processor. Chapter 4 shows how to construct an

SDFG to enable real-time execution on an idealistic platform.

The authors in [28] state that SDF is useful as a hardware description, but assume that

SDF is mainly used for functional description. In [64] the author mentions scheduling and

buffer minimization as an synchronous data flow (SDF) application example. An example of

the use of SDF for modeling can be found in [27, 37]. In [37] authors show how an SDFG can

be packaged as an FMU. This chapter shows how to wrap a CSN as an SDFG. The validity

analysis and examples of this wrapper are presented in Section 3.4.
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3.1 Synchronous data flow graph

This section describes an SDF graph (Definition 3.2, Example 3.3) and the rules for its execu-

tion (Definition 3.7). It contains a number of rules that algorithms must follow, but does not

specify the execution algorithm. This enables such a specification to be executed on one or

more processors [35, 36].

Definition 3.1 introduces an SDF actor (SDFA). An SDFA is a specification of a repetitive

computation. It is used as a building block of an SDF graph (SDFG). In Section 3.4 it is shown

how to wrap a CSL with an SDFA.

Definition 3.1 (SDF actor). An SDF actor (SDFA) is a tuple

A = (IU ,U , IY ,Y ,c,p,calculate) (3.1)

where

• IU = {1,2, . . . ,NU } is the set of input port labels,

• U is the set of sets of input values,

• U : IU → U is the function that assigns a set of values to the input port,

• IY = {1,2, . . . ,NY } is the set of output port labels,

• Y is the set of sets of output values,

• Y : IY → Y is the function that assigns a set of values to the output port,

•c : IU → N is the function that assigns a consumption rate to the input port,

•p : IY → N is the function that assigns a production rate to the output port,

• Z is the set of all possible values,

•and calculate : Z IU ×N →Z IY ×N is the function that is called when the SDFA is triggered.

The calculation function

γ(k′) = calculate
(
ξ (k′′)

)
(3.2)

is used to obtain the sequence of output tokens γ : N → Z IY ×N where ξ : N → Z IU ×N is the

sequence of input tokens*. The values of tokens consumed by the SDFA at the input port ι ∈ IU
are

ξ
(
k′, ι ,θ

)
∈ U (ι), 1 ⩽ θ ⩽ c(ι) (3.3)

The values of tokens produced by the SDFA at the output port o ∈ IY are

γ
(
k′′,o,θ

)
∈ Y (o) , 1 ⩽ θ ⩽ p(l) (3.4)

*Two notations are used to denote a function. The function γ : N× IY ×N→ Z can be denoted as an element
of the appropriate function set, i.e. γ ∈ZN×IY ×N.
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The input port labeled NU consumes one token

c(NU ) = 1 (3.5)

The output port labeled NY produces one token

p(NY ) = 1 (3.6)

In the definition above, the output tokens and input tokens involved in the same calcula-

tion (3.2) are indexed with different variables. This highlights that consumption and production

of different SDFAs can be interleaved during execution (Definition 3.7). The consumption of

the last input port (3.5) and the production of the last output port (3.6) are constrained. The last

input port and the last output port are part of the self loop (3.8). The SDFA as defined above is

a stateless component. However, the self-loop allows to model a state as part of the SDF graph

(SDFG).

SDFAs and SDF buffers (SDFBs) form building blocks of an SDFG (Definition 3.2). An

SDFB is a first-in-first-out queue that connects two SDFA ports. SDFBs are implicitly intro-

duced in the next definition and their behavior is described in Definition 3.7.

Definition 3.2 (SDF graph). A SDF graph (SDFG) is a tuple

G =
(
IA,A, IB,src,dst,d0,ω0

)
(3.7)

where

• IA = {1,2, . . . ,NA} is the set of SDFA labels,

•A : IA →A is the function that labels an SDFAs (Definition 3.1),

• IB =
{

1,2, . . . ,NB} is the set of SDFB labels,

•src : IB → IA is the function that gives the label of the SDFB source actor,

•dst : IB → IA is the function that gives the label of the SDFB destination actor,

•d 0 : IB → N0 is the function that specifies the number of initial tokens in the SDFBs,

•and ω0 : IB →ZN is the function that specifies the values of initial tokens.

There is at least one self-loop per SDFA, i.e. for all a ∈ IA there exists b ∈ IB, such that

(a,NYa) = src(b), (a,NUa) = dst(b), d0(b) = 1 (3.8)

An SDFG is weakly connected, i.e. there exists an undirected path between any two nodes of

the graph.

If an SDFG is not connected, it can be modeled as two separate SDFGs. An SDFG is

defined as connected because condition forms the basis for the analysis shown in [35]. This
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A1 A2

b = 1

b = 2

b = 3 b = 4

2

1 1

1

12
1 1

Figure 3.1: The SDFG presented in Example 3.3.

analysis finds sufficient and necessary conditions for a non-terminating execution of an SDFG.

The execution of an SDFG will be covered in the next two sections and in the next chapter.

Example 3.3 (SDF graph). This example specifies an SDFG (Definition 3.2) shown in Fig-

ure 3.1. The set of SDFA labels IA ⊂ N corresponds to

IA = {1,2} (3.9)

The function for labeling SDFAs A : IA →A is defined by

A(a) =

A1, a = 1

A2, a = 2
(3.10)

where

A1 =
(
IU1 , IY1 ,U1,Y1,c1,p1,calculate1

)
(3.11a)

IU1 = {1,2} , IY1 = {1,2} (3.11b)

U1(ι) =Q, ι = 1,2 (3.11c)

Y1(l) =Q, l = 1,2 (3.11d)

c1(ι) =

2, ι = 1

1, ι = 2
, p1 (l) =

2, l = 1

1, l = 2
(3.11e)
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and

A2 =
(
IU2 , IY2 ,U2,Y2,c2,p2,calculate2

)
(3.12a)

IU2 = {1,2} , IY2 = {1,2} (3.12b)

U2(ι) = R, ι = 1,2 (3.12c)

Y2(l) = R, l = 1,2 (3.12d)

c2(ι) =

1, ι = 1

1, ι = 2
, p2 (l) =

1, l = 1

1, l = 2
(3.12e)

(3.12f)

The calculation function of the SDFA A1

calculate1 : Z IU1×N →Z IY1×N (3.13)

consumes three tokens and produces three tokens

γ1(k1) = calculate1
(
ξ1(k1)

)
(3.14)

where
γ1(k1,1,1) =

1
2

ξ1(k1,1,1)+
1
3

ξ1(k1,1,2)+
1
5

ξ1(k1,2,1)

γ1(k1,1,2) =
1
7

ξ1(k1,1,1)+
1

11
ξ1(k1,1,2)+

1
13

ξ1(k1,2,1)

γ1(k1,2,1) =
1

17
ξ1(k1,1,1)+

1
19

ξ1(k1,1,2)+
1

23
ξ1(k1,2,1)

(3.15)

The calculation function of the SDFA A2

calculate2 : Z IU2×N →Z IY2×N (3.16)

consumes two tokens and produces two tokens

γ2(k2) = calculate2
(
ξ2(k2)

)
(3.17)

where
γ2(k2,1,1) =

1
29

ξ2(k2,1,1)+
1

31
ξ2(k2,2,1)

γ2(k2,2,1) =
1
37

ξ2(k2,1,1)+
1

41
ξ2(k2,2,1)

(3.18)
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The set of SDFB labels IB ⊂ N corresponds to

IB = {1,2,3,4} (3.19)

The function src : IB → IA is given by

src(b) =



(1,1) , b = 1

(2,1) , b = 2

(1,2) , b = 3

(2,2) , b = 4

(3.20)

and the function dst : IB → IA is given by

dst(b) =



(2,1) , b = 1

(1,1) , b = 2

(1,2) , b = 3

(2,2) , b = 4

(3.21)

The number of initial tokens d0 : IB → N is given by

d0(b) =



0, b = 1

2, b = 2

1, b = 3

1, b = 4

(3.22)

The values initial token values ω0 : IB →ZN are given by

ω0 (b,θ) =



1
43 , b = 2, θ = 1
1

47 , b = 2, θ = 2
1

53 , b = 3, θ = 1
1

59 , b = 4, θ = 1

(3.23)

Definitions 3.1 and 3.2 define how to construct an SDFG. Definitions 3.4-3.6 define the

terms used in the description of the SDFG execution (Definition 3.7). The next definition intro-

duces the sequence of operations during SDFG execution.

Definition 3.4 (Sequence of operations). The function that consumes the tokens from the SDFBs
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and prepares the tokens for calculation by an SDFA is

consume :
(
IB → N0

)
×
(

IB →ZN
)
× IA

→
(
IB → N0

)
×
(

IB →ZN
)
×ZN×N

(3.24)

The function that transfers the tokens produced by an SDFA to the SDFBs is

produce :
(
IB → N0

)
×
(

IB →ZN
)
× IA ×ZN×N

→
(
IB → N0

)
×
(

IB →ZN
) (3.25)

The sequence of operations used when executing an SDFG is given by the function

operation : N→{consume,produce}× IA (3.26)

Definition 3.5 (Token state). The number of tokens in SDFBs during the execution of an SDFG

is indicated by

d : N0 → N0
IB

(3.27)

The token values in SDFBs during the execution of an SDFG are indicated by

ω : N0 →
(

IB →ZN
)

(3.28)

The value of a token in an SDFB after the nth SDFG execution step can be obtained by

ω (n,b,θ) ∈Z where b ∈ IB and θ ⩽ d(n).

Definition 3.6 (Number of operations). The number of SDFA operations after an SDFG execu-

tion step is given by

num : {consume,produce}× IA ×N0 → N (3.29)

where

num(op,a,n) =

0, n = 0

num(op,a,n−1)+ count(op,a,n) , n > 0
(3.30)

and

count(op,a,n) =

1, operation(n) = (op,a)

0, otherwise
(3.31)

Definition 3.7 (SDFG execution). The number of tokens is initially set to

d(0) = d0 (3.32)
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and the token values to

ω (0) = ω0 (3.33)

If

operation(n) = (consume,a) , a ∈ IA (3.34)

then for all ι ∈ IUa

d(n−1,b)⩾ ca(ι), (a, ι) = dst(b) (3.35)

For all a ∈ IA and all n ∈ N the number of token consumptions is greater than or equal the

number of token productions

num(consume,a,n)⩾ num(produce,a,n) (3.36)

If the condition (3.35) holds for a ∈ IA and n ∈ N, there exist n′,n′′ ∈ N for which

n′′ > n′ > n (3.37)

and
(consume,a) = operation

(
n′)

(produce,a) = operation
(
n′′) (3.38)

When the SDFA is triggered, tokens from the SDFBs are consumed(
d(n′),ω(n′),ξa

(
num(consume,a,n′)

))
= consume

(
d(n′−1),ω(n′−1),a

)
(3.39)

where consumed tokens are

ξa
(
num(consume,a,n′), ι ,θ

)
= ω

(
n′−1,b,θ

)
, (a, ι) = dst(b), θ ⩽ c(ι) (3.40)

After the production of the tokens

γa
(
num(produce,a,n′′)

)
= calculatea

(
ξa
(
num(consume,a,n′′)

))
(3.41)

the produced tokens are transferred to the SDFBs

(
d(n′′),ω(n′′)

)
= produce

(
d(n′′−1),ω(n′′−1),a,γa

(
num(produce,a,n′′)

))
(3.42)
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The number of tokens in the SDFBs during the SDFG execution is

d(n,b) =



d(n−1,b)− ca(ι),
operation(n) = (consume,a)

(a, ι) = dst(b)

d(n−1,b)+pa (o) ,
operation(n) = (produce,a)

(a,o) = src(b)

d(n−1,b) , otherwise

(3.43)

Values of the tokens in the SDFBs are

ω (n,b,θ) =



ω
(
n−1,b,θ + ca(ι)

)
,

operation(n) = (consume,a)

(a, ι) = dst(b)

θ ⩽ d(n,b)

γa
(
num(produce,a,n),o,θ −d(n−1,b)

)
,

operation(n) = (produce,a)

(a,o) = src(b),

d(n−1,b)< θ ⩽ d(n,b)

ω(n−1,b,θ), otherwise
(3.44)

The above definition introduces rules for the execution of an SDFG (Definition 3.2). An

algorithm that executes the SDFG can perform token consumptions, SDFA calculations, and

token productions in any order that conforms to the above rules. The topic of the next section is

to prove that every algorithm that correctly executes the SDFG produces the same results. The

execution algorithm can trigger an SDFA as soon as all of the SDFBs connected to its input ports

have enough tokens (3.35). When the SDFA is triggered, the tokens are consumed (3.39), new

tokens are produced with the SDFA calculation (3.41), and produced tokens are transferred to

the SDFBs (3.42). The token consumption forms input tokens for the calculation (3.40), reduces

the number of tokens in the SDFBs (3.43) and modifies the state in the SDFBs (3.44). The

transfer of produced tokens increases the number of tokens in the SDFBs (3.43) and modifies

the state in the SDFBs (3.44).

The equations (3.43) and (3.44) define the behavior of the SDFBs. An SDFB is a first-

in first-out queue. The tokens that come into the queue should leave the queue in the same

37



Synchronous data flow

order. SDFBs are an important building block of an SDFG as they maintain the order of tokens

exchanged between SDFAs.

3.2 Determinacy

An SDFG is a determinate MOC [34]. Any algorithm that executes it correctly (Definition 3.7)

should produce the same results. Theorem 3.10 and Theorem 3.14 demonstrate this statement.

The analysis presented in this section closely follows [34]. It is reformulated because SDFGs

(Definition 3.2) in this thesis are defined so that they have at least one self-loop (3.8) and the

execution model (Definition 3.4) is different.

The condition (3.35) and the self-loop (3.8) ensure that two invocations of the same SDFA

cannot be executed at the same time. The authors in [28] suggest that self-loops are a way to

ensure the integrity of the SDFBs and are required if an SDFA has a state. As will be seen

in Section 3.4, all simulators are stateful. The self-loop assumption is used in the proof of

Lemma 3.13. This lemma enables the calculation to be rewritten as (3.91), which is used to

prove determinate execution (Theorem 3.14).

Lemma 3.8 (Number of tokens in the SDFBs). Assume that an SDFG (Definition 3.2) is exe-

cuted with a valid execution (Definition 3.7). For all b ∈ IB

d(n,b) = d0(b)+num(produce, “a,n) p“a(“o)−num(consume, ă,n) că(ῐ) (3.45)

where “a, ă ∈ IA and

(“a, “o) = src(b), (ă, ῐ) = dst(b), “o ∈ IY“a , ῐ ∈ IUă (3.46)

Proof. The proof is given by induction. The induction basis is the case of n = 0. It is proved

by (3.30) and (3.32).

In the induction step it is assumed that (3.45) holds. The induction step is proved by (3.30),

(3.43), and (3.45). If operation(n) = (consume, ă) then

d(n+1,b) = d(n,b)− că(ῐ)

= d0(b)+num(produce, “a,n) p“a(“o)−num(consume, ă,n) că(ῐ)− că(ῐ)

= d0(b)+num(produce, “a,n+1) p“a(“o)−num(consume, ă,n+1) că(ῐ)

(3.47)
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If operation(n) = (produce, “a) then

d(n+1,b) = d(n,b)+p“a(“o)

= d0(b)+num(produce, “a,n) p“a(“o)−num(consume, ă,n) că(ῐ)+p“a(“o)

= d0(b)+num(produce, “a,n+1) p“a(“o)−num(consume, ă,n+1) că(ῐ)

(3.48)

If

operation(n) =
(
op,a′

)
, a′ ≠ “a, a′ ≠ ă, op ∈ {consume,produce} , a′ ∈ IA (3.49)

then

d(n+1,b) = d(n,b)

= d0(b)+num(produce, “a,n) p“a(“o)−num(consume, ă,n) că(ῐ)

= d0(b)+num(produce, “a,n+1) p“a(“o)−num(consume, ă,n+1) că(ῐ)

(3.50)

Lemma 3.9 (Trigger condition). Assume that an SDFG (Definition 3.2) is correctly executed

(Definition 3.7). If

operation(n) = (consume,a) , a ∈ IA (3.51)

then for all ι ∈ IUa

num(consume,a,n−1) ca(ι)+ ca(ι)⩽ d0(b)+num(produce, “a,n−1) p“a(“o) (3.52)

where

(“a, “o) = src(b), (a, ι) = dst(b) (3.53)

Proof. The condition (3.52) follows from Lemma 3.8 and (3.35).

Theorem 3.10 (Number of executions). Assume that an SDFG (Definition 3.2) can be exe-

cuted (Definition 3.7) with two different sequences of operations operation′ and operation′′ (3.26).

Let num′ and num′′ be the number of operations performed (3.30) for the respective execution.

