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ABSTRACT

Hierarchical model predictive control

of temperature in building zones

Buildings belong to the large energy consumers class and account for 40% of worldwide
primary energy consumption. The systems with the largest potential for improvement of
buildings sector energy efficiency, with estimated nearly 60% of overall energy consumption
in buildings, are systems for maintaining thermal comfort. Motivated by this, application
of advanced control, fault detection and diagnosis algorithms in buildings has been
intensively investigated with the aim to improve their energy efficiency and bring
the buildings sector into the smart city arena. Hindering the trend, hysteresis and
proportional-integral-derivative controllers are still a common practice. Introduction of
more sophisticated model-based controllers, which proved to be the promising solution for
improving the energy efficiency of the buildings sector, requires a cost-effective approach
for identification of suitable mathematical models. In the thesis, the control-oriented,
replicable, robust and simple methodologies for identification of suitable mathematical
models consolidating the advantages of physical modelling and identification are presented
and validated. Driven by the decreasing hardware cost and advances in computational
power and information communication technology, buildings are becoming suitable for
application of sophisticated energy management approaches to increase their energy
efficiency and possibly turn them into active energy market participants. In the thesis, a
general methodology for minimizing thermal energy consumption using current energy
sources and minimal retrofitting through the use of advanced control techniques is
presented. The control on zone level, as the level in charge for shaping the thermal energy
consumption, is developed to have the possibility of modular coordination with the higher
building hierarchy levels, such as central heating/cooling medium conditioning system,
microgrid or smart grid. Such an approach enables the synchronization of all building
subsystems and near-optimal behaviour of the whole building. The proposed modelling,
identification and control algorithms are validated via simulation studies and on-line

implementation of the model predictive control for zone temperature control on a real
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248-zones skyscraper building. The developed frameworks pave the way to fast deployment
of model-based energy management strategies in buildings and unleash significant energy

and cost-saving potentials of a smart building in a smart city.

Keywords: building energy management system, zone comfort control, model predic-
tive control, mathematical modelling, identification, energy efficiency, comfort-savings
trade-off, building thermal model, constrained unscented Kalman filter, semi-physical
modelling, control-oriented fan coil unit model, hydraulic and thermodynamic modelling,

multi-parametric model predictive control, hierarchical coordination.



SAZETAK

Hijerarhijsko modelsko prediktivno upravljanje

temperaturom u zonama zgrade

Povec¢anje energetske ucinkovitosti u zgradarstvu jedan je od kljuénih uvjeta za
smanjenje ukupne potrosnje energije u svijetu. S ukupno 40% svjetske potrosnje energije,
zgrade uz promet i industriju spadaju medu najveée potrosace energije [1, 2|. Potaknuto
time, donesene su brojne strategije promicanja energetske ucinkovitosti u zgradama.
Konacni cilj Europske unije je klimatski neutralna Furopa do 2050. godine, a jedan od
¢imbenika koji tome doprinosi je izgradnja zgrada gotovo nulte energije. lako takve mjere
predstavljaju vazan ¢imbenik u smanjenju potrosnje energije u zgradama novijeg datuma,
znacajan utjecaj na ukupnu potrosnju sektora izostaje uslijed velikog udjela starijih zgrada
izrazito loSeg energetskog razreda. Energetska obnova toplinske ovojnice takvih zgrada
cesto zahtijeva znacajna ulaganja [3]. Nasuprot tome, povecanje energetske uc¢inkovitosti
sustava upravljanja komforom, odgovornim za 60% ukupne potrosnje energije u zgradama,
prepoznato je kao odrzivo rjeSenje za ostvarivanje znacajnih usteda energije [2].

Tehnoloski napredak na podrucju zgradarstva cesto je popra¢en pojmovima kao Sto
su pametne zgrade, internet stvari ili tehnologija velikih podataka. Zajednicki korijen
svih navedenih pojmova je upotreba digitalnih podataka iz same zgrade. Znacajan
napredak na polju informacijskih i komunikacijskih tehnologija u posljednjih je nekoliko
godina uvelike doprinio pove¢anju komfora, energetske uc¢inkovitosti i pouzdanosti sustava
za automatizaciju u zgradarstvu. Veliki udio komercijalnih zgrada je sukladno tome
opremljen barem nekom vrstom sustava za nadgledanje i gospodarene energijom u
zgradama. Digitalni podatci na kojima se takvi sustavi temelje predstavljaju znacajnu
vrijednost, kako za vlasnika, tako i za distributera energije prema zgradi. Takvi podatci
kljucni su za digitalnu transformaciju zgrada i predstavljaju temelj za izgradnju boljih
modela, predvidanje ponaSanja zgrade u buduc¢nosti i optimizaciju energetskih tokova
u zgradama. Napredak na podruc¢ju modelskog prediktivnog upravljanja omoguéio je
prilagodavanje potrosnje promjenjivim cijenama na trzistu energije premjestanjem tereta

u intervale s nizim cijenama, koriStenjem spremnika energije ili kombinacijom oba
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pristupa. Napredni sustavi za automatizaciju u zgradama pruzaju mogucénosti dodatnog
smanjenja potrosnje energije u zgradama sudjelovanjem zgrada na trzistu energije kao
entiteta koji pruzaju pomocne usluge mrezi [4]. Dekarbonizacija energije, poveéanje udjela
obnovljivih izvora energije, vaznost odgovora potraznje i rast cijena energije ocigledno

mijenjaju paradigme u energetici i ulogu zgrada u mrezi.

Gospodarenje energijom u zgradama temeljeno na modelskom prediktivnom upra-
energetske ucinkovitosti u zgradarstvu. Estimirane ustede energije u simulacijskom
okruzenju dosezu visokih 70% u pojedinim sveobuhvatnim studijama [5, 6, 7, 8, 9,
10, 11, 12, 13] dok se eksperimentalno potvrdene ustede nalaze u intervalu 15-63%
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23|. Usprkos jasno izrazenim prednostima i znacajnim
ustedama energije, implementacija MPCa za upravljanje komforom u zonama zgrade jos je
uvijek na samom zacetku. Glavni razlozi za to su racunalna zahtjevnost samog algoritma
te znacajna ulaganja u informacijsku i komunikacijsku infrastrukturu zgrade neophodnu
za sakupljanje, spremanje i analizu digitalnih podataka iz zgrade. Dodatno, svojstvene
karakteristike svake zgrade, kao sto su kompleksnost, neodredenost, vremenski promjenjiva
dinamika i nemjerljivi poremecaji, predstavljaju velike izazove za dizajn i implementaciju

sustava upravljanja.

Iskustva u implementaciji MPCa pokazuju da je vremenski najzahtjevniji dio sinteze
i implementacije, koji generira i do 70% troskova inzenjerskog rada [21, 24|, identifikacija
primjenjivog matematickog modela zgrade. Detaljni matematicki modeli zgrade temeljeni
na fizikalnim zakonima najceS¢e se koriste u programskim alatima za simuliranje
dinamickog ponasanja zgrade [25, 26, 27]. Usprkos svojoj to¢nosti, zbog nelinearnosti,
dimenzije i strukture, u pravilu nisu primjenjivi za upravljanje u stvarnom vremenu.
Najcesci pristup modeliranju termodinamickih procesa u zgradama, primjenjiv za sintezu
sustava upravljanja, temelji se na analogiji s elektricnim krugovima na nac¢in da se svaki
element u zgradi modelira pomoéu konacnog broja otpora i kapaciteta [28, 29, 30].
Parametri takvog modela proracunavaju se analiticki na temelju poznatih informacija
o konstrukciji i fizikalnim svojstvima gradevinskih elemenata zgrade koje su cesto tesko
dohvatljive, posebno za starije zgrade. Kao rjesenje namece se polu-fizikalni pristup kojim
se osigurava model niskog reda i zadovoljavajuce tocnosti na nacin da se struktura modela
odredi unaprijed, na temelju fizike zgrade, dok se parametri modela identificiraju na
temelju dostupnih digitalnih podataka iz zgrade [31, 32, 33, 34, 35, 36, 37].

Sigurnost i komfor u zgradama osigurani su kompleksnim medudjelovanjem podsustava
koji su sastavni dio zgrade. To su podsustavi poput digitalne kontrole temperature
u zonama zgrade, uredaja za pripremu medija za grijanje/hladenje, mikromreze s
integriranom proizvodnjom i spremnicima energije, upravljivim ili pasivnim elektri¢nim
teretom, itd. Standardna operacija sustava za gospodarenje energijom u zgradama
cesto je orijentirana lokalno na specificni podsustav, zanemarujuc¢i pritom kompleksnu

spregu prema ostalim podsustavima. Posljedi¢no, ostvaruje se nekoordinirano i neop-
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timalno ponasanje zgrade kao cjeline. Koordinirani rad svih podsustava zgrade, od
onih zasluznih za oblikovanje potrosnje toplinske energije u zonama zgrade do onih na
razini pametne mreze zaduzenih za balansiranje trzista energije, klju¢ je za znacajno
smanjenje operativnih troskova rada zgrade kao cjeline. Identificirani podsustavi zgrade
okarakterizirani su razlicitim prioritetima, dinamikom, nac¢inima rada, kao i protokolima,
zahtjevima za odrzavanjem, energetskim vezama, itd. Stoga se kao prirodna alternativa
objedinjenom kompleksnom upravljackom problemu namecée razvoj zasebnih modula
upravljanja i sinkronizacija njihovog rada kroz hijerarhijsku koordinaciju izmedu pojedinih
podsustava [13, 38]. Uvodenjem hijerarhijske dekompozicije omoguéeno je znacajno
smanjenje racunalne kompleksnosti i pove¢anje uc¢inkovitosti samog algoritma upravljanja.
Razina upravljanja u zonama zgrade oblikuje toplinsku potrosnju u zonama te kao takva
predstavlja najnizu razinu u identificiranoj hijerarhijskog strukturi. Razina zona pritom
obuhvaca sve zone zgrade, elemente za grijanje i hladenje te pripadne senzorske elemente

i aktuatore.

Klasicne metode upravljanja temperaturom u zonama zgrade koje se temelje na
lokalnim upravljackim petljama i koriste samo trenutna lokalna mjerenja iz razmatrane
zone, znacajno se razlikuju od MPCa koji kao izlaz daje profil optimalnih toplinskih
energija po razli¢itim zonama zgrade. U takvom pristupu ne postoji direktna kompenzacija
utjecaja nemjerljivih poremecaja poput rasvjete, elektronicke opreme ili polozaja sjenila.
Kako bi se osiguralo regulacijsko odstupanje jednako nuli, u zatvorenu petlju upravljanja
uvodi se estimator nemjerljivih poremecaja. Ostvarivanje zahtijevanog toplinskog ulaza
u pojedinu prostoriju zgrade, prorac¢unatog od strane centralnog MPCa, osigurava se
pomocu sucelja prema elementima za grijanje/hladenje (radijatori, ventilokonvektori, itd.)
koje sluzi kao sprega izmedu energetskih zahtjeva i upravljackih naredbi za aktuatore
elemenata za grijanje/hladenje potrebnih da bi se trazeni zahtjevi ostvarili. Upravljanje
energijom po zonama zgrade omogucuje koordinaciju te razine s ostalim podsustavima
zgrade ¢ime se ostvaruje sinkronizacija rada svih podsustava zgrade i postizanje uc¢inkovi-
tog rada zgrade kao cjeline. Prednosti direktnog upravljanja toplinskom energijom su:
i) jednostavna interakcija s ostalim podsustavima u zgradi poput centralne pripreme
medija za grijanje/gladenje, mikromreze ili pametne mreze [13, 38], i7) minimizacija
ukupnog troska energije uz poznatu cijenu energije, i7) moguénost smanjenje varijance
toplinske snage ¢ime se znacajno smanjuju troskovi odrzavanja centralnog sustava za
pripremu medija kao i troskovi penalizacije vrsne vrijednosti snage [39], i) moguénost
povratnog djelovanja na temperaturu prostorije uz veoma striktna ogranicenja komfora,
te v) modularnost i fleksibilnost pristupa ¢ime se osigurava jednostavna replikacija na

razlicitim konfiguracijama zgrada.

Do danas, upravljanje komforom u zonama zgrade temeljeno na MPCu implementirano
je na svega nekoliko zgrada [14, 15, 16, 17, 18, 19, 20]. U svim studijama implementacijom
MPCa osigurano je poboljsanje energetske ucinkovitosti u usporedbi sa standardnim

algoritmima koristenim prije instalacije. Ustede energije znacajno variraju, izmedu 5%
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i 63%, ovisno o sveobuhvatnosti instalacije, sustavima kojima se upravlja i stanju zgrade
prije instalacije. U svim studijama MPC je implementiran kao dio vise upravljacke razine
koja sluzi za optimiranje trajektorije unutarnjih referentnih vrijednosti sustava pri ¢emu
je slijedenje tih vrijednosti zadaca upravljana na nizoj razini. Referentne vrijednosti
se pritom optimiraju direktno [17, 15, 20, 19, 18] ili se proracunavaju na temelju
optimiranih vrijednosti ostalih varijabli sustava [14]. Prednost pristupa upravljanju
komforom u zonama zgrade koji je razvijen u sklopu disertacije je u direktnom optimiranju
energijom po zonama zgrade umjesto opée prihvacenog pristupa temeljenog na optimizaciji
referentnih vrijednosti. Takav pristup omogucéuje modularnost i fleksibilnost pristupa
koji su temelj za replikaciju razvijenih algoritama na velikom broju razlicitih zgrada.
Takoder, optimiranje referentnih vrijednosti temperature vrlo je upitno sa stajaliSta
komfora krajnjih korisnika prostora zgrade.

Iako je upotreba MPCa za upravljanje komforom u zonama zgrade veé¢ uvrijezeni
pojam u istrazivackim krugovima, jedinstven, jasan i robustan pregled svih koraka
potrebnih za njegovu implementaciju nije dostupan. U sklopu disertacije prezentirana
je generalna metodologija za smanjenje potrosnje energije u zonama zgrade koriStenjem
naprednih upravljackih algoritama uz minimalna ulaganja i koristenje trenutno dostupnih
izvora energije. Razvijeni pristup temelji se na postojeéem sustavu automatizacije (ukoliko
takav postoji) te omogucuje jednostavno prebacivanje na standardno upravljanje u
slucajevima prekida komunikacije. Upravljanje komforom u zonama zgrade, razvijeno u
sklopu disertacije, predstavlja temelj za hijerarhijsko gospodarenje energijom u zgradi.
Implementacija sustava opisana je do razine komunikacije sa sustavom automatizacije
u zgradi i zatvorenih petlji upravljanja svih komponenata koje osiguravaju stabilan rad
sustava. Veza izmedu upravljackih i estimacijskih algoritama na jednoj strani i stvarnih
fizickih komponenata u zgradi pritom je dvosmjerna baza podataka koju se koristi
za spremanje svih relevantnih digitalnih podataka iz zgrade kao i unutarnjih varijabli
programskih modula za upravljanje. Razvijeni algoritmi verificirani su na simulacijskim
studijama i kroz on-line implementaciju na primjeru neboderske zgrade Sveucilista u
Zagrebu Fakulteta elektrotehnike i racunarstva (FERa). Istaknuti su sljede¢i znanstveni

doprinosi predlozenih algoritama:

e metoda za identifikaciju energetskog modela sustava ventilokonvektora koja daje
direktnu vezu izmedu toplinske energije prenesene u zone zgrade, upravljackih akcija
na aktuatorima ventilokonvektora, stanja medija za grijanje/hladenje i temperature

zraka u zonama zgrade,

e metoda za identifikaciju termodinamickog modela zgrade pogodnog za upravljanje

i estimaciju nemjerljivih toplinskih poremecaja po zonama zgrade,

e strategija modelskog prediktivnog upravljanja temperaturom u zonama zgrade

s moguc¢nos¢u hijerarhijske koordinacije s centralnim sustavom pripreme medija
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za grijanje/hladenje, mikromrezom ili nekim drugim podsustavom zgrade koji je

spregnut sa zonama preko energije,

e validacija razvijenog sustava za hijerarhijsko prediktivno upravljanje u smislu
ostvarenog komfora i usteda energije na primjeru neboderske zgrade Sveucilista u

Zagrebu Fakulteta elektrotehnike i racunarstva,

e validacija razvijenih algoritama za upravljanje temperaturom u zonama zgrade
implementacijom sustava za rad u stvarnom vremenu na cijeloj neboderskoj zgradi

Sveucilista u Zagrebu Fakulteta elektrotehnike i racunarstva.

Doktorska disertacija podijeljena je u tri cjeline koje obuhvacaju neophodne korake
implementacije modelskog prediktivnog upravljanja temperaturom u zonama zgrade:
identifikacija potrebnih matematickih modela, sinteza upravljackih algoritama te im-
plementacija i obavljanje razvijenih algoritama u stvarnom vremenu u operativhom
okruzenju zgrade. U uvodnom Poglaviju 1, opisuje se motivacija za provedeno istrazivanje,

s pregledom trenutnog stanja podrucja i opisom problematike.

Cjelina I: Modeliranje i identifikacija termodinamickih procesa u zgradama

Napredni algoritmi upravljanja, koji se temelje na matematickom modelu procesa, poput
MPCa, dokazano su primjenjivi za ostvarivanje znacajnih usteda u zgradama. Temelj
za daljnji napredak i rasprostranjenu implementaciju takvih algoritama su jednostavni i
pouzdani matematicki modeli termodinamickih procesa u zgradama. U Cjelini I opisuju

se razvijene metodologije za identifikaciju takvih modela.

- Metodologija za identifikaciju energetskog modela sustava ventilokonvektora de-
taljno je opisana u Poglavlju 2. Tako identificirani model daje direktnu vezu izmedu
toplinske energije prenesene u zone zgrade, upravljackih akcija na aktuatorima
ventilokonvektora, stanja medija za grijanje/hladenje i temperature zraka u zonama
zgrade. Uvedena jednostavna i precizna dinamicka karakterizacija energije prenesene
s ventilokonvektora u zone zgrade omogucuje upravljanje po energiji u zonama
zgrade ¢ime se omogucuje implementacija prediktivnih algoritama za optimizaciju

potrosnje toplinske energije u zonama zgrade.

- U Poglavlju 3 opisana je metodologija za identifikaciju polu-fizikalnog modela
zgrade pogodnog za upravljanje. Razvijena metodologija temelji se na modificiranom
nederivacijskom Kalmanovu filtru s ograni¢enjima. Metodologija je validirana
identifikacijom matematickog modela neboderske zgrade FERa. Validacijom je
potvrdeno da razvijena metodologija osigurava numericku stabilnosti i poboljSanje
konvergencije u odnosu na standardne varijante Kalmanova filtra. Primjenjivost
razvijene metodologije potvrdena je koristenjem skupa podataka od samo tjedan
dana za identifikaciju modela koji pouzdano predvida ponasanje temperature u

zonama zgrade na horizontu od 24 sata unaprijed.
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Cjelina II: Modelsko prediktivno upravljanje u zonama zgrade

U drugoj cjelini opisan je razvoj modelskog prediktivnog upravljanja temperaturom
u zonama zgrade koje osigurava osnovna svojstva upravljanja u zatvorenoj petlji i
kompenzaciju poremecaja. Razvijeni algoritam predstavlja najnizu razinu u hijerarhijskoj
dekompoziciji podsustava zgrade te je stoga poseban fokus stavljen na razvoj mogucénosti
interakcije s ostalim podsustavima s ciljem osiguravanja sinkronizacije svih podsustava u

zgradi i optimizacije ponasanja zgrade kao cjeline.

- U Poglavlju 5 prikazan je razvoj modelskog prediktivnog upravljanja temperaturom
u zonama zgrade. Kompenzacija nemjerljivih poremecaja osigurana je uvodenjem
estimatora u strukturu zatvorenog kruga upravljanja. Ostvarivanje optimalnih
toplinskih zahtjeva po zonama zgrade osigurano je koriStenjem sucelja prema
elementima za grijanje/hladenje koji sluze kao veza izmedu energetskih zahtjeva
i stvarnih upravljackih naredbi prema aktuatorima potrebnih da bi se ti zahtjevi
ostvarili. Ustede energije ostvarive implementacijom takvog sustava potvrdene su
simulacijom ponasanja zgrade FERa na intervalu od godinu dana uz pretpostavku

razlicitih algoritama upravljanja temperaturom u zonama zgrade.

- Mehanizam modularne koordinacije razine zona s ostalim podsustavima u zgradi
predstavljen je u Poglavlju 6. Modularnost pristupa ogleda se u jednostavnoj
interakciji izmedu razina koja se temelji na razmjeni profila predvidene potrosnje
energije i profila cijene te energije generiranog od strane modula s vise hijerarhijske
razine. Pristup je verificiran optimizacijom ponasanja zgrade FERa na horizontu od
24 sata.

Cjelina I1I: Primjena na nebodersku zgradu
Tre¢a cjelina prikazuje implementaciju razvijenog upravljanja temperaturom u zonama

zgrade na primjeru neboderske zgrade FERa.

- Tehnicki preduvjeti za implementaciju razvijenog sustava upravljanja detaljno su
opisani u Poglavlju 8. Pregled osnovnih principa upravljanja temperaturom u
zonama razmatrane zgrade i arhitekture razvijenog sustava popracen je opisom
i detaljnom analizom rada svih programskih modula potrebnih za rad razvijenog

sustava u stvarnom vremenu.

- U Poglavlju 9 prikazan je praktican postupak detekcije zacepljenja zrakom ven-

tilokonvektora. Razvijeni postupak validiran je na neboderskoj zgradi FERa.

Zakljucci te razrada daljnjih mogucénosti istrazivanja i razvoja vezani za pojedine
dijelove disertacije dani su u poglavljima na kraju svake cjeline (Poglavije 4, Poglavlje
71 Poglavije 10). Generalni zakljucak i kratak osvrt na razvijenu metodologiju i dobivene

rezultate dan je u Poglaviju 11.
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Disertacija sadrzi takoder i dva priloga. U Prilogu A dan je detaljan opis neboderske
zgrade FERa. Zgrada je u potpunosti opremljena sklopovskom i informacijsko komu-
nikacijskom tehnologijom potrebnom za testiranje i validaciju algoritama za upravljanje
i estimaciju u zgradama. Svi eksperimenti i studije u sklopu disertacije provedeni su
na razmatranoj zgradi. U Prilogu B dan je postupak izracuna sunceve dozracenosti na
nagnutu plohu, kao jedan od glavnih preduvjeta za proracun utjecaja sunceve dozracenosti

na temperature u prostorijama zgrade.

Kljucne rijeci: gospodarenje energijom u zgradama, upravljanje komforom u zonama
zgrade, modelsko prediktivno upravljanje, matematicko modeliranje, identifikacija, ener-
getska ucinkovitost, termodinamicki procesi u zgradama, nederivacijski Kalmanov filtar
s ogranicenjima, polu-fizikalno modeliranje, model ventilokonvetkora pogodan za upravl-
janje, hidraulicko i termodinamicko modeliranje, viSeparametarsko modelsko prediktivno

upravljanje, hijerarhijska koordinacija
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CHAPTER 1

Introduction

The increasing global energy demand and noticeable effects of irrational energy consump-
tion highlighted the reduction in energy consumption as a key element for ensuring long-
term energy security. According to [1, 2], buildings account for 40% of worldwide primary
energy consumption. As a result, there has been a considerable push towards designing
policies and initiatives directed towards their energy efficiency increase. The EU2030
Energy Strategy, built on promising results and well-adopted research and implementation
trends of the previous 20-20-20 strategy (COs reduction - renewables share - energy
savings), targets towards 40-27-27 by the end of year 2030 [40]. This economical motivation
brought highly efficient building categories such as Energy Star (USA) or Passivhaus
Standard (EU), with the final goal of reaching Zero-energy buildings. While new buildings
can be constructed with high-performance levels, it is the older buildings, representing the
vast majority of the building stock, which are predominantly of low energy performance
and subsequently in need of refurbishment, which often demands significant investment
[2, 3]. The systems with the largest potential for improvement of buildings sector energy
efficiency, with estimated nearly 60% of overall energy consumption in buildings, are
systems for maintaining the thermal comfort [2]. Therefore, a much more productive
approach for achieving the strict energy cuts is to focus on the retrofitting of the existing
buildings through the improvement of building automation systems and the underlying
control algorithms. Motivated by this, energy management in buildings has become
an increasing trend in their transformation to smart and efficient utilization of energy

resources.

Over the past few years, many terms have been used in the building sector to describe
the latest technological advances. Smart buildings, Big Data, Internet of Things are
just a few of the most commonly used ones. The subject focus of all the terms is
digital information from the building. The advances in information and communication
technology (ICT) increased comfort, energy efficiency and the reliability of the automation
systems in buildings. As a result, the majority of commercial buildings are equipped

with Building Energy Management Systems (BEMSs) to monitor and control different

1
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components of building automation. The data collected from the BEMS sensors and
energy meters create a great value both for building owner and the energy grid operator.
That data are crucial to construct better models, predict future building behaviour and
optimize the overall building performance. The advances in the field of smart model-
based control algorithms for buildings enabled the buildings to respond to the volatile
pricing signals by shifting the loads either by preheating/precooling the buildings massive
structure, by the use of an active energy storage system or through the combination of
both approaches. Even though the consumption of the thermal energy on the zone level
may increase, the overall building operational costs are significantly reduced. The more
sophisticated building automation increases the achievable energy savings even further by
enabling the use of the buildings as storage elements that could enhance the performance
and the robustness of the power grid by becoming ancillary service providers [4]. The
growing spread of renewable energy systems combined with the increasing importance of
demand response and rising energy prices is evidently changing the paradigm of energy

and the role of the buildings in the grid.

1.1 Contributions

The Model Predictive Control (MPC) approach applied in BEMSs has been recognized as
one of the most promising solutions for improving comfort and achieve considerable energy
savings. Its distinctive advantages over conventional control algorithms, make the MPC
approach a promising solution for widespread problems of energy management within
buildings. The estimated theoretical energy-saving potential is up to 70% in particular
comprehensive applications [5, 6, 7, 8, 9, 10, 11, 12, 13]. Recently, MPC has found its
place in practice, with experimentally-validated building energy efficiency increase by
15-63% [14, 15, 16, 17, 18, 19, 20, 21, 22, 23|. Although it is clear that MPC applied for
building climate control offers many benefits, its practical implementation is still a major
challenge due to the high computational demand followed by the required investment in
sensing and ICT equipment required to collect, store, and analyse the building-related
data. Additionally, the inherent complexity of building systems with uncertain and time-
varying dynamics, as well as the presence of unmeasurable disturbances, present serious
challenges for the development of corresponding efficient control, fault detection and
diagnosis algorithms.

The practical experience has shown that acquiring the MPC essence — the model —
is the most time-consuming and costly part of the corresponding design and on-site
implementation process that generates around 70% of the engineering costs [21, 24].
Building models based on fundamental physical laws, usually used in building simulation
tools [25, 26, 27], accurately describe the relevant building dynamics. However, they are
hardly usable for real-time control implementation due to large state and parameters

dimensions accompanied by nonlinearities or non-explicit model forms. The most usual



1.1. Contributions 3

physically based approach in thermal modelling of buildings is based on a well established
linear resistance-capacitance (RC) representation where each building element is repre-
sented with a finite number of states [28, 29, 30]. The model parameters are calculated
analytically, based on the detailed physical properties of the building elements which
are often unknown, especially for the older buildings. While nonlinear and higher-order
models provide better accuracy, they tend to be computationally too intensive for the
real-time implementation of MPC. Therefore, from the control viewpoint, the goal is to
get a linear low-order model in a way that the model uncertainty is lowest possible. Thus,
the main approaches categorized in the development of control-oriented models are data-
driven approaches in which the model structure is assumed a priori while the constituting
model parameters have to be identified [31, 32, 33, 34, 35, 36, 37].

Buildings are complex systems composed of many coupled subsystems responsible
for maintaining safe and steady operation such as digital temperature control in building
zones, central heating, ventilation and air conditioning (HVAC) system, microgrid with en-
ergy production units, storages and controllable or passive loads, etc. Typical applications
of BEMS are oriented only locally to a specific subsystem while neglecting interconnections
and cooperation among all constituent subsystems. As a result, building as a whole
achieves uncoordinated and non-optimal behaviour. The key for ensuring the energy-
efficient operation of the whole building is the ability for mutual coordination between
different building subsystems: from those in charge of shaping energy consumption in
building zones to those on the grid side that balance the energy market conditions.
These subsystems are all very different in dynamics, priorities, means of operation but
also implementation aspects such as energy levels, protocols, maintenance services, etc.
Rather than having a large complex control structure to handle all the subsystems at
once, it is more natural to separate it into BEMS submodules in a hierarchical way
[13, 38]. Such hierarchical decomposition introduces significant computational relaxation
and improvement of algorithm efficiency. The zone level, as the level in charge of shaping
the thermal energy consumption in zones, represents the lowest hierarchical level in the
identified hierarchical structure. On the physical level, the zone level MPC encompasses all
building zones, heating/cooling elements (HCEs) inside zones and accompanying sensing

and actuation equipment.

The MPC approach that uses thermal model of the building and computes optimal
thermal energy inputs in different building zones substantially differs from generally ac-
cepted temperature control via local reactive control loops where only local measurements
are used when deciding on the control actions for HCEs in zones (fan coils, radiators, floor
heating, etc.). In such a set-up, the unmodelled disturbances, such as occupancy, lighting
or electronic equipment, are no longer implicitly compensated. To ensure offset-free control
and to be able to compensate such disturbances, an estimator is introduced in the
control loop. The realization of the optimal thermal energy inputs is then enforced by

HCE interfaces acting as a link between the optimal thermal inputs and real actuation



4 Chapter 1. Introduction

commands required for those inputs to be realized. Direct optimization of thermal energy
consumption enables coordination with the higher-levels in building hierarchy with the
aim to achieve the synchronization of all building subsystems and near-optimal behaviour
of the whole building. Up to date, the practical implementation of MPC for building
climate control has been reported on several buildings [14, 15, 16, 17, 18, 19, 20]. All
addressed studies report a successful operation of MPC and efficiency improvement when
compared with a baseline control. The experimentally confirmed energy savings vary
significantly from 5% up to 63%, depending on the comprehensiveness of the study,
controlled system and baseline used for the comparison. In all presented studies, the MPC
control is implemented as a part of supervisory (management) level used to optimize the
trajectory of internal setpoints whereas the tracking of those setpoints is a task of low-level
control. The internal building setpoints are either optimized directly [17, 15, 20, 19, 18]
or obtained by post-processing the optimal MPC variables [14]. The distinct advantage
of the approach developed within the thesis is in direct optimization of energy inputs per
zone rather than generally accepted temperature setpoints. The advantages of the direct
control of thermal energy inputs are: i) simple interaction with other building subsystems
[13, 38], i) possibility of direct economic cost minimization by using the known price
of the energy, i) possibility of thermal power variance minimization lowering thus the
maintenance cost for central HVAC system and reducing the peak operation costs [39], iv)
possibility to act in tight comfort requirements where the required reference temperature
following is not possible with conventional controllers, and v) high level of modularity and
flexibility for different HCEs in zones and buildings configurations, enabling thus the fast

replication of the method.

Although the MPC for building temperature control has been broadly discussed in
many studies found in the literature, a unique, clear and robust framework summarizing
the necessary steps for its deployment does not exist. In the thesis, a general methodology
of minimizing energy consumption using current energy sources and minimal retrofitting
through the use of advanced control techniques is presented. The developed approach
relies on the existing building automation system (if such exists), enabling an easy
switch to standard building operation in case of communication errors or some other
system malfunction. The thesis describes the on-line implementation of the zone MPC
as a basis for hierarchical energy management, including communication of the optimal
control scheme with the building automation system and the component-level feedback
loops, as well as the measured energy and indoor comfort performance benefits from
the demonstration. The interface between control and estimation applications developed
as software modules, and the physical world is a two-way real-time database including
relevant building data, exterior variables and internal variables for mutual software
modules synchronization. The developed algorithms have been verified through the
extensive simulation case-studies and via on-line implementation on the University

of Zagreb Faculty of Electrical Engineering and Computing (UNIZGFER) skyscraper
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building which is a living-lab on MPC algorithms. The following contributions of the
developed approach are highlighted:

e a method for identification of an energy model of a system of fan coil units, which
gives a direct relation between the thermal energy provided to a zone, actuation

commands, heating/cooling medium conditions and the zone temperature,

e a method for identification of a thermodynamic building model suitable for

predictive control design and disturbance estimation,

e predictive control strategy for zone temperature control and hierarchical coor-
dination with the central heating/cooling medium conditioning system, building
microgrid, smart grid or some other building subsystem sharing a common energy

link with zones,

e validation of the developed hierarchical predictive control system within a living-lab

environment in terms of achieved thermal comfort and energy cost reduction,

e validation of the developed zone temperature control via on-line implementation on

a full-scale skyscraper building.

1.2 Thesis outline

The thesis is organized into three parts that encompass needed steps for model predictive
control of temperature in building zones: identification of needed mathematical models,
synthesis of control algorithms as well as implementation and running of the developed
algorithms in real-time in operative environment of the building. After the introductory

words presented before, the remainder of the thesis is outlined as follows.

e Part I: Modelling and identification of thermodynamic processes in
buildings
Model-based energy management of buildings, through MPC framework, proved to
be the promising solution for improving the energy efficiency of the buildings sector.
The keystone for further improvements and real implementation are reliable and
accurate mathematical models simple enough to be used in real-time control. In
Part I the developed modelling methodologies, necessary for a fast deployment of

the model-based energy management strategies in buildings are presented.

— In Chapter 2 a methodology for identification of a control-oriented energy model
for a system of fan coil units (FCUs) is presented. The model gives a direct
relation between the thermal energy provided by the FCU to a zone, actuation
commands, heating/cooling medium conditions and the zone temperature. The

introduced simple and accurate dynamic characterization of energy transmitted
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from a FCU to zone air fills the gap between thermal and energy management
for buildings. This enables implementation of predictive building controls and

unleashes significant energy and cost-saving potentials in building equipped
with FCUs.

— In Chapter 3, a general identification framework for acquiring control-oriented
semi-physical thermal model of a building based on modified constrained
unscented Kalman filter algorithm is presented and validated. The experimental
validation results obtained by applying the framework to case-study building
show that the developed algorithm applied to short-term operation data
outperforms the standard Kalman filter forms, both in convergence rate and
numerical stability. The true utility of the developed algorithm is demonstrated
by showing that the simplified building models able to make reliable 24 hours
ahead predictions are identified by using less than one week of normal operation
building data.

e Part II: Zone Model Predictive Control
The focus of Part II of the thesis is the development of real-time MPC method for
zone temperature control which guarantees the essential properties of closed-loop
feasibility as well as offset-free control. The developed zone temperature control
is envisioned as the lowest level in the hierarchical decomposition of building
subsystems, thus a special focus is put on developing the possibility for interaction
and coordination with the higher-level modules in order to achieve the near-optimal

behaviour of the building as a whole.

— In Chapter 5 an MPC based control scheme for energy-saving and comfortable
temperature control in buildings is presented. The offset-free control and
disturbance compensation is ensured through introduction of an estimator
in the control loop. The realization of the optimal thermal energy inputs
is then enforced by HCE interfaces acting as a link between the optimal
thermal inputs and real actuation commands required for those inputs to be
realized. The performance bound and possible energy savings are calculated via
simulation case-study based on one year simulation of temperature control in
the case-study building with the different control approaches applied for zone

temperature control.

— Chapter 6 proposes a modular coordination mechanism between building zones
comfort control and higher-levels in building hierarchy such as central HVAC
system, building microgrid or smart grid. The imposed modularity is based on
a simple interface for exchanging thermal energy consumption and thermal
energy price profiles shaped by higher hierarchical levels. The approach is
verified by optimizing the one-day ahead operation of the case-study building
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consisting of thee hierarchical levels: building zones, central heating/cooling

medium conditioning system and microgrid.

e Part III: Application to a full-scale skyscraper building
The developed zone temperature approach is validated in Part III by deploying it
on a full-scale skyscraper building described in details in Appendiz A.

— Chapter 8 focuses on technological prerequisites for implementation of zone
temperature control via MPC as a lowest level among identified hierarchical
building subsystems. The basic principles of the case-study BEMS infrastruc-
ture related to zone temperature control are given, followed by the architecture
of the developed zone temperature control system with detailed description of
all software modules required for its deployment and results of their on-line

operation.

— In Chapter 9 a practical procedure for detection of an airlock in a system of
FCUs is presented and verified in on-line operation with a detailed elaboration

of the obtained results.

e Concluding remarks with elaboration of the main results and further research and
development possibilities related to certain thesis parts are provided at the end of
each Part (Chapter J, Chapter 7 and Chapter 10). In Chapter 11 a brief summary of
the results presented in this thesis and an outlook to possible directions for future

research on these topics is given.

e The thesis contains two appendices. In Appendiz A a detailed description of
UNIZGFER skyscraper building is given. The building is fully equipped with
required hardware and ICT infrastructure for testing and validating a wide range of
control and estimation algorithms in buildings. The building itself is a living-lab on
MPC algorithms. Within the thesis, all experiments and case studies are performed
on the UNIZGFER building. In Appendixz B the procedure for calculation of solar
irradiance incident on a tilted surface, which is the main prerequisite for calculation

of solar impact on zone temperature, is presented.
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CHAPTER 2

Mathematical modelling and
identification of a system of

fan coil units

Fan Coil Units (FCUs) are one of the most common heating/cooling elements found in
office buildings today. A FCU consists of a fan and one or more air-water heat exchangers.
Multiple FCUs connected in parallel to a common supply line form a system of FCUs
(Fig. 2.1).

Circulation
pump

@ ‘r Central HVAC
L system

Calorimeter

%

— Zone 1 u Zone 2 a

Figure 2.1. llustration of a system of FCUs.

Overall performance of a FCU as a part of the system is described with a ¢) hydraulic
model characterizing the distribution of the heating/cooling medium through the system
and 1) a thermodynamic model for assessment of thermal energy provided by each FCU.

In general, thermodynamic heat exchanger models in literature are divided into three
groups: ¢) physical models relied on fundamental physical laws or based on well known heat
exchanger analysis methods such as logarithmic mean temperature difference or number
of transfer units relations [41, 42, 43, 44, 45|, 4i) non-physical models completely relied

11
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on the experimental data and i) semi-physical models as a compromise between the
first two groups. Physical models require detailed physical properties of a FCU, such as
fin thickness or tube dimensions, which are often omitted from manufacturer’s catalogue
and are hardly measurable on the final on-site product [46, 47, 48, 49, 50, 51]. Non-
physical models, usually put in a form of simple linear approximations around an operating
point [17] or neural networks [52, 53, 54, 55|, decrease in accuracy when operating outside
the training range. Semi-physical models exploit physical knowledge or some other a priori
information to specify the model structure while the unknown parameters are identified
based on the experimental [56, 57, 58] or manufacturer’s catalogue data [56]. Whilst the
experimental analysis of heat exchangers in general is widely elaborated, experimental
analysis of a FCU is scarcely considered in only few papers that concern with mainly a
single FCU [59, 17].

While thermodynamic model of a single FCU can be easily assessed if measurements of
the medium flow through the unit as well as measurements of supply and return medium
and air temperatures are available, such information is often unavailable for a system
of FCUs. A hydraulic performance of a FCU and sensors-free solution for determining
the medium flow through the individual unit is rarely discussed. The use of pressure
drop sensors [60] tends to be cost-intensive when applied to individual FCUs due to
a large number of expensive sensors required and corresponding installation costs. By
developing the hydraulic model of the system, the individual flows are easily assessed
based on a single central measurement of the flow through the entire system (typically
measured with calorimeters installed on major supply ducts). Use of the hydraulic model
for the system design and subsequently its management significantly reduces operating
costs [61, 62]. Inclusion of both, hydraulic and thermodynamic model into the building
management system offers further savings by enabling dynamic flow control with respect

to the thermal demands per zones [63].
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2.1 Energy model of a system of fan coil units

Control-oriented energy model for a system of FCUs consists of a hydraulic model of
the system and thermodynamic and electrical energy consumption models of all FCUs
equal for the same FCU types. The overall scheme of the model is given in Fig. 2.2.

The model inputs are: i) central measurement of medium mass flow through the entire

Qw,cal Hydraulic model of :

! the system

in ; I."|’L‘:nfc Qw,i ;

—weal i li—1 ;

Taﬂ' : : Pw,z

Tpout ¢ Thermodynamic .
—wi L, FCU model P A

Ttci —
Electrical energy Pai

consumption model N

Figure 2.2. Scheme of the control-oriented energy model of a system of FCUs.

system ¢y, 71) individual measurements of fan speeds xf’;, i) zone air temperatures in
every considered zone T;;’m and iv) central or individual measurements of supply medium
temperature 75", Index i in subscripts denotes measurements related to the " FCU
and ng is the overall number of FCUs in the system. Outputs of the hydraulic system
model are individual medium mass flows through every FCU in the system ¢y, ;. Individual
medium mass flows are subsequently used in the thermodynamic models to calculate the
thermal powers provided to the zones P, ; and return medium temperatures TV‘;}? for every
considered FCU.

The developed energy model gives a direct relation between the thermal energy
provided by the FCU to a zone, actuation commands, heating/cooling medium conditions
and the zone temperature. As such, the model is suitable for: i) acquiring thermal powers
per zone required for identification of building thermodynamic model, i) estimation of
unmeasured thermal loads affecting the zone for a very broad use in building monitoring
and control, 7ii) usage of an advanced FCU control algorithm for direct control of thermal
energy inputs per zone via fan speeds, which makes it possible to realize optimized thermal
energy inputs computed via predictive energy management schemes for maintaining zones
thermal comfort [64, 13] and 4v) development of fault detection and diagnosis algorithms
for FCUs [65, 66, 67].
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2.1.1 Hydraulic model

The medium flow through a FCU depends on the pressure drop across the various elements
that form up the entire system. A practical way of modelling complex hydraulic systems
is the transition to an analogous electrical model where medium mass flow ¢y, pressure
drop Ap and hydraulic resistance R, behave equivalently to electrical current, voltage
and electrical resistance, respectively. The equation relating pressure drop and mass flow

through a hydraulic network element is equal to:
Ap = Ry - gy, (2.1)

where R, is a constant hydraulic resistance. The values of a; depend on the methodology

used for calculation of Rj, and the element type.

