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ABSTRACT 
Teams play a crucial role in many product development activities. However, teams - as complex 

socio-technical systems - are challenging to study in a real-world setting. Computational 

models and simulations offer easily controllable and cost-effective tools for supporting team 

studies. Computational models prove especially valuable in studies on the sufficient conditions 

for the emergence of various team properties and behaviours. As a consequence, the 

computational models offer a possible explanation of the observed phenomena and provide 

means for theory-testing and hypothesis generation. To support cognitive studies on product 

development teams, this dissertation develops a multi-agent system capable of representing 

various aspects of product development teams. Building on the existing theories, empirical 

studies and current teamwork models, this work derives a detail theoretical model of a designer, 

its cognition, its tasks, and interactions with others. The thesis then implements the theoretical 

model in a multi-agent system directed at studies of the emergence of team properties and 

behaviours – in particular, team learning and adaptation. Extensive testing of the derived 

computational model concludes the goal of obtaining a multi-purpose research tool for studies 

of product development teams and confirms the appropriateness of the chosen simulation 

technique – agent-based modelling - for the intended research goal. 

 

Keywords: 

Agent-based modelling and simulations; product development teams; emergent team 

properties; team learning; team adaptation 
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VIŠEAGENTSKI SUSTAV ZA SIMULACIJU PONAŠANJA 
TIMA U RAZVOJU PROIZVODA 
Timski rad je neizostavan element djelovanja modernih organizacija. Kako bi uspješno 

odgovorile na zahtjeve tržišta, organizacije se često oslanjaju na suradnju stručnjaka iz različitih 

područja, nadajući se da će komplementarnost njihovih znanja i vještina rezultirati tržišnom 

prednošću. Dosadašnja istraživanja potvrđuju mnoge prednosti timskog rada (u usporedbi s 

izoliranim djelovanjem pojedinaca). Primjerice, razni izvori ističu da timski rad rezultira bržim 

i jeftinijim razvojem proizvoda, većom inovativnošću te kvalitetom proizvoda, kao i boljim 

rješavanjem problema. No mnoga istraživanja naglašavaju probleme do kojih dolazi pri 

timskom radu. Poznati su slučajevi gdje želja za postizanjem dogovora rezultira stvaranjem 

malog broja ideja, nedostatnim razmatranjem opcija ili prihvaćanjem suboptimalnih rješenja 

(eng. groupthink). U drugim slučajevima, pak, ponekad dolazi do konflikata među sudionicima, 

gdje razlike u prioritetima i viđenju problema onemogućavaju tim u donošenju odluka. Mnogi 

istraživači, stoga, naglašavaju potrebu za dodatnim istraživanjima usmjerenim ka 

razumijevanju timskih procesa, timskog ponašanja i svojstava tima koja proizlaze iz interakcija 

članova tima. Posebno je istaknuta važnost potrebe za dodatnim istraživanjima razvoja timskog 

znanja i iskustva, tj. kako se znanje stvara, dijeli te koristi unutar tima. 

Kako bi proučavali timove i njihovo ponašanje, istraživači se često oslanjaju na laboratorijske 

studije u kojima su članovi tima suočeni s nekim problemom te zajednički pokušavaju doći do 

rješenja. Pri ovakvim istraživanjima sakupljaju se podaci o timskim procesima obrade 

informacija te detalji o interakcijama među članovima tima. Međutim, provedba laboratorijskih 

studija je skupa i vremenski zahtjevna. Jedna od metoda kojima se može potpomoći 

laboratorijske studije je računalno modeliranje i simulacije. Korištenjem računalnih modela 

timskog rada moguće je izvršiti veliki broja istraživanja u kratkom vremenu. Pritom računalni 

modeli dopuštaju ponavljanje studija, kontrolu i praćenje varijabli te modifikacije ulaznih 

podataka kako bi se promatrao njihov utjecaj na ishod simulacije. Navedene karakteristike čine 

računalne modele važnim alatom pri proučavanju sustava na čije ponašanje utječe velik broj 

teško mjerljivih čimbenika. Izradom računalnog modela timskog rada omogućava se efikasno 

testiranje postojećih teorija te formiranje novih hipoteza, posljedično utječući na buduće 

empirijske studije.  

Cilj ovog istraživanja je razvoj i validacija teorijskog i računalnog modela timskog rada u 

razvoju proizvoda. Posebice, željeni model timskog rada treba omogućiti simulaciju i 

proučavanje sposobnosti tima da uči te se prilagodi promjenama u vanjskim ili unutarnjim 
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okolnostima koje se javljaju tijekom aktivnosti razvoja proizvoda. Ovim istraživanjem 

verificira se hipoteza da je modeliranje zasnovano na agentskoj paradigmi (ABM) prikladno za 

ispunjenje cilja istraživanja: proučavanje simuliranog ponašanja timova u razvoju proizvoda te 

proučavanje prilagodbe tima kao posljedice promjene u unutarnjim ili vanjskim okolnostima 

koje se javljaju tijekom aktivnosti razvoja proizvoda. 

Razvoj željenog modela prati istraživačku metodologiju po kojoj se istraživanje može se 

podijeliti u tri povezana ciklusa aktivnosti. Prvi ciklus, Ciklus definiranja utjecaja, sastoji se od 

pregleda područja čiji cilj je identifikacija važnih koncepata, odabir odgovarajućih mjera te 

stvaranje preliminarnih modela raznih aspekata timskog rada. Kao rezultat ove faze istraživanja 

postiže se razumijevanje problema, njegovih granica i postojećih rješenja, te se odabire 

pogodna tehnika za izradu željenog modela timskog rada. U drugoj fazi istraživanja, Ciklusu 

razvoja modela, preliminarni modeli nastali u prvoj fazi istraživanja se detaljiraju te 

implementiraju koristeći odabranu tehniku izrade računalnog modela. Razvijeni modeli se 

testiraju kako bi se verificirala implementacija te osigurala podudarnost s pojavama uočenim u 

empirijskim studijama. Konačno, u trećoj fazi razvoja, Ciklusu utvrđivanja valjanosti, razvijeni 

modeli integriraju se u koherentni istraživački okvir te se isti primjenjuje u simulacijama 

namijenjenim proučavanju timskog učenja i adaptabilnosti. Ishodi simulacija se uspoređuju s 

predviđanjima zasnovanim teorijama i podacima pronađenim u dostupnoj literaturi, što 

rezultira identifikacijom prednosti, ali i nedostataka razvijenog računalnog modela timskog 

rada. Otkriveni nedostaci, kao i rezultati daljnjih empirijskih istraživanja timskog rada, služe 

kao smjernice za unaprjeđenje modela. S druge strane, razvijeni model omogućava 

istraživačima korištenje simulacija kako bi povećali razumijevanje međudjelovanja raznih 

aspekata timskog rada, čime produbljuje znanje o sustavu i usmjerava buduća empirijska 

istraživanja. 

Doktorski rad strukturiran je tako da prati opisanu metodologiju istraživanja. Podijeljen je u 

devet poglavlja od kojih prva tri odgovaraju Ciklusu definiranja utjecaja. Četvrto, peto i šesto 

poglavlje opisuju razvoj i testiranje računalnog modela čime prikazuju drugu fazu istraživanja 

– Ciklus razvoja modela. Rezultati posljednje faze istraživanja, Ciklusa utvrđivanja valjanosti, 

opisani su u sedmom poglavlju. 

Preciznije, prvo poglavlje („Introduction“) donosi uvod u temu doktorskog rada. Motivacija 

provedenog istraživanja dana je kroz opis potrebe za istraživanjima timskog rada u razvoju 

proizvoda, a posebice potreba za studijama timskog učenja i prilagodbe. Naglašena je 

potencijalna korist razvoja računalnog modela za simulaciju i istraživanje timskog rada, čime 
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je istaknut cilj istraživanja. Nadalje, opisana je hipoteza, očekivani znanstveni doprinosi 

disertacije te metodologija istraživanja. Poglavlje završava pregledom ostalih poglavlja 

doktorskog rada. 

Drugo poglavlje („Research background“) uvodi osnovne pojmove definirajući važne koncepte 

vezane uz timove, timsko ponašanje, timske procese te timska svojstva koja proizlaze iz 

interakcija pojedinaca u timu. Posebna pažnja posvećena je identifikaciji elemenata koje je 

potrebno modelirati kako bi se prikazalo djelovanje tima. Opisana je uloga timova u razvoju 

proizvoda, kao i poteškoće s kojima se susreću istraživači pri proučavanju timskog rada. 

Konačno, nekoliko računalnih tehnika za modeliranje i simulaciju kompleksnih sustava je 

prikazano i uspoređeno s obzirom na njihovu prikladnost za dani problem. Modeliranje pomoću 

mreža (NS), modeliranje diskretnih događaja (DES), sistemska dinamika (SD) te modeliranje 

zasnovano na agentskoj paradigmi (ABM) su izdvojene kao najčešće korištene tehnike 

modeliranja. Raspravljena je njihova sposobnost da prikažu inteligentno ponašanje pojedinaca, 

hijerarhijske veze i interakcije među pojedincima, nelinearnost i dinamičnost sustava, kao i 

druge važne aspekte timskog rada, čime je ustanovljeno da je modeliranje zasnovano na 

agentima najpogodnija tehnika za razvoj željenog modela timskog rada. Nekoliko postojećih 

modela timskog rada (u raznim domenama) izrađenih ABM tehnikom je opisano kako bi se 

prikazale mogućnosti odabrane tehnike. 

U trećem poglavlju („Related work: Agent-based models of product development teams“) 

prikazani su rezultati sistematskog pregleda literature usmjerenog ka identifikaciji i analizi 

postojećih agentskih modela timskog rada u razvoju proizvoda. Četrdeset modela uspoređeno 

je s obzirom na njihovu namjenu, domenu primjene te karakteristike prikaza pojedinačnih 

članova tima, interakcija među članovima te timskog okruženja u vidu prikaza konstrukcijskog 

problema i resursa. Detalji o pojedinom modelu izdvojeni su u Dodatku A („Scope and 

characteristics of agent-based models of product development teamwork“). Prikazana analiza 

ističe nedostatke promatranih modela, ali i identificira mnoga važna postojeća rješenja koja 

stvaraju podlogu za razvoj željenog modela timskog rada. 

Četvrtim poglavljem („Model specification and theoretical foundation“) uvodi se teorijska 

pozadina razvijenog modela timskog rada u razvoju proizvoda. Kako bi se utvrdili aspekti 

ljudskog ponašanja čije modeliranje je ključno za vjerodostojni prikaz ponašanja čovjeka u 

društvenom okruženju, analizirani su postojeći istraživački okviri i modeli pojedinca. Pri 

modeliranju kognitivnih procesa čovjeka, dosadašnje studije naglašavaju važnost modeliranja 

ograničenosti ljudskog znanja i vremena pri donošenju odluka; raznolikosti čovjekovih 
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sposobnosti i karakteristika ličnosti; te sklonost predrasudama i razvijanju obrazaca ponašanja 

proizašlih iz prethodnih iskustava. Stoga se kao važne komponente modela čovjeka ističu: 

prikaz njegova znanja, prethodnih iskustava, procesa obrade informacija, percepcije situacije 

(npr. percepcija drugih članova tima i viđenje problema s kojim su suočeni), i dinamike 

mentalnog modela, tj. učenje i zaboravljanje; prikaz čovjekove osobnosti i mentalnih 

kapaciteta; te prikaz čovjekova emotivnog stanja koje utječe na mentalne procese. Na temelju 

literature iz domena psihologije, sociologije, organizacijskih znanosti, kognitivnih znanosti, 

razvoja proizvoda te računalnog modeliranja i simuliranja, predložena je arhitektura agenta 

kojom se obuhvaćaju identificirane važne komponente modela čovjeka. Uz navedenu 

arhitekturu, ovo poglavlje izlaže teorijsku pozadinu pojedine komponente te rezultira skupom 

zahtjeva koje višeagentski sustav za simulaciju ponašanja tima treba ispuniti kako bi se postigao 

cilj doktorskog rada. 

Peto poglavlje („Model implementation“) opisuje implementaciju razvijenog višeagentskog 

sustava za simulaciju tima u razvoju proizvoda. U razvijenom modelu, agent predstavlja 

pojedinca, tj. jednog člana razvojnog tima. Najsloženiji aspekt agenta je njegov mentalni model. 

Procesi rasuđivanja modelirani su kao širenje aktivacije po mreži agentova znanja. Agentovo 

znanje apstrahirano je oslanjajući na FBS ontologiju (Funkcija – Ponašanje - Struktura), time 

omogućavajući razlučivanje pojedinih procesa konstruiranja poput analize, sinteze i evaluacije. 

Modelirani su i mehanizmi inhibicije, učenja, prisjećanja, određivanje prioriteta, stvaranja 

novih struktura i veza među jedinicima znanja, kao i grupiranje jedinica znanja u veće elemente. 

Dodatno, razvijeni agent je karakteriziran svojom osobnošću, kognitivnim kapacitetom te 

emotivnim stanjem, a sposoban je i formirati percepciju svojih suradnika te na osnovu njih 

izgraditi povjerenje u druge te odlučivati o suradnji. Da bi se omogućila interakcija među 

agentima, modelirana su pravila i utjecaji komunikacije i interakcije među agentima. Razvijeni 

model implementiran je u alatu MASON te je pri implementaciji korišten modularni pristup 

prikazu pojedinih komponenti sustava. Primjerice, emotivna komponenta, utjecaj karaktera ili 

komponenta koja regulira percepciju drugih sudionika mogu jednostavnim odabirom biti 

isključeni iz simulacije. Time je omogućena veća sloboda pri provođenju eksperimenata te je 

olakšana verifikacija i validacija modela.  

Implementacija svih elemenata oslanja se na dostupne teorije i empirijske studije, ali i na 

poznate kognitivne arhitekture (za općenite namjene). U razvijenom modelu se, tako, općenite 

kognitivne teorije i arhitekture stapaju s teorijama o konstruiranju, stvarajući kognitivni model 

pojedinca u razvoju proizvoda. Razvijeni agent je sposoban stvarati nove strukture, donositi 
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zaključke, produbljivati svoje znanje, učiti i zaboravljati – što mu, posljedično, omogućava da 

promijeni svoje ponašanje na osnovu prethodnog iskustva. Ova karakteristika ključna je kako 

bi se simulirala dinamika timskog znanja te promjena timskog ponašanja koja proizlazi iz 

interakcija članova tima. 

Šesto poglavlje („Verification and validation of the developed model“) prikazuje rezultate 

testiranja raznih komponenti razvijenog modela. Testiranje modela, u svrhu njegove validacije 

i verifikacije, provedeno je hijerarhijski: od simulacije jednostavnih scenarija prema 

kompleksnijim. Tako je model prvo testiran u okruženju gdje samo jedan agent rješava zadatke. 

Pritom je promatrano agentovo ponašanje na jednom zadatku, potom i kako se to ponašanje 

mijenja kada je agent opetovano suočen s istim zadatkom te, konačno, kako se agentovo 

ponašanje mijenja tijekom rješavanja niza različitih zadataka. Na ovaj način redom su testirani: 

agentova sposobnost učenja, zaboravljanje nekorištenih jedinica znanja, inhibicija te utjecaji 

emocija, prethodnih sjećanja, područja stručnosti te kognitivne sposobnosti. Po završetku 

testiranja agentova ponašanja pri izoliranom radu, model je testiran na scenarijima koji 

uključuju više agenata. Učestalost, sadržaj te utjecaj komunikacije među agentima su 

promatrani kako bi se osigurala valjanost implementacije interakcija među agentima. Potom je 

promatran utjecaj agentove osobnosti - po pitanju ekstraverzije i ugodnosti - na uspjeh tima i 

dinamiku timskih procesa. Konačno, testiran je utjecaj povjerenja među agentima na ishod 

timske aktivnosti. Navedeni eksperimenti provedeni su s ciljem prikazivanja sposobnosti 

razvijenog računalnog modela da simulira obrasce uočene u stvarnom svijetu, no i da ukažu na 

nedostatke razvijenog modela čime se daju smjernice za njegov daljnji razvoj. 

