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zaštite (KONPRO 2)”, “Razvoj Greyp platforme za mikromobilnost - GMP”, “A-Unit - Istra-

živanje i razvoj napredne jedinice za autonomno upravljanje mobilnim vozilima u logistici” i

“Crossing the Gap: Startup education and support for PhD students, researchers and scientists
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Izvanredni profesor Džapo stariji je član IEEE (Institute of Electrical and Electronics En-

gineers), IFMBE (International Federation for Medical and Biological Engineering), i CRO-

BEMPS (Hrvatsko društvo za biomedicinsko inženjerstvo i medicinsku fiziku). Bio je voditelj

Odjela za instrumentaciju i mjerenja Hrvatske sekcije IEEE od 2009. do 2013. Voditelj je

Centra karijera FER-a od osnutka 2015. godine do danas. Sudjelovao je u 2 med̄unarodna pro-

gramska odbora konferencija i bio recenzent u 2 med̄unarodna časopisa. Dobitnik je Nagrade
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Abstract

This thesis investigates three different methods for optimization of schedulability and quality

of service in real-time mixed-criticality systems. The research is motivated by requirements

of safety-critical systems, typically encountered in transportation and industrial systems, which

are often represented with various real-time mixed-criticality system models.

The first method is focused on the schedulability testing in the adaptive mixed-criticality

system model. A novel sufficient schedulability test for adaptive mixed-criticality task sys-

tems is devised, which improves the schedulability in comparison with the existing sufficient

schedulability tests. Moreover, the devised test requires significantly less computing power in

comparison with exhaustive exact methods. In addition, a framework for schedulability testing

was devised, which ensures comprehensive and systematic experimental evaluation of the de-

vised test as well as the validation of the existing schedulability tests. Using this framework,

errors and inconsistencies in the existing schedulability tests were corrected. The results pre-

sented in the thesis consist of extensive experimental evaluation on a large number of different

synthetically generated task sets as well as on small numerical examples.

The second method deals with the harmonic period assignment from period ranges, which

is of great importance for maintaining schedulability and quality of service in the safety-critical

real-time systems. Unlike the existing harmonic period assignment methods from period ranges,

the method for harmonic period assignment devised in this research is optimal, and it enables

optimization of the number of different period values in the system, which is often of practical

interest in real-world applications. Moreover, the devised harmonic period assignment method

enables the optimization of arbitrary utilization values. The method is validated and compared

to existing methods using an extensive experimental evaluation. It was shown that the usage of

this method can significantly increase schedulability and quality of service in sense of utilization

in systems of interest.

The third method addresses the optimization of quality of service of non-critical or low-

criticality tasks. The method is based on the genetic programming method, which is often used

in solving various scheduling problems. In this research, the genetic programming is exploited

to generate dynamic priority assignment functions for scheduling of low-criticality tasks in the

adaptive mixed-criticality environment, which is typically overloaded. The extensive experi-

mental evaluation on synthetically generated task sets demonstrates that the proposed method

can generate heuristics for various system configurations, which dominate single-variable based

heuristics that can be found in the literature.

Keywords: real-time, scheduling, mixed-criticality, period assignment, genetic program-

ming



Prošireni sažetak

Optimizacija rasporedivosti i kvalitete usluge u sustavima za rad u stvar-
nom vremenu s mješovitom kritičnošću

Uvod

U današnje vrijeme, pojam stvarnog vremena je od velike važnosti u svakodnevnom životu od-

nosno u cijelom spektru ljudskih aktivnosti koje uključuju interakciju s računalnim sustavima.

Nadalje, koncept stvarnog vremena jako je važan u ugradbenim računalnim sustavima koji su

dio sigurnosno kritičnih sustava koji se koriste u industrijskim računalnim sustavima, automo-

bilima, željezničkim sustavima te biomedicinskim aplikacijama. Grubo govoreći, sigurnosno

kritični sustavi su sustavi u kojima kvar tijekom rada sustava može uzrokovati veliku finan-

cijsku štetu ili gubitak ljudskog života. Dizajn i proizvodnja takvih sustava prolazi rigorozni

proces utvrd̄ivanja sigurnosti koji osigurava nisku vjerojatnost kvara te povećava pouzdanost

sustava. Fokus ovog istraživanja je elektronički dio sigurnosno kritičnih sustava odnosno raču-

nalni sustav koji izvršava različite funkcije bitne za rad sustava. Štoviše, fokus je na vremenskoj

analizi ovakvih sustava. Inherentni strogi zahtjevi za rad u stvarnom vremenu u sigurnosno kri-

tičnim sustavima kao i rigorozna procedura provjere tih sustava koja je nametnuta standardima

za funkcionalnu sigurnost motivirali su inženjere i znanstvenu zajednicu za razvitak metoda za

učinkovitu analizu i dizajn takvih sustava. U tom kontekstu, cilj ove disertacije razviti nove

metode za dizajn i analizu sigurnosno kritičnih sustava koje u obzir uzimaju trenutne trendove i

potrebe koje se javljaju u njihovoj implementaciji. Preciznije, metode koje su razvijene u ovom

radu adresiraju optimizaciju rada sustava u smislu rasporedivosti zadataka i kvalitete usluge

izvod̄enja zadataka.

Motivacija za istraživanje

Motivacija za istraživanje proizašla je iz stvarnih problema u dizajnu i potreba utvrd̄ivanja is-

pravnosti sigurnosno kritičnih sustava u industriji. Iako je praksa certifikacije takvih sustava

dobro poznata i odred̄ena standardima za funkcionalnu sigurnost, mnogi današnji trendovi ve-

zani uz izradu ugradbenih računalnih sustava utjecali su značajno na taj proces. Jedan od aktu-

alnih trendova u kontekstu ugradbenih računalnih sustava je povećanje procesorske moći što je

omogućilo implementaciju više različitih funkcija na istoj računalnoj platformi. Štoviše, to je

omogućilo da se funkcije koje nisu kritične za rad sustava izvode uz sigurnosno kritične funk-

cije na jednoj računalnoj platformi. Sustavi koji izvode funkcije različite kritičnosti nazivaju se

sustavima s mješovitom kritičnošću. Zajednička karakteristika takvih sustava je da potencijalno

mogu ući u preopterećeno stanje što znači da se neke nekritične funkcije neće moći izvesti na

vrijeme. U klasičnim sustavima za rad u stvarnom vremenu ovakva pojava nije prihvatljiva dok



je u različitim varijantama sustava s mješovitom kritičnošću dozvoljeno da se pojedine funkcije

ne stignu izvesti do krajnjeg roka završetka. Isto tako, u tradicionalnim implementacijama sus-

tava s mješovitom kritičnošću, funkcije različite kritičnosti izvode se na različitim računalima

što omogućuje prostornu i vremensku odvojenost tih funkcija. Ipak, time je povećana složenost

sustava u smislu broja računala, vremena za razvoj sustava, a povećana je i potrošnja. Pristup

u kojem se funkcije različite kritičnosti izvode na istoj računalnoj platformi smanjuje slože-

nost sustava smanjenjem broj računala što uzrokuje smanjenje vremena potrebnog za razvoj te

smanjenje potrošnje i cijene sustava.

U ovom istraživanju, razvijene su metode za optimizaciju dviju važnih mjera u sustavima

za rad u stvarnom vremenu s mješovitom kritičnošću, a to su rasporedivost i kvaliteta usluge.

Rasporedivost je svojstvo sustava koje kazuje je li moguće rasporediti sustav. Na primjer, opi-

šemo li sustav kao skup poslova, on je rasporediv ako se svi poslovi mogu izvršiti do krajnjeg

roka završetka. Rasporedivost je minimalni uvjet koji mora biti zadovoljen za sigurnosno kri-

tične funkcije u sustavima s mješovitom kritičnošću. S druge strane kvaliteta usluge, u ovom

kontekstu, je mjera koja kazuje koliko su performanse sustava pogoršane u odnosu na zadana

ograničenja. Drugim riječima, u okolnostima u kojima nije moguće garantirati rasporedivost

svih zadataka, kvaliteta usluge kazuje koliko dobro ili loše odred̄eni algoritam za raspored̄iva-

nje raspored̄uje poslove u sustavu. Iako su metode koje su razvijene u ovom radu predvid̄ene za

poboljšanje rasporedivosti i kvalitete usluge, one imaju utjecaj na ostala svojstva koja su bitna

u sustavima za rad u stvarnom vremenu kao što su robusnost, predvidljivost i stabilnost.

Pregled disertacije

Disertacija sadrži šest poglavlja. U prvom i drugom poglavlju opisani su kontekst i teoretska

pozadina istraživanja. U trećem, četvrtom i petom poglavlju opisane su tri metode za optimi-

zaciju rasporedivosti i kvalitete usluge u sustavima za rad u stvarnom vremenu s mješovitom

kritičnošću koje čine doprinos ove disertacije. U šestom poglavlju dan je zaključak.

U prvom poglavlju disertacije opisan je kontekst istraživanja te je dana motivacija za is-

traživanje. Naglašena je važnost istraživanja u kontekstu trendova koji se pojavljuju u izradi

ugradbenih računalnih sustava te je objašnjena paradigma sigurnosno kritičnih sustava i sustava

s mješovitom kritičnošću. Definirani su cilj i hipoteze istraživanja te su naglašeni znanstveni

doprinosi istraživanja. Cilj predloženog istraživanja je razviti metode za poboljšanje raspore-

divosti i kvalitete usluge u sustavima za rad u stvarnom vremenu s mješovitom kritičnošću.

Glavne hipoteze istraživanja su:

1. Testovi rasporedivosti za adaptivne sustave s mješovitom kritičnošću s fiksnim priorite-

tima mogu biti poboljšani.

2. Postojeći pristupi za harmonijsku dodjelu perioda mogu se poboljšati uvod̄enjem dodat-

nih ograničenja na dizajn sustava.



3. Heuristike generirane korištenjem genetičkog programiranja mogu se koristiti u susta-

vima s mješovitom kritičnošću za povećanje kvalitete usluge zadataka koji nisu kritični.

U drugom poglavlju disertacije opisana je teoretska pozadina sustava za rad u stvarnom

vremenu. Dan je pregled modela sustava za rad u stvarnom vremenu, a detaljnije su opisani

modeli periodičkih i sporadičkih skupova zadataka. Detaljnije je objašnjeno jednoprocesorsko

raspored̄ivanje te su opisane metode za računanje vremena odziva sporadičkih kao i periodič-

kih skupova zadataka u kontekstu odred̄ivanja rasporedivosti sustava. Detaljnije je opisan i

industrijski kontekst sustava s mješovitom kritičnošću s aspekta pouzdanosti računalnih sus-

tava. Ukratko je opisan proces utvrd̄ivanja sigurnosti sustava. Na kraju je dan pregled različitih

konfiguracija sustava s mješovitom kritičnošću koje se susreću u praksi.

U trećem poglavlju opisana je metoda za ispitivanje rasporedivosti za sustave s adaptivnom

mješovitom kritičnošću i nepromjenjivim prioritetima. Opisana je motivacija za uvod̄enje kon-

cepta adaptivne mješovite kritičnosti koji uz diskriminaciju zadataka u sustavima po kritičnosti

uvodi i različita stanja sustava. Dan je pregled različitih modela sustava s mješovitom kritič-

nošću te su uspored̄eni statički i adaptivni modeli. Isto tako, dan je pregled postojećih testova

rasporedivosti za statičke i adaptivne sustave koji mogu biti nužni, dovoljni i precizni. Uveden

je novi dovoljni test rasporedivosti koji daje bolje rezultate u odnosu na postojeće, a temelji se

na analizi vremena odziva zadataka u sustavu. U odnosu na postojeće dovoljne testove raspore-

divosti, novi test se temelji na preciznijoj analizi vremena odziva koja se može dobiti dodatnom

diskriminacijom kritičnih i nekritičnih zadataka u sustavu prema prioritetima. Pokazano je da

u odnosu na postojeće dovoljne testove rasporedivosti, novi test ima veću vremensku slože-

nost. Teoretske razlike izmed̄u testova rasporedivosti demonstrirane su na malim numeričkim

primjerima. Nadalje, u radu je pokazano da kod postojećeg preciznog testa rasporedivosti pos-

toje pogreške u formulaciji algoritma i uvedeni su ispravci istih grešaka. U radu je za potrebe

konzistentne evaluacije različitih testova rasporedivosti opisan radni okvir razvijen u sklopu

istraživanja koji omogućava usporedbu različitih testova na sintetski generiranim skupovima

zadataka. Korištenjem radnog okvira napravljena je eksperimentalna evaluacija razvijenog i

postojećih testova rasporedivosti na velikom broju sintetski generiranih skupova zadataka.

U četvrtom poglavlju opisana je metoda za dodjelu harmonijskih perioda za poboljšanje ras-

poredivosti sigurnosno kritičnih zadataka u sustavima za rad u stvarnom vremenu s mješovitom

kritičnošću. Metoda je stavljena u kontekst istraživanja odnosno u kontekst sigurnosno kritič-

nih i mješovito kritičnih sustava. Objašnjena je važnost harmonijskih perioda zadataka, odnosno

perioda kod kojih je svaka viša vrijednost perioda višekratnik niže vrijednosti perioda, u kon-

trolnim industrijskim sustavima. Dan je pregled postojećih istraživanja i metoda za dodjelu har-

monijskih perioda. Objašnjeni su nedostaci postojećih pristupa kao što njihova suboptimalnost

i nemogućnost optimizacije broja različitih vrijednosti perioda koja postoji kao zahtjev u mno-

gim industrijskim kontrolnim aplikacijama. Pomoću malih numeričkih primjera koji oslikavaju



stvarne industrijske probleme, objašnjena je motivacija za uvod̄enje novih metoda te su formu-

lirani novi problemi dodjele harmonijskih perioda. Analizirana je složenost novih problema

dodjele harmonijskih perioda koji omogućuju optimizaciju broja različitih vrijednosti perioda u

rješenju i utvrd̄eno je da problemi spadaju u klasu NP-teških problema. Opisani su heuristički i

optimalni algoritmi dodjele perioda zadacima te su odred̄ene njihove složenosti. Pokazano je da

nove formulacije problema omogućavaju fleksibilan pristup dizajnu sustava. Eksperimentalnom

evaluacijom na velikom broj sintetski generiranih skupova zadataka uspored̄eni su novi i pos-

tojeći algoritmi i pokazano je da novi algoritmi donose poboljšanja u kontekstu rasporedivosti i

kvalitete usluge.

U petom poglavlju opisana je metoda za raspored̄ivanje zadataka za poboljšanje kvalitete

usluge nekritičnih zadataka u sustavima za rad u stvarnom vremenu s mješovitom kritičnošću

temeljena na genetičkom programiranju. U poglavlju je dan pregled literature i pristupa koji se

koriste za raspored̄ivanje nekritičnih zadataka i zadataka niske kritičnosti u sustavima s mješo-

vitom kritičnošću. Isto tako, objašnjene su metode raspored̄ivanja u preopterećenim sustavima.

Nadalje, dan je pregled pristupa temeljenih na genetičkom programiranju koji se koriste za ge-

neriranje heuristika odnosno funkcija prioriteta za raspored̄ivanje poslova u kontekstu operacij-

skih istraživanja. Objašnjena je sličnost u ograničenjima postupaka raspored̄ivanja u sustavima

s mješovitom kritičnošću i raspored̄ivanja u kontekstu operacijskih istraživanja i pretpostav-

ljeno je da bi se postupak genetičkog programiranja mogao koristiti i u sustavima s mješovitom

kritičnošću za generiranje pravila raspored̄ivanja odnosno funkcija prioriteta. Motivacija za

uvod̄enje genetičkog programiranja za generiranje heuristika za raspored̄ivanje objašnjena je na

malim numeričkim primjerima. Nadalje, detaljno je objašnjen radni okvir temeljen na gene-

tičkom programiranju koji služi za optimizaciju funkcija prioriteta koje omogućuju poboljšanje

kvalitete usluge nekritičnih zadataka i zadataka niske kritičnosti. Heuristike dobivene predlože-

nom metodom temeljito su evaluirane na velikom broju sintetski generiranih skupova zadataka

i uspored̄ene su po performansama s postojećim heuristikama. Pokazano je da generirane he-

uristike donose poboljšanje kvalitete usluge u usporedbi s postojećim heuristikama. Metoda je

proširena tako da se uz kvalitetu usluge može optimirati i pravednost u raspored̄ivanju. Isto

tako, objašnjeno je kako se metoda može koristiti tako da se koristi više od jednog pravila ras-

pored̄ivanja pomoću algoritma kooperativne koevolucije. Na kraju su evaluirani i uspored̄eni

svi pristupi. Na numeričkom primjeru je objašnjeno kako se metoda za dodjelu harmonijskih

perioda može koristiti uz metodu genetičkog programiranja za dizajn sustava.

U šestom poglavlju izloženi su najbitniji zaključci istraživanja u kontekstu cilja te hipoteza

istraživanja te znanstvenih doprinosa. Opisani su mogući daljnji pravci istraživanja.



Zaključak

U ovoj doktorskoj disertaciji istražene su tri različite metode za optimizaciju rasporedivosti i

kvalitete usluge u sustavima za rad u stvarnom vremenu s mješovitom kritičnošću. Istraživanje

je motivirano zahtjevima sigurnosno kritičnih sustava koji se tipično susreću u transportnim i

industrijskim sustavima, a uz to se modeliraju različitim modelima sustava za rad u stvarnom

vremenu s mješovitom kritičnošću. U disertaciji su opisane metode koje čine ostvareni znans-

tveni doprinos istraživanja:

1. Metoda za ispitivanje rasporedivosti za sustave s adaptivnom mješovitom kritičnošću i

nepromjenjivim prioritetima.

2. Metoda za dodjelu harmonijskih perioda za poboljšanje rasporedivosti sigurnosno kritič-

nih zadataka u sustavima za rad u stvarnom vremenu s mješovitom kritičnošću.

3. Metoda za raspored̄ivanje zadataka za poboljšanje kvalitete usluge nekritičnih zadataka u

sustavima za rad u stvarnom vremenu s mješovitom kritičnošću temeljena na genetičkom

programiranju.

Fokus prve metode je ispitivanje rasporedivosti u adaptivnim sustavima s mješovitom kri-

tičnošću. U radu je razvijen novi dovoljni test rasporedivosti za adaptivne sustave s mješovitom

kritičnošću koji donosi poboljšanje rasporedivosti u usporedbi s postojećim dovoljnim testo-

vima rasporedivosti. U radu su opisani ispravci potrebni za ispravan rad postojećih preciznih

testova rasporedivosti. Razvijen je radni okvir za evaluaciju testova kojim su potvrd̄ena pobolj-

šanja i ispravci testova rasporedivosti.

Druga metoda koja je razvijena je metoda za dodjelu harmonijskih perioda iz intervala peri-

oda. Razvijena metoda za dodjelu harmonijskih perioda je optimalna i omogućuje optimizaciju

broja različitih vrijednosti perioda u konačnom rješenju što je od praktičnog interesa u stvarnim

aplikacijama. Razvijena metoda je validirana i uspored̄ena s postojećim metodama temeljem

ekstenzivne eksperimentalne evaluacije. Pokazano je da korištenje ove metode može značajno

povećati rasporedivost i kvalitetu usluge u kontekstu faktora zauzeća u sustavima od interesa.

Treća metoda adresira optimizaciju kvalitete usluge nekritičnih zadataka ili zadataka s ni-

skom kritičnošću. Razvijena metoda temelji se na genetičkom programiranju koje se koristi za

generiranje dinamičkih funkcija za dodjelu prioriteta za raspored̄ivanje zadataka s niskom kritič-

nošću u sustavima s adaptivnom mješovitom kritičnošću koji su tipično preopterećeni. Pomoću

ekstenzivne eksperimentalne evaluacije pokazano je da se predloženom metodom može dobiti

poboljšanje u odnosu na postojeće heuristike.

Nove metode razvijene u ovom radu mogu se koristiti u analizi i dizajnu sustava s mješovi-

tom kritičnošću u industriji. Ipak, treba uzeti u obzir da se u dizajnu industrijskih sigurnosno

kritičnih sustava inženjeri okreću korištenju metoda koje dokazano imaju visoku učinkovitost u

ciljanim aplikacijama. Time je teoretska pozadina razvijenih metoda koja je razrad̄ena u ovom

radu još bitnija jer jasno definira mogućnosti i ograničenja onog što se može postići u dizajnu



sustava, a to je od iznimne važnosti u sigurnosno kritičnim sustavima.

Ključne riječi: stvarno vrijeme, raspored̄ivanje, mješovita kritičnost, dodjela perioda, ge-

netičko programiranje
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Chapter 1

Introduction

Nowadays, the notion of real-time is of high importance in everyday life, i.e., the spectrum

of different human activities which involve interaction with computer systems. Moreover, the

concept of real-time has been especially important in the embedded computer systems which are

a part of safety-critical systems that are typically encountered in automotive, railway, industrial

and biomedical applications. Roughly speaking, safety-critical systems are systems in which

an error or a failure in system operation can cause severe financial damage or loss of human

life. The design and production of such systems undergoes rigorous safety assessment process

which ensures low failure rate and increases reliability of the system. In this research, the

focus is on the electronic part of safety-criticality systems, i.e., computer systems that execute

various functions that are crucial for system performance. Moreover, the timing properties

and timing phenomena in these systems are studied. Inherent hard real-time constraints in

safety-critical systems, and rigorous safety constraints imposed by safety standards have been

motivating engineers and the academia to provide efficient means for design and analysis of

safety-critical real-time systems. In that regard, this thesis aims to provide novel techniques for

design and analysis of these systems which take into account current trends and needs in the

design of embedded systems.

1.1 Motivation for the research

The motivation for this research has arisen from the collaboration of the Faculty of Electrical

Engineering and Computing, University of Zagreb and Končar Electrical Engineering Institute,

Inc on System for increased driving safety in public urban rail traffic (SafeTRAM) project [1].

Therefore, the primary motivation for this research is the study of safety-critical embedded

systems present in the railway applications as critical components that affect the overall sys-

tem reliability and safety. Recent trend in design of safety-critical systems includes combined

implementation of safety-critical functions alongside non-critical functions on a single com-

1
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puting platform. Systems which execute functions with different criticality are referred to as

mixed-criticality systems. The emergence of modern high-performance embedded computing

platforms enabled the viability of such an approach in many practical solutions. The common

characteristic of mixed-criticality systems is that they have a potential to enter an overloaded

state, meaning that some non-critical tasks might not be able to meet their deadlines, which is

not considered to be a system malfunction. On the other hand, this is considered to be a mal-

function in classical hard real-time systems, and therefore it is not acceptable. It is worth noting

that in the classical approach to the safety-critical system design, i.e., partitioned or federated

approach, functions of different criticality are executed on separate computing platforms. The

aim of the mixed-criticality approach, in general sense, is to reduce the number of computing

platforms in the system, which consequently should reduce the time for design, the cost of

the system as well as the power consumption. Therefore, in last ten years many projects were

funded by the European Union for research of mixed-criticality systems, namely:

∙ MultiPARTES,

∙ DREAMS,

∙ CONTREX,

∙ SAFURE, etc.

These projects aim to solve many problems which emerged by introduction of mixed-criticality

concept in the design of safety-critical systems. These problems include:

∙ temporal and spatial isolation of functions with different criticality,

∙ implementation of mixed-criticality aware schedulers,

∙ techniques for testing, verification and validation of software design,

∙ mixed-criticality aware techniques for safety assessment process of safety-critical sys-

tems.

In this research, the focus is on two important metrics of real-time mixed-criticality systems:

schedulability and quality of service. Schedulability is the ability of the system of being schedu-

lable, i.e., at least one algorithm exists which can produce a feasible schedule of system func-

tions. Schedulability per se is a minimal requirement which has to be ensured in safety-critical

systems in the context of critical system functions. On the other hand, the quality of service in

mixed-criticality systems depends on the quality of schedule of non-critical tasks in the system

with regard to a certain performance metric. In other words, quality of service measures the

degradation of system performance with regard to imposed constraints. Although the methods

developed in this research target schedulability and quality of service, they have effect on other

real-time system properties such as runtime robustness, predictability and stability.

2
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1.2 Summary of basic definitions

For sake of completeness and clarity, the basic definitions of some important terms are provided

as follows:

∙ Schedulability is the ability of being schedulable. System is schedulable if there exists

at least one algorithm that can produce a feasible schedule.

∙ Quality of service is a metric of degradation of system performance with regard to im-

posed constraints.

∙ Real-time systems are systems in which the validity of a system function depends on

timeliness.

∙ Mixed-criticality systems are systems in which a single computing platform executes

functions of different criticality.

∙ Safety-critical systems are systems in which an error can cause significant financial dam-

age or loss of life.

∙ Overloaded systems are systems in which there is a lack of resources required by system

functions to meet a set of imposed constraints.

Note that, by definition, mixed-criticality systems are not safety-critical unless at least one

function in the system is critical. In this work, the focus is on mixed-criticality systems with at

least one safety-critical function. Moreover, note that an error in safety-critical system in the

context of real-time systems corresponds to delay, overload, overrun, or any violation of timing

constraints.

1.3 Thesis hypotheses and contributions

The goal of the proposed research is to provide methods for improving schedulability and qual-

ity of service in real-time mixed-criticality systems.

The main hypotheses are the following:

1. Schedulability tests for fixed-priority adaptive mixed-criticality system model can be im-

proved.

2. Existing harmonic period assignment approaches can be improved by imposing additional

constraints on a system design.

3. Heuristics generated using genetic programming can be used in mixed-criticality systems

to increase the quality of service of non-critical tasks.

To show that each of the latter hypotheses holds, novel methods are devised and they correspond

to scientific contributions of the thesis. The main contributions of this research are:

1. Method for schedulability testing for adaptive mixed-criticality systems with fixed prior-
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ities.

2. Method for assignment of harmonic periods for improving the schedulability of safety-

critical tasks in real-time mixed-criticality systems.

3. Method for task scheduling for improving the quality of service of non-critical tasks in

real-time mixed-criticality systems based on genetic programming.

1.4 Organization

Contributions of this thesis are introduced in three separate chapters, which address different

aspects of mixed-criticality scheduling. Each chapter brings a unique method which correspond

to each of the three contributions and hypotheses stated in the previous section. Additionally,

chapter 2 explains preliminaries for real-time and safety-critical systems, which are highly im-

portant for the rest of the thesis.

In chapter 3, a method for schedulability testing in adaptive mixed-criticality system
with fixed priorities is introduced. Moreover, in this chapter following topics are discussed:

∙ Summary of existing schedulability tests and response-time analysis for fixed-priority

mixed-criticality systems (section 3.5).

∙ Novel schedulability test for fixed-priority adaptive mixed-criticality systems (section

3.6).

∙ Validation and correction of an existing exact schedulability test (section 3.8).

∙ A framework for evaluation of schedulability tests (section 3.9).

In chapter 4, a method for assignment of harmonic periods for improving the schedula-
bility of safety-critical tasks in real-time mixed-criticality system. Moreover, in this chapter

following topics are discussed:

∙ Summary of existing work on harmonic period assignment in control real-time systems

(section 4.2.1).

∙ Introduction of novel harmonic period assignment method for real-time systems (sections

4.3-4.8.2).

∙ Evaluation of the devised harmonic period assignment and comparison with the existing

approaches (section4.9).

In chapter 5, a method for task scheduling for improving the quality of service of non-
critical tasks in real-time mixed-criticality systems based on genetic programming. More-

over, in this chapter following topics are discussed:

∙ Summary of existing work in overloaded real-time systems, overloaded mixed-criticality

systems and scheduling using genetic programming (section 5.2).

∙ Introduction of novel method for improvement of the quality of service in real-time sys-

tems (sections 5.3.1-5.4).
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∙ Evaluation of the devised method using in the single-objective optimizing configuration

(section 5.5).

∙ Extending the method using multi-objective optimization and acceptance tests (sections

5.6-5.7).

In chapter 6, concluding remarks are stated and discussed.
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Chapter 2

Preliminaries

The aim of this chapter is to highlight distinct research areas related to this research. Addition-

ally, it provides a brief description of basic models and tools for analysis used throughout the

thesis. Moreover, it depicts the industrial aspects of mixed-criticality systems with the aim of

providing the better context for the rest of the thesis.

2.1 A brief introduction to real-time scheduling

Real-time scheduling theory serves as a theoretical basis for design and development of safety-

critical and mixed-criticality embedded systems with timing constraints. In this chapter, a brief

overview of basic real-time system task models, which are used in this research, will be pro-

vided. The choice of the appropriate system model is crucial for efficient system analysis.

Nowadays, there are plenty of different approaches to analysis of real-time systems, each having

specific properties applicable to a group of real-time systems. Naturally, more general real-time

system models exist as well. Intuitively, more general system models increase the complexity of

system analysis. The relation between expressiveness of a model and the difficulty of analysis

is depicted in Fig. 2.1. As it can be seen in the figure, lower expressiveness enables a more

efficient system analysis. Since in the safety-critical real-time systems arguments for safety of

the system have to be made as clear as possible, it is more appropriate to choose the model with

lower expressiveness. Therefore, both, the industry and the academia, have been using sporadic

and periodic task models for modeling real-time systems since their introduction in the early

real-time research [2, 3]. In the remainder of the section, these models will be explained in

detail.

2.1.1 Sporadic and periodic task model

In sporadic and periodic task models, the system is described as a set T = {τ1,τ2, ...,τn} of n

independent tasks which generate infinite series of jobs. Each task τi in the system is typically
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Figure 2.1: Comparison of different real-time system models with regard to the difficulty of analysis
and expressiveness of the model (based on the illustration from [5]). Arrows show the direction of the
generalization.
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described as a set with three elements:

τi = {Ci,Ti,Di} (2.1)

where Ci is the worst-case execution time (WCET) and Di ≤ Ti is the relative deadline. In case

of periodic systems parameter Ti denotes the period, and in sporadic systems this parameter

corresponds to the minimum interarrival time of two consecutive instances, i.e., jobs, of a task

τi. In certain cases, deadline is implicit, i.e., Di = Ti. The j-th job of the i-th task in the system

is denoted with τi j and can be represented as a set:

τi j = {ci j,di j} (2.2)

where ci j denotes the execution time, and di j corresponds to the absolute deadline of a job. The

basic metric used for comparison of task sets is processor utilization factor U which is defined

as:

U =
n

∑
i=1

Ci

Ti
(2.3)

Intuitively, processor utilization factor corresponds to the difficulty of finding a feasible sched-

ule for a task set. Moreover, it is well known that for a task set with utilization such that U > 1

a schedule does not exist upon a uniprocessor computing platform. In this research, the focus is

primarily on the scheduling problems on preemptive uniprocessor platforms since safety-critical

systems of interest typically employ single core microprocessor units in the implementation.

2.1.2 Uniprocessor real-time scheduling

Finding a feasible schedule or a scheduling policy that will generate a feasible schedule is one of

the most important problems in the design or real-time systems. In real-time systems, jobs that

are generated by sporadic or periodic tasks are scheduled according to a job priority assignment.

For clarity, more formal definitions are provided below.

Definition 1. Schedule. Schedule S is a function which assigns a value to every job τi j in the

system, at each discrete instant of time t:

S (τi j, t) : N2→ N (2.4)

The assigned value corresponds to the resource assigned to a job. *

For uniprocessor real-time scheduling, schedule is a function N2 → {0,1} since the only

resource in the system is processing time upon a single processor.

*Note that each job can have an unique index. Thus, the function maps from N2 to N.
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Definition 2. Priority assignment function. Priority assignment function is a mapping that

assigns a priority to each job in the system at any given discrete time instant t:

Π(τi j, t) : N2→ N (2.5)

Definition 3. Scheduler. Scheduler S is an algorithm which generates a schedule by assigning

a resource to a job according to priority assignment function Π.

Generally, classes of schedulers, i.e., scheduling algorithms, can be distinguished based on

the type of priority assignment which is employed. There are two distinct groups of schedulers

with regard to the type of priority assignment:

∙ Fixed-priority or static scheduling algorithms assign priority to tasks and their corre-

sponding jobs only once, prior to the system runtime.

∙ Dynamic scheduling algorithms can assign a priority to jobs generated by sporadic or

periodic tasks at any point in time during the system runtime.

In uniprocessor systems, the scheduler assigns processing time to a job of a task with the highest

priority.

2.1.3 Schedulability analysis

The primary goal of the analysis of real-time systems comprised of sporadic or periodic tasks is

to determine whether a given task set can be scheduled with an algorithm in a manner that each

generated job completes its execution by its corresponding deadline. More precisely, the goal

is to determine if a feasible schedule exists for a given scheduling algorithm and a task set. The

secondary, but also very important problem, is to determine an algorithm which can generate a

feasible schedule.

Definition 4. Schedulability test. Schedulability test for a scheduling algorithm A is a condi-

tion which is used to verify if a feasible schedule exists for a given task set.

Based on the type of the schedulability condition, there are three distinguished classes of

schedulability tests:

1. Necessary schedulability test yields NO if a task set is not schedulable.

2. Sufficient schedulability test yields YES if a task set is schedulable.

3. Necessary and sufficient, i.e, exact, schedulablity test yields YES if a task set is schedu-

lable and NO if a task set is not schedulable.

Intuitively, a more precise schedulability test requires more computational power in comparison

with a less precise one. Therefore, for an exact schedulability test, one would have to allocate

the larger amount of computational power than for the corresponding necessary or sufficient
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schedulability test. Note that a simple utilization-based necessary schedulability test was intro-

duced in the previous section, i.e., a task set is not schedulable if U > 1. However, such a test

cannot discover infeasible task sets with U ≤ 1.

2.1.4 Response-time analysis

In fixed-priority preemptive uniprocessor real-time systems comprised of periodic or sporadic

tasks, schedulability tests are often based on the response-time analysis. Response-time analysis

is a technique of determining the worst-case response time (WCRT) of each task in a task set.

If the WCRT is known for each task in the system, schedulability is determined by comparing

WCRTs to the corresponding relative deadlines. Generally, the response time Ri of a job of task

τi in the system can be expressed as:

Ri =Ci + Ii (2.6)

where Ii is the interference, i.e., time spent for executing, of jobs of tasks with the priority higher

than τi. To determine the WCRT of a task in the system, the worst-case interference from tasks

with higher priority in the system has to be taken into account when the WCRT is calculated.

It is well known that the worst-case interference of tasks with priority higher than the observed

task occurs when all jobs are released simultaneously, i.e., synchronously. This event is known

as synchronous arrival sequence or critical instant. In sporadic systems and periodic systems

without the initial offset, a critical instant occurs at the time instant 0 and at the every other

simultaneous arrival of jobs of all tasks in the system. These simultaneous arrivals occur every

hyperperiod which is generally the least common multiple of periods of all tasks. Therefore,

the worst-case interference can be expressed as:

Ii = ∑
τ j∈hp(τi)

⌈
Ri

Tj

⌉
·C j (2.7)

where set hp(τi) contains tasks with priority higher than τi. Term
⌈

Ri
Tj

⌉
corresponds to the

number of releases of a task with higher priority τ j up to the Ri time units. By multiplying

the number of releases with the worst-case execution time of higher-priority task, i.e., C j, the

interference caused by τ j is taken into account.

To calculate the WCRT of task τi, the following recurrence relation has to be solved in an

iterative or a recursive manner using Ci as the initial value for Ri in the calculation:

Ri =Ci + ∑
τ j∈hp(τi)

⌈
Ri

Tj

⌉
·C j (2.8)
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Using the latter response-time analysis the exact schedulability test for periodic and sporadic

systems can be expressed as follows.

Theorem 1. Schedulability of a sporadic task set. A sporadic task set T is schedulable with

fixed-priority scheduler if Ri given with equation (2.8) is such that Ri ≤Di for each task τi ∈T .

In this research, especially in the chapter 3, response-time analysis techniques are heavily

exploited to extend and improve existing adaptive mixed-criticality schedulability tests.

2.2 Industrial context of safety-critical systems and introduc-

tion of criticality levels

In the design of safety-critical systems, non-functional characteristics such as safety, security

and performance must be taken into account as well as the operative functions of the system.

The process for assessing the safety characteristics of the system is called system safety as-

sessment process [11]. In the next subsections, definitions of basic concepts in dependable and

secure computing are introduced and connected with system safety assessment process. More-

over, industrial aspects of mixed-criticality systems are explained as well.

2.2.1 Concepts of dependable and secure computing

Definitions of service, error and failure which are introduced here can be found in Aviženis et

al. [12]. These dependable and secure computing concepts are defined similarly in different de-

pendable computer systems literature [13, 14] and they are used extensively in safety standards.

Definition 5. Service. A service is behaviour of a system as it is perceived by a user. A service

is correct when it implements its system function.

Definition 6. Service failure. A service failure or just failure, is an event that occurs when the

delivered service deviates from correct service. It is a transition from correct service to incorrect

service. There can be different forms of failure, which are referred to as failure modes. Each

failure mode has its failure severity.

Definition 7. Error. An error is deviation of a system service from correct service.

Definition 8. Fault. Fault is the adjudged or hypothesized cause of an error.

Based on the latter definitions, causal connection between these concepts is self-evident.

When a fault in a system is active, it produces an error. An error causes a transition from a

correct service to an incorrect service (service failure). This is illustrated in Fig. 2.2.
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... fault error failure fault ...activation propagation causation

Figure 2.2: Causal connection between fault, error and failure. Based on illustration from [12].

2.2.2 Critical services and safety assessment process

Based on the system or application requirements, a certain function, i.e., system service, can be

deemed critical in the sense of a financial loss or danger for human life. In other words, failure

of such a service causes unacceptable damage. In that regard, all components of electronic

systems which are necessary for the correct execution of the critical service have to be properly

designed. These includes both the hardware and software part of an electronic system. In this

research, the focus is mainly on the software aspect of safety-critical systems.

Software hazard analysis is a process that should identify the parts of the software which

could interfere with the correct operation of the system. Moreover, the hazard analysis should

classify the interference in terms of severity while taking into account techniques that are em-

ployed for the mitigation of interference. Software hazard analysis is a requirement, and it is

often used as a base for fault and failure mode analyses [15]. There are several types of fault

analysis and failure mode analysis that can be found in safety standards:

∙ Fault Tree Analysis (FTA) [16],

∙ Failure Modes and Effects Analysis (FMEA) [17],

∙ Failure Modes and Effect Criticality Analysis (FMECA) [17].

These techniques are used for analysis of possible software failures in the system. They are

performed after the hazard analysis and can discover different failures that are undiscoverable

by the hazard analysis. The aim of the failure modes analysis is to assign a corresponding

failure mode to every failure of a safety-critical system function. In the context of embedded

computing platforms, the failure mode can be:

∙ non-execution,

∙ late execution,

∙ incorrect execution [11].

To every failure, severity is assigned based on the effects that failure causes to the corresponding

critical service. The last step in failure mode analysis, such as FMEA, is the identification of the

existing compensating provisions that can mitigate the effects of failure. The final result of these

processes is the assignment of a ”criticality“ level to a failure mode based on the effect analysis

and discovered compensating provisions, i.e., mitigation techniques. The assigned ”criticality“

level is referred to as the development assurance level (DAL) [11]. This terminology is specific

to DO-178C [18] (avionics domain). The terminology in other standards is different, but the

basic concept remains preserved (e.g., IEC 61508 and EN-50128 use SIL - Safety Integrity Level

12
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Table 2.1: Comparison of nomenclature of development assurance levels across different industrial do-
mains. Mapping of safety integrity levels is approximate. Table is based on the table found in [22].

Domain Domain-specific nomenclature

Automotive (ISO 26262) QM ASIL-A ASIL-B ASIL-C ASIL-D -

General (IEC-61508) SIL-0 SIL-1 SIL-2 SIL-3 SIL-4

Railway (EN 50128) SIL-0 SIL-1 SIL-2 SIL-3 SIL-4

Space (ECSS-Q-ST-80) Category E Category D Category C Category B Category A

Aviation: airborne (DO-178) DAL-E DAL-D DAL-C DAL-B DAL-A

Aviation: ground (DO-278) AL6 AL5 AL4 AL3 AL2 AL1

[19, 20], ISO 26262 uses ASIL - Automotive Safety Integrity Level [21]). Table 2.1 contains

safety integrity levels as defined in the aforementioned safety standards sorted with regard to

the safety assessment severity. It can be seen that the SIL-4 level requires the most rigorous

safety assessment process, which is reasonable since the failure of SIL-4 system services can

cause significant damage.

Note that the notion of criticality in mixed-criticality systems that is used throughout the

academic and industrial research, originates from different safety integrity levels, which are

typically found in safety-critical systems. Almost any safety-critical electronic system today

contains at least two services, which are different with regard to safety integrity level. In chapter

3, it is clarified how the raise in the safety assessment rigor affects the mixed-criticality system

from the timing, i.e., real-time, perspective.

