
Efficient semantic image segmentation using
pyramidal fusion

Oršić, Marin

Doctoral thesis / Disertacija

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:672658

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-27

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:672658
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:7531
https://dabar.srce.hr/islandora/object/fer:7531

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Marin Oršić

EFFICIENT SEMANTIC IMAGE SEGMENTATION
USING PYRAMIDAL FUSION

DOCTORAL THESIS

Zagreb, 2021.

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Marin Oršić

EFFICIENT SEMANTIC IMAGE SEGMENTATION
USING PYRAMIDAL FUSION

DOCTORAL THESIS

Supervisor: Professor Siniša Šegvić, PhD

Zagreb, 2021.

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Marin Oršić

UČINKOVITA SEMANTIČKA SEGMENTACIJA
SLIKE PIRAMIDNOM FUZIJOM

DOKTORSKI RAD

Mentor: Prof. dr. sc. Siniša Šegvić

Zagreb, 2021.

The doctoral thesis was written at the University of Zagreb, Faculty of Electrical En-

gineering and Computing, Department of Electronics, Microelectronics, Computer and

Intelligent Systems.

Supervisor: Professor Siniša Šegvić, PhD

Doctoral thesis contains: 84 pages

Doctoral thesis number.:

About the Supervisor

Siniša Šegvic was born in 1971 in Split, Croatia. He completed elementary school and high

school in Zadar, Croatia, with one year abroad in Milano, Italy (1985-86). He received the

BS degree in electrical engineering (9 semesters) in 1996, from the Faculty of Electrical En-

gineering at the University of Zagreb, Croatia. From 1996 to 2005, he was employed at the

Department of Electronics, Microelectronics, Computer and Intelligent Systems of the same

Faculty, as a teaching assistant. He is currently employed at the same faculty as a full professor.

Siniša Šegvic participated in several national research projects (2 Croatian and 1 French),

one Croatian national technology project and was a leader of another technology project. He

was in charge of the research project MULTICLOD: Multiclass object detection (HrZZ, 2014-

2017).

He received MS (2000) and PhD (2004) degrees in computer science from the University

of Zagreb, Croatia. In 2005, he started a one-year postdoc position at IRISA, Rennes, France,

in the field of appearance-based navigation by monocular computer vision. In 2006, he started

a one-year postdoc position at TU Graz, Austria, in the field of monocular simultaneous local-

ization and mapping, funded by a Marie Curie international incoming fellowship. His research

and professional interests include 3D, active and distributed computer vision, especially in the

context of localization and mapping for navigation purposes. He is also interested in image pro-

cessing, software engineering, and generic and object oriented programming. He is the author

or co-author of several papers published in international conference proceedings and reviewed

scientific journals.

Siniša Šegvic speaks English and Italian very well, and has basic communication skills in

French. He is married and has three children. He is a member of IEEE.

O mentoru

Siniša Šegvić rod̄en je 1971. godine u Splitu. Osnovnu školu i matematičku gimnaziju završio

je u Zadru, osim osmog razreda osnovne škole kojeg je pohadao u Milanu, Italija. Od lipnja

1996. godine do danas, zaposlen je na Zavodu za elektroniku, mikroelektroniku, računalne i

inteligentne sustave Fakulteta elektrotehnike i računarstva u Zagrebu. U svibnju 2000. godine

obranio je magistarski rad pod naslovom "Uporaba projekcijske geometrije i aktivnog vida u

tumačenju scena”. Doktorsku disertaciju pod naslovom "Višeagentsko praćenje objekata ak-

tivnim računalnim vidom" obranio je u lipnju 2004. U srpnju 2006. okončao je jednogodišnje

postdoktorsko usavršavanje na institutu IRISA u Rennesu, Francuska, na području primjene

račnalnog vida u samostalnoj navigaciji vozila u urbanom okruženju. U rujnu 2007. okončao

je jednogodišnje postdoktorsko usavršavanje na tehnickom sveučilištu u Grazu, Austrija, na

području analize nesigurnosti procjene geometrije dvaju pogleda.

Siniša Šegvić je sudjelovao u radu više domaćih i inozemnih znanstvenih projekata. Vo-

dio je jedan istraživački projekt u suradnji s gospodarstvom (HrZZ, 2008-2011), jedan projekt

primjene informacijske tehnologije (MZT, 2003-2004), te jedan razvojni projekt Sveučilišta u

Zagrebu (2012). Bio je suvoditelj jednog bilateralnog austrijsko-hrvatskog projekta (MZOŠ,

2010-2012). Bio je voditelj istraživackog projekta MULTICLOD (HrZZ, 2014-2017). Nje-

govi znanstveni, istraživacki i profesionalni interesi uključuju računalni vid, obradu slike, pro-

gramsko inženjerstvo te objektno i generičko programiranje. Samostalno odnosno kao koau-

tor objavio je više članaka u časopisima s med̄unarodnom recenzijom te na med̄unarodnim

znanstvenim skupovima. Kao recenzent, sudjelovao je u prosudbi članaka podnesenih za ob-

javljivanje na znanstvenim skupovima i u časopisima.

Tijekom rada na Fakultetu elektrotehnike i računarstva, Siniša Šegvić je održavao preda-

vanja na kolegijima Dinamička analiza scena, Oblikovni obrasci u programiranju, Arhitektura

računala 2, Skriptni jezici, Inteligentni sustavi, Duboko učenje i Modeli za predstavljanje slike

i videa. Za potrebe nastave, priredio je veći broj didaktičkih tekstova, koji su dostupni na

mrežnim stranicama fakulteta. Suautor je knjige Python za znatiželjne. Konačno, sudjelovao je

i u radu fakultetskog Odbora za istraživanje i medunarod̄nu suradnju.

Siniša Šegvić vrlo dobro poznaje engleski i talijanski, a služi se i francuskim jezikom. Član

je strukovne udruge IEEE. Oženjen je i ima troje djece.

ii

Abstract

Emergence of large datasets and resilience of convolutional models have enabled successful

training of very large semantic segmentation models. However, high capacity implies high

computational complexity and therefore hinders real-time operation. We therefore study com-

pact architectures which aim at high accuracy in spite of modest capacity. We propose a novel

semantic segmentation approach based on shared pyramidal representation and fusion of het-

erogeneous features along the upsampling path. The proposed pyramidal fusion approach is

especially effective for dense inference in images with large scale variance due to strong regu-

larization effects induced by feature sharing across the resolution pyramid. Interpretation of the

decision process suggests that our approach succeeds by acting as a large ensemble of relatively

simple models, as well as due to large receptive range and strong gradient flow towards early

layers. Validation and ablation experiments support our design choices and suggest that the

proposed approach succeeds by acting as an ensemble of relatively simpler models. Our best

model achieves 76.4% mIoU on Cityscapes test and runs in real time on low-power embedded

devices. In this thesis, we describe the main components of a real-time semantic segmentation

system based on deep convolutional models. We are considered with convolutional encoders

used for recognition, as well as decoders which are crucial for obtaining accurate results. We

do extensive evaluation of the developed method over a range of public and domestic datasets.

Finally, we present results in the 2020 instance of Robust Vision Challenge.

Keywords: semantic segmentation, real-time inference, shared resolution pyramid, com-

puter vision, deep learning

Prošireni sažetak (Učinkovita semantička segmentacija slike

piramidnom fuzijom)

Ova disertacija bavi se semantičkom segmentacijom slike. Radi se o zadatku u računalnom

vidu čiji je cilj razumijevanje slike na razini piksela. Ovaj zadatak pripada grupi problema guste

predikcije: sustav mora svakom pikselu slike na ulazu pridružiti semantički razred. Trenutno

se najbolji modeli za semantičku segmentaciju oslanjaju na arhitekture s golemim računskim

budžetima. Takve arhitekture nisu prikladne za primjene koje zahtijevaju izvedbu u stvarnom

vremenu na ugradbenim računalima niske potrošnje odnosno u okruženju skromnih računskih

resursa. Posljedično se u istraživačkoj zajednici javio velik interes za ostvarivanjem visoke

prediktivne točnosti pod skromnim računskim budžetom. Dvije su grane istraživanja u ovom

području. Prva grana razmatra metode koje smanjuju složenost postojećih modela. Takve

metode se uglavnom oslanjaju na podrezivanju parametara odnosno računanju u niskoj pre-

ciznosti brojeva s pomičnim zarezom. Druga istraživačka grana bavi se otkrivanjem račun-

skih jedinica dubokih modela koje postižu visoku prediktivnu točnost u unaprijed odred̄enom

budžetu. Doprinosi ove disertacije pripadaju drugoj navedenoj skupini. Mnogi dosadašnji

radovi koji ostvaruju efikasnu izvedbu koriste prilagod̄ene arhitekture koje nisu prikladne za

raspoznavanje u velikim skupovima podataka. Često ovakvi pristupi pokazuju sklonost prema

prenaučenosti. Ovo istraživanje je pokazalo kako su pozitivni efekti predtreniranja manji kod

prilagod̄enih arhitektura.

Pojava velikih podatkovnih skupova i otpornost konvolucijskih modela omogućili su usp-

ješno treniranje velikih modela za semantičku segmentaciju. Med̄utim, velik kapacitet modela

zahtjeva visoku računsku složenost što onemogućuje primjene u stvarnom vremenu. Ova dis-

ertacija razmatra kompaktne arhitekture koje ganjaju visoku prediktivnu moć usprkos skrom-

nom kapacitetu. Istraživanje je usmjereno prema konvolucijskim arhitekturama s optimiziranim

konvolucijskim izvedbama sposobnim za klasifikaciju u velikim skupovima podataka. S ciljem

ostvarivanja predikcija visoke razlučivosti razmatraju se efikasni blokovi za naduzorkovanje.

Istraženi su pristupi za izlučivanje značajki iz piramide ulaznih slika s ciljem ostvarivanja in-

varijantnosti na skalu te uvećavanja receptivnog polja modela.

Glavni doprinos ove disertacije je arhitektura dubokog modela za semantičku segmentaciju

slike temeljena na obradi rezolucijske piramide. Metode računalnog vida za obradu rezolu-

cijskih piramida obrad̄uju ulaznu sliku različitih rezolucija. Obrada rezolucijske piramide re-

dovito je korištena u klasičnom računalnom vidu. Doduše, med̄u uspješnim primjenama metoda

dubokog učenja rijetko pronalazimo takve pristupe. Suvremeni pristupi temeljeni na dubokim

konvolucijskim arhitekturama najčešće obrad̄uju jednu rezolucije fotografije nad kojom se vrši

raspoznavanje. Operacija konvolucije nije ekvivarijantna na promjenu skale, što znači da modeli

temeljeni na konvolucijskim slojevima moraju trošiti kapacitet kako bi omogućili točno raspoz-

navanje preko različitih skala. Dvije ključne osobine obrade piramida slika su računska efikas-

nost na malim rezolucijama te ušteda kapaciteta. Ušteda kapaciteta ostvarena je dijeljenjem

parametara preko svih elemenata piramide. Ova disertacija predlaže piramidnu fuziju: arhitek-

turu dubokog modela za obradu rezolucijske piramide dijeljenim parametrima. Eksperimen-

talno vrednovanje je pokazalo kako predloženi pristup ostvaruje najveću točnost med̄u svim

metodama čija primjena zahtjeva izvedbu u stvarnom vremenu. Nadalje, pokazuje se kako

je premoć ovog pristupa veća u zahtjevnijim podatkovnim skupovima koji pobliže oslikavaju

stvarne primjene algoritama za vizualno raspoznavanje.

Ranija evaluacija modela piramidne fuzije pokazala je pretreniranje na najgrublju rezolu-

ciju. Takod̄er, učenje modela s povećanim brojem elemenata slikovne piramide vodilo je prema

lošijim rezultatima. Uvod̄enjem prilagod̄ene funkcije gubitka uspješno su riješena oba nave-

dena problema. Ova funkcija gubitka modulira iznos gubitka negativne log izglednosti na način

da povećava gubitak u pikselima koji se nalaze blizu ruba dva semantička razreda. Dodatno,

funkcija naglašava gubitak u pikselima za koje je model dodijelio malu vjerojatnost točnog

razreda. Spomenuta dva svojstva predložene funkcije gubitka omogućuju učenje modela pi-

ramidne fuzije bez pretreniranja na gruboj rezoluciji ulaza.

Razvijeni postupci su evaluirani na javno dostupnim podatkovnim skupovima za semantičku

segmentaciju. Javno dostupni skupovi omogućuju usporedbu predloženih postupaka i značajnih

doprinosa prisutnih u literaturi. Analiza rezultata korisna je istraživačima koji se bave efikasnim

izvedbama s obzirom na temeljitost evaluacije, raznolikost podatkovnih skupova te validacijske

eksperimente. Osim metrika točnosti, prikazane su i teoretske složenosti modela. Prikazano je

i empirijsko mjerenje vremenskog izvod̄enja na ured̄ajima različitih karakteristika. Konačno,

programske komponente su javno objavljene s ciljem omogućavanja daljnjeg razvoja i analize

postupaka predloženih u okviru ove disertacije.

Pregled poglavlja

Uvodno poglavlje prikazuje česte probleme s kojima se susreću današnji modeli za semantičku

segmentaciju te pokazuje motivaciju za rješavanje ovog problema. Područja primjene razu-

mijevanja slike na razini piksela su široke. Tako u literaturi nalazimo primjene u različitim

domenama. Neke od njih uključuju segmentaciju prometnih scena, zračnih snimaka, snimaka

obradivih površina te zatvorenih scena.

U uvodnom poglavlju opisuje se i koncept rada modela za semantičku segmentaciju. Opisuje

se osnovni pristup prilagodbe klasifikacijskih konvolucijskih metoda za zadatak semantičke seg-

mentacije. Nadalje, opisuju su ograničenja takvog pristupa te mogući smjerovi za poboljšanjem.

Glavni smjerovi za poboljšanje uključuju naučene module za naduzorkovanje, korištenje dilati-

ranih konvolucija, preskočnih veza te rezolucijskih piramida. Med̄utim, samo neka od mogućih

poboljšanja prediktivne točnosti omogućuju i efikasne primjene. Nadalje, objašnjena je intuicija

v

iza korištenja rezolucijskih piramida za semantičku segmentaciju slike, što je podloga glavnog

doprinosa ove disertacije. Obrada rezolucijske piramide podržava efikasne primjene. Modeli

piramidne fuzije obrad̄uju piramidu slika koja sadrži dvaput poduzorkovane slike u odnosu na

prvu veću sliku. To znači kako je računska složenost obrade uvećana najviše 33% u odnosu

na obradu slike izvorne rezolucije. Bitna značajka obrade rezolucijske piramide je mogućnost

ugrad̄ivanja invarijantnosti na mjerilo. Pregled metoda iz literature pokazuje kako postoje usp-

ješne primjene dubokih konvolucijskih modela koji obrad̄uju slikovne piramide kako bi ostvarili

modele minimalne ovisnosti o mjerilu.

Drugo poglavlje opisuje najutjecajnije arhitekture modela za klasifikaciju slike u velikim

skupovima podataka. Smatra se kako je klasifikacija slike temeljni zadatak raspoznavanja u

računalnom vidu. Često razvoj modela za klasifikaciju slike utječe na poboljšanja u ostalim

zadacima raspoznavanja slike. Dijelovi naučenog klasifikacijskog modela mogu se iskoristiti za

izgradnju segmentacijskog modela. Većina modela za semantičku segmentaciju slike započinju

obradu slike konvolucijskim dijelom postojećeg klasifikacijskog modela. Ovo se postiže izbaci-

vanjem sloja globalnog sažimanja prosječnom vrijednosti te posljednjeg potpuno povezanog

sloja. Često se ovako prilagod̄eni konvolucijski slojevi zovu koderima (smatra se da oni kodi-

raju semantičku informaciju). Pokazalo se kako korištenje klasifikacijskih kodera omogućuje

efikasnu izvedbu visoke prediktivne moći. Nadalje, moduli klasifikacijskih modela dizajniranih

za efikasno izvod̄enje korišteni su u predloženoj arhitekturi dubokog modela za efikasnu seman-

tičku segmentaciju. Stoga je razumijevanje elemenata klasifikacijskih arhitektura preduvjet za

uspješno razmatranje ostatka ove doktorske disertacije.

U drugom poglavlju opisuju se doprinosi utjecajnih klasifikacijskih modela. Arhitekture

LeNet i AlexNet opisane su zbog povijesnih razloga. LeNet pokazuje prvu uspješnu primjenu

dubokih konvolucijskih modela, dok AlexNet pokazuje kako duboko učenje nadmašuje ostale

pristupe klasifikaciji slike. Opisani su glavni doprinosi arhitekture VGG. Većina ovih dopri-

nosa, poput korištenja malih konvolucijskih jezgri te organizacije modela prema zajedničkoj

rezoluciji aktivacija, prisutna je i u današnjim arhitekturama. Nadalje, opisane su suvremene

arhitekture koje koriste preskočne veze: ResNet i DenseNet. Konačno, pregled dubokih arhitek-

tura završava efikasnim modelima. Opisan je model MobileNet V2 koji koristi dubinski odvo-

jive konvolucije te obrnute rezidualne blokove. Opisana je i složena metoda za povećavanje

računskog budžeta u modelima EfficientNet.

Treće poglavlje opisuje značajne pristupe iz literature koji se bave semantičkom segmentaci-

jom slika. Radovi koji ganjanju visoku segmentacijsku točnost prvenstveno se trude ostvar-

iti široko vidno polje konvolucijskog kodera. Nekoliko je glavnih metoda za povećanjem

vidnog polja korištenog kodera te ih je moguće smjestiti u dvije skupine. Prva skupina pris-

tupa izbjegava korištenje slojeva sažimanja te uvodi korištenje dilatiranih konvolucija s ras-

tućim parametrom dilatiranja. Pokazuje se kako ti pristupi drastično povećavaju računski budžet

vi

te onemogućuju efikasne primjene. Druga skupina pristupa uvodi metode za naduzorkovanje

dubokih značajki. Ove metode se oslanjaju na pretpostavku kako koderi značajki izlučuju se-

mantičku informaciju te je potrebno nadoknaditi rezoluciju konačnog izlaza.

U trećem poglavlju opisani su i postojeći pristupi za semantičku segmentaciju u stvarnom

vremenu. Pristupe za efikasnu segmentaciju dijelimo u dvije glavne skupine. Prva skupina

koristi prilagod̄ene segmentacijske arhitekture, dok druga skupina modela koristi klasifikaci-

jske kodere koji su dimenzionirani za raspoznavanje u velikim skupovima podataka. Analiza

računske složenosti postupaka pokazuje odnos med̄u metodama koje ostvaruju visoku točnost i

metoda koje podržavaju rad u stvarnom vremenu. Iz pregleda literature možemo zaključiti kako

efikasna segmentacijska arhitektura mora sadržavati kodere visokog kapaciteta za ostvarenje

visoke točnosti.

Četvrto poglavlje opisuje dvije predložene arhitekture konvolucijskih modela za semantičku

segmentaciju. U početku poglavlja dan je pregled izvedbi konvolucijskih inačica. Ovdje je

definiran operator pune dvodimenzionalne konvolucije te je izražen broj operacija koje zahtjeva

i broj prisutnih parametara. Uz punu konvoluciju, definirani su i računski jednostavniji opera-

tori poput grupne i dubinski odvojive konvolucije. Konačno, pokazuje se kako slojevi normal-

izacije po podacima nemaju utjecaja na računsku složenost modela u fazi izvod̄enja. Parametre

i populacijske statistike slojeva normalizacije po podacima moguće je stopiti s parametrima

prethodnog konvolucijskog sloja, čime se efektivno oba operatora izvode po cijenu same kon-

volucije. U ovom poglavlju opisani su moduli korišteni za izgradnju efikasnih segmentacijskih

modela. Zatim je opisana jednorazinska arhitektura koja koristi konvolucijski sloj prostornog

piramidnog sažimanja značajki. Sloj prostornog piramidnog sažimanja značajki se koristi za

povećanje receptivnog polja kodera čime se postiže ispravna segmentacija velikih objekata.

Višerazinska arhitektura postiže sličan učinak akumulacijom značajki jednake prostorne re-

zolucije prilikom obrade slikovne piramide uz dijeljenje parametara kodera. Ovaj arhitekturni

obrazac zovemo piramidnom fuzijom. Jednorazinska arhitektura postiže zavidnu eksperimen-

talnu točnost u usporedbi s metodama iz literature. Arhitektura piramidne fuzije postiže najveću

točnost med̄u svim predloženim metodama za semantičku segmentaciju slike koje podržavaju

izvod̄enje u stvarnom vremenu. Četvrto poglavlje konačno opisuje novu formulaciju funkcije

gubitka koja naglašava doprinos gubitka u pikselima koji se nalaze bliže semantičkom rubu.

Empirijski je pokazano kako se većina piksela nalazi blizu prijelaza semantičkih kategorija.

Poboljšanje točnosti na tim rubnim pikselima ostvaruje značajno poboljšanje ukupne točnosti

modela učenih predloženom funkcijom gubitka. Pokazuje se kako je nova funkcija gubitka

ključan faktor u uspješnom učenju višerazinskog modela.

Peto poglavlje sadrži iscrpnu eksperimentalnu evaluaciju predloženih postupaka. Poglavlje

započinje opisom eksperimentalnih postavki. Prikazana je predložena procedura za mjerenje

brzine izvod̄enja modela pod bibliotekom PyTorch. Glavni rezultati uključuju usporedbu s pos-

vii

tojećim stanjem stvari na javno dostupnim podatkovnim skupovima. Rezultati na podatkovnom

skupu Cityscapes pokazuju premoć predložene metode pred ostalim metodama iz literature

koje podržavaju evaluaciju u stvarnom vremenu. Rezultati na skupovima Cityscapes i CamVid

pokazuju kako predložena metoda podržava učenje u ograničenim skupovima bez prenaučenosti

na skup za učenje. Prikazani su rezultati u podatkovnim skupovima ADE20k i Mapillary Vistas.

Ovi rezultati imaju velik značaj za istraživačku zajednicu zbog nekoliko razloga. Prvenstveno,

ovo je prva primjena efikasnih modela u velikim podatkovnim skupovima. Pokazuje se kako

postoji značajan raskorak u točnosti izmed̄u efikasnih i najtočnijih modela. Dodatno, imple-

mentacija i evaluacija postojećih efikasnih metoda iz literature pokazala je kako piramidna fuz-

ija štedi kapacitet i ostvaruje značajno veću točnost. Uz javno dostupne podatkovne skupove,

prikazana je mogućnost primjene u podatkovnim skupovima domaćeg podrijetla. Radi se o

sljedeća dva podatkovna skupa. U sklopu IRI projekta SafeTram prikupljen je podatkovni skup

koji sadrži snimke s kamere montirane na tramvaj tijekom vožnje Zagrebom. Prisutne su snimke

iz raznolikih vremenskih uvjeta tijekom dana i noći. Naučeni model valja prepoznati piksele iz

klasa prisutnih u ostalim podatkovnim skupovima prometnih scena. Tvrtka RoMb Technologies

prikupila je i označila drugi podatkovni skup. Ovaj podatkovni skup sadrži snimke vožnje vil-

ičara u zatvorenim skladištima. Razredi za prepoznavanje uključuju strukturne elemente iz oko-

line. Med̄utim, glavni razredi u ovom skupu uključuju ljude, palete za prijevoz te vilice samog

vozila. U ostatku eksperimentalnog poglavlja opisan je postupak za mjerenje brzine izvod̄enja

na grafičkim procesorima i na ugradbenim računalima niske potrošnje. Nadalje, prikazan je

niz eksperimenata s ciljem objašnjavanja postupka zaključivanja razvijenog dubokog modela.

