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Hrvatske akademije znanosti i umjetnosti (HAZU), Znanstvenog vijeća za tehnološki razvoj
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te član stručnog savjetodavnog odbora za procjenu utjecaja na okoliš obnovljivih izvora energije

Ministarstva zaštite okoliša i energetike (MZOE). Član je odbora za dodjelu znaka „Hrvatska
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Znanstveni interesi prof. Kuzle uključuju dinamiku elektroenergetskog sustava, održavanje en-

ergetske opreme te napredne mreže i integraciju obnovljivih izvora energije u elektroenergetski

sustav.

iv



Acknowledgements

This thesis is based on the research conducted in the period 2015 to 2018 as a part of the project

”FENISG - Flexible Energy Nodes in Smart Grid” funded by the Croatian Science Founda-

tion under grant number IP-2013-11-7766 and by the project ”SIREN - Smart Integration of

RENewables” funded by Croatian Transmission System Operator HOPS and Croatian Science

Foundation under grant number I-2583-2015.

I wish to express my appreciation to my supervisor, professor Igor Kuzle.

I also wish to show my gratitude to my fellow coauthors who gave me valuable advises and

suggestions.

I would also like to extend my deepest gratitude to my friends and colleagues from the

Department of Energy and Power Systems and HOPS Transmission system operator.

I wish to acknowledge the support and great love of my family, my husband Hrvoje, my

children, Mihaela and Luka; my parents, Mišo and Dunja; and my sister, Ana. They kept me

going on and this work would not have been possible without their support.

Finally, I thank God for letting me through all the difficulties. I have experienced Your

guidance day by day. I will keep on trusting You day by day. Thank you, Lord!

v



Abstract

Modern power systems are making a significant progress toward decarbonisation by continu-

ously increasing the shares of renewable energy sources in the system. These new technical and

economic conditions make large-scale energy storage an attractive option to solve challenges

induced by increased variability and decreased predictability of the new system. The thesis

deals with the operation of energy storage as well as the investment problem. The first part of

the thesis covers multi-level operational models that serve to maximize the profit for the storage

owner by participating in different markets. The first model presents an energy storage as the

only strategic actor in the day-ahead energy market performing energy arbitrage. This model is

expanded to include other strategic actors which inherently lowers the profit showing the impor-

tance of considering other actors in the market. Since the energy storage can participate in the

reserves market to improve profit-making opportunities by performing intra-temporal arbitrage,

two models are developed. The first operational model deals with a price-taking energy stor-

age participating in the day-ahead energy market with a price-making strategy in the reserves

market. The second operational model considers energy storage a price-maker in both markets

as well as the risks an energy storage owner is facing, such as financial risk, risk of inability to

follow the schedule and the risk of inaccurate battery modeling. It is proven that energy storage

can increase its profit by carefully modeling its strategy in both day-ahead and reserves market.

The second part of the thesis presents a transmission expansion model where transmission sys-

tem operators invests in both lines and energy storage trying to predict merchant energy storage

decisions in order to minimize the overall system cost.

The most relevant conclusions of the thesis are as follows:

• Energy storage should forecast market outcomes for two days in advance as it allows for

energy preservation and precharge ability. However, the look-ahead horizon should be

determined by the quality of the market prices forecasting. Energy storage minimizes its

impact on LMPs by charging/discharging during seveal hours in order to maximize the

profit. Coordinated approach in the day-ahead market yields significantly higher profits

as compared to uncoordinated, competitive approach. Neglecting other strategic actors in

the market can significantly reduce expected profit or even incur a loss.

• Participating in the reserves market notably increases profit-making opportunities. Al-
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though the day used in the case study is characterized by low reserve capacity prices, the

battery storage profit is significant. These results can be considered conservative, as most

days have higher reserve capacity prices.

• Using conditional value-at-risk and including the risk of inability to deliver the scheduled

reserves and the risk of inaccurate battery modeling enables energy storage owners to

hedge their day-ahead positions without risking their expected profit, while ensuring the

feasibility of their schedule.

• The current prices of battery energy storage are still quite high, but even at low cots,

the system operator will prefer transmission line investments as they have longer life-

time. Merchant energy storage investments tend to appear in parts of the grid with highly

volatile LMPs where system operator’s social welfare increase doesn’t justify high in-

vestment costs. All investments increase the social welfare, but it is mostly driven by the

investments in lines.

Keywords: Energy storage, MPEC model, EPEC model, Multi-level modeling, Transmis-

sion power system, Mixed-integer optimization, Power system planning
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Prošireni sažetak

Višerazinski optimizacijski modeli za planiranje i pogon spremnika en-
ergije

Rastući udio obnovljivih izvora energije utječe na moderne elektroenergetske sustave. Prom-

jenjivi obnovljivi izvori energije nisu upravljivi izvori i smanjuju tehničku mogućnost sustava

za praćenje nesigurne neto potrošnje te povećavaju trošak rezerve. U elektroenergetskom sus-

tavu u svakom trenutku proizvodnja električne energije mora biti jednaka potrošnji. S obzirom

na to da je tu jednakost izrazito teško održavati konstantno, jedno od rješenja koje olakšava

održavanje ravnoteže su spremnici energije. Jednakost proizvodnje i potrošnje održava se kroz

duži vremenski period, npr. kroz sate, dok spremnik električne energije služi za pokrivanje

kratkoročnih razlika izmed̄u proizvodnje i potrošnje.

Postoje mehanički, električni, kemijski i termalni spremnici energije. Glavni nedostatci

konvencionalnih spremnika električne energije kao što je reverzibilna hidroelektrana su ge-

ografska ograničenja i glomaznost stoga nisu primjereni kao modularna rješenja koja se mogu

instalirati na gotovo bilo koje mjesto u sustavu. S obzirom na pojačanu uporabu baterijskih

spremnika energije u električnim vozilima, dolazi do pada cijena. Baterije su elektrokemijski

ured̄aji u kojima postoji razlika potencijala izmed̄u dva različita metala potopljena u otopinu

elektrolita na temelju koje mogu generirati električnu energiju. Za stacionarnu upotrebu ko-

riste se olovne, litij-ionske, natrij-sumporne, nikalne te redoks protočne baterije. Tradicionalno

su najkorištenije bile olovne baterije zbog svoje pouzdanosti, niske cijene te visoke specifične

snage, no trenutno su najpopularniji tip baterija litij-ionske baterije. Karakterizira ih visoka

specifična energija, dug životni vijek i brzo punjenje.

Baterijski spremnici nude mogućnosti za širok raspon primjena u elektroenergetskom sus-

tavu. Postoje tri osnovne skupine primjene spremnika energije: i) primjena na razini sustava, ii)

primjena na razini mreže i iii) primjena na razini korisnika. Za primjenu spremnika energije na

razini sustava, nebitna je njegova stvarna lokacija u sustavu te se financijska dobrobit ostvaruje

trgovanjem na tržištima energije i pružanjem usluga operatoru sustava. Najčešće primjene su

arbitraža elekrične energije, uravnoteženje sustava i fleksibilno podešavanje proizvodnje. Za

razliku od primjene na razini sustava, za primjenu na razini mreže, bitna je fizička lokacija

viii



spremnika u sustavu jer se koristi za upravljanje zagušenjima te odgodu ulaganja u prijenosnu

infrastrukturu. Primjena na razini korisnika podrazumijeva primjenu u kućanstvima te kod ve-

likih kupaca, vlasnika obnovljivih izvora energije ili aktivnih korisnika s ciljem rezanja vršne

snage te za praćenje potrošnje/proizvodnje.

Arbitraža električne energije podrazumijeva kupovinu električne energije u periodima niskih

cijena te prodaju iste u periodima visoke cijene. Period niske cijene koristi se za punjenje

spremnika energije te se energija sprema do perioda visokih cijena kad se prodaje u svrhu ost-

varivanja dobiti. Energija se može "premještati" i izmed̄u dva tržišta, dan-unaprijed i unutard-

nevnog tržišta. S obzirom na to da spremnik energije može prisustvovati na oba tržišta, ima

mogućnost rezervirati dio kupljen na tržištu dan-unaprijed kako bi ga prodao po većoj cijeni na

unutardnevnom tržištu.

Uravnoteženjem elektroenergetskog sustava zadržava se jednakost izmed̄u proizvodnje i

potrošnje. Svaka promjena u proizvodnji mora biti popraćena odgovarajućom promjenom u

potrošnji, inače dolazi do odstupanja u vrijendosti frekvencije što može dovesti do nestabilnosti

sustava, a u slučaju ekstremnih odstupanja i do ispada. Pomoćne usluge za uravnoteženje sus-

tava dijele se prema brzini djelovanja na i) primarnu rezervu (do 30 sekundi), ii) sekundarnu

rezervu (30 sekundi do 15 minuta) i iii) tercijarnu rezervu (više od 15 minuta). Primarna rez-

erva zaustavlja daljnji pad frekvencije automatskim odzivom na promjenu frekvencije, sekun-

darna rezerva vraća frekvenciju na nazivnu vrijednost, a tercijarna rezerva oslobad̄a kapacitete

sekundarne rezerve za spremnost na nove neravnoteže. Odziv konvencionalnih elektrana koje

uobičajeno pružaju pomoćne usluge za uravnoteženje sustava je izmed̄u nekoliko sekundi do

čak nekoliko minuta. Baterijski spremnik, s druge strane ima izrazito brz odziv od nekoliko

milisekundi.

Kada dostupna energija s najnižom cijenom ne može biti dostavljena svim zainteresir-

anim potrošačima zbog neadekvatnosti prijenosne infrastrukture, govori se o zagušenju. Tradi-

cionalno, porast opterećenja je bio puno brži od razvoja i izgradnje prijenosne infrastrukture, ali

u novije vrijeme do zagušenja dolazi pojavom obnovljivih izvora energije koji se nalaze daleko

od potrošača. Osim dugog vremena potrebnog za nadogradnju prijenosnog sustava, nedovoljni

prijenosni kapacitet uzrokovan je i rijetkim pojavama zagušenja, odnosno pojavama samo u

odred̄enim situacijama koje onda ne opravdavaju dugotrajna i skupa ulaganja u mrežu. Sprem-

nici energije se mogu koristiti kao virtualni prijenosni vodovi za prijenos energije u vremenu

umjesto u prostoru.

Europski energetski sustavi u zadnjih 20 godina prošli su kroz procese liberalizacije tržišta

električne energije kako bi se povećala konkuretnost. Nakon razvoja pojedinačnih dan-unaprijed

i unutardnevnih tržišta, tržišta su povezana u jedno paneuropsko tržište za sve Europljane

kroz projekt jedinstvenog dan-unaprijed povezanog tržišta (engl. Single Day Ahead Cou-

pling (SDAC)). Kako bi se uzeli u obzir ograničeni prijenosni kapaciteti mreže te pojava za-
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gušenja, tržište može biti čvorišno ili podijeljeno u zone trgovanja. Tržište podijeljeno u zone tr-

govanja se prvo "čisti" prema ponudama sudionika, ne uzimajući u obzir prijenosna ograničenja.

U slučaju pojave zagušenja, razdvajaju se zone trgovanja i ostvarena cijena energije nije jedin-

stvena. Neke europske države (npr. Njemačka) imaju organizirana tržišta rezervama i energi-

jom uravnoteženja. Sličnim procesom uparivanja tržišta energije, planira se proces uparivanja

tržišta rezervom i tržišta energijom uravnoteženja. Sudionici tržišta imaju veće mogućnosti za

ostvarivanje profita sudjelovanjem na više tržišta što donosi i veće socijalno blagostanje čitavom

društvu.

Nastup na tržištu je optimizacijski problem maksimizacije profita. Spremnik energije može

pružati više usluga i time povećati svoje prihode. Spremnik energije može i ne mora svojim nas-

tupom utjecati na cijene na tržištu. Modeliranje nastupa na tržištu može uključivati i odred̄ene

rizike, kao što je uvjetna rizičnost vrijednosti (engl. Conditional Value at Risk (CVaR)), rizik

od nemogućnosti praćenja rasporeda, te rizik od neadekvatnog modeliranja baterije.

Investicijski modeli za ulaganje u spremnike energije daju ocjenu isplativosti takvog ula-

ganja. Oni u sebi sadrže pogonski model za vremenski horizont planiranja koji se može pred-

staviti i reprezentativnim danima. Operatori sustava tradicionalno su ulagali u prijenosne vodove,

ali sada imaju mogućnosti ulaganja i u nove tehnologije poput baterijskih spremnika. Oper-

ator prijenosnog sustava kao vlasnik baterijskog spremnika ne smije ga koristiti u tržišnom

okruženju jer bi mogao nepovoljno utjecati na cijene, već isključivo kao što bi koristio pri-

jenosne vodove, s razlikom prenošenja energije u vremenu, a ne u prostoru. Privatni investitori

povrat investicije očekuju kroz sudjelovanje na tržištu. S obzirom na to da arbitraža energije,

s još uvijek visokim cijenama investicije, nije dovoljna za povrat investicije, investitori trebaju

uzeti u obzir i druga tržišta, kao što je tržište pomoćnim uslugama.

Kroz doktorsku disertaciju Višerazinski optimizacijski modeli za planiranje i pogon sprem-

nika energije ostvareni su sljedeći izvorni znanstveni doprinosi:

• Ravnotežni model s ravnotežnim ograničenjima (EPEC) za modeliranje utjecaja
spremnika energije na ravnotežu tržišta električne energije
Razvijena su dva modela pogona spremnika na dan-unaprijed tržištu energijom. U pr-

vom modelu distribuirani spremnici energije imaju zajedničku strategiju nastupa na dan-

unaprijed tržištu energije. Ako spremnici energije imaju različite vlansike, natječu se

med̄usobno na tržištu kako bi ostvarili profit. Takvo ponašanje opisano je ravnotežnim

modelom s ravnotežnim ograničenjima (engl. Equilibrium Problem with Equilibrium

Constraints (EPEC)) koji je riješen metodom dijagonalizacije. Evaluiran je utjecaj na

lokalne marginalne cijene i uspored̄en je koordinirani i kompetitivni pristup pogonu sprem-

nika.

• Operativni model sudjelovanja spremnika energije na tržištu električne energije i
na tržištu rezerve
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Kako bi se utvrdila mogućnost spremnika energije za ostvarivanjem prihoda nud̄enjem

različitih usluga, razvijena su dva modela pogona spremnika na tržištu energijom dan-

unaprijed i tržištu rezerve. U prvom modelu baterijski spremnik je premali da bi utjecao

na cijene na dan-unaprijed tržištu energije, ali na tržištu rezerve može ostvarivati strateški

utjecaj. Upotrijebljen je realan model ponašanja litij - ionske baterije i model je testiran

na stvarnim podatcima njemačkog tržišta rezerve.

• Trorazinski model za koordinirano planiranje prijenosnih vodova i spremnika en-
ergije u vlasništvu operatora sustava i privatnog investitora
Razvijen je trorazinski model investicijskog problema u kojem operator sustava koordini-

rano ulaže u prijenosne vodove i spremnike energije dok istovremeno privatni investitor

ulaže u spremnike energije. Svojim odlukama, operator sustava i privatni investitor mogu

utjecati jedan na drugoga. Spremnikom energije u vlasništvu operatora sustava različito

se upravlja od spremnika energije privatnog investitora. Operator sustava koristi sprem-

nike za povećanje protočnosti mreže i smanjenje zagušenja, dok privatni investitor za cilj

ima maksimizaciju profita. U ovom modelu zauzima se pozicija operatora sustava koji

prilikom optimizacije svojih ulaganja pokušava predvidjeti ulaganja privatnih investitora.

Najvažniji zaključci disertacije su sljedeći:

• Spremnik energije treba predvid̄ati cijene na tržištu dva dana unaprijed kako bi bilo

moguće sačuvati energiju za idući dan ili se napuniti dan ranije u slučaju očekivanog rasta

cijena drugi dan. Horizont planiranja ovisi o kvaliteti predvid̄anja tržišnih cijena. Sprem-

nik energije nastoji minimizirati svoj utjecaj na čvorišne cijene punjenjem/pražnjenjem

kroz više sati kako bi maksimizirao profit. Koordinirani pristup na tržištu dan-unaprijed

rezultira značajno većim profitom u odnosu na nekoordiniran, kompetitivni pristup. Zane-

marivanjem ostalih strateških sudionika na tržištu može se značajno smanjiti profit ili čak

ući u trošak.

• Sudjelovanje na tržištu rezerve značajno povisuje mogućnosti ostvarivanja profita. Iako

je dan korišten u studiji slučaja karakteriziran niskim cijenama za rezervaciju kapaciteta,

profit baterijskog spremnika je značajan. Ovi rezultati mogu se smatrati konzervativnima

jer većinom se ostvaruju više cijene za rezervaciju kapaciteta.

• Korištenje uvjetne rizičnosti vrijednosti (CVaR) te razmatranje rizika nemogućnosti dostavl-

janja prodanih rezervi i rizika nepreciznog modela baterije omogućuje vlasnicima sprem-

nika energije ograd̄ivanje od navedenih rizika bez riskiranja očekivanog profita.

• Trenutne cijene baterijskih spremnika energije su još uvijek visoke, ali čak i pri niskom

trošku spremnika energije, operator sustava preferira ulaganje u vodove jer su duljeg živ-

otnog vijeka. Privatni investitori ulažu u spremnike na mjestima u mreži koja karakter-

iziraju promjenjive čvorišne cijene, a gdje su ulaganja operatora prijenosnog sustava neo-

pravdana jer ne mogu dovoljno povećati društveno blagostanje. Sva ulaganja povećavaju
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društveno balgostanje, ali najveći utjecaj na povećanje imaju prijenosni vodovi.

Ključne riječi: Spremnik energije, MPEC model, EPEC model, višerazinsko modeliranje,
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Chapter 1

Introduction

This chapter presents the background and motivation for this thesis, followed by the problem

definition, solution methodology and the main research contributions.

1.1 Background and Motivation

The 2015 United Nations Climate Change Conference in Paris set the goal to limit the global

warming and reach global peaking of greenhouse gas emissions as soon as possible in order

to avoid the risk of catastrophic climate change [1]. The Paris agreement is a legally binding

international treaty that requires an economic and social transformation of the signing parties.

Implicit in these goals is the need for a transition to a low-carbon energy sector that requires

actions at a global scale. The environmental advantages of renewable energy have been known

for decades. Renewable energy and energy efficiency measures can potentially achieve 90% of

the required carbon reductions [2].

Given the ongoing cost reductions of renewable energy technologies, the energy sector is

making a significant progress toward the decarbonisation of the sector. The increasing share

of renewable energy sources (RES) is changing the paradigm of modern power systems. An

increased share of non-controllable RES results in less dispatchable capacity at disposal to the

system operator, thus its integration comes with economic and technical challenges. New tech-

nical and economic conditions make large-scale energy storage solutions attractive as they have

a unique capability to quickly absorb, store and then reinject electricity switching the system to

the energy as opposed to the power system paradigm. In the current power system paradigm,

the provision of electricity over transmission and distribution lines to consumers requires the

real-time balancing of generation and demand while in the energy system paradigm generation

and demand can be balanced over a longer time period, with energy storage acting as a buffer

that voids short-term imbalances. Typically, the system operators vary the generation to meet
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the current demand, although, in many markets, efforts to adjust the demand and not only the

generation also exist. Flexibility can be harnessed from all power system integral parts – from

flexible generation, stronger transmission and distribution systems to energy storage and flexi-

ble demand. A lack of the system flexibility can reduce the power system resilience or lead to

substantial amounts of clean energy curtailment. Energy storage has become one of the pivotal

technologies that enables high integration of non-controllable energy sources with its growth

spurred by various policies and mandates. Conventional pumped hydro storage (PHS) has been

integrated to shift generation from the times of low demand to the times of high demand, thus

reducing overall generation costs. With the geographical and geological constraints being the

greatest limitation to this conventional storage technology, battery energy storage (BES) has

been emerging as an attractive solution. The cost of lithium-ion batteries has fallen by as much

as 73% between 2010 and 2016 for transport applications, and could fall by an additional 54-

61% by 2030 for stationary applications [3]. Among other contributing factors, decreasing

investment costs, local incentives and increasing opportunities in energy, reserve capacity and

balancing markets may accelerate the deployment of distributed and bulk energy storage from

a modest 9 GW/17 GWh as of 2018 to 1.095 TW/2.85 TWh by 2040 worldwide [4].

Energy storage has the ability to derive multiple value streams by providing a range of ser-

vices. In many countries, this will require changes to market structure and regulations, or even

the creation of new markets for ancillary services that are growing in significance with high

RES integration. The European power sector is characterized by an ongoing liberalization and

integration of national markets into one common marketplace. Clean Energy for All Europeans,

i.e., the fourth Clean Energy Package (CEP) [5] describes the whole vision in detail. Most of

the European systems already have well-organized reserve markets, but their harmonization is

an ongoing project. The European Commission regulation [6] establishes a guideline on elec-

tricity balancing and incorporates detailed rules on how the reserve markets are to be organized,

co-optimized and coupled. Under new technical and economic circumstances, independent

merchants may start heavily investing in storage facilities. Securing profits from energy, re-

serve capacity and balancing markets is critical to ensure profitability.

Transmission system operators are facing challenges trying to meet increasing RES shares,

mainly driven by clean energy mandates and policies, while trying to maintain low energy costs

for consumers. Historically, line construction and upgrades have been the only way of building

a robust transmission network, but it is a long process that can take up to 10 years. Energy stor-

age capacity can reduce constraints on the transmission network and defer the need for a major

infrastructure investment. System operators, besides investing in transmission lines, may, un-

der certain conditions, invest in storage units as well. Storage operation highly depends on its
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ownership. In order to ensure safety and cost-effective management of the Italian transmission

grid, Terna, the Italian transmission system operator, deployed various energy storage units in

the southern part of the country [7]. They are being used as transmission assets without partici-

pating in energy market while merchant-owned energy storage strives to maximize its profit by

stacking multiple revenue streams from different markets [8].

1.2 Problem Statement

The first point of interest of this thesis is market participation of energy storage, precisely BES

connected to the transmission network. Energy storage can stack multiple revenue streams from

provision of a range of services. The most common market avenue of an energy storage is price

arbitrage, i.e., buying energy in times of low prices and selling it when the prices are high.

The goal of profit maximization of market participant in decentralized markets is modeled in

a self-scheduling manner. As the share of RES increases, ancillary services, such as primary

frequency regulation, secondary frequency regulation, capacity reserve and spinning reserve,

grow in significance. Depending on the size of the storage in comparison to the market volume,

the storage can be modeled either as a price-taker, i.e., storage has no influence on market prices

and bids competitively, or a price-maker, where the storage exercises market power by bidding

over its marginal price, or by withholding capacity. The first part of the thesis covers market par-

ticipation of energy storage. The presented bilevel model analyzes the price-making perspective

in the day-ahead energy market. This model is further expanded to account for other strategic

players which directly influence the expected profit. In order to assess the potential of stacking

the revenue streams, a bilevel model is also developed to analyze the BES as a price-taker in the

day-ahead energy market and as a price-maker in the reserves market. Finally, the third bilevel

model is developed to manage the risks faced by a strategic BES in joint energy-reserve markets.

The second point of interest in this thesis is energy storage investment problem. Energy stor-

age investment can be made by both the system operator and a merchant, but with significantly

different roles. During peak demand hours, power flow through transmission network may ex-

ceed the operating reliability limit, thus causing a network congestion. Traditionally, system

operators invested in transmission assets, increasing their capacity. However, when congestion

occurs for a very limited period, or only in very specific situations, investment in reinforcing

the grid can prove economically unsound as well as time consuming. Battery energy storage

can serve as a virtual power line to enhance the reliability of the system and reduce congestion.

When owned by a regulated entity, energy storage can be operated as any transmission asset and

without involvement in energy markets, while merchant-owned storage seeks to maximize its
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profit by performing arbitrage or providing other services. A trilevel investment model is thus

developed from the point of view of the system operator that invests in transmission assets, i.e.,

transmission lines and battery energy storage, anticipating potential storage investments storage

from other market participants.

1.3 Contribution

The thesis covers multilevel models in the areas of market operation and transmission expan-

sion planning. The first part of the thesis deals with market participation. A bilevel model

is developed to maximize the profit of a battery energy storage acting in the day-ahead en-

ergy market as a strategic price-making entity. Although it is highly common to consider other

market participants as non-strategic players, in reality there are multiple strategic actors whose

actions affect each other’s profits. The initial model can be considered a mathematical problem

with equilibrium constraints (MPEC). This model is expanded to capture strategic behaviour

of other participants by solving multiple MPECs, effectively forming an EPEC. Since, BES

has a potential to stack multiple revenue streams, a bilevel model is developed to maximize

profit when participating in both energy and reserves market. The energy storage is modeled

as a price-taker in the day-ahead energy market, and a price-maker in the reserve capacity and

balancing markets. A third bilevel model is developed in order to assess and manage the risks

faced by strategic battery storage in joint energy-reserve markets. The second part of the the-

sis tackles transmission expansion planning. A trilevel investment model is presented from the

point of the view of the system operator who invests in transmission lines and energy storage,

while anticipating potential merchant investments in energy storage.

The scientific contribution is threefold:

• Equilibrium problem with equilibrium constraints (EPEC) model for energy storage im-

pact on market clearing

• Operational model of energy storage participating in electricity and reserve market

• Trilevel model for coordinated planning of transmission lines and regulated and merchant

energy storage.

1.4 Thesis Structure

The thesis is structured as follows. Chapter 2 provides a comprehensive scientific overview

of the existing solutions and algorithms related to market participation and planning of energy

storage and power lines. Through the classification of the relevant literature, the position of

the research is more briefly described. The analyses and comparisons are made in order to sys-

tematically present the related work as follows: i) the general characteristic and type of energy
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storage; ii) the overview of main market participation models with energy storage profit max-

imization problem, here considering competitive participation modeling; iii) the overview of

transmission planning models. After an exhaustive overview of the relevant literature, Chapter

3 shows in detail the main scientific contribution of the thesis. The contribution is substantiated

under Chapter 4 where each article materializes a different segment of the research contribu-

tion as well as the authors’ contribution to these articles. Finally, a summary of the conducted

research efforts and future directions are presented in Chapter 5.
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Chapter 2

Research Position

This Chapter provides a comprehensive scientific overview of the general characteristics and

classifications of energy storage, multilevel models related to system operation in the day-ahead

energy and reserve markets as well as the planning of merchant and regulated energy storage

and power lines. Through classification of the relevant literature, position of the research is

more rigorously defined. Section 2.1 discusses energy storage in general. Energy storage clas-

sification by the form of the energy stored in the system is described in subsection 2.1.1. Since

the research is mostly based on BES, battery technology is further examined in subsection 2.1.2.

Subsection 2.1.3 provides an overview of BES applications. Section 2.2 provides a comprehen-

sive overview of energy storage bidding strategies in both the day-ahead (subsection 2.2.1) and

the reserve markets (subsection 2.2.2). Finally, section 2.3 presents a broad overview of energy

storage investment models.

2.1 Energy Storage

2.1.1 Classification and Overview

Storing electrical energy in considerable quantities is possible only by converting it to another

energy form. One of the most common methods for classification of energy storage technolo-

gies is based on the form of the energy stored in the system [9]. Energy can be stored in its

mechanical, chemical, electrical or thermal form. Energy storage classification by the form of

the stored energy is presented in Table 2.1

Pumped Hydro Storage (PHS)
PHS is the most mature energy storage technology [10]. Covering 99% of the worldwide

energy storage capacity, it represents the vast majority of energy storage in power systems [11].

The technology is economically and technically proven. Conventional PHS consists of an up-
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Table 2.1: Energy storage technology classification by the form of the stored energy

Mechanical Chemical Electrical Thermal

Pumped hydro Batteries Supercapacitor Latent heat

Compressed air Hydrogen Superconducting magnetic

Flywheel

per and a lower reservoir. The body of water in the upper reservoir represents stored energy.

The process of pumping water from the lower to the upper reservoir during the off-peak hours

represents the charging process. During the discharging process, water from the upper reservoir

is released through hydro turbines connected to electric generators that produce electrical en-

ergy [12]. The main disadvantage is the lack of suitable places because of the geographical and

geological limitations, as well as a considerable impact to the nature.

Compressed Air Energy Storage (CAES)
Although the technological concept of CAES is more than 40 years old, there are only two

installations in the world [13]. CAES systems compress air in underground cavities such as

salt caverns or abandon mines and store it under high pressure. When energy is needed, the

compressed air is released through a turbine, but the operating units worldwide incorporate

combustion prior to the turbine expansion in order to increase its overall efficiency [14], [12].

Current research on CAES is focused on the development of systems with fabricated storage

tanks which will remove the geological dependency and the compressed air will be stored at

higher pressure [9].

Flywheel Energy Storage
Flywheels are energy storage devices that store energy in the form of kinetic energy. The

technology has been known since the 1970s. Flywheels are made up of a shaft that rotates on

two magnetic bearings to decrease friction [14]. The whole structure is placed in a vacuum en-

closure to reduce windage losses [9]. The charging process consists of accelerating the rotor to

a very high speed by a motor and energy is stored in the system as a kinetic energy. Flywheels

release energy and drive a machine during the discharge process [12].

Supercapacitor Energy Storage
In supercapacitors the energy is stored in the electric field. An electrolyte solution is placed

between two solid conductors to increase capacitance and energy density when compared to a

conventional capacitor [14], [9]. Generally, these devices cannot store much energy and are not

relevant for large-scale applications.
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Superconducting Magnetic Energy Storage (SMES)
SMES stores energy in a magnetic field. It consists of a superconductive coil, a power

conditioning system, a refrigerator and vacuum [10]. Direct current circulating through a su-

perconducting coil produces the magnetic field [14]. Cooling medium for keeping the coil in

the superconducting state is liquid helium or nitrogen. These devices are also unable to store

significant energy quantities for power system application.

Hydrogen Energy Storage
Hydrogen energy storage is not a single device but a three-part process: i) hydrogen produc-

tion, ii) storing (and transporting) the hydrogen, iii) electricity production from hydrogen [12].

Electrolysis is a carbon-free way of producing hydrogen. However, most commonly the hydro-

gen is produced by extracting it from fossil fuels which is four times more expensive than using

the fuel itself or by reacting steam with methane, both of which pollute the environment [12].

In the process of electrolysis, hydrogen is produced from water with oxygen being released into

the atmosphere. Storing can be achieved by compressing it, liquefying it, or generating metal

hydride [12]. There are two ways of creating electricity from hydrogen: i) Internal Combustion

Engine and ii) Fuel Cell.

2.1.2 Battery Energy Storage

Batteries are electrochemical devices that store chemical energy and convert it to electrical en-

ergy based on the potential difference between two different metals immersed in an electrolyte

solution. Batteries can be primary (single-use, disposable) or secondary (rechargeable). Only

secondary batteries are considered in power system applications.

Batteries are composed of one or more battery cells. A battery cell is the smallest detach-

able part that consist of the three basic parts – positive electrode, negative electrode and an

electrolyte with a separator. Positive electrode has a higher standard electrode potential where

electron acceptance occurs during discharge and electron release occurs during charge while the

opposite happens at a negative electrode with lower standard electrode potential. An electrolyte

is a substance that enables ion flow between two electrodes, while a separator is a membrane

immersed into electrolyte and used to mechanically separate electrodes. Battery cell voltage

is determined by the material’s electrochemical properties, while the capacity is determined by

the cell’s size. Batteries are generally a versatile energy storage technology that can be installed

at almost any location [15]. Batteries are mature energy storage devices with high energy den-

sities and high voltages. Various types exist including lead-acid, nickel-cadmium, lithium-ion,

sodium-sulphur and flow batteries. Main characteristics are briefly described in the following

paragraphs.
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Lead-Acid Battery Energy Storage
This is the most mature battery storage technology as it has been in use for over a cen-

tury [14]. It consists of two lead plates used as electrodes immersed in sulfuric acid elec-

trolyte solution. In lead-acid batteries electrolyte participates in chemical reactions when charg-

ing/discharging and its density can be used as a measure for the state of charge. Lead-acid bat-

teries are highly reliable with high discharge power and they come at a low price with a medium

life-time duration. On the other hand, they have low specific energy, charge slowly and must be

stored with high state of charge. Lead-acid batteries can be divided in two categories: i) flooded

and ii) valve-regulated. Flooded batteries are non-sealed with liquid electrolyte and produce

gas if overcharged, while valve-regulated batteries are sealed with a pressure regulating valve

to prevent venting of the hydrogen.

Nickel-Cadmium Battery Energy Storage
Nickel-cadmium (NiCd) technology is also a mature technology, similar to lead-acid. It

consists of a positive electrode - nickel oxide hydroxide and a negative electrode - metallic cad-

mium. Aqueous potassium hydroxide is used as the electrolyte and the electrodes are separated

by nylon divider. NiCd batteries can operate in wider temperature range than lead-acid. If NiCd

batteries are operated with small depth of discharge, then they are able to achieve much more

cycles [14]. They are fast charging batteries with high profitability considering price per cycle,

though they have low specific energy, a high degree of self-discharge and a low cell voltage. Due

to the problems with toxicity they are being replaced by nickel-metal-hydride batteries (NiMH).

Lithium-Ion Battery Energy Storage
Lithium-ion technology has been commercially available from the 1990s [14]. The posi-

tive electrode is lithium metal oxide, while the negative electrode is graphic carbon with layer

structure [12]. The electrolyte is a lithium salt in organic solvent. Lithium-ion batteries have

high specific energy, good discharge possibilities, long working life, short charging time and

low self-discharge. The cost of li-ion batteries has reduced by as much as 73% between 2010

and 2016 for transport applications. Li-ion batteries in stationary applications have a higher

installed cost than those used in electric vehicle (EV) due to challenging charge/discharge cy-

cles that require more expensive battery management systems and hardware. The total installed

cost of a Li-ion battery could fall by an additional 54-61% by 2030 in stationary applications.

The calendar life of Li-ion batteries could increase by approximately 50% by 2030, while the

number of full cycles could increase by as much as 90%. At the same time, round-trip efficien-

cies will improve by a couple of percentage points to between 88% and 98%, depending on the

battery chemistry [3].
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Sodium Sulphur Battery Energy Storage
Sodium Sulphur batteries became commercially available in 2000. Positive electrode con-

tains molten sulphur and negative electrode consists of molten sodium [10]. A solid ceramic

eletcrolyte is used. They have high operating temperature (300-350°). If cooled down when not

fully charged, the batteries will suffer serious damage. Due to this, a diesel generator is often

integrated in the installation in case of power outage. With relatively high energy densities and

ability of discharging up to 6 hours, it is considered an energy type of battery to be used espe-

cially when in need for energy intensive applications.

Table 2.2: Battery cell characteristics

Battery type Nominal voltage Efficiency Specific energy

Lead-acid 2 V 50-85% 35-40 Wh/kg

Ni-Cd 1.2 V 70-90% 40-60 Wh/kg

NiMH 1.2 V 70-90% 60-120 Wh/kg

Li-ion 3.2-3.7 V 80-95% 100-265 Wh/kg

NaS 1.74-2.075 V 75–90% 150–240 Wh/kg

VRFB 1.15 - 1.55 V 60-70% 10-20 Wh/kg

Vanadium Redox Flow Battery Energy Storage (FBES)
The main components are liquid electrolyte, a carbon felt electrode, an ion exchange mem-

brane that separates the electrolytes, a bipolar plate that separates cells and electrolyte tanks

with pumps and piping. The energy capacity depends on the electrolyte volume, while the

power depends on the surface area of the electrodes. Vanadium redox batteries have long cycle

life, quick response times and can operate at higher current and power densities.

Typical battery cell characteristics of the aforementioned battery types are listed in Table

2.2. Since li-ion battery technology currently has the best overall characteristics for stationary

application in power systems, in remainder of this thesis the term BES will presume li-ion

batteries.

2.1.3 Battery Energy Storage Applications

The growing share of RES entails a more flexible power system to ensure a continuous generation-

load balance [16]. Large-scale battery storage will play a great role in integrating greater shares

of RES as one of the sources of system’s flexibility [17]. Large-scale batteries are connected to

transmission networks and can competitively partake in a wide range of applications, providing

different values to the power system.
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Conventional storage systems, such as PHS, have geographical and geological limitations,

while BES with its sizing flexibility has the advantage of deployment possibility at virtually any

location in the system [15]. With the declining costs and consistently improving performance,

BES technologies can competitively provide a range of power system services [3].

BES applications can be grouped into three main categories: i) system-wide applications,

ii) grid applications and iii) user-based applications. Grid applications are inherently related

to energy storage specific location in the system, while system-wide applications use energy

storage services independently of their physical location. User-based batteries, i.e. behind-the-

meter batteries are connected behind the utility meter of commercial, industrial or residential

customers, with the primary goal being electricity bill savings through peak shaving and pro-

duction/consumption monitoring.

Most common system-wide applications are energy arbitrage, frequency response and flex-

ible generation adjustment, while grid applications mainly consider transmission investment

deferral and congestion management.

Energy arbitrage is essentially buying energy in low-price periods and selling it in high-

price periods. Low-price energy is used to charge the energy storage where the energy is stored

until sufficiently high price period, when it is sold. Specific type of arbitrage is shifting energy

between two markets, day-ahead and intraday market. Since energy storage can participate in

both markets, it can withhold part of the purchased capacity in day-ahead market in order to

profit from intraday market.

Power systems require balance between the generation and the load to operate safely. Every

variation in generation must be followed by a corresponding variation in load, otherwise the

power system frequency will vary, which can lead to system’s instability or, at extreme devi-

ations, cascading failure and blackouts. Frequency response is a process used by the system

operator to maintain frequency of the system within the normal operating band around 50 Hz.

Ancillary services related to frequency response are: i) Frequency Containment Reserve (FCR),

ii) Frequency Restoration Reserve (FRR) and iii) Replacement Reserve (RR). FCR stabilizes

the frequency after a deviation, i.e, stops the further progression of the frequency deviation

(up to 30 seconds). FRR returns frequency to its nominal value (30 seconds to 15 minutes).

RR serves to free the capacity used for restoring the nominal frequency value (more than 15

minutes) [18].

Large-scale battery storage can provide frequency regulation services. As opposed to con-

ventional plants that can take from few seconds to several minutes to respond to a system opera-

tors’ request, battery storage systems can typically respond within milliseconds [17]. Their fast-

response makes batteries an attractive alternative to fast-ramping generation resources [19]. In

the USA, Federal Energy Regulatory Commission (FERC) mandated a separate compensation

structure in its order 755 for fast-acting resources such as batteries. It is a pay-per-performance

11



Research Position

incentive for quicker resources that facilitates energy storage entry to regulated markets as it

enables them to outperform the conventional regulation providers [20]. Similarly, the transmis-

sion system operator in United Kingdom, National Grid, held a technology neutral tender to

enhance the frequency response ability over the next four years. The year-long auction process

secured 201 MW of capacity with eight new battery storage facilities [21].

An example of solar photovoltaic penetration in California clearly shows how dramatically

it can affect the shape of the net load curve (shown in Figure 2.1). This curve is called the solar

duck curve. In 2012 the load curve has its regular shape with the morning and evening peaks.

With higher penetration of solar power plants, the morning peak completely vanishes and the

daily valley is profoundly deepened. In this moment thermal power plants have to decrease

their production to their minimum and still risk overproduction and downward ramps limita-

tions. On the other hand, evening peak grows with an increasing consumption over the years

which complicates the systems operation in the late afternoon and early evening because of the

high ramp requirements and great need for production increase. Flexible technologies such as

large-scale battery storage would present a suitable solution to help meet ramping requirements

and effectively flatten the duck curve. Figure 2.1 shows an expected effect on the duck curve of

storage providing flexible ramping: 59% peak ramp rate reduction and 14% peak load reduction

based on a 3 MW feeder [22]. The California Independent System Operator (CAISO) approved

market policies to integrate new battery storage resources that would allow hybrid storage re-

sources, i.e, wind or solar and energy storage combination, to provide energy and ancillary

services thus contributing to transmission system reliability. This system operator is fostering

deployment of more than 1,5 GW of energy storage capacity by 2022 [23]. CAISO has three

participation models that provide opportunities for storage technologies to participate in the

wholesale ancillary services market and energy market: pump storage, non-generator resource,

and proxy demand resource – load shift resource [24]. The Moss Landing Energy Storage Fa-

cility, located just south of San Francisco, California, has been connected to the power grid and

began storing energy on Dec. 11, 2020. At 300 MW/1,200 MWh, this lithium-ion battery-based

energy storage system is likely the largest in the world. The system is located on-site at Vistra’s

Moss Landing Power Plant [25].

Power flow through transmission lines may exceed the line capacity causing a network

congestion. This can happen especially during peak hours. Traditionally, this problem was

addressed by investing in transmission lines to increase their capacity. Since this congestion

usually occurs for a limited period or only in specific situations, huge grid investments and

overbuilding the lines can prove economically suboptimal. Energy storage can be used as vir-

tual power lines to transfer energy in time instead of transferring energy in space, thus enhancing

the reliability of the system. For instance, Italy’s transmission system operator, Terna, deployed

a pilot battery storage project of 35 MW in Southern Italy for grid congestion management [7].
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Figure 2.1: Impact of Integrated Energy Storage on Duck Curve; 3MW Feeder
Source: SUNVERGE

Large-scale battery storage systems can be used to displace expensive peak generators and

defer investment in peaking plants as they can discharge during peak hours. The economics

of transmission or capacity investment deferral were explored in [26]. British distribution net-

work operator, UK Power Networks, built a 6 MW/10 MWh storage system in Bedfordshire to

provide capacity reserves and grid-balancing services to the UK grid [17].

Isolated grids, such as islands and remote communities heavily rely on diesel generators

for reliable energy supply. With rapidly declining costs of energy generation from RES, their

deployment in such areas is increasing. Since renewable energy is highly volatile, and with

the lack of flexible sources of generation, BES can help back up the supply and help keep the

balance between the production and the consumption by charging and discharging as needed.

This will lead to further RES deployment. As of January 2020, about 30% of Hawaii’s total

generating capacity comes from solar or wind. Nearly all of Hawaii’s utility-scale battery stor-

age capacity is installed with onshore wind turbines or solar PV systems, allowing for excess

electricity from those generators to be stored and used later [27]. Batteries are used mostly for

smoothening services for renewable energy [17]. Similarly, the American Samoa island of Ta’u

uses almost exclusively solar energy after Tesla installed a 1.4 MW solar and 0.75 MW/6 MWh

storage system in 2016. More microgrid examples can be found in [28].

Therefore, the development of energy storage technology, especially battery technology,

might offer solutions for many critical challenges in smart grids [29]. Services offered by large-

scale batteries are presented in the Figure 2.2 adopted from [17].