2.2.3 Mixed-criticality system design

The choice of the proper computer system architecture for mixed-criticality applications is cru-

cial for: firstly, safety of the system, and secondly, efficiency of the system. In general, system

designers find these requirements to be in a contradiction, which poses a significant issue in the

design of safety-critical systems. In other words, the problem is to design an efficient and safe

system. Often, efficiency of the system is disregarded in favor of safety of the system, which

may be reasonable from the safety aspect of the system, but this can be very expensive from the

system production and development aspect. As stated in chapter 1, the aim of ongoing mixed-

criticality system research is to increase the efficiency of systems. To further clarify this issue,

the common approaches to mixed-criticality system design are reviewed and the advantages and

drawbacks of each approach are discussed in the remainder of the section. Figs. 2.4-2.6 depict

abstract architectures of mixed-criticality systems, which are commonly found in real-world

applications nowadays. Refer to Fig. 2.3 for differences in borders in the figures.

The traditional federated approach to mixed-criticality system design that follows the “one
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electronic computer system boundary

computing unit boundary

processor unit boundary

computing unit interconnection

Figure 2.3: Legend highlights the differences between different boundaries in the system figures.

SIL-0 SIL-1

SIL-3 SIL-4

Electronic computer system

Figure 2.4: Functions with different safety integrity levels distributed across computing platforms in the
system.

computer - one function” paradigm is shown in Fig. 2.4. In such an approach, functions of

different importance are distributed across different computing platforms, which are typically

uniprocessor platforms connected with a robust external communication bus such as CAN (Con-

troller Area Network). The main advantage of such an approach is that each system can have

independent system design and corresponding safety assessment process required for the tar-

geted safety integrity level. Moreover, safety of the overall system is increased as the possible

interference between functions of different criticality is reduced due to the usage of indepen-

dent computing platforms, i.e., systems are completely spatially isolated. An obvious drawback

of such an approach is the potentially high number of separate computing units in the system,

which reduces the overall efficiency of the system due to the higher power consumption. More-

over, connection with the external communication bus may be limiting in some applications,

which further diminishes system performance efficiency-wise.

Today, the efficiency of the system can be increased by reducing the number of computing

units in the system. This was not an option twenty years ago since the processing power of

embedded computers was significantly lower than today. Figs. 2.5 and 2.6 show the approaches

in which multiple functions of different criticality can be allocated on the same uniprocessor or

multiprocessor computing platform. An immediate drawback of such an approach is the loss of

the full spatial isolation. However, development of software which follows the recommenda-

tions of safety standards can significantly mitigate the lack of spatial independence. Moreover,
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(b) Functions of different criticality level are
scheduled with partitioned scheduler, i.e., with
scheduler S1 and S2, on a single processor.

Figure 2.5: Mixed-criticality system design approaches on uniprocessor platforms.

the efficiency can be increased.

The system architectures on uniprocessor platforms presented in Fig. 2.5 are relatively

simple and probably are used the most among the single processor approaches to the mixed-

criticality system design. In the first approach, depicted in Fig. 2.5a, a single scheduler is used

to determine a schedule for functions of higher criticality (from SIL-1 to SIL-4) and lower crit-

icality (SIL-0). Scheduler S in such a configuration has to take into account different timing

properties of functions with lower and higher criticality. This will be further explained in chap-

ter 3, where scheduling techniques in such systems are presented, and schedulability in such

systems is investigated. In the second uniprocessor approach, depicted in 2.5b, a partitioned

scheduler is used, i.e., scheduling of critical functions is temporally isolated from scheduling of

non-critical functions in the system. Such an approach is efficient from the aspect of reducing

the number of different computing units in the systems. However, enforcing temporal isolation

decreases processing unit efficiency since non-critical functions can be executed only when all

the critical functions are executed correctly. More precisely, processor time is inefficiently ex-

ploited. Nevertheless, an approach with partitioned scheduler has an advantage from the safety

aspect. Note that enforcing temporal isolation has an analogous effect on efficiency in unipro-

cessor systems as enforcing spatial isolation has in the federated systems. Scheduling of critical

functions in the mixed-criticality system with partitioned scheduler is further investigated in

chapter 4, where period assignment techniques for task scheduling are presented. In chapter 5,

both uniprocessor configurations are considered.

Although in this thesis multiprocessor configurations are not in the main focus, in the con-

tinuation two more configurations are presented, which are often considered in the design of

mixed-criticality systems. These approaches are depicted in Fig. 2.6. The first multiprocessor

configuration shown in Fig. 2.6a, is analogous to single scheduler approach shown in Fig. 2.5a.
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(a) Functions of different criticality level are
scheduled with single scheduler S on multiple
processors.
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(b) Functions of different criticality level are
scheduled with local schedulers S1, S2, S3, and
S4 on dedicated processors based on criticality.
Scheduler S determines the global schedule.

Figure 2.6: Mixed-criticality system design approaches on multiprocessor platforms.
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Figure 2.7: Architecture of Zynq UltraScale+ embedded computer systems. Based on illustration from
[23].

However, a significant benefit in the multiprocessor approach is increase in temporal isolation,

which is the consequence of increase in the processing power. A drawback of such an approach

is the lack of spatial isolation since a single scheduler is used for all functions. The second

multiprocessor configuration shown in Fig. 2.6b increases both temporal and spatial isolation,

as the functions of the same criticality are always executed on the dedicated processor core and

scheduled with an independent scheduler (S1−4). The global scheduler S determines the criti-

cality of each core. Generally, the number of local schedulers S can be higher than the number

of physical processing units.

From the implementation point of view, approaches shown in Figs. 2.4-2.5 are implemented

using simple single-core microcontroller computing units that were improved significantly in

a sense of processing power in recent years. Moreover, multiprocessor configurations in Fig.

2.6 are implemented on multiprocessor embedded platforms, which are designed to address
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the already mentioned issues of safety and efficiency in the system. An example of such an

embedded computing platform is depicted in Fig. 2.7. Fig. 2.7 illustrates Xilinx Zynq Ultra-

Scale+ system on chip that contains ARM Cortex-A53 processors. The architecture of these

and similar embedded processors encouraged engineers to develop frameworks which use more

advanced software abstractions for temporal and spatial isolation [24]. These approaches in-

clude hypervisors, i.e., virtual machine monitors, based on ARM virtualization extensions, and

secure monitors based on ARM TrustZone extensions. In Fig. 2.6b scheduler S corresponds to

the scheduler of a virtual machine monitor, and schedulers S1−4 correspond to the schedulers

of guest operating systems.
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Chapter 3

Method for schedulability testing for
adaptive mixed-criticality systems with
fixed priorities

3.1 Context of the research

The focus in this chapter is on uniprocessor fixed-priority systems, which execute functions of

different criticality. These systems are depicted in Fig. 2.5a. Existing methods for schedulabil-

ity testing in adaptive mixed-criticality systems are reviewed and discussed. Moreover, novel

methods for schedulability testing and corrections to existing schedulability tests are presented.

The formal definition of the adaptive mixed-criticality system behavior is provided in the sub-

sequent sections. Some of the results presented in this chapter were published in [25] and [26].

3.2 The WCET estimation problem and mixed-criticality con-

jecture

In chapter 2, it was stated that efficiency of real-time systems is significantly impacted by in-

troduction of spatial and temporal isolation in the architecture of systems. Intuitively, isolation

degrades efficiency, but increases the safety-related characteristics. On the lower level of analy-

sis, allocation of an appropriate time slot for execution of a task, i.e., function or system service,

is equally important for efficient system design as an appropriate choice of system architecture.

For instance, if allocated time for execution of a certain system service is too long, the number

of different functions which can be executed on the processor will be reduced. Therefore, to

efficiently design a system, allocated execution times, which typically correspond to WCETs,

have to be carefully chosen. However, this is not a particularly easy task. Moreover, if this re-
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quirement is not met, the efficiency of system can be deteriorated regardless of the architecture

that is chosen.

Nowadays, a plethora of different techniques for estimation of the WCET exists [27]. Of-

ten, the WCET estimation techniques have to be combined in order to increase assurance in

the WCET estimation. Usage of a combination of the WCET estimation techniques becomes a

strict requirement as the complexity of observed embedded computer platform increases. Today,

we witness the increase in architectural complexity even in relatively simple RISC (Reduced

Instruction Set Computer) processor architectures due to the introduction of architectural mod-

ifications such as cache memories, branch predictions, multi-stage pipelines, etc. Although the

processing time of a task can be decreased in the best-case scenario, these features significantly

increase the uncertainty in the knowledge of the execution time in the worst case, i.e., they

raise the uncertainty in estimation of the WCET. Uncertainty in the knowledge of the WCET in

this context is primarily epistemic, rather then aleatory. This means that the uncertainty in the

knowledge of the WCET is caused by our lack of knowledge about the system rather than the

system itself [28].

Therefore, in safety-critical systems, system designers are often pressured by requirements

of safety standards to run extensive component and integration testing of a system function to

discover the actual WCET. Intuitively, with more exhaustive and comprehensive testing and

measurements, larger WCET values will be discovered for a certain task. Since the require-

ments of safety standards are more strict for functions with higher safety integrity level (SIL),

larger WCET values will have to be allocated for functions with higher SIL. In addition, in

many cases, it is mandatory to overestimate the actual value of the WCET for safety precau-

tions. Again, this will degrade the efficiency of the system. These assumptions in a similar

form were stated in the seminal mixed-criticality scheduling paper by Vestal [29] and resulted

in a significant publishing and research trend. In last ten years, a large number of different

techniques for scheduling mixed-criticality tasks emerged which mitigate efficiency degrada-

tion in mixed-criticality systems. To better illustrate this trend and mixed-criticality scheduling

paradigm, a simple example, which is often found in the mixed-criticality scheduling literature,

is discussed in the next section.

3.3 Motivational example for mixed-criticality scheduling

In this section, a motivational example that is often found in the literature [30, 31], which

illustrates a basic mixed-criticality scheduling problem, is presented.

Example 1. Consider a system that consists of three jobs J1, J2, J3, which are executed on a

fixed-priority uniprocessor platform. These jobs differ in criticality. More precisely, job J1 does

not execute safety-critical functions, and J2 and J3 execute safety-critical functions. Therefore,
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Figure 3.1: A feasible schedule when J1 has the ”medium“ priority. Note that priority assignment of
jobs J2 and J3 can be interchanged.

the execution of J2 and J3 requires certification and rigorous examination in safety assessment

process. In this process, the system designer has to present an appropriate justification for

choice of timing parameters and scheduling technique to an external accredited safety assessor.

The parameters of jobs as specified by the system designer are:

Ji = {Ci,Di}

J1 = {1,2}

J2 = {1,3.5}

J3 = {1,3.5}

(3.1)

Additionally, the system designer finds that there are three possible priority assignments for

which the system is schedulable, i.e., the system is schedulable as long as the job J1 is not

assigned the lowest priority. Respective schedules, which show activity of jobs over time, are

illustrated on Figs. 3.1 and 3.2.

From the perspective of the system designer, the problem is solved and adequate safety

properties are acquired with any choice of particular schedule with the given job parameters.

During the safety assessment process of the system, the safety assessor determines that

additional time may be needed for the execution of critical jobs J2 and J3. Therefore, the safety

assessor demands that the system designer increases the WCET of critical jobs by 0.5 time

units since the execution of these jobs is safety-critical. After the latter modification, new job
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Figure 3.2: A feasible schedule when J1 has the ”highest“ priority. Note that priority assignment of jobs
J2 and J3 can be interchanged.

parameters are:

Ji = {Ci,Di}

J1 = {1,2}

J2 = {1.5,3.5}

J3 = {1.5,3.5}

(3.2)

At this point, the system designer concludes that there is no priority assignment in the system

that would guarantee that all jobs will be executed. This is illustrated in Figs. 3.3-3.4. From

the perspective of the safety assessor, the system designer can generate a feasible schedule by

discarding the non-critical job J1. However, the system designer is concerned with the efficiency

of the system, i.e., dropping the job J1 will decrease the overall efficiency. A solution which

would satisfy both the assessor and the system designer would have the following properties:

1. efficient resource usage has to be preserved,

2. J2 and J3 have to be safely executed.

Again, from the aspect of the system designer, such a schedule exists, i.e., J2 and J3 spend at

most one time unit for execution, but from the perspective of the safety assessor there is no firm

guarantee that J2 and J3 will be safely executed.

An example of a solution to this problem is illustrated in Fig. 3.5. Note that the blue line

in the figure corresponds to a system behavior that the system designer expects. On the other

hand, the red line corresponds to the expectations and requirements of the safety assessor, i.e.,

J2 and J3 are executed although J1 is discarded. For the system to be safe and efficient it has to

enable that both behaviors are possible, but not at the same time. The fixed-priority scheduler

which ensures that both scenarios are possible yields the following priority ordering J2, J1, J3,
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Figure 3.3: A priority order J1, J2, J3 is not feasible since J3 misses deadline.
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Figure 3.4: A priority order J2, J3, J1 is not feasible since J1 misses deadline.

22



Method for schedulability testing for adaptive mixed-criticality systems with fixed priorities

0 1 2 3 4
0

1

2

3

Time (t)

U
til

iz
at

io
n

fu
nc

tio
n

(σ
(t
))

Figure 3.5: A priority order J2, J1, J3 can produce a feasible schedule with appropriate runtime monitor-
ing.

i.e., J2 is the highest priority task. At the time instant 1 bifurcation in Fig. 3.5 occurs as there

are two possible outcomes:

1. Job J2 has finished execution at time instant 1.

2. Job J2 did not finish the execution at time instant 1.

If the first statement is true, the system designer’s expectations are satisfied even if J3 executes

for 1.5 time units, and the schedule is feasible. If the second contention is true, the safety

assessor is correct and at time instant 1 job J1 has to be discarded and only J2 and J3 are going

to be executed. This way, in the worst-case, the expectations of both system designer and safety

assessor are satisfied since system maintains efficiency and safety properties.

The latter example illustrates mechanisms which can be used in scheduling of jobs with

mixed-criticality levels, i.e., runtime monitoring and job discarding. More formal analysis of

these mechanisms and runtime behaviors is presented in the subsequent sections.

3.4 Mixed-criticality sporadic and periodic task models

In order to analyze different aspects of mixed-criticality scheduling, sporadic and periodic task

system models introduced in section 2.1.1 have to be extended to take different task WCET

estimations into consideration. Therefore, system with m criticality levels is described with

task set T that consists of n tasks described as sets:

τi = {~Ci,Ti,Di,Li} (3.3)

where ~Ci is the monotonic non-decreasing vector of m WCET values, and Li is one out of m crit-

icality levels. Although it is possible to have multiple criticality levels in a system, i.e., up to m
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levels, the state-of-the-art research is typically focused on systems with two different criticality

levels [28]. The main reason for this is that the analysis of dual-criticality models is the most

applicable in practical use-cases. More precisely, in real-world scenarios, system designers deal

with non-critical functions, which do not require certification, and critical functions, which re-

quire certification, as illustrated in Example 1. Therefore, in the analysis of dual-criticality task

systems, two types of tasks exists: low-criticality (LO), and high-criticality (HI) tasks. The

most generic schedulability definition for mixed-criticality task systems is as follows:

Definition 9. Mixed-criticality task system is schedulable if each job released by high-criticality

tasks finishes execution before its respective deadline.

Note that the latter statement is not biconditional, and therefore if high-criticality jobs indeed

finish execution before their respective deadline, mixed-criticality task system still may not be

schedulable. More precisely, Definition 9 formulates a necessary condition for schedulability of

mixed-criticality system. More specific schedulability definitions shall depend on the properties

of runtime behavior, which will be discussed in the next section.

3.5 Runtime behaviors in mixed-criticality task systems

Example 1 illustrates that in order to produce a feasible schedule, a system has to handle addi-

tional events which occur during runtime, i.e., it should utilize some sort of runtime monitoring.

However, this may not be a strict requirement for scheduling on a fixed-priority uniprocessor.

In this section, different approaches that can be used for fixed-priority mixed-criticality task

scheduling on uniprocessor platforms are discussed. First off, mixed-criticality task schedulers

can be classified according to the ability of system to monitor execution time, i.e., runtime

monitoring, into two different classes:

1. schedulers that do not employ runtime monitoring,

2. schedulers that employ runtime monitoring.

The main difference between these two classes is in the ability of system to detect overrun of a

task. This is a precondition for any mitigating action which can be employed to ensure adequate

scheduling of tasks. Secondly, mixed-criticality schedulers can be classified into two different

classes with regard to the number of different system states:

1. scheduler with only one system state,

2. schedulers with multiple systems states.

System state, in this context, designates the number of global scheduling policy changes with

regard to the initial, i.e., default state. In the literature, systems with only one state are known as

static mixed-criticality (SMC) systems. On the other hand, systems with more than one system

state are referred to as adaptive mixed-criticality (AMC) systems. AMC systems must imple-

ment runtime monitoring for operation, and SMC systems may implement runtime monitoring,
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i.e., there are SMC systems with or without runtime monitoring. In the following subsections,

schedulability analyses for the most common variants of static and adaptive mixed-criticality

behavior are discussed.

3.5.1 Naive scheduling approaches

To better illustrate AMC and SMC approaches, it is useful to consider an intuitive approach

that one would in employ in scheduling tasks with multiple criticality levels. This approach is

known as partitioned criticality approach [30]. In such an approach, tasks with higher critical-

ity have higher priority than tasks with lower criticality. Moreover, priority of tasks with the

same criticality is assigned according to the deadline-monotonic priority assignment (DMPA)

that is optimal in classical, i.e., non mixed-criticality, sporadic or periodic task systems. This

approach is referred to as criticality-monotonic priority ordering (CrMPO) in the context of

mixed-criticality priority assignments. This approach will most certainly yield a feasible sched-

ule of high-criticality tasks if it exists, but it will perform very poorly with regard to low-

criticality tasks, i.e., the approach is not optimal for a whole task set. To visualize this, consider

a task set in which task with the lowest period is a low-criticality task. The interference of high-

priority tasks with higher criticality, prior to the execution of the task with the lowest period

will cause a deadline miss even if optimistic WCET estimation of tasks, i.e., Ci(LO), is taken

into account. The pitfalls of this approach are depicted in Example 2.

Example 2. Consider a fixed-priority uniprocessor computing platform that executes the task

set T = {τ1,τ2,τ3}. Parameters of tasks are:

τi = {[Ci(LO),Ci(HI)],Ti,Di,Li}

τ1 = {[1,2],4,4,LO}

τ2 = {[1,2],10,10,HI}

τ3 = {[1,2],11,11,HI}

(3.4)

The goal is to determine priority ordering which would ensure successful execution of all high-

criticality tasks in the system, and if possible ensure successful execution of low-criticality tasks.

If criticality and deadline-monotonic priority assignment are employed as described above, the

following priority ordering τ2,τ3,τ1 is obtained. In such a configuration, high-criticality tasks

τ2 and τ3 are always executed prior to the low-criticality task τ1. To test schedulability, the

schedulability test given with Theorem 1 can be employed. The corresponding response times
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are calculated in the following manner:

R1 = 2+
⌈

R1

10

⌉
·2+

⌈
R1

11

⌉
·2 = 6→ R1 � D1

R2 = 2→ R2 ≤ D2

R3 = 2+
⌈

R3

10

⌉
·2 = 4→ R3 ≤ D3

(3.5)

As it can be seen, low-criticality task τ1 misses its deadline and the task set is not schedulable.

The task set is not schedulable even if the low-criticality estimation for WCET of task τ1 is used,

i.e., response time is R1 = 5 � 4.

On the other hand, if the deadline-monotonic scheduling approach, which is known to be

optimal for sporadic task system, is used, a feasible schedule is obtained. Priority ordering in

that case is τ1,τ2,τ3 and corresponding response times are:

R1 = 2→ R1 ≤ D1

R2 = 2+
⌈

R2

4

⌉
·2 = 4→ R2 ≤ D2

R3 = 2+
⌈

R3

4

⌉
·2+

⌈
R3

10

⌉
·2 = 8→ R3 ≤ D3

(3.6)

The obvious drawback of deadline-monotonic priority ordering is its incapability to distinguish

low-criticality from high-criticality tasks. Note that when using the partitioned criticality, the

low-criticality WCET could be used in analysis. In contrast, when using the deadline-monotonic

priority ordering, high-criticality WCET has to be used in analysis since execution time of

low-criticality task contributes to the interference of high-criticality tasks. This will be further

addressed in the next subsection.

3.5.2 Static mixed-criticality systems without runtime monitoring

In Example 2, the provided schedulability analysis in case of the deadline-monotonic priority

ordering is insensitive with regard to different criticality levels. This has not been obvious at

first since deadline-monotonic priority ordering has yielded a feasible schedule. However, con-

sider a case in which low-criticality task is the lowest priority task in the system. The allocation

of high-criticality WCET for execution of low-priority low-criticality task is a waste of system

resources. To address this issue, a simple mixed-criticality scheduling approach was introduced

by Vestal in [29]. This approach is known as the static mixed-criticality without runtime moni-

toring and it is often referred to as SMC-NO. Schedulability for SMC-NO approach is defined

with Definition 10.
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Definition 10. Schedulability of SMC-NO. SMC-NO system is schedulable iff two conditions

are satisfied:

1. Tasks with high-criticality are schedulable with regard to their respective high-criticality

WCET and high-critically WCET of tasks with higher priority.

2. Tasks with low-criticality are schedulable with regard to their low-criticality WCET and

low-criticality WCET of tasks with higher priority.

The first condition in the latter definition ensures the schedulability of high-criticality tasks

even if there are low-criticality tasks with higher priority in the system. The second condi-

tion ensures that low-criticality tasks are schedulable if all tasks are executed within their low-

criticality, i.e., optimistic, WCET estimation. However, if a higher-priority task executes longer

than its allocated low-criticality execution time, jobs of low-criticality tasks are allowed to miss

deadline, and in case of such an event they are immediately discarded. The main problem of this

approach is that if low-criticality tasks are allowed to have a priority higher than high-criticality

tasks, low-criticality tasks have to be certified to the same level of criticality as high-criticality

tasks. This is a strict requirement since the correct execution of higher-priority low-criticality

tasks is a necessary precondition for the correct execution of high-criticality tasks. From the

practical perspective, this is expensive in a sense that an additional effort is needed for the certi-

fication of low-criticality tasks, which by themselves are not safety-critical. Formally, runtime

behavior of SMC-NO system is defined as follows.

Definition 11. Runtime behavior of SMC-NO. Tasks are scheduled according to priority as-

signment Π. Job of a low-criticality task is discarded if it misses its deadline.

Schedulability of a task set in SMC-NO system can be determined using slightly modi-

fied recurrence relation (2.8) used for response-time analysis of classical sporadic task sets.

Response-time of task τi in SMC-NO mixed-criticality systems is given with:

Ri =Ci(Li)+ ∑
j∈hp(τi)

⌈
Ri

Tj

⌉
C j(Li) (3.7)

It is worth noting that the latter equation will yield lower response times than (2.8). Moreover,

testing response times given with (3.7) against corresponding deadlines constitutes an exact

schedulability test in SMC-NO systems. In the next example, SMC-NO systems are further

illustrated.

Example 3. Consider a fixed-priority uniprocessor computing platform that executes the task
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set T = {τ1,τ2,τ3}. Parameters of tasks are:

τi = {[Ci(LO),Ci(HI)],Ti,Di,Li}

τ1 = {[2,4],8,8,HI}

τ2 = {[1,2],14,14,HI}

τ3 = {[2,4],9,9,LO}

(3.8)

The goal is to determine priority ordering such that conditions in Definition 10 are satisfied, i.e.,

response times given with equation (3.7) are such that Ri ≤ Di,∀i. If the deadline-monotonic

priority ordering is applied, the order of tasks is τ1,τ3,τ2 and the corresponding response times

are:

R1 = 4→ R1 ≤ D1

R2 = 2+
⌈

R2

8

⌉
·4+

⌈
R2

9

⌉
·4 = 18→ R2 � D2

R3 = 2+
⌈

R3

8

⌉
·2 = 4→ R2 ≤ D3

(3.9)

As it can be seen, the deadline-monotonic priority assignment does not yield a feasible sched-

ule. However, the priority ordering τ2,τ1,τ3 will yield a feasible schedule, i.e., the worst-case

response times are:

R1 = 4+
⌈

R1

14

⌉
·2 = 6→ R1 ≤ D1

R2 = 2→ R2 ≤ D2

R3 = 2+
⌈

R3

14

⌉
·1+

⌈
R3

8

⌉
·2 = 5→ R3 ≤ D3

(3.10)

Since τ3 has the lowest priority, the interference of high-criticality tasks is reduced due to the

usage of optimistic, i.e., low-criticality, WCET values in the calculation of response time for τ3,

which makes the system schedulable. However, such a reduction is not available in the situation

in which low-criticality tasks are not low-priority. Another important point to consider is that

this example is in itself a proof that deadline-monotonic priority ordering is not optimal in

SMC-NO systems. These two issues are discussed hereafter.

It is known from Vestal’s initial work [29] that priority assignment for SMC-NO can be

obtained using a modified version of Audsley’s optimal priority assignment (OPA) algorithm,

which was originally used for priority assignment in periodic task systems with initial offset

[32]. This algorithm was found to be optimal for SMC systems somewhat later by Dorin et al.

[33]. The OPA algorithm is depicted in Alg. 1. The algorithm assigns priority levels to tasks in

the system starting with the lowest priority, i.e., j← n. At each step algorithm assigns priority
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level j to task τ if τ is schedulable as the lowest priority task in a task set T ′. Task set T ′

consists of tasks to which priority level is not yet assigned, i.e., tasks to which a higher priority

level will be assigned in the subsequent steps. Steps of the algorithm are further illustrated with

the following example.

Example 4. Consider the task set from Example 3. The priority ordering τ2,τ1,τ3 can be

obtained using the OPA algorithm as follows. In the first step, i.e., j = 3, the following values

are obtained:

i = 1 : R1 = 4+
⌈

R1

9

⌉
·4+

⌈
R1

14

⌉
·2 = 10→ R1 � D1

i = 2 : R2 = 2+
⌈

R2

8

⌉
·4+

⌈
R2

9

⌉
·4 = 18→ R2 � D2

i = 3 : R3 = 2+
⌈

R3

8

⌉
·2+

⌈
R3

14

⌉
·1 = 5→ R3 ≤ D3→ add τ3 to Ψ

(3.11)

and τ3 is assigned the lowest priority level. In the second step, i.e., j = 2, the following value is

obtained:

i = 1 : R1 = 4+
⌈

R1

14

⌉
·2 = 6→ R1 ≤ D1→ add τ1 to Ψ (3.12)

and τ1 is assigned the “medium” priority level. Lastly, in the third step, i.e., j = 1:

i = 0 : R2 = 2→ R2 ≤ D2→ add τ2 to Ψ (3.13)

and τ2 is assigned the highest priority. The obtained priority ordering produces a feasible

schedule since each task is schedulable on its respective priority level.

3.5.3 Static mixed-criticality systems with runtime monitoring

As mentioned before, in SMC-NO systems, additional testing efforts are needed for low-

criticality tasks with priority higher than high-criticality tasks. The solution to this issue of

additional certification is in employing runtime monitoring, which enables the system to discard

low-criticality tasks in case of an overrun of its allocated execution time. This way, additional

certification efforts are not needed. Static mixed-criticality scheduling approach that employs

runtime monitoring is referred to as the SMC scheduling approach, and its schedulability is

defined as follows.

Definition 12. Schedulability of SMC. SMC system is schedulable iff two conditions are satis-

fied:
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Algorithm 1 Audsley’s algorithm
Input: T = {τ1,τ2, ...,τn}
Output: Ψ - priority ordered task set

1: function PRIORITYASSIGNMENT(∆)
2: Ψ← /0
3: n← |T |
4: unassigned← true
5: T ′←T
6: j← n
7: while j ≥ 1 do
8: unassigned← true
9: for each task τ in T do

10: if isFeasible(τ , T ′/τ) ∧ unassigned then
11: T ′←T ′/τ

12: Ψ←Ψ∪{τ}
13: unassigned← false
14: end if
15: end for
16: if unassigned then
17: return /0 . feasible schedule does not exist
18: end if
19: j← j−1
20: end while
21: return Ψ . contains priority ordered set
22: end function

1. Tasks with high-criticality are schedulable with regard to their respective high-criticality

WCET and high-criticality WCET of high-criticality tasks with higher priority and low-

criticality WCET of low-criticality tasks with higher-priority.

2. Tasks with low-criticality are schedulable with regard to their low-criticality WCET and

low-criticality WCET of tasks with higher priority.

Runtime behavior in SMC systems with runtime monitoring is defined similarly as in case

of SMC-NO systems.

Definition 13. Runtime behavior of SMC. Tasks are scheduled according to priority assign-

ment Π. Job of a low-criticality task is discarded if it executes for longer than it is allocated for

its low-criticality execution.

Response-time analysis in SMC systems is similar as in case of SMC-NO systems and it is

given with equation (3.14).

Ri =Ci(Li)+ ∑
j∈hp(τi)

⌈
Ri

Tj

⌉
C j(min(Li,L j)) (3.14)

Example 5 illustrates the benefit that runtime monitoring introduces in SMC systems.
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Example 5. Consider a fixed-priority uniprocessor computing platform that executes the task

set T = {τ1,τ2,τ3}. Parameters of tasks are:

τi = {[Ci(LO),Ci(HI)],Ti,Di,Li}

τ1 = {[2,4],13,13,HI}

τ2 = {[1,2],4,4,LO}

τ3 = {[2,4],14,14,HI}

(3.15)

To goal is determine a feasible priority ordering for both SMC-NO and SMC system. Again,

the OPA algorithm can be used for priority assignment in both configurations. The first step of

the algorithm in case of SMC-NO, i.e., j = 3, is:

i = 0 : R1 = 4+
⌈

R1

14

⌉
·4+

⌈
R1

4

⌉
·2 = 14→ R1 � D1

i = 1 : R2 = 1+
⌈

R2

13

⌉
·2+

⌈
R2

14

⌉
·2 = 5→ R2 � D2

i = 2 : R3 = 4+
⌈

R3

13

⌉
·4+

⌈
R3

4

⌉
·2 = 20→ R3 � D3

(3.16)

As it can be seen, in the first step, the OPA algorithm fails to assign the lowest priority level to

any task in the system, and therefore, SMC-NO system is not schedulable.

On the other hand, in the first step of the algorithm for the SMC system, the lowest priority

is assigned to τ1:

i = 0 : R1 = 4+
⌈

R1

14

⌉
·4+

⌈
R1

4

⌉
·1 = 11→ R1 ≤ D1→ add τ1 to Ψ (3.17)

The latter equation illustrates the main advantage of runtime monitoring. The interference of

low-criticality task τ3 is reduced due to the fact that τ3 can be aborted if it does not signal

completion after one time unit of execution. In contrast, allocation of high-criticality execution

time for low-criticality task in SMC-NO system directly causes infeasibility of task τ1. For the

second priority level, i.e., j = 2, the following value is obtained:

i = 0 : R3 = 4+
⌈

R3

4

⌉
·1 = 6→ R3 ≤ D3→ add τ3 to Ψ (3.18)

and for the third priority level, i.e., j = 3:

i = 0 : R2 = 1→ R2 ≤ D2→ add τ2 to Ψ (3.19)

Therefore, SMC system is schedulable with the priority ordering τ2, τ3, τ1.
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3.5.4 Adaptive mixed-criticality systems

In SMC systems, low-criticality tasks are discarded, i.e., descheduled upon an overrun. It is

important to note that an overrun in real-time systems is often the indicator that system itself

executes beyond its design parameters. Therefore, it is reasonable to reduce computing load of

the system to the essential, i.e., safety-critical, functionalities only. This is in accordance with

safety standard IEC 61508 (see section 7.2.2. in the part III. of [19]), where system is required to

enter the safe state upon activation of a fault. In this context, the error produced by an activated

fault causes an overrun in the system. Moreover, reducing the computing load will consequently

increase the schedulability of safety-critical tasks. An adaptive fixed-priority scheduling policy

which takes the latter assumptions into consideration is defined with the following runtime

behavior.

Definition 14. Runtime behavior of AMC systems. System has two different operating modes.

Namely, low-criticality execution mode, and high-criticality execution mode, denoted as LO and

HI respectively. The current operating mode is denoted with Γ. The system starts its operation

in LO mode (Γ = LO), and executes both low-criticality and high-criticality tasks. If a job

of low-criticality task in the system executes for its low-criticality execution time, i.e., Ci(LO),

without signaling completion, it is prevented from further execution. If a job of high-criticality

task in the system executes for its low-criticality execution time, i.e., Ci(LO), the system switches

to HI mode (Γ← HI). In HI mode (Γ = HI) low-criticality jobs are not executed.

The latter definition applies to runtime behavior of AMC systems and it is found in the

most of the state-of-the-art research [28]. Note that a criticality switch is specified only in one

direction, i.e., from LO mode to HI mode, since this is of interest in this research. Moreover,

there are papers that deal with the return to the normal, i.e., LO state [34]. The adaptive runtime

behavior was already illustrated in the Example 1, in which a criticality switch occurs when job

J2 executes for its low-criticality execution time without signaling completion. The following

definition determines the schedulability of AMC systems.

Definition 15. Schedulability of AMC systems. AMC system is schedulable iff two conditions

are satisfied:

1. All tasks in the system are schedulable in LO mode with regard to their low-criticality

WCETs.

2. High-criticality tasks are schedulable in HI mode with regard to their high-criticality

WCETs.

Determining schedulability of AMC systems is known to be a hard problem. It is known that

determining schedulability of a set of independent jobs is NP-hard in the strong sense even if

the dual-criticality synchronous jobs are considered [31]. Determining schedulability of period
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and sporadic implicit-deadline task sets has been proven to be NP-hard in strong sense in [35].

For completeness, the findings from [35] are stated with the following theorem.

Theorem 2. Determining schedulability of periodic and sporadic implicit deadline dual-criticality

task systems is NP-hard in the strong sense.

In the rest of this section, schedulability tests for fixed-priority AMC systems are discussed.

Firstly, sufficient schedulability tests based on response-time analysis are explained. Secondly,

more complex exact schedulability tests that are based on state space enumeration are analyzed.

Schedulability tests for fixed-priority AMC systems based on response-time analysis

There are two main response-time analyses for AMC systems that are found in the literature

[28]. These methods were devised in [30]. Schedulability tests based on these analyses can be

summarized as a list of three independent conditions:

1. Tasks are schedulable in LO mode.

2. High-criticality tasks are schedulable in HI mode.

3. High-criticality tasks are schedulable during any criticality switch from LO to HI mode.

The first contention can be verified exactly by comparing the deadline and corresponding re-

sponse time that is given with the following equation:

Ri(LO) =Ci(LO)+ ∑
j∈hp(τi)

⌈
Ri(LO)

Tj

⌉
C j(LO) (3.20)

Similarly, response time can be calculated for HI mode, i.e., the second contention:

Ri(HI) =Ci(HI)+ ∑
j∈hpH(τi)

⌈
Ri(HI)

Tj

⌉
C j(HI) (3.21)

where hpH(τi) is a set that contains high-criticality tasks with priority higher than τi. In case of

a criticality switch, response time of a high-criticality task can be expressed as follows:

Ri(MC) =Ci(HI)+ ∑
j∈hpH(τi)

⌈
Ri(MC)

Tj

⌉
C j(HI)+ ∑

k∈hpL(τi)

⌈
Ri(LO)

Tk

⌉
Ck(LO) (3.22)

where hpL(τi) is a set that contains low-criticality tasks with priority higher than τi. Unlike the

equations (3.20) and (3.21) which yield the exact worst-case response time of task τi in corre-

sponding operating modes, the last equation provides a bound on response time during a crit-

icality switch. The first sum in the equation corresponds to the interference of high-criticality

tasks which can be released at any time instant between the release of τi and its completion

Ri(MC). It is obvious that this is an upper bound since Ci(HI) is used in calculation despite the

fact that before the instant of a criticality switch there are jobs that finished execution spending
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at most Ci(LO) time units. The second sum in the equation corresponds to the interference of

low-criticality tasks that are released between the release of τi and its low-criticality response-

time Ri(LO). Note that expression
⌈

Ri(LO)
Tk

⌉
corresponds to the maximal number of releases of

low-criticality high-priority tasks, which corresponds to a case when τi is a task which over-

runs its execution budget and causes a criticality switch. Equations (3.20), (3.21), and (3.22)

constitute the sufficient schedulability test that is referred to as AMC-rtb.

Example 6. Consider a fixed-priority uniprocessor computing platform that executes the task

set T = {τ1,τ2,τ3}. Parameters of tasks are:

τi = {[Ci(LO),Ci(HI)],Ti,Di,Li}

τ1 = {[3,6],12,12,HI}

τ2 = {[1,2],8,8,HI}

τ3 = {[1,2],4,4,LO}

(3.23)

The goal is to determine the schedulability and priority ordering for the task set in SMC system,

and in AMC system. Again, the OPA algorithm can be used to determine both schedulability

and priority ordering. In the first step ( j = 3), the OPA algorithm fails to assign the lowest

priority to any task in SMC system:

i = 0 : R1 = 6+
⌈

R1

4

⌉
·1+

⌈
R1

8

⌉
·2 = 13→ R1 � D1

i = 1 : R2 = 2+
⌈

R2

12

⌉
·6+

⌈
R2

4

⌉
·1 = 9→ R2 � D2

i = 2 : R3 = 1+
⌈

R3

12

⌉
·3+

⌈
R3

8

⌉
·1 = 5→ R3 � D3

(3.24)

Therefore, there is no feasible priority ordering for SMC system. By applying the OPA al-

gorithm and using AMC-rtb response-time analysis as the feasibility test, a feasible priority

ordering is obtained. Steps of the algorithm are as follows. In the first step ( j = 3), the lowest

priority is assigned to τ1:

RLO
1 = 3+

⌈
R1

8

⌉
·1+

⌈
R1

12

⌉
·3 = 7

RHI
1 = 6+

⌈
R1

8

⌉
·2 = 8

RMC
1 = 6+

⌈
RLO

1
4

⌉
·1+

⌈
RMC

1
8

⌉
·2 = 12

RLO,HI,MC
1 ≤ D1→ add τ1 to Ψ

(3.25)
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In the second step, priority is assigned to τ3:

RLO
3 = 1+

⌈
R3

8

⌉
·1 = 2→ RLO,HI,MC

1 ≤ D1→ add τ3 to Ψ (3.26)

In the third step, priority is assigned to τ2:

RLO
2 = 1

RHI
2 = 2

RMC
2 = 2

RLO,HI,MC
1 ≤ D1→ add τ1 to Ψ

(3.27)

Tasks cannot be scheduled in SMC system due to the large amount of interference introduced by

jobs of low-criticality task τ3 which will continue to execute even though jobs of high-criticality

tasks executed beyond their allocated execution budget. This interference is reduced in AMC
system since low-criticality jobs are discarded upon a criticality switch. This corresponds to

reducing the amount of interference of low-criticality tasks to
⌈

RLO
1
4

⌉
·1 in AMC-rtb analysis.

Interferences of both low and high-criticality tasks in 3.22 can be reduced with a more

precise analysis. First off, interferences in equation 3.22 can be separated:

RMC
i =Ci(HI)+ IL(i,s)+ IH(i,s,RMC

i ) (3.28)

where s is an instant of a criticality switch. A bound on interference from low-criticality tasks

can be expressed as:

IL(i,s) = ∑
j∈hpL(τi)

(⌊
s
Tj

⌋
+1

)
·C j(LO) (3.29)

The latter equation takes into account the interference from low-criticality tasks released before

or exactly at time instant of a criticality switch. The interference from high-criticality tasks can

be bounded with the following expression:

IH(i,s, t) = ∑
k∈hpH(τi)

{
M(k,s, t) ·Ck(HI)+

(⌈
t
Tk

⌉
−M(k,s, t)

)
·Ck(LO)

}
(3.30)

where M(k,s, t) is the number of releases of high-criticality task τk between the time instant t

and the instant of criticality switch s. It can be expressed as follows:

M(k,s, t) = min
(⌈

t− s− (Tk−Dk)

Tk

⌉
+1,

⌈
t
Tk

⌉)
(3.31)

In comparison with the high-criticality interference given with AMC-rtb analysis, this analysis

separates the interference of high-criticality tasks before and after a criticality switch since
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the high-criticality WCET is used only for task releases that occur after a criticality switch.

Equations (3.28), (3.29), and (3.30) constitute the sufficient schedulability test which is known

as AMC-max. In order to find maximum Ri, IL(i,s) and IH(i,s, t) have to be evaluated for

different values of s and the maximal value obtained is the worst-case response time. Variable s

is chosen as a multiple of period, i.e., interarrival time, of low-criticality tasks since expression⌈
s
Tj

⌉
changes its value when s is exactly equal to a multiple of any such period.