For all a ∈ IA, all operations op ∈ {consume,produce}, and all n′ ∈ N, there exists an n′′ ∈ N
such that

num′ (op,a,n′)= num′′ (op,a,n′′) (3.54)

Proof. The proof is given by contradiction. Let n′
0 ∈ N denote the least number such that

num′ (op0,a0,n
′
0
)
> num′′ (op0,a0,n

′′) (3.55)

39



Synchronous data flow

for some op0 ∈ {consume,produce}, for some a0 ∈ IA, and for all n′′ ∈ N. From (3.36) it

follows that

operation′ (n0) = (op0,a0) = (consume,a0) (3.56)

Consequently

num′ (consume,a0,n
′
0
)
= num′ (consume,a0,n

′
0 −1

)
+1 (3.57)

follows from (3.30). The trigger condition (Lemma 3.9) states that for all ι0 ∈ IUa0

num′ (consume,a0,n
′
0 −1

)
ca0(ι0)+ ca0(ι0)⩽ d0(b0)+num′ (produce, “a0,n

′
0 −1

)
p“a0(“o0)

(3.58)

where

(“a0, “o0) = src(b0) , (a0, ι0) = dst(b0) (3.59)

Since n′
0 is minimal, the contradiction assumption (3.55) does not apply to n′

0−1, i.e. for some

n′′
0 ∈ N, for all ι0 ∈ IUa0

num′ (consume,a0,n
′
0 −1

)
⩽ num′′ (consume,a0,n

′′
0
)

(3.60)

and

num′ (produce, “a0,n
′
0 −1

)
⩽ num′′ (produce, “a0,n

′′
0
)

(3.61)

where

(“a0, “o0) = src(b0) , (a0, ι0) = dst(b0) (3.62)

From (3.55), (3.57) and (3.60) it follows that

num′ (consume,a0,n
′
0 −1

)
= num′′ (consume,a0,n

′′
0
)

(3.63)

From (3.58), (3.61) and (3.63) it follows that the trigger condition

num′′ (consume,a0,n
′′
0
)

ca0(ι0)+ ca0(ι0)⩽ d0(b)+num′′ (produce, “a0,n
′′
0
)

p“a0(“o0) (3.64)

is met for all ι0 ∈ IUa0
where

(“a0, “o0) = src(b0) , (a0, ι0) = dst(b0) (3.65)

By condition (3.38) there exists n′′
next > n′′

0 such that

operation
(
n′′

next
)
= (consume,a0) (3.66)
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From (3.57) and (3.63) it follows that

num′′ (consume,a0,n
′′
next
)
⩾ num′′ (consume, “a0,n

′′
0
)
+1 = num′ (consume, “a0,n

′
0
)

(3.67)

which contradicts (3.55) and completes the proof.

Lemma 3.11 (Visiting tokens). Let ωtotal : IB ×N0 → N0 be the sequence of tokens visiting the

SDFBs

ωtotal(b,θtotal) =



ω0 (b,θtotal) , θtotal ⩽ d0(b)

γ“a (k“a, “o,θ“a) ,
k“a =

⌈
θtotal−d0(b)

p“a(“o)

⌉
θ“a = θtotal −d0(b)− (k“a −1) p“a(“o)

(“a, “o) = src(b)

(3.68)

For all b ∈ IB

ω (n,b,θ) = ωtotal
(
b,θ + kă că(ῐ)

)
,

kă = num(consume, ă,n)

(ă, ῐ) = dst(b)
(3.69)

Proof. The induction basis is the case of n = 0. It is proven by (3.33) and (3.68).

In the induction step it is assumed that (3.69) holds for n ∈ N0. Let b ∈ IB be fixed and

(“a, “o) = src(b)

(ă, ῐ) = dst(b)
(3.70)

In case of

operation(n+1) = (consume, ă) (3.71)

the statement
ω (n+1,b,θ) = ω

(
n,b,θ + că(ῐ)

)
= ωtotal

(
b,θ +(kă +1) că(ῐ)

) (3.72)

follows from (3.44), (3.69) and

kă = num(consume, ă,n)

kă +1 = num(consume, ă,n+1)
(3.73)

In case of

operation(n+1) = (produce, “a) (3.74)
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the statement

ω (n+1,b,θ) =

γ“a
(
k“a +1, “o,θ −d(n,b)

)
, d(n,b)< θ ⩽ d(n+1,b)

ω(n,b,θ), θ ⩽ d(n,b)

=

γ“a
(
k“a +1, “o,θ“a

)
, θ“a = θ −d0(b)− k“a p“a(“o), 1 ⩽ θ“a ⩽ p“a(“o)

ω(n,b,θ), θ ⩽ d(n,b)

= ωtotal
(
b,θ + kă că(ῐ)

)
(3.75)

follows from (3.44), (3.45), (3.68), (3.69) and

kă = num(consume, ă,n+1) = num(consume, ă,n)

k“a = num(produce, “a,n)

k“a +1 =

⌈
θ + kă că(ῐ)−d0(b)

p“a(“o)

⌉
= num(produce, “a,n+1) ,

d(n,b)< θ ⩽ d(n+1,b)

(3.76)

In case of

operation(n+1) = (op,a) , op ∈ (consume,produce) , a ≠ “a, a ≠ ă (3.77)

the statement

ω(n+1,b,θ) = ωtotal(b,θ + kă că(ῐ)) (3.78)

follows from (3.44), (3.69) and

kă = num(consume, ă,n+1) = num(consume, ă,n) (3.79)

Lemma 3.12 (Input tokens). Assume that an SDFG (Definition 3.2) is executed with a valid

execution (Definition 3.7). Let

operation(n) = (consume,a), kă = num(consume,a,n) (3.80)
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The input token values are

ξă (kă, ῐ ,θă)=



ω0
(
b,θă +(kă −1) că(ῐ)

)
, θă +(kă −1) că(ῐ)⩽ d0(b)

γ“a(k“a, “o,θ“a),
θă +(kă −1) că(ῐ)> d0(b),

k“a =
⌈

θă+(kă−1) că(ῐ)−d0(b)
p“a(“o)

⌉
,

θ“a = θă +(kă −1) că(ῐ)−d0(b)− (k“a −1) p“a(“o)
(3.81)

where

(“a, “o) = src(b), (ă, ῐ) = dst(b) (3.82)

Proof. The proof uses Lemma 3.11. From (3.40) and (3.69) it follows that

ξă(kă, ῐ ,θă) = ω(n−1,b,θă) = ωtotal
(
b,θă +(kă −1) că(ῐ)

)
(3.83)

The expression (3.81) follows from (3.68).

Lemma 3.13 (Consistent token production). Assume that an SDFG (Definition 3.2) is executed

with a valid execution (Definition 3.7). For all n ∈ N if

operation(n) = (produce,a) (3.84)

then

num(produce,a,n) = num(consume,a,n) (3.85)

Proof. Let

operation(nc) = (consume,a) (3.86)

where

num(consume,a,nc) = num(consume,a,n) (3.87)

From Lemma 3.9 and (3.8) it follows that

num(consume,a,n)⩽ 1+num(produce,a,nc) (3.88)

From (3.30) and (3.84) it follows that

num(produce,a,nc)< num(produce,a,n) (3.89)

and consequently

num(consume,a,n)< 1+num(produce,a,n) (3.90)
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The equation (3.85) follows from (3.36) and (3.90).

Lemma 3.13 enables rewriting (3.41) as

γa(ka) = calculatea
(
ξa(ka)

)
(3.91)

For this reason, the lemma is called "Consistent token production". Any valid SDFG execution

(Definition 3.7) calculates the output tokens from the input tokens with the same index. It shows

the importance of self-loops (3.8). Without them, it would be possible to construct an example

where two executions of the same SDFG give different results.

Theorem 3.14 (Determinate execution). Assume that an SDFG (Definition 3.2) can be exe-

cuted (Definition 3.7) with two different sequences of operations operation′ and operation′′ (3.26).

Let ξ ′
a and ξ ′′

a denote the sequences of input tokens (3.40) for the respective execution. Let γ ′a

and γ ′′a denote the sequences of output tokens (3.40) for the respective execution. For all a ∈ IA,

for all ι ∈ IUa and for all valid ka ∈ N

ξ
′
a (ka, ι ,θ) = ξ

′′
a (ka, ι ,θ) , 1 ⩽ θ ⩽ ca(ι) (3.92)

γ
′
a (ka,o,θ) = γ

′′
a (ka,o,θ) , 1 ⩽ θ ⩽ pa(ι) (3.93)

Proof. The proof is given by contradiction. Let ka0 ∈ N denote the least number for which

one of (3.92) or (3.93) does not hold. If (3.92) does not hold, this contradicts Lemma 3.12,

since input tokens are completely determined by the previously generated tokens. If (3.93)

does not hold, this contradicts Lemma 3.13, since output tokens are determined by the input

tokens (3.91).

This section was included in the work to highlight the importance of determinacy. Deter-

minacy is a very useful property of a MOC [22, 23, 24]. If the behavior of the model is not

fully specified in practice, the results will vary depending on which engineering team solves the

problem. Examples of problems that can arise are racing conditions [25, 26]. The analysis of

the SDFG execution can be carried out with a sequential algorithm due to the determinacy. If

the sequential algorithm deadlocks, the parallel one also deadlocks [35].

Since SDFG is determinate, a co-simulation engineer should be able to reproduce the results

of any experiment using the SDFG. This allows engineers to exchange SDFGs instead of large

amounts of data. In addition, the results do not need to be reproduced on the same platform. A

program that runs an SDFG on a single processor is likely to produce results more slowly than

a program that runs on multiple processors. The results will be identical. This makes SDFG a

good candidate for specifying co-simulation experiments.
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3.3 Periodic admissible sequential schedule

This section introduces periodic adimissible sequential schedule (Definition 3.15) for the se-

quential execution (Algorithm 3.1) of an SDFG (Definition 3.2). Since SDFG is a determinate

MOC [34], sequential execution produces the same results as any other execution. This makes

the sequential execution analysis an important tool for checking whether any valid execution of

an SDFG has a deadlock (Example 3.19). Necessary and sufficient conditions for the existence

of periodic adimissible sequential schedule (PASS) are analyzed in [35]. Algorithm 3.2 can be

used to check whether a PASS exists, i.e. whether sequential execution deadlocks. If sequential

execution deadlocks, any other execution should also deadlock.

Algorithm 3.1 Sequential execution of an SDF graph (SDFG)
Require: G ∈ G (Definition 3.2), σ is a PASS

ω (0) := ω0, d(0) := d0, n := 0
for a ∈ IA do

ka := 0

repeat
n := n+1, a := σ(n), ka := ka +1(
d(2n+1),ω(2n+1),ξa(ka)

)
:= consume

(
d(2n),ω(2n),a

)
γa(ka) := calculatea

(
ξa(ka)

)(
d(2n+2),ω(2n+2)

)
:= produce

(
d(2n+1),ω(2n+1),a,γa(ka)

)
until external stop

Definition 3.15 (Periodic adimissible sequential schedule). A periodic adimissible sequential

schedule (PASS) is a sequence σ : N→ IA which gives the index of an SDFA executed in the

nth step of the sequential execution (Algorithm 3.1)

a = σ(n) (3.94)

The schedule is admissible if the sequential execution (Algorithm 3.1) does not deadlock and

the number of tokens in the SDFBs remains non-negative and bounded. The schedule has a

period R ∈ N
σ (n+R) = σ(n) (3.95)

The topology matrix (Definition 3.16) is used to define the repetition vector (Definition 3.18).

The repetition vector is used for the PASS calculation (Definition 3.2). Necessary and sufficient

conditions for the existence of a PASS [35] are based on the topology matrix, the repetition

vector and Algorithm 3.2. These conditions will be referred to in the next section when the

validity of the proposed CSM is demonstrated.
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Definition 3.16 (Topology Matrix). The topology matrix ΓΓΓ ∈N0
NB×NA of an SDF graph (Defi-

nition 3.2) is defined element by element as

Γba =


−ca(ι)+pa(o), (a, ι) = dst(b), (a,o) = src(b)

−ca(ι), (a, ι) = dst(b), (“a, “o) = src(b), a ≠ “a

pa(0), (a,o) = src(b), (ă, ῐ) = dst(b), a ≠ “a

(3.96)

The topology matrix encodes the production and consumption rates of the SDFG. Its rank

can be used to check whether the rates are consistent [28], i.e. whether the number of tokens

in the SDFBs is limited during execution. The topology matrix can be used to calculate the

number of tokens in the SDFBs during sequential execution (Algorithm 3.1). It can be used to

reformulate (3.45) and is used when defining the repetition vector.

Definition 3.17 (Greatest common divisor). Let the prime factorization of ni ∈N be denoted as

ni = ∏
j=1

pni j
j (3.97)

The greatest common divisor is

gcd
(
n1,n2, . . . ,nN

)
= ∏

j=1
p

min
1⩽i⩽N

(ni j)

j (3.98)

The least common multiple is

lcm
(
n1,n2, . . . ,nN

)
= ∏

j=1
p

max
1⩽i⩽N

(ni j)

j (3.99)

In the definition above, the fundamental theorem arithmetic is used, which states that all

positive integers can be represented in the form of a prime factorization (3.97). The proof and

further details on this theorem are available in [67]. Such factorization is used to simplify the

notation of the following definitions and theorems. In [35] used the terminology of smallest

positive integer vector to describe the repetition vector defined next. In the next definition the

expression (3.102) is used to precisely describe the term of smallest positive integer vector.

Definition 3.18 (Repetition Vector). Let ra ∈ N denote the number of times the SDFA with

label a ∈ IA has repeated its calculation in an iteration. The repetition vector

r =
[

r1 r2 . . . rNA

]T

(3.100)
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can be calculated by finding the positive integer vector in the null-space of the topology matrix

ΓΓΓ r = 0 (3.101)

such that

gcd
1⩽a⩽NA

(
ra
)
= 1 (3.102)

The period of a PASS is

R =

(
NA

∑
a=1

ra

)
(3.103)

The repetition vector indicates the number of SDFA invocations (Algorithm 3.1) after which

the number of tokens in the SDFG is equal to the starting number

d(2R) = d0 (3.104)

This statement can be verified with the help of Lemma 3.8.

Algorithm 3.2 Algorithm to find a periodic adimissible sequential schedule (PASS)
Require: G, r

ω (0) := ω0, d(0) := d0, n := 0, r′ = r
for a ∈ IA do

ka := 0

repeat
if ∄a ∈ IA. ∃b ∈ IB. ra

′ > 0, d(2n,b)< ca(ι), (a, ι) = dst(b) then
raise deadlock

a := choose(G,d(2n),r,n) ,
a ∈ IA, ra

′ > 0,

∀ι ∈ IUa . (a, ι) = dst(b)⇒ d(2n,b)⩾ ca(ι)

σ (n+1) := a
ra

′ := ra
′−1(

d(2n+1),ω(2n+1),ξa(ka)
)

:= consume
(
d(2n),ω(2n),a

)
γa(ka) := calculatea

(
ξa(ka)

)
(d(2n+2),ω(2n+2)) := produce(d(2n+1),ω(2n+1),a,γa(ka))

n := n+1
ka := ka +1

until ∀a ∈ IA. m′
a(n) = 0

A modification of Algorithm 3.1 presented in Algorithm 3.2 can be used to find a PASS [35]

if one exists. A deadlock occurs when no SDFA can be triggered, i.e. no SDFA can meet (3.35).

It is important to note that the initial number of tokens, consumption and production rates are
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sufficient to find a PASS. It is not necessary to execute the calculation. If the only goal is to find

a PASS, Algorithm 3.2 can be performed more efficiently by omitting the calculation. On the

other hand, Algorithm 3.2 can be used to execute an SDFG without calculating the schedule.

Example 3.19 (Periodic adimissible sequential schedule). This examples shows how to calcu-

late a PASS of the SDFG presented in Example 3.3. The topology matrix for this SDFG is

ΓΓΓ =



2 −1

−2 1

0 0

0 0


(3.105)

The repetition vector for this SDFG is

r =
[

1 2

]T

(3.106)

and hence the period of a schedule is R = 3. The following PASS is obtained by Algorithm 3.2

σ(n) =


1, k = 1

2, k ∈ {2,3}

σ (n−R) , otherwise

(3.107)

Regardless of the implementation of procedure choose, this is the only possible schedule for the

given example.

Example 3.20 (Behavior of an SDFG). The PASS for the SDFG presented in Example 3.3 has

been calculated in Example 3.19. The goal of this example is to calculate the token values and

present the behavior of the SDFG

ω
(
mR,2,1

)
ω
(
mR,2,2

)
ω
(
mR,3,1

)
ω
(
mR,4,1

)


=



1
58

1
87

1
145

1
31

2497
465682

3760
1097679

6112
2162095

1
1271

1
17

1
19

1
23 0

89
21238

134
50061

218
98605

1
1681





ω
(
(m−1)R,2,1

)
ω
(
(m−1)R,2,2

)
ω
(
(m−1)R,3,1

)
ω
(
(m−1)R,4,1

)


(3.108)

The token values remain the same regardless of the algorithm used to execute the SDFG. How-

ever, it will be shown in the next example that the dynamics can change by changing the initial
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tokens.

A1 A2

b = 1

b = 2

b = 3 b = 4

2

1 1

1

12
1 1

Figure 3.2: The SDFG described in Example 3.21.

