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ABSTRACT   

When analysing Internet traffic today it can be found that digital video content prevails. Its domination will continue to 

grow in the upcoming years and reach 82% of all traffic by 2021. If converted to Internet video minutes per second, this 

equals about one million video minutes per second. Providing and supporting improved compression capability is therefore 

expected from video processing devices. This will relieve the pressure on storage systems and communication networks 

while creating preconditions for further development of video services. Transform and quantization is one of the most 

compute-intensive parts of modern hybrid video coding systems where coding algorithm itself is commonly standardized. 

High Efficiency Video Coding (HEVC) is state-of-the-art video coding standard which achieves high compression 

efficiency at the cost of high computational complexity. In this paper we present highly parallel GPU accelerator for HEVC 

transform and quantization which targets most common heterogeneous computing CPU+GPU system. The accelerator is 

implemented using CUDA programming model. All the relevant state-of-the-art techniques related to kernel vectorization, 

shared memory optimization and overlapping data transfers with computation were investigated, customized and carefully 

combined to obtain a performance efficient solution across all applicable transform sizes. The proposed solution is 

compared against reference implementation which uses NVIDIA cuBLAS library to perform the same work. Obtained 

speedup factors for DCI 4K frame are 2.46 times for largest transform size and 130.17 times for smallest transform size 

what revealed substantial performance gap of this library when targeting GPU of the Kepler architecture. Achieved 

processing time of frame transform and quantization are up to 4.82 ms.   

Keywords: Integer discrete cosine transform (DCT), high efficiency video coding (HEVC), graphics processor unit 

(GPU), matrix multiplication, compute unified device architecture (CUDA), high performance computing (HPC) 

 

1. INTRODUCTION  

Today, more than ever before, digital video dominates many industries and services. IP video traffic statistics and forecast 

for the time period from 2017 to 2022 show that it is in the range of 75 to 82 percent of total IP traffic1. Aside from high 

customer demand for video content, this high share is also caused by introduction of the Ultra-High-Definition (UHD) or 

4K video streaming. It is estimated that by 2022 the UHD IP video will account for 22 percent of the global IP video traffic. 

This emerging technology reflects customer requests for high resolution and high-quality video content. There exist 

different forms of IP video content including Internet video,   Video on Demand (VoD), video conferencing, video-

streamed gaming and video files exchanged through file sharing. The very broad range of the forms and applications 

characterized by different specifications and constraints have one thing in common, video (de)compression. Compression 

is done by content providers and decompression is carried out at the consumer device. Video compression is a necessary 

processing step for affordable and efficient storage and transmission. Without compression, it would not be feasible to 

store and transmit digital video content because of the required huge storage capacity and a very large bandwidth. 

The new generation of video compression standards provides higher quality at lower bit rates. This accomplishment was 

made at the cost of a big increase in the computational complexity of video encoding and decoding. One of the major state-

of-the-art video coding standards is HEVC2. It doubled compression efficiency compared to its predecessor Advanced 

Video Coding (AVC). 
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Transform and quantization (TQ) is very important computation block not only in video coding systems but in multimedia 

compression systems in general. Mapping signals from spatial into the transform domain provides energy compaction and 

decorrelation. Once this is obtained, spectral components contributing less to video quality are removed during 

quantization. Discrete cosine transform (DCT) is the most widely used computational kernel in lossy compression due to 

its properties, which contribute to both compression efficiency and efficient implementation. Driven by further increase in 

implementation efficiency and interoperability, modern compression standards adopt integer approximation of the DCT 

like the one specified in the HEVC3. 

Video coding of high-resolution and high frame rate videos using new generation video codecs demands a high processing 

speed and compute capability. Computing systems based on the general Central Processing Unit (CPU) have reached the 

upper boundary in computation speed per Watt and cannot be efficiently utilized for video coding applications. The 

emerging heterogenous multiprocessor high performance computers can be used as a solution for those challenges. As one 

of the most processing and data demanding part of the HEVC compression algorithm, TQ can be implemented on 

CPU+GPU system, which is  the most common heterogeneous computing system architeture4 nowadays. Optimized 

implementation is a key to achieve high performance video encoding. 

F. de Souza et al5. proposed highly parallel HEVC decoder in which all functional blocks except entropy decoder were 

transferred to GPU. It is characterized by frame-level parallel processing, unified decoder design to exploit GPU memory 

hierarchy and optimization of all decoding steps to achieve high parallelism level, efficient memory access and high 

instruction throughput. Igarashi et al.6 tackled two processing overheads in TQ, gathering different size Transform Units 

(TU) and excessive data transfers, which appeared in proposal from Chen et al.7. The gathering process was removed 

through irregular load/store of TU data in separated memory addresses. Parallel packing of transform coefficients reduced 

the CPU-GPU data transfer. Less efficient parallelization on Coding Tree Unit (CTU) level was carried out from He et al8. 

