
Efficient facial expression recognition using decision
trees and neural networks

Gogić, Ivan

Doctoral thesis / Disertacija

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet 
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:882946

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-08-25

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of 
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:882946
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:7442
https://dabar.srce.hr/islandora/object/fer:7442


FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Ivan Gogić
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Abstract

This thesis investigates a facial expression recognition system that estimates the emotional state

of subjects from facial images. Such systems demand accurate and fast algorithms that can

run in real-time on platforms with limited computational resources. The proposed algorithms

bridge the gap between precise but slow methods and fast but less precise methods, combining

decision trees and neural networks. The gentle boost decision trees are trained to extract highly

discriminative feature vectors for each facial expression around distinct facial landmark points.

These sparse binary features are concatenated to jointly optimize facial expression predictions

with a shallow neural network architecture. The joint optimization improves the recognition

rates of difficult expressions such as fear and sadness. Since the algorithm depends on accurate

landmark locations, a novel face alignment method is introduced using gradient boost decision

trees and neural networks organized in a cascaded regression framework. The cascade is ini-

tialized by a lightweight convolutional neural network to increase robustness while preserving

high efficiency. The thesis begins with an introduction to the problem and the motivation for

solving it, followed by an explanation of the theoretical background and a systematic overview

of related, previous work. Next, novel algorithms for face alignment and facial expression

recognition are described and evaluated on relevant public data sets. The results demonstrate

high efficiency and competitive accuracy compared to the state-of-the-art methods suitable for

power-efficient applications. The final chapter provides concluding remarks of the thesis.

Keywords: decision trees, neural networks, convolutional neural networks, facial expres-

sion recognition, face alignment



Prošireni sažetak

Učinkovito raspoznavanje izraza lica primjenom stabala od-

lučivanja i neuronskih mreža

Doktorski rad podijeljen je u šest poglavlja. Prvo poglavlje donosi uvod u temu raspoznavanja

izraza lica i povezanu temu detekcije ključnih točaka lica, motivaciju za rješavanje tih problema

te opisuje glavne primjene u industriji. U istom poglavlju navedeni su i najvažniji doprinosi

doktorskog rada. U drugom poglavlju kratko su opisane metode strojnog učenja korištene u

ostatku doktorskog rada. Treće poglavlje pruža sistematski pregled dosadašnjeg rada na po-

dručjima detekcije ključnih točaka i raspoznavanja izraza lica. Četvrto i peto poglavlje opisuju

nove metode za detekciju karakterističnih točaka lica i raspoznavanje izraza lica te dobivene

rezultate. Šesto i posljednje poglavlje donosi glavne zaključke doktorskog rada. Više detalja

slijedi u nastavku.

Prvo poglavlje – Uvod

Opažanje vidom jedan je od najbitnijih načina kojim ljudi doživljavaju svijet oko sebe. U glob-

alnim naporima postizanja umjetne inteligencije, važan je korak omogućiti računalima opažanje

i doživljavanje okoline kroz istraživanje u području računalnog vida. Tradicionalne tehnike

obrade slike korištene su za uobičajene probleme detekcije i prepoznavanja predmeta u slici.

Med̄utim, nedavno su se počeli primjenjivati algoritmi strojnog učenja u zadacima računalnog

vida sa porastom dostupnosti podataka i naporima ručnog označavanja. Strojno učenje proširilo

se poljem računalnog vida iskorištavajući ubrzani napredak dubokog učenja i konvolucijskih

neuronskih mreža.

Jedan od najzanimljivijih objekata ljudima i računalima za analizu je ljudsko lice. Mnogo

izazovnih zadataka računalnog vida vezanih uz lice predstavljeno je tokom godina istraživanja

uključujući detekciju i praćenje lica, raspoznavanje identiteta, dobi, spola i osjećaja. Ovaj rad

usredotočen je na raspoznavanje osjećaja ili, točnije, izraza lica iz slike. Ekman i Friesen pre-

cizno su utvrdili kategorije izraza lica neovisnih o kulturi i podrijetlu. Iako postoje drugačije

definicije osjećaja, u ovom radu koristimo šest osnovnih koji se najčešće koriste u zajednici
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računalnog vida: ljutnja, gad̄enje, strah, sreća, tuga i iznenad̄enost.

Važan korak pri točnom i učinkovitom raspoznavanju izraza lica je detekcija ključnih točaka

lica (omed̄uju oči, nos, usta, obrve, bradu i rub lica) iz slike uz poznati položaj i veličinu lica.

Takve točke opisuju oblik lica te su predstavljene vektorom 2D koordinata. Algoritmi strojnog

učenja koriste se za rješavanje ovog problema koji se proučava i u ovom radu jer je sastavni dio

sustava za raspoznavanje izraza lica.

Raspoznavanje izraza lica jedan je od osnovnih izazova polja afektivnog računarstva sa

mogućim primjenama u sljedećim područjima (med̄u ostalima): industrija zabave i računalnih

igara, istraživanje u oglašavanju, usluge maloprodaje, psihologija, robotika. Uvelike se iščekuje

skora promjena načina suradnje s računalima uz korištenje afektivnih aplikacija no još uvijek je

izazovno izgraditi takve sustave. Raspoznavanje izraza lica ključni je dio takvih sustava zbog

velikog udjela neverbalnog izražavanja u ljudskoj komunikaciji. Upravo zbog toga, istraživačka

zajednica uložila je velike napore u razvoj metoda za raspoznavanje izraza iz slika i videa.

Med̄utim, problem je vrlo izazovan prvenstveno zbog kompleksnosti koju uvodi kultur-

ološka i individualna raznolikost uz različite uvjete snimanja (položaj lica, osvjetljenje, prekrivenost

lica). Uz širenje mobilnih i drugih pametnih ured̄aja niske energetske potrošnje u sklopu in-

terneta stvari, učinkovitost algoritama računalnog vida postaje dodatna važna mjera kvalitete.

Dakle, postoji potreba za učinkovitim i točnim algoritmima.

Nedavno je pokazano da značajke izlučene u okolini ključnih točaka lica značajno dopri-

nose točnosti klasifikacije. Izvlačenje značajki iz lokalnih regija bitnih područja lica pomaže

smanjenju velikog bazena mogućih značajki te usredotočavanju algoritma na diskriminativna

područja lica. Zato je bitno točno odrediti položaj ključnih točaka lica koje se često koriste kao

osnova i za druge algoritme. Odred̄ivanje oblika lica nužno je za raspoznavanje identiteta osobe

jer se koristi kao korak predobrade kako bi se lice registriralo i podesilo uklanjajući time rotacije

u ravnini slike te pružajući dosljedne isječke lica za daljnju obradu. Položaji ključnih točaka

lica koriste se i kao osnovna komponenta za procjenu 3D poze glave. Samostalno se primjen-

juje u raznim aplikacijama kao što su video konferencijski pozivi, računalne igre, animacije i

proširena stvarnost.

U ovom radu istražuje se učinkovita kombinacija stabala odlučivanja i neuronskih mreža sa

primjenom na usko povezane zadatke detekcije ključnih točaka lica i raspoznavanja izraza lica.

Ukratko, glavni doprinosi rada su sljedeći:

∙ Metoda za klasifikaciju ili regresiju na temelju slike koja sjedinjuje neuronske mreže

sa skupovima stabala odlučivanja za izlučivanje značajki koji su sposobni kroz učenje

prilagoditi se problemu.

∙ Primjena predložene metode na problem raspoznavanja izraza lica uz poboljšanje u vre-

menu izvod̄enja za red veličine u odnosu na dosadašnje istraživanje.

∙ Metoda kaskadne regresije za izlučivanje značajki lica koja kombinira konvolucijske neu-
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ronske mreže za globalnu inicijalizaciju značajki sa lokalnim binarnim značajkama za

fino podešavanje, a koja metoda postiže visoku točnost uz malo vrijeme izvod̄enja.

Drugo poglavlje – Teorijske osnove

Metode strojnog učenja postale su osnovni alat za rješavanje problema računalnog vida. Glavni

cilj procesa strojnog učenja je proizvesti algoritam sposoban riješiti odred̄eni zadatak bez tradi-

cionalnog programiranja. Za to su potrebni podaci kako bi se izveo matematički model kroz

optimizaciju kriterijske funkcije koja predstavlja cilj zadatka. Metode strojnog učenja mogu

se podijeliti u sljedeće kategorije: nadzirano, nenadzirano i podržano učenje. Glavna razlika

je u formulaciji cilja učenja. Nenadzirano učenje ne koristi ručno označene podatke, a cilj je

otkriti grupe podataka sličnih uzoraka. Metode podržanog učenja trenirane su sa povratnom

informacijom više razine koristeći nagrade i kazne slično ljudskom procesu učenja. Obliko-

vanje kriterijske funkcije u tom slučaju je fleksibilnije u usporedbi sa uobičajenim nadziranim

učenjem te primjenjivo na nediferencijabilne parametre učenja.

Većina algoritama strojnog učenja ipak pripada tradicionalnom nadziranom obliku koji se

dijeli na klasifikacijske i regresijske probleme. Obje grupe trebaju precizne ručne oznake

željenog rezultata koje u slučaju klasifikacijskih algoritama pripadaju diskretnoj distribuciji.

S druge strane, regresijski izlazi predstavljaju kontinuiranu numeričku vrijednost odred̄enog

raspona. Takod̄er se razlikuju po drugačije oblikovanoj kriterijskoj funkciji koja se optimizira

pomoću promjenjivih parametara u procesu učenja.

Stabla odlučivanja uobičajeno se koriste kao alat za podršku i vizualizaciju u analizi odluka.

Med̄utim, mnogo zanimljivija upotreba iz perspektive ovog rada je u obliku modela za pred-

vid̄anje u statistici, rudarenju podataka i strojnom učenju. Najčešće korištena inačica su binarna

stabla odlučivanja gdje svaki čvor roditelj ima dva čvora djeteta uz binarni uvjet grananja. Takvi

modeli uče se u nadziranom obliku te se primjenjuju na regresijske i klasifikacijske probleme.

Binarni uvjeti ili testovi u svakom čvoru vrše hijerarhijsku podjelu podataka za učenje dok

čvorovi listovi sadrže rezultat predvid̄anja. Parametri testova u čvorovima mijenjaju se kako bi

minimizirali kriterijsku funkciju koja predstavlja čistoću dobivene podjele podataka.

U radu se opisuje proces gradnje stabla odlučivanja korištenjem umjetnog regresijskog prob-

lema u ilustrativne svrhe. Umjetni podaci dobiveni su sinusoidnom funkcijom sa dodatkom na-

sumičnog šuma u signalu. Istražuju se različite dubine stabala te prikazuje problem pretjerane

prilagodbe stabla podacima sa povećanjem broja čvorova te posljedično modeliranje šuma u

signalu.

Umjesto gradnje kompleksnijih stabala odlučivanja sklonih pretjeranoj prilagodbi koristi se

kombinacija više manjih i slabijih stabala ograničene dubine u obliku ansambla. Dvije uobiča-

jene grupe metoda formiranja ansambla su bagging i boosting. Bagging je tehnika izgradnje

stabla korištenjem nasumično odabranog podskupa podataka za trening. Boosting je slijedna
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tehnika izgradnje stabala uzimajući u obzir greške prethodnih stabala u slijedu.

Prednosti stabala odlučivanja kao alata strojnog učenja su jednostavnost i lakoća upotrebe.

Za razliku od ostalih metoda, stabla mogu kombinirati različite tipove značajki bez normal-

izacije. Predvid̄anja se lako tumače slijed̄enjem lanca odluka. Njihova nelinearnost pruža

snažnu fleksibilnost prilikom modeliranja različitih distribucija podataka. Glavni nedostatak je

njihova sklonost pretjeranoj prilagodbi koja zahtjeva kompleksnije tehnike i namještanje hiper-

parametara.

Dodatni nedostatak metoda ansambla, poglavito random forest metode, je neovisno i pohlepno

učenje svakog stabla zasebno koja rješavaju svoj lokalni podskup problema. Dobiveni rezultati

su uprosječeni bez potencijalne sinergije komplementarnih informacija. U doktorskom radu

opisan je prijedlog rješenja spomenutog problema objavljen na CVPR-u 2015. godine (Ren

et al.). Glavna ideja je reformulirati predvid̄anja ansambla u linearni oblik pomoću binarnog

vektora indikacije te matrica težina. Koristeći takav oblik, predvid̄anja ansambla mogu se opti-

mizirati linearnim metodama na globalan način uzimajući u obzir sva stabla u ansamblu.

U kontekstu računalnog vida, stabla odlučivanja mogu koristiti učinkovite i jednostavne

binarne testove usporedbe intenziteta piksela. U kombinaciji sa opisanom reformulacijom,

ansambli stabala odlučivanja mogu se promatrati kao specijalizirani proces izvlačenja znača-

jki iz slike. Promatrajući globalnu optimizaciju iz takve perspektive, moć predvid̄anja modela

može se unaprijediti korištenjem neuronskih mreža umjesto linearne optimizacije.

Umjetne neuronske mreže su računalni modeli djelomično nadahnuti biološkim živčanim

sustavom sa prvim implementacijama još u 1940-im godinama. Praktična primjenjivost takvih

modela se značajno unaprijedila u zadnjem desetljeću sa napretkom računalne moći i paralelnog

izvršavanja korištenjem grafičkih kartica. Umjetne neuronske mreže i njihove varijante su

trenutno dominantni alati u područjima umjetne inteligencije i računalnog vida.

Osnovne komponente neuronskih mreža su neuroni i njihove veze. Sa stanovišta teorije

grafova, to su jednostavno čvorovi i bridovi koji tvore usmjeren graf sa težinama. Svaki čvor

prima više ulaza, a daje jedan izlaz. Ulazi mogu biti značajke izvučene iz podataka ili izlazi

drugih čvorova. Otežani zbroj svih ulaza u čvor tvori aktivacijsku vrijednost koja prolazi kroz

nelinearnu aktivacijsku funkciju kako bi se dobio krajnji izlaz. Čvorovi su obično grupirani u

sljedne slojeve, a zadnji sloj proizvodi predvid̄anje modela neuronske mreže.

Središnja komponenta nadziranog učenja neuronskih mreža je algoritam povratnog pos-

tupka (engl. backpropagation). Koristi se za učinkovito računanje gradijenta kriterijske funkcije

s obzirom na težine mreže korištenjem pravila lanca (engl. chain rule). Nadalje, to omogućuje

korištenje optimizacijskih metoda temeljenih na gradijentu kako bi se minimizirala kriterijska

funkcija te model naučio predvid̄ati odred̄ene izlaze ručno označenih podataka.

Uz napretke u optimizacijskim metodama, mnogo truda uloženo je i u istraživanje različitih

arhitektura umjetnih neuronskih mreža. Najvažniji arhitekturalni napredak za računalni vid je
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izum kovolucijskih neuronskih mreža po uzoru na vizualni korteks u mozgu. Naivna primjena

neuronskih mreža na slikama dovodi do eksplozije broja parametara modela čak i na najmanjim

rezolucijama zbog visoke dimenzionalnosti slika kao ulaza. Konvolucijski slojevi koriste filtre

sa dijeljenim težinama umjesto potpuno spojenog sloja koji se pomiču i primjenjuju preko ci-

jele slike korak po korak. Ušteda u broju parametara omogućuje duže slijedove takvih slojeva

te otvara put dubokim arhitekturama i novom području dubokog učenja (engl. deep learning).

Dodatna prednost takvih arhitektura je prilagodba filtera podacima čime se generiraju značajke

niske (rubovi i mrlje) i visoke (relevantne abstrakcije) razine kroz duboki slijed slojeva. Takve

značajke pokazale su se superiornima tradicionalnim ručno osmišljenim značajkama. U kombi-

naciji sa paralelnim izvod̄enjem na grafičkim karticama, duboko učenje prevladalo je područjem

računalnog vida u zadnjem desetljeću.

Treće poglavlje – Povezani radovi

U ovom poglavlju predstavljeni su relevantni prijašnji radovi na temu detekcije ključnih točaka

lica i raspoznavanja izraza lica. Obzirom da su položaji ključnih točaka preduvjet mnogih

problema vezanih uz lice, istraživačka zajednica posvetila je više pozornosti tom problemu te

zahtjeva temeljitiji pregled od raspoznavanja izraza lica.

Diskriminativne metode temeljene na regresiji procjenjuju položaje ključnih točaka neposredno

iz slike lica. Ova grupa metoda pokazala je nadmoćnu točnost, brzinu i robusnost u odnosu na

ranije generativne metode. Koristi se uobičajena regresijska formulacija problema gdje su ciljne

vrijednosti vektor razlika izmed̄u početnih i ručno označenih položaja točaka, a ulaz značajke

izlučene iz slike. Početni položaji su obično usrednjeni položaji podataka za učenje normal-

izirani obzirom na okvir lica.

Metode ograničene regresije uče zasebno predvidjeti položaje pojedinih ključnih točaka iz

značajki slika uz korektivni korak koji osigurava globalni oblik lica svih točaka. Ova grupa

metoda je najraniji pokušaj robusne detekcije ključnih točaka lica. Uskoro je pokazano da

lokalni izgled točke, iako vrlo važan, nije dovoljan za točnu lokalizaciju. Jednako su važne

informacije susjednih točaka te globalna konfiguracija oblika lica kako bi se riješile ekstremne

varijacije izgleda lica. Vrlo je teško ručno konstruirati ograničenja koja će dozvoliti sve moguće

varijacije, a ujedno pružiti potrebnu robusnost.

Kaskadna regresija prometnula se u vodeći pristup za detekciju ključnih točaka lica zbog

svoje učinkovitosti, robusnosti i točnosti. U sklopu ovog pristupa, nekoliko regresora koristi

se slijedno od početne procjene položaja. Svaki regresor uči procijeniti pomak te osvježava

trenutne položaje točaka. Značajke se izlučuju u svakom stupnju kaskade koristeći okolinu

slike trenutnih položaja ključnih točaka. Nekoliko je značajnih poboljšanja uvedeno ovim pris-

tupom. Globalna informacija oblika lica se više ne konstruira ručno nego se implicitno uvodi

kroz učenje iz podataka poboljšavajući time sposobnost generalizacije. Nadalje, lokalizacija
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ključnih točaka uči se zajednički, a ne zasebno, koristeći pritom lokalne značajke i informacije

susjednih točaka. Na kraju, kompleksnost problema razlomljena je na niz jednostavnijih prob-

lema kroz kaskadnu arhitekturu. Raniji stupnjevi kaskade usredotočeni su na grubu lokalizaciju

dok kasniji stupnjevi vrše fino pozicioniranje uz fokus na lokalne detalje.

Nedostatak kaskadne regresije je korištenje lokalnih značajki koje nemaju dovoljno kontek-

sta za primjere sa inicijalnim položajima daleko od ručno označenih. Takvi primjeri su česti kod

skupova podataka skupljenih u neograničenim uvjetima. Ti nedostaci rješavaju se inicijalizaci-

jom pomoću početnog globalnog stupnja kaskade koji koristi cjelovitu sliku lica i konvolucijske

neuronske mreže većeg kapaciteta. Drugi pristup je korištenje paralelnih kaskada modela treni-

ranih na specifičnim podskupovima problema te njihovo udruživanje za konačno predvid̄anje.

Mana takvog pristupa je povećana potrošnja računalnih resursa.

Kao i u ostalim problemima računalnog vida, duboko učenje koristi se i za detekciju ključnih

točaka lica. Primjena, med̄utim, nije jednostavna zbog nedostatka velikih skupova podataka

koji su često potrebni za duboko učenje. U mnogim radovima koriste se različita arhitekturalna

rješenja ili načini objedinjavanja podataka sa različitim oznakama kako bi se zaobišao ovaj

problem. Takod̄er, koristi se i kaskadna arhitektura sa modelima dubokog učenja uz prijenos

znanja izmed̄u stupnjeva. Najnoviji pristup je korištenje arhitekture pješčanog sata uz toplinsku

mapu kao izlaz čime se dobije i vjerojatnost točnosti predvid̄anja.

Nearhitekturalni smjerovi razvoja ovog područja uključuju direktno korištenje 3D položaja

točaka, istovremeno učenje više povezanih zadataka te modeliranje prekrivenosti lica objektom.

Obzirom da je lice 3D objekt, korištenjem poluručno označenih 3D točaka lica omogućuje se

detekcija na puno većem rasponu rotacija lica te povećava iskoristivost u raznim položajima

kamere u odnosu na lice. Mnogi zadaci vezani uz lice (detekcija lica, odred̄ivanje poze lica,

raspoznavanje izraza itd.) koriste slično znanje izvučeno iz slike te postoji uzajamna korist

zajednički ih učiti sa istim modelom. Mnogo radova različitih razina uspješnosti provedeno je

i na tu temu. Naočale, kape, šalovi i drugi objekti često prekrivaju lice u stvarnom svijetu te se

očekuje od algoritama za detekciju ključnih točaka odred̄ena razina otpornosti na takve pojave.

S napretkom algoritama, ovakvo svojstvo otpornosti dolazi u centar pažnje istraživanja.