Example 3.21 (Effects of initial tokens). This example shows how changing the initial tokens

can affect the calculated PASS and system dynamics. The SDFG modified by redistributing its

initial tokens is shown in Figure 3.2. The number of initial tokens d0 is given by

d0(a, ι) =



2, (a, ι) = (1,1)

1, (a, ι) = (1,2)

2, (a, ι) = (2,1)

1, (a, ι) = (2,2)

(3.109)

The repetition vector (3.106) is calculated in Example 3.19. The repetition vector does not

change if initial tokens change. Algorithm 3.2 can find three different PASSes depending on the

function choose

σ1(n) =


1, k = 1

2, k ∈ {2,3}

σ (n−R) , otherwise

σ2(n) =


1, k = 2

2, k ∈ {1,3}

σ (n−R) , otherwise

σ3(n) =


2, k ∈ {1,2}

1, k = 3

σ (n−R) , otherwise

(3.110)

Since SDFG is a determinate MOC (Theorem 3.10, Theorem 3.14), the behavior of the SDFG
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is same regardless of the PASS used for its sequential execution

ω
(
mR,1,1

)
ω
(
mR,1,2

)
ω
(
mR,2,1

)
ω
(
mR,2,2

)
ω
(
mR,3,1

)
ω
(
mR,4,1

)



=



0 0 1
2

1
3

1
5 0

0 0 1
7

1
11

1
13 0

1
29 0 0 0 0 1

31

1
1147

1
29 0 0 0 1

1271

0 0 1
17

1
19

1
23 0

1
1517

1
37 0 0 0 1

1681





ω
(
(m−1)R,1,1

)
ω
(
(m−1)R,1,2

)
ω
(
(m−1)R,2,1

)
ω
(
(m−1)R,2,2

)
ω
(
(m−1)R,3,1

)
ω
(
(m−1)R,4,1

)



(3.111)

However, the difference in the order of the discrete systems (3.108) and (3.111) shows the

difference in behavior due to change in initial tokens.

Definition 3.22 (SDF iteration). The kth SDF iteration (SDFI) of an SDFG (Definition 3.2) is

the set of SDFA invocations in a single period of a PASS (Definition 3.15)

iteration(G,k) = {(a,ka) : (a,ka) ∈ IA ×N, (k−1)ra < ka ⩽ k ra} (3.112)

The function iteration : G×N→ 2N×N is used to obtain the SDFI.

An SDFI is the basis for the multi-processor algorithm presented in Chapter 4. The previous

definition enables the creation of a meaningful list of tasks and their dependencies for multi-

processor scheduling algorithms [36]. Since SDF is a determinate MOC, this section describes

important tools to verify whether rates of an SDFG are consistent and whether its execution will

deadlock.

3.4 Co-simulation network wrapper

This section presents how to specify a CSM (Figure 1.1) using an SDFG. Definition 3.25 shows

how a CSN (Definition 2.14) can be wrapped with an SDFG (Definition 3.2). The presented

co-simulation network wrapper (CSW) ensures that the repetition vector can be calculated (The-

orem 3.28). As a consequence, the CSW has consistent consumption and production rates, i.e.

it meets a necessary condition for existence of a PASS [35]. The CSW also ensures that the sim-

ulated time increment is consistent for all CSLs involved in the co-simulation (Theorem 3.29).

Definition 3.23 shows how a CSL (Definition 2.13) can be wrapped with an SDFA (Def-

inition 3.1). Such a wrapper is called a simulator. A simulator can easily be used to wrap a

CODESUB (Definition 2.1) directly. However, due to the current popularity of the FMI stan-

dard [6], an indirect route was chosen.
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Definition 3.23 (Simulator). A simulator is an SDFA (Definition 3.1) that executes a CSL (Def-

inition 2.13)

A = (IU ,U , IY ,Y ,c,p,calculate) = slaveToSimulator(F ,h) (3.113)

where

• F ∈F is a CSL (Definition 2.13),

• h ∈Q>0 is the step size of the simulator,

•and slaveToSimulator : F ×Q>0 →A is the function that constructs the simulator.

Input port labels are

IU = IU ∪{NU +1} (3.114)

The input port sets are

U (ι) =

U(ι), ι ⩽ NU

V , ι = NU = NU +1
(3.115)

Output port labels are

IY = IY ∪{NY +1} (3.116)

The output port sets are

Y (l) =

Y(l) , l ⩽ NU

V , l = NY = NY +1
(3.117)

The consumption rates are

c(ι) = 1, ι ∈ IU (3.118)

The production rates are

p(o) = 1, o ∈ IY (3.119)

The function calculate (3.2) assigns input tokens (2.57) as input values of the slave

u (k, ι) = ξ (k, ι ,1) , ι ⩽ NU (3.120)

and the state of the slave

v(k−1) = ξ (k,NU ,1) (3.121)

The calculation updates the state of the slave according to (2.58)

v(k) = doStep
(
vNU(k),h

)
(3.122)
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and then generates output tokens

γ(k,o,1) =

get
(
o,v(k)

)
, o ⩽ NY

v(k), o = NY

(3.123)

A simulator is a stateless component (3.140), while the wrapped CSL has a state. The CSL

state is modeled by the self-loop (3.8). The consequence of the simulator self-loop can be seen

in the definition of simulator input value sets (3.115) and output value sets (3.117), as well as

in the CSW constraints (3.136) and (3.137).

Definition 3.24 (Rate converter). A rate converter is an SDFA (Definition 3.1)

A = (IU ,U , IY ,Y ,c,p,calculate) = converter(c,p) (3.124)

where

• A ∈A is the rate converter,

• c ∈ N is the consumption rate,

• p ∈ N is the production rate,

•and converter : N×N→A is the function that constructs the rate converter.

The rate converter has two input and two output ports

IU = {1,2} , IY = {1,2} (3.125)

The set of values consumed by the first input port is the same as that generated by the first

output port

U (1) = Y (1) (3.126)

The consumption rates of the rate converter are

c(ι) =

c, ι = 1

1, ι = 2
(3.127)

The production rates of the rate converter are

p(l) =

p, l = 1

1, l = 2
(3.128)

The function calculate (3.2) generates output tokens by resampling input tokens

γ(k,1,θ) = ξ

(
k,1,

⌈
θ c

p

⌉)
(3.129)
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Two tasks of the rate converter are rate conversion (3.129) and solving the connection equa-

tion (2.63). Resampling tokens (3.129) ensures that a co-simulation network wrapper (CSW)

defined next has consistent rates (Theorem 3.28) with a uniform simulated time increment (The-

orem 3.29). When two co-simulation slaves (CSLs) F“ı and Fı̆ are connected (2.62), the follow-

ing definition of the CSW ensures that their respective simulators are connected. There is a rate

converter between each pair of connected ports.

This thesis limits the capabilities of CSLs to use ZOH for reconstruction of input (2.59) and

output signals (2.60). This was done to simplify the description of the co-simulation. As al-

ready stated in Section 2.3, higher order extrapolation methods are not used in this thesis. This

simplification enables the rate conversion (3.129). Such a rate conversion is a stateless calcula-

tion. The input port set and the output port set involved in the self-loop are not defined (3.126)

because the self-loop is not involved in the calculation. A stateful calculation can be modeled

with an additional buffer similar to the case of simulators (Definition 3.23). It would enable

the support of more advanced coupling elements such as [68]. In addition, rate converters have

exactly one input and one output port. An additional ports can be added to support coupling

elements such as [69]. Both generalizations are avoided in this thesis to simplify the notation.

Definition 3.25 (Co-simulation network wrapper). A co-simulation network wrapper (CSW) is

an SDFG (Definition 3.2)

G =
(
IA,A, IB,src,dst,d0,ω0

)
= networkToDataflow(C,h,d0,ω0) (3.130)

where

• G ∈ G is the CSW

• C ∈ C is the CSN (Definition 2.61),

•h : IF →Q>0 is the function assigning step-sizes of the simulators,

•d 0 : IB → N0 is the number of initial tokens (Definition 3.2),

• ω0 : IB →ZN are the values of initial tokens (Definition 3.2),

•and networkToDataflow : C×(IF →Q>0)×
(
IB → N0

)
×
(
IB →ZN)→G is the function

that constructs the CSW.

The SDFA labels are

IA =

{
a : a ∈ N, a ⩽ NF +

NF

∑
i=1

NUi

}
(3.131)
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The first NF SDFAs are simulators and the rest are rate converters

A(a) =



slaveToSimulator(F(i) ,h(i)) , a = i, i ∈ IF

converter
(

lcm(d“ı ηı̆, dı̆ η“ı)
dı̆ η“ı

, lcm(d“ı ηı̆, dı̆ η“ı)
d“ı ηı̆

)
,

a = NF + ῐ +
ı̆−1
∑
j=1

NU j ,

(“ı, “o) = L(ı̆, ῐ) ,

h(“ı) = η“ı
d“ı
, h(ı̆) = ηı̆

dı̆

gcd(η“ı,d“ı) = 1, gcd(ηı̆,dı̆) = 1

ı̆ ∈ IF, ῐ ∈ IUi

(3.132)

The SDFB labels are

IB =

{
b : b ∈ N, b ⩽ NA +2

NF

∑
i=1

NUi

}
(3.133)

The source ports of the SDFBs are given by

src(b) =


(a,NYa) , b ⩽ NA, a = b

(a,1) , b = NA + ῐ +∑
ı̆−1
j=1 NU j , a = NF + ῐ +∑

ı̆−1
j=1 NU j , ı̆ ∈ IF, ῐ ∈ IUı̆

(“ı, “o) , b = NA + ῐ +∑
ı̆−1
j=1 NU j +∑

NF
j=1 NU j , (“ı, “o) = L(ı̆, ῐ) , ı̆ ∈ IF, ῐ ∈ IUı̆

(3.134)

The destination ports of the SDFBs are given by

dst(b) =



(a,NUa) , b ⩽ NA, a = b

(ı̆, ῐ) , b = NA + ῐ +∑
ı̆−1
j=1 NU j , ı̆ ∈ IF, ῐ ∈ IUi

(a,1) , b = NA + ῐ +∑
ı̆−1
j=1 NU j +∑

NF
j=1 NU j ,

a = NF + ῐ +∑
ı̆−1
j=1 NU j , ı̆ ∈ IF, ι ∈ IUi

(3.135)

The number of initial tokens in the SDFBs of a CSW is constrained by

d0(b) = 1, b ⩽ NA (3.136)

The initial tokens in the SDFBs containing the internal states of the CSLs are

ω0 (b) = v0i, b ⩽ NF, i = b (3.137)

Definition 3.23, Definition 3.24 and Definition 3.25 introduce a MOC for the simulation of
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a CSN (Definition 2.14). The CSW decouples the execution platform from the definition of the

behavior. This means that Algorithm 3.1 can be used to execute the generated CSW as well as

the multiprocessor algorithm presented in the next chapter.

A CSW contains

NA = NF +
NF

∑
i=1

NUi (3.138)

SDFAs (3.132), of which NF are simulators and ∑
NF
i=1 NUi are rate converters. There is one

simulator for each CSL in CSN C and one rate converter for each input port of each CSL. A

CSW contains

NB = NA +2
NF

∑
i=1

NUi (3.139)

SDFB (3.133), of which NF enclose the internal states of the slaves and 2∑
NF
i=1 NUi are used to

connect simulators and rate converters. The source (3.134) and destination (3.135) of SDFBs

that enclose the internal state of an SDFA are the same

(a,NYa) = src(b), (a,NUa) = dst(b), b ⩽ NA, a = b (3.140)

These buffers initially only contain one token (3.136) with the initial state of the respective

slaves (3.137). Such self-loops impose precedence constraints on the parallel execution of the

graph presented in Chapter 4. A multiprocessor schedule can lead to incorrect results without

having information about stateful calculations [28]. There are two SDFBs connected to each

rate converter, one at the input port and one at the output port of the converter. A rate converter

with the two connected buffers solves the connection equation (2.63). The equations (3.134)

and (3.135) imply that there is an input and an output buffer for each rate converter

(“ı, “o) = src
(

“b
)
, dst

(
“b
)
= (a,1) , (“ı, “o) = src

(
b̆
)
, dst

(
b̆
)
= (ı̆, ῐ) ,

“b = NF + ῐ +
ı̆−1

∑
j=1

NU j +
NF

∑
j=1

NU j , b̆ = NF + ῐ +
ı̆−1

∑
j=1

NU j

a = NF + ῐ +
ı̆−1

∑
j=1

NU j , (“ı, “o) = L(ı̆, ῐ) , ı̆ ∈ IF, ῐ ∈ IUi

(3.141)

The equations (3.138)-(3.141) are used to provide additional insight into the definitions in this

section.

Theorem 3.28 shows that a CSW defined in this way has consistent consumption and pro-

duction rates. It shows that it is possible to calculate the repetition vector of a CSW (Defini-

tion 3.25).

Definition 3.26 (Generalized step sizes). Let h′ : IA → Q>0 be the function selecting general-
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ized step sizes of SDFAs induced by a CSW (Definition 3.25) defined as

h′(a) =


h(a), a ⩽ NF

lcm(d“a ηă, dă η“a)
d“a dă

, a > NF,
(“a, “o) = src(“b), (a,1) = dst(“b)

(a,1) = src(b̆), (ă, ῐ) = dst(b̆)

(3.142)

where the step sizes of the simulators are

h(a) = ηa
da

∈Q>0 (3.143)

and respective numerators and denominators are relatively prime

gcd(ηa,da) = 1 (3.144)

Lemma 3.27 (Inverted step sizes). The vector of inverted generalized step sizes (Definition 3.26)

is in the kernel of the topology matrix (Definition 3.16) generated by a CSW (Definition 3.25)

ΓΓΓ

[
1

h′(1)
1

h′(2) . . . 1
h′(NA)

]T

= 0 (3.145)

Proof. Let C be the CSN (Definition 2.14) and L its connection function (2.62). Let

G = networkToDataflow(C,h,d0,ω0) (3.146)

be the CSW that wraps . Let

(“ı, “o) = L(ı̆, ῐ), “ı, ı̆ ∈ IF, “o ∈ IY“ı , ῐ ∈ IUı̆ (3.147)

From (3.134) and (3.135) it follows there exists b̆,“b ∈ IB and a ∈ IA such that

(“ı, “o) = src(“b) (a,1) = dst(“b) (3.148)

and

(a,1) = src(b̆) (ı̆, ῐ) = dst(b̆) (3.149)

From (3.118), (3.119), (3.124), (3.132) and (3.142) it follows that

p“ı(“o)
1

h(“ı)
− ca(1)

1
h′(a)

= 0 (3.150)

and

pa(1)
1

h′(a)
− cı̆(ῐ)

1
h(ı̆)

= 0 (3.151)
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The rows of the topology matrix (Definition 3.16) are formed for each buffer in the CSW.

From (3.5), (3.6), (3.134) and (3.135) it follows that for the buffers in a self-loop

pa (NYa)
1

h′(a)
− ca(NUa)

1
h′(a)

= 0 (3.152)

all of the elements of the vector

ΓΓΓ

[
1

h′(1)
1

h′(2) . . . 1
h′(NA)

]T

(3.153)

can be expressed either by (3.150), (3.151) or (3.152).

Theorem 3.28 (Repetition vector). The repetition vector r ∈ NNA (Definition 3.18) of a CSW

(Definition 3.25) can be calculated by

r =
lcm
(
η ′

1,η
′
2, . . . ,η

′
NA

)
gcd
(
d′

1,d
′
2, . . . ,d

′
NA

) [ 1
h′(1)

1
h′(2) . . . 1

h′(NA)

]T

(3.154)

where the generalized step sizes of the SDFAs are

h′(a) = η ′
a

d′
a
∈Q>0 (3.155)

and respective numerators and denominators are relatively prime

gcd(d′
a,η

′
a) = 1 (3.156)

Proof. Lemma 3.27 shows that (3.154) is in the kernel of the topology matrix. From Defini-

tion 3.17 it follows that

ra =

lcm
1⩽a′⩽NA

(
η ′

a′
)

gcd
1⩽a′⩽NA

(
d′

a′
) d′

a
η ′

a
= ∏

j=1
p

max
1⩽a′⩽NA

(η ′
a′ j)−ηa j+da j− min

1⩽a′⩽NA
(d′

a′ j)

j (3.157)

Each element of the vector is a positive integer since

max
1⩽a′⩽NA

(η ′
a′ j)−ηa j ⩾ 0 (3.158)

and

da j − min
1⩽a′⩽NA

(d′
a′ j)⩾ 0 (3.159)

The condition (3.102) holds if

min
1⩽a⩽NA

(
max

1⩽a′⩽NA
(η ′

a′ j)−ηa j +da j − min
1⩽a′⩽NA

(d′
a′ j)
)
= 0 (3.160)

57



Synchronous data flow

for all j ∈ N. From (3.156) it follows that

min(η ′
a j,d

′
a j) = 0, 1 ⩽ a ⩽ NA (3.161)

If there exists a ∈ IA such that

max
1⩽a′⩽NA

(η ′
a′ j) = η

′
a j > 0 (3.162)

then

d′
a j = 0, min

1⩽a′⩽NA
(d′

a′ j) = 0 (3.163)

follows from (3.161) and consequently (3.160) holds. If

max
1⩽a′⩽NA

(η ′
a′ j) = 0 (3.164)

then there exists a ∈ IA such that

d′
a j = min

1⩽a′⩽NA
(d′

a′ j), n′a j = 0 (3.165)

and consequently (3.160) holds.