Pressure loss in pipes consists of three components: i) hydrostatic pressure loss Apy,
it) frictional pressure loss Apy and iii) kinetic pressure loss. For most applications in
heating/cooling system, kinetic losses are minimal. Thus, the equation that describes the

overall pressure loss in pipes is expressed as a sum of two major terms:
Ap, = Aps + Apy,. (2.2)

The hydrostatic pressure drop occurs only when there are differences in elevation from

the inlet to the outlet of a pipe segment:
Apn =p-g-Ah, (2.3)

where ¢ is acceleration of gravity and Ah is change in pipe elevation. The frictional
pressure drop in a circular pipe with constant inner diameter d and length [ is defined by

Darcy-Weisbach equation:

8-1 9
Apf = fDm * Gy (2-4)

where p is the density of heating/cooling medium and fp is the friction factor. For

hydraulically smooth pipes, fp is defined by Blasius equation:
fp =0.3164 - Re "2, (2.5)

where Re is Reynolds number defined as:

4

R:
¢ wed-m

* Qs (2.6)

with p as dynamic viscosity of the medium. In addition to the losses due to the friction
or elevation difference, there are also losses associated with flow through valves and

fittings. These, so called minor pressure losses, are accounted by using the equivalent
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length method [68]. The method uses empirical tables to convert each fitting into an
equivalent length of the straight pipe lo, which is then added to the pipe length [. The

leq/d ratio for most common types of fittings can be found in Tab. 2.1.

Table 2.1. Equivalent length of fittings [68], [69].

Type of fitting leg/d
Tee - along the straight 20
Tee - to the branch 60
Elbow 90 (smooth radius) 30
Three way valve (fully opened - through flow) 30
Sudden pipe diameter expansion 4%
Sudden pipe diameter contraction 20%*

* used with inlet velocity.

By inserting (2.6) and (2.5) into (2.4) and including the minor losses, the final form of

frictional pressure drop across the circular pipe section is defined as:

0.25
P (U437 leq) .
Apy =0.241 - T o gh™, (2.7)

Hydraulic resistance of the FCU and medium mass flow through the unit are fully

determined with the pressure drop within it:
Ap = Ry - "™, (2.8)

where Ry ¢ and oy g are parameters to be found based on the experiments or pressure
drop data from the manufacturer’s catalogue.
Based on the electric-hydraulic analogy an equivalent electrical model of the system

is derived for a most common heating/cooling network topology (Fig. 2.3).

______ Zone ng. i Zone ng. — 1 o ) Zone k o Zone 1 )
S S . . S ) S
X Rh,.p,n,h. . Rh,.p,n,h.—lj X Rh.p,l\: : Rhup.l
: L ; —1 it :
. Qw ng. : Qw ng.—1 : Qw,o . Qw k : Gw,1
Apm( Rh,f(t,n,r(. . Rh,.f(:.m( - Apm( —1 . Apo : Rh,f(t,k: A[)L:Z Rh.f(t.l Apl
' ' . T . . r .
Rh,.p,n,k. Rh,.p,n,h.—lj Rh.p,k . Rh‘p.l

Figure 2.3. The analogous electrical model of standard heating/cooling installations.

Supply pipe, return pipe and FCU hydraulic resistances are denoted as Rj, ,, R, , and Ry e,
respectively. For clarity, hydraulic resistances of pipes in parallel branches are omitted.

For every closed loop of the circuit, once the hydraulic resistances and mass flows are
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known, the pressure drop is defined with Kirchhoff’s circuit laws Vj =1,...,ng — 1:

J
Apji1 — ; Qi (Ry i+ Ry, ) for j <k,
Ap; = . (2.9)

Nfc
Apj-i-l + Zq\}vfzg}( Z,p,j + Rz,p,j) for J > k7
i=j

where Ap; is the overall pressure drop in a parallel branch including pressure drop through
FCU and pressure drop in associated vertical supply and return pipes, Appi1 = Ap, is
the overall pressure drop in the entire system, ng is the total number of FCUs in the
system and g ; is the medium mass flow though the i*" FCU. For known overall medium
mass flow denoted with ¢, the individual FCU mass flows gy, ; are found by solving the
following optimization problem:

min g, — Guwol

Nfc

St Gwo = qu,i; (210)
i=1

(2.2),(2.3), (2.7), (2.8), (2.9).

The optimization problem (2.10) belongs to a class of nonlinear programs which can be
efficiently solved with e.g. genetic algorithms [70]. Flow share through the i*" FCU is
defined as Ng; = Gw.i/¢w.o Where g ; is recalculated based on (2.9) and the optimal Apy
obtained as solution of the optimization problem (2.10). For installations with operable
valves, where flow distribution is time-varying and based on the valve positions, the

procedure is extended by introducing variable valves hydraulic resistances in the network.

2.1.2 Thermodynamic model

Heat transfer within a FCU consists of three parts: convection of the heating/cooling
medium (e.g. water), heat conduction through the heat exchanger and convection of air

to be heated or cooled. For modelling, the following assumptions are made:

e FCU fan has four possible fan speeds: off, Low, Medium and High, denoted
respectively as off, L, M, H,

e air mass flow ¢, inside the FCU varies with the fan speed and is assumed to be

constant for each speed,

e mean water temperature inside the FCU, T, is approximately the average of water

inlet temperature 7" and water outlet temperature 7°%, i.e. Ty, = 0.5(Ti" 4 TU),
e air intake temperature T is assumed to be equal to zone air temperature,

e heat transfer from water to air is driven by the temperature difference (T, — T"),
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e properties of air and water are assumed to be constant.

With set assumptions, the following dynamics equations are derived for each FCU:

My Cy T = quew (TR — T3 — U, (T — T™) | (2.11)
Maca T = quea (T = T2™) + U, (Ty, — T2, (2.12)

where T°" is the outgoing air temperature, ¢, is medium mass flow through the FCU,
¢, and ¢, are the specific heat capacity of dry air and specific heat capacity of water,
respectively. Parameter m, is the mass of air and m,, is the mass of water inside the FCU,
available from manufacturer’s catalogue. Heat transfer coefficient U, = f(qa,qw) is a

nonlinear function of medium mass flow ¢, and air flow ¢, defined as [71, 60, 66]:

a’fC . qgfc
Cfc
(3
Qw

where ag., b and cg are parameters determined based on physical system properties or

Uo(Qaan> - (213>

through identification. For FCUs with fixed set of fan speeds, the air mass flow ¢, for
a certain fan speed zg does not deviate over time significantly (if there are no external
impacts blocking the air path). Thus, it is reasonable to estimate separate functional
dependencies for all available fan speeds avoiding thus the need for knowing the exact,
hardly measurable, information on the air flow. By linking the air flow information to a
fan speed, (2.13) obtains the form:

for g = off,

for g =L,

Uo(xmeW) = (214>

for xp =M,

for x¢ =H,

with individual parameters ag. := {ag, af;, a}, afl} and by := {65 bl b} bE} defined for
every fan speed. Parameter ¢;. does not depend on the air flow so one common parameter
for all fan states is defined. For switched-off fan a FCU behaves as a normal radiator unit
with a constant heat transfer coefficient, thus for fan switched off bgff = 0.

The thermodynamic performance of the floor mounted units is downgraded during the
cooling season. While during the heating season, incoming air temperature is considered
equal to the zone temperature, during the cooling season cooled outgoing air tends to settle
at the floor without mixing with the zone air. As a result, incoming air temperatures are

lower than the zone temperature. The described seasonal effect is anticipated through
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introduction of correction coefficients ef, for every fan speed:

Uo(Zte, ¢w) = 5. - L_C, xg. € {off, L, M, H}. (2.15)

1+ag -qw™

The water side thermal power P, is defined as:
Py = quew (T — TOM). (2.16)

The m,/q, ratio is typically less than 1 s and therefore negligible compared to water time
constant. The air side thermal process of a FCU is therefore observed as a stationary
process (172" = 0):

GaCa(T" =T = U, (T — T2") - (2.17)
Pa P

This further means that the thermal power affecting the zone, P,, is equal to the overall
transmitted thermal power P;. The important feature of this approach is that the hardly
measurable and unreliable T°" measurement is omitted. For a fixed medium mass flow

Gw, the final thermodynamic model of a FCU is in a form of a switched-linear model:

Tvgut _ |:_q_W Uo(xf(ﬂ qw):| Tout

My 2MyCy w
+ Gw Uo(xfca QW) Uo(xfca qW) I (2.18)
My 2MyCy DMy Coy Tin |

Uo(l’fc, QW>:| % |: U, (xf q ) :| T‘i’n
P, = Tv?fu + IR —Uol\Lfcs Gw i ’ 2.19
where U, (%, gw) is defined in (2.14) and the fan speed x¢. is used for switching.
2.1.3 Electrical energy consumption model
Electrical power of FCU’s fan P, is assumed constant for every fan speed:
( 0, for g = off,
PL, for m¢ =1,
P, = (2.20)
PN for xp =M,
{ PEPII, for x4 = H.

The FCU’s fan powers in certain fan speed PY, P} and PY are defined based on fan

motor technical data from the manufacturer’s catalogue.
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2.2 The identification methodology

The methodology for identification of an energy-model of a system of FCUs consists of
three major parts: i) sensors calibration, ) identification of a hydraulic system model and
i11) identification of thermodynamic FCUs models. The considered system configuration
(Fig. 2.4) consists of: ¢) multiple FCUs connected in parallel, i) temperature sensors
installed on the FCU return pipes measuring the return medium temperature Tv‘;tff’m, i)
zone units for measuring the zone air temperature 7,;™ and fan speed z12;, and iv) central
calorimeter for measuring the overall medium mass flow through the system ¢, supply

Tout ,m

medium temperature 7. >, return medium temperature and thermal consumption

w,cal’ w,cal
of the entire system Pl.
Circulation
pump
@ Central HVAC J
system
CT) T\:vrtcal
+~
|| Qé qwo

= M M g )
) Tout
= | w,cal
O Pcal

Zone 2 8]

Figure 2.4. Considered configuration of a system of FCUs.

For negligible transmission heat losses FCU inlet water temperature T, ‘}an is considered to
be equal to the supply temperature measured by the calorimeter Tvivrf’cfl, e T = TVIVHCI; If
the temperature drop along the network is significant, it should be modelled or additional
temperature sensors have to be mounted at the FCU water inlet. Supply and return pipes
are assumed to be isolated. All measurements are collected with a time resolution of 1.

Superscript 'm' denotes measured variable.

2.2.1 Sensor calibration

Indirect measurement of the return medium temperature, typically performed with
temperature sensor mounted on the FCU return pipe is subject to various effects (e.g. lead
wires acting as a thermal sink, sensor insulation, effects of ambient temperature, etc.)
that cause its deviation from the real temperature. The so-called two-point calibration
method, comparison with trusted sensor at lower and upper bound of the operating range,
essentially re-scales the output and is capable of correcting both slope and offset errors. For
systems with three-way valves (see Fig. A.4(a) in Appendix A.2) and well-insulated supply

pipelines, the sensor characteristics can be determined by using historical measurements.
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In intervals with switched-off fan and closed FCU valve (total flow goes through the bypass
branch), calibrated sensor measurements should be equal to calorimeter measurement of
supply temperature 7™ . The sensor calibration curve, defined with slope p;; and offset

P2,i, is then found by solving the following optimization problem for every FCU return

medium temperature sensor:

M;

. 2
min > (TR - TR
TR k=t

(2.21)

s.t. Tv(stlit’c = pl,iTV[;:l;’raw + D2
where k£ denotes measurement samples, M; is overall number of samples used for
calibration of the " FCU temperature sensor, Tvﬁt’c is the calibrated sensor measurement
and Tyy™ is a raw sensor measurement of the i FCU. If temperature sensor is
mounted close to the bypass branch, measurements may be additionally distorted due
to the high thermal conductivity of the pipes. Since supply and return pipes are
thermally coupled through the bypass, large thermal gradient between them influences
the sensor measurements proportionally to temperature difference between the pipes. True

t .
temperature measurement Ty " is thus defined as:
out,m __ ~pout,c in,m out,m
Tw,i - Tw,i - wfc (Tw,i - Tw,i )’ (222)

where 9. is the unknown heat transfer coefficient equal for all FCUs in the system with the
same bypass pipe configuration and T Vivrfgm is the i*® FCU supply temperature considered
equal to Tvlvnczll For ideal mixing of the return medium from different FCUs and only the
i™® FCU operating at the time (valves on all other FCUs closed) once stationary state is

reached, the following holds:
Qw,i (Tx;l:z - Tv?;tlzt) = QW,O(ATcal,i - AT‘cal,O)~ (223)

where AT, ; is temperature difference between the system supply and return measured
on the central calorimeter,
ATy = T — v (2.24)

w,cal = Tw,cal ?

and AT, is the temperature difference in the system with valves of all FCUs closed.

Since Y ™ ¢wi = Gwo, Dy combining (2.22) and (2.23) heat transfer coefficient v is

defined as:
S AT — ATearo
c=1—-1 g ) =1, 2.25
wf / — ( T‘:VI?’L _ Tv?ft;tp ( )

where ng. is the total number of FCUs in the system.
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2.2.2 Identification of the hydraulic model of the system

The prerequisites for development of an analogous electrical model of the heating/cooling
system are i) the availability of system documentation with known diameters and lengths
of individual pipe segments and 1) FCUs manufacturers’ catalogues with specified
pressure drop characteristics. Based on the developed analogous electrical model, the flow
shares through different FCUs are defined by the solution of optimization problem (2.10).
If the pressure drop at the system entrance is changed, new flow distribution is found by
re-solving (2.10) based on new measurement of overall flow through the system g7 .

If the piping data or FCUs pressure drop characteristics are not available, the approach
based on running an individual experiment on every FCU is proposed. It is important
to note that so obtained flow distribution is valid only for operating points for which
the experiments are performed. If the overall pressure drop of the system is changed,
experiments have to be performed again under new conditions. Thus, the approach is
not advisable for systems with variable flow. Since such approach is time-consuming for
large systems, herein it is used for validation of the approach based on electric-hydraulic
analogy. The individual experiments are performed by switching off all the units in the
system (or assuring their constant operation) and running a test sequence on one particular
unit. Valves remained fully opened for all units. In such a set-up, the central calorimeter
measures the heat consumption of the particular unit with a constant offset equal to the
thermal power of the remaining part of the system. To assure constant losses, supply
medium mass flow and temperature are required to be constant during the test. The test
sequence consists of switching on the highest fan speed on the i*" unit and keeping it on
until the stationary state is reached. The water-based heating and cooling systems are
inevitably subject to transport delays. To account for the effect, calorimeter and return
medium temperature measurements are considered as ideal with variable transport delay
7 estimated based on the known pipe length and diameter as well as the medium mass
flow. After performing experiments on every FCU, flow share through the i unit g ; is

found by solving the following optimization problem:

M;
i Ci'Pa‘k_Pmk+ca - P 2
chn,il,%d ; (nf7 W,z( ) ( Cal( T l) d))
in,m out,m (226)
st. Pgi(k) = qyo(k)cwca <TW7; (k) = To3 ™ (k + ch)> ,
0< Nc,i < 1,

where k denotes measurement samples, M; is overall number of the samples in the
experiment with the i® FCU, ¢y . is a nominal water heat capacity used by the
calorimeter (usually set to heat capacity of distilled water 4180 J/(kg-K)), P2, is thermal

cal

power measurement from the calorimeter, P2 . is a priori calculated water side thermal

W%

power of the i FCU and Py is constant thermal power of the rest of the system. For

clarity, the transport delay 7. is assumed to be already accounted when using the return
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medium temperature measurements in the rest of the thesis.

ut,m

cal and

For available measurement of the system return medium temperature 7',
medium mass flow and supply temperature constant during the experiment, simple
algebraic equations for calculation of flow share through the i** FCU are derived. Flow
share of the i*® FCU is defined as the ratio of temperature differences of the system and
FCU return temperature with all FCUs’ fans switched off (denoted with superscript 'off")
and measured once stationary state of return medium temperature of the excited unit is
reached (denoted with superscript 'on'):

out,m,off  Aout,m,on
(Tw,cal Tw,cal )

Me,i = (Tou‘t,m,off . Tout,m,on) : (227>

w,1 Wi

2.2.3 Identification of the thermodynamic model of the system

In a majority of water-based heating and cooling systems, medium mass flow is controlled
to a constant value while supply temperature is altered to meet the building thermal
demand. Thus, from the operation data of one FCU only the number of points on the
U, = f(Zt, qw) characteristics equal to the number of available distinct fan speeds can
be obtained. To obtain multiple points for different medium mass flows the non-uniform
distribution of the flow through the system is exploited, i.e. several FCUs of the same type
with different estimated flow shares are examined. For a fixed medium mass flow and fan
speed, overall heat transfer coefficient is a scalar value (2.14). The identification of the U,
characteristic is thus divided into two parts. First, a set of scalars U, = {U°T UL UM U}
is found by solving the following optimization problem for every dataset related to the

considered FCUs of the same type:
M;
min 3 [T ) — T (k)
R

s.t. qw,l(k‘) = Mc,i * qu?,o(k:)7
(2.15).

(2.28)

Index k denotes measurement samples, ¢, is unknown water heat capacity, Tv‘ﬁ’m is
measured return medium temperature of the i*" FCU and M; is the length of the
considered data set. The output of the thermodynamic FCU model T4 (k) is defined
as:

Tt (k -+ 1) = h (§ (k). g (B), T ), T (), T () (2.29)

» T w,e ' Ta

with function h(-) representing numerical integration of (2.18) over the interval [k, k+1]T
and model inputs assumed to be constant within that interval. For systems with known

heat capacity of the medium ¢, operating in a stationary state, values of the U, set for
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a fixed medium mass flow g, ; and fan speed ¢, are defined as:

0 iCor T‘i,n%m o Tvc;l;t,m,:c
Ug - . : inr(n 7 outma; )inm : (230>
(05 ’ (Tw,% + TW,?:’ 7 ) - jﬂ’a,i7 )

The result of the first part of the thermodynamic model identification is a set of value
triplets {(¢},;, 7., Us"); = 1,..., K}, where K is their overall number and ¢, ; is mean
value of the medium mass flow of the considered data set if the triplets are obtained by
solving (2.28) or it is equal to medium mass flow used in (2.30).

The second part of the identification is related to finding the unknown coefficients
of the U, characteristics (2.15). The unknown coefficients are found by minimizing the

squared error between the model (2.15) and value triplets obtained experimentally:

K
min Y (Us(th 6ai) — Us™)?, (2.31)

age,bre EfcsCre -
Jj=1

where g, is a set of FCU efficiencies in every fan speed g, := {e¢ff, el eM eI}, To improve
the performance of the model outside the current operating range of the system additional
value pairs are calculated form the catalogue data based on the stationary equation (2.17).

Following from (2.14), it is evident that heat transfer coefficient U, increases with the
medium mass flow ¢,,. However, due to distinctively higher heat capacity of the medium
compared to air, for fixed fan speed the U, value starts to stagnate after some amount of

medium mass flow:

lim Uy(%g, qw) = af., xg € {off, L, M, H}. (2.32)
qu—r00
This part of the U, characteristics is typically covered in manufacturer’s catalogue. The
heat capacity tables from the catalogue consist of stationary values of the sensible thermal
power data P, supply T4 and return T°%°d temperature of the heating/cooling
medium and entering air temperature data T for different fan speeds. Thus, if such
data are available it is possible to calculate values in the ag coefficient set from the

stationary condition (2.17) as:

P;dp(
(T;n,cd,x —05 (T‘}VH’Cd’X + Tgut,cd,x))

T __
Qg =

(2.33)

It is important to note that, even without the use of the manufacturer’s catalogue data,
it is possible to estimate the model covering the operating range of the system. Since the
catalogue data cover the constant part of the U, characteristics, it represents a sort of
performance bound for the considered FCUs.

The workflow of the overall identification methodology is given in Fig. 2.5.
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Figure 2.5. The workflow of the methodology for identification of an energy model for a system
of FCUs.
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2.3 Experimental validation

Experimental validation of the methodology is performed on the south-side piping on the
9™ floor of the case-study building. The experimental setup consists of 13 zones with 17
vertical FCUs mounted on the floor, 12 units of type FCCO06 and 5 units of type FCC04
(Fig. 2.6).

Calorimeter ‘

=~ Supply line

= Return line

el Nel <t el el el el

o o o o o . o o

S S S S S NS S

O O O O O O O
/1 AL AL N A1

CO9-15-1 | = C09-13 C09-12 C09-11  C09-10 - €09-04

Figure 2.6. Layout of the southern supply duct on the 9" floor of the case-study building.

The arrangement of units with included geometry of horizontal supply pipes (length and

diameter) is given in Tab. 2.2.

Table 2.2. Configuration of a system of FCUs on the 9" floor of the case-study building.

Zone FCU No. i d [mm] [ [m] Unit type

C09-04 1 18 1.7 FCCO06
2 22 3.5 FCCO06

C09-05 3 28 1.7 FCCO06
4 35 3.5 FCCO06

C09-06 ) 35 3.5 FCCO06
C09-07 6 35 3.5 FCCO06
C09-08 7 42 3.5 FCCO06
C09-09 8 42 1.7 FCCo04
9 42 3.5 FCC04

C09-10 10 42 3.5 FCCO06
C09-11 11 42 1.7 FCCO06
C09-12 12 42 2.1 FCCo4
C09-13 13 28 ) FCCO06
C09-14 14 28 1.7 FCCO06
C09-15 15 28 3.5 FCC04
16 22 1.7 FCC04

C09-15-1 17 18 3.5 FCCO06
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The length of the pipe is defined as the length of the horizontal segment between two
consecutive FCUs or the length between the FCU and the calorimeter (see Fig. 2.6).
The equivalent length of vertical supply and return pipes (including fittings) is identical
for all units and amounts 6.26 m. In the following subsections, transmission heat losses are
neglected due to the good thermal insulation of the pipeline. This means that the FCU
water inlet temperature is considered to be equal to the supply temperature measured
by the calorimeter Tvivrj’cr:l, e Ty = Tvlvncr; The FCUs, produced by manufacturer Trane
(models FCC06 and FCCO04) [72], are equipped with a centrifugal fan with four different
fan speeds (off, Low, Medium and High) and a three-way valve (on-off type). The
performance of the FCUs is monitored by measuring the return medium temperature
with temperature sensors installed on the FCUs return pipes. On two selected FCUs,
additional temperature sensors are mounted on air exhaust and intake to monitor incoming
and outgoing air temperatures. Zone air temperatures are measured within the local
digital temperature controllers placed in every controllable zone. Every floor supply
duct is equipped with calorimeter used for measurement of supply and return medium
temperature, temperature difference, medium flow, thermal power and consumed thermal
energy. All measurements are collected with sampling time of one minute (7, = 1 min).

The list of all relevant measurements is given in Tab. 2.3.

Table 2.3. Awailable measurements used for identification of energy model of the considered
system of FCUs.

DATA SOURCE SAMPLING TIME
FCUs (i =1, ...,n)

Fan speed re;  (off, L, M, H) 1 min
Return medium temperature 77% [°C] 1 min
ZONES

Zone temperature T.. [°C] 1 min
CALORIMETER

Supply medium temperature Ty, [°C] 1 min
Return medium temperature 77%, [°C] 1 min
Mass flow Owo  |kg/s| 1 min
Thermal power P.. kW] 1 min
Thermal energy E.a  [kWh] 1 min

To confirm the air mass flow ¢, can be considered constant for a certain fan speed the
airflow through one exemplary FCU is determined by using an electrical energy meter and
fan performance data from the manufacturer’s catalogue. The air flow through the FCU

is defined as:
0 = f3(Pa), xe € {L, M, H}, (2.34)
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where P, is electric FCU fan power and f3(-) is nonlinear function identified based on
the manufacturer’s catalogue data (see e.g. Fig. 2.7 for identified functional dependence
between the electrical power of FCU fan and airflow for Trane FCCO06). Since FCUs’ air
intake filters performances vary slowly over time, one electrical energy meter is used to
monitor electrical power of all FCUs placed on the 9** floor and connected to the same

supply lines.

o Manufacturer’s catalogue data —— Fitted function
0.3 LOW s‘pe‘ed ‘ 03 M‘edluH‘l spee;i 0.3 ngh §peedl
| | o
®
?}) 0.2 =02 i =02
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o Q 9 =
= J = g =
< J < / <
p .
/ /
1 SR — 0b Op o
0 25 50 75 100 0 25 50 75 100 0 25 50 75 10C
Fan power [W] Fan power [W] Fan power [W]

Figure 2.7. Identified FCU fan power model for Trane FCCO06.

In Fig. 2.8 the results of on-line monitoring of the exemplary FCU performance are shown.
Tests are performed by turning the highest fan speed for two minutes during unoccupied
hours. All other FCUs’ fans were switched off. To see the impact of the air path blockage,
the FCU air exhaust was blocked by placing the obstacle on roughly 70% of the air
exhaust. The result is degradation of the airflow by approximately 11%. By performing
the experiment it is proved that the air flow does not deviate significantly from the nominal
air floor rate listed in manufacturer’s catalogue at pressure difference 0 Pa if there is no
external impact blocking the air path. Thus, in the thesis air flow and electrical FCU

power are assumed to be constant and equal to the nominal values at 0 Pa for each fan

speed.
1 Measured air flow
0.3 []--- Nominal air flow at pressure difference 0 Pa

2 L 4
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Figure 2.8. Air mass flow variation for 6 days period in 2017.
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1-wire return medium temperature sensors calibration

Due to the well-insulated supply pipelines, large thermal conductivity of the copper pipes
and 1-wire sensor mounted near to the bypass branch, offset characteristics is determined
using historical measurements of supply medium temperature. To avoid the transient
impact of the medium stalled inside the heat exchanger, only stationary values are used.
Figure 2.9 shows the calibration curve obtained by calibrating the 1-wire sensor mounted
on the FCU return pipe in zone C09-10.

°C]
S
1

+ Heating season data
« Cooling season data

907 Sensor characteristics

801
701
60 r
50 F
40 +
30 ¢
20+
10+

,10

out,c
TW

Calibrated sensor measurement

0 10 20 30 40 50 60 70 80 90 100
Raw sensor measurement Ty 15 ™" [°C]

Figure 2.9. 1-wire return medium temperature sensor characteristics (FCU i = 10).

To determine the coefficient )., the identification procedure according to (2.25) was
performed. The resulting v value for the considered system of FCUs and described
scenario amounts ¥y = 0.1534.

Identification experiments

Since validation of both thermodynamic and hydraulic model requires experiments, one
common set of experiments per FCU is used. The experiments are performed by shutting
down all the units and running a test sequence on one particular unit. Valves remained
fully opened for all units. The test sequence consists of sequential fan speed changes from
off to other possible fan speeds. The duration of every fan speed engagement is chosen
to be 8 min, which proved to be enough to cover both the transient and steady-state
behaviour. Alternatively, the identification of the thermodynamic model is also applicable
on FCU historical data with the requirement of recorded stationary operation for each
fan speed. Measurements obtained after running the experiment test on the selected zone
C09-10 during the heating season 2016/17 are shown in Fig. 2.10.
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Figure 2.10. Measurements obtained after running the experiment test in zone C09-10

(FCU i=10).



30  Chapter 2. Mathematical modelling and identification of a system of fan coil units

Identification of hydraulic model of the considered system of
FCUs

With known topology and geometry of the pipes (see Table 2.2), an analogous electrical
model of the hydraulic installations is developed. The correlation between pressure drop
and mass flow for both FCU types is found by identifying the unknown coefficients Ry, s
and oy based on the data from the manufacturer’s catalogue (see e.g. Fig. 2.11 for

FCC06 FCU type).

504 e  Manufacturers catalogue data ’ ’
Fitted function
£ 40t .
24,
o
2 30 -
S|
g
Z 20t -
&
o)
10+ .
0 | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3

Mass flow [kg/s]

Figure 2.11. Identified pressure drop function for Trane model FCCO6.

To set up the optimization problem (2.10), a single measurement of the overall medium
mass flow ¢y, from the calorimeter is used. The flow distribution through the entire
network is found by solving the optimization problem (2.10) in MATLAB with the
genetic algorithm from [70]. The resulting flow distribution, defined as n.; = ¢w.i/¢w.o
and expressed as percentage, is listed in column 4 in Tab. 2.4 and graphically illus-
trated in Fig. 2.12.
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Figure 2.12. Flow distribution of the medium mass flow among FCUs connected to south supply
line on the 9™ floor.
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Table 2.4. Estimated flow share for the south supply line on the 9% floor for Qo = 0.36 kg/s.

FCU Unit 100 i 100 - 7oy Error
Zone , te,i — Tte,i]
No. ¢ type (%] (%] 100 - 77—[%]
fc,i
1 FCCO06 4.62
C09-04 4.73 0.04
2 FCCO06 4.85
3 FCCO06 5.40
C09-05 5.49 0.13
4 FCCO06 5.60
C09-06 5) FCCO06 5.81 5.88 1.22
C09-07 6 FCCO06 6.09 5.97 1.87
C09-08 7 FCC06 6.49 6.50 0.24
8 FCC04 5.31
C09-09 X X
9 FCC04 5.01
C09-10 10 FCCO06 7.20 7.40 2.84
C09-11 11 FCCO06 7.58 7.66 1.06
C09-12 12 FCC04 6.01 6.15 2.27
C09-13 13 FCCO06 7.08 X X
C09-14 14 FCCO06 6.77 6.71 0.79
3.5 FCC04 5.00
C09-15 4.94 1.13
16 FCC04 4.77
C09-15-1 17 FCCO06 5.62 X X

Flow shares, identified based on individual experiments for 8 tests performed in the
exemplary zone C09-10 during winter 2015 and 2016, are shown in Tab. 2.5. The mean
flow share is 7. 10 = 7.40%, which deviates from the calculated value based on the electric-
hydraulic analogy by only 2.84% (see Tab. 2.4). The identified flow distribution through

Table 2.5. Estimated flow share for Trane FCCO06 in zone C09-10 (FCU i = 10).
Test No. | 1 2 3 4 5 6 7 8

qwio [kg/s] 0.027  0.028 0.027  0.028  0.029 0.023  0.022  0.030
100 - Mge,10 [%0] 7.26 7.35 7.35 7.57 7.34 7.26 7.78 7.31

the considered system of FCUs is listed in column 5 in Tab. 2.4. Since all FCUs in a single
zone are actuated simultaneously, for zones with more than one FCU, the mean flow share
of all units is calculated instead of individual shares. Average relative error, mainly due
to sensor accuracy, is 1.16%, which proves the adequate accuracy of electric-hydraulic
analogy based calculation of flow distribution through the system. In zones marked with

'x’, measurements were unavailable.



32  Chapter 2. Mathematical modelling and identification of a system of fan coil units

Identification of thermodynamic FCU model

Value triplets for identification of the thermodynamic model of the selected FCU type
(FCCO06) are identified by solving the optimization problem (2.28) for the data collected
during 32 test sequence runs on the units of type FCCO06 in different zones during heating
season 2015/2016, 2016/2017 and cooling season 2017. The heat capacity of water cy
identified according to (2.28) for all the experiments is shown in Fig. 2.13. The model
(2.29) is initialized by using known measurements of the return medium temperature at

the beginning of the experiment.
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Experiment Number
Figure 2.13. Identified heat capacity of the heating/cooling medium.

During the heating season incoming air temperature can be considered equal to the zone
temperature, thus ef, coefficients are set to one for all speeds. During the cooling season
cooled outgoing air tends to settle at the floor without mixing with the zone air (Fig. 2.14).
To anticipate the effect, separate efficiency coefficients . are identified for every fan speed
(2.15). The identified parameter sets ag, bg and &g and parameter cg for Trane FCCO06
thermodynamic model obtained through (2.31), based on the above obtained value triplets,

are shown in Tab. 2.6.

Table 2.6. Estimated U,(x,qy) function parameters for Trane FCCOG.

Fan speed z¢./ off L \ -
Model parameters
ag. 5.30 96.45 152.90 201.80
A 0 1.73-107* 3.58-107% 5.40-1073
ef. (cooling) 0 0.35 0.47 0.52
ef. (heating) 1
Ce 1.86
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Figure 2.14. Measurements of incoming and outgoing air temperature in zone C09-10
(FCU ¢ = 10) collected during the a) heating season, b) cooling season.

Time responses of the identified FCU thermodynamic model in the exemplary zone
C09-10, tested on the verification data set, are shown in Fig. 2.15. The model is simulated
by using known model input data to calculate the prediction of the return medium
temperature without considering available measurements during that period (so-called
open-loop prediction). Estimated heat capacity of the medium is considered (see Fig. 2.13)
such that calorimeter power measurements are scaled and de-offsetted for the remaining
piping consumption P, = P2 ¢y /Cyca — Pa. As it can be seen from the figure, the model

cal

successfully captures the FCU dynamics.
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Figure 2.15. Identified FCU model (FCU i=10) response over the verification data set.

The estimated functional dependence U, (., qy) for three non-zero fan speeds of Trane
FCCO06 is shown in Fig. 2.16. In Fig. 2.17, normalized root mean squared error (NRMSE)
of model return temperature response compared with minutely sampled measurements is
given. The NRMSE is calculated as:

M; out,m
| TS () — T (k)2
NRMSE - \/zm( )~ T ) 2
TW ’l/7 Ml
where T:Vu: = To"™(k)/M; is the mean value of return medium temperature taken

over considered data samples for a particular i** FCU, M; is overall number of samples
collected during the experiment on the particular FCU and k£ denotes the measurement
sample.
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Figure 2.16. Identified heat transfer coefficient function for low, medium and high fan speed of
Trane FCCO6.
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Figure 2.17. NRMSE of the identified model return medium temperature response compared to
the measurements for FCU ¢ = {2,5,7,10,11,14}.

Electrical energy consumption model

The FCU’s fan powers in certain fan speed PY, PY' and PI are defined based on the

ely *el

manufacturer’s catalogue data (Tab. 2.7).

Table 2.7. FCU’s fan power for different fan speeds at pressure difference 0 Pa.
Fan power [W]

Py ry Py

FCCo04 54 56 66

FCC06 53 66 82

FCU type







CHAPTER 9

Mathematical modelling and
identification of building

temperature dynamics

Buildings are complex nonlinear dynamic systems with uncertain and time-varying
dynamics. The practical experience has shown that acquiring the Model Predictive
Control (MPC) essence — the model — is the most time-consuming and costly part of
the corresponding design and on-site implementation process that generates around 70%
of the engineering costs [21, 73]. Despite clear benefits of MPC, its wide-scale deployment
is still hindered due to the lack of replicable, low-cost procedures for obtaining suitable
mathematical models able to predict the building behaviour sufficiently accurate for
several hours ahead.

Building models based on fundamental physical laws, usually used in building
simulation tools such as IDA - Indoor Climate and Energy (IDA-ICE) [25], EnergyPlus
[26] and Transient System Simulation Program (TRNSYS) [27], accurately describe the
relevant building dynamics. Those tools use detailed descriptions of thermal properties
and dimensions of building elements such as walls, floors, ceilings and windows, to generate
the dynamic simulation models. With available weather data for the building location, the
models accurately calculate heating and cooling loads of the building useful for optimizing
the building design, sizing the HVAC equipment or planning the energy efficiency retrofit
[74, 75, 76]. However, they are hardly usable for real-time control implementation due
to large state and parameters dimensions accompanied by nonlinearities or non-explicit
model form. To be applicable for the control system design generally, the model of the
process should be simple and yet accurate enough. While nonlinear and higher order
models provide better accuracy, they tend to be computationally too intensive for the
real-time implementation of the MPC. Therefore, from the control viewpoint, the goal is

to get a linear low-order model in a way that the model uncertainty is lowest possible.

37
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Several approaches exist to develop a control-oriented model, including ¢) non-
physical data-driven methods such as subspace state-space system identification (4SID)
algorithm [31], linear parametric models (e.g. autoregressive moving average with external
inputs (ARMAX)) [32, 33, 77] or neural networks, i) physical lumped-parameters
methods based on the analogy between thermodynamic processes in buildings and
electrical networks, and i) semi-physical methods, where model structure is assumed
to be known based on the building physics or some other a priori information while the

constituting model parameters with physical meaning have to be estimated.

Non-physical methods do not require any specific knowledge about the system
structure but to identify the model a long period of a widely varying operational data
for parameters tuning is required. The most usual physically based approach in thermal
modelling of buildings is based on a well established linear resistance-capacitance (RC)
representation where heat storage is represented by capacitors and heat transmission by
resistors. The methodology is based on lumped-parameters approach where each building
element (outside wall, window, inside wall, floor, roof, etc.) is represented with a finite
number of states [28, 29, 30]. The model parameters are calculated analytically, based
on the detailed physical properties of the building elements, such as wall layers, layer’s
thickness and materials, materials properties, etc., which are often unknown, specially for
the older buildings. Since every building element is represented with its analogous RC
model, as the number of building elements increases, complexity of the model increases
as well. For large buildings, the number of the system states can be over a couple
of thousands with many of these states being unmeasurable (e.g. wall temperatures,
ceiling temperatures, etc.). To determine those states the online estimation is required.
Although the resulting estimation problem is linear, the estimation of a large number of
unmeasurable states based on a limited set of measurable variables tends to be unreliable.
To cope with the problem in [78, 79, 80] methods for reducing the order of the full-scale
RC model are proposed. Authors of [81] proposed simplified model structure where zones
are represented with only two states and the parameters are calculated analytically based
on the known thermal properties of the building elements. The mismatch between the
documented and real thermal properties of the building elements as well as the availability
of those data motivated several authors to tune the parameters of the simplified model
structures, developed based on the RC analogy, to the available data sets of temperature
and energy consumption [21, 82, 37, 31, 73, 83, 84, 85, 86]. These models, combining the
benefits of physical modelling and identification methods, are often referred to as grey-box

or semi-physical models.

Semi-physical methods incorporate a priori information and physical knowledge
directly into the system model, resulting thus with more reproducible results and less
bias [34]. The particular benefits of the semi-physical building models are demonstrated
in several studies by comparing their performance with the specialised building simulation
software [21, 82, 37, 31] or measurements collected in real buildings [73, 83, 84, 85].
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Although simulation studies provide a good alternative for identification when the real
measurements are not available, such an approach necessitates additional engineering
hours for deployment of the simulation models while the developed estimation procedure
may not be replicable on the real building due to the mismatch between the documented
and realized building construction, limited number of measured variables, noisy sensor
observations, unknown heating/cooling elements dynamics and poorly excited building
operation data. The algorithms mostly used for identification are Nonlinear Problem
(NLP) solving algorithms (e.g. genetic algorithms, gradient methods, etc.) employed
to minimize one-step-ahead [33, 87, 88| or multi-steps-ahead predictions [84], maximum
likelihood methods [73, 89] and filtering approaches like Extended Kalman Filter (EKF)
and Unscented Kalman Filter (UKF). To solve the problem of possibly non-physical
behaviour of the identified model, e.g. negative thermal resistances, the developed models
are subsequently tested for the oscillatory behaviour or unstable modes [84] or a set of
supervisory rules is employed to detect and discard physically meaningless estimates [90].

The rest of the Chapter is organized as follows. First, a short overview of heat
transfer processes in buildings is given in Section 3.1 followed by detailed description of
thermal RC models and accompanying modelling methodology in Section 3.2. Section 3.3
gives a brief description of building simulation software and models developed within
it. The structure of the considered low-order semi-physical zone temperature model is
given in Section 3.4. In Section 3.5 an identification framework for simplified low-order
building models based on Unscented Kalman filter is developed. Finally, in Section 3.6
the presented methodologies are applied on the case-study building followed with the

thorough performance analysis of the developed building simulation models.
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3.1 Heat transfer processes in buildings
The heat is transferred from one place to another by three methods:

- conduction in solids, with heat being transferred between substances which are in

direct contact with each other,
- convection in fluids or between a fluid and a solid body due to the fluid motion, and
- radiation, where energy is transferred by electromagnetic waves.

[llustration of the heat flows between two adjacent zones separated by a solid wall is shown
in Fig. 3.1.

ZIC B A VAVAVAVAV IR L VAVAVAVAVA Zome 2

radiation radiation
—_—
—_—
—_—
convection conduction convection
—_—

—_—

—_—

Ta,l = 25oc.ﬁ Twall,l

]

Twall,2
N T, =20°C

Figure 3.1. An illustration of different modes of heat transfer in a thermal zone.

Heat transfer occurs by: i) convection from the warmer air in zone 1 at temperature 7, ;
to one surface of the wall at temperature Tyapn1, %) conduction through the wall, 4ii)
convection from the other surface of the wall at temperature Tyan2 to the colder zone
air at temperature 7,5 and i) radiation. For any building element (wall, window, door,
etc.), a rate of temperature change d 7'/ dt corresponds to the sum of all heat transfer

rates affecting the object:

dT

c.-=
dt

= Qcond + Qconv + Qrad; (31)

where T is the temperature, ¢ denotes time, d /(d T") denotes a first time derivative, Qcond,

Qconv and Qr.q are conductive, convective and radiant heat transfer rates, respectively,
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and C' is thermal capacity of the building element defined as:
C=m-c, (3.2)

where m is the building element mass and c is its specific heat capacity. The conductive
heat transfer rate QQconqa through a homogeneous building element is described by one-

dimensional form of Fourier’s law:

dT
con :_kA_; 3.3
Qe = 33
where d T/ dx is the temperature gradient in the direction x normal to the area of the
building element A and k is thermal conductivity of the element. Under the steady state
condition (d 7'/ dt = 0) the temperature distribution in wall is linear, and the temperature
gradient can be considered as:
ar (T, —Ty)
2= A2 b 3.4
where T and T5 are temperatures of element surfaces and L is the thickness of the element.