Unlocking multiple revenue streams by combining these applications reduces the payback

period, thus making the investment more attractive. In many countries, this will require changes

to market structure and regulations, or the creation of new markets for ancillary grid services.
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2.2 Energy storage bidding strategies

Energy storage is experiencing a rapid evolution which prompted researchers to extensively

study energy storage market entry and the profit-maximization problem faced by the owners.

Strategical bidding is an important part of the profit maximization for an energy storage owner.

Since energy storage has the ability to stack multiple revenue streams and provide an econom-

ically interesting alternative to grid expansion and load shedding, it becomes very important in

new market designs. Energy storage connected to the high-voltage transmission networks are

large-scale facilities that can participate in wholesale markets or offer various services to the

power system and its users. In a profit maximization scheme, an energy storage can act as a

price-taker with no influence on market prices or as a price-maker that strategically exercises

market power by offering energy over its marginal price or by holding back the capacity. Most

papers focus on a single market participant, i.e. a battery energy storage, and its actions in the

day-ahead energy, day-ahead capacity reserves and balancing markets. In such strategic mod-

els it is highly common to consider the other market participants as non-strategic players. The

assumption of the BES being the only strategic actor can be considered as the upper limit for its

Figure 2.2: Large-scale batteries applications

Table 2.3: Research position

Price-Taker
Price-Maker

Only Strategic Actor Multiple Strategic Actors

Day Ahead Market + + +

Reserves Market – + –
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profit (best case), as the strategic actions of other players may reduce this profit. If we assume

that each market participant may act strategically, we are essentially solving multiple MPECs

and forming an EPEC. An overview of the research area is shown in Table 2.3. Energy storage

can act as a price-taker or a price-maker in a day-ahead market and/or reserves market. It can

be considered as the only strategic actor or one of the strategic actors.

As indicated with plus signs in Table 2.3, this thesis covers several models: i) price-making

BES in the day-ahead energy market as the only strategic player, ii) price-making BES in the

day-ahead energy market competing for profit with multiple strategic actors, iii) price-taking

BES in the day-ahead energy market simultaneously competing for profit in the reserves mar-

ket as a price-maker, iv) price-maker BES in joint energy and reserves market with special

consideration of risks faced by the BES owner.

The following pages first introduce the day-ahead energy storage bidding literature and mod-

els, followed by an overview of the energy storage reserve market literature.

2.2.1 Energy storage day-ahead bidding models

Originally, the power systems in Europe and the USA were organized as vertically integrated,

state-owned natural monopolies with large hydro and/or thermal power plants. Consumers had a

restricted choice as passive energy users with no authorized access to the network. The process

of liberalization separated production, transmission, distribution and trading by creating regula-

tion schemes for transmission and distribution and a competitive market for trading as shown in

Figure 2.3. The liberalization of the energy market enabled active consumer participation and

created conditions for new energy providers to enter the relevant markets.

Figure 2.3: Energy market liberalization
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Price settling models

In order to deal with limited network capacity, energy markets mainly use one of these two

models for settling the price: i) zonal pricing and ii) nodal pricing. European Union (EU) uses

a simplified representation of transmission network that connects several price zones, called the

bidding zones. In the nodal model, local price is set for each node individually.

In zonal markets the market is first cleared only based on the participants bids, while ignor-

ing the network limitations. In case the resulting flows cause network congestion, the nodes of

the grid are partitioned into zones. Zonal market architecture in EU is chosen to provide equal

treatment of all energy trade participants. Since the markets do not include network constraints,

a market clearing price is uniform throughout the zone, regardless of the unit’s position within

the grid. Different countries usually represent different price zones [30]. Market operators run

an unconstrained market clearing process, while transmission system operators calculate op-

timal power flows and redispatch the units to resolve contingencies. Redispatch is a request

issued by the transmission system operator to power plants to shift production. Market partic-

ipants are responsible for the imbalances they cause in the system. European Energy Union

strives to establish an internal energy market via single intraday coupling and single day-ahead

coupling implementation projects. Single intraday coupling enables continuous cross-border

trading across Europe, while single day-ahead coupling uses a common price coupling algo-

rithm to calculate electricity prices across Europe and to implicitly allocate auctions based on

the cross-border capacity. Most of the European systems already have well-organized reserve

markets, and their harmonization, which is the foundation for an integrated European reserve

markets, is being carried out by developing the cross-zonal platforms following the rules in [6].

Reserve markets also employ zonal network models [31]. Since the reserve markets will use

the same cross-border capacities as the energy market, they have to be co-optimized.

In case of a nodal market, energy transactions are managed by the system operator through

an auction-like mechanism where suppliers submit their production costs as well as technical

limitation, e.g. ramp rate, minimum up/down time, minimum and maximum stable output.

Generators offer their energy into the market at prices that incorporate fuel and start up costs.

The system operator uses the most-economic generation available while maintaining a safe and

reliable service. Locational marginal pricing (LMP) reflects the price of electricity as well as

the cost of congestion and losses at different points across the network. In times of low demand,

electricity flows unconstrained across the grid. As the demand rises, the physical constraints of

the transmission system may start to restrict the amount of power that can safely flow through

lines causing the operator to call on higher-cost generators. LMP promotes grid reliability and

helps infrastructure investment decision making [32]. US markets are nodal markets. Unlike the

European market, that which decentralized with every participant optimizing its own decisions,

US markets are centralized, i.e., every participant bids all of its technical constraints and the
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optimization is executed for the system as a whole.

Impact on market prices

In a perfectly competitive market, all participants bid their marginal costs and no participant

is able to influence the market clearing price, i.e, all participants act as price-takers. In an

imperfect market, larger participants can influence the market clearing price by bidding over

their marginal cost or by withholding capacity, i.e., these participants can be considered price-

makers. The decentralized market environment allows the market participants to choose to

operate a resource such as energy storage. This process is referred to as self-scheduling or

self-dispatching. Self-scheduling is achieved through an optimization model that determines

a generation and/or consumption schedule which is performed by a market participant itself.

Since the market participant is also a balancing responsible party, the self-scheduling models

are an important tool to minimize balancing costs with the goal of profit maximization.

The most common and most basic market operation of an energy storage is price arbitrage,

i.e., buying energy when the prices are low and selling it when the prices are high. Authors of

[33], [34], [35] raise interesting points regarding the price-taking approach, but although these

approaches have their merits, most researchers resort to bilevel optimization to study strategic

participation of a large-scale energy storage in the day-ahead energy market.

Wang et al. [36] analyze energy storage participation under perfect and imperfect competi-

tion in a network-constrained market-clearing mechanism. Both the local transmission conges-

tion and the imperfect competition tend to increase the energy storage profits. Papers [8] and

[37] assess the impact of a strategic energy storage in a nodal energy market. Both demonstrate

that in some market structures storage profit maximization goal is not in line with the social

welfare improvement. Energy storage is aiming to retain the price volatility among hours as

it maximizes its profit. These findings have important implications for storage development

and storage-related policies. Mohsenian-Rad formulates a coordinated scheduling of multiple

storage units in [38]. The upper-level problem sets the optimal market bids for each storage

unit, with the market clearing procedure in the lower-level problem. The author concludes that

transmission congestion is usually beneficial for energy storage profit and that locations of indi-

vidual storage units affect their coordinated scheduling and profit. Similarly, the authors of [39]

propose a bilevel formulation where the upper-level problem seeks to maximize the merchant

storage arbitrage profit, with the lower-level problem simulating the market clearing process.

The paper specifically tackles the impact of the thermal generators’ flexibility on the energy

storage profit. The case study shows that a congested transmission grid enables storage to exer-

cise spatio-temporal arbitrage, bringing much more revenue as compared to only exploiting the

limited ramping constraints of conventional generators.

The assumption that each market participant may act strategically boils down to solving
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multiple MPECs and forming an EPEC. These type of problems often arise in engineering

and economics applications [40], [41], [42]. One would have to formulate a multi-leader-

common-follower game where the strategic actors (several leaders) have a common follower

— the market, as introduced in [43]. Each leader is solving a game formulated as an MPEC.

In case multiple energy storage units are operated by different owners, they compete with each

other for profit. Ruiz et al. [44] derive an EPEC model to find equilibria achieved by strategic

producers in the electricity market using KKT conditions, while in [45] the authors use diago-

nalization method to find multiple equilibria of generator maintenance schedules in the market

environment. The authors of [46] propose a multi-period EPEC problem to study strategic be-

havior of various generators while considering energy storage systems as price-makers in the

energy market. Their impact on the market equilibrium is thoroughly analyzed. Paper [47] pro-

poses a bilevel equilibrium model to study market equilibrium interactions between strategic

generation, wind and storage.

2.2.2 Energy storage reserve market bidding models

Arbitrage alone might not be sufficient to justify the investment in energy storage. National re-

serve markets are being coupled into a harmonized European reserve market and co-optimized

with energy market. Both markets will be using the same limited cross-border connections. In

order to obtain the optimal position in multiple markets, the BES must be able to bid simulta-

neously in both markets while maintaining its state-of-energy within feasible range.

Currently, both the capacity and the activated energy are priced as pay-as-bid in the German

secondary reserve market [48], [49]. However, the PICASSO project published a report con-

cluding that the pricing of aFRR activated energy in the future European-wide aFRR activation

platform will be guided by the marginal pricing rule [50].

Paper [51] focuses on the price-taking energy storage economics in the most common ap-

plications – arbitrage and regulation services within different markets. By considering multiple

sources of revenue when participating in three different markets, the authors demonstrate that

ancillary services market offers high potential revenues.

A new approach for price-taking energy storage optimal bidding in joint day-ahead energy,

spinning reserve and regulation markets is presented in [52]. The authors used robust optimiza-

tion to model the uncertainties. The case study results indicate that participation in ancillary

services market increases the overall profit.

An optimal bid submission of a virtual power plant combining wind and photovoltaic power

systems with an energy storage device is presented in [53]. The day-ahead market is modeled in

the first stage of a stochastic two-stage programming problem, while the second stage simulates

the balancing market.

Several papers used German energy and reserves market to analyze energy storage partici-
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pation in a multi-market setting. The authors of [54] present a sizing optimization and recom-

mend a control algorithm considering parameters for the German market requirements. A re-

alistic profitability calculation is presented with considering different battery aging simulations

and their effect on the storage cost. The system design enabling EV aggregators participation

in wholesale electricity markets is considered in [55]. Intraday energy market and pay-as-bid

reserve markets with longer time steps for providing reserve were adopted. Merten et al. con-

sider the aFRR activation duration and price forecasting in [56] and the bidding process in both

energy and aFRR reserve markets in [57]. A profitability assessment of an energy storage of-

fering primary frequency reserve in German markets in [58] confirms that energy storage that

predominantly offers in the ancillary services markets usually cycles less and therefore has a

longer lifetime. Thien et al. [59] emphasize the market rules showing that a decreased duration

of the traded products benefits energy storage.

All of the previous papers consider energy storage as a price-taker. Modeling the strategic

participation of energy storage in multiple markets requires explicitly considering a link be-

tween the offers in the various markets. If not properly addressed, the real-time activation of

energy storage offers in the reserve market may cause constraint violations. Papers [60] and [61]

develop strategic bidding strategies for a merchant price-making energy storage acting jointly

in the day-ahead and reserve market while considering balancing settlements.

The risk-averse behavior of generating companies has been shown to significantly affect

their operating and investment decisions [62]. Authors of [63] present a price-taker model for

the day-ahead bidding strategy of an energy storage and a wind farm [63]. Robust optimization

framework is used to address the market prices uncertainty and local wind power output. In [64]

the authors solve an optimal energy storage management problem capturing the market prices

impact through transactions costs.

2.3 Investment modelling

Capacity expansion planning is used to assess the future system resource adequacy for continu-

ous uninterrupted supply and for investment decision making. The calculations are executed for

a target year for which the modeling has to take into account everyday resource operation. If it

proves computationally inefficient to consider all 365 days, the concept of representative days

can be employed. Capacity expansion planning historically considered mostly investments in

transmission lines and generators but nowadays the research has expanded to cover new tech-

nologies such as energy storage. Energy storage investment decisions are twofold. Optimal

energy storage placement within the grid is decided in the siting aspect, while the sizing aspect

refers to power and energy ratings decision. In a decentralized market, the investor’s objective

is profit maximization [65]. Dvorkin et al. [66] ensure profitability of the energy storage in a
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bi-level optimal storage investment problem by constraining it from below with the investment

cost value. It ensures the retrieval of a satisfactory level of profit. A stochastic bi-level opti-

mization model to find optimal storage investment decisions required to achieve a certain price

volatility level in energy market is investigated in [67]. They show that energy storage does not

completely remove price volatility because it directly affects its profitability. The investment in

a merchant storage based on the trading off between energy and reserve markets is investigated

in [68]. Nasrolahpour et al. [69] address the question of sizing the energy storage in market

environment. Sizing and bidding strategy is determined in the upper-level problem, while the

lower-level problem simulates market clearing. The model accounts for the uncertainty related

to the future load levels. Demand response providers who bid in the market through an aggre-

gator can affect energy storage profitability. Dvorkin et al. [70] inspect the interaction between

the strategic bidding of an aggregator and merchant energy storage investor in an equilibrium

problem with equilibrium constraints.

In a centralized system-wide expansion planning study the main objective is cost minimiza-

tion. One of the constraints is the total budget [71]. Dvorkin et al. [72] present a trilevel

merchant storage investment model that anticipates centralized expansion planning. They note

that transmission lines investment has a potential to significantly reduce profit making oppor-

tunities for energy storage. Pandžić et al. [73] minimize operating cost within a centralized

energy storage investment model by allowing energy storage placement at each bus. The model

has three stages: i) siting, ii) sizing and iii) operation. A centralized storage investment model

within robust optimization framework is formulated in [74]. The storage placement decisions

are made at the first stage and system operation is simulated in the second stage. The central-

ized investment model in [75] determines optimal siting and sizing of energy storage, within

the allowed investment budget. It takes into account the wind generation uncertainty using rep-

resentative days. In [76], the authors formulate a centralized energy storage investment model

for identifying the sites beneficial for spatio-temporal arbitrage and apply it to a realistic case

of Western Electricity Coordinating Council (WECC), consisted of 240 buses and 448 lines.

While previously addressed papers only consider storage expansion, there are papers that

co–optimize transmission and storage expansion planning.

A centralized co–planning of transmission lines and energy storage investments is proposed

in [77]. The authors planning method considers wind and demand uncertainty as well as energy

storage degradation. They conclude that energy storage plays an important role in preserving

the adequate reserve levels in the system. Dehghan et al. [78] consider transmission switch-

ing in their joint transmission and energy storage expansion model within robust optimization

framework. Transmission switching has the potential of significantly reducing the investment

costs. Roderick et al. [79] present a unified transmission and energy storage expansion model

that includes generation expansion as well. Investment costs are considered in the first stage,
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while the second stage minimized operational costs. Energy storage is a valuable asset for

deferring investments in transmission and generation.

Storage ownership dictates the storage operation. In case of the transmission system opera-

tor ownership, energy storage can be operated as any other transmission asset, without partici-

pating in the market. On the other hand, a merchant-owned storage is maximizing its profit by

participating in different market settings. Since it was assessed that the CAISO’s dispatching of

the Lake Elsinore Advanced Pumping Station (LEAPS) plant in South California would affect

market prices, LEAPS was denied ratebase. On the other hand, TERNA, Italian transmission

system operator owns 35 MW of storage in the southern Italy to deal with congestion caused

by RES. The installation was approved by the regulatory authority as it significantly reduces

curtailment ensuring safety of the transmission grid.

In this thesis a storage and transmission line expansion planning model is developed. The

expansion considered from the point of view of system operators that predicts merchant storage

investments.
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Main Scientific Contribution of the Thesis

The focus of this thesis was to develop multilevel optimization problems that tackle storage

operation in energy and reserve markets as well as expansion planning models from the point of

the view of system operator considering potential merchant investments in energy storage. The

first part of the thesis focuses on energy market participation of a strategic energy storage and its

interaction with strategic actors. Thus, an operational bilevel model of merchant-owned storage

in the day-ahead energy market was developed. The model was then expanded into a game

of multiple energy storage units competing for profit, essentially formulating an equilibrium

problem with equilibrium constraints.

Since energy storage has the ability to stack multiple revenue streams, the second part of

the thesis focuses on energy storage in both the energy and the reserves markets. In the first

developed bilevel model, the energy storage is a price-taker in the day-ahead energy market

and a price-maker in the reserves market, as the reserves market is much smaller in volume

than the day-ahead market. The second developed bilevel model formulates energy storage

optimal bidding in a joint energy-reserves market, where the clearing in the day-ahead market

is performed by considering the uncertainty of wind realization and consequently activated

reserves. Energy storage is modeled as a price-maker in both markets and various associated

risks are considered by including the conditional-value-at-risk, ensuring the real-time feasibility

of the day-ahead schedule and addressing the operational risk associated with inaccurate battery

modeling.

In the third part of the thesis a trilevel expansion planning algorithm for optimal siting and

sizing of transmission assets is developed. It is modeled from the point of view of the system

operator taking into account potential merchant energy storage investments.

Finally, with regards to the achieved scientific contribution of the research, the following

section briefly describes them:

1. Equilibrium problem with equilibrium constraints (EPEC) model for energy storage
impact on market clearing

22



Main Scientific Contribution of the Thesis

The goal of the presented model is to formulate, model and analyze storage operation in

the day-ahead energy market. Battery energy storage units distributed across the trans-

mission network are scheduled in a coordinated manner in order to maximize their over-

all market performance. In case multiple energy storage units are operated by different

owners, they compete with each other to make profit. This behaviour is modeled as an

equilibrium problem with equilibrium constraints (EPEC) that is solved using the di-

agonalization method. The impact on the locational marginal prices is evaluated and

the coordinated and competitive energy storage operation approaches are compared and

quantified in terms of profit of individual storage units.

2. Operational model of energy storage participating in electricity and reserve market
In order to assess energy storage ability to stack multiple revenue streams, two models are

developed. In the first model, battery energy storage participates in the day-ahead energy

market as a price-taker and in a reserve capacity and activation market as a price-maker.

Behavior of real-life lithium-ion battery storage is reliably represented by an accurate

battery charging model. Real-life data on reserve capacity and activation costs are used

and a sensitivity analysis to assess to what extent do battery storage bidding prices affect

its overall profit is provided. In the second model, a novel bilevel optimization problem

is formulated that allows defining optimal bid strategies for a strategic, price-making

and risk-averse storage owner, considering the impact of its bid strategies on the price

formation in joint energy-reserve-balancing markets.

3. Trilevel model for coordinated planning of transmission lines and regulated and
merchant energy storage
System operators, besides investing in transmission lines, may invest in storage units as

well if this storage will be used exclusively for network purposes and not in energy or re-

serves markets. The developed trilevel model consists of the upper-level problem in which

the system operator’s transmission line and energy storage investments are optimized, the

middle-level problem where the merchant energy storage decisions are determined, and

the lower-level problem that simulates market clearing process for representative days.

The goal of the system operator (the upper-level problem) is to reduce congestion with

its transmission lines and energy storage investments, which directly affects the market-

clearing process in the lower level. The market clearing outcomes, in turn, affect the

operating profit of merchant-owned energy storage, thus altering the investor’s decisions

in the middle level.

After replacing the lower-level problem with its primal-dual equivalent conditions, the

middle- and lower-level problems are merged into a mixed-integer problem with equilib-

rium constraints. The resulting bilevel structure is iteratively solved using a cutting plane

algorithm.
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Chapter 4

Overview of Scientific Work of Thesis

4.1 List of Scientific Qualification Articles

The main scientific publications, both journal and conference ones, which are related to the

thesis are listed here.

4.1.1 Journal Publications

[Article 1] Pandžić, Kristina; Pandžić, Hrvoje and Kuzle, Igor. "Virtual Storage Plant

Offering Strategy in Day-Ahead Electricity Market", International Journal of

Electrical Power Energy Systems, vol. 104, pp. 401-413, Jan. 2019., DOI:

https://doi.org/10.1016/j.ijepes.2018.07.006

[Article 2] Pandžić, Kristina; Pavić, Ivan; Andročec, Ivan and Pandžić, Hrvoje. "Opti-

mal Battery Storage Participation in European Energy and Reserves Markets",

Energies, vol. 13, 6629, 2020., DOI: https://doi.org/10.3390/en13246629

[Article 3] Pandžić, Kristina; Bruninx, Kenneth and Pandžić, Hrvoje. "Managing Risks

Faced by Strategic Battery Storage in Joint Energy-Reserve Markets", IEEE

Transactions on Power Systems, DOI: 10.1109/TPWRS.2021.3058936.

[Article 4] Pandžić, Kristina; Pandžić, Hrvoje and Kuzle, Igor. "Coordination of Regulated

and Merchant Storage Investments", IEEE Transactions on Sustainable Energy,

vol. 9, no. 3, July 2018, pp. 1244-1254, DOI: 10.1109/TSTE.2017.2779404

4.1.2 Conference Publications

[Conference 1] Jurković, Kristina; Pandžić, Hrvoje and Kuzle, Igor. "Review on unit commit-

ment under uncertainty approaches", in Proceedings of 2015 38th International

Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO), Opatija, Croatia, May 25-29, 2015, pp. 1093-1097.
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[Conference 2] Jurković, Kristina; Pandžić, Hrvoje and Kuzle, Igor. "Robust unit commitment

with large-scale battery storage", in Proceedings of 2017 IEEE Power Energy

Society General Meeting, Chicago, USA, July 16-20, 2017, pp. 1-5

4.2 Author’s Contributions to the Publications

The results presented in this thesis are based on the research carried out during the period from

year 2015 to 2020 at the University of Zagreb, Faculty of Electrical Engineering and Com-

puting, Department of Energy and Power Systems (Unska 3, 10000 Zagreb, Croatia) under

the guidance of the supervisor professor Igor Kuzle, PhD. The work is partially result of re-

search obtained in period 2015-2018 by the project ”FENISG - Flexible Energy Nodes in Smart

Grid” the Croatian Science Foundation under grant number IP-2013-11-7766 and by the project

”SIREN - Smart Integration of RENewables” funded by Croatian Transmission System Opera-

tor HOPS and Croatian Science Foundation under grant number I-2583-2015.

The thesis includes four journal publications and two conference publications written in

collaboration with coauthors of the published papers. The author’s contribution to published

papers consists of the text writing, software and optimization tool implementation, conducting

the required experiments and simulations, results analysis and presentation, discussion and re-

vision of the work.

[Article 1] In the journal paper titled "Virtual Storage Plant Offering Strategy in Day-

Ahead Electricity Market" [80], the author has together with coauthors con-

ceived and designed the model. The author modelled the optimization models

in GAMS. Furthermore, the author has processed the results, discussed them

with coauthors, and took part in writing of the paper. All graphic design of

results are performed in MATLAB.

[Article 2] In the journal paper titled "Optimal Battery Storage Participation in European

Energy and Reserves Markets" [81], the author has together with coauthors

conceived and designed the model. The author has processed the results, dis-

cussed them with coauthors and took part in writing of the paper. All graphic

design of results are performed in MATLAB.

[Article 3] In the journal paper titled "Managing Risks Faced by Strategic Battery Storage

in Joint Energy-Reserve Markets" [82], together with other authors, the author

developed optimization problem and contributed with designing the case study.

The author took part in writing the paper. All graphic design of results are per-
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formed in MATLAB.

[Article 4] In the journal paper titled "Coordination of Regulated and Merchant Storage

Investments" [83], the author has conceived and designed the model together

with coauthors. The author has designed the solution methodology. The author

has processed the results and took part in writing of the paper. All graphic de-

sign of results are performed in MATLAB.

[Conference 1] In the conference paper titled "Review on unit commitment under uncertainty

approaches", [84] together with other authors, the author reviewed different

ways of modeling uncertainty based on unit commitment problems. The author

wrote the paper.

[Conference 2] In the conference paper titled "Robust unit commitment with large-scale battery

storage" [85], the author has conceived and designed the model together with

coauthors. The author has designed the solution methodology. The author has

processed the results and took part in writing of the paper. All graphic design

of results are performed in MATLAB.

Finally, all proposed papers are presented in Chapter 6 representing their final published ver-

sions.
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Chapter 5

Conclusion and Future Directions

Three main goals of the conducted research are achieved by representing four operational mod-

els of a battery energy storage participating in energy and reserve markets, and by designing

an investment algorithm for optimal siting and sizing of merchant-owned and regulated energy

storage, as well as transmission lines.

The first part is a bilevel operational model of energy storage in the day-ahead energy mar-

ket. This operational model is expanded to account for multiple energy storage units competing

for profit in the day-ahead energy market. The second part consists of two bilevel operational

models of energy storage participating in both the energy and the reserve markets. In the first

model, energy storage is modeled as a price-taker in the day-ahead energy market and as a

price-maker in the reserve capacity and activation market. In the second model, energy storage

is modeled as a price-maker in both markets and various risks associated with market partici-

pation of an energy storage owner are considered. The third part is a trilevel investment model

for coordinated planning of transmission lines and regulated and merchant energy storage. All

three parts of the research contribution provide relevant results in the field of operation and

planning of energy storage and transmission lines.

In the first model the profit opportunities of battery energy storage in the day-ahead energy

market are evaluated. A virtual storage plant that derives a single strategy for the day-ahead

energy market participation of distributed energy storage units is modeled. Battery energy stor-

age behaves in a way to minimize its impact on the locational marginal prices. Since one may

expect multiple storage plants competing for profit, the developed MPEC is expanded into an

EPEC. The solution of this EPEC problem is a set of equilibria, in which none of the actors is

able to increase its revenue unilaterally by changing the strategy in the day-ahead market. Dis-

carding other storage facilities at the day-ahead scheduling phase may result in a huge reduction

of profit or even incur a loss.

Two bilevel models are developed to exhaustively analyze energy storage participation in

both consecutive energy and reserve markets. The first model designs an optimal bidding strat-
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Conclusion and Future Directions

egy of energy storage participating in the day-ahead energy market as a price-taker and in the the

reserves market as a price-maker. The day used in the case study is characterized by low prices

in the reserves market. Despite that, the bidding in the reserves market is much more profitable

than bidding only in the energy market. The second model is a decision-making problem faced

by a strategic energy storage owner in the day-ahead energy and reserves market as well as the

balancing markets. The model considers several associated risks such as financial risk by using

conditional value-at-risk, the risk of inability to deliver the scheduled reserves and the risk of

inaccurate battery modeling. These model features enable energy storage owners to hedge their

day-ahead positions without risking their expected profit.

A trilevel model is developed for a coordinated transmission expansion. Transmission sys-

tem operator invests in both the lines and the energy storage, while predicting merchant invest-

ments in energy storage. Merchant investments are made in parts of the grid with high LMP

volatility. Both transmission system operator and merchant investments increase the social wel-

fare which is mainly driven by the investment in lines.

In order to better operate single pan European cross zonal day-ahead energy market, the fu-

ture work will consider bidding zones revision and market time unit abbreviation from 1 hour to

15 minutes. Reserves market and balancing energy markets are being coupled through several

European projects. Market participants can maximize their profit by participating simultane-

ously in different markets that inherently comes with different associated risks such as price

risk, the risk of market decoupling, reserve activation etc. In order to hedge their position in the

market, the market participants will have to carefully assess the risks and incorporate them in

their bidding strategies.
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A B S T R A C T

Energy storage is gaining an important role in modern power systems with high share of renewable energy
sources. Specifically, large-scale battery storage units (BSUs) are an attractive solution due to their modularity,
fast response and ongoing cost reduction.

This paper aims to formulate, analyze and clarify the role of merchant-owned BSUs in the day-ahead elec-
tricity market. It defines virtual storage plant (VSP) as a set of BSUs distributed across the network. A VSP
offering model is formulated as a bilevel program in which the upper-level problem represents the VSP profit
maximization and operation, while the lower-level problem simulates market clearing and price formation. This
mathematical problem with equilibrium constraints (MPEC) is converted into a mixed-integer linear program
(MILP). This is afterwards expanded to a game of multiple VSPs formulating an equilibrium problem with
equilibrium constraints (EPEC), which is solved using the diagonalization procedure.

The proposed model is applied to an updated IEEE RTS-96 system. We evaluate the impact VSPs have on the
locational marginal prices and compare the coordinated approach (all BSUs operated under a single VSP), i.e. the
MPEC formulation, to the competitive approach (multiple VSPs competing for profit), i.e. the EPEC formulation.

1. Introduction

1.1. Motivation

The increasing share of renewable energy sources (RES) is changing
the paradigm of modern power systems. The term power itself indicates
a constant balance between demand and supply. However, an increased
share of non-controllable RES, i.e. solar and wind, results in less dis-
patchable capacity at the disposal to the system operator. Thus, the
technical ability to meet the uncertain net demand is reducing because
RES output can vary within a market interval [1]. Many studies report
that intermittent non-dispatchable RES increase reserve requirement,
e.g. Italian historical data analyzed in [2] report a decrease of energy
prices and increase of reserve costs as a result of the RES integration.
These technical and economic conditions make large-scale energy sto-
rage solutions attractive, as they enable switching to the energy system
paradigm, as opposed to the power system paradigm. As opposed to the
current power system paradigm, where generation and demand need to
be balanced at each point in time, in an energy system, generation and
demand need to be balanced over a longer time period, e.g. hours,
while energy storage acts as a buffer that voids the short-term gen-
eration-load imbalances. In other words, energy storage enables secure

and stable power system operation even without the constant genera-
tion-demand balance since it acts as a generation and demand asset
interchangeably. Rassmussen et al. [3] claim that large distributed
energy storage would enable covering the entire electricity demand in
Europe using only RES. Related to this, electricity generation of wind
turbines is already reaching high levels. In 2015, Danish wind turbines
generated an equivalent of 42 percent of the overall electricity demand
in that country [4].

Regulative authorities have not yet issued clear regulating me-
chanisms governing the use of energy storage in electricity markets.
Joint European Association for Storage of Energy and European Energy
Research Alliance recommendations for European Energy Storage
Technology Development Roadmap towards 2030 [5] recognizes that
energy storage technology can be used to provide regulated services to
system operators and non-regulated services in electricity markets (see
the model presented in [6]). In the USA, Federal Energy Regulatory
Commission (FERC) has issued orders to help facilitate energy storage
in regulated markets. FERC Order 555 issued a pay-per-performance
incentive for resources that can provide quicker and more precise
responses to frequency regulation signals. This enables energy
storage technologies which outperform the conventional regulation
providers, such as gas- and coal-fired power plants, to receive higher
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remuneration. An evaluation of the utility of energy storage for dif-
ferent market paradigms and ownership models is available in [7].

The main disadvantages of conventional large-scale energy storage,
i.e. pumped hydro and compressed air energy storage, are geographical
constraints and bulkiness. Due to these limitations, conventional sto-
rage technologies are less suitable than modular storage devices that
can be installed at virtually any location without a significant ecological
footprint. A review of the current state of energy storage technologies
indicates that batteries are generally a versatile energy storage tech-
nology that can be installed at almost any location [8]. A common grid-
scale battery technology today is lithium-ion, which is suitable for
providing frequency regulation [9]. Energy-to-power ratio of lithium-
ion battery installations is usually lower than 1 and installed capacities
are much lower than the ones of traditional energy storage, i.e. pumped
hydro [10]. On the other hand, NaS batteries are more suitable for
congestion relief as their energy-to-power ratio is 7 [11]. On top of this,
the cost of batteries has been reducing due to their use in electric ve-
hicles [12]. A review on battery energy storage technologies is available
in [13].

Large-scale use of battery storage has a wide range of applications,
providing different values to the power system. Battery storage units
(BSUs) can help in peak shaving [14] and increasing the system flex-
ibility and reliability providing power regulation services [15]. Fast-
response energy storage, such as BSU, has the potential to replace fast-
ramping generation resources [16]. Economics of transmission or ca-
pacity investment deferral are addressed in [17]. Therefore, the de-
velopment of energy storage technology, especially battery technology,
might offer solutions for many critical challenges in smart grids
[18,19]. Combining these applications reduces the payback period
making the investment more attractive.

Storage operation highly depends on its ownership. For instance,
Terna’s BSUs are used to ensure safety and cost-effective management
of the Italian transmission grid [9]. In a vertically integrated utility,
BSUs are used to reduce the overall operating cost [20]. Finally,

merchant-owned BSU is operated in a way to maximize its profit [21].
In case multiple BSUs are operated by different owners, they compete
with each other to make profit. This resembles an equilibrium problem
with equilibrium constraints (EPEC), i.e. a multiple-leader-common-
follower game, as introduced in [22]. EPEC structure is particularly
common in the analysis of deregulated electricity markets [23,24],
where players maximize their benefit in the form of mathematical
problems with equilibrium constraints, MPECs, e.g. [25], while ad-
hering to the same market-clearing rules. For instance, in [26] an EPEC
model is derived to find equilibria reached by strategic producers in a
pool-based transmission-constrained electricity market using KKT con-
ditions, while in [27] the authors use diagonalization method to find
multiple equilibria of generator maintenance schedules in electricity
market environment.

The goal of the presented model is to formulate, model and analyze
storage operation in the day-ahead electricity market. A VSP owns and
operates its BSUs distributed across the system in order to maximize
their overall market performance. It derives an optimal strategy cen-
trally and sends control signals to all its BSUs to charge/discharge.

1.2. Literature review

Generally, integration of energy storage in power systems can be
observed either from the system-wide perspective or the merchant
perspective. The system-wide perspective is usually modeled as a unit
commitment model whose goal is to minimize overall system operating
costs, regardless on the profit an energy storage is making. An exception
in the literature is [28], which minimizes the overall system costs while
ensuring the profitability of a merchant-owned energy storage. On the
other hand, there are models which take perspective of a storage owner,
thus aiming at maximizing the profit a storage is making in electricity
markets. In these models, energy storage can be a significant market
player able to affect the market prices, i.e. price maker models, or its

Nomenclature

Sets

ΩB set of piecewise linear segments of each generating unit’s
offer curve, indexed by b.

ΩC set of piecewise linear segments of each bus’ demand bid
curve, indexed by c.

ΩH set of BSUs, indexed by h.
ΩI set of generating units, indexed by i.
ΩJ set of VSP owners, indexed by j.
ΩL set of transmission lines, indexed by l.
ΩS set of buses, indexed by s.
ΩT set of hours, indexed by t .
ΩW set of wind farms, indexed by w.

Binary variables

xt h,
ch BSU charging status (1 if BSU h is charging during hour t,

0 otherwise).
xt h,

dis BSU discharging status (1 if BSU h is discharging during
hour t , 0 otherwise).

Continuous variables

dt s c, , power consumption on segment c at s during hour t (MW).
gt i b, , power output on segment b of generator i during hour t

(MW).
kt w, power output of wind farm w during hour t (MW).

pft s m, , power flow through line −s m during hour t (MW).
qt h,

ch power purchased by BSU h during hour t (MW).
qt h,

dis power sold by BSU h during hour t (MW).
soet h, state of energy of BSU h during hour t (MWh).
αt h,

ch charging bid of BSU h during hour t (MW).
αt h,

dis discharging offer of BSU h during hour t (MW).
θt s, voltage angle of bus s during hour t (rad).
λt s h, ( ) locational marginal price at bus s where BSU h is located

($/MW).

Parameters

chh
max charging capacity of BSU h (MW).

dish
max discharging capacity of BSU h (MW).

dt s c, ,
max capacity of demand block c at bus s during hour t (MW).

ηh
ch charging efficiency of BSU h.

ηh
dis discharging efficiency of BSU h.

gi b,
max capacity of offering block b of generator i (MW).

kt w,
max available wind generation of wind farm w (MW).

λh
ch bidding price of BSU h ($/MW).

λh
dis offering price of BSU h ($/MW).

λs c,
D bidding price of demand block c at bus s ($/MW).

λi b,
G offering price of block b of generator i ($/MW).

pfs m,
max transmission capacity of line −s m (MW).

soeh
max energy capacity of BSU h (MWh).

soeh
min minimum energy stored in BSU h (MWh).

sussm susceptance of line connecting nodes s and m (S).
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capacity can be relatively low as compared to other generating and
demand capacities, which means the storage is a price taker.

1.2.1. System-wide studies
The authors of [29] assess the potential of energy storage to eco-

nomically decrease wind curtailment and/or system costs. The authors
report that batteries with higher power rating result in less wind cur-
tailment, but also require lower installation costs. The sensitivity ana-
lysis indicates that the most relevant parameters are the existence of
subsidies, the installation cost of transmission lines, battery degradation
and life cycle duration.

An approximate unit commitment model based on load duration
curve is presented in [30]. System states framework is used to preserve
the storage intertemporal dependencies. Since the same system states
might have different storage states of energy, which depend on the
states before and after the current time period, the authors use the
difference in state of energy, and not stored energy, as variables. The
proposed method improves computational tractability by 90% as
compared to the chronological hour-by-hour models, while causing an
error of less than 2%.

Paper [31] uses stochastic programming models to derive optimal
unit commitment policy with pump storage plants as an important
storage technology in which the investments are expected to increase.

In [20], the authors present a near-optimal three-stage technique for
siting and sizing of battery energy storage in transmission network. The
authors conclude that optimal storage locations are near wind farms or
along the congested corridors of a network.

A framework for storage portfolio optimization in transmission-
constrained power networks is proposed in [32]. The model optimizes
storage operation and siting given a fixed technology portfolio. Ad-
ditionally, the authors optimize the portfolio itself, thus demonstrating
the importance of choosing a proper technology.

Paper [33] presents a study on utilizing energy storage to manage
intra-hour variability of the net load. A standard unit commitment
model is implemented in PLEXOS, with addition of primary, secondary
and tertiary reserve provision. Implementation of the model to the
expected plant portfolio in Irish system in 2025 reveals that integration
of storage should lead to 15% less cycling of conventional units and up
to 40% savings in operating costs.

1.2.2. Price-taking merchant-owned storage
Merchant-owned energy storage can be used to support the local

renewable generation or independently act in electricity markets. In
[34] the authors propose a joint bidding mechanism of a wind farm and
a pumped hydro plant in the day-ahead and ancillary service markets. A
profit maximization model of a virtual power plant that includes energy
storage is proposed in [35]. This model accounts for bilateral contracts
while maximizing the profit in the day-ahead electricity market. A si-
milar study [36] shows that using batteries to compensate for inter-
mittent and variable generation results in a smoother overall generation
curve.

As opposed to [34–36], where energy storage is used to support
renewable generation, the authors in [37] present a profit maximiza-
tion model for a price-taker storage unit that participates in energy and
reserve day-ahead market and energy hour-ahead market. Uncertain
parameters are the price of power and reserve in the hour-ahead
market, and the actual reserve utilization. The values for these para-
meters are obtained by presolving a stochastic unit commitment model
for different realizations of wind. The authors demonstrate the im-
portance of considering the uncertainty of market prices (due to un-
certain nature of wind) in the presented independent energy storage
profit maximization model. Paper [38] also deals with energy storage
economics when participating in arbitrage and regulation services
within different markets. The case study results show that high poten-
tial revenues could be generated from ancillary services market. A
backwards induction approach is employed in [39] to derive optimal

bidding strategy of a battery storage operator. The authors consider the
storage device exhaustable with a limited number of cycles and life-
time.

The authors of [40] present a case study to demonstrate that storage
technologies may have competitive advantage over the peaking gen-
erators, due to the ability to earn revenue outside of extreme peak
events. The main driver for storage options in an energy-only electricity
market is extreme prices, which in turn is dependent on capacity re-
quirements.

Paper [41] uses a portfolio of energy trade strategies to determine
the value of arbitrage for energy storage across the European markets.
The results show that arbitrage opportunities exist in less integrated
markets, characterized by significant reliance on energy imports and
lower level of market competitiveness.

The authors of [42] provide a comprehensive stochastic energy
storage valuation framework which allows a storage system to provide
multiple services simultaneously, i.e., the frequency regulation service
and energy shifting service are co-optimized in the market operations.
An operational optimization model is developed to determine the sto-
rage system’s optimal dispatch sequences with a frequency regulation
service price forecasting model. Simulation results show that the ma-
jority of the revenue comes from regulation services.

1.2.3. Price-making merchant-owned storage
In [21], the authors assess the impact of strategic energy storage

behavior in a nodal electricity market. The results indicate that the
storage profit maximization goal is not always in line with the social
welfare improvement. Namely, the storage aims to retain the price
volatility among hours in order to maximize its profit.

A bilevel formulation of a coordinated scheduling of multiple sto-
rage units is presented in [43]. The upper-level problem sets optimal
market bids and offers for each storage unit, while the lower-level
problem simulates market clearing procedure. The initial formulation is
converted to MPEC and linearized using the Karush–Kuhn–Tucker
(KKT) conditions of the lower-level problem. The paper also contains
stochastic and basic robust (maximizing the profit of the least profitable
scenario) reformulations of the upper-level problem. The important
conclusions are that the transmission congestion is usually beneficial
for energy storage profit and that locations of individual storage units
affect their coordinated scheduling and profit.

The authors of [44] propose a bilevel formulation where the upper-
level problem seeks to maximize merchant storage arbitrage profit,
while the lower-level problem simulates market clearing. The lower-
level problem is a stochastic problem, depending on wind scenarios.
The paper specifically analyzes the impact of the thermal generator
flexibility on storage profit. The authors illustrate how storage takes
advantage of different system conditions. The case study shows that a
congested transmission grid enables storage to exercise spatio-temporal
arbitrage, bringing much more revenue as compared to only exploiting
limited ramping constraints of conventional generators.

Paper [45] examines the impact storage has on generator company
profit increment due to strategic bidding. The authors exploit the bi-
level structure, where the upper-level problem maximizes the total
profit of generating companies. The lower-level problem is a simulation
of transmission-unconstrained market clearing procedure. The con-
ducted case study indicates that energy storage diminishes the possi-
bility of generating companies to exercise market power at high-de-
mand hours, but increases it at off-peak periods. However, the
reduction at peak periods is higher than the increase in off-peak periods
due to the larger slope of the strategic marginal cost curve. Therefore,
energy storage is beneficial to the bidding side, as it helps preserving
the bidding side surplus.

The authors of [46] propose a multi-period equilibrium problem
with equilibrium constraints to study strategic behavior of various
generators. The model considers energy storage systems as price makers
in the energy market and their impact on the market equilibrium is
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thoroughly analyzed. The nonlinear complementarity constraints are
handled using a reformulation technique. The paper [47] proposes a
bilevel equilibrium model to study market equilibrium interactions
between energy storage and wind and conventional generators.