Kao što je već spomenuto u uvodu, za raspoznavanje izraza lica koristi se šest osnovnih

emocija pogodnih za automatsko raspoznavanje. Tradicionalno se postupak dijeli na tri dijela:

detekcija lica, izlučivanje značajki i klasifikacija. U većini slučajeva položaj i veličina lica se

uzimaju kao unaprijed poznate informacije te se ne ulazi u detalje detekcije lica. Najveći na-

glasak stavlja se na odabir i izlučivanje značajki jer se često smatraju kritičnim dijelom sustava

dok se uobičajene metode strojnog učenja koriste za klasifikacijski korak. Korištene značajke

temelje se na izgledu ili geometriji ključnih točaka lica. Značajke temeljene na izgledu izlučuju

se iz slike lica te predstavljaju diskriminativni uzorak teksture dok su geometrijske značajke

vrlo osjetljive na individualni oblik lica te manje dosljedne kod različitih osoba.
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Raniji pristupi koriste ručno izrad̄ene značajke izlučene iz cijele slike ili pravilne mreže di-

jelova slike lica, ali postignuti su i napretci u odred̄ivanju zajedničkih i posebno bitnih dijelova

lica za svaki izraz. U takvim radovima pokazana je važnost detekcije ključnih točaka lica kako

bi se pronašle značajne regije lica za izlučivanje značajki. S druge strane, koristi se i sjedin-

javanje različitih algoritama izlučivanja značajki i geometrijskih značajki. U zadnje vrijeme,

med̄utim, koristi se duboko učenje i konvolucijske neuronske mreže. Kako bi se spriječio prob-

lem pretjerane prilagodbe podacima za trening, tipičan za duboko učenje i nedostatak podataka,

koriste se različiti pristupi: nadopuna umjetnim podacima, spajanje različitih skupova podataka

te prijenos znanja.

Četvrto poglavlje – Globalno inicijalizirana detekcija ključnih točaka lica
primjenom lokalnih binarnih značajki

Cilj metode predložene u ovom poglavlju je učinkovita procjena 2D položaja ključnih točaka na

slici lica uz poznati položaj i veličinu lica. Arhitektura kaskadne regresije pokazala je povoljnu

ravnotežu izmed̄u efikasnosti i točnosti uz dvije ključne stavke: duboka globalna inicijalizacija

i lokalne značajke trenutnih točaka.

Duboko učenje pogodno je za grubu lokalizaciju ključnih točaka iz nekoliko razloga. Prvo,

konvolucijske neuronske mreže koriste globalne značajke koje uzimaju u obzir cijelo lice te

njegovo okruženje. Time je olakšano predvid̄anje orijentacije lica i glave. Drugo, konvoluci-

jske neuronske mreže posjeduju visoku sposobnost prilagodljivosti i apsorbiranja ekstremnih

odstupanja u izgledu zbog različitih pozadina i položaja glave. Najbitnija stavka komponente

globalne inicijalizacije je odabir arhitekture neuronske mreže. Razvoj arhitektura najčešće je

motiviran generalnim problemom detekcije i klasifikacije objekata što rezultira kompleksnim

dubokim arhitekturama zbog brojnosti i različitosti kategorija objekata uz milijune primjera.

Za globalnu inicijalizaciju predložena je jednostavna arhitektura nadahnuta računalno nezaht-

jevnom metodom za detekciju objekata YOLO9000 sa milijun parametara koja je prilagod̄ena

problemu detekcije ključnih točaka lica.

Postepena prilagodba točaka lica pospješuje točnost i robusnost na što ukazuje brojnost

metoda kaskadne regresije. Med̄utim, lokalne značajke vezane za trenutno predvid̄ene položaje

točaka su takod̄er bitne jer pružaju algoritmu način usredotočenja nužan za fino prilagod̄avanje.

Ograničenje prostora mogućih značajki korištenjem lokalnih područja oko grubo pozicioniranih

ključnih točaka omogućuje učinkovito izlučivanje bitnih značajki. Predložena metoda to ost-

varuje korištenjem značajki razlike intenziteta piksela i ansambla stabala odlučivanja. Ansambli

stabala reformuliraju se u linearni oblik pomoću kojeg se mogu izlučiti lokalne binarne znača-

jke. Korištenjem neuronske mreže oblika uskog grla vrši se globalna optimizacija predvid̄enih

pomaka ključnih točaka. Time se postižu značajne uštede memorije i vremena izvod̄enja u

xi



odnosu na izvorni linearni oblik.

Predložena metoda testirana je na 300-W skupu podataka koji se smatra mjerilom za us-

poredbu točnosti detekcije ključnih točaka lica. Rezultati pokazuju iznimnu robusnost pred-

ložene metode na zahtjevne poze, osvjetljenja i prekrivenost lica sa stopom neuspjeha od 1.45%.

Predložena metoda postiže konkurentne rezultate u usporedbi sa drugim metodama. Uzimajući

u obzir i vrijeme izvod̄enja, postignut je izvrstan omjer točnosti i efikasnosti sa vremenom

izvod̄enja od 3 ms.

Peto poglavlje – Raspoznavanje izraza lica primjenom lokalnih binarnih
značajki i plitkih neuronskih mreža

Cilj metode predložene u ovom poglavlju je raspoznavanje šest osnovnih izraza iz slike lica.

Metoda koristi značajke izgleda zbog veće robusnosti na različite oblike lica u usporedbi sa

geometrijskim značajkama uz dvije ključne komponente: učenje lokalnih značajki i zajednička

klasifikacija izraza.

Kao i kod mnogih drugih problema računalnog vida, duboko učenje prevladava nad tradi-

cionalnim metodama koje koriste ručno dizajnirane značajke za raspoznavanje izraza lica. Pro-

ces je, med̄utim, sporiji zbog nedostatka podataka. Predloženi pristup ublažava taj problem ko-

rištenjem stabala odlučivanja optimiziranih za izlučivanje relevantnih značajki na malom broju

primjera. Dodatna prednost je korištenje ključnih točaka lica kako bi se izlučile značajke iz

bitnih dijelova lica što dodatno poboljšava efikasnost na malim skupovima podataka. Stabla

odlučivanja treniraju se za svaki izraz zasebno metodom "jedan naprama svih" u okolini svake

ključne točke pomoću razlike u intenzitetima piksela. Već opisanom linearnom reformulacijom

dobivaju se lokalne binarne značajke koje se spajaju u jedan globalni binarni vektor. Pomoću

njega vrši se zajednička klasifikacija izraza lica.

Prednost zajedničke klasifikacije krije se u činjenici da izrazi lica nisu med̄usobno neo-

visni. Neki od njih se mogu kombinirati dijeleći pritom odred̄ene pokrete mišića lica, dok

su neki izrazi med̄usobno isključivi što naznačuje kompleksnije skrivene odnose. Predložena

metoda koristi neuronsku mrežu uključujući njene nelinearnosti kako bi modelirala te odnose i

poboljšala točnost klasifikacije. Uz korištenje značajki izlučenih pomoću stabala odlučivanja,

plitka arhitektura neuronske mreže sa jednim skrivenim slojem pokazala se dovoljnom za vi-

soku razinu točnosti. Eksperimentalno je pokazano kako izrazima tuge i straha najviše pogoduje

zajednička klasifikacija izraza lica.

Opisana metoda testirana je na četiri često korištena skupa podataka: CK+, MMI, JAFFE

i SFEW 2.0. Većina eksperimenata izvršena je korištenjem deseterostruke unakrsne provjere

valjanosti zbog malog broja primjera u skupovima podataka. Nadalje, svi eksperimenti su podi-

jeljeni u scenarije ovisne i neovisne o osobi u skupu podataka pri čemu je neovisni scenarij
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kompleksniji jer se testira na osobama koje nisu prisutne u fazi treninga. Takod̄er, testirana je

sposobnost generalizacije metode treniranjem na jednom skupu, a testiranjem na drugom skupu

podataka. Metoda postiže najvišu točnost na najčešće korištenom skupu CK+, visoku razinu

generalizacije te snažnu robusnost na podacima SFEW 2.0 skupljenim u nekontroliranim uvje-

tima. Uz visoku točnost, metoda postiže nisko vrijeme izvod̄enja od 1 ms bez paralelizacije što

predstavlja ubrzanje za red veličine u odnosu na prethodne radove. Točnost i brzina izvod̄enja

čine metodu idealnom za ured̄aje sa ograničenim računalnim sredstvima te prikladnom zam-

jenom algoritmima dubokog učenja u slučajevima ograničenog broja podataka i računalnih

sredstava.

Šesto poglavlje – Zaključci

Zadnje poglavlje donosi pregled postignutih rezultata i doprinosa doktorskog rada. Predloženi

algoritmi čine učinkovit sustav raspoznavanja izraza lica prikladan ured̄ajima niske potrošnje

energije i ograničenih računalnih sredstava. Takod̄er, predložena sprega stabala odlučivanja

i neuronskih mreža pokazuje visoku razinu rasud̄ivanja na manjim skupovima podataka te je

iskoristiva alternativa dubokom učenju.

Ključne riječi: stabla odlučivanja, neuronske mreže, usporedbe intenziteta piksela, porav-

navanje lica, detekcija ključnih točaka, raspoznavanje izraza lica
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Chapter 1

Introduction

Visual perception is arguably one of the most important ways in which we humans interpret

the world around us. In a global effort to achieve artificial intelligence, an important step is

to enable the computers to perceive and interpret their environment, intensively researched in

the computer vision field. Traditionally, image processing techniques have been used to solve

the common problems of detecting and recognizing objects in the image. Recently, however,

machine learning algorithms have been used to recognize and detect objects in the image with

the rise of data availability and manual annotation efforts. It has dominated the computer vi-

sion field on almost every problem riding on the very recent advances in deep learning and

convolutional neural networks (CNN).

One of the most attractive objects to analyze for both humans and computers is the human

face. Many challenging computer vision problems regarding the human face have been intro-

duced over the years including face detection and tracking, identity recognition, age, gender,

and emotion estimation (an example is shown in Figure 1.1). This thesis focuses on emotion

estimation or, to be more precise, facial expression recognition from images.

In order to automatically recognize emotions and their related expressions, an investigation

on how to define those terms needed to be done first. In [1], Ekman and Friesen discovered

six basic or prototypic emotions (anger, disgust, fear, happiness, sadness, and surprise) whose

facial expressions are culturally and racially invariant and are, therefore, great candidates for

automatic systems which need clear categories. Although other representations have been used

as well, in this thesis, we focus on the six basic expressions classification approach as it is

currently the most widely used categorization in the computer vision community.

An important stepping stone to achieving accurate and efficient emotion and expression

recognition [2, 3] is face alignment. It is the process of determining the face shape, i.e., the

location of characteristic facial features or landmarks (points that delineate eyes, nose, mouth,

eyebrows, chin, and face contour) given a face image. A vast majority of face alignment meth-

ods assume that the face bounding box is known both at training and testing phases. The face
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Figure 1.1: An example of a face analysis system using an image of a face.

bounding box is usually obtained through face detection algorithms (see [4]) or from manual

annotations ("ground truth"). The configuration of facial landmarks, also known as face shape,

is represented as a vector of 2D landmark coordinates. Various machine learning algorithms

can be employed to estimate the face shape. If we denote it with S = (x1,y1, . . . ,xL,yL) where L

represents the number of landmarks, the goal of face alignment, given a face image, is to find a

shape S closest to the ground truth shape S*. More formally, the goal is to minimize:

||S−S*|| (1.1)

where || · || is a suitable vector norm. The alignment error in (1.1) is used as a performance

measure that drives the training process. Face alignment is also studied in this thesis since it is

an integral part of a facial expression recognition system.

1.1 Motivation

Facial expression recognition is one of the basic challenges in the affective computing field

with potential applications in entertainment, marketing research, retail, psychology, and other

domains. It has been widely expected that affect-sensitive applications may change the way

we interact with computers [5] yet it remains a challenge to build such systems. Facial ex-

pression recognition is an especially important part of these systems since a large segment of

human interactions are conveyed non-verbally [6]. Therefore, the research community recently
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Figure 1.2: Examples of face alignment in large variations of head pose, occlusion level, expression and
illumination.

invested extensive efforts to produce methods that can robustly extract expressions from images

or videos.

However, numerous challenges still lay ahead primarily due to the complex nature of the

problem at hand in the form of large cultural and personal variations in addition to variations

in imaging conditions (face pose, lighting, occlusions, etc.) as shown in Figure 1.2. With the

proliferation of mobile and other low-powered smart devices within the internet of things (IoT)

framework, the computing efficiency of computer vision algorithms becomes an increasingly

important parameter along with standard accuracy measurements. Therefore, an accurate yet

highly efficient algorithm is needed.

Traditional FER systems consist of three steps: face detection, feature extraction, and classi-

fication. However, with recent advances in deep learning algorithms, end-to-end convolutional

neural networks have become prevalent in many computer vision fields. Their distinct, compet-

itive advantage is the joint optimization of both feature extraction (through convolution filters’

weights) and classification (through fully connected layers’ weights). The largest obstacle,

however, is the need for extremely large data sets to prevent over-fitting of deep networks. FER

data sets are hard to collect due to the ethical issues of eliciting negative emotions (fear, anger,

sadness) and the difficulty to act and annotate accompanying expressions. Therefore, an algo-

rithm that can learn to extract custom task-specific features from a limited number of samples

per expression would be beneficial.

As recently demonstrated, appearance features extracted around facial landmarks signifi-

cantly contribute to the classification accuracy [7, 8]. Given the positions of important facial

regions, extracting features from local patches can help reduce the extremely large pool of pos-
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sible features and focus the algorithm on discriminative regions of the face. It is, therefore,

important to accurately locate facial landmarks also used as a base for other algorithms. For

face recognition, face alignment is necessary as a preprocessing step to register and align facial

images eliminating in-plane rotations and providing consistent facial crops for further process-

ing [9, 10, 11]. Detected facial landmark points are the key component to correctly estimate the

parameters of a 3D Morphable Model (3DMM) [12] providing 3D head pose and facial action

units as a result [13].

Additionally, face alignment has application areas in many different industries, including

human-machine interaction, video conferencing, gaming, animation, and augmented reality.

The applications range from fun, augmented-reality gimmicks such as face masking or virtual

make-up to life-saving technology in the automotive industry like driver distraction and drowsi-

ness detection (examples are shown in Figure 1.3). For all these reasons, it rightfully received

attention from the computer vision research community.

1.2 About this thesis

This thesis investigates an efficient combination of decision trees and neural networks applied

to the tightly connected problems of face alignment and facial expression recognition. The

proposed algorithm uses simple pixel difference features coupled with ensembles of decision

trees [14] to train and extract highly discriminative shape-indexed local binary features (LBF).

The extracted features represent task-relevant patterns used together with a neural network for

final classification and regression.

When applied to facial expression recognition, the algorithm enables the neural network to

model non-linear interactions between expressions improving the recognition accuracy. Ad-

ditionally, highly discriminative features are extracted from salient regions of the face made

possible by the detected landmark locations. For face alignment, the algorithm is organized in

a cascade, allowing gradual regression and pattern re-sampling at each stage. By introducing

a bottleneck-shaped neural network architecture, the execution time and memory consumption

of the original method [15] are further improved. Furthermore, the cascade is initialized with a

lightweight CNN architecture using global features, ensuring robustness on challenging exam-

ples.

The presented novel methods form an efficient facial expression recognition system suitable

for platforms with limited computing power, as will be experimentally demonstrated. The main

contributions of this thesis are as follows:

∙ A method for image-based classification or regression combining neural networks with

ensembles of decision trees for task-specific feature extraction.

∙ Application of the proposed method to the facial expression recognition problem giving
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Figure 1.3: Examples of face tracking applications in different industries: driver monitoring system,
face masking, virtual make-up, and marketing research.

5
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an order of magnitude improvement in execution time compared to previous research.

∙ A cascaded regression method for face alignment combining CNNs for global feature

initialization with local binary features for fine alignment, achieving high accuracy and

low execution time.

1.3 Organization of the thesis

The rest of the thesis is organized in the following way. Chapter 2 briefly introduces the concept

of machine learning and basic methods used throughout the thesis. In chapter 3, related work is

introduced for both facial expression recognition and face alignment. The described algorithms

are systematically analyzed to provide the reasoning behind the proposed methods in chapters 4

and 5. The novel methods using decision trees and neural networks for face alignment and facial

expression recognition problems are described in chapters 4 and 5, respectively. The methods

are experimentally verified and compared with the state-of-the-art on relevant benchmark data

sets. The final chapter 6 concludes the thesis.
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Chapter 2

Theoretical foundations

As already mentioned in the introduction, machine learning has become the primary tool for

solving computer vision problems. The main objective of a machine learning process is to gen-

erate an algorithm to solve a certain task without being explicitly programmed by a human.

It needs data to infer a mathematical model by optimizing a criterion or a loss function rep-

resenting the goal of the task. Machine learning methods can be divided into the following

categories:

∙ Supervised learning.

∙ Unsupervised learning.

∙ Reinforcement learning.

The main difference is in the formulation of the goal. Unsupervised learning methods do not

have an annotated "ground truth" output that needs to be learned. The goal is to discover clus-

ters or groups of data with similar patterns. Reinforcement learning methods are trained us-

ing higher-level feedback based on rewards and punishments mimicking the human learning

process. The formulation of the criterion function is, therefore, more flexible compared to a

standard supervised learning and applicable to non-differentiable learnable parameters.

Most machine learning algorithms belong to the traditional supervised learning paradigm

divided into classification and regression problems. Both versions need precise manual mark-

ings of the desired output which, for classification algorithms, belongs to a discrete distribution

of a limited set of values. Regression outputs, on the other hand, represent a continuous numer-

ical value within a certain range. It also entails differently formulated criterion functions which

are optimized over the learning parameters during the training process.

In the rest of this chapter, the basic machine learning building blocks for the proposed face

alignment and facial expression recognition methods will be introduced. We will start with

decision trees which can be grouped into ensembles to improve their generalization abilities.

Local binary features are derived from the trained ensembles of decision trees to create compact

task-specific features extracted from the image. The described local binary features are used in
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combination with neural networks, also introduced in this chapter. Finally, CNNs are described

as a special case of neural networks currently dominating the computer vision field.

2.1 Decision trees

Trees are an abstract hierarchical data structure with many different uses in computer science.

From a graph theory perspective, an ordered tree is considered a connected, acyclic, directed

graph which implies that any two nodes in the tree are connected by exactly one path. A node

in a tree is a structure that may contain a value or a condition and has zero or more child nodes.

Any node that has no children is called a leaf node, while nodes that have children are called

parent nodes. The topmost node is called the root node, and the depth of the tree is defined as

the longest path from the root node to a leaf node.

Decision trees are commonly used in decision analysis as a support and visualization tool,

however from the perspective of this thesis, a much more interesting use is in the form of a

predictive model in statistics, data mining, and machine learning. The most common version

used is binary decision trees, where each parent node has two child nodes with binary condi-

tions. The models are trained in a supervised manner and can be used for both regression and

classification problems. The binary conditions or tests at each node perform a hierarchical seg-

mentation of the training data with leaf nodes providing the predicted output. The parameters

of the node tests are selected to minimize a loss function representing the purity of the resulting

data partitions.

For illustration purposes, we will explore the construction of a decision tree on an artificial

regression problem. We can assume a data set x ∈R with targeted output ("ground truth") y ∈R
produced in the following way:

y = sin(x)+η (2.1)

where η represents the noise component. We can build a decision tree to predict y based on

the input feature x. A simple binary test at each node can be formulated as follows:

T (x) =

0, x ≤ t

1, x > t
(2.2)

where t represents a threshold selected from a pool of random values to minimize a chosen

criterion or loss function. In this case, the most commonly used measure is the mean squared

error (MSE) which is defined in the following way:

L = ∑
y∈P0

(y0 − y)2

NP0

+ ∑
y∈P1

(y1 − y)2

NP1

(2.3)
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(a)
(b)

Figure 2.1: (a) Structure of the trained decision tree with a maximum depth of one producing (b) the
output on a sinusoidal data set with noise.

where y0 and y1 represent the mean output values of partitions P0 and P1 produced by the

binary test from Equation 2.2. The mean values in the leaf nodes represent the final output of the

model. During the inference phase, the sample xi is propagated through the tree and appropriate

tests until it reaches a leaf node. The stored mean value from the corresponding training set

partition of the leaf node is the predicted output ŷi for the sample xi.

An example of a decision tree with a depth of one is presented in Figure 2.1a. The resulting

prediction can be seen in Figure 2.1b using a data set produced by Equation 2.1. As can be

seen, the data set consists of 80 samples following a sinusoidal curve with random outliers.

The training process generated an optimal threshold value t0 = 3.1328 at the root node, which

splits the data set into two partitions with 51 and 29 samples, respectively. The average and,

consequently, predicted values for the first and second partitions are y0 = ŷ0 = 0.5712 and

y1 = ŷ1 = −0.6675, respectively. Such a small tree does not have the capacity to model this

example data set with an MSE of L = 0.1926.

Growing an additional level through the training process improves the prediction ability

of the decision tree, as can be seen in Figure 2.2. Two additional thresholds are introduced

(t1 = 0.5139 and t2 = 3.8502), producing a total of four final partitions with corresponding

average values as predictions and reducing the MSE to L = 0.1297. This nicely demonstrates

the predictive power of decision trees.

It would be logical to add more nodes to improve the accuracy of the decision tree further.

However, as the results in Figure 2.3 illustrate, this leads to over-fitting and learning random

noisy elements of a specific data set. It degrades the generalization ability of the model and

performance in real-world scenarios with different noise distributions. A simple way to combat

this phenomenon is by enforcing a minimum size of the data partition for the node condition to

be valid. As seen in Figure 2.3, there are five partitions with a single sample, all representing

a noisy element of the underlying signal. Such a condition is, however, difficult to precisely
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(a)

(b)

Figure 2.2: (a) Structure of the trained decision tree with a maximum depth of two producing (b) the
output on a sinusoidal data set with noise.

(a)

(b)

Figure 2.3: (a) Structure of the trained decision tree with a maximum depth of four producing (b) the
output on a sinusoidal data set with noise.
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determine on different, complex data sets and rarely effective in battling over-fitting.

Instead of building more complex decision trees prone to high variance, another approach

is to combine multiple smaller and weaker learners (by limiting their maximum depth) into a

strong learner in the form of an ensemble. The two most common groups of techniques for

forming ensembles are bagging and boosting. Bagging is a technique where each tree is trained

on a randomly selected subset of the training data. A prominent representative of bagging meth-

ods is the random forest where, in addition to the randomized data, a random subset of features

is used for each tree [16]. The final ensemble output is the averaged prediction of the individual

trees in the forest. Boosting is a technique where each tree is trained sequentially, taking into

account the errors of the previous tree in the succession. Gradient boosting is the most success-

ful representative where the gradient descent algorithm is used to modify the sample weights

to emphasize previously incorrect predictions [17]. In general, gradient boosting ensembles

provide higher predictive capacity even though more prone to over-fitting when compared to

random forests.