From (3.3) and (3.4) it follows:

(Th — 1)
cond — s 3.5
Q d Rcond ( )
where R.nq is conductive thermal resistance defined as:
L
Reona = ——. 3.6
= (36)

For a convective heat transfer process the rate of heat being transferred Q.o is defined

as:
(Tsur - Ta)

RCOHV

where Ty, is the temperature of the considered solid body surface, T}, is the temperature

Qconv = ) (37)

od the surrounding air and R, is the convective thermal resistance defined as:
(3.8)

with h being convective heat transfer coefficient. Any body at any temperature above
absolute zero will radiate to some extent, the intensity and frequency distribution of the
radiation depend on the detailed structure of the body. The radiant heat transfer rate
(Qraq is defined as:

Qraa = 0 - €+ A (T + 273.15)* — (T, + 273.15)*) , (3.9)

where o is the Stefan-Boltzmann constant and ¢ is the emissivity of the surface. Similarly
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to conductive and convective heat transfers, radiant heat transfer rate is described as:

(Tsur - Ta)
rad — , 3.10
Q d Rrad ( )
where R,.q is thermal resistance to radiant heat transfer defined as:
Tsur - Ta
R ( ) (3.11)

o A((Tow + 273.15)% — (T, + 273.15)4)

3.2 Thermal Resistance-Capacitance models

Thermal RC models are established as simple, computationally efficient and accurate
enough models. The methodology, based on the analogy between the thermodynamic
processes and electrical networks, uses the resistance and capacitance elements to model
thermodynamic processes in buildings. To represent a thermal circuit using an equivalent
RC network the temperature of an element is viewed as the electrical voltage, heat flow
is analogous to the electrical current, the thermal resistance of a building element is
represented by an electrical resistance and the heat capacitance, i.e. the thermal mass of

the building element, is represented by a capacitance (Tab. 3.1).

Table 3.1. The analogy between thermodynamics processes in buildings and electrical networks.

Electrical circuit Thermal process
Voltage Temperature
Current Heat flow

Electrical resistance Heat resistance

Electrical capacity Heat capacity

The basic strategy of this methodology is to represent building elements (or complete
zones) with a finite number of electrical network elements. This way, building elements
are treated as if they were concentrated (lumped) into nodes (points) with uniform
temperature. By doing so, instead of using partial differential equations, heat conduction
is described by using ordinary differential equations the order of which is equal to
the number of dynamic electrical network elements (capacitances) used to describe the
building elements [91, 28, 79, 92, 93]. To derive differential equations from the electrical
circuit diagram, electrical circuit analysis techniques, such as Kirchhoff’s current and
voltage laws, are applied. The resulting model is linear and time-invariant, with nodes
temperatures as system states. Due to a very low range of building operation temperatures,

radiant heat transfer between the building elements is not considered [94].
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3.2.1 The Resistance-Capacitance model of a single zone

For a multilayer building element, with n; overall material layers, heat capacity C' is
defined as:

ny
C:AZLi'pi'Cl,iy (312)

i=1
where L; is thickness, p; is the density and ¢;; is the specific heat capacity of ith layer

material. Thermal resistance for conduction in a multilayer building element is

ny

Reona = ) kL—A (3.13)
where k; is thermal conductivity of the i*" layer material.
Zone air
Zone, i.e. air inside a zone is represented with a single capacitance defined as:
Co=pa-V-Cao=my-ca (3.14)

where p, is the air density, V' is the volume of the air in the zone, ¢, is specific heat

capacity of the air and m, is mass of the air inside the zone.

Solar irradiance

Solar irradiance is absorbed by solid external surfaces or absorbed and transmitted into
the zone through external windows. The rate of absorbed solar irradiance depends on the
absorptivity a of the wall. Overall radiation absorbed by the external wall (), is defined
as:

Qs.a = - Agan - (1§ + 1), (3.15)

where It and I$" are diffuse and direct solar irradiances per unit area incident on the
exterior surface of area Ay.y. The solar incidence angle # is the angle between direct
solar ray and a line normal to the irradiated surface. Typically, only measurements of
direct normal 79" and diffuse horizontal I solar irradiance are available. The direct
solar irradiance incident on a tilted surface I$¥, e.g. wall or window, is easily calculated
with the known surface azimuth angle, tilt angle, and solar zenith and azimuth angle (see
Appendix B).

The main uncertainty in modelling the solar irradiance impact on zone temperature
lies in modelling the overall solar heat gain transmitted into the zone and calculation of
the areas influenced by this gain. Part of the overall transmitted irradiance is absorbed by
the air inside a zone and part by internal zone surfaces (e.g. walls or furniture). A thorough

calculation of this effect would determine the position of the Sun at each moment, and,
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based on the position of the windows, the fraction of the transmitted solar irradiance that
is incident on each surface in the zone. This calculation is not only time-consuming, but
also needs a follow-up in which the multiple reflections between the different surfaces are
determined. The most common approach for modelling the transmitted solar irradiance
uses constant Solar Heat Gain Coefficient (SHGC) and assumes that the entire transmitted
irradiance is absorbed by the zone air [94] or the floor surface [79].

Direct solar irradiance comes straight from the Sun and falls on the window surface
under specified angle - angle of incidence 6. Therefore it is possible to determine the area
that is affected. Herein, it is assumed that part of the transmitted direct solar irradiance,
which is not absorbed by the zone air, affects the zone floor. Overall direct solar irradiance
transmitted into the zone QI} is defined as [95, 96]:

g,itr = SHGC(9> : Awindow : éﬁr, (316)

where Ayindow 18 the area of the window and SHGC is function of a solar incidence angle 6
(see. e.g. Fig. 3.2 for SHGC(0) function of the glazing installed on the case-study building
described in Appendix A and calculated with Window software [96])

0.8
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0.6 | i
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Angle of incidence [°]

Solar heat gain coefficient

Figure 3.2. The SHGC value as a function of angle of incidence 6.

Diffuse solar irradiance falls on the windows surface under dispersed arrival angles, so it
is very difficult to determine the areas which are affected and the amount of irradiance that
affects a particular area. Under the assumption of uniformly distributed arrival angles, it
can be concluded that the part of the transmitted diffuse irradiance which is not absorbed
by the zone air affects all zone surfaces except the surface containing the window [97].
Amount of the irradiance that affects a particular area is a function of the surface area
and overall area of the affected surfaces, i.e. transmitted diffuse solar irradiance which is
not absorbed by the zone air is uniformly distributed to all affected surfaces. Since the
diffuse solar irradiance falls on the window surface at different angles, for calculation of
the transmitted diffuse irradiance, the hemisphericaly averaged solar heat gain coefficient
SHGC is used:

w/2
SHGC — / SHGC(6)cos(6)d6. (3.17)
0
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The transmitted diffuse solar irradiance Q" is then defined as:
4 = SHGC - Ayindow - 1™ (3.18)
Overall solar irradiance transmitted into the zone (), through windows is defined as:
Qst = QI + QLY. (3.19)

To avoid lengthy calculations and complicated distribution functions it is assumed that
there are no reflections between surfaces inside the zone. The final solar irradiance model

is nonlinear but significantly improves the accuracy of the model.

Walls and windows

While temperature of the air in the zone is typically represented with a single state (3.14),
the number of the states used to describe a wall typically differs from number of states
equal to number of different material layers inside the wall to a single state. Intuitively,
for modelling the external walls at least two capacitances are necessary - one representing
temperature of the outer surface of the wall and one representing temperature of the inner
surface of the wall. Representing the external walls with a single capacitance was subject
of many studies. The studies showed significant deviations from real measurements,
especially in the case of high thermal capacity buildings [97]. An analogous RC network
model of an external wall, represented with two capacitances, is given in Fig. 3.3. The
model has four nodes with potentials Thy, 7%, T2 and T, corresponding to outside air,
the external surface of the wall, internal surface of the wall and air in the zone, respectively.
The capacities representing temperature of external and internal wall surface are defined
as:

con =Cn =0.5-C, (3.20)

W

where C' is defined as in (3.12). The conductive heat resistances Ryan and Ryindow are
defined as in (3.13). The thermal resistance for convection on the internal and external

surfaces of the wall (3.8) are denoted as,

1
RO, = (3.21)

wall — hout | A’

in 1

wall — hin—_A7
where A" and h°" are internal and external convective heat transfer coefficients, respec-
tively. Typical values of the convective heat transfer coefficients are A" = 3 W/(m?K) for

the internal and h°" = 18 W/(m?K) for the external coefficient. Due to the significantly

lower heat capacity than the wall, windows are represented with resistors only.
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. wall Zone
0 - dir
s,t
out . in
Rwindow RWIHdOW Rwindow

Tout

Figure 3.3. An analogous RC network model of an external wall with a window.

Energy balance for two wall nodes results in a set of first order differential equations

d T _ (Tout — TOUt) (Tvivrelall - TVCJEE)

Cout wall — wall u 3 ) 2 2
in d TvivI;ll _ (Tv?zgltl B Tvivr;ll) + (TZOHe - T\}vléll) (3 23)
wall d t Rwau Ri;lau ? ‘
with energy balance of the zone air node defined as:
dT, (Tin - Tzone) (T t T, )
Czone zone wall . + ou zone . + Qs 3.94
dt Ri}frlall Rgl];.fldow + Rwindow + Rgflindow " Q ! ( )

where 7, is the share of the transmitted solar irradiance absorbed by the zone air.

Due to the smaller temperature difference between the wall surfaces and lower thermal
capacity than external walls, internal walls are typically represented with a single state
such that the temperature of a wall across its volume is assumed to be equal to its
centerline temperature. An analogous RC model of an internal wall is shown in Fig. 3.4.
It is assumed only Zone 1 has external windows and the share of the transmitted diffuse
solar irradiance absorbed by the internal wall is dented with 7;. Energy balance for the

node representing the internal wall results in the following first order differential equation:

dvaall (Tzonel - Twall) + (TzoneQ - Twall) diff

Cya = : , 3.25
I 05 - R 05 Ry st (3.25)
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Figure 3.4. An analogous RC network model of an internal wall.

where Ry is defined as a sum of conductive thermal resistance (3.13) and convective
thermal resistances (3.8) for both surfaces of the wall
1 1

Rwall = — + Rcond +

—_ 2
hm - Awall hn AAwall7 (3 6>

Ayan is the area of the wall surfaces and Cyay is calculated according to (3.12).
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Building zones

Figure 3.5 shows an analogous RC network model for the typical building zone with two
external and two internal walls, one window and heating/cooling element heat transfer
rate denoted with P,; (e.g. heat transfer rate from fan coil unit, radiator, etc.). The
temperature in the zone above of the exemplary Zone 1 is denoted as T, 5 and temperature
in the zone below as T, 4. Solar irradiance affecting the external wall facing north is
denoted with superscript 'N’ while the one affecting the external wall oriented towards
west is denoted with superscript "W’. For simplicity, transmitted diffuse solar irradiance

is omitted.

{1
Qa

Rwindow
{
R

Figure 3.5. An analogous RC network model for the typical zone with two external and two
internal walls and one window.
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3.2.2 State-space model of a building

For a multi-zone building, the network consist of three types of nodes: wall nodes, zone air
nodes and external conditions nodes. There are total m nodes, n, of which represent zones
and wall temperatures and the rest of them representing external and boundary conditions.
To keep the building model linear, nonlinear calculations of solar irradiation effects are
separated from the model into two types of preprocessing procedures (Fig. 3.6). The
first procedure calculates solar incidence angle # and direct and diffuse solar irradiances
incident on the external building surface, I3 and I respectively, based on the known
solar zenith angle 6., solar azimuth angle ¢,, surface azimuth angles ¢, direct normal 7%
and diffuse horizontal solar irradiance I&ff. Outputs of the first procedure are used to
calculate the overall radiation absorbed by the external wall ()5, (3.15) and as inputs to
the second procedure in which the SHGC of window surfaces is determined and based
on it solar irradiances transmitted through the windows into the zones are calculated.
The number of required preprocessing procedures calls can be significantly reduced by

grouping the external walls and windows by surface azimuth angles and window types.

"|external wall nyan”
external wall 3 Tout -
external wall 2
Idir external wall 1
n
Jdiff Calculation of »
)5 . .
——»| incidence angle
lir 1iff
Os ) 6 and solar I, 1§t -
. . >
0 irradiance
Z—> incident on the .-"lexternal windw N’
10} external wall external window 3
— . — external window 2
with azimuth ¢ |- oxtornal window 1 )
Linear system
— 3] model
Calculation of G Adif
transmitted sit? st -
. . » Eq. (3.27)
0 o | solar irradiance
through the —
window | |
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>
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Figure 3.6. Preprocessing of nonlinear solar irradiance effects.

Since the calculation of the absorbed radiation is linear function of the solar irradiances
incident on the external building surface, instead of having additional procedure for its
calculation (3.15) it is integrated into the linear system model such that solar irradiances
incident on the external building surfaces are treated as inputs into the linear system

model. If the energy balance equations (3.22)-(3.25) are written for every building element,
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the obtained first order differential equations can be put in the following state-space form:
©(t) =A-x(t) + B - ult), (3.27)

where z(t) € R is the state vector containing the temperatures of all wall and zone air
nodes in the building, the dot denotes time derivation (& = dz/d¢), and u(t) € R™ is
the input vector consisting of external weather conditions, pre-calculated solar irradiances
and heating/cooling elements thermal powers P,. Matrix A € R™*"= is the system matrix
and B € R™*™ ig the accompanying system input matrix. System output y(¢) € R™

comprises available temperature measurements, typically only the zone air temperatures:

y(t) =C - x(t). (3.28)
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3.3 Building simulation software models

Building simulation software has been recognized as an important decision support tool
in many sectors, most notably the architecture, engineering and construction. Major use

of the building simulation software includes:

architectural design: comparing different designs quantitatively in order to assure

optimal energy-efficient design,

- HVAC equipment sizing: avoiding oversizing by sizing the HVAC equipment with

respect to the simulated building thermal loads,

- building performance rating: demonstrating the compliance of the building with

energy certificates,

- building retrofitting: assessing the possible energy savings by testing the building

performance under different building operation conditions.

With the use of the advanced model-based algorithm in buildings that is recognized as a
promising solution for achieving significant energy savings, building simulation software
is intensively used ) for verification of advanced control algorithms and i) as a source
of data for identification of simplified building simulation models [21, 82, 37, 31]. The
accuracy of the building simulation software is highly determined by the input data. The
data necessary for development of building simulation model within specialised building

simulation software are:

- geometry of the building: typically, in form of AutoCAD building drawings,

- location information: location and orientation of the building, shading by the

surrounding buildings,

- building physics: materials and construction, windows and shading, thermal bridges,

infiltration, etc.

- climate data: ambient air temperature, relative humidity, direct and diffuse solar

irradiance, wind speed and direction,
- interior building loads: occupancy, lighting, electric equipment,

- operation strategies and schedules.

Among the most commonly used simulation software tools are Energy Plus [26],
IDA-Indoor Climate and Energy (IDA-ICE) [25] and Transient System Simulation Pro-
gram (Trnsys) [27]. Depending on the primary use of the software different tools have
unique benefits and drawbacks for different conditions. Within the thesis, two simulation
tools are tested, Trnsys and IDA-ICE. IDA-ICE is a whole-year detailed and dynamic
multi-zone simulation software developed by EQUA Simulation AB [25]. The program
is validated with ASHRAE 140-2004 [98] and EN 15255-2007, 15265-2007 [99], showing
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that IDA-ICE can give accurate calculations of buildings’ energy and indoor climate
performances in comparison to measured data or other state-of-the art simulation
programs. Trnsys is a transient system simulation software tool with a modular structure
that is designed to develop an energy system with a wide range from simple to complex

systems [27].
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3.4 Low-order semi-physical building model

The building zone temperature behaviour is well captured with two thermal masses: one
with smaller thermal capacity related to the air temperature inside a zone referred to as
temperature fast dynamics and one with larger thermal capacity related to the solid zone

parts like walls and furniture referred to as temperature slow dynamics [83]:

_‘_p;iir gir +p?1ﬁjglﬁ+ Pa;

r (TJ - Ta) (Tout - Ta) (Tz - Ta)
C\T, = =
' Z Rj * Rout " R
JEY
(Ta - TZ)

R Y

(3.29)
CoT, =

where T, and T, are the temperatures of lumped smaller and larger thermal masses
capacities C} and Cy, respectively. The dot denotes time derivation (7' = d T/ d t). Outside
air temperature and corresponding thermal resistance between outside and the zone are
denoted with T5,,; and R, respectively. Resistance R; models the thermal resistances
between the adjacent zones where V is a set of all zones adjacent to the considered zone
and j*™ adjacent zone temperature is denoted as T7. The parameter P, is a thermal load
affecting the zone, I$if and IJ" are diffuse and direct solar irradiances per unit area
incident on the exterior zone surface, affecting the zone through the corresponding solar
transmittance parameters pI and pd*. In order to avoid multiplication of the unknown

system capacities and thermal resistances, model (3.29) is reformulated to

Ll _|~atpstp) | |Ta L |ps peops pe pr) (3:30)
TZ D2 —P2 Tz 0 0 0 0 0
The unknown system parameters form the parameter vector
T
o= [pl p7} , (3.31)
while input vector is defined as
. . . T
w = [T 1% Ifm Py T3] (3.32)

System capacities and thermal resistances can easily be recalculated through algebraic
relations from ©. For simplicity of notation it is assumed that the zone has just one
adjacent zone denoted with 724, The unknown parameters vector © is to be determined
analytically based on the available data on building physics [81] or through identification
[21, 82, 37, 31, 73, 83, 84, 85, 86].
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3.5 Identification framework for simplified low-order
building models based on Unscented Kalman
filter

Unscented Kalman Filter (UKF) is a well-known technique for estimation of states and
parameters of a dynamic system mathematical model [100]. Many different variations of
the original UKF were derived in order to improve its numerical stability or to adjust the
filter to special model forms [101, 102, 103]. The fundamental part of UKF is Unscented
Transformation (UT) which uses a minimal set of appropriately chosen weighted points
(so-called sigma points) to capture the mean and covariance of a random vector that
undergoes a nonlinear mapping. It is shown that UT can capture this posterior mean
and covariance correctly up to the fourth term in the corresponding Taylor series [100].
In practice, almost all physical parameters and states are limited in some sense. One
of the first nonlinear estimation algorithms developed to efficiently handle constraints
is Moving Horizon Estimator (MHE) [104]. MHE formulates the estimation problem
as a nonrecursive constrained Quadratic Program (QP). Solving the constrained QP
at each step makes this algorithm computationally expensive and difficult to use in
different real-time applications. For time-critical applications a special form of MHE with
unitary moving horizon is derived, which resulted in constrained Extended Kalman Filter
(EKF) [105] as a less computationally demanding derivative of the general MHE.
General idea on how to modify the original UKF to account for constraints on states
and parameters subject to estimation was first presented by authors of the original UKF
in [106] through introduction of the scaled UT. First intuitive attempts to incorporate
inequality constraints into the UKF approach were based on a simple clipping approach,
i.e setting all sigma points outside the allowed set to the boundaries [37, 107, 108]. The
constrained sigma points are not necessary symmetric, therefore in [109, 110, 111] the
weights associated with them are modified. Alternative approach, presented in [107],
handles the constraints by solving a Nonlinear Problem (NLP) in the correction step.
An overview of the possible ways to handle the constraints within filtering estimation
algorithms is given in [112, 113, 110]. The UKF has been largely adopted in specific fields
complementary to energy-efficient buildings [114, 42, 115]. However, the research related
to application of UKF for estimation of control-oriented building models is mostly limited
to the application on simulation data [82, 37] as there are only few studies with the
experimental results [85, 116]. In [85], an UKF approach is validated by using short-term
(10 h) measurement data from a real building affected by the outside temperature and
adjacent zones temperatures. A 13-days sequence of minute-sampled data is validated in
[116]. While UKF has shown good tracking properties, some parameters of the assumed
semi-physical model structure adopted negative values whilst this is not physically possible

and may result in unwanted behaviour when the model is utilized for prediction.
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The reasons for UKF being rarely used for identification of thermal building models
lie in practical issues of i) dealing with non-physical model parameters, i7) handling the
problem of non-informative system excitation (e.g. solar irradiance at night) 4ii) limited
number of installed sensors (available measurements), iv) filter sampling time selection
issues and v) accounting for dynamics of the heating/cooling elements installed in the

building.

3.5.1 Standard Unscented Kalman filter

Consider the nonlinear system represented with the following standard discrete-time
equations:

T = f(Tr-1, Up—1) + Wi_1, (3.33)

yr = h(zk) + v,

where 2, € R"™ is the system state, wy = N(0,Q;) € R™ the process noise,
v, = N (0, Ry) € R™ observation noise, u; the system input vector and y; the noisy
observation of the system. Gaussian random variable distribution with the corresponding
mean and variance (square of standard deviation) is denoted with N(-,-). The nonlinear
functions f(-) and h(-) are not necessarily differentiable. For the identification of a
continuous-time system f(-) results from integration of the continuous-time model
function over the interval of one filter sampling time. For system and measurement noises
considered as additive, the original UKF algorithm is described in Algorithm 1 [106].

Parameter v is a scaling parameter defined as:

Y=g+ A A= a?(ng + k) — ng, (3.34)

where n, is the number of system states while o, k and § are tuning parameters. To
guarantee the semi-definiteness of the covariance matrix it must be x + n, # 0 [102]. A
good default choice is k = 0, § = 2 [106]. The parameter « defines the spread of the
sigma points around the current estimate and is usually set to a small positive value
10~* < o < 1. Parameter f3 is a parameter used to incorporate the prior knowledge of the

distribution of xj. For a Gaussian prior the optimal choice is 5 = 2 [106] .
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Algorithm 1 Standard UKF algorithm

Initialization at k£ = 0:

Ty = Elzo),
Py, = E[(zo — &0)(wg — 20) ']

Fork=1,23, ..
Time update
Calculate sigma points xx_1:

Tp—1 1 =0,
A A .
Xk—1i = Th1 TV FPop, t=1,...,ng,
Tpe1 — Y/ Py T=n,+1,...,2n,.

Transform the sigma points through the state-update nonlinear function:

x o .
Xklk—1, = J(Xk—1,i5 Ur—1), 1=20,1,...,2n,.
Calculate the a priori state estimate 2, and a priori covariance P, :
2ng

Ty, = Z Wi(m)Xz\k—l,ia
i=0

2Ny

Pr = WOy — i) (X, — )+ Q.

=0
The weights W™ and W are defined as:
A

—C  i=0
(m) a ) (ng+ ) ’
e 1 1,...2
T L= Ny,
2(n, + \) T
A +(1 2+B) i=0
— -« 1=
(© o ng + A ’
W ( 1) =1,....2
—_— 1=1,...,2n,.
2(ng + A) Y

Transform the sigma points through the measurement update function A(-):

Yk“f—l,i = h<Xi|k—l,i)7 L= 07 17 ) an:

and calculate the mean g, and covariance of the measurement Py, :

2N
Ue = Z Wi(m)ymk—l,ia
i=0
2Ny
Py, = Z W@-(C) (Yepk—rs — 950 ) Y — 95 ) " + R
i=0

where Rj, is the measurement noise covariance matrix.

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)
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The cross covariance P, is defined as:

TrYk

2Ny

Py = Z Wz‘(C) (X%A,z’ — 23 ) (Yajh—1,i — ?Q;;)T- (3.46)
i=0
Kalman gain K} is computed as:

Ky = Py Py (3.47)
Finally, UKF estimate Zj and its covariance P,, are computed from the standard Kalman

update equations:

k

Measurement update

3.5.2 Constrained Unscented Kalman filter with improved weight

selection scheme

The weighted sigma point set (3.37) has the same sample mean, covariance and all higher

odd-ordered central moments as original distribution N (Zx_1, Pr,_,):

2Ng
1= W™ X (3.50)
i=0
2Ny
Pey_, = Z Wi(C) k-1, — Tr—1) [Xe-1,6 — fk;—ﬂT, (3.51)
i=0

where W™ € R! and W € R! are the weights associated with the i" sigma point.
To account for interval constraints, in Interval-Constrained Unscented Transformation
(ICUT) [110] original sigma point set (3.37) is modified such that in each filtering step
k the original sigma point spread defined by scaling parameter v is reduced for every

sigma-point violating the constraints:

2 i =0,
s 24 | (3.52)
T + Agicoli(Sy,) i=1,...,2n,,

Sev = VP = V/Purl. (3.53)
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where x}._, ; is constrained sigma point set, col;(-) represents the ! column of matrix and

modified scaling parameter Ay ; is defined as:

Ay = min(col;(T)), (3.54)
[y if Sy, (j,i) =0,
. Ue(G) — 2:(5)\ . -
T(j,4) & { mn (% W if Sy, (j,1) >0, (3.55)
T \J>
. Li(j) — i:k(j)> : -
min | v, ————= | if S, (j,7) <0,
i (02053 0
where ¢ = 1,...,2n,, 7 = 1,...,n,, Ly € R™ and U, € R"™ are vectors of lower and

upper bounds of system state variable, respectively. If all unconstrained sigma points are
within the boundaries, or in absence of bounds, the ICUT (3.52) results in sigma points
identical to those in UT (3.37), keeping thus the same order of accuracy as original UT.
If unconstrained sigma points violate the constraints, the constrained sigma point set is
in general not symmetric, i.e. its weighted mean and covariance may not be in accordance
with (3.50) and (3.51). As a results, the properties related to the UT may not be preserved.
In spite of this, the ICUT approach has shown to outperform UT in several case studies
[110, 111].

To counter-act the asymmetry the corresponding sigma point weights are also modified.
The sigma points weights can be positive or negative but, to provide an unbiased estimate,
they must obey® [100]:

> wi=1. (3.56)

i=0
In [109, 110, 111] affine reformulation of original weighting scheme which allows weights
to be both positive and negative is proposed (denoted here as ICUT®). From (3.51) it is
evident that positive semi-definiteness of the covariance matrix can be guaranteed only for
strictly positive weights since the quadratic summands are always positive semi-definite
[106]. In accordance with that, weighting reformulation in a form of a linear function is
proposed:

Wi = ay, - Mg, Vi=1,...,2n,, (3.57)

where a; > 0 is a parameter to be determined while Ay ; is equal to the original UKF
step 7 for sigma points within constraints and equal to the linearly reduced original step,
in the amount required to keep the constrained sigma points within the limits, for sigma
points violating the constraints.

To keep the mean within the limits, at the end of measurement update stage all state

components violating the constraints are projected back onto the constraint boundary

!The parameter (1 — a? + 3) which makes the difference between the W) and W€ is additionally
added to the Wéc) to include the effect of the sigma-points scaling into the weights.
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before the start of the next iteration. The mean is thus always within the limits, so the
weight Wy is chosen to be equal as in the original algorithm. From (3.56) and (3.57) it

follows:
2ng 2ng A 2Ny
W, =Wy + W,=+—=+ ap - Ap; = 1. 3.58
AR L Ter P Pl 4
Therefore:
Ty
k= - 3.59
(e + N 27 A (3:59)
So defined weighting scheme guarantees positive weights W; for « = 1,...,2n,. Just like

in the original UKF algorithm, only Wy, may be negative for a specific combination of
tuning parameters (o # 1, § = 2, k = 0). For that case positive definiteness cannot be
strictly guaranteed. Due to the strictly positive non-zero weights, the presented algorithm
enables easier integration in efficient Square Root implementation of the UKF algorithm
[117] (no need of additional modifications as required for ICUT®). The detailed modified
ICUT algorithm is given in Algorithm 2.

Algorithm 2 Modified ICUT algorithm.
Calculate constrained sigma points set xj ;:

;oA ] Tk 1 =0,
= 3.60
Xk { T + Agicoli(Sy,) i=1,...,2n,, (3.60)

Su= Ve VP

where col;(+) represents the i column of matrix and step Ay ; is defined as:

Ay = min(col;(T)), (3.61)
( if S,,(j,7) =0,
: UeG) —2:()\ . -
T(], Z) A min (7, W if Szk (],’l) > O,
) Li(j) — zx(j) . .
\ min (7, 5. G.1) if S;, (j,7) <O,

1=1,...,2n,, g=1...,n.
Adjust weights:
A 0
- 1 = ,
W =wlm 2l (n, +A) (3.62)

(2 3

ak-A;m 2'21,...,2%3;,

W =Wl + (1—a+p). (3.63)
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Figure 3.7 illustrates the ICUT on a two-dimensional state variable with

Lk:[o —1}T, Uk:[?) Q}T, :ekz[1 1?, (3.64)

a=07 =2 rk=0and P, = 2-I, where I, is the second order identity matrix,
I, € R?*2, Unlike in UT, sigma points are not necessarily symmetric. However, the

constrained sigma points mean and covariance include information on the constraints.

---------- state boundaries

O unconstrained sigma points Y 0  constrained sigma points x;,
true covariance —— weighted covariance
¢ weighted unconstrained mean Iy, [ | weigthed constrained mean
3 r 3 -
2+ 2 L
1t 1t
0 t 0t
-1 b 1L
_2 1 1 1 1 ] _2
-1 0 1 2 3 4 -1 0 1 2 3 4
a) standard UT b) ICUT

Figure 3.7. Geometrical interpretation of the proposed modified ICUT.
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3.5.3 General UKF-based framework for identification of low-

order semi-physical building models

To address the problem of simultaneous states and parameters identification, the

parameter vector © is also treated as a dynamical variable with © = 0 [101]:

J (Tr—1, Up—1:1)
T = + Wi—1, (3.65)
Ok—1
-
where x, = [Ta,k T,k @;] € R"™ is the augmented state vector while f(-)

denotes the integration of the continuous-time model function (3.29) over the interval
of one sampling time 7§ using input vector measurements uy_1.; available over interval
[k — 1, k] Ts. The particular benefit of continuous-time identification, rather than direct
identification of the discrete-time model, is the generality of the approach since the model

is valid for an arbitrary sampling time.

Normalization

The augmented state vector xp typically contains multiple physical variables and
parameters of distinctively different orders of magnitude. Thus, the state vector limits

are utilized to normalize the vector xj to interval [0, 1] such that:

xp — Ly

n
€T = —:

(3.66)
where 7 € R"* is the normalized augmented state vector. Due to the simplicity of notation
in the upcoming part of the thesis it is assumed that x; = z}. In accordance with (3.66)

measurement update is performed on normalized measurement.

Non-informative system excitation

Inputs which do not excite the building in an informative way cause degradation of the
filter behaviour and in the worst case even its divergence. Typical examples of non-
informative excitation are solar irradiance and heating/cooling elements thermal loads. In
intervals when solar irradiance is equal to zero (e.g. during night) the related estimated
parameters gradually deviate from their true values since they can be put into any value
(parameter is constantly multiplied with zero). To overcome this issue original algorithm is
further modified in a way that the filtering in the &' step is performed only on parameters
related to informative input data while the other parameters are treated as constants.
To check the informativeness, the integrals of possibly non-informative inputs between
previous and current filtering step are calculated and compared with threshold value. If

the integrals are below the threshold the parameters related to those inputs are treated
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as unexcited. To incorporate the methodology within UKF algorithm at the beginning
of every filtering step k, state estimates and their corresponding covariance matrices are

modified and filtering is preformed using z;_, and Py :

Ty = zk-1(er), Py = Pu (Er), (3.67)
where e, = {} is a set of indices of excited states, E;, = {ex X e} while operator x
denotes Cartesian product, i.e. set of all ordered pairs. In the end of current filtering step
updated covariance matrix and states are reassembled such that:

Ty

3.68
zi(ex) = xy,  xp(ng) = xp—1(nk), ( )

where nj, = {} is a set of indices of all unexcited states and Ny = {ny x ng} U {ex X ng}.

The approach is graphically illustrated in Fig. 3.8.
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Figure 3.8. Graphical illustration of handling the unexcited parameters within the UKF.



3.5.  Identification framework for simplified low-order building models

63

Sampling time selection

The filter sampling time selection, although often completely neglected part of the

estimation process, significantly influences the estimation results, especially if it is not

selected properly. This is particularly noticeable in systems of second or higher order

with two or more distinctly different time constants. The sampling time should be large

enough to capture the slow system dynamics characterised by larger time constants and

small enough to capture the transient behaviour of the fast dynamics. Buildings are

typical examples of systems with largely different time constants. Although selection of

the sampling time is mostly based on heuristics, in [118, 119] a general framework for

selection of a convenient sampling time is given:

where 7, is the time of the first minimum of the correlation function ®,,:

Oy (1) = El(y(k) —y(k)(y(k = 7c) —y(k))],

(3.69)

(3.70)

E[-] is the mathematical expectation, y(k) is the measured system state and = represents

time-averaging.
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3.6 Mathematical model of the case-study skyscraper
building

A reliable thermodynamic model of a building is a key for the exploitation of significant
energy savings potential of model-based control algorithms in buildings. In the following
subsection detailed IDA-ICE model of the case-study building is presented. Based on
the RC analogy between thermodynamic processes in buildings and electrical network
described in Section 3.2, an analogous RC model of two selected floors of the case-study
building is developed. The model is validated by comparing its temperature response with
the response obtained in specialised building simulation software IDA-ICE [25] and Trnsys
[27]. The identification framework developed within Section 3.5 is utilized to identify
simplified low-order models of the building zones. Numerical stability of the approach and
applicability of the identified models to be used within the MPC framework are verified
using real measurements from the building. The suitability of all developed models for
prediction of heating/cooling building loads is then tested through comparison with the

measured thermal energy consumption data from the building.

3.6.1 IDA-ICE model of the case-study building

The distinct advantages of IDA-ICE are:

- equation based modelling, using the Modelica-like Neutral Model Format (NMF),

enabling quick expansion of the software with new modelling capabilities,

- model transparency, i.e. every underlying equation can be browsed and every variable

can be logged,
- user-friendly interface,
- the software is certified based on measured data,

- customer support available on demand.

The case-study building has in total 248 controllable zones, mainly offices (Fig. 3.9) and
classrooms (Fig. 3.10). The 13 building floors span over the total area of 10690 m?,
including non-controllable zones like hallways and restrooms. The material properties,
window properties, thermal bridges, infiltration and wall types are aligned with the
specifications of the building physics described in Appendix A.2. Based on the available
specifications a detailed building simulation model is developed. Figure 3.11 shows a 3D
view of the 6th floor, while a 3D view of the whole building is given in Fig. 3.12.
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Figure 3.9. Typical zone used as an Figure 3.10. Typical zone used as a
office. laboratory or classroom.

Figure 3.11. IDA-ICFE 3D view of the Figure 3.12. IDA-ICE 3D view of the
6" floor layout. case-study building.

3.6.2 The Resistance-Capacitance model

Based on the lumped-parameters method and RC analogy between thermodynamic
processes in buildings and electrical network, an analogous RC model of two selected floors
of the skyscraper building (9 and 10*® floor) is developed. The selected two floors have
50 zones, both controllable and non-controllable, spanning over the area of 1510 m?2. Low
thermal capacity elements, such as doors and internal glass or polycarbonate windows,
are just as external windows modelled with resistors only. Detailed specifications of the
building construction elements required for calculation of the capacitances and resistances
are given in Appendix A.2.

To validate the developed RC model, the selected two floors are also modelled in
specialised building simulation software IDA-ICE [25] and Trnsys [27]. The zones on the
8™ and 11 floor as well as zones marked with an arrow in Fig. 3.13 are not modelled,
instead the temperature in these zones is used as a boundary condition for the considered
RC model.
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Figure 3.13. IDA-ICE layout of the 9" floor with marked spaces which are not included into
RC model.

Final model in a state-space form has 516 model states representing wall and zone

temperatures and 19 inputs. Inputs consist from:

- outside temperature,

- direct and diffuse solar irradiances per unit area incident on external wall surfaces
recalculated for all external wall orientations (4 different orientations),

- direct and diffuse solar irradiance transmitted into zones recalculated for all
different window types and orientations (one window type and 2 different window

orientations),

- boundary air temperatures on the 8" and 11" floor and other zones which are not
considered in the RC model.

Within the developed RC model typical values of the convective heat transfer coefficient
of k™ = 3 W/(m?K) for the internal and h°"* = 18 W/(m?K) for the external coefficient
are used. The share of the transmitted solar irradiance absorbed by the zone air is set to
Ny = 0.6

Model validation

The developed RC model is validated through comparison of the model performance with
the performance of the models developed within IDA-ICE and Trnsys. All models are
simulated by using Typical Meteorological Year (TMY) data for the building location
[27], consisted of hourly sampled values of:

outside temperature Ty (Fig. 3.14(a)),

direct normal solar irradiance I¢" (Fig. 3.14(b)),

diffuse horizontal solar irradiance I (Fig. 3.14(c)),

humidity, wind speed and direction.
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The TMY data are selected from historical hourly data recorded over a longer time period

(normally 10 years or more). For each month in the year the data have been selected from

the year that was considered most ’typical’ for that month. It is specially selected so that

it presents the range of weather phenomena, while still giving annual averages that are

consistent with the long-term averages for the building location.
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Figure 3.14. TMY data for location Zagreb: a) outside temperature, b) direct normal solar

irradiance and c¢) diffuse horizontal solar irradiance.
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The RC model uses only outside temperature and solar irradiance as inputs, model
in Trnsys additionally uses humidity data while model in IDA-ICE uses all available
information. It is assumed the temperature in the building is influenced only by the
external weather conditions. All auxiliary heat sources, such as fan coil units or radiators,
are omitted. The RC model of the considered two floors is developed and simulated within
MATLAB/Simulink environment [70]. All models are simulated through two year period,
while only second year of data is used for comparison to annul the impact of different model
initial conditions. For a fair comparison, when comparing the RC model with other models,
boundary conditions are imported from the simulation programs and used as inputs into
the RC model. Outputs of all models are sampled with a sampling time of one hour. The
comparison of the simulated RC model temperature in one exemplary south-oriented zone
with the IDA-ICE and Trnsys simulation results is shown in Fig. 3.15. The selected zone
has two external walls, concrete west-oriented external wall and south-oriented external
wall made of brick. South-oriented wall has large external window. Model mismatch is

quantified in terms of temperature difference between the models:
Error = TRC — 755, (3.71)

where T, denotes the zone temperature, superscript RC denotes temperature simulated
by RC model while SS in superscript denotes temperature simulated by using building
simulation software (IDA-ICE or Trnsys). The comparison of the simulated RC model
temperature in one exemplary north-oriented zone with the IDA-ICE and Trnsys
simulation results is shown in Fig. 3.16. The selected zone has only one external wall,
made from brick, oriented towards north and containing a large external window. The
calculated Mean Absolute Error (MAE) and Normalized Root Mean Squared Error
(NRMSE) between the RC model and simulation software is given in Fig. 3.17. MAE

is calculated as:
ny 8760

MAE= S S TIG) - 7)) (372)

i=1 j=1
where n, = 50 is the overall number of zones on the considered two floors, 8760 is the
overall number of hourly temperature samples per zone, T, ;(j) is the temperature in the

ith zone simulated at the j* hour in the year. NRMSE is calculated as:

n, 8760

1 1 A 2
NRMSE = TRC TSS ‘
R S maX(TRC) mln(TRC) 8760 n, ; Z_: ) a,i (j)) (3 73)

where max(TF%) and min(7F¢) denote maximum and minimum building temperature

simulated by using the developed RC model on a time span of one year.
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Figure 3.15. Simulated temperature response of exemplary south-oriented zone (C09-04) during
period of one year in Matlab (RC model) and in a) IDA-ICE, b) Trnsys.
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Figure 3.16. Simulated temperature response of exemplary north-oriented zone (C09-17) during
period of one year in Matlab (RC model) and in a) IDA-ICE, b) Trnsys.
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Figure 3.17. Validation of the developed RC model in terms of a) MAE and b) NRMSE of the

model response compared to the model temperature response in IDA-ICE and Trnsys

Despite the simplicity, the developed RC model performance does not deviate significantly

from the performance of the specialised building simulation software which accurately

models all relevant thermodynamic processes.
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3.6.3 Simplified low-order model

Since heat transfer between the zones is driven by the temperature difference, due to
the similar temperature in zones and well-insulated internal walls, heat flow between the
zones is assumed to be zero. Table 3.2 contains a detailed list of measurements used for
identification of the building thermodynamic model. Due to the well-insulated piping the
transmission heat losses are neglected which means that the fan coil unit (FCU) water
inlet temperature is considered to be equal to the supply temperature measured by the

calorimeter.

Table 3.2. Measurements used for the identification of the simplified building model.

DATA SOURCE SAMPLING TIME
ZONES

Zone temperature T, [°C] 1 min
FCUs

Fan speed Tfs (off, L, M, H) 1 min
Return medium temperature 79" [°C] 1 min
CALORIMETER

Supply medium temperature Ty, [°C] 1 min
Mass flow Gweal |kg/s] 1 min
WEATHER STATION

Outside temperature Tow [°C] 1 min
Global solar irradiance 9 [W/m?] 1 min
Diffuse solar irradiance [EE - [W/m?] 1 min

Measurements of solar irradiance components are available for the direct normal 3" and
diffuse horizontal I8 solar irradiance per unit area. The direct and diffuse solar irradiance
incident on a tilted surface I and I are easily calculated with the known direct normal
and diffuse horizontal irradiance, surface azimuth angle, tilt angle, and solar zenith and
azimuth angle (see Appendix B).

The suitability of the developed approach for identification of semi-physical building
models is tested by applying it on the measurements collected during winter holidays
2018/2019 (21 December 2018 - 2 January 2019) when the building was unoccupied. The
data set for identification of simplified zone model contains: i) outside air temperature
(Fig. 3.18), 4) diffuse and 4ii) direct solar irradiance incident on the exterior surfaces of

the zone (Fig. 3.19) 4v) fan coil unit thermal power and v) zone temperature (Fig. 3.20).
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Figure 3.18. Measurements of outside temperature used for identification.
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Figure 3.19. Direct and diffuse solar irradiance incident on south-oriented external walls.
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Figure 3.20. Measured zone air temperature in one exemplary south-oriented zone (C09-10).

Acquiring of accurate thermal energy load from the heating/cooling elements in
building zones is the main prerequisite for identification of accurate building thermal
models that transform zone energy input into temperature output. The detailed procedure
for identification of the thermal and hydraulic model of a FCU is in detail described in
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Chapter 2. The thermal power transferred from the FCU to the zone air, P,, is defined as
(2.19):
P,=U,(Tyw—T)), (3.74)

where T, is the mean water temperature inside the FCU, approximately equal to
the average of water inlet temperature 7" and water outlet temperature 7o, i.e.
Ty = 0.5(T" + TS, T is the air intake temperature equal to the zone temperature
T, and U, = f(xf, qy) is the heat transfer coefficient, dependent on the medium mass
flow gy and current fan speed x¢. defined as in (2.14). For installations with static hydraulic
situation (FCUs without valves), medium mass flow through a certain unit is defined as
Qw = Mfe * Qw.0, Where ¢y, is the overall mass flow measured by the floor calorimeter and
Nt is the identified fixed share of the flow which goes through the considered FCU. More
details on identification of the hydraulic model of the FCU can be found in Chapter 2.