Theorem 3.29 (SDFI time increment). Let C be a CSN (Definition 2.14) and

G = networkToDataflow(C,h,d0,ω0) (3.166)

its CSW (Definition 3.25). The simulated time increment in the kth SDFI (Definition 3.22) of the

ith simulator is

H = ti
(
k ri
)
− ti
(
(k−1)ri

)
= ra h(i) =

lcm
(

η ′
1,η

′
2, . . . ,η

′
NA

)
gcd
(

d′
1,d

′
2, . . . ,d

′
NA

) (3.167)

Proof. From (2.56) and (3.122) it follows that the simulated time after the nth execution of the

ith simulator is

ti(n) = n h(i) (3.168)

The expression (3.167) follows from the expression for the repetition vector (3.154) and (3.168).

Theorem 3.29 shows that each CSL in a CSW has a uniform simulated time increment.

The connection equations (2.63) give an expression for input and output signals at the same

simulated time. If the simulated time of the connected CSLs is not increased uniformly, the
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r(t)

A1

+

KR

(
1+ 1

TIs

) B5

B3

−
A4 - ZOH

A3 - ZOH

B4

B6

B1

K
(1+T1s)(1+TΣs)

A2

B2

(a) The SDFG consists of 4 SDFAs (2 simulators and 2 rate converters) and 6 SDFBs.

Processor A2 A4 A1 A3

Single processor platform

execution time

Processor 1 A2 A4

Processor 2 A1 A3

Multiprocessor platform

execution time

(b) A scheduling algorithm can optimize the execution time if more processors are available for the
running the above SDFG.

Figure 3.3: The SDFG presented in Example 3.30 and its execution on two different execution platforms.

numerical solution of the connection equations is likely to have a large error.

Example 3.30 (Control loop). This example presents the CSW (Definition 3.25) for the CSN

introduced in Example 2.18. The control loop CSN C is constructed with (2.75). The step-sizes

of the simulators are

h(a) =

1
2 , a = 1
1
2 , a = 2

(3.169)

The number of initial tokens of the CSW is

d0 (b) =

1, b ⩽ 4

0, otherwise
(3.170)

The values of initial tokens of the CSW are

ω0 (b,θ) =



v01, b = 1, θ = 1

v02, b = 2, θ = 1

y11(0.5), b = 3, θ = 1

y21(0.5), b = 4, θ = 1

(3.171)

The CSW is

G = networkToDataflow(C,h,d0,ω0) (3.172)
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0

1

2

3
11[k1]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time [s]

0.00

0.25

0.50

0.75

1.00

1.25 21[k2]

Figure 3.4: The token values obtained by the execution of the CSW presented in Example 3.30.

The Python procedure sdf4sim.example.control.gauss_jacobi_csw_run available at [44]

runs the CSW (3.172).

Example 3.30 shows a non-iterative version of a Jacobi CSM [31] as a CSW. It is interesting

that changing the number of initial tokens (3.170) to

d0 (b) =

1, b ⩽ 3

0, otherwise
(3.173)

makes modified CSW a non-iterative version of a Gauss-Seidel CSM [31].

An advantage of such a view is that it links the MOC to the work that has researched its

implementation [36]. If a non-iterative co-simulation is represented as a CSW, execution can

be statically planned on both single and multiprocessor platforms [35].
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Execution platform

This chapter presents an idealistic model for the execution platform, the infinite processor exe-

cution platform (IPEP) in Definition 4.1. Such a platform enables the analysis of a co-simulation

schedule. Scheduling is a decision-making process that deals with the allocation of processors

to tasks [70]. The tasks in co-simulation are single executions of the calculation functions of

simulators and rate converters. The connection to the scheduling research area can be observed

by comparing the IPEP (Definition 4.1) and the project defined in [70]. The two platforms are

functionally the same. Such a platform can be easily generalized to machines in parallel with

different speeds or to unrelated machines in parallel [70].

The generalization was avoided for the sake of simplicity, since scheduling is a well-researched

topic, both in the case of SDFGs [35, 36] and as a general topic [70, 71]. In [35], authors de-

scribe static algorithms for scheduling SDFGs on single and multiprocessor platforms. The

algorithm for scheduling an SDFG on a single processor (Algorithm 3.2) is also described in

Section 3.3. This chapter introduces an algorithm for scheduling execution on the IPEP (Algo-

rithm 4.2). However, the main objective of this chapter is to provide an analysis of the real-time

capabilities of a CSW.

A CSW can be executed in real time if its makespan is less than or equal to its SDFI time

increment (Theorem 3.29). The makespan analysis for the IPEP is shown in Section 4.1. This

makespan analysis is considered useful in practice because it provides an optimistic estimate of

the real-time capability of the CSW. If the CSW cannot run in real time on the IPEP, it cannot

run in real time on any other platform.

The makespan analysis presented suggests how to develop a method for calculating the

initial CSW tokens. Such a method is presented and analyzed in Section 4.2. Since SDF is

a determinate MOC, a CSW created with this selection of tokens can be reused for different

execution platforms. A similar approach is demonstrated in [65], where timing information is

discarded from a fully static schedule for use in self-timed execution.

The proposed method for selecting initial tokens enables HIL experiments to be modeled
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using a CSW. There hardware introduces real-time execution constraints for the SDFG. A HIL

simulation can be a part of the MBD presented in the last section of this chapter. This makes

the proposed method for selecting initial tokens a reasonable default when selecting the MOC

for different phases of the MBD.

4.1 Makespan of a synchronous data flow iteration

The SDFAs in an SDFG describe cyclical tasks. The schedule in this chapter is a policy that is

implicitly introduced in Algorithm 4.2. This policy states that an SDFA calculation is executed

as soon as there are enough tokens in the SDFA’s input SDFBs (3.35). Such a policy is possible

if the execution platform contains an unlimited* number of processors (Definition 4.1). It is

important to note that Algorithm 4.2 executes SDF iterations (Definition 3.22) sequentially, but

the SDFA calculations within one iteration are performed concurrently if possible. This makes

it possible to define the makespan of an SDFI (Definition 4.6).

Definition 4.1 (Infinite processor execution platform). The infinite processor execution plat-

form (IPEP) consists of infinite identical machines. The time it takes to execute a single invo-

cation of the calculation function is specified with the function

time : A→ R>0 (4.1)

Definition 4.1 introduces a platform that corresponds functionally to the project defined

in [70]. The problem of minimizing the makespan of a project can be optimally solved [70].

This problem has a known solution, the critical path method commonly used in project man-

agement [72]. The next definition describes the list of tasks that are performed repeatedly in

Algorithm 4.2.

Algorithm 4.1 SDFA invocation

Require: G ∈ G, d(n′) : IB → N0, ω(n′) : IB → UN, a ∈ IA(
d(n′+1) ,ω (n′+1) ,ξa (ka)

)
:= consume

(
d(n′) ,ω (n′) ,a

)
γa (ka) := calculatea

(
ξa (ka)

)(
d
(
n′′+1

)
,ω (n′′+1)

)
:= produce

(
d(n′′) ,ω (n′′) ,a,γa (ka)

)
Algorithm 4.1 presents a task that is scheduled on a processor. The task consists of the

consumption of tokens, the SDFA calculation and the production of tokens. It is a building

block that is used in Algorithm 4.2.

*or large enough
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Algorithm 4.2 Execution of an SDFG on the IPEP
Require: G ∈ G, a PASS exists

ω (0) := ω0, d(0) := d0

n := 0
repeat

Wait for the clock trigger ▷ This command enables execution in real time.
r′ := r
repeat ▷ This loop executes SDFIs in a sequence.

for a ∈
{

a′ : a′ ∈ IA, r′a′ > 0, ∀ι ′ ∈ IUa′
. d(n,b)⩾ ca′(ι

′), (a′, ι ′) = dst(b)
}

do
Start the execution of the task specified in Algorithm 4.1 for the SDFA labeled a
▷ Each of the tasks specified by the loop is scheduled simultaneously due to the

infinite number of processors.

until ∀a ∈ IA. r′a′ = 0
until external stop

Definition 4.2 (Precedence constraints). The set of precedence constraints for the execution of

an SDFG (Definition 3.2) is referred to as

precedences : G×N×N→ 2N×N (4.2)

The kth
“a invocation of the SDFA labeled “a is a precedence constraint for the kth invocation of the

SDFA labeled a

(“a,k“a) ∈ precedences(G,k,a) (4.3)

if there exists b ∈ IB, “o ∈ IY“a and ι ∈ IA such that

src(b) = (“a, “o), dst(b) = (a, ι), “o ∈ IY“a , ι ∈ IUa (4.4)

and

ka ca(ι)> (k“a −1) p“a(“o)+d0(b) (4.5)

The above definition introduces the set of precedence constraints on the invocations of an

SDFAs while running an SDFI. The next theorem shows how the precedence constraints af-

fect the execution of the SDFA. A precedence constraint specifies a rule for how calls from

connected SDFA invocations should be sequenced.

Theorem 4.3 (Precedence constraints). Assume that an SDFG (Definition 3.2) is executed with

a valid execution (Definition 3.7). Let

k“a = num(produce, “a, “n) , operation(“n) = (produce, “a) (4.6)

63



Execution platform

and

kă = num(consume, ă, n̆) , operation(n̆) = (consume, ă) (4.7)

If there exists b ∈ IB such that

(“a, “o) = src(b), (ă, ῐ) = dst(b), “o ∈ IY“a , ῐ ∈ IUă (4.8)

and

kă că(ῐ)> (k“a −1) p“a(“o)+d0(b) (4.9)

then

n̆ > “n (4.10)

Proof. The proof is given by contradiction. Assume that

n̆ < “n (4.11)

From (3.26) if follows that n̆ ≠ “n. From (3.30) and (4.7) it follows that

num(produce, ă, n̆−1) = kă −1 (4.12)

From (3.30), (4.6), (4.7) and (4.11) it follows that

num(produce, “a, “n) = num(produce, “a, n̆−1)+
“n

∑
n=n̆

count(produce,a,n) = k“a (4.13)

and consequently

num(produce, “a, n̆−1)⩽ k“a −1 (4.14)

From (4.9), (4.12) and (4.14) it follows that

num(consume, ă, n̆−1) că(ῐ)+ ca(ῐ)> d0(b)+num(produce, “a, n̆−1) p“a(“o) (4.15)

This contradicts Lemma 3.9.

The precedence constraints of an SDFG can be presented in the form of an acyclic prece-

dence graph. This representation can be used to calculate a periodic admissible parallel sched-

ule [35]. The next example is introduced to connect the work in the thesis with the existing

research on the SDFG scheduling [36]. This thesis does not attempt to further examine the

scheduling problem. The goal of this chapter is to present the procedure for initial token selec-

tion in the next section. This section introduces the prerequisites to justify the selection.
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Example 4.4 (Acyclic precedence graph). This example shows how an acyclic precedence

graph is created from the SDFG shown in Example 3.3. The nodes of an acyclic precedence

graph are invocations of SDFAs in a single SDFI (Definition 3.22). There is an edge between

two SDFA invocations to which the precedence constraint (4.9) applies.

(1, 1) (2, 1) (2, 2)

The graph can be used to execute an SDFG on a multiprocessor platform [35, 36, 65, 73].

The acyclic precedence graph is usually pruned to remove redundant constraints. In this exam-

ple, the edge from (1,1) to (2,2) can be removed. The pruned acyclic precedence graph can

still be used for scheduling the SDFG on a multiprocessor platform.

Example 4.4 shows how to create an acyclic precedence graph [35, 36, 65, 73]. This notation

is not used in the rest of the thesis. The example was only used to connect this section to existing

research.

Definition 4.5 (Completion time). Assume that an SDFG G (Definition 3.2) is executed on the

IPEP (Definition 4.1). The function T : G×N×N → R>0 denotes the completion time of an

SDFA invocation

T (G,a,k) =


time

(
A(a)

)
, precedences(G,a,k) = /0

time(a)+ max
(“a,k“a)∈precedences(G,a,k)

T (G, “a,k“a), otherwise
(4.16)

The above definition of completion time enables max-plus algebra timing analysis on the

IPEP [74]. Basic max-plus algebra is used in the proofs shown in the next section.

Definition 4.6 (Makespan of an SDF iteration). Assume that an SDFG (Definition 3.2) is exe-

cuted with Algorithm 4.2. The makespan of an SDFI (Definition 3.22) is

Titeration(G) = max
(a,k)∈iteration(G)

T (G,a,k) (4.17)

The next section uses the makespan definition to justify the method for selecting the number

of initial tokens. The next example gives an indication of how the number of initial tokens

affects the makespan of the SDFI.

Example 4.7 (Makespan of an SDF iteration). Let

G1 = (IA,A, IB,src,dst,d01,ω01) (4.18)
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denote the SDFG presented in Example 3.3 and

G2 = (IA,A, IB,src,dst,d02,ω02) (4.19)

denote the SDFG presented in Example 3.21. The two SDFGs have the same SDFAs and

different initial tokens. Let the execution time of the SDFAs be

time(A) =

5, A = A(1)

3, A = A(2)
(4.20)

If the SDFGs are executed with Algorithm 4.1 then

Titeration(G1) = 11 (4.21)

and

Titeration(G2) = 6 (4.22)

This example shows that the execution time of an SDFI can be reduced by changing the initial

tokens and executing the SDFG on the IPEP. This advantage comes with a compromise. Com-

paring Example 3.20 and Example 3.21 shows that changing initial tokens changes the behavior

of the SDFG.

4.2 Number of initial tokens

This section presents the method for calculating the number of initial tokens (Definition 4.8)

based on the simulator step sizes in the CSW. To execute the CSN (Definition 2.14) with the

CSW, an engineer must specify the simulator step sizes, the number of initial tokens, and the

initial token values. Suppose the number of initial tokens of a CSW is calculated using the

method described in Definition 4.8. This section shows that such a CSW does not deadlock

(Corollary 4.13) and can run in real time on the IPEP (Theorem 4.17). The proposed method

provides a default setting for selecting the number of initial tokens.

Definition 4.8 (Number of initial tokens). Let

• C ∈ C be a CSN (Definition 2.14)

•and h : IF →Q>0 the simulator step sizes of the CSW (Definition 3.25).
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The number of initial tokens of the CSW is set to

d0(b) = findTokenNumbers(C,h)

=


1, b ⩽ NA

ra, dst(b) = (a, ι), a = i, i ∈ IF, ι ∈ IUi

0, otherwise

(4.23)

where ra ∈N are the elements of the repetition vector (Definition 3.18) with the topology matrix

(Definition 3.16) constructed using the rates in (3.132).

The method introduced in the definition above places a token in the SDFBs involved in self-

loops and no tokens in the SDFBs with a rate converter port as the destination. The method

places enough tokens in the SDFBs with a simulator as the destination so that execution of

the CSW does not deadlock (Theorem 4.12). The next lemmas are used in the proof of Theo-

rem 4.12.

Definition 4.9 (Labeled PASS search). The labeled PASS search is Algorithm 3.2, which uses

the following function to select SDFAs

choose(G,d(2n) ,r,n) = a′,
a′−1

∑
a=1

ra < n ⩽
a′

∑
a=1

ma (n) (4.24)

Lemma 4.10 (Simulator execution). Assume that the algorithm specified in Definition 4.9 is

used to find a PASS. Let a′ ∈ IF and n′ = ∑
a′−1
a=1 ra. Assume that the number of tokens before

executing the simulator labeled a′ is

d
(
2n′,b

)
=



1, b ⩽ NA

0, dst(b) = (a, ι), ι ∈ IUa , a < a′

ra, src(b) = (a,o) , o ∈ IYa , a < a′

ra, dst(b) = (a, ι), ι ∈ IUa , a′ ⩽ a ⩽ NF

0, src(b) = (a,o) , o ∈ IYa , a′ ⩽ a ⩽ NF

(4.25)
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The number of tokens in the SDFBs during execution of the simulator labeled a′ ⩽ NF is

d(2n,b) =



1, b ⩽ NA

0 dst(b) = (a, ι), ι ∈ IUa , a < a′

ra, src(b) = (a,o) , o ∈ IYa , a < a′

ra, dst(b) = (a, ι), ι ∈ IUa , a′ < a ⩽ NF

0, src(b) = (a,o) , o ∈ IYa , a′ < a ⩽ NF

ra′ −n+n′, dst(b) = (a′, ι) , ι ∈ IUa′

n−n′, src(b) = (a′,o) , o ∈ IYa′

(4.26)

for n′ < n ⩽ n′+ ra′ .

Proof. Let the label of the simulator a′ ⩽ NF be fixed. The proof is given by induction.