The advantages of decision trees as a machine learning tool are their simplicity and ease

of use. Unlike other methods, decision trees can combine different types of features without

normalization. The predictions can be easily interpreted by following the chain of decisions.

Their non-linear nature provides high flexibility in modeling different data distributions. One

of the main disadvantages is, as already highlighted, their vulnerability to over-fitting, which

requires complex techniques and hyper-parameter tuning to overcome.

2.1.1 Local binary features

One drawback of the described ensemble methods, especially random forests, is the fact that

each tree is trained independently and greedily to solve its local subset of the problem. The

results are then averaged without mutual awareness, missing the potential synergy of comple-

mentary information. Ren et al. noticed this problem in [18] and offered their solution in the

form of a global refinement procedure. Their method will be summarized here since it is an

important prior work for this thesis.

To fully understand the proposed optimization, the tree prediction needs to be formulated

differently. Two new terms will be introduced: the indicator vector φ(x) and the leaf matrix ω .

The indicator vector represents the tree structure and can be considered a function that maps

the input x to the corresponding leaf node. The leaf nodes are represented by a position in the

binary vector resulting from the mapping function φ(x). If the sample x belongs to a leaf node

l after traversing the tree, the corresponding position l in the binary vector will contain a binary

1, otherwise 0. If we populate the leaf matrix ω with local leaf predictions, the final prediction
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of the tree ŷ can then be formulated in a simple and compact way:

ŷ = ω φ(x) (2.4)

The local leaf predictions populating the leaf matrix ω are usually mean values for regression

and posterior probability for classification of the corresponding data partitions. It is a standard

tree construction procedure as described in the previous section.

The objective function of a single tree can now be formulated in the following way:

min
φ ,ω

1
N

N

∑
i=1

L(yi, ŷi) (2.5)

The MSE is commonly used as the loss function L for regression problems as defined in the

previous section in equation 2.3. For classification, the Gini impurity measure is usually used.

More details will be presented in chapter 5 when applying it to facial expression classification.

This formulation can be extended in a similar way to represent the objective of a random forest:

min
φ ,ω

1
NT

T

∑
t=1

N

∑
i=1

L(yi, ŷt
i) (2.6)

where we now have T trees in the forest and ŷt
i represents the prediction of the t-th tree for the

i-th sample.

We know that the indicator vector φ(x) represents the tree structure (thresholds in binary

node tests) built by taking into account the loss function. The leaf matrix ω , which represents

the actual predictions however, is calculated on a local leaf subset of the data without regard

of the actual objective in the training process. The minimization of the loss in equation 2.6

with respect to the leaf matrix ω is, therefore, suboptimal and can be improved using a global

refinement of the leaf predictions. This refinement takes the following form:

min
Ω

1
2
||Ω||2F +

C
N

N

∑
i=1

L(yi, ŷi) (2.7)

where Ω and Φ(x) represent the concatenated parameters of all trees in the forest:

Φ(x) = [φ1(x); . . . ;φT (x)], (2.8)

Ω = [ω1; . . . ;ωT ] (2.9)

and the resulting prediction ŷ is then:

ŷ = Ω Φ(x) (2.10)
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In practice, the ensemble trees are trained regularly as usual, which produces an optimal

mapping function Φ(x). The local leaf predictions are then discarded and jointly refined ac-

cording to the equation 2.7. This optimization can be efficiently solved using a support vector

machine (SVM) to produce optimal leaf weights Ω for the objective function.

In the context of computer vision, decision trees can use a very efficient and simple binary

test called pixel difference feature (PDF). It comprises a simple comparison of intensity values

on two positions in an image as follows:

T (p1, p2) =

0, I(p1)≤ I(p2)

1, I(p1)> I(p2)
(2.11)

where I(p) represents the intensity value at pixel position p. Coupled with the described tree

mapping function Φ(x) and using an image as the input x = I(p), this method can be consid-

ered a task-specific feature extraction producing local binary features. Looking at the global

refinement procedure from this perspective, the predictive power can be further improved by

using artificial neural networks instead of an SVM. More details about these improvements are

presented on specific problems in chapters 4 and 5.

2.2 Artificial neural networks (ANNs)

Artificial neural networks are computing models loosely inspired by biological nervous sys-

tems with first theoretical implementations dating back from the 1940s [19]. With the increase

in computational power and parallel processing using graphical processing units (GPUs), the

practical applicability has increased tremendously in the last decade. ANNs and their variants

are currently the dominant tools in artificial intelligence and computer vision.

The basic components of ANNs are neurons (also called perceptrons) and their connections.

From a graph theory perspective, these are simply nodes and edges forming a directed, weighted

graph. Each node takes multiple inputs and produces a single output. The inputs can be features

extracted from data or outputs of other nodes. The weighted sum of all inputs to a node forms

its activation value passed through a nonlinear activation function to produce the final output.

The nodes are usually grouped in successive layers based on the input/output topology. The

final layer of nodes produces the prediction of the ANN model. Such simple, feedforward, and

fully connected ANN architectures where each node in one layer is connected to every node in

the next layer are usually called multi-layer perceptrons (MLPs). Figure 2.4 shows an example

of an MLP topology.
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Figure 2.4: A simple MLP architecture with an input, hidden, and output layer.a

aImage Colored neural network.svg from author Glosser.ca, licensed under CC BY-SA 3.0.

2.2.1 Optimization algorithms

The central component of every ANN training in a supervised manner is the backpropagation

algorithm [20]. It efficiently calculates the gradient of a loss function with respect to the ANN’s

weights utilizing the chain rule. The ANN is essentially a combination of composition func-

tions and matrix multiplications. Since each layer’s weights affect the loss only through the next

layer, the backpropagation algorithm avoids duplicate calculations and unnecessary intermedi-

ate values by calculating the gradient backward from the last layer to the first. This, in turn,

enables the use of gradient-based methods for optimization to minimize the loss and essentially

teaches the model to predict specific outputs using annotated data sets.

If we have the objective function of the ANN defined as L(W), the iterative step of the basic

gradient descent then takes the following form:

Wn+1 = Wn − γ ∇ L(Wn) (2.12)

where Wn represents the ANN weights at iteration n, γ the step size, and ∇ L(Wn) the gradient

of the objective function with respect to the current ANN weights. This produces a succession

of weights from random initial values to the optimal weights with the minimal value of the

objective function at iteration n:

L(W0)≥ L(W1)≥ . . .≥ L(Wn) (2.13)
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Such an iterative algorithm guarantees convergence to a local minimum and, for convex ob-

jective functions, the global minimum. It is, however, rarely the case for real-world machine

learning problems with complex non-convex objective functions. A much more common situa-

tion is trapping the optimization process in a sub-optimal local minimum or even overshooting

a global minimum. The selection of the step size and initial weight values [21] is, therefore,

very important for the optimization process.

Many solutions for this problem have been proposed over the years. A natural extension of

the basic algorithm described above is Newton’s method, where the curvature of the objective

function is inspected via the Hessian operator (the second derivative). The Hessian inverse

can be used to calculate the optimal step size. However, it is computationally infeasible for

large deep learning networks. Quasi-Newton methods avoid computing the Hessian through

approximation. The most popular representative is the BFGS method [22] and the limited-

memory version L-BFGS [23].

Speaking of infeasibility, even without the second derivative, gradient descent is compu-

tationally impractical on large data sets, which is why it is seldom used. Stochastic gradient

descent (SGD) approximates the gradient using a randomly selected subset or batch of the

training set, achieving faster iterations but slower convergence. It is currently the standard for

ANN optimization. Due to the stochastic nature, the gradients tend to be noisy, making the step

size (known as learning rate in machine learning) even more important. A common practice is

to dynamically change the learning rate according to a predefined schedule with many different

variants.

One such useful technique is the introduction of average gradients over past iterations of

SGD. The momentum parameter determines the amount of influence of the current gradient to

the accumulated average [24, 25]. This technique also helps to stabilize the convergence of the

optimization. However, it introduces an additional training hyper-parameter. In practice, many

objective functions exhibit uneven structures where some feature dimensions greatly outweigh

others, making a single learning rate schedule ineffective. In the Adagrad optimization algo-

rithm, this problem is successfully addressed by adjusting the learning rate for each dimension

separately using the aggregated magnitude of previous gradients [26]. Since the magnitude

is constantly growing, the learning rate is diminishing quite aggressively, which is improved

in the RMSProp algorithm [27]. The learning rate schedule is decoupled from the dimension

adaptivity by introducing momentum to the gradient magnitude aggregation. Another variant

of Adagrad is Adadelta which decreases the amount of adaptiveness to different dimensions

[28]. An additional benefit is the learning rate parameter elimination by utilizing the amount

of change itself as the calibration for future change. The currently most popular optimization

method for deep learning, combining all of the above-described techniques, is the Adam method

[29]. It uses weighted averages for both momentum and scale combined with an explicit learn-
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ing rate parameter to address potential issues with convergence resulting in a robust and efficient

optimization algorithm.

2.2.2 Convolutional neural networks (CNNs)

In addition to different optimization algorithms, much effort has been invested in ANN archi-

tecture research. Instead of using a simple, stateless feedforward structure, recurrent neural

networks (RNNs) use a feedback loop and internal memory with great success on problems

with variable-length sequences of inputs [30]. Another architectural breakthrough is generative

adversarial networks (GANs) using the competition of multiple networks in training to generate

new information [31]. Since architecture design is a tedious process, a new field emerged to

automate this using neural architecture search (NAS) and meta-learning [32]. The most impor-

tant architectural invention from the perspective of computer vision is the convolutional neural

networks.

Similar to ANNs, CNNs are inspired by the visual cortex of the brain. Due to the high

dimensionality of images as inputs, a naive application of ANNs leads to an explosion of pa-

rameters even with the smallest of resolutions. Instead of a fully connected layer to each pixel

as input, convolutional layers use filters with shared weights shifted step-by-step and applied

across the image to produce their output [33, 34]. This reduction in the number of parameters

allows for longer chains of convolutional layers to produce deep architectures and the emer-

gence of deep learning. Another benefit of such architectures is the data-driven adaptation of

filters producing both low-level (edges or blobs) and high-level features (relevant abstractions)

throughout the deep chain of layers. This proved to be superior to hand-crafted features tra-

ditionally used in image processing. In combination with parallel processing on GPUs, deep

learning started its domination in computer vision over the last decade.

The most important component of a CNN architecture is the convolutional layer. As already

mentioned, it consists of filters or kernels which are convolved with the input (the image or the

activation map of the previous layer). The kernels’ weights are modified (optimized) during the

training process, while the following hyper-parameters are determined beforehand during the

architecture design:

∙ Size of the kernel - the filters are usually squares with the same width and height (e.g.,

3x3 or 5x5).

∙ Depth of the kernel - represents the number of different 2D filters in the layer.

∙ Stride - controls the step size while sliding and convolving over the input.

∙ Padding - determines the number of additional rows and columns added to the input

(usually filled with zero values).

The above-described parameters of the convolutional layer determine its receptive field - the

local region of the input affecting the resulting feature map. They also form the size of the map
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Figure 2.5: An example of a classical CNN architecture similar to LeNet-5 [35] by LeCun et al.a

aImage Typical cnn.png from author Aphex34, licensed under CC BY-SA 4.0.

giving a down-sampling or up-sampling functionality to the layer.

Another important layer in CNN architectures is the pooling layer, an additional method

for non-linear input down-sampling. It divides the input into non-overlapping regions and out-

puts a single value for that region. The most common variations are the max and average

pooling layers, which produce the maximum and average value of each region, respectively.

Along with other down-sampling techniques, it reduces the size of the feature maps and associ-

ated parameters, improving both computational efficiency and generalization ability (preventing

over-fitting). Additionally, it improves the translational invariance of the CNN architecture. Fi-

nally, after sufficient down-sampling, fully connected layers are added for final classification or

regression. An example of a standard CNN architecture is shown in Figure 2.5.

The first classical CNN architecture called LeNet was proposed by LeCun et al. in the

1990s for handwritten character recognition [35]. Since computing power and large-scale data

were very limited at the time, there was little progress up to the 2010s. With the rise of GPUs

as general-purpose computing tools and the availability of cheap cameras and mobile phones

allowing big data, the door was open for deep learning to dominate computer vision. The

first large-scale success occurred on the ImageNet challenge for general object detection and

recognition with millions of images of thousands of classes of objects [36]. Krizhevsky et al.

proposed a much larger and deeper CNN architecture than LeNet named AlexNet, winning

the ImageNet challenge by a large margin [37]. Using an efficient GPU implementation of

the convolutional layer, the authors improved the training time by an order of magnitude, which

allowed more data to be used. It set the tone for the next decade leading to different architectural

variations. VGG networks use stacks of smaller 3x3 convolutions instead of large ones used in

AlexNet, resulting in larger learning capacity but also higher over-fitting risks [38]. To create

even deeper networks, He et al. introduced a residual block which adds a direct skip connection

after each two successive convolutional layers [39]. It solves the vanishing gradient problem

allowing for very deep architectures with hundreds of layers. Around the same time, another
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significant improvement was proposed by Szegedy et al., introducing a bottleneck block in

their first of Inception architectures called GoogLeNet [40]. The main building block is the

Inception module which combines kernels of different sizes in parallel. However, it employs

dimension reduction using 1x1 convolutions before expensive 3x3 and 5x5 convolutions to

improve execution time. The described methods are just highlights from the very active research

field of deep learning in computer vision.
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Chapter 3

Related work

In this chapter, we will introduce relevant prior work for both face alignment and facial expres-

sion recognition. Since face alignment is a prerequisite for many other face-related problems,

it has received wider attention from the research community and requires a more thorough

overview [41] than facial expression recognition. An overview of various regression architec-

tures is given in section 3.1, highlighting the strengths and weaknesses of each approach. In

section 3.2, 3D alignment methods are introduced and analyzed. Multi-task learning, a rela-

tively new technique, is investigated in section 3.3 in the context of face analysis. Another

important topic for face alignment is described in Section 3.4, exploring how to handle partial

occlusions of the face. FER-related work covering hand-crafted features, feature fusion, and

deep learning methods are presented in section 3.5.

3.1 Face alignment regression architectures

Regression-based or, as they are also often called, discriminative methods estimate landmark

positions directly from facial images. These methods demonstrated superior accuracy, speed,

and robustness compared to earlier, traditional methods that involve Active Appearance Models

[42, 43], Active Shape Models [44], and local part classification using search algorithms. Such

constructed models demonstrate poor ability to express all combinations of face variations due

to expressions, illumination, and head pose [45]. A standard regression problem formulation is

commonly used where the target values are difference vectors between an initial shape estimate

and the ground truth shape using features extracted from images. The initial shape estimate is

usually a mean shape calculated from the training set normalized to the ground truth bounding

box.

Earlier methods used regression for each landmark individually based on the local appear-

ance around the initial position and additionally enforced a global shape constraint to make the

local estimations more robust. These methods are described in more detail in section 3.1.1.
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Figure 3.1: The relationship between landmarks as modeled in the BoRMaN method [46].

Later on, researchers used the joint training process for all landmarks to create an implicit

shape constraint making the methods more straight-forward and simple to train. The innova-

tion came in pair with a new cascaded architecture which breaks up the problem and solves

it in a coarse-to-fine manner. This cascaded architecture achieved good results and has been

further developed into many variants which are systematically covered in sections 3.1.2, 3.1.3,

and 3.1.4. Finally, as in many other computer vision fields, researchers investigated deep learn-

ing methods and CNNs for face alignment both in a pure end-to-end and cascaded regression

framework (section 3.1.5).

3.1.1 Constrained Regression

Constrained regression methods learn to induce individual landmark positions directly from

image features but employ a corrective step that ensures global face shape constraint.

A representative algorithm from this group is Boosted Regression with Markov Networks

(BoRMaN) [46]. Support Vector Regression (SVR) with a Gaussian Radial Basis Function

(RBF) kernel is used as a local regressor for each landmark. The method uses Haar filter re-

sponses as features. An initial estimate of landmark locations is a mean shape placed relative

to a bounding box returned by a face detector. Each prediction is then refined using Markov

Random Fields (MRF) that model the global relations between landmarks. Each node in the

model is a vector between two landmarks. The relation between two nodes is modeled as the

difference of angles and the ratio of the lengths of these vectors (Figure 3.1). It ensures robust-

ness to scale, rotation, and translation variations. The positions of the landmarks are iteratively
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updated. At each iteration, the Markov Network analyzes the current predictions and generates

the sampling regions for the next iteration. In the process, stable points are used to aid in the

prediction of non-stable landmarks.

Kazemi and Sullivan in [47] proposed a method that uses a sliding window approach to

detect the face parts (mouth, nose, and eyes) within the previously detected face region with a

constructed tree structure to enforce shape constraints. After the parts are located, individual

landmark linear regressors are used on the image patches to find the landmark points of the

corresponding parts. A variant of Pyramid of Histograms of Orientation Gradients (PHOG)

feature descriptors described in [48] is used for both detectors and regressors.

A constraint technique similar to BoRMaN [46] is employed in [49]. The method is called

Structured Output Regression Forest (SO-RF), and its spatial constraints are manually modeled

by a structure graph. Each landmark has a directed graph associated with it that defines its in-

fluence on the neighboring landmarks. Each leaf node models the affiliation to a base landmark

and stores an offset and a confidence. Additionally, each leaf node models the relative offsets

to the neighboring landmarks with a Gaussian distribution. The combined votes from the local

evidence and the spatial constraints form a map where the highest probability landmark posi-

tion is found. In their later work (see [50]), Yang and Patras use the same regression forest

voting scheme, but the shape constraints are replaced with sieves that act as filters for the votes.

The forest leaves cast votes for the landmarks and face center simultaneously. A Hough map is

formed from the votes, and the mean-shift algorithm is then used to find the maximum likeli-

hood detections for the landmarks. The first sieve used is a face center sieve that discards the

votes not consistent with the global face center hypothesis. The votes are then filtered by prox-

imity threshold sieves, where the threshold is iteratively adapted based on the decision from a

classifier trained on features extracted from Hough maps.

The final representative method from this group is Local Evidence Aggregated Regression

(LEAR) [51]. The overall idea of the method is to use predictions from local individual re-

gressors and shape constraints as in BoRMaN [46] to update the sampling region in the next

iteration. Additionally, each iteration prediction is accumulated into a probability map from

which the final prediction is made. Local Binary Patterns (LBP) [52] extracted from patches

are used as feature vectors and SVR to regress the offset vector. The regressors are trained to

be precise as opposed to general by limiting the variance of the training set sampling locations.

The outlier predictions thus produced in the inference phase are then mitigated by aggrega-

tion of all estimates from previous iterations. The regressor output is evaluated by performing

another regression from the predicted location using the output distance to measure confidence.

The methods described in this section are the earliest attempts of robust face alignment (Ta-

ble 3.1). It became evident that local landmark appearance, although very important, is not

sufficient for accurate localization. Information from neighboring landmarks and global face
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Table 3.1: Constrained regression methods summary.

Methods Features Regressor Constraint Year

BoRMaN [46] Haar-like filters SVR with Gaussian RBF MRF 2010

Kazemi & Sullivan [47] PHOG Ridge Tree structure 2011

SO-RF [49] HOG & Gabor Random forest Structure graph 2012

Yang & Patras [50] HOG & Gabor Random forest Sieves 2013

LEAR [51] LBP SVR MRF sampling 2013

shape configuration is equally important in order to solve extreme variations in facial appear-

ance. The first attempt to utilize the face shape is through constructed constraints and corrective

post-processing after individual landmark localization. It was an important step in the right

direction. However, it is very difficult to manually construct such a constraint to accommodate

all possible variations and still provide the needed robustness. An additional weakness is the

use of hand-crafted features for landmark localization that suffer from similar problems. As in

other computer vision fields, a shift towards data-driven modeling occurred in face alignment

as well.

3.1.2 Cascaded Regression

Cascaded regression has established itself as the leading approach for face alignment due to its

speed, robustness, and accuracy. In this framework, several regressors (R1, . . . ,Rt , . . . ,RT ) are

successively applied starting from the initial shape estimate S0 (Figure 3.2). Given an image I,

each regressor learns and estimates a shape increment δS and updates the face shape:

δS = Rt(I,St−1) (3.1)

St = St−1 +δS (3.2)

where the tth regressor Rt updates the previous shape St−1 to the new shape St [45]. It is

important to note that the tth regressor depends on the previous shape estimate St−1. The de-

pendency is usually through shape-indexed features, which is a concept first introduced in [53].

The method is called Cascaded Pose Regression (CPR) and was developed for general object

alignment, including faces as well. The method owes its success to pose-indexed features where

pixel positions used in the pixel difference features are stored relative to the object pose and are

thus consistent across large pose variations. Random fern regressors were used at each stage of

the cascade.
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Figure 3.2: Cascaded regression in a coarse to fine manner.

(a) (b)

Figure 3.3: Shape-indexed pixel positions (a) and globally indexed pixel positions (b). Shape-indexed
features retain same semantic meaning regardless of face variations [45].

Cao et al., in their seminal work called Explicit Shape Regression (ESR), extend the idea

from CPR [45]. Again, pixel difference features and fern regressors are used. However, the

shape is jointly regressed as a vector which implicitly enforces a shape constraint in a non-

parametric way (Eq. 3.1). They use a two-level boosted regression where each regressor in the

cascade uses global features indexed relative to the nearest landmark (see Figure 3.3). Each

regressor in the cascade is also a cascade of primitive regressors (ferns) using fixed features.

The authors used correlation-based feature selection when choosing the most discriminative

features from the pool.