U sedmom poglavlju („Study of design team learning and adaptation“), razvijeni model je 

upotrijebljen da bi se proučavale promjene ponašanja timova u razvoju proizvoda, time 

omogućavajući praćenje timske sposobnosti učenja i prilagodbe. Prikazani su rezultati dvaju 

studija. Prva je za cilj imala ispitivanje kako se timsko ponašanje mijenja kada je tim ponovno 

suočen s nekim zadatkom. Između dvaju izvršavanja danog zadatka, agenti su suočeni s nizom 

drugih zadataka čime im je omogućeno učenje te sakupljanje iskustva. Uspoređujući uspjeh 

tima pri prvom i drugom izvršavanju zadatka dobivena su saznanja o utjecaju stečenog iskustva 

na timsko ponašanje. Druga studija je usmjerena ka ispitivanju trendova u timskom ponašanju 

na nizu od nekoliko različitih zadataka. Da bi se izolirao utjecaj učenja i iskustva na timsko 

ponašanje, timski uspjeh na pojedinom zadatku uspoređen je s onim koji bi dani tim agenata 

postigao da nije bio izložen prijašnjim zadacima. U obje studije kao metrike uspješnosti tima 

korišteni su postotak uspješno riješenih zadataka te brzina konvergencije ka rješenju (tj. broj 
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simulacijskih koraka), a kao pokazatelji timskog učenja izdvojeni su podaci o komunikaciji 

među agentima te broju novonastalih elemenata znanja. Rezultati provedenih simulacija 

uspoređeni su s postojećim teorijama i zaključcima empirijskih studija, te dokazuju da razvijeni 

model udovoljava uvjetima za proučavanje ponašanja i prilagodbe tima u razvoju proizvoda, 

omogućavajući vrednovanje teorijskih postavki i testiranje hipoteza.  

Osmo poglavlje („An example of developed model’s usage“) opisuje primjer uporabe 

razvijenog modela pri proučavanju kognitivnog ponašanja timova u razvoju proizvoda. 

Preciznije, u danom primjeru, model je korišten kako bi se ispitao utjecaj timskih kognitivnih 

aktivnosti na procjenu jedne od ključnih komponenti kreativnosti – noviteta predloženih 

rješenja. Novitet pojedine strukture aproksimiran je njenom udaljenošću od postojećih rješenja 

(u prostoru definiranom pomoću nekoliko svojstava struktura). Uporabom modela moguće je 

pratiti širenje prostora postojećih rješenja te ispitati koje bi strukture bile smatrane novima u 

pojedinom trenutku simulacije. Na ovaj način uočava se da, razvojem prostora rješenja, neke 

strukture prestaju biti smatrane novima, no i da (kako se prostor rješenja proširuje u određenom 

smjeru) neke strukture mogu ponovno početi biti smatrane dovoljno drugačijima od drugih.  

Doktorski rad zaključen je devetim poglavljem („Conclusion“) u kojem je dan osvrt na 

nedostatke provedenog istraživanja i razvijenog modela, ali je i istaknut ostvareni znanstveni 

cilj te potvrda postavljene hipoteze. Rad prikazan u ovoj disertaciji rezultirao je trima izvornim 

znanstvenim doprinosima.  

1. Razvijen je teorijski model timskog rada u razvoju proizvoda. Razvijeni model se sastoji 

od modela pojedinog člana tima, modela timskog okruženja u vidu zadataka, resursa i 

organizacijskog konteksta, te definicije mehanizama koji opisuju interakcije među 

članovima tima, te između članova tima i njihove okoline. 

2. Izrađen je računalni prototip, temeljen na teorijskom modelu timskog rada te 

implementiran korištenjem višeagentske paradigme, koji se koristi za proučavanje 

ponašanja tima i timskih osobina koje proizlaze iz interakcija članova tima. 

3. Osmišljen je istraživački okvir za kalibraciju i validaciju razvijenog modela i 

računalnog prototipa timskog ponašanja, s posebnim naglaskom na timsko učenje i 

prilagodbu. 

Ključne riječi: Modeliranje i simulacije zasnovane na agentima; timovi u razvoju 

proizvoda; svojstva tima koja proizlaze iz interakcija njegovih članova; timsko učenje; timska 

prilagodba. 
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1 INTRODUCTION 
The first chapter serves to introduce the research goal and clarify the scope of the research with 

regards to computer science and design science. The chapter describes the motivation driving 

the work, explains research aims and hypothesis, and outlines the methodology adopted in the 

conducted research. The expected scientific contribution is discussed. Finally, a short overview 

of the dissertation outline is presented. 

1.1 Motivation 

Over the past few decades, organisational structures transformed from mostly revolving around 

individual jobs to the teams-based organisation of work [1]. The global competition and 

pressure for innovation drive a need for intertwining diverse skills and expertise in order to 

meet the market demands and adapt to economic and technical changes [2]. As a result of such 

trends, teams have emerged as an essential component of organisational work. Thus, in [3], 

Edmondson and Nembhard commence their work with a statement: 

The value of teams in new product development is undeniable. 

Indeed, the complexity of engineering projects introduces the necessity of contributions from 

multiple specialists [4], [5], rendering teams as the core building blocks of product development 

(or product design) organisations. Reported benefits of teamwork (as opposed to working in 

isolation) range from advancement in speed to market, increase in levels of innovation, 

reduction in development cost, and improvement in product quality [6], to superior performance 

in concept evaluation [7] and better problem-solving [8]. Thus, the prevalence of the view that 

a team’s efficiency is higher than that of individuals is not surprising. 

However, findings of several empirical [9], [10] and computational [11] studies show there are 

scenarios in which teamwork may be inferior to the isolated work of designers. Possible 

explanations for such results include [10], [12]: social lofting [13], groupthink [14], 

incompatibility of team members’ personalities, and task configuration; but more research is 

needed to understand such occurrences adequately. Similarly, numerous other aspects of design 

teamwork require additional studies. For example, researchers identified a need for future 

research on team decision-making [5], team learning [6], communication [15], leadership 

influence [16], and team behaviour in creative design activities [17].  

Research on teams in design is hampered by the difficulty and cost of conducting empirical 

studies. McComb [12] emphasises how typical manner in which teams are examined – i.e. 
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experimental cognitive studies in which a group of designers collaboratively work on a task – 

requires a lengthy process of conceptualisation, data collection and analysis. As a result, 

months-, or even a year-, long cognitive studies on teams are a norm. This poses a significant 

difficulty in conducting and advancing design team research.  

Another obstacle the real-world studies are faced with is the complexity and intangible nature 

of properties influencing human behaviour. Within the design field, a method frequently used 

to uncover designer’s cognitive processes is protocol analysis, which offers an information 

processing perspective of the design process [18]. By recording observables such as speech 

[19], posture [20], gestures [21] or drawings [22], protocol studies enable capturing the 

designers’ approaches to designing. Thus, protocol analysis has frequently been used to report 

information processing steps taken throughout the design process [18], [22]. Nevertheless, the 

interplay of processes underlying the observables remains challenging to understand. Questions 

such as: how do the cognitive and behavioural processes and affective mechanisms interact and 

result in the emergence of observed behaviours; how do individual’s cognitive behaviour and 

actions affect others within the team; and how do the team properties, processes and behaviours 

emerge from actions of individuals, all require further research. 

The problems of studying team cognition and other emergent team behaviours and processes 

are not unique to product development domain. In [23], the authors elaborated the importance 

of cognitive studies for advancing (general) research on teams stating:  

“While team research, […] has been fruitful, considerable work remains to be done. Several 

lines of investigation may be particularly beneficial […]. Foremost, perhaps, are the 

implications of cognitive theory, for team performance. One needs to understand how teams 

function as information-processing units; that is, how knowledge is acquired, shared and acted 

on. How do individual team members contribute vital pieces to the problem-solving puzzle, and 

how do those contributions build shared mental models and promote situational awareness? If 

one can understand this process, team performance measurement tools training can be shaped 

to capitalize on it. The next frontier in team measurement is to develop team assessment tools 

to capture cognitive phenomena. This is a must if progress is to be made understanding team 

functioning in complex systems.” (p. 1068-1069). 

The cited thought emphasises the need for studies of team cognition. Such studies should be 

concerned with the emerging nature of team learning, shared mental model development and 

situation awareness formation. The work presented herein, thus, aims to tackle the problem of 

studying team learning by offering a computational tool which enables conducting multiple 
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controlled experiments and exploring the sufficiency of implemented assumptions for the 

emergence of behaviours observed in the real world. In this manner, the developed research 

tool should be capable of offering a possible explanation of the processes underlying the 

observed team phenomena [24].  

Computational modelling and simulations are frequently employed to study complex socio-

technical systems (such as teams) since they provide researchers with a level of control 

unattainable in real-world studies. For example, one can easily re-run a simulation experiment 

(e.g. in identical setting) multiple times, or alter the input parameters and model assumptions 

one by one to observe the effect of such changes. Such flexibility in experiments promotes new 

insights, reveals the shortcomings of existing (implemented) theories, offers guidance of one’s 

intuition and can lead to a definition of new research questions to be tackled by empirical studies 

[25]. The listed advantages are especially important for team studies where multiple dimensions 

(e.g. regarding cognitive, affective or motivational aspects) of human behaviour are intertwined 

in their influence on the overall team behaviour. Thus, a computational model which addresses 

various dimensions of teamwork and enables running numerous experiments aimed at studying 

their co-influences on the team performance could be of great value in advancing team studies. 

As further elaborated in the following section, the work presented herein aims at providing one 

such computational model, with a specific focus on enabling insights in team learning and 

adaptation. 

1.2 Research aims and hypothesis 

Following the presented motivation driving this work, one can conclude that the desired model 

of teamwork should enable cognitive studies of teams, supporting the simulation of various 

scenarios and capturing the emergence of different team properties. The desired model’s 

implementation can be seen as a ‘computational laboratory’ serving for theory-testing and 

what-if analyses. It is important to note, however, that obtaining a highly-realistic, 

comprehensive model of designers’ behaviour in a team setting is unattainable within the scope 

of this work. Instead, this work serves to set the ground for such a model by creating an easily-

extendable, multi-purpose tool which integrates several of the existing theories and models.  

The aim of the model is not to replace empirical studies, but – as emphasised previously - to 

provide a means for exploring the co-influences of multiple theories and studies of the sufficient 

conditions for the emergence of team properties and behaviours - in particular, team learning 

and adaptation. The results obtained by utilising the developed model should serve to guide 
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intuition and inform future empirical studies. The results of such empirical studies should, in 

turn, be used to refine the model further and improve its veridicality. 

Of specific interest within this study is a team’s capability to learn and change its behaviour 

over time. To study how knowledge is acquired by and shared among team members, it is 

convenient to model each team member as a separate entity. Such setting enables studies of 

team learning and adaptation as emerging from the interactions among team members [26]. One 

simulation technique offering a means to implement the desired bottom-up perspective is agent-

based modelling [27]. This work explores its suitability for the described research goal. 

Thus, the goal and hypothesis of this work can be formulated as follows: 

Research goal: The main goal of the doctoral research is to develop and validate a theoretical 

and computational model of teamwork in order to enable simulation and study of team’s 

capability to adapt to changes in circumstances occurring during the product development 

activities. 

Hypothesis: An agent-based model (ABM) is appropriate to study simulated emergent 

behaviour related to teams developing products, and to provide a framework for studying team 

adaptation as a response to changes in circumstances occurring during the product development 

activities. 

1.3 Research methodology 

The methodology followed for deriving the desired model of product development teamwork 

is developed after [28] and shown in Figure 1.1. Based on this methodology, the research can 

be divided into three research cycles: (i) Relevance cycle, (ii) Development cycle and (iii) 

Rigour cycle.  

The first, Relevance cycle, is directed towards understanding the current state-of-the-art, 

defining the problem boundaries, describing the phenomenon of interest and exploring the 

existing solutions. Within this research phase, the computational modelling environment is 

linked to the circumstantial environment by specifying the research needs. These needs are 

stated in the form of requirements, constraints and specifications for a solid understanding of 

the product development teams and teamwork. Firstly, the phenomenon and variables of 

interest are identified and defined, along with the description of how to measure them reliably 

and validly. Secondly, the scientific principles and the nature of variables’ relationships with 

the observed phenomenon (i.e. emergent team properties) in the context of product 
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development are examined. Thirdly, the computational techniques (e.g. agent-based modelling) 

for simulation and exploration of the relationships between variables and the studied 

phenomenon are introduced and analysed. A review of relevant theories, existing models and 

empirical studies is conducted, and a set of preliminary models is developed to establish a valid 

basis for the development of a research framework focusing on team’s emergent properties. As 

an outcome of this research phase, the primary variables and factors that are relevant for the 

analysis of team’s emergent properties are identified, and a suitable computational modelling 

paradigm is selected. 

In the Development cycle, findings from the previous phase are implemented in the form of a 

computational model. More precisely, this cycle begins with a definition and development of a 

conceptual model to be used for simulation of emergent team properties. Model elements are 

defined, and rules for their behaviour, evolution and interaction are explicated. To ease 

implementation, testing and subsequent experimentation, the derived model is separated into 

several sub-models of lower complexity. Sub-models aimed at representing specific behaviour 

or properties of importance for teamwork simulation are designed and implemented. Once these 

models are implemented, a set of testing experiments are designed and conducted. Iterative 

testing is employed to ensure internal validity and to enable refinement directed at an increase 

in consistency with the available theories and empirical findings. 

 

Figure 1.1 Research methodology (based on [28]) 
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Finally, in the Rigour cycle, the models developed in the previous cycle are integrated into a 

coherent simulation framework. The developed computational system is tested to examine its 

capability to simulate product development teams and enable studies of emerging team 

properties. Findings based on a comparison of the outputs with the literature-based predictions 

and empirical studies (i.e. the body of knowledge) serve for further refinement and remodelling. 

In turn, once a sufficient level of system’s credibility is achieved, the derived tool can be utilised 

for its purpose: testing of theories and informing the future team studies. In other words, the 

final research phase contains an iterative loop of theory testing and theory-building in which 

both, the developed model and the understanding of the real-world system are refined. 

1.4 Scientific contribution 

To obtain the emphasised research goal, multiple theories, empirical studies and existing 

models should be reviewed, integrated and build upon to derive a coherent computational and 

theoretical model. The review of the existing work and further integration, extension and testing 

activities lead to important outputs of the work presented herein. The expected scientific 

contribution of this work is manifested through: 

1. A theoretical model of a product development team which consists of a model of an 

individual team member, a model of a team environment regarding tasks and resources, 

and a definition of mechanisms guiding the interactions among team members, and 

between team members and their environment. 

2. A computational prototype in the form of a multi-agent system which is built based on 

the theoretical model and which enables the study of emergent team properties and 

behaviour. 

3. A framework for calibration and validation of the developed model and computational 

prototype of team behaviour, with a focus on the component of the team adaptability 

and learning. 

1.5 Dissertation outline 

The thesis is divided into nine chapters, which are organised as follows.  

Chapter 1 introduces the scope of the research by describing the motivation for the conducted 

work and by emphasising the research goal, hypothesis and contributions. The chapter outlines 

the research methodology followed to achieve the desired goal. 
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Chapter 2 serves to provide a brief research background in several domains relevant for this 

work. In the first part of the chapter, the terminology regarding teams is introduced, and several 

important aspects of team performance modelling are discussed. Then, the relevance and 

difficulties of team studies in product development setting are described. The second half of 

the chapter introduces computational techniques for modelling and simulation and discusses 

their suitability for the study at hand. Finally, several examples of agent-based models of teams 

are given to illustrate the range of modelling capabilities provided by this modelling technique. 

Chapter 3 gives a detailed overview of existing agent-based models of product development 

teams and teamwork. First, the models’ purpose and domain of application are briefly discussed 

(a more detail overview can be found in Appendix A), and the chapter then focuses on each of 

the main elements of agent-based models: agent, environment and interactions. The models are 

compared based on their representation of the product development tasks, as well as details in 

modelling the team members: their mental models, learning capabilities, expertise, personality, 

attitudes and emotions. Finally, the chapter explores how emerging team properties, behaviours 

and processes have been studied by the existing agent-based models. The detailed review of 40 

models developed to date serves to highlight research gaps and opportunities, but also provides 

a basis upon which the model presented in this work is built. 

Chapter 4 sets a theoretical background for the developed model. The literature was searched 

in order to derive the architecture of the multi-agent system, with particular attention given to 

determining the components of the agent’s architecture. Further, the relevant research and 

theories describing each of the identified agent’s components are reviewed to inform the model 

development. This chapter, coupled with the problems and existing approaches detailed in 

previous chapters, specify relevant primary variables and factors in modelling the emergent 

team properties and performance. Thus, this chapter concludes the work corresponding to the 

Relevance cycle of the methodology followed in the multi-agent system’s development. 

Chapter 5 presents the main contribution of this work: the developed multi-agent system for 

simulation of product development teams. Implementation details of each of the components 

identified in Chapter 4 are described, and connections among components are defined. Since 

this work focuses on providing a research tool capable of informing future cognitive studies of 

teams and their emerging properties, a strong emphasis is placed on modelling team members’ 

cognitive behaviour and interactions with others. 

The model introduced in Chapter 5 is extensively tested in a series of experiments whose results 

are reported in Chapter 6. This chapter aims to demonstrate the developed system’s behaviour 
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and to compare it to the prominent theories and empirical research findings. The conducted 

experiments, thus, highlight not just the model’s capabilities, but also several of the model’s 

limitations and opportunities for future refinements. The work reported in this chapter 

corresponds to the Development cycle of the employed research methodology, and (along with 

the work outlined in previous chapters) concludes the development of the theoretical model and 

computational prototype specified as first two scientific contributions of this work. 