Konačno, mjerenje efektivnog receptivnog polja pokazuje korisnost piramidne fuzije prilikom

ostvarivanja modela za precizno i efikasno zaključivanje.

Šesto poglavlje opisuje rezultate na natjecanju u Robust Vision Challenge 2020. U nat-

jecanju sudjeluju istraživačke skupine koje demonstriraju svoje metode u glavnim zadacima

u računalnom vidu. Najveći naglasak natjecanja je otpornost modela na promjene okruženja.

Robusnost se evaluira u višedomenskoj okolini: podatci za testiranje objedinjuju podatke iz

više domena, čime ispitne slike imaju drastično različite karakteristike. Višedomenska eval-

uacija ističe mane onih metoda koje su prekomjerno prilagod̄ene jednoj domeni. Nadalje,

veličina podatkovnih skupova te broj razreda koje je potrebno prepoznati stvara velike zaht-

jeve za računskim resursima. U ovom poglavlju opisujemo primjenu piramidne fuzije u za-

datku višedomenske semantičke segmentacije. Model piramidne fuzije postigao je najtočniji

natjecateljski rezultat čime se naglašava značaj doprinosa prikazanih u ovoj disertaciji.

Sedmo i posljednje poglavlje donosi zaključke i osvrt na ovu disertaciju.

Ključne riječi: semantička segmentacija, zaključivanje u stvarnom vremenu, dijeljena re-

zolucijska piramida, računalni vid, duboko učenje

viii

Contents

1. Introduction . 1

2. Deep convolutional architectures for image classification 7

2.1. LeNet, AlexNet .8

2.1.1. LeNet .8

2.1.2. AlexNet .9

2.2. VGG .11

2.3. Architectures with skip connections .12

2.3.1. ResNet .12

2.3.2. DenseNet .15

2.4. Efficient convolutional architectures .16

2.4.1. MobileNet V2 .17

2.4.2. EfficientNet .17

3. Convolutional architectures for semantic segmentation 19

3.1. Elements of efficient convolutional models .19

3.1.1. Methods of adapting classification encoders for dense prediction20

3.2. Efficient architectures for semantic segmentation23

3.2.1. Custom architectures for real-time dense prediction23

3.2.2. Architectures with ImageNet classification backbones23

3.2.3. Relation to related previous work .24

4. Semantic image segmentation using pyramidal fusion 26

4.1. Basic building blocks .26

4.1.1. Convolutional layers for fast inference26

4.1.2. Elements of an efficient encoder-decoder architecture29

4.2. Single-scale architecture .31

4.3. Multi-scale architecture with pyramidal fusion32

4.4. Increasing the penalty for boundary pixels .33

5. Experimental evaluation of proposed methods 36

5.1. Training and inference details .36

5.2. Cityscapes .37

5.3. CamVid .40

5.4. Mapillary Vistas .40

5.5. ADE20k .41

5.6. Single-scale model execution profile .41

5.7. Runtime efficiency on Jetson TX2 and Jetson Nano43

5.8. Case study: RoMb Technologies .43

5.9. Case Study: SafeTram .45

5.10. Comparison with PPM and ASPP .48

5.11. Validating the upsampling capacity .49

5.12. Validating the pyramid encoder .50

5.13. Improving the pyramidal fusion with boundary-aware loss51

5.14. Interpreting the operation of the presented models52

6. Participation in Robust Vision Challenge 2020 56

6.1. Multi domain semantic segmentation benchmark56

6.2. Pyramidal fusion for multi domain semantic segmentation58

6.3. Competition results .58

7. Conclusion . 62

Bibliography . 63

Biography . 81

Životopis . 84

Chapter 1

Introduction

Architectural advances of deep models for image classification have immensely contributed to

other visual recognition tasks. Modern approaches to object detection [1], instance segmenta-

tion [2], and semantic segmentation [3] yield best results with recent convolutional architec-

tures. Convolutional models have also produced state-of-the-art results on visual reconstruction

tasks such as stereo reconstruction [4, 5] and optical flow [6, 7, 8, 9, 10, 11].

This thesis is concerned with semantic segmentation which is also known as pixel-level im-

age understanding. The task is posed as dense prediction: the system has to predict a semantic

class for each image pixel. Compared to instance-level semantic segmentation which addresses

only the "thing" classes [12], semantic segmentation is able to recognize the "stuff" classes as

well. Panoptic segmentation [13] which was introduced only recently aims to recognize both

"things" and "stuff" classes and enumerates "thing" instances. Currently, the best semantic

segmentation accuracy is achieved with very large models which require extraordinary com-

putational resources [14, 15, 16]. However, many important applications such as autonomous

navigation or driver assistance require real-time inference on very large images in order to cover

a wide field of view and perceive small objects at large distances. At the same time, these appli-

cations require very low latency in order to be able to bring real-time decisions. These opposing

requirements intensify computational strain and make real-time implementations a challenging

research objective.

Many real-time semantic segmentation approaches [17, 18, 19, 20] address this problem

by introducing custom lightweight architectures which are not suited for large-scale visual

recognition. Most of these approaches train from scratch and therefore miss a huge regular-

ization opportunity offered by knowledge transfer [21] from larger and more diverse recogni-

tion datasets [22]. Consequently, these approaches incur a comparatively large overfitting risk.

Some approaches alleviate this shortcoming by pre-training on ImageNet [17]. However, our

experiments suggest that the resulting benefits tend to be smaller than in architectures using

backbones aiming at competitive ImageNet performance.

1

Introduction

Semantic segmentation models can be applied to many domains. Some possible applica-

tions are introduced through publicly available datasets. A portion of these datasets is visual-

ized in Figure 1.1. Application which attracts the most attention, and therefore most funding,

is autonomous driving [8, 23, 24]. This application domain seeks to enable pixel-level under-

standing in driving scenes, where an autonomous vehicle would be equipped with one or more

camera sensors. Data from the cameras would then be processed with a segmentation model to

enable route planning which is supported by pixel level semantics of the surrounding environ-

ment. Another interesting application focuses on segmenting buildings in aerial images [25].

Having pixelwise semantic understanding of aerial imagery would help automate processes in

geodesy, where exist lots of inaccurate data gathered before the development of precise mea-

suring devices. In agriculture, autonomous robots need to discriminate between crop types to

successfully perform activities such as watering, trimming or weeding [26]. Finally, there are

lots of robotics applications in household environments [27].

The simplest model for semantic segmentation would start with a fully convolutional en-

coder which gradually decreases the resolution and increases the number of feature maps of

the resulting representation. Instead of performing global pooling (as in image-wide classifi-

cation), one would proceed by attaching a pixel-wise loss to obtain the predictions [28]. This

model would lead to very fast inference, however its accuracy would be rather low due to the

following two problems. Firstly, small objects (e.g. distant traffic signs) would likely be missed

due to low output resolution, which is usually 32 times smaller than the input image. Secondly,

the receptive field would not be large enough to recognize pixels within large objects (e.g. buses

or trucks close to the camera). These problems can be alleviated with learned upsampling [3],

dilated convolutions [29], lateral connections [30, 31, 32, 33, 34] and resolution pyramids [28].

However, not all of these techniques are equally suited for real-time operation.

This thesis presents a novel architecture for efficient dense prediction. The architecture

extracts features at multiple levels of the resolution pyramid. Each level of the pyramid sub-

samples the resolution two times with respect to its predecessor. Hence, the upper bound for

the computational overhead of the pyramid is 1/4 + 1/16 + 1/64 + . . . = 1/3 ≈ 33%. The feature

extractor weights are shared across scales in order to promote feature reuse and reduce overfit-

ting [28]. Cross-scale representations are assembled by adding features coming from different

levels of the pyramid. This processing step is our main novelty and we denote it as pyramidal

fusion. Pyramidal fusion results in a well-connected model which favours generalization due

to acting as a large ensemble of independent simpler models. Additionally, it induces a large

receptive range while requiring very little additional capacity with respect to the single-scale

model. We complete the architecture with a lightweight ladder-style decoder [33], which grad-

ually blends the fused representations along the upsampling path. This step is responsible for

achieving high accuracy near semantic borders, together with boundary-aware loss [35].

2

Introduction

Figure 1.1: Image-label tuples from popular public datasets. The datasets are collected for different
purposes and have widely different characteristics. Labels contain class indices for each pixel, which
are color-coded for visualization purposes. Examples include tuples from: Cityscapes [23], Mapillary
Vistas [24], INRIA aerial dataset [25], Sugar Beets dataset [26] and ScanNet [27].

Computer vision systems process images acquired by perspective projection of light rays to

the sensor (image) plane. The nature of such projection implies that scale of the observed object

is dictated by the object physical size and its distance from the image plane. An effective com-

puter vision approach should not be brittle to variations in object size. Instead, a well formed

approach would be invariant to changes in object scale. Furthermore, invariance to scale should

not imply a large computational increase and, ideally, the method should not waste effective

capacity by processing each scale variation separately. Obtaining scale invariant features is

beneficial in all computer vision tasks. Scale invariant feature transform (SIFT) [36] extracts

local features capable of handling variations in rotation and scale, making them suitable for

3

Introduction

robust feature matching. SIFT processes scale-space representations [37] across an image pyra-

mid. The resulting features are efficient to compute, and offer traits suitable for sparse matching

in a variety of reconstruction tasks, as well as setting ground to object recognition. Since the

advent of deep learning, quality of recognition systems was improved repeatedly by enforcing

scale invariance. Krešo et al. [38] consider using distance information to choose appropriate

scales in the image pyramid to classify each pixel of the presented image. Singh and Davis [39]

apply a region proposal network (RPN) to an image pyramid. The RPN is trained to propose ob-

jects only at a moderate scale, ignoring too large or too small objects (these have moderate size

in a different pyramid level). The main contribution of this thesis is focused around observing

objects in an image pyramid using a shared set of convolutional parameters. This is especially

effective when aiming at efficient inference, as we demonstrate accurate semantic segmentation

results across different settings while supporting real-time execution.

The idea behind using resolution pyramids in recognition tasks is visualized by the example

in Figure 1.2. Let us consider the classification problem behind the red pixel on the large

truck. The original image resolution is 2048×1024 pixels. Also, let the theoretical (maximal)

receptive field of the model at hand be 200×200 pixels. This means that this convolutional

model classifies the red pixel based on pixels captured within the 200×200 area only. The

yellow rectangle in the top right image visualizes the receptive field at original input resolution.

Yellow rectangles in bottom left and right images visualize the same 200×200 receptive field

once the input image is 2 and 4 times subsampled, respectively. For clarity, Figure 1.3 visualizes

these 200×200 pixel regions from each level of the resolution pyramid. The example illustrates

how discriminative features useful for properly classifying the truck pixel (such as wheels or

headlights) are visible only in the low resolution pyramid level.

We propose two compact architectures which deliver competitive recognition performance

under real-time constraints. Both architectures are well suited for inference on low-cost embed-

ded devices such as Jetson TX2 and Jetson Nano. We revisit feature reuse across the resolution

pyramid – a prominent regularization technique which has been neglected in recent literature.

We propose to accompany this approach with pyramidal fusion and boundary-aware loss, and

demonstrate significant improvements on all tested datasets. especially when training from

scratch. Finally, we present a series of experiments which interpret the decision process of our

models. First, we perform an attribution study which quantifies the success of capturing a wide

context of pixel-level predictions, and shows its correlation with generalization performance.

Second, we explain fast learning and improved generalization of pyramidal fusion by improved

gradient flow and ensemble-like behaviour. Third, we illustrate importance of ImageNet pre-

training by showing that it affects generalization performance of all four processing blocks of

the backbone.

In comparison with our preliminary report [40], our more recent publication [41] proposed

4

Introduction

Figure 1.2: Top left: a typical input image presented at the model input. Classification of the pixel
marked in red is considered for a model with receptive field 200×200 pixels. The receptive field is
visualized in the original (top right), two (bottom left) and four (bottom right) times subsampled images.

Figure 1.3: Pixels observed by a limited receptive field model across the resolution pyramid when
inferring the class of the central pixel. Images (from left to right) are 1x, 2x and 4x subsampled.

an improved training objective and introduced several other enhancements which together de-

livered state-of-the-art real-time performance on Cityscapes test. Additionally, we included

experiments which evaluated variants of spatial pyramid pooling (SPP) [14, 15], validated the

impact of boundary-aware loss, measured execution speed on Jetson Nano and RTX 2080 Ti,

and evaluated semantic segmentation accuracy on Vistas and ADE20k. Finally, we presented

experiments which interpret what our models have learned. In particular, we showed that pyra-

midal fusion has a large effective receptive field, which is required for correct recognition of

locally indistinctive regions. We presented experiments which suggest that a dense prediction

model with pyramidal fusion acts as an ensemble of smaller models, unlike its single-scale

counterpart. We also showed that ImageNet pretraining significantly affects generalization per-

formance of all backbone modules. This thesis consolidates the contributions from our previ-

5

Introduction

ous publications. Furthermore, it presents an overview of ImageNet classification architectures,

which is important for understanding encoders used in semantic segmentation models. Also,

this thesis includes results on two datasets collected in Croatia. Finally, we present the winning

submission to Robust Vision Challenge 2020 which uses the proposed architecture in multi-

domain semantic segmentation. These results demonstrate how pyramidal fusion may be useful

in applications requiring large capacity, like training on almost 200 semantic classes across

seven different domains.

The proposed architecture is very well suited for poorly balanced semantic segmentation

datasets with large resolution and large objects. It can deliver high recognition accuracy even

when configured with a recognition backbone with comparatively low capacity. In particular,

we consider lightweight ImageNet-grade architectures [42, 43] in order to achieve efficient in-

ference and benefit from transfer learning. In a nutshell, we compensate the backbone capacity

with increased receptive field, scale covariance due to shared parameters, and ensembling effect

due to pyramidal fusion. The resulting architecture is suitable for real-time operation even on

embedded GPU platforms. Our models achieve state-of-the art semantic segmentation accuracy

among all existing approaches aiming at real-time execution.

The contents of this doctoral thesis are organized as follows. First we introduce architec-

tural advances of deep convolutional architectures for image classification in large datasets.

This overview helps better understand concepts which lead to accurate and efficient training

of contemporary models for image understanding. Next, we present advances in the litera-

ture within the semantic segmentation task. Main focus of the analysis are models capable of

real-time inference. Afterwards, we introduce our two approaches to real-time semantic seg-

mentation. Here, we describe the main building blocks of the architectures as well as the novel

boundary aware loss function used for training our pyramidal fusion model. Following the

method overview, we present experiments on public datasets as well as ablation studies and ex-

plainability experiments. We describe a framework for measuring inference speed and present

measurements on a range of hardware components. We also demonstrate results on two locally

collected datasets, which study in-the-wild applicability of our method. Finally, we present an

overview of our submission to Robust Vision Challenge 2020.

We outline the main contributions of this doctoral thesis. We present a residual convolu-

tional architecture for real time semantic segmentation. Next, we introduce pyramidal fusion:

an architectural element for dense prediction with interleaved upsampling of shared resolution

pyramid features. The pyramidal architecture is improved by a novel loss function which pre-

vents overfitting to the coarsest level. We release software components which enable efficient

inference of the proposed methods on graphics processing units. Finally, we perform a thor-

ough analysis of our methods on public datasets and compare them to recent advances from the

literature.

6

Chapter 2

Deep convolutional architectures for image
classification

Image classification is considered to be a primary image recognition task in computer vi-

sion [44]. The typical classification task includes N images and a label set consisting of C

classes. A classification model assigns a single label to the entire image. Before the advent of

deep learning this challenging task has been addressed by approaches based on hand-crafted

features such as SIFTs [36, 45] or Fisher vectors [46]. These approaches will not be consid-

ered here. Instead, this chapter will focus on image classification approaches based on deep

learning [42, 44, 47]. Most of these architectures were designed for image classification on

the ImageNet dataset [22]. This dataset consists of over one million labelled images split into

one thousand classes which cover a vast amount of visual concepts present in human surround-

ings. When addressing image classification, the research community used to consider results

on MNIST [48], SVHN [49] or CIFAR [50]. Nowadays these are considered as toy datasets.

On the other hand, ImageNet is still the main benchmark when comparing image classifica-

tion architectures. More recently, larger datasets such as OpenImages [51] emerged but only

a handful of research groups have sufficient computing power to perform experiments on such

scale. Models designed for ImageNet are applicable for other datasets and tasks. Therefore,

understanding the principles used for designing these models are important for every computer

vision practitioner.

Deep classification architectures have also been used in other recognition tasks. A deep

model trained on ImageNet may be viewed as a nonlinear feature extractor complemented with

a jointly trained classifier based on multi-class logistic regression. Such feature extractors and

trained parameters may be used as a starting point in solving a different task. Some of these

tasks are: semantic segmentation [28], object detection [52], instance [2], panoptic segmenta-

tion [13] etc. This broad applicability in different tasks serves as motivation for studying image

classification architectures. This thesis employs the resulting feature extractors for efficient

7

Deep convolutional architectures for image classification

Figure 2.1: The LeNet-5 classification architecture used for classification of handwritten digits. The
figure is reproduced from [48].

semantic segmentation.

2.1 LeNet, AlexNet

This section gives an overview of historically significant architectures: LeNet and AlexNet. Al-

though modern classification models yield significantly higher accuracy, it should be noted how

some fundamental concepts did not change. Feature extraction is realized using convolution op-

erations, where convolutional kernels are found by minimizing a loss function. A deep model is

defined as a mapping between the input and it’s output which is composed of linear projections

and nonlinear activations. LeNet and AlexNet are considered "deep" because nonlinear scalar

functions are placed between linear convolutional operations.

2.1.1 LeNet

The LeNet model successfully addresses the classification task of handwritten MNIST dig-

its [48]. This work is considered as the first modern convolutional architecture. Convolutions

are a good fit for image recognition due to their translation equivariance *. Another earlier

approach addressed a similar problem but with less attention in the research community [53].

While LeNet has large differences compared to latter described models, the core principle is

the same: feature extraction is based on a set of convolution operations with parameters trained

using the backpropagation algorithm [54]. Figure 2.1 depicts the architecture of LeNet-5. Be-

tween each linear operator there is a nonlinear activation. In the LeNet architecture, this non-

linearity is a sigmoid. Invariance to local displacements is alleviated by summation pooling

inside a 2×2 window which is applied after convolution. Trainable bias and scaling is applied

to pooled features. After the last convolution there are two fully connected layers which are

expressed by matrix multiplication and nonlinear activation.

In comparison with deep models, the main difference is the definition of the loss function.

Each of the C LeNet’s outputs is expressed as the vector norm of the difference between ex-

*Convolutions are not equivariant to changes in scale. This thesis proposes a method to alleviate this issue.

8

Deep convolutional architectures for image classification

tracted features x and untrainable center W:

yi = ∑
j
(x j −wi j)

2 = ‖x−wi‖ (2.1)

The best overlap between the feature and centre vector occurs when the two vectors are the

same i.e. when the vector norm of their difference is zero. Classification is made by finding the

smallest component in the output vector:

c = argminy. (2.2)

The loss function suitable for this output interpretation is mean squared error (MSE) with

an added term which minimizes the posterior probability of incorrect classes:

E(ŷ,y) = y2
ŷ + log(e− j + ∑

i!=ŷ
e−yi). (2.3)

Here, ŷ is the index of the correct class and y is the model output. It should be noted how the

minimum ot the MSE loss component leads to the trivial solution where all outputs equate to

zero. Therefore, the second loss component penalizes small values of the output in incorrect

classes.

The usual loss function for training deep classifiers is the negative log likelihood of the

correct class. Due to a modified loss function, the classification decision is interpreted as the

index of the maximum output vector component. Following the loss formulation, the model

output is modelled using the so f tmax function. Softmax is a function which converts the vector

with C dimensions, commonly called logits, into a vector with C probabilities (the sum of its

elements is one). The c-th output vector component is expressed by Eq. 2.4. W is the parameter

matrix of the final fully connected layer, and x is the feature vector being classified.

y(Wx)c = so f tmax(Wx)c =
eWcx

∑
C
j=1 eW jx

(2.4)

2.1.2 AlexNet

The AlexNet architecture marks an important milestone in image classification [44]. It is the

first deep model to outperform shallow learning in ImageNet image classification [22]. Further-

more, AlexNet outperformed shallow models by a wide margin. Some of the contributions are

enumerated below.

9

Deep convolutional architectures for image classification

ReLU activation function is used as the model nonlinearity [55]. The activation function is

expressed as:

ReLU(x) = max(0,x) (2.5)

where x is a scalar input. This activation function holds some important properties which enable

efficient training. First, the upper bound of the function codomain is +∞ i.e. it is unbounded

from above. This property leads to gradients having no saliency areas (which occurs with

sigmoid or hyperbolic tangent). For each positive input to ReLU there exist nonzero gradients.

Local response normalization promotes model generalization by reducing activation scale.

As mentioned before, ReLU is not upper bounded which enables situations where activations

may tend to infinity. The normalization is defined by:

bi
x,y =

ai
x,y

(k+α ∑
min(N−1,i+n/2)
j=max(0,i−n/2) (a

i
x,y)

2)β

(2.6)

where i is the feature map index, (x,y) are spatial coordinates and n is the neighbourhood

size used in computing the normalization. Note that local response normalization is not used

nowadays as it was replaced by more powerful batch normalization [56].

In addition to highlighted contributions, a set of methods for achieving higher test accuracy

were used:

•Training on multiple GPUs at once enables for a larger batch size, leading to more stable

training,

•Overlapping regions in pooling layers: the kernel size in pooling layers with stride 2 is

set to 3 (the usual setting is 2)

•Dropout, a regularization technique which approximates training multiple models and

ensembling their outputs at test time [57].

The model architecture is visualized in Figure 2.2. The input image size is set to 224×224

and the model may not be applied to any other input size. This is due to fully connected layers

at the model output depending on the input image size. In other words, parameter matrix di-

mensionalities of mentioned layers are determined by the input size. More recent work found

how this limitation may be circumvented. The model architecture is composed of sequential

convolution, ReLU, local response normalization and max pooling operations. The convolu-

tional representation is rearranged into a vector suitable for vector-matrix multiplication inside

fully connected layers.

The total parameter count is roughly 60 million. An involved reader will find the parame-

ter placement analysis interesting. The final convolutional tensor dimensionality is 6×6×128.

Flattening this representation produces a 9216 component vector which equals the row count

10

Deep convolutional architectures for image classification

Figure 2.2: AlexNet convolutional architecture. Credit: Krizhevsky et al. [44].

in the first fully connected layer parameter matrix. This matrix has 4096 columns i.e. it’s size

is 9216×4096. The following fully connected layer produces a feature vector of the same size,

therefore there is a 4096×4096 dimensional parameter matrix. The final matrix multiplication

produces a vector which contains a scalar element for each dataset class. On ImageNet, a 1000-

dimensional vector is produced at the model output. Finally, the total number of parameters

inside fully connected layers equals to 9216 ∗ 4096+ 4096 ∗ 4096+ 4096 ∗ 1000 = 58621952.

This analysis shows how almost 98% of all AlexNet parameters come from fully connected

layers. This precludes constructing deeper models due to high tendency towards overfitting.