Kazemi and Sullivan, in their work Ensemble of Regression Trees (ERT), improve upon the

ESR method [54]. Instead of random ferns, gradient tree boosting ensembles are used. They

also use shape-indexed features indexed to the closest landmark. However, they transform the

pixel positions to compensate for rotation, scale, and translation relative to the mean shape.

A prior is introduced to favor closer pixel differences in their feature selection process. They
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use weights in the training-node split-error calculations in order to handle uncertain/occluded

landmarks (the ground truth of some landmarks can be "turned off" when optimizing).

A somewhat different approach in the same framework is described in [55]. The algorithm

is called the Supervised Descent Method (SDM), and it presents shape-indexed features and

cascaded regression as a Newton-type optimization of a non-linear least-squares problem. Ba-

sically, they use linear regression and local Scale-Invariant Feature Transform (SIFT) features

from [56] on local patches centered on currently estimated landmark positions. Eq. (3.1) is then

replaced by:

δS =W t
φ

t(I,St−1)+bt (3.3)

where W t and bt are linear projection matrix and bias term, respectively. φ t is a non-linear

global feature extraction function that concatenates local features extracted around currently

estimated landmarks.

A method called Local Binary Features (LBF) by Ren et al. [15] is an improvement of

ESR [45] and SDM [55] methods. A random forest is used, trained to minimize the alignment

error for individual landmarks to produce binary features. Local features are coded in a binary

array by placing a one for leaves where the sample ends up while traversing the tree and zero

otherwise. Features that are individually trained for each landmark are then concatenated into

a global feature vector as input for ridge regression (linear regression with L2 regularization).

This method owes its success to a feature learning step where features are explicitly trained

for the given custom task instead of manually crafted (such as SIFT). Due to the sparseness of

the feature vectors, the inference phase can be reduced to traversing the forest and performing

simple look-ups and additions. Ren et al. achieved a frame rate of 3000 FPS which is, of course,

hardware-dependent but impressive, nevertheless. In a later work, Luo et al. modified the forest

to obtain probability features and used Probabilistic Random Forests (PRF), which modeled the

probability for each sample belonging to a tree leaf node [57]. It slowed the algorithm down

considerably because every sample must traverse every tree branch and the produced features

are no longer sparse binary vectors. However, improved accuracy and stability (reduced noise

during tracking on videos) is achieved. Another extension was presented in [58]. The main

idea is to replace ridge regression with a neural network architecture utilizing a bottleneck

layer. By doing this, the authors improved the accuracy, execution time, and reduced memory

requirements of the original algorithm.

A similar, recent fast cascaded regression approach called Cascade Gaussian Process Re-

gression Trees (cGPRT) was proposed in [59] by Lee et al. Features that are computed as

difference-of-Gaussian filter responses on local retinal patterns referenced by the shape esti-

mates are used instead of standard shape-indexed pixel differences as in ESR [45], ERT [54],

and LBF [15]. For regression, Gaussian processes with a kernel modeled by trees are used,
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optimized for the individual landmarks. Both innovations improved the results from previous

methods in [15, 45, 54].

Recurrent cascaded regression

An interesting modification to the standard cascaded regression approach was recently proposed

in [60]. The authors argue that there is a loss of knowledge between independently trained stages

in the standard cascaded approach and propose a single Recurrent Neural Network (RNN) ar-

chitecture that combines the training of all stages through the introduction of a state vector that

serves as a mnemonic unit. The approach extends the classical Supervised Descent Method

[55] with the use of an RNN, as already mentioned, and, additionally, with local small CNNs as

feature extractors instead of hand-crafted SIFT features. The authors conveniently named the

method Mnemonic Descent Method (MDM) and showed that the introduced state vector par-

titions the training set into meaningful clusters with different descent directions in subsequent

stages.

A similar approach was presented in [61]. Liu et al. use the same architecture. However,

they investigate the correlation of neighboring landmarks to remove redundant information of

overlapping patches. To this end, the mentioned correlation is explicitly modeled and utilized

under a multi-task learning paradigm. Additionally, multi-scale images are used to enhance

coarse-to-fine alignment through the use of an RNN.

A couple of major improvements were introduced with the adoption of the cascaded regres-

sion framework. The global shape information is no longer constructed by hand. It is implicitly

deduced from the training set, which demonstrated greater generalization ability. Furthermore,

landmarks are regressed jointly, not individually, utilizing both local features and contextual in-

formation from neighboring landmarks. Finally, the complexity of the face alignment is broken

down into a series of simpler problems through the cascaded architecture. The early stages of

the cascade naturally focus on rough alignment dealing with head pose and shape variations,

while the later stages focus on local details and subtle variations in facial appearance.

In later developments, cascade stages are treated as a sequence of inputs which makes sense

both from a practical and theoretical standpoint. A single model for all stages reduces memory

requirements and retains knowledge between individual stages. Through the use of a state

vector ("mnemonic") inside the RNN architecture, the model can be made aware of decisions

from previous stages and hence learn conditionally based on those decisions. As an additional

bonus, this method can be naturally adjusted to tracking from a video where information from

previous frames can be efficiently utilized.

The summary of the described cascaded regression methods, with highlights of key differ-

ences, is presented in Table 3.2. These methods nearly saturate frontal and relatively constrained

data sets. However, "in the wild" data sets are still challenging due to a weakness to initializa-
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Table 3.2: Cascaded regression methods summary.

Methods Initialization Features Regressor Year

CPR [53] Random Pixel difference Random ferns 2010

ESR [45] Random Pixel difference 2-level ferns 2012

SDM [55] Mean shape SIFT Linear 2013a

ERT [54] Mean shape Pixel difference 2-level trees 2014

LBF [15] Mean shape LBF Ridge 2014

PRF [57] Mean shape PF Ridge 2015

cGPRT [59] Mean shape DoG GPRT 2015

MDM [60] Mean shape Local convolutions RNN 2016b

LBF-NN [58] Mean shape LBF Neural network 2018

ahttps://www.youtube.com/user/xiong828/videos
bhttp://trigeorgis.com/mdm

tion that these methods demonstrate. Local shape-indexed features, frequently used within the

framework, do not capture a large enough context for samples initially far away from the ground

truth. These situations occur frequently in unconstrained data sets, including, e.g., full profile

facial images. Strategies to address this issue within the framework will be described in the

following sections.

3.1.3 Global feature initialization

Zhu et al. studied initialization strategies for face alignment and confirmed its importance for

cascaded regression methods [62]. They managed to improve the robustness by initializing the

ERT [54] cascaded regression method with an additional ERT [54] model trained on a subset

of rigid landmarks to produce an improved initial shape. On the other hand, Valle et al. [63]

addressed the problem of initialization sensitivity of the cascaded regression approach by in-

troducing a CNN-based initialization stage. The method is called Deeply-initialized Coarse-to-

Fine Ensemble (DCFE). A simple CNN architecture is used to estimate landmark probability

maps using the whole face image as the input (see Figure 3.4). These initial landmarks are then

utilized as input to a 3D model fitting procedure, which produces a robust and accurate initial

face shape estimation. The fast ERT method [54] is used for precise alignment in the next

stages of cascaded regression. The final stage uses separate models for facial regions in order to

decouple the movements and achieve improved alignment for asymmetrical facial expressions.

A similar initialization approach was proposed in [64]. Again, the whole face image was
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Figure 3.4: Global feature initialization - the main idea is to use the whole face region to estimate
the initial face shape in order to calculate and eliminate the spatial transformation with respect to the
canonical shape.

used for feature extraction in the first stage. However, Kowalski et al. used K-cluster Regres-

sion Forests with Weighted Splitting (KRFWS) to regress the 3D head pose parameters, which

then served as initial landmark positions (after the projection of mapped vertices to the image

space). Subsequent stages are designed according to standard cascaded regression framework

with KRFWS algorithm and shape-indexed Pyramid HOG features from [65].

An interesting method that combines deep convolutional networks for feature extraction and

cascaded regression has been proposed in [66]. The authors named it Deep Cascaded Regres-

sion (DCR). It comprises three modules. The first module is a convolutional/deconvolutional

network which serves as a feature extractor for the other two modules. It produces a deconvo-

lution layer of the same size as the input image. The second module performs an initialization

search. It uses the last deconvolution layer with a fully connected layer to learn, for each land-

mark separately, the probabilities of each pixel belonging to that particular landmark. It also

generates a number of representative shapes from the training set using k-means. The landmark

probabilities are then used to find the closest shape as the initialization. The third module per-

forms cascaded regression using the initialization shape. Linear regression is used with a fully

connected layer on the features extracted from the module-one deconvolution layer around the

currently estimated landmark positions (shape-indexed) on fixed-size patches.

A similar multiple module approach was proposed by Liu et al. in their work called Pose-

insensitive Dual Sparse Constrained Cascade Regression (P-DSC-CR) [67]. They use a deep

convolutional neural network to detect the initial five landmarks and estimate the head pose.

Separate cascaded regressors for each pose (frontal, profile) are trained. Cascaded regression is

improved by adding dual sparse constraints. At each stage, landmark updates are first trained

by Lasso regression which produces a sparse projection matrix. Then, the updated landmark

positions are fitted to the sparse shape dictionary, which produces the estimate for the current

stage and is the input for the next stage. The dictionary is constructed using K-SVD [68]
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Table 3.3: Global feature initialization summary.

Methods Global features Global regression Spatial transform Local cascaded regression Year

DCR [66] Convolutional Encoder-decoder Initialization search Deconv. features + linear 2015

KRFWS [64] PHOG KRFWS 3D-APR LBF [15] + KRFWS 2016

P-DSC-CR [67] Convolutional CNN In-plane rotation HOG + Lasso 2016

DCFE [63] Convolutional CNN POSIT ERT [54] 2018

Figure 3.5: The cascade of experts can be divided into three elements: domain selection, expert regres-
sion, and result fusion.

algorithm on training faces. Multi-scale Histogram of Oriented Gradients (HOG) [69] features

centered on landmark positions are used for regression.

In general, this approach can be graphically summarized as shown in Figure 3.4. Using

an initialization stage with features from the whole face proved to be adequate to mitigate the

initialization sensitivity problem of the cascaded regression approach. The initial stage takes a

larger context around the initial mean shape as input which makes it robust to larger translation

shifts from the ground truth face. Additionally, more complex algorithms with larger capacity

(CNN) are usually used in the initial stage because of large input variance, while faster and

more efficient features can be used in later stages to improve processing time and retain high

accuracy levels. The described methods are summarized in Table 3.3.

3.1.4 Cascade of experts

The greatest face shape variations come from different head poses with respect to the camera.

A straightforward way to improve face alignment accuracy is to use multiple domain-expert

models in parallel in order to make the cascaded regression approach more robust to various

head poses (Figure 3.5).

A simple parallel cascaded regression approach was proposed in [70] by Feng et al. called
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Random Cascaded Regression Copse (R-CR-C). Three parallel cascaded regression threads are

trained on random subsets of the training set and used at the inference phase. The regressors

are plain ridge regressors using the Sparse Auto-Encoder features. A very similar approach

was proposed in [71] using the FEC-CNN architecture [72] (described in Section 3.1.5) as the

backbone. The method achieved very good results on the recent Menpo Challenge [73].

A more elaborate method was proposed by Xiong and De la Torre in their work Global Su-

pervised Descent Method (GSDM), where they extend the original SDM [55] method to handle

large pose variations [74]. The problem is again cast in a non-linear optimization framework

where the aim is to find a globally better minimum by partitioning the optimization domain

into regions of similar gradient descent. Mathematical theory is demonstrated that ensures such

partitions exist and a procedure on how to find them. A separate SDM [55] model is trained for

each region. The solution was applied to face tracking in videos.

Zhu et al., in their work Cascaded Compositional Learning (CCL) [75], developed a similar

idea. Again, the optimization space is divided into multiple domains of homogeneous descent

and separate experts trained for each domain. However, Zhu et al. added an explicit module

to handle the initial domain selection instead of relying on the previous frame output as in the

GSDM method. It makes the method more effective on images. The outputs of the individual

experts are combined in a learning framework that directly optimizes landmark positions.

Dong et al., Zhu et al., and Rampal et al. have similar ideas on how to handle occlusions and

extreme poses in their respective works Robust Discriminative Regression (RDR), Ensemble of

Model Recommendation Trees (EMRT), and Ranked Parts Based Models (RPBM) [76, 77, 78].

The idea is to train multiple cascaded regressors using a heuristically determined subset of land-

marks when extracting shape-indexed features. They all used linear regression and SIFT/HOG

features. The difference is in how their output is combined at each stage. Dong et al. and Zhu et

al. both use recommendation trees to learn weights used for the linear combination of estimates

(quadratic programming is used to find the optimal weights at each node). Rampal et al. train

a Support Vector Machine (SVM) to produce a ranking for each model using shape-indexed

HOG features.

Finally, a probabilistic approach was proposed by Zhu et al. called Coarse-to-Fine Shape

Searching (CFSS) method [79]. The main contribution is to search a shape sub-space at each

stage in a coarse-to-fine manner from which initial shapes are sampled for regression. First,

a shape library is created using Procrustes analysis. At each stage, the goal is to find a finer

shape sub-space represented by a sub-space center and a more narrow normal shape probability

distribution. The initial probability distribution is uniform representing equal chances for every

shape in the library to be selected. Several initial shapes are sampled using the estimated shape

probability distribution, and the regression is performed for each. The regressor outputs are

combined using weights obtained through the dominant set approach and form the sub-space
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Table 3.4: Cascade of experts summary.

Methods Domain selection Expert regression Result fusion Year

R-CR-C [70] Random Sparse Auto-Encoder + Ridge Average 2015

GSDM [74] Homogeneous descent SDM [55] Single result 2015a

CCL [75] Homogeneous descent LBF [15] Composition ridge regression 2016b

RDR [76] Facial region SIFT + linear Learned weighted average 2015

EMRT [77] Head pose & occlusion SIFT + SVM EMRT 2015

RPBM [78] Facial region HOG + linear SVM ranking 2015

CFSS [79] Shape sub-space distribution BRIEF/SIFT + linear Single result 2015c

ahttp://goo.gl/EGiUFV
bhttp://mmlab.ie.cuhk.edu.hk/projects/compositional.html
chttp://mmlab.ie.cuhk.edu.hk/projects/CFSS.html

center. The probability distribution for the next stage is also estimated using the sub-space

center. At the last stage, the sub-space center is the final estimate. At each stage, a cascade of

linear regressors using either BRIEF [80] or SIFT [56] features (accuracy vs speed trade-off) is

used.

Cascade-of-experts is a logical approach to reducing complexity by dividing the problem

into sub-domains as illustrated in Figure 3.5. However, it comes with a greater computational

cost since multiple models are trained and then used at the inference phase. The accuracy

boost is evident in the respective papers but often comes with a cost of doubling or even tripling

inference time and memory requirements. It makes the approach impractical in many scenarios.

The summary of the described methods is presented in Table 3.4.

3.1.5 Deep Learning

Deep learning methods have recently gained popularity due to the advances both in hardware

and optimization techniques. They have been applied in many computer vision fields, including

face alignment as well.

However, there has not been much success with simple deep CNN architecture training to

accurately locate landmarks on a face image. One of the reasons is the need for large data

sets to make such an approach successful. Wu et al. proposed to unify data sets with different

annotations to increase both the size and the variance of the training set [81]. An architecture

called Deep Variation Leveraging Network (DVLN) was used, consisting of two CNN networks:

Dataset-Across Network (DA-Net) and Candidate-Decision Network (CD-Net). The DA-Net

was trained on the unified training set where the deep layers of the network were shared across

sub-sets with different annotations, while the last fully connected layers were specific for each

annotation configuration. Additionally, they normalized the data sets so that a single profile
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view is present, reducing the complexity of the problem. The CD-Net was trained to recognize

the view of the facial image (left or right profile) and select the correct output of the DA-Net

which takes as input normal and flipped images. The method achieved the second-best result

on the Menpo Challenge [73].

Another direct regression approach using deep learning was proposed in [82] where a doubly

CNN architecture [83] was used, which is computationally more efficient than regular convo-

lutions along with Fourier feature pooling to build strong holistic representations. In order to

encode landmark correlation, the authors designed a layer with linear low-rank learning instead

of a fully connected layer as the output layer.

An interesting idea was explored by Shao et al. using a deep learning model named Multi-

Center Network (MCNet) [84]. A CNN architecture based on VGGNet was trained in a standard

way for face alignment. However, the authors used that pre-trained model and its shared deep

features to separately fine-tune seven landmark regions, improving the precision of the original

model.

Deep cascaded regression

Since cascaded regression achieved breakthrough results for face alignment, the logical next

step was to combine it with deep learning. Sun et al. were pioneers in this area with their

work called Deep Convolutional Network Cascade (DCNC) and proposed a cascaded regression

approach with three stages of convolutional networks [85]. A shape with only five landmarks is

estimated. Predictions from multiple networks are fused together at each stage to improve the

accuracy and reliability of the estimation. The first stage networks take the whole face image

as input and predict initial estimates of the landmark positions. The next two stages use patches

centered on the estimated landmark positions as input from the previous stage and refine the

estimations to achieve higher accuracy.

In a similar work called Coarse-to-Fine Convolutional Network Cascade (CF-CNC), Zhou

et al. proposed to separate the detection process for inner and contour points [86]. The first

stage neural network estimates the bounding boxes for inner and contour points separately. The

second stage gives an initial holistic prediction of inner and contour points, also separately. The

third stage refines the six facial parts, computes their rotations, and normalizes them before

giving the patches to the fourth and last stage to make final refinements. The contour points do

not utilize the third and fourth stages. Zhang et al. use a similar framework with stacked auto-

encoder networks in their work named Coarse-to-Fine Auto-encoder Networks (CFAN) [87].

Kowalski et al. combined deep learning networks with the cascaded regression framework

in [88] naming the method Deep Alignment Network (DAN). All stages in the cascade use the

global facial region as input to the deep convolutional networks. In order to keep the advantages

of shape-indexed features and transfer of knowledge between stages, the authors implemented
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Figure 3.6: The hourglass CNN architecture and residual block used in [92].

connection layers that generate inputs for the next stage based on the output of the current

stage. According to their experiments, two stages were enough to achieve convergence. A

similar two-stage framework was used in [89]. However, the authors investigated the optimal

loss for landmark regression, arguing that the universally used L2 loss is too sensitive to outliers

in the data set. Through intuition and experiments, they derived a formulation of the Wing loss,

which can balance the influence of both small and large errors during training. It enabled them

to use relatively simple CNN architectures in both stages while achieving competitive accuracy.

All of the above-mentioned methods had their stages in the cascade trained individually

and separately from the others. In [72], the authors claim that the cascade could benefit from

joint training of the stages enabling the flow of information between them. A Fully End-to-End

Cascaded CNN (FEC-CNN) architecture is introduced, which uses local shape-indexed CNN

features in each stage and is optimized jointly using Stochastic Gradient Descent (SGD) and

back-propagation. The biggest challenge was to generate gradients of shape-indexed patches

of the image with respect to the input shape from the previous stage. They managed to suc-

cessfully formulate the derivations by drawing inspiration from Spatial Transformer Networks

[90]. The experimental section confirmed the benefits of the end-to-end training procedure. In

a later work, Dapogny et al. strove for a similar goal of end-to-end optimization in their work

Deep Convolutional Cascade for Face Alignment (DeCaFA) [91]. This was achieved, however,

using fully convolutional stages with U-net architecture and transfer layers designed to pro-

duce landmark-wise attention maps. In order to use heterogeneous data (multiple data sets with

different annotations), they used chaining of multiple transfer layers ordered by the density of

landmarks in the face shape.

Heatmap regression

A recent method in [92] reached a saturation performance by using a modern deep CNN ar-

chitecture and a generated, large data set, making the face alignment problem solved in most

scenarios. The authors used a state-of-the-art hourglass CNN architecture with a novel resid-

ual block (see Figure 3.6) and trained each landmark’s location as a heatmap which produced

estimates on position certainty as well. The same network architecture was trained to convert

2D landmark annotations to 3D and create a large-scale 3D facial landmark data set with ap-
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proximately 230k images. A similar approach was proposed in [93] achieving state-of-the-art

results in the recent Menpo Challenge [73]. The authors added a supervised face transformation

step which eliminates rigid face transformations based on the output of a face detector and its

reduced subset of detected landmarks [94]. It improved the method robustness and reduced the

complexity of the problem for the stacked hourglass CNN training.

The success of both methods inspired other researchers to investigate the heatmap regres-

sion approach in greater detail using the same stacked hourglass architecture [95, 96, 97, 98].

An interesting improvement was proposed by Wu et al. in their work named Look at Boundary

(LAB) [95]. The main premise is that most landmarks in the face shape are ill-defined, even in

a frontal pose. Thus, they introduce face boundaries as a more suitable face geometry represen-

tation. The stacked hourglass architecture is, therefore, used to estimate high-quality boundary

heatmaps using adversarial learning. The boundary heatmaps are then driving the regression

CNN to produce accurate landmark positions. An additional benefit of the boundary paradigm

is the innate ability to represent heterogeneous annotations enabling the architecture to use a

large, unified data set for training. Instead of using an additional CNN to produce landmark

positions, Wang et al. estimate both landmark and boundary heatmaps using the stacked hour-

glass architecture [98]. However, their main contribution is modifying the Wing loss introduced

in [89] and applying it to heatmap regression. Their Adaptive Wing (AWing) loss is designed

to be more sensitive to small errors in the foreground and less on background pixels confirming

the inferiority of the L2 loss once again.

Following similar reasoning, Liu et al. also stress semantic ambiguity of contour land-

marks [96]. Instead of introducing boundaries, they opted for a probabilistic model of the "real"

ground-truth. Landmark updates during training iterations are used to discern between random

movements due to annotation noise and meaningful movements towards ground-truth. The

probabilistically modeled "real" ground truth is then used in later iterations to achieve stable

and more accurate convergence. Chen et al. addressed the same problem using Kernel Density

Deep Neural Network (KDN) [97]. Instead of assuming a Gaussian distribution of the heatmap

regression, their model can estimate a more general probability distribution, e.g., multimodal or

asymmetric distribution. Furthermore, they extend the stacked hourglass architecture inspired

by cascaded regression to propagate the estimated probability distribution between stages.