Chapter 6 describes the results of hierarchical testing of each of the modelled components or 

sub-models directed at simulating specific aspects of teamwork. As described in Section 1.3, 

after completion of the Development cycle, the sub-models are integrated into a coherent 

simulation framework. In particular, the developed multi-agent system is tested for the 

capability to capture the change in the team’s behaviour due to learning (i.e. team adaptation). 

Chapter 7 outlines the results of such experiments, thus reporting on the outcomes of the 

research phase corresponding to the Rigour cycle. The work presented in Chapters 6 and 7 

results in the third scientific contribution specified in Section 1.4. 

One example of the experiment conducted with the developed multi-agent system is presented 

in Chapter 8. The experiment results demonstrate the capability of the developed model to 

inform the cognitive studies of product development teams regarding the team search for the 

solution (i.e. design solution space exploration and expansion) and its impact on the solution 

creativity assessment.  

Chapter 9 concludes this work by reflecting on the research goal, hypothesis and scientific 

contributions. The developed model is compared to the existing agent-based models of product 

development teams (reviewed in Chapter 3), which provides a frame for discussion of the 

model’s limitations and advantages. Finally, following the description of the Rigour cycle of 

the employed methodology, the model’s future refinements and opportunities for future work 

are discussed. 
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2 RESEARCH BACKGROUND 
This chapter presents a brief research background and explores the suitability of modelling 

techniques to represent aspects of teamwork relevant to the research goal specified in the first 

chapter. The chapter commences with the introduction of important concepts regarding teams 

in general and then describes the setting in which product development teams are operating. 

Next, computational techniques for modelling and simulation of complex systems are 

introduced and briefly reviewed with the regards to their capability of capturing dynamics of a 

team. Finally, a closer look into several agent-based models of teamwork is taken to present the 

capacity and potential of the agent-based modelling technique. The chapter is concluded with 

a short discussion on the suitability of modelling techniques for the problem at hand. The work 

presented in this chapter builds on the work published in [29]. 

2.1 Teams, teamwork and team performance modelling 

Numerous definitions of the term team can be found in the literature. For example, while some 

regard dyads as a team (e.g. Salas et al. [30]), others argue that a minimum of three individuals 

is necessary to form a team [31]. The authors in [31], thus, reviewed several perspectives and 

integrated them in the following definition (p. 79): 

“[A team is a group of] (a) two or more individuals; (b) who interact socially (often face-

to-face or, increasingly, virtually); (c) possess one or more common goals; (d) are brought 

together to perform organizationally relevant tasks; (e) exhibit interdependencies with respect 

to workflow, goals, and outcomes; (f) have different roles and responsibilities; (g) and are 

together embedded in an encompassing organisational system, with boundaries and linkages 

to the broader context and task environment.”. 

In particular, specialised roles, the interdependence of tasks, and shared goals are crucial 

features distinguishing teams from small groups [23]. But Salas et al. [32] argue that even more 

is needed to form an effective team. The authors stress the importance of effective coordination, 

cooperation and communication among members to develop a shared understanding of a task 

and a team. In short, the authors emphasise teamwork as a necessary ingredient for a group to 

form an effective team. Motivated by the question of the essence of teamwork, the authors in 

[32] conducted an extensive literature review and identified five core components promoting 

team effectiveness and influencing team performance. The ‘Big Five of teamwork’ are team 

leadership, mutual performance monitoring, back-up behaviour, team orientation, and 
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adaptability. In order to enable, update and support the development of Big Five factors, the 

coordinating mechanisms are needed. These coordinating mechanisms are shared mental 

models, mutual trust and closed-loop communication. Although additional variables are found 

to influence teamwork, the authors in [32] argue that the ‘Big Five’ represent the core teamwork 

components. 

In accordance with the stance taken by Salas et al. [32], Kozlowski et al. [33] note that the 

notion of teamwork is captured by team processes. In their work, Marks et al. [34] define team 

processes as interdependent acts of team members that perform cognitive, verbal, and 

behavioural activities aimed at organising taskwork to lead towards collective goals 

achievement. This definition clearly distinguishes taskwork (i.e. interaction with tools, 

machines and systems [34]) from team processes, for which interaction with other members is 

a critical feature.  

Another essential concept distinct from but related to team processes is emergence. Emerging 

team states arise from interactions among team members, depend on the context and team 

experiences, and are dynamic in nature. In the context of team processes, emergent states can 

be considered as both, input and proximal output [34], since they arise from but also impact 

team processes. Kozlowski et al. [33], [35] note that emergent phenomena (states and 

processes) result from the interplay among individual cognition, affect, motivation, and 

behaviour, are amplified by interactions among individuals and manifest at a higher level – as 

a collective phenomenon. As the most critical emerging states and processes for the team 

effectiveness, Kozlowski and Chao [26] emphasise team cohesion and team cognition.  

Team cohesion is defined as the commitment of team members to their team and their desire to 

maintain team membership ([31], [36]), and is closely associated to one of the Big Five factors 

– team orientation. However, Salas et al. [32] note that team orientation is more general: while 

team orientation deals with a general tendency to working with others, team cohesion is directed 

towards a specific team.  

Team cognition encompasses both: the process of learning and knowledge outcomes. Although 

the distinction between the two is often not clear [26], distinguishing them is especially 

important in cases where the goal is to examine the knowledge emergence from learning in 

teams [37]. The authors [26] describe how learning begins by one’s acquiring internalised 

knowledge (i.e. individual learning). The knowledge gets externalised by communication, 

information sharing and exchange of ideas. Thus, interactions are necessary for the shared 

knowledge to emerge from distributed knowledge. Outcomes of learning are the formation of 
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collective knowledge, shared mental models, transactive memory and macro-cognition [37]. 

Such shared cognition supports the development of “Big Five” of teamwork, thus influencing 

team effectiveness and performance [32].  

When modelling teams and team performance, one may utilise work presented in [38]. With 

the aim of providing a framework for team performance modelling and simulations, Salas et al. 

[38] extract key ‘ingredients’ to consider when developing a teamwork model. Identified 

aspects of teamwork are further classified based on necessity of their inclusion in a model of 

team performance. Thus, three level of importance are defined: ‘must-be-modelled’, ‘should-

be-modelled’, and ‘would-like-to-model’.  

The ‘must-be-modelled’ category comprises team components needed to sufficiently present 

the task, team and their environment. In particular, the authors argue that individuals must be 

characterised by their cognitive ability and personality, and their work assignment and 

communication structure must be explicated. Similarly, task load and time pressure need to be 

included to represent environmental factors, while task type and interdependencies among tasks 

must be specified to sufficiently describe tasks team members are performing. To characterise 

a team, Salas et al. [38] emphasise modelling of team type, structure and size. Finally, the 

authors note the importance of modelling noise and its influence on team member’s interactions 

and information processing. 

The ‘should-be-modelled’ components focus on representing diversity among team members. 

Thus, the authors [38] note that details on the team member’s expertise area and cultural factors 

should be added to the model. Additionally, an individual’s behaviour should be detailed 

through modelling of mental models, motivation and attitudes. Salas et al. [38] also discuss 

some of the influences among several of the included elements (e.g. the impact of team size 

and task difficulty on an individual’s motivation). 

As proposed in [32], team effectiveness depends on the Big Five elements of teamwork and the 

coordinating mechanisms. Modelling of these team competencies (i.e. team leadership, mutual 

performance monitoring, back-up behaviour, adaptability, team orientation, shared mental 

models, closed-loop communication and mutual trust) necessarily depends on knowledge, skills 

and attitudes of the individuals forming a team. Similarly – as already discussed - team cohesion 

emerges from the interactions among team members. The authors [38] add the notion of team 

climate: another emerging state reflecting the ‘ambient stimulus’. These emerging states and 

processes form a ‘would-like-to-modelled’ category. Finally, the authors add team norms to this 

category. 
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Altogether, these categories define a set of important components to be considered when 

developing a team performance model [38].  

2.2 Teamwork in product development 

Many of the design tasks are conducted by teams. In fact, goal formulation, ideation and 

decision-making are all typically conducted in a team setting [39]. Following the paradigm shift 

from individual to team-based work organisation described in the first chapter, it is not 

surprising that the research focus changed along. Ensici et al. [5] thus note how in the 1960 the 

focal research question changed from ‘How does a designer design?’ to ‘How do designers 

design as a team?’. However, despite this increase in research interest, numerous areas of design 

teamwork remain insufficiently understood. 

One reason for slow progress in understanding (design) teamwork lays in its complexity. A 

design team is formed of individuals who - aside from interacting with one another - interact 

with resources in order to produce a description of a product satisfying the requirements. 

Additionally, the environment in which design teams are situated is dynamic, with market 

demands and availability of resources constantly influencing the team and their goal. Thus, 

while designing, the design team, non-human resources and their work environment operate as 

a socio-technical system, as presented in Figure 2.1 [29]. 

The socio-technical system comprised of team members (human), non-human resources and 

the environment (represented in Figure 2.1) displays dynamic, non-linear, emergent and self-

organising behaviour. This behaviour arises from the interdependence of the system’s parts and 

is difficult to determine by observing the parts in isolation. In other words, the presented system 

possesses all of the characteristics of complex systems [40], [41].  

The complexity is amplified by several characteristics of design teams – in particular, cross-

functionality [3]. Design teams are usually composed of individuals with diverse knowledge 

background which - although beneficial in promoting creativity and tackling the variety of 

product requirements – also increases the level of conflict and misunderstandings among team 

members [3]. Thus, it is not surprising that research on team cognition and development of 

shared team mental models [42] and effective communication and cooperation [43] are 

regarded as of great importance within the design field.  

Additionally, design teams often have fluid team boundaries and temporary membership [3], 

which emphasises the need for understanding how team expertise develops, persists and 
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evolves in design teams [44]. Frequent changes within the team, as well as changes in the 

environment (e.g. new technologies or task requirements) render another component of the “Big 

Five” as crucial for the design team success: adaptability.  

 

Figure 2.1 Model of design process as a socio-technical system 
(developed after [45]) 

Similarly, one can identify numerous other areas of design teamwork that require additional 

research. For example, researchers (e.g. [15]) discussed the potential relation of team cohesion 

and design team effectiveness, while [46] explored the emergence of team creativity with regard 

to team composition, coordination and management processes. Every of the listed ‘Big five’ 

aspects, the coordinating mechanisms, and other emergent team states and processes presents a 

potential domain of future work. A manner in which such studies may be supported is by 

developing simulation models. A model is an approximation of the system – a simplified 

portrayal of reality whose manipulation and analysis helps in gaining a deeper understanding 

of the problem. 



Research background 

14 

2.3 Computational modelling and simulations 

Building on the conceptualisation of a design team and its environment as a complex socio-

technical system (Section 2.2), when deciding on the most suitable technique to obtain a 

teamwork simulation model, common techniques for modelling and simulation of complex 

systems are considered.  

Some of the well-known such techniques are, for example, Petri Nets, Cellular Automata, 

Discrete Event, Markov Chain, System Dynamics and Agent-based modelling. However, the 

exhaustive list is difficult to provide since the line between these approaches is not strictly 

defined [40], and many models utilise aspects of several techniques. Nevertheless, the author 

in [40], argues that Network, System Dynamics, Discrete Event and Agent-based modelling 

techniques have the ability to satisfy the widest span of modelling needs. 

Network Simulation (NS) – as evident from its name – represents a system of interest in the 

form of a network, i.e. graph where vertices represent entities, and relationships between 

entities are represented by edges. Relationships can have different weight, can be directed or of 

various types. Erdös and Rényi [47] first used networks to represent and study complex 

systems, laying the groundwork for numerous later applications [48]. Other important research 

results on networks can be found in the work of Watts and Strogatz [49] and Albert and Barabási 

[50]. NS is an approach often used to simulate communication networks, social proximity or 

exchange of data packages over the Internet. 

System Dynamics (SD) was developed by J. Wright Forrester in 1950s [51]. It is a top-down 

approach that models continuous changes within a system. Changes are driven by cause-effect 

dependencies that can be represented mathematically as a system of differential equations. 

Thus, System Dynamics approach models high-level aggregates: it uses level variables to 

describe the systems’ state [52] and represents modelled elements at an aggregate level. Since 

individual entities are not modelled, interactions and individual characteristics are difficult to 

represent.  

Discrete Event Simulation (DES) was introduced by G. Gordon in the 1960s [53] and serves 

for simulating a sequence of events, i.e. discrete points in time when entity’s state variables 

change. Various discrete-event worldviews such as event scheduling, process interaction, 

activity scanning, state machines and others are listed in [54]. However, two most common are 

event-oriented and process-oriented [55]. In the process-oriented worldview entities simply 

move through processes that require some resources and a certain amount of time. Rules are 
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implemented on a system level, and an emphasis in the simulation is placed on entities’ life 

cycle. In the event-oriented worldview, modeller concentrates on events and their impact on 

the state of the simulated system. Usually, Discrete-Event modelling is used to explore 

problems of bottlenecks and queues in modelled system. 

Agent-based Simulation (ABS) is a bottom-up approach where each entity, i.e. agent, is 

autonomous and has unique characteristics and variable values. A typical agent-based model 

consists of a set of agents, an environment and a set of interaction rules guiding agents’ 

interaction with others and the environment. First agent-based models date to 1970’s (for 

example, Schelling’s model of ethnic segregation [56]), but agent-based modelling was not in 

wide use until 1990’s. By modelling each agent individually and defining rules for their 

interaction (with other agents and with the environment they are situated in) and observing the 

outcomes of the simulation, researchers can explore the macro-level behaviour emerging from 

agents’ interactions. 

The brief overview of several aspects underlying effective teamwork (Section 2.1), and the 

described setting in which design teams are operating emphasise the criteria for evaluating the 

available computational techniques. The goal of enabling cognitive studies of design teams 

poses a requirement of creating artificial representations of designers’ cognitive behaviour. 

Similarly, the goal of studying team properties and processes as emerging phenomenon, stresses 

the need of capturing interactions among members. Finally, dynamic, non-linear and adaptive 

behaviours of design teams should be modelled. 

Comparison of modelling techniques with respect to the relevant criteria is presented in Figure 

2.2 [29]. The comparison (discussed in [40]) emphasises the superiority of agent-based 

modelling regarding modelling flexibility. However, such expressiveness comes at the expense 

of difficult creation and validation. Nevertheless, the analysis indicates the suitability of ABS 

technique for developing the desired model of a design team. 

This is not to say that NS, DES and SD models are not useful in studying design team 

performance – rather that ABS is the most flexible in capturing aspects relevant for cognitive 

studies of design teams. Other techniques are, on the other hand, often preferred to ABS for 

simulating design processes. As argued in [57], SD models are particularly useful in capturing 

iteration and concurrency of the design processes, while - for example – work in [58] enables 

simulation of distributed product development processes for small and medium enterprises by 

utilising DES modelling technique. 
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Figure 2.2 Comparison of techniques for modelling and simulation (after [40])  

2.4 Agent-based modelling of teams 

In their discussion on the suitability of agent-based models to represent organisations and 

teams, the authors in [59], [60] emphasise that, due to its bottom-up approach, agent-based 

models do not have to be based on well-structured formal theories. This creates an advantage 

for management, organisational studies and psychology as these domains rarely provide formal 

equations. Researchers [59] argue that by shifting the focus from solution finding (taken in 

equation-based techniques) to exploring dynamics and evolution of the system, agent-based 

modelling approach provides a powerful tool for studies of emergence within complex systems 

[61].  

One example of such a research tool is provided in [62]. Dionne et al. [62] build on McComb’s 

theory of three-phase mental model development [63] to simulate shared mental model 

convergence in a team. The model is further used to study the influence of leadership and shared 

mental models on team performance. By modelling differences in agents’ view of the team 

goal, the inclusion of agents’ beliefs of others’ expertise, and a variable of self-confidence, the 

authors capture many interesting phenomena in a computational model.  
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Hughes et al. [64] emphasise advantages of agent-based modelling in the form of its capability 

to integrate multiple theories and a plurality of data sources at the level of the agent’s interaction 

and behaviour rules. While other approaches also enable multi-source data integration, the 

authors argue that ABM offers a different level of granularity which results in broader and more 

interdisciplinary models than the model commonly employed in organisational psychology 

domain. The capability to integrate various aspects of – for example - human behaviour enables 

the creation of increasingly veridical systems.  

One example of the models where multiple theories are integrated to derive a detail social 

behaviour is Construct [65], [66]. Construct uses social network analysis for detecting risks in 

organisations and for simulating social change emerging from communication and learning of 

agents forming a team. It models the agent’s beliefs, information exchange, learning, and an 

effect of change in the agent’s beliefs and knowledge on activities. Agents are creating beliefs 

about not just each other’s expertise, but also their similarity. This enables Construct agents to 

display homophily. The dynamic relationships among Construct agents are derived from 

organisation theory, structuration theory and influence theory, and give rise to complex 

temporal behaviour. 