Example 7. Consider a fixed-priority uniprocessor computing platform that executes the task

set T = {τ1,τ2,τ3}. Parameters of tasks are:

τi = {[Ci(LO),Ci(HI)],Ti,Di,Li}

τ1 = {[3,6],18,18,HI}

τ2 = {[1,2],4,4,HI}

τ3 = {[1,2],3,3,LO}

(3.32)

The goal is to determine schedulability and priority ordering for the task set in AMC system

using AMC-rtb and AMC-max analysis with the OPA algorithm. When using the AMC-rtb
analysis, the algorithm fails to assign the lowest priority to any task in the system:

i = 0 :

RLO
1 = 3+

⌈
R1

3

⌉
·1+

⌈
R1

4

⌉
·1 = 8

RHI
1 = 6+

⌈
R1

4

⌉
·2 = 12

RMC
1 = 6+

⌈
RLO

1
3

⌉
·1+

⌈
RMC

1
4

⌉
·2 = 19→ RMC

1 � D1

i = 1 :

RLO
2 = 1+

⌈
R2

18

⌉
·3+

⌈
R2

3

⌉
·1 = 5→ RLO

2 � D2

i = 2 :

RLO
3 = 1+

⌈
R3

18

⌉
·3+

⌈
R3

4

⌉
·1 = 5→ RLO

3 � D2

(3.33)
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In contrast, the lowest priority can be assigned using AMC-max analysis:

RLO
1 = 3+

⌈
R1

3

⌉
·1+

⌈
R1

4

⌉
·1 = 8

RHI
1 = 6+

⌈
R1

4

⌉
·2 = 12

M(RMC
1 ,smax,k) = 4,smax = 0

RMC
1 = 6+

(⌊
6
3

⌋
+1

)
·1+4 ·2+

(⌈
RMC

1
4

⌉
−4

)
·1 = 18

RLO,HI,MC
1 ≤ D1→ add τ1 to Ψ

(3.34)

Similarly, the medium priority is assigned to τ3:

RLO
3 = 1+

⌈
R3

4

⌉
·1 = 2→ RLO

3 ≤ D3→ add τ3 to Ψ (3.35)

Finally, the highest priority is assigned to τ2:

RLO
2 = 1

RHI
2 = 2

RMC
2 = 2

RLO,HI,MC
2 ≤ D2→ add τ2 to Ψ

(3.36)

The part of the contribution of this thesis is providing improvements over the existing AMC-
max analysis.

Schedulability tests for fixed-priority AMC systems based on state space enumeration

As mentioned before, determining schedulability of sporadic and periodic AMC systems is NP-
hard in the strong sense. Therefore, the problem does not admit a polynomial-time algorithm

unless P = NP. Note that the sufficient schedulability tests presented in the latter section were

of pseudo-polynomial time complexity since the complexity of response-time calculation is

exponential in the number of bits that are required for representation of the input. However,

this is not an exact test. Since the problem is NP-hard, to exactly determine the schedulability

of a task set, one has to perform an exhaustive search of the state space. Such a method was

proposed in determining schedulability of multiprocessor real-time systems in [36]. A similar

approach was used in devising an exact schedulability test for fixed-priority adaptive mixed-

criticality systems in paper [37] by Asyaban and Kargahi. In the remainder of this section, their

exact test is discussed in more detail and compared to the existing sufficient analyses. Later in

this thesis, it will be shown that there are some incorrect statements in their work which can
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reduce reproducibility of their results.

Firstly, the notation which is used for the state space exploration is introduced. In [37], state

is defined as a tuple:

st := ⟨Γ,(ci,qi, pi,εi,φi)
k
i=1⟩ (3.37)

where:

∙ Γ ∈ {LO,HI} is the criticality mode of the system in the state,

∙ ci ∈ {0,1, ...,Ci(HI)} denotes the remaining execution time of the unique pending job of

task τi,

∙ qi ∈ {0,1, ...,Di} is the remaining time to the deadline of the latest released job of task τi,

∙ pi ∈ {0,1, ...,Ti} is the minimum remaining time until the next release of task τi; if Li=

LO ∧ Γ = HI, then pi = 0,

∙ εi ∈ {0,1, ...,Ci(HI)} is the actual execution-time of the unique pending job of task τi,

∙ φi ∈ {0, ...,Ti} is an offset which indicates how much later than the minimum inter-release

time the most recent job of task τi is released.

Moreover, σ(t) = {σ1(t), ...,σN(t)} denotes a job sequence of a task set at time instant t, e.g.,

if σ1(0) = 4 task τ1 is released at time instant 0 with the execution time 4. Two additional

variables are used for state transitions:

∙ αi ∈ {1, ...,n}, αi = 1 if τi is the highest priority task with a pending job a time t, and

αi = 0, otherwise.

∙ βi ∈ {1, ...,n}, βi = 1 if τi releases a new job at time t +1, i.e., σi(t +1)> 0, and βi = 0,

otherwise.

There are two rules that are used to determine new states and state transitions. The first rule is

Rule 1*, which is the state transition rule and it is defined as follows:

Definition 16. Rule 1*. Given state st := ⟨Γ,(ci,qi, pi,εi,φi)
k
i=1⟩, job sequence σ , and priority

ordering Π, the next state st+1 := ⟨Γ,(c′i,q′i, p′i,ε
′
i ,φ
′
i )

k
i=1⟩ is obtained as:

∙ c′i = ci−αi +σi(t +1).

∙ q′i = max(qi−1,0)+βiDi.

∙ If (βi = 0∧ ci−αi = 0), then ε ′i = 0; else if (βi = 0∧ ci−αi > 0), then ε ′i = εi, otherwise

ε ′i = σi(t +1).

∙ if Γ = LO and there exists a HI-criticality task τi such that εi > Ci(LO) and εi− (ci−
αi) =Ci(LO), i.e., the pending job of task τi spent its execution budget without signalling

completion, then Γ′ = HI, otherwise Γ′ = Γ.

∙ If σi(t +1) = 0, then φ ′i = φi; else if st = s−1, then φ ′i = 0; otherwise φ ′i = |pi−1|.
∙ If σi(t +1)≥ 1 *, then p′i = Ti; else if st = s−1, then p′i = 0; otherwise p′i = pi−1.

*Original statement from [37] specified condition σi(t + 1) = 1 that was shown to be incorrect in [25], and
correction is further elaborated in this work.
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The second rule is referred to as Rule 2*, which is the job sequence generation rule defined

as follows.

Definition 17. Rule 2*. Given state st := ⟨Γ,(ci,qi, pi,εi,φi)
k
i=1⟩, job sequence σ(t + 1) is

obtained as:

∙ If pi− 1 > 0 or (Γ = HI ∧Li = LO), then σi(t + 1) = 0, where the first condition comes

from the constraint on the interarrival time, and the second condition comes from the

definition of AMC behavior, i.e., suspension of low-criticality tasks in HI mode.

∙ If (pi−1≤ 0∧Ci(LO) =Ci(HI)∧Γ= LO), then σi(t+1) gets value from set {0,Ci(LO)}.
∙ If (pi−1≤ 0∧Ci(LO)<Ci(HI)∧Γ=LO), then σi(t+1) gets value from set {0,Ci(LO),Ci(HI)}.
∙ If (pi−1≤ 0∧Γ = HI), then σi(t +1) =Ci(HI).

∙ If (st = s−1), i.e., st is pre-initial state, then σk(0) =Ci(HI).

Based on job sequences generated according to Rule 2* the current state st transitions to

successor states st+1 according to Rule 1*. By exploring all possible system states, the approach

discovers the exact worst-case response time for each task in the system. The algorithm is

depicted in Alg. 2. In lines 2 and 4, two special cases are handled using response-time

Algorithm 2 Efficient Exact Schedulability Test
Input: T = {τ1,τ2, ...,τn}, where tasks are priority ordered from the lowest to the highest
priority
Output: The worst-case response time Rk for all tasks τk ∈ T , if T is schedulable; null,
otherwise;

1: for τk ∈T do
2: if (Lk == LO)||(∀τ j ∈ {τ1, ...,τk},C j(LO) ==C j(HI)) then
3: Rk =Ck(LO)+∑ j<k⌈Rk

Tj
⌉C j(LO)

4: else if (∀τ j ∈ {τ1, ...,τk},L j == HI) then
5: Rk =Ck(Lk)+∑ j<k⌈Rk

Tj
⌉C j(Lk)

6: else
7: Rk = SB-RTA(T ,k)
8: end if
9: if Rk > Dk then

10: return null
11: end if
12: end for
13: return {R1, ...,Rn}

analyses based on recurrence relations. The state-based response-time analysis is invoked in

line 7. More detailed explanation of this algorithm can be found in [37].

This state-based response-time analysis yields the exact worst-case response time, which

is always lower or equal to the worst-case response time given with any sufficient analysis.

Consequently, this increases the schedulability. The improvements of the exact schedulability

test over the sufficient AMC-max test are shown in the following example.
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Example 8. Consider a fixed-priority uniprocessor computing platform that executes the task

set T = {τ1,τ2,τ3}. Parameters of tasks are:

τi = {[Ci(LO),Ci(HI)],Ti,Di,Li}

τ1 = {[1,2],5,5,HI}

τ2 = {[1,2],2,2,LO}

τ3 = {[1,2],7,7,HI}

(3.38)

The goal is to determine if a feasible schedule for the task set exists with regard to AMC-max
and the exact analysis. To find a feasible schedule with regard to AMC-max analysis, the OPA

algorithm can be employed. Again, the algorithm fails at the first step since it cannot assign the

lowest priority to any task in the system:

i = 0 :

RLO
1 = 1+

⌈
R1

7

⌉
·1+

⌈
R1

2

⌉
·1 = 4

RHI
1 = 2+

⌈
R1

7

⌉
·2 = 4

RMC
1 = 2+1 ·2+

(⌈
RMC

1
7

⌉
−1

)
·1+

(⌊
2
2

⌋
+1

)
·1 = 6→ RMC

1 � D1

i = 1 :

RLO
2 = 1+

⌈
R2

5

⌉
·1+

⌈
R2

7

⌉
·1 = 3→ RLO

2 � D2

i = 2 :

RLO
3 = 1+

⌈
R3

5

⌉
·1+

⌈
R3

2

⌉
·1 = 4

RHI
3 = 2+

⌈
R3

5

⌉
·2 = 4

RMC
3 = 2+2 ·2+

(⌈
RMC

3
5

⌉
−2

)
·1+

(⌊
2
2

⌋
+1

)
·1 = 8→ RMC

3 � D3

(3.39)

However, this task set is schedulable with priority ordering τ1, τ2, τ3. This can be verified easily

using Alg. 2. Since τ1 is the highest priority task, its response time is R1 = 2 (line 4 in Alg. 2).

Similarly, response time of low-criticality task τ2 can be obtained as specified in line 2 in Alg.

2:

R2 = 1+
⌈

R2

5

⌉
·1 = 2 (3.40)

The worst-case response time of high-criticality task τ3 obtained using the state space explo-

ration according to Rule 1* and Rule 2* is depicted in Fig. 3.7. Legend for the state space

exploration is shown in Fig. 3.6. Since all three tasks were found to be schedulable, AMC
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(ci,qi, pi,εi,φi)
(ci,qi, pi,εi,φi)
(ci,qi, pi,εi,φi)
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(ci,qi, pi,εi,φi)
(ci,qi, pi,εi,φi)

Γ
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i

(ci,qi, pi,εi,φi)
(ci,qi, pi,εi,φi)
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Γ

(ci,qi, pi,εi,φi)
(ci,qi, pi,εi,φi)
(ci,qi, pi,εi,φi)

Γ

(σ1,σ2,σ3)

Pruned states. PRx denotes the pruning
rule according to which state is pruned.

States on the exploration stack. Index i de-
notes the order in which states are explored.
U denotes state which is on the stack, but is
not explored, due to the early termination.

Transition to next state
(t + 1) with job sequence
σ(t + 1) = (σ1,σ2,σ3).

Figure 3.6: Legend for state space exploration diagrams.

system with the task set T is schedulable with priority ordering τ1, τ2, τ3.

An issue that is not discussed in the latter example is the priority assignment in the second

case, i.e., when the exact analysis is used. It can be seen that the OPA algorithm has not been

used. As it can be seen in Alg. 1, which depicts the OPA algorithm, the performance of the OPA

algorithm relies on usage of an adequate schedulability test. An important property of schedu-

lability tests is the OPA compatibility. The OPA compatibility property ensures the optimality

of the OPA algorithm for a given schedulability test and it is a necessary precondition for usage

of the schedulability test with the OPA algorithm. The conditions for OPA compatibility were

devised in [38] and can be expressed as follows.

Condition 1. The schedulability of a task τk may, according to test S, depend on any indepen-

dent properties of task with priorities higher than k, but not on any properties of those tasks that

depend on their relative priority ordering.

Condition 2. The schedulability of a task τk may, according to test S, depend on any indepen-

dent properties of task with priorities lower than k, but not on any properties of those tasks that

depend on their relative priority ordering.

Condition 3. When the priorities of any two tasks of adjacent priority are swapped, the task

being assigned the higher priority cannot become unschedulable according to test S, if it was

previously schedulable at the lower priority. (As a corollary, the task being assigned the lower

priority cannot become schedulable according to test S,if it was previously unschedulable at the

higher priority.)
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(0, 0, 0, 0, 0)
(0, 0, 0, 0, 0)
(0, 0, 0, 0, 0)

LO

(0, 0, 0, 0, 0)
(0, 0, 0, 0, 0)
(2, 7, 7, 2, 0)

LO

(0, 0, 0, 0, 0)
(1, 2, 2, 1, 0)
(2, 7, 7, 2, 0)

LO

(0, 0, -1, 0, 0)
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LO

(1, 5, 5, 1, 1)
(0, 1, 1, 0, 0)
(2, 6, 6, 2, 0)

LO

(2, 5, 5, 2, 1)
(0, 1, 1, 0, 0)
(2, 6, 6, 2, 0)

LO

(0, 0, 0, 0, 0)
(2, 2, 2, 2, 0)
(2, 7, 7, 2, 0)

LO

(1, 5, 5, 1, 0)
(0, 0, 0, 0, 0)
(2, 7, 7, 2, 0)

LO

(1, 5, 5, 1, 0)
(1, 2, 2, 1, 0)
(2, 7, 7, 2, 0)

LO

(0, 4, 4, 0, 0)
(1, 1, 1, 1, 0)
(2, 6, 6, 2, 0)

LO

(0, 3, 3, 0, 0)
(0, 0, 0, 0, 0)
(2, 5, 5, 2, 0)

LO

(0, 3, 3, 0, 0)
(1, 2, 2, 1, 0)
(2, 5, 5, 2, 0)

LO

(0, 2, 2, 0, 0)
(0, 1, 1, 0, 0)
(2, 4, 4, 2, 0)

LO

(0, 1, 1, 0, 0)
(0, 0, 0, 0, 0)
(1, 3, 3, 2, 0)

HI

(2, 5, 5, 2, 0)
(0, 0, 0, 0, 0)
(0, 2, 2, 0, 0)

HI

(0, 3, 3, 0, 0)
(2, 2, 2, 2, 0)
(2, 5, 5, 2, 0)

LO
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LO
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Figure 3.7: State space exploration for τ3 in Example 8.
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Algorithm 3 NOPA algorithm
Input: T = {τ1,τ2, ...,τn}
Output: Ψ - priority assignment function

1: function NONOPTIMALPRIORITYASSIGNMENT(T )
2: n← |T |, T ′←T , j← n
3: while ∃τi ∈T ′|Li = LO∧∃τ j ∈T ′|Li = HI do
4: τi←maxτi∈T ′|Li=LO(Di)

5: Ri =Ci(LO)+∑τ j∈T ′∖τi⌈
Ri
Tj
⌉ ·C j(LO)

6: if Ri ≤ Di then
7: Ψ(τi)← j
8: T ′←T ′ ∖ τi
9: else

10: τi←maxτi∈T ′|Li=HI(Di)
11: Ψ(τi)← j
12: T ′←T ′ ∖ τi
13: end if
14: j← j−1
15: end while
16: while ∃τi ∈T ′ do
17: τi←maxτi∈T ′(Di)
18: Ψ(τi)← j
19: T ′←T ′ ∖ τi
20: j← j−1
21: end while
22: return Ψ

23: end function

The exact approach is not OPA compatible as it is in the strict violation of the first condition.

More precisely, the schedulability depends on the relative priority ordering of tasks with higher

priority, e.g., different worst-case response times can be discovered if priority of a task that

causes criticality switch is changed. To overcome this issue, the authors in [37] proposed using

a heuristic priority assignment algorithm, which is not optimal, but highly effective in terms or

resulting schedulability. This algorithm is known as non-optimal priority assignment (NOPA)

algorithm and it is depicted in Alg. 3.

3.6 Improvement of existing schedulability test for periodic

adaptive mixed-criticality systems

3.6.1 Refinement of AMC-max schedulability test

Improvements of existing AMC-max schedulability test are based on more precise response-

time analysis of low-criticality and high-criticality interference of tasks with higher priority
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than an observed task. Response time of a high-criticality task τi in case of a criticality switch

at time instant s caused by a high-criticality task τξ
† can be represented as:

RMC
i (s) =Ci(HI)+ IL(i,s)+ IH(i,s,RMC

i (s)) (3.41)

where IL(s) and IH(s) are interferences caused by low and high-criticality tasks, respectively.

As stated in [30]: In this formulation we could differentiate between those tasks that have a

priority greater than τξ , and those that have a lower priority. Those with priority greater than

τξ must have completed this ‘current’ job (so only executed for C(LO)), while those with pri-

ority equal or less may not yet have completed and hence their current job must be assumed

to need C(HI). However, Baruah et al. in [30] did not pursue this path due to the problem

of OPA compatibility which will be discussed later. Additionally, in the statement above they

do not take low-criticality tasks into consideration and it will be showed that this more pre-

cise response-time analysis for low-criticality tasks is crucial for improvement of schedulability

test. In the rest of this section several propositions accompanied with proofs for enhancement

of AMC-max schedulability test are provided. Additionally, an example is presented, which

shows how propositions improve response time of some task systems which are not feasible if

AMC-max schedulability test is used. Firstly, the improvement of interference for low critical-

ity tasks (IL(s) term) is addressed and the interference from high-criticality tasks (IH(s) term)

is addressed afterwards. Improvements are made by introducing separate analysis for different

subsets of sets of tasks with priority higher than task τi, i.e., hpL(τi) and hpH(τi).

Reducing the interference of low-criticality tasks.

The set of low-criticality tasks with priority higher than τi, i.e., hpL(τi) can be separated into

two disjunct sets:

∙ set hpL(τξ ), which contains low-criticality tasks with a priority higher than τξ ,

∙ set hpL(τi)∩ lpL(τξ ), which contains low-criticality tasks with a priority lower than τξ ,

but higher than τi.

Interference of low-criticality tasks as represented in [30] is:

IL(i,s) = ∑
j∈hpL(τi)

(⌊
s
Tj

⌋
+1

)
C j(LO) (3.42)

Equation (3.42) overestimates the execution time of low-criticality tasks with the priority lower

than the priority of task which caused a criticality switch τξ . This is due to the fact that unfin-

ished jobs of tasks with a priority lower than τξ will not spend their entire C j(LO) budget in LO

mode. The latter statement is stated in the form of proposition that follows.

†Notation τξ is used instead of τs to evade overload of variable s.
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Proposition 1. Unfinished job of low-criticality task τ j with priority lower than the priority

of high-criticality task τξ (which causes a criticality switch) and priority higher than τi will

execute for time c ju in LO mode, such that c ju <C j(LO), where u is the index of the unfinished

job.

Proof. Consider a scenario in which jobs of tasks τi, τ j and τξ are released. Since high-

criticality task τξ has the highest priority, its job will execute for its entire low-execution

budget without signaling completion and consequently cause a criticality switch. Since the

low-criticality tasks are abandoned in AMC systems, job of task τ j will be discarded before it

spends its execution budget, i.e., Ci(LO).

Based on Proposition 1, it can be instantly inferred that the maximum execution time for the

last unfinished job of a low-criticality task τ j ∈ hpL(τi)∩ lpL(τξ ) corresponds to the largest

integer for which c ju <C j(LO) since the discrete time model is considered. Therefore, cmax
ju =

C j(LO)−1 and the execution budget of such low-criticality tasks is effectively reduced in case

of a criticality switch.

Corollary 1. For execution time of last unfinished jobs of low-criticality tasks with a priority

higher than τi and lower than τξ the following condition applies:

∑
j∈κ

c ju ≤ ∑
j∈κ

(C j(LO)−1) (3.43)

where κ = {hpL(τi)∩ lpL(τξ )}.

The problem with the stated proposition and its immediate corollary is to determine if job

is indeed unfinished at some time instant. In essence, to determine if job is unfinished one has

to simulate the system behavior, i.e., sporadic or periodic release and execution of tasks, up

to the instant of a criticality switch. Naturally, such an approach would significantly increase

the computation time and in a lot of cases may not be acceptable. This is extremely difficult,

i.e., computationally expensive, to determine in case of sporadic systems. However, in case of

periodic systems with no initial offset, these observations can be exploited using the information

about time instants of release of τ j and τξ , and time instant of a criticality switch s. There are

two different cases that are considered, which depend on relative phasing of jobs of tasks τ j and

τξ . These cases are depicted in Figs. 3.8-3.9.

⌊ s
Tξ
⌋ ·Tξ ⌊ s

Tj
⌋ ·Tj

s t

Figure 3.8: Relative phasing of τξ and τ j prior to the criticality switch when the last job of τ j is released
after the job of τξ that caused the criticality switch.
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⌊ s
Tj
⌋ ·Tj ⌊ s

Tξ
⌋ ·Tξ

s t

∆ jξ

Figure 3.9: Relative phasing of τξ and τ j prior to the criticality switch when the last job of τ j is released
before the job of τξ that caused the criticality switch.

Proposition 2. Interference of low-criticality task τ j with priority lower than τξ , which is re-

leased after job of τξ that caused a criticality switch is given with:

IL(i,s, j) =
⌊

s
Tj

⌋
·C j(LO) (3.44)

Note that this corresponds to expression given with (3.42) when C j(LO) is subtracted.

Proof. In the case shown in Fig. 3.8, the last job of τξ is released before τ j. Since τξ has

a higher priority than τ j, the last job of τ j will never be executed if τξ causes a criticality

switch at time instant s. Therefore, interference of last job can be discarded, which proves the

proposition.

Proposition 3. Interference of low-criticality task τ j with priority lower than τξ , which is re-

leased before job τξ that caused a criticality switch is given with:

IL(i,s, j) =
⌊

s
Tj

⌋
·C j(LO)+min(∆ jξ ,C j(LO)) (3.45)

where ∆ jξ is given with:

∆ jξ =

⌊
s

Tξ

⌋
·Tξ −

⌊
s
Tj

⌋
·Tj (3.46)

Proof. In the case shown in Fig. 3.9, the last job of τξ is released after τ j. It is known that the

earliest point in time when job of τ j is finished is given with:

f ju =

⌊
s
Tj

⌋
·Tj +C j(LO) (3.47)

There are two different cases with regard to relative phasing f ju and ⌊ s
Tξ
⌋ ·Tξ :

1. f ju ≤ ⌊ s
Tξ
⌋ ·Tξ ,

2. f ju > ⌊ s
Tξ
⌋ ·Tξ .

In the first case, the maximum execution time of the last job of task τ j corresponds to the WCET

of task since in the worst case the job will spend its entire execution time prior to release of τξ .

In the second case, the maximum execution time of the last job τ j corresponds to the difference

of release times ∆ jξ because once τξ is released, τ j will not be executed again. Therefore, the
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job of τ j executes for maximally Ci(LO) or ∆ jξ time units if τξ is released before its earliest

finish time, which proves this proposition.

The total interference of low-criticality tasks with the latter modifications can be expressed

as:

IL(i,s,τξ ) = ∑
j∈hpL(τξ )

(⌊
s
Tj

⌋
+1

)
·C j(LO)

+ ∑
j∈hpL(τi)∩lpL(τξ )

⌊
s
Tj

⌋
·C j(LO)

+ ∑
j∈hpL(τi)∩lpL(τξ )|⌊ s

Tj
⌋Tj≤⌊ s

τ
ξ
⌋Tξ

min(C j(LO),∆ jξ )

(3.48)

Reducing the interference of high-criticality tasks.

The interference of high-criticality tasks at some time instant t can be expressed as:

IH(s, t) = ∑
k∈hpH(τi)

{
M(k,s, t)Ck(HI)+

(⌈
t
Tk

⌉
−M(k,s, t)

)
Ck(LO)

}
(3.49)

where M(k,s, t) is the number of job releases of task τk at time instant t after a criticality switch.

Similarly as before, set hpH(τi) can be split into three disjunct sets:

∙ set hpH(τξ ), which contains high-criticality tasks with priority higher than τξ ,

∙ set hpH(τi)∩ lpH(τξ ), which contains high-criticality tasks with priority lower than τξ

but higher than τi,

∙ set {τξ}, which contains τξ , which causes a criticality switch.

Tasks in set hpH(τi)∩ lpH(τξ ) are assumed to need high-criticality execution time after time

instant s. Therefore, the M(k,s, t) term is the same as in AMC-max analysis:

M(k,s, t) = min
(⌈

t− s− (Tk−Dk)

Tk

⌉
+1,

⌈
t
Tk

⌉)
(3.50)

The latter expression applies to τξ as well. Last jobs of tasks from set hpH(τξ ) must have

completed their execution before time instant s. Therefore, equation (3.50) overestimates the

interference from tasks in set hpH(τξ ).

Proposition 4. Maximum number of job releases of high-criticality tasks with priority higher

than task which causes a criticality switch (τξ ) after a criticality switch (t > s) is:

M(k,s, t) =
⌈

t− s− (Tk−Dk)

Tk

⌉
(3.51)
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Proof. Consider interference IH(k,s, t) from high-criticality task τk at time instant s in interval

of length t in AMC-max analysis:

IH(k,s, t) = Mmax(k,s, t)Ck(HI)+
(⌈

t
Tk

⌉
−Mmax(k,s, t)

)
Ck(LO) (3.52)

where Mmax(k,s, t) is the number of job releases given with equation (3.50). If task τk has

priority higher than τξ , then the last job of task τk executed for its low-criticality execution time.

Hence, C(HI) needs to be subtracted and C(LO) needs to be added to AMC-max interference.

After these modifications, interference can be expressed as:

IH(k,s, t) = (Mmax(k,s, t)−1)Ck(HI)+
(⌈

t
Tk

⌉
− (Mmax(k,s, t)−1)

)
Ck(LO) (3.53)

Therefore, M*(k,s, t) =Mmax(k,s, t)−1, which proves the proposition (M*(k,s, t) is the number

of releases given with equation (3.51)). Term ⌈ t
Tk
⌉ is dropped from (3.51) because ⌈ t−s−(Tk−Dk)

Tk
⌉≤

⌈ t
Tk
⌉.

By combining equations (3.41), (3.48), (3.49), (3.50), and (3.51), response time in case of a

criticality switch, i.e., during the mode change, can be expressed as follows:

Ri =Ci(HI)

+ ∑
j∈hpL(τξ )

(⌊
s
Tj

⌋
+1

)
·C j(LO)

+ ∑
j∈hpL(τi)∩lpL(τξ )

⌊
s
Tj

⌋
·C j(LO)

+ ∑
j∈hpL(τi)∩lpL(τξ )|⌊ s

Tj
⌋Tj≤⌊ s

τ
ξ
⌋Tξ

min(C j(LO),∆ jξ )

+ ∑
k∈hpH(τξ )

{
M*(k,s,Ri)Ck(HI)+

(⌈
Ri

Tk

⌉
−M*(k,s,Ri)

)
Ck(LO)

}

+ ∑
k∈hpH(τi)∩lpH(τξ )

{
Mmax(k,s,Ri)Ck(HI)+

(⌈
Ri

Tk

⌉
−Mmax(k,s,Ri)

)
Ck(LO)

}

(3.54)

As well as in AMC-max approach, the instant of a criticality switch s is chosen from the

interval [0,RLO
i ⟩ as a multiple of minimal interarrival times, i.e., periods, of low-criticality tasks

with priority higher than or equal to τi. This is sufficient since the term in the low-criticality

interference
⌊

s
Tj

⌋
changes when s is such that s = k ·Tj,k ∈N. Note that this captures the worst-

case of interference if a criticality switch occurs at any time instant in interval determined with

two consecutive multiples of low-criticality tasks, i.e., s ∈ [k ·Tj,(k+1) ·Tj],k ∈ N. Task τξ is

chosen from tasks with priority higher than τi. Finally, for response time in case of a criticality
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switch, the maximum time among all choices of s and τξ is chosen:

RMC
i = max(Ri(s,τξ )) (3.55)

An illustrative example of the schedulability test refinement

With the following example, cases when the devised test outperforms AMC-max is illustrated

and explanations are provided.

Example 9. Consider a fixed-priority uniprocessor computing platform that executes the task

set T = {τ1,τ2,τ3}. Parameters of tasks are:

τi = {[Ci(LO),Ci(HI)],Ti,Di,Li}

τ1 = {[1,2],10,10,HI}

τ2 = {[1,1],5,5,LO}

τ3 = {[4,8],13,13,HI}

(3.56)

The goal is to determine if a feasible schedule exists with regard to AMC-max and the devised

analysis. To find a feasible priority assignment with regard to AMC-max analysis, the OPA

algorithm can be employed. Similarly as in the latter examples, the algorithm fails at the first

step since it cannot assign the lowest priority to any task in the system:

i = 0 :

RLO
1 = 1+

⌈
R1

13

⌉
·4+

⌈
R1

5

⌉
·1 = 7

RHI
1 = 2+

⌈
R1

13

⌉
·8 = 10

RMC
1 = 2+1 ·4+

(⌈
RMC

1
13

⌉
−1

)
·4+

(⌊
0
5

⌋
+1

)
·1 = 12→ RMC

1 � D1

i = 1 :

RLO
2 = 1+

⌈
R2

10

⌉
·1+

⌈
R2

13

⌉
·4 = 6→ RLO

2 � D2

i = 2 :

RLO
3 = 4+

⌈
R3

10

⌉
·1+

⌈
R3

5

⌉
·1 = 7

RHI
3 = 8+

⌈
R3

10

⌉
·2 = 10

RMC
3 = 8+2 ·2+

(⌈
RMC

3
10

⌉
−2

)
·1+

(⌊
5
5

⌋
+1

)
·1 = 14→ RMC

3 � D3

(3.57)

However, this task set is schedulable with priority ordering τ1, τ2, τ3. This can be verified using
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the devised test. The worst-case response times for tasks τ1 and τ2 are obtained in the same

way as in the AMC-max analysis:

RLO
1 = 1,RHI

1 = RMC
1 = 2

RLO
2 = 1+

⌈
RLO

2
10

⌉
·1 = 2

(3.58)

The difference between the AMC-max analysis and the devised approach is in response time

for τ3. The worst-case response time for τ3 according AMC-max analysis is given with:

RMC
3 = 8+2 ·2+

(⌈
RMC

3
10

⌉
−2

)
·1+

(⌊
5
5

⌋
+1

)
·1 = 14→ RMC

3 � D3 (3.59)

As it can be seen, the worst-case response time for τ3 is obtained for s = 5. Using the de-

vised analysis, the worst-case response time is effectively reduced and can be obtained using

recurrence relation (3.54) when τ1 is a task which causes the criticality switch:

R3 = 8

+

⌊
5
5

⌋
·1

+2 ·2+
(⌈

Ri

10

⌉
−2

)
·1 = 13

(3.60)

The interference of low-criticality task τ2 is reduced as τ2 is in the set of tasks with priority

lower than τξ , i.e., τ1, and higher than the observed task τ3. The reduction is justified since it is

known that in periodic release pattern the last instance of τ1 which caused the criticality switch

at time instant 5 is released before τ2. Similarly, the reduction of high-criticality interference

lowers the worst-case response time when τ3 is assumed to cause a criticality switch:

Ri = 8

+

(⌊
5
5

⌋
+1

)
·1

+1 ·2+
(⌈

Ri

10

⌉
−1

)
·1 = 13

(3.61)

This, in fact, demonstrates that both reductions, i.e., reductions of low-criticality and high-

criticality interferences, are needed for the task set to be schedulable according to the devised

analysis.
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3.6.2 Schedulability test properties

Property 1. Dominance over AMC-max. The devised analysis dominates the AMC-max anal-

ysis in a sense that it will yield the worst-case response time for any task in a task set, which is

lower than or equal to the worst-case response time given with AMC-max analysis.

Proof. It is clear that the devised analysis dominates AMC-max analysis because at minimum

the following conditions apply to low and high-criticality interferences of analyses:

I*L(i,s)≤ Imax
L (i,s)

I*H(i,s,R
MC
i )≤ Imax

H (i,s,RMC
i )

(3.62)

where Imax
L , Imax

H , I*L , and I*H are given with (3.29), (3.30), (3.48), and (3.30) with M* given

with (3.51), respectively. The proof that conditions hold is contained in corresponding proofs

of interference reduction propositions 2, 3, and 4.

Property 2. OPA compatibility. The devised analysis is not OPA compatible, i.e., usage of the

devised analysis with the OPA algorithm may not yield a feasible priority assignment if one

exists.

Proof. As it is stated before, in order for an analysis to be OPA compatible, conditions 1, 2,

and 3 have to be satisfied. In the case of devised analysis, it is clear that Condition 1 is not

satisfied since the worst-case response time depends on relative priority ordering of task with

higher priority than τi, i.e., it depends on choice of τξ .

Property 3. Computational complexity. In the devised analysis, response time of a task is

calculated in O(n2) complexity.

Proof. For every task τi in a system, one task from a set of tasks with a higher priority must be

chosen as τξ (task which causes a criticality switch). Complexity of evaluating schedulability

of a task set with given priority order is O(n3). Therefore, it involves more computation than

AMC-max.

Property 4. Applicable priority assignment. Due to the OPA incompatibility it is not possible

to use this test with the OPA algorithm as an entire priority assignment must be known to

evaluate worst-case response time of a task. Therefore, the heuristic NOPA priority assignment

devised in [37] is used. In essence, any heuristic method can be used to assign the priorities,

but the optimality is not guaranteed.
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3.7 Evaluation of the devised schedulability test

So far in the thesis, the focus has been on the theoretical aspects of schedulability tests and

response-time analysis. Various schedulability tests have been compared using examples and

counterexamples to show the pitfalls and drawbacks of certain schedulability tests. Such an

approach is very useful to highlight the fundamental differences between approaches. However,

the performance of schedulability tests on a larger number of task sets, i.e., classes of task

sets, is important as well. Therefore, in this section, the results of evaluation of the existing

schedulability tests as well as the devised schedulability test are presented. The results were

generated using the framework for schedulability testing of adaptive mixed-criticality systems,

which is discussed in detail later in section 3.9.

3.7.1 Task set generation

Task sets for experiments were generated using the UUnifast algorithm [39], which is often

used in measuring the performance of real-time systems. A problem with the algorithm is that

for small input range of minimal interarrival times or small number of tasks, it is difficult to

generate a large amount of task sets with targeted utilization factor. Therefore, the feature of

the schedulability testing framework (see section 3.9) is exploited, which enables discarding

of task sets that have utilization factor that does not fit into interval [u− δ ,u+ δ ⟩ where u is

the target utilization factor in low criticality mode and δ is the utilization increment. Input

parameters for the task set generation are:

∙ n - number of tasks in a task set,

∙ [Tmin,Tmax] - interval of interarrival times,

∙ uLO - target utilization of a task set in low criticality execution mode,

∙ δ - utilization increment,

∙ N - number of tasks per utilization factor,

∙ L - number of criticality levels in a system,

∙ DF - deadline scaling factor,

∙ CF - criticality factor,

∙ CP - fraction of high criticality tasks in a task set.

Interarrival times are generated according to the uniform distribution from interval [Tmin,Tmax].

The worst-case execution time for low criticality mode of execution can be calculated as Ci(LO)=

⌈ui ·Ti⌉ (ui is the fraction of processor time used by task τi in LO mode, i.e., uLO = ∑
n
i=1 ui). The

high-criticality WCETs can be calculated as Ci(HI) =CF ·Ci(LO), where CF is the criticality

factor. Deadline scaling factor DF determines interval from which deadline is chosen. Deadline

is chosen according to the uniform distribution or as a fixed value from the interval [ T
DF ,T ].
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3.7.2 Results

The performance of schedulability test and their corresponding priority assignment algorithm is

evaluated since a combination of schedulability test and priority assignment algorithm is used

in practice for the system design. In evaluation, schedulability, i.e., the fraction of task sets

that are schedulable, and average execution time are observed. Moreover, in the evaluation,

utilization (U), the number of task sets (n), and the maximum period (Tmax) were independently

varied. The default parameters for all experiments are the following:

∙ n = 6,

∙ Tmin = 2, Tmax = 100,

∙ L = 2,

∙ DF = 1,

∙ CF = 2,

∙ CP = 0.5,

∙ δ = 0.025.

Firstly, the performance of scheduling approaches with regard to low-criticality processor

utilization is evaluated. Results are shown in Figs. 3.10-3.13. For evaluation, 2000 task sets

per utilization factor were generated for each utilization factor in interval [0.1,0.9] with 0.025

increment, i.e., the total of 33 · 2000 = 66000 task sets. Fig 3.10 shows the overall schedu-

lability of all static and adaptive mixed-criticality approaches as well as non-mixed criticality

and partitioned criticality approaches, which were discussed in the previous sections. The fig-

ure clearly shows that the non mixed-criticality approaches, i.e., DMPA and CrMPO, perform

poorly in terms of schedulable task sets in comparison with static and adaptive mixed-criticality

approaches. Furthermore, the figure shows the performance of the following static and adaptive

mixed-criticality scheduling approaches:

∙ SMC-NO, SMC, AMC-rtb, and AMC-max schedulability tests that are used with the

OPA algorithm as proposed in [29, 30] and discussed in section 3.5.

∙ the schedulability test devised in section 3.6, which is referred to as AMC-tight.
∙ The Exact test is the exact schedulability test devised in [37].

∙ The ExactPeriodic test designates the exact schedulability test for periodic adaptive

mixed-criticality system based on exhaustive state space exploration, i.e., simulation of

periodic system. It can be seen as the special case of the approach in [37] when arrivals

of task instances are strictly periodic.

∙ UBH&L test is a schedulability test which checks response times for low-criticality

and high-criticality mode. A task set is schedulable if response times for high and

low-criticality mode for each task in a task set are lower than their respective dead-

lines. In essence, this is a necessary schedulability test for fixed-priority adaptive mixed-

criticality systems. Therefore, UBH&L+DMPA graph represents a theoretical schedula-

53



Method for schedulability testing for adaptive mixed-criticality systems with fixed priorities

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.2

0.4

0.6

0.8

1

Utilization of task sets (U)

Fr
ac

tio
n

of
sc

he
du

la
bl

e
ta

sk
se

ts

CrMPO
DMPA

SMC-NO+OPA
SMC+OPA

AMC-rtb+OPA
AMC-max+OPA

AMC-tight+NOPA
Exact+NOPA

ExactPeriodic+NOPA
UBH&L+DMPA

Figure 3.10: Fraction of schedulable task sets for different scheduling approaches and corresponding
schedulability tests with regard to processor utilization factor U .

bility bound for fixed-priority mixed-criticality systems.

More importantly, Fig. 3.10 shows that the devised test, i.e., AMC-tight, outperforms AMC-
max schedulability test in terms of schedulable task sets. The difference is better illustrated

in Fig. 3.11. Fig. 3.12 shows the timing performance of the approaches with regard to the

utilization. As expected, exact approaches have the longest execution time, which is at least one

order of magnitude larger than the sufficient tests. The distinction between execution times of

sufficient schedulability tests is better depicted in Fig. 3.13. In addition, it can be seen that there

are no significant differences in execution time of sufficient tests with regard to the utilization.

Figs. 3.14-3.17 show the performance of schedulability tests with regard to the number

of tasks in the system. Firstly, the case when n is in interval [3,8] is analyzed, i.e., cases in

which there is relatively low number of tasks in the system. 2000 task sets were generated for

each n, i.e., the total of 6 · 2000 = 12000 task sets. Again, in Fig. 3.14, it can be seen that the

devised test, i.e., AMC-tight, performs better than other sufficient test in sense of schedulable

task sets. Moreover, Fig. 3.15 shows that the average execution time is at least one order of

magnitude higher in case of the exact schedulability tests. Moreover, the exponential growth

in the execution time for exact tests can be noticed. For a higher number of tasks in a set, i.e,

interval [8,100], the total of 93 ·1000 = 93000 tasks sets were generated. Moreover, the Exact
test is omitted in evaluation due to the exponential growth in its execution time. In Fig 3.17,

it can be seen that for a larger number of tasks in the system, execution time of AMC-tight
becomes significantly higher than the other sufficient tests. Again, this is to be expected since
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Figure 3.13: Average execution time of priority assignments with corresponding sufficient schedulability
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the devised test involves more computation than AMC-max test as stated in Property 3. Fig.