While all of the above methods aim to produce a low-resolution representation from which

the landmarks are predicted, Wang et al. argue that high-resolution representation is beneficial

for all spatial vision tasks [99]. In their novel HRNet architecture, parallel high-to-low convolu-

tions are employed with a multi-resolution fusion scheme to exchange information across res-

olutions. The validity of their hypothesis and superiority of their architecture design is demon-

strated on a wide range of vision problems: human pose estimation, semantic segmentation,

object detection, and face alignment.
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(a) (b) (c)

Figure 3.7: Different regression targets: standard sparse 2D landmarks (a), sparse 3D landmarks (b),
and dense 3D landmarks (c). The largest difference between 2D and 3D landmarks can be observed on
the contour landmarks.

Judging by the lack of successful research with a single, simple deep learning model for face

alignment, it seems that the problem is too complex and data sets too small for such a straight-

forward approach. Thus, complex architectural and training procedures need to be implemented

to achieve competitive results. The combination of deep learning models and cascaded architec-

ture, where the problem is broken down into manageable sub-problems, is a promising solution.

Similar to the group of methods from Section 3.1.3, the first stage in the deep regression cas-

cade uses the whole face region to predict a subset of landmark positions. However, later stages

also utilize CNN architectures with different techniques to focus the network on finer details.

Methods from this group achieve great results in the wild. It comes with a greater computational

cost though, since demanding CNN architectures are used throughout the cascade. Real-time

performance is possible with the use of a modern GPU.

Another promising deep learning direction is the use of fully convolutional networks for

heatmap regression with the widespread adoption of the stacked hourglass architecture. These

methods achieve state-of-the-art results across different benchmarks. However, real-time per-

formance is not possible even with a high-end GPU. It is understandable since an additional

decoder block is necessary for the CNN architecture to estimate each pixel heatmap value. The

summary of the described methods is presented in Table 3.5.

3.2 3D face alignment

Due to the ambiguity and self-occlusion of 2D landmarks in more extreme poses, 3D landmark

alignment has gained traction in recent years. The ambiguity is most notable in the contour

landmarks in semi-frontal and profile poses, as visible in Figure 3.7. 3D landmarks maintain

the physical meaning of the contour across the whole range of head poses, while 2D landmarks

change semantics which introduces additional complexity in the training process.

Several different approaches have emerged, seeking to exploit the coherence of 3D facial
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Table 3.5: Deep learning methods summary.

Methods Architecture Positions Heatmaps Year

CF-CNC [86] Cascaded CNNs Yes No 2013

CFAN [87] Cascaded auto-encoders Yes No 2014

DVLN [81] Two coupled CNNs Yes No 2017

MCNet [84] Single CNN Yes No 2017a

DCNC [61] Cascaded local & shared CNNs Yes No 2017

DAN [88] Cascaded CNNs Yes No 2017b

FEC-CNC [72] Cascaded local CNNs Yes No 2017

FAN [92] Stacked HGs No Yes 2017c

DSRN [82] Single CNN Yes No 2018d

LAB [95] Stacked HGs No Yes 2018e

DeCaFA [91] Cascaded U-nets Yes Yes 2019

AWing [98] Stacked HGs No Yes 2019f

Liu et al. [96] Stacked HGs No Yes 2019

KDN [97] Stacked HGs No Yes 2019

HRNet [99] Parallel high-to-low CNNs No Yes 2020g

ahttps://github.com/ZhiwenShao/MCNet
bhttps://github.com/MarekKowalski/DeepAlignmentNetwork
chttps://www.adrianbulat.com/face-alignment
dhttps://github.com/xinxinmiao/DSRN
ehttps://wywu.github.io/projects/LAB/LAB.html
fhttps://github.com/protossw512/AdaptiveWingLoss
ghttps://github.com/HRNet/HRNet-Facial-Landmark-Detection
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structure mostly differing in the representation of the regression target. However, any 3D align-

ment approach needs reliable 3D annotations along with the images. One way of obtaining

the necessary ground-truth information is by utilizing specialized 3D imaging hardware, which

produces a 3D point cloud corresponding to the pixels in the image [100, 101, 102]. These raw

results can not be used directly because each facial scan has a different topology of vertices and

must be registered under a single mesh topology. This is usually done by employing an Iterative

Closest Point (ICP) algorithm and its variants [103, 104]. Due to the complicated acquisition

process, these data sets are collected in a controlled environment with relatively few subjects.

A different approach to building a 3D alignment data set is to fit a 3D Morphable Model [12,

105, 106] on existing large 2D data sets. 3DMM is a statistical model of the face shape built

from a data set of registered facial scans. Since it is a vital part of the whole 3D face alignment

pipeline, we will introduce the general concept of 3DMM construction and representation.

We can define the 3D face shape (mesh) of N vertices as a 3N ×1 vector of their 3D coor-

dinates:

S3D = [x1,y1,z1, . . . ,xN ,yN ,zN ]
T (3.4)

Using Principle Component Analysis (PCA) and its variants on a data set of registered 3D

shapes, a 3DMM can be constructed and defined in the following way:

SN
3D = S̄3D +

NI

∑
k

pI
kSI

k +
NE

∑
k

pE
k SE

k (3.5)

where S̄3D, SI , and SE represent the mean shape, identity or face structure bases, and expression

or action bases, respectively (see Figure 3.8). The corresponding parameters which control their

linear combination in the 3DMM are represented by pI = [pI
1, . . . , pI

NI
] and pE = [pE

1 , . . . , pE
NE
].

They are often combined in a single parameter vector p = [pI,pE] controlling the non-rigid

transformations of the 3DMM:

SN
3D = N (p) (3.6)

The resulting 3D mesh SN
3D is in normalized shape space. In order to bring it to the 2D space

on the image plane, a model of the camera with its transformations needs to be included. Weak

perspective projection of the pinhole camera model is usually employed with six degrees of

freedom (scale, three rotations, and two translations), which can be represented by a vector

c = [s,rx,ry,rz, tx, ty]. The projection can then be defined as:

U = W (p,c)≡ P(N (p),c) (3.7)

where U = [xu
1,y

u
1, . . . ,x

u
N ,y

u
N ] represents the projected 2D coordinates in the image. Finally,

a subset of projected 2D coordinates UL corresponding to the annotated 2D landmarks in the
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Figure 3.8: Components of the 3DMM.

image can be used to drive the optimization process to determine the "ground-truth" 3D anno-

tations:

argmin
(p,c)

‖WL(p,c)−S*‖2 (3.8)

The goal of the optimization process is to find the rigid (c) and non-rigid (p) transforma-

tion parameters of the 3DMM that minimize the distance between the annotated 2D landmarks

and their corresponding 3D shape projections. In order to mitigate the inconsistency of the

2D landmarks, dynamic correspondence of the contour landmarks is employed, such as land-

mark marching [107]. This optimization can be performed on large and diverse 2D alignment

data sets to produce an "in-the-wild" 3D alignment data set under consistent annotations with

minimal supervision [92].

We classified the existing approaches by the regression target and, consequently, their output

into three categories. Sparse 3D alignment methods optimize the subset of 3D mesh vertices or

their projections corresponding to the usual 2D mark-up. 3DMM alignment methods optimize

the 3DMM transformation parameters p and c to produce a dense 3D shape by applying the

transformations. Finally, direct 3D alignment methods do not utilize a 3DMM but can still

produce a dense 3D shape through creative output and optimization design. Each group of

methods will be covered more thoroughly in the following sections.
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3.2.1 Sparse 3D alignment

Since 2D alignment was extensively researched in the last 20 years, the straightforward ap-

proach is to simply replace the 2D annotations with the corresponding 3D annotations or their

projections [108, 109, 110]. As already mentioned in section 3.1.5, Bulat and Tzimiropoulos

experimented with both 2D and 3D alignment using the same CNN architecture (named 2D-

FAN and 3D-FAN) where they observed a slight improvement in accuracy by switching to 3D

alignment [92]. The model 3D-FAN was trained on the 300W-LP-3D [111] data set constructed

by 3DMM fitting on the 300W data set.

In recent work, Deng et al. use both 2D annotations and the corresponding 3D projections

to drive the optimization process in a cascaded framework [112]. Hourglass CNN architectures

are used in two stages. The first stage is used for coarse alignment and joint estimation of 2D

landmarks in both frontal and profile poses, exploiting the correspondence of different annota-

tions. The second stage optimizes the corresponding projected sparse 3D landmarks to refine

the prediction and provide full-pose alignment results.

One of the earliest attempts at 3D alignment was proposed by Jourabloo and Liu in their

work called Pose-Invariant Face Alignment (PIFA) [113]. As the name suggests, they were

motivated to achieve face alignment covering full profile poses even. This method is interesting

because it can be seen as a predecessor for 3DMM alignment methods. A model is constructed

from 3D facial scans and used to produce 3D annotations on existing 2D alignment data sets.

However, the 3D Point Distribution Model (3DPDM) is constructed using a sparse set of land-

marks and can not produce a dense 3D mesh. A standard cascaded regression approach is used

where optimization alternates at each stage between rigid and non-rigid transformation param-

eters.

3.2.2 3DMM alignment

In later work, the same authors extended their approach by utilizing a 3DMM to produce a

dense 3D output and replaced hand-crafted features with CNNs [114]. With an additional intro-

duction of 3D-aware inputs for CNN, they managed to improve their previous results. A similar

approach was presented in [111] by Zhu et al. named 3D Dense Face Alignment (3DDFA). The

cascaded regression approach was used to iteratively update the 3DMM transformation param-

eters with CNNs as stage regressors. In addition to the standard RGB input to the CNN, a novel

channel called Projected Normalized Coordinate Code (PNCC), specifically designed to trans-

fer the output of previous stages of the cascade, was used as input as well. A very important

additional contribution is a method to expand the 300W training set with 3D annotations and

augmenting it with generated profile samples to create the 300W-LP data set.

In an attempt to connect the stages of the cascaded regression framework in an end-to-end
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manner, a technique already proven beneficial for 2D alignment, Jourabloo et al. introduced a

visualization layer between the stages in their recent work [115]. The differentiable visualiza-

tion layer generates an image of a 3D face using surface normals based on currently estimated

3DMM parameters to be used as an additional input to the next CNN stage. It allowed the

flow of information between the deep learning stages and an end-to-end optimization leading to

faster training convergence.

Liu et al. focused on the supervision signal and the loss function of the 3D alignment

training in their work Dense Face Alignment (DeFA) [116]. In addition to the standard sparse

supervision (distance between 2D annotations and projections of the corresponding vertices),

two additional terms to the loss function were added. The first term includes SIFT matching

of vertices on pairs of images of the same face enabling dense alignment. The other term

includes visible contour supervision using Holistically-nested Edge Detection (HED) [117] as

the ground-truth. Additional supervision signals allowed them to achieve high accuracy using a

single CNN without cascading.

Finally, Bhagavatula et al. emphasized the limitations of the 3DMM and its flexibility to

model unseen faces [118]. Their approach is based on a 3D Spatial Transformer Network

(3DSTN), which estimates the camera projection matrix as usual and parameters of the Thin

Plate Spline (TPS) [119] warping function, which performs the non-rigid 3D shape transfor-

mation. Using a non-linear warping function eliminated the indirect need for large data sets of

3D facial scans required by the 3DMM. This method shares the same goal as the next group of

methods and can serve as a transitional example.

3.2.3 Direct 3D alignment

The latest direction for 3D face alignment is to skip the 3DMM and its constraints and directly

regress a dense 3D face shape. The straightforward approach of simply using a fully connected

layer with an output for each vertex coordinate is not feasible due to the large number of vertices.

Such a layer would be impractically large and challenging to train.

Nevertheless, Jackson et al. recently proposed the first direct 3D alignment method called

Volumetric Regression Network (VRN), which uses a volumetric representation of the 3D face

shape [120]. Such a representation allows them to use a fully convolutional network architecture

and convert the problem into a 3D binary volume segmentation. The 3D face shape is discretized

into voxels, a 3D binary volume, where the label of the voxel represents if it belongs to the face

or the background. Two stacked hourglass CNNs are used with RGB images as input and

binary volume as output. Another example of a direct representation was presented by Yu et al.

using a per-pixel 2D flow between the input image and the synthetically rendered image of a

3DMM [121]. An encoder-decoder architecture was trained on both synthetic and real examples

(300-W-LP).
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In later work, a more efficient direct representation was proposed by Feng et al. named

Position Map Regression Network (PRNet) [122]. A UV position map is used wherein the RGB

values for each UV texture coordinate of the 3D face model are replaced by the 3D coordinates

of the vertices allowing a fully convolutional architecture. However, it is more efficient than

the volumetric representation [120] which needs to discretize the head interior as well, which

is redundant for the face alignment problem. Such an approach allowed them to use a single

lightweight CNN architecture and achieve superior accuracy.

3D face alignment is a necessary step in the right direction if we want to achieve robustness

across the full range of head poses since manual annotation of self-occluded landmarks is not

feasible. The sparse 3D alignment methods benefit directly from the consistent and complete

annotations even in full profile poses. In order to efficiently achieve dense alignment producing

a detailed 3D facial mesh, 3DMM alignment methods optimize the 3DMM rigid and non-rigid

parameters. Finally, direct 3D alignment methods eliminate the constraints of the 3DMM and

directly optimize the dense 3D shape representation. All of these methods achieve full pose

face alignment that 2D alignment methods can not achieve by design.

The biggest obstacle, however, for wider adoption of this approach is the lack of annotated

large-scale 3D data sets. The 3DMM is constructed from a data set of 3D facial scans using

PCA, which means that the model flexibility directly depends on the sample variance. The

current publicly available data sets with 3D facial scans are collected on a scale of a hundred

subjects. Collecting such a data set is cumbersome and expensive because of the additional

hardware requirements. On the other hand, 2D alignment data sets contain "in-the-wild" images

of thousands of subjects. Automatic re-annotation of these data sets using 3DMM fitting is a

viable alternative. However, even though direct 3D alignment methods eliminate the explicit

constraint of the 3DMM, it is still there implicitly through the construction of the training sets.

Nevertheless, recent years have seen an advancement of depth cameras, making them smaller

and cheaper to the point of integrating such cameras into mobile phones. With such advance-

ments, the barriers for large-scale data set collection are becoming smaller, making this ap-

proach viable in the future. The summary of the described methods is presented in Table 3.6.

3.3 Multi-task learning

Multi-task learning has proven to be effective in many research areas [123]. One of the first at-

tempts for face alignment was proposed by Zhang et al. in their work named Tasks-Constrained

Deep Convolutional Network (TCDCN) [124]. The main idea is to jointly train auxiliary at-

tributes with landmark detection (Figure 3.9). They proved that the complexity of the shape

detection problem could be reduced by learning auxiliary relevant attributes. However, modi-
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Table 3.6: 3D face alignment summary.

Methods Architecture Target Year

Tulyakov & Sebe [108] Cascaded regression Sparse 3D shape 2015

Gou et al. [109] Cascaded regression Sparse 2D shape + 3DMM 2015

PIFA [113] Cascaded regression 3DPDM 2015

Zhao et al. [110] Single CNN Sparse 3D shape 2016

3DDFA [111] Single CNN 3DMM 2016a

3D-FAN [92] Stacked HGs Sparse 3D shape 2017b

PAWF [114] Deep cascaded regression 3DMM 2017

Jourabloo et al. [115] Deep cascaded regression 3DMM 2017

DeFA [116] Single CNN 3DMM 2017c

3DSTN [118] Single CNN 3DMM + TPS 2017

VRN [120] Stacked HGs 3D volume 2017d

Yu et al. [121] Encoder-decoder 2D flow 2017

CMHM [112] Cascaded HGs Sparse 2D/3D shape 2018

PRNet [122] Encoder-decoder UV position map 2018e

ahttps://github.com/cleardusk/3DDFA
bhttps://www.adrianbulat.com/face-alignment
chttp://cvlab.cse.msu.edu/project-pifa.html
dhttp://aaronsplace.co.uk/papers/jackson2017recon/
ehttps://github.com/YadiraF/PRNet

Figure 3.9: Some of the attributes used in TCDCN [124].
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fications to simple multi-task learning algorithms were needed because of different task com-

plexities and convergence rates. The authors introduced inter-task correlation modeling to the

objective function via the covariance matrix to improve the performance and analyze relations

between attributes and landmarks. Additionally, a dynamic task coefficient was introduced to

address the problem of different convergence rates between tasks. Thus, the learning process

of some tasks could be turned off, or the impact on the objective function reduced if needed.

Twenty-two different attributes were used and annotated in the training set.

Another early attempt was presented by Zhao et al. by modeling and exploiting relationships

between multiple face analysis tasks (head pose, facial expression, and landmark detection) for

mutual benefit. This unified method is called iterative Multi-Output Random Forests (iMORF)

[125]. Random patches of the face image are used similarly to CRF [126], and a hybrid cost

function is optimized, which models the quality of each task using associated weights. The

weights are dynamically adapted to emphasize the head pose at the top nodes until sufficient

classification purity is achieved. Afterward, facial expressions take precedence, again, until

sufficient purity is reached. Lastly, the landmark regression is performed. In the next phase,

cascaded regression is employed to refine the face analysis estimations further. In addition to

the shape-indexed appearance features, shape-related features are added that are modeled as

distances and ratios of the landmark positions.

Face alignment or facial landmark detection highly depends on face detection, making it

logical to combine these two problems under a multi-task learning framework. Chen et al.

in [127] demonstrated that alignment helps detection and managed to obtain improved results

using joint learning in a standard cascaded regression framework using boosted regression trees

as in [45].

Later on, the same idea was examined in [128] using CNNs. Again, a cascaded regression

framework is used with three stages of CNNs where each stage has a different goal under a

paradigm of coarse-to-fine refinement. These tasks are performed sequentially in the cascade:

face region proposal, face bounding box refinement, and face alignment with five landmarks.

Additionally, each stage can reject the region as a non-face, meaning it simultaneously performs

face classification. This work was subsequently extended by an additional stage using a Multi-

view Hourglass Model (MHM) [129] to produce a dense set of facial landmarks exploiting the

correspondence of semi-frontal and profile annotations of the Menpo data set.

An interesting combination of face alignment and segmentation was proposed by Zhao et al.

in their multi-task learning work [130]. An encoder-decoder CNN architecture is used where the

encoder is conditioned for the face alignment task, and the decoder estimates the segmentation

mask. A boost in accuracy is achieved for both of these highly correlated tasks through joint

optimization.

It is evident from described methods that face alignment can benefit from multi-task learning
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Table 3.7: Multi-task learning methods summary.

Methods Architecture Additional tasks Year

TCDCN [124] Single CNN Auxiliary attributes 2014a

iMORF [125] Cascaded regression Head pose + facial expression 2014

Chen et al. [127] Cascaded regression Face detection 2014

Zhang et al. [128] Deep cascaded regression Face detection 2016

MHM [129] Cascaded HGs Face detection 2019

Zhao et al. [130] Encoder-decoder Face segmentation 2019

ahttp://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html

with related tasks such as face detection, head pose estimation, expression classification, gender

estimation, etc. This is especially useful for deep learning and cascaded regression frameworks

where more general facial features can be learned and shared across related problems. Addi-

tionally, knowledge between tasks is often complementary and can boost accuracy (e.g., smiling

expression and landmark detection surrounding mouth region). The summary of the described

methods is presented in Table 3.7.

3.4 Occlusion modeling

Faces are often occluded in unconstrained scenarios, which represents a challenging obstacle

for accurate face alignment. Different occlusion sources are frequently seen covering the face,

such as accessories (e.g., hats and glasses), beards, different hairstyles, and self-occlusion due to

extreme head poses. Despite this, humans can quite accurately estimate a person’s face shape,

while machine learning models often fail and produce unstable estimates. It is an important

problem to address and has thus attracted the attention of the research community.

One of the first methods that explicitly handles occlusions was presented in [131] and was

named Robust Cascaded Regression (RCPR). Burgoss-Artizzu et al. extended CPR [53] and

ESR [45] methods and introduced a new, more challenging data set called Caltech Occluded

Faces in the Wild (COFW), which has become a benchmark data set for face alignment with

occlusions. It is publicly available and has annotations for occluded landmarks. At the begin-

ning of the RCPR approach, the face image is divided into nine regions. At each stage, multiple

regressors (as in [45]) are trained, where each regressor is allowed to extract features from only

one of the nine regions. Each such two-level boosted regressor learns to predict the occlusion

of the corresponding region along with the landmark positions as the third dimension of the

output vector. The predicted occlusion level from the previous stage is then used to assign the
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weights when combining current estimates of different regressors. It was the first method that

also predicted occlusion with face alignment.

A different occlusion handling approach was taken in [132]. The method was named Re-

gional Predictive Power (RPP), with the main idea to apply a graph-based segmentation of face

images. The usefulness of each segment for the face alignment task is determined by using

sieving regression forest votes [50]. A confidence value (if it is a face region) is obtained for

each pixel, based on the center sieve from random forest votes. The RPP map is used to assign

the weights to regressors from either of these methods: CPR [53], RCPR [131], ESR [45]. The

weights were calculated by accumulating confidences from all the pixels used in those regres-

sors.

Wu et al. use cascaded regression with explicit occlusion learning [133]. At each stage,

landmark visibility probabilities are estimated first, then the landmark locations. The visibility

probability updates at each stage are trained using extracted SIFT features around the current

landmark positions concatenated with the shape features. The shape features are formed using

the difference between pairwise landmark locations. Additionally, an occlusion pattern loss

term is added to the standard least-squares objective function, which penalizes improbable oc-

clusion patterns. The loss function is constructed from auto-encoder network reconstruction

errors. The landmark localization is trained in the same way and with the same features. How-

ever, the appearance part of the features is weighted by the visibility probabilities. Missing

annotation is handled by adding binary weights to the weighted least squares problem.