The induction basis is the case of n = n′+ 1. The assumed number of tokens before the

simulator is executed (4.25) fulfills the trigger condition (3.35) for the simulator. The num-

ber of tokens in the SDFBs after the simulator has consumed the tokens is determined by the

equations (3.43) and (3.118)

d
(
2n′+1

)
=



1, b ⩽ NA

0 dst(b) = (a, ι), ι ∈ IUa , a < a′

ra, src(b) = (a,o) , o ∈ IYa , a < a′

ra, dst(b) = (a, ι), ι ∈ IUa , a′ < a ⩽ NF

0, src(b) = (a,o) , o ∈ IYa , a′ ⩽ a ⩽ NF

ra′ −1, dst(b) = (a′, ι) , ι ∈ IUa′

(4.27)

The number of tokens in the SDFBs after the simulator has produced the tokens is determined

by the equations (3.43) and (3.119)

d(2n) = d
(
2n′+2

)
=



1, b ⩽ NA

0 dst(b) = (a, ι), ι ∈ IUa , a < a′

ra, src(b) = (a,o) , o ∈ IYa , a < a′

ra, dst(b) = (a, ι), ι ∈ IUa , a′ < a ⩽ NF

0, src(b) = (a,o) , o ∈ IYa , a′ < a ⩽ NF

ra′ −1, dst(b) = (a′, ι) , ι ∈ IUa′

1, src(b) = (a′,o) , o ∈ IYa′

(4.28)
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This proves the induction basis.

In the induction step it is assumed that (4.26) holds. It needs to be verified that the statement

holds for the next invocation of the simulator n′ < n+ 1 ⩽ n′+ ra′ . The number of tokens in

the SDFBs after the simulator has consumed the tokens is determined by the equations (3.43)

and (3.118)

d(2n+1) =



1, b ⩽ NA

0 dst(b) = (a, ι), ι ∈ IUa , a < a′

ra, src(b) = (a,o) , o ∈ IYa , a < a′

ra, dst(b) = (a, ι), ι ∈ IUa , a′ < a ⩽ NF

0, src(b) = (a,o) , o ∈ IYa , a′ < a ⩽ NF

ra′ − (n+1)+n′, dst(b) = (a′, ι) , ι ∈ IUa′

n−n′, src(b) = (a′,o) , o ∈ IYa′

(4.29)

The number of tokens in the SDFBs after the simulator has produced the tokens is determined

by the equations (3.43) and (3.119)

d
(
2(n+1)

)
=



1, b ⩽ NA

0 dst(b) = (a, ι), ι ∈ IUa , a < a′

ra, src(b) = (a,o) , o ∈ IYa , a < a′

ra, dst(b) = (a, ι), ι ∈ IUa , a′ < a ⩽ NF

0, src(b) = (a,o) , o ∈ IYa , a′ < a ⩽ NF

ra′ − (n+1)+n′, dst(b) = (a′, ι) , ι ∈ IUa′

(n+1)−n′, src(b) = (a′,o) , o ∈ IYa′

(4.30)

This proves the induction step.

Lemma 4.11 (Rate converter execution). Assume that the algorithm specified in Definition 4.9

is used to find a PASS. Let a′ > NF and n′ = ∑
a′−1
a=1 ra. Assume that the number of tokens before

executing the rate converter labeled a′ is

d(2n′,b) =



1, b ⩽ NA

0, dst(b) = (a,1) , src(b) = (“a, “o) , NF < a < a′

ră, src(b) = (a,1) , dst(b) = (ă, ῐ), NF < a < a′

ră, dst(b) = (a,1) , src(b) = (“a, “o) , a′ ⩽ a ⩽ NA

0, src(b) = (a,1) , dst(b) = (ă, ῐ), a′ ⩽ a < NA

(4.31)
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The number of tokens in the SDFBs during execution of the rate converter labeled a′ > NF is

d(2n,b) =



1, b ⩽ NA

0, dst(b) = (a,1) , src(b) = (“a, “o) , NF < a < a′

ră, src(b) = (a,1) , dst(b) = (ă, ῐ), NF < a < a′

ră, dst(b) = (a,1) , src(b) = (“a, “o) , a′ < a ⩽ NA

0, src(b) = (a,1) , dst(b) = (ă, ῐ), a′ < a < NA

ră − ca′ (n−n′) , dst(b) = (a,1) , src(b) = (“a, “o)

pa′ (n−n′) , src(b) = (a,1) , dst(b) = (ă, ῐ)

(4.32)

for n′ < n ⩽ n′+ ra′ .

Proof. Let the label of the rate converter a′ ∈ (NF,NA] be fixed. The proof is given by induction.

The induction basis is the case of n = n′+ 1. The assumed number of tokens before the

rate converter is executed (4.31) fulfills the trigger condition (3.35) for the rate converter. The

number of tokens in the SDFBs after the rate converter has consumed the tokens is determined

by the equations (3.43) and (3.127)

d
(
2n′+1

)
=



1, b ⩽ NA

0, dst(b) = (a,1) , src(b) = (“a, “o) , NF < a < a′

ră, src(b) = (a,1) , dst(b) = (ă, ῐ), NF < a < a′

ră, dst(b) = (a,1) , src(b) = (“a, “o) , a′ < a ⩽ NA

0, src(b) = (a,1) , dst(b) = (ă, ῐ), a′ < a < NA

ră − ca′ , dst(b) = (a,1) , src(b) = (“a, “o)

(4.33)

The number of tokens in the SDFBs after the rate converter has produced the tokens is deter-

mined by the equations (3.43) and (3.128)

d(2n) = d
(
2n′+2

)
=



1, b ⩽ NA

0, dst(b) = (a,1) , src(b) = (“a, “o) , NF < a < a′

ră, src(b) = (a,1) , dst(b) = (ă, ῐ), NF < a < a′

ră, dst(b) = (a,1) , src(b) = (“a, “o) , a′ < a ⩽ NA

0, src(b) = (a,1) , dst(b) = (ă, ῐ), a′ < a < NA

ră − ca′ , dst(b) = (a,1) , src(b) = (“a, “o)

pa′ , src(b) = (a,1) , dst(b) = (ă, ῐ)

(4.34)
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This proves the induction basis.

In the induction step it is assumed that (4.32) holds. It needs to be verified that the state-

ment holds for the next invocation of the rate converter n′ < n+ 1 ⩽ n′+ ra′ . The number of

tokens in the SDFBs after the rate converter has consumed the tokens is determined by the

equations (3.43) and (3.127)

d(2n+1) =



1, b ⩽ NA

0, dst(b) = (a,1) , src(b) = (“a, “o) , NF < a < a′

ră, src(b) = (a,1) , dst(b) = (ă, ῐ), NF < a < a′

ră, dst(b) = (a,1) , src(b) = (“a, “o) , a′ < a ⩽ NA

0, src(b) = (a,1) , dst(b) = (ă, ῐ), a′ < a < NA

ră − ca′ ((n+1)−n′) , dst(b) = (a,1) , src(b) = (“a, “o)

pa′ (n−n′) , src(b) = (a,1) , dst(b) = (ă, ῐ)
(4.35)

The number of tokens in the SDFBs after the rate converter has produced the tokens is deter-

mined by the equations (3.43) and (3.128)

d(2(n+1)) =



1, b ⩽ NA

0, dst(b) = (a,1) , src(b) = (“a, “o) , NF < a < a′

ră, src(b) = (a,1) , dst(b) = (ă, ῐ), NF < a < a′

ră, dst(b) = (a,1) , src(b) = (“a, “o) , a′ < a ⩽ NA

0, src(b) = (a,1) , dst(b) = (ă, ῐ), a′ < a < NA

ră − ca′ ((n+1)−n′) , dst(b) = (a,1) , src(b) = (“a, “o)

pa′ ((n+1)−n′) , src(b) = (a,1) , dst(b) = (ă, ῐ)
(4.36)

This proves the induction step.

Theorem 4.12 (Sequential execution). Assume that the number of initial tokens d0 for a CSW

(Definition 3.25) is determined using the method described in Definition 4.8. Assume that the

algorithm specified in Definition 4.9 is used to find a PASS. Let n′′ = ∑
a′′
a=1 ra. The number of
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tokens in the SDFBs is

d
(
2n′′,b

)
=



1, b ⩽ NA

0, dst(b) = (a, ι), ι ∈ IUa , a ⩽ a′′

ra, src(b) = (a,o) , o ∈ IYa , a ⩽ a′′

ra, dst(b) = (a, ι), ι ∈ IUa , a′′ < a ⩽ NF

0, src(b) = (a,o) , o ∈ IYa , a′′ < a ⩽ NF

(4.37)

for simulators a′′ ⩽ NF and

d
(
2n′′,b

)
=



1, b ⩽ NA

0, dst(b) = (a,1) , src(b) = (“a, “o) , NF < a ⩽ a′′

ră, src(b) = (a,1) , dst(b) = (ă, ῐ), NF < a ⩽ a′′

ră, dst(b) = (a,1) , src(b) = (“a, “o) , a′′ < a ⩽ NA

0, src(b) = (a,1) , dst(b) = (ă, ῐ), a′′ < a < NA

(4.38)

for rate converters a′′ > NF.

Proof. First, the statement for simulators a′′ ⩽ NF is proven by induction. The induction basis

is the case of a′′ = 1′. The execution step index is then n′′ = r1. The number of initial tokens

d0, which is determined by the method described in definition 4.8, fulfills the condition (4.25).

Lemma 4.10 proves the induction basis

d
(
2n′′,b

)
=



1, b ⩽ NA

0, dst(b) = (a, ι), ι ∈ IUa , a = a′′ = 1

r1, src(b) = (a,o) , o ∈ IYa , a = a′′ = 1

ra, dst(b) = (a, ι), ι ∈ IUa , a′′ < a ⩽ NF

0, src(b) = (a,o) , o ∈ IYa , a′′+1 < a < NF

(4.39)

In the induction step it is assumed that (4.37) holds. The observed execution step has the index
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n′′+ ra′′+1. Lemma 4.10 is used to prove the induction step

d
(
2
(
n′′+ ra′′+1

)
,b
)
=



1, b ⩽ NA

0, dst(b) = (a, ι), ι ∈ IUa , a ⩽ a′′+1

ra, src(b) = (a,o) , o ∈ IYa , a ⩽ a′′+1

ra, dst(b) = (a, ι), ι ∈ IUa , a′′+1 < a ⩽ NF

0, src(b) = (a,o) , o ∈ IYa , a′′+1 < a < NF

(4.40)

and hence the statement of the theorem for simulators.

In the second part of the proof, the statement for rate converters a′′ > NF is proven by

induction. The induction basis is the case of a′′ = NF + 1. The execution step index is then

n′′ = ∑
NF+1
a=1 ra. The first part of the proof shows that the number of tokens d(n′) = d

(
∑

NF+1
a=1 ra

)
fulfills the condition (4.31). Equations (4.31) and (4.37) describe the same number of tokens

for the execution step with index n′. This statement follows from (3.134), (3.135), a′ = NF and

a′′ = NF + 1. The rate converter connections are used to designate the buffers in (4.31) and

simulator connections in (4.25). Lemma 4.11 proves the induction basis

d
(
2n′′,b

)
=



1, b ⩽ NA

0, dst(b) = (a,1) , src(b) = (“a, “o) , a = a′′ = NF +1

ră, src(b) = (a,1) , dst(b) = (ă, ῐ), a = a′′ = NF +1

ră, dst(b) = (a,1) , src(b) = (“a, “o) , a′′ < a ⩽ NA

0, src(b) = (a,1) , dst(b) = (ă, ῐ), a′′ < a < NA

(4.41)

In the induction step it is assumed that (4.38) holds. The observed execution step has the index

n′′+ ra′′+1. Lemma 4.11 is used to prove the induction step

d
(
2
(
n′′+ ra′′+1

)
,b
)
=



1, b ⩽ NA

0, dst(b) = (a,1) , src(b) = (“a, “o) , NF < a ⩽ a′′+1

ră, src(b) = (a,1) , dst(b) = (ă, ῐ), NF < a ⩽ a′′+1

ră, dst(b) = (a,1) , src(b) = (“a, “o) , a′′+1 < a ⩽ NA

0, src(b) = (a,1) , dst(b) = (ă, ῐ), a′′+1 < a < NA

(4.42)

and hence the statement of the theorem for rate converters.

Corollary 4.13 (Nonterminating execution). Assume that the initial tokens d0 for a CSW (Defi-

nition 3.25) are obtained using the method described in Definition 4.8. Such an SDFG does not

deadlock.
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Proof. This corollary is a direct consequence of Theorem 3.10 and Theorem 4.12.

Corollary 4.13 states that the method described in Definition 4.8 ensures that the CSW

(Definition 3.25) does not deadlock. The rest of the section shows that such a CSW can be

executed in real time (Theorem 4.17).

Assumption 4.14 (Execution time). Suppose the co-simulation network wrapper (Definition 3.25)

is running on the IPEP (Definition 4.1). The execution time for simulators a ⩽ NF is

time(a)⩽ h(a) (4.43)

and the execution time for rate converters a > NF is

time(a) = 0 (4.44)

The previous assumption states that the time behavior of a simulator a ⩽ NF corresponds to

the time behavior of hardware. In hardware components there is no concept of simulated time.

The communication interface to the hardware component can be modeled with a simulator

(Definition 3.23). It is assumed that the rate converters (Definition 3.24) run in zero time. The

rate conversion (3.129) is a simple calculation and should be negligible in practice compared to

simulator calculations.

Lemma 4.15 (Simulator completion time). Assume that the method described in Definition 4.8

is used to set the number of initial CSW tokens (Definition 3.25) and Assumption 4.14 holds.

The completion time of simulator a ⩽ NF invocations is

T (G,a,ka)⩽ ka h(a), (a,ka) ∈ iteration(G) (4.45)

Proof. Let a ⩽ NF be fixed. The proof is given by induction.

The induction basis is the case of ka = 1. With the number of tokens specified in Def-

inition 4.8, there are no precedence constraints (4.9) that are met regardless of the number

executions of the connected SDFAs. This statement is verified by substitution

kă = ka = 1, ῐ = ι , că (ῐ) = ca(ι) = 1 (4.46)

to (4.9). The number of initial tokens in the input SDFBs is

d0(b) =

1, (a, ι) = dst(b), ι = NUa

ra, (a, ι) = dst(b), ι ∈ IUa

(4.47)
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The inequality (4.9) does not hold for any input port of the simulator since

(
ka −1

)
pa (o)+d0(b)⩾ d0(b)⩾ kaca(ι) = 1 (4.48)

The consumption rate in the substitution is set by the definition of the simulator (3.118). There-

fore precedences(G,a,1) = /0. The induction basis is proven by (4.16) and (4.43), i.e.

T (G,a,1) = time(a)⩽ h(a) (4.49)

In the induction step it is assumed that (4.45) holds. It needs to be verified that the statement

holds for the next invocation of the simulator. The invocation of the simulator depends on the

previous invocations of the same simulator

precedences(G,a,ka +1) =
{
(a,k′a) : k′a ⩽ ka

}
(4.50)

This statement is verified by substitution

kă = ka +1 ⩽ ra, ῐ = ι , că (ῐ) = ca(ι) = 1 (4.51)

to (4.9). The inequality (4.9) does not hold for input ports of the simulator ι ∈ IUa(
ka −1

)
pa′(o)+d0(b)⩾ d0(b) = ra > (ka −1)ca′′

(
ι
′′)= ka (4.52)

The inequality (4.9) holds for the self-loop of the simulator (3.5), (3.6) and (3.8)

(ka +1) ca(NUa) = ka +1 > (k−1) pa(NYa)+d0(b) = k, k ⩽ ka (4.53)

The induction step is proven by (4.16), (4.43) and (4.50). The completion time of the next

invocation of a simulator is

T (G,a,ka +1) = time
(
A(a)

)
+T (G,a,ka)⩽ (ka +1) h(a) (4.54)

Lemma 4.16 (Rate converter completion time). Assume that the method described in Defini-

tion 4.8 is used and Assumption 4.14 holds. The completion time of rate converter a > NF

invocations is

T (G,a,ka)⩽ H, (a,ka) ∈ iteration(G) (4.55)

Proof. Let a > NF be fixed. The proof is given by induction.