Their TQ accelerator on GPU combined two control tables, one for TU partitioning and the other for storing of quantization 

parameter (QP) value. All these works either don’t discuss TQ kernel design and low-level optimizations in detail or 

parallelization is not carried out on frame-level to exploit GPU parallelism. 

In this paper we present highly parallel GPU accelerator for HEVC TQ with parallelization carried out on the frame-level 

with previously grouped transform blocks (TB) at the CPU side. Efficient vectorized memory access, data transfer 

minimization, CUDA kernel flexibility and overlapping data transfers with computation were investigated mutually to 

obtain a performance efficient solution across all applicable transform sizes. 

The rest of the paper is organized as follows: In section 2 proposed GPU parallelization of TQ functional block is presented. 

In section 3 implementation is described and obtained results are evaluated. Section 4 gives the conclusions. 

2. PROPOSED GPU PARALLELIZATION OF TQ 

Compared to HEVC, standard TQ functional block will be slightly reduced during the design of the proposed accelerator. 

Processing the transform flags, i.e. Coded Block Flag, Transform Skip Flag and Transquant Bypass Flag are not considered 

in this work to simplify the parallelization analysis. Nevertheless, the evaluation results are applicable to the fully 

functional HEVC TQ accelerator since most of the workload relates mainly to matrix multiplications, and scalar operations, 

which are both covered here. 

2D int. DCT Quantization

 

Figure 1. Block diagram of the HEVC transform and quantization. 

TQ processes TBs grouped at the CPU side according to their size and sent in groups to GPU for processing. The accelerator 

outputs blocks of quantized transform coefficients. Block diagram of the accelerator is shown in Figure 1. 2D integer DCT 

is specified in the standard for four different TB sizes (4 × 4, 8 × 8, 16 × 16 and 32 × 32)  and is given by 

𝑌 = 𝐷 × 𝑋 × 𝐷𝑇 (1) 

where 𝐷 is the HEVC transform matrix with known values, 𝑋 is the prediction error matrix and 𝐷𝑇  is a transpose of the 

transform matrix. Both two 𝑁-point 1D transforms are followed by scaling. Quantization is a scalar operation as well. 
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The heterogeneous processing system used in this work contains the CPU and its memory, referred to as the host, and GPU 

and its memory referred to as the device. 

Compared to homogenous computing using CPU’s only, there are two major overheads in systems with  GPU accelerators 

: initiating a task on a device and transferring data from host to device and back. To save processing time, an unique kernel, 

which includes all operations made with TBs in a frame, is designed. Data transfers are realized directly over host’s page-

locked memory. Transform matrices for every transform size is written to the device global memory in advance and used 

for all frames that are processed. 

All data needed for processing reside in global memory and are transferred from there to streaming multiprocessors (SM). 

Data are modeled using thread-blocks (ThB) and SM executes threads in warps, groups of 32 threads. Prediction error 

data, transform matrices and intermediate data, are stored and retrieved from the on-chip shared memory during TQ 

process. If the latencies for these two types of memory are compared, then the shared memory latency is approximately 

100 times lower. To maximize parallelization and achieve higher performance ThB have to be highly utilized. It has been 

shown that highest performance is obtained when ThB are configured with quarter of the maximum number of the threads 

per block. In case of higher utilization fewer data requests can be handled from the L2 cache load, global memory has to 

be involved and its throughput decreases. 

Performance of the accelerator is primarily affected by the access efficiency to the shared memory. When multiplying two 

matrices, scalar product has to be calculated for every element of result matrix. Multiply-add operation requires that 𝑁 

pairs of elements are retrieved from the memory and intermediate results stored there. The shared memory is organized in 

32 memory banks where each bank has bandwidth of 64 bits per clock cycle. Thus, it was  intuitive  to group 4 byte-aligned 

16-bit prediction error values into a data vector and configure the memory for 64-bit addressing mode. Next task was to 

design access pattern for all transform sizes which will minimize bank conflicts that occur when multiple threads’ requested 

addresses within a warp map to the same memory bank. This is accomplished by padding the 2D arrays related to both 

operands with an additional column. This padding prevents bank conflicts when executing top-left thread in a ThB that 

computes four top-left elements of a resulting matrix product. The example of this for the largest size transform can be 

seen in Figure 2. Without padding, bank conflicts would occur when retrieving four leftmost  elements in every fourth row 

since they are in the same bank. It has been shown that memory padding method is not efficient for 4- and 8-point 

transforms as more bank conflicts occur due to added column.  
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Figure 2. Distribution of data structured in shared memory using short4 data type and processed by the top left thread in a 

ThB for 32 × 32 TB 

Considering a four-element vectorization and optimal configuration of ThB, size mapping ratio for prediction error blocks 

can be calculated as 1024 𝑁2: 1⁄ . Another operand in matrix multiplication, HEVC transform matrix, is loaded in the 

shared memory once per ThB. Reading transform matrix coefficients from the single instance results in performance 

efficient conflict-free broadcast access.    
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3. IMPLEMENTATION AND EVALUATION