2.2 VGG

The VGG model has made a large impact in the research community [47]. The authors demon-

strated how an increase in classification accuracy can be obtained by adding more convolutional

units (and nonlinearities), thus making the model more discriminative. An explosion in param-

eter count caused by adding convolutional layers is alleviated by using smaller convolutional

kernels. Earlier models commonly used 7×7 or 11×11 convolutions. Instead, VGG uses 3×3

convolutions. The reasoning behind this is as follows. A receptive field of three consecutive

3×3 convolutions is equal to using one 7×7 convolution. The advantage of using three se-

quential convolutions is a smaller parameter count and increased discriminativity induced by 2

extra nonlinear activations. Reduced computational complexity and implementation efficiency

are additional advantages of using 3×3 convolutions [58]. Compared to im2col, the Winograd

minimal filtering algorithm yields best performance increase when using 3×3 sized kernels.

The cuDNN library uses the Winograd algorithm to speed up 3×3 convolutions.

When considering model organization, convolutional layers may be grouped by spatial res-

olution they operate at. In VGG, there are max pooling layers between convolutional groups,

which halve the representation width and height. Usually, each subsequent convolutional group

processes twice the feature maps and 4 times less spatial data. Consequently, each feature tensor

uses half the memory when compared to tensors produced by the previous convolutional group

11

Deep convolutional architectures for image classification

†.

The family of VGG models starts with the VGG-A architecture, and continues from VGG-

B up to VGG-E. The VGG-A model consists of eight convolutional and three fully connected

layers. VGG-A parameters are trained from random initialization by sampling parameters from

a zero mean and 10−2 variance normal distribution. Bias parameters are initially set to zero.

All models larger than VGG-A are initialized in two steps. First, all parameters present in

the nearest smaller model are initialized from there. Second, newly introduced parameters are

initialized by aforementioned random sampling.

2.3 Architectures with skip connections

So far we considered models in which every output tensor is an input to one other function,

exclusively. From the symbolic computational graph perspective, models considered up to this

point consist of nodes connected by a single edge‡. Great advances in deep learning archi-

tectures were achieved by introducing skip connections. Here, an output of a particular node

may be an input to multiple other nodes, as demonstrated in Figure 2.3. This results in mod-

els which better propagate loss gradients and consequently achieve better deep representations

which yield best results, faster training and better generalization. This section considers ResNet

and DenseNet architectures.

2.3.1 ResNet

Skip connections are considered as standard practice in contemporary deep architectures. Resid-

ual architectures (ResNets) are one of the first representatives of this concept [42]. Another

concurrent work to ResNets, Highway Networks, demonstrated a similar concept [60, 61]. The

idea is simply visualized by the computation graph in Figure 2.3. The input x is processed by

operation fk−1(x) = y whose output is processed using fk(y). When considering models ap-

plied to images, these operations are usually sequences of convolution, nonlinearity and batch

normalization. After applying non linear transformations to x, the result is combined with the

input by addition: z = x+ fk(y). This defines a general form of a residual unit. By stacking

residual units of common resolution, a residual block is formed.

Typical ResNet architecture can be described as follows. As with architectures described in

sections 2.1 and 2.2, this model may also be considered a deep feature extractor complemented

†It was presumed that deep models achieve excellent generalization due to compressing information. However,
this is not the case as there are high accuracy models which are bijective with respect to their input [59].

‡Modern frameworks for automatic differentiation like PyTorch or Tensorflow express models as computational
graphs. This paradigm is suitable for runtime optimization of graphs independent of the execution platform.
Furthermore, the backpropagation algorithm is defined directly by the computational graph itself, where each node
is capable of performing forward and backward passes.

12

Deep convolutional architectures for image classification

x fi fk +
Figure 2.3: A residual unit displayed using a computational graph. Ellipses denote computational units
whereas the square displays processed input data. Dotted connections and units show there may be more
than one computational unit in the residual.

with a multi-class logistic regression classifier. The two components are jointly trained from

trained end to end. Among all models models described so far, ResNets contain all feature

extractor parameters inside convolutions. Fully connected layers are not used here for two main

reasons: i) they require a fixed input image size and ii) they contain the majority of model

parameters. The deep feature extractor consists of the initial convolution ("stem") and four

processing blocks which group convolutional units operating on the same resolution. The initial

convolution operates on the input RGB image. It has a 7x7 kernel which is applied at stride two.

Each processing block is preceded by a pooling layer with stride two which makes the output

two times smaller than the block input. This first part is referred to as a stem. Following the

stem, there are four residual blocks. Each block outputs a 2 times subsampled representation

when compared to its input. The resulting features are 32 times subsampled with respect to the

input image. Each residual block consists of sequential residual units which may be described

using Figure 2.3. More specific, a residual function is a 3×3 convolution – batch normalization

– ReLU composition §.

Another significant novelty in the ResNet architecture is present at the end of the feature

extractor. There, the global average pooling operation is applied. This operation pools the final

residual block representation by taking the average values of all spatial locations in the feature

map. The average value is taken for each feature map separately. Global average pooling is

suitable for two main purposes:

•linear classifier at the model output is not dependent of the input image dimensionality,

and

•the number of non-convolutional parameters is significantly reduced.

Particular attention should be paid to reduction in parameter count. Let us once again consider

the ratio of parameters contained in convolutional and classifier layers of the baseline ResNet-

18. This model has 512 features in the final convolutional representation which are classified in

1000 classes. Roughly, there are 512 thousand parameters in the linear classifier which is only

5% of all parameters. We see how ResNets tend to keep most parameters in convolutional lay-

ers which was not the case with older deep architectures. Insisting on the expressive power of

§Note that the operator ordering is not arbitrary. The distribution of outputs from a batch normalization layer
follows a N (0,1) distribution. As already mentioned, ReLU has non zero gradient for positive values only.
Therefore, the expected ratio of propagated gradients with respect to ReLU inputs is 50%.

13

Deep convolutional architectures for image classification

Figure 2.4: The ResNet classification architecture. Credit: [42].

convolutional layers makes sense due to the bias of deep convolutional models: image represen-

tations have a hierarchical structure which is well described by a composition of convolutional

layers.

Although a simple modification, the residual structure brings tremendous benefits to training

deep models. As demonstrated by Simonyan and Zisserman [47], models without skip connec-

tions can only be trained to moderate depth. VGG-A, which has 11 layers, is the only model

trained from random initialization. On the other hand, ResNet-152 is trained from scratch while

achieving much higher classification accuracy than VGG-E.

Figure 2.4 visualizes two popular ResNet architectures. Arks with full arrows displays

identity mappings, while discontinuous lines contain a transformation which adapts the tensor

dimensionality. The following interpretation hypothesizes why it is possible to train such deep

residual models. Let us find the shortest path between the input and the output. The shortest path

is defined as the minimum number of non linear transformations. The shortest path contains:

•a 7 ×7 stem convolution,

•three 3 ×3 convolutions which adapt feature dimensionality of the residual block output,

and

•a fully connected layer which outputs the final classification.

We see that the "shallowest submodel" is only 5 layers deep. A recent detailed analysis indi-

cates how residual models act operate as ensembles of moderate depth models [62]. Further-

more, better generalization is obtained by initially directing the gradients towards the shallowest

submodel. This is done by setting the parameters of final residual units to have zero valued out-

puts [63]. Using this initialization, the residual model is gradually becoming deeper as training

progresses.

14

Deep convolutional architectures for image classification

2.3.2 DenseNet

The use of skip connections demonstrated great qualities when building deep models. Node

connectivity inside a computational graph is an important trait of the model structure primarily

for promoting gradient propagation during model training. A model with L layers without any

skip connections has L connections. Residual models can have a maximum of 2L connections¶.

The DenseNet architecture introduces the concept of dense connectivity [64]. DenseNets con-

tain L(L+1)
2 connections inside a convolutional group. A comparison between residual and dense

connectivity is visualized in Figure 2.5. A densely connected block (a convolutional group op-

erating at common resolution) consists of dense layers. Here, the l-th dense layer is directly

connected to all preceding layers. This connectivity pattern is achieved using feature map con-

catenation: the input to the l-th dense layer is a concatenation of outputs from layers 0 to l −1.

It should be noted how each dense layer produces a small number of feature maps (typically

32). To keep computation and parameter count reasonable, a 1×1 convolution is applied to each

dense layer input. Afterward, a 3×3 convolution is applied. A dense layer has the opportunity to

filter unnecessary features using the 1×1 projection, although all preceding features are visible.

Contrary, a residual model does not demonstrate this property as addition forces the use of all

features.

Dense connectivity enables representations which do not suffer from vanishing or exploding

gradients. Furthermore, it promotes feature reuse, increases parameter efficiency and requires

less computation. Finally, a memory efficient implementation [64, 65] is a great advantage of

this architecture which is interesting in memory intensive applications, like dense prediction on

very large images or video analysis.

Important milestones in image classification advancement are outlined in Figure 2.6. The

first breakthrough is the emergence of deep learning, more specifically AlexNet. The next big

landmark occurred by introducing skip connections in deep models. This enabled deep models

to surpass human-level accuracy in image recognition. Nowadays, advancement in classifica-

tion accuracy is gradually saturating. The author sees three directions for advancement in im-

age classification architectures. The first direction is reducing computational complexity while

maintaining predictive power. The next research area focuses on models trained in unsupervised

or semi-supervised settings [66, 67]. This settings focuses in developing methods which have

satisfactory results when using little labelled data. Finally, scaling the datasets and the num-

ber of classes is a research area aiming at training models capable of successful generalization

across drastically different environments [68].

¶In practice, ResNets have 3L
2 connections.

15

Deep convolutional architectures for image classification

Figure 2.5: Comparison of layer connectivity in a) ResNet models and b) DenseNet models. Credit: [65].

2010 2011 2012 2013 2014 2015 2016 2017
0

5

10

15

20

25

30

human performance

HOGLBP-LCC
SIFT-FV

AlexNet

Inception

ResNet

SE-ResNeXt
0

50

100

150

200

250
Top 5 error [%]
Depth [n]

Figure 2.6: Advancement in ImageNet classification accuracy. The left ordinate shows the classification
error on ImageNet validation subset. The right ordinate shows the model depth. Credit: [69].

2.4 Efficient convolutional architectures

Efficient convolutional layers reduce computational requirements of the standard convolution

while aiming to keep good generalization. These techniques are detailed in subsection 4.1.1.

Here we describe convolutional architectures which enable efficient classification by using op-

timized convolutional instances.

ShuffleNet [70] uses channel shuffling in combination with grouped convolutions to share

information across different groups. CondenseNet [71] uses a training method which finds

16

Deep convolutional architectures for image classification

important connections and eliminates uninformative weights to reduce computation. Neural

architecture search [72] (NAS) is a recent method which utilizes reinforcement learning to si-

multaneously find the model architecture and it’s parameters. This approach finds accurate

models given a computational budget. Therefore, an efficient model may be produced using

NAS.

2.4.1 MobileNet V2

The second MobileNet architecture is an important milestone in developing deep architectures

for efficient applications [43]. When considering computational complexity, MobileNet V2 is

five times more efficient than the smallest ResNet while achieving the same accuracy. Further-

more, it has an around ten times less parameters compared to ResNets and a hundred times less

parameters compared to VGG. This section gives an overview of MobileNet V2.

The main contribution is a novel convolutional block called inverted residual. As the name

suggests, the convolutional block uses residual connectivity. Skip connections have negligible

computational complexity which makes them suitable for efficient applications. Figure 2.7

compares a residual unit (a) to an inverted residual (b). An obvious similarity is the use of skip

connections. However, there are two important differences:

•a standard 3 ×3 convolution is replaced by a depthwise separable instance, and

•the inverted residual increases the feature map count. Note that the shallowest submodel

(one not passed through inverted residuals) contains a small number of feature maps.

An inverted residual begins with a linear projection to a higher dimensional space. The pro-

jection is implemented using 1×1 convolution. Higher dimensional features are then processed

with depthwise separable convolutions. Finally, the inverted residual output is obtained using

a linear projection to lower dimensional space which matches the size of the input tensor. Pro-

cessing at a higher dimensionality inside the inverted residual block is feasible since an efficient

convolutional instance is used.

2.4.2 EfficientNet

Model scaling is a term used to describe methods which take a small model and amplify its

components to obtain a bigger model with higher accuracy. Naturally, there are lots of different

methods for model scaling. Typical model hyperparameters used to scale a model are the num-

ber of layers (depth), the number of convolutional feature maps (width) and the input image

resolution. Usually, more accurate models are obtained by scaling along one of these dimen-

sions. The EfficientNet architecture demonstrates how best results are achieved when scaling

all these components simultaneously [73]. This method for model scaling is named compound

scaling. Compound scaling obtains hyperparameters of the larger model by multiplying each

17

Deep convolutional architectures for image classification

Figure 2.7: Comparison between a residual and an inverted residual block. Reference: Sandler et
al. [43].

dimension with a fixed factor. The resulting architectures surpass accuracy of existing models

across different computational budgets.

The basic (smallest) architecture is retrieved using neural architecture search. The search

resulted in a model using inverted residual blocks from MobileNet V2 [43] with different depth

and width. This model is more efficient and has better accuracy than MobileNet V2. This

basic architecture, named EfficientNet-B0, is expanded using compound scaling to create ar-

chitectures from EfficientNet-B1 up to EfficientNet-B7. However, unlike VGG models, where

each model uses trained parameters from the smaller instance, each EfficientNet is trained from

random initialization. This is possible due to the model residual structure.

Finally, a few words should be said about the insights on MobileNet V2 and EfficientNet

found in the scope of these thesis. Inference on general purpose CPUs and mobile device is

indeed faster when using efficient convolutional blocks. However, training and evaluating deep

models is always performed on high-end GPUs. It turns out that a small theoretical complexity

of these models does not correlate with high inference speed when running them on modern

GPUs. A basic analysis indicates how depthwise separable convolutions utilize cache memory

worse than full 3×3 convolutions. However, a detailed analysis of these shortcomings is not in

scope of this thesis.

18

Chapter 3

Convolutional architectures for semantic
segmentation

3.1 Elements of efficient convolutional models

As described in the introduction, semantic segmentation models have to face two major prob-

lems: restoring the input resolution and increasing the receptive field. The simplest way to

restore input resolution is to avoid downscaling. This can be achieved by replacing stride-2

layers with their non-strided counterparts, and doubling the dilation factor in subsequent con-

volutions. PSPNet [15], DeepLab [14, 74] and other such approaches perform this trick in the

last two residual blocks of the recognition backbone. Hence, all image representations of these

models are at most 8 times subsampled. However, this significantly increases the computational

complexity and therefore precludes real-time inference on large images [65].

Another way to restore the input resolution relies on trained upsampling [3], which leads

to the encoder-decoder architecture. The idea is to perform recognition on low resolution fea-

tures (encoder), and then to restore details by upsampling the resulting representation (decoder).

Many approaches follow the SegNet design [75] where all decoder layers and maps are in sym-

metry with the encoder. Trained upsampling can be naturally augmented with lateral (also

known as ladder-style) connections [30] in order to blend semantically rich deep features with

spatially rich shallow ones. FCN [3] performs the blending by adding scores of upsampled

features from different convolutional layers. However, this results in slow inference due to

high-dimensional features at the output resolution, and poor accuracy due to simplicity of in-

dependent scoring. U-Net [31] proposes a symmetric encoder-decoder architecture, where the

decoder is designed as a series of recurrent upsampling modules. Each upsampling module

concatenates the upsampled previous representation with the lateral connection, and blends the

two with a processing block whose complexity reflects the corresponding processing block in

the encoder. However, we believe that recognition requires more capacity than locating borders

19

Convolutional architectures for semantic segmentation

when rough semantic content is known. This assumption is supported by empirical advantage

of asymmetric encoder-decoder architectures in semantic segmentation [33] and object detec-

tion [32]. We therefore opt for a simple asymmetric decoder composed of minimalistic upsam-

pling modules, which offers enough recognition power to match the accuracy of heavyweight

approaches [65] while supporting real-time inference.

3.1.1 Methods of adapting classification encoders for dense prediction

It is well documented how pre-training on large-scale classification datasets benefits recognition

quality. In the scientific literature, using ImageNet pre-trained classification models is the com-

mon approach. Drawings in Figure 3.1 illustrate how such adaptations may be performed for

semantic segmentation. All approaches apply a linear classifier independently at each spatial

location *. The simplest approach, shown in Figure 3.1a attaches a linear classifier to the final

convolutional features. The logits tensor is 32 times subsampled wrt. the input image. There-

fore, a considerable loss in detail is present. This approach was first introduced by FCN32s [76].

Figure 3.1b shows how DeepLab retains spatially rich classification by refraining from subsam-

pling convolutional features [74, 77]. Here, the classification model is adapted by removing

pooling operators from convolutional blocks. In order to retain the same receptive field as in

the original model, convolutions coming after the removed pooling require adaptation: the di-

lation factor of a convolution layer is doubled for each preceding omission. This approach is

effective in terms of accuracy in detailed areas. However, the introduced computational strain

is immense. This shortcoming is overcomed by encoder-decoder architectures [31, 75]. Here,

the classification backbone (encoder) produces spatially coarse features. The spatial details are

recovered using decoder units (shown by blue trapezoids in Figure 3.1c) which upsample the

low-resolution feature maps. Decoder units are connected with encoder blocks using skip con-

nections. Here, the capacity of a decoder unit and the corresponding encoder block is the same.

Asymmetric decoders introduce a single convolutional layer per decoder unit [32, 33]. Usually,

the number of feature maps is kept constant throughout the decoder. Figure 3.1d shows how

a projection layer adapts the dimensionality inside the decoder. This leads to efficient decoder

architectures which are applicable to real-time applications.

Early approaches aiming to enlarge the receptive field of dense predictions were based on

dilated convolutions [29, 74, 78]. A more involved approach is known as spatial pyramid pool-

ing (SPP) [79]. SPP averages features over aligned grids with different granularities [80]. Our

baseline approach uses a convolutional adaptation of that idea as proposed in PSPNet [15]

and elaborated in Ladder-DenseNet [65], where a feature pyramid is upsampled and concate-

*Note how a linear classifier accepts a feature vector f and projects it to the class space as s = Wf+b where
W and b are trainable weight matrix and bias vector, respectively. Applying the same classifier to each spatial
location is performed using 1×1 convolution using the same parameters W and b

20

Convolutional architectures for semantic segmentation

EB EB EB EB

stem

H
4

×
W
4

×F1H×W×3 H
4

×
W
4

×F2
H
8

×
W
8

×F3
H
16

×
W
16

×F4

H
32

×
W
32

×F5

UP
 +

 C
LS

(a) A baseline approach. Global average pooling and fully connected layers are removed.
A per-pixel linear classifier (1×1 convolution) is attached to final convolutional features.

EB EB EB
(dilation=2)

EB
(dilation=4)

stem

H
4

×
W
4

×F1H×W×3 H
4

×
W
4

×F2
H
8

×
W
8

×F3
H
8

×
W
8

×F4
H
8

×
W
8

×F5

UP
 +

 C
LS

(b) Preventing subsampling with dilated convolutions. Pooling operations are removed
to retain feature resolution. Strided convolutions are adjusted to have stride=1. Dilation
rates are set to 2k where k is the number of stride replacements which occurred before a
convolution.

EB EB EB EB

stem

H
4

×
W
4

×F1H×W×3 H
4

×
W
4

×F2
H
8

×
W
8

×F3
H
16

×
W
16

×F4

UP UP

UP + CLS

H
8

×
W
8

×F3
H
16

×
W
16

×F4H×W×C

H
4

×
W
4

×F2
H
8

×
W
8

×F3
H
16

×
W
16

×F4

UP

H
32

×
W
32

×F5

H
4

×
W
4

×F2

(c) Symmetric encoder-decoder structure. Decoder blocks are shown using blue trape-
zoids. Decoder units (blue trapezoid) upsample input features twofold.

EB EB EB EB

stem

H
4

×
W
4

×F1H×W×3 H
4

×
W
4

×F2
H
8

×
W
8

×F3
H
16

×
W
16

×F4

UP UP

UP & CLS

H
8

×
W
8

×D3
H
16

×
W
16

×D4H×W×C

H
4

×
W
4

×D2
H
8

×
W
8

×D3
H
16

×
W
16

×D4

UP

H
32

×
W
32

×D5

H
4

×
W
4

×D2

(d) Asymmetric encoder-decoder structure. There is only one convolution per decoder
block. Also, feature dimensionality is reduced (usually using 1×1 convolutions shown
by red squares).

Figure 3.1: Methods for adapting pre-trained classification architectures for semantic segmentation.
Yellow trapezoids display convolutional blocks which are adapted from an image classifier.

21

Convolutional architectures for semantic segmentation

nated with input features. Thus, subsequent convolutions obtain access to broad spatial pools

which increase their receptive field. The receptive range can also be enlarged by applying a

bank of atrous convolutions with different rates, which is known as à trous SPP, or ASPP for

short [14]. SPP has been recently improved by processing each pooled representation with a

squeeze-excitation module [81]. Large receptive range can also be obtained by applying the

convolutional backbone to different levels of the resolution pyramid [28]. The recovered scale-

covariant representations can be fused by a scale selection multiplexer controlled with trained

attention [74] or depth information [38]. However, most recent attention has been directed to-

wards simpler fusion schemes based on addition [18, 82]. In this thesis, we propose pyramidal

fusion as a novel and principled approach to fuse a pyramidal representation with shared pa-

rameters. Pyramidal fusion has several distinct advantages which we summarize towards the

end of this section.

There are many approaches to reducing the computational load of a convolutional model

while preserving its accuracy. Quantization approaches reduce the weight precision [83]. Prun-

ing approaches reduce the number of connections within the model [84]. However, in this thesis

we mostly experiment with simplified forms of convolution. Some forms of simplified convo-

lutional forms include grouped convolutions and depthwise separable convolutions. Grouped

convolutions reduce the number of floating point operations and the number of parameters by

enclosing the information flow within smaller groups of feature maps. Depthwise separable

convolutions [85, 86] decrease computational complexity by splitting a regular convolution in

two. Firstly, a k× k convolution is separably applied to each input channel. This can be viewed

as a group convolution where the number of groups equals the number of channels C (there

are C kernels k×k×1). Secondly, a 1×1 convolution is applied to propagate inter-channel in-

formation. Replacing standard convolutions with depthwise separable convolutions lowers the

number of parameters and decreases computational complexity at the cost of some performance

drop. Strong regularization effect of depthwise separable convolutions can be relaxed with in-

verted residual blocks [43] which consist of three layers: i) a projection which expands dimen-

sionality to C, ii) a grouped convolution with C groups, iii) a linear projection which restores

the initial dimensionality. Our experiments confirm that inverted residual blocks lead to com-

pact and accurate models which are suitable for mobile applications, although they are still less

efficient than standard convolutions on popular GPU hardware. Various methods have been pro-

posed to discover prominent inter-group connections. ShuffleNet [70] uses channel shuffling to

pass information across convolutional groups. CondenseNet [87] incorporates a training strat-

egy which locates important connections in grouped convolutions and prunes those which are

redundant.

22

Convolutional architectures for semantic segmentation

3.2 Efficient architectures for semantic segmentation

Our study of efficient methods for semantic segmentation resulted in the following observation.