Calculated FCU thermal power inserted into one exemplary zone is shown in Fig. 3.21.
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Figure 3.21. Calculated FCU thermal power inserted into one exemplary zone (C09-10).

Sampling time is selected as described in Subsection 3.5.3. The times of the first
minimum 7, of one exemplary zone temperature autocorrelation functions for 24" and
30" December are 371 min and 627 min, respectively (Fig. 3.22). The selected days are
characterised by two distinctively different temperature responses: external conditions
driven response and response driven by internal factors such as FCU operation. The filter
sampling time is thus selected to cover both intervals, i.e. Ty = 30 min.

Parameter limits are calculated by performing non-recursive batch parameter identi-
fication on the historical data, limits are then determined to be one order of magnitude
higher /lower than the batch identified parameters. Limits on zone state variables are
selected to be slightly higher/lower than maximum/minimum zone temperature in used
data set. The initial state value is set to be in the middle of the scaled interval, i.e.
starting from value rp = 0.5-1] (n = 8), where 1, is the n-dimensional row-vector
of ones. Both initial parameters and limits can also be easily assessed based on the
well adopted formulas for calculating thermal resistances and capacitances of building

clements (see Section 3.2). The filter parameters are set to be @ = 0.5, k = 0 and
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Figure 3.22. Normalized autocorrelation function of the exemplary zone temperature a) excited
only by external conditions (24 December 2018), b) excited by the external conditions and FCU
(80 December 2018).

= 2 with the initial augmented state covariance matrix P,, = 0.50% - I, where I,
is the n!" order identity matrix, I,, € R™*"=_ State and measurement noise matrices
are set to be @ = blkdiag(0.042,0.012,1071° - I,,,_») and R = 0.082, respectively.
The blkdiag(-) denotes a block-diagonal matrix form consisted of the matrices listed as
arguments. Convergence of the estimated parameters for two exemplary zones is shown
in Fig. 3.23 and Fig. 3.24. For both selected zones, limit parameters are set to be
Le=1[20 20 107 10-°1, 10713}T, Up=[35 35 107 1071, 10513]T.

It can be noted that for both zones the unknown system parameters p1, ps, p3, psa, ps and
pe defined as in (3.30) managed to converge within one week.

To test the suitability of the model to be used within the predictive control strategies,
the identified models are discretised with the sampling time of one minute. Since only
one model state is measurable, linear Kalman filter [120] is used to estimate the slow-
dynamic temperature states of all identified models every one minute (see e.g. Fig. 3.25

for estimated states in zone C09-10).
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Figure 3.23. Estimated model parameters of south-oriented exemplary zone (C09-08).
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Figure 3.24. Estimated model parameters of south-oriented exemplary zone (C09-10).
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Figure 3.25. Estimated slow dynamics state for zone C09-10.
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After both model states are acquired through the entire 12-days time sequence, every one
minute (77 = 1 min) known input data are used to calculate the prediction of the zone
temperature along the prediction horizon. Prediction is started from the current states
estimates without considering any available zone temperature measurements along the
prediction horizon (so-called open-loop prediction). The Mean Absolute Error (MAE) of

the prediction along the prediction horizon of length H at step k is calculated as:

1 k+H "
MAE(k) = > T =T, (3.75)
i=k

where H is prediction horizon expressed in minutes, 7T} j is the zone temperature at time
k- T; predicted by using the identified system model with fixed parameters and T}} is the
measured zone temperature at that time. The Normalized Mean Squared Error (NRMSE)

is calculated as:

NRMSE(k) = — T 1_ NG % > (1) ~ 1) (3.76)

with max(7,) and min(7,) as maximum and minimum predicted temperature on the
considered prediction horizon H. The comparison of the MAE and NRMSE calculated
by testing the prediction of the identified models of several building zones for different
prediction horizon lengths H and averaged over the time interval between 22 December
2018 and 2 January 2019 are given in Fig. 3.26 and Fig. 3.27. The comparison of real and
predicted building air temperature for selected zones is given in Fig. 3.28 and Fig. 3.29.
The detailed list of physical properties of the selected building zones, placed on different
building floors, can be found in Appendix A.3.
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Figure 3.26. Mean absolute error of the identified zone air temperature models simulated over
different prediction horizon lengths and averaged on the time frame between 22 December 2018
and 2 January 2019.
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Figure 3.27. Normalized mean squared error of the identified zone air temperature models
simulated over different prediction horizon lengths and averaged on the time frame between
22 December 2018 and 2 January 2019.
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Figure 3.28. Comparison of the measurements and the predicted states of the estimated model
for a 24-h-ahead prediction.
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for a 24-h-ahead prediction.
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Numerical stability of the proposed UKF-framework

The numerical stability and convergence speed of the improved constrained UKF (CUKF)

algorithm is verified by comparing it with the well established Kalman filters, i.e.
EKF, standard UKF and CUKF based on ICUT*. All filters are implemented with

the same augmented state vector, process and measurement noise values and the same

initial augmented state estimates and covariance matrix. To make a fair comparison,

normalization and treatment of non-excited building parameters are implemented in all

algorithms. In the EKF algorithm, scaling and un-scaling procedure is integrated into

the system dynamics equation. The filters performances with different initial covariance

matrices are given in Fig. 3.30 and Fig. 3.31.
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Figure 3.30. FEstimated parameters of the exemplary zone wusing EKF and UKF with
P,, =0.25-1,, (first row), Py, = 0.5-1I,, (second row), Py, = I, (third row), Py, = 2 - I,
(last row). Different parameters are marked in the same way as in Fig. 3.23.



3.6. Mathematical model of the case-study skyscraper building 83

CUKF+ICUT+ Proposed CUKF
2 2
1t ]
W
i DM L = =
-1 1
0 , 6 9 0 3 9
Time [day] Time [day]
o 2 2
2 5
E g 1r ]
g W W 1 g .l o ]
s ]' e o] LW ‘ : ‘ ‘ :
: i :
o, I ||‘\ [ N N N N _ _ _ - _ _ o, ol v
z 0 o
E E
g -1 g -1
0 6 9 0 9
E Time [day] F’g Time [day]
= 2 = )
: :
g 3
< 2l
3 T - s
= logepe
- 3
-1 1
0 , 6 9 0 3 9
Time [day] Time [day]
2 : 2 .
1 ‘ L ¥+ R 33— 1+ ]
0 ﬂj O | . N N . N . N
1 1
0 . 6 9 0 3 . 6 9
Time [day] Time [day]

Figure 3.31. Estimated parameters of the exemplary zone using CUKF based on ICUT* and
the proposed CUKF' algorithm with Py, = 0.25 - I, (first row), Py, = 0.5 - I,,, (second row),
P,, = I,,, (third row), Py, = 2 - I,, (last row). Different parameters are marked in the same
way as in Fig. 3.235.

Small process noise in parameter estimation problems can lead to the negative definiteness
of the covariance matrix and thus to numerical instability of the algorithm. To treat the ill-
conditioning of the covariance matrix P, its definiteness is checked before the calculation
of the square root in (3.37). If the matrix is not positive definite, its closest symmetric
positive definite matrix is found by minimizing the Frobenius norm of the difference
[121]. In Tab. 3.3 number of steps with ill-conditioned covariance matrix, evaluated on
the test-set data, is given. Results of the performance comparison demonstrate that the
improved constrained UKF outperforms other algorithms, both in the convergence speed
and numerical stability. Additionally, it is noted that both standard UKF and CUKF based
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Table 3.3. Numerical instability count for different algorithms. Within the test each filtering
algorithm is invoked overall 648 times.

Algorithm Proposed CUKF UKF
CUKF +ICUT*

P,=025-1 0 9 8

Py, =050-1,, 0 2% 12

P, =1.00-1 0 30

P,,=200-1 0 21

on ICUT® suffer from bad initialization issues, i.e. choosing the wrong initial covariance

matrix of the system causes large estimation errors and, in some cases, divergence of

the estimation procedures. Both filters converge only when the initial uncertainty was

low (P, = 0.25-1,_ ). The convergence of the EKF algorithm has been rather slow, i.e.

parameters did not converge within 9 days. Both constrained approaches managed to keep
the estimates within the limits while the estimates of EKF and UKF adopted negative

values in certain filter steps whilst this is not physically possible. The robustness and

numerical stability of the improved algorithm are clearly evident due to the demonstrated

insensitivity to the bad initialization issues and zero number of the numerical instability

occurrences.
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3.6.4 Suitability of the developed models for prediction of the
heating/cooling loads

Suitability of the developed models for prediction of building heating/cooling loads is
tested by comparing the heating/cooling load estimated using the models with real
measurements of heating and cooling energy on the considered two floors from January
2015 until June 2019. The building consumption data is determined by averaging the
thermal consumption of the considered two floors on monthly scale. The validated
models are: ) Trnsys model, i) IDA-ICE model, 74) RC model and 7v) identified semi-
physical model of the considered two floors. The identified semi-physical model consists
of individual zone models (see Chapter 3 Section 3.4) of all controllable zones on the 9™
and 10 floor stacked into a compact model form. Heating/cooling loads of all models
are estimated by simulating the thermal power required to keep the temperatures in all
controllable zones on 22°C during the heating season and on 24°C during the cooling
season. The cooling season starts on 1% June and ends on 30" of September. The rest
of the year only heating is available. The temperature in zones is required to be equal to
the selected reference temperatures only during the occupancy periods defined as stated

in Tab. 3.4.

Table 3.4. Weekly occupancy schedule for simulation scenario.

‘ workday Saturday Sunday
occupancy schedule ‘ 06:00 - 18:00 06:00-15:00 -

Comparison of the simulated heating/cooling loads with real measured loads is given in
Fig. 3.32. The detailed overview of the thermal energy consumption per month is given
in Tab. 3.5. Since the beginning and end of the cooling season highly depend on external
weather conditions all thermal energies are considered as positive to enable comparison

with the simulation data.
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Figure 3.32. Monthly heating/cooling load of the considered two floors.
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Table 3.5. Overall heating/cooling load of the considered two floors.
Thermal energy consumption [MWh]
Month Trnsys IDA-ICE RC Identified Measured

model model model model load

January 17.50 21.58 18.00 16.86 19.25
February 11.98 13.83 11.88 10.72 12.08
March 9.55 10.09 8.92 7.35 7.97
April 4.61 3.41 3.47 2.94 3.34
May 2.28 0.94 1.48 0.82 1.98
June 0.42 2.12 2.27 6.99 7.64
July 1.85 4.56 4.90 9.17 10.76
August 2.15 4.18 4.87 8.42 10.53
September 1.47 2.86 3.36 5.87 6.08
October 5.20 3.81 4.36 4.64 5.54
November 9.88 10.60 10.36 9.66 11.09
December 16.47 16.89 16.77 16.03 17.02

Overall: 83.35 94.86 90.65 99.47 113.28

The comparison of overall yearly heating and cooling thermal load of the building,

under the assumption that the heating and cooling season in measured data starts and

ends as it is considered in the simulation scenario is given in Fig. 3.33.
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Figure 3.33. Overall heating/cooling load of the considered two floors.
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Although heating load of the building is calculated within 4+ 11% of deviation from the
real heating load, the simulated cooling load deviates from true measurements for up to
84%. The main reasons for so large deviation are in ) using the TMY data rather than
real measurements from the location, i) omission of additional disturbance heat fluxes
such as lighting, occupancy and electronic equipment which highly influence the building
consumption, %) using the constant occupancy schedule and setpoint temperature.
Expectedly, the model identified by using the building measurements shows the best
performance when utilized to predict the required heating and cooling building loads.
Since the model is identified by using the real data, permanent thermal loads (e.g.
computers which are constantly turned on) and additional thermal masses, like e.g.
furniture, are inherently included into the model which is not the case with the other
models. Consequently, when using the identified model for simulating the air temperature
in the building excited only by the weather conditions over the period of one year (by using
TMY data and without heating/cooling elements) the temperature span in the building is
much broader than the one obtained with other models (see e.g. Fig. 3.34 for comparison
of the obtained temperature span with IDA-ICE simulation).

Temperature span of the identified semi-physical model
60 ——— Maximum IDA-ICE air temperature
| —— Minimum IDA-ICE air temperature ‘

50 .

T

Temperature [°C]

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
Month

Figure 3.34. Obtained envelope of possible zone temperatures over one year.

When used for estimation of overall yearly thermal load (heating load + cooling load) the
identified semi-physical model has the best performance with the real load underestimated
for only 12.19%. Trnsys, IDA-ICE and RC model underestimate the overall yearly thermal
load for 26.42%, 16.26% and 19.97%, respectively.






CuapTer 4

Part I conclusion and future

research opportunities

The majority of modern commercial buildings are equipped with Building Energy
Management Systems (BEMSs) to monitor and control different components of heating,
ventilation, and air conditioning systems. Part I of the thesis encloses a methodology
for the development of a control-oriented energy model for a system of fan coil units
(FCUs) and mathematical model of the building, suitable for advanced model-based
control algorithms. The developed models are validated on the experimental data collected
from a 248-office living-lab. The proposed methodologies stand out in their simplicity,
cost-effectiveness, non-invasiveness and amount of time required for model identification.
The incorporation of the developed energy model for a system of FCUs into the BEMS
offers several advantages such as: i) acquiring thermal powers per zone, i) estimation of
unmeasured thermal loads affecting the zone for a very broad use in building monitoring
and control, #4) usage of an advanced control algorithm for direct control of thermal
energy inputs per zone via fan speeds which makes it possible to realize optimized thermal
energy inputs computed via predictive energy management schemes for maintaining zones
thermal comfort and iv) development of fault detection and diagnosis algorithms. A
reliable thermodynamic model of a building is a key for the exploitation of significant
energy savings potential of model-based control algorithms in buildings. The true utility
of the developed algorithm for identification of simplified building model is demonstrated
by showing that the simplified building models able to make reliable 24 hours ahead
predictions can be identified by using less than one week of normal operation building data.
Despite the uncertainty of the input data arising as a consequence of solar irradiance and
heating/cooling elements modelling errors, mean squared error for minutely sampled 24-
hour long prediction was on the level of 0.3°C which proves the suitability of the identified
model for control and fault detection purposes. The developed methodologies aim to fill
the gap between the research and implementation by facilitating the deployment of the

advanced BEMSs based on a model-based control algorithms.
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Zone Model Predictive Control
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CHAPTER O

Optimal zone temperature

control - design

The challenging task of sustainable management of building heating and cooling systems
is to assure comfort with high energy efficiency. Poor design and inefficient operation
of these systems result with a significant amount of energy wastage [1, 2]. The key
for rationalization of energy consumption and thus reduced energy wastage is the
development of control algorithms that can effectively capture the trade-off between
the user comfort and energy consumption. A Model Predictive Control (MPC) approach
applied in Building Energy Management Systems (BEMSs) has been recognized as one of
the most promising solutions for improving the user comfort and to achieve considerable
energy savings. The estimated theoretical energy saving potential is up to 70% in
particular comprehensive applications [9, 122, 123]. Recently, MPC has found its place
in practice, with experimentally-validated building energy efficiency increase by 15-63%
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

The MPC is an advanced control strategy that relies on a dynamic model of the
process. This way the control algorithm is designed for a particular building. The distinct
advantages of the MPC compared to the conventional control algorithms are in: i)
using the relevant future information in making control decisions; i) routine handling
of the multi-input multi-output (MIMO) systems; i) routine respecting of system
constraints (e.g. finite amount of heating/cooling power or comfort intervals) and iv)
explicit orientation of the control actions towards the goals which can, for example, be
economic, environmental or their combination. All the mentioned advantages make the
MPC a favorable choice for the BEMS design. Conventional control algorithms mostly
rely on a calibration of the algorithms designed for a typical building according to
approximate rules of thumb or trial and error methods. The operation is commonly
based on predefined constant schedules and operation modes. This often means that the
controller constantly maintains certain zone temperature in order to avoid long transient

periods between occupied and unoccupied zone operation, which is not optimal from the
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energy viewpoint. The optimal set-back time depends on many factors such as outdoor and
indoor temperatures, thermal inertia of the building, thermal power limitations, weather
conditions, etc. The wastage of the energy during unoccupied period can be significantly
reduced by incorporating the occupancy schedules directly into the MPC optimization
problem, where based on the mathematical model of the system it is decided how early
before the occupants arrival it is necessary to start heating or cooling in the zone in order
to assure the requested thermal comfort during occupied hours [124].

The MPC approach that uses thermal model of the building and computes optimal
thermal energy inputs in different building zones substantially differs from generally
accepted temperature control via local reactive control loops where only local mea-
surements are used when deciding on the control actions for heating/cooling elements
(HCEs) in zones (fan coils, radiators, floor heating, etc.). In such a set-up, the unmodelled
disturbances, such as occupancy, lighting or electronic equipment, are no longer implicitly
compensated. To ensure offset-free control and to be able to compensate such disturbances,
an estimator is introduced in the control loop. The realization of the optimal thermal
energy inputs is then enforced by HCE interfaces acting as a link between the optimal
thermal inputs and real actuation commands required for those inputs to be realized. The
offset-free control is ensured through compensation of the estimated zone disturbances
which are not accounted by the MPC. The advantages of the direct control of thermal
energy inputs are: i) simple interaction with other building subsystems (e.g. smart grid
or central heating, ventilation and air conditioning (HVAC) system) [13], i7) possibility of
direct economic cost minimization by using the known price of the energy, i) possibility
of thermal power variance minimization lowering thus the maintenance cost for central
HVAC system and reducing the peak operation costs [39], iv) possibility to act in tight
comfort requirements where the required reference temperature following is not possible
with conventional controllers, and v) high level of modularity and flexibility for different
HCEs in zones and buildings configurations, enabling thus the fast replication of the
method.

The focus of this Chapter is to demonstrate (via simulation) the improved efficiency
of zone comfort control via MPC. The Chapter introduces a novel formulation of the
MPC optimization criteria for optimal temperature control in buildings with high comfort
demands and gives a fair comparison of the resulting MPC controller with conventional
controllers with the same level of flexibility. Since the case-study building does not have the
possibility for controlling the humidity or CO level, within the thesis thermal comfort is
managed with respect to the zone temperature only. All controllers are tested for a system
with seasonal heating and cooling, which is the most common case in real applications. It is
shown that the introduced optimization problem formulation leads to the MPC controller
that outperforms conventional controllers both in energy consumption and users comfort
even when applied to basic zone temperature control with flat energy prices and constant

occupancy schedule.
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The remainder of this chapter is organized as follows. In Section 5.1 short introduction
to MPC applied for zone temperature control is presented. Section 5.2 gives the MPC
formulation and detailed description of the optimization criterion for energy-saving and
comfortable temperature control in buildings followed by an assessment of a performance
bound and possible energy savings of the developed approach. Section 5.3 deals with
the necessary upgrade of the developed MPC formulation required to assure offset-free
control in the presence of disturbances affecting the system. In Section 5.5 an interface
between the MPC for determining the optimal energy inputs into the zones and building
automation system, consisted from HCEs and accompanying actuators, is presented. The
development within the Section is oriented towards optimal operation of fan coil units

(FCU) with adherence to the required optimal thermal energy input in zones.
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5.1 Introduction to model predictive control for zone

temperature control

Model predictive control is an advanced control strategy that optimizes future system
behaviour by using an explicit mathematical model of the system in time domain. At
each time step, optimal control problem is formulated and solved, and only the control
action of the current time step is implemented on the system. In terms of building climate
control this means that at the current point in time the optimal profile of the thermal
energy consumption over the prediction horizon is calculated based on predictions of
upcoming weather conditions and other available predictions which influence the building
behaviour. Schedules (e.g. building occupancy schedules), time-dependencies of the control
cost (e.g. volatile energy prices), or the constraints (e.g. physical system limitations) can
be readily included into the optimization. Only the first step of the optimal energy profile
is implemented and the optimization problem is re-solved at the next time step, using
the new measured values of the system variables. By this receding horizon feedback is

introduced into the system (Fig. 5.1).
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Figure 5.1. MPC scheme for building comfort control.
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The MPC optimization problem can be formulated in the following way:

H-1
min [z, ug)
e
s.t. Tl = f(]?]c, Uk, dk), (51)
g(xkv U, dk) < 07

where xy, u, and d; denote, respectively, values of system states, inputs and disturbances
predicted at step k of the prediction horizon H. The prediction of the system behaviour
is obtained from the prediction model f(xy, ux,dy). The term [(xzy, ux) is called a stage
cost and its purpose is to assign a cost to a particular choice of x; and wu;. For a specific
disturbance profile and initial system state z, the optimization (5.1) yields the sequence

of control inputs that are optimal with respect to the defined cost,
w=[(ug)" ()" ()] (5.2)

Only the first element of that sequence, i.e. ug, is applied to the plant and the procedure is
repeated at the next sampling time interval. In the sequel, bold notation is used to denote
variables stacked over the prediction horizon and "*’ in the superscript denotes optimal

values obtained by optimization.

Computational complexity of obtaining the optimal sequence depends on the type of
the prediction model employed in (5.1) and on the type of the cost function and the
constraints. Over the years different variations of the nominal MPC such as distributed
[125], decentralized [126], nonlinear [124], robust [127] and stochastic [29, 128] are
developed in order to achieve the maximal efficiency and/or robustness of the control
algorithm. The recent studies on MPC applied for zone temperature control are divided
into two categories. The optimization criteria used in a first category of studies is
mainly focused on minimizing the use and cost of energy, while the zone temperature
is constrained to be within a permissible comfort interval [129]. Productivity of occupants
in commercial buildings depends largely on comfort levels, but also on lots of the subjective
factors [95, 130], so a second category of studies focuses not only on controlling the energy
consumption for reducing cost but also on user comfort. The comfort is typically included
directly into the optimization criteria through penalization of temperature deviation from
user defined temperature reference [131] or more complex metric for defining the user
comfort is used (e.g. Predicted Mean Vote index (PMV)) [130, 3]. The MPC temperature
control approach developed within the thesis allows the individual setting of comfort
level with the aim of user satisfaction and increased productivity rather than achieving

additional energy savings.
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5.2 Model predictive control for energy-savings and

comfortable temperature control

Mathematical model of a building is a basis for MPC implementation. The benefits and
drawbacks of different building modelling approaches are analysed within Chapter 3. Zone

temperature dynamics is described with linear state-space model of the following form:
_ad d d
Tpt1 = A Ty + dek + Buuk, (53)

Yr = Cdxka

where x; € R" denotes system state vector, y, € R™ is an output vector consisted
of zone temperatures, ury € R™ is a vector of thermal energy inputs from controllable
heating/cooling elements into each of n, controllable zones and dj, € R™ is the disturbance
input (outside temperature, solar irradiance, internal gains, temperatures of adjacent
rooms, etc.). Matrices A? B3, B? and C? are of appropriate dimensions and are
obtained either based on first principles modelling or by use of identification methods
(see Chapter 3, Section 3.4).

The MPC uses the dynamic model of the building and information on the future
disturbance profiles to predict future building behaviour and, based on these predictions,
computes the optimal control input trajectory. Predicted states and outputs along the

prediction horizon H € N are conveniently written as:
Y = Qg + Bu + ~d, (5.4)
where y is a stack of future outputs:

.
y:[yl;r+1\k ?/Ij+2|k yl;r+H\k] ; (5.5)

u is a stack of future inputs:

LT T T T
u= [uk|k Upqpe - ukJerl‘k} : (5.6)
vector d is a stacks of future disturbances:

dT

k+H—1|k

dT

k+1)k

d=[d]

T 7 (5.7)

Tk € R™ is current system state and o, 3 and «y are matrices based on the discrete-time
building model matrices (5.3). Subscript k£ + j|k denotes prediction at time k for a time
step k+j, j € N, e.g. yp1jx denotes predicted zones temperature at time k + j, obtained
by applying the input sequence u to the system starting from current system state xy

up to the moment k + j.
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The most frequent MPC problem formulation for temperature control in buildings
consists of a simplistic minimization of energy consumption with respect to the tempera-
ture constraints set by the end-users and physical limitations of heating/cooling elements
[129]:

min |jul;
u

st. y = axy, + Bu+~d, (5.8)

Y min S y S Ymaxs

Umin S u S Umax;

where operator ||.||; denotes L; norm, y,;, and y,.. are lower and upper bounds of
zone temperature, while u,;, and u,,, are minimum and maximum attainable thermal
powers u. Although in general, the sensitivity is higher for L; norm optimization cost
(leading to Linear Program (LP)) than for problems with a quadratic Ly norm (leading to
Quadratic Program (QP)), the LP is preferred since the energy bill is directly proportional
to the optimization cost. Initial system state xj; is measured or provided by means of
Kalman filter if all system states are not measurable. The MPC formulation (5.8) handles
users temperature constraints as hard constraints, which often results in infeasibility,
especially when sign change of u is not possible (only heating or only cooling available
at certain time step). To solve the problem, temperature constraints are “softened” by
introducing them into the cost function through slack variables o} € R™. Slack variables
are additional decision variables that are heavily penalized through non-negative weight
g in situations when zone temperature reaches upper or lower temperature bounds

(e.g. g = 10%). The resulting optimization problem is as follows:

min ||ull; + ngO',
u,o

sty = axy + Bu+~d,
Yumin — O < y < Y max + o, (59)
Umin S u S Umax,

o >0,

where 17 is appropriately sized row vector of ones. Bold notation for optimizer o stands

for vectors stacked over the prediction horizon H.
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In most situations, occupants want the exact temperature to the one they have chosen
on the zone thermostat. This is ensured by defining the MPC problem as a classic reference

tracking problem:

min r'|ul+q' |y —y|+g170,

sty = axy, + Bu+~d,

Yuin — O < y < Y max +o, (510)

Umin S u S Umax;

o> 0.

where operator |.| denotes absolute value which is applied element-wise on the vector,
weights r € R ™ and q € R”™ penalize the energy consumption and deviation from
the temperature reference, respectively. The temperature reference between step k& and
k+1, y*f € R is defined as:

u' =0 TS - Ti Al (5.11)
where T;elfk is temperature reference in the i zone. The MPC formulation (5.10),
combined with a receding horizon strategy, often results in either minimum energy
performance at the cost of completely disregarded temperature comfort or in permanent
reference following with disregarded energy consumption. A compromise between the two
options is made through the mentioned weights, r and q.

To tackle the opposing criteria of energy savings and reference following, weights r
and q have to be chosen in a way which enables smart switching between these two
requirements based on predicted disturbance profiles. To be comparable, both parts of
optimization cost have to be expressed in the same or similar units. Since the first part of
the optimization criterion (5.10) is related to thermal power and it is thus defined in watts,
weight of the temperature related part of the optimization criterion (5.10) is selected such
that it makes deviation from the reference expressed in degrees Celsius comparable to
the first part of the criterion. The amount of energy which can be saved by allowing
the zone temperature to slide below the temperature reference during the heating season
or above the reference during the cooling season, under the same weather conditions, is
linear function of system dynamics. Sensitivity of the energy consumption to the zone
temperature is defined as:

ou By — axyy —~vd)) .
oy = =31 (5.12)

Matrix B! is lower bidiagonal matrix with all elements on the main diagonal equal to
(C?- BH)~1 and to the —((B4)~1 - A¢. (C?)~1) on the secondary diagonal.
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Optimization cost which considers both energy and comfort and enables easy switching
between these two requirements is as follows:
umin2 luli +79- 6" QY = y)| + 911" o1 + o1 03,
,01,0
sty = ary, + Bu+~d,
yref o Aref —o1<y< yref+ Aref+ o (5]_3)
Umin S u S Umax;

0,20, o,2>0,

Hnu)x(Hnu) i gselected to be equal to sensitivity of

where weighting matrix Q € R
energy consumption to the zone temperature (5.12), i.e. Q = B! The non-negative
parameter , is introduced for easy trade-off possibility between the comfort and energy

ref and acceptable

savings parts. The comfort is defined with temperature reference y
temperature deviation from the temperature reference At € R™ where A is stack of the
acceptable deviations along the prediction horizon. Slack variables o7 and o9 guarantee
temperature within the permissible interval. Different weights g; # g enable asymmetric
penalization of upper and lower temperature limit violations (e.g. penalization of lower
temperature bound violation is higher during the heating season). The vector J; € R™
is zone occupancy vector, where it" element presents occupancy profile for the i*" zone,

O € {0,1} defined as:

1, if " zone is occupied at time step k + 7,

O,i = (5.14)

0, if i*® zone is unoccupied at time step k + j.

During occupancy periods the deviation A™ can be set individually or one common
1.5]°C.

During unoccupied periods, there are no strict requirements on users comfort (d; = 0)

value can be set for all zones in the building. Typical values are in interval [0,
so the focus is put solely on energy consumption part of the criterion (5.13) and
keeping the minimal temperature requirements, assured by matching building protect
temperature limits with the allowed temperature span. The temperature related part of
the optimization criterion (5.13), for prediction horizon H = 1, can be interpreted as
four-segmented convex PieceWise Affine (PWA) penalty function (Fig. 5.2).

Weighting factor 7, determines the importance of reference tracking with respect to
the minimization of energy consumption (Fig. 5.3). For 7. = 1 both energy consumption
and reference tracking have the same weights so the controller will decide what is
best from the energy viewpoint. Energy savings are therefore solely the result of the
predictive control property and ahead knowledge of weather and possibly other available
forecasts (e.g. occupancy or reference changes). With 7. < 1, the controller maintains
the temperature at the temperature boundary most of the time and large energy savings

are directly a result of the deviation from the reference. For v, > 1 the control focus is
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Performance cost

Ve - ((CBu)_lAref)i B
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Figure 5.2. Convex PWA penalty function for the i™* zone, H =1 and 6 = 1.

put on following the reference even if such behaviour will lead to the increased energy

consumption.

’}/620 Ye=1

Energy optimal Compromise Reference tracking

Figure 5.3. Dependence between weighting factor . and system performance.

The performance of the MPC using optimization criterion (5.13) in the heating season
highly penalizes solar irradiance influence that can result in overheating, which adversely
forces the system to minimize overheating, i.e. to use the free energy from outdoors starting
from the lower edge of the allowed range. Effectively, the heating/cooling elements are
controlled such that the lower bound of the temperature range is reached prior to the
stream of free energy from outdoors. In the cooling season system is forced to quit cooling
the zone when free cooling can be utilized.

The optimization problem (5.13) is easily transformed from energy-optimal to price-
optimal by introducing the energy price ¢, € R™ into the optimization problem such
that:

Join el ul 4 0T |QUY™ —y)| + it + gl o,
st. y = ary, + Bu+~d,
v A g <y <y AT gy (5.15)
Upin < U < Upax;
o1>0, o3>0,
where ¢, € R is the thermal energy cost important for enabling coordination of zone

level with higher-level building modules, such as central HVAC system or microgrid [38, 13]

and c. € R! is the cost associated to thermal comfort.
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5.3 Optimal zone temperature control in the pres-

ence of unmeasurable states and disturbances

Closed-loop performance of MPC algorithm is directly related to the model accuracy. In
practice, modelling errors and unmeasured disturbances can lead to steady-state offset
unless precautions are taken in the control system design [132, 133]. A general approach
to eliminate steady-state offset involves augmenting the process model to include constant
step disturbance. The heat disturbances affecting the zone temperature indicate any
additional heat input or sink compared to the current building model used for control
(occupants, equipment, window blinds, etc.). To account the impact of the disturbance
to the zone temperature along the prediction horizon, zone model developed in Chapter

3 Section 3.4 is augmented with an additive disturbance input Py such that

Tout

Iéiiff
T, T, .
M= A e |7 g (5.16)
T, T, 0

P,

Py

where T, is the temperature of air inside the zone, T, is the slow dynamics temperature,
matrices A° € R™*" and B° € R"*(mu+tma) are continuous-time system matrices of
the identified simplified zone model (3.30), and pg € R! is the parameter of system
input matrix B¢ related to the impact of the thermal load of the HCEs to the zone,
e.g. radiator or FCU thermal load, noted as P,. Due to the similar nature of thermal inputs
P, and Py, their impact on the zone temperature is modelled with the same parameter.
Outside air temperature is denoted as Ty, while I and I are diffuse and direct solar
irradiances incident on the exterior zone surface. The anticipation of the unmeasured heat
load affecting the zone temperature is performed in three stages: i) online estimation of
disturbance heat input, i) prediction of the disturbance heat inputs along the prediction
horizon, #7) optimization of the building performance regarding the predicted disturbance

heat inputs.
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Slow dynamics temperature 7T, represents a substitute variable for all higher thermal

capacity element temperatures (e.g. walls and furniture). As such, it is hardly measurable

and has to be estimated online. In order to estimate the slow dynamic state T, and

disturbance input P, building model is augmented with a disturbance heat influence and

disturbance propagation model:

,-Z:“'a Ac De
T, | = 0
P oo o

Tout
Ta Be ]glff
Lol o] |
Py P,

(5.17)

The estimation of unmeasurable system states and disturbance heat inputs is in a form of

a linear estimation problem, so a classical linear Kalman filter is applied on the discretised

augmented model. Separate estimation of the heat disturbance enables a possibility to tune

models for heat disturbance predictions and exploit them for efficiency gains in predictive

zone control (Fig. 5.4).

i Design | Weather and other |
{ parameters | { relevant predictions)
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Disturbance v * ‘ . )
I Optimal energy
Disturbance prediction reference wyy,
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Figure 5.4. MPC control scheme for offset-free zone temperature control.
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5.4 Simulation case-study for assessment of a perfor-

mance bound and possible energy savings

The case-study building is described in detail in Appendix A. All controllers are employed
to control directly the thermal powers required to achieve the desired temperature
behaviour. Lower-level controllers required to calculate direct control actions on HCEs
installed in zones, necessary for implementation of the developed MPC approach are not
considered, instead it is assumed that power references can be tracked perfectly. The
identified semi-physical model of the case-study building consists of identified second-
order models (see Chapter 3 Section 3.4) of all 248 controllable zones (n, = 248) stacked

into compact model form:
T = A% + Bid + Biu,

(5.18)
y=Cx
where € R™ (n,=496) is a stacked vector of zone fast- and slow-dynamics states T, ;
and T, ;, respectively, with ¢ = 1,2,...,n,:
-
€T = Ta,l Ta,2 Tt Ta,ny Tz,l TZ,Z Tt Tz,ny] ’ (519>

y € R™ is output vector consisted from zone fast-dynamics states which correspond to
zone temperatures, u € R™ (n, = 248) is a vector of thermal energy inputs P, ; into each

of n, controllable zones

-

u:[Pa,l Py - Pamy] : (5.20)

and d € R™ (ng = 9) is a vector of disturbances affecting the building temperature
behaviour:

d= Ty IST [4F [ pdf pdir pdc pde pde poopy oo Py |, (5.21)

where T, is outside air temperature, I9 and 79" are diffuse and direct solar irradiances
incident on the exterior zone surface and Py, € R! is heat disturbance input affecting
ith controllable zone. The irradiances on the surfaces oriented towards north, east, south
and west are denoted with letters N, E, S, W in subscript, respectively. Positive values of
u represent heating, while negative u stands for cooling. Continuous-time system matrix
A¢ € R"*" and input matrices, B € R"**" and B§ € R"**"¢ are constructed from
continuous-time matrices of augmented identified simplified models of individual zones
(5.16). To utilize known prediction of the external weather temperature Ty, influence of
outside air temperature is discretised by employing first-order hold while the rest of the

system is discretised by zero-order hold.
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The resulting discrete-time system is as follows:
_Ad d dx* d
Thy1 = A T + dek + Bd out,k+1 + Bu’LLk, (522)

Yr = Cdxka

where A% B¢, B% and B% are appropriately sized matrices.

Data used for external conditions (outside air temperature and solar irradiances)
are typical meteorological year (TMY) data for the building location (see Chapter 3,
Fig. 3.14). The focus here is put on deterministic MPC with perfect knowledge of building
thermal dynamics and future weather conditions while all other disturbances, including
heat disturbance inputs Fq;, are neglected. For real building implementations, with a
lot of uncertain and unpredictable disturbances, their compensation is performed by
introducing an estimator into the control loop (see Section 5.3). To asses energy and
cost saving possibilities of different controllers, mutual ground has to be established for
a fair comparison. Two main identifiers are usually observed: energy spent and comfort

indicators. For the comparison, the following zone temperature controllers are considered:

1. Proportional-integral (PI) controller. Conventional PI controller represents a typical
decentralized control approach which can be found in many building applications
[134]. Building components using PI control are thermostats and thermostatic valves.
Comparison with PI controller will give the baseline for energy consumption since
PI controller ensures tracking of user temperature reference all the time when it
is possible. The PI controller is implemented in standard closed-loop fashion as
discrete-time controller with sampling time 30 s. The synthesis of PI controller
is performed automatically within the MATLAB environment to ensure the best

performance regarding reference tracking [70].

2. Hysteresis controller (HYSC). The HYSC is the most typical controller found
in buildings with FCUs. The HYSC controller switches between available power
outputs based on the temperature difference between current zone temperature 7T,
and temperature reference 7' (Fig. 5.5). Hysteresis width 2A™! is predefined and
equal for all zones. The amount of power in certain fan speed depends on the
temperature and mass flow of the heating/cooling medium and is considered as
constant for all zones. The HYSC controller is implemented in standard closed-loop

fashion as discrete-time controller with sampling time 30 s.

3. MPC controller for high comfort demands (cMPC). The considered cMPC controller
is based on the presented mathematical model of the building and optimization
problem formulation (5.13) with 7. = 1. Possible energy savings arise from
the predictive knowledge of heat distribution thorough the building, occupancy
information (working hours) and weather forecast such that unnecessary energy

consumption is avoided.
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Figure 5.5. Hysteresis control law for the FCU fan speed control during a) heating season, b)
cooling season.

4. MPC controller with focus put on energy consumption (eMPC). The considered
eMPC controller is, just as cMPC controller, based on the presented mathematical
model of the building and optimization problem formulation (5.13). The focus is put

only on energy consumption by setting the energy-comfort parameter to 7, = 0.

The temperature reference is followed only during periods when building is occupied.
For a fair comfort level comparison, the PI controller and HYSC are switched 1 hour before
the start of the occupancy period to meet the comfort requirements in occupancy periods
in time. The optimization horizon of all MPC controllers is 24 h long with 15-min sampling
time. Temperature references are set according to comfort guidelines from [135] to 22°C in
the heating season and to 24°C in the cooling season. The allowed temperature deviation
from the reference A™ is set to 0.5°C, 1.0°C and 1.5°C, which is within the limits of cyclic
temperature variations of A and B class of the thermal environment defined by ISO 7730
standard [136]. For a fair comparison, the allowed temperature deviation A™ is matched
with HYSC hysteresis width. For the considered scenario, only heating or only cooling is
available at a certain moment. This corresponds to standard two pipe implementation of
heating/cooling system present in many buildings. The cooling season starts on 1%° June

and lasts until 1% October. The zone occupancy schedule is equal for all zones and is
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defined as:

1, if k+ 7 is within the interval [7:00, 19:00] h,

Ftilk, 0, if k+ j is outside of the interval [7:00, 19:00] h. (5:23)

During unoccupied intervals the temperature is kept within the building protect limits
defined as 22 4+ 6°C in the heating season and 24 4+ 6°C in the cooling season.

Physical limitations on maximum and minimum attainable thermal powers, put in
the form of thermal energy constraints are obtained from the FCU models identified in
Chapter 2. The highest attainable thermal power of the individual FCU is defined with

the following algebraic equation:

2qWCW Ug{ Tin o T

= g (T4 - 1) (5.24)

uyg
where ¢, is the medium mass flow through the unit, ¢, is heat capacity of the
heating/cooling medium, 7" is the FCU supply temperature, T, is air temperature in

the zone and UY is overall heat transfer coefficient for highest FCU fan speed defined as:

H
H Qe

[ — 5.25
o 1 _}_bgq‘;ch ( )

where all, bfl and c;. are known parameters found through identification as described in
Chapter 2. The FCU medium mass flow and supply temperature defined in Tab. 5.1 are
assumed to be equal for all FCUs.

Table 5.1. Heating/cooling medium conditions for individual FCU.

O slh Tin [°C] Gw [kg/s]
_ 1 60 0.032
Heating season
0 40 0.032
. 1 7 0.088
Cooling season 0 0

Although the lowest thermal power of the individual FCU is defined by the natural
convection of air around the unit with FCU’s fan switched off, in the considered simulation
case-study it is set to zero in order not to focus on thermal energy consumption which
is unavoidable in standard operation of the case-study building. Thus, during the cooling
season, the thermal power limits are set by replacing the minimum attainable thermal
power Uy, with uy and setting un,.. to zero vector of appropriate size. In the heating
season, the thermal power limits are set by replacing the maximum attainable thermal
power Uma, With ug and setting u.,;, to zero vector of appropriate size. In zones with
multiple FCUs thermal power limits are calculated as superposition of individual FCU

thermal power limitations.
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5.4.1 Simulation case-study results

All simulations are performed within MATLAB environment [70, 137]. An overview of
overall energy consumption during one year operation, for different types of control,
different flexibilities A™ and different weights . is given in Tab. 5.2. Graphical illustration
of results is given in Fig. 5.6. The results are given for 7. = 0 and v, = 1 (¢cMPC and
eMPC), but simulations with v, € {0.5,0.75,1.1, 1.5} yielded results with less than 1%
difference.

Table 5.2. Querall energy consumption during the one year operation, for different types of
control and different user flexibilities.

Controller Season Thermal energy [MWHh)]
I heating 454.78
cooling 177.08
At =05°C A =10C A™=15C
HYSC heating 449.73 441.20 431.78
cooling 173.72 168.06 168.06
MPC heat‘lng 446.10 443.46 162.38
cooling 173.32 174.41 175.39
oMPC heat‘lng 430.38 410.83 391.69
cooling 166.82 157.00 147.52
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Figure 5.6. Qverall energy consumption during one year operation, for different types of control,
different flexibilities A™" and different weights .