 The development environment set up to perform planned evaluations, consists of Intel Core i5-3570K@3.40GHz and 

NVIDIA Tesla K40c graphic card. Both host and device exchange data over the PCI Express x16 Gen3 high-speed bus 

(PCI-e). The Compute Unified Device Architecture9 (CUDA) programming model v10.1 integrated into the Microsoft 

Visual Studio Community 2017 v15.9.7 was used to support heterogeneous computation with GPU accelerator for HEVC 

TQ. Three different implementations were supported. Referent CPU implementation computed quantized transform 

coefficients of a DCI 4K prediction error frame for given distribution of TBs. Its results were compared against proposed 

GPU implementation, which followed design principles described in previous section, and cuBLAS implementation that 

targeted GPU as well but employed NVIDIA library functions cuBLAS10 to compute HEVC TQ of batch of TBs.  

As cuBLAS doesn’t support integer data sizes larger than 8-bit, the data type for all blocks and intermediate values is 

changed to a 32-bit floating-point. The 16-bit floating-point data are not used to avoid a compromise on accuracy. The data 

type change made scaling based on a right-shift obsolete. Scaling is therefore implemented as a scalar multiplication. The 

results obtained from the cublasSgemmStridedBatched(…) API in cuBLAS implementation are rounded in a separate 

kernel by using the floor command to obtain HEVC compliant results. 

Performance measurements for two GPU implementations included overall and kernel processing time per frame. TQ 

functions that will be executed on a GPU were invoked ten times and the final measurement value was obtained as an 

average of all processing times. Two TB distributions, an edge cases considering computational complexity were 

evaluated, frame split to all 4 × 4 TBs and 32 × 32 TBs. Measurement results are shown in Table 1. 

Table 1.  Processing time comparison of the CPU and GPU implementations of transform and quantization for two 

transform block distributions. 

TB distribution 

Frame processing time [ms] 

CPU GPU overall GPU kernel CUBLAS 

overall 

CUBLAS 

kernel 

32 × 32 705.95 8.77 3.65 19.25 8.97 

4 × 4 234.59 5.9 0.78 117.24 101.75 

Results show that GPU implementation outperforms other two implementations. In case of the distribution with largest TB 

size speed-up over CPU and cuBLAS implementation considering kernel processing time is 80.53 times and 2.46 times 

respectively. For distribution based on smallest size TB these values are 39.73 and 130.17 times respectively. cuBLAS 

implementation exhibits significantly lower performance here. Analysis using a profiling tool showed that 1D integer 

transform kernels were invoked thirteen times altogether what involves significant overhead in task initiation at the device. 

Furthermore, ThB are configured with 128 threads from which only 16 are utilized, global load and store efficiency are 

very low, below 50% and shared efficiency is less than 30%. 
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Figure 3. Impact of the number of employed CUDA streams on performance when processing a DCI 4K video frame 
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For an even more efficient GPU implementation, overlapping kernel execution and data transfer was exercised. Only the 

GPU implementation is in the scope of this evaluation. Prediction error frames are broken up into chunks, which can be 

interpreted as horizontal frame segments, and each chunk is assigned to its own CUDA stream. The objective was to find 

the frame segmentation for which the highest performance in terms of frame processing time is achieved. The results are 

shown in Figure 3. Lowest processing times 4.82 ms and 5.01 ms were achieved when seven streams are used. Speed-up 

between adjacent implementations decreases as number of streams increases. When moving to implementation with two 

stream, highest adjacent speed-up is obtained as data transfer and kernels are executed concurrently now compared to 

implementation with single (default) stream without any concurrency. As number of streams further increases, so increases 

the number of sequentially executed kernel chunks, and data transfer chunks but overlapping capability decreases. The 

overall performance gain using the overlapping is highest for the case when the data transfer and kernel periods are the 

same. Frame split to 32 × 32 TBs is closer to that optimal initial state with 58% of data transfer share in overall processing 

time (87% for 4 × 4 TBs). Therefore, its TQ takes less time.    

4. CONCLUSION

This paper presents highly parallel GPU accelerator for HEVC TQ. During its design different optimizations techniques 

like vectorized memory access, page-locked data transfer, overlapping data transfers and kernel executions were adopted 

and adjusted to standardized TQ process and data types. Data transfers between host and device and within the device were 

designed to make full use of memory hierarchy and access pattern were created to maximize memory throughput. In 

experimental analysis using heterogeneous computing system with high-end GPU, TQ process was applied on production 

error signal in DCI 4K video frame. The proposed GPU implementation outperformed CPU and cuBLAS implementation 

39.73 and 2.46 times respectively and revealed significant performance degradation when the latter is used for smallest 

size TBs. With overlapping data transfers and kernel execution frame processing time was as low as 4.82 ms.     
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