We found there are two approaches to designing an efficient segmentation model. The first

group of methods use custom architectures. These models are usually trained from random

parameter initialization. Methods in the second group adapt convolutional feature extractors

from classification architectures. The adaptation enables initialization of model parameters by

training on large classification datasets. This trait is important as segmentation datasets have

several orders of magnitude less images compared to classification datasets †. Visual diversity

present in classification datasets presents a great opportunity for transfer learning.

3.2.1 Custom architectures for real-time dense prediction

Many real-time semantic segmentation approaches refrain from backbones designed for com-

petitive ImageNet performance. ENet [88] proposes an architecture with custom bottleneck

residual blocks, and a decoder with no lateral connections. ERFNet [17] proposes residual

units composed of two 1D convolutions (3×1, 1×3). DG2S [89] improves on ERFNet with

i) depthwise separable convolutions, and ii) grouped projections with channel shuffling. ERF-

APSPNet [90] combines the ERFNet encoder with ASPP [14]. ESPNet [19] factorizes convolu-

tions into i) a bottleneck projection, and ii) concatenated atrous convolutions with different di-

lation factors (similar to ASPP). ICNet [18] proposes a resolution pyramid with partially shared

parameters and a custom lightweight encoder. They gradually fuse multi-scale representations

before restoring the resolution by a decoder without lateral connections. LERNet [91] intro-

duces a custom residual backbone which uses depthwise separable convolutions to maintain

low processing requirements. They improve inference speed in video by propagating informa-

tion across video frames with an attention module based on feature similarity.

3.2.2 Architectures with ImageNet classification backbones

Recent research shows that efficient semantic segmentation models can also be based on lightweight

ImageNet pre-trained classification architectures. Ladder-DenseNets [33, 65] combine a cus-

tomized DenseNet encoder, SPP module, and ladder-style upsampling. They deliver over 80%

mIoU on Cityscapes test, and allow training on a single consumer-grade GPU due to small

memory footprint of suitably checkpointed DenseNet encoders. LinkNet [92] and RefineNet-

LW [93] also use an ImageNet-pretrained backbone and ladder-style upsampling, however,

they propose convolutional postprocessing at full resolution [92] and thicker upsampling [93].

†Labeling a single image for semantic segmentation may take more than one hour. Labeling for classification
takes only a few seconds.

23

Convolutional architectures for semantic segmentation

GUN [82] proposes a two-level pyramid based on the dilated DRN-D-22 encoder [78] with par-

tially shared parameters. They also use a decoder with three lateral connections and a guided

nonlinear upsampling unit which improves accuracy at object boundaries. SwiftNetRN-18 [40]

(our baseline model) consists of a ResNet-18 encoder, lightweight SPP [65], and lightweight de-

coder with ladder-style upsampling [65]. SwaftNet [94] extends SwiftNet with squeeze-excite

in lateral connections. DFANet [95] applies a shared Xception-based encoder at multiple scales.

However, only the finest level of their encoder observes the image, while all other levels oper-

ate on a blend of previously extracted features. DF2-Seg2 [96] proposes a neural architecture

search algorithm which separately optimizes the decoder and the encoder of an architecture sim-

ilar to our single-scale model without SPP. Their models would likely profit from increasing

the receptive range with pyramidal fusion or SPP.

Table 3.1 presents time complexity analysis of popular classification models. For each archi-

tecture, the total number of multiply-additions is shown for each convolutional block. Moreover,

the share in total model computation is displayed for each block.

Table 3.1: Analysis of per-block complexity expressed in the number of multiply-adds for different
classification architectures.

Model Stem EB 1 EB 2 EB 3 EB 4 Total

densenet121 114M (4%) 1102M (40%) 786M (28%) 629M (23%) 102M (3%) 2733M

densenet161 171M (2%) 2470M (33%) 1763M (23%) 2576M (34%) 446M (6%) 7426M

densenet169 114M (3%) 1102M (33%) 786M (24%) 960M (29%) 278M (8%) 3241M

resnet18 114M (6%) 443M (25%) 393M (22%) 392M (22%) 392M (22%) 1735M

resnet34 114M (3%) 664M (18%) 835M (23%) 1275M (36%) 613M (17%) 3501M

resnet50 114M (2%) 645M (16%) 986M (25%) 1401M (35%) 773M (19%) 3921M

mobilenet_v2 53M (17%) 42M (14%) 30M (9%) 102M (34%) 73M (24%) 300M

vgg16 86M (<1%) 1767M (11%) 2649M (17%) 4412M (29%) 4411M (29%) 14767M

3.2.3 Relation to related previous work

We now highlight differences between our method and the most related previous work. Our

single-scale baseline (SwiftNet-RN18) is similar to Ladder-DenseNets [65] since it also uses

ladder-style upsampling and spatial pyramid pooling. However, in this thesis we focus on pyra-

midal fusion which outperforms SPP in all our experiments, especially when training data is

scarce and image resolution is large. Additionally, we exploit simpler backbones (ResNet-18

and MobileNet-v2) and therefore report almost three times faster inference. In comparison

with LinkNet [92], we do not consider convolutions at full resolution and keep a lower number

of decoder channels. In comparison with RefineNet-LW [93], our design requires 50% less

floating-point operations without sacrificing recognition accuracy on road-driving datasets. In

24

Convolutional architectures for semantic segmentation

comparison with GUN [82], we embrace subsampling instead of avoiding it through dilated

convolutions, since our ladder-style decoder delivers cheap and accurate upsampling.

Pyramidal fusion is a principled architectural pattern which collects representations from all

processing blocks across all pyramid levels and then gradually blends them within the ladder-

style decoder. When compared with recent pyramidal approaches ICNet [18] and GUN [82],

our model shares all backbone parameters in all three levels of the pyramid and uses twelve

lateral connections between processing blocks instead of only two or three. In comparison with

DFANet, our model applies the same backbone to all images of a resolution pyramid, while they

operate on a single resolution input. To conclude, the main advantage of pyramidal fusion is a

clear and principled design which promotes scale covariance, and allows for context recognition

on 128× subsampled representation which induces a large receptive range.

25

Chapter 4

Semantic image segmentation using
pyramidal fusion

Our method starts from the following assumptions. Recognition encoders should be pre-trained

on ImageNet in order to benefit from knowledge transfer. Receptive range should be enlarged

by a suitable module or architectural pattern. The resolution of encoded features should be

restored by a ladder-style decoder in order for the predictions to retain detail. The upsampling

path must be simple in order to support real-time inference. Gradient flow should be facilitated

throughout the network to ensure efficient learning. This requirement would also favour training

from random initialization in an event that ImageNet pre-training is not available or not useful.

4.1 Basic building blocks

Our contribution is conceived around three building blocks which we introduce in the following

paragraphs. These building blocks are going to be used in our two architectures which we

describe in subsequent subsections.

4.1.1 Convolutional layers for fast inference

Basic two-dimensional convolution at spatial location (i, j) is described by the following equa-

tion:

I(i, j)∗K f = ∑
c

∑
m

∑
n

I(c, i−m, j−n)K f (c,m,n) (4.1)

where I is the input tensor of size C × H ×W and K is the kernel tensor of size F ×C ×
K ×K. K f is a kernel of size C ×K ×K which produces the f -th feature map in the output

tensor. The standard convolution is visualized in Figure 4.1. By convolving all F kernels

across the input tensor, the final result is a tensor of size F ×H ×W . The regular convolution is

consisted of roughly F×H×W ×K2 dot products which translates to F×H×W ×K2×C fused

26

Semantic image segmentation using pyramidal fusion

multiply-accumulate operations(MACs). In the rest of this subsection, we give an overview of

operations more efficient in computation or parameter count. We do not take into consideration

the complexity of per channel bias additions as their complexity is a few orders of magnitude

smaller.

* =
k

k

C FF

W

H
H

W

C

Figure 4.1: Visualization of feature maps produced by a standard convolution. All kernels (small
squares) are applied at all spatial locations of the all input feature maps (gray rectangles). Each out-
put feature map is produced by the kernel of the same color.

Group convolution operates on parts of the input tensor rather than the whole tensor, as

shown in Figure 4.2. These parts are called groups. The number of convolutional groups is

inversely proportional to number of operations. For an input tensor of size C×H×W , G groups,

where each group is convolved with a F
G × C

G ×K×K sized kernel, there is F
G ×H×W × C

G ×K2

MACs per group. In total, there is F ×H ×W × C
G ×K2 MACs in a group convolution. The

standard convolution may be viewed as a grouped convolution with G = 1.

* =

{

{

{
{

{
{

k
k

F

H

W

C

W

H

F/G

C/G

Figure 4.2: Visualization of feature maps produced by a grouped convolution. Each kernel (small
squares) is applied at all spatial locations of input feature maps (gray rectangles) in its group (brack-
ets with matching color). Each output feature map is produced by the kernel of the same color. Note that
there is no dependency between output feature maps produced by kernels from different groups.

Depthwise separable convolution. On the other extreme, the convolution where the num-

ber of input channels equals the number of convolutional groups, i.e. G = C, is called a

separable convolution. Such convolution does not have any information shared between dif-

ferent convolutional groups which greatly limits model expressivity. By introducing a 1× 1

27

Semantic image segmentation using pyramidal fusion

convolution after the preceeding separable convolution, connections between groups are made

and inter-group information flow is supported. This 2-convolution sequence is called a depth-

wise separable convolution and is visualized in Figure 4.3. Separable convolution consists of

F ×H ×W ×K2, and the pointwise convolution consists of F ×H ×W ×C MACs. Together,

there is F ×H ×W × (K2 +C) MACs in a depthwise separable convolution.

* =

k
k

{
{

{

{

{
{
{
{

*
1

1

C

W

H

F

H

W

F

C

Figure 4.3: Visualization of feature maps produced by a depthwise separable convolution. Each kernel
(small squares) is applied at all spatial locations of a single input feature map (gray rectangle). After-
wards, a standard convolution with kernel size 1 is applied to the intermediate representation.

Fusing batch normalization with convolution. Batch normalization (BN) [56] is commonly

used in deep models since its introduction. It was shown that BN alleviates the problem of

vanishing gradients and has regularization effects. Batch normalization is applied to the c-th

channel of tensor Y at position p in the following manner:

BNγ,β (Yc
p) = Ŷc

p = γ
c

Yc
p −µc√
σ c2

+ ε

+β
c, (4.2)

where µ and σ are the mean and variance of feature map activations, and γ and β are trainable

parameters which enable BN to learn an identity function. During training, µ and σ are calcu-

lated for each mini batch separately, where a moving average of their values is recorded. During

inference, these global averages (µ̂ and σ̂) are used to perform batch normalization. The shift

and scale operation may be moved to the preceding convolutional layer by modifying the kernel

and the bias parameters. This way, there is no need to perform batch normalization separately.

When fusing BN to preceding convolutional kernel for inference, there is no additional compu-

tational strain introduced during inference. However, during training, BN activations contribute

to roughly 50% of the total memory allocated. This is the main bottleneck when training BN

supported convolutional models.

Let us demonstrate how BN parameters are fused with a preceding convolution during in-

ference. The output of a k × k convolutional layer in channel c at position p is expressed as

Yc
p = WcTim2col(X,p,k)+bc = WcT X̃p +bc, (4.3)

28

Semantic image segmentation using pyramidal fusion

where im2col is a function which extracts a k× k sizes patch around position p *. By inserting

this expression into Equation 4.2 and grouping multiplications and additions, we get

Ŷc
p =

γcWcT X̃p +bc − µ̂c√
σ̂ c2

+ ε

+β (4.4)

Ŷc
p =

γcWcT X̃p√
σ̂ c2

+ ε

+β
c + γ

c
bc − µ̂c√
σ̂ c2

+ ε

. (4.5)

Finally, the fused convolution scales kernel of the c-th feature map by γc√
σ̂ c2

+ε

and sets the bias

to β c + γc bc−µ̂c√
σ̂ c2

+ε

. In this way batch normalization does not introduce additional computation

during model inference.

4.1.2 Elements of an efficient encoder-decoder architecture

Accurate segmentation architectures are composed of lightweight convolutional instances. Two

parts of the architecture are highlighted: an encoder and a decoder. The encoder processes

the input image to form a spatially coarse but high-dimensional tensor. High dimensionality

is measured by the number of feature maps at the encoder output, which is several orders of

magnitude higher than the number of image channels. Spatial resolution is recovered using a

decoder. The proposed architecture uses a series of simple upsample-blend operations which

are suitable for efficient inference. Finally, adjusting the receptive field while enabling fast

inference is necessary to enable segmentation accuracy in large images.

Recognition encoder We consider compact ImageNet-grade architectures which offer fair

performance and affordable computational requirements. We focus on ResNet-18 [42] and

MobileNet V2 [43] for a number of reasons. They are a good fit for fine tuning due to pre-

trained parameters being publicly available. They promote efficient training from scratch due to

moderate depth and residual structure. Finally, they are compatible with real-time operation due

to relatively low complexity. Computationally, ResNet-18 is around six times more complex,

however the two models are equally fast on GPU hardware which is likely due to depthwise

separable convolutions being less efficient than regular convolutions. Both encoders consist of

four encoder blocks (cf. EB in Fig.4.5) which produce intermediate features on subsampling

levels x4, x8, x16 and x32.

*An excellent blog post explaining im2col may be accessed at https://petewarden.com/2015/04/20/
why-gemm-is-at-the-heart-of-deep-learning/

29

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Semantic image segmentation using pyramidal fusion

Upsampling decoder The recognition encoder transforms the input image into semantically

rich visual features. These features must have a coarse spatial resolution in order to save mem-

ory and processing time. The purpose of the decoder is to upsample these features to the input

resolution. We advocate a simple decoder organized as a sequence of upsampling modules

(cf. UP in Fig.4.5) with lateral connections [33]. The proposed ladder-style upsampling mod-

ules have two inputs: i) low-resolution features from the preceding upsampling module, and ii)

high-resolution features from the corresponding encoder block. The low-resolution features are

first upsampled with bilinear interpolation to the same resolution as the lateral features coming

from the encoder. Upsampled input features and lateral encoder features are then fused with

elementwise summation and finally blended with a 3×3 convolution. Note that replacing that

convolution with either a 1×1 convolution, or a depthwise separable convolution decreases the

validation accuracy.

We route lateral features from the last convolutional unit of each encoder block. In the case

of ResNet-18, we use features from the last addition operator as shown in Figure 4.4. Note

that routing lateral features from the subsequent ReLU decreases the validation accuracy in our

multi-scale setup.

Figure 4.4: Structural diagram of the last residual unit of an encoder block. We do not use pre-
activation [97] since we could not find a pre-trained parameterization for ResNet-18. The lateral con-
nection is taken from the output of the elementwise sum after the last residual block. The output of the
ReLU node is forwarded to the next encoder block. Credit: Oršić and Šegvić [41].

Increasing the receptive field We consider two approaches for increasing the receptive field

while maintaining real-time speed: i) spatial pyramid pooling (SPP), and ii) pyramidal fusion.

SPP [15, 65] produces feature maps with varying level of detail by enriching features from the

encoder output with their pools over coarse spatial grids 1×1, 2×2, 4×4 and 8×8. Pyramidal

fusion is based on genuine multi-scale representations which we train with boundary-aware

loss [35, 98] in order to avoid overfitting to unsuitable level of detail. We propose to blend

representations at different levels of abstraction and thus enlarge the receptive field without

sacrificing spatial resolution.

30

Semantic image segmentation using pyramidal fusion

4.2 Single-scale architecture

Our single-scale architecture transforms the input image into dense semantic predictions through-

out downsampling recognition encoder, spatial pyramid pooling module, and lightweight up-

sampling decoder, as shown in Figure 4.5. Yellow trapezoids designate encoder blocks (EB),

that is, parts of the backbone which produce the same spatial resolution on output. All consid-

ered encoders consist of four such blocks. The first block produces features at the H/4×W/4

resolution, while each following block increases subsampling by the factor of 2. Thus the fea-

tures at the far end of the encoder are H/32×W/32. These features are fed into the spatial

pyramid pooling module (SPP) (cf. green diamond in Fig. 4.5) in order to increase the effective

receptive field. The resulting tensor is finally routed to the decoder whose upsampling modules

(UP) are shown in blue.

EB

SPP

EB EB

1×1

EB

1×1 1×1

UP UP UP

H × W

H × W

Figure 4.5: Structural diagram of the proposed single scale model. Yellow trapezoids designate encoder
blocks which may be pre-trained on ImageNet. Green diamond designates the spatial pyramid pooling
module, red squares designate bottleneck projections, while blue trapezoids designate lightweight up-
sampling modules. Logits are upsampled to the input resolution with 4× bilinear interpolation. Credit:
Oršić and Šegvić [41].

Our SPP module is a simplified and slightly improved version of the pyramid pooling mod-

ule (PPM) from PSPNet [15], as proposed in [65]. Most differences between the two modules

are caused by their different placements in the two architectures. PSPNet has only one con-

volutional layer between the PPM and the predictions. Hence, PPM has two responsibilities:

to provide context and to condition features for linear classification. On the other hand, in our

architecture, SPP features must pass through the entire decoder before getting classified in the

31

Semantic image segmentation using pyramidal fusion

lower-left part of Fig. 4.5. Hence, our SPP is just an instrument for enlarging the receptive field.

Therefore, we reduce the input dimensionality to 128 (PPM has 2048 feature maps on input),

and produce 128 feature maps on output (the output dimensionality of PPM is 4096). This re-

duction is appropriate since our SPP operates on H/32×W/32 input which corresponds to 16

times less data than PPM which operates on H/8×W/8. Besides decreasing the capacity, we also

adapt the four subsampling grids to the aspect ratio of the input tensor. Thus our coarsest pool

is 1×1 during training on square crops, while its shape is 1×2 during inference on Cityscapes.

Note that our decoder and encoder are asymmetric [33]: the encoder has many 3×3 con-

volutions per encoder block while the decoder has only one 3×3 convolution per upsampling

module. Furthermore, the dimensionality of encoder features increases along the downsam-

pling path, while the dimensionality of the decoder features is constant. As discussed in the

related work, this design reflects our belief that recognition requires more capacity than locat-

ing borders when the semantic content is known. Therefore, lateral connections have to adjust

dimensionality with 1×1 convolutions which we designate with red squares. The decoder uses a

single 3×3 convolution per upsampling stage in order to keep inference time as low as possible.

Upsampling modules operate in three steps: i) the low-resolution representation is bilinearly

upsampled, ii) upsampled representation is summed with the lateral connection, iii) the summa-

tion result is blended with 3×3 convolution. This architecture presents a very strong baseline,

especially when equipped with an efficient encoder such as ResNet-18 or MobileNet V2 [40].

4.3 Multi-scale architecture with pyramidal fusion

Our multi-scale architecture independently extracts features at different levels of the resolution

pyramid as shown in Figure 4.6. All instances of the recognition encoder share parameters in

all four processing blocks. This enforces scale covariance within the encoder (unlike SPP),

which allows to recognize objects of different sizes with the same set of parameters. This also

increases the receptive field since our predictions have access to features extracted from coarse

images. We expect that such design will get more and more prominence as image resolutions get

larger. Finally, entanglement of heterogeneous representations enhances gradient propagation

towards early layers and promotes ensemble-like behaviour as we show in experiments.

Yellow trapezoids denote encoder blocks (EB). Corresponding instances of the same encoder

block are designated with the same colour as a hint that they share parameters. Red squares

denote projections (1×1 convolutions) which adjust the number of feature maps to the dimen-

sionality of the upsampling path. Connection widths illustrate feature dimensionality. Green

circles denote elementwise summation which fuses all extracted features at the same spatial res-

olution. This step is our main novelty and we denote it as pyramidal fusion. The fused features

are passed to the decoder as lateral connections for ladder-style upsampling. As in the single-

32

Semantic image segmentation using pyramidal fusion

EB

UP

EB

EB

UP UPUP

H × W

H × W

H/2 × W/2

H/4 × W/4

UP

+ + + +

EB EB

EBEBEB

EB EB EB EB

Figure 4.6: The proposed multi-scale architecture has shared encoders and pyramidal fusion. Yellow
trapezoids denote encoder blocks (EB). Red squares denote projections (1× 1 convolutions) which es-
tablish dimensionality of the decoder. Green circles represent elementwise summation. The resolution is
restored by lightweight upsampling modules designated with blue trapezoids (UP). Same color indicates
shared parameters. Credit: Oršić and Šegvić [41].

scale architecture, the upsampling modules involve bilinear upsampling, elementwise addition

and 3×3 convolution. The logits are produced by simple projection and 4x bilinear upsampling.

Pyramidal fusion may look queer since it fuses heterogeneous features with different seman-

tics. However, such arrangement results in a very well connected model which trains well and

favours generalization due to acting as a large ensemble of simpler models. Early experiments

with this architecture underperformed on small objects [40], which we attribute to overfitting to

the coarsest level of the resolution pyramid. We counteract this effect by favouring pixels which

are close to semantic boundary, as we show next.

4.4 Increasing the penalty for boundary pixels

Adding levels to our image pyramid enlarges the receptive range and regularizes the encoder.

The coarsest feature maps created by the 3-level image pyramid are only 8×16 pixels wide.

These features contribute by representing a wide context of dense predictions, similar to SPP

which also assembles extremely coarse representations (1×1, 2×2, 4×4, and 8×8). However,

this may cause two problems for our pyramidal fusion architecture: i) downsampled represen-

33

Semantic image segmentation using pyramidal fusion

tations may hurt detection of small objects, ii) increased number of randomly initialized param-

eters may lead to overfitting. We attempt to address these issues by guiding the optimization

procedure to prioritize pixels at semantic borders.

We emphasize the importance of pixels near semantic boundaries by employing the boundary-

aware loss [35]. This is a modification of the focal loss [99] which amplifies the loss at pixel

(i, j) according to the distance di j from that pixel to the closest semantic border. We determine

di j by applying distance transform to the ground truth segmentation labels. The modulation is

expressed by the boundary factor α i j which is formulated as follows:

α
i j =

8, if di j ∈ [0,15]

4, if di j ∈ [16,63]

2, if di j ∈ [64,127]

1, if di j > 127

(4.6)

The boundary-aware loss multiplies the standard negative log likelihood of the correct pre-

diction with two pixel-level modulation factors:

Li j =−α
i jeγ(1−pi j

t) log pi j
t . (4.7)

Here, pi j
t is the probability the model assigned to the ground truth class. Modulation factor

of the focal loss eγ(1−pi j
t) gives precedence to poorly classified pixels (we use γ=0.5 in all ex-

periments). Finally, the boundary factor α i j prioritizes correct predictions at semantic borders.

Figure 4.7 shows a histogram of distances from semantic borders (di j) across full resolution

Cityscapes train. A large proportion of Cityscapes pixels are close to a semantic border. The

binning procedure (4.6) leads to almost equal frequency of the four weights. This is demon-

strated in Figure 4.8. The figure visualizes maps of the boundary factor α obtained with bins

from (4.6). Note how color coding matches the histogram colors from Figure 4.7.

34

Semantic image segmentation using pyramidal fusion

Figure 4.7: Histogram of distances to the closest semantic border on Cityscapes train at full resolution.
Plot colors designate the four loss weights resulting from thresholds from (4.6). Credit: Oršić and
Šegvić [41].

Figure 4.8: Visualization of the boundary factor α (left) as determined from ground truth labels (right)
according to (4.6). The loss weights are designated with the same colours as in Figure 4.7. The closer a
semantic boundary — the greater the loss multiplier. Credit: Oršić and Šegvić [41].