3.16 shows that even for a higher number of tasks in system, a fraction of task sets that are

schedulable with the devised test is higher than in case of existing sufficient schedulability

tests.

Figs. 3.18-3.20 show the performance of schedulability tests with regard to the maximum

period in the system Tmax. 1000 task sets were generated for each value of Tmax in interval

[100,500] with increment of 50, i.e., the total of 9 ·1000= 9000 task sets. Again, the dominance

properties are preserved, and in Fig. 3.18 it can be seen that a higher fraction of task sets

are schedulable with regard to the devised test than in case of existing schedulability tests.

Moreover, exact schedulability tests dominate sufficient tests. On the other hand, Figs. 3.19-

3.20 show that in terms of execution time exact schedulability tests have significantly higher

execution time than sufficient tests.
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Figure 3.16: Fraction of schedulable task sets for different scheduling approaches and corresponding
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Figure 3.20: Average execution time of priority assignments with corresponding schedulability tests
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excluded.

3.8 Validating existing schedulability tests

The important part of validation of the newly devised schedulability tests is testing and sys-

tematic comparison to different existing schedulability tests. Through systematic evaluation

of schedulability tests during the research using the framework for schedulability testing dis-

cussed in section 3.9, errors and faults in existing response-time analyses were discovered. In

this section, errors and inconsistencies in the efficient formulation of the exact schedulability

test described in chapter 4.2 of [37] are stated and discussed. The algorithm is depicted in

section 3.5.4 of this thesis as well.

3.8.1 The first error: Rule 1*

The first error is in Rule 1* which describes assignment of the minimum remaining time until

the next release of task τi, i.e., p′i. In the paper, it is stated that if σi(t+1) = 1, then p′i = Ti. This

is not correct as it discriminates against other release patterns in which job of task τi is released

with execution time larger than 1. Therefore, the condition should be σi(t +1)≥ 1.

The first error causes invalid state transitions. Consequently, the schedulability test dis-

covers incorrect task response times, which leads to an incorrect schedulability decision. To

illustrate the consequences of the first error, the following example can be observed.
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Example 10. Consider task set with 3 tasks τi = {[Ci(LO),Ci(HI)],Ti,Di,Li}:
∙ τ1 = {[1,2],5,5,HI}
∙ τ2 = {[1,1],3,3,LO}
∙ τ3 = {[2,4],7,7,HI}

Tasks are ordered according to priority, i.e., task τ1 has the highest priority and task τ3 has the

lowest priority. Consider the transition from the pre-initial state s−1 = ⟨LO,(0,0,0,0,0)3
i=1⟩.

According to Rule 2* there are six different job sequences at time instant 0: σ(0)1 = {0,0,4},
σ(0)2 = {0,1,4}, σ(0)3 = {1,0,4}, σ(0)4 = {1,1,4}, σ(0)5 = {2,0,4}, σ(0)6 = {2,1,4}. For

instance, we can take the sixth job sequence σ(0)6 and apply Rule 1* to get the next state s6
0.

According to Rule 1* task state (ci,qi, pi,εi,φi) for τ2 is:

∙ (c2 = 1,q2 = 3, p2 = 3,ε2 = 1,φ2 = 0)

As σ2(0)6 = 1, the minimum remaining time until the next release of a job p2 is set to 3 what is

correct. However, this is not the case for tasks τ1 and τ3:

∙ (c1 = 2,q1 = 5, p1 = 0,ε1 = 2,φ1 = 0)

∙ (c3 = 4,q3 = 7, p3 = 0,ε3 = 4,φ3 = 0)

where p1 and p3 are set to 0 what is incorrect because the remaining time until the next release

of a job corresponds to task periods 5 and 7, respectively. Therefore, the part of Rule 1* which

states: “if σi(t +1) = 1 then p′i = Ti” is incorrect and should be corrected to: “if σi(t +1)≥ 1

then p′i = Ti”.

As pointed out earlier an incorrect state transition causes the algorithm to produce an in-

correct response time and consequently an incorrect schedulability decision. To better illustrate

this, Fig. 3.21 and Fig. 3.22 that depict the state space exploration for τ3 for the corrected and

the incorrect Rule 1* respectively are provided. In Fig. 3.21 it can be easily seen that the task

set is not schedulable. Failure is declared after transition from the 7-th state to the final state

in which c3 > q3, i.e., the remaining execution time is greater than the remaining time to dead-

line. On the other hand, the algorithm with incorrect Rule 1* declares success as it discards

all states except the initial state. As the observed worst-case response time (Robserved) of τ3 is

set to LO-criticality mode response time (RLO
3 ≤ D3) prior to the state space exploration, the

algorithm produces an incorrect response time and schedulability decision.

3.8.2 The second error: pruning rule PR8

The second error is in the pruning rule PR8. As stated in the paper:

PR8 If pm = Tm and there exists a LO-criticality task τi, i ∈ {m + 1, ...,k}, such that (ci >

0∧∀τ j, j ∈ {1, ...,m−1,m+1, ..., i},c j = 0).
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Figure 3.21: State space exploration with corrected Rule 1*.
62



Method for schedulability testing for adaptive mixed-criticality systems with fixed priorities

(0, 0, 0, 0, 0)
(0, 0, 0, 0, 0)
(0, 0, 0, 0, 0)

LO

(0, 0, 0, 0, 0)
(0, 0, 0, 0, 0)
(4, 7, 0, 4, 0)

LO

(0, 0, 0, 0, 0)
(1, 3, 3, 1, 0)
(4, 7, 0, 4, 0)

LO

(0, 0, -1, 0, 0)
(0, 2, 2, 0, 0)
(4, 6, -1, 4, 0)

LO

(0, 0, -2, 0, 0)
(0, 1, 1, 0, 0)
(3, 5, -2, 4, 0)

LO

(0, 0, -3, 0, 0)
(0, 0, 0, 0, 0)
(2, 4, -3, 4, 0)

HI

(1, 5, 5, 1, 3)
(0, 0, 0, 0, 0)
(2, 4, -3, 4, 0)

HI

(2, 5, -3, 2, 3)
(0, 0, 0, 0, 0)
(2, 4, -3, 4, 0)

HI

(1, 5, 5, 1, 2)
(0, 1, 1, 0, 0)
(3, 5, -2, 4, 0)

LO

(2, 5, -2, 2, 2)
(0, 1, 1, 0, 0)
(3, 5, -2, 4, 0)

LO

(1, 5, 5, 1, 1)
(0, 2, 2, 0, 0)
(4, 6, -1, 4, 0)

LO

(2, 5, -1, 2, 1)
(0, 2, 2, 0, 0)
(4, 6, -1, 4, 0)

LO

(1, 5, 5, 1, 0)
(0, 0, 0, 0, 0)
(4, 7, 0, 4, 0)

LO

(1, 5, 5, 1, 0)
(1, 3, 3, 1, 0)
(4, 7, 0, 4, 0)

LO

(0, 4, 4, 0, 0)
(1, 2, 2, 1, 0)
(4, 6, -1, 4, 0)

LO

(0, 3, 3, 0, 0)
(0, 1, 1, 0, 0)
(4, 5, -2, 4, 0)

LO

(0, 2, 2, 0, 0)
(0, 0, 0, 0, 0)
(3, 4, -3, 4, 0)

LO

(0, 2, 2, 0, 0)
(1, 3, 3, 1, 0)
(3, 4, -3, 4, 0)

LO

(0, 1, 1, 0, 0)
(0, 2, 2, 0, 0)
(3, 3, -4, 4, 0)

LO

(0, 0, 0, 0, 0)
(0, 0, 0, 0, 0)
(2, 2, -5, 4, 0)

HI

(1, 5, 5, 1, 0)
(0, 0, 0, 0, 0)
(2, 2, -5, 4, 0)

HI

(2, 5, 0, 2, 0)
(0, 0, 0, 0, 0)
(2, 2, -5, 4, 0)

HI

(2, 5, 0, 2, 0)
(0, 0, 0, 0, 0)
(4, 7, 0, 4, 0)

LO

(2, 5, 0, 2, 0)
(1, 3, 3, 1, 0)
(4, 7, 0, 4, 0)

LO

(0,0,4) (0,1,4)

(0,0,0)

(0,0,0)

(0,0,0)
(0,1,0)

(1,0,0)
(1,1,0)

(2,0,0)
(2,1,0)

(1,0,0) (2,0,0)

(1,0,0) (2,0,0)

(1,0,4) (1,1,4)

(0,0,0)

(0,0,0)

(0,0,0) (0,1,0)

(0,0,0)

(0,0,0) (1,0,0) (2,0,0)

(2,0,4) (2,1,4)

1

(PR7)

7

8

9

(PR3) (PR3) (PR3)

(PR11) (PR4)

(PR11) (PR4)

(PR7)

2

3

4

(PR7)

5

6

(PR3) (PR3) (PR3)

(PR4) (PR4)

DECLARE
SUCCESS

Robserved = RLO
3 ≤ D3

5≤ 7

Figure 3.22: State space exploration with incorrect Rule 1*.
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The problem with the rule is that if task τi, i.e., index i, is included in set {1, ...,m− 1,m+

1, ..., i} then for the condition to be valid ci has to be equal zero (c j = 0). However, the first

part of the condition states that ci > 0. Therefore, the PR8 is incorrect as the condition is al-

ways false due to the contradiction. The latter set in the pruning rule should be corrected to

{1, ...,m−1,m+1, ..., i−1} and then task τi is excluded from the former part of the condition.

Additionally, index k should be excluded from set {m+1, ...,k} as τk is a high-criticality task.

3.8.3 An inconsistency: schedulability test algorithm

There is an inconsistency in the efficient schedulability test formulation depicted with Alg. 4

from section 4.2 regarding the Proposition 4 from the section 3.3 of the paper. For completeness

and clarity, Alg. 4 and Proposition 4 are reproduced here as defined in [37]. The corrected

version of the algorithm was already stated (see Alg. 2).

Proposition 4. If criticality levels of task τi and all tasks with priorities higher than it are the

same (i.e., ∀τ j ∈ hp(τi),L j = Li), the critical instant for task τi corresponds to what SAS offers.

Hence, the standard RTA can be used as follows:

Ri =Ci(Li)+ ∑
τ j∈hp(τi)

⌈
Ri

Tj

⌉
C j(Li)

An inconsistency which may cause confusion is in the lines 4-5 of Algorithm 4 which de-

picts the schedulability test. The condition specified in else if statement (line 4) is: ∀τ j ∈
{τ1, ...,τk},L j == Lk. Although, this represents Proposition 4 accurately, at this point it is

obvious that Lk = HI as the condition in line 2 is not satisfied, i.e., task τk is undoubtedly a

high-criticality task.

3.9 A framework for comparison of different schedulability

tests and response-time analyses

As mentioned before, the common technique for validating and evaluating scheduling tech-

niques, response-time analyses and schedulability tests in real-time scheduling theory, is evalu-

ation on synthetically generated task sets. This testing technique enables researchers to test va-

lidity, measure performance and further investigate properties of an observed system. Although

frameworks for evaluation of theoretical real-time system models exists [40, 41, 42, 43, 44], they

were found to be either too generic or inflexible to enable appropriate validation for schedula-

bility tests in mixed-criticality systems, which is needed in this research. Therefore, as a part of

this research, a framework for evaluation of schedulability tests was devised. The framework is

maintained in GitHub repository [45].
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Algorithm 4 Efficient Exact Schedulability Test (original version)
Input: Π = {τ1,τ2, ...,τN}, where for each task τi ∈Π, Pr(τi) = i
Output: The worst-case response time Rk for all tasks τk ∈Π, if Π is schedulable; null, other-
wise;

1: for τk ∈Π do
2: if (Lk == LO)||(∀τ j ∈ {τ1, ...,τk},C j(LO) ==C j(HI)) then
3: Rk =Ck(LO)+∑ j<k⌈Rk

Tj
⌉C j(LO)

4: else if (∀τ j ∈ {τ1, ...,τk},L j == Lk) then
5: Rk =Ck(Lk)+∑ j<k⌈Rk

Tj
⌉C j(Lk)

6: else
7: Rk = SB-RTA(Π,k)
8: end if
9: if Rk > Dk then

10: return null
11: end if
12: end for
13: return {R1, ...,RN}

3.9.1 Framework features

The devised framework provides classes and API (Application Programming Interface) which

allows an user to model a particular sporadic or periodic mixed-criticality system. Using test-

ing API the user can easily evaluate existing schedulability tests. This includes validation of

schedulability for tests, validation of response-time, and measuring runtime for each particular

test. Moreover, the framework enables the user:

∙ To define a custom sporadic or periodic mixed-criticality system with arbitrary number

of criticality levels.

∙ To define a custom priority assignment function.

∙ To define a custom response-time analysis.

∙ To define a custom feasibility test.

∙ To use API for testing and comparing user-defined priority assignments, response-time

analyses and feasibility tests and comparison with existing tests.

∙ To find counter examples and differences between different response-time or feasibility

analyses.

∙ To use highly flexible API for generation of synthetic task sets.

Most of these features were used in evaluation of the devised test (section 3.7.2), for genera-

tion of examples (throughout chapter 3), and validating existing schedulability tests and detect-

ing errors as well as correcting the existing schedulability tests 3.8. In the following subsection,

a brief overview of code organization of the framework is provided.
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3.9.2 Code organization

The framework is implemented in Java programming language. The source code of the frame-

work is organized in packages, which contain classes that implement different functionalities

required for the schedulability testing. Framework packages are listed in Table 3.1. The con-

tents of crucial packages are shown in Tables 3.2-3.7.

Since the framework enables introduction of new schedulability tests and extension of the

existing functionalities, the features that are related to the system model are implemented on a

higher level of abstraction, i.e., as abstract classes and interfaces. The list of abstract classes

and interfaces, which constitute the core of the framework are shown in Table 3.5. Three basic

classes and interfaces that are specified in interfaces package define priority assignment,

feasibility test, and response time interfaces. Their respective implementations are in separate

packages: package with priority assignments implementation shown in Table 3.2, package with

feasibility tests is shown in Table 3.4, and package with response times is shown in Table

3.6. Another generic item in the framework is class FeasibilityTestResponseTime, which

compares the response time of each task to its respective deadline. Note that this is in line with

the theoretical observation about the classes of schedulability tests, i.e., schedulability test can

be either boolean test or response-time based test [46].

The evaluation package shown in Table 3.3 contains two additional classes, which are

used in the experimental evaluation of schedulability tests. Class TestItem represents a com-

bination of a priority assignment algorithm and a feasibility test. In the framework implemen-

tation, all fixed-priority response time analyses and feasibility tests take into an instance of

TaskSet class, which contains tasks that are ordered according to a certain priority assignment.

Therefore, the usage of TestItem class ensures that a task set is ordered according to the de-

sired priority assignment prior to applying the schedulability test. However, in a special case,

when using the Audsley’s optimal priority assignment (OPA) the schedulability decision can be

obtained in a more efficient manner. This is due to the optimality of the OPA algorithm. More

precisely, when the OPA algorithm is employed, response time is utilized in the process of as-

signing priorities. If the OPA algorithm cannot produce a priority assignment for a task set with

given response-time analysis, task set is not feasible with regard to that analysis. Note that for

such an usage of a response-time analysis in the OPA algorithm, a response-time analysis has

to satisfy requirements of OPA compatibility [38]. In the context of mixed-criticality systems,

examples of OPA compatible schedulability tests are AMC-max, AMC-rtb, SMC-NO, SMC,

and hence they can be used with the OPA algorithm. However, the exact schedulability test

devised in [37] is not OPA compatible as well as the sufficient test devised in this research.

When the schedulability test is not OPA compatible in a fixed-priority scheduled system, it

is possible to use suboptimal heuristic assignments. An example of such an assignment that is

used with the exact schedulability test and sufficient test devised in the thesis is implemented
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in the framework in class PriorityAssignmentNOPA. This is in fact the assignment algorithm

depicted in Alg. 3.

Similarly, note that the usage of priority assignment is not necessary for the dynamic priority

assignment approaches since the information about priority assignment is incorporated in the

schedulability test itself. From the implementation point of view, it is not necessary to sort

the tasks when applying feasibility tests in dynamic environment since the priority of tasks in

system is not fixed, yet it changes during the system operation. Examples of such tests are

tests based on the EDF with virtual deadlines approach, i.e., the EDF with virtual deadlines test

devised in [47] and Ekberg’s schedulability test devised in [48].

In taskgen package, implementations of task generators are placed. At the moment, a

single implementation of task generator algorithm is available, i.e., UUnifast algorithm devised

in [39] is implemented. However, the implementation in this framework has several additional

features that are useful in the task generation:

∙ Implementation enables adding a constraint on the hyperperiod of the generated task sets,

i.e., if the hyperperiod of generated task set exceeds the given maximum value, it shall be

discarded.

∙ Implementation enables adding a constraint that denotes the allowed deviation of the uti-

lization. Note that since task sets that have integer, i.e., discrete parameters, the resulting

utilization of a task set generated by the UUnifast algorithm can be different than the

target utilization due to the rounding errors.

∙ Implementation enables adding a schedulability test as a filter for the resulting task sets,

i.e., an instance of IFeasibilityTest. This is especially useful in cases when only

feasible task sets with regard to a certain feasibility test have to be observed.

∙ Finally, the implementation enables blacklisting certain task sets from the generated set

of task sets. This is useful when we want to generate two different sets of task sets.
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Table 3.1: The organization of Java packages in the framework implementation

Package Description

assignments Package contains implementations of priority assignment algorithms for
mixed-criticality systems.

evaluation Package contains utilities for testing of priority assignments, feasibility tests
and response-time analyses.

ftests Package contains implementations of feasibility tests.

interfaces Package contains definitions of interfaces for priority assignments,
feasibility tests and response-time analyses.

models Package contains classes which represent mixed-criticality job, task, task
set, system state and task state.

rtimes Package contains implementation of response-time analyses.

taskgen Package contains implementation of task set generators.

Table 3.2: Classes in the assignments package

Class Description

PriorityAssignmentDynamic Class contains implementation of off-line assignment for
dynamic priority system (does not change the order of
tasks off-line).

PriorityAssignmentCrMPO Class contains implementation of criticality-monotonic
priority ordering (CrMPO) for dual-criticality systems.

PriorityAssignmentDM Class contains implementation of deadline-monotonic
priority assignment (DMPA).

PriorityAssignmentOPA Class contains implementation of Audsley’s optimal
priority assignment (OPA) algorithm devised in [32].

PriorityAssignmentNOPA Class contains implementation of non-optimal priority
assignment (NOPA) for dual-criticality systems devised in
[37].

Table 3.3: Classes in the evaluation package

Class Description

TestItem Class represents a single test item. In this context, test item is a combination of
priority assignment and feasibility test.

TestUtils Class contains implementation of methods which run testing with custom
parameters.
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Table 3.4: Classes in the ftests package

Class Description

FeasibilityTestEDFWithVD Class contains implementation of the earliest
deadline first with virtual deadline feasibility test
from [47].

FeasibilityTestEkbergGreedy Class contains implementation of the Ekberg’s
schedulability test for EDF-scheduled
dual-criticality systems as proposed in [48].

FeasibilityTestUBHL Class contains implementation of the necessary
schedulability test based on separate calculation of
LO and HI response times (UBH&L) [47].

FeasibilityTestEfficientExact Class contains implementation of the exact
schedulability test for fixed-priority preemptive
dual-criticality systems as proposed in [37] with
corrections from [25] and this research.

FeasibilityTestEfficientExactWrong Class contains implementation of the exact
schedulability test for fixed-priority preemptive
dual-criticality systems as proposed in [37] with
possible errors.

FeasibilityTestResponseTime Class contains implementation of the generic
response-time schedulability test for fixed-priority
preemptive dual-criticality systems, which
compares the response time of each task to its
respective deadline.

Table 3.5: Classes and interfaces in the interfaces package

Class/Interface Description

PriorityAssignment This is an abstract class that specifies priority assignment interface
and additional methods.

IFeasibilityTest Interface specifies methods that each feasibility test has to
implement, i.e., a method that checks feasibility.

IResponseTime Interface specifies methods that each feasibility test has to
implement, i.e., a method that calculates response time of a task.
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Table 3.6: Classes in the rtimes package

Class Description

ResponseTimeSMCno Class contains implementation of SMC-NO response time
for fixed-priority preemptive dual-criticality systems as
proposed in [29].

ResponseTimeSMC Class contains implementation of SMC response time for
fixed-priority preemptive dual-criticality systems as
proposed in [30].

ResponseTimeAMCmax Class contains implementation of AMC-rtb response time
for fixed-priority preemptive dual-criticality systems as
proposed in [30].

ResponseTimeAMCrtb Class contains implementation of AMC-max response
time for fixed-priority preemptive dual-criticality systems
as proposed in [30].

ResponseTimeEfficientExact Class contains implementation of the exact response time
for fixed-priority preemptive dual-criticality systems as
proposed in [37] with corrections from [25] and this
research.

ResponseTimeClassic Class contains implementation of response time for non
mixed-criticality systems (see section 2.1.4).

ResponseTimePeriodic Class contains implementation of the exact response time
fixed-priority preemptive dual-criticality systems based on
the exhaustive system state exploration, i.e., simulation.

ResponseTimeAMCtight Class contains implementation of the response time
analysis for fixed-priority preemptive dual-criticality
systems devised in this research (see section 3.6).

Table 3.7: Classes in the taskgen package

Class Description

UUniFastDiscard Class contains implementation of UUnifast algorithm for task set
generation from [39].
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3.9.3 Example of implementation of response-time analysis

In this subsection, an example of implementation of response-time analysis is discussed. For

this particular example, AMC-rtb analysis was chosen since it is significantly simpler than the

AMC-max analysis and the exact test, but it still includes multiple system states, i.e., LO and

HI, which are specific to the adaptive mixed-criticality scheme. As it was discussed earlier in the

chapter, to determine schedulability using the AMC-rtb test, the following response times have

to be calculated: response time in low-criticality mode Ri(LO), response time in high-criticality

mode Ri(HI), and response time in case of a criticality switch from low to high-criticality mode

Ri(MC). The latter response times can be calculated using the recurrence relations given with

(3.20), (3.21), (3.22).

The code shown in Listing 3.1 shows the implementation of the calculation of the Ri(MC)

for HI tasks, which is calculated in a loop iteratively. It can be seen that in for loop in line 7,

it is assumed that the tasks with the index lower than task τi have higher priority, i.e., priority

assignment implementations move tasks with higher priority into position with lower index. In

line 13, it can be seen that two separate cases are handled, which correspond to two different

sums in equation (3.22). Note that this code is somewhat rewritten here for conciseness and

clarity in comparison with code in [45].

When adding a new response time analysis to the framework, an user has to provide a func-

tion similar to the code provided in Listing 3.1. Afterwards, when an instance of Feasibili-

tyTestResponseTime is being instantiated, the user provides its implementation of response

time to the constructor of the feasibility test class, which will ensure a proper comparison of

calculated response times with the deadlines of tasks. Note that if boolean schedulability test

is needed, user can directly implement a class that extends IFeasibilityTest. In addition,

note that schedulability test can have both response-time and boolean variant. Moreover, in the

current version of the framework, exact schedulability test devised in [37] has response-time

based test and boolean test as shown in Table 3.6 and Table 3.4, i.e., classes ResponseTimeEf-

ficientExact and FeasibilityTimeEfficientExact are implemented.

3.9.4 Customizing priority assignments

Similarly, as in case of feasibility tests new priority assignments can be added. Here, a brief

illustration of implementation of the simplest priority assignment is provided, i.e., deadline-

monotonic priority assignment (DMPA). Listing 3.2 shows the partial code of class that imple-

ments the DMPA assignment. Simply, by sorting a new list of tasks using the comparatorDM,

which sorts tasks according to deadlines, in line 8 new priority assignment is obtained. By

modifying assign method, new priority assignment algorithms can be easily added.
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1 ...

2 // R_lo and R_hi calculated using

3 // with regard to C(LO) and C(HI)

4 while (R_mc != t && R_mc <= D) {

5 R_mc = t;

6 t = Ci_HI;

7 for (int j = 0; j < i; j++) {

8 MCTask tj = tasks.get(j);

9 int Cj_LO = tj.getWCET (0);

10 int Cj_HI = tj.getWCET (1);

11 int Tj = tj.getT();

12 int Lj = tj.getL();

13 if (Lj < L) {

14 t = t + Cj_LO *

15 Math.ceil (1.0 * R_lo / Tj);

16 } else {

17 t = t + Cj_HI *

18 Math.ceil (1.0 * R_mc / Tj);

19 }

20 }

21 }

22 ...

Listing 3.1: The implementation of AMC-rtb response time in the framework class.
ResponseTimeAMCrtb.

1 public class PriorityAssignmentDM

2 implements IPriorityAssignment {

3
4 @Override

5 public MCTaskSet assign(MCTaskSet set) {

6 List <MCTask > tasks = new

7 ArrayList <MCTask >(set.getTasks ());

8 tasks.sort(comparatorDM);

9 return new MCTaskSet(tasksSorted);

10 }

11 ...

12 }

Listing 3.2: The implementation of DMPA in the framework class PriorityAssignmentDM.
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3.10 Usage of adaptive mixed-criticality schedulability tests

in the industrial context

Nowadays, mixed-criticality in industrial context is often linked with the usage of hypervisors

in various transportation domains such as automotive, railway or even aerospace. The result of

plethora of different projects is a large number of different hypervisors and hypervisor modi-

fications [49, 50, 51, 52, 53], which in theory enable application of adaptive mixed-criticality

scheduling scheme to schedule the virtual machines of different criticality. The devised adaptive

mixed-criticality schedulability test and the framework for schedulability testing are applicable

in any such scenario under the following conditions:

∙ The system designer has to specify timing parameters from system model section 3.4 for

the virtual machines.

∙ Scheduling can be described with the adaptive mixed-criticality scheduling model.

Applying the schedulability test is fairly trivial when the conditions above are satisfied. The

system designer has to apply schedulability test in a similar manner as in Example 9.

3.11 Chapter summary

In this chapter, existing response-time analyses and schedulability tests are discussed and pre-

sented. It is shown how the sufficient response-time analysis of adaptive mixed-criticality sys-

tems can be improved. Improvements are based on more precise analysis of low and high-

criticality interferences in case of a criticality switch for each high-criticality task. If we in-

crease the complexity of the algorithm by allowing the choice of task that causes a criticality

switch, we can reduce the worst-case response time. The systematic approach and comparison

with different existing schedulability tests has enabled the detection and correction of incon-

sistencies in the existing exact analysis. Moreover, the devised framework enables consistent

testing of the existing schedulability test as well as the devised test. In the end, conditions for

usage of developed methods and techniques in the industrial context are presented.
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Chapter 4

Method for harmonic period assignment in
safety-critical part of real-time
mixed-criticality systems

4.1 Context of the research

In the previous chapter, the focus was on the adaptive mixed-criticality scheduling scheme

which effectively accomplishes the goal of increasing the schedulability of systems with tasks

or functions with different criticality. Moreover, as discussed in the introduction to this the-

sis, such a technique is acceptable in systems in which the spatial or temporal independence

between functions of different criticality can be reduced. However, in a large number safety-

critical systems trade-off between maintaining the independence of safety-critical functions and

achieving higher schedulability is rarely available. Furthermore, in most cases independence is

strictly required by safety standards. In such cases, safety-critical functions have to be com-

pletely temporally isolated from non-critical functions. As it can be observed in the subsec-

tion 3.5.1, naive scheduling approaches, i.e., partitioned criticality approaches, which maintain

temporal isolation between tasks, preform very poorly in terms of schedulability, especially re-

garding the low-criticality tasks. It is worth noting that in a mixed-criticality system in which

functions with different criticality are partitioned, the amount of time available for execution of

non-critical tasks corresponds to time in which safety-critical tasks are not executing. A method

which would enable the design of safety-critical part of the system in a manner that it can guar-

antee a certain amount of time for execution of non-critical tasks would be applicable in this

situation.

In this chapter, an optimization method is proposed, which can be used for period assign-

ment of safety-critical tasks in such a manner that the final resulting utilization of the safety-

critical tasks can be precisely regulated. By regulating the utilization of safety-critical tasks
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in such a system, we can effectively control the amount of time that can be used for execu-

tion of non-critical functions in the system. Moreover, this method addresses several different

challenges that exist in the design of safety-critical systems by means of period assignment.

In this chapter, along with providing a method for regulation of utilization of safety-critical

tasks, the issue of assigning a fixed number of harmonic periods from period ranges to maximize

utilization in real-time systems is studied. In the existing period assignment approaches, the

number of different harmonic period values in the solution was not addressed. In this thesis

it is demonstrated that in real-time systems in which the number of available task periods is

restricted, such a constraint is crucial for efficient system design. In the chapter, this problem is

formally defined in the context of existing harmonic period assignment research. It is shown that

this problem is at least weakly NP-hard and an optimal algorithm and suboptimal heuristics are

devised. Based on an extensive evaluation on synthetically generated task sets, it is concluded

that the devised approach is efficient and applicable in a variety of real-world scenarios.

Note that the part of results presented in this chapter has been published in [54]. Here, as

an extension, a more general definition of the harmonic period assignment with distinct number

of different period values and arbitrary utilization is introduced. As it is mentioned before, the

ability of the optimization procedure to tune the utilization to an arbitrary value is necessary

prerequisite to control amount of time which can be used by high-criticality, i.e., safety-critical,

and low-criticality tasks in the system.

4.2 Introduction to period optimization in safety-critical sys-

tems

As it was discussed earlier, in traditional industrial control systems, timeliness, stability and

predictability are very important properties. Moreover, in safety-critical control systems, these

properties are condicio sine qua non as they are required according to generic safety standards

such as IEC 61508 and domain-specific safety standards, e.g., EN 50128 in the railway domain

and ISO 26262 in the automotive domain. Efficiency and accuracy of the control algorithm

depends to a large extent on the timeliness of underlying embedded computing platforms. Con-

sequently, strict requirements are imposed on the design of operating systems as the controlling

procedures have to be prompt and correct. In this context, selecting adequate sample times, i.e.,

task periods, is crucial for an appropriate behavior of a system.

Additionally, in systems with very strict safety requirements, system designers will often

degrade performance of the system drastically in favor of safety characteristics. In this chapter,

mixed-criticality systems with partitioned functionalities are observed. As it can be seen in the

previous chapter, partitioning tasks with different criticality levels, degrades the schedulability.

Therefore, in this chapter, the techniques are provided that can mitigate this effect by optimizing
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task periods and utilization in the system. Using the devised period assignment, i.e., period opti-

mization, techniques safety-critical utilization can be optimized. This enables system designers

to ensure that enough processor time will remain for execution of non-critical tasks.

4.2.1 Related work

Period assignment is a well-studied topic in real-time system design since the choice of periods

in sporadic or periodic task sets has a direct effect on system schedulability, efficiency and

utilization. Additionally, harmonic period assignment is of special interest as it is well-known

that any harmonic task set with processor utilization less or equal to one is schedulable by a

rate-monotonic scheduler [55]. Research in this domain can be divided into three groups with

respect to the particular focus of the research.

The first research area includes papers focused on the schedulability of real-time systems

with arbitrary period selection, i.e., periods of task sets are not constrained to harmonic values.

Early research in this context was done by Seto et al. in [56]. The authors devised algorithms

for discovering feasible integer periods in fixed-priority systems with a fixed rate-monotonic

and an arbitrary priority assignment. Moreover, in their approach periods are upper-bounded

by the slowest task rate required by an application. According to authors in [57], the approach

taken in [56] seems to be inefficient due to the combinatorial explosion for larger task sets.

On the other hand, in [57], authors precisely formulate the feasibility region in the rate space

and devise optimization algorithm for any convex objective. In their approach, periods are not

constrained to be integers, while fixed-priority scheduling is assumed. However, there are no

additional constraints regarding the period range for tasks in systems.

The second research area includes papers that exploit the harmonic relations between the pe-

riods of tasks in systems for determining schedulability. For instance, Han and Tyan in [58] de-

vise a sufficient schedulability bound which is better than the one proposed by Liu and Layland

[2]. The approach is based on two previously introduced algorithms Sr and DCT investigated

in the context of distance-constrained real-time systems [59]. Similarly, an exact polynomial-

time schedulability test for harmonic task sets with any fixed-priority assignment was devised

in [60]. It is worth noting that the problem of determining schedulability of sporadic task sets

with arbitrary periods is NP-hard [61].

The third research area includes papers which are focused on harmonic period assignment

with period ranges. In recent research [62], authors determined that two classical harmonic

period optimization problems labeled UHPA (utilization-maximizing harmonic period assign-

ment) and CHPA (cost-minimizing harmonic period assignment) are in the NP-hard complexity

class. Additionally, they devised approximation algorithms for the relaxed version of the CHPA

problem, i.e., the constraints on period ranges are removed. These problems are formally de-

fined later in the chapter since this research is focused on a variant of the UHPA problem with
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additional constraints on period values. In [63], the authors introduce the notion of harmonic

projection and devise an exponential time (in size of a task set) algorithm for determining har-

monic periods for tasks with period ranges. Additionally, they devise period assignment algo-

rithms such that the resulting utilization of a task set is equal to the lower or the upper bound

utilization value. They expand on their work in [64]. The similarities and the differences with

the approach devised as a part of this research are highlighted later in this chapter. Period se-

lection and assignment were investigated in the context of minimizing the hyperperiod of task

set in systems in which periods are closely harmonically related [65]. Similarly, in [66], the au-

thors investigate the minimization of the hyperperiod by non-harmonic period assignment from

period ranges.

The common motivation in the period assignment research is the real-time system and op-

timal controller co-design, in which the problem of selecting adequate sample times is directly

linked to the problem of determining optimal periods [67]. In such approaches, the LQG (linear-

quadratic-Gaussian) plant model is used [68, 69]. Moreover, the period assignment of harmonic

period values is of great importance in many applications such as radar dwell tasks [70], mobile

robotics [71], integrated modular avionics [72], and automotive applications [73].

4.2.2 Motivation and new challenges

As an additional motivation and rationale for imposing additional constraints on the classical

harmonic period assignment problem, i.e., a variant of the UHPA, safety-critical software from

real-world industrial scenarios is observed since it serves as the primary motivation for this

research. Safety-critical embedded software for control applications typically has a modular

composition in which each module, task or runnable executes with a predefined period which is

determined off-line as a part of the application design. For instance, ANSYS SCADE Suite [74],

HIMA SILworX [75] and KONČAR Grap Designer [76] provide automatic code generation

based on a set of application modules. The application designer determines a range of periods

for every module, i.e., task, in the application. In order to ensure function correctness, tasks have

to be executed with periods belonging to their specified range. Moreover, it is in the interest

of application and system designers that every task in the system executes with the highest

possible frequency, i.e, the lowest possible period as this will ensure a higher quality of service,

and consequently increase utilization. Thus, utilization is maximized. The number of tasks in

an application can grow and be arbitrarily high. However, in many systems, e.g., the KONČAR

Grap [76] operating system, or engine management systems [73] in automotive applications,

the number of available periods, i.e., rates, is fixed or bounded and cannot be increased due to

the specific architecture of the hardware and the operating system. For instance, the maximum

number of different period values may be fixed to 4, or restricted to the interval from 4 to 8. It is

worth noting that previous research regarding harmonic period assignment does not address the
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number of distinct period values in the solution of the period assignment problem. The devised

approach can be used by system and application designers to determine the optimal choice of

task periods, even when the number of available periods in the system is limited.

4.2.3 Contributions and organization of the chapter

There are five main contributions in this chapter. Novel utilization-maximizing harmonic period

assignment problem with a constrained number of distinct period values referred to as UDHPA

is defined(i). It shown that the already studied UHPA problem is Turing reducible to the UDHPA

problem. Additionally, using the complexity results for the UHPA problem from [62], it is de-

termined that the UDHPA problem is at least weakly NP-hard by reduction from the well-known

partition sum problem (ii). An optimal and heuristic algorithms for the UDHPA problem are

devised accompanied with the appropriate time-complexity analysis, and the effectiveness of

the approach is demonstrated with extensive evaluation on a large number of synthetically gen-

erated instances, which correspond to real-world motivational scenarios (iii). Devised optimal

algorithm and heuristics are employed to solve instances of the UHPA problem and they are

compare them to the existing approaches (iv). Moreover, a numerical example that illustrates

a real-world period assignment problem is provided (v). These results, as presented in [54],

do not address the problem when system has to be optimized to arbitrary utilization value that

is smaller than the schedulability bound for rate-monotonic harmonic task system, i.e., U = 1.

Therefore, additional contributions of this thesis: are formulation of the AUDHPA problem,

i.e, arbitrary utilization-maximizing harmonic period assignment with a constrained number of

distinct period values (vi), and its complexity analysis (vii).

The rest of the chapter is organized as follows. In section 4.3, the system model is intro-

duced. In section 4.5, existing harmonic period assignment problems are reviewed, and then

the UDHPA problem, and the more general AUDHPA problem are defined. In section 4.6,

the complexity of the UDHPA problem is analyzed. Moreover, the complexity analysis of the

AUDHPA problem is provided. In section 4.8, an optimal algorithm for the UDHPA problem,

which is trivially modified to solve the AUDHPA problem, is devised. In section 4.9, the devised

approaches are evaluated. Finally, in section 4.10, the concluding remarks are stated.

4.3 System model

In this chapter, system S is represented as a set T of n periodic tasks with no initial offset,

i.e., a synchronous task set [77]. A task model that is used common for the period assignment

with period ranges proposed in [62, 63], and [64]. Therefore, task τi is represented as a tuple

τi = {Ci, Ii}, where Ci is the worst-case execution time (WCET) of τi, and Ii is the period range
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Figure 4.1: Example of part (module) of control software.

of allowed period values for τi. Period range Ii = [pmin
i , pmax

i ] is determined by the minimal pmin
i

and the maximal pmax
i allowed period value. Actual period value of task τi is denoted as Ti. This

is the value which is assigned to a task by solving a period assignment problem. Additionally,

Ti is the deadline of τi, i.e., implicit-deadline task sets are considered. It is assumed that the

WCET is a real number, i.e., Ci ∈ R, and that task periods are integers, i.e., Ti, pmin
i , pmax

i ∈ N.

Moreover, periods are in harmonic relation, i.e., Ti
Tj
∈ N∨ Tj

Ti
∈ N, i, j ∈ [1,n]. Definition 18

determines the correctness of period assignment.

Definition 18. Correct period assignment. Period assignment for task τi is correct iff period

value Ti assigned to task τi is such that pmin
i ≤ Ti ≤ pmax

i .

It is worth noting that the correctness of period assignment does not guarantee the feasibility

of a task set. The feasibility of a harmonic task set is often expressed using the utilization of a

task set, i.e., U = ∑Ui = ∑
Ci
Ti
≤ 1.

4.4 Mapping of the system model to the motivational appli-

cations

To further justify the imposing of additional constraints on the classical harmonic period as-

signment problem, i.e., variant of UHPA, a safety-critical software example from real-world

industrial scenario, which primarily motivated this research, is introduced. Safety-critical em-

bedded software for control applications typically has modular composition where each module

is represented as a functional block diagram (FBD). Function block diagram (FBD) is a graphi-

cal programming language described in the third part of IEC 61131 standard [78]. FBD is used

as a technique for design of safety-critical applications regardless the platform architecture.

As mentioned before, industrial tools such as ANSYS SCADE Suite [74], HIMA SILworX

[75] and KONČAR Grap Designer [76] provide automatic code generation, which is based on

the FBD diagrams. Application consists of many modules which are executed in recurring or
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cycling manner. Every module consists of smaller building blocks which correspond to the ele-

ments of FBD programming language. To better illustrate the notion of an application module,

an example of module is depicted in Fig. 4.1. Output signal of a module EXT I/O, depends on

several input variables. Elements of a module execute sequentially following predefined order

of execution, e.g., COMP → TON → NOT → OR → AND. Application specification deter-

mines range of periods for every module in the application. For a function to be correct, module

has to be executed with period belonging to the specified range. The number of modules in an

application can grow and be arbitrarily high, however in many systems, e.g., KONČAR Grap

[76], the maximum number of available periodic tasks is fixed and cannot be increased, due

to the specific architecture of hardware and operating system. Therefore, application modules

have to be scheduled using available periodic tasks. The algorithms devised in this chapter can

be directly applied in such scenario as a tool for generating assignment of modules to tasks.