It is important to note, however, that a call for highly veridical agents does not diminish the 

value of agent-based models in which agents are modelled as simple information-processing 

units. 

An example of the model where simple behavioural rules lead to significant findings is the 

model of Hong and Page [67]. Hong and Page [67] modelled groups of problem-solvers as 

agents with different problem-solving heuristics. The problem space is represented as a plot of 

a random function where the height represents the quality of the solution. Based on their 

heuristics, agents are roaming the space in search of the function’s maximum. Once an agent 

determines it cannot find any higher value position (i.e. it is stuck in a local optimum), it shares 

its findings with the others, and the next team member starts its search where the previous 

member finished. By using this model, authors proved that a randomly selected subgroup of 

problem-solvers with diverse search heuristics could outperform the group of problem-solvers 

who individually scored the best results (who themselves can be diverse) if the initial population 

of problem-solvers is sufficiently large. The importance of diversity in teams is also emphasised 

by LiCalzi and Surucu [68], who developed a model equivalent to Hong and Page’s model but, 

while Hong and Page studied large problem-solving populations, LiCalzi and Surucu studied 

large problem spaces [68]. None of the agents as implemented in [67] and [68] learns (in terms 
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of increase of skills or expertise), changes motivational states, or dynamically forms social 

relations with others. Agents and environment in these models are rather simple - agents behave 

following few simple rules and interactions between agents are limited to transfer and 

evaluation of current solution. Nor agents’ characteristics, nor rules for their interactions, nor 

the environment changes during the simulation, and agents possess no model of their team 

members’ knowledge or capability. However, such simple definition enables the simulation of 

large populations of agents, facilitates the result analysis and code verification, provides means 

to simulate a great variety of different scenarios in a reasonable amount of time, and enhances 

our understanding of the processes which can further be enriched and extended afterwards. 

2.5 Research implications 

Teams are complex systems, and much remains to be explored and understood about their 

functioning and dynamics. Team performance and processes cannot be predicted by observing 

individual members in isolation. Thus, when developing tools for team studies, ones capable of 

capturing emergent team states and processes are of particular value.  

Macal [69] argues that any system in which entities are autonomous, heterogeneous, strategic, 

capable of learning, are anticipating other entity’s reactions, have dynamic relationships and 

form organisations, makes a good candidate for an agent-based model. Teams, regarded as a 

system of interacting individuals embedded in an organisational setting, have all of the listed 

characteristics. Team members, their interactions and organisational context can naturally be 

translated to the elements of an agent-based model: agents, interactions and environment. The 

bottom-up approach taken in agent-based modelling enables exploring dynamics and evolution 

of the system, thus facilitating studies of emergence.  

Existing agent-based models integrate findings from several theories and explore team 

processes difficult to capture in the real-world setting. Simulations obtained by utilising these 

models increase the understanding of the mechanisms underlying efficient teamwork and 

provide a stepping stone for future, more detailed and veridical models.  

Additionally, one feature of the body of research on design may prove beneficial in developing 

agent-based models of design teams. Early design studies focused on the works of individuals 

[5], and to this date, studies of individual are prevalent (to design team-oriented studies) [17], 

[18]. Thus, the majority of what is known about the design process fits the level of an individual 

[18]. Although one must be careful to not generalise the individual-level findings to a group 

setting, some of the developed theories and collected data can be used to guide the detailing of 
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the individual agent’s behaviour. Then, simulations and subsequent empirical studies could test 

if such models of interacting individuals enable the emergence of the observed team properties 

and processes. 
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3 RELATED WORK: AGENT-BASED MODELS OF 
PRODUCT DEVELOPMENT TEAMS 

This chapter takes a closer look at the existing agent-based models of product development 

teams. The models included in this chapter were obtained by searching the Web of Science, 

Scopus, ACM DL, and IEEE databases using the query: 

agent* AND (model* OR simulat*) AND (team* OR group*) AND ("product 

development" OR "product design" OR "engineering design"), 

or its equivalent for each database. The results were further filtered to include only the articles 

written in English. Articles where a) agents were used as a human avatars intended to display 

realistic behaviour, b) the model is used to study aspects of product development team 

behaviour or performance, and c) sufficient details were provided to gain understanding of the 

model (i.e. agents, environment and interactions are described, although the implementation 

may not be performed) were included. However, several exceptions to these rules have been 

made. Models ([70]–[72]) were included because they explicitly model the behaviour of 

individual designers with a similar goal, though these designers do not necessarily belong to 

the same team. Searching the citations and references further extended the set of identified 

articles. Overall, 40 different models were detected. Their application area, main purpose, key 

characteristics and limitations are reported in Appendix A. Additional models, for example, 

Team-RUP ([73]) or model developed in [74], although not included in this overview, may 

serve as a source of implementation ideas. Team-RUP [73] is used for simulation of cooperative 

team behaviour in software development teams. Particularly, it is aimed at simulating the effects 

of turbulence (i.e. change of the requirements and employee turnover) on the team efficiency 

and effectiveness – thus tackling the problem of studying team adaptation. However, the agents 

within Team-RUP model represent teams (rather than individuals), thus restricting the study of 

influence individuals’ traits have on team performance, and preventing studies of team 

adaptability as a property emerging from individual-level adaptation and interactions between 

team members. Similarly, the model in [74] presents an interesting study of the effect of initial 

mental characterisations (regarding inter- and intra- subsystems’ interactions) on product 

development performance. Although this model introduces useful ideas on how to represent a 

design space and simulate agent’s mental model update through social learning and imitation, 

like in Team-RUP, the simulated agents serve to represent teams rather than individuals.  
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In this chapter, a short review of the identified models is presented. The discussion is organised 

to examine the differences in models’ purpose and trends related to the three elements of agent-

based models: agent, environment and interactions’ representations. The overview does not aim 

to cover every aspect of each model, but to provide several observations on the commonalities 

and differences among reviewed models. The work presented in this chapter builds on and 

extends the overview published in [29]. 

3.1 Model’s purpose and domain of application 

The identified models differ greatly in their scope and purpose. Majority of the models are 

intended to model particular team properties, behaviours or processes, and enable studies of 

their impact on the team. For example, the model described in [75] explores how the use of 

analogies influences team cohesion and collaboration, [76] deals with the formation of 

transactive memory system, [77] studies the impact of work overload on team innovation, and 

[78] tackles the question of the effect of team structures on brainstorming outcomes. Based on 

the classification provided in [79], these models are generators as they explore whether a theory 

can produce a behaviour observed in the real world, and serve to increase understanding of 

little-understood aspects of design teamwork. The prevalence of such models is not surprising: 

the authors in [79] note that, in complex fields without firmly established theories, the majority 

of developed models tend to be generators. 

Rather than providing theory-testing research tools, other models (e.g. [57], [80]–[86]) are 

primarily concerned with the estimations of project duration, cost and quality of outcomes, or 

anticipating problems in project execution. Most often, these models are developed as 

managerial tools which aim to support team formation and process planning. One of the first 

and best-known such models is Virtual Design Team (VDT) model [80], [87], [88], which was 

later commercialised as SimVision®, licensed by ePM [89]. 

Most of the reviewed models simulate ‘generic’ product development teams and do not pose 

limitations on the domain of application. However, models [90]–[93], simulate mass and open 

collaborative product development (MCPD), thus introducing specific assumptions on the 

simulated processes and agents’ behaviour. In recent years, MCPD has emerged as a new form 

of product development where large communities of loosely connected individuals work 

together to produce goods or services [90]. In contrast to traditional product development, 

participants of MCPD are self-interested, decentralised, loosely connected, and can choose 

when to work and what tasks to perform. There are no deadlines or tightly controlled processes, 
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and product continuously evolves over time guided only by the interests of producers. One 

example of such a product is Wikipedia. Due to the differences from the traditional setting, 

results obtained by utilising MCPD team models often cannot be generalised to traditional 

product development teams. 

The models [94] and [95] simulate space mission design teams. In [95], Bellamine-Ben Saoud 

and Mark are modelling a design session during which sidebar discussions are occurring and 

interrupting the workers. Sidebars are creating noise, but also act as a source of information, 

and the authors explore how sidebar conversations affect error detection and team performance. 

Olson et al. [94] developed an agent-based simulator which is used to simulate behaviour 

observed in the design group at NASA’s Jet Propulsion Laboratory called Team X. Although 

these models can be used to simulate other design teams, their usage is hampered by the amount 

of input data necessary to tailor the simulations for other use cases.  

The work in [96]–[98] forms another group of models which simulate teams developing a 

specific class of products: software. Blau et al. model [96] studies how incentive schemes, 

individual or group, in large-scale lean software development affect the teams’ backlog 

dependency resolution behaviour. Farhangian et al. [97] model team member’s competency and 

personality and study their impact on team performance by comparing task allocation strategies: 

minimising over-competency or minimising under-competency. Finally, the model developed 

by Xia et al. [99] is used to explore the effects task assignment strategies on the evolution of 

knowledge in software R&D teams. 

Within construction and management engineering (CEM) domain, models [100], [101] and 

[102] have been proposed. However, due to a coarse-grained view of teamwork and project 

execution taken, these models are applicable to broader fields of research. Additionally, the 

problems these models are tackling are relevant to other product development domains. The 

model presented in [102] captures interdependencies and functional diversity among members 

and compares team member selection orientations in different (market) contexts. Building on 

the VDT [80], VOICE [100] enables modelling of details of the project workflow and 

organisational structure to estimate performance outcomes regarding project time, cost and 

quality. Son et al. [101], [103] develop a simple, network-based model of collaboration to study 

how interaction cost influences the evolution of temporary project teams. 

The listed examples emphasise another dimension along which the reviewed models differ: the 

time frame and project phase simulated. While most of the models take one task or a project as 

standard simulation length (i.e. one simulation run represents one task or a project), others are 
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specifically designed to simulate team dynamics over long periods. For example, [82] and [78] 

simulate a brainstorming session (thus simulating no more than several work-hours). On the 

other hand, in Hsu et al. [102] model, one simulation step represents one day, and a typical 

simulation run represents multiple years period. Similarly, the model in [103] simulates the 

evolution of collaboration networks over multiple projects. Regarding the design phase 

simulated, several models (e.g. [104], [105]) explicitly map different design phases to the 

modelled aspects. The model presented in [94] simulates conceptual design of a space mission 

plan, while [57] and [106] are targeted towards capturing the dynamics of early design 

processes in industrial organisations. 

3.2 Representation of a task and an environment 

Many of the developed models conceptualise design as a search over a rugged landscape. In 

these models, each point on the landscape represents one solution, and the height of the 

landscape determines its suitability for the problem. Thus, the agents roaming the space are - 

in essence - acting as optimisers in search of a global maxima.  

One popular approach to creating a rugged landscape that represents a design space is by 

utilising Kauffman’s NK model [107] In the NK model, N is a parameter representing the 

number of individual elements influencing the height of the landscape (i.e. the overall fitness 

value). Each element typically has two possible states: 0 or 1, thus yielding 2N possible 

combinations. For every element, a fitness value is assigned to each of its states. Further, the 

model defines interconnections among the elements. Namely, each element (out of N elements) 

is related to K other elements. The contribution of one element to the overall fitness depends 

on the state of the element and states of each of its K related elements. If K equals to zero, the 

element’s contribution to the overall fitness depends solely on the element’s state (i.e. equals 

the fitness value assigned to that element-state pair). On the other extreme, if K equals N-1, 

dependencies form a fully connected graph. In other words, the element’s contribution to the 

overall fitness depends on simultaneous states of every element of the system. Thus, as the K 

increases, the variance of the overall fitness values (i.e. ruggedness) also increases: maxima 

become higher but more difficult to find [70], [107].  

In the design context, the NK model can be used to model design performance. For example, 

in [70] and [108], parameter N represents the number of design components (or decisions to be 

made). At the same time, K determines the level of interconnectedness of the components (or 

decisions). In [104], the author uses the NK model to represent a level at which possible 
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solutions meet the requirements. Parameter N represents the number of requirements, while K 

guides the level of interdependencies among the requirements. Hsu et al. [102] use the NK 

model to represent the interdependences among individual team members’ contributions to the 

overall design: there are N team members and the performance of each depends on the 

performances of K other team members. Finally, Jafari Songhori et al. [109] develop a modified 

NK model in which N represents the overall number of elements. These elements are divided 

into K subgroups (subsystems) of equal size. New parameter C was introduced to capture the 

interdependencies among subsystems. Thus, the model in [109] represents a system of 

interconnected subsystems. Teams of designers develop subsystems: one team develops one 

subsystem. Elements of each subsystem are themselves interconnected to capture intra-team 

dependencies.  

While the NK model provides a simple way of generating theoretical design landscapes that 

include dependencies among components of the system, several of its limitations can be 

emphasised. For example, NK models assume constrained (albeit large) design spaces: there is 

a finite number of solutions (i.e. designs) which can be generated. The created landscape is 

static – fitness values do not change throughout the simulation, and N and K remain the same 

indicating that the number of components, requirements or team members (depending on the 

application) is fixed and that their interdependencies do not change. Additionally, by applying 

the fitness functions as in the NK model, an assumption about the availability of an objective 

performance measure is made. Ambler [104] notes that a rugged landscape usually represents 

only the physical nature of the underlying product – thus omitting market, economic and 

legislative aspects from the performance evaluation.  

Mihm et al. [110] also note that in product development is not common that a small parameter 

shift (i.e. small shift in one component’s performance) results in a radical change of the overall 

performance – which the NK model (with high values of K parameter) would suggest. Instead, 

the authors in [110] develop smooth performance functions arguing that correlated performance 

for neighbouring points suits the product development context. Additionally, rather than 

choosing one of the discrete states of their components, the agents in Mihm et al.’s model [110] 

move by following local smooth functions with a single optimum. Models in [106], [111]–[113] 

also develop agents’ environment as a rugged landscape determining the team performance. 

While these solution spaces are continuous, much of the problems (e.g. assumption of the 

existence of an objective performance function and static landscape) present in the NK model 

apply to these landscapes as well.  
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All of the listed models that conceptualise design as a search problem assume the existence of 

an optimum or optimums. Although one can set up such models in a way that the optimum is 

unreachable to agents (albeit, known to the modeller), the model in [78] develops a 

fundamentally different solution space: the one in which agents can always generate an “even 

better” design. The agents in Sosa and Gero’s [78] model are searching a space of all designs 

which can be generated by overlaying (and intersecting) geometrical shapes within a plane. The 

goal function is defined based on the number of shapes emerging from such overlays, and the 

number of sides of resulting shapes. This function is unbounded and defines a rugged landscape 

(a change in input can generate a significant change in performance). A reason for such function 

choice lays in the purpose of the model: while previously mentioned models are capturing 

design’s technical performance, the model in [78] strives to capture the dynamics of design’s 

creativity. 

Rather than modelling team performance through the assessment of a design, some models 

focus on details of a product development project’s workflow. Typically, in such models agents 

are presented with a set of tasks which they need to process (i.e. spend sufficient time working 

on each). Collaboration and communication among agents within such models is guided by 

prespecified task dependencies and exception-handling protocols. These models have the 

capability of estimating the project duration, problems in execution regarding iterations and 

amount of rework, anticipating communication issues or work overload. Thus – as described in 

the previous section – they provide managerial insights into the project performance.  

In most of these models (e.g. [57], [80], [81], [83], [85], [114]–[116]), task characteristics, 

dependencies among tasks, as well as task assignment to agents are predefined and taken as a 

simulation input. As such, many details regarding project workflow have to be known in 

advance and passed to the simulation. For example, VDT [80] utilises Quality Function 

Deployment (QFD) [117] and Design Structure Matrix (DSM) [118] to transform data on the 

product, process and organisation into task dependencies and characteristics regarding 

complexity and uncertainty (details can be found in [119]). DSM has also been employed in 

models such as [102], [116] and [90] to represent the tasks based on interdependencies among 

product’s functions ([116]), product’s modules ([90]), or among workers ([102]). 

Aside from task uncertainty and complexity, in order to set up the simulation in VDT, one has 

to specify knowledge or skill requirements and typical duration of each task. Describing tasks 

regarding dependencies, knowledge requirements, duration and/or difficulty has also been 

employed in models such as [83], [85], [97], [99], [116] and [115]. These task characteristics 
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enable determining the order and approximate duration of tasks, and uncertainty, knowledge 

requirements and difficulty (or complexity) serve as a basis for the calculation of the probability 

of rework and failures. One can also specify the priority of each task (e.g. [83], [85], [97]), thus 

imposing an arrangement among independent tasks. Additionally, in [81], the author models a 

rate at which new information is produced during the task performance, while [81], [92], [97] 

include the number of participants and collaboration time for each task. Depending on the 

model’s purpose, one may add multiple specific parameters characterising tasks. For example, 

the model in [97] introduces a parameter indicating the required creativity level of each task 

and estimates how different team compositions cope with such requirements. 