Paper [48] demonstrates that in some market structures energy
storage can reduce social welfare, which contradicts conventional opi-
nion of reducing the welfare losses by adding firms to an imperfectly
competitive market. These findings have important implications for
storage development and storage-related policies.

A case study on integration of energy storage in German electricity
market is presented in [49]. The results indicate that energy storage
reduces price spikes and producer surplus. The authors conclude that
energy storage investments are not attractive to companies that already
own generation facilities.

1.3. Scope and contributions

The model proposed in this paper falls in the category of merchant-
owned energy storage operation problems. While papers [21,48] are
focused on energy storage impact on social welfare, [43,44] on the
impact of uncertainty on energy storage operation, [44–49] on inter-
action between generators and energy storage, this paper aims at filling
the literature gap on interaction between energy storage companies, i.e.
VSPs. Specifically, we determine the benefits of a longer look-ahead
horizon than a single day, the loss of profit when having independent
VSPs competing in the day-ahead market and the consequences of not
considering the market decisions of other VSPs when bidding in the
day-ahead market.

The presented model assumes that VSP is a price maker and makes
profit in the day-ahead market by performing arbitrage. We employ
bilevel programming in order to model the relationship between the
VSP operator’s optimal bidding problem and the market operator’s
market clearing problem. These two problems interact in a way that the
upper-level problem decides on VSPs bidding quantities (and prices),
while the lower-level problem performs market clearing considering the
upper-level decisions. The outcome of the lower-level problem are,
among others, locational marginal prices (LMPs), which are used in the
upper-level problem to calculate the VSP profit of the VSP.

We present three different models that depict different market op-
eration of storage units. The first model is an MPEC that optimizes
bidding quantities of a VSP owning a number of BSUs. It is assumed that
offering and bidding prices are set to zero and to the market cap value,
respectively. The second MPEC is also focused on a single-entity owned
storage, but apart from the quantities, the storage operator sets the
offering and bidding prices as well. Finally, the third model is an EPEC
where different VSPs compete for profit by scheduling their BSUs. This
EPEC is a multiple-leader-common-follower game, where different VSP
owners are the leaders subject to the same follower – the market.

The contributions of the paper are summarized as follows:

1. Formulation of a VSP price and quantity offer model (MPEC) and its
comparison to the quantity-only offer model.

2. Analysis and quantitative evaluation of the look-ahead horizon of
the VSP operation model. Namely, even when operating a daily-
cycle storage, a look-ahead horizon longer than a single day might
be required.

3. Formulation of a multiple VSP model (EPEC), where a diag-
onalization method is utilized to evaluate possible equilibria when
different storage owners compete to maximize their profit.

4. Comparison of the EPEC approach (BSUs divided among multiple
VSPs) to the case of a single VSP, i.e. all BSUs operated by a single
VSP.

The presented models and analysis should be interesting to energy

storage investors, operators of energy storage facilities, aggregators of
distributed storage units, and balance responsible parties.

2. Formulation

This paper employs formulations to model each of the following
settings:

1. Quantity-only MPEC model, i.e. offering at zero price and bidding at
the market cap price, presented in Section 2.2.

2. Price-quantity MPEC model, presented in Section 2.3.
3. EPEC model, presented in Section 3.1.

The main notation used throughout the paper is listed at the beginning
of the paper for a quick reference. Dual variables of the lower-level
problem constraints are stated after a colon in the corresponding con-
straint.

2.1. Quantity-only model formulation

. ∑ ∑ −∈ ∈ λ q qmax ·( )
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Ω Ω
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Objective function (1) maximizes the profit of the VSP. LMP at the
bus to which a BSU is connected is equal to the negative of λt s, , the dual
variable of the power balance Eq. (6) calculated endogenously in the
lower level problem. BSU’s profit comes from the difference of LMPs
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when electricity is sold and purchased in the market. Therefore, the
BSU’s revenue is highly dependent on the LMP profile at the connecting
bus.

The objective function (1) is subject to the upper-level constraints
representing storage operation (2)–(4) and a lower-level problem si-
mulating market clearing procedure (5)–(15).

Constraint (2) determines the current state of energy of a BSU based
on its value in the previous time period, as well as charging and dis-
charging amounts and efficiencies during the current time period. This
equation considers both charging and discharging efficiencies. Con-
straint (3) forbids simultaneous charging and discharging of battery
storage. Constraint (4) limits the state of energy of a BSU.

The objective function of the lower-level problem (5) maximizes the
social welfare, which is defined as the difference between the con-
sumers benefits (cleared quantities times the bidding prices) and the
overall cost of suppliers (cleared quantities times the offering prices).
As in most economic studies in the literature, the dc linear approx-
imation of the network is used to represent nodal power balance and
transmission line capacity limits. Eq. (6) enforces nodal power balance.
Power flows through the lines are calculated in (7) and limited in (8).
Constraint (9) imposes generator offering block limits, while (10) limits
demand bidding blocks. Constraints (11) and (12) limit storage of-
fering/bidding blocks, while constraint (13) imposes the upper limit on
available wind generation. Since wind farms are considered to offer at 0
$/MWh, their offers do not appear in the objective function of the
lower-level problem. Consequently, the model will strive to use as much
free wind power as possible. Constraint (14) limits voltage angles for
each node, and constraint (15) sets the reference bus.

The model derives hourly offering curve of the VSP and maximizes
its profit in the day-ahead market. It assumes all generator offers and
demand bids are known to the VSP. This information can be derived
using historical data and procedure proposed in [50].

Since the lower-level problem is continuous and linear, it can be
replaced by its KKT conditions [51], i.e. first-order necessary conditions
for a solution to be optimal, resulting in the following MPEC:∑ ∑ −∈ ∈ λ q qmax ·( )

t h
t s h t h t h

Ω Ω
, ( ) ,

dis
,
ch

T H (16)

subject to: −Upper level constraints: (2) (4) (17)

KKT conditions:− − + − = ∀ ∈ ∈ ∈λ λ γ γ t i b0 Ω , Ω , Ωi b t s i t i b t i b,
G

, ( ) , ,
min

, ,
max T I B

(18)+ + − = ∀ ∈ ∈ ∈λ λ σ σ t s c0 Ω , Ω , Ωs c t s t s c t s c,
D

, , ,
min

, ,
max T S C (19)− − + − = ∀ ∈ ∈λ λ ϕ ϕ t h0 Ω , Ωh t s h t h t h

dis
, ( ) ,

dmin
,
dmax T H

(20)+ + − = ∀ ∈ ∈λ λ ϕ ϕ t h0 Ω , Ωh t s h t h t h
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, ( ) ,
cmin

,
cmax T H
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,
max T S S(L)

(23)∑ ∑ ∑ ∑ ∑∑ ∑ ∑ ∑− − − +
− = − − ∀ ∈∈ ∈ ∈ ∈ ∈ −

∈ + ∈ ∈ ∈
k q g pf

pf d q t Ω

w t w
h

t h
i b

t i b
l

t l

l
t l

s c
t s c

h
t h

Ω ,
Ω

,
dis

Ω Ω
, ,

Ω
,

Ω
,

Ω Ω
, ,

Ω
,
ch T

W(S)
H(S) I(S) B L(S)

L(S) S C H(S) (24)= − ∀ ∈ ∈ ∈pf sus θ θ t s m l s m·( ) Ω , { , } Ω , { , }t l l t s t m, , ,
T L (25)= ∀ ∈θ t0 Ωt s,

T
1 (26)⩽ + ⊥ ⩾ ∀ ∈ ∀ ∈pf pf β t l0 0 Ω , Ωl t l t l

max
, ,

min T L
(27)⩽ − ⊥ ⩾ ∀ ∈ ∀ ∈pf pf β t l0 0 Ω , Ωl t l t l

max
, ,

max T L
(28)

⩽ ⊥ ⩾ ∀ ∈ ∀ ∈ ∀ ∈g γ t i b0 0 Ω , Ω , Ωt i b t i b, , , ,
min T I B

(29)⩽ − ⊥ ⩾ ∀ ∈ ∀ ∈ ∀ ∈g g γ t i b0 0 Ω , Ω , Ωi b t i b t i b,
max

, , , ,
max T I B

(30)⩽ ⩾ ∀ ∈ ∀ ∈ ∀ ∈d σ t s c0 0 Ω , Ω , Ωt s c t s c, , , ,
min T S C (31)⩽ − ⊥ ⩾ ∀ ∈ ∀ ∈ ∀ ∈d d σ t s c0 0 Ω , Ω , Ωt s c t s c t s c, ,

max
, , , ,

max T S C (32)⩽ ⊥ ⩾ ∀ ∈ ∀ ∈q ϕ t h0 0 Ω , Ωt h t h,
dis

,
dmin T H

(33)⩽ − ⩾ ∀ ∈ ∀ ∈dis q ϕ t h0 0 Ω , Ωh t h t h
max

,
dis

,
dmax T H

(34)⩽ ⊥ ⩾ ∀ ∈ ∀ ∈q ϕ t h0 0 Ω , Ωt h t h,
ch

,
cmin T H

(35)⩽ − ⊥ ⩾ ∀ ∈ ∀ ∈ch q ϕ t h0 0 Ω , Ωh t h t h
max

,
ch

,
cmax T H

(36)⩽ ⊥ ⩾ ∀ ∈ ∀ ∈k η t w0 0 Ω , Ωt w t w, ,
min T W

(37)⩽ − ⩾ ∀ ∈ ∀ ∈k k η t w0 0 Ω , Ωt w t w t w,
max

, ,
max T W

(38)⩽ + ⊥ ⩾ ∀ ∈ ∀ ∈π θ μ t s0 0 Ω , Ωt s t s, ,
min T S

(39)⩽ − ⊥ ⩾ ∀ ∈ ∀ ∈π θ μ t s0 0 Ω , Ωt s t s, ,
max T S (40)

This MPEC model (16)–(40) contains the following non-linearities:

1. the multiplication of dual variable λt s, and primal variables
( −q qt h t h,

dis
,
ch) in the objective function;

2. the complementarity conditions (27)–(40).

To linearize the objective function, we use some of the KKT conditions.
Using (20) and (21), the objective function is transformed to:∑ ∑ ∑ ∑− − + − + − −

+ ∈ ∈ ∈ ∈λ ϕ ϕ q λ ϕ

ϕ q

max ( )· (

)·
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h t h t h t h
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,
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(41)

From complementarity conditions (33)–(36), ϕ q·t h t h,
dmin

,
dis = 0,=ϕ q· 0t h t h,

cmin
,
ch , =ϕ q ϕ dis· ·t h t h t h h,

dmax
,
dis

,
dmax max and =ϕ q ϕ ch· ·t h t h t h h,

cmax
,
ch

,
cmax max the

following holds:− = + − +λ q q λ q ϕ dis λ q ϕ ch·( ) · · · ·t s h t h t h h t h t h h h t h t h h, ( ) ,
dis

,
ch dis

,
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,
dmax max ch

,
ch

,
cmax max

(42)

The complementarity conditions (27)–(40) are linearized using the
well-known linear expressions from [52], where a general com-
plementarity condition:⩽ ⊥ ⩾x y0 0 (43)

is replaced by a set of linear constraints:⩽ ⩽x i M0 · (44)⩽ ⩽ −y i M0 (1 )· (45)

where M is a large enough constant and i is a binary variable. One
should be careful when selecting the value for M. Infeasibility problems
may occur if this value is too small, while M being too large increases
the computational time.

The final problem is:+ − +λ q ϕ dis λ q ϕ chmax · · · ·h t h t h h h t h t h h
dis

,
dis

,
dmax max ch

,
ch

,
cmax max

(46)

subject to:
(17)–(25), (30)–(40), (26) and linearized variants of (((27)–(29),

(40)).

2.2. Price-quantity model formulation

The optimization problem that aims to maximize the profit of a VSP
consisting of h BSUs and determine the bidding and offering prices as
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well is stated as follows:

Refer Eq. (1) (47)

subject to:⩾ ∀ ∈ ∈α t h0 Ω , Ωt h,
dis T H (48)⩾ ∀ ∈ ∈α t h0 Ω , Ωt h,
ch T H (49)−Refer Eqs. (2) (15) (50)

In lower-level objective function (5) the VSP now bids with unknown
prices. Eqs. (48) and (49) enforce VSP’s positive bidding and offering
prices.

MPEC transformation is the same as in the quantity-only model with
added (48) and (49) in the upper level. Also, (20) and (21) change,
since known parameters λh

ch and λh
dis become unknown variables αt h,

ch

and αt h,
dis.− − + − = ∀ ∈ ∈α λ ϕ ϕ t h0 Ω , Ωt h t s h t h t h,

dis
, ( ) ,
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, ( ) ,
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,
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(52)

Using (51) and (52) for linearization, the objective function becomes:∑ ∑ ∑ ∑− − + − + − −
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From complementarity conditions (33)–(36), ϕ q·t h t h,
dmin

,
dis = 0,
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(54)

The resulting objective function (54) still contains nonlinear mul-
tiplications of optimal offering/bidding prices and their quantities.
Strong duality theorem states that primal and dual objective functions
have the same values at the optimum. The strong duality equation is
formulated as follows:
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From Eq. (55), the nonlinear terms can be easily expressed as linear:∑ ∑ ∑∑ ∑ ∑ ∑∑∑ ∑∑ ∑ ∑ ∑
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The final objective function is:∑ ∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑∑ ∑
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2.3. EPEC formulation

The MPEC formulations from the previous sections assume that a

Fig. 1. IEEE RTS-96 test system with 19 wind farms and 3 BSUs.
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single VSP owns all the BSUs in the system. However, one may expect
multiple VSP owners operating their BSUs and competing for profit,
which resembles an EPEC structure. The solution of this EPEC problem
is a set of equilibria, in which none of the VSPs is able to increase its
revenue unilaterally by changing the offering/bidding quantities of its
BSUs. To solve the proposed EPEC we use the diagonalization algo-
rithm, which is implemented by sequentially solving one MPEC at a
time. That is, MPECs are solved one by one, considering fixed the de-
cisions of the remaining MPECs. Once all VSP’s MPECs are solved, the
solving cycle restarts as many times as needed for the decision variables
of each MPEC to stabilize. Additional information on the use and
properties of the diagonalization procedure are available in [53].

The upper-level problem schedules the BSUs to maximize the profit
of the current VSP, while the lower-level problem considers both the
current VSP and all other VSPs with their decisions fixed from the
previous iteration. In the price-quantity environment, every BSU has an
incentive to lower the offering price in order to seize the market. The
price lowering continues until reaching the marginal costs. Therefore,
we use the quantity-only model where BSUs offer at zero price and bid
at market cap price.

To make distinction between BSU ownership, a new set ΩJ is added.
Objective function (46) and upper-level constraints (17) are valid∀ ∈h ΩH(J), i.e., for all h pertaining to owner j. The equations from the
lower-level problem consider all the BSUs participating in the market,
i.e., they constrain all ∈h ΩH.

3. Case study

The proposed model is tested on IEEE RTS-96 supplemented with 19
wind farms (see Fig. 1), whose output throughout the representative
week is shown in Fig. 2. The representative week is obtained from the
annual data available in [54] using the fast-forward scenario reduction
algorithm described in [55]. During this week, the overall system load
ranges from 3900MW to 8100MW, while the daily consumption ranges
from 121 GWh to 161 GWh. Available wind power ranges from 1 to 3%
in some hours of days 2 and 5, and all the way to over 100% of the load
during the night hours between days 1–2 and 6–7. Three BSUs are lo-
cated at buses 106, 117 and 220, which are identified as attractive
locations for performing arbitrage [20]. Their energy capacity in this
case study is 100, 250 or 500 MWh each, which is almost negligible in
terms of daily consumption during the low available wind power, but
can be significant during the days in which the available wind power is
comparable to the overall load.

The presented case study is implemented in GAMS 24.5 and solved
using CPLEX 12.6. The optimality gap is set to 0,5%.

3.1. Effects of optimization time horizon

An important issue when optimizing a merchant BSU is the opti-
mization time horizon. Here, we analyze if it is sufficient to consider
only one day at a time or if a longer look-ahead period may bring higher
profit. To examine this, we analyze profits of a single 250 MWh BSU
located at bus 117. Table 1 compares its profits using one-day look-
ahead, two-days look-ahead, and a week look-ahead scheduling horizon
(all three cases consider day-ahead market where market bids and of-
fers are submitted one day in advance). The results show that the loss of
profit when looking only a day ahead, without trying to forecast the
prices after this day, is 32% as opposed to the case when the prices are
accurately forecasted for one week ahead. On the other hand, the two-
day look-ahead horizon performs as well as the one week look-ahead
horizon. This is because the duration of storage is one hour, so there is
no long-term storing of energy. This indicates that a merchant-owned
BSU should forecast market outcomes for two days in advance, and not
only for the following day. Longer scheduling horizon allows a BSU to
precharge and/or preserve the stored energy from the previous
day, thus gaining higher overall profit. However, although a BSU

significantly benefits from longer scheduling horizons, it is difficult to
accurately predict load levels and market clearing outcomes a week
ahead. On the other hand, the two day look-ahead scheduling provides
a good balance between uncertainty related to market outcomes and
optimal charging/discharging decisions. For this reason, in the re-
maining subsections of the case study we use a 48-h ahead scheduling,
apply the results for the first 24 h, which is the day-ahead market
horizon, and discard the last 24 h. After that, we move to the next day
and perform optimization for the second and the third day, discarding
the results for the third day, and so on.

3.2. Impact of BSU capacity on revenue

Fig. 3 shows charging/discharging schedules, states of energy and
LMP profiles of three BSUs with 100MW capacity consisting a VSP. At
the beginning of the week the BSUs were empty, while their states of
energy transfer from one day to another is based on the state of energy
at hour 24 of each optimization. The BSUs are connected to buses 106,
117 and 220 and their charging and discharging capacity is set to 1C,
i.e. they can fully charge or discharge within one hour.

During the first five days all three BSUs behave in a similar way
performing one full charging/discharging cycle a day. The only ex-
ception is the BSU at bus 117, which performs an additional cycle right
at the beginning of the first day. Generally, all the BSUs charge during
the low-price periods and discharge during the high-price periods.
However, the charging and discharging volumes are rarely 100MW,
which indicates that higher volumes would have negative impact on
LMPs. On day 6, the BSUs at buses 106 and 117 are idle as they can not
take advantage of the volatile prices. Namely, the LMPs decrease
throughout the day 6 and there is no opportunity for performing a
charging/discharging cycle for these two BSUs. On the other hand, firm
and more volatile LMPs at bus 220 allow this BSU one half and one full
cycle during day 6. The last day is abundant with wind power and LMPs
are extremely low. Regardless, the BSUs at buses 106 and 220 manage
to perform two full cycles, while the BSU at bus 117 performs a single
cycle. The results in Fig. 3 also indicate that the BSUs have different
state of energy at the end of each day. For instance, the BSU at bus 106
is fully charged at the end of the first day and fully discharged at the
end of the second day. This confirms the importance of the two day
look-ahead optimization horizon.

Daily profit of each BSU is provided in Table 2. The highest overall
profit is obtained for the BSU at bus 220. However, it is interesting to
analyze the daily distribution of the profits. The most profitable days
are days 2 and 4. Day 2 is profitable because the BSUs fully charge in
the last hour of the first day and manage to discharge at high prices

Fig. 2. Available output of 19 wind farms within the IEEE-RTS 96 during the
representative week [54].
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during the second day (around $25). The fourth day is also profitable
because the BSUs are charged at the end of day 3 and beginning of day
4 at zero price and then discharged in the afternoon of day 4 at around
$25. In day 1, the BSU at bus 117 is most profitable due to an additional

cycle in the first few hours. Despite the similar state of energy curve
during day 1, the BSU at bus 220 is less profitable than the one at bus
106 because it charges at higher cost.

Fig. 4 shows charging/discharging schedules, states of energy and

Table 1
Storage profit depending on the optimization horizon, $.

Day ahead Two days ahead Week ahead

Day 1 1266 1209 1209
Day 2 680 5619 5619
Day 3 470 470 470
Day 4 5567 5567 5568
Day 5 486 481 482
Day 6 486 587 597
Day 7 1644 1642 1642
Total 10,600 15,576 15,587

(a) BSU at bus 106

(b) BSU at bus 117

(c) BSU at bus 220

Fig. 3. VSP charging/discharging schedules, states of energy and LMP profiles
for 100 MWh BSU capacity.

Table 2
Daily individual BSU profits for 100 MWh capacity, $ (%).

Bus 106 Bus 117 Bus 220 Total

Day 1 641 1287 386 2315
Day 2 2255 2228 2250 6733
Day 3 188 150 188 526
Day 4 2128 2227 2227 6852
Day 5 188 194 191 573
Day 6 0 0 688 688
Day 7 694 639 1044 2377

Total 6094 6725 6974 19,794

(a) BSU at bus 106

(b) BSU at bus 117

(c) BSU at bus 220

Fig. 4. VSP charging/discharging schedules, states of energy and LMP profiles
for 250MWh BSU capacity.
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LMP profiles for 250 MWh capacity BSUs. The charging/discharging
schedules are similar to the ones for 100 MWh capacity BSUs, with
some slight differences. The BSU at bus 106 is not fully charged during
the first day in order to preserve the fairly low LMPs. Also, since it
requires more energy to fully charge at the end of the first day, it partly
charges at higher prices, thus resulting in lower daily profit (compare in
Tables 2 and 3). Also, it performs only two cycles during day 7, but the
daily profit is increased due to higher energy volume traded in the
market. The schedule of the BSU at bus 117 does not change much, but
one can note a small negative profit in day 3. This is a result of the
charging process at the end of the day needed to achieve high profit in
day 4. The 250 MWh BSU at bus 220 is scheduled with an extremely
shallow cycle during the first day, as opposed to the full cycle for the
100 MWh BSU capacity. This is the result of congestion between the
BSUs at buses 117 and 220. Higher charging quantity of the BSU at bus
220 would incur higher LMP at bus 117. This situation clearly depicts
the joint coordination of the three BSUs within a VSP with the goal of
maximizing profit for the entire VSP and not a single BSU. It is also
worth noting that, as opposed to the 100 MWh BSUs, the 250 MWh
BSUs never charge nor discharge at maximum rate since this would
cause undesired changes in LMPs.

Profit of the BSU at bus 117 in Table 1 is higher than the one in
Table 3 because the BSUs at buses 106 and 220 are not considered in
Table 1. This indicates that existence of additional BSUs reduced the
value of a BSU in the system.

BSU charging/discharging schedules, states of energy and LMP
profiles for 500 MWh capacity BSUs are shown in Fig. 5. As opposed to
the 100MWh and 250MWh cases, the BSU at bus 106 does not perform
a charging/discharging cycle during the first day. Instead, it charges to
full capacity and preserves the energy for the second day, when the
prices are much higher. The result of this schedule is negative profit of
this BSU on Day 1, which is followed by an $8,994 profit in the second
day, as shown in Table 4. The BSU connected to bus 117 performs a
reduced cycle, i.e. it does not fully charge, during the first day, but the
remaining days of the week follow similar schedules as in case of
100MWh and 250MWh BSU capacities. The BSU connected to bus 220
also is also scheduled very similar as in the 250 MWh case, but with
reduced charging cycle during the day 6. Table 4 indicates huge dif-
ferences in profits for individual days. The most profitable days for the
VSP are days 2 and 4. This is a direct outcome of the wind profile in
Fig. 2, where day 1 is rich with wind energy, which is charged to the
VSP and injected into the system during day 2, which has very low wind
output and, consequently, high LMPs. Similarly, the late hours of day 3
and early hours of day 4 are abundant in wind output, which is stored in
the VSP and discharged in the second half of day 4 at high prices.
During day 6, the BSUs at buses 106 and 117 are idle and their profit in
that day is zero. This is a direct result of the increasing wind throughout
the day, which results in almost monotonically reducing LMPs
throughout the day. Since the final LMPs in day 6 at most buses is zero,
there are no arbitrage opportunities for the BSUs at buses 106 and 117.

A comparison of the total VSP profit for different BSU capacities
(Tables 2–4) indicates the saturation of profit as the BSU capacity in-
creases. Specifically, the overall VSP profit for 250MWh installed BSU
capacity is 2.17 times higher than in the case of 100MWh capacity,
while the overall profit for 500MWh BSUs is only 3.84 times higher
than in the case of 100 MWh BSUs.

3.3. Analysis of VSP offering and bidding prices

When a BSU is charging, it is adding up to the total system load. As a
result, its purchase bid may drive the LMPs up resulting in higher
purchasing price of electricity. Similarly, when discharging, BSU acts as
a generation resource and may reduce the LMP, resulting in a lower
selling price. For this reason, the BSU offering and bidding prices, i.e.
variables αt h,

dis and αt h,
ch from the model presented in Section 2.3, are for

the most part identical to the expected LMPs.

To maximize its profit, VSP bids and offers quantities that do not
alter the LMPs significantly. In Figs. 6–8, the VSP charging bids are
marked with red circles and discharging offers with blue circles. All the
bids are accepted and the circles basically represent the time periods in
which a BSU was charged (red circles) or discharged (blue circles).

The LMPs with and without BSUs in Figs. 6–8 indicate very low changes
in LMPs due to BSU actions. In most graphs, the blue line, representing the
LMPs when there are no BSUs in the system, is behind the red line, which
shows the LMPs when BSUs are participating in the market. The increased
LMPs appear around hour 72 for 100 and 250MWh capacities of the BSU at
bus 106 (Figs. 6a and b). The 250MWh BSU at bus 117 even manages to
perform a small charging/discharging cycle around hour 72 (Fig. 7b).
However, an interesting situation occurs at the end of the third day for the
100MWh BSU at bus 117. This BSU actually discharges at zero price and
then charges in the next two hours, again at zero price. The discharged
quantity is actually quite high, around 25MWh (see Fig. 3b). Although this
small charging/discharging cycle has no effect on the objective function,
since both the charging and discharging prices are zero, this should be
avoided as it unnecessary increases degradation of the BSU. This can be
avoided by implementing a degradation model, e.g. [56]. A reduction of the
LMPs due to BSU discharging is noticed at the end of the last day, e.g.
Figs. 6b, 8a and 8b.

3.4. Competition between the VSPs using EPEC

In the previous subsections of the case study, all three BSUs were
owned and operated by a single VSP, which means they offer and bid in
the market in a coordinated manner. Here, we compare the results of
the coordinated scheduling of the three 100MWh BSUs under a single
VSP (Table 2) to a setting in which each of the BSUs has a different
owner. In this case, all three BSUs, now each of them being a VSP of its
own, maximize their profit independently of the other two VSPs and
compete among each other.

The competitive price setting optimization model is a classical
Bertrand model [57]. In a Bertrand pricing game, a Nash equilibrium 1

is found when all competitors bid at the same price, which is equal to
the marginal cost. If the price set by the competitors is the same but
higher than the marginal cost, there will be an incentive for the com-
petitors to lower their prices and seize the market. Therefore, the only
equilibrium in which none of the competitors will be willing to deviate
is when the price equals competitors’ marginal cost. When optimized
simultaneously, BSUs offer at a price that is usually higher than their
marginal cost which is assumed to be zero. In the EPEC model, offering
at a price above marginal cost would leave a competitor VSP an in-
centive to lower its offering price to seize the market. The process of
lowering the price to seize the market would repeat until all the VSPs
offer at their marginal cost.

Table 3
Daily individual BSU profits for 250MWh capacity, $ (%).

Bus 106 Bus 117 Bus 220 Total

Day 1 459 1309 18 1786
Day 2 5568 5480 5596 16,644
Day 3 7 −28 463 442
Day 4 5189 5566 5473 16,228
Day 5 603 456 467 1527
Day 6 0 0 923 923
Day 7 1648 1582 2134 5364

Total 13,474 14,366 15,075 42,914

1 Nash equilibrium is a game theory solution concept of a non-cooperative
game that involves several players. Nash equilibrium is a point in which any
change to a player’s strategy does not result in additional benefit. Detailed in-
formation are available in[58].
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Since the BSUs’ marginal operating cost is zero, in EPEC model we
use the quantity-only offering model from [59] with offering price set to
$0 and bidding price to the market cap. The diagonalization algorithm
used to solve the EPEC is implemented by sequentially solving an MPEC

for each VSP considering fixed the decisions of the remaining VSPs.
When using the diagonalization algorithm, the profit that a BSU (VSP)
makes greatly depends on its precedence to set the offering/bidding
quantities. The aim of this analysis is to characterize possible equilibria.
It is important to emphasize that the presented diagonalization proce-
dure does not reflect actual mechanics of the VSP competition, as all
VSPs submit their offer simultaneously. Instead, this analysis aims at
characterizing possible equilibria that can occur in this competition and
find a range of possible VSP profits when competing with other VSPs.

Profits of individual 100MWh VSPs for all six possible equilibrium
outcomes are listed in Table 5. For example, if the VSP connected to bus
106 is scheduled first, its profit is $6705 or $6802, depending on the
scheduling sequence of the other two VSPs. These two profits are higher
than the profits where the BSU at bus 106 is a part of the bigger VSP
($6094), but the profit of the other two VSPs are decreased. The overall
profit of the three VSPs is $18,910 and $18,992, depending on the
scheduling sequence of the other two VSPs, which is over 4% lower
than in case of the coordinated approach of all three BSUs under a
single VSP (see Table 2). Similar conclusions are derived for the other
two VSPs. Regardless of the sequence of the VSP scheduling, their
overall profit is lower (up to 7%) than if their actions are coordinated
under a single VSP. Considering that all market participants submit
their offers and bids individually and independently and that the
market outcome is known only after the market operator performs the
clearing procedure, it is important to understand the meaning of the
profits listed in Table 5. The profits where a specific VSP solves its
MPEC first in the EPEC procedure represent an upper bound on its
possible profit in the market, while the lower profits indicate the lower
bound of the possible VSP profit. The actual VSP profit depends on its
quality of scheduling and accurate consideration of the other VSPs’
decision-making processes.

3.5. Neglecting other VSPs at the bidding stage

In order to evaluate the importance of considering other VSPs at the
bidding stage, we perform a simulation where each of the three VSPs
(each VSP owning a single BSU) derives its optimal bidding strategy by
completely neglecting other VSPs and their bidding strategies. This is
achieved by using the MPEC from Section 2.2 and ignoring the BSUs
owned by other VSPs. The obtained VSP bidding strategies are then
used to simulate actual market clearing represented by constraints
(5)–(15). The resulting LMPs, which may be different than those ex-
pected at the scheduling stage, are then used to determine the actual
VSP profits.

Table 6 shows the reduction of profit as compared to Table 2. For
100MWh VSPs, the overall weekly profit of the VSP at bus 106 reduces
from $6094 to only $270. This is mainly because of a huge spike in LMP
at this bus at hour 24 (see Fig. 9a) caused by neglecting the other VSPs
in the system at the bidding stage. Actually, at hour 24 the LMP at all
three VSP buses is zero and all three VSPs decided to charge at full
capacity. This caused an extremely high LMP at bus 106 (over $60) and
caused great monetary losses to the VSP at bus 106. The VSP losses on
day 2 are negligible, while on day 3 the VSP at bus 117 actually had
higher profit due to reduced profit for the VSPs at buses 106 and 220
(the overall profit of all the VSPs on day 3 is reduced by 35%). The
profit on days 4–6 is only slightly reduced, while the overall profit on
day 7 is reduced by 26%. In total, the VSPs made 34% lower profit as
compared to their coordinated bidding presented in Table 2. The results
of the simulations indicate that with the increasing energy storage ca-
pacity in the power system, it is necessary to anticipate the competitors’
decisions. This might be harder task than anticipating the strategic
decisions of the generators as the BSUs do not have (or have very low)
operating costs and throughout the day may bid different quantities at
different prices. The generators are making profit as long as the LMP is
higher than their marginal cost. On the other hand, BSUs are making
profit if their selling price is higher than their purchasing price plus the

(a) BSU at bus 106

(b) BSU at bus 117

(c) BSU at bus 220

Fig. 5. VSP charging/discharging schedules, states of energy and LMP profiles
for 500MWh BSU capacity.

Table 4
Daily individual BSU profits for 500MWh capacity, $ (%).

Bus 106 Bus 117 Bus 220 Total

Day 1 −2891 857 −346 −2380
Day 2 8994 11,133 8179 28,306
Day 3 1764 −855 3725 4633
Day 4 7546 10,179 10,756 28,480
Day 5 3150 1801 886 5837
Day 6 0 0 932 932
Day 7 3229 3118 3840 10,187

Total 31,792 26,233 27,970 75,995
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(a) 100 MWh capacity (b) 250 MWh capacity

(c) 500 MWh capacity

Fig. 6. BSU at bus 106 offering strategy and LMPs.

(a) 100 MWh capacity (b) 250 MWh capacity

(c) 500 MWh capacity

Fig. 7. BSU at bus 117 offering strategy and LMPs.

(a) 100 MWh capacity (b) 250 MWh capacity

(c) 500 MWh capacity

Fig. 8. BSU at bus 220 offering strategy and LMPs.
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cycle efficiency. This means that the outcome of the quantity-only of-
fering model with selling price set to zero and purchasing price at
market cap can be significantly different than anticipated. Therefore,
the VSPs should consider using the price-and-quantity offering model to
protect against the undesired market outcomes.

4. Conclusions

This paper exploits MPEC and EPEC structure to evaluate the profit
opportunities of BSUs in the day-ahead energy market. The following
conclusions are derived:

1. Due to energy preservation and precharge abilities, a BSU should
forecast market outcomes for two days in advance in order to

maximize its overall profits. However, forecasting market prices,
especially as a price taker in a system with high integration of wind
energy might be a difficult task and two-days scheduling horizon
might not be optimal in for specific cases. Therefore, the quality of
forecasting market prices will determine the look-ahead horizon for
energy storage.

2. BSUs behave in a way to minimize their impact on LMPs. For this
reason, they may discharge/charge at hours whose LMPs are not
highest/lowest. As a consequence, in the analyzed case study they
usually charge and discharge during multiple hours (despite the 1 h
duration of storage) in order to not affect the LMPs and reduce their
profits.

3. The characteristics of the BSUs from the case study are suitable for
performing daily arbitrage. However, in order to maximize their
profit, the BSUs might miss their daily charging/discharging cycle in
order to charge at very low price and preserve the energy for dis-
charging at high prices in the following day.

4. Comparison of the MPEC and EPEC settings allows BSUs to reach an
equilibrium encompassing their individual maximum revenue tar-
gets.

5. Coordinated BSU strategy in the day-ahead market results in sig-
nificantly higher profits as compared to the uncoordinated EPEC
approach.

6. In the uncoordinated approach, BSU profits are highly dependent on
the BSU scheduling sequence, which means that there are many
equilibria with uneven distribution of profits.

7. Discarding other storage facilities at the day–ahead scheduling
phase may result in a huge reduction of profit or even incur a loss for
a VSP. This is because only a slightly higher charging/discharging
level may cause severe upward/downward price spikes.

The running time for the 48-h horizon in all the simulations is below
2min, which makes it useful for medium-scale power systems.
Generator offering curves may be derived using the historical market
data and inverse optimization techniques. However, the impact of un-
certainty of wind generation and load levels remains to be investigated
in future research. This would allow assessing the impact of forecasting
errors and enable an additional revenue stream for the VSPs from the
intraday and/or balancing markets.

Table 5
Profit of 100MWh VSPs at buses 106, 117 and 220 for different VSP scheduling
sequences, $.

First VSP 106 117 220

Second VSP 117 220 106 220 106 117

106 6705 6802 5688 5204 55,547 5002
117 6120 5829 7149 7212 5976 6120
220 6085 6361 6118 6409 7407 7292

Total 18,910 18,992 18,955 18,825 18,930 18,414

Table 6
Daily individual BSU profits for 100 MWh capacity when neglecting other VSPs
at the scheduling stage, $ (%).

Bus 106 Bus 117 Bus 220 Total

Day 1 −4993 (−∞%) 1098 (−15%) 275 (−29%) −3620 (−∞%)
Day 2 2228 (−1%) 2228 (0%) 2228 (−1%) 6683 (−1%)
Day 3 77 (−59%) 188 (26%) 79 (−58%) 344 (−35%)
Day 4 2128 (0%) 2227 (0%) 2227 (0%) 6581 (0%)
Day 5 188 (0%) 184 (−5%) 191 (0%) 564 (−2%)
Day 6 0 (0%) 0 (0%) 677 (−2%) 677 (−2%)
Day 7 642 (−8%) 487 (−24%) 635 (−39%) 1764 (−26%)

Total 270 (−96%) 6412 (−5%) 6311 (−10%) 12993 (−34%)

(a) Bus 106 (b) Bus 117

(c) Bus 220

Fig. 9. Difference in LMPs after the actual market clearing when the VSPs neglect and when they consider other VSPs at the scheduling stage.

K. Pandžić et al. 413

412

–Electrical Power and Energy Systems 104 (2019) 401



Acknowledgement

This work has been supported by the Croatian Science Foundation
and the Croatian TSO (HOPS) under the project Smart Integration of
RENewables – SIREN (I-2583-2015) and through European Union’s
Horizon 2020 research and innovation program under project
CROSSBOW – CROSS BOrder management of variable renewable en-
ergies and storage units enabling a transnational Wholesale market
(Grant No. 773430).

References

[1] Ela E, Milligan M, Kirby B. Operating Reserves and Variable Generation, Technical
Report – National Renewable Energy Laboratory; 2011.

[2] Guizzi GL, Iacovella L, Manno M. Intermittent non-dispatchable renewable gen-
eration and reserve requirements: historical analysis and preliminary evaluations on
the italian electric grid. Energy Procedia 2015;81. 339–334.

[3] Rasmussen MG, Andersen GB, Greiner M. Storage and balancing synergies in a fully
or highly renewable pan-european power system. Energy Policy
2012;51(2):642–51.

[4] Energinet [Online]. Available at:energinet.dk/EN/El/Nyheder/Sider/
Danskvindstroem-slaar-igen-rekord-42-procent.aspx.

[5] European Association for Storage of Energy (EASE) and European Energy Research
Alliance (EERA), European Energy Storage Technology Development Roadmap to-
wards 2030. [Online]. Available at:www.eera-set.eu/wp-content/uploads/148885-
EASE-recommendations-Roadmap-04.pdf.

[6] Pandžić K, Pandžić H, Kuzle I. Coordination of Regulated and Merchant Energy
Storage Investments. In IEEE Transactions on Sustainable Energy, early access.

[7] McPherson M, Tahseen S. Deploying storage assets to facilitate variable renewable
energy integration: the impacts of grid flexibility, renewable penetration, and
market structure. Energy 2018;145:856–70.

[8] International Energy Agency. Energy Technology Perspectives 2016 – Towards
Sustainable Urban Energy Systems.

[9] Terna storage overview. [Online]. Available at:https://www.terna.it/en-gb/
sistemaelettrico/progettipilotadiaccumulo.aspx.

[10] DoE Global Energy Storage Database. [Online]. Available at:https://www.
energystorageexchange.org/projects.

[11] NGK Insulators Ltd. [Online]. Available at:https://www.ngk.co.jp/nas/specs/.
[12] Battery Technology Charges Ahead [Online]. Available:www.mckinsey.com/

insights/energyresourcesmaterials/batterytechnologychargesahead.
[13] Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W. Energy storage for mi-

tigating the variability of renewable electricity sources: An updated review. Energy
Sustain Dev 2010;14(4):302–14.

[14] Yang Y, Li H, Aichorn A, Zheng J, Greenleaf M. Sizing strategy of distributed battery
storage system with high penetration of photovoltaic for voltage regulation and
peak load shaving. IEEE Trans Smart Grid March 2014;5(2):982–91.

[15] Yau T, Walker LN, Graham HL, Gupta A, Raithel R. Effects of battery storage devices
on power system dispatch. IEEE Trans Power Apparatus Syst Jan. 1981;PAS
100(1):375–83.

[16] Su HI, Gamal AE. Modeling and analysis of the role of fast-response energy storage
in the smart grid. In: Proc. 49th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), Monticello, IL; 2011. p. 719–26.

[17] Denholm P, Sioshansi R. The value of compressed air energy storage with wind in
transmission-constrained electric power systems. Energy Policy May
2009;37(8):3149–58.

[18] Mokrian P, Stephen M. A Stochastic Programming Framework for the Valuation of
Electricity Storage. [Online]. Available atwww.iaee.org/en/students/bestpapers/
PedramMokrian.pdf.

[19] U.S. DoE. Grid Energy Storage. [Online]. Available at:energy.gov/sites/prod/files/
2014/09/f18/Grid%20Energy%20Storage%20December%202013.pdf.

[20] Pandžić H, Wang Y, Qiu T, Kirschen D. Near-optimal method for siting and sizing of
distributed storage in a transmission network. IEEE Trans Power Syst Sept.
2015;30(5):2288–300.

[21] Hartwig K, Kockar I. Impact of strategic behavior and ownership of energy storage
on provision of flexibility. IEEE Trans Sustain Energy April 2016;7(2):744–54.

[22] Pang JS, Fukushima M. Quasi-variational inequalities, generalized Nash equilibria,
and multi-leader-follower games. CMS 2005;2(1):21–56.

[23] Hobbs BF, Metzler CB, Pang JS. Strategic gaming analysis for electric power sys-
tems: an MPEC approach. IEEE Trans Power Syst May 2000;15(2):638–45.

[24] Chen Y, Hobbs BF, Leyffer S, Munson TS. Leader-follower Equilibira for electric
power and NOx allowances markets. CMS 2006;3(4):307–30.

[25] Ralph D, Smeers Y. EPECs as models for electricity markets, in Proceedings of Power
Systems Conference and Exposition, Atlanta USA; 2006.

[26] Ruiz C, Conejo AJ, Smeers Y. Equilibria in an oligopolistic electricity pool with
stepwise offer curves. IEEE Trans Power Syst May 2012;27(2):752–61.

[27] Pandžić H, Conejo A, Kuzle I. An EPEC approach to the yearly maintenance sche-
duling of generating units. IEEE Trans Power Syst 2013;28(2):922–30.

[28] Dvorkin Y, Fernndez-Blanco R, Kirschen DS, Pandžić H, Watson JP, Silva-Monroy
CA. Ensuring profitability of energy storage. IEEE Trans Power Syst Jan.
2017;32(1):611–23.

[29] Johnson JX, De Kleine R, Keoleian GA. Assessment of energy storage for trans-
mission-constrained wind. Appl Energy Apr. 2014;124:377–88.

[30] Wogrin S, Galbally D, Reneses J. Optimizing storage operations in medium- and
long-term power system models. IEEE Trans Power Syst Sept. 2015;31(4):3129–38.

[31] Muche T. Optimal operation and forecasting policy for pump storage plants in day-
ahead markets. Appl Energy Jan. 2014;113:1089–99.