Similar concept to module is runnable which is a basic workload unit in organizing industrial

and automotive software. For instance, Amalathea framework [79] uses runnables in modeling

in industrial and automotive environments. Execution of modules and runnables follows read-

compute-write policy [80] similar as blocks in Simulink [81]. The proposed approach can be

applied to those modeling approaches as well.

Note that in the model presented in the previous subsection, modules or runnables corre-

spond to tasks and the notion of the periodic task is directly linked with period which has to be

discovered. Here, an alternative model is provided, which might be more straightforward to the

system designer of industrial application. This model is not used further in the thesis and it is

introduced here primarily for clarity. In order to better fit the real-world scenario, i.e., modular

application structure, the notion of module as the basic workload unit of a task is introduced.

Therefore, tasks are composed of smaller runnable units which are often referred to as modules

or runnables. A module (M j) is described with a set M j = {c j, pmin
j , pmax

j } where c j ∈ R+ is

the WCET of a module and pmin
j ∈ N and pmax

j ∈ N are its minimum and maximum period,

respectively. With introduction of modules as the building blocks of a task, system model is

changed to include module set M . Therefore, system S can be represented as a tuple:

S = (M ,T ) (4.1)

In order to be executed, a module is assigned to exactly one task. Furthermore, more than one

module can be assigned to a task. The following definitions explain task and module hierarchy.

Definition 19. Correct module assignment. Module M j is assigned correctly iff it is assigned

to task τi with period Ti such that pmin
j ≤ Ti ≤ pmax

j .

As a task is composed of modules, its WCET depends on the sum of the WCETs of modules
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assigned to it:

Ci = ∑
j∈Mi

c j (4.2)

where Mi is subset of M which contains modules assigned to task τi. Modules assigned to task

execute sequentially when a job of a task is executing. This is depicted with pseudocode Alg. 5.

Response time of a task in fixed-priority preemptive systems is given with well known equation

[2]:

Ri =Ci + ∑
j∈hp(τi)

⌈
Ri

Tj

⌉
·C j (4.3)

where hp(τi) is set of tasks with priority higher than τi.

Definition 20. Task feasibility. Task is feasible at some priority level iff it meets its deadline,

i.e., Ri ≤ Di.

Based on the definitions of task feasibility and correct module assignment the notion of

system feasibility can be derived.

Definition 21. System feasibility. System S is feasible iff every module in M is assigned cor-

rectly and every task from T is feasible.

Algorithm 5 Task concept
1: function TASK(Mi)
2: for M j in Mi do
3: execute M j
4: end for
5: end function

Moreover, task utilization of a task is defined as ratio Ui =
Ci
Ti

, i.e., total system utilization is

∑
n
i=1Ui. From the modular system perspective total utilization can be expressed as:

U =
n

∑
i=1

∑
Mi∈Mi

c j

Ti
(4.4)

Essentially, every module contributes to the utilization depending on the assigned period. Fur-

thermore, since the observed systems can only have harmonic periods, feasibility can be ex-

pressed as U ≤ 1 as it was mentioned before.

4.5 Problem formulation

4.5.1 Classical harmonic period assignment problems

Existing harmonic period assignment problems which are analyzed and discussed in the litera-

ture [62, 63, 64] are discussed in this subsection. Inputs of these problems are tasks described
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with worst-case execution times Ci and period ranges Ii = [pmin
i , pmax

i ]. The outputs are pe-

riod values Ti assigned to each task. The utilization-maximizing harmonic period assignment

(UHPA) problem is formulated as follows:

maximize U =
n

∑
i=1

Ui

subject to

Ti ∈ Ii, i ∈ [1,n]
Ti

Tj
∈ N or

Tj

Ti
∈ N, i, j ∈ [1,n]

U ≤ 1

As it can be seen, actual periods Ti are allowed to be in range Ii and have to be in harmonic

relation. It is worth noting that in the related literature (e.g., [62]) period values Ti are not

restricted to the integer values. However, the period ratios of the two consecutive integers Ti
Tj

are required to be integers. The second common problem formulation in the literature is the

cost-minimizing harmonic period assignment (CHPA) problem which can be formulated as:

minimize
n

∑
i=1

wiTi

subject to

Ti ∈ Ii, i ∈ [1,n]
Ti

Tj
∈ N or

Tj

Ti
∈ N, i, j ∈ [1,n]

U ≤ 1

The CHPA problem is common in control co-design applications [68] where the goal function is

a linear function of task periods. In the goal function, the weight wi determines the contribution

of each period to the total cost.

4.5.2 Formulation of harmonic assignment problem with a constrained
number of distinct period values

In this chapter, the focus is on finding the solution to the utilization-maximizing harmonic

period assignment problem with a constrained number of different period values. In the previous

problems, the number of different period values in the solution is not constrained. For instance,

an optimal solution can have any number of different period values, from only one up to n. As

argued in the motivation for the research, the number of different period values can be smaller
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than the number of tasks in the system. To address this, the problem in which the number

of different period values is constrained, i.e., fixed has to be formulated. Such an approach

enables a more flexible system design as it allows the system designer to regulate the number

of distinct period values in the system. This is elaborated further using the numerical example

in section 4.9.4. The problem can be formulated in several steps. Firstly, it is necessary to

introduce the vector ~p which contains m different period values, where m ≤ n. Secondly, the

period assignment matrix X, which contains mapping of period value p j to period value Ti of

task τi, has to be introduced. Value xi j of the binary matrix X is determined as follows:

xi j =

1,period value p j is assigned to task τi, i.e., Ti← p j

0,otherwise
(4.5)

In case m = n, one period value p j maps to only one period value Ti, i.e., this is one to one

mapping. In case m ≤ n, period value p j can be mapped to many tasks, i.e., generally, this

is one to many mapping. However, period value p j has to be mapped to at least one period

value Ti. If p j is not mapped to at least one task, then the number of different period values

in the resulting period assignment would not be equal to m, and this is the requirement of the

problem. To express this formally, the constraints given with equations (4.6) and (4.7) are

introduced. First, it is necessary to restrict the assignment of only one period value p j to period

value Ti of task τi:
m

∑
j=1

xi j = 1, i ∈ [1,n] (4.6)

The constraint (4.6) ensures that the i-th row of matrix X can contain only one non-zero element,

i.e., only one p j is mapped to Ti. Secondly, every period value p j has to be assigned to at least

one task:
n

∑
i=1

xi j ≥ 1, j ∈ [1,m] (4.7)

The constraint (4.7) ensures that the j-th column of matrix X has to contain at least one non-zero

element, i.e., every period value p j has to be assigned to a task. The latter constraints do not

ensure the correctness of a period assignment. For instance, a period value which is too high

or too low can be assigned to a task. To ensure that a period assignment is correct (Definition

18), it is necessary to restrict the assignment to period values from interval [pmin
i , pmax

i ]. The

correctness criteria can be expressed as:

xi j =⇒ pmin
i ≤ p j ≤ pmax

i (4.8)
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The latter logical expression can be translated to an arithmetic expression using the translation

for logical implication to a linear constraint:

X =⇒ Y → x≤ y (4.9)

At this point, the binary constraint matrix A with n ·m elements ai j can be introduced. Value ai j

is determined as follows:

ai j =

1, pmin
i ≤ p j ≤ pmax

i

0,otherwise
(4.10)

To ensure the correctness of a period assignment, xi j =⇒ ai j has to hold. Using the arithmetic

counterpart for implication given with (4.9), the correctness criteria can be expressed as:

xi j ≤ ai j, ∀i ∈ [1,n],∀ j ∈ [1,m] (4.11)

With the latter constraints in place, the problem can be formally expressed as:

maximize U =
m

∑
j=1

n

∑
i=1

Ci
xi j

p j

subject to

xi j ≤ ai j, i ∈ [1,n], j ∈ [1,m]
m

∑
j=1

xi j = 1, i ∈ [1,n]

n

∑
i=1

xi j ≥ 1, j ∈ [1,m]

p j = k j p j−1, k j ∈ N+ ∖{1}, j ∈ [2,m]

U ≤ 1

where k j is the integer ratio of two consecutive period values p j and p j−1. This problem is re-

ferred to as the utilization-maximizing harmonic period assignment with a constrained number

of different period values (UDHPA). The outputs of the UDHPA problem are period vector

~p and period assignment matrix X. These two variables determine period Ti for each task in

system. Similarly as in the classical problems, the inputs of the problem are tasks represented

with worst-case execution times Ci and period ranges Ii. The additional input in the UDHPA

problem is the number of distinct period values in the solution m. In the more general version

of the problem the utilization constraint, i.e., U ≤ 1 is generalized. More precisely, U ≤Ua,

where Ua represents the maximal allowed utilization of the system. This does not inflict on

schedulability since Ua has to be in interval [0,1].
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4.6 Problem analysis: Turing reducibility and complexity

4.6.1 Turing reduction from UHPA to UDHPA

In order to show that the UHPA problem is Turing reducible to the UDHPA problem, it has

to be shown that an oracle for the UDHPA problem can be used to solve the UHPA problem.

Formally, this is stated with the following lemma.

Lemma 1. The UHPA problem can be solved by solving the UDHPA problem n times.

Proof. When the UHPA problem is considered, an optimal solution has an arbitrary number

of distinct period values which can be lower than the number of tasks in the system. In the

UDHPA problem, however, the number of distinct period values is fixed. Therefore, to solve

the UHPA problem using an algorithm for the UDHPA problem, one has to solve the UDHPA

problem for every number m of distinct period values from interval [1,n]. To better illustrate

this, pseudocode is provided in Alg. 6.

Algorithm 6 Turing reduction from UHPA to UDHPA
Input: S = T
Output: Umax . maximal utilization

1: function SOLVEUHPA(T )
2: Umax← 0
3: for m in range 1 to n do
4: U ← SOLVEUDHPA(T ,m)
5: if U > Umax then
6: Umax←U
7: end if
8: end for
9: return Umax

10: end function

Theorem 3. The UHPA problem is Turing reducible to the UDHPA problem.

Proof. In Lemma 1, it can be seen that the UHPA problem is solved by invoking the oracle for

the UDHPA problem in polynomial time, which proves the theorem.

4.6.2 Complexity analysis

To derive the complexity of the UDHPA problem, the UHPA complexity results from [62] can

be used. To show that the UHPA problem is at least weakly NP-hard, the authors provided

many-one reduction from the partition sum problem (PART) to the UHPA problem. In other

words, they provided a polynomial-time algorithm for reducing any given instance of the PART

problem to an instance of the UHPA problem. Their proof can be directly applied to the UDHPA
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problem. For completeness and clarity, important parts of the proof are produced in the con-

tinuation. For the complete proof, refer to section 3 in [62]. Firstly, the number partitioning

problem (PART) has to be defined.

Definition 22. The PART problem. Let A = {a1, ...,an} be a set of n items with an associated

size function s : A→ N which assigns a positive integer to each item. The problem is to deter-

mine whether A can be partitioned into two sets, A1 and A2, such that the total size of items in

A1 equals that of A2. More formally, let S, S1, and S2 denote the sum of items for A, A1, and A2,

respectively. That is,

S = ∑
ai∈A

s(ai) (4.12)

S1 = ∑
ai∈A1

s(ai) (4.13)

S2 = ∑
ai∈A2

s(ai) (4.14)

Then, the problem is to decide whether A can be partitioned into A1 and A2 (i.e., A1∪A2 = A

and A1∩A2 = /0), such that S1 = S2. An instance of this problem is said to be a positive one if

such a partitioning exists [62].

The PART problem is known to be NP-complete, but solvable in pseudo-polynomial time

[82].

At this point, the polynomial-time method for transforming any given instance of the PART

problem to an instance of the UHPA problem is reproduced. To show that the proof is applicable

to UDHPA problem as well, it has to be shown that the transformation of any PART instance to

an instance of the UHPA is a transformation to an instance of the UDHPA problem as well.

Definition 23. PART transformation. For any instance of the PART problem, the correspond-

ing UHPA problem is specified by a set of n+2 tasks. The WCET of τi is determined as:

Ci =


4s(ai)
3S+3 ,1≤ i≤ n

2
3S+3 ,n+1≤ i≤ n+2

(4.15)

Period ranges for each τi are determined as:

Ii =


[1,2],1≤ i≤ n

[1,1], i = n+1

[2,2], i = n+2

(4.16)
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Proposition 5. An UHPA instance obtained using PART transformation is an UDHPA instance

with m = 2.

Proof. Any instance of the PART problem is transformed to an instance of UHPA problem

with period ranges such that the allowed harmonic period values are either 1 or 2. There are

always exactly two different period values in the resulting UHPA problem. Therefore, any such

instance is an UDHPA instance with two different period values, i.e., m = 2.

Lemma 2. A given instance of the PART problem is positive (i.e., the given set can be parti-

tioned) if and only if the UHPA problem instance obtained from PART transformation has a

solution in which U = 1 [62].

Proof. The latter lemma is proven in [62] and here the proof is reproduced since the proof will

be further generalized later. Let Ti denote the period of task τi assigned in the solution to the

UHPA problem. According to the specification of the problem, the periods of task τn+1, and

τn+2, have to be 1 and 2, respectively. Periods of other tasks are required to be in interval [1,2],

thus there are only two options. In this way, two sets are formed:

J1 = {i|Ti = 1,1≤ i≤ n}

J2 = {i|Ti = 2,1≤ i≤ n}
(4.17)

The total utilization that is achieved with periods defined above can be expressed as:

U =
n+2

∑
i=1

Ci

Ti
= ∑

i∈J1

Ci + ∑
i∈J2

Ci

2
+Cn+1 +

Cn+2

2
(4.18)

Similarly, when Ci values are substituted as defined in (4.15), the following equations are ob-

tained:

U = ∑
i∈J1

4s(ai)

3S+3
+

1
2 ∑

i∈J2

4s(ai)

3S+3
+

2
3S+3

+
1

3S+3

=
4

3S+3

(
∑
i∈J1

s(ai)+
1
2 ∑

i∈J2

s(a1)

)
+

3
3S+3

=
4

3S+3

(
1
2 ∑

i∈J1

s(ai)+
1
2 ∑

i∈J1

s(ai)+
1
2 ∑

i∈J2

s(a1)

)
+

3
3S+3

=
4

3S+3

(
1
2 ∑

i∈J1

s(ai)+
S
2

)
+

3
3S+3

(4.19)

Now, to show that a PART instance is positive if and only if U = 1:

1 =
4

3S+3

(
1
2 ∑

i∈J1

s(ai)+
S
2

)
+

3
3S+3 (4.20)
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which can be reduced to:
3S
4

= ∑
i∈J1

s(ai)

2
+

S
2

(4.21)

and finally:
S
2
= ∑

i∈J1

s(ai) (4.22)

The final expression shows that when the utilization is equal to one, the corresponding PART

instance is positive since there are indeed two subsets of input set A with sum that equals S
2 .

It is worth noting that Lemma 2 applies to the UDHPA problem as well since it is known

from Theorem 3. that every instance of the UHPA problem obtained using PART transforma-
tion can be solved with an oracle for the UDHPA problem with m = 2, i.e., there is one to one

mapping between instances of the UHPA and UDHPA problem with fixed m = 2.

Theorem 4. The UDHPA problem is at least weakly NP-hard.

Proof. Using the PART transformation and Lemma 2 any PART instance can be reduced to a

corresponding UHPA instance. Additionally, using Proposition 5 and Theorem 3 it can be seen

that this transformation is valid for the UDHPA problem as well. Therefore, any algorithm used

for solving the UDHPA problem can be used for solving any instance of the PART problem

after the PART transformation. Therefore, the UDHPA problem is at least hard as the PART

problem. Moreover, the UDHPA problem is at least weakly NP-hard.

In the remainder of the section, it is shown that a similar proof procedure can be applied

for proving that the AUDHPA problem, i.e., the problem of assigning distinct harmonic periods

with an arbitrary utilization, is at least NP-hard as well. Let us denote the maximal utilization

with Ua. Then the transformation to the instance of the AUDHPA problem can be done with the

following procedure.

Definition 24. PART2 transformation. For any instance of the PART problem, the correspond-

ing AUDHPA problem can be specified with task set with n+2 tasks with m = 2 distinct period

values. The WCET is determined as:

Ci =


4Uas(ai)

3S+3 ,1≤ i≤ n
2Ua

3S+3 ,n+1≤ i≤ n+2
(4.23)

Period ranges for each τi are determined with (4.16).

In comparison with PART transformation, PART2 transformation multiplies the WCET

values with factor Ua.
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Lemma 3. A given instance of the PART problem is positive (i.e., the given set can be parti-

tioned) if and only if the AUDHPA problem instance obtained from PART transformation has

a solution in which U =Ua.

Proof. Similarly as before, Let Ti denote the period of task τi assigned in the solution to the

UHPA problem. According to the specification of the problem, the periods of task τn+1, and

τn+2, have to be 1 and 2, respectively. Periods of other tasks are required to be in interval [1,2],

thus there are only two options. In this way, two sets are formed:

J1 = {i|Ti = 1,1≤ i≤ n}

J2 = {i|Ti = 2,1≤ i≤ n}
(4.24)

The total utilization that is achieved with periods defined above can be expressed as:

U =
n+2

∑
i=1

Ci

Ti
= ∑

i∈J1

Ci + ∑
i∈J2

Ci

2
+Cn+1 +

Cn+2

2
(4.25)

Similarly, when Ci values are substituted as defined in (4.23), the following equations are ob-

tained:

U = ∑
i∈J1

4Uas(ai)

3S+3
+

1
2 ∑

i∈J2

4Uas(ai)

3S+3
+

2Ua

3S+3
+

Ua

3S+3

=
4Ua

3S+3

(
∑
i∈J1

s(ai)+
1
2 ∑

i∈J2

s(a1)

)
+

3Ua

3S+3

=
4Ua

3S+3

(
1
2 ∑

i∈J1

s(ai)+
1
2 ∑

i∈J1

s(ai)+
1
2 ∑

i∈J2

s(a1)

)
+

3Ua

3S+3

=
4Ua

3S+3

(
1
2 ∑

i∈J1

s(ai)+
S
2

)
+

3Ua

3S+3

(4.26)

Now, to show that a PART instance is positive if and only if U =Ua.

Ua =
4Ua

3S+3

(
1
2 ∑

i∈J1

s(ai)+
S
2

)
+

3Ua

3S+3 (4.27)

Note that when Ua cancels out the latter expression corresponds to equation (4.20). Similarly,

this can be reduced to:
3S
4

= ∑
i∈J1

s(ai)

2
+

S
2

(4.28)

and finally:
S
2
= ∑

i∈J1

s(ai) (4.29)

The final expression shows that when the utilization is equal to Ua, the corresponding PART
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instance is positive since there are indeed two subsets of input set A with sum that equals S
2 .

Theorem 5. The AUDHPA problem is at least weakly NP-hard.

Proof. Using the PART2 transformation and Lemma 3 any PART instance can be reduced to

a corresponding AUDHPA instance. Therefore, any algorithm used for solving the AUDHPA

problem can be used for solving any instance of the PART problem after the PART2 transfor-
mation that is computed in polynomial time. Therefore, the AUDHPA problem is at least hard

as the PART problem. More precisely, the AUDHPA problem is at least weakly NP-hard.

4.7 Existing suboptimal period assignment approaches from

period ranges

In this section, existing suboptimal approaches for the UHPA problem are discussed. These

approaches are based on the harmonic projection model [63, 64], which is discussed in the next

subsection.

4.7.1 Harmonic projection model

In [63], authors introduce the notion of the projected harmonic zone, which is useful since it

enables easier manipulation with the specified period intervals Ii for each task. In the following

definitions, the period interval Ii is specified with two values, Is
i that is the lowest value of the

interval, and Ie
i that is the highest value of the interval. Projected harmonic zone can be defined

as follows.

Definition 25. The projected harmonic zone χa
I1→I2

: [χs,χe] from interval I1 to I2, Is
1 ≤ Is

2, with

multiplier a ∈ N+, is a range of numbers in I2 that starts from χs = max{Is
2,aIs

1} and ends to

χe = min{Ie
2,aIe

1}, and for any i2 ∈ I2 there exists at least one i1 ∈ I1 such that i2
i1
∈ N.

In addition, authors in [63] prove that all possible multipliers a are given with the following

definition.

Definition 26. For two intervals I1 and I2, Is
1 ≤ Is

2, the set of harmonic multipliers is defined as

AI1→I2 = {a1,a2, ...,az} where a1 = ⌊
Is
2

Ie
1
⌋+1,a2 = a1+1,a3 = a2+1, ...,az = ⌊

Ie
2

Is
1
⌋. If ⌊ Is

2
Ie
1
⌋ ∈N,

then a1 = ⌊
Is
2

Ie
1
⌋.

Intuitively, multipliers from set AI1→I2 project the interval I1 onto I2 and in overlap of these

two intervals harmonically related value i2 ∈ I2 is harmonically related to value i1 ∈ I1. By

enumerating combinations of the multipliers for each specified pairs of intervals, i.e., I1 and I2,

I2 and I3, projected harmonic zones can be found such that values i2
i1
∈ N, i3

i2
∈ N, ..., in

in−1
∈ N

exist.
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Forward search period assignment

In order to make the enumeration more efficient, authors in [63] propose that the projected

harmonic zones, which overlap in the sense that the end of the first zone is higher than the

beginning of the second zone, are combined into a single continuous projected harmonic zone.

Moreover, they show that for multipliers such that:

ax ≥
Is
1

Ie
1− Is

1
(4.30)

all projected harmonic zones produced by ax to az can be represented by a single projected

harmonic zone, i.e., χ
{ax,ax+1,...,az}
I1→I2

= [axIs
1,min{azIe

1, I
e
2}]. Enumeration of the possible projected

harmonic zones can be done using the Alg. 7. Alg. 7 constructs a graph in which vertices

represent projected harmonic zones and edges represent harmonic multipliers that connect them.

The resulting graph contains all possible connections between the projected harmonic zones.

Moreover, each path through the graph structure which covers n vertices verifies the existence

of a harmonic relation. For any such path, the result is a sequence of intervals I : {I1, I2, ..., In}.
This approach is referred to as forward search since it starts with depth first search of harmonic

projection zones from lower to higher period values.

Note that the solution generated by Alg. 7 is not the solution to the UHPA problem since

intervals are produced rather than exact values of periods. To generate periods, authors propose

using the low-utilization period assignment algorithm shown in Alg. 8 which will guarantee

feasibility of the solution, but not the optimality.

As it can be seen the main setbacks of this approach is inability to tune the number of

different period values and to ensure that the solution is optimal.

Backward search period assignment

In [64], a similar approach was proposed. The main difference is in the introduction of the

notion of projection origin, which is similar to the projected harmonic zone. In this approach,

the method starts from the last interval and attempts to find origins in the previous intervals.

The motivation for such an approach is in the problem of transitivity of harmonic relation be-

tween intervals, i.e., if I1 and I2, are harmonically related and I2 and I3 are harmonically related

that does not imply that I1 and I3 are harmonically related. This causes potential exponential

complexity of the forward approach when all the harmonic projections are disjoint. Projection

origins can be defined as follows.

Definition 27. Projection origins of interval Ii from interval Ii+1 (Is
i < Is

i+1) are denoted by

ψi = {ψi,1,ψi,2, ...,ψi,hi} where hi is the number of sub-intervals inside ψi and have following
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Algorithm 7 Graph construction algorithm
Input: T ,G, Ivi, j

Output: G
1: if i = n or T max

i+1 < Is
vi, j

then
2: return G
3: else
4: s←max{T min

i+1 , I
s
vi, j
}

5: a1←
⌊

T max
i+1
Is
vi, j

⌋
6: az←

⌊
s

Ie
vi, j
−Is

vi, j

⌋
7: m← ax−a1
8: a← a1
9: for k = 1 to m do

10: Ivi,k ← [max{aIs
vi, j
,s},min{aIe

vi, j
,T max

i+1 }]
11: q = k+Ki

12: add vertex vi+1,q
13: add an edge between vi, j and vi+1,q to G
14: GCA(τ,G, Ivi,q)
15: a← a+1
16: end for
17: Ivi,m+1 ← [max{aIs

vi, j
,s},min{azIe

vi, j
,T max

i+1 }]
18: q = m+1+Ki

19: add vertex vi+1,q
20: add an edge between vi, j and vi+1,q to G
21: GCA(τ,G, Ivi,q)
22: end if

Algorithm 8 Low utilization period assignment algorithm
Input: I
Output: T

1: Tn← Ie
n

2: for i← n−1 down to 1 do
3: bi←

⌊
Ti+1
Ie
i

⌋
4: Ti← Ti+1

bi
5: end for
6: return T
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properties:

∀x ∈ ψi,∃y ∈ Ii+1; such that
y
x
∈ N (4.31)

∀ j,k ∈ 1,2, ...,hi, j ̸= k; ψi, j∩ψi,k = /0 (4.32)

∀ j,1≤ j ≤ hi : Is
i ≤ ψ

s
i, j and ψ

e
i, j ≤ Ie

i (4.33)

The most important observation from [64], which is key to reducing the computational

complexity, is that there at maximum two different non-overlapping projection origins in any

ψi, i.e, hi ≤ 2. The algorithm is depicted in Alg. 9. As it can be seen the algorithm starts from

the back, i.e., the last period interval, and in the first step finds the projection origins for In−1.

In subsequent steps, projection origins for other intervals are determined. If at any step origins

set ψi contains more than 2 sub-intervals, there are sub-intervals in ψi, which have to be merged

(see line 15 in Alg. 9). On the other hand if at any step ψi is empty, there is no harmonic period

set for given intervals. Moreover, this algorithm represents a necessary and sufficient condition

for existence of harmonic period set as it is proven in [64].

Algorithm 9 Existence test for harmonic period assignment
Input: I - set of intervals
Output: {yes, no}, ψ - feasibility and set of origins

1: ψn← In

2: ψ ←{ψn}
3: for i← n−1 down to 1 do
4: ψi← /0
5: for j← 1 to hi+1 do
6: calculate as and ae according to Definition 26
7: if (as +1)Ie

i ≤ ψe
i+1, j then

8: ψi← Ii

9: break
10: end if
11: if as ≤ ae then
12: ψ ← ψ ∪ [asIs

i , I
e
i ]∪ [aeIs

i , I
e
i ]

13: end if
14: end for
15: merge intervals in ψi so that (4.32) holds
16: if ψi = /0 then
17: return no
18: end if
19: ψ ← ψ ∪{ψi}
20: end for
21: return yes, ψ

Similarly as in the forward search, the obtained intervals do not correspond to the solution

of the UHPA problem. Again, a heuristic algorithm is used for period assignment. In [64],
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authors propose an algorithm, which is efficient, but does not ensure that the solution is feasible

in the sense of utilization, i.e., U ≤ 1. The idea is similar to the algorithm depicted in the

previous subsection, i.e., to assign the largest possible period to tasks to ensure that the obtained

utilization is minimal. The algorithm is depicted in Alg. 10.

Algorithm 10 Heuristic period assignment algorithm
Input: ψ

Output: T
1: T1← ψe

1,h1
2: for i← 2 to n do
3: for j← hi down to 1 do
4: ae← ⌊ ψi, j

Ti−1
⌋

5: if aeTi−1 ≥ ψs
i, j then

6: Ti← aeTi−1
7: break
8: end if
9: end for

10: end for
11: return T

Similarly, as in the forward approach, this algorithm does not guarantee optimality with

regard to the utilization. Moreover, it does not enable control over the number of different

period values in the system.

4.8 An optimal algorithm for the UDHPA problem

The UDHPA problem cannot be easily solved by using existing mixed-integer or integer pro-

gramming solvers. The utilization of the system, which is the goal function, is a non-linear, i.e.,

signomial, function. Methods for solving mixed-integer signomial problems exist, but do not

guarantee to find a global solution [83].

In the approach proposed in this research, possible solutions are enumerated to find an

optimal solution of the problem. The UDHPA problem can be split into two independent parts:

1. enumeration of potential harmonic period sets – this part is referred to as period enumer-

ation (PE),

2. assignment of periods from a harmonic period set to tasks - this part is referred to as task

assignment (TA).

In the first part, the possible harmonic period sets, which can be used for task assignment in

the system, are enumerated. This is possible since the periods are constrained to be integer

values. Still, in the worst case, enumerating all the possible harmonic period sets can lead to a

combinatorial explosion due to the exponential growth in the period search space. Therefore,

several propositions are introduced which drastically reduce search space in most use cases.
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In the second part, it is assumed that harmonic period set ~p is known. It can be seen that the

goal function of the UDHPA problem with known period values is linear, which makes such

problem an integer linear program, i.e., zero-one linear program. The relaxed version of the

UDHPA problem, i.e., an assignment problem with a known harmonic period set, is referred to

as the task assignment (TA) problem. The TA problem can be expressed as follows:

maximize U =
n

∑
i=1

m

∑
j=1

Ci

p j
xi j

subject to

xi j ≤ ai j, i ∈ [1,n], j ∈ [1,m]
m

∑
j=1

xi j = 1, i ∈ [1,n]

n

∑
i=1

xi j ≥ 1, j ∈ [1,m]

U ≤ 1

In the TA problem, only the mapping of period values to tasks has to be determined since har-

monic period set ~p is known in advance. In the devised approach, this observation is exploited.

Firstly, possible harmonic period values sets are enumerated, and then the TA problem is solved

for each enumerated harmonic period set.

4.8.1 Enumerating period values

The first step in determining m different period values is the choice of the value for the lowest

period, i.e., p1. Subsequent period values are determined by choosing the integer ratios k j > 1

of two consecutive integer values p j and p j−1. Possible values for the first period depend on

two specific values which can be determined from task period ranges. The first value is pmin
min,

which is the minimal lower bound in all period ranges, i.e., min pmin
i . The second value is pmax

min ,

which is the minimal upper bound in all period ranges, i.e., min pmax
i .

Proposition 6. Choice of p1. In any feasible solution of the UDHPA problem, value of p1 is in

interval [pmin
min, pmax

min ].

Proof. To prove this, it is necessary to consider cases in which p1 is not in the proposed interval

and to show that at least one of the constraints is violated. Firstly, let us assume that p1 has

a value which is lower than pmin
min. As the period value has to be assigned to at least one task,

i.e., ∑
n
i=1 xi j ≥ 1, j ∈ [1,m], there is no feasible solution to the UDHPA problem since period

value p1 cannot be assigned to task τi with the minimal lower bound pmin
i = pmin

min, or to any

other task. Secondly, if p1 is greater than the minimal upper bound pmax
min , it is not possible to
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assign any period value to task τi with pmax
i = pmax

min due to the violation of the period range

constraint. Therefore, for any feasible solution to the UDHPA problem, p1 is within the interval

[pmin
min, pmax

min ].

Similarly, as the possible choices of p1 are restricted, the choice of any subsequent period

values p j can be restricted as well. This can be done by introducing another specific value for

the given period ranges, pmax
max, which denotes the maximal upper bound among the upper bounds

of all tasks, i.e., max pmax
i .

Proposition 7. A bound on choice of p j. In any feasible solution, there is no period value such

that p j > pmax
max.

Proof. If p j > pmax
max, it is not possible to assign p j to any task since the range constraints will be

violated. Therefore, in any feasible solution, every period p j is less than or equal to pmax
max.

Using the specific values obtained from period ranges, it is possible to determine the maxi-

mum number of distinct period values which can appear in the solution. The following propo-

sition is useful as it restricts the period enumeration search space.

Proposition 8. The maximum number of distinct period values. In any feasible solution the

maximum number of distinct period values m is such that m≤ mmax = ⌊log2
pmax

max
pmin

min
+1⌋.

Proof. Due to the harmonic relations of period values, it is evident that the smallest value

of the largest period, i.e., pm, is obtained when all consecutive integer ratios are such that

k j = 2, j ∈ [1,m− 1]. Then, we have pmin
m = pmin

min · 2m−1. From Proposition 7, we know that

pmin
m ≤ pmax

max, and therefore pmin
min · 2m−1 ≤ pmax

max. When we solve the latter inequality for m, we

get m≤ log2
pmax

max
pmin

min
+1, which proves the proposition.

Proposition 9. Maximum integer factor k j. In any feasible solution, every integer factor k j is

such that k j ≤ ⌊ pmax
max

p j−1·2m− j ⌋.

Proof. Let pm ≤ pmax
max be the last value of the period vector ~p. Period pm can be calculated

as pm = p1 · k2 · k3 · ... · k j · ... · km. Moreover, pm = p j−1 · k j · k j+1 · ... · km. Therefore, k j =

⌊ pm
p j−1·∏m

i= j+1 ki
⌋. Factor k j is maximal when the product ∏

m
i= j+1 ki is minimal, i.e., ki = 2, i > j.

Therefore, k j ≤ ⌊ pm
p j−1·2m− j ⌋, which proves the proposition.

Using the latter propositions, harmonic period sets can be enumerated in an efficient manner.

Alg. 11 depicts a recursive algorithm for the enumeration of period sets. Firstly, the Period

Enumeration function assigns values determined by Proposition 6 to the first period p1 (line

6 in Alg. 11). The subsequent period values are determined according to Proposition 9 in a

recursive manner (line 15 in Alg. 11). In the basic case, when all the period values are set

to their respective values, i.e., when j == m+1, the TA problem is solved for the constructed
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Algorithm 11 Algorithm for harmonic period enumeration
Input: S = (T )

1: function PERIOD ENUMERATION(T , m)
2: pmin

min = min pmin
i , ∀τi ∈T

3: pmax
min = min pmax

i , ∀τi ∈T
4: pmax

max = max pmax
i , ∀τi ∈T

5: for i in range pmin
min to pmax

min do
6: p1← i . according to Prop. 6
7: PERIOD ENUMERATION STEP(~p, pmax

max, 2)
8: end for
9: end function

10: function PERIOD ENUMERATION STEP(~p, pmax
max, j)

11: if j ==m+1 then
12: SOLVE TASK ASSIGNMENT(~p, T )
13: return
14: end if
15: for k j in range 2 to ⌊ pmax

max
p j·2m− j ⌋ do . according to Prop. 9

16: p j← k j · p j−1
17: PERIOD ENUMERATION STEP(~p, pmax

max, j+1)
18: end for
19: end function

period set. Moreover, the number of different harmonic period sets with m distinct period values

corresponds to the number in which the basic case is reached. The number of solutions with

regard to m is further analyzed in section 4.9 in the context of feasibility evaluation. Now, time

complexity of the period enumeration algorithm is analyzed. Firstly, it is worth noting that the

asymptotic analysis with regard to m is not of any interest since it is known from Proposition

8 that m is bounded and that there are no feasible solutions for higher values of m. Therefore,

time complexity is analyzed with regard to the highest period in the input pmax
max, as it is obvious

that the number of steps in the algorithm increases when pmax
max increases (see loop bound in line

15 in Alg. 11). To provide an asymptotic upper bound on the time complexity of Alg. 11, a

similar enumeration problem referred to as the DIVENUM problem can be observed.

Definition 28. The DIVENUM problem. The enumeration problem, which is referred to as

DIVENUM, is to output all m-tuples (k1, ...,km) such that:

Π
m
j=1k j ≤ χ, k j ∈ N+,∀ j (4.34)

We can see that the DIVENUM problem is in fact very similar to the PE problem since in

both problems we are looking for a set of m factors such that their product is lower than the

specified bound, χ and pmax
max, respectively. In the PE problem, each factor k j is greater than one.

On the other hand, in the DIVENUM problem, k j is a positive integer including one. Therefore,

we know that the number of steps required to enumerate solutions to the DIVENUM problem

is always higher than the number of steps in the PE problem. For the sake of completeness and
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clarity, Alg. 12 is provided that depicts the enumeration for the DIVENUM problem. Moreover,

the time complexity of the Alg. 12 is analyzed, and the obtained result will serve as an upper

bound of the time complexity of the PE algorithm (Alg. 11).

Algorithm 12 Algorithm for the DIVENUM problem
Input: χ, j

1: function DIVISOR ENUMERATION(χ , j)
2: if j == 0 then
3: output tuple (k1, ...,km)
4: return
5: end if
6: for km+1− j in range 1 to χ do
7: DIVISOR ENUMERATION( χ

km+1− j
, j−1)

8: end for
9: end function

In Alg. 12, we see that the number of steps T (χ,m) required to enumerate all m-tuples of

positive integers with product less than or equal to χ is given with:

T (χ,m) =
χ

∑
k=1

T
(⌊

χ

k

⌋
,m−1

)
(4.35)

T (χ,0) = 1 (4.36)

where T (χ,0) is the number of elementary operations in the basic case. For any bound x, we

know that:

T (x,1) =
x

∑
k=1

T (x,0) = x (4.37)

Moreover, for T (x,2) we have the following:

T (x,2) = T
(x

1
,1
)
+T

(x
2
,1
)
+T

(x
3
,1
)
+ ...+T

(x
x
,1
)

=
x
1

+
x
2

+
x
3

+ ...+
x
x

We can see that this is in fact a finite partial sum of the harmonic series:

T (x,2) = x
x

∑
k=1

1
k
= xHx (4.38)

where Hx = ∑
x
k=1

1
k is the x-th harmonic number. Now, with T (x,2) = xHx, T (x,3) can be
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expressed as:

T (x,3) = T
(x

1
,2
)
+T

(x
2
,2
)
+T

(x
3
,2
)
+ ...+T

(x
x
,2
)

= xHx +
x
2

Hx/2 +
x
3

Hx/3 + ...+
x
x

H1

Next, we can bound T (x,3):

T (x,3) = xHx +
x
2

Hx/2 +
x
3

Hx/3 + ...+
x
x

H1

≤ xHx

(
1+

1
2

+
1
3

+ ...+
1
x

)
= xH2

x

By induction, we get that T (χ,m) = χHm−1
χ . Moreover, harmonic numbers can be approxi-

mated with an integral:

Hχ =
∫

χ

1

1
t

dt = ln χ (4.39)

Therefore, an upper bound on the time complexity for the DIVENUM problem is given with

O(χ logm−1(χ)). Moreover, the time complexity of the PE algorithm is in O(pmax
max logm−1(pmax

max)).

4.8.2 Solving the TA problem

The TA problem is solved by enumeration of all possible period to task assignments with respect

to the given harmonic period set. First off, polynomial-time algorithms which yield the lower

and upper bounds for the goal function, i.e., the utilization of the system, are devised. Then, by

using these bounds, an algorithm for the optimal task assignment is devised.

Bound algorithms

In order to determine the bounds, constraints ∑
n
i=1 xi j ≥ 1, j ∈ [1,m] can be relaxed to allow that

some period values remain unused in the solution. This problem is referred to as TA*. In such a

scenario, an algorithm that produces a lower bound of the utilization assigns the highest correct

period to every task (note: correct with respect to Definition 18). This assignment is referred to

as the HPF (highest period first) assignment, and it is depicted with Alg. 13. Similarly, the LPF

(lowest period first) assignment yields an upper bound of the TA* problem. To obtain the LPF

assignment using the Alg. 13, period values ~p have to be iterated from the lowest to the highest

period value (line 6 in Alg. 13). Formally, the properties of the HPF assignment are stated in

the continuation (Proposition 10 and 11). The properties of the LPF assignment are analogous

with respect to an upper bound of utilization.
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Algorithm 13 HPF algorithm
Input: ~p,T
Output: (correctness, U , X) - correctness of assignment, utilization and period assignment matrix

1: function HPF ASSIGNMENT(~p,T )
2: X← [0], n← |T |, m← |~p|
3: U← 0, correctness← true
4: for i in range 1 to n do
5: assigned← false
6: for j in range m down to 1 do
7: if pmin

i ≤ p j ≤ pmax
i then

8: xi j← 1
9: U← U +Ci

p j

10: assigned← true
11: break
12: end if
13: end for
14: if not assigned then
15: correctness← false
16: break
17: end if
18: end for
19: return (correctness, U , X)
20: end function

Proposition 10. The highest period first (HPF) assignment yields the tight lower bound for the

TA* problem.

Proof. Without loss of generality, we observe one task τi from task set T and two correct

periods p j and pk such that p j < pk. Assume that U0 is utilization of task set T without

τi and that to each task a period value is assigned correctly. We observe two possible period

assignments for τi. In the first case, Ti← p j, and system utilization is U =U0+
Ci
p j

. In the second

case, Ti← pk, and system utilization is U ′ =U0 +
Ci
pk

. As p j < pk, it follows that Ci
pk

< Ci
p j

, and

consequently U ′ <U . Therefore, assignment to higher period pk for each τi will yield a lower

bound of utilization. Moreover, this lower bound is tight.

Proposition 11. The highest period first (HPF) period assignment yields a lower bound of

utilization for the TA problem.