The induction basis is the case of ka = 1. Definition 4.8 specifies the number of initial tokens
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in each SDFB connected to a rate converter’s input port (a, ι) = dst(b). The set of precedence

constraints for the first invocation of the rate converter is

precedences(G,a,1) =
{
(“a,k“a) : k“a ∈ N, k“a ⩽ ca(1)

}
(4.56)

where the simulator index “a and simulator’s output port index “o are obtained by (3.141). The

preconditions are verified by substitution

ă = a, kă = ka, ῐ = 1, p“a(“o) = 1, că(ῐ) = ca(1) (4.57)

to (4.9) where the consumption rate of the rate converter is specified by (3.132). The inequal-

ity (4.9) holds for k“a ⩽ ca(1) and kă = 1

(k“a −1)p“a(“o)+d0(b) = k“a −1 < kăca(1) = ca(1) (4.58)

The self-loop does not block the first invocation of the rate converter. This statement is verified

by substitution

“a = a, ă = a, k“a = ka −1 = 1, kă = ka = 1, “o = 2,

ῐ = 2, p“a (“o) = pa (2) = 1, că (ῐ) = ca(2) = 1
(4.59)

to (4.9). The SDFB on the self-loop (3.140) has single initial token (4.23)

d0(b) = 1, (a,2) = src(b), (a,2) = dst(b) (4.60)

The inequality (4.9) does not hold for the self-loop of the rate converter since

(k“a −1)p“a(“o)+d0(b) = 1 = kăcă(ῐ) (4.61)

The induction basis is proven by Lemma 4.15, (4.16) and (4.44). Each invocation of the simula-

tor has a completion time T (G, “a,k“a)⩽ H. Since it is assumed that rate converters are executed

instantaneously (4.44) the induction basis is proven

T (G,a,1) = max
(“a,k“a)∈precedences(G,a,1)

T (G, “a,k“a)⩽ H (4.62)

In the induction step it is assumed that (4.55) holds. It needs to be verified that the state-

ment holds for the next invocation of the rate. The set of precedence constraints for the next

invocation of the rate converter is

precedences(G,a,ka +1) =
{
(a,k′a) : k′a ⩽ ka

}
∪
{
(“a,k“a) : k“a ⩽

(
ka +1

)
ca(1)

}
(4.63)
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where the simulator index “a and simulator’s output port index “o are obtained by (3.141). The

preconditions for the execution of the simulator are verified by substitution (4.57) to (4.9) where

the consumption rate of the rate converter is specified by (3.132). The inequality (4.9) holds for

k“a ⩽ (ka +1) ca(1)

(k“a −1)p“a(“o) = k“a −1 < kăcă(ῐ) = (ka +1)ca(1) (4.64)

The precondition for the previous execution of the rate converter is verified by substitution (4.59)

to (4.9). The SDFB on the self-loop has single initial token (4.60). The inequality (4.9) holds

for the self-loop of the rate converter k′a ⩽ ka

(k“a −1)p“a(“o)+d0(b) = k′a ⩽ ka < kăcă(ῐ) = ka +1 (4.65)

The induction step is proven by Lemma 4.15, (4.16) and (4.44). Lemma 4.15 implies that

invocation of the simulator has a completion time T (G, “a,k“a)⩽ H. The induction step assumes

that the previous invocation of the rate converter has a completion time T (G,a,k)⩽ H. Since it

is assumed that rate converters are executed instantaneously (4.44) the induction step is proven

T (G,a,ka +1) = max
(a,ka)∈precedences(G,a,ka+1)

T (G,a,ka)⩽ H (4.66)

Theorem 4.17 (Execution time ⩽ simulated time). Assume that the method described in Def-

inition 4.8 is used and Assumption 4.14 holds. The makespan (Definition 4.6) of the CSW

(Definition 3.25) is less than the simulated time increment (Theorem 3.29)

Titeration(G)⩽ H (4.67)

Proof. Lemma 4.15 and Theorem 3.29 show that for simulators a ⩽ NF, the completion time of

all the invocations in the iteration is bounded by the simulated time increment

T (G,a,k)⩽ ka h(a)⩽ H = ra h(a) , a ⩽ NF, ka ⩽ ra (4.68)

Lemma 4.16 proves that for rate converters a > NF, the completion time of all the invocations in

the iteration is bounded by the simulated time increment. The statement of the theorem follows

from the definition of makespan (Definition 4.6).

Theorem 4.17 shows that the CSW can be executed in real time with the number of initial

tokens calculated using the method in Definition 4.8. The simulated time increment for such a

CSW is shorter than the execution time of a single SDFI.
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4.3 Model based development

M ROL

CS network

M ROL

MIL

configure

MIL
X ROL

XIL

replace

M by X

improve

Figure 4.1: This thesis assumes that each phase of model-based development (MBD) runs an X in the
loop (XIL) simulation and that the first phase always runs a model in the loop (MIL) simulation. The
information obtained through a later phase of MBD can be used to improve the design in earlier phases.

Section 4.1 introduces the analysis of execution time on the IPEP (Definition 4.1). Section 4.2

shows how to calculate initial tokens of a CSW that enable real-time execution (Definition 4.8).

This section tries to explain the motivation and benefits of modeling the execution of a CSN

(Definition 2.14) by a CSW (Definition 3.25). Model-based development (MBD) is considered

the main motivation for the research carried out in this thesis. This section motivates the MBD

(Figure 4.1), in which the phases are XIL simulations and MIL simulation is the first phase.

An X in the loop (XIL) simulation is a co-simulation experiment (Definition 4.18). Such a

development is a cyclical process in which the results of later phases are compared with earlier

phases. If a single SDFA is replaced between two MBD phases, only this change is responsible

for the different results. Example 4.19 and 4.20 are used to demonstrate the MBD of a simple

control loop.

Definition 4.18 (Co-simulation experiment). A co-simulation experiment is a tuple

E = (G, tend) (4.69)

where

• G ∈ G is an SDFG (Definition 3.2),

•and tend ∈Q>0 is the duration of the experiment.

Let

G′ = networkToDataflow(C,h,d0,ω0) (4.70)

be a CSW (Definition 3.25) with the same behavior as G, i.e.

ωtotal(b,θtotal) = ω
′
total(b,θtotal) (4.71)

where

• ωtotal : IB ×N0 → N0 is the sequence of tokens visiting the SDFBs of G,
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•and ω ′
total : IB ×N0 → N0 is the sequence of tokens visiting the SDFBs of G′.

The results of the co-simulation experiment E can be obtained by simulating G′ using Algo-

rithm 3.1 until the simulated time of all slaves does not exceed tend .

In the above definition of the co-simulation experiment, the SDFG (Definition 3.2) does

not need to be a CSW (Definition 3.25). The reason is that a CSW is constructed from a CSN

(Definition 2.14), i.e. all of the simulators are constructed from an FMU (Definition 2.13).

Within the MBD shown in Figure 4.1 SDFAs can be implemented as software or hardware

components. However, a CSW is assumed to describe the SDFG behavior. This makes it

possible to replace a simulator with other hardware or software. These components do not

have to correspond to the FMU interface (Definition 2.13). In this thesis a XIL simulation

is used as an alias for the co-simulation experiment. The hardware or software that replaces

the simulator marks the X in the XIL simulation. When hardware replaces a simulator, a co-

simulation experiment is a hardware in the loop (HIL) simulation. When software replaces a

simulator, a co-simulation experiment is software in the loop (SIL) simulation. A model in the

loop (MIL) is a co-simulation experiment in which the SDFG is a CSW. If the same CSW is

used to describe the two phases of MBD, their results can be compared and the models can be

improved based on the comparison. Example 4.19 introduces the MIL simulation of a simple

control loop. Example 4.20 shows how a mistake in the programming can be detected using the

SIL simulation.

Example 4.19 (Control loop MIL simulation). Assume that the control system that is mod-

eled with the CODESUB presented in Example 2.6. Assume that this CODESUB is wrapped

with the SYSW presented in Example 2.18. Let C denote the CODESUB (2.15) and C the

CSN (2.89). Assume that the control system will run the controller algorithm with the fre-

quency of 1000 Hz. Assume that the controlled process signals are sampled with 500 Hz. This

allows to determine the step-sizes of the simulators

h(i) =

 1
1000 , i = 1

1
500 , i = 2

(4.72)

The number of initial tokens of the CSW is determined by the method presented in Defini-

tion 4.8

d0 (b) =


1, b ∈ {1,2,4}

2, b = 3

0, otherwise

(4.73)
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The values of initial tokens of the CSW are

ω0 (b,θ) =



v01, b = 1, θ = 1

v02, b = 2, θ = 1

0, b = 3, θ ∈ {1,2}

0, b = 4, θ = 1

(4.74)

The duration of the co-simulation experiment is equal to

tend = 20 (4.75)

The MIL simulation of the control loop is the co-simulation experiment

EMIL = (GMIL, tend) (4.76)

where

GMIL = networkToDataflow(C,h,d0,ω0) (4.77)

The construction of this CSW is implemented in Python procedure sdf4sim.example.control.mil_mbd [44].

The result of the MIL simulation is available in Figure 4.4.

The CSW presented in the previous example models a multi-rate execution (Figure 4.2a),

while the one in Example 3.30 models a single-rate execution (Figure 3.3a). The one in (4.77)

presents a multi-rate execution. Example 3.30 and Example 4.19 are very similar. The only

difference is that in Example 4.19 the information about the assumed HIL used to create the

CSW. Such a CSW takes into account the communication frequencies of the hardware compo-

nents. This makes the CSW in Example 4.19 a more accurate model of the developed technical

system. The following example continues the MBD. It shows how a SIL simulation can be used

to develop and debug controller code.

Example 4.20 (Control loop SIL simulation). In this example, a software component is devel-

oped with the help of the process described in Figure 4.3. The SIL simulation of the control

system should match the behavior of the MIL simulation shown in Example 4.19. The devel-

oped component is the controller algorithm and its implementation is repeated until the previous

specification is met. The SIL simulation is obtained by replacing the controller simulator in the

CSW (4.77). Assume that the controller has a single parameter different compared to the one

shown in Example 2.6

TI = 5, KR = 2 (4.78)

and that SDFA A1
SIL1 is a Python implementation of such a controller. Let GMIL be the SDFG

used to execute the MIL simulation (4.76) and AMIL be the function that labels its SDFAs. Then
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(1+T1s)(1+TΣs)
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(a) MIL simulation

r(t)
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KR

(
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TIs

) B5

B3

−
class SoftwarePi [44]

A1

A3 - ZOH

A4 - ZOH

B4

B6

B1

K
(1+T1s)(1+TΣs)

A2

B2

(b) SIL simulation

Figure 4.2: Example 4.20

SIL simulation

ESIL1 = (GSIL1 , tend) (4.79)

where the SDFAs are

ASIL1(i) =

A1
SIL1 , i = 1

AMIL, otherwise
(4.80)

In Figure 4.4 it can be seen that the control system with such an implementation of the controller

does not match the behavior of the MIL simulation (4.76). After the implementation of the

controller is changed to have the correct parameters (2.24) and the following SIL simulation is

executed

ESIL2 = (ESIL2 , tend) (4.81)

This controller ensures that the SIL simulation behavior matches the behavior of the MIL sim-

ulation (Figure 4.4). The code used to execute MIL, SIL1 and SIL2 can be seen in Python

Setup the MIL Implement the software Replace the model

Run the SILSIL = MIL?Deploy the software

No

Yes

Figure 4.3: If the software is being implemented using MBD procedure suggested in Figure 4.1 the
above flow chart can be followed to make sure it is properly implemented and tested.
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Figure 4.4: The MIL simulation presented in Example 4.19 describes the desired behavior of the con-
trolled system. The SIL simulation is executed once with a implementation that does not follow this
behavior. After the correction (Figure 4.3) the behavior of the second SIL implementation matches the
behavior of the MIL simulation.

procedure sdf4sim.example.control.mbd_comparison at [44].

In the previous example, two SIL simulations (4.79) and (4.81) are executed and compared

with the MIL simulation (4.76). These two executions are iterations of the process shown in

Figure 4.3. Such a process can be viewed as a test-driven development process [75]. From

this point of view, the test assertion is that the SIL simulation performed with the correctly

implemented software component delivers the same results as the reference MIL simulation.

In Example 4.19, step sizes of simulators that correspond to the HIL simulation setup (4.72)

are selected. The HIL simulation setup is left for future work. The authors in [28] state that

"SDF is useful as hardware description, but our intent is that SDF be used primarily for func-

tional description". Since SDF is mainly used to verify embedded systems, setting up the HIL

simulation should be a simple and time consuming task.

The examples presented in this section serve to motivate the use of SDFG as the basis for

MBD (Figure 4.1). MBD has many variations and this section covers only a simple variation

using examples. Rigorous analysis of MBD will be a topic of future work.
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Defect calculation

Defect control is a well-researched technique for controlling numerical errors [47, 61]. The

defect control for systems of differential and algebraic equations was investigated in [41]. An

advantage of defect control is that it enables the distribution of responsibility for numerical er-

rors in the co-simulation (Figure 5.1). This is one of the main contributions of this thesis, as

existing co-simulation error analysis does not explicitly consider the distribution of responsibil-

ity for numerical errors [39, 40]. This thesis implies that the responsibility for the integration

defect is assigned to the solvers and the connection defect to the CSM. This is reflected in Fig-

ure 5.1, in which connection equations are colored white because they are known to the CSM.

The internal state equations of the CSLs are colored dark grey because they are not available

to the CSM. The output equations are colored light gray because the output defect is estimated

and controlled by the CSM in this chapter.

Theorem 2.17 and Theorem 5.4 show that connection and output defects can be controlled

by reducing the simulator step sizes. These theorems also suggest what simulator step sizes

can be reduced to ensure small target connection and output defects. Section 5.1 describes the

calculation of the connection defect for the CSW. Section 5.2 shows how the output defect can

Ũ(t) = LỸ(t)+δ Ũ(t)

˙̃x1(t) = f1
(
x̃1(t), ũ1(t)

)
+δ x̃1(t)

ỹ1(t) = g1
(
x̃1(t), ũ1(t)

)
+δ ỹ1(t)

˙̃x2(t) = f2
(
x̃2(t), ũ2(t)

)
+δ x̃2(t)

ỹ2(t) = g2
(
x̃2(t), ũ2(t)

)
+δ ỹ2(t)

ũ1(t)

ỹ1(t)

ỹ2(t)

ũ2(t)

Figure 5.1: CSLs can monitor integration defects (dark grey). The CSM can calculate the connection
defect (white) and estimate the output defect (light grey).
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be estimated with the extension of the CSW. Theorem 2.12 shows that the co-simulation error

is limited when the co-simulation defect is limited.

The topic of Section 5.3 is the comparison of CSWs. The proposed defect calculation can

be used to define a criterion for this purpose (Definition 5.10). Such a criterion can be used to

find a suitable CSW with an optimization approach. Definition 5.11 shows the description of an

optimization problem for finding the initial token values of a CSW. The example in Section 5.3

shows that the proposed criterion can be used to determine which initial token values or step

sizes are better. The optimization approach is the basis for the automatic configuration algorithm

(Algorithm 5.1) presented in Section 5.4.

Algorithm 5.1 is the final goal of this thesis. It is based on repeated co-simulation runs

similar to the algorithm presented in [43]. The advantage of Algorithm 5.1 is that the underlying

model of the system is more general. The co-simulation quality criterion does not have to have

a physical meaning such as energy residual. Algorithm 5.1 tunes the co-simulation at multiple

rates. This makes it possible to reduce the computational load on the platform that is used to

run the co-simulation.

5.1 Connection defect

This section shows how to calculate the connection defect caused by a CSW (Theorem 5.2).

The goal of defect control is to reduce the step size of the simulators so that the defect meets

the tolerance. Theorem 5.4 shows that reducing the step sizes actually reduces the connection

defect. This theorem also specifies which step sizes should be reduced in order to reduce the

connection defect on a particular connection. It allows to take advantage of multi-rate co-

simulation. With single-rate co-simulation, some of the simulators may need to be run with a

larger step-size than required. A multi-rate calculation uses less processor time than a single-

rate co-simulation.

Lemma 5.1 (Input signal). Let S be a CODESYS (Definition 2.2) and

C = systemToNetwork(S,subsystemSolvers)

G = networkToDataflow(C,h,d0,ω0)
(5.1)

The numerical solution for the input signal ũı̆ῐ : R>0 →Z found by the CSW is

ũı̆ῐ(t) =

ω0(b̆,kı̆), kı̆ ⩽ rı̆, kı̆ =
⌈

t
h(ı̆)

⌉
γ“ı(k“ı, “o,1), kı̆ > rı̆, k“ı =

⌈
(kı̆ − rı̆)

h(ı̆)
h(“ı)

⌉
, kı̆ =

⌈
t

h(ı̆)

⌉ (5.2)

where
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• “o ∈ IY“ı is the output port index of the simulator A“ı = A(“ı),

• ῐ ∈ IUı̆ is the input port index of the simulator Aı̆ = A(ı̆),

• and the two ports are connected with buffers b̆,“b ∈ IB and the rate converter Aa = A(a)

as described in (3.141).

Proof. Lemma 3.12 shows how input tokens of an SDFA depend on the output tokens of the

connected actor (3.81). From (3.81), (3.119), (3.132) and (4.23) it follows that input tokens of

the rate converter Aa are

ξa(ka,1, θ̆ a) = γ“ı(k“ı, “o,1), k“ı = (ka −1) ca(1)+ θ̆ a (5.3)

The token index in tokens produced by the simulator A“ı can only be 1 due to (3.4) and (3.119).

Lemma 3.13 enables the calculation to be written as (3.91). From (3.91) and (3.129) it follows

that the output tokens of the rate converter Aa are

γa(ka,1, “θ a) = ξa

(
ka,1,

⌈
“θ a ca(1)
pa(1)

⌉)
(5.4)

where consumption and production rate of the rate converter are determined by (3.132). From (3.81),

(3.118), (3.132) and (4.23) it follows that input tokens of the simulator Aı̆ are

ξı̆(kı̆, ῐ ,1) =



ω0(b̆,kı̆), kı̆ ⩽ rı̆

γa(ka,1, “θ a),
kı̆ > rı̆, kı̆ = rı̆ +(ka −1) pa(1)+ “θ a

ka =
⌈

kı̆−rı̆
pa(1)

⌉
“θ a = kı̆ − rı̆ − (ka −1) pa(1)

(5.5)

The token index in tokens consumed by the simulator Aı̆ can only be 1 due to (3.3) and (3.118).