Somewhat similar to the approach taken in discrete-event simulation models, the models 

simulating design team’s workflow often aim to simulate rework and iterations due to conflicts 

in resource allocation and failures due to inadequate work quality. Some models capture rework 

and iterations by simply integrating a parameter guiding the probability of task failure and need 

for modification (e.g. [57], [92]). In other models (e.g. [80], [114], [116]), reworks are needed 

when there is a mismatch between agent’s knowledge and task requirements, which causes the 

insufficiencies in work quality. However, current models rarely capture iterations introduced 

by changes in task requirements. Only two of the models take into account such effects: [57] 

and [97]. 

Specifying the project workflow (i.e. tasks, task duration, requirements and dependencies), and 

assigning each task to an agent requires a significant amount of input data. Several models thus 

employ different task delegation and task scheduling mechanisms to reduce the amount of input 

needed to set up the simulation. To simulate task delegation, models utilise manager agents (i.e. 

agents simulating managers). Different managerial strategies are implemented, and the 

simulation results serve as estimators of their suitability for the problem of interest. For 

example, in [99], tasks are dynamically and randomly created (following a Poisson process). 

The manager agent assigns tasks to idle agents following one of the strategies: choose the most 

knowledgeable agent, the one with ‘just sufficient’ knowledge, the one whose knowledge is 

just below the requirement (so they will learn by doing), or randomly. In VOICE [114], on the 

other hand, the manager optimises either time, quality or team’s work pressure. Aside from 

modelling a manager agent which delegates tasks and handles errors in project execution, one 

can opt to implement specific task scheduling mechanisms in agents representing team 

members. In this manner, the design agents can re-arrange their tasks and avoid resource or 
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collaboration conflicts. Work reported in [120] presents one algorithm for task scheduling 

which takes into account task’s urgency, importance, recovery cost and the agent’s preferences. 

As already emphasised, the models detailing a design project’s workflow usually focus on 

estimating timeliness and achieved quality for specific work arrangements. VDT [80], for 

example, determines the amount of rework and coordination in the overall work volume. Cost 

and time efficiency are estimated by calculating the ratio of planned and realised work 

volume/production time. Similarly, coordination quality is determined from the number of 

attended request for coordination, while verification quality is based on the percentage of fixed 

failures (of the overall number of detected failures). The model in [114] adds additional 

performance measure: it estimates work-related pressure. 

The described groups of models, ‘landscape search-based’ (where a product is approximated) 

and ‘workflow processing-based’ (where a process is approximated), are neither exhaustive nor 

disjoint. A simple example covering both categories would be a model where the agent’s 

workflow dictates its movements over a rugged landscape. Several models do not fit into any 

of the groups. For example, the work in [103] presents a simple, very general model of 

collaboration, in which details on a produced design’s quality or utilised workflow are not 

modelled. 

From the presented overview, one can conclude that - in general - current models represent 

agents’ environments as abstract spaces. Two of the reviewed models, however, introduce a 

great level of realism in representing agents’ workspace. Bellamine-Ben Saoud and Mark’s [95] 

and Christian’s [81] models enable users to simulate specific physical settings (e.g. room 

layouts, agents’ location and possible routes). A modelling decision to include concrete 

environments stems from the models’ purpose: these models aim to simulate information 

sharing among agents in great detail – in which physical location plays an important role. 

Referring back to Salas et al. [38] work on elements of team performance models, one can 

discuss how work-assignment, task load, task type and task interdependencies are presented in 

reviewed agent-based models of product development teams. In ‘landscape search-based’ 

models, work is assigned to agents by specifying their initial position and search strategies, and 

task interdependencies are integrated into the landscape’s definition. In ‘workflow processing-

based’ models, both task assignment and interdependencies are explicated at the simulation 

start. Task load and difficulty are either included through ruggedness of the landscape or 

specified as a parameter assigned to each task. However, as further discussed in the next 

subsection, most of the models do not deal with the effect of workload and task difficulty on an 
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agent’s level of stress. Rare models such as [77] and [114] address the detrimental effects of 

work overload on team performance. Additionally, [120] takes into account the time required 

to ‘recover’ memories of interrupted and reworked tasks. 

Time pressure is another element which has to be taken into account when modelling 

environmental and task influences on team member’s stress level [38]. But most models do not 

explicitly include an increase in effort, stress or other changes to performance due to 

approaching deadlines. TEAKS [83] is an example of the model where delay in tasks causes an 

emotional response from agents. Some models implement changes in the agent’s search 

strategies in order to match the human effort to converge to a solution after a certain period of 

exploration. For example, [112] implements agents’ search as a simulated annealing process.  

Finally, additional environmental factor influencing team performance is noise [38]. Models 

[80], [95] and [108] explicitly include effects of noise. Noise can, thus, consume time and 

attention of workers [80] and cause some messages to be lost [95]. Perhaps the most interesting 

effect is one where a message is wrongly interpreted or changed during transmission [108]. As 

further discussed in following subsections, although not explicitly including environmental 

noise, some models do include altercations in agent’s communication effectiveness. For 

example, some include agents’ parameters guiding their communication efficacy [81], [121], 

model differences in using various communication tools to exchange messages [80], [81], or 

take into account differences in knowledge backgrounds of communicating agents to determine 

the probability of successful communication [109], [111]. Nevertheless, the effect of 

environmental noise on the agent’s stress level and development of faulty mental models, as 

well as the effect of information loss on team performance have rarely been studied in the 

current agent-based models of product development teams. 

3.3 Representation of an individual team member 

The level of detail introduced in modelling designers is necessarily related to the intended scope 

of the model. Thus, it is not surprising that the designer’s characteristics included in the model 

greatly vary among the reviewed agent-based systems. 

Many of the developed models simulate simple agents, guided by several rules. For example, 

agents in [105] transfer from one state to another following a 1st order Markov process and the 

simulation is over when all of the agents reach an absorbing state. Similarly, many of the models 

where design problem is presented as a search over a rugged landscape implement agents that 

follow straightforward search heuristics. Brabazon et al. model [70], for instance, implements 
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search as an adapted genetic algorithm: agents anchor in the best solution currently found and, 

through replication and trial-and-error mechanisms (i.e. mutation), try to produce better 

designs. Herrmann [122] models agents with two problem-solving styles and several search 

heuristics (hill-climbing, fixed effort and target values). Agents in Mihm et al. model [110] are 

characterised only by their progress rate that influences the speed at which they approach the 

local optimum. The agents’ understanding of optimum may be imprecise as their perception of 

other members’ progress may be obsolete. In these models, agents do not differ in their 

capabilities, personalities, emotions or motivation. Learning in terms of capability 

improvement is not implemented, and cultural factors are not taken into account. Thus, many 

of the elements important for characterising individual team members (as proposed by Salas et 

al. [38]) are simplified or seen as not influencing the problem of interest. Similar to the models 

[67] and [68] discussed in the previous chapter, such high levels of abstraction and simplicity 

of modelling assumptions facilitate analysis and promote understanding of the results. 

However, many of the agent-based models of product development teams tried to include more 

detail, provide greater veridicality and represent particular aspects of designer’s behaviour. 

To present an overview of approaches to modelling individual designers, each of the elements 

emphasised by Salas et al. [38] framework is briefly discussed. Thus, modelling of the 

designer’s mental model and learning, expertise, cognitive ability, personality, motivation, 

attitude and emotions, and cultural background should be discussed. However, the literature 

review revealed that the cultural background of team participants has rarely been discussed in 

works presenting agent-based models of product development teams. Only two models – both 

extending the VDT [80] model - take into account some relevant issues. Power-to-the-Edge 

(POW-ER [123], [124]) model implements different hierarchies among agents to represent 

work structures characteristic for particular cultures. POW-ID [125] builds on POW-ER and 

implements a possibility of simulating agents in different time zones. Nevertheless, the agent’s 

cultural background which may influence its social distance, decision-making or leadership 

behaviours [38] has not been included in the models. The current practices in modelling the 

remaining aspects of interest (mental models, expertise, cognitive ability, personality, 

motivation, and attitude and emotions) are discussed in the following subsections. 

3.3.1 Representation of a designer’s mental model and learning 

Salas et al. [38] define a mental model as a human-generated description (or a view) of a system, 

its purpose, form, states and functioning. Mental models develop through experience and 
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influence one’s actions. The perceived system can be technological or human (e.g. a team). 

Thus, common practices in implementing the agent’s mental models regarding team and team 

task are explored. Following the discussion on task representation presented in the previous 

subsection, one can separate two cases of agent’s task processing.  

In the case where agents are given a series of tasks which they have to process, most often no 

detail task representation is formed within the agent’s mental model. Rather, parameters 

regarding the agent’s competence and task difficulty determine the required processing time 

and the probability of rework. Christian [81] presents one model where agents store details on 

the tasks relevant for their role. For example, the agents in [81] remember the last time an 

information on a task’s progress is updated and use it to predict the task’s current status. Several 

models ([99], [116]) represent task processing with a system dynamics model where the rate of 

progress depends on the agent’s work efficiency. In models where agents are scheduling their 

tasks based on their preferences, agents are equipped with knowledge on task requirements and 

resource capacity and availability. Such knowledge enables determining the preferable order of 

tasks and guides the dynamics of the agent’s attention allocation. Additionally, one can discuss 

how the agent’s behaviour or performance changes throughout the simulation. In ‘workflow 

processing-based’ models, learning – when included in the model - is most commonly 

represented through a reduction in time needed to process a task and an increase in agent’s 

capability or knowledge parameter. When repeatedly faced with a task, the time needed for the 

agent to finish it changes based on the learning rate prescribed by the modeller. Such learning-

by-doing is implemented in, for example, POW-ER [123], [124]. Similarly, models in [92], 

[126] and [57] employ this technique, where [57] also incorporates improvement in design 

quality as a result of repetitions. Aside from learning-by-doing, several models include learning 

through collaboration with others. Agents in Xia et al. [99] and Zhang and Thomson [116] 

models, thus, perform tasks quicker and increase their competence parameters as a result of 

either collaboration or repetition. Models [77], [85], [93], [115] include only an increase in 

competencies as a result of interaction with team members, leaders or resources. Interestingly, 

of mentioned models, only [124] and [99] implement competence decrease, i.e. forgetting. 

Rather than an increase in competence or reduction in task performance duration, in models 

[96] and [94] reinforcement learning is implemented in agents to enable determining a sequence 

of actions which leads to team performance increase.  

In the case where agents roam a rugged landscape, agents’ perception of a task refers to their 

understanding of the landscape. In the majority of these models, agents are capable of 
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accurately assessing the fitness of their position (i.e. found solution) and memorising the best 

solution found. At the same time, their search strategies remain unchanged throughout the 

simulation. Some models, however, introduce biases and inaccuracies in the agent’s view of a 

task. An example of a biased perception of the team progress due to obsolete information on 

other’s position (implemented in [110]) has already been mentioned. Similarly, agents in [104] 

have a (not necessarily accurate) perception of their own and their peers’ position on the 

landscape. Agents in [112] display self-biased behaviour: when choosing which designs to 

work on, they assign a slightly higher score to the solutions they have generated. Martynov and 

Abdelzaher [108] introduce biases in the evaluations of solution’s performance which stems 

from differences in agent’s domain of expertise. Agents in [71] continuously develop (and 

change) perception of the goal function and, through reinforcement learning, update their 

production rules. Learning about the goal function (i.e. task) based on received feedback is also 

implemented in [106], [112], [113] and [111]. Agents in CISAT [112] model develop strategies 

based on the utility of performed moves. Agents in [106] and [111] store memories on past 

solutions and build on them to orient their search. KABOOM framework [111], for example, 

simulates serial position effect where agents assign more weight to early and recent memories 

than to intermediate ones. The agents in mentioned models ([71], [106], [111]–[113]), thus, 

continuously learn and forget – consequently changing their behaviour. While learning through 

collaboration in ‘workflow-processing based’ models is represented with competence increase, 

in ‘landscape-search based’ models, agents can learn from others by replicating their position 

(along all or some of the coordinates). Such imitation-based learning is implemented in, for 

example, [71], [72], [104], [122] and [109]. 

A search over a rugged landscape is easily understood as a cognitive activity of exploration 

(broad search) and exploitation (local refinement). Thus, such models inform understanding of 

the effect of a designer’s cognitive behaviour on team performance. As already mentioned, 

some models (e.g. [112], [113], [127]) employ simulated annealing to match the agent’s 

cognitive behaviour with trends observed in studies of designers. The model presented in [105] 

takes a different approach: it builds on a well-known ontology of design processes (Function-

Behaviour-Structure ontology, FBS [128]) to represent the agent’s cognitive behaviour. As a 

result, the model’s assumptions and/or results can be straightforwardly compared to the 

empirical studies utilising the same ontology. For example, in Bott and Mesmer’s model [105], 

agents’ mental models are calibrated to fit the transitions from one design process to another as 

observed in the real-world data (see [129] for details).  
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In addition to perceptions of tasks, the agent’s mental model may contain perception of its team 

members or, more precisely, team members’ competence and domain of expertise. However, 

in the majority of cases, the agent’s view of others is predefined (i.e. given at the simulation 

start), static and accurate. These agents use their knowledge to, for example, direct help requests 

to more experienced team members. Models presented in [75], [91], [94], [95], [99], [126] and 

[116] all develop agents with static and accurate view of knowledge distribution within a team. 

In some models ([83], [93], [104]), past interactions determine the agent’s willingness to repeat 

the collaboration. Agents in [93], for example, follow the preferential attachment principle 

where success in past collaboration increases the likelihood of its repetition. Similarly, TEAKS 

[83], [130] agents have a parameter denoted as ‘trust’, which increases with experience and 

guides the level of collaboration. Although in these models ([83], [93], [104]) view of others 

changes throughout the simulation, such view is represented with a single parameter. But in 

several models, knowledge and skill required for the task are not coupled in a single parameter, 

i.e. multiple skills or knowledge of various domains are differentiated. In such models, the 

agent’s view of others’ capabilities should be dependent on task requirements: a team member 

may be perceived as knowledgeable in one, but not in other domain. The models addressing 

this view can be found in a later version of the VDT model, POW-ER [123], and Singh et al. 

[76], [131]. Singh et al. [76], [131] implement a model specifically targeted at studies of the 

development of agents’ perceptions of other’s knowledge and expertise. In this model, each 

agent possesses a matrix where rows correspond to agents and columns to knowledge areas. 

The values within this matrix denote a perception of agents’ familiarity with each knowledge 

area (higher value means perceived greater expertise). The agents update their matrices on who-

knows-what through interactions and observations of other’s actions. An interesting approach 

to modelling agent’s perception of others was proposed in Gero and Kannenngiesser’s [44] and 

Singh and Gero’s [132] models where each agent represents others in terms of their perceived 

function, behaviour and structure. In other words, the works [44] and [132] use FBS ontology 

[128] to describe designers. These models are aimed at studying how team expertise develops 

in temporary design teams. However, no implementation details are presented for either of the 

models. 

3.3.2 Representation of a designer’s expertise and role 

In addition to a mental model, agents can have a domain of expertise and a role within a team. 

The domain of expertise relates to a knowledge area a designer has mastered. Depending on the 
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implementation, the role can indicate one’s position within a hierarchy and/or can be associated 

with particular tasks one has to perform. While a role is a distinct concept from the domain (and 

level) of expertise, both have indications on the level of authority, availability and seniority. 

Thus, this subsection gives a brief overview of approaches to modelling both.  

Modelling domain of expertise by using FBS ontology ([128]) has already been described on 

cases of [44] and [132] models. A popular approach to modelling expertise is to represent a set 

of all relevant knowledge areas and skills as a vector. If there are N relevant knowledge areas 

and skills, an N-dimensional vector is assigned to each agent, and the values of vector 

coordinates determine the agent’s competences in particular knowledge areas. A task the agents 

have to perform is then associated with the N-dimensional knowledge vectors by, for example, 

imposing requirements on the vector coordinates’ values. This approach to modelling agent’s 

domain of expertise has been employed in models such as [72], [75], [76], [97], [102], [108], 

[116] and [109]. 

Models [57], [75], [104], [130] and [116] also distinguish agents based on seniority: novice and 

expert (and intermediate [116]) agents are modelled and differentiated based on their 

competences and approaches to performing a task. For example, Singh and Casakin [75] 

emphasise expert agents are capable of using analogies from between-domain visual sources, 

while novice use within-domain sources. Fernandes et al. [57] assign different tasks, authority 

level, and quality and speed parameters to ‘junior’ and ‘senior’ agents. Similarly, Zhou et al. 

[93] classify participants based on their productivity: ordinary developer, core developer and 

innovation leader types are modelled and characterised by their knowledge parameter and 

completion rate. 