Proof. Proposition 10 guarantees that the HPF will yield minimal utilization in the case when

there are no restrictions on the number of the distinct period values which have to appear in the

solution. The HPF algorithm tries to assign the highest period value to each task, but this is

not possible if we have restriction on the number of distinct period values as all of the period

values have to be used. Therefore, if the highest correct period value cannot be assigned to

the task, the lower period value will be assigned to the task and consequently utilization will

increase. Therefore, the HPF assignment yields a lower bound of the utilization for the TA

problem. However, in this case, this bound may not be tight.
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Both, the HPF and the LPF, have polynomial-time complexity, which is evident from Alg.

13. For each task in a task set, i.e., in n steps, the highest or the lowest period is chosen in

at most m steps. Therefore, the time complexity of these algorithms is O(n ·m). Note that

these algorithms are not suitable for solving UDHPA instances as they do not guarantee that

the number of used values in the solution will be equal to m, i.e., some period values from ~p

may remain unused. However, in cases when there is restriction only on the maximal number

of period values, i.e., solution can have any number of period values from 1 to mmax, usage of

these algorithms is appropriate. Moreover, usage of these algorithms is appropriate for UHPA

instances as in the UHPA problem there are no constraints on the number of period values. In

such cases, period enumeration is firstly used to find appropriate period sets, and HPF or LPF

approach to find corresponding task assignments. Time complexity of the approach is pseudo-

polynomial with regard to pmax
max as time complexity of PE algorithm is in O(pmax

max logm−1(pmax
max)),

and polynomial regarding n, as time complexity of HPF and LPF is in O(m ·n)

The optimal task assignment algorithm

An optimal algorithm for enumeration of task assignments is depicted with Alg. 14. This

algorithm is referred to as optimal task assignment (OTA). Prior to explaining the optimal task

assignment algorithm, it is necessary to explain how the bounds calculated by the HPF and the

LPF algorithm are used. Moreover, a mechanism for tracking the number of distinct period

values during the enumeration process has to be explained as well.

Bounds of utilization. Using the HPF and the LPF assignment, the vector of lower bounds
~bl and the vector of upper bounds ~bu is constructed. These vectors are used to prune infeasible

or suboptimal branches in the enumeration of task assignments. These vectors contain upper

and lower bounds of subsets of task set T . In this context, the i-th subset of task set T is set

Ti = {τi,τi+1, ...,τn}. Therefore, the i-th value of vectors ~bl and ~bu can be expressed as:

bl
i =UHPF(Ti), bu

i =ULPF(Ti), i = 1, ...,n (4.40)

bl
n+1 = 0, bu

n+1 = 0 (4.41)

where UHPF(Ti) corresponds to the utilization obtained by the HPF assignment for task set Ti.

Similarly, ULPF(Ti) corresponds to the utilization obtained by the LPF assignment for task set

Ti. It is worth noting that the first values of both vectors, namely bl
1 and bu

1, correspond to the

lower bound and the upper bound of task set T , i.e., T = T1. Values bl
n+1 = 0 and bl

n+1 = 0

are introduced for valid comparison in the last step of recursion (see line 28 in Alg. 14).

Usage of every period in the assignment. To ensure that every period value p j is used

in a task assignment at least once, the number of used period values when constructing a task

assignment has to be tracked. Therefore, the binary vector~l with values l j is introduced such
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that:

l j =

1,period value p j is assigned at least once

0,otherwise
(4.42)

Additionally, d is the number of currently assigned period values, i.e., d = ∑
m
j=1 l j. As all of the

period values have to be used at least once, in a valid task assignment d must be equal to m.

Here follows a detailed explanation of the OTA algorithm depicted with Alg. 14. For brevity

and ease of representation, variables Umax, Xmax, X, ~l j, and d, flag feasible, and bounds ~bl ,
~bu are assumed to be global. Umax is the current maximal value obtained for assignment matrix

Xmax, and flag feasible indicates the feasibility of the problem. Global variable X is current

assignment matrix. The local variable u represents utilization at step i.

In the first part of the algorithm, i.e., Task Assignment function, the HPF assignment

is used to determine the lower bound of utilization prior to enumerating all task assignments

(lines 2 to 8 in Alg. 14). If the obtained lower bound is greater than one or the assignment is not

correct, there is no need for enumeration of task assignments (line 6 in Alg. 14). In this way, a

lot of period sets for which the task assignment is infeasible are efficiently pruned.

In the second part of the algorithm, i.e., Task Assignment Step function, task assign-

ments are enumerated in a recursive manner. In the basic case (lines 12 to 18), if the utilization

of the current task assignment u is larger than the current maximal value Umax, and the solution

Xmax is updated accordingly. In other cases, period values are conditionally assigned to the

tasks (lines 21 to 36).

At the beginning of the loop, it is checked if the value p j is assigned to any task at the

previous recursion steps. If l j is 0 at step i, value p j is not assigned to any task τk such that

k < i. On the other hand, if value p j is used for the first time at step i, values of l j and auxiliary

variable ul are set to 1 (lines 22 to 25). The auxiliary variable ul keeps track of “locking” period

value p j at step i. Therefore, at the end of the loop (lines 32 to 35), if p j was used for the first

time at step i, l j and ul have to be reset (“released”).

Next, two groups of conditions in their respective if statements (line 26 and 28) can be

analyzed separately. The first if statement checks validity of assignment. The first condition,

i.e., pmin
i ≤ p j ≤ pmax

i corresponds to the correctness criteria (Definition 18). In the second

condition, m− d is the number of unused periods from the input period set ~p, and n− i is the

number of tasks to which the period is not assigned. The condition requires that the number

of unused periods is less than or equal to the number of tasks to which a period value is not

assigned. In other words, if it is not possible to assign every period value in the next recursion

steps, p j cannot be assigned to τi. In line 27, period p j is assigned to task τi, i.e., utilization for

the next recursion step is incremented by Ci
p j

.

The second if statement (line 28) serves to test the feasibility and the bounds of the as-

signment. Condition u′ ≤ 1 ensures feasibility of the assignment. The second condition, i.e.,
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u′+bl
i+1 ≤ 1, checks if the sum of the current utilization and minimal utilization of task subset

Ti+1 is less than or equal to one. If this condition is false, we know that there is no assignment

for which the final utilization will be less than one, because bl
i+1 is a lower bound. Similarly,

the third condition, i.e., u′+bu
i+1 ≥Umax, checks if the sum of the current utilization and max-

imal utilization of task subset Ti+1 is greater than or equal to current maximal value Umax. If

this condition is not true, we know that there is no assignment for which the final utilization is

greater than the current maximal value Umax, because bu
i+1 is an upper bound.

The time complexity of the OTA algorithm is evidently exponential in the number of tasks

n. In the worst-case, when bounds are ineffective, one of the m period values will be assigned

to each task. Therefore, the time complexity of the OTA algorithm is in O(mn). To find an

optimal solution to an UDHPA instance, we have to use the OTA algorithm for each period set

obtained using the PE algorithm. Complexity of such an approach is again pseudo-polynomial

with regard to pmax
max since the time complexity of the PE algorithm is in O(pmax

max logm−1(pmax
max)),

and exponential with regard to n since the time complexity of the OTA algorithm is in O(mn).

Application of the optimal algorithm to AUDHPA instances

As the period enumeration algorithm does not depend or impact the resulting utilization, i.e.,

the utilization of the task set with assigned periods, applicability of the combination of the

period enumeration algorithm (PE) and optimal task algorithm (OTA) depends strictly on the

task assignment itself. It can be seen that to solve an AUDHPA instance, OTA algorithm has

to be minimally modified to include the target resulting utilization Ua. More precisely, to solve

an AUDHPA instance, the constant maximal utilization of 1 in line 28 of Alg. 14 has to be

replaced with the target utilization Ua.

4.9 Evaluation

To further investigate the UDHPA problem and the approach proposed in this research, an exten-

sive evaluation of the developed algorithms on synthetically generated task sets is performed.

Firstly, it is shown how the difficulty of the problem changes with regard to utilization, the

number of distinct period values, the width of period ranges and the number of tasks in a task

set. Furthermore, it is shown how the approach can be used for UHPA problem instances and

the approach is compared with existing approaches. As the parameters used for synthetically

generating task sets correspond to the parameters of task sets in motivational scenarios, it is

demonstrated that the devised approach can be efficiently used in plenty of real-world sce-

narios. Moreover, a small numerical example that illustrates the benefits of the approach in

motivational real-world scenarios is presented.
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Algorithm 14 Optimal algorithm for the TA problem (OTA)
Input: ~p,T
Output: (feasible, Umax, Xmax)

1: function TASK ASSIGNMENT(~p,T )
2: (correct, U , X)← HPF ASSIGNMENT(~p, T )
3: feasible← false
4: u← 0
5: Umax← 0
6: if not correct ∨U > 1 then
7: return
8: end if
9: TASK ASSIGNMENT STEP(~p, 1, 0)

10: end function
11: function TASK ASSIGNMENT STEP(~p, i, u)
12: if i == n+1 then
13: if u >Umax then
14: feasible← true
15: Umax← u
16: Xmax← X
17: end if
18: return
19: end if
20: ul← 0
21: for j in range 1 to m do
22: if l j == 0 then
23: l j← 1
24: ul← 1
25: end if
26: if pmin

i ≤ p j ≤ pmax
i ∧m−d ≤ n− i then

27: u′← u+ Ci
p j

. equivalent to Ti← p j or xi j← 1

28: if u′ ≤ 1∧u′+bl
i+1 ≤ 1∧u′+bu

i+1 ≥Umax then
29: TASK ASSIGNMENT STEP(~p, i+1, u′)
30: end if
31: end if
32: if ul == 1 then
33: l j← 0
34: ul← 0
35: end if
36: end for
37: end function
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4.9.1 Task set generation

In evaluation, task sets are generated using the UUnifast algorithm [39], which is commonly

used in measuring the performance of algorithms in real-time systems. Using the UUnifast

algorithm, utilizations of task sets are generated with regard to pmax
i of tasks in a set. Therefore,

the target utilization for UUnifast method corresponds to the lowest utilization of a task set.

This utilization is referred to as Umin = ∑
n
i

Ci
pmax

i
. After the utilizations are generated, pmax

i is

chosen from the interval [pdown, pup] with uniform distribution. Then, based on the parameter

σ , the lower bound of the period range for task τi is determined as pmin
i = ⌈pmax

i σ⌉. Increasing

σ decreases the width of the period range for tasks.

Task sets are generated with utilization Umin from interval [0.2,0.9] with an increment of

0.025. Moreover, pdown = 1, pup = 2048, and σ = 0.4. In evaluation, 1000 task sets are

generated per utilization factor, i.e., a total of 29 ·1000= 29000 task sets. Every task set consists

of n = 20 tasks. These are the default task set generation parameters unless noted otherwise.

When it comes to algorithm runtime measurements, it is worth noting that implementations of

algorithms are written in C++. Additionally, the specifications of the computing platform are

given in Table 4.1. Furthermore, an algorithm is terminated the utilization value in the interval

[1−10−7,1] is obtained.

Table 4.1: Computing platform specifications

Processor Intel(R) Core(TM) i7-7700HQ CPU

2.80GHz

RAM 8.00 GB

Operating system Linux (64-bit)

4.9.2 Evaluation on UDHPA instances

In this section, the devised optimal approach which consists of the PE algorithm (Alg. 11) and

the OTA algorithm (Alg. 14) is evaluated on UDHPA instances with regard to different problem

parameters m, σ and n.

Firstly, the devised optimal approach is evaluated with regard to different number of distinct

period values in the solution m. Fig. 4.2 shows the number of feasible systems for different

utilization factors and for a different number of distinct period values in the solution. It can be

seen that, for m= 5, the highest number of feasible solutions is obtained. For higher values of m,

the number drops, and we know from Proposition 8 that the maximum value of distinct period

values for the system to be feasible equals log2
2048

1 + 1 = 12. Since the number of feasible

systems for m > 8,m < 3 is lower than for m = 8, these graphs are not included in Fig. 4.2.
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Figure 4.2: Number of feasible systems for different number of distinct period values m.

Moreover, Fig. 4.3 shows the average number of enumerated period sets with regard to m. It

can be seen that, for higher values of different period values m, the number of harmonic period

sets is reduced. Thus, increasing the number of different period values reduces the number of

potentially feasible systems. On the other hand, although the number of enumerated period sets

is higher for a lower m in Fig. 4.3, feasibility is reduced for a lower m as it is more difficult to

find a lower number of harmonic period values that satisfy the correctness criteria (Definition

18) for each task in the system.

Fig. 4.4 shows the average resulting utilization for each utilization factor and a different

number of distinct period values. In this particular evaluation, the resulting utilization of infea-

sible systems is set to zero. In this way, the information about the overall feasibility of systems

is not lost. Again, it can be seen that, for m = 5, the best result are obtained. Dashed lines in the

figure denote the utilization lower bound obtained by the HPF assignment for the corresponding

number of distinct period values.

Fig. 4.5 shows the average utilization of feasible systems. Here, the resulting utilization

of feasible systems for every m in interval [3,8] is averaged. Additionally, Fig. 4.5 shows the

lower bound and the upper bound obtained by the HPF and the LPF assignment, respectively.

It can be seen that the resulting utilization of the devised optimal approach is very close to the

upper bound for lower utilization values. When the upper bound is higher than 1, the devised

optimal approach yields the highest possible utilization values lower or equal to 1.

Fig. 4.6 shows the average runtime per task set of the optimal algorithm for each utilization
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Figure 4.3: Number of period sets obtained in period enumeration w.r.t. m.
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Figure 4.4: Average resulting utilization of task set for different number of distinct period values m.
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Figure 4.5: Average resulting utilization of the optimal assignment with corresponding bounds.

factor and a different number of distinct period values. It can be seen that, on average, the

algorithm for larger numbers of different period values has a higher runtime. This is mostly due

to a higher number of potential task assignments in solving the TA problem. Additionally, it is

worth noting that the average runtime for m = 8 is lower than for m = 7 and m = 6. For m = 8,

there is a smaller number of enumerated period sets, and therefore fewer TA problem instances

have to be solved.

Figs. 4.7-4.9 show the effect of the period width σ on the overall feasibility, utilization

and average runtime. The same parameters are used in task set generation as in the previous

evaluation. However, in this case, the number of distinct period values is fixed, i.e., m = 5, and

the period range width values σ from interval [0.2,0.7] are used. Additionally, 100 task sets for

each utilization factor and for each σ are generated, which totals to 29 · 6 · 100 = 17400 task

sets.

Fig. 4.7 shows the feasibility for each utilization factor and for different period widths. It

can be seen that, for higher σ , i.e., lower period range width, feasibility drops significantly.

This is to be expected as the correctness constraints are more strict and there is less chance of

finding a potentially feasible harmonic period set.

In Fig. 4.8, the average resulting utilization per utilization factor assuming that the uti-

lization of infeasible system equals zero is shown. Larger period range width increases the

number of feasible enumerated period sets, and consequently utilization is higher as the task

assignments with high utilization can be discovered.
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Figure 4.6: Average runtime of the optimal assignment for different number of distinct period values m.

In Fig. 4.9, we see, that for a larger period range width, i.e., σ = 0.2, runtime is of an

order of magnitude higher than a smaller period range width. As it was already mentioned, the

number of feasible solutions is higher for larger period range width and more enumerated period

sets have to be explored. Thus, the runtime is increased. It is worth noting that runtime graphs

for σ ∈ [0.4,0.7] cannot be distinguished, as they are much lower than the average runtime for

σ = 0.2.

Finally, the evaluation of the devised optimal algorithm with regard to the size of a task set

is investigated. In the previous evaluation, the number of tasks in a set was fixed to 20. For

the purpose of this evaluation, alternative parameters were fixed, the period range width, i.e.,

σ = 0.4 and the number of distinct period values, i.e., m = 5. For Figs. 4.10-4.11, 200 task

sets for each utilization factor and for each n ∈ [20,30,40,50] were generated, which totals to

29 · 4 · 200 = 23200 task sets. Fig. 4.10 shows the number of feasible task sets with regard

to n. It can be seen that, by increasing n, feasibility drops. This is the effect of adding more

period range constraints in the systems for each task. Intuitively, it will be more difficult to find

an appropriate period assignment with a higher number of constraints. For the same reason,

the total average utilization is reduced when n is increased as depicted in Fig. 4.11. For the

runtime evaluation with regard to n, the utilization factor was set to Umin = 0.6 and generated

200 task sets for every fifth number of tasks in range [20,100], i.e., a total of 200 · 17 = 3400

task sets. In Fig. 4.12, the PE + OTA graph corresponds to the devised optimal approach. The

PE + EXH graph corresponds to an approach which consists of the PE algorithm (Alg. 11)
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Figure 4.7: Number of feasible systems for different period ranges width σ .
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Figure 4.9: Average runtime of the optimal assignment for different period range width σ .

and an exhaustive search of task assignments, which does not employ utilization bounds and

pruning rules devised in section 4.8.2. We can see that the runtime of exhaustive search rises

exponentially with the number of tasks, which is an expected behavior, since, at worst, time

complexity is in O(mn) (evaluation is not performed for n≥ 70). On the other hand, we see that

the runtime of the PE + OTA approach has a reduced growth rate due to the usage of devised

utilization bounds and pruning rules.

4.9.3 Evaluation in the context of existing UHPA approaches

On the basis of Theorem 3, we know that the UHPA problem is Turing reducible to the UDHPA

problem, and therefore we can simply employ the devised optimal algorithm for UHPA in-

stances. To solve an UHPA instance, we need to solve the corresponding UDHPA instances

for every possible number of distinct period values m, which is given with Proposition 8. To

optimally solve an UHPA instance, we use the PE algorithm in combination with the OTA al-

gorithm for each m. In the UHPA problem, there is no restriction on the number of distinct

period values. Thus, we can use the PE algorithm with the HPF algorithm to obtain the period

assignment for each m. It is worth noting that it is possible that, while using the HPF algorithm,

some values of the enumerated period set may remain unused. However, this is not a problem in

the context of UHPA instances since there are no restrictions on the number of different period

values. The devise approach is compared with existing UHPA approaches in the literature,
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Figure 4.10: Number of feasible systems for different number of task in system n.
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Figure 4.11: Average resulting utilization of task set for different number of tasks in system n.
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Figure 4.12: Average runtime of the optimal assignment for different size of task set n.

which are based on finding harmonic projections for given task period ranges [63, 64]. The

algorithms employed in these approaches are generally of pseudo-polynomial time complexity,

but in specific cases complexity can be reduced to linear or polynomial time. The approach

in [63], referred to as forward search, consists of two parts, namely the graph construction al-

gorithm (GCA), and a greedy heuristic for period assignment, which can yield low utilization

(LU) or high utilization (HU). Here, the LU heuristic is employed since it increases the chance

that the resulting harmonic period assignment will be feasible. The GCA part is analogous to

the period enumeration part of the devised algorithm. Similarly, the HPF and OTA algorithms

are counterparts to the LU heuristic. The approach from [64], referred to as backward search, is

based on the harmonic period existence test and suboptimal heuristic period assignment. Figs.

4.13-4.17 show the performance of the devised approach in comparison with approaches from

[63, 64]. Task sets were generated using the default task set generation parameters from the

beginning of this section.

Fig. 4.13 shows the number of feasible systems for different period assignment approaches.

It can be seen that the number of feasible task sets is higher when the devised optimal approach

(PE + OTA) and heuristic approach (PE + HPF) are used, than when forward search or backward

search are used. The number of feasible systems when the PE + HPF or PE + OTA approaches

are used is the same because both algorithms are optimal regarding feasibility. However, the

HPF algorithm yields the solution with the lowest utilization. More precisely, it yields the
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lowest utilization for the TA* problem. As explained in section 4.8.2, the TA* problem does

not restrict the number of different period values in the solution, and therefore the utilization

obtained using the HPF assignment is minimal. Fig. 4.14 shows the resulting utilization for

different period assignment approaches. As expected, the devised optimal approach (PE + OTA)

yields the highest utilization. Moreover, the period enumeration with the HPF assignment (PE

+ HPF) dominates forward search and backward search as well.

Finally, the runtime results in Figs. 4.15-4.17 are shown. In Fig. 4.15 , it can be seen that

the runtime for forward search and backward search is at least an order of magnitude lower

than in the approach proposed in this research. Since the period ranges are relatively wide, i.e.,

σ = 0.4, both forward and backward search are time-efficient. Moreover, in Fig. 4.16, we

can see that when the number of tasks in a set is increasing, runtime is higher for exhaustive

search (PE + EXH) and the optimal approach (PE + OTA) than for the other approaches which

cannot be distinguished in the figure. The PE + HPF approach is efficient when the number of

tasks is increasing since the time complexity of the HPF algorithm is polynomial O(n ·m) and

the time complexity of the PE algorithm does not depend on the number of tasks in the system.

However, in Fig. 4.17, we can see that the runtime of approaches which employ PE algorithm

increases when the maximum period in the system pmax
max is increased. It is worth noting that

although runtime can be significantly higher when the optimal approach (PE + OTA) and the

heuristic approach (PE + HPF) are used, it is still relatively low, i.e., several milliseconds per

task set. Since period assignment in practice is typically done off-line during the application

design, this is more than acceptable.

4.9.4 Numerical real-world period assignment problem

To further emphasize and explain the benefits of the devised approach, a small numerical ex-

ample of a real-world period assignment problem is provided. As it was already stated in

the introduction, the structure of safety-critical control applications is modular and often each

module, i.e., task, is developed by a different application designer. In the development process,

based on the specific application requirements, application designers provide implementations

of tasks with suggested execution rates, which are in this research and related literature modeled

with period ranges. It is in the interest of every application designer that their module executes

with the highest possible execution rate, i.e., the smallest period, in order to achieve a higher

quality of service for a particular part of the application. Based on the input from the application

designers, the system designer has to determine periods which shall be used in the system to

achieve the highest utilization, i.e., quality of service. Thus, utilization is maximized. Table 4.2

shows the task set with task parameters. Such a table is an input to the system designer. How-

ever, due to the specific architecture of the system, i.e., the operating system and the underlying

hardware, the system designer is restricted regarding the number of distinct period values which
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Figure 4.13: Number of feasible systems for UHPA instances for different period assignment ap-
proaches.
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Figure 4.14: Average resulting utilization for different period assignment approaches.
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Figure 4.15: Average runtime for different period assignment approaches w.r.t. utilization.
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Figure 4.16: Average runtime for different period assignment approaches w.r.t. size of task set.
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Figure 4.17: Average runtime for different period assignment approaches w.r.t. maximum period in the
system pmax

max.

can be used in the solution. In this example, the maximum number of different period values is

4. Therefore, any number of different period values smaller or equal to mmax = 4 can be used.

Table 4.2: Task parameters for the application task set

Task Ci pmin
i pmax

i

τ1 1 2 5

τ2 2 5 16

τ3 2 13 42

τ4 1 21 68

τ5 13 36 118

τ6 3 38 124

Table 4.3 shows the period values assigned to each task in the input. We can see that period

enumeration with the optimal task assignment (PE + OTA) yields the most satisfying result since

it produces the maximal utilization and uses no more than 4 period values. In order to achieve

this, the system designer has to solve UDHPA instances using the PE + OTA approach for m
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in the interval [1,mmax = 4]. We can see that period enumeration using the HPF algorithm (PE

+ HPF) also yields a satisfying result as the number of the distinct period values is lower than

mmax. However, the utilization is lower than the value obtained using the OTA algorithm. The

forward and the backward search do not yield satisfying results since they do not restrict the

number of distinct period values in the solution. Moreover, utilization factors are significantly

lower than when using both the PE + OTA and the PE + HPF approaches.

Table 4.3: Assigned periods, the number of distinct period values and resulting utilization per period
assignment approach

Assigned periods Ti per approach

Task PE + OTA PE + HPF forward backward

τ1 2 5 3 5

τ2 14 5 15 15

τ3 14 20 30 30

τ4 42 60 60 60

τ5 84 60 60 60

τ6 84 60 120 120

m 4 3 5 5

U 1.000 0.983 0.791 0.658

4.9.5 Numerical real-world period assignment problem with arbitrary
utilization

To show the importance of adding the target utilization rather than maximizing the utilization up

to the utilization schedulability bound, a small numerical example similar to the one in the latter

section is provided. Table 4.4 shows the task set with task parameters. Such a table is an input to

the system designer. However, due to the specific architecture of the system, i.e., the operating

system and the underlying hardware, the system designer is restricted regarding the number of

distinct period values which can be used in the solution. In this example, the maximum number

of different period values is 4. Therefore, any number of different period values smaller or equal

to mmax = 4 can be used. In addition, the resulting utilization is restricted to be less or ideally

equal to 0.8.
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Table 4.4: Task parameters for the application task set

Task Ci pmin
i pmax

i

τ1 1 2 6

τ2 1 6 17

τ3 1 8 26

τ4 5 11 34

τ5 3 16 51

τ6 2 33 108

Table 4.5 shows the period values assigned to each task in the input. We can see again,

that the best results are obtained using the PE + OTA approach, i.e., optimum value of 0.8.

PE + HPF approach satisfies the distinct number of period values and utilization constraints.

However, the resulting utilization is somewhat lower than using the optimal approach. Again,

forward and backward search perform worse than the proposed approaches. As they are agnos-

tic about additional design constraints, they are inapplicable in these scenarios. Moreover, the

proposed approaches are suitable for scenarios in which the utilization of critical tasks has to be

tuned.
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Table 4.5: Assigned periods, the number of distinct period values and resulting utilization per period
assignment approach

Assigned periods Ti per approach

Task PE + OTA PE + HPF forward backward

τ1 5 4 6 4

τ2 15 16 12 8

τ3 15 16 24 16

τ4 15 16 24 16

τ5 30 48 48 32

τ6 60 48 96 96

m 4 3 5 5

U 0.800 0.792 0.583 0.865

4.10 Chapter summary

In this chapter, the utilization-maximizing harmonic period assignment problem with a con-

strained number of distinct period values (UDHPA) was defined. Moreover, this problem was

extended to allow optimization with regard to an arbitrary utilization factor. The motivation

for this problems arises from the observation of industrial control systems in which the number

of different period values is either fixed or restricted. The problem was discussed in the con-

text of the already studied UHPA problem and it was shown that the UHPA problem is Turing

reducible to the UDHPA problem. Additionally, it is shown that UDHPA problem is at least

weakly NP-hard. It was demonstrated that the more general problem of assigning periods with

an arbitrary utilization (AUDHPA) is NP-hard as well. An optimal algorithm for the UDHPA

problem is devised and its efficiency on a large number of synthetically generated task sets

was demonstrated. Moreover, the developed algorithm was used for solving UHPA instances

and the differences between the devised approach and the existing approaches were explained

and discussed. The key benefit of the devised approach lies in the fact that, for a large variety

of synthetically generated UDHPA and UHPA instances, the devised algorithm is time-efficient

and optimal, and therefore more than suitable for use in real-world system design. Furthermore,

as it was shown in numerical examples, the existing approaches are not applicable in systems

with a restricted number of different period values and arbitrary target utilizations. The future
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work will include the application of the devised algorithms to real-world scenarios and a further

theoretical analysis of the relation between the optimal number of distinct period values and

period ranges of tasks.
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Chapter 5

Method for task scheduling for
improvement of quality of service in
real-time mixed-criticality systems based
on genetic programming

5.1 Context of the research

In the previous chapters, formal methods for verification and design of mixed-criticality and

safety-critical systems were discussed. In both chapters, the focus in the design and verifi-

cation is on ensuring schedulability and maintaining the quality of service of high-criticality

and safety critical tasks. In contrast, in this chapter, a method which would enable the sys-

tem designer to devise a scheduling algorithm which would optimize the performance of the

low-criticality tasks is devised. Moreover, while optimizing the quality of service of the low-

criticality tasks, the schedulability of high-criticality tasks should not be impacted and must be

ensured. The most important effect, which affects the mixed-criticality system in this context,

is overload. Due to the increase in the utilization upon a criticality switch, overload occurs.

Under overload, optimal techniques for scheduling are significantly different than in the normal

conditions. Here, different mechanisms are investigated which can mitigate these effects such

as priority scheduling, acceptance tests and job skipping. The main method that is exploited

in this chapter is the genetic programming, which is often used in solving NP-hard scheduling

problems in the literature. However, genetic programming methods have not been exploited yet

in real-time scheduling problems. In this chapter, the framework is proposed that enables the

evolution of priority functions for scheduling low-criticality tasks in the dynamic scheduling

environment. The priority functions are evolved to optimize certain quality-of-service crite-

ria, namely grade of service and penalty. Firstly, the single-objective genetic programming is
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employed for the evolution. The method is then extended to allow multi-objective optimiza-

tion, which enables the simultaneous evolution with regard to more than one quality-of-service

metrics. In addition, the cooperative co-evolution approach is investigated for the evolution of

acceptance tests for testing the task instances, i.e., jobs on the release. Furthermore, the method

is applied in the partitioned environment in combination with the harmonic period assignment

method devised in the previous chapter. Similarly as in the previous chapters, the method is

extensively tested on synthetically generated task sets as well as on small numerical examples.

5.2 Introduction

As discussed before, recent years have brought a significant rise in demand for embedded sys-

tems which can execute functions with different levels of importance. The importance of a

system function is determined by a system designer according to the application requirements.

In the context of real-time task scheduling, the importance of a function is often related to the

worst-case execution time (WCET) since larger worst-case execution times must be allocated

for high-criticality tasks. This was expressed by Vestal in the seminal mixed-criticality (MC)

scheduling paper [29].

Motivation. As it is discussed in the chapter 3, the initial Vestal’s approach, referred to as

static mixed-criticality (SMC) approach, and later adaptive mixed-criticality approach (AMC)

devised by Baruah et al. [30], abandon low-criticality (LO) tasks in the high-criticality (HI)

mode. This is justified in systems which do not use results of LO tasks in HI mode. However,

such an assumption does not hold in many practical applications. Therefore, in order to increase

the applicability of MC theory to real-world systems, numerous models emerged for systems

which have a goal to improve quality of service (QoS) of LO tasks. These models are covered

in the extensive survey by Burns et al. [28].

Initial observation about overload. In MC systems, HI tasks are typically assigned two

different estimations of their WCET, which correspond to different methods of execution time

profiling. Typically, thorough profiling will yield more conservative WCET values, and conse-

quently more conservative bounds are used in the analysis of HI mode. Therefore, processor

utilization of HI tasks upon a mode change (from LO to HI mode) will increase. If LO tasks

are not discarded in HI mode, the total processor utilization could increase above the necessary

schedulability bound, i.e., 100% for uniprocessor platforms. This makes MC systems poten-

tially overloaded real-time systems from a task scheduling point of view. For clarity, a real-time

system is overloaded if a feasible schedule does not exist, i.e., there is no schedule in which all

the tasks will meet their deadlines.
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5.2.1 Related work

This part of the research is related to several research areas in scheduling domain, namely over-
loaded real-time systems, mixed-criticality systems and generating scheduling heuristics
using genetic programming. In the review of the related real-time systems literature, a com-

mon task model is assumed, i.e., jobs are released by sporadic or periodic tasks.

Overloaded real-time systems. Early research in overloaded real-time systems was done

in papers such as [84, 85] where authors devise algorithms for on-line scheduling in overloaded

systems and compare their effective processor utilization (EPU) to EPU of the optimal off-line

clairvoyant algorithm. EPU is a metric which measures processor utilization for tasks which

complete by their deadline. Generally, in real-time systems there are two types of overload: (1)

transient overload due to task overruns or aperiodic events or (2) permanent overload in periodic

task systems [86]. In this research, permanent overload is of a particular interest since periodic

MC task systems are observed. Techniques for mitigation of the permanent overload are often

divided into three groups: period adaptation, service adaptation and job skipping. There are a

number of these approaches and they are reviewed in [86, 87]. In this research, job skipping is

employed as a technique of mitigating overload. Initial research of job skipping was introduced

in [88] where the skip-over task model was introduced. In the skip-over model each task has

a skipping factor which determines the number of consecutive jobs of a task which have to be

executed before their deadline. Moreover, a more general approach known as (m,k)-firm task

model [89] specifies that each m jobs of k consecutive invocations have to meet their deadline.

An interesting result from [88] is that the problem of determining feasibility of occasionally

skippable task set is NP-hard. In addition, authors in [88] conjecture that constructing an off-

line schedule, i.e., making an optimal use of skips in job skipping environment, is NP-hard

as well. It is worth noting that these approaches are criticality-agnostic and cannot be easily

incorporated in MC models.

Overloaded mixed-criticality systems. As pointed out earlier, MC systems can undergo

permanent overload conditions due to the overrun of a job of HI task, i.e., upon a mode change.

The first technique used to ensure feasibility and avoid the overload conditions was suspending

LO tasks [30] in HI mode. As this can affect system performance in terms of quality of service,

different period adaptation, service adaptation and job skipping techniques were investigated.

Period adaptation in MC systems was investigated in several papers, which extend the elastic

model of real-time systems for MC systems [90]. Similarly, in dual-mode control systems,

periods for different operating modes are adapted to maximize the control performance [91].

Service adaptation includes reducing the computational time needed for some tasks to avoid

overload. Based on this technique, imprecise mixed-criticality (IMC) models [92] emerged,

which use reduced computational time for LO tasks in HI mode. Job skipping in MC systems

is proposed by Burns et al. in [93] for increasing the robustness of a system. In this research,

124



Method for task scheduling for improvement of quality of service in real-time mixed-criticality
systems based on genetic programming

systems allows job skipping of LO tasks in HI mode, and LO jobs are scheduled in the slack

time of HI jobs. This approach is similar to the approach devised by Hikmet et al. in [94],

where they schedule jobs of non-critical tasks in the slack time of tasks with a hard deadline.

Job skipping was investigated in the context of mitigating overload of control tasks in [95]

where authors devise a dynamic programming algorithm for determining optimal job skipping

pattern for the hyperperiod of a certain task set. This approach may not be suitable for an on-

line implementation in real-time embedded systems due to the time and memory overhead of

the optimal algorithm. Naturally, this is the consequence of the computational complexity of

making optimal use of skips, which is likely to be NP-hard [88, 95]. In approach devised in

this research, genetic programming is used to discover heuristics which may be sub-optimal,

but have two major advantages: they can be used in job skipping scenarios for different MC

task sets, and they are computationally efficient and suitable for an on-line implementation in

real-time embedded systems.

Generating scheduling heuristics using genetic programming. For systems that do not

have hard deadlines as real-time systems, an effective approach to determine a schedule is to

use heuristics, i.e., priority dispatching rules, evolved using genetic programming. These ap-

proaches are covered in the extensive survey by Nguyen et al. [96] on usage of genetic pro-

gramming in production scheduling. An example of such an approach is presented in [97]

where authors showed the dominance of heuristics evolved using genetic programming in min-

imization of weighted tardiness for different scheduling models (e.g., single machine, job shop)

over common approaches such as the earliest due date (EDD). Similar approaches that employ

genetic programming for generating heuristics for various single machine environments were

investigated in [98, 99, 100]. The problem that is found in the production scheduling litera-

ture that is similar to job skipping problems discussed earlier in this section in the context of

real-time systems, is the problem of minimizing the number of tardy jobs on a single machine

with release times [101]. This problem is known to be NP-hard in the strong sense (see Table

E.3 in Appendix E in [101]). However, the main point of difference between these problem

formulations is that tardy jobs in the real-time setting are not allowed and they are discarded,

whereas in the context of production scheduling tardy jobs are typically not discarded.

5.2.2 Contribution

In this chapter, genetic programming is used to evolve on-line scheduling heuristics for unipro-

cessor MC systems, which employ job skipping as a technique of mitigating overload. It is

shown that the usage of evolved scheduling heuristics can improve user-defined quality of ser-

vice metric for LO tasks in HI mode. It is demonstrated that these heuristics are computationally

efficient, which makes them suitable for implementation in real-time embedded systems. Ad-

ditionally, it is shown that these heuristics acquire generality in the training process and can
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be used for different MC task sets and that the evolution process can be easily customized for

different performance metrics.

5.3 Preliminaries

5.3.1 System model

In this chapter, synchronous dual-criticality task systems are investigated. It is assumed that

time is discrete, i.e., any particular time instant t is integer. The system is comprised of task set

T , and each of n tasks is represented as a set τi = {~Ci,Ti, ~Di,Li} where ~Ci ∈ N2 is monotonic

non-decreasing vector of WCETs, Ti ∈ N is the period, ~Di ∈ N2 is monotonic non-decreasing

vector of deadlines and Li ∈ {LO,HI} is the criticality level of a task. Tasks can have either

low criticality (Li = LO) or high criticality (Li = HI), Ci(HI)≥Ci(LO), Di(HI)≥ Di(LO) and

Di(HI) = Ti. Tasks periodically release jobs and the currently active job of task τi is described

with set Ji = {ci,di} where ci ∈ N is the remaining execution time of the currently active job

of task τi and di ∈ N is its remaining time to deadline at some time instant. Note that these

variables, namely ci(t) and di(t), are time dependent. However, for brevity, the time instant

argument t is omitted. Ji j denotes the j-th released job of task τi.

During runtime, the system behaves like a classical adaptive mixed-criticality system as

discussed in sections 3.4 and 3.5. Therefore, the system mode is described with criticality in-

dicator Γ. The system starts in the LO mode (Γ = LO). The system switches to the HI mode

(Γ = HI) when a job of HI task in the system executes for its LO execution time without sig-

naling completion. In the proposed approach LO jobs are not discarded and their computation

time and execution frequency are not reduced, which in turn can cause an overload condition.

Although LO tasks in HI mode are not discarded, the schedulability definition for the whole

system (Definition 29) remains the same as in the common approaches to MC scheduling.

Definition 29. MC-schedulability. A task set is MC-schedulable if jobs of all tasks meet their

deadlines in LO mode and jobs of HI tasks meet their deadlines in HI mode.

Here, we allow LO jobs to miss their deadline in HI mode, i.e., they are treated as “soft

real-time” or non-critical tasks and they are scheduled in best effort fashion. When a job of LO

task τi misses its deadline in HI mode, it is dropped, i.e., skipped, and new job of task τi is

accepted. Note that as in the classical adaptive mixed-criticality approach in LO mode jobs of

all tasks, LO and HI, have to be executed to completion as it is stated in Definition 29.

Scheduling of LO jobs in HI mode is done using the scheduling policy S . The scheduling

policy S can be described with a priority function πi(t) which at each time instant t assigns

a priority to the active jobs in the system based on the current system state ξ (t). The system

state in this context at least includes a set of currently active jobs J = {Ji,J j,Jk, ...}, i.e.,

126



Method for task scheduling for improvement of quality of service in real-time mixed-criticality
systems based on genetic programming

ξ (t) = {J }. However, it can include any additional dynamical variables or parameters that

are needed for evaluation of the priority function. This will be clarified further later in this

chapter. Based on the current system state ξ (t), a priority function returns a single real value

for each active job in the system. Moreover, the lower the value of πi(t), the higher the priority

of the currently active job of task τi. Such a definition enables defining scheduling policies in a

relatively simple manner. For instance, the earliest deadline first (EDF) scheduling policy can

be described with πi(t) = di, i.e., the lower the deadline, the higher the priority. If two active

jobs have equal priority, e.g., πi(t) = π j(t), the priority of job, which is released earlier is higher.

If jobs are released at the same time instant and have equal priority, i.e., πi(t) = π j(t), i < j, job

of task with the lower index is higher, which in this case is τi. Note that throughout the chapter,

scheduling policies are referred to as heuristics or priority assignment functions.

5.3.2 Motivational problems

To better illustrate the problem and provide adequate motivation for the approach that is investi-

gated in this chapter, two small numerical examples are provided. In both examples, schedules

are constructed and observed for the synchronous arrival sequence of all tasks in HI mode, i.e.,

with regard to HI WCET of tasks. For clarity, the synchronous arrival sequence of a task set is

a sequence in which all tasks arrive with their minimum interarrival time, i.e., period [37]. Note

that instances in both examples are overloaded in a sense that it is not possible to schedule all

jobs of every task in the system. However, with an appropriate scheduling algorithm, schedu-

lability of HI tasks in the system can be guaranteed. Such an on-line scheduling algorithm at

some time instant can be described with two steps:

1. Schedule jobs of HI criticality tasks according to the EDF scheduling policy if they are

active.

2. Schedule jobs of LO criticality tasks according to scheduling policy S if no jobs of HI

criticality tasks are active.

Although the schedulability of LO criticality tasks cannot be guaranteed, scheduling policy S

has to reduce the total number of skips in the system.