While all of the above methods try to estimate occluded facial regions to avoid feature ex-

traction from those regions, Zhang et al. propose a different approach in their work called

Deep Regression Networks Coupled with De-corrupt AutoEncoders (DRDA) [134]. The aim

is to reconstruct the occluded region using de-corrupt auto-encoders, again, in a cascaded re-

gression framework. Deep regression and de-corrupt auto-encoder alternate each stage in order

to benefit from each other. Estimated landmark positions are used to partition the face. The

cropped image is fed into the auto-encoder to produce the un-occluded version, which is then

forwarded as input to the next deep regression stage. The method produces realistic images

without occlusions which in turn improves alignment accuracy.

It is expected from face alignment methods to show a certain level of robustness to occlu-

sions to be usable in real-life situations. The main approach in the literature is to estimate the

level and region of occlusion in the image of the face to avoid extracting ambiguous features

which cause unstable face shape predictions. However, with the recent introduction of gener-

ative models such as auto-encoders or Generative Adversarial Networks (GANs) [31], a new

approach has emerged where the occluded region is reconstructed and used for accurate face

alignment. An obvious drawback of this new direction is the increase in computational com-

plexity. However, with optimized computing on GPUs, these methods demonstrate the potential
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Table 3.8: Occlusion modeling methods summary.

Methods Architecture Occlusion modeling Year

RCPR [131] Cascaded regression Hand-crafted regions 2013

RPP [132] Cascaded regression Segmentation 2015

Wu et al. [133] Cascaded regression Landmark visibilities 2015

DRDA [134] Deep cascaded regression Decorrupt auto-encoder 2016

to surpass human accuracy for occluded face alignment. A summary of the described methods

is presented in Table 3.8.

3.5 Facial expression recognition

As already mentioned in the introduction, Ekman and Friesen discovered six invariant, pro-

totypic emotions (anger, disgust, fear, happiness, sadness, and surprise) ideal for automatic

recognition. One important drawback of this model became evident, though. It is too crude

to accurately model the complexity of emotions people experience in everyday lives. As a

response, Facial Action Coding System (FACS) [135] was developed to define atomic facial

muscle movements named Action Units (AU) spanning the whole spectrum of human facial

expressions. Its aim is objectivity in the signal measurement, which is separated from the

final expression classification, often influenced by the context. Consequentially, a group of re-

searchers [136, 137, 138, 139, 140] tried to develop algorithms that recognize these simpler,

intermediate categories and synthesize the final expression afterward. On the other hand, FACS

annotation is a very tedious process that requires expert knowledge few people possess. There-

fore, few data sets with full FACS annotations are available to the community making this

approach less researched.

FER is traditionally comprised of three distinct steps: face detection, feature extraction, and

classification. In most papers, face detection is not discussed in detail since the face location

and size are assumed as a priori knowledge. The greatest emphasis is put on feature selection

and extraction, which is often considered to be the critical part of the system. On the other

hand, standard machine learning techniques are mostly used for the classification step. The

used features can roughly be divided into appearance and geometric-based. The appearance

features are extracted from facial image intensities to represent a discriminative textural pattern,

while the geometric ones need accurate landmark positions to construct different relations. The

geometric features are very sensitive to the individual face shape configuration and are therefore
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less consistent in person-independent scenarios. It is important to note that these two types of

features have recently been shown to be complementary [141]. Hence, hybrid systems similar

to the one proposed in this thesis are gaining popularity.

An additional direction of research is to integrate temporal dimension into both appearance

and geometric features when working with image sequences [142, 143, 144, 145, 146]. How-

ever, this thesis focuses on single static image recognition since it is a natural first step that can

be extended in future work.

3.5.1 Hand-crafted features

Well known and widely successful hand-crafted features such as variations of Local Binary

Patterns (LBP) [7, 8, 142, 143, 147, 148, 149, 150, 151, 152, 153] and Histogram of Oriented

Gradients (HoG) [148, 149, 152, 154], Gabor filters [147, 151, 155, 156, 157, 158] and Local

Phase Quantization (LPQ) [152, 154] descriptors have also been considered for FER. While

most approaches considered a regular grid of patches [142, 143, 147, 148, 149, 150, 151, 159,

160] or the whole face region [154, 156, 158] for feature extraction, there have been advances in

determining common and specific salient facial regions for each expression. In [7], Happy and

Routray demonstrated the importance of facial landmark detection to find the salient patches

from which they extract features. Through the use of a one-vs-one SVM classifier for each

patch and each expression pair, they were able to find the most discriminative patches for each

expression. A similar idea was adopted in [8]. However, a regular grid of patches was used

without landmark detection, which resulted in lower accuracy than in [7]. In [153], Khan et

al. performed a psycho-visual experiment to track the participant’s gaze and determine which

regions of the face are salient for specific expression. Rivera et al. designed a novel descriptor

called Local Directional Number Pattern to differentiate between bright and dark transitions,

which occur often in faces [159].

3.5.2 Feature fusion

On the other hand, some researchers [148, 151, 152, 154] tried to fuse different texture encod-

ing features to extract complementary information that would benefit the FER. For instance,

Zhang et al. used multiple kernel learning to combine two different feature representations:

HoG and LBP [148]. A different approach to feature fusion was taken in [151] where a pool of

SVM classifiers was trained using either Gabor filters or LBPs as features. A genetic algorithm

was then used to find the optimal ensemble of classifiers in terms of both size and accuracy.

The fusion idea was tested with geometric features as well [155, 161]. Wan et al. used the

Constrained Local Model (CLM) to detect the facial landmarks and used their positions nor-

malized to the mean shape as geometrical features, which they concatenated to Gabor features
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as input to Robust Metric Learning [155]. The method was developed to recognize spontaneous

expressions.

3.5.3 Deep learning

While all of the previously mentioned methods use hand-crafted and heuristically determined

features, experiments with deep learning using CNNs [35] on the FER problem were recently

conducted as well [162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172]. As already men-

tioned in the introduction, deep learning methods have serious over-fitting problems with small

datasets that are typical for FER. Several different approaches have recently been examined in

order to cope with the mentioned problem: artificial data augmentation, data set merging, and

transfer learning. For a more in-depth review of FER methods using CNNs, we refer the reader

to a recent survey by Pramerdorfer and Kampel [172]. Additionally, they demonstrate that

modern architectural changes in deep networks reduce the over-fitting problem on a moderately

large FER 2013 data set (35k images) [173].

Kim et al. used a combination of both aligned and non-aligned faces to train their ensemble

of deep CNNs (DCNNs), making the method more robust to face registration problems on faces

in the wild [170]. Levi et al. also used an ensemble of twenty DCNNs, each having a differently

preprocessed input [167]. They designed a novel transformation of image intensities into 3D

space called mapped LBP to reduce the illumination variation in the training set. The mapped

LBP transformations with different parameters were used as one of the inputs in the ensemble,

along with ordinary RGB intensities. Lopes et al. tried standard preprocessing techniques

(image normalizations, synthetic samples, etc.) and achieved state-of-the-art results on the

CK+ benchmark dataset [163]. In [164], the authors combined seven different data sets to have

enough samples for each expression to train on, making it hard to compare to other methods,

which restricted their training samples to those available in the individual benchmark data sets.

Finally, transfer learning has recently emerged as the most effective approach to small data

set sizes [174, 175]. Ng et al. used a general object recognition pre-trained DCNN model and

fine-tuned it in two stages. In the first stage, they used the large FER 2013 data set and the

SFEW 2.0 training set in the second. However, both Levi et al. and Zhai et al. achieved better

results using a model pre-trained on a related face recognition task with extremely large data sets

(millions of images) [167, 169]. State-of-the-art results on the SFEW 2.0 data set were achieved

by Yu et al. using an ensemble of DCNNs, data augmentation (random affine transformations),

and pre-training on the larger FER 2013 data set. An interesting approach to transfer learning

was presented in [168]. The authors trained a DCNN for FER using a face recognition model’s

convolutional weights as regularization. Next, they appended fully connected layers and fine-

tuned the network for a specific data set. Since they used a single DCNN, the authors achieved

an impressive run-time speed (3 ms). However, they require a high-end GPU (TitanX), which
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is not viable for mobile and embedded platforms.

Even though deep learning methods achieve good results, problems with over-fitting and

slow run-time remain, confirming the need for an effective and fast FER method.

48



Chapter 4

Globally initialized facial landmark
detection using local binary features

The proposed method aims to efficiently estimate 2D landmark positions from facial images

with known face location and size. As explained in section 3.2, 3D alignment methods achieve

higher robustness to extreme head poses but lack the fine precision of 2D alignment methods,

which is more important for face analysis problems. The optimal balance between high effi-

ciency and accuracy is demonstrated by cascaded regression architectures (section 3.1.2) with

two key components as discussed in the following paragraphs.

Deep global initialization As can be seen from deep learning methods [72, 88, 124] in sec-

tion 3.1.5, CNNs are well suited for coarse face alignment (high accuracy on the challenging

300-W subset) due to a couple of reasons. Firstly, CNNs use global features taking into account

the whole face holistically and the context as well. It makes it easier to infer the global ori-

entation of the face and head. Secondly, CNNs possess high capacity and flexibility to absorb

extreme appearance variations due to different head poses and backgrounds.

Shape-indexed local features Gradual alignment helps to improve both accuracy and ro-

bustness, as can be seen from the large number of methods adopting cascaded regression in

section 3.1.2. However, local shape-indexed features in later stages of the cascade seem to be

important as well, providing the algorithm an attention mechanism necessary for fine-grained

alignment. For instance, Kowalski et al. used global CNNs in all stages of the cascade. How-

ever, in order to achieve competitive results, a heatmap constructed from current landmark

positions needed to be passed to the next stage of the cascade. It helped later stages focus

on relevant regions of the face. Even so, the method achieved significantly worse results on

the common 300-W subset than methods utilizing local shape-indexed features (DCFE [63],

FEC-CNC [72], DCR [66]) while maintaining similar results on the challenging subset.
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The proposed implementation of the presented concepts will be described with more details

in the following two sections 4.1 and 4.2. The evaluation on the benchmark data sets with

run-time comparisons will be given in section 4.3 and result discussion presented in section 4.4.

4.1 Global initialization

The most important aspect of this component is the selection of the CNN architecture. Most

deep learning methods in section 3.1.5 use large networks based on well-known architectures:

AlexNet [72], VGGNets [81, 84, 88], and ResNets [89, 92]. These architectures were developed

for general object detection and classification, which is usually the driver in CNN architecture

design as explained in section 2.2.2. This problem, however, is more complex with numerous

different classes of objects, each with variations of its own represented in millions of images. It

naturally leads to deeper and larger designs that are over-capacitated for face alignment leaving

room for optimization.

Large efforts have recently been invested by the research community in neural network

architecture optimization to produce realistic models of practical size and performance. This

resulted with a series of innovations in the form of new types of convolution layers (depthwise

separable and pointwise [176], dilated [177], mixed [178] convolutions), blocks of layers (bot-

tleneck residual [179], squeeze and excite [180], shuffle [181], ghost [182], fire [183] blocks),

and automated neural architecture search [184, 185, 186, 187, 188]. These architectures are,

however, optimized for a more complex problem resulting in complex designs often poorly

supported on different platforms. The performance improvements are measured in the theoret-

ical number of floating-point operations (FLOPs), which doesn’t necessarily translate to faster

execution time since memory access (often the real bottleneck) is not accounted for.

Our aim, then, is to use standard and well-supported deep learning layers to design an effi-

cient CNN architecture for the initial global stage in the cascaded regression framework for face

alignment. Inspired by the simple and lightweight tiny version of the YOLO9000 object detec-

tion method [189], we modified the backbone architecture for this purpose. A neural network

can be optimized in the following ways: the number of filters in each convolution layer (network

width), the total number of layers (network depth), and input resolution. Unlike general object

detection, we are interested in a single object, namely, the face. There is no need for a high-

resolution input, especially for the initial coarse stage. Additionally, the final layers are adjusted

to reduce the number of weights and produce 2D landmark coordinates. These adjustments re-

sulted in an architecture presented in Table 4.1. The input is a loose, gray-scale crop of the

face bounding box (allowing for enough context) resized to a 96×96 resolution. The network

output is a vector of 2D landmark coordinates of length 2×L where L represents the number

of landmarks. The presented architecture has approximately one million trainable parameters
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Table 4.1: CNN architecture used for the global initial stage.

Layer type Filters Size/Stride Output

Convolutional 16 3×3/1 96×96×16

Maxpool 2×2/2 48×48×16

Convolutional 32 3×3/1 48×48×32

Maxpool 2×2/2 24×24×32

Convolutional 16 1×1/1 24×24×16

Convolutional 128 3×3/1 24×24×128

Convolutional 16 1×1/1 24×24×16

Convolutional 128 3×3/1 24×24×128

Maxpool 2×2/2 12×12×128

Convolutional 32 1×1/1 12×12×32

Convolutional 256 3×3/1 12×12×256

Convolutional 32 1×1/1 12×12×32

Convolutional 256 3×3/1 12×12×256

Maxpool 2×2/2 6×6×256

Convolutional 64 1×1/1 6×6×64

Convolutional 512 3×3/1 6×6×512

Convolutional 64 1×1/1 6×6×64

Convolutional 512 3×3/1 6×6×512

Convolutional 128 1×1/1 6×6×128

Avgpool 2×2/2 3×3×128

Linear Global 2×L
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Φ =( )

Tree 1
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0 1 0 0 · · ·
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Figure 4.1: The process of generating a sparse feature vector Φ with an ensemble of n decision trees.
The path that a sample takes through each tree is drawn in red. Exactly n components of Φ are set to 1
based on these paths. The rest are set to 0.

resulting in a small and computationally efficient model as demonstrated in section 4.3.3.

4.2 Local shape-indexed features

As already highlighted, local shape-indexed features are excellent for fine-grained alignment

in deeper stages of the cascaded regression framework. Limiting the feature space using local

patches centered on coarsely aligned landmarks allows for more efficient and relevant feature

extraction. We propose to achieve this using Pixel Difference Features and ensembles of deci-

sion trees.

Decision trees [14] are a tried-and-true machine learning method with a long tradition. They

are especially powerful when combined in an ensemble [16] (the outputs of multiple trees are

usually summed together). A nice property of decision-tree ensembles is that the method easily

deals with multidimensional prediction (e.g., in multi-class classification). This is achieved by

placing a vector in the leaf node of each tree. This means that the multidimensional output ∆(x)

for the input sample x is computed as ∆(x) = ∑i ωi, where the ith vector is output by the ith tree:

ωi = Treei(x). As already shown in section 2.1.1, Ren et al. [18, 190] interpret this computation

as a linear projection step:

∆(x) = ∑
i

Treei(x) = Ω Φ(x), (4.1)

where Ω is a large matrix that contains as columns the leaf-node vectors of the trees and Φ(x) is

a sparse vector that indicates which columns of Ω should be summed together in order to obtain

the prediction for the sample x. See Figure 4.1 for an illustration that shows how to obtain Φ(x).

This interpretation enabled Ren et al. to learn an efficient method for face alignment by jointly

refining the outputs of multiple decision trees [190].

If the ensemble has n trees of depth equal to d and the dimension of the output is o, then

the matrix Ω has n · 2d · o parameters. This number can be quite large in a practical setting.

In [58], we showed how to replace Equation 4.1 with a more memory-friendly computation:

first, we investigated two different methods with a reduced number of coefficients; second, we
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Figure 4.2: An illustration of the neural-net structure used in the experiments. First, the input sparse vec-
tor is compressed into a compact representation with the projection matrix Ω1. Next, this representation
is gradually expanded with matrices Ω2 and Ω3 to obtain the result. Hyperbolic-tangent nonlinearities
(tanh) are applied in the two inner layers.

showed that the remaining coefficients can be further compressed with quantization. These

ideas were applied to face alignment, which improved on the previous work of Ren et al. [190]

by significantly reducing the memory requirements with no loss in accuracy.

A way to compress Ω ∈ Ro×(n·2d) is to express it as a product of Ω2 ∈ Ro×r and Ω1 ∈
Rr×(n·2d): Ω = Ω2 ·Ω1. Of course, r has to be smaller than o. For classification, we can attempt

to learn these matrices using gradient descent. For regression, besides gradient descent, we can

also use the reduced-rank regression (RRR) framework [191].

Another possible path to improving memory issues is to replace linear regression for com-

puting ∆ from Φ (Equation 4.1) with a neural network (NN). One architecture that we found to

work well in our experiments is

∆(x) = Ω3 ·tanh(Ω2 ·tanh(Ω1 ·Φ(x))) , (4.2)

where Ω3 ∈Ro×2r, Ω2 ∈R2r×r, Ω1 ∈Rr×(n·2d) and tanh is the elementwise hyperbolic-tangent

nonlinearity. See Figure 4.2 for an illustration. The matrices Ω1, Ω2 and Ω3 can be trained with

gradient descent through the use of backpropagation. The presented NN architecture improves

memory issues only if r can be made reasonably small.

In [58], we experimentally verified that r can be significantly smaller than o when applied to

face alignment, which, consequently, leads to a large reduction in storage-related issues for com-
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puting ∆ from Φ. More specifically, such an architecture reduces storage/bandwidth require-

ments by approximately three times. Further reduction is achieved by employing non-linear

quantization of the weights in the long and flat Ω1 matrix, resulting in a total improvement by

a factor of twenty-one. For more details, we refer the reader to [58]. We use the NN-based

method in all stages of the cascaded regression due to its scalability and simplicity, except the

initial global stage.

4.3 Evaluation

This section compares the proposed novel method with recent work in this field using the 300-

W benchmark data set. The results from related work will be presented as reported in their

respective papers. During the years of research, several different metrics have emerged to mea-

sure the alignment accuracy. The earliest and most frequently used is the normalized mean error

(NME):
||S−S*||2

D
, (4.3)

where D represents the normalization factor which varies between the following values in pre-

vious work:

∙ Inter-pupil distance (IPD) - this metric is the most common one. However, it can only be

used on frontal or semi-frontal faces where pupils are visible [15].

∙ Inter-ocular distance (IOD) - this metric is used when there are no pupil annotations and

represents the distance between the outer corners of the eyes [192].

∙ Bounding box diagonal (BBD) - this metric is more suitable for profile faces where the

first two metrics produce unreasonably small values [73].

The authors in [73] argue that these average measures are not always informative enough

since few outliers can affect the result significantly and propose Cumulative Error Distribution

(CED) curves which provide a much more detailed source of information for analysis. Addi-

tional measurements from the curve are then derived:

∙ Area Under the Curve (AUC) - this metric represents the calculated area under the CED

curve up to a defined error threshold (e.g., 5% marked with AUC0.05).

∙ Failure Rate (FR) - this metric represents a percentage of samples with an error greater

than a set threshold (e.g., 5% marked with FR0.05).

All of these metrics will be taken into account in addition to the inference time of the compared

methods, if available.

300-W data set is currently adopted as the main benchmark data set for face alignment. It

is a compilation of different data sets (AFW, LFPW, HELEN, and XM2VTS) under consistent

68-point annotation [192] with an addition of a challenging set of 135 images called IBUG.

A standard partitioning was set in [15] into a training set (the training set from LFPW and
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(a) (b)

Figure 4.3: (a) Training and validation errors during optimization of the initial global stage. (b) Training
and validation errors during optimization of the first local stage.

HELEN, whole AFW) with 3148 images and three testing sets: the test sets from LFPW and

HELEN as the common subset, the whole IBUG as the challenging subset, and both common

and challenging as the full test set with 689 images. The private test set was released after the

second 300 face in-the-wild challenge [193] containing 600 images.

4.3.1 Training implementation

The initial global stage was trained from scratch using the 300-W training set. We used a

random 5% partition as the validation set for model selection during the training process. The

training images were cropped using the annotated bounding boxes enlarged by 50%. Additional

training samples were generated using mirroring and random image augmentations: in-plane

rotations between ±20∘, scale adjustments by ±25% and translations by ±10% of the bounding

box size. Adam optimization [29] was used with an initial learning rate α = 0.001 without

decay and a batch size of 64 images. The first couple of epochs of the training process with the

corresponding training and validation errors can be seen in Figure 4.3a.

The three subsequent stages were trained sequentially using the output of the previous stages

as the initial positions. Local binary features and neural networks are trained as explained in

section 4.2 in a two-stage process. The decision tree ensembles are trained for each landmark

individually with the following parameters: tree depth d = 5, number of trees n = 5, the pool

size to choose the best split parameters from is set to 512, the shrinkage factor for gradient

boosting is set to ν = 0.5, and the local region is set to the following percentages of the face

scale for each stage: 16%, 10%, 10%. The neural networks are trained using SGD with a

learning rate set to α = 1 and momentum set to µ = 0.9. The size of the bottleneck layer is

gradually increased with each stage: r = 40,48,56. The reduction of the training and validation

errors can be seen in Figure 4.3b as the optimization of the first local stage progresses.
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Figure 4.4: CED curves for each partition of the 300-W test set with corresponding AUC0.08 measures
using IOD normalization.