35

Chapter 5

Experimental evaluation of proposed
methods

We evaluate mIoU accuracy of our methods in experiments on four semantic segmentation

datasets: Cityscapes [23], CamVid [100], Mapillary Vistas [24] and ADE20k [101]. We report

the inference speed of our models on two desktop GPUs (GTX 1080Ti and RTX2080Ti) and

two embedded GPUs (Jetson TX2 and Jetson Nano), as well as their computational complexity

as determined by torchstat*. We present ablation and validation experiments which provide a

more detailed insight into the impact of various design choices. Finally, we present experiments

which interpret the decision procedure of our models on the Cityscapes dataset.

5.1 Training and inference details

We train our single-scale models with the usual cross-entropy loss and add the boundary-aware

term for models with pyramidal fusion. Single-scale models are unaffected by the boundary-

aware loss. All pyramid models share encoder parameters. However, batch normalization statis-

tics are independently calculated at different levels of the pyramid. We use the Adam [102]

optimizer. We set the initial learning rate to 4 · 10−4 and decay it with cosine annealing to the

minimum value of 1 ·10−6 in the last epoch (we do not perform any warm restarts). The weight

decay is set to 1 · 10−4. In experiments with ImageNet pre-training, we update pre-trained pa-

rameters with a 4 times smaller learning rate and apply 4 times smaller weight decay. We train

on jittered square crops with batch size 14. Jittering consists of random horizontal flipping, and

scaling with random factors between 0.5 and 2. We set the random crop size to 768×768 for

full Cityscapes resolution and Vistas, 448×448 for half Cityscapes resolution and CamVid, and

384×384 for ADE20k. On Cityscapes, Vistas and ADE20k, we employ a random crop sam-

pling strategy which favors pixels of rare classes [103]. We train for 250 epochs on Cityscapes

*https://github.com/Swall0w/torchstat

36

https://github.com/Swall0w/torchstat

Experimental evaluation of proposed methods

and 400 epochs on CamVid. When training from scratch, we train for additional 200 epochs.

We train Vistas and ADE20k models for 100 epochs.

We convert our binary PyTorch models to ONNX format and subsequently optimize them

with TensorRT. Effects of TensorRT optimization vary across models and platforms. A Ten-

sorRT version of ResNet-18 is only slightly faster than the corresponding PyTorch version with

fused batch normalization layers [40]. In case of MobileNet V2 and embedded hardware, the

effects are significantly larger. Under PyTorch, we simulate real-time application by setting

batch size to 1. We measure the time elapsed between transferring the input data to the GPU

and receiving the semantic predictions into RAM as shown in Figure 5.1. Under TensorRT, we

measure the inference speed with the equivalent C++ code.

device = torch.device(’cuda’)

model.eval()

model.to(device)

with torch.no_grad():

input = model.prepare_data(batch).to(device)

logits = model.forward(input)

torch.cuda.synchronize()

t0 = perf_counter()

for _ inrange (n):

input = model.prepare_data(batch).to(device)

logits = model.forward(input)

_, pred = logits.max(1)

out = pred.data.byte().cpu()

torch.cuda.synchronize()

t1 = perf_counter()

fps = n / (t1 − t0)

Figure 5.1: The proposed procedure for measuring the inference speed under PyTorch.

5.2 Cityscapes

The Cityscapes dataset is a collection of images taken during daytime and fine weather from

the driver’s perspective. It consists of 2975 training, 500 validation, and 1525 test images. Each

image has 1024×2048 pixels, and each pixel is assigned one of 19 class labels. Cityscapes also

includes 20000 coarsely labeled images which we do not use in our experiments.

Table 5.1 evaluates the accuracy (class mIoU) and efficiency (GFLOP, fps) of our methods

when training on full resolution Cityscapes train. Our single scale method based on ResNet-18

achieves 75.4% val mIoU, and delivers 41.0 fps. The corresponding pyramidal fusion model

achieves 76.4% validation mIoU and runs at 34.0 fps. All inference speed metrics assume

GTX 1080 Ti unless stated differently. The single scale and pyramidal fusion models based

37

Experimental evaluation of proposed methods

on MobileNet V2 encoder reduce the number of parameters and floating point operations while

achieving competitive accuracy.

Table 5.1: Semantic segmentation performance on full resolution images from Cityscapes val. Column
fps shows the inference speed (frames per second) on GTX 1080 Ti. Column GFLOP denotes the number
of floating point operations.

backbone method mIoU fps GFLOP parameters

ResNet-18 pyramid 76.4 34.0 128 12.0M

MobileNet V2 pyramid 77.4 29.7 42 2.7M

ResNet-18 single scale 75.4 41.0 114 11.8M

MobileNet V2 single scale 75.3 39.4 39 2.6M

Table 5.2 compares our models with efficient approaches from the literature. Column res

denotes resolution at test time. Column fps∗ provides a rough estimate on how would other

methods perform on our hardware. The scaling factors are: 1.0 for GTX1080Ti, 0.61 for TitanX

Maxwell, 1.03 for TitanX Pascal, and 1.12 for Titan Xp. We estimated these factors from pub-

lic benchmarks available at: goo.gl/N6ukTz, goo.gl/BaopYQ. The column GFLOP∗ shows

an estimated number of floating point operations for an input image of 1MPx, as a resolution-

agnostic metric of computational complexity. The two sections of the table presents models

which train from scratch (top), and models pre-trained on ImageNet (bottom). For orienta-

tion purposes, the bottom section includes two heavyweight approaches — PSPNet [101] and

DeepLabv3+ [14], as well as one near-real-time approach — LDN-121 [65].

In both sections of the table, our pyramidal fusion models achieve the best accuracy among

methods which deliver more than 30 fps on a GTX1080 Ti on full Cityscapes resolution. Our

best model SwiftNetRN-18 pyr achieves 75.9%mIoU and 76.4%mIoU on the Cityscapes eval-

uation server. Note that the latter result was achieved after pre-training our model on Vistas.

A comparison of our models in different sections of the table reveals that ImageNet pre-

training brings at least 5 mIoU percentage points (pp). This indicates that pre-training is an

important ingredient on small datasets such as Cityscapes. However, we note that some other

designs get less benefit from ImageNet; for instance, ERFNet [17] gets only 1.7% pp. We

believe that ERFNet’s incapability to benefit from ImageNet pretraining is likely due to insuf-

ficient receptive range (ERFNet does not have SPP) and lack of skip connections. The former

degrades recognition of smooth surfaces on large objects, while the latter disables recognition

of small objects regardless of recognition power. The greatest differences between ERFNet and

SwiftNet-RN18 occur at very large objects (e.g. truck: 17 pp mIoU) and small objects (e.g.

traffic-light: 8pp mIoU).

38

Experimental evaluation of proposed methods

Table 5.2: Semantic segmentation performance on Cityscapes when initializing from scratch (top),
and from parameters pre-trained on ImageNet. We report input resolution (res), evaluation split (set),
achieved accuracy (mIoU), inference speed (fps), normalized inference speed (fps∗), normalized com-
putational complexity (GFLOP∗) and number of parameters (params). Label pyr denotes the pyramidal
fusion model presented in 4.3. Label ens denotes the ensemble of the single scale model and the pyramid
model. Symbols † and ‡ designate pre-training on ImageNet and Vistas, respectively. Methods denoted
with ? do not publish computational complexity so there we only report GFLOPS and parameters for the
encoder.

Model res set mIoU fps fps∗ GFLOP∗ param

ENET [88] full test 58.3 21.6 35.4 17.4 1.4M

ERFNet [17] half test 68.0 11.2 18.4 55.4 20.0M

D* [89] half val 68.4 - - 11.6 0.5M

DG2s [89] half val 70.6 - - 38.0 1.2M

ESPNet [19] half test 60.3 112 108.7 - 0.4M

ICNet [18] full test 69.5 30.3 49.7 - -

LERNet [91] half test 66.5 100 100 25.4 0.65

SwiftNetRN-18 half val 65.3 134.9 134.9 52.0 11.8M

SwiftNetRN-18 full val 70.4 39.9 39.3 52.0 11.8M

SwiftNetRN-18 pyr full val 72.2 34.0 34.0 64.0 12.0M

DeepLab v3+(X-65)†? [14] full val 79.1 - - 708.0 38.0M

PSPNet(RN101)†? [15] full test 78.4 - - 722.0 45.0M

LDN-121† [65] full test 79.3 15.0 14.5 75.4 9.0M

ERFNet† [17] half test 69.7 11.2 18.4 55.4 20M

GUN† [82] half test 70.4 37.3 33.3 - -

DFANet A† [104] 1MPx val 71.9 100 89.3 1.7 7.8M

DF2-Seg2† [96] full test 75.3 32.2 56.3 - -

SwiftNetRN-18† half val 70.2 134.9 134.9 52.0 11.8M

SwiftNetRN-18† full test 75.5 41.0 41.0 52.0 11.8M

SwiftNetRN-18 pyr† full test 75.9 34.0 34.0 64.0 12.0M

SwiftNetRN-18 pyr†‡ full test 76.4 34.0 34.0 64.0 12.0M

SwiftNetRN-18 ens† full test 76.5 18.4 18.4 116.0 24.7M

39

Experimental evaluation of proposed methods

5.3 CamVid

The CamVid dataset contains 701 densely annotated frames. We use the usual split into 367

train, 101 validation and 233 test images. We train on combined train and validation subsets

and evaluate semantic segmentation into 11 classes on the test subset. Table 5.3 shows that we

obtain an improvement of 1.1 and 1.8 pp mIoU when using the pyramid model with pre-trained

ResNet-18 and MobileNet V2 backbones.

Table 5.3 further indicates that ImageNet pre-training contributes more on CamVid than

on Cityscapes (7-9pp of mIoU performance). This is not surprising since CamVid has almost

20 times less training pixels. A small size of the dataset poses a considerable challenge when

training from scratch due to high overfitting risk. Note that pyramidal fusion brings larger

improvement when training from scratch. This suggests that sharing encoder parameters across

pyramid levels especially pays off when the training data is scarce.

Table 5.3: Semantic segmentation accuracy on CamVid test. Columns mIoU† and mIoU show the
accuracies achieved with ImageNet pretraining and random initialization, respectively.

backbone model mIoU† mIoU

ResNet-18
single scale 72.6 63.3

pyramid 73.7 65.7

MobileNet V2
single scale 71.6 64.0

pyramid 73.4 65.0

5.4 Mapillary Vistas

Mapillary Vistas [24] is a large road-driving dataset which poses a challenge for real-time meth-

ods due to their small capacity. The dataset features 66 semantic classes in 18 thousand training

and 2 thousand validation images. To the best of our knowledge, we are the first to report results

with a method capable of real-time operation.

We follow the training procedure from subsection 5.1 with the following modifications. Dur-

ing training, we scale the longer side of the input image to 1920 pixels. We collect a distribution

of distances from semantic labels in all pixels from scaled training images. We recalibrate the

boundary-aware loss by setting α from (4.6) so that roughly the same number of pixels get

contained in each bin.

The results are presented in Table 5.4. We adopt public PyTorch implementations for

ENet [88] and ERFNet [17] and train them using our code base. These results are shown in

40

Experimental evaluation of proposed methods

the first section. The second section presents our single-scale model and our pyramidal fusion

model. The last section displays results of heavy-weight methods which are not capable of

real-time operation. We see that pyramidal fusion brings larger benefits than in Cityscapes ex-

periments. A closer look at per-class performance reveals that the most frequent classes such as

sky, vegetation, building and car get below-average improvements. This suggests that pyramidal

fusion is appropriate for poorly balanced datasets.

Table 5.4: Experimental evaluation on the validation subset of Mapillary Vistas.

method real-time mIoU

ENet [88] 3 23.2

ERFNet [17] 3 28.8

SwiftNet RN-18 single scale 3 42.4

SwiftNet RN-18 pyramid 3 44.8

InPlace ABN WRN-38 [103] 53.1

GANet RN-101 [98] 54.2

Panoptic-DeepLab [105] 56.8

5.5 ADE20k

ADE20k [101] is a very large and diverse semantic segmentation dataset. Its scene parsing

benchmark contains 150 stuff and object classes with 20210 training and 2 thousand validation

images. Images in ADE20k are much smaller than images from Cityscapes and Vistas. The

median image size in ADE20k is 512×480 pixels. Therefore, we set the random crop size

during data augmentation to 384 pixels.

Table 5.5 presents our experimental results. We see that pyramidal fusion outperforms the

baseline, although the benefits are smaller than in Cityscapes, CamVid and Vistas. This suggests

that pyramidal fusion is especially suitable for datasets with very large images, where scale

covariance and large receptive range make a larger difference.

5.6 Single-scale model execution profile

To obtain a better insight into the execution time of our models, we report separate processing

times and GFLOP metrics for the encoder, and the decoder of our single-scale model. Table 5.6

shows results for input resolution of 1024×2048. Note that these measurements have been ob-

tained in pure PyTorch, without TensorRT optimization, which explains the discrepancy with

41

Experimental evaluation of proposed methods

Table 5.5: Results on the validation subset of ADE20k.

method real-time mIoU

SwiftNet RN-18 single scale 3 34.3

SwiftNet RN-18 pyramid 3 34.7

SwiftNet RN-18 pyramid boundary-aware 3 35.0

RefineNet RN-101 [106] 40.2

PDNs-24NB-2Modules RN-101 [107] 41.9

ACNet RN-50 [108] 43.0

Model A2, 2 conv. [109] 43.7

CDN (+S_C+Aug+MS_Flip) [110] 44.0

CCNet RN-101 [111] 45.2

respect to Table 5.1. The table shows that our decoder is twice as fast as the ResNet-18 en-

coder. We also note a striking discrepancy of time and GFLOPs for the two downsampling

paths. ResNet-18 is almost twice as fast than MobileNet V2 despite requiring 6 times more

multiplications.

This phenomenon may be related to the fact that the memory required for caching activa-

tions during backprop for the MobileNet V2 encoder is 2.4× larger than for the ResNet-18

encoder. Additionally, there are many large individual tensors in MobileNet V2 due to expan-

sion in inverted residual convolutional units. For instance, the second MobileNet V2 expansion

(conv2_2/expand) operates on a 1024/2×2048/2×96 tensor during our inference, which re-

quires 192MB. Hence, poor MobileNet V2 performance on GPU hardware may be caused by

high memory requirements and, perhaps, early stage of support for depthwise separable convo-

lutions in cuDNN.

Table 5.6: Inference speed along the downsampling (encoder) and the upsampling (decoder) paths. The
columns dn time and up time display the execution times, while the columns dn GFLOP and up GFLOP
show the number of floating point operations for 2MPx images. Runtime measurements are made under
PyTorch (no TensorRT optimization) on a GTX1080Ti.

backbone model dn time up time dn GFLOP up GFLOP

ResNet-18
SPP 16.1ms 7.9ms 76.1 30.9

pyramid 23.7ms 7.9ms 97.0 31.0

MobileNet V2
SPP 26.4ms 7.7ms 12.1 26.9

pyramid 35.0ms 7.6ms 15.8 26.2

42

Experimental evaluation of proposed methods

5.7 Runtime efficiency on Jetson TX2 and Jetson Nano

Fig. 5.2 reports inference speed (fps) of TensorRT-optimized models on Jetson Nano, Jetson

TX2 and RTX 2080 Ti. The table considers two backbones, as well as 32-bit (fp32) and 16-bit

(fp16) floating-point precision.

20

40

60

80

41.7

16.7

5.0
1.2

33.3

13.5

3.7
1.0

66.7

22.7

6.1
1.5

55.6

18.5

4.7
1.2

Nano(fp32) ResNet-18 SPP
MobileNet V2 SPP
ResNet-18 pyr
MobileNet V2 pyr 45.5

18.5

5.4
1.3

50.0

21.3

6.0
1.5

76.9

25.0

6.7
1.6

83.3

27.8

7.3
1.8

Nano(fp16) ResNet-18 SPP
MobileNet V2 SPP
ResNet-18 pyr
MobileNet V2 pyr

25

50

75

100

125

FP
S

76.9

31.2

8.1
2.3

55.6

25.6

8.3
2.2

111.1

40.0

11.1
2.8

90.9

34.5

10.5
2.6

TX2(fp32) ResNet-18 SPP
MobileNet V2 SPP
ResNet-18 pyr
MobileNet V2 pyr

90.9

28.6

9.1
2.4

76.9

37.0

11.1
3.4

111.1

43.5

11.2
3.0

125.0

43.5

13.9

4.1

TX2(fp16) ResNet-18 SPP
MobileNet V2 SPP
ResNet-18 pyr
MobileNet V2 pyr

256x128
512x256

1024x512

2048x1024

200

400

600

800

409.8

322.6

151.5

49.5

303.0 277.8

131.6

41.2

714.3

500.0

200.0

58.1

625.0

500.0

169.5

47.6

2080Ti(fp32) ResNet-18 SPP
MobileNet V2 SPP
ResNet-18 pyr
MobileNet V2 pyr

256x128
512x256

1024x512

2048x1024

555.6
500.0

222.2

80.6

384.6 370.4

227.3

77.5

833.3

588.2

303.0

95.2

909.1

625.0

294.1

89.3

2080Ti(fp16) ResNet-18 SPP
MobileNet V2 SPP
ResNet-18 pyr
MobileNet V2 pyr

Figure 5.2: Inference speed on Jetson Nano, Jetson TX2 and RTX2080Ti (fps) for two architectures, two
backbones, and various input resolutions. All models are optimized with TensorRT under 32-bit (fp32,
left) and 16-bit (fp16, right) floating-point precision. Credit: Oršić and Šegvić [41].

We did not measure any validation accuracy drop when performing inference in half pre-

cision arithmetic. Both single scale and pyramidal fusion models support real-time inference

at 256×512 resolution on both embedded devices. Interestingly, Jetson Nano is only slightly

slower than Jetson TX2, although its declared processing power is less than a half than TX2

(0.47 vs 1.3 TFLOP, 25.6 vs 59.7 GB/s). Running in half precision further reduces inference

time, especially on Turing microarchitecture (RTX 2080 Ti) where the inference speed is dou-

bled.

5.8 Case study: RoMb Technologies

Experiments from Section 5.7 indicate that the proposed models present clear potential for real-

time application on embedded devices. At the same time, our models are suitable for training on

small quantities of data due to reasonable capacity. Both of these advantages were tested on the

43

Experimental evaluation of proposed methods

Figure 5.3: Colormap used for visualization of classes in RoMb dataset.

in-house dataset acquired by RoMb Technologies. RoMb Technologies is a Zagreb-based com-

pany which develops software for navigating autonomous vehicles in warehouse environments.

Their primary goal is to enable reliable navigation of forklifts. Furthermore, they are also in-

terested in visual recognition of loaded and unloaded pallets in order to support their engaging

and lifting. Finding objects-of-interest and positioning the forklift for successful operation may

be done by annotating driving lanes and pieces of cargo with suitable artificial markers †. How-

ever, such approach would not be scalable as it would require large human effort. Conversely,

it would be much more interesting to allow fully autonomous operation by relying on semantic

segmentation of RGB images combined with ultrasonic or laser technologies.

We describe qualitative experiments on an in-house-collected dataset of warehouse scenes.

This dataset consists of images acquired using action cameras mounted to a forklift. Depicted

scenes contain objects commonly found in warehouses. The dataset is annotated by human op-

erators on the pixel level with polygonal approximations. There are 12 semantic classes which

are visualized in Figure 5.3. The main focus of the dataset is to allow training of dense pre-

diction models capable of recognizing pallets and identifying their orientation and state. In

particular, the robot should be able to infer whether a given pallet side can be engaged by the

forklift as well as whether the pallet is full or empty. Therefore, the dataset taxonomy includes

three pallet classes (full, empty and face). The remaining classes in the dataset taxonomy in-

clude other vehicles, drivable regions, people, cargo and vertical areas. Figure 5.4 visualizes

the distribution of semantic classes throughout the dataset. As in most segmentation datasets,

majority of pixels belongs to only a few classes. The most represented classes are drivable,

vertical and cargo. The remaining semantic classes are similarly distributed, while only other

class is underrepresented.

Qualitative results are presented in Figure 5.5. Overall, the system succeeds to deliver useful

segmentation maps. However, some cases show the need for more training data. This is most

evident in the top row image where the model failed to recognize a partially visible forklift

operator. Faulty segmented ego-forks in first two examples indicate that changing the camera

position and forklift model may effect the segmentation quality. Moreover, in some partially

visible pallets (bottom two rows), the segmentation is not complete.

†https://github.com/artoolkit/ARToolKit5

44

https://github.com/artoolkit/ARToolKit5

Experimental evaluation of proposed methods

5.9 Case Study: SafeTram

SafeTram was a project financed by the European Regional Development Fund and featured a

partnership between Končar – Electrical Engineering Institute and UniZG FER. Project goals

were aimed at developing a system for increasing traffic safety in urban traffic environments

0% 25% 50%
other

pallet-face
person

vehicle-other
pallet-empty

pallet-full
ego-forklift

vehicle-forklift
other-object

cargo
vertical
drivable

Figure 5.4: Relative distribution of semantic classes throughout the RoMb dataset.

Figure 5.5: Examples of input images (left) and corresponding semantic segmentation on the RoMb
dataset (right).

45

Experimental evaluation of proposed methods

Figure 5.6: Colormap used for visualization of classes in SafeTram dataset.

by equipping electric trams with advanced safety features. One of the project goals included

research on computer vision based recognition systems which run in real time when deployed

on hardware placed inside trams.

For this and many more purposes, a dataset was collected on urban rail infrastructure in

the city of Zagreb. The dataset consists of video sequences in diverse weather conditions.

Moreover, video acquisition was carried out during both day and night. Video frame rate was

set to 10 FPS, and there are both 8 and 16 bit per pixel camera settings present during recording.

In total, there are 116 video sequences which contain 120 133 frames.

An imaging sensor captures red, green and blue components of incoming light by using

color filters for each component separately. This may be done for each image pixel on in-

dependent sensor planes. Usually this is not the case in modern imaging sensors as it would

complicate the manufacturing process. Instead, a single sensor plane filters light captured in

each pixel in a pattern best known as a Bayer filter [112]. The pattern consists of 50% green,

25% red and 25% blue pixels. Raw image data from sensor is stored to grayscale (1 channel

per pixel) PNGs. A demosaicing procedure should be made in order to read RGB values. Each

pixel contains the true value of a single channel whereas the other two values need to be inter-

polated from neighboring pixels. There are more than one possible Bayer patterns and different

interpolation methods which are available in modern computer vision libraries‡.

A visual recognition system operating in railroad environments should include a "rail-track"

class at its output. Large-scale datasets like Mapillary Vistas [24] do not include a sufficient

amount of images containing rail tracks. However, Vistas is useful for training due to its di-

versity and magnitude. The segmentation model is therefore trained concurrently on Vistas and

RailSem [113]. RailSem is a publicly available dataset containing images shot from moving

trams and trains. As no semantic segmentation labels were collected during creation of the

SafeTram dataset, the author had the freedom of creating a label set suitable for training on

other publicly available datasets. This label set is visualized in Figure 5.6, and the model was

trained concurrently on Vistas and RailSem [113]. RailSem is a dataset most suitable for Safe-

Tram sequences as it contains images from driving railroad vehicles. The label set is defined in

two simple steps. First, four RailSem classes corresponding to parts of rail tracks are merged

in a single rails class. Second, other Vistas and RailSem classes are mapped to one of 19

Cityscapes [23] classes, where possible.