Assigning different tasks and authority level to agents based on their predefined roles is 

implemented in models such as [57], [80], [83], [84], [92], [94], [95], [99] and [114]. Models 

like VDT [80], Zhang et al. [84] and VOICE [114] assign each agent a position in hierarchy: 

subordinates report their work progress to agents up the hierarchy and wait for their instructions 

when errors and failures are encountered. TEAKS [83] makes a distinction between manager, 

coordinator, specialist, technician and assistant agents. Xia et al. [99] develop manager and 

worker agents. Similarly, the model in [57] includes project lead and design agents but also 

models customers. Zhang et al. [92] differentiates management, technical core and common 

development agents.  

Finally, one can model differences in time agents are committing to particular tasks or projects. 

Due to the discussed tendency of design teams to have fluid boundaries and temporary 
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membership [3], members of design teams often do not share equivalent time allocation. 

Additionally, differences in position and roles may cause team members to vary in time 

dedicated to particular tasks. To include such differences, several models ([80], [81], [85], [91], 

[102], [115]) assign each agent the availability parameter that guides the likelihood of agents 

responding to the collaboration or help requests. 

3.3.3 Representation of a designer’s cognitive ability 

Related to modelling of the agent’s mental model is a representation of its cognitive ability. 

Cognitive ability is defined as an individual’s capacity to process information and learn [38]. 

Sosa and Gero [71], for example, characterise each agent with processing and synthetic abilities 

which control how many domain rules and hypotheses can the agent generate and utilise/test. 

Singh et al. [106] discuss the cognitive ability in context of mental inertia, which influences 

how knowledge is extracted from memories. This model [106] includes individual differences 

in learning and forgetting rates, thus capturing one’s learning capacity. Similarly, [72] 

distinguishes ‘slow’ and ‘fast’ learners. 

In several models, the agent’s skill and knowledge level are fixed (i.e. remain constant 

throughout simulation). In these models, cognitive ability and experience are combined into a 

single parameter guiding the speed of task processing. For example, first versions of the VDT 

model [80] characterise agents by their ‘information-processing capability’ (derived from skill 

level, skill type and available time), Christian [81] uses ‘work efficiency’, Zhou et al. [93] have 

‘completion rate’, and VOICE [114] ‘competency’ – all of which are implemented as a single 

parameter guiding the agent’s processing speed. TEAKS [83] and Farhangian et al. [97] models 

similarly include a parameter defining the agent’s level of knowledge and skill, but additionally, 

these models incorporate parameters representing agent’s capability to generate creative 

solutions. 

3.3.4 Representation of a designer’s personality 

A great majority of models developed to date do not specify any details regarding the agent’s 

personality. Some models assign each agent a single parameter guiding its tendency to work 

with others: Crowder et al. [85] introduce ‘response rate’ which determines the likelihood that 

the agent will respond to a help (or collaboration) request. The similar parameter is 

implemented in Xia et al. [99] (denoted ‘willingness to help’) and Zhou et al. [93] (denoted 

‘collaboration probability’) models. Levine and Prietula [91] model three cooperative types: 
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co-operator, which describes the agent that always contributes to others and responds to 

requests, free-rider, which rarely contributes to others, and reciprocator, which bases its 

response on others’ behaviour. Son and Rojas [103] include parameters of sociability and 

familiarity. Sociability signals the level of the agent’s extraversion and guides the frequency of 

social interactions. Familiarity describes the agent’s tendency to form strong bonds with its 

peers, which may prevent the agent from forming new connections (i.e. collaborating with 

agents who are not its current contacts). 

The agent’s susceptibility to influences of the team is captured in models [106] and [111]. Both 

of these models incorporate ‘group conformity’ as a parameter determining if the agent is likely 

to alter its reasoning to (not) comply with the group’s evaluations. These models describe the 

agent’s cognitive style: a preference for solution space exploration. KABOOM builds on Kirton 

Adaptation-Innovation (KAI) inventory [133] and – in addition to conformity - specifies the 

‘sufficiency of originality’ and ‘efficiency’ preferences for each agent. Similarly, Singh et al. 

[106] define cognitive style through the preferences for exploration or exploitation duration. 

The agent’s preferences for task processing are also incorporated in [77] and [120]. In [77], 

each agent has a workload preference guiding the number of parallel projects the agent’s wishes 

to perform. In [120], the agents are characterised by their preference for short or long tasks.  

Of the reviewed models, the most elaborate representations of the designer’s personalities can 

be found in [83] and [97]. TEAKS [83] model separates agents based on their personality 

trends: expressive, analytical, driver and amiable. Personality traits included in this model relate 

to the designer’s extraversion, preference for working in a group, and trust tendency. As noted 

in the next subsection, TEAKS implements fuzzy rules through which the agents’ traits and 

trends are influencing the agents’ emotions and performance. Farhangian et al. [97] develop a 

detail representation of the agent’s personality by building on the work on the Myers Briggs 

Type Indicator [134] and Belbin’s team roles [135]. In this model, the complementarity of 

agents’ personalities is used to predict team performance. 

3.3.5 Representation of a designer’s attitudes, emotions and motivation 

The designers’ attitude, emotions, stress level and motivation influence their task performance 

on a daily basis. Perhaps the most straightforward approach to capturing day-to-day variability 

in performance due to these factors is presented in [57], where the agent’s work quality 

parameters and progress rate coefficients for each task are drawn from triangular density 

functions.  
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The only model explicitly incorporating the agent’s emotional states and their influence on 

performance is TEAKS [83]. This model includes two positive emotions: desire and interest, 

and two negative ones: disgust and anxiety. The fuzzy rules are used to update the agent’s 

internal state and its effect on the agent’s performance. TEAKS agents have variable emotional 

responses to a task. By introducing stochastic values, the modellers in [83] capture the 

differences in agent’s emotional states due to non-modelled factors: the same task may evoke 

different emotions (if the situation in which it was obtained changes). Models in [77] and [115] 

deal with the agent’s level of pressure by measuring its workload. The model in [115] 

implements a simple, threshold-based approach by defining a workload level above which the 

agent’s performance starts to significantly decay. In addition, for each task, the agents in [115] 

have allegiance (commitment or priority) and motivation parameters which influence the time 

required to process the tasks. In [77], on the other hand, work overload influences the agent’s 

motivation level, which in turn influences the likelihood of creativity. 

The agent’s motivation level is also modelled in [85]. In [85] model, motivation depends on the 

shared mental models developed within the team. In turn, motivation influences working time 

and quality of outcomes. Additionally, models [82], [132] and [106] deal with the agent’s 

motivation. In [82] the agent’s actions are guided by its motivation level which is calculated 

from its state variables regarding intellectual performance, activity, psychological fatigue, 

empathy for its team members, and trust in others. The authors in [132] describe agents in terms 

of their experience, beliefs, motivation and attitudes, from which competence, confidence, 

willingness and persistence are derived. In [106], the authors differentiate award-based and 

praise-based motivation and build on them to derive the agent’s attitude regarding self-efficacy. 

However, since the implementation details of these models ([82], [106], [132]) are missing, no 

additional insights can be obtained. 

3.4 Modelling of interactions and team properties and behaviours 

Previous sub-sections introduced many details regarding interactions among agents in reviewed 

models. For example, noise influences, help-seeking behaviour, a communication directed at 

error handling, and transactive memory formation (as a result of interactions) have all been 

mentioned. However, this sub-section gives a structured overview of standard practices in 

interaction modelling. Particular attention is given to team properties, processes and behaviours 

emerging from simulated interactions. 
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Among the reviewed models, the details on and frequency of agents’ interactions vary 

significantly due to the differences in the level of granularity and task type simulated. For 

example, models [82] and [108] simulate collaborative tasks in which agents interact in each 

simulation step, and many details on their communication (e.g. the contents of exchanged 

messages) are represented. Model in [81], for example, has such a detail representation of agent 

communication that, as the simulation output, one can extract the time traces of discussed 

topics. On the other side of the spectrum are models in which such a high view is taken that no 

agents’ interactions are explicitly represented (e.g. [102]). Many models (e.g. [80]) fall 

somewhere in between: they incorporate collaborative tasks, calculate the percentage of time 

spent working in pairs or in group setting and model the impact of collaboration on work 

progress or learning. 

In models where agents are processing multiple, dependent tasks, frequently-implemented 

communication triggers include task interdependencies, error handling protocols, prescheduled 

meetings or collaborative tasks, and collaboration requests due to insufficiencies in knowledge. 

In VDT [80], for instance, agents report the encountered difficulties (failures and errors) to their 

superiors and wait for the resolution decisions. Similarly, when a pair of VDT agents are 

performing dependent tasks, they coordinate their work by either attending prescheduled team 

meetings or by contacting each other over one of the simulated communication tools. Meetings 

are also implemented in the [81] and [116] models, while models [84], [95] and [94] describe 

interactions aimed at resolving problems and errors. In some models (e.g. [83], [84], [94]), tasks 

which require cooperation and discussion with others are predefined and assigned to agents. 

Once the agent selects a collaborative task, it sends a request to agents relevant for this task. 

When a required number of agents responds, the task is processed. As discussed previously, the 

parameters driving the agent’s collaboration willingness and availability are sometimes 

introduced (e.g. [84], [85]), consequently influencing the interaction frequency. Interactions 

due to insufficiencies in one’s knowledge are implemented in models such as [85], [93] and 

[131] where agents send help requests to their peers and, either learn through collaboration [85], 

perform the task jointly [93] or delegate their tasks to responders [131]. Similar communication 

triggers can be found in models focusing on the representation of agents’ search for the solution 

(i.e. ‘landscape-search based’ models). In Mihm et al. [110] model, for example, the agents 

exchange information on their location either at pre-scheduled meetings or during random 

encounters. By employing Poisson process, the authors in [110] describe the unscheduled 

nature of updates, i.e. communication among agents. A probabilistic form of interaction is also 



Related work: Agent-based models of product development teamwork 

38 

implemented in models [112] and [111] where agents have parameters guiding their interaction 

rate, while [111] also incorporates prescheduled meetings. An equivalent of help-request sent 

in ‘workflow-processing based’ models, in ‘landscape search-based’ models occurs when an 

agent is stuck in a local optimum (i.e. insufficient knowledge). The agent then tries to improve 

its position on the landscape by contacting others and imitating (some or all) coordinates of 

their location or their search rules (e.g. [71], [109]). The agents in [71], thus, imitate others if 

their current search heuristics are insufficient to generate satisfactory results. As already stated, 

in some models, the agents interact in every simulation step due to the nature of the simulated 

task and the level of granularity taken in the model. The models reported in [72], [78], [82], 

[106], [108], [131] simulate agents performing a collaborative task during which agents are 

exchanging their solution proposals at every simulation step. Finally, some models enable 

choosing (as a simulation input) among several collaborative strategies employed by the agents, 

thus defining the collaboration patterns and frequency (e.g. [113], [122]). 

Following the described communication triggers, one can conclude that interactions often occur 

between agents whose tasks are interdependent (to coordinate their work) and up-the-hierarchy 

(to resolve encountered issues and report progress). To enable such interactions, models [80], 

[81], [84] and [131] specify a hierarchy among agents and predefine task interdependencies. 

Models [95] and [94] assign each agent with an interdependency map at the simulation start. 

The model in [109] employs a ‘Connected cavemen’ [136] network model to describe inter- 

and intra-team interaction patterns. These models, thus, predefine which agents can interact. 

Some models, however, enable agents to choose their collaborators either randomly, or based 

on their perception of others. Random collaborator selection is implemented in, for example, 

[70], [71] and [85] models. In other models, the agents rely on their perception of others’ 

knowledge (i.e. transactive memory) or performance to choose the best collaborator. For 

instance, agents in [131] constantly update their understanding of others’ expertise area and 

delegate tasks to each other accordingly. Agents in [72] observe the performance of their 

potential collaborators and, if a more successful peer is detected, tries to improve its 

performance by learning observed skills. 

From the presented overview, one can conclude that, within reviewed models, communication 

among agents frequently occurs in pairs (e.g. [80], [81], [84], [110]), but often also in the form 

of group tasks or meetings. Models such as [82], [94], [95] implement communication in a way 

that agents’ messages are broadcasted to the whole team.  
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In many models, interaction duration is either prescribed (equating either one step [72], several 

steps [95], or occurs at every step throughout simulation [108]). In some models, however, the 

duration of interaction depends on the collaborating agents’ characteristics, knowledge and task 

difficulty. In VDT [80], coordination work duration is specified based on task uncertainty, 

complexity and agents’ skill match with regards to the performed task. Additionally, VDT [80] 

takes into account the time needed to prepare and process communication occurring over one 

of the communication tools (e.g. time required to write or read an e-mail is modelled). Similar 

calculation of interaction duration based on agents’ work efficiency, communication efficiency, 

communication channel or task type is modelled in, for example, [81], while in [85] difference 

in collaborating agents’ competences and learning time parameter are used. 

While most models either do not differentiate the communication channel, or model solely face-

to-face communication (e.g. [82], [85], [94], [95]), several models specify communication tools 

which can be employed by the agents. The usage of communication tools can manifest in the 

amount of information transmitted and collaboration duration, but it also enables asynchronous 

collaboration. Agents can collaborate asynchronously in models such as [80], [81], [84], [132] 

and [92]. Irrespective of the synchronous or asynchronous collaboration mode taken, the 

majority of models implements only direct interaction among agents. The models reported in 

[95] and [131] also include indirect interaction, through overhearing other agent’s 

communication [95], or observation of their actions [131]. 

Regarding the contents of the exchanged messages, the most common message types include 

progress report, error-handling messages and help requests in simulations where the agents are 

processing sequences of tasks (e.g. [80], [85], [114], [115]). In cases where agents are roaming 

the landscape, the agents usually exchange the details on their location (e.g. [104], [108], [110], 

[112], [122]). The agents in [91] exchange resources, while in [131], agents delegate tasks. An 

interesting feature of the model reported in [81] is that the agents can engage in gossip. 

However, the gossip only takes time and signals the usefulness of conversation; it does not 

affect the overall team performance or climate. 

Many of the biases and external factors influencing the communication outcomes have already 

been discussed. Models such as [81] and [121] characterise agents based on their 

communication efficacy. This parameter captures one’s capability to transmit information 

clearly and comprehensively. Thus, the lower values of the communication efficacy parameter 

result in the longer time needed to transfer the required information. Gero and Kannengiesser 

[44] discuss the need for establishing a common ground for communication to be successful. 
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In other words, the authors [44] emphasise that the cognitive gap among agents should be 

sufficiently small for them to understand each other’s messages. The models such as [111] and 

[109] take into account the effects of cognitive distance on communication success. As 

discussed, communication tools are another factor influencing the information transfer. Various 

communication tools can be implemented: telephone, voice mail, e-mail, memos, fax, as well 

as internet or cad tools [80], [81], [132]. These communication and information tools can be 

characterised by parameters such as synchronicity, cost, recordability, capacity, portability, 

agent retrieval time and maximum simultaneous usage [80], [81]. Usage of these tools can 

either limit or facilitate communication [132]. Lastly, environmental noise impacts the message 

reception [95] and interpretation [108], or consumes the agents’ attention [80]. 

As a final aspect of agents’ communication, one can discuss its outcomes. In many models, 

interactions among agents consume time, but result in improved quality of the product and 

reduced probability of failures (e.g. [80], [81], [83]–[85], [115]). In addition, several models 

implement interaction outcomes in the form of learning in terms of competence increase or 

generation of new search heuristics or solutions (e.g. [71], [72], [85], [94]). As a result of 

communication and learning, the agent’s perception of its task and the team can change. For 

example, in [110], an interaction among agents modifies their understanding of the task. Models 

presented in [106], [111], [132] develop agents whose perception of the suitable solution 

changes as a result of the opinion of the team. Thus, the agents may alter their actions to either 

conform to the team or to defect from the team-proposed solutions. 

But perhaps the most interesting outcomes of interactions among agents are the emergent team 

properties, behaviours and processes. Although many models could be extended to enable 

capturing the team-level properties emerging from the individuals’ interactions, in most cases, 

studies of emergence were not the primary purpose of these models. Thus, only a fraction of 

the reviewed models readily captures emerging team-level phenomena (see Table 3.1).  

As discussed in Section 3.3.1, several models equip agents with the (dynamic and not 

necessarily accurate) knowledge on ‘who-knows-what’, and such knowledge is refined through 

either direct interaction or observation [131]. This permits studies on how transactive memory 

develops within a team. Studies of transactive memory formation and its impact on team 

performance and coordination is the main purpose of the model presented in [131], but models 

[80], [132] and [44] can also offer some insights. As their primary purpose, models [44] and 

[132] are directed towards capturing the emergence of team expertise. Although the initial 

versions of VDT did not include any emerging team properties, its extensions [123]–[125] 
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detailed agent’s learning mechanisms and subsequently enabled simulations of trust and 

transactive memory formation studies.  