[32] Wogrin S, Gayme DF. Optimizing storage siting, sizing, and technology portfolios in
transmission-constrained networks. IEEE Trans Power Syst Nov.
2015;30(6):3304–13.

[33] O’Dwyer C, Flynn D. Using energy storage to manage high net load variability at
sub-hourly time-scales. IEEE Trans Power Syst July 2015;30(4):2139–48.

[34] Varkani AK, Daraeepour A, Monsef H. A new self-scheduling strategy for integrated
operation of wind and pumped-storage power plants in power markets. Appl Energy
Dec. 2011;88(12):5002–12.

[35] Pandžić H, Kuzle I, Capuder T. Virtual power plant mid-term dispatch optimization.
Appl Energy Jan. 2013;101(1):134–41.

[36] Dicorato M, Forte G, Pisani M, Trovato M. Planning and operating combined wind-
storage system in electricity market. IEEE Trans Power Syst April
2012;3(2):209–17.

[37] Akhavan-Hejazi H, Mohsenian-Rad H. Optimal operation of independent storage
systems in energy and reserve markets with high wind penetration. IEEE Trans
Smart Grid March 2014;5(2):1088–97.

[38] Berrada A, Loudiyi K, Zorkani I. Valuation of energy storage in energy and reg-
ulation markets. Energy Nov 2016;115:1109–18.

[39] Cho J, Kleit AN. Energy storage systems in energy and ancillary markets: a back-
wards induction approach. Appl Energy June 2015;147:176–83.

[40] McConnell D, Forcey T, Sandiford M. Estimating the value of electricity storage in
an energy-only wholesale market. Appl Energy Dec. 2015;159:422–32.

[41] Zafirakis D, Chalvatzis KJ, Baiocchi G, Daskalakis G. The value of arbitrage for
energy storage: evidence from European electricity markets. Appl Energy Dec.
2016;184:971–86.

[42] Yu N, Foggo B. Stochastic valuation of energy storage in wholesale power markets.
Energy Econ May 2017;64:177–85.

[43] Mohsenian-Rad H. Coordinated price-maker operation of large energy storage units
in nodal energy markets. IEEE Trans Power Syst Jan. 2016;31(1):786–97.

[44] Nasrolahpour E, Kazempour J, Zareipour H, Rosehart WD. Impacts of ramping in-
flexibility of conventional generators on strategic operation of energy storage fa-
cilities. IEEE Trans Smart Grid 2016(99). pp. 1–1.

[45] Yujian Ye, Papadaskalopoulos D, Strbac G. An MPEC approach for analysing the
impact of energy storage in imperfect electricity markets. In: 2016 13th
International Conference on the European Energy Market (EEM), Porto; 2016.
p. 1–5.

[46] Zou P, Chen Q, Xia Q, He G, Kang C, Conejo AJ. Pool equilibria including strategic
storage. Appl Energy May 2016;177:260–70.

[47] Shahmohammadi A, Sioshansi R, Conejo AJ, Afsharnia S. Market equilibria and
interactions between strategic generation, wind, and storage. Appl Energy
2018;220:876–92.

[48] Sioshansi R. When energy storage reduces social welfare. Energy Econ Jan
2014;41:106–16.

[49] Schill W-P, Kemfert C. Modeling strategic electricity storage: the case of pumped
hydro storage in Germany. Energy J 2011;32(3):59–87.

[50] Ruiz C, Conejo AJ, Bertsimas DJ. Revealing rival marginal offer prices via inverse
optimization. IEEE Trans Power Syst Aug. 2013;28(3):3056–64.

[51] Gabriel SA, Conejo AJ, Fuller JD, Hobbs BF, Ruiz C. Complementarity modeling in
energy markets. Springer; 2013.

[52] Fortuny-Amat J, McCarl B. A representation and economic interpretation of a two
level programming problem. J Oper Res Soc Sept. 1981;32(9):783–92.

[53] Su Che-Lin. Equilibrium problems with equilibrium constraints: stationarities, al-
gorithms, and applications [Ph.D. thesis]. Stanford University; 2005 Available
at:https://web.stanford.edu/group/SOL/dissertations/clsu-thesis.pdf.

[54] Pandžić H, Dvorkin Y, Qiu T, Wang Y, Kirschen D. Unit Commitment under
Uncertainty GAMS Models, Library of the Renewable Energy Analysis Lab (REAL),
University of Washington, Seattle, USA. [Online]. Available at:www.ee.washington.
edu/research/real/gamscode.html.

[55] Gröwe-Kuska N, Heitsch H, Roömisch W, Scenario reduction and scenario tree
construction for power management problems. In: Proc. IEEE Bologna Power
Technol. Conf., Bologna, Italy; 2003.

[56] Sarker MR, Pandžić H, Sun K, Ortega-Vazquez MA. Optimal operation of aggregated
electric vehicle charging stations coupled with energy storage. IET Gener Transm
Distrib 2018;12(5):1127–36.

[57] Bertrand J. Theorie mathematique de la richesse sociale. J des Savants
1883;67:499–508.

[58] Dutta PK. Strategies and games: theory and practice. Massachusetts Institute of
Technology; 1999.

[59] Pandžić H, Kuzle I. Energy storage operation in the day-ahead electricity market. In:
Proceedings of the 12th International Conference on the European Energy Market
(EEM), Lisbon, Portugal; 2015. p. 1–6.

K. Pandžić et al. 413

413

–Electrical Power and Energy Systems 104 (2019) 401



Publications

Article 2 - Optimal Battery Storage Participation in European

Energy and Reserves Markets
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Abstract: Battery energy storage is becoming an important asset in modern power systems.
Considering the market prices and battery storage characteristics, reserve provision is a tempting
play fields for such assets. This paper aims at filling the gap by developing a mathematically rigorous
model and applying it to the existing and future electricity market design in Europe. The paper
presents a bilevel model for optimal battery storage participation in day-ahead energy market as a
price taker, and reserve capacity and activation market as a price maker. It uses an accurate battery
charging model to reliably represent the behavior of real-life lithium-ion battery storage. The proposed
bilevel model is converted into a mixed-integer linear program by using the Karush–Kuhn–Tucker
optimality conditions. The case study uses real-life data on reserve capacity and activation costs and
quantities in German markets. The reserves activation quantities and activation prices are modeled
by a set of credible scenarios in the lower-level problem. Finally, a sensitivity analysis is conducted to
comprehend to what extent do battery storage bidding prices affect its overall profit.

Keywords: battery storage; day-ahead market; reserve market; optimal scheduling

1. Introduction

The European power sector is characterized by an ongoing liberalization and integration of
national markets into one common marketplace. After the successful introduction of national electricity
exchanges, followed by their coupling, the focus switched to the provision of ancillary services.
The frequency reserves, as fairly location-independent services, were first in line to be governed
by the market laws. Most of the European systems already have well-organized reserve markets,
but their harmonization, which is the foundation for the integrated European reserve markets, is yet
to be initiated. Reserve markets will use the same cross-border interconnection capacities as the
energy market, and therefore these two markets must be co-optimized. The most recent European
Union energy package incorporates detailed rules on how the reserve markets are to be organized,
co-optimized and coupled, forming a cornerstone for all future reserve market research [1].

The reserve markets, depending on the type of reserve and different countries’ regulations,
are organized as either single-stage capacity-only markets or two-stage capacity and activation markets.
The former type includes only capacity auction where the reserve providers’ bids consist of capacity
volume (in MW) and price (e /MW). Using a merit order list (MOL), the the transmission system
operator (TSO) accepts the cheapest bids until the required capacity is reached. A reserve provider
must take into account the potential activated energy cost within its capacity bid as it is usually not
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separately remunerated (it could also be remunerated based on a regulated price). Such capacity is
activated based on uniform price or some other rule. Usually, the frequency containment reserve
(FCR) and sometimes automatic frequency restoration reserve (aFRR) are modeled this way. The latter
type, along with the capacity procurement, includes the activated energy auction as well. A reserve
provider’s bid consist of energy volume (in MWh) and price (in e /MW). Using the MOL, energy offers
are activated when needed. Such pricing activates the cheapest units first and therefore yields lower
overall cost. Usually, manual restoration and replacement reserves and often automatic restoration
reserves are modeled this way.

Both stages can be modeled in either a pay-as-bid or marginal pricing manner. In the current
German secondary reserve market, both the capacity and the activated energy are priced as
pay-as-bid [2,3]. However, the PICASSO project published a report with a conclusion that the pricing
of aFRR activated energy in a future European-wide aFRR activation platform will be guided by the
marginal pricing rule [4], which is adopted in this paper as well.

The capacity of the installed battery storage worldwide was around 10 GWh in 2017 [5].
In Germany alone, as one of the leaders in battery installations, in 2018 the capacity of home storage
systems was around 930 MWh and large storage systems around 550 MWh [5]. The capacity of
industrial storage systems is hard to estimate due to a lack of information. It is estimated that by the
end of 2030 the battery capacity would rise to 181–421 GWh worldwide [5]. Most of the large storage
systems operate in FCR markets. The FCR markets, in developed countries such as Germany and UK,
are coming close to saturation, but new revenue streams are unlocking such as grid deferral and aFRR
markets [6].

Coupling of national reserve markets and their co-optimization with energy markets creates new
possibilities for battery storage as they could sell their services cross-border and position themselves in
multiple markets. The battery storage as a fully flexible resource must be able to simultaneously bid in
both the energy and reserve markets and must maintain its state-of-energy (SOE) within the allowed,
i.e., feasible, range. Energy markets include a large number of different units, both capacity- and
technology-wise, and its size is considerably larger then one battery storage. For example, the French
power system had the minimum demand of 30.4 GW in 2018 during the summer and the peak demand
of 96.6 GW during the winter [7]. Battery storage impact on such large market is negligible and
therefore it can be seen as a price taker. However, reserve markets are smaller in size. For example,
the German aFRR market has total demand of above 2 GW, while German FCR market is somewhat
higher than 0.5 GW [8]. The battery storage trading on those markets should be modeled as price
maker as its behavior could affect the prices.

In this paper, a novel battery storage scheduling algorithm for joint participation on energy and
reserve market is designed and validated on a realistic test case. The battery storage acts as a price
taker in the day-ahead energy market and as a price maker in the reserves market. Such algorithms are
deemed to be the backbone for future battery scheduling in the large coupled and co-optimized energy
and reserve markets in Europe. The focus of the paper is on aFRR markets as they are becoming a new
source of revenue for the battery storage systems. However, the developed algorithm can easily be
adjusted for other types of reserves.

2. Literature Review and Contributions

Depending on its capacity with respect to the total system load, energy storage can be considered
too small to affect market prices, i.e., price taker, or to have a sufficient capacity to alter the market
outcomes, thus becoming a price maker. Some early studies model the energy storage as a price taker,
which means the prices in the models are known upfront [9,10].

Arbitrage alone might not be sufficient to justify the investment cost of energy storage. The authors
in [11] prove that large-scale energy storage will dampen the price difference between on- and off-peak
hours when performing arbitrage. It hereby reduces the profit it can make in the energy market,
suggesting that energy storage should be used for ancillary services as well.
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In [12], the authors model a profit-seeking price-taker energy storage that participates in energy
and reserve day-ahead market and energy hour-ahead market. Stochastic unit commitment is
used to derive scenarios for the cost of power and reserve in the hour-ahead market, as well
as the actual reserve activation quantities. The uncertain parameters arise from the wind power
plant output uncertainty. An optimal energy storage bidding model considering day-ahead energy,
spinning reserve and regulation markets is presented in [13]. The price-taker energy storage considers
uncertainties of predicted market prices and energy deployment in spinning reserve and regulation
markets. The optimal bidding schedule is secured against realization of uncertainties using robust
optimization framework.

Optimal bidding strategies are studied for battery energy storage systems in the reserve market
with battery aging constraints in [14,15]. On the other hand, [16] combines power from unpredictable
wind and photovoltaic sources with energy storage in the day-ahead electricity market using a
stochastic two-stage programming environment, where the first stage is the day-ahead market,
while the second stage simulates the balancing market using multiple scenario sets with historical data.
An interested reader may find a comprehensive overview of operating models of energy storage is
available in [17].

The Alberta Electric System Operator (AESO) compared sequential clearing of the energy and
reserve market with their co-optimization and concluded that co-optimization was more cost-efficient
then sequential clearing [18]. Authors in [19] propose a model that co-optimizes energy and reserve
market for a combined cycle plant using a mixed-integer linear program (MILP). Paper [20] proposes a
nonlinear model for co-optimization of energy and reserves in competitive electricity markets including
nonlinear constraints such as power flow losses, unreliability and generation repair time. The authors
in [21] clarify two approaches used in the literature to formulate the reserve requirements. The first one
is by pre-defining the necessary reserve requirements using ad-hoc rules, such as the 3 + 5% rule [22],
and setting the reserve requirements as parameters in the optimization problem. The second approach
incorporates the power balance and transmission constraints both at the day-ahead and the balancing
stage. These approaches are studied and evaluated in the MISO (Midwestern Independent System
Operator) system in [23]. Another model that proposes an optimal dispatch of the energy and reserve
capacity, but considering uncertain demand, is presented in [24]. The effects of co-optimized and
individual clearing of the energy and reserve markets are investigated.

Despite a large body of literature focused on either theoretical or US-market based participation of
energy storage, there are very few papers that replicate the operation of European markets and integrate
them in a rigorous and scientific framework. One of the pivotal papers in modeling battery storage
providing primary frequency response in the European setting is [25]. The presented optimization
problem and the case study is focused and based on data for the German market. German energy and
reserves market was also targeted in [26], where the pay-as-bid feature as well as longer time steps for
providing reserve (4–12 h) was adopted. German aFRR market was the main topic in papers [27,28].
The former paper tackles the aFRR activation duration and price forecasting while the latter one deals
with the bidding process in the German energy and aFRR reserve markets. The model in the paper [28]
creates bids for storage to participate in the aFRR market based on price and activation forecasts
meaning that it does not observe energy storage as a price forming factor but as a price taker.

With respect to the examined literature, this paper aims at filling the gap by combining a
mathematically rigorous mathematical model with application to the existing and future electricity
markets currently designed in Europe. Contribution of the paper is threefold. First, we develop a
bilevel model for optimal battery storage participation in day-ahead energy market as a price taker,
and reserve capacity and activation market as a price maker. Conceptually, this paper is an alternative
to the approach of price maker algorithms for the German aFRR presented in [27,28]. As opposed
to the majority of the literature that uses a generic energy storage model, we use an accurate battery
charging model to reliably represent the behavior of actual battery storage. The proposed bilevel model
is converted into a mixed-integer linear program by using the Karush–Kuhn–Tucker (KKT) optimality
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conditions. Second, we use real-life data on reserve capacity and activation costs and quantities to
bring relevant conclusions. The reserves activation quantities and, consequently, the activation price is
modeled by a set of credible scenarios. Thirdly, we provide a sensitivity analysis to comprehend to
what extent do battery storage bidding prices affect its overall profit.

In the following chapter we first define the indices, parameters and variables used in the model
and then present the model itself. The KKT optimality conditions and linearization technique are
also presented. In Section 4 we present a case study based on the German market. This section also
includes a sensitivity analysis for different sets of battery storage bidding prices. Finally, the relevant
conclusions are drawn in the final section.

3. Mathematical Formulation

3.1. Nomenclature

Sets:

I Set of generation units, indexed by i.
J Set of battery charging curve linear parts, indexed by j.
S Set of reserve activation scenarios, indexed by s.
T Set of time periods, indexed by t.

Parameters:

Ca↓
i Generator i down reserve activation price (e /MWh).

Ca↑
i Generator i up reserve activation price (e /MWh).

Cb,a↓ Battery storage down reserve activation price (e /MWh).
Cb,a↑ Battery storage up reserve activation price (e /MWh).

Cb,cap↓ Battery storage down reserve capacity price (e /MW).
Cb,cap↑ Battery storage up reserve capacity price (e /MW).

Ccap↓
i Generator i down reserve capacity price (e /MW).

Ccap↑
i Generator i up reserve capacity price (e /MW).
G↓

t,i Generator i maximum down reserve capacity (MW).
G↑

t,i Generator i maximum up reserve capacity (MW).
Fj Maximum amount of energy that can be charged at specific state-of-energy breakpoint Rj

as
a portion of SOE.

P Battery storage maximum charging and discharging power (MW).
Rj Capacity of each state-of-energy segment j as a portion of the maximum state-of-energy

SOE.
Rcap↓

t Required down reserve capacity (MW).
Rcap↑

t Required up reserve capacity (MW).
Ra↓

t,s Activated down reserve energy (MWh).
Ra↑

t,s Activated up reserve energy (MWh).
ηch Battery storage charging efficiency.
ηdis Battery storage discharging efficiency.
λda

t Day-ahead market price (e /MW).

Variables:

ga↑
t,i,s Generator i activated down energy (MWh).

ga↓
t,i,s Generator i activated up energy (MWh).

gcap↓
t,i Generator i down capacity reserved quantity (MW).

gcap↑
t,i Generator i up capacity reserved quantity (MW).

q↓t Battery storage down reserve capacity bid (MW).
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q↑t Battery storage up reserve capacity bid (MW).
qa↓

t,s Battery storage activated down reserve quantity in scenario s (MWh).
qa↑

t,s Battery storage activated up reserve quantity in scenario s (MWh).
qcap↓

t Battery storage down reserved capacity (MW).
qcap↑

t Battery storage up reserved capacity (MW).
qch

t Battery storage charging quantity (MW).
qdis

t Battery storage discharging quantity (MW).
soet,s Battery storage state-of-energy (MWh).

λa↓
t,s Down reserve activation clearing price in scenario s (e /MWh).

λa↑
t,s Up reserve activation clearing price in scenario s (e /MWh).

λ
cap↓
t Down reserve capacity clearing price (e /MW).

λ
cap↑
t Up reserve capacity clearing price (e /MW).

3.2. Initial Problem Formulation

The proposed battery storage optimal bidding problem is formulated as follows:

Maximize
ΞUL

∑
t∈T

[
λda

t (qdis
t − qch

t ) +
(

λ
cap↑
t · qcap↑

t + λ
cap↓
t · qcap↓

t

)
+
(

λa↑
t,s · qa↑

t,s + λa↓
t,s · qa↓

t,s

)]
(1)

subject to:

0 ≤ qch
t ≤ ∆soet

∆t · ηch , ∀t (2)

0 ≤ qdis
t ≤ P · ηdis, ∀t (3)

qch
t − qdis

t + q↓t ≤ ∆soet,s

∆t · ηch , ∀t, s (4)

− qch
t + qdis

t + q↑t ≤ P · ηdis, ∀t (5)

soet,s = soet−1,s + ∆t · qch
t · ηch + qa↓

t,s · ηch − ∆t · qdis
t /ηdis − qa↑

t,s/ηdis, ∀t, s (6)

0 ≤ soet,s − ∆t · q↑t , ∀t, s (7)

soet,s + ∆t · q↓t ≤ SOE, ∀t, s (8)

soet,s =
J−1

∑
j=1

soet,j,s, ∀t (9)

0 ≤ soet,j,s ≤ (Rj+1 − Rj) · SOE, ∀t, j, s (10)

∆soet,s = F1 · SOE +
J−1

∑
j=1

Fj+1 − Fj

Rj+1 − Rj
· soet−1,j,s, ∀t, s (11)

where ΞUL = {qch
t , qdis

t , qcap↑
t , qcap↓

t , qa↓
t,s , qa↑

t,s , soet,s, soet,j,s, ∆soet,s}.
Battery storage in objective function (1) draws benefits from three streams. The first part is the

day-ahead market, where it performs energy arbitrage as a price taker. The battery storage can be either
discharged, qdis

t , or charged, qch
t , at the day-ahead market price λda

t . The second part is the capacity
reservation market. Since this market is much smaller than the day-ahead market, battery storage is
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modeled as a price maker, i.e., the up and down capacity reservation prices λ
cap↑
t and λ

cap↓
t are dual

variables whose values are decided in the lower-level problem considering the battery’s bids. The final
part of the objective function (1) displays the benefits of both the up and down reserve activation qa↑

t,s

and qa↓
t,s at prices λa↑

t,s and λa↓
t,s , respectively.

Constraints (2) and (3) limit the day-ahead charging and discharging power. The fact that
the battery charging ability reduces with high state-of-energy values is considered by limiting the
battery charging power in (2) by the maximum amount of energy the battery can charge in a single
time-step, ∆soet,s, divided by the length of the time-step to convert energy to power. On the other
hand, the discharging battery ability in (3) is constant regardless of the state-of-energy. Constraints
(4) and (5) impose charging and discharging limits to down and up reserve bids so the charging and
discharging battery capacity is not exceeded. Down reserve in (4) can be provided by increasing the
charging power from the day-ahead stage (in this case qch

t is positive and qdis
t is zero) or by reducing

or fully stopping the discharging power from the day-ahead stage and possibly starting to charge
instead (in this case qch

t is zero and qdis
t is positive). Similarly, up reserve in (5) can be provided

by reducing the day-ahead charging power and/or increasing the day-ahead discharging power.
Equation (6) calculates the state-of-energy per each reserve activation scenario. Since qch

t and qdis
t are

power quantities, they are multiplied by an appropriate time step duration ∆t. Since the day-ahead
market is on an hourly basis, qch

t and qdis
t are multiplied by 1. The reserve activation quantities qa↓

t,s

and qa↑
t,s are energy quantities, the same as the state-of-energy soet,s. Constraints (7) and (8) provide

the lower and upper bounds on the battery state-of-energy considering the reserve activations per
scenario and the bid reserve quantities. This ensures that regardless of the reserve activation scenarios
the state-of-energy will remain within the given bounds. Constraints (9)–(11) calculate the amount
of energy the battery can charge in a time-step, ∆soet,s. To describe the nonlinear battery charging
curve, a piecewise approximation given in Figure 1 is used. This curve shows the amount of energy a
lithium-ion battery can withdraw from the grid depending on its current state-of-energy. The given
picewise linear approximation divides the state-of-energy in multiple segments, soet,j,s, constituting
the actual battery state-of-energy soet,s. These segments are used in (11) to calculate the amount of
energy the battery can charge in time period t. Further details on this procedure are available in [29].

b1 b2

b3

R1 R2 R3 R4

F4

F3

F1

Δsoe

soe

y1 y2 y3 y4

F2

Figure 1. Piecewise linear approximation of an soe–∆soe function.

The battery scheduling problem (1) is subject to the following lower-level problem (corresponding
dual variables related to each constraint are listed after a colon):

Minimize
ΞLL

∑
t∈T

[
∑
i∈I

Ccap↑
i · gcap↑

t,i + Cb,cap↑ · qcap↑
t + ∑

i∈I
Ccap↓

i · gcap↓
t,i + Cb,cap↓ · qcap↓

t

]
+

∑
t∈T

∑
s∈S

πs ·
[

∑
i∈I

Ca↑
i · ga↑

t,i,s + Cb,a↑ · qa↑
t,s + ∑

i∈I
Ca↓

i · ga↓
t,i,s + Cb,a↓ · qa↓

t,s

]
(12)
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subject to:

∑
i∈I

gcap↑
t,i + qcap↑

t ≥ Rcap↑
t , ∀t : λ

cap↑
t (13)

∑
i∈I

gcap↓
t,i + qcap↓

t ≥ Rcap↓
t , ∀t : λ

cap↓
t (14)

− ∑
i∈I

ga↑
t,i,s − qa↑

t,s + Ra↑
t,s = 0, ∀t, s : λa↑

t,s (15)

− ∑
i∈I

ga↓
t,i,s − qa↓

t,s + Ra↓
t,s = 0, ∀t, s : λa↓

t,s (16)

gcap↑
t,i ≤ G↑

t,i, ∀t, i : ψ↑
t,i (17)

gcap↓
t,i ≤ G↓

t,i, ∀t, i : ψ↓
t,i (18)

ga↑
t,i,s ≤ gcap↑

t,i · ∆t, ∀t, i, s : κ↑t,i,s (19)

ga↓
t,i,s ≤ gcap↓

t,i · ∆t, ∀t, i, s : κ↓t,i,s (20)

qcap↑
t ≤ q↑t , ∀t : ζ↑t (21)

qcap↓
t ≤ q↓t , ∀t : ζ↓t (22)

qa↑
t,s ≤ qcap↑

t · ∆t, ∀t, s : ν↑t,s (23)

qa↓
t,s ≤ qcap↓

t · ∆t, ∀t, s : ν↓t,s (24)

ga↑
t,i,s, ga↓

t,i,s ≥ 0, ∀t, i, s : α↑t,i,s, α↓t,i,s (25)

qa↑
t,s , qa↓

t,s ≥ 0, ∀t, s : β↑
t,s, β↓

t,s (26)

gcap↑
t,i , gcap↓

t,i ≥ 0, ∀t, i : γ↑
t,i, γ↓

t,i (27)

qcap↑
t , qcap↓

t ≥ 0, ∀t : δ↑t , δ↓t (28)

where ΞLL = {gcap↑
t,i , gcap↓

t,i , ga↑
t,i,s, ga↓

t,i,s, qcap↑
t , qcap↓

t , qa↑
t,s , qa↓

t,s}.
The lower-level problem objective function (12) is the maximization of the social welfare,

which includes minimizing the cost of both generators’ and the battery’s up and down capacity
reservation as well as its activation per scenario. Constraints (13) and (14) impose the up and down
required reserve capacity volumes, while equations (15) and (16) decide on the contribution of each
asset (generators and the battery storage) to up and down reserve activation per scenario. Up and
down generators’ cleared reserve capacities are restricted by their offered capacities in (17) and (18),
while the generators’ activated quantities are limited by their reserved capacities in (19) and (20).
The same is achieved for the battery with constraints (21)–(24). Finally, nonnegativity of the lower-level
variables is imposed in (25)–(28). The dual variables listed after a colon in constraints (13)–(28) indicate
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if those constraints are binding or not. Dual variables of constraints (13)–(16) take values of marginal
cost for up capacity reservation, down capacity reservation, up capacity activation and down capacity
activation, respectively, and are used in the upper-level problem to determine the profitability of the
battery storage operation. The remaining dual variables defined for constraints (17)–(28) indicate how
much this constraint worsen the objective function. If the value of a dual variable is zero, this constraint
does not affect the objective function value, i.e., it is not binding.

Problem (1)–(2) is a bilevel problem and cannot be solved directly. Thus, the lower-level problem
needs to be replaced by its equivalent constraints. We use Karush–Kuhn–Tucker optimality conditions
to convert the initial bilevel problem into a mixed-integer linear program (MILP). An interested reader
may find details on this mathematical technique in [30].

3.3. KKT Conditions of the Lower-Level Problem

The dual objective function:

Maximize − ∑
t∈T

q↑t · ζ↑t − ∑
t∈T

q↓t · ζ↓t + ∑
t∈T

Rcap↑
t · λ

cap↑
t + ∑

t∈T
Rcap↓

t · λ
cap↓
t

+ ∑
t∈T

∑
s∈S

Ra↑
t,s · λa↑

t,s + ∑
t∈T

∑
s∈S

Ra↓
t,s · λa↓

t,s − ∑
t∈T

∑
i∈I

G↑
t,i · ψ↑

t,i − ∑
t∈T

∑
i∈I

G↓
t,i · ψ↓

t,i (29)

Dual constraints and stationarity conditions:

− ∑
s∈S

κ↑t,i,s + Ccap↑
i − λ

cap↑
t − γ↑

t,i + ψ↑
t,i = 0, ∀t, i (30)

− ∑
s∈S

κ↓t,i,s + Ccap↓
i − λ

cap↓
t − γ↓

t,i + ψ↓
t,i = 0, ∀t, i (31)

πs · Ca↑
i − λa↑

t,s − α↑t,i,s + κ↑t,i,s = 0, ∀t, i, s (32)

πs · Ca↓
i − λa↓

t,s − α↓t,i,s + κ↓t,i,s = 0, ∀t, i, s (33)

− ∑
s∈S

ν↑t,s − δ↑t + ζ↑t − λ
cap↑
t + Cb,cap↑ = 0, ∀t (34)

− ∑
s∈S

ν↓t,s − δ↓t + ζ↓t − λ
cap↓
t + Cb,cap↓ = 0, ∀t (35)

− β↑
t,s − λa↑

t,s + ν↑t,s + πs · Cb,a↑ = 0, ∀t, s (36)

− β↓
t,s − λa↓

t,s + ν↓t,s + πs · Cb,a↓ = 0, ∀t, s (37)

Complementarity slackness:

(− ∑
i∈I

gcap↑
t,i − qcap↑

t + Rcap↑
t ) ⊥ λ

cap↑
t , ∀t (38)

(− ∑
i∈I

gcap↓
t,i − qcap↓

t + Rcap↓
t ) ⊥ λ

cap↓
t , ∀t (39)

(gcap↑
t,i − G↑

t,i) ⊥ ψ↑
t,i, ∀t, i (40)

(gcap↓
t,i − G↓

t,i) ⊥ ψ↓
t,i, ∀t, i (41)
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(−gcap↑
t,i · ∆t + ga↑

t,i,s) ⊥ κ↑t,i,s, ∀t, i, s (42)

(−gcap↓
t,i · ∆t + ga↓

t,i,s) ⊥ κ↓t,i,s, ∀t, i, s (43)

(qcap↑
t − q↑t ) ⊥ ζ↑t , ∀t (44)

(qcap↓
t − q↓t ) ⊥ ζ↓t , ∀t (45)

(−qcap↑
t · ∆t + qa↑

t,s) ⊥ ν↑t,s, ∀t, s (46)

(−qcap↓
t · ∆t + qa↓

t,s) ⊥ ν↓t,s, ∀t, s (47)

− ga↑
t,i,s ⊥ α↑t,i,s, ∀t, i, s (48)

− ga↓
t,i,s ⊥ α↓t,i,s, ∀t, i, s (49)

− qa↑
t,s ⊥ β↑

t,s, ∀t, s (50)

− qa↓
t,s ⊥ β↓

t,s, ∀t, s (51)

− gcap↑
t,i ⊥ γ↑

t,i, ∀t, i (52)

− gcap↓
t,i ⊥ γ↓

t,i, ∀t, i (53)

− qcap↑
t ⊥ δ↑t , ∀t (54)

− qcap↓
t ⊥ δ↓t , ∀t (55)

where all dual variables are nonnegative, but λa↑
t,s and λa↓

t,s , which are unrestricted.
The equivalent mixed-integer nonlinear program is (1), (30)–(55). The nonlinearity comes from

multiplications of the upper-level variables (cleared battery-related quantities) and lower-level dual
variables representing up and down reserve capacity reservation and activation. These are linearized
using some of the KKT conditions and the strong duality equation as follows. First, the term λ

cap↑
t · qcap↑

t
is rewritten using KKT condition (34):

λ
cap↑
t · qcap↑

t = − ∑
s∈S

ν↑t,s · qcap↑
t − δ↑t · qcap↑

t + ζ↑t · qcap↑
t + Cb,cap↑ · qcap↑

t (56)

Considering (46) and (54), equation (56) is equal to:

λ
cap↑
t · qcap↑

t = − ∑
s∈S

ν↑t,s · qa↑
t,s + ζ↑t · qcap↑

t + Cb,cap↑ · qcap↑
t (57)

In a similar way, using (35), (47) and (55), we obtain the following equivalence:
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λ
cap↓
t · qcap↓

t = − ∑
s∈S

ν↓t,s · qa↓
t,s + ζ↓t · qcap↓

t + Cb,cap↓ · qcap↓
t (58)

The term related to up reserve activation can be rewritten using (36):

λa↑
t,s · qa↑

t,s = −β↑
t,s · qa↑

t,s + ν↑t,s · qa↑
t,s + πs · Cb,a↑ · qa↑

t,s (59)

where β↑
t,s · qa↑

t,s = 0 follows directly from (50). In a similar fashion, using (37) and (51) we obtain:

λa↓
t,s · qa↓

t,s = ν↓t,s · qa↓
t,s + πs · Cb,a↓ · qa↓

t,s (60)

Finally, combining the obtained equalities (57)–(60) with the strong duality equality (The strong
duality theorem states that, under certain conditions which are satisfied for linear optimization
problems such as the one at hand, optimal solutions to the primal and the associated dual problem
yield the same objective value [30].) (12) = (29), we obtain the following linear objective function of the
upper-level problem:

Maximize
ΞUL

∑
t∈T

[
λda

t (qdis
t − qch

t )+

(
Cb,cap↑ · qcap↑

t + Cb,cap↓ · qcap↓
t

)
+ ∑

s∈S

(
πs · Cb,a↑ · qa↑

t,s + πs · Cb,a↓ · qa↓
t,s

)
−

(
∑
i∈I

Ccap↑
i · gcap↑

t,i + Cb,cap↑ · qcap↑
t + ∑

i∈I
Ccap↓

i · gcap↓
t,i + Cb,cap↓ · qcap↓

t

)
−

∑
s∈S

πs ·
(

∑
i∈I

Ca↑
i · ga↑

t,i,s + Cb,a↑ · qa↑
t,s + ∑

i∈I
Ca↓

i · ga↓
t,i,s + Cb,a↓ · qa↓

t,s

)
+

(
Rcap↑

t · λ
cap↑
t + Rcap↓

t · λ
cap↓
t +

∑
s∈S

Ra↑
t,s · λa↑

t,s + ∑
s∈S

Ra↓
t,s · λa↓

t,s − ∑
i∈I

G↑
t,i · ψ↑

t,i − ∑
i∈I

G↓
t,i · ψ↓

t,i

)]
(61)

The final MILP formulation is (61) subject to constraints (2)–(11), (13)–(28), (30)–(55), where the
orthogonal constraints (38)–(55) are easily linearized using the big M method.

4. Case Study

4.1. Input Data

The proposed model is tested on real data streaming from 1 May 2020. The day-ahead
market prices, shown in Table 1 were taken from the German electricity exchange—EPEX, while the
capacity and energy bids were gathered from an online German platform for balancing reserves
auctions—Regelleistung.net. The former dataset is a series of 24 day-ahead prices, while the latter
dataset for automatic frequency restoration reserve (for up and down reserve separately) consists
of six 4-h periods, each of them including the following: total aFRR up/down volume and series of
volume–price pairs (capacity price–capacity volume–energy price). The first stage in the auction is
arranging the capacity price–capacity volume pairs in an ascending order by price, where all bids up to
the total required volume (shown in Table 2) are accepted. Energy prices are used in the second stage
in real-time when the TSO activates the accepted reserve providers. It arranges energy price–capacity
volume pairs in an ascending order by price and all the bids up to total required energy are activated.
For each 4-hour period there are up to several hundred bids and many of them are identical both
in terms of capacity and energy prices. To ease the computational efforts, we clustered similar ones
and obtained between 30 and 90 total bids per timestep. Figure 2 shows the up reserve bids of the
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generators in the system. All the generators bid up a capacity reservation at zero e /MW (flat blue
line), while the up reservation activation bids range from 36 to 2550 e /MWh (orange curve shows the
activation bids sorted in ascending order). Figure 3 shows the down reserve bids of the generators
in the system. As opposed to the up reserve, the down reserve capacity price is zero only for app.
500 e /MW, while the price of reservation of the remaining down reserve volume increases up to
8.6 e /MW (monotonically increasing blue curve). The corresponding activation prices are indicated
with the orange curve. To minimize the operating cost (12), the system operator will activate the
cheapest down reserve, i.e., the lowest values of the orange curve.

The data used to test and validate our model is taken from the German auction (www.regelleistung.net)
and power system websites (www.smard.de) to accurately define one arbitrary chosen day. For the
bids, real data for this specific day accounted for, on average, 283 and 333 bids over all bidding periods
for the up and down reserve, respectively. In total in one day, there were 3697 bids for both up and
down reserve during all bidding periods. A large number of those bids had the same values for both
capacity and energy price or had the same number for one of those features and very similar for the
other. To relieve the computational burden, but preserve the same level of accuracy, we aggregated
those similar bids (in both features) and obtained on average 64 and 72 bids over all biding periods
for the up and down reserve, respectively. This is in total 818 bids in one day for both up and down
reserve during all bidding periods. This is still a very high number of bids even though the number of
modeled bids was decreased by 88%. However, the accuracy of the case study remained untouched.
When it comes to scenarios of activated aFRR, we used 10 scenarios as it is a sufficient number to
validate the stochastic nature of the activation. Further increase in the number of scenarios would
reduce computational efficiency for very low gains in the captured uncertainty.

Table 1. Day-ahead market prices (λda
t ) on 1 May 2020.

Hour Price Hour Price Hour Price Hour Price
(e /MWh) (e /MWh) (e /MWh) (e /MWh)

1 5.5 7 2.54 13 0.35 19 18.99
2 5.35 8 1.50 14 −2.04 20 23.50
3 3.82 9 −1.57 15 −2.06 21 28.43
4 2.63 10 −2.43 16 −0.04 22 26.88
5 1.56 11 −2.89 17 1.95 23 20.91
6 2.46 12 −2.47 18 7.88 24 16.00

Table 2. Required up (Rcap↑
t ) and down (Rcap↓

t ) reserve per 4-hour periods on 1 May 2020.

Hours 1–4 Hours 5–8 Hours 9–12 Hours 13–16 Hours 17–20 Hours 21–24

Up reserve (MW) 2359 2334 2355 2344 2357 2360
Down reserve (MW) 2247 2295 2338 2354 2316 2303
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Figure 2. Up capacity reservation (λcap↑
t ) and activation (λa↑

t,s) bids.
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Figure 3. Down capacity reservation (λcap↓
t ) and activation (λa↓

t,s) bids.

Energy prices are used in the second stage in real-time when the TSO activates the accepted
reserve providers. It arranges energy price–capacity volume pairs in an ascending order by price and
all the bids up to total required energy are activated.

A strategic battery storage (energy capacity 50 MWh; power capacity 50 MW; charging efficiency 1;
discharging efficiency 0.82) is then added to the mentioned merit order lists. The system operator in the
second stage of the reserve allocation process takes the energy bids, arranges them by price (ascending for
up reserve, and descending for down reserve) and activates them one by one until satisfying the balancing
energy request at a specific moment. The request for the total activated energy is modeled as an uncertain
parameter through scenarios. In the case study, we used the quarter-hour activated aFRR balancing energies
taken from the German electricity data transparency platform www.smard.de. The quarter-hours were
summarized to an hourly resolution to match the hourly resolution of our model. Note that the same data
was also used in papers [27,28]. The data for ten days streaming form May 1 to 10 May 2020 were taken
as ten scenarios in our case study. The up and down reserve activation data are shown in Figures 4 and 5.
To elaborate, each historical day (with all its hourly values) is shown as one scenario with a probability of
10%. The figures indicate a quite low activated volume, rarely surpassing 400 MWh, as compared to the
reserved quantities from Table 2. Those scenarios affect our model results twofold: through the amount of
activated reserve and through the price cleared for the activated reserve. In the case of batteries, the amount
of activated reserve is relevant for securing a feasible state-of-energy evolution through time. It means that
the state-of-energy boundaries will be satisfied regardless of which scenarios are actually realized. The price
of activated reserves affects the profitability of reserve provision. The price maker models can be created in
a way that their forecasted price is dependent on the activation scenarios as well, but they can not take into
account the effect of the battery on the aFRR activated energy price formation.
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Figure 5. Down reserve activation per scenario (Ra↓
t,s).

In the results of the case study, presented in the following subsection, we first analyze the results
of the battery storage placing all four of its bids, i.e., up reserve capacity, down reserve capacity,
up reserve activation and down reserve activation, at zero price. Note that, due to the marginal pricing,
the battery storage will receive the marginal price that can only be better or equal to the one it bid price.
After this analysis, we provide a sensitivity analysis with different values that the battery storage bids
for the up reserve capacity, down reserve capacity, up reserve activation and down reserve activation.

4.2. Results

The maximum profit battery storage can achieve using the given input data is e 22,171.61.
While the revenue from providing down reserve capacity is quite high, e 6724.47, the revenue from
providing up reserve capacity is much lower, e 21.03. On the other hand, the activation revenues are
similar, e 8506.66 for up reserve and e 7291.02 for down reserve. The revenue in the day-ahead market
is negative e 371.57, as the battery storage primarily uses it to charge the energy later used for reserve
activation. Figure 6 shows the battery storage day-ahead schedule along with the cleared up and down
reserve capacities. Positive values represent the battery charging process, while negative ones the
battery discharging process. In the day-ahead market, the battery storage generally charges during
the night hours. It occasionally discharges (during hours 6, 8, 9, 12–15 and 19), but never over 18 MW.
Provision of up reserve capacity (when activated, the battery discharges), never breaks 18 MW neither.
It is significantly lower in volume than the down reserve capacity provision, which reaches 28 MW in
hour 15. In some hours, e.g., 15, the system operator reserved both up and down reserve capacity from
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the battery. The activated amounts will differ based on the reserve activation scenario. For a more
detailed explanation of the energy storage reserve activation please consult section 2.2 in [31].
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Figure 6. Battery charging day-ahead schedule (qch
t − qdis

t ) and up/down cleared reserve capacity qdis
t

and qch
t .