4.3.2 Results on 300-W

The CED curves and corresponding AUC0.08 for each test partition using IOD normalization are

shown in Figure 4.4. The worst performance is achieved on the challenging subset (AUC0.08 =

32.95%), which is also the most difficult one, while the highest accuracy is achieved on the

easiest, common subset (AUC0.08 = 59.15%). The private test set proved to be more difficult

than the full public test set with AUC0.08 = 45.45% and AUC0.08 = 54.33%. Additionally, the

failure rates for the full public test set FR0.08 = 1.45% and private test set FR0.08 = 5.17%

also demonstrate the difference in difficulty between these two sets. On the other side, the

achieved failure rates show a high degree of robustness of the proposed method having such

a small proportion of samples considered failures. This is also visible from Figure 4.5 where

nine samples with the worst errors are displayed, actually showing good robustness to difficult

poses, illumination, and facial hair.
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Figure 4.5: Samples from the 300-W challenging subset with the highest normalized mean error.
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Comparison

Tables 4.2 and 4.3 show the achieved NME, AUC, and FR of the proposed method in compar-

ison to previous work using IPD and IOD normalizations, respectively. The best results are

achieved by heatmap regression methods using stacked hourglass architecture [93, 95, 96, 98]

and methods utilizing additional training data [81, 89, 91, 93, 96]. The two top-performing

algorithms from Yang et al. [93] and Liu et al. [96] used two face detection algorithms that also

output a subset of landmarks to pre-align the faces for the stacked hourglass architecture train-

ing, making the alignment task less complex. The core contribution of the DVLN algorithm [81]

is the use of additional training data (leveraging different mark-ups in data sets) from which ev-

ery deep learning method should benefit. From the regression architecture stand-point, the

stacked hourglass model demonstrates impressive results being featured in four out of five best-

performing methods. However, it suffers from a high computational burden making real-time

performance unfeasible even with a high-end GPU. Finally, there are two methods (Wing [89]

and AWing [98]) among the top performers confirming the effectiveness of a customized loss

compared to the standard L2 loss.

Competitive results on both challenging and common subsets without using external data

are achieved by lightweight DCFE [63] algorithm, which utilizes global feature initialization

through a CNN in combination with local cascaded regression (ERT [54]). The next three

methods (FEC-CNC [72], DCR [66], and DAN [88]) use a combination of cascaded regression

and deep learning to achieve good results but with a significant margin from the top performers.

Methods DSRN [82] and TCDCN [124] both use a single deep learning model and external

data to achieve results lagging from the leading methods, especially on the challenging subset.

It seems that the coarse-to-fine approach from cascaded architectures is beneficial for deep

learning models as well on such a complex task.

Traditional cascaded regression methods (LBF [15], SDM [55], and ESR [45]), although

revolutionary at their time and extremely efficient, can not compete with the high capacity and

flexibility of convolutional networks. The greatest problem for these methods and their deriva-

tives is challenging images with ground truth far away from the initial shape. Additionally, 3D

alignment methods [111, 115, 116] also struggle on 2D benchmarks. Although highly robust,

as demonstrated on the challenging portion of the test set, disproportionately large errors are re-

ported on the common partition. It is presumably due to the constraints imposed by the 3DMM

as discussed in section 3.2.

The proposed method achieves comparable accuracy to other similar methods combining

cascaded regression and deep learning [66, 72, 88], however, with a significantly lower compu-

tational complexity as explained in section 4.3.3. The failure rate is a bit more intuitive measure

when evaluating face alignment accuracy. We can see that the two highly competitive methods

DCFE [63] and DeCaFA [91] report FR0.08 = 1.59% and FR0.1 = 0.15%, respectively. The
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Table 4.2: Results reported on 300-W data set using IPD normalization. Methods marked with * use
external data for training.

Method Common Challenging Full

RCPR [131] 6.18 17.26 8.35

ESR [45] 5.28 17.00 7.58

SDM [55] 5.57 15.40 7.50

3DDFA [111] 6.15 10.59 7.01

CFAN [87] 5.50 - -

RPP [132] 5.50 11.57 6.69

ERT [54] - - 6.40

LBF [15] 4.95 11.98 6.32

iMORF [125] - - 6.31

Jourabloo et al. [115] 5.43 9.88 6.30

PRF [57] 4.90 11.96 6.28

DRDA* [134] - 10.79 -

DeFA* [116] 5.37 9.38 6.10

cGPRT [59] - - 5.71

CFSS [79] 4.73 9.98 5.76

R-DSSD [61] 4.16 9.20 5.59

ERT-PIS [62] 4.42 10.32 5.58

KRFWS [64] 4.62 9.48 5.57

MCNet [84] - 8.87 -

TCDCN* [124] 4.80 8.60 5.54

DSRN* [82] 4.12 9.68 5.21

DAN [88] 4.42 7.57 5.03

DCR [66] 4.19 8.42 5.02

FEC-CNC [72] 4.20 7.90 4.90

DCFE [63] 3.83 7.54 4.55

DVLN* [81] 3.79 7.15 4.45

AWing [98] 3.77 6.52 4.31

LAB [95] 3.42 6.98 4.12

Wing* [89] 3.27 7.18 4.04

Yang et al.* [93] - 7.0 -

Liu et al.* [96] 3.45 6.38 4.02

Proposed 4.53 8.13 5.24
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Table 4.3: Results reported on 300-W data set using IOD normalization. Methods marked with * use
external data for training.

Method Common Challenging Full AUCthr FRthr

LBF-NN [58] 4.08 10.30 5.26 - -

P-DSC-CR* [67] 3.83 6.93 4.38 - -

MDM [60] - - 4.05 52.120.08 4.210.08

KRFWS [64] 3.34 6.56 3.97 - -

DAN [88] 3.19 5.24 3.59 55.330.08 1.160.08

LAB [95] 2.98 5.19 3.49 - -

DeCaFA* [91] 2.93 5.26 3.39 66.100.1 0.150.1

HRNet [99] 2.87 5.15 3.32 - -

DCFE [63] 2.76 5.22 3.24 60.130.08 1.590.08

Yang et al.* [93] - 4.9 - - -

AWing [98] 2.72 4.52 3.07 - -

Proposed 3.27 5.63 3.73 54.330.08 1.450.08

proposed method achieves a similar failure rate FR0.08 = 1.45 confirming a competitive degree

of robustness. It has been known for some time that face alignment has been a solved problem

in controlled environments. However, these results on benchmarks in the wild suggest that it is

close to being solved in general also.

4.3.3 Computational performance analysis

The initial global stage of the proposed method achieves an execution time of 2.32 ms using

Intel’s optimized OpenVINO* inference engine. With a slight accuracy drop, the performance

can be further improved using quantization and INT8 computation. The three local refinement

stages utilizing fast LBF and neural network execute in a total of 0.29 ms. This efficiency

comes from the sparse nature of the feature vector, which reduces the multiplication of the first

neural network layer to a series of memory look-ups and additions. The total execution time,

including the spatial transformation of the image between the global and local stages, equals

3.05 ms measured on a single core i7-7500U operating at 2.7GHz.

Table 4.4 presents execution times in milliseconds on CPUs and GPUs for methods that

report them in their publications. It is immediately visible that all fast methods with frame rates

*https://github.com/openvinotoolkit/openvino
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Table 4.4: Reported execution times in milliseconds.

Method Device Exec. time

iMORF [125] Core i7 @ 3.6 GHz 350

RCPR [131] CPU @ 3.47 GHz 333.33

RPP [132] CPU @ 3.3 GHz 250

Jourabloo et al. [115] GTX Titan X 232.56

P-DSC-CR [67] - 100

FEC-CNC [72] - 100

3DDFA [111] GTX Titan Black 75.72

LAB [95] GTX Titan X 60

FAN [92] GTX Titan X 34

PRF [57] Core i7-2600 33.33

DeCaFA [91] GTX 1060 31.25

DCFE [63] Xeon E5-1650 @ 3.5 GHz 31.25

R-DSSD [61] Core i5-6500 @ 3.2 GHz 25

DAN [88] GTX 1070 22.22

TCDCN [124] Core i5 18

MCNet [84] Core i5-6200U 18

DVLN [81] Core i5-4300u 15.15

SDM [55] Core i7-2600 14.3

cGPRT [59] Core i5-3570 @ 3.4 GHz 10.75

ESR [45] Core i7-2600 8.34

Wing [89] GTX Titan X 5.88

ERT-PIS [62] Core i5-3470 @ 3.2 GHz 4.48

LBF [15] Core i7-2600 3.12

DSRN [82] GTX 1080Ti 2

LBF-NN [58] Core i7-2600 @ 3.4 GHz 1.43

ERT [54] - 1

Proposed Core i7-7500U @ 2.7 GHz 3.05
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above 60 FPS on a single CPU core utilize simple and fast features such as PDF or SIFT. The

fastest method reporting 1 ms execution time is the ERT [54] method which uses PDF and fast

decision trees. Other similar methods such as LBF [15] and LBF-NN [58] also report similar

times with additional lighter and hyper-fast versions operating at above 3000 FPS. These meth-

ods, however, demonstrate significantly lower robustness and accuracy, unlike the proposed

method, which is both fast and robust.

Any method utilizing large CNNs without optimizations can achieve real-time performance

only by employing high-end GPU hardware. Notable examples are DAN [88] and FAN [92] al-

gorithms with execution times of 22.22 ms and 34 ms, respectively. The recent heatmap regres-

sion methods are incapable of real-time performance even on a GPU and, thus, mostly do not

report execution time except LAB [95] (60 ms). However, recent work in [82] (DSRN) demon-

strates an impressive execution time of 2 ms on a GPU by utilizing more efficient convolutional

layers [83]. Another example of a CNN architecture optimization, this time by reducing the

complexity of the problem and thus required CNN complexity, is demonstrated in DVLN [81]

with a reported execution time of 15.15 ms on a CPU. A method similar to the proposed with

both competitive accuracy and real-time performance is DCFE [63] reporting an execution time

of 31.25 ms on a CPU.

4.4 Discussion

Taking into account accuracies on the benchmark data set and computational complexity, the

proposed method demonstrates both high robustness and efficiency. This is best illustrated in

Figure 4.6 where both execution time and accuracy are graphically compared with relevant

previous work. Other competitive methods on both account include DSRN [82], Wing [89],

DVLN [81], and DCFE [63]. Most of these methods utilize additional training data to im-

prove accuracy and high-end GPUs to achieve real-time performance. A notable exception is

DCFE [63] which uses a similar cascaded regression architecture and global initialization but

with an order of magnitude slower execution time.

As future work, there are multiple ways to improve the proposed method. One architectural

improvement is to use part-based fine-tuning, the key technique that sets DCFE [63] apart from

other cascaded regression methods. The last stages in the DCFE cascade do not regress a single

monolithic face shape. It is broken up into semantic facial parts consisting of landmarks relevant

for that region (e.g., eyes, mouth, nose, etc.). Even though early face alignment attempts used

a similar approach [47], the important difference here is that it is used at the end of the cascade

with landmarks already close to the ground truth positions. It enables the method to accurately

align asymmetrical facial expressions not seen in the training set due to a large number of

possible part combinations.
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Figure 4.6: Comparison of both execution time and accuracy on 300-W full set using IPD normalization.
Methods marked with * use external data for training. The green cross marks the proposed method exe-
cuting on a CPU. The green and red dots mark previous work executing on GPU and CPU, respectively.

In addition to the architectural improvements, it is evident from the comparisons that an

increase in training data size improves accuracy, especially for methods utilizing deep learn-

ing [81, 93]. It is understandable since the size of the data sets is still quite small (300-W

training set has 3148 images) due to the high complexity of the annotation process. Advanced

data augmentation techniques are thus interesting to explore and use in combination with highly

efficient algorithms, including synthetically generated images [194] and image warping to in-

crease head pose variation [111]. Generative models have recently exploded in the research

community with their ability to generate artificial photo-realistic images. One of the useful ap-

plications is the automatic creation of large-scale data sets, which would be especially beneficial

for face alignment. Another promising use of generative models already being researched is for

face alignment under heavy occlusions with the potential to "see" the parts of the face behind

the obstacle.

Since face alignment is closely related to face detection, expressions, age, gender, and other

face analysis tasks, it makes sense to unify the predictive models under a holistic approach. Past

research confirms the merits of multi-task learning for related problems. The largest obstacle,

however, is the unification of divergent data sets with different annotations. As already men-

tioned, generative models could be used to produce a well-balanced large-scale data set to train
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a holistic face analysis model.

Nevertheless, the proposed method achieves a competitive accuracy with high computa-

tional efficiency, which is becoming increasingly important since both face tracking and facial

expression recognition in videos are dynamic tasks with many applications requiring low la-

tency. Having landmarks from salient facial regions efficiently localized, we can now proceed

with facial expression recognition.
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Chapter 5

Facial expression recognition using local
binary features and shallow neural
networks

The proposed method aims to identify six prototype facial expressions (anger, disgust, fear, hap-

piness, sadness, and surprise) [1] from a single static 2D image. The method uses appearance-

based features due to greater robustness to face shape variations when compared to geometric-

based ones [7] with two key components as discussed in the following paragraphs.

Local feature learning As with many other computer vision problems, deep learning meth-

ods are taking precedence over traditional approaches using hand-crafted features for facial

expression recognition (see section 3.5). The adoption, however, is slower due to low data

availability. Our approach mitigates this problem using decision trees trained to extract relevant

features efficiently using a low sample count. An additional advantage is the use of detected

landmarks to extract local features from salient regions of the face [7, 8] further improving

efficiency on small data sets.

Joint expression classification The advantage of joint classification lies in the fact that the

expressions are not independent of each other. Some of them can be combined, also sharing

facial muscle movements, while some are mutually exclusive, hinting at complex underlying

relations. We propose a shallow neural network architecture including non-linearities to model

these relations and improve classification accuracy.

As already mentioned, appearance features are extracted around facial landmarks (e.g.,

mouth and eyes); therefore, the first step is to detect the face and its landmarks. The face

alignment method described in the previous chapter can be used, offering an excellent balance

between accuracy and computational efficiency. The overview of the whole system is depicted
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Figure 5.1: The proposed method takes an image of a face with detected landmark points. Local patches
are used to train the gentle boosted decision trees for each expression in a one-vs-all manner. The tree
ensembles are encoded into local binary features, which are concatenated into a single sparse binary
feature vector. The sparse feature vector is used as an input into a simple 2-layer neural network that
outputs the expression probabilities.

in Figure 5.1. The proposed implementation of the discussed key components will be described

with more details in the following two sections 5.1 and 5.2. The method is evaluated on all

relevant benchmarks in section 5.3 and results discussed in section 5.4.

5.1 Local feature learning

The key concept of this paper is the task-specific learning process for feature extraction, which

encodes highly discriminative texture patterns for each facial expression around the detected

facial landmarks (Figure 5.2). Ensembles of gentle boost decision trees [195] are trained with

pixel difference features indexed to facial landmarks in order to maximize the one-vs-all poste-

rior probability for each expression e around each landmark l. The number of trees within an

ensemble and tree depth are specified in advance.

Let E and L denote the number of basic facial expressions and landmark points, respectively.

For each facial expression e ∈ {e1, . . . ,eE}, we train an ensemble of gentle boost decision trees

around each landmark point l ∈ {l1, . . . , lL} as can be seen on the left side of Figure 5.1. Let

C represent the sample patches of an expression e and landmark l at the decision tree node n.

Each candidate split θ = (p1, p2, tn) from a random pool of generated parameters, divides the

training samples in the following way:

Cle f t(θ) = I(p1)− I(p2)≤ tn (5.1)

Cright(θ) =C ∖Cle f t(θ) (5.2)
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Figure 5.2: The detected landmark points used for LBF extraction regions.

where p1 and p2 represent the local patch positions, tn represents the threshold and I represents

the image intensities. The positions are placed relative to corresponding landmark location as

depicted on the left part of Figure 5.3.

The cost function Q that is minimized consists of a Gini impurity measure:

G(Xn) = pn(1− pn) (5.3)

where pn represents the proportion of expression e observations at node n:

pn =
1

Nn
∑

xi∈Rn

I(yi = e) (5.4)

Rn and Nn represent the sample space and number of samples at node n, respectively. yi and xi

represent the current ground truth label (one-vs-all binary label) and sample patch, respectively.

The full cost function is a weighted sum of impurity measures for both data partitions:

Q(C,θ) =
nle f t

Nn
G(Cle f t(θ))+

nright

Nn
G(Cright(θ)) (5.5)

The described decision trees are organized into ensembles with the gentle boosting algorithm [195]

in place. The algorithm ensures more emphasis is put on misclassified samples from the pre-
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[0    1    0    0]

Figure 5.3: The decision trees use shape-indexed pixel difference features to split the training set. When
encoding a sample into a local binary feature vector, a binary one is placed at the vector index corre-
sponding to the leaf node where the sample ended up after traversing the tree.

vious tree in the ensemble. In practice, each sample i has a weight wi assigned to it, which is

increased or decreased depending on the output of the previous tree oi:

wi := wie−(yioi) (5.6)

By doing this, each successive tree in the ensemble is forced to find even more discriminative

features compared to the previous trees.

Once gentle boost ensembles for each facial expression and each landmark point are trained,

local binary features are extracted as depicted in Figure 5.3. Each tree of an ensemble yields

a tree vector of size equal to the number of leaves in that tree. All elements in that tree vector

are equal to 0 except the one that corresponds to the leaf in which the given sample ended

up while traversing that tree. This element is equal to 1. The tree vectors are concatenated

into an ensemble vector with respect to the order of the trees. Each facial expression e gets

ensemble-vectors φe,l where l ∈ {l1, . . . , lL}.

These ensemble vectors are concatenated to acquire a global binary feature vector Φe for

each sample (Figure 5.1). It represents relevant pattern information for each expression:

Φe = [φe,1, . . . ,φe,L]. (5.7)

5.2 Expression classification

Feature vectors Φe for each expression e are concatenated into a single feature vector Φ which

is used as an appearance-based representation of the face specifically tuned for expression dif-
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Figure 5.4: The diagram of the simple neural network architecture used to predict the expression prob-
abilities.

ferentiation in a completely automatic supervised manner:

Φ = [Φ1, . . . ,ΦE ] (5.8)

A shallow neural network with one hidden layer is used on the described sparse binary feature

vector Φ. This simple network architecture (Figure 5.4) has demonstrated enough capacity to

model the non-linear relationship between different expressions as shown in section 5.3.1. The

network is trained using a cross-entropy criterion which is minimized over the data set:

Θ
N = argmin

θ

(−
E

∑
e=1

logP(e)) (5.9)

where P(e) represents the probability of each expression e obtained by appending a soft-max

layer at the end of the network:

P(e) =
exe

∑
E
k=1 exk

(5.10)

The optimized network parameters ΘN are obtained using a quasi-Newton method for opti-

mization called Limited memory BFGS which approximates the Hessian matrix inverse when

searching for the optimal descent direction [196]. Since all of the data sets are quite small, the

whole training set is used in each iteration of the optimization. In order to improve the conver-

gence speed, Wolfe conditions were used to modify the step length of the descent direction at

each iteration [197].

5.3 Evaluation

We evaluated our system on the four most commonly used data sets for FER: CK+ [198],

MMI [199], JAFFE [200], and SFEW 2.0 [201]. Due to the small size of the data sets, all of the

experiments (except SFEW 2.0, which has a defined protocol) were conducted using a ten-fold

cross-validation procedure which randomly divides the data sets into ten training and validation

subsets. By doing this, every sample has both been in the training and validation set in one of

the folds. The results were averaged across folds.

Furthermore, our experiments were strictly divided into person-independent (PI) and person-

dependent (PD) scenarios. The PI scenario assures a strict subject division between the training
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and validation sets, meaning the same person can not appear in both sets with different expres-

sions. Naturally, the PI scenario is more complex; however, many researchers do not explicitly

state their experimental procedure, making comparisons difficult. Both six and seven class

results are reported since all of the data sets include a neutral expression also.

Face detection and alignment were first applied to all samples in the data sets. Since shape-

indexed local features were used, no face registration and image transformations were needed as

a preprocessing step. The only operation applied to the images was a conversion to gray-scale

format since only pixel intensities are relevant and sampled by the decision trees.

5.3.1 Experiments on CK+

The Extended Cohn-Kanade (CK+) [198] data set is a widely recognized benchmark data set

for FER. It contains 593 sequences from 123 subjects posing six prototypical expressions and

contempt, additionally. All sequences start with a neutral expression and end with the peak of

the requested expression. The peak frames are fully FACS annotated. Unlike other data sets,

each expression label was verified using the FACS manual by certified FACS coders. Using

the requested labels as the ground truth proved unreliable by the authors; thus, they added an

additional validation step. After the validation, 327 of 593 sequences were determined to be of

sufficient quality. Due to the comprehensiveness of the data set, we used it for the bulk of our

experiments for parameter and architecture investigation.

According to the usual practice in static image FER, one neutral and three peak frames

were used from each validated sequence. It amounts to the following number of samples per

expression: 135 (An), 177 (Di), 75 (Fe), 207 (Ha), 84 (Sa), 249 (Su), 327 (Ne).

Decision tree parameters analysis

We explored the decision tree parameters (tree depth - T D and tree count in the ensembles - TC)

using the PI scenario on the 7-class problem from the described CK+ data set. A simple logistic

regression with a one-vs-all objective was used to train separate expression classifiers to set a

baseline. Furthermore, the analysis using a simple logistic regression was suitable to narrow

down the decision tree parameter space before analyzing the neural network architecture. The

dimensionality of the final feature vector is calculated as follows:

D = 2T D *TC *L*E (5.11)

The tree parameters TC and T D directly affect the feature vector size, and since the dimension-

ality is quite high, regularization was needed to prevent over-fitting.

It is evident from Figure 5.5 that T D = 2 gives the overall best results regardless of the

number of trees in the ensemble. Given the large dimensionality of the feature vector and the
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Figure 5.5: The accuracies and corresponding standard deviations plotted with error bars for different
tree count TC and tree depth T D parameters trained with one-vs-all logistic regression on the PI scenario
with seven classes from the CK+ data set.

relatively small size of the data set, it comes as no surprise that such simple trees are enough

to capture relevant textural information. It is also clear from the graph that there is little or no

added value in increasing the number of trees in the ensemble beyond 30. The best accuracy

was achieved with T D= 2 and TC = 35, averaging 93.77%. We shall call this method LBF-LR.