Table 3.1 Emerging team properties and processes simulated by the reviewed models 

Model and references  Emergent team properties and processes 

VDT and its extensions [80], [123]–[125] 
Trust 
Team learning 
Transactive memory 

TEAKS [130] Trust 
Team collaboration 

Gero and Kannengiesser [44] model Team expertise 
Transactive memory 

Singh and Gero [132] model Team expertise 
Transactive memory 

Crowder et al. model [137], [138] 

Trust 
Shared mental models 
Team learning 
Team motivation 

Singh et al. model [76], [139] Transactive memory 

Dehkordi et al. [77] model Team motivation 
Team creativity 

Sosa and Gero [78] model Team creativity 

Dutta et al. [115] model Team motivation 
Team learning 

Singh and Casakin [75] model Team cohesion 
Team collaboration  

AMPERE [57]s Team adaptation 

Xia et al. [99] model Team learning 

Zhang and Thomson [116] model Team learning 

Singh et al. [106] model Team leadership 

 

The model developed in [130] deals with the emergence of trust and its influence on team 

collaboration. Similarly, Crowder et al. [85] capture trust and team learning, but also add a 

measurement of team motivation and shared mental models. However, within this model, the 

changes in these team properties are modelled through simple equations. First, trust increases 

due to interactions among agents. As a result shared mental model linearly increases, which - 

in turn – causes the rise in team motivation and competence. A similar approach is taken in the 
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model reported in [115]. Dynamics of team motivation, as well as its influence on team 

creativity, are captured in [77]. Sosa and Gero [78] explore how individuals are influenced by 

the ideas of other team members during brainstorming sessions. Singh and Casakin [75] are 

studying how the use of analogies affects the emergence of team cohesion and collaboration. A 

model aimed at studying a team’s capability to accommodate changes in task requirements is 

presented in [57]. By modelling improvement in quality and reduction in time required to 

perform a repeated task, AMPERE [57] estimates the team’s adaptation to changes occurring 

during early design phase. Xia et al. [99] and Zhang and Thomson [116] model one’s increase 

in competences as a result of task performance or collaboration. The model in [99] studies how 

task assignment strategies and communication affect the knowledge evolution within a team. 

However, these models ([57], [99], [116]) do not implement details on the agent’s cognitive 

processes. Instead, knowledge is represented with a single parameter or a knowledge vector, 

and learning is modelled as an increase in competence value upon task completion. Finally, a 

recent model proposed in [106] is directed towards capturing the emergence of team leaders 

within flat teams. The authors [106] hypothesise that, as the team members interact and gain 

experience, their self-efficacy will change and influencers will naturally emerge (although no 

hierarchies were specified in the model). 

3.5 Research implications 

The review of the models presented herein revealed that the majority of models developed to 

date are directed towards studies of certain team properties and processes, or towards providing 

a general overview of the process and potential problems. In both cases, it is convenient to 

develop simple agents that implement only the specific aspects of a team member’s behaviour 

and performance. In the former case, the omitted processes, properties and behaviours are 

regarded as having little or no direct influence (as posited by the existing theories) on the aspects 

of interest. They would, thus, introduce needless complexity to the system. In the latter case, 

the coarse-granular perspective renders detail modelling of most of the detailed processes as 

unnecessary. As a result, it is not surprising that none of the models addresses all of the team 

performance model elements proposed in [38]. For example, VDT and its extensions ([80], 

[123]–[125]), TEAKS [83], [130]; Singh and Gero [132], and Singh et al. [106] models cover 

multiple aspects of individual designer’s behaviour and present some of the most 

comprehensive representations of humans among reviewed models. However, none of them 
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includes every factor from the list provided in [38]: mental models, expertise, cognitive ability, 

personality, motivation, cultural factors, and attitude and emotions.  

One can also note that of the models enabling studies of team properties emerging from 

interactions among agents (Table 3.1), models [44], [75], [132] and [106] provide only a 

description of a conceptual model, while implementation details are not yet reported. The 

relative scarcity of models focussing on emergent team properties emphasises a great research 

opportunity for computational modelling and simulation (and, particularly, agent-based) studies 

within the design field. 

The work presented herein strives to enable cognitive studies of teams, thus supporting one of 

the most important directions in team research [140]. Therefore, works modelling agents’ 

cognitive behaviour and learning are of special importance for informing the model developed 

within this work. Various useful ideas on the task representation and agent’s mental model 

implementation can be derived from reviewed models. For example, the model presented in 

[105] introduced a mental model tailored to represent the fundamental design processes 

(proposed in [128]), which facilitates comparisons with real-world studies of designers (e.g. 

calibration to protocol studies data). Similarly, the models which conceptualise a design task as 

a search over a rugged landscape demonstrate an elegant way of representing designer’s 

cognitive processes of exploration and exploitation. The models such as [111]–[113] and [106] 

discuss how different patterns in the agent’s exploration and exploitation serve to represent 

one’s effort to converge to a solution and can be linked to a designer’s cognitive style. The 

reviewed models also enable insights on possible implementations of important aspects 

regarding the agent’s learning behaviour: learning about task, learning-by-doing, forgetting, 

and learning about and from others. Finally, although none of the models integrates all of the 

aspects emphasised in [38], several valuable inputs regarding modelling of designer’s details 

(e.g. personality), diversity and interactions can be obtained. 

Of the reviewed models, only AMPERE [57] captures how learning affects team adaptation to 

changes in design requirements. However, in this model, details on agents’ cognitive behaviour 

are omitted, and learning is implemented simply as a reduction in time required to perform a 

repetitive task. In developing a model for studies on the effect of learning on team performance, 

a recent model presented in [116] can offer several useful ideas. In [116] and [99], the agents 

improve their (technical and general) knowledge by repeatedly performing a task, as well as by 

communicating with others.  
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Building on these models, the work presented herein develops a model enabling cognitive 

studies of teams, team learning, and the resulting change in team performance over multiple 

tasks. 
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4 MODEL SPECIFICATION AND THEORETICAL 
FOUNDATION 

This chapter gives a theoretical foundation of the desired model of a design team. To provide a 

modelling starting point, the literature was searched in order to answer the “what should be 

modelled - and how?” question. Research on the modelling of human behaviour in a social 

setting directed the identification of relevant components to constitute the agent’s architecture 

and enabled the development of the architecture of the overall system. Then, each element of 

the agent’s architecture is described through an overview of related theories and empirical 

studies, thus providing a basis upon which the model is developed. The results presented in this 

chapter build on the work published in [141]. 

4.1 What to model? – Identifying architectural components 

Following the research aims laid out in the first chapter, and building on the presented research 

background (Chapter 2), and existing models of product development teams (Chapter 3), the 

goal of this thesis can be summarised as ‘the development of an agent-based model of a design 

team which enables (cognitive) studies of the emergence (and change) of various team 

properties and behaviours. When identifying the architectural components of the desired agent-

based model, a good starting point can be found in the previously described work by Salas et 

al. [38]. However, the work [38] gives a general overview of relevant aspects, providing a little 

insight into how identified model elements should be realised and interconnected. The choice 

of agent-based modelling as a modelling approach sets a bottom-up perspective in which agents 

are designed to mimic real-world entities. Within this work, each agent represents a designer. 

Thus, studies on - and models of - human behaviour in a social setting in general, and designer’s 

behaviour in a team setting in particular, are used to identify the agent’s architecture 

components and describe the model structure. 

In a review of approaches to modelling human behaviour within agent-based models, Kennedy 

[142] emphasises several fundamental principles of human nature which should be kept in mind 

when modelling humans. Particularly, humans are described as information processors. But the 

author emphasises boundedness (e.g. limited knowledge, cognitive ability and time to make a 

decision), diversity (e.g. in terms of personality, preferences, capabilities or motivation), and 

biases (e.g. due to emotional or social factors) of human cognitive behaviour. Listed features 

imply a requirement of accounting for the impact of personality and capabilities on human 

cognition, but also highlight the influences of affective and social aspects of human behaviour. 
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Inline are findings reported in [143], where the authors identified cognition, affect, social 

aspects, norm consideration and learning as key dimensions in modelling human decision-

making. 

Several conceptual frameworks aimed at human behaviour modelling have been developed and 

extensively used as frameworks in developing agent’s architectures. One of the best known is 

the Belief-Desire-Intention (BDI) framework [144]. As evidenced by its name, BDI framework 

represents human behaviour by modelling one’s beliefs – internalised information about the 

world, desires – all possible states that the agent may be motivated to achieve, and intentions - 

deliberative states arising from a commitment to a particular desire. BDI agent perceives the 

world, which can trigger an update of the agent’s beliefs. Throughout the simulation, the agent 

is actively searching for a plan (i.e. a sequence of actions) which would lead to the achievement 

of intentions organised in an intention stack. The plan is selected based on its relevance to the 

agent’s beliefs and intentions. Due to its generality, BDI framework can be used in many 

application areas. It does not pose any strict rules on the implementation architecture, thus 

permitting multiple implementations. On the other hand, its generality can be seen as a 

limitation: Kennedy [142] argues that BDI framework provides a little more than a conceptual 

framework for designing a model of human cognitive behaviour. No learning mechanisms 

incorporated, as well as the absence of social aspects (e.g. communication), are clear limitations 

of BDI framework in the context of the work presented herein. Additionally, the BDI 

framework has been criticised for lack of affective mechanisms influencing cognitive processes 

[143]. One BDI extension that mitigates such critiques is eBDI (emotional BDI) [145], [146] 

in which emotions are taken as one of the decision criteria. However, the eBDI framework has 

not yet received the popularity of BDI. An overview of eBDI proposals can be found in [147], 

which shows how recent work on emotional BDI agents – aside from modelling emotional 

responses - strives to incorporate influences of moods and personality on cognitive behaviour. 

Another frequently referenced framework is PECS (Physical conditions, Emotional state, 

Cognitive capability and Social status) [148]. It builds on BDI, intending to mitigate its 

limitations. PECS architecture can be separated into three layers. The first, input layer, is 

concerned with sensing and perceiving the environment. The second, internal layer, models the 

agent’s internal state in terms of physical, emotional, cognitive and social aspects. Each of the 

included aspects is separated in a corresponding component and characterised by an internal 

state and functions describing the change of the internal state. The final, output layer, deals with 

calculating the behaviours and determining actions. Authors argue that separation of different 
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aspects into components permits the definition of a wide range of inter-component 

dependencies, consequently realising various behaviours. PECS is intended to provide a generic 

framework for simulating humans, but such generality came at the expense of the lack of detail. 

PECS is not based on any particular social or affective theory, and presents little to no detail on 

how each component should be implemented [143], [149]. 

In an effort to identify a set of behaviours that “must be integrated into a model to simulate 

individual behaviours in human-centred systems”, Elkosantini [149] reviews several behaviour 

models and proposes an architecture comprising personality, emotion, cognitive capacity, 

social environment, psychological capacity and physical capacity components. Although this 

model emphasises several frequently neglected factors – such as the impact of psychological 

factors (motivation, self-efficacy and stress) and physical capacity (e.g. fatigue), the details on 

the implementations are missing. As such, learning, social interactions, emotions, and cognitive 

processing are not sufficiently described or are entirely omitted. An overview of several 

additional frameworks for human behaviour modelling can be found in [143]. 

Summarising the findings of listed frameworks, one can identify the following dimensions in 

modelling human behaviour: cognition, affect, social status, personality traits and capabilities, 

and physical capacity. Additional dimensions mentioned, such as learning, can be seen as an 

integral part of the agent’s cognition [150]. Similarly, factors related to psychological capacity 

mentioned in [149] (e.g. motivation and stress) are closely intervened with the modelling of 

agent’s affective states [151] and, thus, can be incorporated within the affective component. It 

is important to note that in the context of the study at hand, physical capacity is considered as 

of lesser importance since designers are (usually) not exposed to dangerous or physically 

demanding situations. 

The presented discussion brings to the conclusion that the desired agent should be cognitive, 

social and affective, and possess differences in personality traits and capabilities. An interesting 

discussion on the relation among the three listed aspects (cognitive, social and emotional) can 

be found in [150]. Carley and Newell [150] seek an answer to the question “What is necessary 

to build an artificial social agent?” and posit that both, emotions and cognition, are prerequisites 

to realistic social behaviour. To provide an analytic framework, the authors study the agent’s 

capability to display human-like behaviour along two dimensions: the agent’s cognitive 

limitations and its knowledge of the socio-cultural context. Authors [150] argue that, if 

appropriate limitations are placed on agent’s cognition and agent’s knowledge of the socio-

cultural context is enriched to enable recognising and responding to all classes of knowledge 
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associated with the context, an agent becomes a highly veridical representation of human 

behaviour in all situations, i.e. the Model Social Agent. 

The work [150] stresses the necessity of modelling cognitive limitations and mechanisms which 

impact processing capabilities (one of which is affect). But it also emphasises the agent’s 

situational knowledge. The highest level of situational knowledge (i.e. the most realistic) is the 

one in which current agent’s situation is seen as a result of the particular historical process, i.e. 

in which the agent is shaped by a specific culture and is accustomed to specific norms and 

values. Although such a high level of realism is unattainable within the scope of this work, the 

framework presented in [150] can serve as a guideline in creating an increasingly veridical 

system.  

All of the works mentioned ([144], [148]–[150]) oppose modelling of humans as omnipotent, 

rational or even boundedly-rational agents (as classified in [150]). Instead, aside from being 

affective and constrained regarding the time to process information, agents should have limited, 

biased and possibly out-dated views of the world. Such a view is developed through a series of 

experiences in which past events are influencing the understanding of the current situation, 

while current experiences are, in turn, reshaping the understanding of past events. Many of the 

agent-based models of design teams (reviewed in the previous chapter) do not introduce that 

level of complexity when modelling designers, as details on agent’s cognition are not necessary 

for the models’ purposes. However, several notable artificial models of designer’s cognition 

can be found within the field of design support systems and human-computer interaction 

systems (e.g. [152]–[157]). Namely, listed works introduce the situated design agent. Similar 

to the [144], [148] frameworks, the situated design agent senses the environment, perceives the 

input information, categorises it based on previous experiences to assign meaning to it (i.e. 

performs conceptualisation), and uses the obtained concepts to determine most appropriate 

actions. The cognitive theories underpinning the work in [152]–[156] are centred on the idea of 

situatedness - a notion that ‘where you are when you do what you do matters’ [158]. 

Researchers like [152], [159] consider situatedness to be “an essential aspect of intelligent 

behaviour”. In contrast to a static worldview, situatedness captures the idea that the same thing 

can be understood differently if the perspectives, from which one had approached it, are 

different. Related is the concept of constructive memory. The theory of constructive memory 

[160], [161] posits that past experiences shape how the world is perceived, while 

simultaneously, the newly acquired experiences give meaning to past experiences. In other 

words, agent’s memory is seen as both, a knowledge construct and a learning process that 
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enables situated design agents to change (i.e. adapt) over time [152], [153]. Studies in 

neuroscience and cognition [161], [162] corroborate such a dynamic view of memory. 

Constructive memory can be simulated using, for example, constructive interactive activation 

and completion neural networks [152], [155], thus enabling the implementation of situated, 

cognitive agents [153]. A computational framework formally describing the relationship 

between (individual-level) adaptation and situated design agents’ constructive memory can be 

found in [163].  

Although the research on situated design agents models agent’s learning and reasoning in detail, 

affective, social and personality-related aspects of an agent’s cognitive behaviour are less (or 

not at all) represented. One model developed within the design field that can be used as 

inspiration to incorporate all of the identified aspects is [164]. Building on the notions of 

situated cognition, Thomas and Gero [164] developed a cognitive, situated, social and affective 

agent whose perception and conception processes are implemented as self-organising maps. 

This model includes many of the agent’s desired properties, but it is tailored to simulate 

consumer’s (rather than the designer’s) behaviour.  

To complete an overview of important aspects to be included in the desired model, one must 

examine the question of the team-level properties that need to be captured by the model. Since 

this work is concerned with cognitive behaviour of design teams over time, team learning (and, 

consequently, adaptation) is of particular interest. Team learning is regarded as a consequence 

of interactions among members during which members acquire, share and combine knowledge 

[165], [166]. Kozlowski and Bell [167] emphasise how team learning emerges from the 

individual-level behaviour: team members’ knowledge and skill intersect and combine 

ultimately manifesting as team-level knowledge and skill. An important issue is that of 

appropriate metrics to capture the processes of interest [61]. The authors in [31] emphasise that 

team learning is typically observed through the lenses of team performance change. Still, it also 

manifests in the development of team mental models and transactive memory systems, changes 

in behavioural capabilities (cooperation, coordination and communication), and a change in 

affective and motivational states [167]. Thus, the model developed herein should be able to 

capture (at least some of) the listed elements. 