The overall energy consumption reflect the overall thermal energy needs for all 248
controllable zones. Within the simulation case-study only thermal energy that should
be provided to zones is considered. Thermal energy demand of other zones which are

considered as non-controllable, electrical energy consumption of the FCUs’ fans and
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thermal energy losses, which normally occur during transmission of the medium from
the central system for its conditioning to the building zones, are not considered. The
validity of the obtained results is confirmed through the comparison with the measured
thermal energy consumption of the case-study building during 2014. For measuring the
thermal consumption in 2014 one common heat meter was used for measuring both the
heat consumption of radiators with 181 kW of installed power and FCUs with 573 kW
of installed power. The estimated FCUs thermal energy consumption of 465 MWh is
obtained by multiplying the overall measured thermal consumption with the ratio of the
installed FCUs thermal power in overall installed thermal power (FCUs + radiators). The
obtained simulation results are in close proximity to the measured thermal energy demand
confirming the validity of the performed case-study. The obtained percentage savings of
thermal energy demand in the heating and cooling season calculated relative to the PI

configuration are given in Fig. 5.7.
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Figure 5.7. Energy savings for different types of control, different flexibilities A™ and different
weights e.

Contrary to the conventional control algorithms, the MPC allows more advanced
and specific system design, especially in terms of accounted hour-to-hour variable energy
prices and coordination with central HVAC system. More comprehensive case-study, with
accounted thermal energy losses, energy consumption of FCUs’s fans, thermal energy
demand of non-controllable zones and volatile energy prices is given in Chapter 6. The
overall thermal energy consumption of controllable zones in the building for the considered
control strategies and A™ = 0.5°C on one selected day during heating season is shown
in Fig. 5.8. The figure shows the predictive feature of MPC algorithms where heating is
initiated few sampling time instants in advance to satisfy comfort demands at the start
of the occupancy period. The peak at the beginning of the operation is a result of the
simultaneous thermal energy delivery to each of 248 zones. Typically, conventional zone
level controllers, such as HYSC and PI, require the building climate system design to
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Figure 5.8. Overall thermal energy consumption of controllable zones in the building on one
selected day in January for different control strategies.

withstand the worst case scenario of the simultaneous peak power operation in all zones.
In most applications this results with largely oversized equipment. Further peak power
reduction and its corresponding cost reduction by MPC employment is possible through
coordination of zone level and superimposed central HVAC system or microgrid levels

which is discussed in Chapter 6.

Comfort level indicators

In the considered case of seasonal heating and cooling, the comfort is significantly
disrupted in cases when available thermal power is insufficient for covering the peak
demand or inadequate for compensating the disturbance effect. This is highly expressed
in cases when outside temperature and solar irradiance are too high in the heating season
or too low in the cooling season. Comfort levels for different control strategies calculated
during months when there is a clear need for only heating or cooling are shown in Fig. 5.9
and compared to the resulting energy consumption. Distinctive comfort levels for the same
controllers and different user flexibilities of 0.5°C, 1.0°C and 1.5°C are denoted respectively
with numbers 1, 2 and 3 next to the comfort level marker. The comfort level indicator
is measured as average deviation (AD) from the temperature reference calculated as a
ratio of the sum of all the deviation amounts during overall number of samples within the
occupancy periods for all zones in the building and overall number of samples within the

occupancy periods;

1 re
AD = > Myt = walh (5.26)

MisTly keO

where O is the set of all the time samples within the occupancy periods and ng is its

cardinal number. The comfort level indicator provides information on average expected
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temperature in each time instant, e.g. for cMPC with A = 1.5°C, the average expected

temperature during summer time is within the £0.15°C range around y'.
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Figure 5.9. Comfort level indicators for different control strategies.

The considered cMPC approach shows better results than HYSC and PI due to the
prediction of working hours requirements and timely applied preheating/precooling. The
difference introduced with the 7, parameter selection is evident. When compared with
eMPC, the HYSC and PI perform better from the comfort quality aspect as eMPC is
saturated a y"f + A temperatures for v, < 1. The measured comfort levels significantly
differ for zones with different external windows orientation. Comfort levels, calculated for
two exemplary zones, one oriented towards north and the other oriented towards south
are shown in Fig. 5.10 and Fig. 5.11.
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Figure 5.10. Comfort level indicators in one exemplary south-oriented zone for different control
strategies.
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Figure 5.11. Comfort level indicators in one exemplary north-oriented zone for different control
strategies.

Dynamic temperature response

Analysis of the considered controllers performances is further presented in terms of
dynamic zone temperature response for different weather conditions. Figure 5.12 presents
the weather conditions during the selected 7 semi-clouded days in December with
significant temperature variation to illustrate the performance of various control strategies
in the heating season. Depicted irradiances are the total incident irradiance on the south-
and the north-facing building surface, where expressed peak at noon on 15 December is
the result of a clear sunny day. The temperature responses of the exemplary north- and
south-oriented zones for the PI, HYCS, cMPC and eMPC controller during the selected
7 days in the heating season are shown in Fig. 5.13 and Fig. 5.14.

To illustrate the performance of various control strategies in the cooling season 7 sunny
days in August are selected (Fig. 5.15). The temperature responses of the exemplary north-
and south-oriented zones for the P, HYSC, cMPC and eMPC controller during the cooling
season are shown in Fig. 5.16 and Fig. 5.17. The results are shown for user flexibility of
Aret = 0.5°C.
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Figure 5.12. Weather conditions during the selected week in December.
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Figure 5.13. Temperature dynamics in one exemplary south-oriented zone for different control
strategies in the heating season.
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Figure 5.14. Temperature dynamics in one exemplary north-oriented zone for different control
strategies in the heating season.
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Figure 5.15. Weather conditions during the selected week in August.
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strategies in the cooling season.
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From the results it is evident that cMPC forces the system to minimize overheating,
i.e. to use the free energy from outdoors starting from the lower edge of the allowed range.
The commanded thermal energy is selected such that the lower bound of the temperature
range is reached prior to the stream of free energy from outdoors. In the cooling season
system is forced to quit cooling the zone when free cooling can be utilized. It is also worth
to note that TMY outside temperature data for the summer are relatively low, due to
the averaging over the characteristic year, so the expected saving are even higher when
applied to the real climate data. For the HYSC case intensive on/off switching between
the available power units is clearly visible in terms of constant temperature oscillations.
The results clearly show large cost-optimization opportunities of manipulations in tight
comfort conditions with up to 16% additional savings of presented MPC approaches when
compared to conventional control strategies. The expected savings are even much higher
with MPC’s full potential exploited in zone control, especially in terms of coordination

with central HVAC system, building microgrid or smart grid.
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5.5 Optimal control of heating/cooling elements in

zones

Optimal control of HCEs in zones necessitates interfaces to the real building automation
system which operate in adherence to the required thermal energy inputs in zones. As
such, they are an extension to the MPC algorithms that calculate optimal thermal energy
profiles per zones based on a thermodynamic model of the building (Section 5.2). The
proposed zone level optimal energy management consists of two hierarchical control levels.
Higher optimization level consists of MPC for calculation of optimal thermal energy
profiles per zones. Lower hierarchical level consists of locally-distributed controllers (so
called HCE interfaces), one per each zone, employed to control thermal actuators in an
optimal way by respecting the commands given by the higher control level. The HCE
interface acts a link between the commanded thermal energy variables from the higher-
level MPC and the actuation profile of HCE required for these commands to be realized.
The higher-level MPC calculates the optimal plan of heating/cooling for all included
zones based on weather prediction, disturbance prediction, energy price prediction (in
cases with volatile prices) and constraints such as temperature constraints or physical
limitations of HCEs. The first control action per zone uzl . and disturbance assumed to
be realized alongside that control action Py are then forwarded to low-level controllers
(HCE interfaces) and the procedure is repeated at the next higher-level MPC time step.

The HCE interface can be realized in both centralized and decentralized fashion.
Centralization is performed by grouping HCEs based on the major supply duct they
are connected to. The use of a centralized controller for all elements in the group
additionally reduces the operational cost by enabling control of the heating power
variance and peak loads. Depending on the complexity of the heating/cooling set-up,
decentralized implementation can offer significant reduction in computational power
required to calculate the actuator commands. The proposed hierarchical organization
is highly modular and thus applicable to various types of HCEs. For the set-up in the
case-study building, which comprises FCUs, commands are fan speeds xf.. For other FCU
set-ups the commands may optionally also include valve positions z. The scheme of the

above explained hierarchical organization is shown in Fig. 5.18.
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Figure 5.18. Hierarchical MPC for zones comfort control.

5.5.1 Optimal control of fan coil units

Due to their improved performance over classic radiators, FCUs are widely used for
localized heating and cooling. However, MPC techniques, which are well-established in
other industries, are still hardly used for FCUs due to the lack of appropriate mathematical
models that are easy to parametrize. Traditional FCU control strategies include fuzzy,
hysteresis and PID controllers [138], [139]. All the mentioned control approaches switch
between fan speeds based on difference between temperature reference and current
zone temperature. This mostly results with zone temperature oscillations of constant,
predefined amplitude, leading to unnecessary energy consumption. The BEMSs that act by
adjusting the optimal temperature reference usually neglect the performance of the local
HCESs in the zone. Such systems are also practically inapplicable in tight comfort bounds
with simple hysteresis controllers used locally for FCU control. Due to their inherent
non-linearity, limited choice of fan speeds and inevitable unmeasurable heat disturbances

affecting the zone temperature, FCUs represent a serious challenge for implementation of
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real-time offset-free MPC that ensures adherence to the requested thermal energy inputs

and comfort constraints.

Mathematical model of the FCU is derived in Chapter 2 in the following form:

Tv?,ut _ |:_Q_W UO($f07qW):| T‘?,Ut + { Q_w . Uo(17fC7QW) Uo(xf(HQW) } T‘}Vn

My, 2My Cyy My 2Myy Cyy 2Myy Cyy Tain
(5.27)
Uo(xfca QW) t U (l'f q ) T‘}VH
P =|—72| T Zo\Tiey W) _ , 5.28
|: 2 w + 9 U0<xfc; QW) Ta ( )
N s NS -~ e
Ce Dy,

where T is the water inlet temperature, 72" is the water outlet temperature, 7T} is the
zone air temperature, P, is the thermal power provided by the FCU to the zone, ¢, is the
medium mass flow through the FCU, ¢, is the specific heat capacity of the heating/cooling
medium and m,, is the mass of water inside the FCU. It is assumed that there are four
possible fan speeds zy.: off, Low, Medium and High, denoted, respectively, as off, L, M
and H. Heat transfer coefficient U, = f(x,¢y) is a nonlinear function of the medium

mass flow g, and the fan speed ., where fan speed is used for switching between different

dynamics:
( off
i Qe —
et T b(f)cff e for x4 = off,
L
af
5%& . HbL—(fq_ch’ for T = L7
Uo(xfcu QW> = gM v (529>
5%\(/;[ . #—C& for Tte = M,
1+ b qw
H af _
e Hb—(:ﬂ: for Tfe = H.

The parameters {2 ,5fc,5fc,5fc} {a8, ak, a}t all}, {027 0L, 0} b} and g are known

parameters found through identification as described in Chapter 2.

Attainable thermal powers along the prediction horizon depend on the HCE type, zone
air temperature and heating/cooling medium temperature and mass flow. The information
on future heating/cooling medium conditions is available either in a form of a scheduled
central HVAC operation or it is considered as constant along the horizon by assuming
persistence of currently measured system conditions. Since time constant of the FCU is
relatively small compared to the time constants of the building, the maximum attainable

thermal power from the FCU is defined with the following algebraic equation stemming
from the (5.28) and (5.27):

2qW,]€CWU(£—I

m (Tw kT T;nk) (530)

Uy k =
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where U! := U,(H, q,) is the overall heat transfer coefficient in the highest available
fan speed (5.29) and wupy is the maximum attainable thermal power averaged between
time steps k and k£ 4+ 1. Minimum attainable thermal power is either set to zero or it is
calculated as the thermal power provided to the zone air with switched-off FCU fan. To
assure thermal energy request from the higher-level MPC to be within the feasible FCU
operation limits, minimum and maximum attainable thermal powers u,;, and u,., on
higher level should be matched with the FCUs’ constraints. In zones with multiple FCUs
thermal power limits are calculated as superposition of individual FCU thermal power
limitations.

The goals of optimal energy management of FCUs are: i) to ensure that the zone
temperature profile remains in the comfort limits, ) to assure realization of energy input
set by the higher-level MPC and ii) to guarantee the minimal disruption of the users and
the minimum energy consumed by the fan by preferring lower fan speeds and minimizing
the number of fan speed switching. To accomplish all the goals, FCU interface needs to
operate on significantly lower time scales than higher-level MPC. It turns out that a time
scale of Ty, = 60 s is a good choice for reasonable data transfer and low enough for reducing
the zone temperature oscillations, which are unavoidable in FCU operation, especially for
FCUs without the possibility of the medium mass flow control. At the beginning of every

T¢-long time-interval the interface receives an energy command E'™ defined as:
Et =y, - T¢, (5.31)

from the higher-level MPC, where T7¢ is the sampling time of the higher-level MPC and
uy, is the optimal thermal power calculated by higher-level MPC. After receiving the
energy command, the interface calculates the optimal fan speed trajectory xj , required
to fulfil the energy request within the interval [k, k4 1|7

.
* _ * * *
Kict = |Thealt Treasilt - Lhegs((Te/To)—1)t| (5.32)

where t € {0,1,2,...,(T¢/Ts)—1} is the current interface time step, H{2* is the maximal
time-offset from the higher-level MPC defined as H®™ < T¢ /T, and Hy., defined as

Hye = min(HP*, (T¢/T,) — ), (5.33)

is the prediction horizon of the interface controller. The notation g , gt stands for
predicted optimal fan speed at time step t + 1 calculated at time step t. In accordance
with receding horizon principle, only the first control action xf, ¢ 18 forwarded to the FCU
and procedure is repeated at the next time interval. If the prediction horizon is outside
the interval [k, k+ 1]T¢, where k is the step of the higher-level MPC, the horizon is
shortened so that ¢ + Hy, < H{** is satisfied.

To be able to predict future FCU behaviour, the FCU model (5.27) is discretised with
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sampling time T; = 1 s to preserve the model accuracy. With assumed constant system

inputs within the interval [t, ¢+ 1]7 the resulting discrete-time system equations are:

Tt = (A% MTout"'Z A) ]ch ; (5.34)

Tln

where A? and B are discrete-time counterparts of continuous-time system matrices Ag,
and Bf, (5.27) while the parameter M is defined as M = T,/T;. Analogously, energy

inserted into the zone within the time interval [t ¢ + 1]7T} is defined as:

M—1 M-1i-1 i
Tin

b= Y ctapymn (ot S atystn) | ] e
i=0 i=0 7=0 ak

where C¢. and D, are discrete-time counterparts of the continuous-time system matrices
A¢ and Dy, from (5.28).

Goal 1)

Temperature dynamics of single zone is described with a linear state-space model of the
following form:
Torape = A%wyy + Bidy + Biuy, (5.36)

d
Yi|e = C Tyt

where x; € R™ is the system state vector, u; € R! is the thermal energy input and
d; € R™ is the disturbance input (outside temperature, solar irradiance, internal gains,
temperatures of adjacent rooms, etc.). Matrices A%, B4, B¢ and C¢ are of appropriate
dimensions and are obtained either based on first principles modelling or by use of
identification methods (see Chapter 3). To limit the zone temperature oscillations and to
enforce the temperature trajectory to be within a defined comfort interval the following
constraints need to be respected:

Tt AL € Taargie < Toshpogi + ALY Vji=1,..., Hy, (5.37)

a,i,t+jlt = Sttt i, t+jt>

where A is the acceptable deviation from temperature reference T in the considered

ith zone, matched to the one used in higher-level MPC.

Goal 1)

At the beginning of [k, k + 1]T¢ interval, t = 0 for the prediction horizon equal T¢ /T,

the realization of the energy E™ is enforced by minimizing the difference between the
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requested and the energy planned to be realized with the FCU (5.35):

(Ts/Ts)—
Jie1 (Xgey) = | E™F — Z Eat-‘rth . (5.38)

To assure offset-free control in presence of model-plant mismatch and for shorter prediction
horizons than 7¢/T, the mismatch between the realized and requested energy up to the

step t is introduced into the optimization criterion (5.38) such that:

Hg—1

HC re
f f Z Ea t—‘,—]‘t + AEat 5 (539)

ch,1<Xfc,t) = (TC/T)

where the energy backlogs AE, ; are defined as:

AE,; =

T Eretf Z B, (5.40)

with B being the estimated energy provided by the FCU to the zone in the interval

[t, t+ 1]T, recalculated based on measurements and known FCU thermal power model

(5.28):
kT4 (t41)-Ts
ETY, = / P,dt. (5.41)
’ k- Te+Ts

The integral action for disturbance compensation is introduced into the FCU interface
algorithm by calculating the difference between the predicted and realized disturbance
within the interval [k - T¢, k-T¢+t-T,|. The predicted heat disturbance energy within
the interval [k, k& + 1]T¢ is defined as:

Bt = Py Te, (5.42)

where Py, is the disturbance value predicted for the interval [k, k + 1]T¢ used by the
higher-level MPC. The difference between the predicted and the realized disturbance,
AFEjq; is then defined as:

t—1

ref
ABq, = (TC/T)Ed Zpdj " (5.43)

where Py, is the estimated disturbance affecting the zone temperature within the interval
[t, t+ 1]Ts. Based on the known current realization of the disturbance Py, it is also

possible to predict the mismatch along the rest of the horizon and correct the requested
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thermal energy accordingly:

Eref
AEun, = 23— — PacHeT.. (5.44)
fc

For ¢ > 0 the criterion J; is then defined as:

Hio—1

Eref Z Ea,tJrj\t + AEa7t + AEd,t + AEd,HfC . (545)

J=0

ch
ch,l (Xfc,t)
(T/T) ™
Iterative update of AF, and A FEy assures the offset-free input energy control as it emulates

the integrator behaviour. The principle of integral behaviour is depicted in Fig. 5.19.

Goal i)

Although one FCU consumes a small amount of electricity when its fan is on (~ 70 W),
due to the large number of FCUs in the whole building and long working hours, the total
electric energy consumption occupies a significant share of central heating and cooling

system electricity consumption. Therefore, optimizing the FCU performance improves

thermal comfort but also potentially contributes to the electrical energy savings:

Heo—1

ch2 Xfct Z t—i—j\t (546)

The electrical energy consumption model of FCU is defined in Chapter 2. By minimizing
the electricity consumption, lower fan speeds are favoured thus minimizing also the noise.
Since switching between fan speeds is the noisiest part of FCU operation, the following

penalty function is introduced to reduce it:

Hio—1

ch 3 Xfc t E A-ch NEVILE (547)
0, if Tpeppjpt = Toeprjotfts

Ao jie = , (5.48)
1, if Tt t+jt 7’é Tc,t+j—1|t)

. _ . . . . .
Vj =0,...He — 1, with zg 1, = Tfo 141> where Tfo g 1)1 18 the optimal fan speed

calculated and applied to the FCU in the previous time step.
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The final consolidated interface optimization problem for FCU control, written in

compact form, is as follows:

XFc,t = argmin ch,l(xfc,t> + g1 ch,2 (Xfc,t) + g2 ch,3 (Xfc,t)
Xfe,t

st. (5.34),(5.35), (5.36), (5.37) (5.49)
Lfc,t+5|t c {Off, L, M, H} VJ = 0, ]., ...ch - 1,

whereas, to enable implementation, constraints defined with (5.37) are included as soft
constraints. The preferred behaviour is enforced by changing the non-negative weights
g1 and go. The optimization problem (5.49) belongs to a class of Mixed Integer Linear
Programs (MILPs) which can be efficiently solved with e.g. CPLEX [137]. The overall
algorithm for the MPC energy management of FCUs is given in Algorithm 3.

Algorithm 3 Interface algorithm for optimal control of FCU.
initialization: ¢ =0

repeat 1-8 every T;:
1: collect new building measurements: ¢, Ty, 72", TOU:
1: collect new meteorological measurements: Ty, [HT, 197
2: collect estimates of current zone state xy;
3: check for SP and A updates;
4: if t=T¢/T; or t = 0:
4.a: receive uz| . and Py, from higher-level MPC;

4.b: calculate energy reference E™ (5.31);
4.c: calculate predicted heat disturbance energy EY' (5.42);
4.d: initialize t =0, AE,; =0, AEy;, =0, AEq g, = 0, Hye = HE'™;

I

H: else:

S.a: Hg = min(HE™>, (T¢/Ts) — t)

5.b: calculate realized thermal energy ET; (5.41)
5.c: calculate thermal energy mismatch AE, ;(5.40)
5.d: collect estimate of heat disturbance Eg;,

5.e: calculate AEy; (5.43) and AEq4 g, (5.44)
6: solve the FCU optimization problem (5.49);
7: forward x}‘gt‘t to the FCU;,

8 t=t+1;
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5.5.2 Verification of optimal fan coil unit control

The Algorithm 3 is realized and tested within MATLAB environment [70] for one selected
zone from the case-study building described in detail in Appendix A. Data used as external
conditions for dynamic building simulation are data from 13** to 20" March 2014 collected
from the case-study building meteorological station. The weather conditions in the selected

week (Fig. 5.20) are chosen as representative variable conditions.
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Figure 5.20. Weather conditions from 13" to 20" March 201/; a) outside temperature, b) solar
irradiance.

All weather disturbances affecting the zone temperature are assumed to be perfectly
known while unmeasured heat disturbance Py is set to zero. Simulations are performed
with the following parameters: T = 24°C, A™ = 0.5°C, HP*> = 10, T¢ = 3600 s and
T, = 60 s. The temperature is regulated only during occupancy period, from 6:00 to
18:00 h. Figure 5.21 shows a comparison of zone temperatures and the FCU thermal
consumption for the three control approaches: continuous-time hysteresis control and
two approaches based on thermal energy reference, the presented FCU interface and the
idealized algorithm with uniform power tracking of thermal energy references. For a fair
comparison, the hysteresis controller is switched on at 5:00 to meet the requirements of
working hours in time. Preheating, as a well-known advantage of the MPC, suppresses
the need for instant zone heating and thus flattens the energy consumption profile by

reducing the peak power loads.



128 Chapter 5.  Optimal zone temperature control - design

——— Hysteresis control
—— Ideal low-level control

25- T T T
(&)
2. 24
g
= 23
2
g 22
o . |
4 8 12 16 20 24
Time [h]
E 5 T T T T T
-
4 — -
:
A& 3r .
=
g 2r .
g
2 1f |
=)
0 1 1 1 1 1
8 0 4 12 16 20 24
Time [h]
(a)
——— Interface controller
95— —— Ideal low-level control . . .
e
B
=
=
3
2,
g
=
E 5 T T T T T
— L _
% 4
& 3t .
=
g8 2F .
g
= 1r i
=
0 1 1 1 1
8 0 4 8 12 16 20 24

Time [h]
(b)

Figure 5.21. Zone temperature response and thermal FCU power with different types of control
and g1 = go = 100 for 17 March 2014.

Figure 5.22 gives performance comparison of the developed control algorithm and
the hysteresis one for the selected period in terms of the objective goals Ji o and Ji 3,
overall thermal energy consumption, and average deviation from temperature reference for
different weights g; and go. For appropriately selected weights the developed algorithm
outperforms the hysteresis one both in energy consumption and comfort with average

number of switching per hour within the acceptable range.
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Figure 5.22. Performance comparison of the developed control algorithms for the period from
13" to 20" March 2014.
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Use of the zone temperature
model predictive control in
modular hierarchical

building energy management

Due to the proven flexibility, a model predictive control (MPC) approach emerged as a
promising solution for wide spread problems of energy management within buildings. In
addition to climate control, the MPC approach adds to increased savings of 13% when
applied to heat pump [5], with load shifting by up to 61% [6, 7, 8] and to peak electricity
power reduction by 35-72% [9]. Introduction of microgrid to buildings enables additional
savings by providing ancillary services to the utility grid [10, 11] or through coordinated
microgrid and building climate control [12]. In [13], the application of modular hierarchical
coordination between predictive climate control and energy flows in the building microgrid
ensured 23% revenue (123% savings) on a yearly scale. The advanced control methods are
evidently transforming the buildings to active energy market participants.

Buildings are complex systems composed of many coupled subsystems responsible for
maintaining safe and steady operation such as: building zones, central heating, ventilation
and air conditioning (HVAC) system, microgrid with energy production units, storages
and controllable or passive loads, etc. These subsystems are all very different in dynamics,
priorities, means of operation but also implementation aspects such as energy levels,
protocols, maintenance services, etc. Typical applications of building energy management
system (BEMS) are oriented only locally to a specific subsystem, while neglecting
interconnections and cooperation among all constituent subsystems. As a result, building
as a whole achieves uncoordinated and non-optimal behaviour. The aim of the modular
parametric hierarchical coordination is to separate building subsystems in a hierarchical
fashion [13, 38] rather than having one large control structure to handle all the subsystems

at once. Such hierarchical decomposition introduces significant computational relaxation

131
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and improvement of algorithm efficiency [13].
The BEMS considered on the 3Smart project [140] consists of three levels following
the building energy system vertical decomposition in its major parts: (A) building zones

level, (B) central heating/cooling medium conditioning system level (referred to as central

HVAC level), and (C) building microgrid level (Fig. 6.1).

m=== FEnergy flow

Grid entities —> Information flow

prices/  optimal
condi*tions bilds

—
—> Microgrid g
I A
price-consumption
talk g
) f | .
g — 8
E —> Central HVAC = a
B price-consumption o
g talk
\
—_—
—> Zones e
CONTROL BUILDING

Figure 6.1. Modular control of main building subsystems.

Zone level comfort control, developed within the Chapter 5, is envisioned as the lowest-
level ih the proposed hierarchy. If other levels ar missing, the improvement of energy-
efficiency and comfort is achievable even through the application of only level (A)
modules, if they take into account weather forecast and comfort requirements to decide
on the optimal profile of energy consumption for maintaining comfort conditions in
each zone. If no other building level is present, energy prices from the utility grids
are directly transferred to level (A) which then induces energy-cost-optimal behaviour
instead of the energy-optimal behaviour for maintaining comfort. By including also level
(B) next to level (A) benefits can be multiplied since conventional solutions introduce
only energy-connections with the central HVAC system, which consequently cannot take
into account the current and near-future energy requirements in the zones, and thus
operates with reduced efficiency. Especially important is the ability to intelligently shift

the power demand based on the smart grid signals or predicted outside temperature that
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shapes the efficiency of the central HVAC system. Finally, coming to the level (C), the
BEMS introduces a possibility to manage energy storages, energy conversion systems and
controllable loads on the building level. Hence, one can induce minimum energy costs
with respect to the planned energy consumption and production profile while making
the building an active entity on smart grids or of district-level smart energy distribution
systems. Consequently, level (C) enables further modular build-up of the concept beyond
the building area and towards smart districts, grids and cities.

The coordination in the imposed modular structure is based on the so-called "price-
consumption” talk, where on each level the information about own optimal operation is
communicated to the higher-level module and cost sensitivity with respect to the lower-
level operation is communicated to the lower-level module. Cost sensitivity calculation
resides on multi-parametric programming and critical regions (CRs). Segments of the
algorithm introduced in [141] are utilized for that: only a single CR is determined at one
iteration and no additional partitioning of the parameter space is performed. In such a
set-up lower hierarchy level control variables are treated as a parametric disturbance on
the higher-level and are further transformed towards global optimization criterion through
a parametric value function. For convenience, the key elements of the original work [141]
used here are concisely described in Section 6.2.

The development done within the thesis is focused on zone level only, thus within
the Chapter the zone level, as the lowest level in the proposed hierarchy, is presented
independently from the other parts of the system. In Section 6.1 the zone level MPC
formulation developed within Chapter 5 is revisited and reformulated from energy-optimal
to price-optimal form which can be easily included into hierarchical coordination with
other building subsystems. In Section 6.2 the coordination mechanism between zone level
and higher-levels is described. Section 6.3 gives description of the considered simulation

scenario and elaborates the obtained results.
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6.1 Building zones optimal control for high comfort

demands

The zone level optimization problem used for modular hierarchical coordination of building
subsystems is developed within the Chapter 5. For convenience, the main points of the
developed MPC optimization criterion are in short described below.

Zone temperature dynamics is described with a linear discrete-time model of the

following form (5.3):
Tpt1 = Adxk + Bflldk + Bj*Tout,k-i-l + Bffuk, (6.1)

yk - Cdl‘k,

where z, € R" denotes the zone level state vector, y, € R" is an output vector
consisted of zones temperatures, u;, € R" is a vector of thermal energy inputs into each
of n, controllable zones, d;, € R" is the disturbance input (outside temperature, solar
irradiance, internal disturbance gains, etc.) and T, is outside temperature. Matrices A%,
B3, BY, B¥* and C? are of appropriate dimensions and are obtained either based on first
principles modelling or by use of the identification methods (see Chapter 3, Section 3.4). In
the sequel, bold notation is used to denote variables stacked over the prediction horizon of
length H. To utilize known prediction of the outside weather temperature Ty, its influence
is discretised by employing first-order hold while the rest of the system is discretised by
zero-order hold.

A careful selection of weighting matrices for penalizing the energy consumption and
deviation from the temperature reference enables easy switch between the two often
opposing requirements based on the predicted disturbance and energy price profiles.
Within such a set-up, comfort is defined through temperature reference y** € R

and permissible zone temperature interval:
yref . Aref_ o <y< yref+ Aref+ o, (62)

where A™ € R is acceptable temperature deviation from the temperature reference
stacked over the prediction horizon, and o1 > 0 € R and o5 > 0 € R”™ are slack
variables that allow highly penalized constraint violation and feasible implementation. The

zone thermal heating/cooling element limitations are formulated as input constraints:

U, <u<u

mi

(6.3)

max’

where u, ;. and u,, are minimum and maximum attainable thermal powers along

n ax

the prediction horizon, dependant on the current and planned HVAC operation, heat-
ing/cooling elements properties and the zone temperatures. If no information on future

HVAC operation is available, the current measured system state is presumed to be retained



6.1. Building zones optimal control for high comfort demands 135

along the prediction horizon. Maximum attainable fan coil unit thermal power is defined
as in (5.30). The final optimization problem for energy-saving and comfortable zone
temperature control, written in compact form, is as follows:

J'= min ¢/ |ul 78T QY T —y)| +g11T o) + g2l o9,

u,01,02

st (6.1),(6.2),(6.3), (6.4)
(o} Z 0,0’2 2 0.

The operator |.| denotes absolute value which is applied element-wise on the vector,
c; € R¥™ is the thermal energy cost, ¢, € R! is the associated comfort cost expressed
as mean value of the thermal energy cost ¢, i.e. cc = Y. c;/(H -n,), 1T is appropriately
sized row vector of ones and ¢g; and g, are non-negative weighting parameters for tuning
the optimization criterion. The vector & € R”™ is the zone occupancy vector defined
as in (5.14) consisted of zeros (indicating vacant zone) and ones (indicating occupied
zone). Matrix Q € R ">y transforms temperature deviation from the reference to the
corresponding thermal energy such that it is comparable to the energy consumption while
the parameter v, € R! is introduced for trade-off possibility of comfort-savings criterion
(for more details see Chapter 5 or [131]).



136 Chapter 6. Modular hierarchical building energy management

6.2 Multi-parametric coordination of zone level with

higher hierarchy levels

In zone level optimization problem energy inputs per zone u are control variables whereas
they act as disturbance parameters for the higher-levels, e.g. microgrid or central HVAC
level [38, 13].

e If there is no central HVAC level and the thermal energy is generated locally,
the thermal energy demand per time step k& and the corresponding electrical load
are related through coefficient of performance (COP), a heating efficiency measure
dependent on the outside conditions, targeted medium temperature and/or medium
flow. A separate measure, energy efficiency ratio (EER), is equivalently used for the
cooling process. Constant COP parameter is commonly used in MPC approaches
[77], since it simplifies the problem while keeping the sufficient accuracy for the
aimed purpose. For clarity purposes, within the thesis, the term COP is used for
both heating and cooling processes. Thus, if there is no central HVAC level, zone
level cumulative thermal energy demand per time step k£ and the corresponding
microgrid electrical load are related through constant COP parameter. Based on
the calculated load, microgrid optimizes its behaviour and returns the calculated
cost of the thermal energy and a region in which that cost is valid, namely CR, back

to the zone level.

e By introducing the central HVAC level into the hierarchy the zone level communi-
cates the required thermal energy for maintaining the comfort in all zones and zones
temperatures profiles to the central HVAC level, which then based on the electrical
energy price information from the utility grid or microgrid optimizes its behaviour
to meet the required thermal demand and based on it calculates the optimized
prices for the predicted heating/cooling demand and the defined temperatures from
zones. Towards the zone level, the central HVAC level communicates the optimized
thermal energy and temperatures prices, the CR in which these prices are valid and

predicted profile of supply medium conditions (flow and temperature).

Zone level MPC, defined as (6.4) presents the low hierarchy level (LHL), while high
hierarchy level (HHL) MPC optimization problem in both aforementioned cases can be
written as:

Jh :m£n h'u"+£f'0

h _ Ah_h h. h
st. x'=A :Ek|k+B u (6.5)
<0
Gt [ ] <whl+L'e
h
u
where superscript 'h’ denotes parameters and variables related to HHL. Parameter © is

based on a vector of zone level variables which act as disturbance parameters for the HHL.
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' consists of the controllable HHL inputs

System states are denoted as x" while vector u
stacked over the prediction horizon. Vectors h € RY i and f € RE™ represent the cost
of the energy in the accompanying HHL optimization problems, matrices A" € R¥ g xmy
and B" € REm*H 1 are matrices modelling the dynamics considered on the HHL, while
matrices G, L" and vector w" define all constraints on system states and inputs on the

HHL.

6.2.1 Multi-parametric model predictive control and single crit-

ical region calculation

Original algorithm for multi-parametric MPC was proposed in [141]. The algorithm is
based on direct exploration of the parameter space starting from a single critical region

CRg formed around the initial parameter value ©, (Fig. 6.2).

CRy

\/

0 - space

Figure 6.2. Geometric representation of a single critical region.

Important distinction from the multi-parametric MPC approach and the actual algorithm
employed here is that only a single CR is determined at one step and no additional
partitioning of the parameter space is performed. For convenience, much of the original
problem is concisely given in the sequel.

A critical region is a subset of parameters © that yield the same set of active
constraints, i.e., constraints that are satisfied with equality sign in the optimal solution.
Constraints are separated into an active (A) and an inactive (NA) subset for certain CR,

h *

with optimal control law u™* over the prediction horizon H such that:

Ghu"* = wh + L} e, (6.6)

Gh,u" < wh, +LE,0, (6.7)
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From (6.6) follows the affine control law with respect to © over the CR:

u"*(0) = (GH) 'Ly © + (Gh)"'wh, © €CR, (6.8)
u"*(0) = D"©+¢", ©€CR, (6.9)
and the corresponding affine cost function with respect to the parameter ©, called value
function:
J"*©)=h"u"*(O)+f o= (h"D"+f)e+h'¢", (6.10)
h
J*(0) = "0+ h'g" (6.11)

The CR, denoted with C", is represented as:
GcrO < wer, (6.12)

following from the inactive constraints subset:

Gua (D"O +¢") < wiiy +L,6, (6.13)
(GuaD" —L{,) © < Wiy — Ghaq". (6.14)
N ~ vl ﬁ—/

Gcr WCR

The closure is obtained by replacing < by < in (6.14) [141]. In case of CR degeneracy
additional steps are required to obtain a full-dimensional non-degenerate critical region.
When a primal degenerate CR is obtained, depending on the primal degeneracy case, either
the active constraints subset is reduced using e.g. QR decomposition, or the initial © is
randomly permuted such that a full-dimensional CR, including the initial ©, is obtained

[141]. For the case of dual degeneracy, a particular optimizer is chosen on a vertex of the
feasible solutions set of the HHL [141].



6.2. Multi-parametric coordination of zone level with higher hierarchy levels 139

6.2.2 Iterative revisiting between optimization levels

After the CR (6.12) and accompanying cost ¢ (6.11) are calculated, the CR constraints

are added as additional set of constraints to the original LHL optimization problem (6.4):

J¥ = min  J"(O)+ 7. 0T QY T —y)| + g1l o1 + 21" o,

u,01,02

s.t. (6.1),(6.2),(6.3),
0= f%uy), ©€ccC"
0,>0, 0,20,

(6.15)

where J"*(-) is the critical region value function of the HHL level, f©(-) is a stack of linear
functions and ¢, is the price of the thermal comfort inside building zones equal to the
mean price of the thermal energy along the prediction horizon. The set C" represents the
constraints of the HHL level CR. If the CR is defined with respect to both thermal energies
and zone temperatures as in the case when HHL is central HVAC system, the original LHL
optimization problem is additionally modified by introducing the zone temperature cost
into the optimization problem as defined in (6.15). After solving the optimization problem
on LHL, improved LHL control signals are obtained with respect to HHL objective,
denoted with u**. Initial solution u* is shifted along the decreasing value of J" from (6.11)
such that all physical and comfort constraints are satisfied. The hierarchical coordination

then continues with respect to the constraints activated by the optimal zone level solution.

Case 1 : If LHL constraints are activated, local optimum is reached and the

ho*x

procedure is concluded. The price optimal HHL solution u"** within the critical

region and the associated cost J"** are obtained from (6.9) and (6.11).

Case 2 : If critical region constraints (6.12) are activated, the LHL solution is
transferred to the HHL where new critical region is found by resolving (6.5) with
respect to new LHL solution shifted in the direction of the LHL optimizer change

between two last iterations:

AO
Q=0 +ec—— 6.16
a6l (6.16)
where:
AO =0; —0,_1, (6.17)

parameter i is number of current iteration and parameter € is a small value (e.g.
solver precision or 1% of Au) chosen to ensure entering into adjacent CR as a
starting point for the next iteration where HHL and LHL are respectively solved
again. The newly obtained critical region is then passed again to LHL. The procedure
is iteratively executed until Case 1 occurs (Fig. 6.3(b)) or HHL level constraints are

activated (adjacent CR is non-existent).
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The overall algorithm is presented in Fig. 6.4 as a flowchart.
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Figure 6.4. Hierarchical coordination algorithm flowchart.
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6.3 Simulation results and case-study analysis

The presented hierarchical coordination approach is verified on a simulation case-study
of the particular case-study building with controllable thermal energy consumption in
building zones, central HVAC system and integrated microgrid. The benefits of the
approach are demonstrated by comparing operational costs of the building controlled
by conventional control algorithms with the costs arising as a result of energy-optimal
hierarchical building control and price-optimal coordinated building control.

The case-study building consists of 248 controllable zones equipped with two-pipe
FCUs for seasonal heating or cooling. The cooling energy for the building is supplied
from the chiller station with the ability to control the supply temperature of the cooling
medium on the central HVAC level. Besides the controllable building zones the chiller
also supplies thermal energy towards the adjacent faculty building whose thermal energy
consumption is considered non-controllable. The considered microgrid consists of battery
storage system with fully controllable power converter and solar power plant. The central
HVAC level electrical energy consumption is a controllable load on a microgrid level. It
consists of the consumption of the chiller and of the FCUs’ fans. The non-controllable
electrical energy load on the microgrid level accounts production of the solar power plant
and consumption of the office lighting, computers, building elevators as well as electrical
air conditioning units in server rooms. More detailed description of the case-study building
is given in Appendix A.

6.3.1 Simulation scenario

The considered control strategies are validated for a typical sunny workday in July

characterised by external weather conditions shown in Fig. 6.5.
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Figure 6.5. Typical weather conditions for a sunny day in July.

The non-controllable consumptions on the central HVAC system level and the microgrid

level, estimated based on the historical building data are both shown in Fig. 6.6.
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Figure 6.6. Non-controllable consumption of a) thermal energy on the central HVAC' level and
b) electrical energy on the microgrid level, for a sunny day in July.

Equivalent heat disturbances in all zones are assumed zero-valued. The considered
simulation scenario data are obtained from historical measurements as averaged 24-hour
profiles of all sunny workdays in July 2018 and 2019. Volatile energy market electricity
prices, shown on Fig. 6.7, are taken from European Power Exchange company portal
[142] and scaled to match the two-tariff prices comprising grid fees and supplied energy
cost in Croatia [143]. The monthly cost of maximum building power consumption is also
obtained from [143] and divided by 30 to represent a correct price amount for single
day optimization. Battery system degradation costs of 0.226 EUR/kWh both for charging
and discharging are calculated based on the battery purchase price and the manufacturer’s

catalogue [144]. All simulations are performed within Python environment [145, 137].
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Figure 6.7. Day-ahead electricity price for a sunny workday in July.

The building is assumed to be occupied from 7:00 until 20:00. During the occupancy
periods the zone temperature is requested to be within the interval of 24 4+ A™f where
A = 1.5°C. Outside that interval the allowed deviation from the temperature reference
is set to A™ = 8°C to match the building protect limits defined as 24 + 8°C.
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The following control strategies are considered.

1. Baseline control. The baseline control on the zone level is based on a simple
discrete hysteresis control of zone temperature with sampling time 1 min. The
baseline controller switches between available power outputs based on the difference
between the temperature reference and the zone temperature, such that the low
FCU fan speed is switched on at -0.15°C, medium speed at -0.30°C and high speed
at -0.45°C. The maximum attainable thermal power at the highest fan speed is
matched with zone level thermal power limitations used in (6.3). For a fair comfort
level comparison, the baseline controller starts to operate 1 hour before the start
of the occupancy period to meet the comfort requirements in occupancy periods
on time. On the central HVAC system level baseline control constantly keeps the
medium flow at 23 kg /s and supply temperature at 8°C according to the established
practice of the chiller maintenance service. The baseline for the microgrid level
control is a simple transactive controller. If the consumed energy is higher than
the expected daily average energy consumption, the battery will be discharged with
the maximum allowed power. If the consumed energy is lower than the expected
daily average consumption, the battery will be charged with the maximum allowed
power. Expected daily energy consumption is obtained as the combined baseline
central HVAC system level consumption and the microgrid level non-controllable

consumption presented in Fig. 6.6.

2. Energy-optimal control. In energy-optimal control the BEMS operates in an
uncoordinated manner where each building optimization level operates indepen-
dently (local-wise optimal) with only energy demands exchanged between the levels.
During this exchange no feedback is provided from the superior levels regarding the
consumption profiles and the corresponding energy prices and no tuning of the initial
energy demands is performed. Consequently, the zone level and central HVAC system
level optimize their behaviour with respect to the energy consumption only. In such
a set-up the zone level consumption is a non-controllable load for the central HVAC
system level. Likewise, the consumption of the central HVAC system level adds up

in a non-controllable way to the non-controllable load on the microgrid level.