Figure 7 shows the propagation of the battery storage state-of-energy throughout the day for each
scenario. Although the day-ahead schedule is the same, the activation direction (up or down) and
the amount of activated reserve differs. For instance, in the 15-th hour, the battery storage reserves
both up (3 MW) and down (28 MW) capacity. In scenario 3 we have 28 MW activated in the down
direction and 1 MW in the up direction, while scenario 7 does not activate any up reserve, but activates
28 MW of down reserve. Since the modeled reserve is aFRR (15-minutes duration), a scenario can
have activated both up and down reserve in the same hour (detailed visualization is available in
Figures 8 and 9). In all scenarios, the battery storage is quite depleted in hour 15 and charges at
20.6 MW in the day-ahead market in hour 16. In the same hour, five out of ten scenarios provide
5.5 MW of down reserve (compare to Figure 6), enabling the battery storage to further charge in those
scenarios (this is seen in Figure 7 as the ensemble of five scenarios with higher values of state-of-energy
in hour 16). On the other hand, in the remaining five scenarios the battery activates 13.3 MW of up
reserve, which reduces the charging effect from the day-ahead market, and consequently the battery
receives less overall charge in those scenarios (this is seen in Figure 7 as the ensemble of five scenarios
with lower values of state-of-energy in hour 16). Figure 7 is also useful to illustrate that the ending
state-of-energy is highly dependent on the reserve activation scenario and ranges from 6 MWh for
scenario 3 to 41.3 MWh for scenario 8.
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Figure 7. Propagation of the battery storage state-of-energy (soet,s) per scenario.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s1 0.4 16 10 17 1 0 2 0 1 0 7 0 0.9 4 3 13 9.2 2 6 4.4 1 0 6.7 6

s2 0 10 10 0 2 0 2 0 1 8.1 1 0 0.9 4 3 13 9.2 2 6 4.4 1 3 1 6

s3 0.4 16 10 17 5 0 2 0 1 1 7 0 0.9 0 1 2 9.2 2 6 4.4 1 3 6.7 6

s4 0.4 16 10 7 0 0 2 0 1 8.1 7 0 0.9 4 3 13 9.2 2 6 3 1 3 6.7 6

s5 0.4 8 10 17 5 0 2 0 1 8.1 7 0 0.9 4 3 1 2 2 6 4.4 1 3 2 6

s6 0.4 16 10 17 5 0 2 0 1 8.1 7 0 0.9 4 3 7 2 2 6 4.4 1 3 6.7 6

s7 0.4 13 10 12 5 0 2 0 1 8.1 7 0 0.9 4 0 3 4 2 6 4.4 1 3 6.7 6

s8 0.4 16 10 17 5 0 2 0 1 1 7 0 0.9 4 3 5 9.2 2 6 2 1 3 6.7 6

s9 0.4 16 10 17 5 0 0 0 0 2 0 0 0.9 4 3 13 3 2 6 4.4 1 3 6.7 6

s10 0.4 16 10 2 4 0 2 0 1 8.1 7 0 0 0 3 13 9.2 2 6 2 1 3 6.7 6
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Figure 8. Activation of the battery storage up reserve (qa↑
t,s) per scenario.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s1 1 0 0 0 0 18 0 0 16 11 2 0 9.9 9 0 0 0 0 11 1 0 6.5 9.8 0

s2 1 0 0 0 0 5 0 0 0 11 2 5.7 9.9 11 0 0 0 0 11 0 0 0 9.8 1.8

s3 1 0 0 0 0 13 0 0 0 11 0 0 9.9 11 28 5.5 0 0 0 0 0 0 0 0

s4 1 0 0 0 0 18 0 2.4 0 11 0 0 4 11 16 0 0 0 11 7 0 6.5 1 1.8

s5 1 0 0 0 0 18 0 2.4 0.1 0 0 0 9.9 11 28 5.5 0 0 11 0 0 0 9.8 1.8

s6 1 0 0 0 0 5 0 2.4 16 11 2 5.7 9.9 11 28 5.5 0 0 11 7 0 0 9.8 1.8

s7 1 0 0 0 0 0 0 2.4 16 0 2 5.7 2 11 28 5.5 0 0 11 7 0 0 3 1.8

s8 1 0 0 0 0 18 0 2.4 16 11 2 5.7 9.9 11 4 5.5 0 0 11 7 0 6.5 9.8 1.8

s9 1 0 0 ‐0 0 18 0 2.4 16 11 2 5.7 2 1 0 3 0 0 11 7 0 0 9.8 1.8

s10 1 0 0 0 0 18 0 0 0 10 2 5.7 9.9 11 9 1 0 0 0 7 0 6.5 0 1.8
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Figure 9. Activation of the battery storage down reserve (qa↓
t,s) per scenario.

Activation of the energy storage up and down reserves per scenario are visualized and listed in
Figures 8 and 9. The numbers in the tables beneath these figures should be read column-by-column.
In the first hour, the up reserve is fully activated (0.4 MW) in 9 out of 10 scenarios (Figure 8) and only
in scenario s2 the battery up reserve remains inactive. The most noticeable property of the battery
storage up reserve provision is having the activated capacity equal to the reserved capacity in the
majority of scenarios. The lowest number of scenarios with fully activated up reserve occurs in hour 16,
when only five scenarios experience full activation. Similar properties are observed for down reserve
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activation shown in Figure 9, where the lowest number of scenarios with fully activated reserve takes
place in hour 15 with four full activations.

Generally, such uniform behavior of the battery storage reserve activation increases its utilization,
i.e., the revenue of reserve activation, and harmonizes the state-of-energy across all scenarios. Since
the last term in objective function (1) considers the weighed activation revenue, if the actual up reserve
activation price in a certain hour of a scenario with 10% probability is e 50/MWh, the value of the dual
variable λa↑

t,s would be e 5/MWh. This is a direct consequence of scenario probability πs multiplying
the activation costs in lower-level objective function (12).

To provide a better insight into the role of the battery storage in the overall reserve activation
process, Tables 3 and 4 provide ratios of the reserve activation provided by the battery storage and
the overall activated reserve for up and down direction. In the first hour, scenarios significantly vary
in terms of the activated up reserve (Table 3). For scenario 1 the battery storage provides only 0.1%
out of the activated 400 MWh. The same volume of battery’s up activation in scenario 5 consists of
20% of the overall up reserve (0.4/2 MWh). In the second hour, the battery provides up to 16 MWh
of the up reserve. In scenarios 2, 5, 6 and 7 this is sufficient to cover the entire required up reserve
volume. When it comes to down reserve, the battery does not provide any portion in hours 2–5 (Table
4). In hour 9, it does not provide any reserve in scenarios that require low volumes, but it becomes
active once the volumes increase (scenarios 1 and 6–9). This is because the down reserve activation
prices of certain generators are negative (see the orange curve in Figure 3) and those are prioritized in
the activation phase over the battery storage whose activation price is zero.

Table 3. Volume of up reserve activation provided by the battery per scenario as a portion of the overall
activated reserve (rounded to an integer unless close to zero), in MWh.

Hour s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

1 0.4/400 0/0 0.4/327 0.4/8 0.4/2 0.4/17 0.4/38 0.4/116 0.4/79 0.4/10
2 16/377 10/10 16/341 16/21 8/8 16/16 13/13 16/70 16/69 16/177
3 10/170 10/10 10/156 10/32 10/23 10/38 10/34 10/28 10/129 10/107
4 17/67 0/0 17/32 7/7 17/68 17/53 12/12 17/74 17/62 2/2
5 1/1 2/2 5/7 0/0 5/11 5/17 5/223 5/5 5/15 4/4
6 0/0 0/3 0/34 0/39 0/4 0/5 0/72 0/0 0/2 0/9
7 2/5 2/13 2/80 2/28 2/52 2/48 2/182 2/2 0/0 2/5
8 0/4 0/47 0/44 0/17 0/48 0/33 0/35 0/0 0/0 0/213
9 1/2 1/17 1/6 1/279 1/138 1/33 1/9 1/1 0/0 1/489

10 0/0 8/20 1/1 8/50 8/54 8/16 8/118 1/1 2/2 8/102
11 7/7 1/1 7/31 7/57 7/263 7/7 7/25 7/13 0/0 7/8
12 0/554 0/2 0/841 0/63 0/108 0/7 0/10 0/0 0/4 0/1
13 1/123 1/23 1/74 1/57 1/58 1/5 1/89 1/17 1/104 1/0
14 4/336 4/192 0/0 4/110 4/22 4/4 4/17 4/125 4/124 0/0
15 3/349 3/484 1/1 3/69 3/148 3/3 0/0 3/15 3/116 3/753
16 13/260 13/86 2/2 13/219 1/1 7/7 3/3 5/5 13/76 13/1119
17 9/477 9/375 9/157 9/50 2/2 2/2 4/4 9/27 3/3 9/37
18 2/97 2/115 2/263 2/27 2/14 2/2 2/89 2/42 2/10 2/165
19 6/20 6/67 6/163 6/6 6/52 6/6 6/139 6/27 6/13 6/74
20 4/98 4/69 4/125 3/3 4/226 4/129 4/103 2/2 4/5 2/2
21 1/157 1/30 1/84 1/20 1/23 1/70 1/93 1/1 1/142 1/5
22 0/0 3/76 3/131 3/15 3/62 3/205 3/508 3/17 3/128 3/3
23 7/12 1/1 7/27 7/43 2/2 7/30 7/68 7/10 7/40 7/158
24 6/74 6/16 6/190 6/8 6/10 6/6 6/23 6/29 6/17 6/148



Energies 2020, 13, 6629 17 of 22

Table 4. Volume of down reserve activation provided by the battery per scenario as a portion of the
overall activated reserve (rounded to an integer unless close to zero), in MWh.

Hour s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

1 1/8 1/209 1/6 1/250 1/430 1/37 1/88 1/57 1/10 1/57
2 0/5 0/132 0/4 0/118 0/72 0/43 0/23 0/15 0/10 0/8
3 0/4 0/28 0/5 0/32 0/65 0/20 0/31 0/12 0/6 0/8
4 0/15 0/166 0/5 0/68 0/20 0/27 0/16 0/6 0/12 0/77
5 0/201 0/48 0/9 0/200 0/18 0/49 0/6 0/56 0/81 0/12
6 18/72 5/40 13/48 18/55 18/69 5/40 0/15 18/407 18/247 18/64
7 0/7 0/100 0/4 0/84 0/21 0/66 0/26 0/373 0/214 0/24
8 0/8 0/4 0/14 2/63 2/65 2/112 2/105 2/516 2/477 0/5
9 16/380 0/29 0/27 0/20 0/32 16/173 16/183 16/403 16/181 0/4

10 11/163 11/57 11/71 11/42 0/15 11/444 0/14 11/648 11/237 10/41
11 2/38 2/148 0/12 0/27 0/4 2/455 2/33 2/369 2/333 2/384
12 0/5 6/84 0/4 0/24 0/5 6/108 6/58 6/827 6/65 6/504
13 10/30 10/119 10/28 4/9 10/89 10/54 2/7 10/169 2/7 10/651
14 9/14 11/20 11/246 11/49 11/179 11/387 11/253 11/70 1/6 11/392
15 0/1 0/2 28/60 16/21 28/180 28/198 28/603 4/9 0/5 9/14
16 0/2 0/4 6/74 0/5 6/559 6/99 6/271 6/32 3/8 1/6
17 0/0 0/2 0/36 0/8 0/165 0/394 0/127 0/119 0/134 0/62
18 0/5 0/8 0/6 0/11 0/186 0/292 0/290 0/231 0/284 0/30
19 11/83 11/32 0/14 11/133 11/127 11/546 11/32 11/104 11/113 0/11
20 1/21 0/9 0/5 7/231 0/19 7/121 7/92 7/293 7/85 7/234
21 0/30 0/12 0/5 0/124 0/9 0/16 0/3 0/165 0/6 0/48
22 7/498 0/40 0/16 7/103 0/36 0/45 0/8 7/159 0/18 7/155
23 10/167 10/274 0/27 1/47 10/341 10/89 3/49 10/223 10/118 0/7
24 0/23 2/125 0/15 2/151 2/145 2/141 2/173 2/163 2/155 2/53

To better understand battery storage actions, the prices in different markets are shown in Figure 10.
As shown in Table 1, the day-ahead prices are rather low throughout the day, taking the highest values
in hours 19–24. The up capacity prices are zero (or slightly positive) throughout the day, which reflects
the very low day-ahead market prices. The down capacity prices are much higher, reaching e 93/MW
in the afternoon hours. The up and down activation prices in Figure 10 are averaged over all scenarios.
They are much higher than the day-ahead prices. Despite extremely low up reserve capacity prices,
the activation prices are much higher. The peak price e 235/MWh is achieved for up reserve activation
in hour 16, which is the main reason for the battery storage reserving 13.3 MW of its up capacity and
activating it fully in five out of ten scenarios.
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Figure 10. Prices in the day-ahead market (λda
t ), up (λcap↑

t ) and down (λcap↓
t ) capacity reservation
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t,s) activated capacity prices.



Energies 2020, 13, 6629 18 of 22

4.3. Sensitivity Analysis

This section analyzes the effects of the battery storage bidding prices on its overall profit using
the same data as the simulations in the previous section. The sensitivity includes variations in the four
bidding parameters related to the reserves market: (i) up capacity reservation price (e /MW), (ii) down
capacity reservation price (e /MW), (iii) up capacity activation price (e /MWh), iv) down capacity
activation price (e /MWh). The results presented in Table 5 indicate that, regardless of the bidding
prices, the battery storage utilizes the day-ahead market to charge (thus the day-ahead revenue is
always negative), while the profit is made in the capacity reservation and activation stage. The only
exception is the bidding strategy (10,10,50,−15), which has a high day-ahead positive revenue. This is
the result of very frequent down capacity activation (the revenue is e 12,416), which, besides that
revenue itself, benefits the battery storage by charging it. This energy is discharged in the evening
hours with the highest day-ahead prices to bring additional revenue in the day-ahead market.

Up reserve capacity revenue is generally very low, which is a direct consequence of the very low
(mostly zero) up capacity reservation prices (see orange curve in Figure 10). However, the up capacity
activation prices are high, especially during hour 16, and in most cases this stream of revenue is the
highest. Down capacity reservation revenue is usually slightly higher than the activation revenue
thanks to the high down capacity reservation prices during the afternoon hours (see the gray curve in
Figure 10). The only exception are the last two cases.

Table 5. Effect of the bidding parameters on the battery storage profit (in e ); the four numbers in
the top cells indicate (i) up capacity reservation price (e /MW), (ii) down capacity reservation price
(e /MW), (iii) up capacity activation price (e /MWh), iv) down capacity activation price (e /MWh).

Day-Ahead Up Capacity Up Capacity Down Capacity Down Capacity Overall
Revenue Res. Revenue Act. Revenue Res. Revenue Act. Revenue Revenue

(0,0,0,0) −372 21 8507 6724 7291 22,172
(1,1,0,0) −368 22 8835 6511 7163 22,162

(1,1,25,0) −354 21 8684 6804 7274 22,429
(1,1,25,15) −366 21 8316 5568 5630 19,168
(5,5,0,0) −360 22 8588 6703 7205 22,158

(5,5,25,0) −327 21 8066 7162 7515 22,438
(5,5,25,15) −360 22 8096 5713 5698 19,169
(5,5,50,0) −7 5 5386 5605 6352 17,342

(10,10,50,−15) 1033 7 3585 9172 12,416 26,212

The highest daily profit is achieved for bidding at e 10/MW for both up and down capacity
reservation, e 50/MWh for up reserve activation and −e 15/MW for down reserve activation.
These bidding prices enable the battery storage to both affect the clearing prices (mostly by increasing
them in its favor) and to win the auction in the majority of hours and scenarios. On the other hand,
(5,5,50,0) bidding scheme results in the lowest overall profit, mostly because the high up reserve
activation price e 50/MWh reduced the up capacity activation revenue. However, the down activation
bid at e 0/MWh is insufficiently low for the battery storage to provide enough down reserve activation
revenue to cancel out the negative monetary effects of the high up activation bid. On the other hand,
the case with the highest profit (10,10,50,−15) provides sufficiently low down capacity activation bid
for the battery storage to be cleared for activation more frequently and results in the highest down
reserve activation revenue e 12,416. This bidding strategy also results in the highest down capacity
reservation revenue.

4.4. Comparison to a Baseline Model

To demonstrate the effectiveness and practical importance of the proposed model, we compare
it against a baseline model where the battery storage acts as a price taker in all the markets and
disregards its impact on the reserve capacity and activation prices. The baseline model includes only
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the upper-level problem (1) with capacity reservation and activation prices (λcap↑
t , λ

cap↓
t , λa↑

t,s , λa↓
t,s)

treated as parameters. The obtained schedule is included in the market-clearing lower-level problem
to obtain the actual profitability of the baseline model. The baseline model assessment procedure is
described in the following steps:

1. First we solve only the lower-level problem (2) without battery storage bids, i.e., setting q↑t and q↓t
to zero. This is needed to obtain the capacity reservation and activation prices λ

cap↑
t , λ

cap↓
t , λa↑

t,s

and λa↓
t,s .

2. Then we solve the upper-level problem (1) using the capacity reservation and activation prices
λ

cap↑
t , λ

cap↓
t , λa↑

t,s and λa↓
t,s from the previous step. Note that the capacity reservation and activation

prices are treated as parameters as opposed to being treated as variables in the proposed
formulation. The outcome is the battery storage day-ahead and reserves bids.

3. Finally, we solve the lower-level problem (2) again, but this time with battery storage bids q↑t
and q↓t from the previous step. This calculation provides actual reserve capacity and activation
prices (note that these may differ from those obtained in step 1) as well as cleared battery storage
quantities and profit.

After running Step 2 using the reserve capacity and activation prices from Step 1, the obtained
battery storage profit is e 57,518, which is more than two and a half times higher than e 22,172 obtained
using the proposed model. The obtained battery operation schedule for the baseline model is shown
in Figure 11. The battery storage very rarely charges in the day-ahead market, the majority in hour 16.
The battery charges primarily through the provision of down-regulation capacity.
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Figure 11. Battery charging day-ahead schedule (qch
t − qdis

t ) and up/down cleared reserve capacity qdis
t

and qch
t for the baseline case.

The obtained battery storage bidding schedule is then applied to the lower-level problem to
calculate the reserve capacity and activation quantities actually accepted in the market and to deliver
the true profit as the actual profit is expected to decrease if the battery storage’s bids had an effect
on the reserve capacity and activation prices. The obtained actual profit of the battery storage is only
e 8856, which is almost three times lower than e 22,172 obtained using the proposed model. Although
all battery storage bids were accepted in the market, the obtained baseline battery scheduling process
failed to capture the interaction between the battery storage bids and the market-clearing prices.
The result is a much lower profit than when using the proposed model, thus proving the effectiveness
of the formulation presented in this paper.

5. Conclusions

The paper presented a model for the optimal bidding strategy of battery storage acting in the
day-ahead market as a price taker and in the aFRR market as a price maker. The model accurately
captures the essence of the electricity market structure in Europe, which is in the process of shifting
toward an hourly marginal-price reserve structure. Although the battery storage from the case study
is relatively small in size as compared to the overall reserves market volume (50 MW as opposed
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to over 2.3 GW), the battery storage can significantly affect aFRR reserve market since the activated
energy is usually quite low. The bidding prices of the battery storage may have an adverse effect on its
profit. Thus, the bidding prices and quantities need to be carefully chosen so the battery storage affects
the market prices in a desirable way, but still stays in the money, i.e., gets cleared to provide reserve
capacity and, when necessary, becomes activated.

1 May 2020, the day used in the case study, is characterized by a rather low reserve capacity
prices. Despite that, the battery storage profit is significant and bidding in the reserves market is much
more profitable than bidding only in the energy market. Since most of the days in the year 2020 have
higher reserve capacity prices, these results can be considered conservative, i.e., the lower bound on
the profits to be achieved in German markets.

The presented model and results should be useful to project developers and battery storage
market participants as the battery storage costs are still quite high and accurately seizing all potential
revenue streams is essential for the profitability of such investment.
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Managing Risks Faced by Strategic Battery Storage
in Joint Energy-Reserve Markets

K. Pandžić, K. Bruninx, Member, IEEE, H. Pandžić, Senior Member, IEEE

Abstract—Securing profits from energy, reserve capacity and
balancing markets is critical to ensure the profitability of battery
energy systems (BES). However, the intimate connection between
offers on these trading floors combined with the limited energy
storage capacity of BES renders its scheduling very complex.
In this paper, we develop a bilevel optimization problem for
strategic participation of a BES in the day-ahead energy-reserve
and balancing markets, improving the state-of-the-art by (i)
considering the conditional-value-at-risk; (ii) ensuring the real-
time feasibility of the obtained day-ahead schedule; (iii) ad-
dressing the operational underperformance risk stemming from
inaccurate battery modeling. In a case study, we illustrate how
the proposed model allows risk-averse BES owners to hedge their
day-ahead position without jeopardizing their expected profit,
while ensuring the feasibility of their day-ahead schedule.

Index Terms—Battery Energy Storage, MPEC, Joint Energy-
Reserve Market, Balancing Market, Conditional-Value-at-Risk

NOMENCLATURE

A. Sets and Indices

H Set of BES units, indexed by h.
I Set of generating units, indexed by i.
J Set of breakpoints of the linearized battery charging

curve, indexed by j.
L Set of lines, indexed by l.
P Set of wind scenarios, indexed by p.
S Set of buses, indexed by s, while s(h) is a bus where

BES h is located.
T Set of time steps, indexed by t.
W Set of wind farms, indexed by w.
Λ Set of dual variables related to equalities.
Ξ[·] Decision variable set, where [·] stands for upper-level

(UL) or lower-level (LL). Ξ = ΞUL ∪ ΞLL

B. Parameters

Bl Susceptance of line l (S).
CD

s Demand bid at bus s (e/MWh).
CG

i Generation cost of unit i (e/MWh).
CG↑

i , CG↓
i Upward (↑) or downward (↓) reserve capacity

offer of generating unit i (e/MW).
CBG↑

i , CBG↓
i Upward (↑) or downward (↓) balancing offer of

generating unit i (e/MWh).

K. Pandžić is with the Croatian TSO (HOPS), K. Bruninx is with the
KU Leuven, and H. Pandžić is with the University of Zagreb Faculty of
Electrical Engineering and Computing. The research leading to these results
has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 863876 in the context of the
FLEXGRID project. The contents of this document are the sole responsibility
of authors and can under no circumstances be regarded as reflecting the
position of the European Union.

CS↑
h , CS↓

h Upward (↑) or downward (↓) reserve capacity
offer of BES h (e/MW).

CBS↑
h , CBS↓

h Upward (↑) or downward (↓) balancing offer of
BES h (e/MWh).

Ds,t Demand at time step t at bus s (MW).
Fl Capacity of line l (MW).
Fj Maximum BES charging power over segment j

ranging from 0 to 1.
Gi Capacity of generating unit i (MW).
Pw
p,w,t Available wind output of wind farm w in scenario

p (MWh).
Pw
p,w,t Maximum wind output of wind farm w over all

scenarios (MWh).
Qdis

h,t Maximum discharging power of BES h (MW).
Rj Size of BES state-of-energy segment j, ranging

from 0 to 1.
SOEh Capacity of BES h (MWh).
V lol
s Value of lost load at bus s (e/MWh).
α Weighting factor between expected profit and

CVAR.
β Auxiliary variable, value-at-risk (e).
ε Interval spanned by the CVAR.
ηchh Charging efficiency of BES h.
ηdish Discharging efficiency of BES h.
Πp Probability of scenario p.

C. Primal variables & select dual variables

1) Positive variables:
chh,t Charging offer of BES h at time step t (MWh).
dish,t Discharging bid of BES h at time step t (MWh).
ds,t Scheduled demand at bus s at time step t (MWh).
dshedp,s,t Involuntarily load shed at bus s in scenario p at

time step t (MWh).
gi,t Scheduled output of generating unit i at time step

t (MWh).
pws
w,t Power sold by wind farm w at time step t (MWh).
pcurtp,w,t Wind curtailment of wind farm w at time step t

in scenario p (MWh).
qchh,t Charging energy of BES h at time step t (MWh).
qdish,t Discharging energy of BES h at time step t

(MWh).
rreq↑t , rreq↓t Total upward (↑) or downward (↓) reserve require-

ment (MW).
rg↑i,t , r

g↓
i,t Scheduled upward (↑) or downward (↓) reserve

capacity of generating unit i at time step t (MW).
rbg↑p,i,t, r

bg↓
p,i,t Dispatched upward (↑) or downward (↓) reserve

of generating unit i at time step t in scenario p
(MWh).
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rs↑h,t,r
s↓
h,t Upward (↑) or downward (↓) reserve capacity

offer of BES h at time step t (MW).
rs↑h,t, r

s↓
h,t Scheduled upward (↑) or downward (↓) reserve

capacity of BES h at time step t (MW).
rbs↑p,h,t, r

bs↓
p,h,t Dispatched upward (↑) or downward (↓) reserve

of BES h time step t in scenario p (MWh).
soeh,t State-of-energy of BES h at time step t (MWh).
soeh,t,j State-of-energy of segment j of BES h at time

step t (MWh).
∆soeh,t Maximum charging power of BES h at time step

t (MW).
2) Free variables:

λs,t Day-ahead LMP at bus s and time period t
(e/MWh).

λbp,s,t Real-time balancing prices in scenario p at bus s
at time step t (e/MWh).

λR↑
t , λR↓

t Upward (↑) or downward (↓) reserve capacity
price (e/MW).

fl,t Power flow of line l at time step t (MWh).
fbp,l,t Real power flow in scenario p on line l at time

step t (MWh).
fdevp,l,t Deviation between scheduled and real power flow

in scenario p on line l at time step t (MWh).
θ Voltage angles of bus s at time step t (rad).
θbp,s,t Voltage angles of bus s in scenario p at time step

t (rad).

I. INTRODUCTION

ENERGY storage systems (ESS) may enable cost-efficient
and reliable operation of power systems with high

shares of electricity generated from renewable energy sources.
Amongst other factors, decreasing investment costs, local in-
centives and increasing opportunities in energy, reserve capac-
ity and balancing markets may trigger an accelerated uptake
of distributed and bulk ESS from a modest 9GW/17GWh
deployed as of 2018 to 1,095GW/2,850GWh by 2040 [1].
This massive ESS deployment will mostly be ordinated by
the cost-reduction of lithium-ion batteries, which are in the
focus in this paper.

In light of the storage evolution, researchers have exten-
sively studied the profit-maximization problem faced by ESS
owners. Although a price-taking perspective offers valuable
insights, e.g. [2], [3], in recent years most researchers resort
to bilevel optimization to study the strategic participation of
large-scale ESS in the day-ahead wholesale electricity market.
For example, Wang et al. [4] analyze a network-constrained
market-clearing mechanism with ESS participation under per-
fect and imperfect competition. They reveal that a modest level
of local transmission congestion and imperfect competition
both increase the ESS profits. Pandžić et al. [5] quantify
the value of coordination of multiple ESS units scattered
throughout the network and emphasize the importance of
increasing the look-ahead horizon to two days in order to
precharge and/or preserve the stored energy from the previous
day, thus gaining higher overall profit.

Introduction of uncertainty in strategic bilevel models is
deemed to reduce computational tractability. Already a price-
taking stochastic bidding model of an energy storage com-

bined with a wind power plant called for a heuristic solution
technique in [6], where a neural network was used to fit the
uncertain functions, while a genetic algorithm was employed
to find the optimal bidding solution. A stochastic bilevel
model, where a load-serving entity owns an energy storage
and acts in the day-ahead market, is modeled in [7]. The
uncertainty related to the net load, i.e. the actual load minus
the realization of wind generation, is modeled through a set
of credible scenarios. Participation of a battery energy storage
in European-style day-ahead energy and reserve markets is
presented in [8]. The presented model is bilevel, as the
battery storage acts strategically in the balancing market. The
uncertainty is presented through a set of reserve activation
scenarios. The battery storage is considered as a price taker in
the day-ahead energy market and the network constraints are
ignored, which is legitimate for European power exchanges.

In this paper, we develop a novel model to study the partici-
pation of risk-averse, merchant BES in joint day-ahead energy-
reserve capacity and balancing markets. We draw inspiration
from three streams of literature.

The first stream of literature deals with the strategic par-
ticipation of energy storage in energy, reserve capacity and
balancing markets. This requires explicitly considering the
intrinsic link between the offers in the day-ahead energy
market, capacity offered in the day-ahead reserve capacity
market and the impact of the real-time dispatch of this capacity
in the balancing market. Indeed, if not properly accounted
for, the real-time activation of ESS-based reserves may lead
to violations of the ESS’ state-of-energy constraints. Whereas
Nasrolahpour et al. [9] account for the expected, average im-
pact of reserve activation on the state-of-energy, Schillemans
et al. [10] ensure that the worst-case real-time state-of-energy
respects the capacity limits of the ESS. In this paper, we will
follow the last approach. Note that one could alternatively
enforce state-of-energy constraints per balancing scenario.
However, capturing all possible real-time reserve activation
combinations to ensure the feasibility of reserve activation
would require a large scenario set and render the problem
intractable [9]. Therefore, we opt for conservative, robust
worst-case reserve activation constraints. The conservatism of
such constraints may be reduced by enforcing probabilistic
guarantees on the availability of the scheduled reserve capacity
via chance constrained programming [11], which is out-of-
scope of the current paper.

Second, although the risk-averse behavior of generating
companies has been shown to significantly affect their operat-
ing and investment decisions [12], few authors have considered
risk-averse behavior of a BES participating in energy and/or
ancillary service markets. A price-taker model for the day-
ahead bidding strategy of an energy storage coupled with a
wind farm is presented in [13]. The uncertainty on the market
prices and the local wind power output is tackled using the
robust optimization. However, the only consideration of a
strategic risk-averse energy storage that captures the effect the
storage has on market prices was presented in [14], where the
authors solve an optimal energy storage management problem
under risk consideration that captures the market prices impact
through transactions costs. In our paper, we represent the
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price-maker assumption of BES through a bilevel modeling
framework.

Lastly, as we are interested in BES, i.e. lithium-ion-based
energy storage, we challenge a common misconception of
modeling a BES using only a generic energy storage mixed-
integer linear model, e.g. [15]. More refined battery models
have been developed for controlling a behind-the-meter battery
[16], a BES providing secondary reserve [17], [18]. However,
none of the strategic BES models considers any specific
battery characteristic. Dependency of the battery charging
power on its state-of-energy is a distinguished battery feature
that could have serious implications on the real-life feasibility
of the obtained BES operation schedule [19]. Thus, we incor-
porate the accurate battery charging model and analyze the
effects of using the generic constant-power battery charging
model instead.

In summary, this paper contributes to the body of literature
by developing a novel bilevel optimization problem that allows
defining optimal bid strategies for a strategic, price-making
and risk-averse BES owner, considering the impact of its
bid strategies on the price formation in joint energy-reserve-
balancing markets. Contrary to [9], the proposed model (i)
explicitly represents the propagation in price formation from
the balancing market to the day-ahead energy market; (ii)
ensures that the activation of scheduled BES-based reserves
is feasible even if all reserves are consecutively activated in
the upward and/or downward direction by enforcing worst-
case reserve activation constraints, and (iii) does not require a
binary expansion approximation if one considers a risk-neutral
BES owner (see Section II-C). Compared to [10], we employ
a scenario-based representation of the balancing market. This
allows accounting for inter-temporal links between balancing
prices, introduced by the BES, and an accurate representation
of the state-of-energy and value of stored energy in each
balancing market scenario. Furthermore, we consider (i) trans-
mission constraints in our market clearing model, which may
influence the dispatch, reserve procurement and deployment,
hence, providing an opportunity for the BES owner to exercise
market power [4]; (ii) the CVaR, which allows balancing the
expected profits and risk; and (iii) a detailed BES model suited
for lithium-ion batteries in order to accurately capture the
charging capabilities of these systems [19]. None of these
features are considered in [9], [10], but may have a significant
impact on the BES’ profitability.

The presented model may be directly integrated in the day-
to-day decision processes of BES owners or aggregators. In
addition, it sheds light on the relevance of reserve capacity
payments, which is crucial to market operators, policy makers
and regulators. Finally, it demonstrates the importance of using
accurate battery models in the BES scheduling process.

The remainder of this paper continues as follows. Section
II introduces the bilevel optimization problem that describes
the strategic participation of the BES owner in energy, reserve
capacity and balancing markets. Section III contains our case
study, which illustrates the effectiveness of the proposed
model. Computational complexity of the proposed solving
methodology is discussed in Section IV, while our conclusions
are articulated in Section V.

II. MATHEMATICAL MODEL

The bilevel structure of the proposed model is illustrated in
Figure 1. Before we present the formulation of the decision
problem faced by the BES owner (Section II-B) and the
associated solution procedure (Section II-C), we summarize
key assumptions made during model development below.

A. Assumptions

The decision problem of a strategic BES owner is for-
mulated as a bilevel optimization problem. The upper-level
problem determines the bid strategy of the BES owner in
the joint day-ahead energy and reserve capacity market in
the first stage and the balancing market in the second stage,
whereas the lower-level problem describes the clearing and
price formation on those markets.

We assume that BES is the only strategic actor in the system,
as common in the price-maker market participation studies,
who attempts to maximize its profit by bidding price-quantity
pairs in the hourly day-ahead energy-reserve capacity and
balancing markets. The BES owner competes with conven-
tional generation in all markets. In order to analyze strategic
market participation of other market participants, one would
need to derive a mathematical problem with equilibrium con-
straints (MPEC) for each market participant, thus forming an
equilibrium problem with equilibrium constraints (EPEC) and
solve this complex problem. An interested reader is advised
to examine the EPEC model proposed in [5] and the solution
technique for multiple BES owners acting strategically in the
day-ahead energy market presented therein.

The strategic BES knows the bidding strategies of non-
strategic players, i.e. all the generators, which is assumed in
all strategic offering models, e.g. [9]. In reality, these data are
available in some markets, e.g. historical data on participants
offers in the market of Alberta are available at [20]. Even if
they are not available, an inverse optimization procedure can

Lower-level problem (2.1)–(2.29)
Day-ahead and balancing market

clearing
ΞLL = {ds,t, dshedp,s,t, gi,t, r

g↓
i,t, r

g↑
i,t, r

bg↑
p,i,t,

rbg↓p,i,t, q
ch
h,t, q

dis
h,t, r

s↓
h,t, r

s↑
h,t, r

bs↑
p,h,t, r

bs↓
p,h,t,

rreq↑t , rreq↓t , θs,t, θbp,s,t, fl,t, f
b
p,l,t,

fdev
p,l,t, p

ws
w,t, p

curt
p,w,t }

Upper-level problem (1.1)–(1.15)
BES optimal bidding schedule

ΞUL = {chh,t, dish,t, r
s↑
h,t, r

s↓
h,t, soeh,t,

soeh,t,j , ∆soeh,t}

qchh,t, qdish,t, rs↓h,t, rs↑h,t, rbs↑p,h,t, rbs↓p,h,t,

λs,t, λR↑
t , λR↓

t , λb
p,s,t

chh,t, dish,t, rs↑h,t, rs↓h,t

Fig. 1. An illustration of the proposed bilevel program and the interfaces
between the upper- and lower-level problems.
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be employed to derive such data [21]. Naturally, the amount
of historical data and the number of scenarios affect the
quality of the solution. The BES owner endogenously forms a
deterministic anticipation of the day-ahead energy-reserve ca-
pacity market, whereas the uncertainty on the balancing stage
is represented through scenarios. The BES owner is solely
responsible for managing the state-of-energy of its system, i.e.,
to ensure a feasible dispatch in all reserve activation scenarios.

In the lower-level market clearing problem, we maximize
the expected social welfare in the day-ahead energy-reserve
capacity and balancing markets, given the uncertainty on the
available wind power output in real-time. The presented model
can be easily extended to accommodate other sources of
uncertainty, e.g. load uncertainty.

The market-clearing model performs simultaneous energy
and reserve capacity clearing and considers an anticipated
reserve activation. This type of setting is suitable for the
US-style markets, where the Independent System Operator
(ISO) is in charge of both the energy market and the ancillary
services market. Since the day-ahead market is cleared before
the realization of wind output uncertainty, the problem at hand
is structured as a two-stage stochastic problem, where the
first stage represents the actual day-ahead market clearing,
providing the day-ahead energy prices and up and down
reserve capacity prices, while the second stage implements
presumable realizations of the wind power plants output,
providing the balancing energy prices. The market model is
built upon the setting proposed in [22], which is suitable
for power systems with high integration of non-controllable
renewable generation such as wind power. In such setting, the
ISO maximizes the overall social welfare, considering the day-
ahead energy, reserve capacity and reserve activation costs in
a single optimization problem.

The day-ahead energy and balancing markets are nodal,
meaning that the transmission constraints are enforced when
deploying reserves. Given a scenario-based description of the
uncertain wind output, the market model allows endogenously
determining a single day-ahead energy market clearing and the
required reserve capacity. To ensure feasibility, load shedding
is allowed in the balancing stage. The length of a time step is
one hour.

B. Formulation

The upper-level problem is formulated as follows:

Maximize
ΞUL

α ·
∑

p

Πp · φp(Ξ) + (1− α)·CV aRε(Ξ) (1.1)

subject to

φp(Ξ)=
∑

t∈T

∑

h∈H
λs(h),t ·(qdish,t − qchh,t) +

∑

t∈T

∑

h∈H

(
λR↑
t ·rs↑h,t

+λR↓
t · rs↓h,t

)
+
∑

t∈T

∑

h∈H

λbp,s,t
Πp

· (rbs↑p,h,t − rbs↓p,h,t) (1.2)

CV aRε(Ξ) = β − 1

ε
·
∑

p∈P
Πp · µp (1.3)

µp ≥ β − φp(Ξ), ∀p (1.4)

µp ≥ 0, ∀p (1.5)

0 ≤ chh,t ≤
∆soeh,t
ηchh

, ∀h, t (1.6)

0 ≤ dish,t ≤ Qdis
h,t · ηdish , ∀h, t (1.7)

chh,t − dish,t + rs↓h,t ≤
∆soeh,t
ηchh

∀h, t (1.8)

−chh,t + dish,t + rs↑h,t ≤ Qdis
h,t · ηdish ∀h, t (1.9)

soeh,t=soeh,t−1+q
ch
h,t · ηchh −qdish,t/η

dis
h , ∀h, t (1.10)

0 ≤ soeh,t −
t∑

k=1

rs↑h,k/η
dis
h , ∀h, t (1.11)

soeh,t +

t∑

k=1

rs↓h,k · ηchh ≤ SOEh, ∀h, t (1.12)

soeh,t =

J−1∑

j=1

soeh,t,j , ∀h, t (1.13)

0 ≤ soeh,t,j ≤ (Rj+1 −Rj) · SOEh, ∀h, t, j (1.14)

∆soeh,t= F1 ·SOEh +
J−1∑

j=1

Fj+1−Fj

Rj+1−Rj
·soeh,t−1,j , ∀h, t

(1.15)

where ΞUL = {chh,t, dish,t, rs↑h,t, rs↓h,t, soeh,t, soeh,t,j ,
∆soeh,t}.

The upper-level objective function (1.1) is a weighted aver-
age (0 ≤ α ≤ 1) between the expected profit

∑
p∈P Πp ·φp(Ξ)

and the conditional value at risk CV aR(Ξ). The profit in each
scenario p consists of (Eq. (1.2)): (i) the arbitrage profit at the
scheduling stage (pool prices), (ii) the profit from offering the
up and down reserve capacity and (iii) the profit associated
with deploying reserves in real time (balancing prices). The
CVaR is calculated in Eqs. (1.3)–(1.5), with β the lowest profit
that is strictly exceeded with a probability of at most 1− ε.

Constraints (1.6)-(1.7) limit the BES charging and discharg-
ing quantities offered in the market to respective maximum
powers determined by the bidirectional power inverter and
battery technology limitations. Since maximum BES charging
power depends on the battery state-of-energy, it is calculated
based on the maximum energy that can be charged into the
battery, ∆soeh,t, determined via Eq. (1.15) based on the accu-
rate battery charging model presented in [19]. Equations (1.8)–
(1.9) limit the offered up and down reserve quantities with
respect to the day-ahead BES charging/discharging schedule
and maximum BES charging/discharging power. Constraint
(1.8) indicates that down reserve can be provided by stopping
the day-ahead scheduled discharging process and starting to
charge the battery. The opposite reasoning is valid for the up
reserve provision (Eq. (1.9)). Equation (1.10) calculates the
state-of-energy of each BES considering only the day-ahead
cleared quantities. The the state-of-energy deviations incurred
by the activation of BES up and down reserves are taken into
account in Eqs. (1.11)–(1.12). These deviations need to be
such that the minimum and maximum state-of-energy is not
violated. Constraints (1.13)–(1.15) determine the maximum
energy that can be charged into a battery within a single time
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period considering the battery state-of-energy in the previous
time period (see [19] for details).

Variables chh,t, dish,t, r
s↑
h,t, and rs↓h,t are used in the lower-

level problem as the quantities that BES h offers in the day-
ahead market:

Maximize
ΞLL

∑

t∈T

∑

s∈S
CD

s · ds,t +
∑

t∈T

∑

h∈H
(Cch

h · qchh,t

− Cdis
h · qdish,t − CS↑

h · rs↑h,t − CS↓
h · rs↓h,t)

−
∑

t∈T

∑

i∈I
(CG

i · gi,t + CG↑
i · rg↑i,t + CG↓

i · rg↓i,t)

−
∑

p∈P

∑

t∈T

∑

i∈I
Πp · (CBG↑

i · rbg↑p,i,t − CBG↓
i · rbg↓p,i,t)

−
∑

p∈P

∑

t∈T

∑

h∈H
Πp · (CBS↑

h · rbs↑p,h,t − CBS↓
h · rbs↓p,h,t)

−
∑

p∈P

∑

t∈T

∑

s∈S
Πp · V lol

s · dshedp,s,t (2.1)

subject to

−
∑

i∈Is

gi,t +
∑

l∈Ls

fl,t −
∑

w∈Ws

pws
w,t + ds,t

+
∑

h∈Hs

(qchh,t − qdish,t) = 0 ∀s, t;λs,t (2.2)

∑

i∈I
rg↑i,t +

∑

h∈H
rs↑h,t ≥ rreq↑t ∀t;λR↑

t (2.3)

∑

i∈I
rg↓i,t +

∑

h∈H
rs↓h,t ≥ rreq↓t ∀t;λR↓

t (2.4)

−
∑

i∈Is

(rbg↑p,i,t−rbg↓p,i,t)+
∑

l∈Ls

fdevp,l,t−
∑

h∈s

(rbs↑p,h,t−r
bs↓
p,h,t)−dshedp,s,t

+
∑

w∈Ws

(
pws
w,t−(Pw

p,w,t−pcurtp,w,t)
)
=0 ∀p, s, t; λbp,s,t (2.5)

fl,t = Bl ·
∑

l/s

θs,t ∀l, t; αl,t (2.6)

fbp,l,t = Bl ·
∑

l/s

θbp,s,t ∀p, l, t; αb
p,l,t (2.7)

fdevp,l,t = fbp,l,t − fl,t ∀p, l, t; αdev
p,l,t (2.8)

θsref ,t = 0 ∀t; ωt (2.9)

θbsref ,t = 0 ∀p, t; ωb
p,t (2.10)

−Fl ≤ fl,t ≤ Fl ∀l, t; γ+/−
l,t (2.11)

−Fl ≤ fbp,l,t ≤ Fl ∀p, l, t; γb+/b−
p,l,t (2.12)

0 ≤ ds,t ≤ Ds,t ∀s, t; δ+/−
s,t (2.13)

gi,t − rg↓i,t ≥ 0 ∀i, t; ψ−
i,t (2.14)

gi,t + rg↑i,t ≤ Gi ∀i, t; ψ+
i,t (2.15)

0 ≤ rbg↑p,i,t ≤ rg↑i,t ∀p, i, t; ζbg↑+/bg↑−
p,i,t (2.16)

0 ≤ rbg↓p,i,t ≤ rg↓i,t ∀p, i, t; ζbg↓+/bg↓−
p,i,t (2.17)

0 ≤ rbs↑p,h,t ≤ rs↑h,t ∀p, h, t; ζbs↑+/bs↑−
p,h,t (2.18)

0 ≤ rbs↓p,h,t ≤ rs↓h,t ∀p, h, t; ζbs↓+/bs↓−
p,h,t (2.19)

0 ≤ rs↑h,t ≤ rs↑h,t ∀h, t; ρs↑+/s↑−
h,t (2.20)

0 ≤ rs↓h,t ≤ rs↓h,t ∀h, t; ρs↓+/s↓−
h,t (2.21)

0 ≤ qchh,t ≤ chh,t ∀h, t; σc+/c−
h,t (2.22)

0 ≤ qdish,t ≤ dish,t ∀h, t; σd+/d−
h,t (2.23)

0 ≤ dshedp,s,t ≤ ds,t ∀p, s, t; β+/−
p,s,t (2.24)

rreq↑t ≥
∑

w∈Ws

(
pws
w,t − (Pw

p,w,t − pcurtp,w,t)
)

∀p, t; τ↑p,t (2.25)

rreq↓t ≥−
∑

w∈Ws

(
pws
w,t−(Pw

p,w,t−pcurtp,w,t)
)

∀p, t; τ↓p,t (2.26)

0 ≤ pcurtp,w,t ≤ Pw
p,w,t ∀p, w, t; φ+/−

p,w,t (2.27)

0 ≤ pws
w,t ≤ Pw

w,t ∀w, t; µws+/− (2.28)

gi,t, r
g↓
i,t, r

g↑
i,t, r

req↑
t , rreq↓t ≥ 0 ; µg/g↓/g↑/req↑/req↓ (2.29)

where ΞLL = {ds,t, dshedp,s,t, gi,t, r
g↓
i,t , r

g↑
i,t , r

bg↑
p,i,t, r

bg↓
p,i,t, q

ch
h,t,

qdish,t, r
s↓
h,t, r

s↑
h,t, r

bs↑
p,h,t, r

bs↓
p,h,t, r

req↑
t , rreq↓t , θs,t, θbp,s,t, fl,t,

fbp,l,t, f
dev
p,l,t, p

ws
w,t, p

curt
p,w,t }.