‡https://docs.opencv.org/master/d8/d01/group__imgproc__color__conversions.html

46

https://docs.opencv.org/master/d8/d01/group__imgproc__color__conversions.html

Experimental evaluation of proposed methods

To achieve the most accurate segmentation accuracy, the single scale model is trained using

a large coder, i.e DenseNet-161. Hyperparameters match the Vistas training setup (section 5.4).

For memory efficiency, gradient checkpointing of dense layers is used during backpropaga-

tion [65].

The following examples study the sensitivity of segmentation quality to different weather

and daylight exposure. Figure 5.7 shows the same scenes observed during day and night. The

examples show degradation of segmentation quality in trains and underexposed areas which are

abundant in night scenery. Moreover, due to slow shutter speed, some scene parts are affected

by motion blur and therefore poorly segmented. For example, this effect occurs in moving

objects or in the whole scene during camera motion. This is especially evident in scene parts

close to the camera, which poses serious limitations to deployment of image based recognition

in nighttime conditions.

Figure 5.7: Qualitative comparison of model performance in day and night time. Model outputs are
visualized for presented input images. Each column compares segmentations of the same road part
during day and night. First column displays how night conditions degrade segmentation quality of the
train class. The middle column shows how pitch black parts of the image make the model clueless. The
last column suggests how the model is capable of detecting small pedestrians even at night.

Similarly, Figure 5.8 compares segmentation outputs in corresponding locations during

bright, sunny and overcast weather. These examples show how overexposure induced by high

dynamic range in the scene affects the segmentation performance. Furthermore, sun flares,

which occur when direct light hits the camera lens, may severely impact the segmentation. This

is most evident in the example from the last column, where the same bus has different segmen-

tations at the model output.

47

Experimental evaluation of proposed methods

Figure 5.8: Qualitative comparison of model performance during sunny and overcast weather. Model
outputs are visualized for presented input images. Each column compares segmentations in different
weather conditions. The first column shows how segmentation accuracy degrades in overexposed areas
such as the right hand sidewalk, but does not degrade in the middle column example. The rightmost
column suggests how flaring in the windshield affects proper segmentation in pixels of the bus.

5.10 Comparison with PPM and ASPP

We study effects of using higher capacity pyramid pooling modules in our single-scale archi-

tecture. We train two additional ResNet-18 based models by replacing our SPP with ASPP [14]

and PPM [15]. We lower the number of encoder features to 256 feature maps, configure PPM

to receive 256 maps, and decrease its output to 128 maps for fair comparison with our SPP

module. We set ASPP dilation factors to (3, 6, 9) instead of (6, 12, 18) as in the original work,

since our features are 32× subsampled while DeepLabV3+ uses 16× subsampling. Table 5.7

displays inference speed, parameter count and accuracy. We observe that PPM achieves slightly

better accuracy but sacrifices inference speed. ASPP, however, degrades accuracy and inference

speed. The recognition accuracy is impaired for the following reason. Pyramid pooling in our

setup occurs at smaller resolution than in DeepLabv3+. Hence, training many parameters with

relatively few data points poses an overfitting risk.

Table 5.7: Comparison of pyramid pooling variants for our single-scale model on Cityscapes val. We
report the number of parameters, inference speed at 2MPx and mIoU accuracy.

pooling module #params total time (fps) mIoU

ASPP [14] 2048K 35.0 75.1

PPM [15] 261K 36.7 75.6

SPP (ours) 113K 41.0 75.4

48

Experimental evaluation of proposed methods

5.11 Validating the upsampling capacity

This subsection presents validation and ablation experiments which provide further insight into

the design of the upsampling path. For simplicity, we perform all experiments on the single-

frame model.

Decoder width The number of feature maps along the upsampling path is the most important

design choice of the decoder. We validate this hyper-parameter and report the results in Ta-

ble 5.8. The results show that the model accuracy saturates at 128 dimensions. Consequently,

we pick this value as a sensible speed-accuracy trade-off in all other experiments.

Table 5.8: Validation of the number of feature maps in the upsampling path of a single-frame architec-
ture. The models were trained on Cityscapes train subset at 512×1024 while the evaluation is performed
on Cityscapes val. All models use ImageNet initialization.

model

ResNet-18 SPP
upsampling features 64 128 192 256

mIoU 69.50 70.35 70.26 70.63

Lateral connections To demonstrate the importance of lateral connections between the en-

coder and the decoder, we train a single scale model without lateral connections. For this

experiment, we discard the skip connections and elementwise summation in the upsampling

modules. Such design decreases the validation accuracy on full-resolution Cityscapes from

75.4% to 72.5%.

Lighter upsampling We replace the 3×3 convolution of the upsampling module with a vari-

ety of lighter alternatives, while keeping the same training specification. Table 5.9 reports vali-

dation results for our single-scale model with ResNet-18 encoder on full-resolution Cityscapes

images.

Table 5.10 validates the same lightweight upsampling alternatives for the MobileNet V2

encoder on CamVid resolution. The models were trained on CamVid train and the reported

results are on CamVid val.

Tables 5.9 and 5.10 show that most lightweight upsampling techniques cause a drop in

validation accuracy. Interestingly, the grouped convolution outperforms the standard convolu-

tion both in terms of accuracy and inference speed. Note that we nevertheless use standard

convolution in all previous results since the advantage is insufficient to warrant repeating all

experiments.

49

Experimental evaluation of proposed methods

Table 5.9: Validation of convolution alternatives in the upsampling path of a single-scale model with
a ResNet-18 encoder. The GFLOP column shows the number of floating point operations for the full
Cityscapes resolution, i.e. 1024×2048. The params column displays the number of parameters in the
decoder path (without ImageNet pre-trained parameters).

Upsampling alternative mIoU GFLOP speed (fps) params

grouped conv (8 groups) 75.7 84.1 42.9 252K

depthwise separable 73.8 84.0 43.9 250K

inverted residual 74.9 92.7 38.7 405K

1×1 conv 74.2 83.8 44.5 247K

3×3 conv 75.4 104 41.0 636K

Table 5.10: Evaluation of convolution alternatives in the upsampling path of a model with MobileNet
V2 encoder. The GFLOP column shows the number of floating point operations when the input image
is full CamVid resolution, i.e. 960×720. The params column displays the number of parameters in the
decoder path without ImageNet pre-trained parameters.

Upsampling alternative mIoU GFLOP speed (fps) params

grouped conv(8 groups) 72.8 5.9 122.0 180K

depthwise separable 71.1 5.8 122.6 178K

inverted residual 72.0 8.6 108.1 332K

1×1 conv 71.7 5.7 127.9 174K

3×3 conv 72.1 13.1 116.0 567K

5.12 Validating the pyramid encoder

Table 5.11 investigates the impact of the number of pyramid levels to the Cityscapes validation

accuracy. The table shows that an image pyramid with 3 levels yields the best validation per-

formance (76.4% mIoU). Introducing the fourth level decreases validation accuracy to 76.0%

mIoU. We believe that this performance decline indicates overfitting caused by a greater num-

ber of random parameters. The table also suggests that pyramids with one or two levels can

not correctly recognize large objects due to insufficient effective receptive field as revealed in

subsection 5.14.

A pyramidal fusion model without parameter sharing in the recognition encoder achieves

around 70% mIoU on Cityscapes val in our standard training setup. This is almost 6pp less than

the correponding model with shared parameters across the resolution pyramid. This suggests

50

Experimental evaluation of proposed methods

that parameter sharing is a very important ingredient of our pyramidal fusion architecture.

5.13 Improving the pyramidal fusion with boundary-aware

loss

Our preliminary experiments with more than two levels of the pyramid and standard cross-

entropy loss achieved no improvements. A closer inspection diagnosed inaccurate segmenta-

tion on distant objects [40], which suggested poor performance at semantic boundaries. When

we introduced the boundary-aware loss (4.7), Cityscapes val mIoU rose from 75.5% to 76.4%

for the 3-level ResNet-18 pyramidal fusion model. Interestingly, vanilla focal loss brings no

improvement to any of our models, boundary-aware loss brings no improvement to the single-

scale model, while boundary-aware loss without the focal loss component brings no improve-

ment over the standard cross-entropy to our pyramid models. Figure 5.9 demonstrates typical

contribution of the boundary-aware loss to the three-level pyramidal fusion model.

Figure 5.9: Situations where boundary-aware loss outperforms cross-entropy. Column 1 displays images
from Cityscapes val, whereas columns 2 and 3 show segmentation outputs for pyramidal fusion models
trained with cross-entropy and boundary-aware loss, respectively. Thin, distant or small objects are
consistently better segmented when training with boundary-aware loss. Examples include the motorcycle
rider and traffic poles (first row), cyclists and traffic signs (middle row), as well as sidewalk and traffic
lights (bottom row). Credit: Oršić and Šegvić [41].

51

Experimental evaluation of proposed methods

5.14 Interpreting the operation of the presented models

This subsection provides additional insight by interpreting and explaining decisions of our mod-

els [114]. In particular, we illustrate effects of pyramidal fusion and ImageNet initialization by

leveraging attribution and ablation techniques. These experiments allow a human observer to

explain outcomes of the inference in particular pixels, and to understand emergence of model

decisions and learning dynamics.

Effective receptive field Effective receptive field (ERF) reveals the breadth of the context

used to bring semantic predictions. We evaluate ERF as follows [115]. Firstly, we determine

the partial derivative ∂yi
∂X where y are the logits of a given pixel, and i = argmax(y). Secondly,

we find top 100 thousand coordinates with the largest magnitude of the gradient ∂yi
∂X . We express

pixel-level ERF as standard deviations of these coordinates (in pixels) along the two image axes.

Finally, we approximate the model-wide ERF as a mean pixel-level ERF in central pixels of all

images from Cityscapes val. Table 5.11 presents the resulting ERF values for five of our models.

We notice from these experiments that a larger ERF always leads to higher accuracy. This is

intuitively clear, since context is the most valuable cue for classifying pixels in regions without

discriminative local features. We note that the 4-level pyramid learns a smaller ERF and incurs

a mIoU decline of 0.4pp with respect to the 3-level pyramid. This suggests that the model was

unable to exploit features from the level-4 input.

Table 5.11: Model-wide effective receptive field (ERF) is strongly correlated with mIoU accuracy across
five of our models. The models were trained on Cityscapes train, while mIoU and ERF were evaluated
on Cityscapes val. We have used full resolution images.

model ERF horizontal ERF vertical mIoU

RN-18 SPP 127.5 114.9 75.4

RN-18 1lvl 91.9 92.9 72.6

RN-18 2lvl 107.3 100.6 75.0

RN-18 3lvl 133.1 115.1 76.4

RN-18 4lvl 127.0 112.0 76.0

Removing residual units at test time This subsection evaluates resilience of our models to

deleting k out of n residual units [62]. We proceed by randomly sampling min(40,
(n

k

)
) unique

configurations with n− k residual units. For the single-scale ResNet-18 model, n = 8. For the

3-level pyramidal fusion model, n = 3× 8 = 24. This means that we delete only one residual

unit in both cases. Figure 5.10 shows that the pyramidal fusion model exhibits better deletion

tolerance even when we remove three times as much residual units than in the single-scale case.

52

Experimental evaluation of proposed methods

This suggests that the decision process in a pyramidal fusion model is much more distributed

than than in the single-frame model. We believe that such ensemble-like behaviour positively

affects the generalization ability of the pyramidal fusion architecture.

1 2 3 4 5 6 7
a)

0

10

20

30

40

50

60

70

m
Io

U
[%

]

3 6 9 12 15 18 21
c)

1 2 3 4 5 6 7 8 9 1011121314151617181920212223

b)

Figure 5.10: Effects of deleting residual units from the encoder at test time. The two box plots demon-
strate how Cityscapes validation mIoU drops when residual units are omitted. The x-axis displays the
number of deleted residual units. We show results for the single-scale model (a), and the pyramidal fu-
sion model (b and c). The final plot (c) displays every third entry from the middle plot (b). Credit: Oršić
and Šegvić [41].

Which skip connections contribute most gradient during training We study the relative

importance of connections between the downsampling encoder and the upsampling decoder by

performing the following experiments. First, we perform a forward pass on the input image.

Then we modify the backward pass in a way to propagate gradients only through a chosen

connection between the encoder and the decoder. We reference these connections by the sub-

sampling factor from 4x to 32x (single-scale) or 128x (pyramidal fusion). We propagate the

gradients all the way to the input image (∂L
∂ I) and to the parameters of the first convolutional

layer (∂L
∂W conv1). Figure 10 shows the results for the single-scale model (left) and the 3-level

pyramidal fusion model (right). Unlike the single scale model, the pyramidal fusion favours

the gradient flow through all connections. We notice that connections with most residual paths

(16x and 32x) contribute most gradient, which suggests that pyramidal fusion leads to more

intensive learning.

Impact of ImageNet initialization Table 5.12 presents ablation experiments which explore

benefits of ImageNet pre-training. In each experiment, we use ImageNet initialization in one

additional residual block to find out where this regularization helps the most. In each case we

train SwiftNet-RN18 on full resolution Cityscapes train and report mIoU on Cityscapes val .

Interestingly, the obtained results show that ImageNet pretraining benefits all processing blocks

53

Experimental evaluation of proposed methods

4x 8x 16x 32x
a)

0.0

0.5

1.0

1.5

2.0
L

W conv1

L
I

4x 8x 16x 32x 64x 128x
b)

L
W conv1

L
I

Figure 5.11: Magnitude of gradients incurred by each skip connection for the single scale (a) and the
pyramidal fusion model (b). We calculate gradients w.r.t. the input image (∂L

∂ I) as well as gradients w.r.t.
the convolutional kernels in the first layer (∂L

∂W conv1). The horizontal axis represents the stride of the skip
connection w.r.t. the input image. Maximum stride in both graphs shows the decoder input and not the
actual skip connection. Credit: Oršić and Šegvić [41].

of the backbone. We believe that early layers are positively affected due to clear utility of early

features, while the later layers likely profit due to decreased opportunity to overfit.

Table 5.12: Impact of partial ImageNet pre-training of the single-scale model to the accuracy on
Cityscapes val. Row modules denotes which residual blocks were initialized on ImageNet (cumula-
tive from left to right). Row params displays the total number of parameters which were initialized on
ImageNet. All models were trained at full resolution.

modules none +stem +RB 1 +RB 2 +RB 3 +RB 4

params — 9K 157K 683K 2.8M 11.2M

mIoU 68.50 69.21 69.98 71.74 73.08 75.35

Ensembling pyramidal fusion and single scale models We compare the single scale SPP

model with the pyramid model by evaluating the following two ensembles on Cityscapes val:

i) one SPP model and one pyramid model, and ii) two SPP models. Table 5.13 shows that

most improvement over the single SPP model is achieved with a heterogeneous ensemble. This

indicates that the two approaches learn different representations. This also supports results from

Table 5.11 which indicate that the two models have very different effective receptive fields.

54

Experimental evaluation of proposed methods

Table 5.13: Experiments of segmentation mIoU of ensembled models on Cityscapes val. The combina-
tion of one single scale(SPP) and one pyramidal fusion model surpasses the ensemble of two single scale
models models.

models first second ensemble

SPP1 + SPP2 75.4 75.4 76.5

pyramid + SPP1 76.5 75.4 78.0

pyramid + SPP2 76.5 75.4 78.1

55

Chapter 6

Participation in Robust Vision Challenge
2020

Deep models achieve outstanding recognition quality when applied to a single domain. How-

ever, when applied across multiple domains, they often fail to conceive whether unknown con-

cepts are observed. Instead, single-domain models usually produce random or overconfident

erroneous outputs as response to input data from unseen domains. The problem is two fold.

Firstly, models trained on a single domain output a probability across domain classes only.

Secondly, single-domain models are not trained to handle cases in which novel concepts are

presented.

Estimating prediction uncertainty is important in real-world applications. This is especially

beneficial in dense prediction tasks such as semantic segmentation. Using information about

which pixels have confident predictions improves method robustness. Estimating model uncer-

tainty is related to outlier detection which is an important research area [116, 117].

6.1 Multi domain semantic segmentation benchmark

Model robustness can be assessed by applying a single model to multiple domains. This is the

main proposition of Robust Vision Challenge (RVC), a biannual computer vision competition.

RVC evaluates model quality by evaluating a single model on a collection of public datasets

with vastly different characteristics. Semantic segmentation datasets are described in Table 6.1.

In total, there are seven datasets with 93,369 labeled training images. The test set consists of

15,524 unlabeled images which were not observed during model training. ADE20k contains

rather small indoor and outdoor images, and has the most classes. ScanNet contains interior

images with very noisy labels. Cityscapes, KITTI, Vistas, VIPER, and WildDash 2 contain

road-driving images. Cityscapes contains images from western Europe taken with the same

camera in fine weather. Vistas contains crowd-sourced images across the globe in all kinds

56

Participation in Robust Vision Challenge 2020

Dataset content # images # classes resolution

ADE20K photos 22210 150 / 150 460±154

Cityscapes driving 3475 28 / 19 1448±0

KITTI driving 200 28 / 19 682±1

VIPER artificial 18326 32 / 19 1440±0

ScanNet interior 24902 40 / 20 1109±78

Vistas driving 20000 65 / 65 2908±608

WildDash 2 driving 4256 26 / 20 1440±0

Table 6.1: Summary of the seven datasets from the RVC 2020 collection for semantic segmentation.
The columns correspond to the total number of annotated non-test images (# images), the total number
of training and test classes (# classes), as well as the mean and standard deviation of the square root of
the number of pixels (

√
HW) across the training split (resolution).

of weather. WildDash 2 collects hand-picked images according to a system of hazards [118].

VIPER contains images generated by playing a computer game.

Each of the seven RVC2020 datasets defines class taxonomies which were independently

created. This causes situations where a naive concatenation would introduce contradictory la-

bels. Let us demonstrate this on the concept of a pickup truck (a small closed cabin truck with

open cargo area) visualized in 6.1. Pickups are labeled as truck in VIPER, van in ADE20k and

car in Vistas. Each dataset specific class also includes concepts of other driving vehicles. For

example, Vistas car includes ordinary cars but does not include large trucks which are present

in VIPER truck. This example demonstrates how discriminative learning on such overlapping

classes causes label noise.

We addressed the issue of overlapping taxonomies by introducing a loss function which

supports training over such taxonomies. The loss is expressed as negative log-likelihood of

summed probabilities. Conveniently, we named the loss function NLL+. Furthermore, we

created a discrete mapping from dataset-specific taxonomies into a set of universal classes. This

requires understanding of semantic concepts covered by each dataset-specific class. In the case

of seven RVC2020 taxonomies, mapping was created within one working day. The procedure

results in one-to-many mappings. This is aligned with NLL+ which supports training with

multiple ground-truth classes. Interestingly, NLL+ was previously used to enable training on

partial labels [119].

57

Participation in Robust Vision Challenge 2020

Figure 6.1: Example of inharmonious taxonomies for multi-domain semantic segmentation. Pickups
are labeled as class truck in VIPER [120] (left), class van in Ade20k [101] (middle) and class car in
Vistas [24] (right). We resolve the class overlap by learning on partial labels [119].

6.2 Pyramidal fusion for multi domain semantic segmenta-

tion

Our submission used a modified version of pyramidal fusion. A real-time capable model would

not be able to fit all training data due to small capacity. Therefore, we increased the model

capacity in two ways. First, we introduced a bigger encoder, namely ResNet-152 [97]. Second,

we increased the number of feature maps in the decoder threefold. The resulting model had

sufficient capacity enabled by pyramidal fusion and enhanced encoder-decoder configuration.

We compare computational characteristics of this model to other widely used architectures in

Table 6.2. Note how the large number of logits (192) introduces great memory requirements

during model training. Logits are upsampled to label resolution when applying the loss. For

example, calculating the loss on logits with 192 classes and 1MPx resolution allocates 1.5G of

memory (this calculation disregards memory required by the segmentation model). We identify

this as the main bottleneck for training segmentation models in datasets with a large number of

classes.

6.3 Competition results

We present our submission to the RVC 2020 semantic segmentation benchmark. The submis-

sion is trained on 6 Tesla V100 GPUs with 32GB RAM. We train exclusively on the seven RVC

2020 datasets. We compose mini-batches with roulette wheel sampling [103]. We favour fair

representation of classes within datasets by encouraging sampling of images with multiple class

58

Participation in Robust Vision Challenge 2020

Model M-Adds Params Memory

DLv3-RN101 967G 58.7M 2.4G / 10.6G

PSPNet-RN50 752G 46.8M 1.3G / 8.7G

HN-OCR-W48 649G 70.3M 1.5G / 7.5G

PDL-HN48+ 359G 68.9M 1.2G / 8.2G

SNpyrx8-RN152 338G 60.3M 1.5G / 8.2G

SNpyrx8-RN18 68G 12.3M 1.1G / 3.5G

Table 6.2: Computational complexity, parameter count and memory footprint (eval/train) for prominent
semantic segmentation models. We assume 1MPx input, 192 logits, and batch size 1. SNpyr stands for
pyramidal SwiftNet [41]. PDL denotes Panoptic DeepLab [121] without an instance decoder. RN, X and
HN stand for ResNet [42], Xception [122] and HRNet [123], respectively.

Model ADE20k Cityscapes KITTI Vistas ScanNet VIPER WildDash 2

MSeg1080 33.2 80.7 62.6 34.2 48.5 40.7 35.2

seamseg bl - - - - - 36.1 37.9

EffPS_b1bs4 - - - - - 52.0 32.2

SNp_RN152 31.1 74.7 63.9 40.4 54.6 62.5 45.4

Table 6.3: Performance evaluation on the RVC 2020 benchmark collection. We compare mIoU accuracy
of the concurrent work (top) with our model (bottom).

instances and images with rare classes. We attempt to alleviate noisy ScanNet labels by setting

the boundary modulation to 1 (minimum) for all ScanNet crops. Evaluation on RVC 2020 re-

quires performing inference on 15,524 images with varying resolution, which requires around

50 GPU hours. Competition results are presented in Table 6.3.

Our fully convolutional model receives a colour image on input and produces dense pre-

dictions into 192 universal classes. We produce the logits at full resolution by 8× bilinear

upsampling. We recover dataset-specific predictions (these are needed for training and bench-

marking) by summing softmax probabilities of all universal classes which map to the particular

dataset class. We recover the probability of the void class by summing probabilities of all uni-

versal classes which are not covered by the dataset-specific taxonomy. This particular choice

enables the detection of out-of-distribution pixels on WildDash 2 test.

Our submission trains a SNpyr-RN152 model without batchnorm syncronization. We up-

date population statistics on only one GPU and perform model updates by accumulating gra-

dients from all GPUs. We favour smooth evolution of batchnorm statistics and speed-up the

training by gradually increasing the crop size according to the schedule from Table 6.4. At

epoch 50, we freeze all batch normalization layers, reset the gradient moments used by Adam

59

Participation in Robust Vision Challenge 2020

Epochs crop size batch size jitter range speed

0 – 15 384 6×16 0.75 – 1.33 45 fps

16 – 31 512 6×8 0.60 – 1.67 27 fps

32 – 49 768 6×4 0.50 – 2.00 14 fps

50 – 52 1024 6×2 0.40 – 2.50 9 fps

Table 6.4: Mini-batch configuration schedule across the training epochs for the SNpyr-RN152 submis-
sion. The columns show the square crop size, the batch size, the range of uniform scale jittering and the
training speed in crops per second.