3. Price-optimal control. In coordinated control, all considered control levels are
joined together by the iterative parametric hierarchical coordination presented
in Section 6.2. The building optimization levels exchange information through
respective CRs value functions and constraints, and their corresponding parameters.
The zone level communicates to the HVAC level the optimized profiles of thermal
energy consumptions and temperatures within zones, whereas the HVAC optimizes
its behaviour with respect to the obtained zone profiles and communicates the local
characterization of the thermal energy cost function to the zone level. Coordination

between the microgrid and the HVAC level is achieved by communicating the HVAC



6.3. Simulation results and case-study analysis 145

electrical energy consumption profile to the microgrid level and local characterization
of the electrical energy cost function from the microgrid to the HVAC level. The

procedure is repeated iteratively (see. Fig. 6.4) until the algorithm converges.

The performance of all considered control strategies is verified in a scenario with the
enforced repeated behaviour from day to day, i.e. the initial state of the building (at
the beginning of the day, at midnight), which is subject to optimization, is equal to the
final state of the building (at the next midnight). All control problems mentioned have
for this daily planning scenario also the initial state ), as the optimization variable. In
this way the system does not exploit any initial condition in the building for inducing
savings, but leaves the building in the same condition as it was at the beginning of the
day — i.e. no energy accumulated in initial conditions is exploited. The repeatability of
the baseline controller operation is ensured by simulating the building performance over
several days with the same weather conditions as in the considered simulation scenario.
The repeatability constraints on the microgrid level assure equal initial and final battery
state of charge (SoC) whereas the central HVAC system does not contain any dynamics

thus no additional constraints are needed. The additional zone level constraints are:

Lk = LktH|k> (6.18)

where Ty € R"= is the initial system state at 0:00 and z, +HE € R™ is the predicted
system state at the end of the prediction horizon of length H at 24:00.

Due to the additional state introduced in the zone level optimization problem, the
parameter © which enables the coordination with the central HVAC system level is
defined as:

0= [uT yHT (6.19)

where y, = [(yMk)T (y)q ! and yi, € R™ is a vector of initial zone air temperatures
at time 0:00. After the CR and accompanying cost are calculated, the CR constraints are
added as additional set of constraints to the original zone level optimization problem (6.4)
such that:

J¥ = urgllr}m J*O)+7.-6" -6 - QY —y)| +q11T o) + g21 7 0,
st (6.1),(6.2),(6.3),
Lyl = Ly Hlko> (6.20)
6= |u’ ygr, eech

0,>0, 0,20,

-
where ¢! = [ctT c, } , ¢, € RE™ and ¢, € RHEFTD™ Set CM represents the central
HVAC level CR constraints.
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All the MPC controllers operate with 15-min sampling time and thus H = 96 in the
considered simulation scenario. For convenience, all the considered simulation scenario

parameters are summarized in Table 6.1.

Table 6.1. Case study parameters.

Zone temperature reference 24°C
Chiller rated power (electrical) 244.2 kW
Maximum chiller supply temperature 15.6°C
Minimum chiller supply temperature 7°C
Battery capacity 32 kWh
Battery discharge efficiency 90%
Battery charge efficiency 90%
Minimum battery charge state 10%
Maximum battery charge state 90%
Maximum battery energy discharge in 15 min -2.4 kWh
Maximum battery energy charge in 15 min 2.4 kWh
Maximum grid energy in 15 min (selling) -90 kWh
Maximum grid energy in 15 min (buying) 90 kWh
Photovoltaic array rated power 10.58 kW

Battery degradation cost

Maximum power cost

0.226 EUR/kWh
0.116 EUR/kW
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6.3.2 Results

In order to fully investigate the contributions and savings possibilities of hierarchical
coordination between energy flows and consumption levels, the corresponding building
operation costs and achieved thermal comfort are investigated for cases with and without
battery storage system and for different comfort-savings trade-off parameter values. For
the case without battery storage the flexibility is achieved only by modifying the central
HVAC system consumption shaped by the thermal comfort demands from the building
zones. The savings amount is thus highly influenced by the change of the comfort-savings
trade off parameter 7, and the width of the permissible zone temperature interval A™. The
introduction of the battery energy storage system into the building additionally increases
the building flexibility and enables additional extensions of the savings margin.

Typical temperature profiles and mean thermal power provided from the FCUs to the
zone air in 15-minutes time intervals, presented for four exemplary building zones, all
located on the 9 floor of the case-study building, C09-01, C09-16-3, C09-04 and C09-13
are shown in Fig. 6.8, Fig. 6.9, Fig. 6.10 and Fig. 6.11, respectively. The selected building
zones are of different sizes and orientations with the description of their physical properties
listed in Tab. 6.2.

Table 6.2. The description of the physical properties of the exemplary building zones.

Zone Orientation Floor area
C09-01 north 48.12 m?
C09-04 south 35.03 m?
C09-13 south 7.10 m?

C09-16-3 north 22.80 m?

The permissible zone temperature interval during the occupancy periods 7:00-20:00 is
denoted with black dashed lines. The control actions of the baseline controller are based
only on current measurements resulting with reactive control and significant disruption of
the comfort in zones in which the the comfort constraints can not be satisfied without the
appropriately applied precooling actions. The deviation of the zone temperature from the
reference for price-optimal control and case without batteries in intervals around 14:00
is a clear result of coordination where the microgrid and central HVAC level force the
zones to lower the thermal energy demand in intervals in which the peek power demand
occurs. For price-optimal control and case with batteries, the peak is already flattered in
initial microgrid iteration where in all subsequent iterations the zone level thermal energy
consumption is shifted towards the intervals with more beneficial electrical energy prices
and HVAC system efficiency.
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Figure 6.8. The temperature and mean thermal power provided from the FCUs to the zone air
i 15-minutes time intervals in zone C09-01 within the analysed day.
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Figure 6.9. The temperature and mean thermal power provided from the FCUs to the zone air
in 15-minutes time intervals in zone C09-16-3 within the analysed day.
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Figure 6.10. The temperature and mean thermal power provided from the FCUs to the zone air
i 15-minutes time intervals in zone C09-04 within the analysed day.
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Figure 6.11. The temperature and mean thermal power provided from the FCUs to the zone air
in 15-minutes time intervals in zone C09-13 within the analysed day.
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The comparison of overall thermal power provided by FCUs to the zone air and averaged
on 15-minutes time instants in all 248 controllable zones for different control strategies is
shown in Fig. 6.12.
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Figure 6.12. Overall cooling energy needs for all the zones (sum of energies that should be
provided by FCUs to zones air).

The figure shows the predictive feature of MPC algorithm where cooling is initiated
before the start of occupancy period to satisfy comfort demands at the beginning of
the occupancy period and to activate the precooling of the building zones in which the
temperature constraints can not be respected otherwise. Even though the consumption
of the thermal energy on the zone level is increased by up to 1.10% for energy-optimal
control and up to 2.76% for price-optimal control when compared to the baseline control,
the overall building operational costs presented at the end of the subsection are reduced
up to 26.50%.

In the considered case of seasonal cooling, the comfort with baseline controller is
significantly disrupted in cases when the available thermal power is insufficient for covering
the peak demand. The obtained comfort levels significantly differ for zones with different
orientation. Comfort levels, calculated separately for zones oriented towards north and the
other oriented towards south are shown in Fig. 6.13 and compared to the resulting thermal
energy consumption of the considered zones. The comfort level indicator, measured as

average deviation (AD) from the temperature reference is calculated as:

1
AD = > llyit =yl (6.21)

TsTy keO

where operator ||.|[; denotes L; norm , O is the set of all the time-samples within the
occupancy periods and ng is its cardinal number. The comfort level indicator provides
information of average expected temperature in each time instant, e.g. for price-optimal

control with A™ = 1.5°C, the expected temperature in south-oriented zones for the
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Figure 6.13. Comfort level indicators for different controller strategies.

considered simulation scenario is within the £0.11°C range around y**f

. Besides the average
deviation from the temperature reference the performance of different control strategies is
also compared with respect to the maximum overheating, i.e. maximum temperature above
the reference detected in building during the occupancy periods. The large overheating of
south oriented zones when using the baseline control strategy is a clear result of lacking
predictive feature. In both MPC based strategies the temperature in all building zones is
kept in the permissible temperature range of y*f + A™ reducing thus the overheating up
to 56% and improving the overall comfort in all building zones by at least 57%.

The day-ahead conditioning of the supply medium temperature at the central HVAC
level is depicted in Fig. 6.14. The upper and lower limits of the supply temperature are
denoted with the black dashed lines. The controller selects the supply medium temperature
that will ensure the required amount of thermal energy in the zones given the zone
temperature profile stated by the zone level MPC. Additionally, the supply medium
temperature value also influences the incurred thermal losses and with it associated
cumulative thermal load on the chiller which results with the change of the chiller
efficiency. Generally, the decrease of the thermal loads in the zones results with the
increase of the supply medium temperature. The reconfiguration of the zone thermal
energy consumption allows the cost-optimal central HVAC system controller to keep
the supply medium temperature on a higher values in the large part of the prediction
horizon, resulting with the lowered thermal energy losses. During the time instants with
the increased thermal loads in the zones, the supply medium temperature is kept close to

the minimum allowed value.
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Figure 6.14. Supply medium temperature profiles for different control strategies.

The overall electrical load profile of the central HVAC system, required to cover the
controllable thermal energy demand shown in Fig. 6.12 and non-controllable thermal

energy demand shown in Fig. 6.6.a), is shown in Fig. 6.15.
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Figure 6.15. Central HVAC system electrical load profile average in 15-minutes time instants
obtained with different control strategies.

The cost-optimal control minimises the peak power value at time instants with the highest
loads at the expense of the increased precooling operation in the morning hours when the
considered volatile electrical energy prices are the cheapest, as depicted in Fig. 6.7. With
the sudden increase of the electrical energy price around 6:00, the zone level controller and
consequently central HVAC controller suddenly reduce the power consumption, which is

also indicated by the sudden increase of the supply medium temperature.
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Battery storage system energy exchange and SoC levels throughout the day are
depicted in Fig. 6.16. In the MPC strategies, the batteries are charged during the lowest
electricity prices in the early morning and exploited during the period 11:00-16:00 for
peak power reduction. Additional savings are obtained by utilizing the electricity prices
difference during the period of 16:00-20:00, where the overall building consumption is
lower and peak power reduction is not needed. Figure 6.16 shows that the storage system

operational limits as well as operation repeatability are respected.
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Figure 6.16. Battery storage state of charge and battery storage power exchange profiles averaged
in 15-minutes time instants obtained with different control strategies.

Daily energy exchange with the distribution grid is depicted in Fig. 6.17. Lower
electricity prices during the early morning from 03.00-06:00 are targeted for increasing the
overall building consumption such that the energy consumption during peak prices from
07:00-10:00 is decreased and overall operation costs reduced. Additionally, the building
operation costs are further reduced since the peak power consumption is decreased from
189.67 kW in the baseline scenario, to 173.62 kW in the price-optimal scenario without
batteries and additionally to 167.32 kW in the price-optimal scenario with batteries.
Overall building level operation costs and peak power costs reduction over the iterations
is depicted in Fig. 6.18. It is shown that the operation costs are decreasing over iterations
until the convergence of the algorithm where additional tuning of the building operation

is either not economically viable or is constrained by zones, central HVAC or microgrid

level physical limitations.
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Figure 6.17. The overall day-ahead building energy consumption profile average in 15-minutes
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Figure 6.18. Overall building operation (left) and peak power (right) costs over the iterations
of the BEMS hierarchical coordination.

In order to fully investigate the contributions and savings possibilities of hierarchical
coordination between energy flows and consumption levels, the corresponding building
operation costs and achieved thermal comfort in building zones are validated with respect
to the comfort-savings trade-off parameter ~.. The initial comfort focused case-study is

extended with the savings focused studies where the parameter ~, is set to 7. = 0.5 and
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Y. = 0. The comparison of battery storage system energy exchange and state of charge

levels throughout the day for different comfort-savings trade-off parameters are shown in
Fig. 6.19 and Fig. 6.20.
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Figure 6.20. Battery storage power exchange profiles averaged in 15-minutes time instants for

different comfort-saving trade-off parameter . values.

Based on the flexibility of the zone level, the battery storage system is utilized in

different ways and for different purposes. Among the three considered ~. values the

flexibility of the zone level is lowest for the parameter .

1 and highest for parameter
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Y. = 0. For v, = 1 the batteries are fully utilized to lower the peak power demand since
the zone level flexibility is to low for flattening the consumption during the peak power
periods. In cases with the increased zone level flexibility, the reshaping of the zone level
thermal energy demand offers more cost-effective solution for lowering the peak power
demands, whereas the batteries are utilized to cover high energy price intervals 7:00-10:00
and 18:00-20:00.

The comparison of overall building operation costs and achieved thermal comfort
stemming form baseline operation with the results obtained via energy-optimal control
and price-optimal control is shown in Fig. 6.21 and Fig. 6.22 and listed in Tab. 6.3, also
supported with the corresponding comfort evaluation metrics. Comfort levels, calculated
as the average of all building zones and cases with and without batteries are shown in
Fig. 6.23 and compared to the resulting building operation costs.
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Table 6.3. Overall building operation costs and achieved thermal comfort in building zones for
different control strategies and different comfort-saving trade-off parameter .

) Average deviation from .
Operation Maximum
temperature reference [°C] :
costs I orionted oriomed overheating
[EUR] a. soutn-oriente: nortn-oriente: [OC]
zones zones zones
WITHOUT BATTERIES
Baseline 168.13 0.22 0.29 0.09 3.43
_q Energy-optimal 163.81 0.08 0.11 0.01 1.61
e = Price-optimal 147.97 0.14 0.16 0.11 1.50
05 Energy-optimal 163.81 0.08 0.12 0.01 1.61
7e =72 Price-optimal 141.40 0.31 0.34 0.26 1.50
_0 Energy-optimal 160.09 1.41 1.38 1.47 1.61
Te = Price-optimal 132.75 1.07 1.12 0.97 1.50
WITH BATTERIES
Baseline 179.82 0.22 0.29 0.09 3.43
1 Energy-optimal 162.27 0.08 0.11 0.01 1.61
Te = Price-optimal 146.94 0.13 0.15 0.10 1.50
05 Energy-optimal | 162.27 0.08 0.12 0.01 1.61
Te = Price-optimal 140.70 0.29 0.32 0.23 1.50
_0 Energy-optimal 158.42 1.41 1.38 1.47 1.61
Te = Price-optimal 132.17 1.08 1.14 0.96 1.50
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Figure 6.23. Comfort level indicators for different controller strategies.
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The maximum detected overheating is the same for cases with and without batteries.
As expected, with the increased flexibility of the building zone level through the change of
the comfort-savings trade-off parameter ~, the overall building operation costs are reduced
at the cost of the decreased thermal comfort in building zones. However, in all considered
cases the AD is within the permissible interval and overheating is significantly reduced.
Even though the overall thermal energy consumption on the zone level increases in price-
optimal control the overall building operations costs are significantly reduced. This is due
to the fact that the coordination allows the HVAC level to communicate the localised
cost of its electrical energy consumption to the zone controller. Thus, the zone controller
reconfigures its operation by including the electrical energy cost of the HVAC level in its
objective function together with the comfort objective function. Which results with the
decrease in the overall electrical energy cost. Trough the results it has been shown that
the software-based coordination between BEMS levels offers the possibility to transform
the building energy consumption profile and reduce the building peak power consumption

without large financial investments in installation of energy storage systems.
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Part II conclusion and future

research opportunities

Possible savings of Model Predictive Control (MPC) in building climate control depend
largely on the formulation of the MPC optimization problem. The MPC temperature
control approach developed within the Chapter 5 allows the individual setting of comfort
level with the aim of user satisfaction and increased productivity rather than achieving
additional energy savings. The performance of the developed approach is verified with
the advanced options like peak shaving or flexible night regime intentionally left out
to show that even for a simple case, properly designed MPC outperforms conventional
controllers without compromising users’ comfort. Moreover, it is shown that the users’
comfort is improved. The achieved overall yearly energy consumption gives insight into
the expected maximum gains for various commercial buildings and locations. In Chapter 6
a concept of modular building energy management system (BEMS) is presented. It is
envisioned as a hierarchical structure that consists of three main levels: zone level, central
heating/cooling medium preparation level (referred to as central HVAC) and building
microgrid level. The development done within the thesis is focused on zone level only, thus
with the Chapter 6 zone level as the lowest level in the proposed hierarchy, is presented
independently from the other parts of the system. The MPC as the main underlying
technology in the conceptualized BEMS enables to take into account relevant current
building conditions and available predictions when deciding how to actuate the building.
The modularity of the approach is achieved by a parametric coordination between the
levels with exchange of predicted consumption and price of operation. This enables the
technology independency, cost-effective implementation and upscaling towards the smart
grid and smart city concepts where buildings play active roles. Several control strategies
are examined to give a realistic insight into possible cost benefits of imminent or more
distant technology utilization in building energy management. Results show large cost-
saving opportunities of MPC and highlight the proposed modular approach as a possible

integration method.
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CHAPTER &

Zone model predictive
control — real-time

implementation

In the last decades, the application of model predictive control (MPC) for building climate
control has received considerable attention from research community. Its distinctive
advantages over conventional control algorithms make the MPC approach a promising
solution for widespread problems of energy management within buildings. Although the
earliest applications of MPC date back to early seventies in the chemical industry, the
practical implementation of MPC for building climate control is still in its early stages
due to its high computational demand followed by the required investment in sensing
and information communication technology (ICT) equipment required to collect, store,
and analyse the building-related data. Only recently, the decreasing hardware cost and
data accessibility, enabled by advances in computational power and ICT technologies
started the increased application of MPC to various types of building energy systems
(Fig. 8.1'). Moreover, the growing spread of renewable energy systems combined with the
increasing importance of demand response and rising energy prices is evidently changing
the paradigm of energy and the role of the buildings in the grid.

Up to date, the practical implementation of MPC for building climate control has been
reported on a commercial building in Allschwil [14], a building of the Czech Technical
University in Prague [15], one zone in a campus of the University of Almeria in Spain
[17], two test zones in the Energy Resource Station in lowa [16], a building used by
the Faculty of Sciences and Technology of the University of Algarve [146], a building
of Dalhousie University in Halifax [18], the test zone inside Building and Construction

Authority SkyLab test facility in Singapore [19], and the laboratory room in the building

!The statistic is obtained based on the results of SCOPUS (www.scopus.com) search engine. The
articles related to MPC in buildings are articles containing the keywords (‘'model’, 'predictive’, ’control’,
’building’) in title, abstract or keywords list. The articles related to experimental validation are articles
containing an additional keyword (’experimental’) in title, abstract or keywords list.
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Figure 8.1. Number of research articles related to MPC and experimental verification of MPC
i buildings.

of the Royal Institute of Technology campus in Stockholm [20]. The reported experimental
studies are listed in Tab. 8 and classified according to the system that is controlled, the
heating/cooling elements (HCEs), the total experiment time, and the obtained energy

savings.

Table 8.1. Summary and comparison of experimental studies of MPC for zone comfort control.

Heating/cooling Experiment Electric | Thermal
Study Controlled system ) energy energy
elements duration . .
savings | savings
[14] | occupied five-floor building TABS, blinds, AHU 7 months 17%* -
[15] | occupied eight-floor building TABS heating 2 months - 15-28%
[17] occupied office FCU 6 hours 53% -
[16] two unoccupied test zones | AHU, ice storage, chillers 4 days 17-27%* -
[146] four occupied rooms AHU 3 days 50% -
[18] occupied five-floor building HVAC system, VAV 4 months 29% 63%
[19] unoccupied test zone FCU, ACB system 2 days 14-20%
[20] laboratory room HVAC system 3 days - 31-33%

* energy savings obtained through simulation
TABS - thermally actuated building structure
ACB - active chilled beams

AC - air conditioner

All addressed studies report a successful operation of MPC and efficiency improvement
when compared with a baseline control. The experimentally confirmed energy savings
vary significantly from 5% up to 63%, depending on the comprehensiveness of the
study, controlled system and baseline used for the comparison. While the optimization
criterion and comfort constraints are mostly similarly defined across the studies, the
most distinctive feature is the choice of the mathematical model of the building. In the
reviewed studies, the used models ranged from building simulation software models [16]
and artificial neural networks [146] to more commonly known linear or bilinear state-space

models [17, 15, 14, 19]. In all presented studies, the MPC control is implemented as a part
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of supervisory (management) level used to optimize the trajectory of internal setpoints
whereas the tracking of those setpoints is a task of low-level control. The internal building
setpoints are either optimized directly [17, 15, 20, 19, 18] or obtained by post-processing
the optimal MPC variables [14].

The zone temperature control approach developed within the thesis differs substan-
tially from the MPC approaches that act by adjusting the optimal temperature setpoint
values for local controller and usually neglect the performance of the local HCEs in the
zone. Such systems are also practically inapplicable in tight comfort bounds with simple
hysteresis controllers used for local temperature control. The distinct advantage of the
developed approach is in direct optimization of energy inputs per zone. By doing so, a high
level of modularity and flexibility for different actuators, configurations and buildings is
gained for fast replication of the method. The unmodelled disturbances, such as occupancy,
lighting or electronic equipment, are no longer implicitly compensated, so in order to
ensure offset-free comfort control and to be able to compensate such disturbances, an
estimator is introduced in the control loop. The realization of the optimal thermal energy
inputs is enforced by an interface acting as a link between the optimal thermal inputs and
real actuation commands for HCEs (fan coils, radiators, floor heating, etc.) required for
those inputs to be realized.

The developed approach relies on the existing building automation system (if such ex-
ists), enabling easy switch to standard building operation in case of communication errors
or some other system malfunction. This chapter describes the on-line implementation of
the zone MPC as a basis for hierarchical energy management, including communication
of the optimal control scheme with the building automation system and the component-
level feedback loops, as well as the measured energy and indoor comfort performance
benefits from the demonstration. On the physical level, the zone level MPC encompasses
all building zones, HCEs inside zones and the accompanying sensing and actuation
equipment. The interface between control and estimation applications, developed as
software modules and the physical world is a two-way real-time database including relevant
building data, exterior variables and internal variables for mutual software modules
synchronization.

Although the MPC for building temperature control has been broadly discussed in
many studies found in the literature, a unique, clear and robust framework summarizing
the necessary steps for its deployment does not exist. This chapter focuses on technological
prerequisites for the implementation of zone temperature control via MPC as the lowest
level among identified hierarchical building subsystems. The rest of the chapter is
organized as follows. In Section 8.1 basic principles of the case-study Building Energy
Management System (BEMS) infrastructure related to zone temperature control are given.
Section 8.2 describes the architecture of the developed zone temperature control system
with a detailed description of all software modules required for its deployment. All time

units within the chapter are expressed in Coordinated Universal Time (UTC).
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8.1 Basic principles of the case-study BEMS infras-

tructure

The considered case-study building spans over 12 floors of the university skyscraper. The
building has east-west orientation with overall 248 controllable zones. Each floor in the
building has separate north-side and south-side piping and thus a separate north-side
and south-side fan coil unit (FCU) system. The two-pipe system is used for seasonal
heating and cooling. All FCUs are equipped with a centrifugal fan with four different
fan speeds controlled by a digital controller and sensor for measuring return medium
temperature. Each controllable zone includes a separate user interface for temperature
reference selection. The existing communication network is enhanced such that the digital
controllers are reconfigured to be able to pass the information to a central database
(current zone temperature, temperature reference and fan speed) and to be able to
receive the commands from the database (fan speed). All FCU control devices are
networked with a central monitoring system (SCADA system) based on Siemens DESIGO
platform. Thermal consumption in the building is measured with calorimeters installed
on every floor supply duct. All mentioned systems are integrated together with a network
controller unit employed to enable two-way communication between devices operating on
different protocols. The detailed description of case-study building equipment is given in

Appendix A.

8.1.1 Temperature control system specifications

Every controllable zone is equipped with a user interface (Fig. 8.2). The interface enables
the user to select the temperature reference and current zone operation mode. The three

possible operation modes are recorded in the database as a variable local switch.

1. Stand by mode: The temperature is kept within the building protect limits in
the heating season. During the cooling season, in stand by mode temperature is
kept within building protect limits in unoccupied mode and within the pre-comfort
limits in occupancy mode. Building protect limits are typically set to [15,35]°C and
pre-comfort limits are set to [19, 28]°C.

2. AUTO mode: The temperature is controlled to follow the temperature reference
selected on a wall unit. The permissible range of zone temperature reference during
the heating season is 21 + 3°C and 24 4 3°C during the cooling season. The switch
between zone temperature controlled by a standard digital controller or MPC is
done via SCADA system.

3. Manual mode: The FCU fan operates continuously in the selected fan speed.

In the heating season, the system automatically switches between stand by and AUTO mode

according to the fixed schedule such that during occupancy periods controllers are kept
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in AUTO mode while during the unoccupied periods the controllers are kept in stand
by mode. During the cooling season, the switch from stand by to AUTO mode is not
done by the schedule, instead, if it is required, the transition to AUTO mode is done by
preselecting the AUTO mode on the user interface unit. The changes of mode by the user
are enabled only during occupancy periods defined as fixed schedules in SCADA system
(Tab. 8.2).

Table 8.2. The case-study building occupancy schedule.

occupancy schedule
workday 5:30 - 19:00
Saturday 5:30 - 15:00
Sunday -

During unoccupied mode, every user selection resets to default after 30 min. Additionally,
system operator can enforce constant operation of zone temperature control in the same
mode through the SCADA system.

C) Stand by mode

AUTO mode

Manual mode : low fan speed
Manual mode : medium fan speed

Manual mode : high fan speed

Figure 8.2. lllustration of zone wall unit for selection of temperature reference and operating
mode.

8.1.2 Information communication infrastructure architecture

The developed MPC temperature control approach is based on minimum intrusiveness on
the existing system. In order to achieve it, several basic requirements on the overall ICT

architecture need to be followed. These requirements are:

1. Software switch. As the control of zone temperature via MPC in principle builds
upon some pre-existing automation functions in the building, a possibility for an
easy roll-back towards the pre-existing automation system configuration is installed.
This functionality is enabled by so-called software switch which enables easy switch
between the zone temperature controlled by MPC and zones temperature controlled
by standard digital controllers. The selection of the controller is implemented as

a part of SCADA system and thus can be influenced only by system operator
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or authorized person. Once defined, the selection is recorded to the database as
smart switch variable. For zones controlled via MPC smart switch variable is "True’

while otherwise the variable is defined as ’False’.

. Heartbeat signal. Safety operation for the actuated elements is ensured by

introducing the heartbeat signal that the database cyclically sends to the local
controllers through the existing BEMS. Given that the heartbeat is running and the
smart switch is activated, the inputs computed by the software modules are applied
to the building actuators. Heartbeat signal on the zone level ensures the resistance
of the control via database to the losses of communication between the building and
the database caused either by programming errors or communication fallouts. There
are 7 different heartbeat groups. The ground floor shares its heartbeat signal with
the heat pump and all next floors are grouped by two such that first floor shares its
heartbeat with the second, third with the fourth, etc. The heartbeat signal is active

only if for every zone in the same group the following holds:

(a) available measurements from the zone (not older than 2 minutes),
(b) and one of the following conditions is "True’:

i. control via MPC is not enabled, i.e. smart switch= "False’,

ii. control via MPC is enabled (smart switch = "True’) and the selected
operating mode is different than AUTO,
iii. control via MPC is enabled (smart switch = 'True’), user has selected

operating mode equal to AUTO and new command is issued towards

actuators in the last 2 minutes.

If the conditions do not hold the heartbeat signal changes its state to inactive and
zone control is switched automatically back to the local controller until the above-

mentioned conditions are satisfied.

. Bidirectional data flow between the building and central database. The

central database is a backbone of the developed zone temperature control via MPC.
It is implemented using PostgreSQL database management system. All data are
sampled with sample time of one minute or less. The data required to be collected

to the database are:

user-selected temperature references;
actuation commands for the HCEs;

parameters and mathematical models of the building zones, HCEs and all other

installed equipment;

(e) predictions data;
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(f) any other data required for the MPC operation.

For the sake of quick and easy access to current building data (e.g. current zone
temperatures), the current data is stored in separate tables containing only one row

— the one with the newest data.

Besides the SCADA computer, there is an optimization server that runs software
modules implementing the MPC for zone temperature control. Such constellation enables
the designed MPC to function as a service which can be selectively and modularly switched
on or off. The optimization server is a reliable computer with installed program routines
needed to execute the software modules. Currently, two major programmes are required

to be run:

1. the application for execution of modules — here Python is preferred due to its easy
high-level programming, large number of libraries and compatibility with various

optimization tools, and

2. the optimization software — inevitably the modules will include different mathemat-

ical optimization programs.

The principal outlook of the ICT part of the automation system is given in Fig. 8.3.

alternative
data inflow

— @software
see — switch

SERVER DESIGO SCADA CENTRAL
COMPUTER < > DATABASE

(©

Figure 8.3. The principal outlook of the ICT part of the building automation system.
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8.2 Real-time operation of the model predictive con-

trol for zone temperature control

The MPC for zone temperature control is composed of three major parts (Fig. 8.4):

1. Prediction and estimation modules used for identification of the simplified

building model, identification of the mathematical model of HCEs, calculation of
thermal power provided by HCEs to the zone, estimation of current states and
disturbances of the identified zone thermal model and prediction of the future heat

disturbance profiles as well as the temperature setpoints profiles,

. MPC module for zones comfort control employed to calculate optimal thermal
energy profiles per zones by taking into account weather forecast, predicted
disturbance profiles, current building state, comfort requirements of the end-users
(the current and the predicted ones), energy prices, and current and planned supply

medium conditions,

. Interface modules which are a link between real actuator commands required
to realize optimal thermal energies calculated by MPC and compensate the
unmeasurable disturbances affecting the zone temperature. The interface module
can also impose coordination between HCEs while delivering the required energies
to zones such that the heating/electricity power variance is minimized and peak

energy demand suppressed.

Legend
information bus (database)
—> physical values
—» digital values
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user weather measurements from heating/cooling
setpoints forecast elements, zones and calorimeters
tion
MPC f energy consump
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T v cost function
Pred%ctior} and Interfaces actuatord
estimation —>n S
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Figure 8.4. Concept of optimal zones temperature control.
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The interface between control and estimation applications on the one side, and the
physical world on the other, is a two-way real-time database including relevant building
and exterior variables. On the physical level, the zone level MPC encompasses all building
zones, HCEs inside zones and accompanying sensing and actuation equipment. The
interface blocks are executed only when the control via MPC is activated, i.e. smart switch

is set to "True’. The software routine of all on-line modules can be divided into three parts:
1. Data fetching: fetching the newest data from the database;
2. Data processing: performing the module related data processing;
3. Data storing: store the results to the database.

All modules are realized in Python environment on the server computer. The sampling
time of the modules is in range from 1 min to 15 min for prediction and estimation

modules, 15 min for MPC module and 1 min for interface modules.
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8.2.1 Prediction and estimation modules

Prediction and estimation modules enabling the implementation of the MPC for zone

temperature control are:

e modules for identification of a simple model of zone HCEs, i.e. fan coil units
identification module (PE1) for the considered case-study building,

e (PE4) module for identification of the simplified building thermal model,

e (PE5) module for estimation of the states of the simplified building thermal model

including also the estimation of heat disturbance in zone,
e (PEG) module for prediction of the heat disturbance evolution per zone,

e (PE7) module for prediction of the comfort setpoint in the zone.

(PE1) Module for identification of fan coil unit model

Fan coil unit identification module is based on a procedure for identification of control-
oriented energy model for a system of FCUs dectribed in detail in Chapter 2. The required

module inputs are listed in Tab. 8.3. The module consists of two parts:

- offtine part: used for parameter identification of energy model for a system of FCUs

using historical values of the required input parameters;

- online part: used for online calculation of current electrical energy consumption of
FCU’s fan and thermal power provided by the FCU to the zone by the FCU, based

on current measurements of required input parameters.

Table 8.3. Input variables definition of the FCU identification module PE1.

Sampli
MODULE INPUTS Notation | P8
time
ZONE Zone temperature [°C] Ta 1 min
FCU fan state Tie 1 min
Supply medium temperature [°C| o al 1 min
CALORIMETER Return medium temperature [°C] T 1 min
Medium flow [kg/s] Gw.cal 1 min
Thermal energy (power) [kWh] ([kW]) | Eea(Prea) 1 min
FCU Return medium temperature [°C] Ton 1 min

The identified energy model for a system of FCUs relates FCU’s fan state, zone
temperature and medium conditions registered on a calorimeter to thermal energy

transmitted to the zone air and electrical energy consumed by FCU’s fan. The model



8.2. Model predictive control for zone temperature control 178

consists of three submodules: hydraulic module of a system of FCUs, thermodynamic
model of different FCU types and electrical energy consumption model of FCU’s fan for
different FCU types (Fig. 8.5). The subscript i denotes measurements related to the it®
FCU and ng is the overall number of considered FCUs. The complete list of the module
outputs is given in Tab. 8.4.

Gw ,cal Hydraulic model of
: the system
. ."|Z'=Tlfc Qw i :
T\;/chal i ,LI =1 :
Ta,z : . . Pw,i
Tout ! Thermodynamic P
Wb L FCU model a0
Tfe,i —
Electrical energy Pey,i
consumption model —

i‘Energy model of a system of FCUs

Figure 8.5. Scheme of the control-oriented energy model of a system of FCUs.

Table 8.4. Output variables definition of the FCU identification module PE1.
MODULE OUTPUTS (offline)

Parameters of energy model of a system of FCU

MODULE OUTPUTS (online) Notation Sampling
time
Thermal power provided to zone [kW]| P, 1 min
Water side thermal power kW] Py 1 min
Electrical power of FCU fan kW] P, 1 min

The identified energy model parameters are later needed for: 7) calculation of attainable
FCU thermal power limits per building zone for the MPC module, i) the interface module
functioning, i) calculation of energy inputs for identification of a simplified building
dynamic model and on-line estimation of unmeasurable states and disturbances, and,
iv) electricity consumption model needed on the higher-level MPC modules. The inputs
required for on-line operation of PE1 module and the resulting module outputs for one

exemplary FCU on 28 January 2020 are given in Fig. 8.6.
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Figure 8.6. On-line operation of PE1 module on 28 January 2020.

The validity of the module operation is confirmed by comparing the sum of calculated
thermal energy consumptions of all FCUs connected to one common floor supply duct
with the overall thermal energy consumption of the duct measured by the calorimeter. All
thermal powers are integrated on 15-min-long time intervals and shown in Fig. 8.7. From
the obtained results it is evident that thermal energy calculated via software module shows
good agreement with real thermal energy measured by the calorimeter. Overall thermal

energy calculated by the PE1 software module, integrated over the selected time interval
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| — PE1 thermal energy (air side) —
— PE1 thermal energy (water side)
1 I e — N E— Calorimeter

Thermal energy [kWh]
[\ w =~ at D -~
|

| | | | | |
8:00 10:00  12:00 14:00 16:00 18:00  20:00
Time of day, 27 January 2020

Figure 8.7. Comparison of the overall thermal energy consumption on one specific duct
calculated via PE1 software module and measured by the calorimeter on 27 January 2020.

shown in Fig. 8.7, deviates from the thermal energy calculated by the calorimeter for less
than 10%, proving thus the validity of the developed software module for calculation of

thermal energy consumption of individual FCUs connected to the duct.
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(PE4) Module for identification of the simplified building thermal model

The operation of the module for identification of a simplified thermal model is based on
the approach developed and verified within the Chapter 3 Section 3.5. The building zone
is modelled using two states, one accounting for the dynamics of the air within the zone
referred to as temperature fast dynamics, and the other one accounting for the dynamics of
the higher thermal capacity elements such as walls or furniture referred to as temperature
slow dynamics. The module uses historical data from Tab. 8.5 recorded over periods when

building was unoccupied.

Table 8.5. Input variables definition of the PE4 module.

Sampli
MODULE INPUTS Notation | P8
time
ZONE Zone temperature [°C] Ta 1 min
Outside air temperature [°C] Tout 1 min
WEATHER .
Direct normal solar irradiance [W/m?] 14 1 min
STATION .
Diffuse horizontal solar irradiance [W/m?] [ 1 min
PE1 Thermal power inserted into zone [kW] P, 1 min
DATABASE Building external walls azimuth and tilt angles - -

-
The module outputs are parameter vectors ©; = [pu Doi Dsi Dai DPsi pﬁ,i] , one for

each considered zone, constituting the simplified thermal model of the i*" building zone

in the following way:

Toi —(p1i+psi+pri) m
TZ 7

)

Ta,i i 7 i %
n P3i P4ai Psi De, . (8. 1)
Tz,i 0 0 0 0

D2i —P2i
J NG - J/

TV
A7 B¢

K3 7

h

where T,,; is the temperature of air in the " zone, T,; is the temperature of

h

higher thermal capacity mass in the ™ zone and input vector w; is defined as

T . .
u; = [Tout I i Pa] . Solar irradiances I and I§" are diffuse and direct solar
irradiances incident on the exterior zone surface calculated with the known direct normal
19" and diffuse horizontal I1 irradiance, external wall azimuth angle, tilt angle, and solar

zenith and azimuth angles (see Appendix B).
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(PE5) Module for estimation of the states of the simplified building thermal

model including also the estimation of heat disturbance in zone

Heat disturbance in zone implies the sum of additional heat flows in the zone which are
not included into the estimated building model or occur due to the changed conditions in
the zone compared to the ones used for estimation of the zone model. Typical examples
of heat disturbances are window opening, shading position changes, electronic equipment,
occupancy, lighting, etc. Slow dynamics temperature, which is a part of the estimated
building model represents a substitute variable for all higher thermal capacity element
temperatures (e.g. walls and furniture). As such, it is hardly measurable and has to be
estimated online. The used approach is described in detail in Chapter 5 Section 5.3. The
resulting estimation problem is in a form of a linear estimation problem, so classical linear
Kalman filter is utilized. The required module inputs and the outputs of the module are
listed in Tab. 8.6.

Table 8.6. Input/Output variables definition of the PE5 module.

Sampli
MODULE INPUTS Notation | P8
time
PEA System and input matrix of identified Ae, pe ]
simplified zone model
ZONE Zone temperature [°C] T, 1 min
Outside air temperature [°C] Tout 1 min
WEATHER ) . _ - .
Direct normal solar irradiance [W/m?| Idr 1 min
STATION ,
Diffuse horizontal solar irradiance [W/m?] A 1 min
PE1 Thermal power inserted into zone [kW] P, 1 min
DATABASE | Building external walls azimuth and tilt angles - -
Sampli
MODULE OUTPUTS Notation | P8
time
Fast dynamics temperature estimate (zone temperature) [°C] T, 1 min
Slow dynamics temperature estimate [°C] T, 1 min
Heat disturbance estimate [kW]| Py 1 min

The operation of the module is verified by estimating the additional measurable
controllable heat input generated by an electric heater in one selected north-oriented
office zone with the overall floor area of 13.33 m?. The experiment was conducted during
the unoccupied cloudy day such that the estimated heat disturbance is not significantly
affected by solar irradiance modelling errors or occupancy. The heater with a nominal
thermal power of 1.25 kW was turned on in the interval [12:20 14:30] h. The inputs and
outputs of the PE5 module during the experiment are shown in Fig. 8.8.
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Figure 8.8. On-line operation of PE5 module for in zone C09-10 on 30 October 2019.
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Based on available inputs, the PE5 module successfully estimates the introduced heat
disturbance. The convergence rate of the algorithm depends on the selected values of
the noise covariance matrices corresponding to the process and measurement noise of
the system. Based on the system performance, the values are selected to achieve the
compromise between the convergence rate and suppression of heat disturbance estimate
oscillations which occur due to the quantization of the zone temperature measurements.

The characteristic negative value of the estimated heat disturbance during window
opening in the heating season, when the outside temperature is significantly lower than the
zone temperature and only heating is available, enables the detection of window opening.
Figure 8.9 shows the results of on-line operation of PE5 module in one exemplary north-
oriented zone on 29 April 2019. On the selected day, the heating was inactive. The large
estimated negative heat flux indicates fully opened window between 7:15 and 8:40 and

window only tilted from 8:40 on.
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Figure 8.9. On-line operation of PES module on one exemplary zone on 29 April 2019.

However, with the window opened for a long time, the specific negative heat disturbance
value is often compensated with positive heat fluxes which occur due to the e.g. occupancy,
lighting or electronic equipment. The effect is demonstrated in Fig. 8.10 which shows
the results of on-line operation of PE5 module in one exemplary south-oriented zone on
18 November 2019. On the selected day, the heating was inactive.
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Figure 8.10. On-line operation of PE5 module on one exemplary zone on 18 November 2019.

In the cooling season, the window opening results with positive or negative heat
disturbance, depending on the difference between the zone and outside temperature. Thus,
it is hard to distinguish its signature among other influences on the overall estimated
heat disturbance. Figure 8.11 shows the results of on-line operation of PE5 module on
one exemplary south-oriented office zone with 4 working places and overall floor area
of 21.15 m? between 30 October 2019 and 4 November 2019. From the figure is clearly
evident that the estimated heat disturbance encompasses the occupancy information. The
clear regular shape of the disturbance due to the occupancy is the result of inactive heating
and cloudy weather on the selected days. The heating power is zero and the discrepancy
between the modelled and real solar influence on the zone temperature is low, making the
solar irradiance and HCE modelling errors negligible compared to the heat flux generated

by occupants, lighting and electronic equipment during the working hours.