Example 11. Consider the MC task set given in Table 5.1. The goal is to find a scheduling

policy which minimizes the total number of skips of LO criticality tasks in the hyperperiod of

the synchronous arrival sequence in HI mode of the input task set. Firstly, we can show that it

is not possible to schedule all jobs since the system is overloaded, i.e., U(HI)> 1:

U(HI) =
n

∑
i

Ci(HI)
Ti

=
2

10
+

4
6
+

1
5
≈ 1.07 (5.1)

Therefore, at the minimum at least one job has to be skipped. The first, i.e., a naive or an
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Figure 5.1: Low-criticality tasks scheduled according to the EDF scheduling policy for task set in Table
5.1.

intuitive, approach would be to choose the EDF scheduling policy for scheduling the instances,

i.e., jobs, of LO criticality tasks. Such a schedule is shown in Fig. 5.1. Note that LO jobs

are executed only when there are no active jobs of HI task τ2. Vertical arrows in scheduling

diagrams in Figs. 5.1-5.5 denote the periodic arrival of jobs.

Table 5.1: Task set parameters for Example 11.

Task Ci(LO) Ci(HI) Ti = Di Li

τ1 2 2 10 LO

τ2 2 4 6 HI

τ3 1 1 5 LO

If we count the skipped instances in Fig. 5.1, we see that 2 jobs are skipped, i.e., J11 and

J32, i.e., they did not execute to completion, which requires 2 and 1 time units, respectively.

The second approach is to try to find alternative scheduling policy, which would minimize the

number of skips. If we observe the available time carefully, we can see that if we schedule the

LO jobs according to their remaining execution time ci, we might be able to reduce the number

of skipped jobs. Indeed, such a schedule produced by the shortest remaining time first (SRTF)

scheduling policy is shown in Fig. 5.2. We can see that the number of skipped instances is

reduced to the minimum and that only one instance is skipped, i.e., J11.

In the latter example, we can see that by choosing the SRTF policy, we managed to reduce

the number of skips to the minimum. Naturally, it is unlikely that this is an optimal approach.

It is demonstrated that the SRTF policy is not optimal in the following example.

Example 12. Consider the MC task set given in Table 5.2. The goal is to find a scheduling

policy which minimizes the total number of skips of LO criticality tasks in the hyperperiod of

the synchronous arrival sequence in HI mode of the input task set. Firstly, we can show that it
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Figure 5.2: Low-criticality tasks scheduled according to the SRTF heuristic for task set in Table 5.1.

is not possible to schedule all jobs since the system is overloaded, i.e., U(HI)> 1:

U(HI) =
n

∑
i

Ci(HI)
Ti

=
2
10

+
1
15

+
4
5
≈ 1.07 (5.2)

Table 5.2: Task set parameters for Example 12.

Task Ci(LO) Ci(HI) Ti = Di Li

τ1 2 2 10 LO

τ2 1 1 15 LO

τ3 2 4 5 HI

Similarly as in the Example 11., we can apply the scheduling algorithms to the task set.

Obtained schedules for the EDF and the SRTF policy are depicted in Fig. 5.3 and Fig. 5.4,

respectively. We can see that both policies yield the same number of skips, i.e., the total of

2 skipped instances. In the case of the EDF policy, jobs J12 and J13 are skipped, and in the

case of the SRTF policy, J11 and J13 are skipped. At this point, it may not be trivial to point

to a priority function, i.e., scheduling policy, which would minimize the total number of skips.

However, consider this priority function for scheduling of LO jobs:

πi(t) = max
(

ci +di

di−∑
n
k=1|k ̸=i dk

,ci

)
(5.3)

The proposed method of acquiring this priority function will be explained later in the chapter.

Note that ∑
n
k=1|k ̸=i dk denotes the sum of remaining times to deadline of all LO jobs which are

currently active and which belong to tasks other than task τi. The schedule obtained using the

policy given with equation (5.3) is shown in Fig. 5.5. It can be seen that the total number of

skips using this policy is minimal, and that only one job is skipped, i.e., J12. Fig. 5.5 contains

values of the priority function given with equation (5.3) for LO tasks τ1 and τ2 at instants when
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Figure 5.3: Low-criticality tasks scheduled according to the EDF heuristic for task set in Table 5.2.
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Figure 5.4: Low-criticality tasks scheduled according to the SRTF heuristic for task set in Table 5.2.

HI task is not executing. For instance, the priority of τ1 at time instant 4 is calculated as:

π1(4) = max
(

2+6
6−11

,2
)
= 2 (5.4)

Note that the division is protected, i.e., if denominator is 0, we divide by 1.

The latter examples show that an optimal solution in terms of the total number of skipped

tasks may be obtained using an adequate priority function. Alternatively, an exhaustive algo-

rithm could be devised, which would find assignments of LO jobs to the available execution

time, i.e., the time when HI tasks are not executing. Although such an approach guarantees

optimality for each problem instance, it has several significant drawbacks:

∙ The usage of such an approach in runtime, i.e., on-line scheduling, is limited since the

computation time may be high. This makes the approach especially inapplicable in em-

bedded systems with limited computing power, which are mostly used in the implemen-

tation of safety-critical and mixed-criticality systems.

∙ The static scheduling table generated by an exhaustive approach is optimal only for the

given problem instance, i.e., task set.

∙ In case of MC task set, we would have to provide a scheduling table for any possible

overload sequence, and not only for the synchronous arrival sequence. Since the potential

number of overload sequences is generally very high as they can occur upon overrun of

any HI task, this makes such an approach highly inadequate.
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Figure 5.5: Low-criticality tasks scheduled according to the custom priority function given with equation
(5.3) for task set in Table 5.2.
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Figure 5.6: Genetic programming approach for design of heuristics for overloaded MC task sets.

∙ The size of the scheduling table grows exponentially with the hyperperiod which makes

this approach unusable for large hyperperiods.

On the other hand, if an adequate scheduling policy, i.e., heuristic, is chosen for a task set

or group of task sets during the design of the system, it may be used for different problem

instances with similar properties, and similarly for different overload scenarios. Moreover,

priority functions similar to the priority function of the EDF, i.e., πi(t) = di, or the SRTF, i.e.,

πi(t) = ci, or even a priority function given with equation (5.3) can be efficiently computed

during the runtime thus introducing the minimal overhead. Therefore, in the approach devised in

this chapter, heuristics are designed off-line during the design of the system, and these heuristic

can be efficiently implemented and used in an on-line approach, e.g., implemented as priority

functions in real-time operating system.

5.4 Genetic programming for evolving priority functions

This section contains description of the genetic programming approach that is used for design

of heuristics, i.e., priority functions, which are suitable for use in overloaded mixed-criticality

systems with skipping. The usage of genetic programming for evolution of scheduling heuristics
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is widely used in production scheduling [96]. In related literature, this approach was not used

for scheduling of overloaded real-time or mixed-criticality systems. Genetic programming is

a hyper-heuristic optimization approach [102]. Therefore, instead of searching the space of

solutions, i.e., particular schedule for a task set, hyper-heuristics search the space of heuristics

which, when adequately applied, generate schedules. A formal description of hyper-heuristic

search problem can be found in [103] (see chapter 6.2).

5.4.1 Optimization framework overview

The proposed approach is depicted in Fig. 5.6. Inputs of the optimization process shown on the

left-hand side in Fig. 5.6 are

∙ parameters of the genetic algorithm (GA) and parameters of the initial population,

∙ and training set of task sets.

The output of the optimization shown on the right-hand side in Fig. 5.6 is the best heuristic

found in the optimization process. When the optimization process is finished, the performance

of the best individual is evaluated on the validation set of task sets.

The optimization process consists of two distinct parts, i.e., a genetic algorithm and an eval-

uator. By applying the selection, crossover and mutation operators, genetic algorithm advances

the generation of the population based on the fitness of the individuals, which is assigned by

the evaluator. The evaluator itself defines the behavior of the system. More precisely, the

evaluator simulates the behavior of the input task sets for each scheduling heuristic, i.e., prior-

ity function, in the population. Moreover, the evaluator assigns fitness to each heuristic from

population based on its performance in the simulation. An important part of evaluator is the

meta-algorithm which defines the scheduling algorithm in the system. More precisely, it de-

fines how the heuristic, which is represented as an individual in the population, is applied in a

problem instance. An example of a meta-algorithm has been already presented in the motiva-

tional examples, which specifies that heuristic is used for determining the priority of LO jobs

when there are no HI jobs available. Similar, but more formal definition of the meta-algorithm,

will be provided in the next subsection.

5.4.2 Population and individual representation in genetic programming

A priority function πi(t) can be represented as a tree structure. Tree structures are commonly

used in solving problems using genetic programming including priority based scheduling [97].

Trees which represent heuristics, i.e., priority functions, consist of function and terminal nodes.

Terminal nodes correspond to leafs in a tree and represent static and dynamic information about

a job. Function nodes define operations over child nodes. Table 5.3 contains the description of

function and terminal nodes used in the proposed approach. Traversing a tree yields a number
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Table 5.3: The function and terminal node set

Function
name

Description

ADD,
SUB, MUL

addition, subtraction and multiplication of child nodes

DIV protected division (returns first argument if division by zero is detected)

MAX, MIN returns child node with larger or smaller value, respectively

POS returns positive value of the single child node

Terminal
name

Description

ci remaining execution time of active job of task τi

γi sum of remaining execution times of jobs of LO tasks other than τi

di remaining time to deadline of active job of task τi

δi sum of remaining times to deadline of jobs of LO tasks other than τi

si amount of time jobs of LO task τi were executing in HI mode in slack of HI
jobs (used slack)

gd
i demanded grade of service of task τi

gi(t) grade of service of task τi at time t

σi sum of grade of services of LO tasks other than task τi, i.e., ∑
n
j=1| j ̸=i g j(t)

which indicates a priority level of a job in the system. As mentioned before in this chapter, it is

assumed that a larger number, which is obtained by priority function, implies a lower priority.

For instance, Fig. 5.7a depicts the EDF policy. By traversing the tree in Fig. 5.7a we obtain

the equation pos(di) which evaluates to the remaining time to deadline of the active job of i-th

task in a system, i.e., larger the deadline lower is the priority level. An example of a more

complex tree structure is depicted in Fig. 5.7b. Note that tree shown in Fig. 5.7b corresponds

to priority function given with equation (5.3) that is used in Example 12.

5.4.3 Genetic algorithm

To evolve heuristics, the generic genetic algorithm, which employs the k-tournament selec-

tion, sub-tree swapping crossover and sub-tree mutation, is used. Sub-tree swapping crossover

operator randomly selects and swaps sub-trees of parent individuals. Sub-tree mutation oper-

ator replaces a randomly selected sub-tree with a new randomly generated sub-tree. As in the

common genetic programming approaches, the maximum number of nodes in a tree and the

maximum tree depth are limited before running the algorithm.
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POS

di

(a) EDF policy as a tree structure.

MAX

DIV
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ci di

SUB

di δi

ci

(b) Heuristic from Example 12 as a tree structure.

Figure 5.7: Representation of heuristics with trees

5.4.4 Synchronous MC task set simulator

To evaluate the performance of heuristics in the population, behavior of the synchronous MC

task set is simulated, i.e., tasks are released periodically with no initial offset. In simulation,

all tasks execute for the respective WCET depending on the system mode, i.e., tasks execute

for their LO WCET in LO mode, and their HI WCET in HI mode. By simulating execution of

jobs in HI mode for their respective HI WCET, overload scenarios are simulated. Moreover,

all possible HI scenarios are simulated, i.e., scenarios which occur upon a criticality switch

due to an overrun of HI task, up to the hyperperiod of the system. Note that if it is necessary

to find heuristics for task sets with probabilistic behavior, i.e., probabilistic WCET, only the

modification of this behavior in the simulator is needed without changes in genetic algorithm,

fitness functions, etc.

In simulation, it is necessary to keep track of system state ξ (t) for each HI mode scenario

which is simulated. As it is stated before, system state ξ (t) at least includes dynamical infor-

mation about jobs. In addition to this basic information, the system state includes terminal node

values which are specified in Table 5.3. These system state variables are used in formulation of

a priority function and fitness function, i.e., performance metric.

5.4.5 Scheduling meta-algorithm

In this chapter, the design of heuristics for preemptive dynamical scheduling on synchronous

uniprocessor MC platforms is investigated. The proposed scheduling approach consists of a

manually defined meta-algorithm depicted in Alg. 15 and scheduling heuristics, i.e., priority

functions, for LO jobs in HI mode (line 6 in Alg. 15). Scheduling algorithm is composed of

two parts, namely LO part (lines 1-2) and HI part (lines 3-6). The LO part of the algorithm

schedules all tasks in LO mode and guarantees fully operational behavior of the system, i.e.,

ensures that there are no deadline misses. The appropriate choice for a scheduling policy in
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Algorithm 15 Scheduling meta-algorithm
1: if system in LO mode then
2: schedule jobs using EDF w.r.t. LO deadlines
3: else if HI jobs available then
4: schedule HI jobs using EDF w.r.t. HI deadlines
5: else if LO jobs available then
6: schedule LO jobs using heuristic
7: end if

LO mode is the EDF policy with LO mode deadlines of HI tasks obtained by the greedy tuning

approach devised by Ekberg and Wang in [48]. As in the other EDF with virtual deadlines

approaches [104], the usage of virtually lower deadlines for HI tasks in LO mode significantly

increases the schedulability. The HI part of the algorithm, schedules jobs in HI mode in the

following manner: if there are active HI jobs in the job queue, schedule them using EDF policy

w.r.t. conservative (true) deadlines, otherwise schedule LO jobs according to the desired policy,

i.e., LO jobs are scheduled in slack time of HI jobs. This approach will not inflict on schedula-

bility and the schedulability test obtained by applying corrections to deadlines devised in [48]

is still sufficient. Moreover, Ekberg’s greedy approach is relatively efficient in terms of feasi-

bility [48]. As it is stated before, when the system is overloaded, LO jobs will not be able to

complete by their deadlines. Albeit deadlines are missed, the schedule is still viable and certain

performance metrics can be determined for LO tasks. Therefore, the goal is to find a heuristic

that will schedule LO jobs as best as possible with regard to the defined performance metric.

For instance, in examples 11 and 12, the performance metric is the total number of skipped LO

jobs.

5.4.6 Fitness functions

Generally, the choice of the fitness function depends on particular requirements of an applica-

tion. Moreover, quality of service itself depends highly on the nature of an application. There-

fore, potential fitness functions are lateness, tardiness, the number of skipped jobs, or similar

quality of service metrics. In this chapter, the grade of service (GoS) metric is used as a fitness

function. Grade of service is often used as a metric in telecommunication systems [94], where

it is defined as the ratio of the number of completed calls and the total number of calls. In this

research as in [94], GoS of a LO task is the ratio of the number of jobs completed by their dead-

line and the total number of job releases in some time interval. GoS of task τi at time instant t

can be defined as:

gi(t) =
number of releases−number of skips

number of releases
(5.5)
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Average GoS of a task set T can be defined as:

G(T ) =
1
M

M

∑
j=1

G(T HI
j ) (5.6)

where M is the number of different HI, i.e., overloaded scenarios. G(T HI
j ) is average grade of

service of the j-th overloaded scenario and can be defined as:

G(T HI
j ) =

1
n

n

∑
i=1|Li=LO

gi j(H) (5.7)

where gi j(H) is the grade of service of task τi for any given HI scenario T HI
j at the end of

hyperperiod H.

In many applications, maximizing grade of service, may not be of benefit especially if it is

known in advance that some functions have to execute with different level of GoS to satisfy user

requirements. Therefore, similarly as in [94], penalty pi(t) at time instant t for a LO task in a

set is introduced:

pi(t) = gd
i −min(gi(t),gd

i ) (5.8)

where gd
i denotes the minimal GoS level demanded by the i-th task in a task set. More precisely,

if the actual grade of service gi(t) is lower than the demanded grade of service gd
i , the penalty

equivalent to the difference of these values is introduced. The term min(gi(t),gd
i ) in the latter

equation ensures that penalty is non-negative. Average penalty, i.e., P(T ), of task set is defined

in a similar manner as average GoS, i.e., G(T ). More precisely:

P(T ) =
1
M

M

∑
j=1

P(T HI
j ) =

1
M

1
n

M

∑
j=1

n

∑
i=1|Li=LO

pi j(H) (5.9)

where pi j(H) is the penalty of task τi for any given HI scenario T HI
j at the end of hyperperiod

H. Average grade of service, i.e., G(T ), and average penalty, i.e., P(T ), are the fitness func-

tions. These metrics are used since it is easy to understand their relation to the performance of

the system. Note that for brevity, gi(t) and pi(t) are denoted as gi and pi.

5.4.7 Flexibility of the approach

A great benefit of the proposed approach on an architecture level is its flexibility, modularity and

automatism. This is especially important at the time of the system design. Consider a scenario

in which a system designer has to design a scheduling approach which would minimize the

total number of skips for LO tasks in a task set during the overload, i.e., HI scenario. In the

classical real-time system design approach, one would either try to find an optimal or suboptimal
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heuristic if possible, or an exhaustive search algorithm for a particular problem of minimizing

the number of skips. Although this may be an effective approach, its main disadvantage is that

it is potentially time consuming. Moreover, if the metric is changed from the total number

of skips to the average penalty as defined in the previous section, it is highly plausible that

devised heuristics and algorithms may not be applicable to those scenarios. However, with the

proposed genetic programming approach, a heuristic can be generated for an arbitrarily chosen

performance metric by changing only the fitness function in the evaluation and rerunning the

training process. Similarly, let us assume that there are multiple different system states or that

it is necessary to introduce acceptance tests for jobs, only the change in the scheduling meta-

algorithm is required followed by rerun of the optimization process. Moreover, by manipulating

the input, i.e., the training set of task sets, system designer can effectively custom-tailor the

priority functions for scenarios of interest. For instance, system designer may have the need to

provide a specific priority function which will only be used with a specific task set, thus having

only one task set in a training set. In a different use-case, system designer would have to provide

a more generic solution, using task sets with similar parameters as the training set. Using this

approach, an optimal heuristic in Example 12 was found. The task set specified in Table 5.2 was

used as the input, and the total number of skips as a fitness function. Moreover, the synchronous

arrival sequence of tasks in HI mode was simulated. This demonstrates that the approach can

be used for generation of optimal heuristics for specific problem instances. Similar approaches

for determining optimal heuristics have been studied in the literature [105].

5.5 Evaluation

In this section, the effectiveness of the approach in generating heuristics is demonstrated in the

context of maximizing the average grade of service defined with equation (5.6) and minimizing

the average penalty defined with (5.9). As mentioned before, for obtaining these results, only the

fitness function in the evaluation has to be modified. The performance of generated heuristics

is evaluated with regard to the utilization of task sets in HI mode (U(HI) = ∑
n
i

Ci(HI)
Ti

), the

number of tasks in the system (n), and the maximal allowed period (Tmax) of a task in a task

set. Additionally, two simple, but efficient, generated heuristics are dissected and explanation

for their effectiveness is provided with regard to their respective metrics.

5.5.1 Genetic algorithm parameters

In the process of evolving heuristics, the number of generations was limited to 15. The tree

depth was limited to 4, and consequently the number of nodes in a tree was limited to 24+1−1=

31 node. The maximum initial depth of the tree was set to 4. There were 100 individuals in
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population. Probability of mutation was set to 0.2. The size of the selection tournament was 3.

The justification for usage of these parameters is provided in section 5.5.6.

5.5.2 Task set generation

For evaluation of the proposed approach, task sets were generated using several established

methods for generation of utilizations and periods of task sets. First off, UUnifast algorithm [39]

was used for generation of utilizations similarly as in the previous chapters since it is often used

in measuring the performance of scheduling algorithms or schedulability tests in real-time sys-

tems. Generated utilizations correspond to the high-criticality utilizations, i.e., ui(HI) = Ci(HI)
Ti

,

for each task in a task set. Secondly, for generation of harmonic periods the backward search

approach from [64], which was discussed in the previous chapter was used. This method is

adequate since the systems of interest, i.e., mixed-criticality and safety-critical systems, often

employ harmonic periods due to the their beneficial properties such as predictability, schedula-

bility and stability [54, 63]. The harmonic period assignment method developed in [64] enables

generation of harmonic periods from period ranges, which is frequently needed in practice [62].

The method devised in this research was not used since additional parameters such as the dis-

tinct number of different period values do not have to be specified. Here, period ranges are

generated in the following manner:

1. Firstly, a random period value T r
i is chosen from the interval [Tmin,Tmax] with the uniform

distribution for each task in a task set, where Tmin and Tmax are the minimal and maximal

allowed period of any task in any task set.

2. Secondly, an interval
[

T r
i
2 ,T r

i

]
is formed from which a harmonic period is obtained using

the method from [64] for each task in a task set.

The resulting task sets have harmonic periods and a hyperperiod which is upper bounded by

the maximal allowed period in a task set, i.e., Tmax. The low-criticality execution time Ci(LO)

for each task set is obtained as
⌈

Ci(HI)
CF

⌉
, where CF is the constant equal for each task, which

is referred to as criticality factor and it is set to 2. The training and validation sets contain only

task sets that are schedulable according to Definition 29. Schedulability is tested using Ekberg’s

schedulability test [48]. When the Ekberg’s schedulability test is employed, LO deadlines of HI

tasks are corrected to smaller values as in similar EDF with virtual deadlines approaches. This

is important since in practice only feasible task sets are considered, i.e., task sets for which the

execution of HI tasks is guaranteed under overrun of a HI task in any scenario.

In each experiment, a certain parameter is varied, i.e., U(HI), n, or Tmax, to see the effective-

ness of the proposed method. For training, a smaller number of training task sets is generated

in contrast to a larger number of generated validation task sets in order to show that the learned

behavior is generalized. Separate experiments are run for each varied parameter. For each

parameter, the genetic programming is run 10 times and the average performance of the best
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individuals, i.e., heuristics, found in these consecutive runs is recorded. The default values of

these parameters which are used for generating the task sets are:

∙ high-criticality utilization U(HI) = 1.2,

∙ the number of tasks in a task set n = 10,

∙ the maximal allowed period Tmax = 500,

unless otherwise noted, i.e., unless the parameter is varied. Other task set parameters which

remain fixed throughout the experiments are:

∙ criticality ratio CP , i.e., the fraction of HI criticality tasks in a task set, CP = 0.5,

∙ demanded grade of service gd
i for each generated task, chosen from interval [0,1] with

uniform distribution.

5.5.3 Experimental results

In this section, the experimental results are shown and the devised method is compared to some

naive approaches and approaches that can be found in the literature [94]. It has already been

demonstrated in Example 12 that scheduling jobs of LO tasks in HI mode using the EDF or

SRTF heuristics is suboptimal and that these are in fact naive approaches. More complex

approaches for scheduling of non-critical jobs in an overloaded scenario that can be found in

the related work [94] are:

∙ LSUF - Least Slack Used First heuristic schedules the job of a task which used the least

amount of slack of HI tasks, i.e., si, at some time instant t.

∙ LGoSF - Lowest Grade of Service First schedules the job of a task with the lowest grade

of service, i.e., gi(t), at some time instant t.

∙ HPF - Highest Penalty First schedules the job of a task with the highest penalty, i.e.,

pi(t), at some time instant t.

The common property of all these approaches is that they are single variable based, i.e., they take

into consideration only one parameter or observed variable in the system to make a scheduling

decision, which can be a possible pitfall as it can be seen in examples 11 and 12. Generated

heuristics, on the other hand, use more information which may result in a better scheduling

decision or at least in a better sequence of scheduling decisions. In this section, the experimental

evidence for these claims is provided with regard to all varied parameters U(HI), n, and Tmax

for the average grade of service and average penalty as quality of service metrics.

First off, scheduling heuristics are evaluated with regard to the utilization U(HI) of the task

sets. In experiment, 10 different task sets are generated for each utilization in interval [1.05,1.4]

with 0.05 increment, which totals to (1.4−1.05
0.05 +1) ·10 = 80 task sets in a training set. Similarly,

completely new task sets are generated for validation, i.e., it is not allowed for task sets from

training set to be in the validation set. For validation, 1000 different task sets are generated for

each utilization in interval [1.05,1.4], which totals to 8000 different task sets, i.e., the validation
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set is 100 times larger than the training set. Fig. 5.8 shows the performance of all heuristics

on the validation sets with regard to average grade of service at the end of hyperperiod. Note

that GP-avg graph denotes the proposed genetic programming approach. As mentioned before,

it corresponds to the average performance of the best heuristics generated over 10 consecutive

runs of the genetic programming. It can be seen that the heuristics generated using the approach

dominate other heuristic in terms of average grade of service of LO tasks in all overloaded sce-

narios. In the next subsection, the architecture of a single heuristic found in the experiments that

dominates the greedy SRTF approach is discussed, and a brief explanation for the dominance

is provided. The performance of that single heuristic is denoted with GP-GoS. Note that mul-

tiple heuristics were found that dominated the SRTF heuristic, but this specific heuristic was

chosen due to its over-the-average performance, simplicity, and interpretability. It is interesting

to notice that the LSUF heuristic yields slightly higher average grade of service than the EDF
heuristic for higher utilization values, but still worse than the SRTF and evolved heuristics.

To obtain results shown in Fig. 5.9, the experiment is repeated using the average penalty

as a fitness function. Similarly as before, the average performance of the heuristics, denoted

with GP-avg, which is now generated for a different fitness function, i.e., penalty, dominates

other approaches for scheduling LO jobs in HI mode. It can be seen that in this case, the SRTF
policy performs worse than in case of maximizing grade of service. This is mainly due to the

fact that minimizing the penalty and maximizing the grade of service are essentially different

requirements. By scheduling the job with the shortest remaining time, the policy is biased to

increase the grade of service of short jobs, thus starving the tasks with longer execution time

or high grade of service demand, but maintaining high average grade of service. In contrast, it

is obvious that such an approach is not efficient when different grade of service is required for

each task, and in such a scenario evolved heuristics perform better. Moreover, in both cases,

the best heuristics are found using the proposed genetic programming approach. Similarly, as

in the case of the average grade of service, the GP-Pen graph represents the performance of the

penalty minimizing heuristic, which is presented in the next subsection. Among all heuristics

that are found that dominate the SRTF policy, this heuristic was chosen due to its performance

and interpretability. In addition, it can be seen that the other evaluated heuristics, i.e., HPF,

LGOSF, LSUF, perform slightly better than the EDF but significantly worse than the SRTF
and evolved heuristics with regard to average penalty.

Note that in both cases, the increase in utilization decreases the grade of service and in-

creases the average penalty, which is an expected behavior since the higher utilization corre-

sponds to the higher overload in the system.

The performance of heuristics with regard to the different number of tasks in a task set is an-

alyzed hereafter. Similarly as before, task sets are generated for each integer n in interval [5,15]

which totals to (15−5
1 +1) ·10 = 110 task sets for the training process and (15−5

1 +1) ·1000 =
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Figure 5.8: Average GoS for different HI mode utilization factors

11000 for the validation. The utilization of task sets in HI was set to 1.2, which makes the

observed task sets overloaded. Fig. 5.10 shows the average grade of service of heuristics with

regard to the different number of tasks in a task set. Similarly as before, the generated heuristics

on average (denoted with GP-avg) and the heuristic GP-GoS achieve the best performance in

comparison with other scheduling policies. After rerunning the training process with the aver-

age penalty as the fitness function, new results were obtained that are depicted in Fig. 5.11. The

results show that, once again, the best performance is achieved by using the scheduling policies

obtained by the proposed genetic programming approach. When other scheduling policies are

observed, it can be seen that LSUF performs slightly better than other heuristics in terms of

average grade of service, and HPF performs slightly better than other heuristics in terms of

average penalty.

Note that increase in the number of tasks in a task set causes a slight increase in grade of

service and decrease in the average penalty. This due to the fact that in larger task sets that are

generated, there are more jobs of low-criticality tasks, which can be successfully executed.

Finally, the performance of the approach is evaluated with regard to the different values of

maximum allowed period in a task set. For training, the total of 100 task sets with maximum

allowed period Tmax = 500 was generated. For validation, 100 task sets were generated for

each maximum value of period Tmax in interval [500,5000] with 500 increment which totals to

(5000−500
500 + 1) · 1000 = 10000 task sets. Figs. 5.12-5.13 show that even when the maximum
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Figure 5.9: Average penalty for different HI mode utilization factors

allowed period is varied, the generated heuristics generalize well and perform better than the

other approaches regardless of which quality of service metric is being used.

Generally, if the performance of the proposed approach is compared to the performance of

the best single variable based heuristic, i.e., the SRTF, it can be seen that the relative increase in

the grade of service achieved by the proposed approach is somewhat smaller than the decrease

in the penalty. This is acceptable since the penalty is a metric that is more likely to be used in

practice. However, for both performance metrics we find the best heuristics using the proposed

approach. On the other hand, it can be seen the SRTF heuristic performs worse when the per-

formance metric is changed. In addition, it is interesting to see that the wrong choice of single

variable based heuristic can significantly degrade the performance of the system. For instance,

if the EDF heuristic is chosen in a system in which the goal is to minimize the average penalty,

the performance is degraded up to 10% in comparison with the proposed approach as it can be

seen in Fig. 5.9. Moreover, in Fig. 5.8 the proposed approach yields heuristics which can im-

prove performance up to 15% with regard to other single variable based heuristics. Note that in

a general case, i.e., for an arbitrary performance metric, without thorough and time-consuming

analysis, we do not know which heuristic has to be used. As it is demonstrated, the proposed

approach can discover efficient heuristics for different objectives, i.e., fitness functions.
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Figure 5.10: Average GoS for different number of tasks in the system

5.5.4 Dissecting the best heuristics

To better illustrate the inner workings of generated heuristics, the architecture of two heuris-

tics is discussed. Namely, GoS maximizing heuristic, i.e., GP-GoS, and penalty minimizing

heuristic, i.e., GP-Pen, shown as trees in Figs. 5.14-5.15, that we generated in the experiments.

These heuristics dominate other naive scheduling policies in terms of the respective average

performance metrics. Although they are not always the best choice tha was found, i.e., there are

more complex priority functions with slightly better performance, they are dissected here due

to their simplicity, efficiency, and interpretability.

The corresponding priority function πi(t) of the heuristic shown in Fig. 5.14 can be ex-

pressed as:

πi(t) = max(ci,di)+σi +min
(

di

γi
,σi

)
(5.10)

This priority function can be viewed as an approach that is greedier than the SRTF approach

since it increases the priority of jobs which are more likely to increase the overall grade of

service. The first term in the equation, i.e., max(ci,di), will decrease priority of jobs with long

remaining execution time ci or a large time to deadline di. Moreover, in the case when the time

to deadline is smaller than its execution time, the priority is decreased since the max function

yields the bigger value, i.e., the execution time. This behavior can be viewed as a rudimentary

acceptance test, i.e., it decreases the priority of jobs such that ci > di. Adding σi, i.e., the sum of

grade of service of other jobs will decrease the priority of jobs when there are jobs with larger
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Figure 5.11: Average penalty for different number of tasks in the system

cumulative grade of service in the queue. For instance, if there are two jobs ready for execution

which variables differ only in σi, the job with higher grade of service shall be executed, i.e.,

the corresponding σi is lower for the task with higher grade of service, and therefore its priority

is higher. The last term in the equation is min function which can yield either σi or di
γi

. There

are two cases in which the term di
γi

is yielded by the expression. Either the deadline, i.e., di is

low, or the remaining execution time of other jobs, i.e., γi is high. This, again, is a greedy rule

which will favor jobs with the short time to deadline or short execution time. Alternatively,

min function can return σi, which has a similar effect as described above. We can see that the

generated heuristic exploits additional information about the system, and does not focus on a

single observed parameter or variable. In this case, unlike the SRTF policy that uses only the

remaining execution time ci for priority assignment, the generated heuristic uses information

about the remaining time to deadline di, the remaining execution time of other jobs γi, and the

grade of service of other jobs σi.

Similarly, in the case of minimizing penalty, a simple generated heuristic shown in Fig.

5.15, i.e., GP-Pen, dominates the best single parameter policy, i.e, the SRTF, as it can be seen

in Figs. 5.9, 5.11, 5.13. The corresponding priority function can be expressed as:

πi(t) =
max(ci,di)

gd
i

(5.11)

An obvious pitfall of the SRTF heuristic is that it always chooses the job of a task with the
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Figure 5.12: Average GoS for different values of the maximum allowed period

lowest remaining execution time. In a scenario in which a task with the shortest remaining

execution time has met its grade of service demand, its execution will not decrease penalty.

Moreover, its execution will prevent execution of other tasks which did not meet its demanded

grade of service, which causes increase in the average penalty. The generated heuristic rep-

resented with equation (5.11) takes into consideration the demanded grade of service gd
i . As

it can be seen in (5.11), the lower the demanded grade of service the lower the priority of τi

since gd
i ∈ [0,1]. In (5.11), the term max(ci,di) is used similarly as in the case of the grade of

service maximizing heuristic given with (5.10). This further improves the performance since

the information about remaining time to deadline di is utilized as well.

5.5.5 Runtime performance of the genetic programming

As it is demonstrated in the latter subsections, priority level of a job is obtained in constant

time by traversing a tree or evaluating the corresponding equation, which makes the generated

heuristics suitable for implementation and on-line usage in embedded systems. Since priority

function of scheduling heuristics can be effectively computed in constant time, we do not in-

vestigate their timing performance. Note that in practice, i.e., in real-time operating systems,

the priority of jobs is computed upon every invocation of scheduler which typically occurs on a

millisecond timescale, and the computation time of the priority functions that are evolved using

the proposed approach is much smaller. For instance, five operations are needed for implemen-
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Figure 5.13: Average penalty for different values of the maximum allowed period

tation of the priority function GP-GoS. Moreover, for a full tree with the depth 4, 24 +1 = 17

operations are needed for the implementation.

On the other hand, the optimization procedure that is used off-line to generate heuristics

is computationally intensive. Even though this is an off-line approach, it is important to show

that the optimization procedure, i.e., genetic programming, is relatively efficient in terms of

runtime for the systems of interest. This is important in the real-world applications since the

system designer has to be able to rerun the training process repeatedly after changing the train-

ing set, the fitness function or the meta-algorithm in the procedure. Here, the runtime results

are presented and discussed with regard to the number of tasks in a task set n, and the maximum

period Tmax, since these task set parameters influence the genetic programming runtime. Other

task set generation parameters are set to their default values as specified in the end of section

5.5.2 and there were 100 task sets in the training set. Regarding the runtime measurements, it

is worth noting that the in the experiments the Evolutionary Computation Framework (ECF)

(current version available in [106]) which is written in C++ is used for implementation of the

genetic programming optimization procedure. Moreover, implementations of the evaluator and

meta-algorithm were written in C++, and each component was compiled with the highest speed

optimization, i.e., O3. Additionally, the specifications of the computing platform are given in

Table 4.1 in the previous chapter.

Fig. 5.16 shows the dependency of the average runtime per advancement of a single gen-

eration to the number of tasks in a task set. The most of the time for advancing the generation
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Figure 5.14: An example of an efficient heuristic (GP-GoS) found for maximizing average grade of
service.
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Figure 5.15: An example of an efficient heuristic (GP-Pen) found for minimizing average penalty.

is spent on the evaluation of the population, i.e., in simulation of the mixed-criticality system.

It can be seen that the advancement of a single generation for the training set of 100 task sets

comprised of 10 tasks takes approximately 6 seconds, which totals to 1 minute and 30 seconds

when the number of generations is limited to 15. This is a reasonable off-line runtime. A larger

growth in the runtime can be noticed when increasing the maximum allowed period as shown

in Fig. 5.17. This is expected behavior since increasing the maximum period, and consequently

the hyperperiod, increases the simulation time exponentially. Note that since the learned behav-

ior generalizes well as it is shown in the experimental evaluation, task sets with lower number

of tasks n and maximum period Tmax can be used for discovering of efficient heuristics, which

can reduce the training time if necessary.

5.5.6 The choice of genetic programming parameters

The choice of genetic programming parameters is important for obtaining adequate solutions,

i.e., scheduling heuristics, with generalized behavior that yields good results in terms of a qual-

ity of service metric for different task sets or overload scenarios. To justify the choice of genetic
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Figure 5.17: Influence of the maximum allowed period of task in a task set (Tmax) on average runtime of
a single generation.

programming parameters used in the previous section, the influence of the crucial parameters

important for the efficiency of the approach is explored. As in the similar genetic programming

approaches [97, 107, 108], the following parameters are identified as critical to runtime and the

performance of the approach:

∙ the number of generations that is a stopping criterion for the optimization is initially set

to 30,

∙ the genotype size, i.e., tree depth, initially set to 14,

∙ the population size initially set to 150,

∙ the training set size initially set to 200.

The task set generation parameters in experiments are set to their default values as specified in

the end of section 5.5.2.

Figs. 5.18-5.21 show the average fitness functions values, i.e., grade of service and penalty,

of the best individuals found in 10 consecutive experiments with regard to the observed genetic
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Figure 5.18: Influence of the number of generations on fitness.

programming parameter. In experiments, all parameters remained fixed except the parameter

that was tuned. The tuning process was started with tuning the number of generations, and

ended with tuning of the training set size.

Firstly, the number of generations was studied. In Fig. 5.18 it can be seen that the fitness

functions do not drastically change after approximately 15 generations, and therefore the num-

ber of generations in experiments was set to 15 as a trade-off between the runtime and the fitness

of the solution. Note that this number of generations is somewhat smaller but still on the same

order of magnitude as in the literature [97, 107, 108]. Smaller number of generations indicates

that terminal and function nodes have been chosen correctly and that initial random populations

were a good starting point for the evolution.

Secondly, the influence of the maximum tree depth on performance of the approach was

studied. In Fig. 5.19, it can be seen that larger tree depths, i.e., greater than 4, do not increase

the fitness significantly. This is beneficial for the use cases of interest since smaller trees are

preferred to larger trees due to the requirements for implementation in embedded systems, i.e.,

efficiency of priority function computation. Note that heuristics with zero tree depth correspond

to the best single variable based heuristics, i.e., the SRTF.

Thirdly, the population size was studied. In Fig. 5.20, it can be seen that the increase in

population size causes the increase in average grade of service, and similarly the decrease of

average penalty. Although larger population sizes produce better fitness, a population size of

100 was chosen for experiments as a trade-off between the runtime of genetic programming and

fitness of the solution.

Finally, the training set size was tuned. In Fig. 5.21, we see the performance of the best

individuals, i.e., heuristics, on the validation set of size 10000. Note that this is a completely

new validation set generated for study of the influence of the training set size on the fitness, i.e.,

it is different than validation sets used in section 5.5.3. It can be seen that for training set sizes
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Figure 5.19: Influence of the tree depth on fitness.

20 40 60 80 100 120 140
0.694

0.695

0.696

0.697

0.698

0.699

Population size

Av
er

ag
e

G
oS

20 40 60 80 100 120 140
0.117

0.118

0.119

0.120

0.121

0.122

Av
er

ag
e

pe
na

lty

G(T ) P(T )

Figure 5.20: Influence of the population size on fitness.

larger than 50, the fitness of the validation set, which is much larger, does not drastically change.

Furthermore, this is confirmed in the previous experiments in section 5.5.3 where training sets

with approximately 100 task sets were used, and validation sets that were 100 times larger.

The relatively small number of task sets that are required for the evolution of the generalized

behavior may be connected to the large number of overload scenarios which are generated by a

single task set. As it was mentioned before, in the simulation of a task set execution, overloaded

scenarios are generated upon every possible criticality switch, i.e, any time a HI task depletes

its allocated execution time without signaling completion.
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Figure 5.21: Influence of the training set size on fitness.
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Figure 5.22: Genetic programming approach for design of heuristics for overloaded MC task sets with
multiple objectives.

5.6 Optimizing heuristics for multiple objectives

An issue with the aforementioned genetic programming technique is the usage of a single fitness

function in the design of the heuristic. In the previous section, it was explained how the usage of

average grade of service as a fitness function makes the SRTF heuristic efficient. However, the

grade of service of tasks with long execution time will be decreased since the SRTF heuristic

prefers jobs with the shortest remaining execution time, and consequently the lower WCET.

To resolve this issue, a multi-objective optimization approach is needed, which enables adding

the fairness as the second objective in the optimization. Since the entire proposed optimization

framework is modular, minimal changes are necessary to modify the approach. The revised

framework is depicted in Fig. 5.22. Note that in comparison with Fig. 5.6, only the genetic

algorithm is changed and an additional fitness for the population is added.

As it can be seen in Fig. 5.22, the genetic algorithm used for the multi-objective optimiza-

tion is non-dominated sorting genetic algorithm (NSGA-II) introduced in [109]. The NSGA-II

algorithm is frequently used as a means for stochastic multi-objective optimization in a lot of

domains [110] including the genetic programming for evolving dispatching rules for scheduling

problems [111, 112]. For completeness and clarity, a brief clarification of the inner workings of

the algorithm, which is depicted in Alg. 18, is provided in the following subsection.