The lower-level problem simulates the market clearing pro-
cedure in which the total surplus w.r.t. the cleared quantities of
the market participants is maximized (Eq. (2.1)). The first term
is the summation of the demand-cleared quantities, followed
by the BES day-ahead cleared energy quantities and up and
down reserve capacity provision costs. The third row refers
to generator costs for cleared energy, as well as up and down
reserve capacity provision costs. The fourth and fifth rows
include generator and BES up and down capacity activation at
the balancing stage for expected realizations of wind scenarios.
The last row penalizes load shedding per wind power scenario.

Equation (2.2) is the power balance equation at the day-
ahead clearing stage. The uncertain wind farm output is sched-
uled at pws

w,t. Constraints (2.3)–(2.4) ensure sufficient up and
down reserve capacities. Both can be provided by conventional
generators and/or BES. Equation (2.5) calculates deviation
of the power balance constraint for realization of each wind
scenario. Equations (2.6)–(2.7) calculate the power flows at the
day-ahead and balancing stages, while Eq. (2.8) calculates the
deviation in power flows between the two stages used in Eq.
(2.5). Equations (2.9)–(2.10) set the reference voltage angle to
zero and Constraints (2.11)–(2.12) limit the line power flows
at the day-ahead and balancing stages. Constraint (2.13) sets
limits on the demand at each bus, while Eqs. (2.14)–(2.15)
impose limits on generation output and reserves. Constraints
(2.16)–(2.19) limit the maximum activated reserve over all
scenarios to the scheduled up and down reserved capacity for
generators and BES. Constraints (2.20)–(2.23) limit the cleared
up and down reserve quantities, as well as the day-ahead
energy charging and discharging quantities of strategic BES
to the values determined in the upper-level problem. Since up
reserve can be activated by the means of load shedding, it is
limited by the cleared demand in (2.24).

The required amounts of reserve capacity at each time
period are determined in Eqs. (2.25)–(2.26) and (2.29). The
required amount of up reserve capacity is the maximum of (i)
the difference between the day-ahead scheduled wind output
and the amount of wind output utilized at the balancing
stage (Eq. (2.25)) and (ii) zero (Eq. (2.29)). Similarly, the
required amount of down reserve capacity is determined via
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Eqs. (2.26) and (2.29). Finally, constraint (2.27) is used to
limit wind curtailment, while (2.28) imposes non-negativity
on the remaining variables.

The dual variables associated with the day-ahead power
balance constraint (2.2), the upward reserve requirement (2.3),
the downward reserve requirement (2.4) and the balancing
power balance constraint (2.5) may be interpreted as energy,
up and down reserve capacity and balancing market prices.

C. Solution Strategy

To allow the use of off-the-shelf solvers, we reformulate the
mathematical problem with equilibrium constraints (MPEC)
above as a large-scale mixed-integer linear program (MILP).
To this end, the lower-level problem may be replaced by
its KKT optimality conditions so that the resulting single-
level equivalent problem contains non-linear complementary
slackness conditions, which may be recasted using the big M-
method as a set of inequalities, see, e.g., [5]. The remaining
non-linear terms are found in the right-hand side of Eq. (1.2),
which includes three multiplications of dual and primal vari-
ables. Based on the optimality conditions, the strong duality
theorem and some algebraic operations, one may obtain an
equivalent linear expression for the expected profit (i.e., the
first term in objective (1.1)):

∑

p∈P
Πp · φp(Ξ) =

∑

t∈T

∑

s∈S
CD

s · ds,t

−
∑

t∈T

∑

i∈I
(CG

i · gi,t + CG↑
i · rg↑i,t + CG↓

i · rg↓i,t)

−
∑

p∈P

∑

t∈T

∑

i∈I
Πp · (CBG↑

i · rbg↑p,i,t − CBG↓
i · rbg↓p,i,t)

−
∑

t∈T

∑

l∈L
F l ·γ−l,t−

∑

t∈T

∑

l∈L
Fl ·γ+l,t−

∑

t∈T

∑

p∈P

∑

l∈L
Fl ·γb−p,l,t

−
∑

t∈T

∑

p∈P

∑

l∈L
Fl ·γb+p,l,t−

∑

t∈T

∑

s∈S
Ds,t ·δ+s,t−

∑

t∈T

∑

i∈I
Gi ·ψ+

i,t

+
∑

t∈T

∑

p∈P

∑

w∈W
Pw
p,w,t ·τ↓p,t−

∑

t∈T

∑

p∈P

∑

w∈W
Pw
p,w,t ·τ↑p,t

−
∑

t∈T

∑

p∈P

∑

w∈W
Pw
p,w,t ·φ+p,w,t−

∑

t∈T

∑

p∈P

∑

w∈W
Pw
p,w,t ·λbp,s,t

−
∑

t∈T

∑

w∈W
Pw
w,t · µws

w,t −
∑

p∈P

∑

t∈T

∑

s∈S
Πp · V lol

s · dshedp,s,t (3.1)

Equation (1.2), which defines the profit per scenario, can
be replaced by the following equivalent expression using
optimality conditions and the strong duality theorem:

φp(Ξ) =
∑

p

Πp · φp(Ξ)

−
∑

p∈P

∑

t∈T

∑

h∈H
Πp · (CBS↑

h · rbs↑p,h,t − CBS↓
h · rbs↓p,h,t)

+
∑

t∈T

∑

h∈H
CBS↑

h · rbs↑p,h,t −
∑

t∈T

∑

h∈H
CBS↓

h · rbs↓p,h,t

+
∑

t∈T

∑

h∈H

1

Πp
· ζbs↑+p,h,t · rs↑h,t +

∑

t∈T

∑

h∈H

1

Πp
· ζbs↓+p,h,t · rs↓h,t

−
∑

t∈T

∑

h∈H

∑

p∈P
ζbs↑+p,h,t · rs↑h,t −

∑

t∈T

∑

h∈H

∑

p∈P
ζbs↓+p,h,t · rs↓h,t (3.2)

The first term
∑

p Πp · φp(Ξ) may be replaced by the
linear expression in Eq. (3.1). However, the terms containing
ζbs↑+p,h,t · rs↑h,t and ζbs↓+p,h,t · rs↓h,t remain non-linear. Note that this
non-linearity originates from the bilevel model structure, not
from the CVaR metric. To avoid solving an NP-hard MINLP,
one may opt to employ the binary expansion technique, see [9],
to recast ζbs↑+p,h,t ·r

s↑
h,t and ζbs↓+p,h,t ·r

s↓
h,t as a set of MILP inequality

constraints. Note that the binary expansion – inducing an
approximation error – is only required if one considers a
risk metric, which requires computing profits per scenario.
However, as will be discussed in the computational tractabil-
ity analysis presented in Section IV, the binary expansion
technique results in intolerable computational times. Thus, we
construct an iterative procedure, where dual variables ζbs↑+p,h,t

and ζbs↓+p,h,t are considered as parameters in eq. (3.2) (but
not in the relevant stationarity and complementarity slackness
conditions, as they do not contain nonlinear products). These
parameters are updated with the values from the previous
iteration until stable values of φp(Ξ) are achieved. The step-
by-step procedure is described below:

1) Replace nonlinear terms ζbs↑+p,h,t · rs↑h,t and ζbs↓+p,h,t · rs↓h,t in
eq. (3.2) with linear terms ζ̂bs↑+p,h,t · rs↑h,t and ζ̂bs↓+p,h,t · rs↓h,t,
where ζ̂bs↑+p,h,t and ζ̂bs↓+p,h,t are constants.

2) Set ζ̂bs↑+p,h,t = ζ̂bs↓+p,h,t = 0 ∀p, h, t.
3) Solve the resulting MILP problem. Denote the resulting

estimate for the profit per scenario as φ̂p(Ξ). Calculate the
optimal values ζbs↑+p,h,t and ζbs↓+p,h,t . Based on these values,
compute the actual profit per scenario φp(Ξ).

4) If
∑

p∈P |φ̂p(Ξ) − φp(Ξ)| ≤ E ·∑p∈P Πp · φp(Ξ), with
E being a small real number, then stop the process.
Otherwise, update ζ̂bs↑+p,h,t = ζbs↑+p,h,t and ζ̂bs↓+p,h,t = ζbs↓+p,h,t

and return to step 3.
The computational efficiency of the proposed solving tech-

nique is discussed in Section IV.
To study a risk-neutral BES owner, maximizing expected

profit, this iteration technique is not required, since Eq. (3.1)
contains only linear terms. In contrast, the approach from [9]
employs the binary expansion to solve the decision problem
of a risk-neutral BES owner.

III. CASE STUDY

The proposed formulation is tested on an 8-zone model of
the ISO New England system with 76 generators described
in [23]. Annual wind generation profiles with an hourly
resolution were taken from [24] for the 30% wind penetration
level in terms of the annual electricity produced. The peak
load on the chosen day is 11.1 GW, while the maximum
available wind power is over 3 GW. Ten equiprobable wind
scenarios are considered at the balancing stage, which should
be sufficient to capture the uncertainty distribution of wind
power plant output, see e.g. [25], [26]. To test the proposed
formulation, we use a 100 MWh/100 MW battery storage with
0.9 discharge efficiency connected to different buses of the
network to identify the characteristics of the proposed model
and show relevant results. The BES bids to sell energy at
e0/MWh and purchase it at e100/MWh both in the day-
ahead energy market and reserve activation stages to ensure
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TABLE I
PROFIT (e) IN THE DAY-AHEAD ENERGY (DA), CAPACITY RESERVATION (CAP.) AND BALANCING MARKET AS WELL AS EXPECTED PROFIT (EXP.).

Bus DA Cap. Balancing scenarios Exp.1 2 3 4 5 6 7 8 9 10
1 263 0 1,319 526 225 998 2,898 334 2,454 2,565 1,115 1,319 1,638
2 -99 0 3,269 2,681 3,139 0 670 1,272 1,684 1,571 1,272 1,275 1,584
3 171 0 2,565 1,610 2,457 0 403 998 1,246 1,178 998 1,000 1,416
4 1,709 0 0 0 0 0 0 0 0 0 0 0 1,709
5 471 0 1,483 794 334 998 3,864 192 2,469 2,565 1,174 1,483 2,006
6 63 0 2,565 435 2,442 0 109 998 1,067 1,048 998 1,000 1,129
7 89 34 2,090 1,122 1,466 240 998 1,923 825 1,001 161 288 1,134
8 1,612 51 2,565 1,616 4,298 3,364 2,565 219 1,607 3,915 3,830 1,387 4,200

its bids are accepted. Both up and down BES reserve capacity
is offered at e0/MW. The parameters related to the accurate
battery charging model (1C maximum charging power) are
available in [19]. Thermal generators offer their up and down
reserve capacity at 30% of their generation costs.

First part of the case study, presented in Section III-A,
focuses on a risk-neutral market participant, where parameter
α in Eq. (1.1) is set to 1. The second part of the case study,
Section III-B, shows the results for different values of CVaR
parameters α and ε. The final part of the case study in Section
III-C quantifies the importance of using the accurate battery
charging model in strategic battery models.

In all simulations, the optimality gap is set to 0.1%. For the
risk-averse cases, E is set to 0.01. The models are implemented
in GAMS V33.2 and solved using CPLEX V12.1 on Intel Core
i7-6600 CPU clocking at 2.6 GHz with 8 GB of RAM.

A. Risk-neutral BES
The results for a risk-neutral BES at all eight locations, i.e.

buses, are shown in Table I. The profits are broken down into
three parts: i) the day-ahead profit in the energy-only market;
ii) the day-ahead capacity reservation payment; and iii) the
balancing market profit. In most cases, the day-ahead profit
is rather low, indicating that the BES relies on the balancing
market to monetize (a portion of the) charging actions in the
day-ahead stage. Generally, the BES capacity is divided in two
categories, the first devoted to the day-ahead arbitrage (both
charging and discharging in the day-ahead market), and the
second one to providing up reserve from the energy charged
in the day-ahead market (charging in the day-ahead market
and discharging in the balancing market). When the BES is
connected to bus 2, the BES capacity devoted to the day-
ahead market arbitrage is much lower, as compared to the
capacity devoted to providing the up reserve, resulting in a
negative day-ahead profit. On the other hand, when the BES is
connected to bus 4, it takes part only in the day-ahead market
and ignores the balancing market. Low capacity reservation
profit in all cases is a result of low up capacity reservation
prices in hours in which the BES is scheduled to provide
reserves. However, up reserve capacity reservation enables the
BES to provide up reserve in balancing scenarios, where the
BES makes majority of its revenue when connected to any bus
but bus 4. Especially profitable is balancing scenario 3 when
the BES is connected to bus 8, yielding e4,298 revenue. On
the other hand, balancing scenario 6 brings only e219, and
if this balancing scenario materializes the BES will receive
only the day-ahead and capacity reservation revenue, i.e.
e1,663. The final column in Table I shows the expected profit
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Fig. 2. Up and down reserve capacity prices and volumes at the day-ahead
stage when the BES is connected to bus 8.

calculated as the sum of the day-ahead payment, capacity
reservation payment and weighed average of the balancing
scenario revenues. This profit is the lowest when the BES
is connected to bus 6 and highest when connected to bus
8, which is the assumed BES location in the remainder of
this case study. The presented results stress the importance
of an adequate choice of the BES location, depending on the
congestion patterns in the network, confirming the results of,
i.a., [4].

Figure 2 shows reserve capacity prices as well as up and
down reserved quantities at the day-ahead stage when the BES
is connected to bus 8. The up reserve price is often zero with
spikes up to e3.2/MW at certain hours. However, only in hour
19 the non-zero up reserve capacity price coincides with the
BES providing up reserve capacity (compare the upper two
graphs in Figure 2). The BES up capacity is reserved in hour
10, 12.0 MW, followed by hours 12, 9.2 MW, and 16, 7.9
MW, while the highest reserved volume is 15.9 MW in hour
19. The BES does not provide any down reserve. Reserve
activation per balancing scenario is analyzed in Figure 3. The
scheduled 12.0 MW of up reserve capacity in hour 10 is fully
activated in all balancing scenarios but scenarios 7 and 10.
In hour 12, the up reserve capacity is not activated at all in
scenario 6, while in scenarios 2 and 3 the up reserve is only
partially activated (5.1 and 8.2 MWh). In scenario 6 the up
reserve capacity is activated only in hour 10, while in hours 12,
16 and 19 the BES remains inactive. The balancing prices in
Figure 4 reveal that this scenario has very low balancing price
(red line), thus this inactivity has a minor effect on the BES
profitability. On the other hand, scenarios 9, 8 and 4 reach an
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Fig. 3. Reserve activation across ten balancing scenarios when the BES is
connected to bus 8. The y-axis range is limited to better observe the relatively
low BES reserve activation.

extremely high balancing price e228/MWh in hours 10, 12
and 16, respectively, which is the main reason for the high
profitability of these scenarios exhibited in Table I. However,
the most profitable is scenario 3 for two reasons. First, in
this scenario the BES fully activates the up reserve in all
four relevant hours, and, second, it achieves the highest up
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Fig. 4. Day-ahead and balancing prices across ten balancing scenarios when
the BES is connected to bus 8 (balancing prices in hours 10, 12, 16 and 19,
in which the BES provides up reserve, are marked with squares).

reserve price, e192/MWh, in hour 19, which is the hour with
the highest volume of the activated BES up reserve. In our
case study, since up reserve provision reserves a portion of its
capacity, the BES will provide up reserve only if its activation
is very likely (in our case at least eight out of ten scenarios)
and balancing prices in average exceed the day-ahead energy
prices, given the low reserve capacity prices.

B. Risk-averse BES

We study a risk-averse BES connected to bus 8, assuming
an equal weighting between the expected profit and the CVaR.
We set α to 0.5 and vary ε from 0.9 to 0.1 in increments of
0.1. The results are summarized in Table II.

In the risk-neutral case, the BES owner is indifferent w.r.t.
the variability in profits between balancing scenarios (first row
in Table II). As such, it opens itself up to a significant financial
risk – its balancing profit may vary between e219 and e4,298.
The introduction of the CVaR metric, however, strongly re-
duces this variability in the balancing market outcomes. The
maximum difference in profit among the considered balancing
scenarios decreases from e4,079 in the risk-neutral case to
e826 for ε-values between 0.9 and 0.6. This comes at the
expense of a decrease in expected profit of at most e23
or 0.55%. The variations in the expected profit for ε-values
between 0.9 and 0.6 are within the optimality gap. The risk-
averse BES owner maintains the same offers in the day-ahead
energy market as the risk-neutral BES owner, but changes the
timing of its reserve capacity offers. Since the BES owner’s
reserve offers are constrained by its battery capacity, it may
offer the same reserve capacity, but at different times, limiting
the variability in profits per scenario, hence, its risk.

As the CVaR metric spans a smaller part of the profit
distribution (ε-values between 0.5 and 0.1), the BES owner
foregoes any profit in the balancing scenarios.. This results in
a drop in expected profit of e95 or 2.3%. As such, in this
particular case study, a BES operator is able to eliminate its
financial risk – associated with participating in the balancing
market – entirely by limiting itself to arbitrage in the day-
ahead energy market.

If the risk-averse BES owner does not seek a trade-off
between CVaR and expected profits (i.e., sets α = 0), the
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TABLE II
PROFIT OF A RISK-AVERSE BES OWNER (e) IN THE DAY-AHEAD ENERGY (DA), CAPACITY RESERVATION (CAP.) AND BALANCING MARKET AS WELL AS

EXPECTED PROFIT (EXP.) AND CONDITIONAL VALUE-AT-RISK (CVAR), DEPENDING ON ITS RISK-ATTITUDE ε (α IS SET TO 0.5 IN ALL CASES).

ε DA Cap. Balancing scenarios Exp. CVaR1 2 3 4 5 6 7 8 9 10
Risk-neutral 1,612 51 2,565 1,616 4,298 3,364 2,565 219 1,607 3,915 3,830 1,387 4,200 -

0.9 1,612 0 2,106 2,773 2,773 2,773 2,773 2,773 1,955 2,773 2,773 2,175 4,177 4,154
0.8 1,612 0 2,166 2,765 2,773 2,765 2,765 2,765 1,950 2,765 2,765 2,175 4,178 4,127
0.7 1,612 0 2,166 2,773 2,767 2,765 2,765 2,765 1,950 2,765 2,789 2,175 4,181 4,091
0.6 1,612 0 2,166 2,766 2,758 2,766 2,766 2,766 1,950 2,766 2,766 2,175 4,177 4,043

0.5 → 0.1 4,105 0 0 0 0 0 0 0 0 0 0 0 4,105 4,105

outcomes discussed above are observed as well, albeit at
different ε-values. For ε equal to 0.8 or 0.9, the BES owner still
participates in the balancing market, but ensures the variability
in profits per balancing scenario is limited at the expense of
a 0.55% drop in expected profit. If ε is equal or less than 0.7,
the BES owner does not participate in the balancing market,
eliminating its financial risk, but reducing its expected profit
to e4,105.

C. Effect of the Accurate Battery Charging Model

To quantify the importance of using the accurate battery
charging model, we compare its performance to that of an
equivalent constant-power charging model, as used in a vast
majority of battery-related energy economics studies, i.a., [9],
[10]. The difference between the models is that the basic,
constant-power charging model does not include constraints
(1.12)–(1.15) and on the right-hand side of constraints (1.6)–
(1.8) the term ∆soeh,t

ηch
h

is replaced with Qch
h,t/η

ch
h .

We run both models for a BES connected to bus 8. The
expected profit resulting from both models is within the
optimality gap, indicating that the more rigorous accurate
battery charging model, although it essentially increases the
number of time periods needed to fully charge the BES,
does not deteriorate the objective function value. This is
because the majority of electricity is still being charged in
the lowest-price time period and only a fraction is charged in
the surrounding time periods. However, the obtained charging
and discharging schedules are different and we analyze the
real-world feasibility of the basic battery charging model,
i.e., the ability of an actual battery to follow the obtained
schedule in reality. The accurate battery charging model is
considered to accurately describe the battery charging process,
as proven in [19], thus the battery schedule obtained by using
the basic battery charging model is run against the battery

charging constraints of accurate battery charging model. Any
deviations from the planned state-of-energy are transferred
to subsequent time periods incurring further inconsistencies.
The higher the inconsistencies in late time periods of the
optimization horizon, the higher risk the use of the basic
battery charging model imposes to the BES owner.

Figure 5 shows the scheduled evolution of the BES SoE over
time for all ten balancing scenarios for (a) the accurate battery
charging model; (b) the basic battery charging model; (c) the
re-evaluation of the BES’ schedule obtained with the basic
battery charging model. When using the accurate charging
model (Figure 5(a)), the BES is charged from the initial 50
MWh to 92.8 MWh in hour 6, then to 99.1 MWh in hour
7 and slowly topped in the following hours until it reaches
full charge in hour 9, recognizing the fact that the charging
capacity reduces as the battery state-of-energy increases. The
charged energy is used to offer upward balancing services
from hour 10 to hour 19. Whenever the BES provides up
reserve, this reserve is fully deployed in at least eight out of
ten balancing scenarios. Scenario 6 activates the least reserve
and thus finishes the day at the highest state-of-energy level,
36.7 MWh. On the other hand, scenarios 1, 4, 5, 8 and 9
activate the entire BES up reserved capacity, resulting in a
fully depleted BES at the end of the day.

As opposed to the accurate one, the basic battery charging
model assumes it may charge the BES to 100 MWh in a single
hour (hour 6), as shown in Figure 5(b). However, this is not
possible in reality as the BES at 50 MWh state-of-energy can
charge only to 92.75 MWh in one hour. Hence, the actual state-
of-energy at the end of hour 6 will be 92.75 MWh instead
of 100 MWh (Figure 5(c)). This means that the generators
providing down reserve will be activated. Figure 6 shows the
scheduled up and down generators’ reserve capacity available
for activation during hour 6. The BES is not scheduled to
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Fig. 5. The battery system’s state-of-energy (SoE) for different balancing scenarios: (a) the accurate charging model; (b) the basic charging model; (c)
re-evaluation of the basic charging model’s schedule via the accurate charging model.
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Fig. 6. Sum of the generators’ deployed up and down reserve capacity per
balancing scenario in hour 6 with and without imbalance caused by the BES.

provide any reserve at this hour. The blue bars indicate the
reserve activation per scenario if the BES would not cause any
imbalance. However, as the BES cannot charge the scheduled
amount based on the basic BES model, the required down
reserve to be activated in all scenarios is increased by 7.25
MWh (=50 MWh – 42.25 MWh), as shown by orange bars
in Figure 6. This reduces the required up reserve activation in
scenarios 7, 8 and 9, causes down reserve activation within
the scheduled down reserve capacity in scenarios 3, 4 and
10, but in scenarios 1, 2, 5 and 6 requires activation of the
generators’ down reserve not scheduled at the day-ahead stage.
Hence, emergency down reserve capacity needs to be activated
or wind production needs to be curtailed to stabilize the system
in these four scenarios.

As presented in Figure 5(c), the reduced amount of stored
energy in the BES at the end of hour 6 is sufficient to
provide up reserve in the subsequent hours until 21. In hour
21 the BES needs to provide 31.36 MWh of reserve in all
ten scenarios. However, in eight scenarios (1–3, 5–9) that
would result in a negative state-of-energy. To balance the
system, the generators scheduled to provide up reserve in
hour 21 need to counteract this imbalance. In most scenarios
the scheduled generators’ up reserve capacity is sufficient
(Figure 7). However, in scenario 5, the generators’ up reserve
is already fully deployed to balance the wind deviation and
no additional up reserve capacity is scheduled to balance
the BES’s inability to provide up reserve. Again, emergency
measures such as load shedding would be required to stabilize
the system. This analysis clearly demonstrates the importance
of using the accurate BES charging model instead of the
generic one, which is highly unsuitable for the BES market
scheduling purposes.

IV. COMPUTATIONAL EFFICIENCY

Solving the day-ahead decision problem of the risk-neutral
BES owner requires between 170 and 416 seconds, with an
average of 305 seconds. Recall that no iterations are required
to solve this problem.

The iterative procedure proposed in Section II-C to solve
the decision problem of the risk-averse BES owner terminates
in 2 to 5 iterations (on average 3). Each iteration requires
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Fig. 7. Sum of the generators’ deployed up reserve capacity per balancing
scenario in hour 21 with and without imbalance caused by the BES.

between 240 and 549 seconds, with an average of 366 seconds
per iteration. Total calculation times range from 530 to 2,407
seconds, with an average of 1,057 seconds. As a benchmark,
we implemented the equivalent MILP problem based on the
binary expansion technique. In order to ensure solutions with
a similar accuracy as those obtained based on the iterative pro-
cedure, we discretized variables rs↑h,t and rs↓h,t with a resolution
of 1 MW. Solving these NP-hard MILP problems, in our case
study, requires more than 20,000 seconds.

V. CONCLUSION

The paper presented a novel formulation of the decision
problem faced by a strategic BES owner in the joint day-ahead
energy-reserve and balancing markets, which allows managing
a variety of risks. First, the financial risk is addressed by
using the CVaR, which enables the BES to evenly distribute its
profit expectations over the possible realizations of uncertainty
without the reduction in the expected profit. This is achieved
by changing the timing of reserve capacity offers to flatten
the profit curve across all scenarios. Second, the risk of
the inability to deliver the scheduled reserves is addressed
embedding the worst-case reserve activation constraints in the
formulation, i.e., by assuming that all reserves scheduled to
the BES may be consecutively activated in the up and/or down
direction. Last, the risk of the inability to follow the day-ahead
schedule resulting from an inaccurate battery model should
be mitigated by adopting accurate battery models, while the
generic energy storage models are ill-suited for BES. In the
case study, we illustrated that these three model features allow
risk-averse BES owners to hedge their day-ahead position
without jeopardizing their expected profit, while ensuring the
feasibility of their day-ahead schedule.
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Abstract—Distributed transmission-scale energy storage is
becoming economically feasible due to the growing share of renew-
able generation and cost reduction of specific storage technologies,
primarily batteries. Under these circumstances, independent
merchants may start investing in storage facilities. On the other
hand, system operators, besides investing in transmission lines,
may, under certain conditions, invest in storage units as well. This
paper formulates a trilevel model where the upper-level problem
optimizes the system operator’s transmission line and energy stor-
age investments, the middle-level problem determines merchant
energy storage investment decisions, while the lower level problem
simulates market clearing process for representative days. After
replacing the lower level problem with its primal dual equivalent
conditions, the middle- and lower level problems are merged into a
mixed-integer problem with equilibrium constraints. The resulting
bilevel structure is iteratively solved using a cutting plane algo-
rithm. The proposed formulation is first applied to a six-bus system
to present the mechanics of the model and then to the IEEE RTS-96
test system. The results show that even at the low cost of energy
storage, the system operator (SO) still prefers line investments,
while merchant investments are driven by the volatility of LMPs.
Both the SO and merchant investments increase the social welfare,
although this increase is mostly driven by the SO investments.

Index Terms—Electricity market, energy storage, transmission
expansion.

NOMENCLATURE

1) Indices and Sets
i Index of generating units, from 1 to I .
k Index of representative days, from 1 to K.
l Index of transmission lines, from 1 to L, where

expansion candidate lines belong to set L̃,
L̃ ⊆ L.

n Index of buses, from 1 to N .
t Index of operating intervals, from 1 to T .
w Index of wind farms, from 1 to W .
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2) Binary Variables
un,j Merchant storage expansion decision at bus n.
vl SO expansion decision on line l.
3) Continuous Primal Variables
chk,t,n Charging power of SO storage at bus n during

interval t on day k, MW.
dk,t,n Cleared load at bus n during interval t on day k,

MW.
disk,t,n Discharging power of SO storage at bus n during

interval t on day k, MW.
emax
n Energy rating of merchant storage at bus n,

MWh.
eSOmax
n Energy rating of SO storage at bus n, MWh.

fk,t,l Power flow through line l during interval t on
day k, MW.

gk,t,i Power output of generating unit i during interval
t on day k, MW.

pc
k,t,n Charging of merchant storage at bus n during

interval t on day k, MW.
pd

k,t,n Discharging of merchant storage at bus n during
interval t on day k, MW.

pmax
n Power rating of merchant storage at bus n, MW.

pSOmax
n Power rating of SO storage at bus n, MW.

sk,t,n State of charge of merchant storage at bus n
during interval t on day k, MWh.

sSO
k,t,n State of charge of SO storage at bus n during

interval t on day k, MWh.
wsk,t,w Wind spillage of wind farm w during interval t

on day k, MW.
θk,t,n Voltage angle at bus n during interval t on day

k, rad.
4) Continuous Dual Variables
αmin

k,t,i , α
max
k,t,i Generator production limits dual variables.

βRD
k,t,i , β

RU
k,t,i Generator ramp limits dual variables.

δmin
k,t,n , δmax

k,t,n Demand bid limits dual variables.
γmin

k,t,w , γmax
k,t,w Wind production limits dual variables.

εk,t,n State of charge equation dual variable.
φcmin

k,t,n , φcmax
k,t,n Storage charging bids limits dual variables.

φdmin
k,t,n , φdmax

k,t,n Storage discharging offers limits dual variables.
φsmin

k,t,n , φsmax
k,t,n Storage state of charge limits dual variables.

εSO
k,t,n SO’s storage state of charge equation dual

variable.
φSOcmax

k,t,n SO’s storage charging limit dual variable.
φSOdmax

k,t,n SO’s storage discharging limit dual variable.
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φSOsmax
k,t,n SO Storage state of charge limits dual variables.

μk,t,l Line flow equation dual variable.
μmin

k,t,l , μ
max
k,t,l Line capacity limits dual variables.

λk,t,n Power balance equation dual variable.
5) Parameters
Cl Annualized capital cost of expansion for line

l, $.
Cb

n , Co
n Bidding and offering price of merchant storage

at bus n, $/MWh.
Cd

n Bidding price of load at bus n, $/MWh.
Ce Annualized energy capital cost of merchant stor-

age, $/MWh.
Cg

i Energy price offered by generator i, $/MWh.
Cp Annualized power capital cost of merchant stor-

age, $/MW.
CSOe Annualized energy capital cost of SO storage,

$/MWh.
CSOp Annualized power capital cost of SO storage,

$/MW.
Dmax

k,t,n Demand at bus n during interval t on day k,
MW.

Fmax
l Flow limit of transmission line l, MW.

ΔFmax
l Expansion capacity of transmission line l, MW.

Gmax
i Capacity of generator i, MW.

IC
st

Overall merchant storage investment budget, $.

IC
SO

Overall SO storage and line investment
budget, $.

NL̃ Maximum number of new lines.
RDi Ramp down limit of generator i, MW.
RUi Ramp up limit of generator i, MWh.
ΔS Storage investment energy increment, MWh.
Umax

n Maximum number of storage increments per
bus.

WGf
k,t,w Wind forecast at bus n during interval t on day

k, MW.
Xl , ΔXl Reactance of line l and its expansion adjustment.
Δτ Duration of the operating interval, h.
ηch Storage charging efficiency.
ηdis Storage discharging efficiency.
κ Minimum annual profit of merchant-owned

storage.
πk Frequency of representative day k, between 1

and 365.
χ Energy–to–power ratio of storage, h.

I. INTRODUCTION

A. Motivation

Energy storage has become one of the pivotal technologies
that enables higher integration of non-controllable renewable
energy sources. Although energy storage is at an early stage of
adoption, its integration is growing spurred by various policies
and mandates. However, there is an ongoing debate on the issue
of storage ownership and market implications. As elaborated
in [1], the 500 MW Lake Elsinore Advanced Pumping Sta-
tion (LEAPS) plant in Southern California was denied ratebase

because of the regulator’s (Federal Energy Regulatory Commit-
tee) rationing that the system operator’s (California ISO) dis-
patching of LEAPS plant would affect market prices. In other
words, LEAPS plant should recover all of its investment cost
providing market–remunerated services only.

On the other hand, Italian Transmission System Operator
TERNA installed 35 MW of storage in Campania region to
deal with congestion caused by wind farms in southern Italy
[2]. Italian Regulatory Authority for Electricity Gas and Water
allowed this installation as it reduces wind curtailment and thus
ensures safety and cost–effective management of the Italian
transmission grid.

Considering these two examples, we conclude that energy
storage investment can be made by both the system operator
(SO)1 and a merchant, but with significantly different roles. In
case of the SO ownership, energy storage can be operated as any
other transmission asset, i.e., transmission line, with the only
difference that transmission lines transfer electricity in space,
while energy storage transfers electricity in time. However, an
SO owned energy storage can only be used for non–market
services. On the other hand, a merchant–owned energy storage
is an active player in the market seeking to maximize its profit
and cannot receive any ratebased payments.

B. Literature Review

Energy storage investment problem has been assessed in lit-
erature from two standpoints. One is the centralized approach,
where the goal of energy storage is to provide higher savings in
operating cost than its installation cost. This approach can com-
bine SO’s energy storage and transmission line investments. The
second one is the merchant–owned approach, where the investor
seeks to maximize its profit in electricity markets.

A centralized storage investment model that penalizes wind
spillage and unserved load within the uncertainty set is for-
mulated in [3]. This two-stage problem, where the storage
placement decisions are made at the first stage and system op-
eration is simulated in the second stage, utilizes the column–
and–constraint generation algorithm to iteratively approach the
solution. This model determines optimal locations of energy
storage in predefined capacity blocks. Another centralized en-
ergy storage investment model is presented in [4]. First, optimal
energy storage location and size is decided for each day of the
year individually. The assumption is that the optimal storage
locations are the ones chosen most frequently among 365 days.
In the second stage, storage investments are allowed only at the
preferred locations and an individual day–by–day optimization
is performed to determine optimal size of storage for each day.
Based on these results, a near–optimal size of energy storage
is chosen, e.g., as an average size over all days. The presented
case study indicates that the distribution of wind resources has
small effect on the overall investment in energy storage, but
affects the location and distribution of storage units. As op-
posed to [3] and [4], where the authors consider each day of

1In this paper, the term System Operator refers to a regulated company
that plans and operates the transmission network, regardless if it is public– or
investor–owned.



1246 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 9, NO. 3, JULY 2018

the year, centralized storage investment models presented in [5]
and [6] consider representative days. The model in [5] deter-
mines optimal location and size of energy storage, within the
allowed investment budget, accounting for uncertainty of wind
generation. Due to complexity of the model, the authors apply
multi–cut Benders decomposition. The results indicate that the
investment budget should be carefully selected after comparing
the investment decisions and resulting savings in operating costs
for different investment budgets. In [6], the authors formulate
an energy storage investment model and apply it to a realistic
case of Western Electricity Coordinating Council (WECC), con-
sisted of 240 buses and 448 lines. The authors report that energy
storage operation in the centralized model does not necessarily
guarantee profitability of the energy storage investment.

Optimal storage investment problem in market–based power
system is examined in [7]. The upper–level problem makes de-
cisions on optimal siting and sizing of merchant–owned energy
storage while minimizing the total cost of system operation and
investment. The lower–level problem minimizes economic dis-
patch and considers transmission constraints. The upper–level
contains merchant–owned storage minimum profit constraint
that forbids investment unless the investor can retrieve satis-
factory level of profit. This paper confirms that installation of
energy storage yields lower levels of wind spillage and that en-
ergy storage may affect locational marginal prices. Sizing of
energy storage in market environment is addressed in [8]. The
upper–level problem determines optimal storage size and market
bids, while the lower–level problem simulates market clearing.
The model considers uncertainty related to the future load lev-
els and to the generator strategic behavior. Since this model is
stochastic, the authors employ Benders decomposition to effi-
ciently solve the problem. The paper concludes that the energy
storage investment is highly dependent on the number and qual-
ity of scenarios. A model for assessing the impact of demand
response providers on energy storage investment decisions is
formulated in [9]. In order to consider the interaction between
the demand response providers, who bid in the market through
an aggregator, and the merchant investor in energy storage, the
model is formulated as an equilibrium problem with equilib-
rium constraints. The results indicate that in case of a strategic
operation, the demand response aggregator and the investor in
energy storage can affect each others profitability.

While papers [3]–[9] consider only storage expansion, there
are papers that co–optimize transmission and storage expansion
planning. A centralized co–planning of transmission lines and
energy storage investments is proposed in [10]. This year–by–
year planning method considers stochastic wind and demand
scenarios and energy storage degradation. The authors empha-
size the importance of energy storage in preserving the desired
levels of reserve in the system. Joint transmission and energy
storage expansion model that considers transmission switching
is presented in [11]. The proposed min–max–min structure finds
a robust expansion plan feasible for any realization of uncer-
tainty within the given uncertainty set. The model is solved us-
ing a decomposition algorithm based on column–and–constraint
generation method. The authors report that transmission switch-
ing can significantly reduce investment costs. Regarding the

computational efficiency, primal cutting planes reach the con-
vergence quicker than dual cutting planes. Finally, the authors
emphasize the importance of a proper choice of big M values
used in the model, as their high values may cause intractability
of the subproblem. A model for co–planning of transmission
line expansion and merchant investments in energy storage is
presented in [12]. The proposed trilevel model is also solved
using the column–and–constraint generation method. The re-
sults of a realistic case based on WECC system indicate that
optimal level of merchant–owned storage is around 3% of the
peak hourly renewable output. A top–level assessment of con-
tribution of energy storage in the future power system of Great
Britain is presented in [13]. The objective function of the pre-
sented model contains system operating costs and annuitized
investment cost of generation, storage, transmission and dis-
tribution reinforcements. One of the important findings of the
presented case study is that interconnections and flexible gen-
eration compete less directly with energy storage than demand
response, whose presence significantly diminishes the value of
storage.

A unified two–stage energy storage, transmission and gen-
eration expansion model is proposed in [14]. The first stage
considers investment costs, while the second stage considers
operational cost, including penalties for not complying with the
Renewable Portfolio Standards, based on the probability of each
scenario. The authors conclude that the highest value of energy
storage is in deferring investments in transmission and genera-
tion facilities. Also, the value of energy storage grows with the
required levels of renewable generation in the system.

In [15], the authors propose a method for co–planning of
transmission and energy storage facilities when connecting
large–scale wind farms to the existing network. This locational
model returns the structure of the network with determined
transmission lines, but undetermined storage capacity. Energy
storage size is determined by a closed–form upper bound. The
results indicate that, in most cases, even energy storage with
small capacity can significantly reduce total system operating
costs.

A mixed–integer linear program that integrates transmission
expansion planning, generation investment and market opera-
tion is formulated in [16]. An equilibrium problem subject to
equilibrium constraints is formulated to simulate competitive
investors and all possible pure Nash equilibria on generation
investment problem are computed. The generator investment
decisions are made based on expected market clearing results
and these decisions are used by an anticipative transmission
planner to make transmission line investment decisions.

C. Contributions

Similarly to [10]–[12], this paper considers coordinated trans-
mission and storage investments. The main difference is that we
consider these investments from the point of view of the SO
anticipating merchant decisions. This anticipatory transmission
planning paradigm is somewhat similar to [16]. However, in
[16] the authors focus on competition between generation com-
panies, as opposed to merchant energy storage in this paper.
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Fig. 1. Problem structure.

Furthermore, model in [16] considers continuous transmission
line capacity investments, whereas model presented in this paper
is more realistic and considers lumpy investments in transmis-
sion lines. On the other hand, unlike the model from [12], which
takes the merchant investor perspective, this model puts the SO
in perspective of an anticipator of investor decisions, which is
in line with the current SO practice, see, e.g., [17]. Finally, as
opposed to both [12] and [16], in this model both the SO and
the merchant may own a storage. Their storage units are op-
erated in a different way while a merchant seeks to maximize
its profit, the SO uses storage in the same way it uses trans-
mission lines. This means that the SO’s storage is passive and
its charging/discharging schedule is the outcome of the opti-
mization process. On the other hand, merchant-owned storage
is active and submits bids in the market trying to maximize its
profit.

The main contributions of the paper are summarized as fol-
lows:

1) Formulation of a trilevel model where the upper level de-
cides on the SO’s transmission line and energy storage
investments, middle level decides on merchant’s energy
storage investments, while the lower level simulates mar-
ket clearing for representative days. The structure of the
problem is visualized in Fig. 1. The LMPs generated in
the market clearing problem are used in the upper level
to determine optimal line and storage investments by the
SO, and in the middle level to determine optimal merchant
storage investment. Merchant investment decisions from
the lower–level problem affect the social welfare and thus
the SO’s investment problem in the upper level. In turn, the
SO’s investments tend to reduce congestion, which influ-
ences the LMPs and thus may impact merchant’s revenue
and investment decisions.