Figure 6.2: Qualitative performance of SNPyr_RN152 on RVC 2020 test. Rows 1 and 3 show input
images, while rows 2 and 4 show the model predictions. Images belong to (top to bottom, left to right):
ADE, Viper, Kitti, Cityscapes, WildDash, ScanNet and Vistas.

and train for 3 more epochs. The training involves 140k iterations, which took around 4 days

on our hardware. We evaluate on the original resolution and two additional scales.

Our submission won the 2020 edition of Robust Vision Challenge. It achieved the best

overall score in four out of seven datasets. On WildDash 2, we achieved best overall mIoU

as well as best score in detecting negative (outlier) pixels. This result highlights the benefits

of training over a universal taxonomy using NLL+. Input images and predicted segmentation

maps are visualized in Figure 6.2 (one sample for each dataset). Note that WildDash 2 example

contains predictions colored black. This corresponds to predicted outlier regions.

Robust Vision Challenge is an important benchmark for most important computer vision

tasks. Magnitude of datasets in the multi domain setting test the scalability of current ap-

60

Participation in Robust Vision Challenge 2020

proaches. The results suggest a gap between single domain public benchmarks and real-world

applications as RVC2020 winners rarely deliver SotA single dataset results. Effectiveness of

pyramidal fusion was demonstrated on RVC2020 semantic segmentation benchmarks. Partic-

ipating in the challenge highlighted how this efficient approach works well when applied in a

setting requiring large model capacity.

61

Chapter 7

Conclusion

Real-time performance is a very important trait of semantic segmentation models aiming at

applications which require low latency and immediate decisioning. Most previous work in

the field involves custom convolutional encoders trained from scratch, and decoders without

lateral skip-connections. However, these approaches are unable to match accuracy provided

by backbones with competitive ImageNet performance capacity. Our single-scale model shows

that some of the accuracy lost due to low backbone capacity can be reclaimed by extending the

receptive range. This is especially effective in the case of ImageNet-pre-trained models which

do not pay attention to the wider context, since typical ImageNet training setups involve a very

small resolution.

We have revisited a principled recognition approach based on shared encoders across a reso-

lution pyramid due to clear potential for scale covariance, large receptive range, and knowledge

transfer from ImageNet. We have shown that this potential materializes under the following

two requirements. First, representations from all encoder blocks and all pyramid levels have to

be fused within a ladder-style decoder. We term such wiring as pyramidal fusion. Second, the

compound model has to be trained with a boundary-aware loss. Interpretation of the resulting

models shows that the learned receptive ranges are indeed large, and suggests that pyramidal

fusion succeeds due to efficient learning and ensemble-like behaviour.

We have provided a detailed analysis of prediction accuracy and processing time for models

based on ResNet-18 and MobileNet V2 backbones. Our models display competitive perfor-

mance on CamVid, Vistas and ADE20k. Our best Cityscapes test submission achieves 76.4%

mIoU at 34 Hz on a GTX1080Ti when processing images of 1024×2048 pixels. To the best of

our knowledge, this result outperforms all previous semantic segmentation approaches aiming at

real-time application. The source code is available at https://github.com/orsic/swiftnet.

62

Bibliography

[1]Girshick, R., Donahue, J., Darrell, T., Malik, J., “Rich feature hierarchies for accurate

object detection and semantic segmentation”, in CVPR, 2014.

[2]He, K., Gkioxari, G., Doll á r, P., Girshick, R., “Mask R-CNN”, in ICCV, 2017.

[3]Shelhamer, E., Long, J., Darrell, T., “Fully convolutional networks for semantic segmen-

tation”, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 39, No. 4, 2017, pp. 640–651.

[4]Zbontar, J., LeCun, Y. et al., “Stereo matching by training a convolutional neural network

to compare image patches.”, JMLR, 2016.

[5]Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., Bachrach, A., Bry,

A., “End-to-end learning of geometry and context for deep stereo regression”, in CVPR,

2017.

[6]Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt,

P., Cremers, D., Brox, T., “Flownet: Learning optical flow with convolutional networks”,

in ICCV, 2015.

[7]Sun, D., Yang, X., Liu, M.-Y., Kautz, J., “PWC - Net : CNNs for optical flow using

pyramid, warping, and cost volume”, in CVPR, 2018.

[8]Geiger, A., Lenz, P., Stiller, C., Urtasun, R., “Vision meets robotics: The kitti dataset”,

The International Journal of Robotics Research, 2013.

[9]Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T., “A

large dataset to train convolutional networks for disparity, optical flow, and scene flow

estimation”, in CVPR, 2016.

[10]Yang, G., Ramanan, D., “Volumetric correspondence networks for optical flow”, in Ad-

vances in neural information processing systems, 2019, pp. 794–805.

[11]Teed, Z., Deng, J., “Raft: Recurrent all-pairs field transforms for optical flow”, in ECCV,

2020.

63

Bibliography

[12]Doersch, C., Gupta, A., Efros, A. A., “Context as supervisory signal: Discovering objects

with predictable context”, in ECCV, 2014, pp. 362–377.

[13]Kirillov, A., He, K., Girshick, R., Rother, C., Dollar, P., “Panoptic segmentation”, in

CVPR, June 2019.

[14]Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., “Encoder-decoder with

atrous separable convolution for semantic image segmentation”, in ECCV, 2018, pp.

801–818.

[15]Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., “Pyramid scene parsing network”, in CVPR,

2017.

[16]Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K., “DenseASPP for semantic segmentation

in street scenes”, in CVPR, 2018, pp. 3684–3692.

[17]Romera, E., Alvarez, J. é. M., Bergasa, L. M., Arroyo, R., “Erfnet: Efficient residual

factorized convnet for real-time semantic segmentation”, T - ITS, Vol. 19, No. 1, 2017,

pp. 263–272.

[18]Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J., “ICNet for real-time semantic segmentation on

high-resolution images”, in ECCV, 2018, pp. 405–420.

[19]Mehta, S., Rastegari, M., Caspi, A., Shapiro, L. G., Hajishirzi, H., “ESPNet : Efficient

spatial pyramid of dilated convolutions for semantic segmentation”, in ECCV, 2018, pp.

561–580.

[20]Siam, M., Gamal, M., Abdel-Razek, M., Yogamani, S., Jagersand, M., Zhang, H., Val-

lurupalli, N., Annamaneni, S., Varma, G., Jawahar, C. et al., “A comparative study of

real-time semantic segmentation for autonomous driving”, in CVPR Workshops, 2018,

pp. 587–597.

[21]Oquab, M., é on Bottou, L., Laptev, I., Sivic, J., “Learning and transferring mid-level

image representations using convolutional neural networks”, in CVPR, 2014, pp. 1717–

1724.

[22]Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M., Berg, A. C., Fei-Fei, L., “ImageNet Large Scale Visual

Recognition Challenge”, IJCV, Vol. 115, No. 3, 2015, pp. 211-252.

[23]Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U.,

Roth, S., Schiele, B., “The cityscapes dataset for semantic urban scene understanding”,

in CVPR, 2016.

64

Bibliography

[24]Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P., “The mapillary vistas dataset

for semantic understanding of street scenes”, in ICCV, 2017.

[25]Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., “Can semantic labeling methods

generalize to any city? the inria aerial image labeling benchmark”, in 2017 IEEE In-

ternational Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017, pp.

3226–3229.

[26]Chebrolu, N., Lottes, P., Schaefer, A., Winterhalter, W., Burgard, W., Stachniss, C.,

“Agricultural robot dataset for plant classification, localization and mapping on sugar

beet fields”, The International Journal of Robotics Research, Vol. 36, No. 10, 2017, pp.

1045–1052.

[27]Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., Nießner, M., “Scannet:

Richly-annotated 3d reconstructions of indoor scenes”, in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2017, pp. 5828–5839.

[28]Farabet, C., Couprie, C., Najman, L., LeCun, Y., “Learning hierarchical features for

scene labeling”, PAMI, Vol. 35, No. 8, 2012, pp. 1915–1929.

[29]Yu, F., Koltun, V., “Multi-scale context aggregation by dilated convolutions”, in ICLR,

2016.

[30]Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T., “Semi-supervised learn-

ing with ladder networks”, in NeurIPS, 2015, pp. 3546–3554.

[31]Ronneberger, O., Fischer, P., Brox, T., “U-net: Convolutional networks for biomedical

image segmentation”, in MICCAI. Springer, 2015, pp. 234–241.

[32]Lin, T. . Y., á r, P. D., Girshick, R. B., He, K., Hariharan, B., Belongie, S. J., “Feature

pyramid networks for object detection”, in CVPR, 2017, pp. 936–944.

[33]Krešo, I., Šegvi ć, S., Krapac, J., “Ladder-style DenseNets for semantic segmentation of

large natural images”, in ICCVW, 2017, pp. 238–245.

[34]Gao, L., Zhou, Z., Shen, H. T., Song, J., “Bottom-up and top-down: Bidirectional ad-

ditive net for edge detection”, in Proceedings of the Twenty-Ninth International Joint

Conference on Artificial Intelligence, IJCAI 2020 [scheduled for July 2020, Yokohama,

Japan, postponed due to the Corona pandemic], 2020, pp. 594–600.

[35]Zhen, M., Wang, J., Zhou, L., Fang, T., Quan, L., “Learning fully dense neural networks

for image semantic segmentation”, in AAAI, 2019.

65

Bibliography

[36]Lowe, D. G., “Distinctive image features from scale-invariant keypoints”, International

journal of computer vision, Vol. 60, No. 2, 2004, pp. 91–110.

[37]Lindeberg, T., Scale-space theory in computer vision. Springer Science & Business Me-

dia, 2013, Vol. 256.

[38]Krešo, I., Čaušević, D., Krapac, J., Šegvić, S., “Convolutional scale invariance for se-

mantic segmentation”, in GCPR, 2016, pp. 64–75.

[39]Singh, B., Davis, L. S., “An analysis of scale invariance in object detection - SNIP”, in

CVPR, 2018, pp. 3578–3587.

[40]Orši ć, M., Krešo, I., Bevandić, P., Šegvić, S., “In defense of pre-trained ImageNet ar-

chitectures for real-time semantic segmentation of road-driving images”, in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2019, pp. 12 607–

12 616.

[41]Orši ć, M., Šegvić, S., “Efficient semantic segmentation with pyramidal fusion”, Pattern

Recognition, 2020, p. 107611.

[42]He, K., Zhang, X., Ren, S., Sun, J., “Deep residual learning for image recognition”, in

CVPR, 2016, pp. 770–778.

[43]Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., “MobileNetV2 : In-

verted residuals and linear bottlenecks”, in CVPR, 2018.

[44]Krizhevsky, A., Sutskever, I., Hinton, G. E., “Imagenet classification with deep convolu-

tional neural networks”, in NeurIPS, 2012.

[45]Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., “Imagenet: A large-scale

hierarchical image database”, in 2009 IEEE conference on computer vision and pattern

recognition. Ieee, 2009, pp. 248–255.

[46]Sánchez, J., Perronnin, F., “High-dimensional signature compression for large-scale im-

age classification”, in CVPR 2011. IEEE, 2011, pp. 1665–1672.

[47]Simonyan, K., Zisserman, A., “Very deep convolutional networks for large-scale image

recognition”, in 3rd International Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[48]LeCun, Y., Bottou, L. é. o., Bengio, Y., Haffner, P., “Gradient-based learning applied to

document recognition”, Proceedings of the IEEE, Vol. 86, No. 11, 1998, pp. 2278–2324.

66

Bibliography

[49]Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A. Y., “Reading digits in

natural images with unsupervised feature learning”, 2011.

[50]Krizhevsky, A., Hinton, G. et al., “Learning multiple layers of features from tiny images”,

2009.

[51]Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S.,

Popov, S., Malloci, M., Kolesnikov, A., Duerig, T., Ferrari, V., “The open images dataset

v4: Unified image classification, object detection, and visual relationship detection at

scale”, IJCV, 2020.

[52]Ren, S., He, K., Girshick, R., Sun, J., “Faster r-cnn: Towards real-time object detection

with region proposal networks”, in NeurIPS, 2015, pp. 91–99.

[53]Fukushima, K., “A self-organizing neural network model for a mechanism of pattern

recognition unaffected by shift in position”, Biol. Cybern., Vol. 36, 1980, pp. 193–202.

[54]Hirose, Y., Yamashita, K., Hijiya, S., “Back-propagation algorithm which varies the num-

ber of hidden units”, Neural networks, Vol. 4, No. 1, 1991, pp. 61–66.

[55]Nair, V., Hinton, G. E., “Rectified linear units improve restricted boltzmann machines”,

in Proceedings of the 27th international conference on machine learning (ICML-10),

2010, pp. 807–814.

[56]Ioffe, S., Szegedy, C., “Batch normalization: Accelerating deep network training by

reducing internal covariate shift”, in ICML, 2015, pp. 448–456.

[57]Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., “Dropout: a

simple way to prevent neural networks from overfitting”, The journal of machine learning

research, Vol. 15, No. 1, 2014, pp. 1929–1958.

[58]Lavin, A., Gray, S., “Fast algorithms for convolutional neural networks”, in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4013–

4021.

[59]Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., Jacobsen, J.-H., “Invertible

residual networks”, in International Conference on Machine Learning. PMLR, 2019, pp.

573–582.

[60]Srivastava, R. K., Greff, K., Schmidhuber, J., “Highway networks”, CoRR, Vol.

abs/1505.00387, 2015.

[61]Zilly, J. G., Srivastava, R. K., Koutnık, J., Schmidhuber, J., “Recurrent highway net-

works”, in International Conference on Machine Learning. PMLR, 2017, pp. 4189–4198.

67

Bibliography

[62]Veit, A., Wilber, M. J., Belongie, S., “Residual networks behave like ensembles of rela-

tively shallow networks”, in NeurIPS, 2016, pp. 550–558.

[63]Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch,

A., Jia, Y., He, K., “Accurate, large minibatch sgd: Training imagenet in 1 hour”, arXiv

preprint arXiv:1706.02677, 2017.

[64]Huang, G., Liu, Z., Pleiss, G., Van Der Maaten, L., Weinberger, K., “Convolutional

networks with dense connectivity”, IEEE transactions on pattern analysis and machine

intelligence, 2019.

[65]Krešo, I., Krapac, J., Šegvi ć, S., “Efficient ladder-style DenseNets for semantic segmen-

tation of large images”, IEEE Transactions on Intelligent Transportation Systems, 2020.

[66]Kolesnikov, A., Zhai, X., Beyer, L., “Revisiting self-supervised visual representation

learning”, in Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition, 2019, pp. 1920–1929.

[67]Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L., “S4l: Self-supervised semi-supervised

learning”, in Proceedings of the IEEE international conference on computer vision, 2019,

pp. 1476–1485.

[68]Orši ć, M., Bevandić, P., Grubišić, I., Šarić, J., Šegvić, S., “Multi-domain semantic seg-

mentation with pyramidal fusion”, arXiv preprint arXiv:2009.01636, 2020.

[69]Šegvi ć, S., “Deep learning, lectures”, 2018.

[70]Zhang, X., Zhou, X., Lin, M., Sun, J., “Shufflenet: An extremely efficient convolutional

neural network for mobile devices”, in CVPR, 2018, pp. 6848–6856.

[71]Huang, G., Liu, S., Van der Maaten, L., Weinberger, K. Q., “Condensenet: An efficient

densenet using learned group convolutions”, in CVPR, 2018, pp. 2752–2761.

[72]Zoph, B., Vasudevan, V., Shlens, J., Le, Q. V., “Learning transferable architectures for

scalable image recognition”, in CVPR, 2018, pp. 8697–8710.

[73]Tan, M., Le, Q. V., “Efficientnet: Rethinking model scaling for convolutional neural

networks”, in Proceedings of the 36th International Conference on Machine Learning,

ICML 2019, 9-15 June 2019, Long Beach, California, USA, 2019, pp. 6105–6114.

[74]Chen, L.-C., Yang, Y., Wang, J., Xu, W., Yuille, A. L., “Attention to scale: Scale-aware

semantic image segmentation”, in CVPR, 2016, pp. 3640–3649.

68

Bibliography

[75]Badrinarayanan, V., Kendall, A., Cipolla, R., “Segnet: A deep convolutional encoder-

decoder architecture for image segmentation”, IEEE Trans. Pattern Anal. Mach. Intell.,

Vol. 39, No. 12, 2017, pp. 2481–2495.

[76]Long, J., Shelhamer, E., Darrell, T., “Fully convolutional networks for semantic segmen-

tation”, in CVPR, 2015.

[77]Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., “Deeplab: Se-

mantic image segmentation with deep convolutional nets, atrous convolution, and fully

connected crfs”, IEEE transactions on pattern analysis and machine intelligence, Vol. 40,

No. 4, 2017, pp. 834–848.

[78]Yu, F., Koltun, V., Funkhouser, T., “Dilated residual networks”, in CVPR, 2017, pp.

472–480.

[79]He, K., Zhang, X., Ren, S., Sun, J., “Spatial pyramid pooling in deep convolutional

networks for visual recognition”, PAMI, Vol. 37, No. 9, 2015.

[80]Lazebnik, S., Schmid, C., Ponce, J., “Beyond bags of features: Spatial pyramid matching

for recognizing natural scene categories”, in CVPR, Vol. 2. IEEE, 2006.

[81]Hu, J., Shen, L., Sun, G., “Squeeze-and-excitation networks”, in CVPR, June 2018.

[82]Mazzini, D., “Guided upsampling network for real-time semantic segmentation”, in

BMVC, 2018, p. 117.

[83]Qin, H., Gong, R., Liu, X., Bai, X., Song, J., Sebe, N., “Binary neural networks: A

survey”, Pattern Recognit., Vol. 105, 2020, p. 107281.

[84]Frankle, J., Carbin, M., “The lottery ticket hypothesis: Finding sparse, trainable neural

networks”, in 7th International Conference on Learning Representations, ICLR 2019,

New Orleans, LA, USA, May 6-9, 2019, 2019.

[85]Sifre, L., é phane Mallat, S., “Rigid-motion scattering for texture classification”, CoRR,

2014.

[86]Wang, M., Liu, B., Foroosh, H., “Factorized convolutional neural networks.”, in ICCV

Workshops, 2017, pp. 545–553.

[87]Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q., “Densely connected convo-

lutional networks”, in CVPR, 2017.

[88]Paszke, A., Chaurasia, A., Kim, S., Culurciello, E., “Enet: A deep neural network archi-

tecture for real-time semantic segmentation”, CoRR, 2016.

69

Bibliography

[89]Vallurupalli, N., Annamaneni, S., Varma, G., Jawahar, C., Mathew, M., Nagori, S., “Ef-

ficient semantic segmentation using gradual grouping”, in CVPR Workshops, 2018, pp.

598–606.

[90]Yang, K., Hu, X., Bergasa, L. M., Romera, E., Wang, K., “Pass: Panoramic annular

semantic segmentation”, IEEE Transactions on Intelligent Transportation Systems, 2019.

[91]Wu, J., Wen, Z., Zhao, S., Huang, K., “Video semantic segmentation via feature propa-

gation with holistic attention”, Pattern Recognition, 2020.

[92]Chaurasia, A., Culurciello, E., “LinkNet : Exploiting encoder representations for effi-

cient semantic segmentation”, in VCIP, 2017, pp. 1–4.

[93]Nekrasov, V., Shen, C., Reid, I. D., “Light-weight refinenet for real-time semantic seg-

mentation”, in BMVC, 2018, p. 125.

[94]Yang, K., Hu, X., Chen, H., Xiang, K., Wang, K., Stiefelhagen, R., “Ds-pass: Detail-

sensitive panoramic annular semantic segmentation through swaftnet for surrounding

sensing”, CoRR, 2019.

[95]Li, H., Xiong, P., Fan, H., Sun, J., “Dfanet: Deep feature aggregation for real-time se-

mantic segmentation”, in CVPR, June 2019.

[96]Li, X., Zhou, Y., Pan, Z., Feng, J., “Partial order pruning: For best speed/accuracy trade-

off in neural architecture search”, in CVPR, 2019, pp. 9145–9153.

[97]He, K., Zhang, X., Ren, S., Sun, J., “Identity mappings in deep residual networks”, in

ECCV. Springer, 2016.

[98]Zhang, P., Liu, W., Wang, H., Lei, Y., Lu, H., “Deep gated attention networks for large-

scale street-level scene segmentation”, Pattern Recognition, Vol. 88, 2019, pp. 702–714.

[99]Lin, T.-Y., Goyal, P., Girshick, R., He, K., Doll á r, P., “Focal loss for dense object

detection”, in ICCV, 2017.

[100]Brostow, G. J., Fauqueur, J., Cipolla, R., “Semantic object classes in video: A high-

definition ground truth database”, Pattern Recognition Letters, Vol. 30, No. 2, 2009, pp.

88–97.

[101]Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A., “Scene parsing

through ade20k dataset”, in CVPR, 2017, pp. 633–641.

[102]Kingma, D. P., Ba, J., “Adam: A method for stochastic optimization”, in ICLR, 2015.

70

Bibliography

[103]Rota Bulò, S., Porzi, L., Kontschieder, P., “In-place activated batchnorm for memory-

optimized training of dnns”, in CVPR, 2018, pp. 5639–5647.

[104]Li, Y., Yuan, L., Vasconcelos, N., “Bidirectional learning for domain adaptation of se-

mantic segmentation”, in CVPR, June 2019.

[105]Cheng, B., Collins, M. D., Zhu, Y., Liu, T., Huang, T. S., Adam, H., Chen, L.-C.,

“Panoptic- DeepLab : A simple, strong, and fast baseline for bottom-up panoptic seg-

mentation”, CoRR, 2019.

[106]Lin, G., Milan, A., Shen, C., Reid, I., “Refinenet: Multi-path refinement networks for

high-resolution semantic segmentation”, in CVPR, 2017, pp. 1925–1934.

[107]Zhang, R., Yang, W., Peng, Z., Wei, P., Wang, X., Lin, L., “Progressively diffused net-

works for semantic visual parsing”, Pattern Recognition, Vol. 90, 2019, pp. 78–86.

[108]Fu, J., Liu, J., Wang, Y., Li, Y., Bao, Y., Tang, J., Lu, H., “Adaptive context network for

scene parsing”, in ICCV, 2019, pp. 6748–6757.

[109]Wu, Z., Shen, C., Van Den Hengel, A., “Wider or deeper: Revisiting the resnet model for

visual recognition”, Pattern Recognition, Vol. 90, 2019, pp. 119–133.

[110]Fu, J., Liu, J., Li, Y., Bao, Y., Yan, W., Fang, Z., Lu, H., “Contextual deconvolution

network for semantic segmentation”, Pattern Recognition, Vol. 101, 2020, p. 107152.

[111]Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W., “CCNet : Criss-cross

attention for semantic segmentation”, in ICCV, 2019, pp. 603–612.

[112]Bayer, B. E., “Color imaging array”, uS Patent 3,971,065. 1976.

[113]Zendel, O., Murschitz, M., Zeilinger, M., Steininger, D., Abbasi, S., Beleznai, C.,

“Railsem19: A dataset for semantic rail scene understanding”, in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp.

0–0.

[114]Miller, T., “Explanation in artificial intelligence: Insights from the social sciences”, Ar-

tificial Intelligence, Vol. 267, 2019, pp. 1–38.