5.6.1 Non-dominated sorting algorithm (NSGA-II)

The NSGA-II algorithm introduced in [109] is based on the fast non-dominated sorting ap-

proach which makes it efficient in comparison with similar approaches. Additional reason for

the long-term popularity of the algorithm is its elitism and the efficient parameter-less procedure

for maintaining the diversity based on the crowding-distance computation.

Prior to illustrating the mechanism of the algorithm, some basic notation has to be intro-
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duced:

∙ Pt denotes the current population at t-th generation,

∙ Qt denotes the offspring population at t-th generation,

∙ the population Pt consists of individuals denoted with Ii,

∙ the individuals are sorted into sets that are typically called fronts F ,

∙ the vector ~f contains M different fitness functions that are optimized, N denotes the num-

ber of individuals in the population.

Non-dominated sorting. Non-dominated sorting is a procedure for sorting a population

into a different non-domination levels. The dominance itself can be defined as follows.

Definition 30. Dominance. An individual Ii dominates the other individual I j if the following

conditions are true:

fk(Ii)≥ fk(I j),∀k ∈ [1, ...,M]

fk(Ii)> fk(I j),∃k ∈ [1, ...,M]
(5.12)

In other words, Ii dominates I j if it is not worse than I j for any objective, and Ii performs better

with regard to at least one objective. For clarity, note that in the context of multi-objective

optimization individuals correspond to the solution of the problem. Formally, the domination of

Ii over I j is denoted as Ii ⪯ I j.

The time complexity of the naive algorithm for sorting the population into the non-dominated

sets is in O(MN3). Such an approach requires at least MN2 comparisons for creating a front,

i.e., MN3 steps to create N fronts. The authors in [109] proposed an algorithm for fast non-

dominated sorting with better time complexity, i.e., O(MN2). This algorithm is depicted in

Alg. 16. The fast non-dominated sorting algorithm is used in the implementation of the NSGA-

II algorithm depicted in Alg. 18 in line 7. In the first part of the algorithm, the sets Sp of

individuals which are dominated by individual p are determined. In addition, each individual is

assigned a domination count, which tracks the number of individuals that dominate it. Based on

these sets and the domination count in the second part of the algorithm, the fronts are generated

iteratively.
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Algorithm 16 Fast non-dominated sorting
Input: P - population

Output: F - non-dominated sets

1: for each p ∈ P do
2: Sp← /0

3: np← 0

4: for each q ∈ P do
5: if p≺ q then
6: Sp = Sp∪{q}
7: else if q≺ p then
8: np← np +1

9: end if
10: end for
11: if np = 0 then
12: prank← 1

13: F1 = F1∪{p}
14: end if
15: end for
16: i← 1

17: while Fi ̸= /0 do
18: Q← /0

19: for each p ∈Fi do
20: for each q ∈ Sp do
21: nq = nq−1

22: if nq = 0 then
23: qrank← i+1

24: Q← Q∪{q}
25: end if
26: end for
27: end for
28: i← i+1

29: Fi← Q

30: end while
31: return F

Crowding distance assignment. Apart from the sorting algorithm, the authors in [109]

introduced the algorithm for crowding distance calculation which is depicted in Alg. 17. The
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crowding distance formula is implemented in line 7 of the algorithm. As it can be seen, the

crowding distance of the individual Ii corresponds to the normalized sum of distances between

the two individuals, the previous solution Ii−1 and the next solution Ii+1 for each objective m.

To get a better intuition about the crowding distance, observe Fig. 5.23. The crowding distance

of individual Ii corresponds to the average side length of the rectangle denoted with dashed line

[109]. Using this algorithm we can differentiate between the solutions in the same front and

preserve solutions with larger crowding distances.

f1

f 2

F1
F2

0

l

i−1

i

i+1

cuboid

Figure 5.23: Representation of crowding-distance calculation in bi-objective case. Points denote solu-
tions belonging to the same front. The figure is inspired by Fig. 1 in [109].

Algorithm 17 Crowding distance assignment
Input: I - non-dominated

Output: F - non-dominated set with assigned crowding distance values

1: l = |I|
2: Ii← 0,∀i
3: for each objective m do
4: I←= sort(I,m) . sort I w.r.t. objective m

5: Idistance
1 ← Idistance

l ← ∞

6: for i = 2 to (l−1) do
7: Idistance

i ← Idistance
i + Ii+1.m−Ii−1.m

f max
m − f min

m

8: end for
9: end for

NSGA-II algorithm. The complete NSGA-II algorithm is shown in Alg. 18. Briefly,

the algorithm operates in the following manner with regard to t − th generation. First off, it

sorts the current population and the offspring population in non-dominated sets F . The next
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generation Pt+1 is created from the obtained sets in line 11. When a front, i.e., non-dominated

set, cannot entirely fit in the new population, it takes N−|Pt+1| individuals sorted according to

the crowded-comparison ≺n operator, which is defined as follows.

Definition 31. Crowded-comparison operator. Crowded-comparison creates a partial order

≺n between individuals p and q such that:

prank < qrank∨ (prank = qrank∧ pdistance > qdistance) =⇒ p≺n q (5.13)

In other words, the better solution has the lower rank, and between two solutions with the same

rank, better solution has the lower crowding distance.

When population Pt+1 is generated, a new population Qt+1 is created using selection, crossover

and mutation operators. Note that the employed selection operators should use the crowded-

comparison operator in the selection process. In the subsequent iteration, the entire previous

population is included in the sorting, which ensures elitism.

Algorithm 18 NSGA-II algorithm
1: t← 0

2: generate initial population P0

3: sort P0 based on non-domination

4: create a new population Q0 using selection, crossover and mutation operators

5: while termination condition not reached do
6: Rt ← Pt ∪Qt

7: F = f ast_non_dominated_sort(Rt)

8: Pt+1←= /0, i = 1

9: while |Pt+1|+ |Fi| ≤ N do
10: crowding_distance_assignment (Fi)

11: Pt+1 = Pt+1∪Fi

12: i← i+1

13: end while
14: sort(Fi,≺n) - sort according to the ≺n operator

15: Pt+1 = Pt+1∪Fi[1 : (N−|Pt+1|)]
16: create a new population Qt+1 using selection, crossover and mutation operators

17: t← t +1

18: end while
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5.6.2 Introduction of fairness as an objective

In the previous evaluation results, it could be seen that in some cases trivial scheduling rules

such as the SRTF yielded good results in a sense of average grade of service. However, it is

obvious that when the SRTF heuristic is used, the scheduler will be biased towards scheduling

the short jobs, leaving no execution time for the long jobs. Although this will improve overall

average grade of service or reduce the average penalty, this is probably not a desired behavior,

and fairness has to be enforced to ensure that all jobs are executed at least a portion of the

available time.

Formally, the Gini coefficient is introduced as an additional objective in the system. The

Gini coefficient is often used in economics as a measure of statistical dispersion intended to

represent the income inequality or wealth inequality within a nation or any other group of people

[113]. From a mathematical standpoint, the Gini coefficient is half of the relative mean absolute

difference, which is the mean absolute difference divided by the arithmetic mean. Formally, for

an observed set of values X = {x1, ...,xn} this can be expressed as:

G =
∑

n
i=1 ∑

n
j=1 |xi− x j|

2n2X̄
(5.14)

where X̄ = 1
n ∑

n
i xi, i.e., the arithmetic mean. When the resources in the system are equally

distributed, i.e., the mean absolute difference is equal to zero, then the Gini coefficient G is also

equal to zero G = 0. In the opposite extreme case, i.e., all the resources are assigned to a single

part of the system, which is in this research a task, the Gini coefficient is equal to G = 1− 1
n .

This means that in practice, the goal is to minimize the Gini coefficient since this will ensure

fair share of the available execution time for all tasks. However, ensuring the fair share of the

execution time is not enough since generally it is not acceptable to create a scenario in which

all tasks perform equally bad. Therefore, in a lot of situations we ought to optimize the average

of the target performance metric and its Gini coefficient.

Gini coefficient was chosen as a fairness metric, i.e., a measure of dispersion in a task set,

due the following reasons:

∙ Gini coefficient was used as a fairness metric in similar mixed-criticality research [94].

∙ In comparison with measures such as standard deviation, Gini coefficient is scale inde-

pendent, while standard deviation, unless scaled, preserves the original units [114].

∙ In comparison with standard deviation, Gini coefficient is bounded, i.e., G ∈ [0,1], thus

providing an instant insight into the fairness of the observed system [114].
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5.6.3 Evaluation results for multi-objective optimization

In this section, the results of the multi-objective optimization are presented. So far, in the

experiments, two performance metrics were observed, grade of service and penalty. From now

on, the focus will be on penalty since it is more likely to be used in real-world problems as

it is argued before. More precisely, using the multi-objective optimization approach presented

earlier in this section, the average penalty and its Gini coefficient shall be optimized, which

should ensure that the overall average penalty is minimal and that generated heuristics are not

biased to discard any task. The approach is evaluated in a similar manner as in section 5.5.3, i.e.,

with regard to U(LO), n, and Tmax. The function and terminal nodes as well as the optimization

parameters, i.e., the number of generations, the population size, the tree depth, and the training

set size are the same as in the single-objective approach.

Firstly, the evaluation with regard to the utilization is observed. Figs. 5.24-5.25 show the

average performance of the multi-objective genetic programming denoted with MOGP-avg
acquired in 10 consecutive runs as well as the approaches discussed in the previous experimental

results. Note that this is solution with the minimal penalty, and other Pareto optimal solutions

are discussed afterwards. In Fig. 5.24, it can be seen that the penalty performance is not

significantly improved when the multi-objective approach is employed. The multi-objective

approach did not reduce the penalty more than the single-objective approach. However, when

the Gini coefficient is observed in Fig. 5.25, it can be seen that on average multi-objective

approach yields solutions with increased fairness, i.e., reduced Gini coefficient. Note that the

SRTF approach performs worse with regard to both metrics. As mentioned before, the SRTF
heuristic is an extremely unfair policy due to the bias for short jobs. In addition, it is interesting

to notice that the GP-Pen heuristic performs better in terms of fairness, but slightly worse in

terms of penalty. This is a general effect which can be observed for all Pareto optimal solutions,

which are yielded by the multi-objective approach.

In Figs. 5.26-5.28, this effect is demonstrated in detail. In Fig. 5.28, the performance

of Pareto optimal solutions from the last run of the experiment is shown. These solutions are

yielded by the multi-objective approach, i.e., NSGA-II algorithm, and all of these solutions have

the same rank, i.e., they belong to the same non-dominated set. Therefore, these solutions can

be considered “equally good”. It is interesting to notice how minimizing the average penalty

on x-axis decreases the fairness, i.e., increases the Gini coefficient, on y-axis. This is further

illustrated in Figs. 5.26-5.27, where a few Pareto optimal solutions from the last run of the

experiment are shown, namely MOGP-X where X designates the position, i.e., index, of the

solution in the population. The first solution, i.e., MOGP-1 in the population yields the minimal

penalty and the last solution, i.e., MOGP-100 yields the maximal fairness since at the end of

the optimization procedure a single front remains. An interesting observation is that MOGP-30
solution performs slightly worse in terms of penalty, but significantly better in terms of fairness.
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This is important since it enables flexibility in the system design by leveraging the trade-off

between the fairness and the penalty. Moreover, note that generally MOGP-30 performs better

than the SRTF in most cases in terms of penalty, but it is significantly better in terms of fairness.

In general case, we cannot know which metric is more important for the specific application,

but the multi-objective approach allows that the choice of heuristic is done in a straightforward

manner. It is important to note that with the solution with higher fairness tasks will perform

“equally good”, but since the penalty for these solutions is significantly reduced, a more appro-

priate description for their performance is “equally bad”. Again, this can be easily resolved in

the design of specific application.

Generally, it can be observed that the Gini coefficient is relatively high. This is probably the

consequence of lack of sufficiently large interval of slack time, which is needed for execution

of longer low-criticality jobs. Therefore, since longer low-criticality jobs are rarely executed,

fairness is decreased.
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Figure 5.24: Average penalty for different HI mode utilization factors.

In Figs. 5.29-5.32, when varying the number of tasks and maximum allowed period in the

system, we can see similar observations about the multi-objective approach as in the previous

experiments. Thus, average penalty is not reduced, and the fairness is somewhat increased as

it can be seen in Fig. 5.32. Similarly as before, the fairness can be tuned by choosing an

appropriate solution from the set of non-dominated solutions with the same rank.
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Figure 5.25: Gini coefficient for different HI mode utilization factors.
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Figure 5.26: Average penalty for different HI mode utilization factors including several Pareto optimal
solutions.
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Figure 5.27: Gini coefficient for different HI mode utilization factors including several Pareto optimal
solutions.
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Figure 5.28: Pareto optimal solutions with regard to average penalty and Gini coefficients.
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Figure 5.29: Average penalty for different number of tasks in a task set.
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Figure 5.30: Gini coefficient for different number of tasks in a task set.
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Figure 5.31: Average penalty for different maximum allowed period.
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Figure 5.32: Gini coefficient for different maximum allowed period.
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5.7 Acceptance tests on job release

Another significant drawback of the approaches in the latter sections is that in the scheduling

meta-algorithm, priorities are assigned to each active job. However, it is possible that a job with

the highest assigned priority cannot be feasibly scheduled. Therefore, a reasonable approach is

to utilize an acceptance test prior to calculating the priorities of low-criticality tasks. To achieve

this, it is necessary to change the scheduling meta-algorithm. The modified scheduling meta-

algorithm is depicted in Alg. 19. A simple acceptance test, which can be used can be based

Algorithm 19 Scheduling meta-algorithm with acceptance test
1: if system in LO mode then
2: schedule jobs using EDF w.r.t. LO deadlines
3: else if system in HI mode then
4: if LO job is released then
5: add job to queue if it passes acceptance test
6: end if
7: if HI jobs available then
8: schedule HI jobs using EDF w.r.t. HI deadlines
9: else if LO jobs available then

10: schedule LO jobs using heuristic
11: end if
12: end if

on the remaining execution time ci and the time to deadline di. We know that job such that

ci > di cannot be successfully executed. Moreover, executing such a job would only waste the

processor time for jobs that can be successfully executed. However, there is a possibility that

all jobs pass such a test. Therefore, the goal is to find a more suitable acceptance test, which

would minimize the wasted processor time. In general case, an effective acceptance test could

be determined using the same approach that is used for determining the scheduling heuristic.

However, there are several possible approaches for doing this. Using the approach from the

latter sections, the priority function can be fixed in scheduling meta-algorithm, and the heuristic

for accepting and discarding jobs can be optimized. The evolved tree, i.e., heuristic, is not used

for calculating the priority of a job. The value that the heuristic yields is compared to a fixed

value, and the obtained boolean value represents the decision, i.e., true if the job is accepted,

and false otherwise. Formally, this can be stated as follows:

ai(t) =

1,αi(t)> 0

0,otherwise
(5.15)

where ai(t) represents the decision value of the acceptance test represented with the acceptance

function αi(t). In the following numerical example, it is illustrated how such an approach can
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improve the behavior of the system.

Example 13. Consider the MC task set given in Table 5.4. The goal is to find an acceptance

function αi(t) which minimizes the total number of skips of LO criticality tasks in the hyperpe-

riod of the synchronous arrival sequence in HI mode of the input task set with the EDF used for

priority assignment, i.e., the priority function is πi(t) = di. Firstly, it can be shown that it is not

possible to schedule all jobs since the system is overloaded, i.e., U(HI)> 1:

U(HI) =
n

∑
i

Ci(HI)
Ti

=
4
5
+

4
10

+
3

20
≈ 1.35 (5.16)

Table 5.4: Task set parameters for Example 13.

Task Ci(LO) Ci(HI) Ti = Di Li

τ1 2 4 5 1

τ2 4 4 10 0

τ3 3 3 20 0

In Fig. 5.33, a schedule without the acceptance test is shown. It can be seen that 3 jobs are

skipped, i.e., J21, J22, and J31 since they did not finish their execution before the deadline. By

introducing the acceptance function given with:

αi(t) = di−δi (5.17)

the total number of skips can be reduced as it can be seen in Fig. 5.34. The acceptance function

causes the acceptance of tasks for which the time to deadline is larger or equal to remaining

time to deadline of other tasks. In this particular case, this causes the skip on release of job

J21 since d2 < d3. This ensures that enough slack time can be used for execution of J31, which

is successfully executed. Thus, only two jobs are skipped, i.e., J21, J22, which is the minimum

since there is not enough slack time for execution of jobs of task τ2. In addition, note that when

there is no acceptance test, all available slack time is wasted. On the other hand, when the

acceptance test is used, only one time unit is wasted for execution, which is spent for execution

of J23.

The possible issue with evolving the acceptance test only is that the priority heuristic that is

used in the scheduling meta-algorithm is not compatible with the evolved acceptance test and

may cause poor overall performance of the scheduling policy. An alternative approach includes

simultaneous evolution of both the priority function, i.e., πi(t) and the acceptance function, i.e.,
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Figure 5.33: Low-criticality tasks scheduled according to the EDF heuristic for task set in Table 5.4.

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Figure 5.34: Low-criticality tasks scheduled according to the EDF scheduling policy for task set in Table
5.4 with acceptance function given with (5.17).

αi(t). An approach that is often used in the literature for the simultaneous evolution of two or

more different populations is known as cooperative co-evolution. The cooperative co-evolution

mechanism was firstly introduced in work of Potter and De Jong [115] for function minimiza-

tion, and a brief survey can be found in [116]. The cooperative co-evolution is used in the similar

research for evolving dispatching rules in various scheduling environments [112, 117, 118]. For

completeness and clarity, the mechanism of cooperative co-evolution optimization algorithm is

discussed in the next subsection.

5.7.1 Cooperative co-evolution

Artificial cooperative co-evolution is an evolutionary approach that is inspired from the interac-

tion of different species in nature. Species in nature often interact in several different ways:

∙ competing for the same resources, e.g., food or water,

∙ cooperating for solving the specific problem, e.g., the reproduction of plants is often

performed by means of various species of insects.

Cooperation mechanism can be usefully simulated in an artificial environment, which allows us

to combine individuals from different populations to a single complete solution of a problem. To

solve problems using the cooperative approach, problems are divided in smaller complementary

components. To each component of the problem, i.e., subproblem, typically a single population

is assigned. By appropriate choice of the collaborators from each population, the complete
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solution is obtained. The complete solution then can be evaluated and assigned appropriate

fitness.

The generic algorithm for cooperative co-evolution is depicted in Alg. 20 (based on the al-

gorithm in [116]). The algorithm starts in a classical genetic algorithm manner, i.e., initializing

population. In this case, multiple populations are initialized. This is followed by the evaluation

of the individuals by choosing collaborators from the other species for each individual. In the

t-th generation, genetic operators are applied and the created offspring population is evaluated.

Using the previous population and the newly generated offspring population, the next genera-

tion is created. Although in this pseudocode, a simple usage of genetic operators is presented,

in a general case, any genetic algorithm procedure can be employed as long as its operators

are applied to individuals in each species, and collaborators are chosen for evaluation of every

individual.

Algorithm 20 Cooperative co-evolution
1: t← 0

2: for each species s do
3: randomly initialize population Ps(t)

4: end for
5: for each species s do
6: evaluate Ps(t) by choosing collaborators from the other species for each individual

7: end for
8: while termination condition not reached do
9: for each species s do

10: select parents from Ps(t)

11: apply genetic operators

12: evaluate the offspring population by choosing collaborators for each individual

13: select survivors for Ps(t +1)

14: end for
15: t← t +1

16: end while

In the implementation in this research, collaborators are chosen in a straightforward manner.

In every step of the algorithm, the choice of collaborators is fixed, i.e., the individuals with the

same index from the first and the second species are chosen. Therefore, this can be viewed as

the evolution of a single individual with two different trees in genotype. The first tree is used for

obtaining the priority level, and the second tree for testing a job for acceptance. The function

and terminal nodes as well as the optimization parameters, i.e., the number of generations, the

population size, the tree depth, and the training set size are the same as in the single-objective
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and multi-objective approaches discussed in the previous sections.

5.7.2 Measuring the impact of the acceptance test

As it is mentioned before, the acceptance test should reduce the amount time that the scheduler

assigns to tasks that will end up not executed by their deadline, thus wasting the processor time.

A simple metric that can track the misuse of the available execution time can be defined as:

w =
total available execution time− time used for successful job execution

total available execution time
(5.18)

A metric e = 1−w, which is complementary to this metric is similar to the effective processor

utilization, which measures that amount time that was spent for the successful execution of jobs

[84, 85].

5.7.3 Evaluation results for scheduling with acceptance tests

In this section, experimental results of the acceptance-test based approaches are presented. This

includes the approach with standalone acceptance tests and the approach with cooperative co-

evolution. So far, in the experiments, two aspects of the performance were observed, the average

penalty and its Gini coefficient. Additionally, in the following evaluation, the wasted processing

time is observed as well. Therefore, apart from introducing the acceptance test in the meta-

algorithm, when using the multi-objective approach the penalty and the wasted processing time

are optimized rather than the Gini coefficient. Thus, we study the following configurations:

∙ single-objective optimization of priority function (SO),

∙ single-objective optimization of acceptance function with GP-Pen as priority function

(SOATO),

∙ single-objective optimization with cooperative co-evolution of priority function and ac-

ceptance test (SOAT),

∙ multi-objective optimization of priority function (MO),

∙ multi-objective optimization with cooperative co-evolution of priority function and ac-

ceptance test (MOAT).

As it is argued before, minimal modifications in optimization framework depicted in Figs. 5.6-

5.22 are necessary to evaluate all of these configurations. Similarly as in previous experiments,

approaches are evaluated with regard to U(HI), n, and Tmax.

Firstly, the performance of the approaches with regard to varying utilization U(HI) can be

observed in Figs. 5.35-5.37. It can be seen that the MOGP approach with no acceptance test

performs slightly better than other approaches in terms of all metrics, i.e., penalty, fairness and

wasted processing time. Note that the graph denoted as GP-Pen/SOATO corresponds to the
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heuristic GP-Pen with and without acceptance test, i.e., optimization of the acceptance test did

not introduce any improvement and the performance corresponds to the performance of the GP-
Pen heuristic when all jobs are accepted. Since this configuration did not yield any new results,

it is not investigated further in the evaluation. Furthermore, it can be seen that introduction of the

acceptance tests did not introduce any significant improvements for any of the proposed metrics

on average. Moreover, the performance of the approaches with acceptance test is slightly worse

with regard to all metrics. Although this is contrary to the initial expectations, it is in fact a

reasonable behavior. There are two crucial cases that are identified that drastically influenced

configurations with acceptance tests, namely:

1. The evolved acceptance test function αi(t) in the most of the studied solutions is always

positive.

2. When the evolved acceptance test function αi(t) is mostly negative, a large amount of

jobs is discarded.

In the first case, when the evolved acceptance test function is positive, the configuration is

equivalent to the configuration without acceptance tests since all jobs are accepted. Thus, only

additional overhead is introduced in the evolution process since two populations have to be

evolved. In the second case, when the acceptance test function is mostly negative, jobs are

discarded although it is possible that they could be executed to completion, which consequently

increases the penalty. Therefore, it seems that it is better to allow all jobs to be executed rather

than discard job to reduce wasted processing time.

In Figs. 5.38-5.40, it can be noticed that solutions with different penalty and wasted pro-

cessing time that belong to the same non-dominated set can be chosen. In practice, depending

on the application specification, system designer can choose appropriate solution from the re-

sulting non-dominated set. In addition, we can see that the introduction of the acceptance tests

in MOATGP configuration does not bring any significant improvements in comparison with

MOGP configuration.

In Figs. 5.41-5.43 it can be seen that there is no significant difference between the perfor-

mance of the proposed configurations with regard to the number of tasks n. Similarly, there

is no difference in the performance between the approaches when the maximal allowed period

Tmax is varied as it can be seen in Figs. 5.44-5.46.
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Figure 5.35: Average penalty for different HI mode utilization factors.

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

HI mode task set utilization

G
in

ic
oe

ffi
ci

en
t

SOGP-avg SOATGP-avg
MOGP-avg MOATGP-avg
GP-Pen/SOATO SRTF
HPF

Figure 5.36: Gini penalty for different HI mode utilization factors.
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Figure 5.37: Wasted processing time for different HI mode utilization factors.
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Figure 5.38: Average penalty for different HI mode utilization factors including several Pareto optimal
solutions.
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Figure 5.39: Wasted processing time for different HI mode utilization factors including several Pareto
optimal solutions.
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Figure 5.40: Pareto optimal solutions with regard to average penalty and wasted processing time.
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Figure 5.41: Average penalty for different number of tasks in a task set.
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Figure 5.42: Gini coefficient for different number of tasks in a task set.
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Figure 5.43: Wasted processing time for different number of tasks in a task set.

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

0.12

0.13

0.14

0.15

0.16

Maximum allowed period (Tmax)

Av
er

ag
e

pe
na

lty

SOGP-avg SOATGP-avg
MOGP-avg MOATGP-avg
SRTF HPF

Figure 5.44: Average penalty for different maximum allowed period.

174



Method for task scheduling for improvement of quality of service in real-time mixed-criticality
systems based on genetic programming

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

0.5

0.51

0.52

0.53

0.54

0.55

0.56

Maximum allowed period (Tmax)

G
in

ic
oe

ffi
ci

en
t

SOGP-avg SOATGP-avg
MOGP-avg MOATGP-avg
SRTF HPF

Figure 5.45: Gini coefficient for different maximum allowed period.
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Figure 5.46: Wasted processing time for different maximum allowed period.
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5.8 Designing operating parameters for real-time operating

system with partitioned scheduler

In chapter 4, task periods were identified as crucial operating parameters, which have to be

determined in safety-critical control applications. In addition, in this chapter, the generation

of heuristic for low-criticality tasks for maximizing the quality of service in adaptive mixed-

criticality systems is addressed. These two configurations are not compatible, however the

methods can be used for simultaneous design of the mixed-criticality system with the parti-

tioned scheduler that is depicted in Fig. 2.5b. This can be especially useful when simple

operating system and computing platforms are used. For instance, consider a system which has

a partitioned scheduler S , which schedules the tasks in the following manner:

1. Schedule safety-critical tasks according to rate-monotonic scheduler SRM if there are

safety-critical tasks to be executed.

2. Schedule non-critical tasks in slack time of safety-critical task using the heuristic sched-

uler SH .

The design of operating parameters, i.e., task periods, in the first part of the system can be

performed using the harmonic period assignment method proposed in chapter 4. Assigning

harmonic periods will ensure the schedulability for any desired utilization of the processor

lower than 1. Moreover, using the method, the amount of time which is left for the execution

non-critical tasks that are executed in the slack time using the heuristic scheduler SH can be

regulated. When the periods are optimized, the approach proposed in this chapter can be used

for obtaining the adequate heuristic for scheduling of tasks. Note that the scheduling procedure

described above, once again corresponds to the scheduling meta-algorithm, i.e., it describes the

system operation. An example of operating system, which has a scheduling meta-algorithm

as described above, is KONČAR Grap operating system [76]. In Grap, safety-critical tasks

must have harmonic periods and they are scheduled by rate-monotonic scheduler. In addition,

Grap implements the background scheduler, which executes non-critical or low-criticality tasks,

when there are no active safety-critical tasks. In the following example, it is briefly illustrated

how these two methods can be used in practice simultaneously.

Example 14. Consider the MC task set given in Table 5.5. The first goal is to determine periods

of safety-critical tasks from period ranges given with pmin
i and pmax

i such that at maximum

4 different periods are used and utilization has to be less or equal to 0.8, leaving 20% of

processor time for execution of LO tasks. This is easily accomplished using the PE+OTA as

presented in example in section 4.9.5. Obtained period values are shown in bold in Table 5.5

in column Ti = Di. In addition, goal is to find a scheduling policy that minimizes the number of

skips of LO tasks in the hyperperiod of execution. This can be done in similar manner as it was

demonstrated before by exploiting the devised genetic programming approach. Again, note that
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the system is overloaded:

U =
n

∑
i

Ci

Ti
=

1
5
+

1
15

+
1

15
+

5
15

+
3

30
+

2
60

+
2

15
+

1
30

+
5

60
+

2
60
≈ 1.08 (5.19)

Table 5.5: Task set parameters for Example 14.

Task Ci pmin
i pmax

i Ti = Di Li

τ1 1 2 6 5 HI/SIL4

τ2 1 6 17 15 HI/SIL4

τ3 1 8 26 15 HI/SIL4

τ4 5 11 34 15 HI/SIL4

τ5 3 16 51 30 HI/SIL4

τ6 2 33 108 60 HI/SIL4

τ7 2 − − 15 LO/SIL0

τ8 1 − − 30 LO/SIL0

τ9 5 − − 60 LO/SIL0

τ10 2 − − 60 LO/SIL0

In Figs. 5.47-5.48, schedule according to the EDF and the SRTF heuristic is shown. It can

be seen that 3 jobs are skipped in both cases, i.e., J71, J74, J82 for the EDF, and J71, J73, J91

for the SRTF, since they did not finish their execution before the deadline. By introducing the

priority function given with:

πi(t) =
di

γi
(5.20)

the total number of skips can be reduced to 2 as it can be seen in Fig. 5.49 where jobs J71 and

J91 are skipped.

These two methods enable design of a partitioned system in a way that both parts of the

system can be optimized. Firstly, the optimal periods are chosen for the safety-critical part of

the system which ensure schedulability and high quality of service of the critical tasks in a sense

of the frequency of safety-critical tasks execution, i.e., the utilization is maximized. Secondly, a

scheduling heuristic is chosen for scheduling of non-critical tasks, which optimizes the quality

of service that corresponds to the total number of skips of non-critical tasks.
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Figure 5.47: Low-criticality tasks scheduled according to the EDF heuristic for task set in Table 5.5.
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Figure 5.48: Low-criticality tasks scheduled according to the SRTF heuristic for task set in Table 5.5.
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Figure 5.49: Low-criticality tasks scheduled according to the scheduling policy given with (5.20) for
task set in Table 5.5.

5.9 Chapter summary

In this chapter, a genetic programming method was devised, which can be used to evolve

scheduling heuristics that can mitigate the effects of overload in mixed-criticality systems by

increasing the custom performance metric of low-criticality tasks. It was shown that the devised

genetic programming approach in the context of mixed-criticality embedded system design has

several significant advantages in comparison to the exhaustive optimal approaches that are of-

ten computationally demanding since the observed scheduling problem is likely to be NP-hard.

The great benefits of the approach are automatism and flexibility, which allow independent and

straightforward customization of scheduling environment, scheduling meta-algorithm and per-

formance metrics for low-criticality tasks. Moreover, scheduling heuristics that are designed

off-line can be efficiently implemented and computed, which makes them suitable for on-line

implementation in mixed-criticality embedded systems which often have limited computing

power. In this chapter, the effectiveness of the approach was demonstrated in generating heuris-

tics for dynamically scheduled synchronous mixed-criticality systems which employ job skip-

ping as technique of mitigating overload. Based on the experimental evaluation, it is concluded

that generated heuristics can optimize custom performance metrics such as average grade of

service or average penalty of low-criticality tasks in high-criticality mode. Moreover, gener-

ated heuristics show better performance than the other heuristics and naive approaches in the

literature. Furthermore, it was demonstrated that these heuristics acquire generality in the train-

ing process, which makes them reusable for scheduling in different overload scenarios and

for different task sets. In addition, the possibility of usage of the multi-objective optimization

approach based on NSGA-II algorithm was studied as well as evolving acceptance test using
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cooperative evolution. These approaches show slight improvement over the single objective ap-

proach in some scenarios. Moreover, it was demonstrated how the method can be used in com-

bination with the period assignment method devised in chapter 4 for design of mixed-criticality

system with partitioned scheduler.
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Chapter 6

Conclusion

In this research various aspects of real-time mixed-criticality systems were investigated in order

to provide new methods for analysis and design of real-time mixed-criticality systems. In this

chapter the concluding remarks of the research will be systematically stated. In contrast to

summary at the end of each chapter, the high-level conclusion with regard to the hypotheses

and the contributions stated in the introduction will be provided.

6.1 The goal of the research and hypotheses revisited

The goal of the proposed research was to provide methods for improving schedulability and

quality of service in real-time mixed-criticality systems.

The main hypotheses of the research were the following:

1. Schedulability tests for fixed-priority adaptive mixed-criticality system model can be im-

proved.

2. Existing harmonic period assignment approaches can be improved by imposing additional

constraints on a system design.

3. Heuristics generated using genetic programming can be used in mixed-criticality systems

to increase the quality of service of non-critical tasks.

Each hypothesis implies that there is an optimization method for schedulability or quality of

service in design of real-time mixed-criticality system. Therefore, the focus of this research

was on providing these methods as scientific contribution.

6.2 Research results

In chapter 3, the sufficient schedulability test for adaptive mixed-criticality system was de-

vised. It was devised by making the existing analysis more precise and reducing both the low-
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criticality and high-criticality interference. It was shown that the test dominates other sufficient

schedulability tests, such as AMC-max, AMC-rtb, SMC and SMC-NO in terms of admittance

of schedulability, and that it dominates exact schedulability tests in terms of runtime perfor-

mance and time complexity. The dominance was demonstrated theoretically, on simple numer-

ical examples, and with the evaluation on the large number of synthetically generated task sets.

Moreover, a framework for schedulability testing which enables the reproducibility of results

was developed. Using the framework, errors and inconsistencies in the existing exact schedu-

lability test for fixed-priority adaptive mixed-criticality systems were discovered and corrected.

These corrections were validated and verified with examples and extensive evaluation.

In chapter 4, the method for harmonic periods assignment with distinct number of different

period values was devised to address the problems encountered in safety-critical system design.

The new harmonic period assignment problem referred to UDHPA and AUDHPA were formu-

lated and analyzed. These problems were shown to be more flexible than the existing UDHPA

problem since they have the constraints on the different number of distinct period values and

allow arbitrary utilization. The existing approaches that are based on forward and backward

search of harmonic projections were shown to be inadequate in instances of these problems,

and therefore in this research a novel optimal harmonic period assignment was devised. Us-

ing the extensive evaluation on synthetically generated task sets, it was shown that the devised

method performs better than other approaches from the literature in terms of the total resulting

utilization, schedulability and usability in systems with constraints on different number of pe-

riod values. The method enables optimization of periods in systems with arbitrary utilization as

well, unlike the other methods in the literature.

In chapter 5, the method for generating heuristics using the genetic programming for schedul-

ing of non-critical or low-criticality tasks in mixed-criticality system for improving the quality

of service was devised. It was shown that the usage of genetic programming for generation

of priority functions increases the performance of non-critical or low-criticality tasks with re-

gard to certain performance metrics. Moreover, a great benefit of the proposed approach is

that these heuristics, i.e., priority functions, can be easily employed in the real-time operating

systems due to effectively constant time complexity. Furthermore, the devised framework is

modular due to the independence of the definition of the scheduling problem through different

scheduling meta-algorithms and the optimization, i.e., genetic algorithm. Therefore, various

configurations of the method were tested. It was shown that usage of this method enabled gen-

erating heuristics which perform better than single-variable based heuristics that can be found

in the literature. This was verified on a small numerical example, as well as on the extensive

evaluation on the large number of synthetically generated task sets.
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6.3 Future work

There are few possible directions for the future work based on this research, such as:

∙ weakly hard real-time systems,

∙ genetic programming in overloaded weakly hard-real time systems,

∙ investigation of harmonic period assignment methods,

∙ investigation of harmonic adaptive mixed-criticality systems.

The area of mixed-criticality systems is tightly coupled with the area of weakly hard real-

time systems where the hard real-time and soft real-time constraints are not modeled in terms

of criticality. Moreover, there is a lot of ongoing research that attempts to extend the weakly

hard real-time models to mixed-criticality and vice-versa with the aim of further increasing the

expressiveness and usability of the models.

As shown in the research, genetic programming is a useful method for generating heuristics

in different system configurations. Although the research was focused only on the scheduling

problems with timing constraints, it is possible to employ this method in systems with energy

constraints as well.

The area of the harmonic period assignment is especially important in safety-critical sys-

tems. In this research the period enumeration algorithm was introduced which can find any

possible m-tuple of period values such that their product is less than some upper bound value.

In analytic number theory, a similar problem exists and it is known as Piltz divisor problem. In

future work, the connection between these problems shall be investigated.

Finally, a possible research direction is in the domain of the adaptive mixed-criticality sys-

tems with harmonic periods. It is possible that adding the harmonic period constraints in the

system can significantly reduce the complexity of the analysis and increase the schedulability

in fixed-priority systems.

6.4 Final thoughts

Three methods for optimization of schedulability and quality of service in real-time mixed-

criticality systems were devised as the part of this research, and each method addresses a partic-

ular problem within the specific system configuration. Since the increase of different embedded

computing platforms and possible system configurations is nowadays somewhat overwhelm-

ing, the need for research of methods encompassed by this disseration is obvious. This was

well highlighted and emphasized in the introductory motivation for this research. Although the

methods devised in this thesis are tailored to suit system models of interest, i.e., models for real-

time safety-critical and mixed-criticality systems, they have a great potential to be extended and

reapplied for possible alternative models. Starting with the extensible framework for static and
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adaptive mixed-criticality schedulability testing in chapter 3, to deep insights about enumer-

ating m-tuples of harmonic values in chapter 4 and to modular and modifiable framework for

generation of heuristics using the genetic programming in chapter 5. The advances in all of the

aforementioned areas are certainly needed and lot of future research can certainly be conducted

to extend the findings of this thesis.

On the other hand, one can pose a question whether such research is really needed. From

a practical point of view the most of well-established scheduling algorithms commonly used

in industrial real-time systems and especially in safety-critical systems, have been already de-

vised in early real-time research days in 1970s and 1980s. For instance, the rate-monotonic

and the earliest deadline first scheduling algorithms are overwhelmingly used in safety-critical

systems. More advanced models, that were introduced in last 40 years, are used in systems in

a proportion that is significantly smaller than the formerly mentioned algorithms. Additionally,

it is well known that for a specific product, e.g., safety-critical embedded computer in rail-

way, engineers dictate which implementation of software shall be used. The answer to “which

approach to use” is predominantly, and for a good reason, the simplest approach available.

Therefore, not the ideal or a more efficient, but the simplest and one that is proven to work.

Although more efficient and better approaches exist, they will be pragmatically discarded due

to cost-efficiency, backward compatibility etc. In the context of safety-critical systems, the time

consuming process of system certification further influences engineers to take the simplest pos-

sible implementations. Although in majority of cases the novel methods and algorithms shall

not be implemented, in a substantial minority some methods will certainly be extensively used

and they will replace the less efficient variants. For instance in context of this thesis, one can

refer to the method for sufficient schedulability testing of periodic adaptive mixed-criticality

system that, in comparison with exhaustive test, significantly reduces the computation time.

Similarly, the method for period assignment devised in this research is efficient in a sense of

time complexity and increases degrees of freedom in the system design. Hence, although the

research impact on industrial practices is not extensive it can be used in particular systems of

interest.

There are two additional observations in regard to the relevance of this and similar re-

searches. First off, a lot of devised techniques and gained insights cannot be immediately

reused in practice but they gain relevance in the same or similar research areas over the time.

Secondly, the relevance can sometimes be mitigated due to the significant increase in publishing

of research papers which can lead to a loss of the central premises in the field in some papers.

In the context of this research and this particular field, the latter phenomenon can be noticed.

As argued in the introductory part, this phenomenon is detachment from the initial notion of

criticality that is found in the safety standards, which is primarily linked to a system safety as-

sessment process and following a guidelines provided by a specific safety standards in system
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design. On the other hand, a large portion of the research devised in academia is primarily

linked to the notion of epistemic uncertainty with regard to the knowledge of the worst-case ex-

ecution time of tasks as discussed in the introduction. This misconception has sometimes led to

research results that are in the end inapplicable in practice. Nevertheless, as mentioned before,

a lot of concepts introduced in this and similar researches are vital to the better understanding

of the processes in safety-critical systems, mixed-criticality systems, embedded systems, etc.

In that regard, this research attempts to provide a theoretical basis, in form of methods

and algorithms, which can be used in development of tools for design and analysis of real-

time mixed-criticality systems. In order to enable easier utilization of this research, a lot of

small numerical examples have been provided. On the other hand, from purely theoretical

perspective, research provides a lot of useful observations about the nature of the observed

systems such as the schedulability bounds, the maximum number of different period values in

a certain range, and existence of optimal heuristics for certain problem instances. Although

some of these conclusions may not be applicable directly in practical engineering problems

or industrial context, they tell us about the boundaries of the behavior of the system. The

knowledge of the boundaries for any particular system is crucial for the efficient system design.

As Harry Callahan once said: "A man’s got to know his limitations.".
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