2) The trilevel formulation is efficiently solved using a de-
composition approach based on a cutting plane algorithm.
This approach consists of solving ther master problem and

the subproblem iteratively. In the master problem, the SO
optimizes its line and storage investments to maximize
social welfare, while fixing the merchants investment de-
cisions. In subproblem, the merchant maximizes its profit
considering its storage investment decisions and optimal
bidding strategy while the SO’s investment decisions are
fixed.

3) SO and merchant–owned energy storage are modeled
based on the real–world regulatory framework. Charg-
ing and discharging variables of an SO’s energy storage
appear in the power balance constraint, but not in the
market–clearing objective function, as it does not act in
the market. On the other hand, merchant energy storage
charging and discharging variables appear in the market–
clearing objective function, as this storage actively partic-
ipates in the market.

II. FORMULATION

A. Model Formulation

1) Upper–Level problem: In objective function (1) the SO
seeks to maximize social welfare throughout the year, consisting
of demand bids, merchant storage bids and offers, generator of-
fers, and annualized transmission line and energy storage invest-
ment costs. This means that the SO will invest in transmission
lines and/or energy storage only if the resulting improvement in
social welfare is higher then their annualized investment costs.

Maximize
ΞUL

K∑

k=1

πk

(
T∑

t=1

N∑

n=1

Cd
n · dk,t,n +

T∑

t=1

N∑

n=1

(
Cb

n ·pc
k,t,n − Co

n ·pd
k,t,n

)

−
T∑

t=1

I∑

i=1

Cg
i ·gk,t,i

)
−

L̃∑

l=1

Cl · vl

−
N∑

n=1

(
CSOe · eSOmax

n + CSOp · pSOmax
n

)
(1)

where ΞUL =
{
vl , e

SOmax
n , pSOmax

n

}
.

The objective function (1) is subject to the following con-
straints:

L̃∑

l=1

vl ≤ N L̃ ∀l ∈ L̃ (2)

vl ∈ {0, 1} ∀l ∈ L̃ (3)

vl = 0 ∀l /∈ L̃ (4)

pSOmax
n · χ = eSOmax

n ∀n ∈ N (5)

L̃∑

l=1

Cl · vl +
N∑

n=1

(
CSOe ·eSOmax

n + CSOp ·pSOmax
n

)
≤ IC

SO

(6)

Constraint (2) limits the number of new transmission lines,
while constraints (3) and (4) allow construction of new lines only
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within the set of candidate lines. Equation (5) sets the energy–to–
power ratio of the storage technology. This constraint is omit-
ted if a specific storage technology allows energy and power
capacities to be determined independently, e.g. flow batteries.
Constraint (6) limits the annualized SO’s transmission line and
storage investment budget. Annualized transmission line invest-
ment cost, cl , is calculated based on the actual line investment
cost, Ccost

l , interest rate m and expected line lifetime h using
the following formula:

Cl = Ccost
l · m · (1 + m)h

(1 + m)h − 1
(7)

Annualized SO energy storage energy and power investment
costs are calculated using expressions equivalent to (7).

2) Middle–Level Problem: Merchant investor in energy stor-
age aim at maximizing its expected profit with respect to the
annualized energy storage investment cost:

Maximize
ΞML

K∑

k=1

πk

N∑

n=1

T∑

t=1

(
λk,t,n · pd

k,t,n − λk,t,n · pc
k,t,n

)

︸ ︷︷ ︸
P r

−
N∑

n=1

(Ce · emax
n + Cp · pmax

n )

︸ ︷︷ ︸
Inv

(8)

subject to:

Inv ≤ IC
st

(9)

Pr ≥ κ · Inv (10)

pmax
n · χ = smax

n ∀n ∈ N (11)

where ΞML = {emax
n , pmax

n }.
In objective function (8) profit, Pr, is the difference between

the collected revenue while discharging, λk,t,n · pd
k,t,n , and in-

curred expenses while charging, λk,t,n · pc
k,t,n , over the repre-

sentative days. On the other hand, investment cost, Inv, is the
sum of the annualized investment cost related to energy capacity,
Ce · emax

n , and power capacity, Cp · pmax
n . Overall annualized

investment cost is limited by the annualized investment budget
in constraint (9). Minimum profit parameter κ is used in (10)
to set the minimum profit of investor storage. Objective func-
tion (8) will never be negative because in case of an insufficient
revenue the model will return no storage investment, resulting
in Pr − Inv = 0. However, if an independent storage investor
requires annual profit of at least 15%, parameter κ should be set
to 1.15. (11) couples energy storage energy and power capaci-
ties in the same way as (5) does it for the SO–operated storage.
Annualized energy storage investment costs are calculated using
an equivalent of (7).

3) Lower–Level Problem: Lower–level problem simulates
market clearing. Thus, its objective function (12) is the max-
imization of social welfare, which includes generator of-
fers, merchant–owned energy storage discharging offers and

charging bids, and demand bids. In the following formulation,
dual variables of each constraint are listed after a colon:

Maximize
ΞLL

−
T∑

t=1

I∑

i=1

Cg
i · gk,t,i −

T∑

t=1

N∑

n=1

(
Co

n · pd
k,t,n − Cb

n · pc
k,t,n

)

+
T∑

t=1

N∑

n=1

Cd
n · dk,t,n (12)

subject to:

0 ≤ gk,t,i ≤ Gmax
i : αmin

k,t,i , α
max
k,t,i

∀k ∈ K, t ∈ T, i ∈ I (13)

− RDi ≤ gk,t,i − gk,t−1,i ≤ RUi : βRD
k,t,i , β

RU
k,t,i

∀k ∈ K, t ∈ T, i ∈ I (14)

0 ≤ dk,t,n ≤ Dmax
k,t,n : δmin

k,t,n , δmax
k,t,n

∀k ∈ K, t ∈ T, n ∈ N (15)

0 ≤ wsk,t,w ≤ WGf
k,t,w : γmin

k,t,w , γmax
k,t,w

∀k ∈ K, t ∈ T,w ∈ W (16)

sk,t,n = sk,t−1,n + pc
k,t,n · ηch · Δτ

− pd
k,t,n /ηdis · Δτ : εk,t,n∀k ∈ K, t ∈ T, n ∈ N

(17)

0 ≤ pc
k,t,n ≤ pmax

n : φcmin
k,t,n , φcmax

k,t,n

∀k ∈ K, t ∈ T, n ∈ N (18)

0 ≤ pd
k,t,n ≤ pmax

n : φdmin
k,t,n , φdmax

k,t,n

∀k ∈ K, t ∈ T, n ∈ N (19)

0 ≤ sk,t,n ≤ smax
n : φsmin

k,t,n , φsmax
k,t,n

∀k ∈ K, t ∈ T, n ∈ N (20)

sSO
k,t,n = sSO

k,t−1,n + chk,t,n · ηch · Δτ

− disk,t,n /ηdis · Δτ : εSO
k,t,n ∀k ∈ K, t ∈ T, n ∈ N

(21)

0 ≤ chk,t,n ≤ pSOmax
n : φSOcmax

k,t,n

∀k ∈ K, t ∈ T, n ∈ N (22)

0 ≤ disk,t,n ≤ pSOmax
n : φSOdmax

k,t,n

∀k ∈ K, t ∈ T, n ∈ N (23)

0 ≤ sSO
k,t,n ≤ eSOmax

n : φSOsmax
k,t,n

∀k ∈ K, t ∈ T, n ∈ N (24)

fk,t,l · (Xl − vl · ΔXl) = θk,t,o(l) − θk,t,r(l) : μk,t,l

∀k ∈ K, t ∈ T, l ∈ L (25)
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− F l − vl ·ΔFl ≤ fk,t,l ≤ F l − vl ·ΔFl : μmin
k,t,l , μ

max
k,t,l

∀k ∈ K, t ∈ T, l ∈ L (26)

−
∑

i∈I |B
gk,t,i +

∑

l|o(l)=n

fk,t,l −
∑

l|r(l)=n

fk,t,l−

−
∑

w∈W |B

(
WGf

k,t,w − wsk,t,w

)
+ pc

k,t,n − pd
k,t,n

+ chk,t,n − disk,t,n + dk,t,n = 0 : λk,t,n

∀k ∈ K, t ∈ T, l ∈ L (27)

where ΞLL = {chk,t,n , dk,t,n , disk,t,n , fk,t,l , gk,t,i , pc
k,t,n , pd

k,t,n ,
sk,t,n , sSO

k,t,n , θk,t,n , wsk,t,w}.
Single–block generator offers are modeled in constraint (13),

while generator ramp up and down limits are imposed in con-
straint (14). Constraint (15) limits the served demand to the
demand requirement, while constraint (16) limits the spillage
of renewable generation to the forecasted value. Equation (17)
calculates merchant’s storage state of charge, while (18)–(20)
limit its charging power, discharging power, and energy ca-
pacity. Equivalently, (21) keeps track of the SO’s energy stor-
age state of charge, while constraints (22)–(24) limit charg-
ing/discharging power and energy state of charge. Equation (25)
calculates power flows, while constraint (26) imposes transmis-
sion capacity limits. Both (25) and (26) consider transmission
expansion decisions from the upper–level problem using binary
variable vl . Finally, (27) is the power balance constraint. It is
important to note that the merchant–owned storage charging
and discharging schedule, i.e. values of pc

k,t,n and pd
k,t,n , in (27)

is decided based on active market participation, while values
of the SO–owned storage variables, chk,t,n and disk,t,n , are a
direct outcome of the market–clearing process, the same as the
power flows through transmission lines.

III. SOLUTION METHODOLOGY

Since the mathematical formulation from the previous Section
is of a trilevel structure, it cannot be directly solved using com-
mercial solvers. Therefore, we convert the middle–level problem
and the lower–level problem into an equivalent mathematical
program with equilibrium constraints (MPEC). This is achieved
by substituting the convex lower–level problem with an equiv-
alent set of constraints to the middle–level problem. This set
consists of the primal and dual lower–level problem constraints
and the strong duality equality. The obtained MPEC acts as a
lower–level problem to the original upper–level problem. Since
this structure still cannot be directly solved, we employ an itera-
tive procedure where the master problem (upper–level problem
in our formulation) and the subproblem (MPEC derived from the
middle–level and lower–level problems) are iteratively solved.
This procedure is shown in Fig. 2. When solving the master
problem, merchant storage bidding strategy is included through
variables pc

k,t,n and pd
k,t,n new limits whose values are deter-

mined in the subproblem. After solving the master problem, the
SO’s storage investment decisions, sSOmax

n and pSOmax
n , and

line investment decisions, vl , are used in the subproblem, where

Fig. 2. Interaction between the master problem and the subproblem.

merchant storage investment and bidding problem is solved.
Master problem and subproblem are alternatively solved until
the optimal solution is reached. Structure and modeling of the
subproblem and the master problem are explained in details in
the following subsections.

A. Subproblem

In order to obtain an MPEC, the lower–level problem needs to
be replaced by its equivalent optimality constraints: primal con-
straints, dual constraints and duality equality. Dual of the lower–
level problem is (corresponding primal variables are listed after
a colon in each dual constraint):

Minimize
ΞLLD

T∑

t=1

I∑

i=1

(
Gmax

i ·αmax
k,t,i + RDi ·βRD

k,t,i + RUi ·βRU
k,t,i

)

+

T∑

t=1

N∑

n=1

Dmax
k,t,n ·δmax

k,t,n +

T∑

t=1

L∑

l=1

Fmax
l ·

(
μmin

k,t,l + μmax
k,t,l

)

−
T∑

t=1

W |N∑

w=1

WGf
k,t,w ·λk,t,n +

T∑

t=1

W∑

w=1

WGf
k,t,w ·γmax

k,t,w

+

T∑

t=1

N∑

n=1

pmax
n ·φcmax

k,t,n + pmax
n ·φdmax

k,t,n + smax
n ·φsmax

k,t,n

+

T∑

t=1

N∑

n=1

pSOmax
b ·φSOcmax

k,t,n + pSOmax
b ·φSOdmax

k,t,n

+

T∑

t=1

N∑

n=1

eSOmax
n ·φSOsmax

k,t,n (28)

subject to:

− αmin
k,t,i + αmax

k,t,i − βRD
k,t,i + βRD

k,t+1,i

+ βRU
k,t,i − βRU

k,t+1,i + λk,t,n |i = −Cg
i : gk,t,i

∀k ∈ K, t < T, i ∈ I (29)
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− αmin
k,t,i + αmax

k,t,i − βRD
k,t,i + βRU

k,t,i + λk,t,n |i

= −Cg
i : gk,t,i ∀k ∈ K, t = T, i ∈ I

(30)

− λk,t,n − δmin
k,t,n + δmax

k,t,n = Cd
b : dk,t,n

∀k ∈ K, t ∈ T, n ∈ N (31)

(Xl − ωl ·Xl)·μk,t,l − μmin
k,t,l + μmax

k,t,l − λk,t,n |l = 0 : fk,t,l

∀k ∈ K, t ∈ T, l ∈ L (32)

− λk,t,n |w − γmin
k,t,w + γmax

k,t,w = 0 : wsk,t,w

∀k ∈ K, t ∈ T,w ∈ W (33)

εk,t,n − εk,t+1,n − φsmin
k,t,n + φsmax

k,t,n = 0 : sk,t,n

∀k ∈ K, t < T, n ∈ N (34)

εk,t,n − φsmin
k,t,n + φsmax

k,t,n = 0 : sk,t,n

∀k ∈ K, t = T, n ∈ N (35)

− εk,t,n · ηch − φcmin
k,t,n + φcmax

k,t,n + λk,t,n = Cb
n : pc

k,t,n

∀k ∈ K, t = T, n ∈ N (36)

− εk,t,n /ηdis + φdmin
k,t,n − φdmax

k,t,n + λk,t,n = Co
n : pd

k,t,n

∀k ∈ K, t = T, n ∈ N (37)

εSO
k,t,n − εSO

k,t+1,n + φSOsmax
k,t,n ≥ 0 : sSO

k,t,n

∀k ∈ K, t < T, n ∈ N (38)

εSO
k,t,n + φSOsmax

k,t,n ≥ 0 : sSO
k,t,n

∀k ∈ K, t = T, n ∈ N (39)

− εSO
k,t,n · ηch + φSOmax

k,t,n − λk,t,n ≥ 0 : chk,t,n

∀k ∈ K, t ∈ T, n ∈ N (40)

εSO
k,t,n /ηdis + φSOdmax

k,t,n + λk,t,n ≥ 0 : disk,t,n

∀k ∈ K, t ∈ T, n ∈ N (41)

where ΞLLD = {αmin
k,t,i , αmax

k,t,i , βRD
k,t,i , βRU

k,t,i , δmin
k,t,n , δmax

k,t,n , γmin
k,t,w ,

γmax
k,t,w , εk,t,n , φcmin

k,t,n , φcmax
k,t,n , φdmin

k,t,n , φdmax
k,t,n , φsmin

k,t,n , φsmax
k,t,n ,

φSOcmax
k,t,n , φSOdmax

k,t,n , φSOsmax
k,t,n , μk,t,l , μmin

k,t,l , μmax
k,t,l , λk,t,n}.

The MPEC obtained by merging the middle– and lower–
level problems consists of objective function (8) subject to the
middle–level problem constraints (9)–(11), primal lower–level
problem constraints (13)–(27), dual lower–level problem con-
straints (29)–(41), and strong duality equality (12)=(28). This
MPEC contains the following non–linearities:

1) terms λk,t,n · pd
k,t,n and λk,t,n · pc

k,t,n in the objective
function (8),

2) term (pmax
n · φcmax

k,t,n + pmax
n · φdmax

k,t,n + smax
n · φsmax

k,t,n ) on
the right–hand–side of the lower–level problem strong
duality equality (28).

After expressing λk,t,n from (36) and (37), we can express
storage profit (7) as:

εk,t,n

(
pd

k,t,n /ηdis − pc
k,t,n ·ηch

)
− φdmin

k,t,n ·pd
k,t,n

+ φdmax
k,t,n ·pd

k,t,n − φcmin
k,t,n ·pc

k,t,n + φcmax
k,t,n ·pc

k,t,n

+ Co
n ·pd

k,t,n − Cb
n ·pc

k,t,n (42)

Complementarity slackness constraint (18) can be expressed as
φcmin

k,t,n · pc
k,t,n = 0 and φcmax

k,t,n · (pmax
n − pc

k,t,n ) = 0 → φcmax
k,t,n ·

pc
k,t,n = φcmax

k,t,n · pmax
n . Similarly, complementarity slackness

constraint (19) yields φdmin
k,t,n · pd

k,t,n = 0 and φdmax
k,t,n · (pmax

n −
pd

k,t,n ) = 0 → φdmax
k,t,n · pd

k,t,n = φdmax
k,t,n · pmax

n . To linearize the
first term in (42) we rewrite it using (17):

εk,t,n

(
pd

k,t,n /ηdis − pc
k,t,n ·ηch

)
= εk,t,n (sk,t−1,n − sk,t,n )

(43)
Rearranging the order of multiplication results in:

εk,t,n (sk,t−1,n − sk,t,n )

=

T −1∑

t=1

sk,t,n (εk,t+1,n − εk,t,n ) − sk,t,n · εk,t,n (44)

Now, using (34) and (35), we can rewrite (44) as:

T −1∑

t=1

sk,t,n (εk,t+1,n − εk,t,n ) − sk,t,n · εk,t,n

= sk,t,n

(
φsmax

k,t,n − φsmin
k,t,n

)
(45)

Again, complementarity slackness associated with con-
straint (20) can be written as φsmin

k,t,n · sk,t,n = 0 and φsmax
k,t,n ·

(smax
n − sk,t,n ) = 0 → φsmax

k,t,n ·sk,t,n = φsmax
k,t,n ·smax

n .
The resulting storage profit part, Pr, of objective function (8)

is:

Co
n ·pd

k,t,n − Cb
n · pc

k,t,n + φsmax
k,t,n ·smax

n + φdmax
k,t,n ·pmax

n

+ φcmax
k,t,n ·pmax

n (46)

The last three non–linear terms in (46) are identical to the
non–linear terms appearing on the right–hand–side of the strong
duality equality (28).

To linearize the multiplication of two continuous variables,
we define variable smax

n as a sum of a finite number of storage
increments of a predefined size, i.e., we introduce storage ca-
pacity increment ΔS, binary variable un,j and parameter umax

n

that controls the maximum number of increments per bus.

smax
n =

J∑

j=1

ΔS · un,j (47)

J∑

j=1

un,j ≤ Umax
n (48)

Now, to linearize the multiplication of a binary and a contin-
uous variable, we use the big M reformulation, resulting in the
following constraints:

ΔS · φsmax
k,t,n,j − (1 − un,j ) · M ≤ USk,t,n,j ≤ M · un,j (49)
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USk,t,n,j ≤ ΔS · φsmax
k,t,n,j (50)

ΔS · χ−1 · φdmax
k,t,n − (1 − un,j ) · M ≤ UDk,t,n,j ≤ M · un,j

(51)

UDk,t,n,j ≤ ΔS · χ−1 · φdmax
k,t,n (52)

ΔS · χ−1 · φcmax
k,t,n − (1 − un,j ) · M ≤ UCk,t,n,j ≤ M · un,j

(53)

UCk,t,n,j ≤ ΔS · χ−1 · φcmax
k,t,n (54)

where USk,t,n,j = φsmax
k,t,n,j · un,j · ΔS, UDk,t,n,j = φdmax

k,t,n,j ·
un,j · ΔS, UCk,t,n,j = φcmax

k,t,n,j · un,j · ΔS
The final objective function:

K∑

k=1

πk

[
T∑

t=1

N∑

n=1

(
Co

n · pd
k,t,n − Cb

n · pc
k,t,n

+
J∑

j=1

USk,t,n,j + UDk,t,n,j + UCk,t,n,j )

]

−
N∑

n=1

(Ce · emax
n + Cp · pmax

n ) (55)

is subject to the constraints: (9)–(11), (13)–(27), (29)–
(41), linearized strong duality equality (12) = (28) and
(47)–(54).

B. Master Problem

The master problem consists of the upper–level problem (1)–
(6) and market clearing constraints of the lower–level problem
(13)–(27). However, merchant storage charging and discharging
quantities in (18) and (19) are no longer limited to maximum ca-
pacity but to merchant storage actions derived from the previous
iteration of the subproblem.

The only non–linearity in the master problem fk,t,l · ωl in
(25) is easily linearized using the big M reformulation:

FLe,t,l = fe,t,l · ωl (56)

− M ≤ FLe,t,l ≤ M (57)

− M · ωl ≤ FLe,t,l ≤ M · ωl (58)

Δxl · fe,t,l − (1 − ωl) · M ≤ FLe,t,l (59)

Δxl · fe,t,l + (1 − ωl) · M ≥ FLe,t,l (60)

(61)

IV. CASE STUDY

We considered two case studies in this paper – a six bus
illustrative example and the IEEE RTS-96 test system.

A. A Six-Bus Illustrative Example

This section presents the results obtained on a six-bus system
from [19] to demonstrate the mechanics of the proposed method.
Technical characteristics of conventional generators are given

TABLE I
ILLUSTRATIVE TEST CASE GENERATOR DATA

Generator Gmax
i C g

i Generator Gmax
i C g

i

G1 100 12 G3 50 50
G2 75 20 G4 50 100

Fig. 3. Illustrative test case.

in Table I. The capacity of transmission lines is 50 MW, ex-
cept for line 7 whose capacity is 25 MW. The system is shown
in Fig. 3. We consider the target year represented by a sin-
gle representative day. The load is distributed equally among
buses 3 and 4 and it bids at $450/MWh. The hourly system
load data are provided in [19]. Storage investment is consid-
ered at $20/kWh and $500/kW with 20 years lifetime. Line is
priced at $60.000 per mile with 40 years lifetime. Interest rate
is 10%.

Table II shows iterations to the final solution of the illus-
trative test case. The baseline social welfare, i.e., when no in-
vestments are made by the SO or the merchant, for the target
year is $682.090.000. After running the master problem in the
first iteration, the welfare is increased to $731.250.000 as a re-
sult of the SO’s investment in lines L3 and L7, as well as in
80 MWh of storage at bus 4. Considering these SO’s investment
decision, subproblem results in 40 MWh of merchant storage at
bus 4 and 30 MWh at bus 6, which further increases the wel-
fare to $744.888.24. In the second iteration, the SO keeps the
investment in lines L3 and L7, but reduces storage investments
to 4 MWh at bus 3 and 10 MWh at bus 4. In the subproblem,
the merchant invests now in a 20 MWh storage at bus 5 and
increases its investment in storage at bus 6 to 60 MWh. In the
third iteration, the SO voids any storage investments and in-
vests in lines L3 and L7. Consequently, merchant invests in an
80 MWh storage at bus 4. Finally, the master problem solution
in the fourth iteration results in the same SO investment deci-
sions as in the previous iteration and yields the highest possible
social welfare.

Fig. 4 shows output of conventional generators in the system.
Generators G1 and G2 cover the base load, while generators G3
and G4 operate during the peak hours. Merchant energy storage
system charges at the beginning of the day taking advantage of
the lower LMPs and discharges in the afternoon, reducing the
load peak.
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TABLE II
ITERATIONS TO THE SOLUTION OF THE ILLUSTRATIVE EXAMPLE

Iteration Welfare UL SO lines SO storage Welfare LL Merchant storage

1 $731.250.000 L3, L7 80 MWh (n4) $744.888.224 40 MWh (n4) and 30 MWh (n6)
2 $744.990.000 L3, L7 4 MWh (n3), 10 MWh (n4) $743.960.314 20 MWh (n5) and 60 MWh (n6)
3 $743.880.000 L3, L7 – $745.647.310 80 MWh (n4)
4 $745.647.310 L3, L7 –

Fig. 4. Conventional generation and net load.

Fig. 5. Net load during three representative days for 30%, 50% and 70% wind
energy penetration levels.

B. IEEE RTS-96 System

This case study uses IEEE RTS–96 system data available at
[20]. The system consists of 73 buses, 96 generators and 19
wind farms. Due to high transmission capacity, all the double
lines are replaced by single ones and all line capacities are
reduced to 70% of the original values. We consider three levels
of wind energy penetration: 30%, 50% and 70%. The entire year
is characterized using three representative days obtained using
the forward–selection algortihm [21]. Fig. 5 shows the net load
for three representative days for each wind penetration level.

The results for different wind levels (30%, 50% and 70%) and
battery costs (high – $100/kWh, $150/kW, medium – $50/kWh,
$100/kW and low – $20/kWh, $50/kW) are presented in Ta-
ble IV. Its upper part shows the SO and merchant decisions
when the SO can invest in both lines and batteries. The SO in-
vests in lines 25, 63 and 101, all of which are highly congested
due to the transfer of wind generation from the north to the
large loads in the south. Additionally, in the case of 70% wind
penetration level, the increase in social welfare compensates for
investment in line 39 as well. The SO does not invest in en-
ergy storage, even in scenarios with low investment cost. The

SO line investments result in 1,6%–2% increase in social wel-
fare, depending on the wind penetration level, while merchant
investments increase social welfare by 0,2%–0,7%. Merchant
investments in energy storage increase with wind penetration
level. Generally, the most attractive locations for merchant stor-
age are buses n103 and n223.

Lower part (last three lines) of Table III shows the results of
the case when the SO can only invest in energy storage, which
might reflect real–life problems with obtaining line corridors.
The SO invests in batteries at locations close to the most con-
gested lines that are reinforced in the case when the SO can
invest in lines. Combined with merchant investments, the so-
cial welfare increases by 1,2%–1,5%, which indicates that line
investments are more suitable means of increasing the social
welfare. Merchant invests more in energy storage than the SO
because active market participation enables better return of in-
vestment than passive storage operation. Additionally, merchant
storage investments increase the social welfare, thus diminish-
ing the value of the SO’s storage investments.

C. Sensitivity of Results on Minimum Merchant Profit

In order to analyze the impact of minimum merchant profit
constraint (11) on the results, we perform additional simulations
for different values of κ. In the results shown in Table III the
value of κ was set to 1. For values below 1, constraint (11) is inac-
tive because the merchant objective function (8) will take value
zero at worst, reflecting the no investments decision. Results
from Table IV show sensitivity analysis for different values of κ
in case of medium storage costs. For 5% required profitability,
some investments for 50% and 70% wind penetration levels are
reduced as compared to κ = 1,0 because they cannot generate
sufficient revenue. For instance, in case of 70% wind penetra-
tion, capacity of energy storage at bus 223 is reduced, while
installation at bus 318 is voided. Merchant storage investments
further reduce as the required profitability increases. At 20% re-
quired profitability, no merchant storage investments are made.
Social welfare values reduce with the increased profitability re-
quirements, thus resulting in the same investment decisions as
for high energy storage investment cost. The SO investments
remain the same for all values of κ, i.e. the SO invests solely in
transmission lines.

Sensitivity analysis for different values of parameter κ for
medium storage cost, but when the SO is unable to invest in
transmission lines, is shown in Table V. Again, merchant invest-
ments reduce as the required investment profitability increases
and for κ = 1,2 merchant storage is not installed. However, SO
storage is not installed either because the improvement in social
welfare is insufficient to cover the storage installation costs.
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TABLE III
SO AND MERCHANT INVESTMENTS FOR IEEE RTS–96 CASE STUDY FOR DIFFERENT WIND ENERGY PENETRATION LEVELS AND ENERGY STORAGE COSTS

Storage cost Low Medium High

Wind level 30% 50% 70% 30% 50% 70% 30% 50% 70%

SO investment L25, L63,
L101

L25, L63,
L101

L25, L39,
L63, L101

L25, L63,
L101

L25, L63,
L101

L25, L39,
L63, L101

L25, L63,
L101

L25, L63,
L101

L25, L39,
L63, L101

Merchant
investment,
MWh (bus)

140 (n103),
60 (n223)

200 (n223),
120 (n107),
40 (n322)

200 (n103),
200 (n223),
60 (n123),
40 (n318),
40 (n212),
20 (n322)

40 (n103) 80 (n223),
20 (n107)

160 (n103),
140 (n223),
20 (n212),
20 (n318)

– – –

Social welfare,
m$ (%)

20.659
(2,6%)

20.968
(2,3%)

21.189
(2,3%)

20.577
(2,2%)

20.948
(2,0%)

21.107
(1,9%)

20.539
(2,0%)

20.864
(1,8%)

21.051
(1,6%)

SO investment
– no lines

200 (n321),
120 (n124),
100 (n115)

180 (n321),
120 (n124),
100 (n115)

180 (n321),
130 (n115),
30 (n221)

– – – – – –

Merchant
investment
– no lines,
MWh (bus)

160 (n115),
140 (n124),
140 (n103),
60 (n223)

200 (n223),
160 (n115),
140 (n124),
60 (n322)

200 (n103),
200 (n123),
160 (n223),
80 (n322),
40 (n318)

100 (n115),
60 (n124)

80 (n223),
40 (n115),
40 (n124)

140 (n103),
130 (n123),
80 (n223),
20 (n322)

– – –

Social welfare
– no lines,
m$ (%)

20.436
(1,5%)

20.743
(1,2%)

20.982
(1,3%)

20.376
(1,2%)

20.682
(0,9%)

20.920
(1,0%)

20.134 20.497 20.713

TABLE IV
SENSITIVITY ANALYSIS FOR DIFFERENT VALUES OF κ FOR MEDIUM

STORAGE COST

Minimum
Merchant
Profit

Wind Penetration Level

30% 50% 70%

κ = 1,05 SO investment L25, L63,
L101

L25, L63,
L101

L25, L39,
L63, L101

Merchant
investment,
MWh (bus)

40 (n103) 80 (n223) 160 (n103),
100 (n223),
20 (n212)

Social welfare,
m$ (%)

20.577
(2,2%)

20.916
(2,0%)

21.101
(1,9%)

κ = 1,10 SO investment L25, L63,
L101

L25, L63,
L101

L25, L39,
L63, L101

Merchant
investment,
MWh (bus)

20 (n103) 60 (n223) 120 (n103),
60 (n223)

Social welfare,
m$ (%)

20.556
(2,1%)

20.886
(1,9%)

21.085
(1,8%)

κ = 1,15 SO investment L25, L63,
L101

L25, L63,
L101

L25, L39,
L63, L101

Merchant
investment,
MWh (bus)

20 (n103) 20 (n223) 60 (n103),
20 (n223)

Social welfare,
m$ (%)

20.556
(2,1%)

20.868
(1,8%)

21.065
(1,7%)

κ = 1,20 SO investment L25, L63,
L101

L25, L63,
L101

L25, L39,
L63, L101

Merchant
investment,
MWh (bus)

– – –

Social welfare,
m$ (%)

20.539
(2,0%)

20.864
(1,8%)

21.051
(1,6%)

TABLE V
SENSITIVITY ANALYSIS FOR DIFFERENT VALUES OF κ FOR MEDIUM STORAGE

COST WHEN THE SO IS NOT ALLOWED TO INVEST IN TRANSMISSION LINES

Minimum
Merchant
Profit

Wind Penetration Level

30% 50% 70%

κ = 1,05 SO investment – – –
Merchant

investment,
MWh (bus)

40 (n115),
20 (n124)

80 (n223),
40 (n115),
20 (n124)

140 (n103),
70 (n123),
70 (n223),
20 (n322)

Social welfare,
m$ (%)

20.335
(1,0%)

20.680
(0,9%)

20.920
(1,0%)

κ = 1,10 SO investment – – –
Merchant

investment,
MWh (bus)

40 (n115),
20 (n124)

50 (n223),
10 (n115)

30 (n321),
80 (n103),
30 (n123),
20 (n322)

Social welfare,
m$ (%)

20.315
(0,9%)

20.661
(0,8%)

20.879
(0,8%)

κ = 1,15 SO investment – – –
Merchant

investment,
MWh (bus)

30 (n115) 30 (n223),
10 (n124)

30 (n321),
40 (n103),
20 (n123),
20 (n322)

Social welfare,
m$ (%)

20.235
(0,5%)

20.600
(0,5%)

20.858
(0,7%)

κ = 1,20 SO investment – – –
Merchant

investment,
MWh (bus)

– – –

Social welfare,
m$ (%)

20.134
(0,0%)

20.497
(0,0%)

20.713
(0,0%)
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V. CONCLUSION

This paper presents a methodology for coordinated transmis-
sion expansion, including both transmission lines and energy
storage; and merchant storage expansion. The results from the
presented case study yield the following conclusions:

1) Even at low cost of energy storage, the SO will prefer
transmission line investment since those assets are more
lasting (longer lifetime) than energy storage.

2) Merchant energy storage investments are made in parts
of the network with volatile LMPs and where the SO
cannot increase the social welfare sufficiently to justify
its investments.

3) Both the SO and merchant investments increase the social
welfare. However, this increase is mainly driven by the
SO’s investments in transmission lines.

4) Merchant storage investments increase social welfare,
thus diminishing the value of the SO’s regulated storage.
In case where the SO is allowed only to invest in energy
storage, merchant investments will prevail as merchant–
owned storage both is operated in for profit manner and
also increases social welfare.

5) Merchant storage investments depend on the required
minimum profit, which is in the presented case study lim-
ited to 15%.

The future work will be expanded to include the reserves
market, where merchant–owned energy storage is expected to
gain additional revenues. On the other hand, the SO–owned
energy storage should not be allowed to provide reserves, since
this is a market service. In this case, there is no competition
between the SO– and merchant–operated energy storage.
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Abstract - Wind power has already become an important 
renewable energy resource in many regions of the world. 
Because of its variability and uncertainty, integration of 
wind power presents a challenge that, if not adequately 
addressed, can jeopardize the operational reliability of a 
power system. Generally, generation unit commitment 
decisions are made once a day, i.e., the commitment 
decisions are made 24 or more hours ahead of the actual 
operation. Taking into account the uncertainty of wind 
power prediction, these decisions need to provide sufficient 
flexibility at a minimum price. This paper describes the 
current practice and analyzes unit commitment 
formulations available in literature highlighting their 
advantages and shortcomings. 

I. INTRODUCTION 

The primary concern in operating an electrical power 
system is to meet the demand for electricity at all times 
and under different conditions depending on the season, 
the climate, and the weather. 

Modern power systems are supposed to accommodate 
large total capacity of distributed, volatile generation, as 
well as large-scale price responsive demand and electric 
vehicles which dramatically increases both supply and 
demand uncertainty [1]-[3]. Because of its variability and 
uncertainty, wind generation impacts power system 
operation and can potentially jeopardize its reliability. To 
deal with the larger uncertainty on the net load (the 
difference between electricity demand and the output of 
non-dispatchable generation), power system operators are 
increasing the reserve margins, thus increasing the 
regulation cost [4]. 

In order to minimize the operating cost of ­
dispatchable 

non
resources, it is essential to derive a 

computationally effective approach to optimally select the 
units and their output level to preserve the operational 
reliability of the system. Unit commitment (UC), one of 
the most critical decision processes, is an optimization 
problem that generates the outputs of all the generators in 
a way that minimizes the system-wide fuel cost. Features 
included in most modern unit commitment models include 
generator minimum and maximum generation limits, 
ramping limits, minimum up and down time constraints, 
time-dependant start up costs and transmission capacity 
limits [5J-[8]. 

The work of the authors is a part of the FENTSG - Flexible Energy 
Nodes in Low Carbon Smart Grid funded by Croatian Science 
Foundation under project grant No. 7766 

During the normal operation, system operator 
dispatches the committed generation resources to satisfY 
the actual demand and reliability requirements. In the 
event of a significant deviation between the actual and the 
expected system condition, system operator needs to take 
corrective actions, such as committing expensive fast-start 
generators, voltage regulation or load shedding, to 
maintain system security. The main causes of the 
unexpected events come from the uncertainties associated 
with the load forecast error, changes of system 
interchange schedule, and unexpected transmission and 
generation outages. [9] 

Deterministic UC formulation is a traditional solution 
in which the net load is modeled using a single forecast 
for each wind farm output and the associated uncertainty 
is handled using ad-hoc rules, i.e., the generating units are 
committed to meet the deterministic forecast and the 
uncertainty is handled by imposing reserve requirements 
[10]- [13]. Such an approach is easy to implement in 
practice, but the ad-hoc rules do not necessarily 
adequately account for this uncertainty. Namely, 
committing extra generation resources for reserve is 
economically inefficient, while the power system may still 
suffer from capacity inadequacy in case of a significant 
deviation between real-time and expected net load. There 
is a lot of research on optimizing the reserve requirements 
based on deterministic criteria [14]- [17]. In [14] a new 
technique to determine the SR requirements at each period 
of the optimization horizon is proposed using a 
costibenefit analysis. Similarly, in [15] the cost of 
interruptions is considered when optlmlzmg the 
scheduling of spinning reserve. In [16J a probabilistic 
analysis of the reserve requirements is taken into account. 
The authors of [17J show that reserve requirements cannot 
be specified a priori without sacrificing the optimality. 

A more rigorous approach is incorporating uncertainty 
in the unit commitment model itself, which is the focus of 
this review paper. Section II describes stochastic unit UC, 
Section III robust UC formulation, while Section IV 
describes interval UC formulation. Section V describes 
some recent advancement in hybrid UC models that 
combine the aforementioned formulations. Conclusions 
are duly drawn in Section VI. 

II. STOCHASTIC UNIT COMMITMENT 

Stochastic UC is based on probabilistic scenarios. A 
finite set of scenarios is generated and assigned weight in 
proportion to their likelihood. Stochastic UC IS 
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formulated as a two-stage problem that determines the 
generation schedule that minimizes the expected cost 
over all of the scenarios respecting their probabilities. 
The commitment decisions are unique over all the 
scenarios, while dispatch decisions are scenario 
dependent. Including a large number of scenarios in the 
model requires computationally demanding simulations. 
Computational burden of the stochastic UC is 
dramatically increased with the time horizon as well 
which is visualized in Figure 1 .  Thus, scenario reductio 
techniques that eliminate scenarios with very low 
probabilities and aggregate close scenarios are developed 
[18]. Similar scenarios get aggregated based on a 
partic.llar metrics, suc.h as their probability, hourly 
magmtude, or the resultmg cost [19]. In [19J the authors 
did a comparison of scenario reduction techniques for the 
stochastic unit commitment. A clustering method, ­
means 

k
IS used to partition a given set of scenarios into a 

given number of clusters. The cluster features similar 
scenarios and is represented by a scenario with the lowest 
probability distance from the centroid. The centroid is an 
average pattern of all the scenarios from the cluster [19J 
[28]. The forward scenario selection and backward 
scenario reduction approaches are based on minimizing 
the Kantorovich distance between the scenarios in the 
original and in the reduced set [19] [29]. The forward 
scenario selection approach is used to construct a reduced 
et ontaining . a desired number of scenarios by 

It r tlVely addmg a scenario from the original set. 
Similarly, the backward reduction approach gives a 
reduced set by iteratively eliminating one scenario from 
the original set until the desired number of scenarios 
remains. Importance-sampling scenario reduction 
technique is used to select the scenarios that best 
represent the monetary impact of uncertainty on the 
operatmg cost [19] [30]. However, insufficient number of 
scenarios reduces accuracy of the solution and increases 
its cost. The eliminated scenarios may have great impact 
on the system, so stochastic UC formulations provide 
?nly probabilistic guarantees to the system reliability. It is 
Important to note that the stochastic UC solution contains 
a certain amount of un hedged uncertainty, i.e. load 
shedding or wind curtailment in the most extreme 
scenarios might be cheaper than modifYing the schedule 
to serve the net load over all the scenarios. Due to 
increased uncertainty in later hours of the time horizon 
the amount of unhedged uncertainty increases over tim  
[20]. In order to secure the robustness of the solution, a 
large set of scenarios is required, which is 
computationally demanding. Problems to be considered: 

 Possible • loss of information 
 Disregarding • the scenarios with comparatively 

low probability but great impact on the power 
system 

 Availability • of data 
 Difficulties • to identifY accurate probability 

distribution of the uncertainty 

Figure 1. Scenario tree 

In [21] the authors consider a set of possible scenarios 
rather than solving the UC problem for one expected and 
the worst-case demand scenario. Each of the scenarios is 
assigned a weight that reflects the possibility of its 
occurrence in the future. The solution must satisfY the 
constraint that if two different scenarios s and s' are 
indistinguishable at time period t based on the available 
information at time period t, the decision made for 
scenario s must be the same as that for scenario s'. The 
constraint is modeled by partitioning the scenario set at 
each time period into disjoint subsets called scenario 
bundles. Mathematically, a bundle at time period t is 
represented as a constraint on the decision variables of its 
scenarios. The objective function is to minimize weighted 
sum of the objective functions of the smaller problems 
i.e. to minimize the expected cost over all of th 
scenarios. The problem can then be solved using a 
Lagrangian relaxation type of technique. 

In [18] authors present a security-constrained unit 
commitment algorithm considering the volatility of wind 
power generation. To capture volatility it is assumed that 
the wind power is subject to a normal distribution N (fl, 
aZ) with forecasted wind power as expected value fl and a 
percentage of fl as its volatility (0). The Monte Carlo 
simulation is used to generate a large number of scenarios 
subject to the normal distribution. The probability 
assigned to each scenario is one divided by the number of 
generated scenarios. To decrease the computational 
requirement for large number of scenarios, a scenario 
reduction technique is used. The algorithm is formulated 
as an optimization problem with the objective function 
composed of fuel costs and startup and shutdown costs of 
generating units over the scheduling horizon. The 
problem is a large-scale mixed-integer non-linear 
program. The Benders' decomposition is applied to 
decompose the problem into master problem, feasibility 
check subproblems, and network security check 
subproblems. The master problem provides a 
commitment and dispatch solution that minimizes the 
operating cost of dispatchable units. The feasibility check 
subproblems whether the commitment and dispatch 
solution of the master problem can accommodate the 
volatility of the wind power in individual scenarios. The 
paper shows that the physical limitations of units, such as 
ramping, are crucial for accommodating the volatility of 
the wmd power generation. 

In [22] the authors present a stochastic model for the 
long-term solution of security-constrained UC. Forced 
outages of generating units and transmission lines are 
modeled as independent Markov processes, and load 
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forecasting uncertamtles as uniform random variables. 
Optimization problem is decomposed into deterministic 
long-term subproblems. A scenario reduction method is 
used to obtain a tractable solution. A 6-bus system, the 
IEEE llS-bus system, and an ll6S-bus system are used 
to test the algorithm. The stochastic solution provides 
more reliable decisions on energy allocation, fuel 
consumption, emISSIOn allowance, and long-term 
utilization of generating units in comparison to the 
deterministic UC solution. 