8.2. Model predictive control for zone temperature control

181

0.8 — Direct normal solar irradiance I ‘
= "® | | — Diffuse horizontal solar irradiance I
24
o 0.6 i
Q
=
8
T 04 i
R
g
2 02 1
0 /N’JM I WM\ I Kl 1 1L, |
30 Oct 2019 31 Oct 2019 1 Nov 2019 2 Nov 2019 3 Nov 2019
Date
working days holidays
< > >

1.5 \

1.0
0.5

Estimated heat disturbance Py [kW]
o

-0.5
fwin(low opened
-1.0 [
1.5 : : :
30 Oct 2019 31 Oct 2019 1 Nov 2019 2 Nov 2019
Date

3 Nov 2019

Figure 8.11. On-line operation of PES module on one exemplary zone between 30 October 2019

and 4 November 2019.
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(PE6) Module for prediction of the heat disturbance evolution per zone

The estimation of the heat disturbance enables possibility to tune models for heat
disturbance predictions and exploit them for efficiency gains in predictive zone control.
The prediction of the heat disturbance evolution per zone is based on artificial neural
networks (ANNs) approach. The system is composed of two parts: off-line and on-line.
In the off-line part historical data are used for obtaining the prediction model [147].
The on-line part of the module uses the model developed in the off-line part in order to
generate predictions. The inputs of the ANN model are listed in Tab. 8.7. The output of
the model is the prediction of the heat disturbance along the defined prediction horizon
with 15 min sampling time. The additional inputs used for prediction and learning the
model are time indicators representing time of the day, time of the week and day of the
year. The frequency of module operation is 15 min, so the input data is either averaged or

integrated on 15 min before utilized for learning the prediction model or generating the

prediction.
Table 8.7. Input variables definition of the PE6 module.
. Sampling
MODULE INPUTS Notation

time
PE5 Heat disturbance estimate kW] P, 1 min
Outside air temperature [°C] Tout 1 min

WEATHER .
Direct normal solar irradiance [W/m?] 14 1 min

STATION _ _ o : .

Diffuse horizontal solar irradiance [W/m?] [ 1 min

(PET) Module for prediction of the comfort setpoint in the zone

The prediction of the comfort setpoint in the zone is based on the occupancy schedule
defined in the SCADA system. The predictions are generated with respect to the operating

mode selected on the wall unit:

- for zones with AUTO mode selected on a wall unit, persistence of the current setpoint

is assumed;

- for zones in stand by or manual mode selected on a wall unit, the setpoint prediction

is selected to be equal to setpoint realization one week ago.

During unoccupied intervals defined with a fixed schedule (see Tab. 8.2) the setpoint

prediction is set to 'NaN’ indicating that there are no comfort requests during that interval.
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8.2.2 Model predictive control module

The operation of the MPC module is based on the approach developed in Part II of the
thesis. The developed approach allows the individual setting of zone comfort level with the
aim of user satisfaction and increased productivity rather than achieving additional energy
savings. The distinct advantage of the proposed approach is a direct control of thermal
energy inputs per zone. For this, the methodology is readily applicable for different HCEs

in zones and retains openness for interaction with other building subsystems.

Discrete-time system model

The identified semi-physical model of the case-study building consists of identified second-
order models (see Chapter 3 Section 3.4) of all controllable zones in which the conditions
for control via MPC are met (0 < n, < 248) stacked into a compact model form:

& = A°c + Bid + Bgu,

Vo (8.2)

where x € R™ (n, = 2-n,) is a stacked vector of zone fast- and slow-dynamics states T, ;

and T, ;, respectively, with i = 1,2, ... ny,:

T
€T = Ta,l Ta,2 Ta,ny Tz,l Tz,2 Tz,ny] ; (83)

y € R™ is the output vector consisted from zone fast-dynamics states which correspond
to zone temperatures, u € R™ (n, = n,) is a vector of thermal energy inputs P,; € R

into each of n, controllable zones

-

U= [Pa,l Pa,2 T Pa,ny] ’ (84)

d € R™ (ng = 9+n,) is a vector of disturbances affecting the building zones temperature
behaviour:

d= [Tout [gE i i e por pdir pdr I Pay Pas -o0 Pan,|,  (8.5)

where T, is outside air temperature and /9" and 14" are diffuse and direct solar
irradiances incident on the exterior zone surface where the irradiances on the surfaces
oriented towards north, east, south and west are denoted with letters N, E, S, W in
subscript, respectively. The input parameter Py; € R' represents the heat disturbance
input affecting the i*" controllable zone. Continuous-time system matrix A¢ € R™X"=
and input matrices, By, € R"*" and Bj € R"*"¢ are constructed from the augmented

continuous-time matrices of identified simplified models of the individual zones (5.16).
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The resulting discrete-time system is as follows:
_Ad d dx* d
Tpr1 = A% + Bydy, + By out,k+1 T By, (86)

Yk = Cdxka

where A? B B% and B¢ are appropriately sized matrices. Influence of outside air
temperature T, is discretised by employing first-order hold while the rest of the system
is discretised by zero-order hold. The number of zones controlled by the MPC depends on
the required conditions. Only zones with smart switch variable set to "True’ and selected
AUTO mode on the wall unit are controlled via MPC.

Weather forecast

The prototype weather forecasting service for the location of the case-study building is
developed by Croatian Meteorological and Hydrological Service and it is active since 2013.
Weather forecasts are available for several meteorological variables such as temperature,
humidity, air pressure, wind speed, direct and diffuse solar irradiance, etc. Calculation
of a new prediction sequence is commenced every day at 00:00, 06:00, 12:00 and 18:00
for the next 72-h period with a 1 h time resolution. The comparison of measured and
predicted outside temperature and solar irradiance on the selected time interval between
4 November 2019 and 9 November 2019, with the predictions started at midnight is given
in Fig. 8.12 and Fig. 8.13.

20

— Measured outside temperature [°C|

181 --- Outside temperature forecast [°C]
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Date

Figure 8.12. Comparison of measured and predicted outside temperature. The predictions start
1s denoted with circles at midnight of first 4 days.

The irradiances on the exterior building surfaces are recalculated based on the known
forecast of the direct normal and diffuse horizontal irradiance and building external walls
azimuth angles, tilt angles, and solar zenith and azimuth angles (see Appendix B). The
available measurements of current weather conditions are utilized in a way that in the

first MPC sampling interval persistence of the currently measured weather conditions is



8.2. Model predictive control for zone temperature control 185

— Measured diffuse solar irradiance [W/m?]
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Figure 8.13. Comparison of measured and predicted diffuse solar irradiance. The predictions
start is denoted with circles at midnight of first 4 days.

assumed while on the rest of the horizon weather forecast is used. The availability of local
weather measurements opens the possibility for additional improvements of the weather

forecast with Kalman filter.

Comfort constraints

Smart selection of weighting matrices for penalizing the energy consumption and deviation
from the temperature reference enables easy switch between the two often opposing
requirements based on the predicted disturbance and energy price profiles. Within such
set-up, comfort is defined by temperature reference y*f and permissible zone temperature
interval:

v A g <y <yt L AT gy (8.7)

where bold notation is used to denote variables stacked over the prediction horizon, o
and oy are slack variables that allow highly penalized constraints violation and feasible

implementation, y*f

is the stack of temperature references along the prediction horizon
and A™ is the stack of the acceptable deviations from the temperature reference along
the prediction horizon. The temperature reference at step k, yif € R™ is defined as:
ref [Tref Tref ref ]T (8 8)
Yk a,l,k a2k a,ny,kl ’
where T;esz is the temperature reference in the i*" zone selected on the zone wall unit.
The acceptable deviations along the horizon are defined in the database, separately for

every zone.
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Limitations of the central HVAC system

The minimum and maximum attainable thermal powers of the HCEs in building
zones along the prediction horizon, depend on the current and planned operation of
the central HVAC system. If no information on future HVAC operation is available
(uncoordinated operation), thermal limits along the horizon are calculated based on the
current heating/cooling medium conditions and known nominal operation parameters
of the central HVAC system. In standard operation, the central medium mass flow is
controlled according to the fixed schedule (Tab. 8.8), where during daily regime the
medium mass flow is controlled to the nominal value defined differently for cooling and
heating season. In the cooling season the system is turned off during the night regime,

while in the heating season the flow is reduced by 50% in the night regime.

Table 8.8. The case-study building central HVAC schedule.

daily regime
workday 5:00 - 19:00
Saturday 5:00 - 15:00
Sunday -

The medium mass flow through an individual FCU is determined based on the hydraulic
model of a system of FCUs for every floor supply duct (PE1) and flow distribution
between floor supply ducts. The distribution between floor supply ducts is easily identified
due to the available measurements from individual calorimeters mounted on every floor
supply duct. Heating/cooling medium supply temperature is controlled with respect to

the outside weather temperature such that:

TvivervAc = anvacTou + bavac, (8.9)

where TviverVAc is central HVAC system supply temperature, T, is outside air temperature
while agvac and byyac are coefficients defined in the SCADA system. If the coefficients
are not directly reachable from the SCADA system they can be easily estimated from
building operation data. The supply temperature of individual FCU is calculated based
on the identified temperature drop between central HVAC system and individual floor
supply ducts where the drops within the floor ducts are neglected due to the good thermal
insulation of the floor supply piping [147]. The prediction of the central supply temperature
along the prediction horizon is easily calculated based on (8.9) and known prediction of
the outside air temperature.

To utilize the measurements from individual calorimeters, medium conditions until
the first switch between the central HVAC operating regimes defined as in Tab. 8.8 are

assumed to be equal to the measured values recalculated for every FCU.
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FCU thermal power limitations

The FCU thermal power limitations are defined as:
Umin S u S Umax; (810>

where Uy, and Uy, are minimum and maximum attainable thermal powers along the
prediction horizon which are linear functions of the zone temperature as described in the
sequel. Positive values of u represent heating, while negative u stands for cooling. The
FCU system time constants are relatively small compared to the time constants of the
building. The highest attainable thermal power of the individual FCU defined over the

prediction horizon is thus defined with the following algebraic equation:

2qyc U

et (=) o1

uyg = .
where q,, is predicted profile of the medium mass flow through the FCU, ¢, is heat capacity
of the heating/cooling medium, T'" is predicted profile of FCU supply temperature, T},
is air temperature in the zone along the prediction horizon and U is the overall heat
transfer coefficient for the highest FCU fan speed defined over the prediction horizon. The
minimum thermal power of the individual FCU is defined by the natural convection of air
around the unit with FCU’s fan switched off.

2qwcnUs off

Cr (T - To) (8.12)

Uoff =
where U°T is the overall heat transfer coefficient for FCU’s fan being switched off along
the prediction horizon. Overall heat transfer coefficient changes with different FCU fan

speeds g such that:

a
off fc o
fie " ] P for zg = off,
w
L C _
Ef - oo g for =1L,
U, = f&:qu (8.13)
M fc —
€ T 0 g for . =M,
C w
H
a
H fe —
e T o g for x¢ =H,
\ ¢

where {9, el eM ellb {a8f, al oM afl}, {27, b, b} bE} and c; are known parameters
found through identification as described in Chapter 2. During the cooling season, the
thermal power limits are set by replacing u,,;, with ug and setting .« to u.g. In the
heating season, the thermal power limits are set by replacing u,,., with uyg and setting u,;,
to Uyg. In zones with multiple FCUs thermal power limits are calculated as superposition

of individual FCU thermal power limitations.
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Optimization problem
The optimization problem for energy-saving and comfortable zone temperature control,
written in compact form, is as follows:

min ctT|u| + Ve r Ce (5T|Q(yref —-y)| + gl o + g1 oy

u,01,02

st (8.6),(8.7),(8.10), (8.14)
o1 Z 07 (o] 2 0

where operator |.| denotes absolute value which is applied element-wise on the vector,
c; € R¥™ i the thermal energy cost important for coordination with higher-level
modules, ¢, € R! is the associated comfort cost and g; and g» are non-negative weights
for tuning the optimization criterion. The vector § € R”™ is zone occupancy vector,
consisted of zeros and ones. The vector equals one for moments with defined temperature
reference and equals zero for moments when there is no defined temperature reference,
i.e. moments in which no comfort requirements are set. Weighting matrix Q € R mvxHny
transforms temperature deviation from the reference to the corresponding thermal energy
such that it is comparable to energy consumption [131]. Bold notation for optimizers wu,
o1, o stands for vectors stacked over the prediction horizon H. The parameter ~, € R! is
introduced for trade-off possibility of comfort-savings criterion. The trade-off parameter
is defined in the database separately for every zone. Initially the parameter is set to one

for all zones.

Coordination with higher-level modules

If thermal energy cost c; is not known, i.e. there is no coordination between building
levels, thermal energy price is assumed to be constant. The modifications of the original
optimization problem required to enable coordination are described in detail in Part II
of the thesis while here only basic principles are presented. In coordinated operation the
zone level communicates the required thermal energy for maintaining the comfort in all
zones and zone temperatures to the higher-level, i.e. to the central HVAC level for the
case of the considered case-study building. Thermal energy requests of other zones which

are not controlled via MPC are estimated in one of the following ways:

e if zone operates in stand by or manual mode it is assumed the energy request on
the prediction horizon is equal to zero and the temperature along the horizon is
predicted using known predictions of weather and heat disturbance profile along the

horizon;

e if zone operates in AUTO mode, the thermal energy request on the prediction
horizon is predicted by simulating the hysteresis control (see Chapter 5 Section
5.4) with respect to the temperature reference prediction and known predictions of

weather and heat disturbance profile along the horizon.
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Based on the required thermal energy demand and the electrical energy price information
from the utility grid or microgrid, central HVAC MPC calculates the optimized prices
for the predicted heating/cooling demand from zones and for zones temperatures which
are then communicated back to the zone level MPC together with the critical region
describing space of thermal energies and zone temperatures for which that prices are valid
and predicted profile of supply medium conditions (flow and temperature of the medium).
The hierarchical coordination then continues with respect to the constraints activated by

the optimal zone level solution (for more details see Chapter 6).

Input/Output interface of the MPC module

The list of all inputs required for operation of the zones level MPC module is given in
Tab. 8.9. The outputs of the MPC module are optimized profiles of thermal energy and
temperature along the prediction horizon for zones which are selected to be controlled via

MPC and the predicted profile of thermal energy and temperature for all other zones.

Module implementation

The MPC module is realized in Python environment and as such it is deployed on
the server computer. The module is executed every 15 min considering new system
measurements, predictions and possible changes of smart switch and local switch variables.
The optimization problem (8.14) is solved by using CPLEX [137].
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Table 8.9. Input variables definition required for operation of MPC module.

Required input data Notation
ZONES Zone temperature reference [°C] yret
CALORIMETER Supply medium temperature [°C] T2
Medium flow [kg/s] Qw.cal
Outside air temperature [°C] Tt
WEATHER :
Direct normal solar irradiance [W/m?] Idir
STATION .
Diffuse horizontal solar irradiance [W/m?] [
Prediction of outside air temperature [°C] Tout
WEATHER :
Prediction of direct normal solar irradiance [W/m?] | R
FORECAST .
Prediction of diffuse horizontal solar irradiance [W/m?] it
ZPE1 Identified energy model for a system of FCUs -
ZPE4 Identified simplified building thermal model -
Unmeasurable heat disturbance estimate kW] Eq
ZPES Fast dynamics building states estimates [°C] I,
Slow dynamics building states estimates [°C] 1,
ZPE6 Predicted heat disturbance profile [kW] Eq4
ZPET Predicted temperature reference profile [°C] yref
Predicted profile of central mass flow [kg/s] Ay HVAC
central Predicted profile of central supply temperature [kg/s] T2 tvac
HVAC MPC |Thermal energy price [EUR/kWHh] Ct
Critical region CR
Acceptable deviations from the temperature reference [°C]| AT
The energy-comfort trade-of variable Ye
Building external walls azimuth and tilt angles -
DATABASE

HVAC operating schedule and nominal operation values
Identified temperature drop model and flow share model

between central HVAC and floor supply ducts
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Operation results

On-line operation of the zone MPC module in two exemplary south-oriented zones on
30 January 2020 and 7 February 2020 are shown in Fig. 8.14 and Fig. 8.15, respectively.
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Figure 8.14. On-line operation of the zone MPC module in zone C09-15-1 zone on 30 January

2020.
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Time of day, 7 February 2020

On-line operation of the zone MPC module in zone C09-04 on 7 February 2020.
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The results of the on-line operation of the zone MPC module on one exemplary north-
oriented zone between 24 February 2020 22:00 and 25 February 2020 22:00 is shown in
Fig. 8.16.
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Figure 8.16. On-line operation of the zone MPC module in zone C09-17 between
24 February 2020 22:00 and 25 February 2020 22:00.
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The MPC parameters are v, = 1 and A™ = 0.5°C. Dashed lines represent predictions
and optimized profiles calculated at 30 January 2020 0:00 and 24 February 2020 22:00.
Solar irradiance is presented as average solar irradiance within 1-hour time intervals.
The mismatch between the optimal thermal energy profile predicted at 0:00 and optimal
thermal energy demand calculated in receding fashion (solid blue line) is due to the
prediction error of the disturbances affecting the zone temperature dynamics and other
changes in the building environment handled through the receding horizon principle.
Figure 8.17 shows the comparison of the optimized thermal energy profile of 13 south-
oriented zones controlled via MPC and realized thermal energy consumption measured
by the calorimeter. The considered south-oriented zones are connected to the same floor
supply duct. The optimized thermal energy profile is obtained as a sum of optimal thermal

energy profiles for the individual zones calculated at 22:00 4 February 2020.
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Figure 8.17. Comparison of the thermal energy consumption profile of 13 south-oriented zones
controlled via MPC predicted at 22:00 4 February 2020 by MPC and realized thermal energy
consumption measured by the calorimeter.

The comparison of the predicted and realized thermal energy consumption in 10 north-
oriented zones controlled via conventional digital zone controllers is shown in Fig. 8.18.
The considered north-oriented zones are connected to the same supply duct. Since the
zones are not controlled via MPC, the thermal energy consumption is predicted by
simulating the hysteresis control in an open-loop simulation. The prediction start times
are selected to fit the times at which the new 72-hours-long weather prediction was
obtained. The mismatch between the predicted and realized thermal energy consumption
is due to difference in hysteresis width between the case-study building conventional zone
digital controller and hysteresis controller used in simulation. The comparison of the
thermal energy consumption of all 248 controllable zones measured by the calorimeter
and predicted thermal energy consumption at 22:00 29 January 2020 by simulating the
hysteresis control in 231 zones and optimizing the zone temperature via MPC in 17 zones

is shown in Fig. 8.19.
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Figure 8.18. Comparison of the thermal energy consumption in 10 north-oriented zones
connected to the same supply duct predicted at a) 10:00 29 January 2020, b) 16:00 29 January
2020, c) 22:00 29 January 2020 and d) 4:00 30 January 2020 by simulating the hysteresis control
and realized thermal energy consumption measured by the calorimeter.
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Figure 8.19. Comparison of the thermal energy consumption of all 248 controllable zones
predicted at 22:00 29 January 2020 and realized thermal energy consumption measured by the
calorimeter.

The operation results show a good agreement between the predicted and the realized
thermal energy consumption in building zones and as such prove the applicability of the
obtained predictions to be utilized within the hierarchical coordination approach to plan

the operation of the central HVAC system.
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8.2.3 Fan coil unit interface module

The operation of the FCU interface module is based on the approach developed within
Chapter 5 Section 5.5. The module controls the FCU in adherence to the required thermal

energy input in zone defined as an output of the MPC module and the difference between

the disturbance value predicted for the current 15-min-long time interval by the higher-

level MPC and realized heat disturbance estimated by PE5 module every 1 min. The

module operates with time resolution of 1 min. The list of all inputs required for operation
of the FCU interface module is given in Tab. 8.10.

Table 8.10. Input variables definition required for operation of the FCU interface module.

Required input data Notation
ZONES Zone temperature reference [°C| Tret
Zone temperature [°C] Ta
FCU Return medium temperature [°C] Tout
CALORIMETER Supply medium temperature [°C] o al
Medium flow [kg/s] Qw,cal
Outside air temperature [°C] Tout
WEATHER | _ .
Direct normal solar irradiance [W/m?] Idir
STATION .
Diffuse horizontal solar irradiance [W/m?] [
PE1 Identified energy model for a system of FCUs -
Thermal power inserted into zone [kW] P,
PE4 Identified simplified building thermal model -
Unmeasurable heat disturbance estimate kW] P,
PE5 Fast dynamics building states estimates [°C] T,
Slow dynamics building states estimates [°C]| T,
Optimal thermal power input on current MPC interval UZ| &
zone
MPC Predicted heat disturbance on current MPC interval Py i
Predicted temperature reference on current MPC interval | 7Treb*
DATABASE Acceptable deviations from the temperature reference [°C]| ~ Aref

Building external walls azimuth and tilt angles

The output of the module is the optimal fan speed trajectory xf. ;. Only the first element

a:;‘cyﬂt is applied to the system and the module starts new calculation at the next sampling

time instant.
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Integral behaviour

Integral behaviour, which ensures the offset-free control, is emulated via iterative update
and correction of thermal energy reference calculated by zone MPC with respect to the
difference between the predicted and realized heat disturbance and possible plant and

model mismatch. The correction amount, denoted here as AE™, consists of several parts:

e mismatch between the realized and requested energy within the current 15-min-long

time interval,

e difference between the predicted and realized disturbance within the current 15-min-

long time interval, and
e predicted disturbance mismatch on the rest of the current 15-min-long time interval.

The detailed analysis of individual correction amounts is given in Chapter 5 Section 5.5.
The requested thermal energy within the current 15-min-long interval is recalculated every

FCU interface sampling interval as:

Eref _ Eref* HfC
a = —

ST +AES, (8.15)

where EMPC is optimal thermal energy input defined as:
B = - T, (3.16)

uzl . is optimal thermal power calculated by zone MPC, Hj. is prediction horizon of the
FCU interface and 77 and T are sampling times of the zone MPC and FCU interface,

respectively.

FCU fan speed preselection

The background optimization problem of the control algorithm developed in Chapter 5
Section 5.5 is of Mixed Integer Linear Program (MILP) type. Such programs are
computationally extensive when applied for control of large number of zones. To reduce
the computational complexity of the algorithm the number of the optimization variables is
reduced by preselecting the two of four possible FCU fan speeds (fan off, low, medium and
high speed denoted respectively as off, L, M, H). The fan speeds are preselected based on
the known thermal energy request and physical thermal energy limits of FCU operation in
certain fan speed calculated based on a known FCU energy model (PE1) and assumption

of constant zone air temperature. The approach is illustrated in Fig. 8.20.
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Figure 8.20. Relaxation of computational complexity by preselecting fan speeds required to fulfil
the requested energy request.

Thermal energies attainable by constant operation in off, low, medium or high fan speed
along the optimization horizon are denoted respectively as E°T, EL, EM and E!l. Based
on the requested energy amount, preferred operation in lower fan speeds and minimal
number of fan speed changes along the horizon, the number of the required fan speeds
for the realization of the requested energy is lowered to only two speeds. Exceptionally, in
cases when the E' is higher than the thermal energy attainable in constant high speed
operation and lower than the thermal energy attainable with fan constantly switched off,
the FCU states on the horizon are fixed to the high speed and fan switched off, respectively.
In order not to compromise the comfort, the preselection of fan speeds is allowed only
when the temperature reference used by the MPC module corresponds to the temperature
reference selected on the wall thermostat, i.e. the temperature reference did not change

within the current MPC sampling interval.

Sudden changes of temperature reference within the MPC sampling time

To keep the user comfort, at every FCU interface sampling interval current zone
temperature reference T read from the wall unit, is compared with the temperature at
the beginning of the current 15-min-long time interval and the one assumed in zone MPC
module for the current time interval. If those temperatures differ, the interface focuses
only on keeping the temperature within the permissible temperature interval defined with
the new temperature reference selected by the user and acceptable deviations from the
temperature reference A™. By doing so, the users comfort is ensured even if sudden

changes of temperature reference occur within the MPC sampling time interval.

FCU interface algorithm

The FCU interface logic, presented in a form of flowchart is shown in Fig. 8.21. In
unoccupied mode temperature constraints are matched with the building protect limits
to enable the preheating/precooling.
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Figure 8.21. FCU interface flowchart.
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Operation results

The allowed temperature deviation from the reference A and comfort-savings trade-off
parameter 7, are set to A™ = 0.5°C and 7, = 1 in all controllable building zones. The fan
speed preselection option was not enabled. The operation results showing the following of
the optimal thermal energy input generated by central zone MPC are shown in Fig. 8.22.
The energy reference for the interface module is obtained by modifying optimal thermal
energy input calculated by the central zone MPC with respect to the correction amount
AE™,

1 T T T
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Figure 8.22. Thermal energy reference following in one exemplary south-oriented zone on
15 January 2020.

The average deviation from the energy reference, due to the limited set of available power
inputs, during intervals with energy reference larger than 0.1 kWh is + 5 %. The zone

temperature on the selected day is shown in Fig. 8.23.
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Figure 8.23. Zone temperature in one exemplary south-oriented zone on 15 January 2020.

In intervals in which no comfort constraints are set the temperature reference is not

plotted.
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The operational results in two exemplary north-oriented zones on 5 February 2020 and
11 February 2020 are shown in Fig. 8.24 and Fig. 8.25.
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Figure 8.24. Operational results in one exemplary north-oriented zone on 5 February 2020.



202 Chapter 8. Zone model predictive control — real-time implementation

— Air temperature
- - Temperature reference

23.5 T T T
o
o 23.0
~
=
g
2 22.5
z
=
22.0 I I I I I
0:00 4:00 8:00 12:00 16:00 20:00 24:00
Time of day
H T T T T
T M- |
()
&
g
= L+ -
0:00 4:00 8:00 12:00 16:00 20:00 24:00
Time of day
0.5 | — Energy reference for interface module L
= 1| Optimal thermal energy input on current MPC interval
= 048 — Realized thermal energy i
=5
o 03[
o0
g 02
g
—  0.1F
<
% 0B o S T |
ﬁ -0.1 I I I I I
0:00 4:00 8:00 12:00 16:00 20:00 24:00
Time of day
—= 0.10 —‘ — Difference between the predicted and estimated heat disturbance ’7
=
= 0.05 - -
>
20
S 0 :
()
£.0.05 .
g
=
= -0.10 ! ! ! ! |
0:00 4:00 8:00 12:00 16:00 20:00 24:00

Time of day

Figure 8.25. Operational results in one exemplary north-oriented zone on 11 February 2020.
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Figure 8.26 shows the operational results from one exemplary south-oriented zone. Despite
sudden change of the temperature reference at 8:21 and central zone MPC anticipating
that change only from 8:45 on, the developed interface algorithm ensured comfort
during the transition period by detecting the change and focusing only on keeping the
zone temperature within the permissible range until the appropriately computed energy

reference was available.
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Figure 8.26. Operational results in one exemplary south-oriented zone on 17 January 2020.

Despite complexity, the developed FCU interface module for energy management in
building zones based on adherence to the commanded thermal energies shows good
performance regarding energy tracking and keeping the zone temperature within the

defined temperature range.






CHAPTER 9

Fault detection in a system

of fan coil units

Besides playing a vital role in development of advanced model based control algorithms,
the mathematical models of the building systems developed in Part I of the thesis proved
to be the key for the improvement of reliability and safety of building operation. In [65] the
model-based FCU fault detection tool, based on the analysis of discrepancy between the
system and nominal simulation model, is developed. The variables used for comparison are
valve position, flow rate and zone air temperature. The fault detection approach developed
within the thesis is based on the performance monitoring of a return medium temperature
measurement which encodes the information on FCU behaviour. One of the most common
faults in a system of FCUs is a restriction of, or complete stoppage of heating/cooling
medium flow, caused by air trapped inside the system. The air usually enters the system
during the interventions on piping and seasonal switch between building thermal energy
source. The standard maintenance of the system demands visits to all FCUs in the building
after every intervention on the system. Such approach is not only time-consuming but also
requires a lot of personnel. Thus, typically only FCUs in zones which are most critical or
the users are complaining on the heating/cooling performance are inspected. To remove
the air lock, every FCU is equipped with a small manual valve which is then used to
release the air from the system. The air lock in the system is detected in one of the two

following ways.

1. The air lock is detected when the measured return medium temperature with fan
switched off is significantly lower than the supply temperature. This approach relies
only on the measurements and can be used only for detection of air lock in FCUs

in which the flow is completely obstructed.

2. The air lock detection is performed by comparing the monitored performance of
the FCU with the nominal FCU performance calculated via on-line simulation of

dynamic FCU return medium temperature model identified in Chapter 2. In such a
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206 Chapter 9. Fault detection in a system of fan coil units

set-up, the known nominal performance of the FCU enables also the detection of a

level of the performance deterioration.

While the second approach is applicable over the entire FCUs’ operating range the first
approach is applicable only in situations in which the medium supply temperature is larger
than the highest expected zone temperature during the heating season (e.g. 30°C) and
smaller than lowest expected zone temperature during the cooling season (e.g. 20°C).
The calculation of the nominal return medium temperature is implemented as part of
an additional prediction and estimation software module (PEO) operating in an open loop
fashion, i.e. the information on return medium temperature measured by temperature
sensor is not used. The on-line operation of ZP0O module ensures the redundancy of
the return medium temperature measurements for cases of fault free system operation
during which the simulated and measured return medium temperature coincide. For a
fixed medium mass flow through the FCU g, ;, where subscript i denotes the i FCU, the
thermodynamic model of a single FCU identified in Chapter 2 is in a form of a switched-

linear model:

Tv?zuzt _ [_ Qwi Uo(xfc,i>QW,i):| Tou

mw,i me,icw
+ Qw,i Uo (mfc,h QW,i) Uo (xfc,h QW,i) T‘}V%l (91)
My 2mw,ic47v 2an,icw T;nZ 7

where the fan speed g ; is used for switching, T,f; is the air temperature inside the
ith zone, T‘;nz and TOllt are water inlet and outlet temperatures, respectively, ¢, is the
specific heat capacity of the medium, considered either constant or estimated from the
experiments, and parameter m,,; is the mass of water inside the FCU, available from the
manufacturer’s catalogue. The overall heat transfer coefficient U, (2 i, ¢w,i) is defined as:
with constituting model parameters ag., b and cg. determined based on physical system

properties or through identification.
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The parameters {ef ek eM e} {a2f al oM all} {6 bk BM b} and ¢ are known
parameters found through identification as described in Chapter 2. Four possible FCU
fan speeds: off, Low, Medium and High are denoted respectively as off, L, M, H.
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Based on (9.1) the dynamics of the return medium temperature is written in general

discrete-time model form:
Toit(k+1) = fre(Muwi, Cwi upe (k) Ty (k) (9.3)

where function fe(-) results from integration of the continuous-time model function (9.1)

over the selected sampling time interval. Vector uj, comprises the model inputs and it is
defined as:

it (k) = |quilh) wreah) TE(R) TinGh)] (9.4)

Model inputs are measured directly or indirectly based on the energy model of a system
of FCUs identified in Chapter 2.

To verify the approach, the operation of the PEO module is tested on historical building
data. The comparison of the off-line simulation results with the fault-free experimental
data in one exemplary zone is shown in Fig. 9.1. The information on nominal model
performance is used only in intervals with medium mass flow larger than zero. In intervals
in which this condition is not satisfied the simulated return medium temperature is not
plotted. From the results it is evident that the nominal FCU model successfully reproduces
the dynamics of a FCU under fault-free conditions.

The on-line performance of the developed PEO software module under the fault-free
conditions in one exemplary zone is shown in Fig. 9.2. In on-line operation the time delays
are inevitable, thus the fault detection should be performed on stationary data only. The
operation under faulty conditions is verified by monitoring performance of one FCU on
9™ floor of the case-study building. The FCUs on the selected floor are equipped with
three-way valves, which are in normal building operation constantly closed (total flow goes
through the FCU). To verify the approach, the air lock in one selected FCU is emulated
by opening its associated valve on 23 January 2020 preventing thus the medium to enter
the FCU. The valve was opened from 9:45 until 17:20. The medium flow blockage resulted
with the discrepancy between simulated and measured return medium temperature.

Overall, the PEO module successfully reproduces the dynamics of a FCU under fault-
free conditions. This allows for a reduced cost of replication of the whole system for
optimal temperature management in the building zones, since the initial investment cost
can be significantly reduced by estimating the temperature at the outlet of FCUs using the
proposed software module instead of having temperature sensors installed on all FCUs. If
both measured and simulated outlet temperatures are available, the discrepancy between

the two can be used to detect the faults in the system.
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Figure 9.1. The comparison of simulation results with the fault-free experimental data in one
exemplary zone in the a) cooling season, b) heating season.



209

Temperature [°C|

Fan speed

D
(e}

t
o

I
jan)

=

=

off

. |
4:00 6:00 8:00

- Measured supply medium temperature
—— Measured return medium temperature
|- Simulated return medium temperature

|
10:00
Time of day, 24 January 2020

12:00

T T T

. |

4:00 6:00 8:00 10:00

Time of day, 24 January 2020

12:00

Figure 9.2. Fault-exclusive on-line operational results in one exemplary zone during the heating

season.

Temperature [°C]|

75

70

40

- Measured supply medium temperature ‘

—— Measured return medium temperature
- Simulated return medium temperature

| | |
0:00 4:00 8:00 12:00 16:00
Time of day, 23 January 2020

1
20:00 24:00

Figure 9.3. Fuault-inclusive on-line operation data in one exemplary zone during the heating

season.






CuapTer 10

Part III conclusion and

future research opportunities

From the results of on-line operation it is evident that the developed MPC strategy
successfully controls the temperature in building zones. Contrary to the conventional
control algorithms, the MPC allows more advanced and specific system design, especially
in terms of accounted hour-to-hour variable energy prices and coordination with central
heating/cooling medium conditioning system which is yet to be tested for the case-
study building. Although, the real building application results are very encouraging,
the achieved energy savings are yet to be calculated. Besides the weather forecast, a
second important influence on buildings dynamics are the buildings’ occupants, both
in terms of the estimated unmeasured heat disturbances and in terms of the thermal
comfort demands. The potential benefits of the MPC used for zone temperature control

are expected to be significantly increased with the:

e occupancy prediction interconnected with the business system such that the

informations on business trips, scheduled lectures, sick leaves, etc. are fully exploited,

e window openness detection and reaction to the system by shutting down the
heating/cooling if unnecessary window openness is detected simultaneous with the

heating/cooling being active.

The existence of the local building weather station enables the opportunity for improve-
ment of the weather forecast for a specific building location. The local meteorological
measurements could be used to eliminate the systematic error due to the fact that the
building is not situated directly at the meteorological station site as well as due to the

environment of the building itself [29)].
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(General conclusion

In recent years, application of advanced control, fault detection and diagnosis algorithms
for building heating and cooling systems has been intensively investigated with the aim to
improve their energy efficiency and bring the buildings sector into the smart city arena.
The challenging task of the building control is to achieve interior building environment
comfort with high energy-efficiency. The inherent complexity of building systems with
uncertain and time-varying dynamics, as well as the presence of unmeasurable distur-
bances, present serious challenges for the development of corresponding efficient control,
fault detection and diagnosis algorithms. The goal of the thesis is to present a general
methodology of minimizing energy consumption using current energy sources and minimal
retrofitting, but instead making use of advanced control techniques. The thesis focuses on
model predictive control (MPC) approach that is based on the formulation of the building
control as an optimization problem. A detailed summary of the presented results is given
at the end of each of the three thesis parts. In the following, a brief overview of the work
that was presented in this thesis, as well as an outlook to possible directions for future
research on these topics is given.

In Part I of the thesis the robust and easily replicable methodologies for identification
of the mathematical model of the building and energy model of the system of fan coil
units is presented. The developed methodologies are inevitable for a fast deployment
of model-based energy management strategies in buildings. The focus of Part II of the
thesis is the development of real-time MPC method for zone temperature control that
guarantees the essential properties of closed-loop feasibility and stability as well as offset-
free control. The developed zone temperature control is envisioned as the lowest level
in the hierarchical decomposition of building subsystems, thus a special focus is put on
developing the possibility for interaction and coordination with the higher-level modules
in order to achieve the near-optimal behaviour of the building as a whole. Finally, the
developed zone temperature approach is validated by deploying it on full scale in a

skyscraper building in Part III of the thesis. The following features of the proposed zone
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temperature control approach, that do not exist in the current, off-the-shelf, building

management products are:

openness to integration with versatile building automation networks and heat-
ing/cooling elements types in zones, independent of the vendors of low-level
controllers, as long as they can be networked and re-configured from local controls

to sensors/actuators data coupling to the network, and back;

non-invasive adding upon the existing equipment in zones which means none or

small hardware interventions;
lowering the cost of building operation with respect to current building conditions;

estimation of heat disturbances on the zone level that indicate any additional heat
input or sink compared to the current building model used for control (occupants,
equipment, window blinds), with possibility to tune models for heat disturbance
predictions as well as comfort requirements predictions and exploit them for

efficiency gains in predictive zone control.
possibility of full anticipation of weather forecast and occupancy schedules;

possibility of coordination with higher-level modules in building hierarchy such as
central heating/cooling medium conditioning system, building microgrid or smart
grid in operation with which the building becomes a responsive subject within the

smart distribution grid and smart city;

The studies performed within the thesis prove that MPC implementation represents

an excellent opportunity to reduce buildings carbon footprint and achieve substantial cost
benefits. Furthermore, the established effectiveness of MPC algorithms able to deal with

peak shaving and demand-side management allow this technology to be considered as

one of the most suitable for integration of buildings in smart grids. This fact represents a

crucial perspective for the energy market, which continuously requires further flexible loads

to mitigate the renewable energy sources supply fluctuation. The scientific contributions

obtained in the thesis are:

a method for identification of an energy model of a system of fan coil units, which
gives a direct relation between the thermal energy provided to a zone, actuation

commands, heating/cooling medium conditions and the zone temperature,

a method for identification of a thermodynamic building model suitable for

predictive control design and disturbance estimation,

predictive control strategy for zone temperature control and hierarchical coor-
dination with the central heating/cooling medium conditioning system, building
microgrid, smart grid or some other building subsystem sharing a common energy

link with zones,
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e validation of the developed hierarchical predictive control system within a living-lab

environment in terms of achieved thermal comfort and energy cost reduction,

e validation of the developed zone temperature control via on-line implementation on

a skyscraper building in a full scale.

Future research is oriented towards the automation of the procedures required for
deployment of the developed approach on different building configurations with the aim
to increase their robustness and reproducibility. The future research opportunities related

to individual parts of the thesis are addressed at the end of each part.
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APPENDIX A

Case-study skyscraper
building

This chapter gives a detailed description of University of Zagreb Faculty of Electrical
Engineering and Computing (UNIZGFER) skyscraper building located at Unska 3, Zagreb
(Fig. A.1). The building is fully equipped with required hardware and information
technology infrastructure for testing and validating a wide range of control and estimation
algorithms in buildings which are crucial parts of a Building Energy Management System
(BEMS). The building itself is a living-lab on model predictive control algorithms. Within
the thesis, all experiments and case studies are performed on the UNIZGFER building.

T

Figure A.1. UNIZGFER skyscraper building.

The building’s top view longer axis is almost aligned with east-west direction with
a slight deviation from the true east-west direction for 5° (normal of the south-oriented
fagade surface points 5° out of south towards east). The building consists of 13 floors,
a ground-floor, a basement and a flat roof. Detailed description of building physics,
construction details and used materials, is given in Appendix A.2. The heating/cooling is

based on two-pipe system using Fan Coil Units (FCU) in laboratory and office spaces and
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radiators in smaller service rooms. All FCU control devices are networked with a central
monitoring system (SCADA system) based on Siemens DESIGO platform. The building
has in total 248 controllable zones with altogether 368" FCUs used both for heating and
cooling, more than 70 non-controllable zones equipped with radiators and manual valves
used only for heating, and more than 16 non-controllable zones in which heating/cooling
is unavailable. All controllable zones are equipped with digital zone units and additional
sensors for measuring the temperature of the FCU return medium temperature on every
controllable FCU. Digital zone units are equipped with temperature sensor and display
unit for selection of temperature reference and operation mode of the local FCU controller.
The heating energy for the system is supplied from the district heat distribution system via
a heat exchanger in the heating substation of type Kompakt 1000. The cooling energy for
the building is supplied from UNIZGFER’s own chiller station RTAC 200 HE produced by
Trane manufacturer. To track the consumed thermal energy and monitor the conditions of
the heating/cooling medium, calorimeters are installed on central and floor supply ducts.
The building also comprises 32 kWh battery storage system with fully controllable power
converter and the solar power plant (22.5 kWp). The meteorological conditions influencing
the building performance are monitored on a small meteorological station placed on the
building rooftop. The overview of the installed equipment is given in Fig. A.2.

All building subsystem are integrated together with developed possibility of a simple
and modular changeover between i) mode of the building operation in which climate
control is performed on a classical decentralized way using local control loops, and i)
Smart Operation Mode (SOM) in which commands are issued by software modules
through a central database. The SOM enables coordinated control of different energy-
relevant building subsystems which finally in a coordinated action shape an optimal energy
exchange profile between the building and the grid. The information technology support
systems, enabling the SOM, have two important functions - one is to make data exchange
between the software modules and the building automation system equipment in the field
smooth and reliable, and the other is to enable easy and safe transition from the standard
operation to the SOM and back to standard if there is a problem in the execution of
software routines. Reliable two-way communication between building automation in the
field and software modules is implemented through the central database utilized to collect
and consolidate the data from the building, weather service and energy utilities. The
variables which are controllable in SOM are: i) FCU fan speeds in all zones, i) starting
temperature of the medium from the heating substation towards the building, 4ii) pressure
difference on the circulation pump of the heating substation secondary circuit (building
circuit), ) starting temperature of the medium from the chiller towards the building
v) battery system reference charging/discharging AC power or reference DC current for

charging/discharging the battery system stack.

!Some zones have more than one FCU depending on their size.
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Figure A.2. Equipment installed in UNIZGFER building.
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A.1 Living-lab on predictive building zones control

The level of digitalization in the building enables testing of various control and
estimation algorithms, making the building living-lab on predictive building zones control.
Enable/disable (on/off) switches for control of different parts of the building automation
system via database are included in the DESIGO SCADA system such that the building
operator has under its control where the control is performed via database and where not.
For each zone a separate on/off signal is introduced (248 of them), and two additional ones
are introduced to switch the controls of the heating station and chiller from current way
of operation to operation via database and back. Also a watchdog timer functionality (or,
the so-called heartbeat) is introduced such that the system goes back to normal operation
if for sufficiently long interval of time no new command from the database is issued. The
central part of the living lab is a PostgreSQL database. Table A.1 contains a detailed list
of data collected from the zone level to the database. The configuration of the equipment

in the living-lab on predictive building zones control is given in Fig. A.3.