From (2.59), (3.120) and (3.122) it follows that

ũı̆ῐ(t) = ξı̆(kı̆, ῐ ,1), kı̆ =

⌈
t

h(ı̆)

⌉
(5.6)

For kı̆ ⩽ rı̆, the expression (5.2) follows from (5.5) and (5.6). From (5.3)-(5.6) it follows that

for kı̆ > rı̆

ũı̆ῐ(t) = γ“ı(k“ı, “o,1) (5.7)

where

kı̆ =

⌈
t

h(ı̆)

⌉
, “θ a = kı̆ − rı̆ − (ka −1) pa(1), k“ı = (ka −1) ca(1)+

⌈
“θ a ca(1)
pa(1)

⌉
(5.8)
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From (5.8) it follows that

k“ı =

⌈
(kı̆ − rı̆)

ca(1)
pa(1)

⌉
, kı̆ =

⌈
t

h(ı̆)

⌉
(5.9)

Theorem 5.2 (Connection defect of a CSW). Let S be a CODESYS (Definition 2.2) and

C = systemToNetwork(S,subsystemSolvers)

G = networkToDataflow(C,h,d0,ω0)
(5.10)

Assume that

• the initial tokens d0 for the CSW are obtained using the method described in Definition 4.8

• and the CSW G is executed with a valid execution (Definition 3.7).

The connection defect (2.37d) of a numerical solution found by a CSW (Definition 3.25) is

δ ũı̆ῐ(t) =


ω0(b̆, k̆ı̆)− γ“ı(“k“ı, “o,1), k̆ı̆ ⩽ rı̆, k̆ı̆ =

⌈
t

h(ı̆)

⌉
, “k“ı =

⌈
t

h(“ı)

⌉
γ“ı(k̆“ı, “o,1)− γ“ı(“k“ı, “o,1),

k̆ı̆ > rı̆, k̆ı̆ =
⌈

t
h(ı̆)

⌉
,

k̆“ı =
⌈
(k̆ı̆ − rı̆)

h(ı̆)
h(“ı)

⌉
, “k“ı =

⌈
t

h(“ı)

⌉ (5.11)

Proof. From (2.60) and (3.123) it follows that

ỹ“ı“o(t) = γ“ı(“k“ı, “o,1), “k“ı =

⌈
t

h(“ı)

⌉
(5.12)

The expression (5.11) follows from Lemma 5.1, (2.37d) and (5.12).

Theorem 5.2 shows how the connection defect introduced by a CSW can be calculated. This

method can be used to evaluate the step sizes and initial token values, and enables automatic

configuration, which is presented in the next chapter.

Theorem 5.4 shows how to control the connection defect. It shows that the connection defect

can be reduced by reducing the communication step size of the connected simulators.

Lemma 5.3 (State signal in neighboring steps). Let M be a CODESUB (Definition 2.1) and

F = subsystemToSlave(M,solver)

A = slaveToSimulator(F ,h)
(5.13)

Assume that

• the state transition function f is Lipschitz continuous (Definition 2.3),

• the numerical solution for the input signal is bounded ∥ũ(t)∥⩽ Bũ,
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• the numerical solution for the state signal is bounded ∥x̃(t)∥⩽ Bx̃,

• and the integration defect is δ x̃(t) = O(h).

For k,∆k ∈ N
x̃
(
(k+∆k)h

)
− x̃(kh) = O(h) (5.14)

Proof. Since δ x̃(t) = O(h) there exists C,h0 ∈Q>0 such that for all h ⩽ h0

∥δ x̃(t)∥⩽C h0 (5.15)

By the integration of (2.37a)

x̃
(
(k+1)h

)
= x̃(kh)+

(k+1)h∫
kh

f
(
x̃(τ), ũ(τ)

)
+δ x̃(τ) dτ (5.16)

the following inequality is obtained for h ⩽ h0

∥∥x̃
(
(k+1)h

)∥∥⩽ ∥∥x̃(kh)
∥∥+ (k+1)h∫

kh

Kf
∥∥x̃(τ)

∥∥+Kf Bũ +C h dτ (5.17)

The Gronwall lemma (Theorem 6 in [60]) shows that

∥∥x̃
(
(k+1)h

)∥∥−∥∥x̃(kh)
∥∥ eKf h ⩽

Kf Bũ +C h
Kf

(
eKf h −1

)
(5.18)

From the Taylor expansion of the exponential function, ∥x̃(t)∥⩽ Bx̃ and

∥∥x̃
(
(k+1)h

)∥∥−∥∥x̃(kh)
∥∥⩽ (Bx̃ +

Kf Bũ +C h
Kf

)
∞

∑
n=1

(Kf h)n (5.19)

it follows that ∥∥x̃
(
(k+1)h

)∥∥−∥∥x̃(kh)
∥∥= O(h) (5.20)

The statement of the lemma follows by applying the above statement for ∆k times recursively.

Theorem 5.4 (Connection defect bounds). Let

• S ∈ S be a CODESYS (Definition 2.2),

• C = systemToNetwork(S,subsystemSolvers) be its SYSW (Definition 2.16),

• and G = networkToDataflow(C,h,d0,ω0) be its CSW (Definition 3.25).

Assume that

• the numerical solution for the input signals is bounded ∥ũi(t)∥⩽ Bũ,

• the numerical solution for the state signal is bounded ∥x̃i(t)∥⩽ Bx̃,
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• the integration defects are δ x̃i(t) = O
(
h(i)
)
,

• the state transition function fi of each CODESUB is Lipschitz continuous (Definition 2.3),

the output function gi of each CODESUB is Lipschitz continuous and does not depend of the

CODESUB inputs

gi
(
x̃i(t), ũi(t)

)
= gi

(
x̃i(t)

)
, i ∈ IM (5.21)

and the step sizes of connected simulators “ı, ı̆ ∈ IF are

h(“ı) = q“ı h“ıı̆, h(ı̆) = qı̆ h“ıı̆, q“ı,qı̆,h“ıı̆ ∈Q>0 (5.22)

For t > H, the connection defect (2.37d) of a numerical solution found by a CSW (Defini-

tion 3.25) is

δ ũı̆ῐ(t) = O(h“ıı̆) (5.23)

Proof. From Theorem 5.2, (2.60), (2.73), (3.123), (5.21) and (5.22)

δ ũı̆ῐ(t) = g“ı“o
(
x̃“ı(“t)

)
−g“ı“o

(
x̃“ı(t̆)

)
(5.24)

where
“t = “k“ı h(“ı), t̆ = k̆“ı h(“ı) (5.25)

and

k̆ı̆ =

⌈
t

h(ı̆)

⌉
, k̆“ı =

⌈
(k̆ı̆ − rı̆)

h(ı̆)
h(“ı)

⌉
, “k“ı =

⌈
t

h(“ı)

⌉
(5.26)

(5.26) can be reformulated to the system of inequalities

k̆ı̆ −1 <
t

h(ı̆)
⩽ k̆ı̆, k̆“ı −1 < (k̆ı̆ − rı̆)

h(ı̆)
h(“ı)

⩽ k̆“ı, “k“ı −1 <
t

h(“ı)
⩽ “k“ı (5.27)

From (5.22) and (5.27) it follows that

“k“ı − k̆“ı < rı̆
qı̆

q“ı
+1 (5.28)

Since g“ı is Lipschitz continuous, from (5.24) it follows that∥∥∥g“ı“o
(
x̃“ı(“t)

)
−g“ı“o

(
x̃“ı(t̆)

)∥∥∥⩽ Kg“ı

∥∥x̃“ı(“t)− x̃“ı(t̆)
∥∥ (5.29)

The statement of the theorem follows from Lemma 5.3, (5.24), (5.28) and (5.29).
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5.2 Output defect estimation

Theorem 2.17 shows that the output defect can be controlled by the step size of the simulator.

However, the output defect cannot be obtained directly without knowing the internal equations

and signals from the CODESUB. This section introduces defect estimation wrapper (Defini-

tion 5.6) for the purpose of output defect estimation. Theorem 5.9 shows that such an output

defect estimation is asymptotically correct.

Definition 5.5 (Output defect estimator). An output defect estimator (ODEST) is a tuple

(A′,ζ ) =
(
IU ,U , IY ′ ,Y ′,c,p,calculate′

)
= slaveToEstimator(F ,h) (5.30)

where

• F is a CSL (Definition 2.13) that solves a CODESUBs (Definition 2.1),

• h ∈Q>0 is the step size of the simulator (Definition 3.23),

•slaveToEstimator : F ×Q>0 →A×ZN×IY is the function that constructs the simulator,

• ζ : N× IY →Z is the sequence of intermediate values produced by the ODEST,

A = (IU ,U , IY ,Y ,c,p,calculate) = slaveToSimulator(F ,h) (5.31)

is the simulator (Definition 3.23) used to execute F and

A′ = (IU ,U , IY ,Y ,c,p,calculate′) (5.32)

is an SDFA (Definition 3.1). The function calculate′ (3.2) performs two state updates. First, the

input tokens (2.57) are assigned as input values of the CSL

u′(2k−1, ι) = ξ
′(k, ι), ι ⩽ NU (5.33)

and the state of the CSL

v′(2k−2) = ξ
′(k,NU ) (5.34)

and then the state of the CSL is updated according to (2.74) with the step size halved

v′(2k−1) = doStep
(

v′NU(2k−1),
h
2

)
(5.35)

The sequence of intermediate values is updated

ζ (k,o) = get
(
o,v′(2k−1)

)
, o < NY (5.36)
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Before the state update the input tokens are assigned as input values of the CSL

u′ (2k, ι) = ξ
′ (k, ι) , ι ⩽ NU (5.37)

The state of the CSL is updated according to (2.74) with the step size halved

v′(2k) = doStep
(

v′NU(2k),
h
2

)
(5.38)

The output tokens for the rest of the ports are generated

γ
′(k,o,1) =

get
(
o,v′(2k)

)
, o ∈ IY

v′(2k), o = NY

(5.39)

Definition 5.6 (Defect estimation wrapper). Let C be a CSN (Definition 2.61) and

G =
(
IA,A, IB,src,dst,d0,ω0

)
= networkToDataflow(C,h,d0,ω0) (5.40)

A defect estimation wrapper (DEW) is an SDFG

G′ =
(
IA,A′, IB,src,dst,d0,ω0

)
= networkToEstimation(C,h,d0,ω0) (5.41)

where

A′ (a) =

slaveToEstimator
(
F(i),h(i)

)
, a = i, i ∈ IF

A(a), a > NF

(5.42)

Definition 5.7 (Output signal interpolation). Let

• M ∈M be a CODESUB (Definition 2.1),

• F = subsystemToSlave(M,solver) be its SUBW (Definition 2.15),

•and A = slaveToEstimator(F ,h) be its ODEST (Definition 5.5).

The numerical solution for the output signal of the CODESUB found by an ODEST (Defini-

tion 5.5) is equal to

ỹ′o(t) = γ
′(k,o,1), (k−1)h < t ⩽ kh, o ⩽ NY (5.43)

The output signal generated at all output ports of the CODESUB is equal to

ỹ′(t) =
[

ỹ′1(t) ỹ′2(t) . . . ỹNA′ (t)

]T

(5.44)

For the purpose of estimating the output defect between the communication points, a Her-

mite interpolation polynomial [76] is introduced next.
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Definition 5.8 (Hermite interpolation polynomial). Let

• M ∈M be a CODESUB (Definition 2.1),

• F = subsystemToSlave(M,solver) be its SUBW (Definition 2.15),

•and A = slaveToEstimator(F ,h) be its ODEST (Definition 5.5).

The Hermite interpolation polynomial of an output signal generated by an ODEST (Defini-

tion 5.5) is equal to

ŷo(t) = ỹ′o(t)+
kh− t
0.5h

[
ζ (k,o)− ỹ′o(t)

]
, (k−1)h < t ⩽ kh (5.45)

The Hermite interpolation interpolation polynomial of a signal generated at all output ports of

the CODESUB is equal to

ŷ(t) =
[

ŷ1(t) ŷ2(t) . . . ŷNA′ (t)

]T

(5.46)

A Hermite interpolation polynomial is consistent with multiple samples of the signals and

their derivatives. The polynomial used in this thesis is consistent with signal values at two

communication points and signal derivatives at the later point

ŷ(t (k)− h (k)
2

) = gi

(
x̃i(t (k)−

h (k)
2

), ũi(t (k)−
h (k)

2
)

)
ŷ(t (k)) = gi (x̃i(t (k)), ũi(t (k)))

(5.47)

The Hermite interpolation polynomial is used to obtain an asymptotically correct estimate of

the output defect.

Theorem 5.9 (Estimate of the output defect). The estimation of the output defect is defined as

the difference between interpolation polynomials (5.45) and (5.43)

δ̂ ỹ′(t) = ỹ′(t)− ŷ(t) (5.48)

Suppose the function g is continuously differentiable and

x̃′(t) = x̃′ (kh)+
dx̃′

dt
(kh)(t − kh)+O

(
h2) (5.49)

Then the estimate of the output defect (5.48) is asymptotically correct, i.e. for each α ∈ (0,1]

lim
h→0

δ̂ ỹ′(t)
δ ỹ′(t)

= 1, t = (k−1)h+αh (5.50)

Proof. Since g is continuously differentiable, it is also Lipschitz continuous. Lipschitz conti-
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nuity (Definition 2.3) and (5.49) imply

g
(
x̃′(t), ũ′(t)

)
= g

(
x̃′(t), ũ′(t)

)
(kh)+

dg(x̃′(τ), ũ′(τ))

dτ

∣∣∣∣
τ=kh

(t − kh)+O
(
h2) (5.51)

The output defect (2.4b) on the interval ((k−1)h,kh] is equal to

δ ỹ′(t) = ỹ′(t)−g
(
x̃′(t), ũ′(t)

)
=

dg(x̃′(t), ũ′(t))
dt

∣∣∣∣
t=kh

(t − kh)+O
(
h2) (5.52)

The estimate of the output defect on the interval (k−1)h < t ⩽ kh is equal to

δ̂ ỹ′(t) =
kh− t
0.5h

[
g
(

x̃′(kh− h
2
), ũ′(kh− h

2
)

)
− ỹ′(kh− h

2
)

]
=

kh− t
0.5h

[
dg(x̃′(t), ũ′(t))

dt

∣∣∣∣
t=kh

−h
2

+O
(
h2)]

=
dg(x̃′(t), ũ′(t))

dt

∣∣∣∣
t=kh

(t − kh)+O
(
h2)

(5.53)

The equation (5.50) follows directly from (5.52) and (5.53).

5.3 Comparison of co-simulation wrappers

Model-based development examples in Section 4.3 use CSWs to facilitate testing of a control

algorithm. In such a case, it is sufficient to use the same SDFG in the respective MIL and HIL

simulations for testing and identification purposes. This enables the analysis of the differences

between the modified simulators. However, if the coupling between the simulators is mechani-

cal, the co-simulation can have large errors in predicting actual system behavior. This is one of

the main reasons to choose such a system as the test system for co-simulation in many research

papers [15, 31, 39, 53, 54, 55]. This section shows how to use the quality criterion presented in

Definition 5.10 to compare DEWs

The proposed criterion enables an optimization approach to find initial token values of a

DEW (Definition 5.11). This procedure provides a default option for determining the initial

token values and is part of the automatic configuration algorithm presented in the next sec-

tion. To check the validity of the proposed approach, three different CSWs are compared in

Example 5.12. The values of the criterion are compared with the numerical error of individual

signals.

Definition 5.10 (Quality criterion). The criterion for the quality evaluation of DEW parameters
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(Definition 5.6) is

J
(
C,h,d0,ω0, tend

)
= max

0<t⩽tend

(
∥δ Ũ′(t)∥∞,∥δ̂ Ỹ′(t)∥∞

)
(5.54)

where

• C is a CSN (Definition 2.61),

•h : IF →Q>0 is the function assigning step-sizes of the simulators,

•d 0 : IB → N0 are numbers of initial tokens (Definition 3.2)

• ω0 : IB → RN are values of initial tokens (Definition 3.2),

• tend ∈Q>0 is the duration of the co-simulation experiment,

• δ Ũ′ is the connection defect obtained by aggregation (2.7) of the connection defect (The-

orem 5.2) between ODESTs (Definition 5.5)

• δ̂ Ỹ′ is the estimate of the output error obtained by aggregation (2.7) of the output defect

estimates (Theorem 5.9) using ODESTs.

The method described in Definition 4.8 can be used by default to determine the number of

initial tokens in a CSW. The optimization approach described below can be used as a default

approach to determine the initial token values.

Definition 5.11 (Values of initial tokens). Assume that the CSN C (Definition 2.14) should be

executed in a co-simulation experiment. Assume that simulator step sizes h : IF →Q>0 and the

number of initial tokens d0 : IB → N0 are given. The values of initial tokens can be determined

by the minimization of the quality criterion (Definition 5.10)

ω
H
0opt = findTokenValues(C,h,d0)

= arg min
ω ′

0:IB→RN
J
(
C,h,d0,ω

′
0,H

) (5.55)

in the experiment lasting a single iteration (Theorem 3.29).