[115]Luo, W., Li, Y., Urtasun, R., Zemel, R., “Understanding the effective receptive field in

deep convolutional neural networks”, in NeurIPS, 2016.

[116]Bevandi ć, P., Krešo, I., Oršić, M., Šegvić, S., “Discriminative out-of-distribution detec-

tion for semantic segmentation”, arXiv preprint arXiv:1808.07703, 2018.

71

Bibliography

[117]Bevandi ć, P., Krešo, I., Oršić, M., Šegvić, S., “Simultaneous semantic segmentation and

outlier detection in presence of domain shift”, in German Conference on Pattern Recog-

nition. Springer, 2019, pp. 33–47.

[118]Zendel, O., Honauer, K., Murschitz, M., Steininger, D., Fernandez Dominguez, G.,

“Wilddash - creating hazard-aware benchmarks”, in ECCV, 2018.

[119]Cour, T., Sapp, B., Taskar, B., “Learning from partial labels”, The Journal of Machine

Learning Research, Vol. 12, 2011, pp. 1501–1536.

[120]Richter, S. R., Hayder, Z., Koltun, V., “Playing for benchmarks”, in ICCV, 2017, pp.

2232–2241.

[121]Cheng, B., Collins, M. D., Zhu, Y., Liu, T., Huang, T. S., Adam, H., Chen, L.-C.,

“Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic segmen-

tation”, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 12 475–12 485.

[122]Chollet, F. ç. o., “Xception: Deep learning with depthwise separable convolutions”, in

CVPR, 2017.

[123]Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M.,

Wang, X. et al., “Deep high-resolution representation learning for visual recognition”,

IEEE transactions on pattern analysis and machine intelligence, 2020.

[124]Šari ć, J., Oršić, M., Antunović, T., Vražić, S., Šegvić, S., “Warp to the future: Joint

forecasting of features and feature motion”, in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2020, pp. 10 648–10 657.

[125]Šari ć, J., Oršić, M., Antunović, T., Vražić, S., Šegvić, S., “Single level feature-to-feature

forecasting with deformable convolutions”, in German Conference on Pattern Recogni-

tion. Springer, 2019, pp. 189–202.

[126]Ka čan, M., Oršić, M., Šegvić, S., Ševrović, M., “Multi-task learning for irap attribute

classification and road safety assessment”, in 2020 IEEE 23rd International Conference

on Intelligent Transportation Systems (ITSC). IEEE, 2020, pp. 1–6.

[127]Grubiši ć, i., Oršić, M., Šegvić, S., “A baseline for semi-supervised learning of efficient

semantic segmentation models”, in 17th International Conference on Machine Vision

Applications, MVA 2021, Tokyo, Japan, July 25-27, 2021. IEEE, 2021.

72

Bibliography

[128]Bi ćanić, B., Oršić, M., Marković, I., Šegvić, S., Petrović, I., “Pedestrian tracking by

probabilistic data association and correspondence embeddings”, in 2019 22th Interna-

tional Conference on Information Fusion (FUSION). IEEE, 2019, pp. 1–6.

[129]Orši ć, M., Bevandić, P., Grubišić, I., Šarić, J., Šegvić, S., “Multi-domain semantic seg-

mentation with pyramidal fusion”, arXiv preprint arXiv:2009.01636, 2020.

[130]Krešo, I., Orši ć, M., Bevandić, P., Šegvić, S., “Robust semantic segmentation with

ladder-densenet models”, arXiv preprint arXiv:1806.03465, 2018.

[131]Bevandi ć, P., Oršić, M., Grubišić, I., Šarić, J., Šegvić, S., “Multi-domain semantic seg-

mentation on datasets with overlapping classes”.

[132]Bevandi ć, P., Krešo, I., Oršić, M., Šegvić, S., “Dense outlier detection and

open-set recognition based on training with noisy negative images”, arXiv preprint

arXiv:2101.09193, 2021.

73

List of Figures

1.1. Image-label tuples from popular public datasets. The datasets are collected

for different purposes and have widely different characteristics. Labels contain

class indices for each pixel, which are color-coded for visualization purposes.

Examples include tuples from: Cityscapes [23], Mapillary Vistas [24], INRIA

aerial dataset [25], Sugar Beets dataset [26] and ScanNet [27].3

1.2. Top left: a typical input image presented at the model input. Classification of

the pixel marked in red is considered for a model with receptive field 200×200

pixels. The receptive field is visualized in the original (top right), two (bottom

left) and four (bottom right) times subsampled images.5

1.3. Pixels observed by a limited receptive field model across the resolution pyramid

when inferring the class of the central pixel. Images (from left to right) are 1x,

2x and 4x subsampled. .5

2.1. The LeNet-5 classification architecture used for classification of handwritten

digits. The figure is reproduced from [48].8

2.2. AlexNet convolutional architecture. Credit: Krizhevsky et al. [44].11

2.3. A residual unit displayed using a computational graph. Ellipses denote com-

putational units whereas the square displays processed input data. Dotted con-

nections and units show there may be more than one computational unit in the

residual. .13

2.4. The ResNet classification architecture. Credit: [42].14

2.5. Comparison of layer connectivity in a) ResNet models and b) DenseNet models.

Credit: [65]. .16

2.6. Advancement in ImageNet classification accuracy. The left ordinate shows the

classification error on ImageNet validation subset. The right ordinate shows the

model depth. Credit: [69]. .16

2.7. Comparison between a residual and an inverted residual block. Reference: San-

dler et al. [43]. .18

List of Figures

3.1. Methods for adapting pre-trained classification architectures for semantic seg-

mentation. Yellow trapezoids display convolutional blocks which are adapted

from an image classifier. .21

4.1. Visualization of feature maps produced by a standard convolution. All kernels

(small squares) are applied at all spatial locations of the all input feature maps

(gray rectangles). Each output feature map is produced by the kernel of the

same color. .27

4.2. Visualization of feature maps produced by a grouped convolution. Each kernel

(small squares) is applied at all spatial locations of input feature maps (gray

rectangles) in its group (brackets with matching color). Each output feature map

is produced by the kernel of the same color. Note that there is no dependency

between output feature maps produced by kernels from different groups. . . .27

4.3. Visualization of feature maps produced by a depthwise separable convolution.

Each kernel (small squares) is applied at all spatial locations of a single input

feature map (gray rectangle). Afterwards, a standard convolution with kernel

size 1 is applied to the intermediate representation.28

4.4. Structural diagram of the last residual unit of an encoder block. We do not use

pre-activation [97] since we could not find a pre-trained parameterization for

ResNet-18. The lateral connection is taken from the output of the elementwise

sum after the last residual block. The output of the ReLU node is forwarded to

the next encoder block. Credit: Oršić and Šegvić [41].30

4.5. Structural diagram of the proposed single scale model. Yellow trapezoids des-

ignate encoder blocks which may be pre-trained on ImageNet. Green diamond

designates the spatial pyramid pooling module, red squares designate bottleneck

projections, while blue trapezoids designate lightweight upsampling modules.

Logits are upsampled to the input resolution with 4× bilinear interpolation.

Credit: Oršić and Šegvić [41]. .31

4.6. The proposed multi-scale architecture has shared encoders and pyramidal fu-

sion. Yellow trapezoids denote encoder blocks (EB). Red squares denote pro-

jections (1 × 1 convolutions) which establish dimensionality of the decoder.

Green circles represent elementwise summation. The resolution is restored by

lightweight upsampling modules designated with blue trapezoids (UP). Same

color indicates shared parameters. Credit: Oršić and Šegvić [41].33

4.7. Histogram of distances to the closest semantic border on Cityscapes train at full

resolution. Plot colors designate the four loss weights resulting from thresholds

from (4.6). Credit: Oršić and Šegvić [41]. .35

75

List of Figures

4.8. Visualization of the boundary factor α (left) as determined from ground truth

labels (right) according to (4.6). The loss weights are designated with the same

colours as in Figure 4.7. The closer a semantic boundary — the greater the loss

multiplier. Credit: Oršić and Šegvić [41]. .35

5.1. The proposed procedure for measuring the inference speed under PyTorch. . . .37

5.2. Inference speed on Jetson Nano, Jetson TX2 and RTX2080Ti (fps) for two ar-

chitectures, two backbones, and various input resolutions. All models are opti-

mized with TensorRT under 32-bit (fp32, left) and 16-bit (fp16, right) floating-

point precision. Credit: Oršić and Šegvić [41].43

5.3. Colormap used for visualization of classes in RoMb dataset.44

5.4. Relative distribution of semantic classes throughout the RoMb dataset.45

5.5. Examples of input images (left) and corresponding semantic segmentation on

the RoMb dataset (right). .45

5.6. Colormap used for visualization of classes in SafeTram dataset.46

5.7. Qualitative comparison of model performance in day and night time. Model

outputs are visualized for presented input images. Each column compares seg-

mentations of the same road part during day and night. First column displays

how night conditions degrade segmentation quality of the train class. The mid-

dle column shows how pitch black parts of the image make the model clueless.

The last column suggests how the model is capable of detecting small pedestri-

ans even at night. .47

5.8. Qualitative comparison of model performance during sunny and overcast weather.

Model outputs are visualized for presented input images. Each column com-

pares segmentations in different weather conditions. The first column shows

how segmentation accuracy degrades in overexposed areas such as the right

hand sidewalk, but does not degrade in the middle column example. The right-

most column suggests how flaring in the windshield affects proper segmentation

in pixels of the bus. .48

5.9. Situations where boundary-aware loss outperforms cross-entropy. Column 1

displays images from Cityscapes val, whereas columns 2 and 3 show segmenta-

tion outputs for pyramidal fusion models trained with cross-entropy and boundary-

aware loss, respectively. Thin, distant or small objects are consistently bet-

ter segmented when training with boundary-aware loss. Examples include the

motorcycle rider and traffic poles (first row), cyclists and traffic signs (middle

row), as well as sidewalk and traffic lights (bottom row). Credit: Oršić and

Šegvić [41]. .51

76

List of Figures

5.10. Effects of deleting residual units from the encoder at test time. The two box

plots demonstrate how Cityscapes validation mIoU drops when residual units

are omitted. The x-axis displays the number of deleted residual units. We show

results for the single-scale model (a), and the pyramidal fusion model (b and c).

The final plot (c) displays every third entry from the middle plot (b). Credit:

Oršić and Šegvić [41]. .53

5.11. Magnitude of gradients incurred by each skip connection for the single scale

(a) and the pyramidal fusion model (b). We calculate gradients w.r.t. the input

image (∂L
∂ I) as well as gradients w.r.t. the convolutional kernels in the first layer

(∂L
∂W conv1). The horizontal axis represents the stride of the skip connection w.r.t.

the input image. Maximum stride in both graphs shows the decoder input and

not the actual skip connection. Credit: Oršić and Šegvić [41].54

6.1. Example of inharmonious taxonomies for multi-domain semantic segmenta-

tion. Pickups are labeled as class truck in VIPER [120] (left), class van in

Ade20k [101] (middle) and class car in Vistas [24] (right). We resolve the

class overlap by learning on partial labels [119].58

6.2. Qualitative performance of SNPyr_RN152 on RVC 2020 test. Rows 1 and 3

show input images, while rows 2 and 4 show the model predictions. Images be-

long to (top to bottom, left to right): ADE, Viper, Kitti, Cityscapes, WildDash,

ScanNet and Vistas. .60

77

List of Tables

3.1. Analysis of per-block complexity expressed in the number of multiply-adds for

different classification architectures. .24

5.1. Semantic segmentation performance on full resolution images from Cityscapes

val. Column fps shows the inference speed (frames per second) on GTX 1080

Ti. Column GFLOP denotes the number of floating point operations.38

5.2. Semantic segmentation performance on Cityscapes when initializing from scratch

(top), and from parameters pre-trained on ImageNet. We report input reso-

lution (res), evaluation split (set), achieved accuracy (mIoU), inference speed

(fps), normalized inference speed (fps∗), normalized computational complexity

(GFLOP∗) and number of parameters (params). Label pyr denotes the pyrami-

dal fusion model presented in 4.3. Label ens denotes the ensemble of the single

scale model and the pyramid model. Symbols † and ‡ designate pre-training

on ImageNet and Vistas, respectively. Methods denoted with ? do not publish

computational complexity so there we only report GFLOPS and parameters for

the encoder. .39

5.3. Semantic segmentation accuracy on CamVid test. Columns mIoU† and mIoU

show the accuracies achieved with ImageNet pretraining and random initializa-

tion, respectively. .40

5.4. Experimental evaluation on the validation subset of Mapillary Vistas.41

5.5. Results on the validation subset of ADE20k.42

5.6. Inference speed along the downsampling (encoder) and the upsampling (de-

coder) paths. The columns dn time and up time display the execution times,

while the columns dn GFLOP and up GFLOP show the number of floating

point operations for 2MPx images. Runtime measurements are made under Py-

Torch (no TensorRT optimization) on a GTX1080Ti.42

5.7. Comparison of pyramid pooling variants for our single-scale model on Cityscapes

val. We report the number of parameters, inference speed at 2MPx and mIoU

accuracy. .48

List of Tables

5.8. Validation of the number of feature maps in the upsampling path of a single-

frame architecture. The models were trained on Cityscapes train subset at

512×1024 while the evaluation is performed on Cityscapes val. All models

use ImageNet initialization. .49

5.9. Validation of convolution alternatives in the upsampling path of a single-scale

model with a ResNet-18 encoder. The GFLOP column shows the number of

floating point operations for the full Cityscapes resolution, i.e. 1024×2048. The

params column displays the number of parameters in the decoder path (without

ImageNet pre-trained parameters). .50

5.10. Evaluation of convolution alternatives in the upsampling path of a model with

MobileNet V2 encoder. The GFLOP column shows the number of floating point

operations when the input image is full CamVid resolution, i.e. 960×720. The

params column displays the number of parameters in the decoder path without

ImageNet pre-trained parameters. .50

5.11. Model-wide effective receptive field (ERF) is strongly correlated with mIoU

accuracy across five of our models. The models were trained on Cityscapes

train, while mIoU and ERF were evaluated on Cityscapes val. We have used

full resolution images. .52

5.12. Impact of partial ImageNet pre-training of the single-scale model to the ac-

curacy on Cityscapes val. Row modules denotes which residual blocks were

initialized on ImageNet (cumulative from left to right). Row params displays

the total number of parameters which were initialized on ImageNet. All models

were trained at full resolution. .54

5.13. Experiments of segmentation mIoU of ensembled models on Cityscapes val.

The combination of one single scale(SPP) and one pyramidal fusion model sur-

passes the ensemble of two single scale models models.55

6.1. Summary of the seven datasets from the RVC 2020 collection for semantic seg-

mentation. The columns correspond to the total number of annotated non-test

images (# images), the total number of training and test classes (# classes), as

well as the mean and standard deviation of the square root of the number of

pixels (
√

HW) across the training split (resolution).57

6.2. Computational complexity, parameter count and memory footprint (eval/train)

for prominent semantic segmentation models. We assume 1MPx input, 192 log-

its, and batch size 1. SNpyr stands for pyramidal SwiftNet [41]. PDL denotes

Panoptic DeepLab [121] without an instance decoder. RN, X and HN stand for

ResNet [42], Xception [122] and HRNet [123], respectively.59

79

List of Tables

6.3. Performance evaluation on the RVC 2020 benchmark collection. We compare

mIoU accuracy of the concurrent work (top) with our model (bottom).59

6.4. Mini-batch configuration schedule across the training epochs for the SNpyr-

RN152 submission. The columns show the square crop size, the batch size, the

range of uniform scale jittering and the training speed in crops per second. . .60

80

Biography

Marin Oršić was born in 1993 in Zagreb. He obtained his bachelor’s and master’s degrees

at University of Zagreb, Faculty of Electrical Engineering and Computing. Upon finishing

his master’s thesis, he was employed at UniZG-FER in 2017. as part of the natural image

understanding group conducted by professor Siniša Šegvić.

The first project he was involved in was "SafeTram: System for increased driving safety in

public urban rail traffic", where he worked on real-time visual recognition. In 2019 he worked

on "Development of a multi-functional anti-terrorism system (MAS)" project. His final project

at FER, funded by Microblink Ltd., involved understanding of scene geometry using monoc-

ular cameras. He also worked as a consultant for Romb Technologies where he was involved

in creating a data annotation workflow and an efficient computer vision inference pipeline for

visual understanding of indoor warehouse scenery. During his engagement in the research lab

of professor Šegvić, the group participated in two instances of the prestigious competition Ro-

bust Vision Challenge. In 2018 the group ranked second. In 2020 they won the competition

while the submission was mainly based on the methodology from Marin’s doctoral thesis. Cur-

rently, Marin is employed by Microblink Ltd. where he focuses on efficient computer vision

applications.

His research interests include efficient visual recognition systems, dense prediction, semi-

supervised learning and dense reconstruction algorithms. His other professional interests in-

clude efficient implementations for training models based on differentiable programming, object-

oriented and data driven programming. He is involved in peer-reviewing for international jour-

nals and conferences.

81

Biography

List of Publications

Journal Papers

1. Oršić, M., Šegvić, S., “Efficient semantic segmentation with pyramidal fusion”, Pat-
tern Recognition, 2020, p. 107611

Conference Papers

1. Oršić, M., Krešo, I., Bevandić, P., Šegvić, S., “In defense of pre-trained ImageNet
architectures for real-time semantic segmentation of road-driving images”, in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 2019,
pp. 12 607–12 616

2.Šari ć, J., Oršić, M., Antunović, T., Vražić, S., Šegvić, S., “Warp to the future: Joint fore-

casting of features and feature motion”, in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 10 648–10 657

3.Šari ć, J., Oršić, M., Antunović, T., Vražić, S., Šegvić, S., “Single level feature-to-feature

forecasting with deformable convolutions”, in German Conference on Pattern Recogni-

tion. Springer, 2019, pp. 189–202

4.Bevandi ć, P., Krešo, I., Oršić, M., Šegvić, S., “Simultaneous semantic segmentation and

outlier detection in presence of domain shift”, in German Conference on Pattern Recog-

nition. Springer, 2019, pp. 33–47

5.Ka čan, M., Oršić, M., Šegvić, S., Ševrović, M., “Multi-task learning for irap attribute

classification and road safety assessment”, in 2020 IEEE 23rd International Conference

on Intelligent Transportation Systems (ITSC). IEEE, 2020, pp. 1–6

6.Grubiši ć, i., Oršić, M., Šegvić, S., “A baseline for semi-supervised learning of efficient

semantic segmentation models”, in 17th International Conference on Machine Vision Ap-

plications, MVA 2021, Tokyo, Japan, July 25-27, 2021. IEEE, 2021

7.Bi ćanić, B., Oršić, M., Marković, I., Šegvić, S., Petrović, I., “Pedestrian tracking by prob-

abilistic data association and correspondence embeddings”, in 2019 22th International

Conference on Information Fusion (FUSION). IEEE, 2019, pp. 1–6

Other Manuscripts

1.Orši ć, M., Bevandić, P., Grubišić, I., Šarić, J., Šegvić, S., “Multi-domain semantic seg-

mentation with pyramidal fusion”, arXiv preprint arXiv:2009.01636, 2020

2.Bevandi ć, P., Krešo, I., Oršić, M., Šegvić, S., “Discriminative out-of-distribution detec-

tion for semantic segmentation”, arXiv preprint arXiv:1808.07703, 2018

82

Biography

3.Krešo, I., Orši ć, M., Bevandić, P., Šegvić, S., “Robust semantic segmentation with ladder-

densenet models”, arXiv preprint arXiv:1806.03465, 2018

4.Bevandi ć, P., Oršić, M., Grubišić, I., Šarić, J., Šegvić, S., “Multi-domain semantic seg-

mentation on datasets with overlapping classes”

5.Bevandi ć, P., Krešo, I., Oršić, M., Šegvić, S., “Dense outlier detection and open-set recog-

nition based on training with noisy negative images”, arXiv preprint arXiv:2101.09193,

2021

83

Životopis

Marin Oršić je rod̄en 1993. u Zagrebu. Preddiplomski i diplomski studij završio je na Sveučil-

ištu u Zagrebu, Fakultetu Elektrotehnike i Računarstva. Pri završetku diplomskog studija 2017.

zaposlio se na FER-u kao član grupe za razumjevanje prirodnih slika pod vodstvom profesora

Siniše Šegvića.

Prvi projekt na kojem se angažirao bio je "SafeTram: Sustav za povećanje sigurnosti vožnje

javnog urbanog tračničkog prometa", gdje je radio na vizualnom raspoznavanju u stvarnom vre-

menu. 2019. radio je na projektu "Razvoj multifunkcionalnog antiterorističkog sustava (MAS)".

Na posljednjem projektu pod pokroviteljstvom tvrtke Microblink bavio se razumijevanjem ge-

ometrije scene korištenjem jednookih kamera. Radio je i kao konzultant za tvrtku Romb Tech-

nologies gdje se uključio u stvaranje procesa za označavanje podataka te cjevovoda za efikasnu

izvedbu vizualnog razumijevanja scena iz skladišta. Tijekom rada u istraživačkom laboratoriju

profesora Šegvića s grupom je sudjelovao na dvije inačice prestižnog natjecanja Robust Vision

Challenge. 2018. je grupa ostvarila drugo mjesto. 2020. su pobijedili na natjecanju, a pob-

jednički podnesak se velikim djelom oslanja na metodologiju iz Marinove disertacije. Marin je

trenutno zaposlen u tvrtki Microblink gdje se bavi efikasnim primjenama računalnog vida.

Njegova istraživačka područja uključuju efikasne sustave za vizualno raspoznavanje, gustu

predikciju, polunadzirano učenje i algoritme za gustu rekonstrukciju. Njegovi ostali profesion-

alni interesi efikasne implementacije za treniranje modela temeljenih na diferenciabilnom pro-

gramiranju, objektno orijentirano programiranje te programiranje vod̄eno podacima. Uključen

je kao recenzent za med̄unarodne časopise i konferencije.

84

	Introduction
	Deep convolutional architectures for image classification
	LeNet, AlexNet
	LeNet
	AlexNet

	VGG
	Architectures with skip connections
	ResNet
	DenseNet

	Efficient convolutional architectures
	MobileNet V2
	EfficientNet

	Convolutional architectures for semantic segmentation
	Elements of efficient convolutional models
	Methods of adapting classification encoders for dense prediction

	Efficient architectures for semantic segmentation
	Custom architectures for real-time dense prediction
	Architectures with ImageNet classification backbones
	Relation to related previous work

	Semantic image segmentation using pyramidal fusion
	Basic building blocks
	Convolutional layers for fast inference
	Elements of an efficient encoder-decoder architecture

	Single-scale architecture
	Multi-scale architecture with pyramidal fusion
	Increasing the penalty for boundary pixels

	Experimental evaluation of proposed methods
	Training and inference details
	Cityscapes
	CamVid
	Mapillary Vistas
	ADE20k
	Single-scale model execution profile
	Runtime efficiency on Jetson TX2 and Jetson Nano
	Case study: RoMb Technologies
	Case Study: SafeTram
	Comparison with PPM and ASPP
	Validating the upsampling capacity
	Validating the pyramid encoder
	Improving the pyramidal fusion with boundary-aware loss
	Interpreting the operation of the presented models

	Participation in Robust Vision Challenge 2020
	Multi domain semantic segmentation benchmark
	Pyramidal fusion for multi domain semantic segmentation
	Competition results

	Conclusion
	Bibliography
	Biography
	Životopis