Table A.1. Measurements collected in the central database from the zone level.

ZONES

a.l  Zone temperature [°C]

a.2  Zone temperature setpoint [°C]

a.3  Zone temperature control mode (stand by, auto, manual low/medium/high)
a.4  Smart switch (true, false)
FCUs

b.1  Fan speed (off, low, medium, high)
b.2  Return medium temperature [°C]

b.3  Air intake temperature* [°C]

b.4  Air exhaust temperature® [°C]
CALORIMETER

c.l1  Supply medium temperature [°C]

c.2  Return medium temperature [°C]

c.3  Mass flow [kg/s|

c4  Thermal power kW]

c.5  Thermal energy [kWh]
WEATHER STATION

d.1  Outside temperature [°C]

d.2  Direct normal solar irradiance [W/m?]

d.3  Diffuse horizontal solar irradiance [W/m?]

* available only on two FCUs
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Figure A.3. Configuration of equipment installed within the Living-lab on predictive building

zones control.

The FCUs, manufactured by Trane [72] (models FCC06 and FCC04), are equipped

with a centrifugal fan with four different fan speeds (off, low, medium and high speed)

and digital 1-wire temperature sensor DS18B20 on the return pipe (Fig. A.4(a)). On

two selected FCUs, the same temperature sensors are installed to monitor incoming and
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outgoing air temperatures (Fig. A.4(b)). Additionally, FCUs on the 9th and 10th floor
are equipped with a three-way valve (on-off type) (Fig. A.4(a)). The return medium
temperature sensors are connected via l-wire communication to floor concentrators
which communicate via MODBUS RTU to the building concentrator, and the building
concentrator can be accessed from the server via MODBUS TCP/IP. The FCUs control
for maintaining the zone temperature is implemented on the level of every zone by using
Siemens control device RXC21.1 or RXC21.5 and accompanying display units QAX34.1
or QAX34.3 which enable the user to control the mode of FCUs local operation and
to set the required temperature for the zone. The RXC21.1/5 controllers are connected
via LON to floor concentrators. These concentrators are connected via BACNET/IP
communication with the SCADA computer whereas DESIGO is used as the software for
SCADA implementation. The RXC21.1/5 are loaded with standard FNC02 application
which is changed so as to enable direct control of the FCU control variables (fan speeds
and valves control variables), while keeping all the data from the QAX34.1/3 intact and
accessible via LON. Also, an additional software switch is implemented for switching
between the standard RXC21.1/5 operation and control of the FCUs via database in
SOM. The modification related to FNC02 application was performed by Siemens Building
Technologies headquarters in Zug, Switzerland.

The zones on the north side and on the south side of the building are supplied via
separate supply lines. Supply of the heating or cooling medium to the building floor
is performed by one vertical to horizontal transition on the north building side and by
one on the south building side (Fig. A.2). As there are 13 floors operated by the RXC
controllers in zones, there are overall 26 vertical-horizontal transitions. Each supply of
the heating/cooling medium on floors (north and south supply duct) is equipped with
calorimeter (Siemens UH50-A50-00 operating on M-Bus protocol). The performance of the
overall building FCUs system is monitored via separate calorimeter (Siemens SITRANS
FUE950 noted as FCU calorimeter on Fig Fig. A.3). The installed calorimeters are used
to measure supply and return medium temperature, temperature difference, medium flow,

thermal power and consumed thermal energy with one minute time resolution.

(position 1) (position 2)
| - -
I >
[ -
‘ %
l - ) e ——
‘ (position 1) (position 2)
DS18B20 |

(a) (b)

Figure A.4. a) FCU installation with three-way valve and 1-wire return medium temperature
sensor DS18B20 mounted on the return pipe, b) placement of additional 1-wire DS18B20 sensors
for monitoring incoming and outgoing air temperatures.
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All calorimeters are connected to a concentrator connected via BACNET /IP communi-
cation with the SCADA computer and central server. The weather station is located on
the building rooftop. It is equipped with an outdoor temperature sensor and units for
measuring direct normal and diffuse horizontal solar irradiance (Kipp&Zonnen CMP11,
Kipp&Zonnen CHP1). The solar irradiance measurements are recorded with a 1 s
time-step using a real-time embedded industrial controller (NI ¢RIO-9066). Raw sensor
measurements are later integrated and averaged on 1-min long intervals and uploaded to
an F'TP server from where the data is transferred to the database. The prototype weather
forecasting service for the location of the UNIZGFER skyscraper building, developed by
Croatian Meteorological and Hydrological Service (DHMZ), is active since 2013. Weather
forecasts are created with a numerical weather prediction ALADIN (state-of-the-art
weather prediction model for the region of Croatia, simultaneously used in over 20 other
countries) for several meteorological variables such as temperature, humidity, air pressure,
wind speed etc. Calculation of a new prediction sequence is commenced every day at 00:00,
06:00, 12:00 and 18:00 for the next 72-h period with a 1 h time resolution, for a spatial
grid of 2x2 km. Due to the complexity of the numerical weather prediction model in terms
of the computational effort, a prediction sequence of meteorological variables is available
with a nearly 4-h lag, e.g. a prediction sequence commenced at 00:00 becomes available

at 03:55 on the DHMZ’s server from where the data is transferred to local database.
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A.2 Building construction and materials

The case-study building is designed as reinforced concrete skeleton buildings with external
shear walls on the east and west side of the building and 58 uniformly distributed columns
on the north and south face of the building. The walls between columns are typical brick

walls covered with asbestos-cement boards. The internal walls are made of brick or drywall.

External building walls

East- and west-facing parts of building envelope are made of reinforced concrete. The
basement walls are made solely from 40 c¢m thick reinforced concrete (Fig. A.5) while in
the rest of the building the reinforced concrete is combined with reed and bricks (Fig. A.6).

-
| _reinforced concrete 40 cm

OUTSIDE INSIDE

Figure A.5. East- and west-facing external walls in the basement (EW1).

| reinforced concrete 24 cm
= reed boards 3 cm
: full clay bricks 12 cm

| lime-cement plaster 2 cm

OUTSIDE 5| INSIDE

Figure A.6. East- and west-facing external walls from the ground floor to 18" floor (EW2).
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South- and north-facing building envelope consists of 58 uniformly distributed reinforced
concrete columns with 1 cm of lime-cement plaster insulation on inner sides. The columns
have a width of 25 cm and a depth of 45 cm (Fig. A.7).
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C09-16-3 | C09-16-2 | C09-16-1| |C09-17 || C09-18-1|C09-18-2 | C09-19-2 | C09-19-1 €09-02-1
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Figure A.7. Reinforced concrete columns on south- and north-facing sides of the building.

The space between the columns is filled with 40 cm reinforced concrete in the basement
and brick walls (EW3) in the rest of the building (Fig. A.8).

——flima P —— TR
: asbestos -cement boards 1 cm
" :] | air + wooden substructure 9 cm
: full clay bricks 25 cm
" | lime-cement plaster 2 cm
|
OUTSIDE 4 INSIDE

Figure A.8. South- and north-facing external walls from ground-floor to 12" floor (EW3).
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The detailed cross section view of a south- and north-facing external wall can be found
in [148]. The south- and north-facing external walls on 13" floor are made of bricks and

insulated with lime-cement plaster and Styrofoam (Fig. A.9).

_l lime-cement plaster 2 cm
“ : | Styrofoam EPS 5 cm
: full clay brick 25 cm
:| | lime-cement plaster 2 cm
|| - L e e
OUTSIDE | INSIDE

Figure A.9. South- and north-facing external walls on the 13" floor (EW4).

Internal walls

There are two types of internal walls, shear concrete walls and partition walls made of
bricks or drywall. Shear walls are made as 25 ¢m, 30 cm and 50 cm thick reinforced concrete
with 1 cm lime-cement plaster insulation on each side (SW1, SW2, SW3) (Fig. A.10).

= _: lime-cement plaster 1 cm
| reinforced concrete 50/30/25 cm

| lime-cement plaster 1 cm
e o o o o ————————— ——— ———— -

Figure A.10. Internal bearing walls (SW1-SW3).

Brick walls are made in two standard variations, as 7 cm thick walls (PW1) (Fig. A.11)
and as 13 cm thick walls (PW2) (Fig. A.12).



A.2. Building construction and materials

229

I lime-cement plaster
| full clay bricks
ime-cement plaster
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L e e

0.5 cm
12 cm
0.5 cm

Figure A.11. Internal brick wall (PW1).

~ Tl lime-cement plaster
| full clay bricks

0.5 cm
6 cm
0.5 cm

Figure A.12. Internal brick wall (PW2).

Drywalls are made in two standard variation, as 10 cm thick walls with single gypsum

board on each side and 7 cm mineral wool insulation (PW3) (Fig. A.13) or as 15 cm thick

walls with double gypsum boards on each side and 10 cm mineral wool insulation (PW4)

(Fig. A.14).

~ I gypsum board

| mineral wool

1.25 cm
7.5 cm

1.25 cm

Figure A.13. Internal gypsum wall (PW3).

~1 gypsum board
| mineral wool

! gypsum board

2.5 cm

10 cm

[ R0 R ey dhsgan o S — -

Figure A.14. Internal gypsum wall (PW/).
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Floors and ceilings

Typical floors/ceilings in the building are made of 5 cm thick reinforced concrete
positioned on 13 cm thick and 35 cm high reinforced concrete beams. There are 2 main
types of floor covering, wooden oak parquet (FC1) and terazzo (FC2), both 6 cm thick.
Ceilings are the same across the building, made of 5 cm reed and cement plaster. The

cross section of FC1 and FC2 are shown in Fig. A.15 and Fig. A.16, respectively.

oak parquet 2.5 cm

cement screed 3 cm
| bituminous membrane 0.5 cm
: reinforced concrete construction (5 ¢cm + 35 cm air)
Lreed + cement plaster 5 cm

|
|
|
|
|
|
|
|
|
|
|
|
|

terrazzo 2.5 cm

| cement screed 2 cm

| bituminous membrane 0.5 cm

| hardboard 1 cm

: reinforced concrete construction (5 em + 35 cm air)
reed + cement plaster 5 cm

|
e e e

Figure A.16. Definition of FC2 floors/ceilings across the building.

The basement floor is made of 80 c¢m thick reinforced concrete covered with bituminous
membrane to assure hydro-isolation, 3 cm thick cement screed and oak parquet (FC3)
(Fig. A.17).
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<y
|
|
|

oak parquet 2.5 cm
| cement screed 3 cm
: bituminous membrane 0.5 cm
| reinforced concrete 80 cm

Figure A.17. Basement floor (FC3).

The 13" floor has an enclosed terrace so the ceiling of the 12" floor is additionally
insulated (FC4) (Fig. A.18). The terrace floors are made of 4 cm concrete tiles, insulated
with 1 ¢cm bituminous membrane, 1 cm cement screed, 6 cm concrete, additional 0.5 cm
bituminous membrane and 1.5 cm hardboard (FC5) (Fig. A.19).

oak parquet 2.5 cm
cement screed 3 cm
bituminous membrane 0.5 cm
reinforced concrete construction (5 cm + 35 cm air)
reed + cement plaster 5 cm
air 30 cm
L Jeed o cement plaster_____________ 2 _______

Figure A.18. Ceiling on the 12" floor (FC4).
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| concrete tiles 4 cm

: bituminous membrane 1cm

| cement screed 1 cm

: concrete 6 cm

| bituminous membrane 0.5 cm

| hardboard 1.5 cm

: reinforced concrete construction (5 cm + 35 cm air)
| reed + cement plaster 5 cm

: air 30 cm

I reed + cement plaster 5 cm

____________________________

Figure A.19. Ceiling on the 12" floor (FC5).

Roof

The building roof (FC6) is made as a flat roof, with ceiling made of gypsum board placed
on typical ceiling reinforced concrete composition insulated with 1 cm cement screed, 2 cm
bituminous membrane, 10 cm extruded polystyrene foam (XPS), 1.5 cm thick geotextile

fabric and covered with 5-7 cm gravel (Fig. A.20).

Windows and doors (openings)

All windows are double glazing aluminium frame windows 6/12/5 (6 mm of clear float
glass from outside, 12 mm of air, 5 mm of clear float glass from inside). North- and
south-faced envelope walls from ground floor up to 12** floor have the same windows with
total area of each window equal 3.04 m? (WT1) (Fig. A.21). Approximately 30% of the

2 and the total frame

total window area goes to the frame. Total glazing area is 2.1 m
area is 0.935 m?. Upper part of the window has the ability to twist while the bottom
has ability to twist and tilt. Frame is made of the FEAL profiles, TERMO 65 series. The
dimension of windows on the 13*® floor and basement differ only slightly from the WT1
window type. Thermal properties of the WT1 windows, waterproofing, wind resistance
and soundproofing were tested at Civil Engineering Institute of Croatia. The obtained

thermal properties are shown in Tab. A.2, while other properties can be found in [149].
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| 1400

1180

2170

Figure A.21. Window dimensions (WT1).

Table A.2. Heat transfer coefficients of the window characteristic parts.

Glazing Frame Jamb
Total area [m?] 2.100 0.332 0.603
Heat transfer coefficient [W-(m?K)™!] 2.850 2.210 2.130
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Overall heat transfer coefficient of the window is calculated as:

2.100 - 2.850 + 0.332 - 2.210 + 0.603 - 2.130
Uindow = =2630 W-(m?K)™*! Al
d 2.850 + 2.210 + 2.130 (m’K) (A1)

The Solar Heat Gain Coefficient (SHGC) dependence in relation to the Sun inclination
angle calculated for the WT1 windows with Window software [96] is shown in Tab. A.3.

Table A.3. The SHGC valued dependence on the incidence angle.
Incidence angle [°] | 0 10 20 30 40 50 60 70 80 90

SHGC [W/(m?K)] | 0.723 0.723 0.720 0.714 0.700 0.671 0.605 0.471 0244 0
Hemispherical averaged solar heat gain coefficient is SHGC=0.626 W/(m?K).

Doors through the building are standard size wooden doors made of oak. Three most
typical door dimensions are 82/205 c¢cm, 90/205 cm and 102/205 cm. Entrance doors to
the individual floors are made of glass with iron frames. Restroom doors are made of
glass with wooden door frame. Detailed specifications of door dimensions can be found
in [148]. In the hallways and other rooms without external windows, transparent glass or

polycarbonate partitions are installed [148].

Thermal bridges

For thermal bridges empirical values from [150] are adopted.

Table A.4. Thermal bridges.

Thermal bridge W/K/(m joint)
external wall/internal slab 0.65
external wall/internal wall 0.50
external walls inner corner -0.15
external wall shear columns 0.90
external windows/door perimeter 0.05

Detailed properties of construction materials

Detailed thermal properties of the building construction materials are given in Tab. A.5.
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Table A.5. Detailed properties of construction material used in the building.

Thermal ' Specific
Material conductivity Density heat capacity
[kg-m™?]
[W-(m-K) "] -k )1

reinforced concrete 2.60 2500 1000
concrete 1.4 2300 880
reed boards 0.055 155 2000
full clay bricks 0.721 1922 837
lime-cement plaster 0.50 1300 1000
asbestos-cement board 0.58 1900 1000
air 0.23 1.2 1006
expanded polystyrene (EPS) 0.035 29 1213
gypsum 0.16 950 840
mineral wool 0.035 30 1000
oak parquet 0.19 700 2390
cement screed 0.41 1200 840
plaster ceiling tiles 0.380 1120 840
bituminous membrane 0.023 1100 2600
concrete tiles 1.100 2100 837
terrazzo flooring 1.802 2243 837
hardboard 0.130 2000 9
roof gravel 1.442 1674 881
geotextile - 0.2 -
extruded polystyrene (XPS) 0.040 35 1500
aluminium 160 2800 896
clear float glass 1.45 2500 910
iron 80.2 447 7870
polycarbonate board 0.20 1200 1200
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A.3 List of controllable building zones

The description of the physical properties of the controllable UNIZGFER building zones
is given in Tab. A.6.

Table A.6. The description of the physical properties of the controllable case-study building
zones.

Zone No. Zone name Floor Orientation Floor area FCU type Number of FCUs
1 C00-02-5 0 N 42.30 FCCo06 3
2 C00-02-7 0 N 18.07 FCCo06 1
3 C00-02-6 0 N 23.55 FCCo06 1
4 C00-02-4 0 S 23.45 FCC06 2
5 C00-02-3 0 S 16.16 FCCo06 1
6 C00-02-2 0 S 17.70 FCCo06 1
7 C00-02-1 0 S 17.80 FCCo06 1
8 C00-03 0 S 7.48 FCCo06 1
9 C00-04 0 S 23.04 FCC06 3
10 C00-05 0 S 38.39 FCCo06 3
11 C00-06 0 S 22.89 FCCo06 2
12 C00-07 0 S 7.59 FCCo04 1
13 C00-08 0 S 35.88 FCC06 2
14 C00-09 0 N 71.72 FCC06 3
15 C00-12 0 N 15.91 FCCo06 1
16 C00-13 0 N 16.53 FCCo06 1
17 C00-14 0 N 72.17 FCCo06 3
18 C01-01 1 N 84.00 FCCo04 4
19 C01-02 1 S 84.00 FCC06 4
20 C01-03 1 S 23.30 FCCo04 2
21 C01-04 1 S 14.89 FCCo06 1
22 C01-05 1 S 22.66 FCCo04 2
23 C01-06 1 S 15.33 FCCO06 1
24 C01-07 1 S 15.33 FCC06 1
25 C01-07-1 1 S 7.11 FCCo04 1
26 C01-08 1 S 14.80 FCCo06 1
27 C01-09 1 S 22.60 FCCo04 2
28 C01-10 1 S 35.84 FCCo04 2
29 C01-10-1 1 N 71.47 FCC04 3
30 C01-11 1 N 24.50 FCCO06 1
31 C01-12 1 N 47.97 FCCo04 2
32 C01-13 1 N 47.67 FCCo04 2
33 C02-01 2 N 35.00 FCCo04 2
34 C02-01-1 2 N 24.43 FCC04 1
35 C02-01-2 2 N 22.83 FCCo04 1
36 C02-02 2 S 14.71 FCCO06 1
37 C02-02-1 2 S 15.23 FCCo06 1
38 C02-02-2 2 S 14.89 FCC06 1
39 C02-04 2 S 23.04 FCCo06 2
40 C02-05 2 S 22.70 FCCo04 2
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Zone No. Zone name Floor Orientation Floor area FCU type Number of FCUs
41 C02-06 2 S 22.66 FCCo04 2
42 C02-07 2 S 15.33 FCCo06 1
43 C02-08 2 S 22.75 FCCo04 2
44 C02-09 2 S 14.80 FCC06 1
45 C02-10 2 S 15.11 FCCO06 1
46 C02-11 2 S 15.33 FCCo06 1
47 C02-12 2 S 14.93 FCCo06 1
48 C02-13 2 N 23.17 FCCo04 1
49 C02-14 2 N 23.59 FCCo04 1
50 C02-15 2 N 23.66 FCCo04 1
51 C02-16 2 N 23.59 FCCo04 1
52 C02-17 2 N 23.59 FCCo04 1
53 C02-18 2 N 23.52 FCCo04 1
54 C02-19 2 N 23.59 FCCo04 1
55 C02-20 2 N 23.17 FCCo04 1
56 C03-01 3 N 84.08 FCCo04 4
57 C03-02 3 S 84.00 FCCo06 4
58 C03-03 3 S 23.30 FCCo04 2
59 C03-04 3 S 14.92 FCCO06 1
60 C03-05 3 S 22.66 FCCo04 2
61 C03-06 3 S 15.33 FCCo06 1
62 C03-07 3 S 15.26 FCCo06 1
63 C03-08 3 S 7.11 FCCo04 1
64 C03-09 3 S 14.80 FCC06 1
65 C03-10 3 S 22.60 FCCo04 2
66 C03-11 3 S 35.84 FCCo04 2
67 C03-12 3 N 28.05 FCCo04 1
68 C03-12-1 3 N 14.88 FCCo04 1
69 C03-13 3 N 23.66 FCC06 1
70 C03-14 3 N 24.40 FCCo04 1
71 C03-14-1 3 N 24.04 FCCO06 1
72 C03-15 3 N 60.34 FCCo04 3
73 C03-16 3 N 10.92 FCCo04 1
74 C04-01-1 4 N 22.83 FCC04 1
75 C04-02 4 N 60.34 FCCo04 3
76 C04-03 4 S 22.75 FCCo06 1
7 C04-04 4 S 15.46 FCCo06 1
78 C04-05 4 S 15.31 FCC06 1
79 C04-06 4 S 15.41 FCCO06 1
80 C04-07 4 S 14.51 FCCO06 1
81 C04-07-1 4 S 15.83 FCCo06 1
82 C04-08 4 S 14.96 FCCo06 1
83 C04-09 4 S 15.33 FCC06 1
84 C04-10 4 S 15.33 FCC06 1
85 C04-11 4 S 14.93 FCCo06 1
86 C04-12 4 S 14.80 FCCo06 1
87 C04-13 4 S 15.24 FCCO06 1
88 C04-14 4 S 15.33 FCC06 1
89 C04-15 4 S 14.93 FCC06 1
90 C04-16 4 N 47.67 FCCo04 2
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Zone No. Zone name Floor Orientation Floor area FCU type Number of FCUs
91 C04-17 4 N 72.17 FCCo04 3
92 C04-18 4 N 48.03 FCCo04 2
93 C04-20 4 N 23.59 FCCo04 1
94 C05-01 5 N 84.08 FCCo04 4
95 C05-02 5 S 84.00 FCCo06 4
96 C05-03 5 S 15.50 FCCo06 1
97 C05-04 5 S 22.71 FCCo04 2
98 C05-05 5 S 22.78 FCCo04 2
99 C05-06 5 S 15.33 FCC06 1
100 C05-07 5 S 15.26 FCCo06 1
101 C05-08 5 S 7.11 FCCo04 1
102 C05-09 5 S 14.93 FCCo06 1
103 C05-10 5 S 15.33 FCC06 1
104 C05-11 5 S 15.33 FCC06 1
105 C05-12 5 S 14.89 FCCo06 1
106 C05-13 5 N 47.67 FCCo04 2
107 C05-14 5 N 48.09 FCCo04 2
108 C05-15 5 N 35.84 FCCo04 2
109 C05-16 5 N 23.59 FCCo04 1
110 C05-17 5 N 35.64 FCCo04 2
111 C06-02 6 N 84.02 FCCo04 4
112 C06-03 6 S 71.75 FCCo06 3
113 C06-04 6 S 15.34 FCCo06 1
114 C06-05 6 S 15.34 FCC06 1
115 C06-06 6 S 14.83 FCCo06 1
116 C06-07 6 S 22.78 FCCo04 2
117 C06-08 6 S 15.33 FCCo06 1
118 C06-09 6 S 15.26 FCC06 1
119 C06-10 6 S 7.11 FCCo04 1
120 C06-11 6 S 14.97 FCCo06 1
121 C06-12 6 S 14.91 FCCo06 1
122 C06-13 6 S 15.33 FCCo06 1
123 C06-14 6 S 14.93 FCC06 1
124 C06-15 6 N 23.15 FCC04 1
125 C06-16 6 N 23.59 FCCo04 1
126 C06-17 6 N 23.07 FCCo4 1
127 C06-18 6 N 23.59 FCCo04 1
128 C06-19 6 N 35.24 FCCo04 2
129 C06-20 6 N 23.52 FCCo04 1
130 C06-21 6 N 35.64 FCCo04 2
131 C07-01 7 N 83.94 FCCo04 4
132 C07-02 7 S 35.17 FCCo06 2
133 C07-03-1 7 S 26.74 FCC06 2
134 C07-03-2 7 S 17.94 FCCo06 1
135 C07-04 7 S 14.56 FCCo06 1
136 C07-05 7 S 14.97 FCCo06 1
137 C07-06 7 S 22.69 FCCo06 2
138 Co7-07 7 S 15.33 FCCo04 1
139 C07-08 7 S 15.26 FCC06 1
140 C07-09 7 S 7.08 FCCo06 1
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Zone No. Zone name Floor Orientation Floor area FCU type Number of FCUs
150 C08-02 8 N 35.39 FCCo04 2
151 C08-03 8 N 23.29 FCCo04 1
152 C08-04 8 N 23.15 FCCo4 1
153 C08-05 8 S 14.87 FCCo06 1
154 C08-06 8 S 15.23 FCCO06 1
155 C08-07 8 S 14.93 FCCO06 1
156 C08-08 8 S 14.98 FCCO06 1
157 C08-09 8 S 15.66 FCCO06 1
158 C08-10 8 S 14.48 FCCo06 1
159 C08-11 8 S 22.61 FCCo4 2
160 C08-12 8 S 15.20 FCCo04 2
161 C08-13 8 S 22.75 FCCo04 2
162 C08-14 8 S 14.51 FCCo06 1
163 C08-15 8 S 15.72 FCCo06 1
164 C08-16 8 S 14.93 FCCO06 1
165 C08-17 8 S 14.93 FCCO06 1
166 C08-18 8 N 35.53 FCC04 2
167 C08-19 8 N 23.45 FCCo04 1
168 C08-20 8 N 35.56 FCCo04 2
169 C08-21 8 N 23.57 FCCo04 1
170 C08-22 8 N 72.35 FCC04 3
171 C09-01 9 N 48.12 FCC04 3
172 C09-02-1 9 N 23.57 FCCo04 1
173 C09-04 9 S 35.03 FCCO06 2
174 C09-05 9 S 23.26 FCCO06 2
175 C09-06 9 S 15.16 FCCO06 1
176 C09-07 9 S 15.34 FCCO06 1
177 C09-08 9 S 15.04 FCCo06 1
178 C09-09 9 S 22.80 FCCo04 2
179 C09-10 9 S 15.33 FCCO06 1
180 C09-11 9 S 15.20 FCCO06 1
181 C09-12 9 S 6.97 FCC04 1
182 C09-13 9 S 7.10 FCCo06 1
183 C09-14 9 S 15.47 FCCO06 1
184 C09-15 9 S 21.15 FCCo04 2
185 C09-15-1 9 S 15.32 FCCO06 1
186 C09-16-1 9 N 16.85 FCCo4 1
187 C09-16-2 9 N 17.25 FCCo04 1
188 C09-16-3 9 N 22.80 FCCo04 1
189 C09-17 9 N 23.38 FCCo04 1
190 C09-18-1 9 N 20.56 FCCo04 1
191 C09-18-2 9 N 23.30 FCC04 1
192 C09-19-1 9 N 16.86 FCCo04 1
193 C09-19-2 9 N 24.36 FCCo4 1
194 C10-01 10 N 83.80 FCC04 4
195 C10-02 10 S 35.22 FCCO06 2
196 C10-03 10 S 23.13 FCCO06 2
197 C10-04 10 S 15.34 FCC06 1
198 C10-05 10 S 15.10 FCCO06 1
199 C10-06 10 S 14.77 FCCO06 1
200 C10-07 10 S 14.83 FCCO06 1
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Zone No. Zone name Floor Orientation Floor area FCU type Number of FCUs
201 C10-08 10 S 14.95 FCC06 1
202 C10-09 10 S 14.93 FCC06 1
203 C10-09-1 10 S 15.20 FCCO06 1
204 C10-10 10 S 30.17 FCCO06 2
205 C10-11 10 S 15.53 FCCO06 1
206 C10-12 10 S 14.96 FCC06 1
207 C10-13 10 N 71.87 FCCo04 3
208 C10-14 10 N 47.57 FCC04 2
209 C10-15 10 N 47.25 FCC04 2
210 C11-01 11 N 36.01 FCCo04 2
211 C11-02 11 N 47.15 FCCo04 2
212 C11-03 11 S 47.18 FCCO06 2
213 C11-04 11 S 15.20 FCCO06 1
214 C11-05 11 S 15.25 FCCO06 1
215 C11-06 11 S 15.10 FCCO06 1
216 C11-07 11 S 14.84 FCCO06 1
217 C11-08 11 S 22.65 FCCo04 2
218 C11-09 11 S 15.06 FCCO06 1
219 C11-10 11 S 15.40 FCCO06 1
220 C11-11 11 S 6.71 FCCo04 1
221 C11-12 11 S 14.89 FCCO06 1
222 C11-13 11 S 15.18 FCCO06 1
223 C11-14 11 S 14.93 FCCO06 1
224 C11-15 11 S 23.38 FCCO06 1
225 C11-16 11 N 47.76 FCCo04 2
226 C11-17 11 N 48.15 FCCo04 2
227 C11-18 11 N 23.59 FCC04 1
228 C11-19 11 N 23.52 FCC04 1
229 C11-20 11 N 47.71 FCCo04 2
230 C12-02 12 N 84.04 FCCo04 4
231 C12-03 12 S 22.68 FCCO06 1
232 C12-04 12 S 15.42 FCCO06 1
233 C12-05 12 S 14.95 FCCO06 1
234 C12-06 12 S 15.08 FCCO06 1
235 C12-07 12 S 15.22 FCCo06 1
236 C12-08 12 S 14.77 FCCO06 1
237 C12-09 12 S 22.65 FCC04 2
238 C12-10 12 S 15.65 FCCO06 1
239 C12-11 12 S 15.09 FCCO06 1
240 C12-11-1 12 S 6.71 FCCo04 1
241 C12-12 12 S 14.81 FCCO06 1
242 C12-13 12 S 15.04 FCCO06 1
243 C12-14 12 S 15.20 FCCO06 1
244 C12-15 12 S 14.96 FCCO06 1
245 C12-16 12 N 72.50 FCCo04 3
246 C12-17-1 12 N 35.21 FCCo04 2
247 C12-17-2 12 N 19.04 FCC04 1
248 C12-18 12 N 59.53 FCC04 3




APPENDIX B

Solar irradiance incident on

a tilted surface

Typically, only measurements of direct normal 9" and diffuse horizontal M solar
irradiance are available. The direct solar irradiance incident on a tilted surface I3, e.g.
wall or window, is easily calculated with the known surface azimuth angle, tilt angle, and
solar zenith and azimuth angle. The solar incidence angle 6 is the angle between direct
solar ray and a line normal to the irradiated surface. To calculate 6 first the position of
the Sun relative to the considered surface has to be determined. Position of the Sun is

described with solar zenith angle 6, and solar azimuth angle ¢, (Fig. B.1).

- Sun

o000

fo
o=

far

Figure B.1. Surface azimuth angle and solar incidence angle (left) and solar zenith and azimuth
angles (right).

Solar azimuth angle ¢, defines in which direction the Sun is, whereas the solar zenith angle
0. defines how high the Sun is. In conventional time keeping, regions of the Earth are
divided into certain time zones. However, in these time zones, noon does not necessarily
correspond to the time when the Sun is highest in the sky, so called solar noon. The

equation of time (ET) describes the discrepancy between these two times.

ET = 9.87sin(2X) — 7.53 cos(X) — 1.5sin(X), X = %(D —81), (B.1)
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where D is the number of the days since the start of the year!. Local solar time tygr is
defined as when the Sun is highest in the sky. Local time ;1 usually varies from ty gt due
to the eccentricity of the Earth’s orbit and human adjustments such as time zones and
daylight saving®. The Local Solar Time is defined as:

ET  (15°-tx — LON)

t =1 —
LST LT + 60 + 15 )

(B.2)

where LON is local longitude and ¢ is the difference of the local time from Greenwich
Mean Time (GMT) in hours (for Zagreb tn = +1). Solar declination angle & varies
seasonally due to the tilt of the Earth on its axis of rotation and the rotation of the Earth

around the Sun and it is defined as:
5, = 23.45°sin (%(D + 284.5)) . (B.3)

Observing the Sun from earth, the solar hour angle Hy is an expression of time, expressed
in angular measurement, usually degrees, from solar noon. At solar noon the hour angle
is 0.0°, with the time before solar noon expressed as negative degrees, and the local time

after solar noon expressed as positive degrees.
Hg = 15° - (tisT — 12). (B.4)

The solar elevation angle is the altitude of the Sun, the angle between the horizon and
the centre of the Sun’s disc defined as 6, = 90° — 6,. The approximate value of the solar

elevation angle is calculated using the following formula:
sin(f.) = cos(Hy) cos(LAT) cos(ds) + sin(LAT) sin(dy), (B.5)

where LAT is local latitude. The solar azimuth angle ¢, is then defined as:

sin(ds) — cos(6,) sin(LAT)
sin(#,) cos(LAT)

cos(¢s) = (B.6)
Angle of incidence 6 is the angle a ray of direct solar radiation makes with a line
perpendicular to an observed surface. For a vertical building surface (tilt angle=90°)
it is defined as [151]:

cos(6) = cos(0,) cos(¢ — ¢s), (B.7)

where ¢ is the surface azimuth, i.e. the angle between true south and the projection on

a horizontal plane of the normal to the surface. The direct solar irradiance incident on a

'Floating point number, e.g. at 0:00 on January 15* D = 1.00.
2Local time is expressed as floating point number of hour in a day, e.g. at 6:30 tr = 6.50.
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tilted surface I is then defined as:

' cos(0)Idr for 6 < 90°,
Ifr = (B.8)
0 otherwise,

In general, the diffuse solar irradiance component affecting the vertical building surface

is calculated as:
I3 — it (B.9)

where € is the diffuse irradiance transposition factor defined differently for each model in
literature. Across the thesis, ¢ = 0.5 proposed by Kondratev [152] is used. More general
approach for tilt angles different than 90° can be found in [151].
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NOTATION

Symbols

ap,

Gh
Gcr

Lh

UKF tuning parameter

exponent of pressure drop characteristics of hydraulic network element
UKF tuning parameter

linear system matrix stacked over the prediction horizon

linear system input matrix stacked over the prediction horizon
sequence of zone occupancy vectors, § = [5,{+1‘k, 512-2%7 . ,(5kT+H|k]T

linear system disturbance input matrix stacked over the prediction horizon
HHL optimization problem constraint matrix

critical region constraints matrix

HHL optimization problem constraint matrix

HHL optimization problem constraint vector

UKEF sigma points

energy mismatch [Ws]

change in pipe elevation [m]

pressure drop [Pa]

frictional pressure drop [Pal

hydrostatic pressure drop [Pa]

penalization of fan speed switching, Azg € {0, 1}
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260 Notation

A ICUT sigma point step (equal to 7 for standard UT)

0 zone occupancy, 0 € R™

Aref permissible deviation from temperature reference vector y™, A € R

Js solar declination angle [°]

Ay UKEF step in k' iteration for i*" sigma point

€ diffuse irradiance transposition factor

n flow share through an individual FCU

Nd share of the transmitted diffuse solar irradiance absorbed by the internal
wall

M share of the transmitted solar irradiance absorbed by the zone air

v UKF scaling parameter

Ve weighting factor for trade-off between the comfort and energy savings

K UKF tuning parameter

Re Reynolds number

L dynamic viscosity [Pa-s]

w absolute air humidity [kgvapour-kg, ']

) surface azimuth angle

o, autocorrelation function

Ve heat transfer coefficient [K™!]

P density [kg-m™3]

o Stefan-Boltzmann constant unit

o slack variable, o, € R™

T transport delay [s]

Ty time of the first minimum of the autocorrelation function ®,, [s]

0 zero matrix of appropriate dimension

. . A
n-dimensional row vector of ones, 1 = [1,...,1]
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Ch

Cy

Ac
Ad
Qfc
Qg
Be

Bd

HHL cost function parameter

sequence of thermal energy price vectors [EUR/kW],

Ct = [Cgmk? CtT,k+1\k7 e 7Cg:k+H—1|k]T7

sequence of disturbance vectors, d = [df ., di s> iy yp)
identity matrix of appropriate dimension

identity matrix of dimension n

weighting matrix, Q € R¥ > Hny

sequence of weight parameters, q = [qa”k, qkT+2|k, o ,q,:erHlk]T
sequence of weight parameters, r = [rak, rkT+1|k, . ,TZJFH_WC]T
sequence of input vectors, U = [ufy, wf\ s U g ypl"
sequence of output vectors, y = [ykT+1|k, yg+2|k, . ,y,arH‘k}T

parameter vector

angle of incidence [°]

solar elevation angle [°]

solar zenith angle [°]

ICUT algorithm auxiliary matrix
emissivity of the surface

area [m?]

absorptivity

continuous-time system matrix, A¢ € R "=

discrete-time system matrix, A? € Rm*ne

coefficient of a FCU model

ICUT sigma point step variation parameter in £*" iteration
continuous-time system input matrix

discrete-time system input matrix

coefficient of a FCU model

T

Y

)

Y



262 Notation

C capacitance

c specific heat capacity [J-(kg-K)™!]

Cte coefficient of a FCU model

Ce thermal comfort price [EUR/kW], ¢, € R!
Ct k thermal energy price [EUR/kW], ¢, € R"™
D day in a year, D € R

d diameter [m]

D" HHL affine control law matrix

E energy [kWh]

El mathematical expectation

f() system input function

fp friction coefficient

g weighting parameter, g € R!

H prediction horizon length, H € N

h convective heat transfer coefficient [W-(m?- K)™!]
h(-) system output function

Hy solar hour angle, Hy; € R [°]

I solar irradiance [W/m?|

[ diffuse horizontal solar irradiance [W/m?]
Idr direct normal solar irradiance [W/m?]

J optimization criterion value, J € R!

J™(©) HHL affine cost function with respect to the parameter ©
K Kalman gain

k thermal conductivity [W-(m- K)™!]

L thickness [m]

l length [m]
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Nt

Ty

g

ny

Ty

diff

qk

Ry,

Ry,

equivalent length of a straight pipe [m]

lower system state bound at time instant k, i.e. xp > Ly
mass [kg]

number of zones supplied through the considered duct
number of FCUs connected to the same duct, ng € N
number of observation noise variables, n, € N

number of process noise variables, n,, € N

number of disturbance inputs, ngy € N

number of layers, n; € N

number of system inputs, n, € N

number of system states, n, € N

number of system outputs, n, € N

power [W]

ith parameter of the simplified building model, i € N
diffuse solar irradiance parameter [m?]

direct solar irradiance parameter [m?]
cross covariance matrix

covariance matrix

heat transfer rate [W]

mass flow [kg-s™!]

HHL affine control law vector
process noise covariance matrix
weighting parameter, ¢, € R™
resistance

hydraulic resistance

observation noise covariance matrix
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Notation

Tk

ta

ref
Ta

tLsT

Lte

weighting parameter, r, € R™

square root of covariance matrix

temperature [°C|

time difference of the local time from Greenwich Mean Time (GMT), tn € N
temperature reference

local solar time, t; gt € R

local time, t;r € R

external temperature [°C|

surface temperature [°C]

sampling time [s]

zone air temperature [°C]

zone air temperature simulated by using RC model [°C]

zone air temperature simulated by using building simulation software [°C]
water temperature [°C|

equivalent temperature of solid zone parts (slow-dynamics temperature) [°C]
system inputs

Overall heat transfer coefficient [W°C™1]

upper system state bound at time instant k, i.e. zp < Uy

volume [m?]

observation noise

process noise

UKF sigma point related weights

critical region constraints vector

system states

system states normalized to interval [0,1]

fan speed g € {off, L, M, H}
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Ty valve position, z, € R!
Y system outputs
yref temperature reference vector, y™' € R

Sets, spaces and distributions

V set of all adjacent zones

N set of natural numbers

R set of real numbers

Rmxm set of n by m matrices with real entries

R™ set of n-dimensional (column) vectors with real entries

N(0,Q) multivariate normal (Gaussian) distribution with mean 0 and covariance Q
Efe set of unknown scalar e coefficients for every fan speed .,

. ff .L M _H
Efc 1= {6?(: 7€fc75fc78fc}

ay. set of unknown scalar ag coefficients for every fan speed .,

- off .. .M _H
Afe = {afc ’ afc7 afc ’ afc}

bs. set of unknown scalar bg, coefficients for every fan speed .,
by = {b8T, bk, M bl

fc » fc

U, set of scalar values of U, for every fan speed zy., U, := {UT, UL UM U1}
B, set of ordered pairs, Ej, = {ex X e}

er set of indices of excited states

N, set of ordered pairs, Ny = {ng x ng} U {ex X ng}

ny, set of indices of all unexcited states xy

Algebraic operations

U set union

O time derivation, T = d T/ d .

blkdiag(-) block-diagonal concentration of matrices listed as arguments
col;(+) i column of matrix

X cartesian product
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|- | element-wise absolute value

.11 Ly norm

Superscripts

g energy-optimal solution

oK price-optimal solution obtained through the hierarchical coordination
a a priori

¢ calibrated measurement

cd manufacturer’s catalogue data

diff diffuse

dir direct

H associated with high FCU fan speed

h related to higher hierarchy level

in input/inside

L associated with low FCU fan speed

M associated with medium FCU fan speed
m measured value

off associated with switched-off FCU fan
out output /outside

r return

raw raw measurement

ref referent value

S supply

X associated with a certain fan speed g
Subscripts

0 incident on external surface

a absorbed
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k time instant, k € N
k+t|k
A active constraints subset
a air
cal calorimeter
cond conductive
conv convective
el electrical
fc fan coil unit
max upper bound
min lower bound
NA
p pipe
rad radiant
s solar
t thermal
w water
Abbreviations
ANN
BEMS
COP
CR Critical Region
EER Energy Efficiency Ratio
EKF Extended Kalman Filter
ET Equation of Time

FCU

predicted variable at time k for a time instant k +1¢,t € N

inactive constraints subset

Artificial Neural Network
Building Energy Management System

Coeflicient Of Performance

Fan Coil Unit
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GMT Greenwich Mean Time

H High fan speed

HHL Higher Hierarchical Level
HVAC Heating, Ventilation, and Air Conditioning
L Low fan speed

LAT Geographic Latitude

LHL Lower Hierarchical Level

LON Geographic Longitude

LP Linear Program

M Medium fan speed

MILP Mixed Integer Linear Program
MPC Model Predictive Control
NLP Nonlinear Problem

NRMSE Normalised Root Mean Squared Error

off Fan switched off

QP Quadratic Program

RC Resistance-Capacitance
RMSE Root Mean Squared Error
SHGC Solar Heat Gain Coefficient
SoC State of Charge

SOM Smart Operation Mode
™Y Typical Meteorological Year
UKF Unscented Kalman Filter

UNIZGFER University of Zagreb Faculty of Electrical Engineering and Computing
UT Unscented Transformation

uTcC Coordinated Universal Time
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