Neural network parameters analysis

As already described, our neural network has one hidden layer whose size needed to be deter-

mined experimentally. We used the same scenario as in the previous section. We varied the size

of the hidden layer HU while keeping decision tree parameters fixed to three configurations

with the same three depth T D = 2: TC = 20, TC = 25, and TC = 30.

The results can be seen in Figure 5.6 where the optimal configuration is visible for param-

eters T D = 2, TC = 25 and HU = 48. When compared with the separate optimization using

logistic regression from section 5.3.1, there is a boost in accuracy from 93.77% to 96.48%,

which demonstrates the need for joint optimization to recognize facial expressions. We shall

call this method LBF-NN.

Upon closer examination of the confusion matrices for both LBF-LR and LBF-NN showed

in Figures 5.7a and 5.7b, we can see that the most important accuracy boosts are obvious for
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Figure 5.6: The accuracies and corresponding standard deviations plotted with error bars for different
hidden layer sizes with selected decision tree configurations trained with the described neural network
on the PI scenario with seven classes from the CK+ data set.

the most difficult expressions: fear and sadness. Incidentally, these two expressions have the

least amount of samples in the data set due to the difficulty of truthfully portraying these emo-

tions. Having a joint non-linear optimization process, features from other expressions can prove

complementary and helpful to increase the recognition rate for these difficult expressions. The

recognition rate increase for fear is 20%, while for sadness is 9.52%.

Comparison

It is quite difficult to compare our results to previous work since there is no official protocol de-

scribed for the CK+ data set. We conducted experiments on both six- and seven-class (including

neutral expression) problems with PD and PI scenarios using the best configuration described

in section 5.3.1. The confusion matrices for the PI scenario are shown in Figures 5.8 and 5.7b.

It is clear that the PD scenario is an easier task producing accuracies of 99.89% and 99.68%

when compared to the PI scenario with accuracies of 98.08% and 96.48% for six- and seven-

class problems, respectively. It is, therefore, very important to clearly and explicitly state the

protocol of the experiments when comparing to other works. Upon closer inspection of the con-

fusion matrices, we can see that by introducing the neutral expression, the overall recognition

rate drops due to confusion between sadness and neutral expressions.
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Figure 5.7: The confusion matrix on the CK+ data set using seven classes and the PI scenario.
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Figure 5.8: The confusion matrix for the proposed LBF-NN method on the CK+ data set using six
classes with the PI scenario.
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As we can see from Table 5.1, most of the previous methods differ in the number of classes,

folds, and subjects used in the experiments. However, there is a positive trend of adopting the

more difficult PI scenario. Our method is very competitive with other works for all experiment

setups and sets a new state-of-the-art recognition rate for the CK+ data set with 96.48% for the

seven-class problem. The previous best result was from Lopes et al. [163] where a CNN was

used with various preprocessing methods to artificially increase the training set size and prevent

over-fitting. The nature of our simpler LBF features makes it easier to train on smaller data

sets and proves to be a viable alternative to heavy-weight convolutional features. Similarly, the

current state-of-the-art method for the six-class problem uses a trained face recognition network

to regularize and prevent DCNN expression over-fitting [168].

5.3.2 Results on MMI

MMI [199] data set contains more than 2900 videos and images of 75 subjects. It is an ongoing

work to provide large volumes of data of facial expressions to the research community. Along

with six basic emotions, it also contains single FACS Action Unit activation samples and nat-

uralistic expressions. All of the videos include the starting neutral expression with the onset,

apex, and offset phases. The major problem is that the apex frames are not indexed; therefore, it

is hard to compare since researchers manually choose the frames to include in the training and

validation sets.

We filtered the data set to frontal view and seven basic expressions (including neutral),

which resulted in 208 sequences (one sequence was corrupted) and 31 subjects. One neutral

frame and three manually selected apex frames were used, totaling the following number of

samples per expression: 99 (An), 96 (Di), 84 (Fe), 126 (Ha), 96 (Sa), 123 (Su), 208 (Ne).

Again, no preprocessing was applied to the images except for the gray-scale conversion and the

face detection/alignment to find the facial landmarks used in our method.

Four experiments were conducted similarly to the CK+ experiments, including six- and

seven-class recognition in both PI and PD scenarios. The confusion matrices for the PI scenario

are presented in Figures 5.9a and 5.9b. Once again, the PD scenario was easily solved with

99.84% and 99.88% recognition rates for six- and seven-class problems, respectively. However,

the PI scenario proved to be much more difficult with recognition rates of 78.88% and 73.73%

with optimal parameters presented in Table 5.2. A small L2 regularization coefficient was used

on the seven-class problem in the PI scenario that helped prevent over-fitting.

There are several reasons for these results. First of all, the MMI data set is much more

challenging than the CK+ data set due to a large age span between subjects (19-62 years) and the

fact that many subjects wore accessories like glasses and hats. Secondly, the sequences were not

filtered by expert annotators; therefore, there is no guarantee that challenging expressions, such

as fear and sadness, were acted out correctly and consistently across subjects. It is evident from
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Table 5.1: Comparison with previous work on the CK+ data set.

Method No. of folds No. of subjects Scenario No. of classes Recognition Rate (%)

Boughrara et al. [202] 10 97 PI 6 96.66

Gritti et al. [149] 10 95 not stated 7 92.90

Gu et al. [147] 10 94 PI 7 91.51

Happy and Routray [7] 10 118 not stated 6 94.09

Khan et al. [153] 10 not stated PI 6 96.70

Lee et al. [203] 118 118 PI 7 (contempt) 90.47

Zhong et al. [8] 10 96 not stated 6 89.89

Littlewort et al. [156] 90 90 PI 7 93.30

Lopes et al. [163] 8 100
PI 6 96.76

PI 7 95.75

Zhang et al. [148] 10 109
PI 6 95.50

PI 7 93.60

Poursaberi et al. [161] 10 not stated
PI 6 86.10

PD 6 90.37

Zhang and Tjondronegro [157] 10 92 PI 6 94.48

Liu et al. [162] 8 118 PI 6 96.70

Shan et al. [150] 10 96
PI 6 95.10

PI 7 91.40

Mollahosseini et al. [164] 5 not stated PI 6 93.20

Zavaschi et al. [151] 10 not stated
PI 7 88.90

PD 7 99.40

Rivera et al. [159] 10 118 PI 7 (contempt) 89.30

Burkert et al. [171] 10 210 PD 7 (contempt) 99.60

Ding et al. [168] 10 not stated PI 6 98.60

Proposed LBF-NN 10 118

PI 6 98.08

PI 7 96.48

PD 6 99.89

PD 7 99.68
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Figure 5.9: The confusion matrix for the the proposed LBF-NN method on the MMI data set with the
PI scenario.

Table 5.2: Optimal parameters for the PI scenario on the MMI, JAFFE, and SFEW 2.0 data sets.

Data set No. of classes TD TC HU L2

MMI 6 2 20 16 0

MMI 7 2 25 24 0.0001

JAFFE 6 2 25 48 0

JAFFE 7 2 25 24 0

SFEW 2.0 7 2 30 24 0.0001
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Table 5.3: Comparison with previous work on the MMI data set.

Method
No. of No. of

Scenario
No. of Recognition

folds sequences/subjects classes rate (%)

Lee et al. [203] 20 150/21 PD 6 93.81

Zhong et al. [8] 10 205/not stated not stated 6 77.39

Fang et al. [204] 10 203/not stated not stated 6 75.96

Zhang et al. [148] 10 209/not stated
PI 6 93.60

PI 7 92.80

Poursaberi et al. [161] 10 not stated
PI 6 86.10

PD 6 90.37

Shan et al. [150] 10 96/20 PI 7 86.90

Mollahoseini et al. [164] 5 not stated/not stated PI 6 77.60

Rivera et al. [159] 10 238/28 PI 6 95.80

Burkert et al. [171] 10 187/? PD 6 98.63

Proposed LBF-NN 10 208/31

PI 6 78.88

PI 7 73.73

PD 6 99.84

PD 7 99.88

the confusion matrices that it is very difficult to discern, e.g., fear from surprise and sadness

from disgust. Thirdly, the results are very dependent on the peak frames used in the data set,

which needed to be manually selected since the sequences are of varying length and different

expression dynamics.

We compared ourselves with previous work in Table 5.3. Again, comparison on this data set

is even harder since data acquisition is an ongoing process. Also, as can be seen from Table 5.3,

there is a large variation in the number of subjects and sequences used for training and testing.

Some of the authors manually discarded sequences with poorly acted expressions. The method

from Zhang et al. [148] uses an almost identical set in their experiments and achieves a state-of-

the-art recognition rate. However, they use hand-crafted features (fusion of LBPH and HOG)

coupled with a multi-kernel SVM. Due to the hand-crafted features making their model less
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Figure 5.10: The confusion matrix for the proposed LBF-NN method on the JAFFE data set in the PI
scenario.

complex, it is also less prone to over-fitting on small data sets. Another important point to note

is that they fine-tuned their hyper-parameters on each fold in the cross-validation tests making

the models highly specialized for combinations of specific fold training and test sets. Our tests

were done with hyper-parameters optimized using the average accuracy across folds, not at the

fold level. Furthermore, no cross-database experiments were conducted by the authors to test

the generalization ability of their models. Another hand-crafted features method from Rivera

et al. [159] achieves the state-of-the-art performance in the PI scenario with seven classes. The

problem with comparing to this method is that only 168 sequences are available now from the

238 sessions they used.

5.3.3 Results on JAFFE

The Japanese Female Facial Expression database (JAFFE) [200] contains images of ten Japanese

female models posing seven basic emotions. The total number of images is 213, making it the

smallest data set we used for testing by far. An additional problem is that the data set obviously

lacks diversity concerning gender, age, and race.

The same experiments were conducted as with the other two data sets and, similarly, the

PD scenario recognition rates were extremely high above 98% for both six- and seven-class

problems. However, as can be seen from the confusion matrices in Figures 5.10a and 5.10b, our

method struggled again in the PI scenario to discern difficult and similar expressions such as fear

and sadness. It can again be explained by the difficulty of sincerely portraying such emotions

on demand. Nevertheless, in the easier six-class task, our method achieves recognition rates

above 80% for each expression.

Table 5.4 compares our method to previous work on this data set. We achieve state-of-the-art

results in the PD scenario due to the high flexibility of our method to adapt its feature extraction
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Table 5.4: Comparison with previous work on the JAFFE data set.

Method
No. of No. of

Scenario
No. of Recognition

folds images classes rate (%)

Gu et al. [147] 10 213 PI 7 89.67

Happy and Routray [7] 10 183 not stated 6 91.80

Lee et al. [204] 20 213 PD 6 94.70

Lopes et al. [163] 10 213
PI 6 53.44

PI 7 53.57

Poursaberi et al. [161] 10 213
PI 7 91.12

PD 7 95.04

Zhang and Tjondronegoro [157] 10 213 PI 6 92.93

Liu et al. [162] 10 213 PI 7 91.80

Shan et al. [150] 10 213 PI 7 81.00

Owusu et al. [158] 10 213 PD 6 96.83

Zavaschi et al. [151] 10 213
PI 7 70.00

PD 7 96.20

Rivera et al. [159] 10 213
PI 6 93.40

PI 7 90.60

Proposed LBF-NN 10 213

PI 6 87.22

PI 7 85.88

PD 6 98.33

PD 7 98.10
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process. In the PI scenario, we achieve competitive recognition rates of 87.22% and 83.56% for

the six- and seven-class problems, respectively.

5.3.4 Results on SFEW 2.0

The Static Facial Expressions in the Wild (SFEW) [205] data set aims to benchmark the per-

formance of FER methods in realistic conditions with unconstrained lighting, head poses, and

occlusions. The second version of the data set we used in our experiments was released as

part of the EmotiW 2015 challenge [201]. The images were extracted and annotated semi-

automatically from movies and, even though the emotions are acted, the data set can be consid-

ered spontaneous since professional actors were involved.

The data set has a well-defined protocol with a strict division of training (958 images),

validation (436 images), and test (372 images) sets. Since we could not obtain the labels for the

test set, we report the results on the validation set only. The division of the data set is strictly

person-independent. It contains seven basic expressions with the following number of samples

(training and validation set combined): 255 (An), 89 (Di), 145 (Fe), 271 (Ha), 236 (Ne), 245

(Sa), 153 (Su).

Due to the unconstrained nature of the data set, we needed to modify the preprocessing

pipeline to some extent. First, the face detector could not detect all of the faces, so we manually

annotated eight images. Next, we used a more powerful face alignment method [92] that was

trained on unconstrained head poses and can accurately align profile faces as well. Furthermore,

we utilized the 2D landmark positions to remove the in-plane rotations of the faces, which

reduced the variation of the relevant expression patterns around landmarks. Finally, we used

horizontal mirroring to double the size of the training set. Even though this preprocessing step

did not improve the results on other data sets, it proved beneficial here due to the asymmetry

caused by large variations in head pose, illumination, and occlusions.

It is clear from the baseline results of the EmotiW 2015 challenge [201] (35.93% and

39.13% accuracy on validation and test sets, respectively) this is a very challenging benchmark.

The optimal parameters for this data set are shown in Table 5.2 and the confusion matrix in

Figure 5.11. It is evident once again that happiness is the easiest expression to recognize even

in the unconstrained environment (80.82%); however, neutral and anger achieve respectable

recognition rates as well (69.77% and 53.25%, respectively). Disgust and fear are traditionally

very difficult to identify.

The proposed method achieves an average recognition rate of 49.31% without using any

additional training data, which is the state-of-the-art result in such conditions. However, the

best results are achieved by leveraging transfer learning with large related data sets (usually

face recognition sets) and large ensembles of DCNNs [165, 167]. As seen from Table 5.5,

all of the deep learning methods need auxiliary data sets and, even then, our method is very
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Table 5.5: Comparison with previous work on the SFEW 2.0 data set.

Method
No. of images Recognition Rate (%)

External data
Train Val Test Val Test

Zong et al. [160] 958 436 372 38.07 50.00 Yes

Mollahosseini et al. [164] 332 331 - 47.70 - Yes

Ng et al. [166] 958 436 372 48.50 55.60 Yes

Zhai et al. [169] 958 436 - 48.51 - Yes

Levi and Hassner [167] 891 431 372 51.75 54.56 Yes

Ding et al. [168] 891 431 - 55.15 - Yes

Yu and Zhang [165] 958 436 371 55.96 61.29 Yes

Ding et al. [168] 891 431 - 48.19 - No

Proposed LBF-NN 958 436 - 49.31 - No
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Figure 5.11: The confusion matrix for the proposed LBF-NN method on the SFEW 2.0 validation set.
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Table 5.6: Comparison of cross-database recognition rates with seven classes.

Method Train Test Recognition rate (%)

Zhang et al. [148]
CK+ MMI 66.9

MMI CK+ 61.2

Shan et al. [150] CK MMI 51.1

Lee et al. [203] MMI CK+ 64.57

Proposed LBF-NN
CK+ MMI 62.74

MMI CK+ 78.79

competitive. The displayed results demonstrate the high robustness of the proposed method to

unconstrained conditions. Furthermore, the method has once again shown an excellent ability

to learn relevant information from a very limited amount of data.

5.3.5 Cross-database results

In order to test the generalization ability of our method, we conducted cross-database experi-

ments with seven classes. We trained our method on CK+ and tested it on the MMI data set

and vice versa. We chose these two databases because they have a similar number of samples

and are at the opposite ends of the difficulty spectrum. The achieved results confirm these pre-

sumptions. When trained on the consistent and constrained CK+ data set and tested on the more

challenging MMI set, we achieve the average recognition rate of 62.74%. When the situation is

reversed, an impressive recognition rate of 78.79% is achieved. In fact, both results show a great

generalization capacity of the proposed method since results in cross-database experiments are

generally much worse than within database experiments.

It is interesting to observe here that the within database results for the MMI data set are

worse (73.73%) than in the cross-database experiment with CK+ as the test set. This confirms

the theory that the MMI data set is not consistently annotated and is quite difficult to train on. In

Table 5.6 we compared our cross-database results with previous work, which provided similar

experiments. Our method achieves the state-of-the-art result when generalizing from MMI to

CK+ data set with an improvement of 14.22% from the previous best result.
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Table 5.7: Comparison of computation time in milliseconds.

Method CPU
Feature

Classification Total
extraction

Happy and Routray [7] Intel i5 3.2 GHz ? ? 295.5

Khan et al. [153] ? 10 ? ?

Lee et al. [203] Pentium 3.50 GHz 110 40 150

Lopes et al. [163] ? - - 10

Zhang et al. [148] Intel i5 2.66 GHz ? 30 ?

Zhang and Tjondronegoro [157] Core Duo 1.66 GHz ? ? 125.8

Liu et al. [162] 6-core 2.4 GHz ? ? 210

Shan et al. [150] ? 30 ? ?

Owusu et al. [158] ? ? ? 14.5

Levi et al. [167] Amazon GPU g2.8xlarge instance ? ? 500

Ding et al. [168] Titan X GPU ? ? 3

Proposed LBF-NN Intel i7-7500U 2.70 GHz ? ? 1

5.3.6 Computational performance analysis

We tested the recognition run-time of our method on a PC with an Intel Core i7-7500U CPU

operating at 2.70 GHz frequency. The method is not parallelized and uses a single CPU core.

The average computing time of our method on the JAFFE data set is approximately 1 ms which

makes it ideal for mobile and embedded applications. Due to its simple pixel difference fea-

tures coupled with shallow decision tree ensembles and a two-layer neural network, the online

recognition phase is extremely efficient. The first neural network layer weight matrix is the

largest one, and the multiplication with the large input feature vector would be the bottleneck

of the system; however, due to the sparse binary nature of the feature vector, it can be computed

with a simple series of memory lookups and additions. The run-time is written in C++, which

contributes to fast execution.

We compared our method to previous work, which stated their execution time in Table 5.7.

It is clear that our method achieves an order of magnitude improvement over all previous works.

Ding et al. [168] achieve a real-time performance of 3 ms; however, they use a high-level GPU

optimized code which is impractical for mobile and embedded systems.
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5.4 Discussion

We presented a fast facial expression recognition method based on a trainable feature extraction

process using ensembles of decision trees producing sparse binary feature vectors (LBF) and

a shallow neural network. The two-layer neural network is capable of modeling the nonlinear

relationship between expressions as demonstrated in section 5.3.1 which boosted the recogni-

tion rates of challenging expressions such as fear and sadness. The method uses static images

and achieves state-of-the-art results on the most widely used CK+ database, demonstrates great

generalization abilities in the cross-database experiments, and robustness on in-the-wild SFEW

2.0 data set. The high accuracy results are accompanied by an extremely fast computation time

of 1 ms on a single CPU which is an order of magnitude improvement in speed compared to

recent work. The accuracy and speed of the method make it ideal for FER in environments

with limited resources such as embedded and mobile platforms. It is a viable alternative to

end-to-end CNNs in scenarios with limited data sets and run-time resources.

Several factors contributed to the success of the proposed method. Unlike layers of train-

able convolutional kernels used in deep learning methods, decision tree ensembles have demon-

strated great generalization ability deduced from small data sets due to their simplistic nature.

By limiting the possible feature space to local regions around prominent facial landmarks, their

expressive power is further boosted, which resulted in highly discriminative and specialized

features. Furthermore, joint classification with a shallow neural network exploited inter-class

information, which contributed to the correct classification of ambiguous expressions.

As future work, the method could be extended to incorporate temporal information through

the use of increasingly popular variants of Recurrent Neural Networks such as Long Short Term

Memory (LSTM) networks. It would be natural since expressions are dynamic by nature, and

their intensity changes over time. Another course of action would be to integrate occlusion and

head pose information to make it more robust on in-the-wild images and videos.
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Chapter 6

Conclusion

Efficient facial expression recognition is explored in this thesis using decision trees and neural

networks. The first chapter introduces the problem of facial expression recognition along with

its crucial sub-component facial landmark detection. The importance of both research fields

is highlighted and the motivation for the thesis is established with an emphasis on computa-

tional efficiency. Since both problems are dynamic tasks, it is important to achieve real-time

performance for low-latency applications, a natural fit for the combination of efficient deci-

sion trees and flexible neural networks. In the second chapter, decision trees are introduced

as trainable feature extractors along with neural networks and deep learning, representing the

building blocks for the novel algorithms presented in the fourth and fifth chapters. The third

chapter presents an overview of related work for both problems, which serves as a reasoning

background for the decisions made throughout the rest of the thesis. An efficient and robust

face alignment method is introduced in the fourth chapter experimentally verified on the most

widely used benchmark data set. A global CNN is used for robust initialization of the cascaded

regression framework. The refinement stages use lightweight local binary features coupled with

a bottleneck-based neural network architecture which improves both execution time and mem-

ory consumption. The detected landmark locations serve as a key input for the facial expression

recognition method proposed in the fifth chapter. Expression-specific local binary features are

extracted around each landmark for joint recognition using a shallow neural network archi-

tecture. The method achieves state-of-the-art accuracy on the CK+ data set with an order of

magnitude margin in execution time compared to previous works.

The presented algorithms form a lightweight facial expression recognition system suitable

for power-efficient devices with limited computational resources. Additionally, it is hard to col-

lect large volumes of annotated data for some problems necessary for deep learning algorithms.

The proposed combination of decision trees and neural networks demonstrates high reasoning

capabilities on small-scale data sets and is a viable alternative to deep learning.
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Ivan Gogić was born in Zagreb in 1985. He graduated from the Faculty of Electrical En-

gineering and Computing, the University of Zagreb, in 2009 with a concentration in control

engineering and automation. In 2015, he started working as a research associate at the same

institution on a research project funded by Visage Technologies. Currently, he works as a di-

rector of research and development in the Face Technology Division at Visage Technologies.

He leads a team developing algorithms for face tracking and analysis, which are also his main

scientific interests. He has published peer-reviewed papers in relevant scientific journals and in

the proceedings of international conferences.

List of publications

Journal papers
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