III. ROBUST UNIT COMMITMENT 

Robust unit commitment formulations require a 
deterministic set of uncertainty, rather than a probability 
distribution on the uncertain data. Robust UC model 
described in [9J is a two-stage model: the first stage finds 
the optimal commitment decision, while the second stage 
generates the worst case dispatch cost under a fixed 
commitment solution from the first stage. The range of 
uncertainty is defined by the upper and lower bounds on 
the net load at each time period. 

The robust model generates the optimal solution 
feasible for all realizations of the uncertain data within the 
given bounds. By minimizing the highest cost over all 
realizations, the model tends to provide conservative 
solutions, thus more expensive, which can be adjusted 
using the budget of uncertainty. The budget of uncertainty 
is defined as the number of buses that are allowed to 
deviate from a given central wind forecast in the worst 
case scenario [9J. The higher the budget of uncertainty the 
more robust the solution. The value for the budget of 
uncertainty is not known in advance but depends on the 
system and the experience. ISO New England (NE) 
enlisted Lawrence Livermore National Laboratory 
(LLNL)'s help in determining whether a robust UC would 
improve system reliability while keeping the operation 
cost relatively low in the presence of renewable variability 
[31 J. In the study, a comprehensive evaluation of robust 
UC was conducted. The objectives were to identify the 
optimal conservatism level to balance the economic 
efficiency and operational reliability of robust UC 
solutions, as well as to compare the robust and 
deterministic approaches. 

In [23J authors present a two-stage network 
constrained robust UC problem introducing a ­
dimensional 

two
uncertainty set to describe the uncertain 

problem parameter, allowing the uncertainty correlations 
among different buses and among different time periods. 
A bilinear separation approach generates tight lower and 
upper bounds for the optimal objective value and it is 
tested for computational efficiency on a lIS-bus system. 
The authors use the Benders' decomposition that includes 
feasibility and optimality cuts. A case in which the 
demand at each bus in each operating hour may be 
uncertain is addressed, and the uncertainties are described 
by a given polyhedral uncertainty set rather than by the 
probability distribution. 

In [24J a two-stage robust UC model is developed to 
obtain day-ahead generator schedules where wind 
uncertainty is captured by a poly topic uncertainty set. The 
uncertainty set modeling method captures the random 

nature of wind without any explicit description of the 
distribution function. The model is also extended to 
include the demand response strategy. The authors 
performed a computational study on an IEEE IS-bus 
system to show that the robust UC model can utilize wind 
generation and lower overall generation cost. 

A robust UC model that takes into account the ­
case 

worst
scenario of wind power output with deterministic 

loads during all periods is presented in [25]. This approach 
distributes the random problem parameters in a 
predetermined uncertainty set containing the worst-case 
scenario. Uncertain wind power output in each time period 
is within an interval defined by its lower and upper 
bounds which are obtained based on historical data or 
estimated with a confidence interval. The problem is 
formulated as a two-stage min-max problem with the 
objective to minimize the total cost under the worst wind 
power output scenario. The degree of conservatism is 
adjusted using the budget of uncertainty, an integer that 
takes a value between 0 and the number of hours in the 
time horizon T, to restrict the number of time periods that 
allow the actual wind power output to deviate from its 
forecasted value. By adjusting the value of the budget of 
uncertainty, system operators can control the robustness of 
the solution. The higher the budget of uncertainty, the 
more robust the solution. The UC decisions are made at 
the first stage, while the second stage results in economic 
dispatch. Wind power generation values are subject to 
uncertainty, and they are presented by random variables 
described by the uncertainty set. The authors describe 
their solution methodology and test the algorithm on a 6-
bus and a modified liS-bus system. The wind power 
uncertainty is additionally hedged using pumped storage 
hydro units. 

IV. INTERVAL UNIT COMMITMENT 

Interval UC formulations produce a schedule that 
minimizes the cost of serving the most probable net load 
forecast while guaranteeing feasibility in the entire 
uncertainty range that is delimited with upper and lower 
bounds as in robust unit commitment formulations. 
Figure 2. shows the central forecast, i.e. the most 
probable realization to be minimized in the objective 
function, along with the upper and lower bounds and the 
transitions between them. The solution is optimal along 
central forecast while remaining feasible along upper and 
lower bound. The solutions tend to be conservative 
because of the steep ramp requirements that need to be 
satisfied in between all consecutive time periods, as 
shown in Figure 2. The formulation is computationally 
more efficient than the stochastic unit commitment 
formulation because the model can be formulated using 
three scenarios, i.e. the central forecast and the upper and 
lower bounds, while the transition constraints are 
modeled as constraints. The interval UC can also be 
formulated as a two-stage problem where the optimal 
solution is found in the first stage and then tested for 
feasibility in the second stage. 
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Figure 2. Interval unit commitment 

A method for daily UC and dispatch incorporating 
wind power based on the interval number theory is 
introduced in [26]. Uncertain wind power generation is 
represented by a functional interval. The optimal model is 
first divided into two deterministic mlx-mteger 
programming subproblems with the parameters expressed 
as constants. The interval solutions of the model can be 
constructed using the solutions of two subproblems. The 
model is tested on a 30-bus system showing that the 
proposed method can be used for the unit commitment. 
The forecasting accuracy has a great impact on the 
optimal interval of uc. 

V. HYBRID UNIT COMMITMENT MODELS 

Recently, some authors have developed hybrid models 
that exploit the advantages and eliminate disadvantages 
of the models presented in the previous Sections. Such 
models are unified stochastic and robust unit commitment 
formulation proposed in [27J and hybrid 
stochastic/interval unit commitment model proposed m 
[20J. 

A. Unified stochastic and robust unit commitment 
Stochastic UC formulations face computational 

challenges due to the large scenario size necessary to 
secure system robustness, while the robust UC 
formulations tend to result in conservative, thus 
expensive solutions. To take advantage of both of the 
approaches the authors of [27J propose a unified 
stochastic and robust UC model able to achieve low 
expected total cost while ensuring the system robustness. 
The objective function contains stochastic and robust 
parts that are weighed with scaling factors which can be 
adjusted by system power operators. The model generates 
a less conservative solution as compared to the two-stage 
robust optimization approach and a more robust solution 
as compared to the two-stage stochastic optimization 
approach. As in previous two-stage models, at the first 
stage the day-ahead unit commitment decisions are made. 
The second stage decides on the dispatch for each 
scenario for the stochastic optimization part and the 
worst-case scenario for the robust optimization part. A 
new parameter is introduced ranging between 0 and 1 to 
represent the weight of the worst case generation cost. 
The authors tested their approach on a modified IEEE 
118-bus system. 

The downside is that this approach employs heuristics 
to balance the stochastic and robust unit commitment 
solutions, which may result in suboptimal solution. 

B. Hybrid stochastic/interval unit commitment 
The authors of [20J propose a model that applies the 

stochastic formulation to the initial operating hours of the 
optimization horizon and then switches to the interval 
formulation for the remaining hours. The switching time 
is optimized to achieve optimal trade-off between the cost 
of unhedged uncertainty from the stochastic UC and the 
security premium of the interval UC. The two 
formulations are applied sequentially, instead of 
simultaneously according to their heuristically chosen 
weights in [27]. The stochastic UC, which is more cost 
effective but for a computationally tractable numbers of 
scenario less robust, is applied to the first part of the time 
horizon during which the wind power output predictions 
are more accurate. The model then switches to interval 
UC offering more robust solution for the remaining time 
period when the uncertainty is also greater. 

The authors introduce a day-ahead cost (DAC) which 
represents the expected operating cost at the day-ahead 
stage. The DAC of a stochastic UC formulation is a 
minimum expected operating cost over the set of 
scenarios, while DAC of the interval UC formulation 
represents the cost of the schedule that minimizes the cost 
of meeting the central net load forecast while ensuring the 
feasibility of the predefined worst-case scenarios. A more 
conservative uncertainty model results in greater DAC 
because of a more conservative schedule. The actual 
operating cost (AOC) is the cost that includes the 
corrective actions which include redispatch of committed 
generators and starting up or shutting down other 
generators to account for deviations between actual and 
predicted output. This hybrid UC formulation aims to 
minimize AOC by finding the optimal balance between 
the day-ahead security cost and the expected cost of 
uncertainty associated with the day-ahead schedule. The 
authors present a method to optimally select the 
switching time and they test their approach on a modified 
version of the 24-bus system 

VI. CONCLUSION 

The common goal of UC formulations is to minimize 
the operating cost, while ensuring sufficient reserve to 
accommodate real-time realization of uncertainty. The 
main difference between models is the representation of 
this uncertainty. The stochastic UC formulation tends to 
give the most cost effective solution. However, in order 
to secure the robustness of solution, a large number of 
scenarios is required which renders this formulation 
computationally intensive. The robust and interval UC 
formulations secure a robust solution, but tend to give 
conservative, thus more expensive solutions. The hybrid 
models are developed to exploit the best traits of 
stochastic formulation (being the most cost effective) and 
robust or interval formulation (securing the robustness). 

A research direction in unit commitment under 
uncertainty will include a combination of the existing 
methods that will try to exploit their respective 
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advantages. However, an important issue is the scenario 
generation and reduction techniques, which is a field of 
the ongoing research. 

Also, in the scientific community it is still not clear 
how to validate the solutions obtained using different 
techniques. Although Monte Carlo simulations are the 
most common technique for classification of the 
solutions, it is sensitive to its input parameters (historical 
errors). This method should also be re-examined and 
improved. 
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Robust Unit Commitment with Large-Scale Battery
Storage

Kristina Jurković, Student Member, IEEE, Hrvoje Pandžić, Member, IEEE, Igor Kuzle, Senior Member, IEEE

Abstract—As the renewable energy levels are constantly in-
creasing, scheduling of generating units in the day ahead stage
is becoming more challenging for system operators. Energy
storage is emerging as an attractive solution for dealing with
uncertainty and variability of renewable generation. Specifically,
large-scale battery storage units are gaining popularity due to
their modularity, fast response and ongoing cost reduction.
In this paper we model a two-stage adaptive robust unit

commitment model with large-scale energy storage. The objective
is to minimize the operating costs of thermal generators under
the worst wind power output scenario. The over-protection is
addressed using a parameter that controls the conservatism of
the model. This control parameter can be extended to cover the
uncertainty more realistically using multiple bands as the time
horizon progresses.
The proposed model is tested on an updated IEEE RTS-

96 system. Different levels of protecting the system against
uncertainty are evaluated and the role of energy storage is
analyzed.

Index Terms—Robust unit commitment, energy storage, wind
uncertainty, multiband uncertainty, Benders’ decomposition

I. INTRODUCTION

A. Motivation

Increasing levels of renewable energy in modern power
systems pose a challenge for system operators to make
economic and efficient, yet reliable and adequate day-ahead
unit commitment (UC) decisions. There are different ways to
manage the risk the renewables bring to the power systems.
The most common is to define different types of reserves and
their levels [1]–[3]. With high volatility of the renewables,
especially wind energy, this kind of system protection is not
economically efficient.

An explicit way to considering uncertainty of renewables’
output is to use scenarios of different probabilities [4]–[6].
These scenarios are usually derived from historical data and/or
weather forecasts. Such model yields acceptable system cost,
but in order to achieve robustness it may require a large num-
ber of scenarios which affects the computational tractability
of the model.

In order to avoid long computational times of the scenario-
based stochastic model, interval and robust models were
derived. These models do not consider probability distribu-
tion. Instead, their uncertainty set considers only the bounds
of uncertainty, resulting in higher computational efficiency.
However, both interval and robust UC models result in less
efficient day-ahead schedules [7].

Interval UC minimizes the cost of the most likely scenario
while ensuring the feasibility of the schedule within the entire
uncertainty set. This is achieved by imposing feasibility along

the upper and lower bounds, as well as imposing ramp require-
ments between the bounds in between each two consecutive
time periods. Robust UC also uses uncertainty set instead of
scenarios, but the objective function is to minimize the cost
of the worst case wind scenario [7]–[9].

The motivation for this paper lies in the increasing popu-
larity of unconventional large-scale storage, more specifically
large-scale batteries. According to the DoE’s Global Energy
Storage Database, currently there is over 1.7 GW of oper-
ational and 660 MW of contracted battery storage capacity
worldwide [10]. This indicates that, although the capacity
of unconventional large-scale battery storage is still low, its
growth is rapid. This is mostly the result of energy policies
that support the installation of storage units in order to enable
higher integration of renewable sources [11]. Therefore, the
goal of this paper is to integrate large-scale battery storage
with robust UC model in order to assess its impact and role.

B. Literature Review

The authors in [12] propose a two-stage adaptive security-
constrained robust UC dealing with uncertain nodal net injec-
tions. The uncertainty is described using a deterministic set
and the level of robustness is controlled using the budget of
uncertainty. This budget of uncertainty controls the number
of nodal net injections that can deviate from their nominal
values. The solutions of the model are robust against all
possible realizations of the modeled uncertainty. Since the
subproblem is a bilinear optimization problem, it is solved by
outer approximation technique which guarantees only a local
optimum.

A model that captures the uncertainty in a polyhedral set
and incorporates demand response is presented in [13]. The
authors avoid bilinearity of the subproblem by converting it
into a mixed integer linear problem (MILP) and solve the
robust UC by employing both Benders decomposition type
of algorithm, as well as column and constraint generation
algorithm (C&CG) [14].

A two-dimensional uncertainty set allowing the uncertainty
correlations among different buses and time periods is intro-
duced in [15]. The problem is solved using an exact and
a bilinear heuristic separation approach within a Benders’
decomposition frame.

In paper [16], the authors formulate robust UC that tackles
wind power uncertainty with pumped storage hydro power
plants. The authors assume that the uncertain parameter,
wind generation, is within the interval constructed based on
historical data with the forecasted value being the mean value
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of the interval. The budget of uncertainty controls the number
of hours in which the wind farm can deviate.

We present a robust unit commitment with large scale
energy storage with increasingly higher protection levels.

II. FORMULATION

A. Notation

1) Sets:
b Index to the piecewise linear segments of each gen-

erating unit’s offer curve, from 1 to B.
i Index to the generating units, from 1 to I .
j Index to the start-up cost of generating units, from 1

to J .
l Index to the transmission lines, from 1 to L.
m Index to the storages, from 1 to M .
s Index to the buses, from 1 to S.
t Index to the hours, from 1 to T .
w Index to the wind farms, from 1 to W .

2) Binary variables:
qt,i,j Start-up cost curve segment identification.
xt,i Generator status, 1 if online.
yt,i Generator start-up indicator, 1 if started.
zt,i Generator shut down indicator, 1 if shut down.

3) Continuous variables:
ct,w Curtailed wind by wind farm w during hour t (MWh).
Et,m State of charge of storage m during hour t (MWh).
gt,i,b Power output on segment b of generator i during hour

t (MWh).
LSt,s Load shedding during hour t at bus s (MWh).
PCt,m Power charged by storage m during hour t (MW).
PDt,m Power discharged by storage m during hour t (MW).
ft,l Power flow through line s−m during hour t (MWh).
rt,w Wind deviation of wind farm w during hour t (MWh).
r+t,w Postive wind deviation of wind farm w during hour

t (MWh).
r−t,w Negative wind deviation of wind farm w during hour

t (MWh).
sut,i Start-up cost of generator i during hour t ($/h).
θt,s Voltage angle of bus s during hour t (rad).

4) Parameters:
Ai Fixed cost of generator i ($/MWh).
Bl Susceptance of line l (S).
csm Storage m operating cost ($).
Dt,s Demand during hour t on bus s (MWh).
Emaxm Maximum state of charge of storage m (MWh).
Eminm Minimum state of charge of storage m (MWh).
E0m Initial state of charge of storage m (MWh).
ηcm Charging efficiency of storage m.
ηdm Discharging efficiency of storage m.
Gmaxi,b Maximum production of generator i on segment b

(MWh).
Gmini Minimum production of generator i (MWh).
Γ Budget of uncertainty.
ki,b Cost curve segment b of generator i ($/MWh).
f l Transmission capacity of line l (MWh).
PCmaxm Maximum charging power of storage m (MW).

PDmaxm Maximum discharging power of storage m (MW).
RDi Ramp down limit of generator i (MW/h).
RUi Ramp up limit of generator i (MW/h).
SUCi,j Start-up cost of generator i on segment j ($).
V oLL Value of lost load ($).
wgt,w Forecasted wind production by wind farm w during

hour t (MWh).

B. Model Formulation

The optimization problem that aims to minimize total
system operating cost under the worst wind realization is
formulated as follows:

max
rt,w

min
qt,i,j ,xt,i,yt,i,zt,i,

sut,i,
gt,i,b,LSt,s,ct,w,

ft,l,θt,s

T∑

t=1

I∑

i=1

[sut,i +Ai · xt,i ] +

+
T∑

t=1

I∑

i=1

B∑

b=1

kib · gt,i,b +
T∑

t=1

S∑

s=1

V oLL · LSt,s+

+
T∑

t=1

M∑

m=1

[csm · (PDt,m + PCt,m)]

(1)

subject to:

yt,i − zt,i = xt,i − xt−1,i, ∀t ≤ T, i ≤ I (2)

yt,i + zt,i ≤ 1, ∀t ≤ T, i ≤ I (3)

xt,i = xt0,i, ∀t ∈
[
0, Li + Li

]
, i ≤ I (4)

t∑

r=t−UTi+1

yr,i ≤ xt,i, ∀t ∈
[
Li, T

]
, i ≤ I (5)

t∑

r=t−DTi+1

zr,i ≤ 1− xt,i, ∀t ∈ [Li, T ] , i ≤ I (6)

qt,i,j ≤
T i,j∑

r=T i,j

zt−r,i, ∀t ≤ T, i ≤ I, j ≤ J (7)

∑

j∈ΩJ

qt,i,j = yt,i, ∀t ≤ T, i ≤ I (8)

sut,i =
∑

j∈ΩJ

SUCi,j · qt,i,j , ∀t ≤ T, i ≤ I (9)

B∑

b=1

gt,i,b ≥ Gmini · xt,i ∀t ≤ T, i ≤ I (10)

gt,i,b ≤ Gmaxi,b · xt,i ∀t ≤ T, i ≤ I, b ≤ B (11)

B∑

b=1

gt−1,i,b−
B∑

b=1

gt,i,b ≤ RDi ∀t ≤ T, i ≤ I (12)

B∑

b=1

gt,i,b−
B∑

b=1

gt−1,i,b ≤ RUi ∀t ≤ T, i ≤ I (13)

0 ≤ PDt,m ≤ PDmaxm ∀t ≤ T,m ≤M (14)

0 ≤ PCt,m (t) ≤ PCmaxm ∀t ≤ T,m ≤M (15)
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Et,m = Et−1,m + ηC
m · PCt,m −

1

ηD
m

· PDt,m

∀t ≤ T,m ≤M

(16)

Eminm ≤ Et,m ≤ Emaxm ∀t ≤ T,m ≤M (17)

ET,m = E0m ∀t = T,m ≤M (18)

I∑

i=1|i∈S

B∑

b=1

gt,i,b −
W∑

w=1|w∈S

ct,w −
L∑

l=1|l∈S

ft,l+

+ LSt,s +

M∑

m=1|m∈S

(PDt,m − PCt,m) =

= Dt,s −
W∑

w=1|w∈S

(wgt,w+rt,w) ∀t ≤ T, s ≤ S

(19)

ft,l −Bl ·
S∑

s=1|s∈L

θt,s = 0 ∀t ≤ T, s ≤ S, l ≤ L (20)

− f l ≤ ft,l ≤ f l ∀t ≤ T, l ≤ L (21)

− π ≤ θt,s ≤ π ∀t ≤ T, s ≤ S\s : reference bus (22)

θt,s1 = 0 ∀t ≤ T, s : reference bus (23)

0 ≤ ct,w ≤ wgt,w + rt,w ∀t ≤ T,w ≤W (24)

0 ≤ LSt,s ≤ Dt,s ∀t ≤ T, s ≤ S (25)

rt,w = r+t,w − r−t,w ∀t ≤ T,w ≤W (26)

0 ≤ r+t,w ≤ rmaxt,w ∀t ≤ T,w ≤W (27)

0 ≤ r−t,w ≤ rmaxt,w ∀t ≤ T,w ≤W (28)

W∑

w=1

r+t,w + r−t,w
rmaxt,w

≤ Γt ∀t ≤ T,w ≤W (29)

Objective function (1) minimizes total system operating cost
under the worst wind realization. Constraints (2) and (3) rep-
resent binary logic to determine generator on/off, startup and
shut down statuses. Constraints (4)–(6) model minimum up
and down times, while constraints (7)–(9) calculate generators
start-up costs. Constraints (10)–(13) determine generator out-
puts while respecting the minimum and maximum production
limits, as well as ramping limits. Constraints (14)–(18) impose
power and energy limits on storage operation and calculate
state of charge. Constraints (19)–(25) represent transmission
constraints of the DC power flow model. The uncertainty is
modeled using constraints (26)–(29). The uncertain parameter
in the model is wind deviation and it can be both positive
(higher wind farm output than forecasted) or negative (lower
wind farm output than forecasted), as indicated in (26). Maxi-
mum wind deviation is a known parameter and without the loss
of generality in (27)–(28) we assume a symmetrical interval
in which the wind deviation lies. Constraint (29) sets values
of r+t,w and r−t,w depending on the robustness parameter Γt.

The model above is of max-min structure and cannot be
solved directly. Since wind realization affects second stage
variables, and is independent of the first stage, i.e., day-ahead
variables, the problem can be rewritten using the min-max-

min matrix form.

min
x

cTx · x max
r

min
y

cTy · y (30)

s.t. Cy = −r −Bx : λ (31)

Dy ≥ g − Ex− Fr : μ (32)

s.t. Hr ≤ h (33)

s.t. Ax ≥ a (34)

Equations (31)–(32) represent second stage cost and in-
clude constraints (10)–(25). The second-stage minimum cost
is maximized over the uncertainty set described in equation
(33) containing constraints (26)–(29). Equation (34) includes
constraints (2)–(9) that model the day-ahead UC cost. By using
the duality theory the inner min problem is transformed to
max problem. The two maximization problems can be merged
into a bilinear problem that is hard to solve and offers only
a local optimum guarantee. Instead, by employing the KKT
conditions to the inner maximization problem it is possible to
convert the bilinear problem into a MILP that can be solved
using an off-the-shelf solver [17]. The final model formulation
is:

min
x

cTx · x
max
λ,μ,r,ρ

−(Bx)Tλ+ (g − Ex)Tμ+ hTρ
(35)

s.t. CTλ+DTμ = cy (36)

μ ≥ 0 (37)

0 ≤ ρ ⊥ h−Hr ≥ 0 (38)

HTρ = −λ− FTμ (39)

s.t. Ax ≥ a (40)

C. Solution algorithms
There are two solution algorithms to solve the obtained

min-max problem. The first one is an iterative scheme based
on cutting plane algorithm within a Benders’ decomposition
scheme. The steps of this algorithm are:

1) Set upper and lower bounds to a large enough number
and initialize the iteration index iter = 1.

2) Solve the relaxed master problem (minx cTx ·x+β subject
to (40)). Fix a reasonable lower bound for β, i.e., lower
than the expected objective value of the inner problem.
Fix a feasible solution (x∗1, β∗1 ).

3) Solve the subproblem (the maximization problem) and
update the upper bound. Add the Benders cut β ≥ −rk ·
λk+(g−F · rk) ·μk− (λk ·B+μk ·E) ·x to the relaxed
master problem corresponding to the current solution.

4) Solve the master problem updated with Benders cuts and
update the lower bound.

5) If the tolerance value is reached, then stop. Otherwise,
update the iteration counter and go back to step 3.

Similarly to the Benders dual cutting plane algorithm, the
problem can be solved using the C&CG algorithm that sig-
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TABLE I. STORAGE DATA

PCmaxm PDmaxm Emaxm

Storage at bus 116 50 MW 50 MW 300 MWh
Storage at bus 119 35 MW 35 MW 210 MWh
Storage at bus 121 100 MW 100 MW 600 MWh

TABLE II. MULTI Γ VALUES THROUGHOUT THE DAY

Hour 1 2 3 4 5 6 7 8 9 10 11 12
Γ 0 1 2 2 3 4 5 5 6 7 8 8

Hour 13 14 15 16 17 18 19 20 21 22 23 24
Γ 8 9 10 11 12 13 14 15 16 17 18 19

TABLE III. TOTAL SYSTEM OPERATING COSTS, $ (SUC – STARTUP
COSTS; DC – DISPATCH COSTS)

Γ = 0 Γ = 8 Γ = 19 Multi Γ
SUC 245,013 265,409 282,258 273,257
DC 916,650 949,449 1,073,280 952,986

Total 1,161,700 1,214,900 1,355,538 1,226,244

nificantly reduces the computing time. Instead of the Benders
cut, several primal cuts are added:

β ≥ cy · yk (41)

C · yk = −rk −B · x (42)

D · yk = g − E · x− F · rk (43)

The equations (41)-(43) represent primal cutting planes in
[14]. These cuts are affine in the primal recourse variables yk

and do not depend on dual variables. This allows us to use
one Benders cut per vertex of the uncertainty set, as opposed
to using one cut per joint feasibility set (rk,λ,μ) which results
in a smaller number of cuts.

III. CASE STUDY

The proposed model is tested on IEEE RTS-96 with ad-
ditional 19 wind farms. All the test case data are available
at [18]. Storage locations and capacities (shown in Table I)
are chosen based on the technique proposed in [19]. Energy-
to-power ratio is set to six, implying the installation of NaS
battery technology [20].

Parameter Γ may range from 0 to 19, thus setting the
number of wind farms that may deviate from their forecasted
output. For Γ = 0, we obtain the deterministic case where
all wind farms meet their expected output. On the other hand,
Γ = 19 represents the full robust case when all wind farms
deviate from their expected outputs. In the analysis we also
show results for Γ = 8, which represents an average measure
of protection. Additionally, since wind forecasts tend to deviate
more further in the time horizon, we analyze the case with
increasingly higher protection levels, i.e. Γ values, over time.
Values of Γ over the course of the day are presented in Table
II, while this case is referred to as “Multi Γ”.

The results for four levels of conservatism are shown in
Table III. The total system operating costs are 17% higher in

case of the highest protection, i.e. Γ = 19 as opposed to the
least conservative case where Γ = 0. Total operating costs do
not increase linearly with Γ as for Γ = 8 the costs are only
4.5% higher than for the most optimistic case. These costs are
similar to the ones for Multi Γ case. However, the structure of
cost for Multi Γ is slightly different than for Γ = 8. Namely,
the startup costs have higher share in the overall operating
costs. This is the result of the Multi Γ case needing more
generators on-line to satisfy the demand in the evening hours
when the expected wind output is much lower due to high
evenign Γ values.

Fig. 1 presents the effects of different levels of conservatism
on conventional generators. Higher values of Γ incur higher
conventional generation as the expected wind farm outputs are
lower. The difference in certain hours is as high as 600 MW.
The curve representing the Multi Γ (light) case starts very
close to the optimistic case (dark curve), in hours 6–15 it is
close to the Γ = 8 curve and in the evening hours it acts as
the pessimistic case (dotted curve).

Fig. 1. Conventional generation.

Fig. 2 shows the levels of wind curtailment. Wind outputs in
the evening are higher than early in the day and, consequently,
the majority of wind curtailment occurs in the evening hours.
Curtailment is highest for the optimistic case (dark curve). The
Multi Γ curve is close to the pessimistic case (dotted curve)due
to similar values of Γ in the evening hours.

Fig. 3. Wind curtailment.

Fig. 3 shows the behaviour of the three storage units for
different levels of protection. Generally, storage units slightly
discharge in the first couple of hours and then start charging
at full power rating until hour 6. After this, storage units start
discharging until hour 13. At hour 20, the charging process
occurs in order to reach the initial state of charge level imposed
by constraint (18). In some cases, especially storage at bus
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(a) Storage at bus 116 (b) Storage at bus 119 (c) Storage at bus 121

Fig. 2. Storage operation.

Fig. 4. Storage impact on conventional generation and wind curtailment for
Multi Γ.

121, a small charging-discharging cycle occurs in the afternoon
hours. The afternoon cycles are highest for Γ = 19.

The effects of storage in Multi Γ case are shown in Fig.
4. The daily peak of conventional generation that occurs at 9
am is reduced by 185 MW, while the conventional generation
output is increased in early morning and late evening. Lower
graph in Fig. 4 shows that the wind curtailment is reduced in
presence of storage. This increased utilization of wind energy
results in a reduction of overall operating cost from $1,271,331
to $1,226,244.

IV. CONCLUSIONS

This paper analyzes large-scale energy storage contribution
to robust UC under different levels of protection. In the
presented cases storage reduces total system operating costs
by 2–4% and net load peak by 184 MW. This indicates the
usefulness of storage and its compatibility with the robust UC
framework.
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[14] M. Świerczyński, R. Teodorescu, C. N. Rasmussen, P. Rodriguez, and H. Vikelgaard.

Overview of the energy storage systems for wind power integration enhancement. In 2010

IEEE International Symposium on Industrial Electronics, pages 3749–3756, 2010. doi:

10.1109/ISIE.2010.5638061.

[15] International Energy Agency. Energy Technology Perspectives 2016 – To-

wards Sustainable Urban Energy Systems. URL https://www.iea.org/reports/

energy-technology-perspectives-2016.

[16] B. Kirby E. Ela, M. Milligan. Operating Reserves and Variable Generation. National

Renewable Energy Laboratory, 2011.

[17] IRENA. Innovation landscape brief: Utility-scale batteries. International Renewable

Energy Agency, Abu Dhabi, 2019.

[18] M. Glowacki. Role of the Electricity Balancing Network Code in the European

Union Internal Electricity Market. URL https://www.emissions-euets.com/

network-codes/electricity-balancing-network-code.

[19] H.I. Su and A.E. Gamal. Modeling and analysis of the role of fast-response energy storage

in the smart grid. In 2011 49th Annual Allerton Conference on Communication, Control,

and Computing (Allerton), Monticello, Illinois, 2011.

[20] Federal Energy Regulatory Commission. Frequency regulation compensation organized

wholesale power markets. Docket nos. rm11-7-000 and ad10-11-000; order no. 755, 2011.

[21] KPMG. Efr tender results. Market briefing, 2016.

[22] Sunverge. Integrated energy storage: An answer to address-

ing the “duck curve”? URL http://www.sunverge.com/

integrated-energy-storage-an-answer-to-addressing-the-duck-curve/.

103

https://www.sciencedirect.com/science/article/pii/B9780128133064000045
https://www.sciencedirect.com/science/article/pii/B9780128133064000045
https://www.iea.org/reports/energy-technology-perspectives-2016
https://www.iea.org/reports/energy-technology-perspectives-2016
https://www.emissions-euets.com/network-codes/electricity-balancing-network-code
https://www.emissions-euets.com/network-codes/electricity-balancing-network-code
http://www.sunverge.com/integrated-energy-storage-an-answer-to-addressing-the-duck-curve/
http://www.sunverge.com/integrated-energy-storage-an-answer-to-addressing-the-duck-curve/


Bibliography

[23] K. Balaraman. Dive brief. URL https://www.utilitydive.com/news/

caiso-approves-hybrid-storage-policies-as-california-preps-for-addition-of/

589609/.

[24] CAISO. Pdr-derp-ngr summary comparison ma-

trix. URL http://www.caiso.com/Documents/

ParticipationComparison-ProxyDemand-DistributedEnergy-Storage.pdf.

[25] K. Pickerel. World’s largest lithium-based energy storage sys-

tem storing 1,200 mwh of power now online in califor-

nia. URL https://www.solarpowerworldonline.com/2021/01/

worlds-largest-lithium-based-energy-storage-system-storing-1200-mwh-of-power-now-online-in-california/.

[26] P. Denholm and R. Sioshansi. The value of compressed air energy storage with wind in

transmission-constrained electric power systems. Energy Policy, 37:3149–3158, 2009.

[27] US Energy Information Administration. Most of Hawaii’s electric battery systems are

paired with wind or solar power plants. URL https://www.eia.gov/todayinenergy/

detail.php?id=43215#.

[28] K. Hawley K. Bunker and J. Morris. Renewable Microgrids: Profiles from Islands

and Remote Communities Across the Globe. URL http://www.rmi.org/islands_

renewable_microgrids.

[29] P. Mokrian and M. Stephen. A Stochastic Programming Framework for the Val-

uation of Electricity Storage. URL www.iaee.org/en/students/bestpapers/

PedramMokrian.pdf.

[30] Europen Union. Directive (EU) 2019/944 of the European Parliament and of the Council

of 5 June 2019 on common rules for the internal market for electricity and amending

Directive 2012/27/EU, 2019.

[31] A. Papavasiliou, M. Bjørndal, G. Doorman, and N. Stevens. Hierarchical balancing in

zonal markets. In 2020 17th International Conference on the European Energy Market

(EEM), pages 1–6. IEEE, 2020.

[32] PJM. LMP Supports Competitive Wholesale Power Markets, 2020.

URL https://pjm.com/~/media/about-pjm/newsroom/fact-sheets/

locational-marginal-pricing-fact-sheet.ashx.

[33] A. González-Garrido, A. Saez-de-Ibarra, H. Gaztañaga, A. Milo, and P. Eguia. Annual

optimized bidding and operation strategy in energy and secondary reserve markets for

104

https://www.utilitydive.com/news/caiso-approves-hybrid-storage-policies-as-california-preps-for-addition-of/589609/
https://www.utilitydive.com/news/caiso-approves-hybrid-storage-policies-as-california-preps-for-addition-of/589609/
https://www.utilitydive.com/news/caiso-approves-hybrid-storage-policies-as-california-preps-for-addition-of/589609/
http://www.caiso.com/Documents/ParticipationComparison-ProxyDemand-DistributedEnergy-Storage.pdf
http://www.caiso.com/Documents/ParticipationComparison-ProxyDemand-DistributedEnergy-Storage.pdf
https://www.solarpowerworldonline.com/2021/01/worlds-largest-lithium-based-energy-storage-system-storing-1200-mwh-of-power-now-online-in-california/
https://www.solarpowerworldonline.com/2021/01/worlds-largest-lithium-based-energy-storage-system-storing-1200-mwh-of-power-now-online-in-california/
https://www.eia.gov/todayinenergy/detail.php?id=43215#
https://www.eia.gov/todayinenergy/detail.php?id=43215#
http://www.rmi.org/islands_renewable_microgrids
http://www.rmi.org/islands_renewable_microgrids
www.iaee.org/en/students/bestpapers/PedramMokrian.pdf
www.iaee.org/en/students/bestpapers/PedramMokrian.pdf
https://pjm.com/~/media/about-pjm/newsroom/fact-sheets/locational-marginal-pricing-fact-sheet.ashx
https://pjm.com/~/media/about-pjm/newsroom/fact-sheets/locational-marginal-pricing-fact-sheet.ashx


Bibliography

solar plants with storage systems. IEEE Transactions on Power System, 34(6):5115–5124,

2019.

[34] M. Parvania, M. Fotuhi-Firuzabad, and M. Shahidehpour. Comparative hourly schedul-

ing of centralized and distributed storage in day-ahead markets. IEEE Transactions on

Sustainable Energy, 5(3):729–737, 2014.

[35] H. Akhavan-Hejazi and H. Mohsenian-Rad. Optimal operation of independent storage

systems in energy and reserve markets with high wind penetration. IEEE Transactions on

Smart Grid, 5(2):1088–1097, 2014. doi: 10.1109/TSG.2013.2273800.

[36] Y. Wang, Y. Dvorkin, R. Fernandez-Blanco, B. Xu, and D.S. Kirschen. Impact of local

transmission congestion on energy storage arbitrage opportunities. In 2017 IEEE PES

General Meeting, Chicago, USA, July 16-20 2017.

[37] R. Sioshansi. When energy storage reduces social welfare. Energy Economics, 41:106–

116, 2014.

[38] H. Mohsenian-Rad. Coordinated price-maker operation of large energy storage units in

nodal energy markets. IEEE Transactions on Power Systems, 31(1):786–797, 2016. doi:

10.1109/TPWRS.2015.2411556.

[39] E. Nasrolahpour, J. Kazempour, H. Zareipour, and W. D. Rosehart. Impacts of ramping

inflexibility of conventional generators on strategic operation of energy storage facilities.

IEEE Transactions on Smart Grid, 9(2):1334–1344, 2018.

[40] B.F. Hobbs, C.B. Metzler, and J.S. Pang. Strategic gaming analysis for electric power

systems: an mpec approach. IEEE Transactions on Power Systems, 15(2):638–645, 2000.

[41] Y. Chen, B. F. Hobbs, S. Leyffer, and T. S. Munson. Leader-follower equilibira for elec-

tricpower and nox allowances markets. CMS 2006, 3(4):307–330, 2006.

[42] D. Ralph and Y. Smeers. Epecs as models for electricity markets. In Power Systems

Conference and Exposition, Atlanta, USA, 2006.

[43] J.S. Pang and M. Fukushima. Quasi-variational inequalities, generalized nash equilibria,

and multi-leader-follower games. CMS 2005, 2(1):21–56, 2005.

[44] C. Ruiz, A. J. Conejo, and Y. Smeers. Equilibria in an oligopolistic electricity pool with

stepwise offer curves. IEEE Transaction on Power Systems, 27(2):752–761, 2012.

[45] H. Pandzic, A.J. Conejo, and I. Kuzle. An epec approach to the yearly maintenance

scheduling of generating units. IEEE Transaction on Power Systems, 28(2):922–930,

2013.

105



Bibliography

[46] Z. Zou, Q. Chen, Q. Xia, G. He, C. Kang, and A.J. Conejo. Pool equilibria including

strategic storage. Applied Energy, 177:260–270, 2016.

[47] A. Shahmohammadi, R. Sioshansi, A.J. Conejo, and S. Afsharnia. Market equilibria and

interactions between strategic generation, wind, and storage. Applied Energy, 220:876–

892, 2018.

[48] C. Koch and L. Hirth. Short-term electricity trading for system balancing: An empirical

analysis of the role of intraday trading in balancing germany’s electricity system. Renew-

able and Sustainable Energy Reviews, 113:109275, 2019.

[49] C. Lackner, T. Nguven, R.H.Byrne, and F.Wiegandt. Energy storage participation in the

german secondary regulation market. In 2018 IEEE PES Transmission and Distribution

Conference and Exposition (TD), Denver. USA, April 16-19 2018.

[50] PICASSO Project TSOs. Consultation on the Design of the Platform for Automatic Fre-

quency Restoration Reserve (AFRR) of PICASSO Region; The Platform for the Interna-

tional Coordination of Automated Frequency Restoration and Stable System Operation

(PICASSO)., 2017.

[51] A. Berrada, K. Loudiyi, and I. Zorkani. Valuation of energy storage in energy and regula-

tion markets. Energy, 115:1109–1118, 2016.

[52] M. Kazemi, H. Zareipour, N. Amjady, W. D. Rosehart, and M. Ehsan. Operation schedul-

ing of battery storage systems in joint energy and ancillary services markets. IEEE

Transactions on Sustainable Energy, 8(4):1726–1735, 2017. doi: 10.1109/TSTE.2017.

2706563.

[53] I.L.R. Gomes, H.M.I. Pousinho, R. Melício, and V.M.F. Mendes. Stochastic coordination

of joint wind and photovoltaic systems with energy storage in day-ahead market. Energy,

124:310–320, 2017.

[54] A. Zeh, M. Müller, M. Naumann, H.C. Hesse, A. Jossen, and R. Witzmann. Fundamentals

of using battery energy storage systems to provide primary control reserves in germany.

Batteries, 2(3), 2016.

[55] C. Goebel and H. Jacobsen. Aggregator-controlled ev charging in pay-as-bid reserve mar-

kets with strict delivery constraints. IEEE Transactions on Power Systems, 31(6):4447–

4461, 2016. doi: 10.1109/TPWRS.2016.2518648.

[56] M. Merten, F. Rücker, I. Schoeneberger, and D. Uwe Sauer. Automatic frequency restora-

tion reserve market prediction: Methodology and comparison of various approaches. Ap-

plied Energy, 268:114978, 2020.

106



Bibliography

[57] M. Merten, C. Olk, I. Schoeneberger, and D. Uwe Sauer. Bidding strategy for battery

storage systems in the secondary control reserve market. Applied Energy, 268:114951,

2020.

[58] J. Fleer, S. Zurmühlen, J. Meyer, J. Badeda, P. Stenzel, J.-F. Hake, and D. U. Sauer.

Techno-economic evaluation of battery energy storage systems on the primary control

reserve market under consideration of price trends and bidding strategies. Journal of

Energy Storage, 17:345–356, 2018.

[59] T. Thien, D. Schweer, D. vom Stein, A. Moser, and D. U. Sauer. Real-world operating

strategy and sensitivity analysis of frequency containment reserve provision with battery

energy storage systems in the german market. Journal of Energy Storage, 13:143–163,

2017.

[60] E. Nasrolahpour, J. Kazempour, H. Zareipour, and W.D. Rosehart. A bilevel model for

participation of a storage system in energy and reserve markets. IEEE Transactions on

Sustainable Energy, 9(2):582–598, 2018.

[61] A. Schillemans, G. De Vivero-Serrano, and K. Bruninx. Strategic participation of mer-

chant energy storage in joint energy-reserve and balancing markets. In 2018 MEDPOWER,

Dubrovnik, Croatia, November 12-15 2018.

[62] H. Hoschle, H. Le Cadre, Y. Smeers, A. Papavasiliou, and R. Belmans. An admm-based

method for computing risk-averse equilibrium in capacity markets. IEEE Transactions on

Power Systems, 33(5):4819–4830, 2018.

[63] A.A. Thatte, L. Xie, E. Viassolo, S. Singh, and R. Belmans. Risk measure based robust

bidding strategy for arbitrage using a wind farm and energy storage. IEEE Transactions

on Smart Grid, 4(4):2191–2199, 2013.

[64] A.A. Moazeni, L. Powell, and E. Hajimiragha. Mean-conditional value-at-risk optimal

energy storage operation in the presence of transaction costs. IEEE Transactions on Power

Systems, 30(3):1222–1232, 2015.

[65] E. Nasrolahpour, H. Zareipour, W. D. Rosehart, and S. J. Kazempour. Bidding strategy

for an energy storage facility. In 2016 Power Systems Computation Conference (PSCC),

pages 1–7, 2016.

[66] Y. Dvorkin, R. Fernández-Blanco, D. S. Kirschen, H. Pandžić, J. Watson, and C. A. Silva-
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1. Jurković, Kristina; Pandžić, Hrvoje; Kuzle, Igor, "Strategija nastupa distribuiranih bater-
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