The above definition implies that the problem of finding initial tokens can be solved through

optimization. The concrete implementation used in examples can be found in the Python proce-

dure sdf4sim.autoconfig.find_initial_tokens in the repository [44]. An implementa-

tion of the Nelder-Mead algorithm [77, 78] was used to solve the optimization problem. This is

an iterative algorithm which starts the optimization at the provided guess. The tokens provided

to the algorithm were obtained by running a single iteration of the SDFG with null tokens. The

resulting output tokens were suggested as the initial guess for the algorithm.

The next example shows the co-simulation of a two-mass oscillator in which two oscillators

are coupled with a mechanical damper. Three DEWs are compared based on the proposed

criterion. This comparison shows the applicability of the criterion for an optimization-based

approach to the configuration of DEWs.
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Figure 5.2: The CSWs presented in Example 5.12 have the same number of initial tokens. The differ-
ences between them are in initial token values and simulator step sizes.

Example 5.12 (Comparison of three CSWs). Example 2.7 shows the CODESYS modeling

a two-mass oscillator using three subsystems. This CODESYS is wrapped with the SYSW C

shown in Example 2.19. This example introduces three CSWs for the given SYSW. The number

of initial tokens for the three CSWs is selected using the method introduced in Definition 4.8. In

each CSW all simulator step sizes are equal which results in the same number of initial tokens

(Figure 5.2). The first CSW

G1 = networkToDataflow(C,h1,d01,ω01) (5.56)

has the simulator step sizes set to

h1(i) =
1
4
, i ∈ IF (5.57)

uses the method presented in Definition 4.8 to find the number of initial tokens d01 : IB → N0

and the method presented in Definition 5.11 to find the values of initial tokens ω01 : IB →ZN

d0,ω0 (5.58)

The second CSW

G2 = networkToDataflow(C,h2,d02,ω02) (5.59)

has the simulator step sizes set to

h2(i) =
1
2
, i ∈ IF (5.60)

uses the method presented in Definition 4.8 to find the number of initial tokens d02 : IB → N0

and the method presented in Definition 5.11 to find the values of initial tokens

ω02 = findTokenValues
(
C,{h2}×{d02}× (IB →ZN), tol,H

)
(5.61)

The third CSW

G3 = networkToDataflow(C,h3,d03,ω03) (5.62)
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CSW Quality criterion (5.54) Force error (5.65) Speed error (5.66)

(5.57) 0.073 0.041 0.006

(5.59) 0.123 0.088 0.013

(5.62) 1.000 0.476 0.014

Table 5.1: Comparison of analogous terms

has the simulator step sizes set to

h3(i) =
1
4
, i ∈ IF (5.63)

uses the method presented in Definition 4.8 to find the number of initial tokens d02 : IB → N0

and values of initial tokens set to

ω03(b,1) = 0, dst(b) = (a, ι), a = i, i ∈ IF, ι ∈ IUi (5.64)

Their responses are compared with a monolithic solution of the CODESYS obtained using

the Python solver scipy.integrate.solve_ivp. The Python code to execute the example is

available [44] in the procedure sdf4sim.example.twomass.three_cosimulations_comparison.

The criterion introduced in Definition 5.10 is evaluated for each CSW. Table 5.1 shows the val-
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Figure 5.3: Signal responses obtained from CSWs shown in Example 5.12.
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ues of this quality criterion, the force error

max
0<k h(2)⩽tend

|∆ỹ21| ≈ max
0<k h(2)⩽tend

∣∣γ2(k,1,1)− y21
(
k h(2)

)∣∣ (5.65)

and the speed error

max
0<k h(3)⩽tend

|∆ỹ31| ≈ max
0<k h(3)⩽tend

∣∣γ3(k,1,1)− y21
(
k h(3)

)∣∣ (5.66)

5.4 Automatic configuration

In this section Algorithm 5.1 for the automatic configuration of the co-simulation is presented.

The presented algorithm brings together the information from the entire thesis (Figure 1.3).

The algorithm finds the step sizes and initial tokens for the DEW (Definition 5.6) in such a way

that the defect tolerance is met during the co-simulation experiment. Theorem 5.2 shows how

initial tokens affect the connection defect. Theorem 5.4 shows that the connection defect can be

reduced by reducing the communication step size of connected simulators. Theorem 2.17 shows

that the output defect can be reduced by reducing the communication step size of the simulator.

The method for determining the number of initial tokens is described in Definition 4.8. The

previous section showed how an optimization approach can be used to find initial token values

(Definition 5.11). After searching for initial tokens, the step sizes are adjusted (Algorithm 5.14).

Algorithm 5.1 iteratively repeats the search for initial tokens and the adjustment of step sizes

until the tolerance is reached.

Definition 5.13 (ODEST defect). Let

• S ∈ S be a CODESUB (Definition 2.2),

• C = systemToNetwork(S,subsystemSolvers) be its SYSW (Definition 2.16),

• G = networkToEstimation(C,h,d0,ω0) be its DEW (Definition 5.6),

•and tend ∈Q>0 be the duration of the co-simulation experiment.

Assume that the co-simulation experiment with the DEW G and the duration tend ∈ Q>0 is

performed. The ODEST defect is equal to

δA(i, tend) = max
0<t⩽tend

max



max
ι⩽Nui

∥δ ũiι(t)∥,

max
o⩽Nyi ,

(ı̆,ῐ)=L(i,o)

∥δ ũı̆ῐ(t)∥,

max
o⩽Nyi

∥δ ỹio(t)∥,


(5.67)

The previous definition introduces the ODEST defect to reformulate the connection (2.37d)
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and the output defect (2.37b). The quality criterion (Definition 5.10) can be reformulated to

J
(
C,h,d0,ω0, tend

)
= max

0<t⩽tend
max
i∈IF

δA(i, tend) (5.68)

Such a reformulation makes it possible to individually adapt the step sizes of the simulator. The-

orem 2.17 and Theorem 5.4 show that the simulator step size influences the respective ODEST

defect. This justifies using the following method to adjust simulator step sizes.

Definition 5.14 (Step size adjustment). The function that adjusts the step sizes of a DEW to

meet the defect tolerance is

adaptStepSizes : G×Q>0
IF ×N0

IF ×
(
IB →ZN)×Q>0 ×Q>0 →Q>0

IF (5.69)

The adjusted step sizes are obtained by

h′ = adaptStepSizes(G, tend, tol) (5.70)

where

• G is the DEW (Definition 5.6,)

•h ′ : IF →Q>0 are the step sizes after the adjustment,

•h : IF →Q>0 are the step sizes before the adjustment,

• tend ∈Q>0 is the duration of the co-simulation experiment,

•and tol ∈Q>0 is the defect tolerance.

The adjusted step sizes are

h′(i) =


h(i)
2n , δA(i, tend)> tol, n =

⌈
log2

(
δA(i,tend)

tol

)⌉
h(i), δA(i, tend)⩽ tol

(5.71)

with the ODEST defect (Definition 5.13) which estimated using the DEW (Definition 5.6)

G = networkToEstimation(C,h,d0,ω0) (5.72)

An implementation of the method defined above is implemented using the Python procedure

sdf4sim.autoconfig._step_reduction_factor [44]. The methods introduced in Defini-

tion 4.8, Definition 5.11 and Definition 5.14 form the building blocks of Algorithm 5.1. The

method for finding initial tokens (Definition 4.8) enables a check to be made as to whether the

resulting CSW can be executed in real time (Theorem 4.17). The method for calculating initial

values (Definition 5.11) should ensure the optimal initial token values for the first SDFI. The

step size adjustment (Definition 5.14) should ensure that the algorithm finds the parameters in
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Algorithm 5.1 The search for suitable DEW parameters
Require: C ∈ C, tend ∈Q>0, tol ∈ R>0, hinit ∈Q>0

for i ∈ IF do
h(i) := hinit

do
d0 := findTokenNumbers(C,h)
ω0 := findTokenValues(C,h,d0)

G := networkToEstimation(C,h,d0,ω0)

h := adaptStepSizes(G, tend, tol)
while J

(
C,h,d0,ω0, tend

)
> tol

a small number of repeated executions. Algorithm 5.1 is the end result of this thesis. It gives a

user a procedure to get CSW parameters to run a CSN with the specified quality.

Example 5.15 (Two-mass oscillator). Example 2.7 shows the CODESYS modeling a two-mass

oscillator using three subsystems. This CODESYS is wrapped with the SYSW C shown in

Example 2.19. This example uses Algorithm 5.1 find three DEWs given different tolerances.

The tolerances are listed in Table 5.2. The same table shows the actual values of the qual-

ity criterion (5.54) and the numerical error in individual signals. The comparison made is

similar to the one shown in Example 5.12. The signal responses of the analyzed signals are

shown in Figure 5.4. The implementation of this example can be found in the Python procedure

sdf4sim.twomass.example.three_tolerances_auto, which is available at [44].

CSW tol Quality criterion (5.54) Force error (5.65) Speed error (5.66)

(5.57) 0.9 0.199 0.150 0.008

(5.59) 0.3 0.058 0.102 0.002

(5.62) 0.1 0.015 0.083 0.003

Table 5.2: Comparison of DEWs obtained with Algorithm 5.1

The previous example automates the trial and error procedure introduced in Example 5.12.

A DEW is found for three different values of the requested tolerance. The three DEWs are

compared in Table 5.2 and Figure 5.4. The example is important because coupling between

the systems is mechanical. In such a case, a discrete model can only approximate the behavior.

The quality of the approximation is influenced by the requested tolerance. Theorems 2.12, 2.17

and 5.4 guarantee that the co-simulation error is small when the CSLs are adequately solved and

the tolerance is low. Since the solver in the example is analytical (2.90), only the output and

connection defects introduced contribute to the co-simulation error. The ability of Algorithm 5.1

to reduce the co-simulation error in such a case is confirmed by the results observed in Table5.2
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Figure 5.4: Responses from SYSWs obtained through the automatic configuration, taking into account
the requested tolerances in Example 5.15.
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and Figure 5.4. A bad solver can always lead to an increase in the co-simulation error. However,

one of the main advantages of using co-simulations in practice is that a solver can be carefully

tailored to the CSL. With suitable slaves, Algorithm 5.1 can configure the non-iterative co-

simulation in order to achieve the desired quality.
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Chapter 6

Conclusion

6.1 Contributions of the thesis

Contribution 1. A synchronous data flow model for execution of a non-iterative co-simulation.

CSW is introduced in Definition 3.25 as the model of computation for non-iterative co-

simulation. Each CSWs is an SDFGs (Definition 3.2) with consistent consumption and produc-

tion rates (Theorem 3.28). Theorem 3.29 shows that the proposed formalism correctly updates

the simulated time in each CSL (Definition 2.13) of the simulated CSN (Definition 2.14). Ex-

amples 3.30 and 5.12 show CSWs that model the execution of a simple control loop and a

two-mass oscillator.

An SDFG is a deterministic model of computation [34]. Section 3.2 is introduced to revisit

the proof of determinacy due to its importance. Determinacy has the practical advantage that

co-simulation results can be reproduced on different platforms and with different algorithms

(Algorithms 3.1 and 4.2). Further practical benefit can be observed in Example 4.20. This

example shows how such an algorithm can be used for test-driven development.

An additional advantage of modeling a non-iterative co-simulation with an SDFG is the

available scheduling research [35, 36, 65]. Existing research results enable platform developers

to optimize their implementation for the platform under their responsibility. The results should

be the same for any valid implementation, although the execution time or memory consumption

does not have to be.

To the best of the author’s knowledge, Contribution 1 is an original contribution of this

thesis. In [37] there is an example of wrapping an SDFG with an FMU. That work inspired

this thesis to wrap a network of FMUs with an SDFG. CSW (Definition 3.25) is a generalized

version of existing non-iterative Gauss-Seidel, Jacobi and multi-rate masters [2, 31, 33].

Contribution 2. A method for practical evaluation of co-simulation quality using connection

and output defect.
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The connection defect of two connected simulators in a CSW can be directly calculated

(Theorem 5.2). ODEST is introduced in Definition 5.5 as a modified simulator for a CSL (Def-

inition 2.13). An ODEST provides the ability to estimate the output defect. The method for

estimating the output defect is asymptotically correct (Theorem 5.9). The connection defect

and the output defect are aggregated into co-simulation quality criterion introduced in Defini-

tion 5.10. Examples 5.12 and 5.15 show the comparison between the values of the criterion and

the error of individual signals in the co-simulation.

The co-simulation quality criterion is used to define an optimization approach for finding

initial token values of a CSW (Definition 5.11). Such a method relieves a co-simulation user

from having to set the initial tokens. In Algorithm 5.1 this criterion is also used to determine the

stopping criterion. This approach is justified by Theorem 2.12 which shows that co-simulation

error is bounded by connection, output and integration defects. The integration defect is left

in the responsibility of the internal CSL solvers due to black box nature of co-simulation (Fig-

ure 5.1).

To the best of the author’s knowledge, Contribution 2 is an original contribution of this

thesis. The existing co-simulation error analysis is based on the local error analysis [39, 40].

The work presented in this thesis is based on numerical defect analysis [47, 61]. This thesis is

influenced by the work on differential-algebraic equations [41]. The differences are the result

of the black box nature of the co-simulation. For this reason, the algebraic equations of the

underlying CODESYS (Definition 2.2) are divided into connection and output equations. It

is shown that the connection defect can be calculated (Theorem 5.2) and the output defect

estimated (Theorem 5.9).

Contribution 3. An automated configuration method for all stages of model-based develop-

ment by evaluating co-simulation quality.

The method for the automated configuration of a DEW (Definition 5.6) is presented in Al-

gorithm 5.1. This method finds the number of initial tokens, the initial token values and the

simulator step sizes. The same parameters can be used later to configure the CSW (Defini-

tion 3.25). Example 5.15 shows the application of the introduced algorithm for configuring the

model of computation.

The simulator step sizes are adjusted according to the method shown in Definition 5.14.

Theorem 2.17 and Theorem 5.4 show that both connection and output errors can be controlled

by reducing the simulator step sizes. The integration defect is controlled by internal solvers

contained in the CSLs (Figure 1.1). Such a distribution of responsibility is consistent with the

black box nature of CSLs (Figure 5.1). For CSLs with low integration defects and low requested

tolerance, Theorem 2.12 guarantees that the co-simulation error should be low. Algorithm 5.1

iteratively adjusts the simulator step sizes until the requirement tolerance is met.
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In each iteration of the algorithm, the number of initial tokens and initial token values are

calculated. The method introduced in Definition 4.8 is used to determine the number of tokens

given the simulator step sizes. This method ensures that the resulting DEW does not dead-

lock (Corollary 4.13). In addition, it can be estimated whether the DEW can be executed in

real time (Theorem 4.17). An optimization approach is used to determine initial token values

(Definition 5.11).

To the best of the author’s knowledge, Contribution 3 is an original contribution of this

thesis. Algorithm 5.1 is similar to the algorithm presented in [43] and was developed inde-

pendently. The advantage of Algorithm 5.1 is that theoretical analysis is based on CODESYS

(Definition 2.2). The co-simulation quality criterion does not have to have a physical meaning

such as energy residual. In addition, Algorithm 5.1 tunes the co-simulation with multiple rates

and results in a determinate MOC.

6.2 Future research

A CODESYS (Definition 2.2) is the basis for the numerical error analysis in this work. Part of

future research is to examine how well hybrid behavior [62] can be approximated with a CSW.

Existing reports on the use of co-simulation in hybrid electrical vehicle design [79, 80, 81, 82,

83, 84] suggest that such an analysis can be of practical benefit.

Rate converters are defined in this thesis as zero order holding elements (Definition 3.24).

There are coupling elements like those introduced in [53, 68, 69]. The CSW can be generalized

to rate converters with several inputs and outputs. The notation used to describe such rate

converters is more complex. This can lead to a more complex formulation of the results in this

thesis such as Theorem 3.29. The work in this thesis already enables an objective comparison

between different coupling elements for particular (Definition 5.10). It is interesting to examine

whether a guideline can be developed on the basis of this criterion.

Theorem 4.17 assumes a parallel execution on an IPEP (Definition 4.1). It shows that

whether given enough processors and simulators capable of running in real-time the CSW can

be executed in real-time. There is an implicit trade-off between the quality of the simulation and

the real-time capabilities, as the parallel simulation tends to be less stable than the sequential

one [31]. In future work it is planned to enable a more complex description of the platform,

e.g. finite processors or different processor speeds [70]. The goal is to analyze if the heuristics

proposed for the number of initial tokens (Definition 4.8) can be improved. Existing research

results for scheduling SDFGs [36] can be used to improve the method.

The numerical stability is not analyzed in this thesis. The zero stability is analyzed in [7].

The stability analysis is difficult for the co-simulation, since even the zero stability depends

on the existence of algebraic loops. Relative stability is only analyzed on test models such as
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two-mass oscillators [15, 31, 54]. It remains to be investigated how a relative stability measure

can be formulated for a co-simulation with a larger number of slaves and ports. This should be

the most interesting topic in future work. If such a measure exists, there may be an opportunity

to develop an automated configuration algorithm that does not require co-simulation runs.
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∆ỹ21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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ẋi . . . of the ith CODESUB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 11
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formacijske tehnologije s temom “Inteligentno upravljanje dvoručnim polusurlastim robotom”,
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