4.2 Agent architecture 

Following the theoretical background laid out in the previous subsection, the requirements on 

the agent’s cognitive behaviour can be summarised as: 
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 Agents should be cognitive – i.e. able to reason and choose their actions, but their 

reasoning mechanisms should not be modelled as perfectly rational. Rather, the agent 

should have biases and imperfect knowledge of its environment; 

 Agents should have dynamic mental models – i.e. capable of learning which, 

consequently, allows a change in behaviour; 

 Agents should be situated – agent’s behaviour should depend on its interpretation of the 

world and should change in accordance with situation perception. Coupled with the 

requirement of a dynamic mental model, a requirement of constructive memory can be 

formulated; 

 Agents should be affective – the affective mechanisms should bias agent’s cognitive 

behaviour and impact processing capability; 

 Agents’ cognitive ability and personality should be modelled to introduce differences 

in learning and preferences; 

 Agents should have a perception of others – somewhat related to the requirement of 

situatedness, the agents should have a dynamic perspective of its social context. This 

property enables formation and studies of the transactive memory and trust. 

In addition, following the discussion in Chapter 3, the agent’s mental model should be 

implemented in a manner which permits establishing a straightforward relation to the results of 

empirical design studies (e.g. by enabling extraction of the output comparable to data obtained 

via protocol studies of designers). Although team learning and behavioural change can be 

studied without relating the agent’s mental processes to design, the inclusion of a design-related 

mental model provides a point of comparison among simulated data and real-world findings. 

Coupled with the requirements emphasised by Salas et al. [38] (see Chapter 2), the provided 

list summarises the desired agent’s properties and behaviours. 

Building on the research reported in [154], [164], [168], the agent’s cognitive architecture can 

be envisioned as presented in Figure 4.1. In the figure, one can observe several major ‘building 

blocks’. The cognitive mechanisms constitute the most important aspect of the agent’s 

architecture as they handle the obtained knowledge, shape the agent’s perception and direct its 

behaviour. The implementation of these mechanisms should accord with the prominent 

cognitive theories and enable the functionality of constructive memory. Additionally, the 

cognitive mechanisms should be in charge of goal maintenance and expectation generation and 

update. Affective states should influence the manner in which perceived information is 
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processed. Finally, cognitive ability and personality traits should be introduced to simulate 

differences in processing capabilities and coping mechanisms.  

 

Figure 4.1 Architecture of an agent representing a designer (i.e. one team member) 

4.3 System architecture 

Similar to the case of the agent’s architecture, the presented theoretical background can serve 

to derive a set of requirements for the overall system’s architecture. The most important aspects 

for the studies of emergence are interactions among systems parts. In particular:  

 the agents should be able to interact with each other and exchange knowledge in order 

for team learning to emerge [61]. Additionally, team members should be able to interact 

with the task and - if required – with resources. 

Kozlowski and Bell [167] emphasise the importance of beliefs team members hold for each 

other by noting that they enable and shape team learning. Transactive memory systems and 

trust among team members depend on a context, and have a significant impact on interactions 

among team members. Thus, team members should be able to learn about each other, i.e.  

 team members should form transactive memory and trust, and act upon them.  
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Following the work laid out in [167], to enable measurement of team learning, the desired 

system should capture the changes in team performance, transactive memory system 

development, improvements in communication and coordination, but also the fluctuations of 

the members’ affective states. Thus: 

 the system should enable an analysis of at least one measure providing insights in team 

learning (i.e. team performance improvement, communication, coordination, change in 

the transactive memory system, and state of the members’ affective states) 

Finally, similar to the requirement of design-relatedness of the agent’s mental model, the 

simulated task should be design related. Following the discussion in Chapter 3, the modelled 

design space should be unbounded to enable studies of the solution space exploration and 

expansion. 

The system architecture compliant with the listed requirements is presented in Figure 4.2. Each 

agent, represented by a circle, possess a perception of the current situation, i.e. about itself, 

other agents, tasks, resources (if any) and relations between these elements. The perceptions 

are dynamic and are influenced by interactions and past agent’s experiences. Such 

representation enables extraction of properties such as transactive memory systems or trusts 

among agents. In addition, one should be able to extract various aspects regarding agent’s 

interactions.  

 

Figure 4.2 Architecture of the system  
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4.4 Theoretical background on the agent’s architecture 

Upon determining the agent’s architecture, relevant theories, empirical studies and models need 

to be examined to inform the implementation of the identified model’s components. Thus, the 

following subsections review the related work on cognition, affect, personality traits and 

cognitive ability, and trust and transactive memory system, and relate it to designers’ behaviour. 

4.4.1 Cognition 

This subsection explicates the relevant theoretical backgrounds, as well as existing 

computational models that serve as a basis for the development of the agent’s mental model. 

Although interlinked, in order to ease reading, the subsection is divided into segments related 

to cognitive architectures, theories of human thinking and design ontologies (in particular, FBS 

ontology [128]).  

4.4.1.1 Cognitive architectures 

Of particular interest for the goal of this work are existing computational systems directed 

towards modelling the human mind: cognitive architectures. Recently, Kotseruba and Tsotsos 

[169] published a review of cognitive architectures developed over the past 40 years. The 

authors have identified more than 300 cognitive architectures, of which approximately one third 

is still actively developed. Most prominent among these, ACT-R [170] and SOAR [171], share 

many commonalities and were, therefore, (along with another well-known cognitive 

architecture, Sigma [172]) used to define the so-called Standard Model of the Mind [173]. It is 

important to note that the Standard Model of the Mind is not a comprehensive model of human 

cognition, (omitting, for example, emotions, personality traits, drives and motivation which 

architectures such as CLARION [174] successfully relate to cognitive processes). The authors 

[173] emphasise that such omission is not due to the unimportance of these parts, but rather 

stems from the lack of well-established consensus. Mentioned cognitive architectures [170], 

[171] are the most comprehensive, validated architectures developed to date [173], and the 

model presented herein cannot match their level of detail and precision. Nevertheless, many of 

the implemented elements draw inspiration from these architectures. 

The central aspect of cognitive architectures [170], [171] is the working memory, a temporary 

mental “global space” [173], which serves to combine perceived input information and long-

term memories, in order to assess the situation and determine desired actions. Despite what its 

name may imply, working memory is not restricted to storing information. Instead, working 
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memory is a term covering all of the mechanisms used in control, regulation and active 

maintenance of information relevant for the task at hand [175]. The notion of working memory 

was developed from the idea of short-term memory [176], and it contains the part of the long-

term memory (particularly, part of declarative knowledge [177]) that is attended to in a given 

moment [178]. In that sense, working memory is tightly connected to attention [175]. The 

constructive memory and concepts of working memory, short-term memory and long-term 

memory represent different sides of the same phenomenon (i.e. cognition): while constructive 

memory concerns the way interactions between the agent and its environment give rise to a 

memory [154], working memory, short-term memory and long-term memory present the 

functional aspects of human cognition. 

An important question related to modelling cognitive processes is whether working memory is 

limited and, if so, how. The nature of working memory limitations is discussed by each of the 

ten models of working memory in [179], as well as studied in a number of studies (e.g. [180], 

[181]). The consensus among researchers is that working memory is constrained [181] and that 

its capacity varies among individuals [182]. Additionally, Cowan [183] argues that the capacity 

varies with age, peaking at young adulthood. A frequently cited theory proposed by Miller [184] 

suggests the “magical capacity” to be seven (plus or minus two) elements held in the working 

memory in parallel. Cowan [183], on the other hand, argues that while the number of elements 

that can be active in a certain time is unlimited, the number of focused (i.e. attended to) elements 

is four (plus or minus one). However, the elements held in working memory are not necessarily 

of the same (i.e. unitary) size. Instead, researchers [185], [186] argue that by gaining 

experience, individuals organise knowledge elements in a meaningful way, thus allowing them 

to memorise multiple elements as a single unit called chunk. In the recent years, alternative 

theories emerged postulating that (rather than containing a constrained, discrete number of 

elements), working memory capacity is resource-limited in a sense that a certain amount of 

attention can be divided unequally among many units [181]. In this view, the amount of 

resources obtained by a unit in working memory influences the precision of its processing. 

Researchers [181] advocating this view note that the theory of limited resources can explain the 

relation between increased working memory load and decline in performance. Nevertheless, 

more research is needed to determine if these theories are indeed incompatible, and which (if 

any) captures the nature of working memory capacity.  

To computationally model relevant processes related to working memory, ACT-R and SOAR 

architectures utilise spreading activation [187], [188]. Spreading activation is an algorithm in 
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which a sufficiently active node (i.e. node whose activation is above a certain threshold) “fires”, 

thus triggering propagation of activation to the connected nodes, with some of the activation 

being lost in the propagation process. In these architectures, the concepts stored in the long-

term memory are represented as a graph of symbolic relations, and spreading activation 

algorithm explains the attention-shifting from concept to concept over the graph. To start 

activation spreading process one must specify the task’s goal. The goal then serves as an 

activation source, thus causing the working memory to contain nodes related to the current task. 

Links connecting concepts are weighted to indicate an associative relation between them. 

Namely, the strength of the relations is updated based on the Hebbian learning [189] meaning 

that nodes that are active together form tight connections (or, as stated in [190], “neurons that 

fire together, wire together”). As the strength of the relation increases, the amount of activation 

that can pass between two nodes increases, therefore indicating that the link became more 

grounded and easier to process.  

Aside from spreading activation, reasoning processes implemented in [170] are guided by base-

level activation specified for each concept (i.e. declarative knowledge unit). Base-level 

activation indicates the concept’s accessibility: each time a node is retrieved from the memory, 

its base-level activation increases which in turn means that less activation will be needed to 

retrieve the node in the future (thus serving as a learning process). Conversely, as the time 

passes without the node being attended to, the base-level activation of the node decreases (i.e. 

forgetting process). The base-level activation and activation received from spreading source 

activation in sum dictate the ease of the node’s retrieval. The authors [177] argue that base-

level activation accounts for the context-independent aspect of node’s accessibility based on 

frequency and recency, while spreading activation deals with attentional activation guided by 

the current context. 

Spreading activation and base-level activation guide the dynamics in the SOAR [188] and ACT-

R [170] by controlling the amount of activation (by limiting the amount of source activation) 

and its duration (through the decay of base-level activation). It is important to note, however, 

that humans have the capability of attention control, intentionally inhibiting some nodes and 

directing their attention towards specific sub-goals [169], [181]. Following the taxonomy 

proposed in [191], there are three groups of mechanisms used for information reduction and 

attention control: selection, which involves extracting a single element of interest (among 

many), reduction, which filters out some of the elements, and suppression, which suppresses 

some of the elements. As noted in [177] and [169], some of these processes are not implemented 
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in the ACT-R. Nevertheless, the past studies demonstrated the capability of the ACT-R 

framework [170] to match human performance on multiple cognitive tasks (e.g. [192], [193]).  

4.4.1.2 Human thinking theories 

The described processes of node activation nicely align with prominent theories of human 

thinking. For example, one can note how these processes can give rise to the two thinking 

modes introduced in [194]. The dual-system theory [194] distinguishes fast, automatic, 

effortless reasoning (so-called System 1 thinking) and rule-based, controlled, conscious 

reasoning (called System 2 thinking). System 1 thinking arises as a consequence of the past 

experiences that enabled the creation of strong associative relations among concepts, and does 

not consume working memory resources [195]. System 2 thinking, on the other hand, relies on 

deliberate processes of attention control, regulation and active information maintenance. 

Theories complementary to the dual-system theory were developed within the field of design 

computing [196], [197]. Maher and Gero [196] differentiate reflexive, reactive and reflective 

modes of reasoning. Reflexive reasoning denotes an automated response to stimuli, a reflex. 

Reactive reasoning includes decision-making and reasoning over several alternative responses 

to the perceived stimuli. The most effortful, reflective, reasoning involves an even higher 

amount of processing, filtering and hypothesising on the outcomes of each of the possible 

responses.  

4.4.1.3 Design ontologies 

Building on the theory and past research efforts described herein, this work aims to develop a 

system capable of simulating human thinking [194]. More so, the goal is to develop an agent 

whose mental model and cognitive processes are design-related, thus facilitating a comparison 

of simulation results and findings of empirical studies of designers. Therefore, there is a need 

for development of a design-related representation of the agent’s knowledge that is compatible 

with described cognitive processes and mechanisms. A convenient way to represent design 

knowledge is by utilising design ontologies (e.g. [128], [198]).  

In this work, the Function-Behaviour-Structure (FBS) ontology [128] is used. The FBS was 

initially developed as an ontology for describing designs but was later shown to be suitable for 

describing design processes as well [199]. Numerous research efforts across multiple domains 

(e.g. mechanical and industrial design, or architecture) offered empirical support and 

demonstrated the applicability of FBS in providing tools to understand both, designing and 

designs [200]. 
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The FBS framework is presented in Figure 4.3. The Function (F) ontological category denotes 

the purpose of a design object. Components of a design object and relations among these 

components form the design object’s Structure (S). Attributes derived from the design object’s 

structure are called Behaviours (B). FBS framework makes a distinction between expected 

behaviours – Be, and actual structure’s behaviours (i.e. behaviours derived from the structure) 

- Bs. Finally, Requirements (R) posed on the design and a representation of a design object, 

Description (D), are added to the framework. The fundamental design processes are denoted 

with arrows among the design issues (i.e. requirements, functions, behaviours, structures and 

descriptions). Namely, Gero [128] differentiates eight fundamental processes:  

1. Formulation - a process during which a set of requirements is transformed into 

functions, which in turn serve to identify the expected behaviours (Be). In short, the 

Formulation process defines the problem space; 

2. Synthesis – a process of solution generation based on the expected behaviours; 

3. Analysis – a process of determining the behaviours of the generated structures;  

4. Evaluation – a process of comparing expected and obtained (i.e. derived from the 

generated structure) behaviours; 

5. Documentation – a process of creating the design’s description based on the generated 

structure; 

6. Reformulation type I – a process of structure space modification driven by solution re-

interpretation; 

7. Reformulation type II – a process of behaviour space modification driven by solution 

re-interpretation; 

8. Reformulation type III – a process of function space modification driven by solution re-

interpretation and subsequent reformulation of the expectations posed on the behaviour. 

The work of Jiang [201] employed FBS ontology in a study of design cognition of industrial 

design and mechanical engineering teams performing conceptual design activities, and found 

that FBS design issues captured more than 70% of the observations of a design session. The 

remaining time was spent on social communication, coordination of activities, and design 

process management. Similar findings were reported in [202]. The activities not captured by 

FBS ontology fall into categories of “extra-design activities” or activities not directly related to 

the current task [201]. Therefore, FBS is found suitable for capturing relevant design processes 

and is proven to enable studies of design cognition. 
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Figure 4.3 Function – Behaviour – Structure (FBS) framework 

4.4.2 Affect 

As already emphasised, the influence of emotions on decision-making, learning and behaviour 

regulation has long been recognised [203], [204]. Likewise, many researchers advocate the 

inclusion of affective elements in cognitive architectures as a necessity for realistic behaviour 

simulation. Thus, although they were initially developed without taking emotions into account, 

the prominent cognitive architectures ACT-R and SOAR over time incorporated affective 

modules: ACT-R’s extension was proposed in [205], and SOAR’s in [206]. Computational 

Models of Emotions (CME) are directed towards capturing the interplay among emotions, 

personality, memory and cognitive processes, and a review of those can be found in [207] and 

[208]. However, the well-established model of emotions is yet to be developed. Namely, as 

emphasised in [207], there is no consensus on which emotions are to be considered 

fundamental, there is a lack of established methodologies to guide the development of CME, 

and CMEs developed to date build on different theoretical approaches. The majority of CMEs 

are built on appraisal theories of emotion, such as OCC appraisal model [209] used in WASABI 

[210] model. Additionally, some CMEs adopt discrete (i.e. hierarchical) [211] or dimensional 

[212] view of emotions [213]. Most of the CMEs develop detail models of motivation and 

drives, and how they give rise to emotions experienced.  
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However, it is not clear if such explicit and detail model of emotions is needed to model design 

teams, and if so, how it should be related to the design context. The studies of emotions 

designers experience while designing are seldom. In fact, in their work, Hutchinson and Tracy 

[214] found that less than 2% of design papers dealing with emotions are referring to designer’s 

emotions (as opposed to the user’s emotions). Nevertheless, research [215] indicates that the 

designer’s affective state plays an essential role in many design activities, and in particular, in 

ideation. Hutchinson [215] found that most of the designers were unaware of their emotions 

experienced during design. But once their attention was brought to them, the study subjects 

concluded that affective states are acting as a driving force for their designs. The study [215] 

reported that designers copped with emotions of anxiety and excitement by seeking feedback, 

imposing a structure to the process or relying on supervisors help. Sas and Zhang [216] studied 

the designer’s emotions throughout the design process and found different emotions present in 

various stages of the design. Notably, the authors [216] emphasised the feelings of fear and 

frustration in periods of disagreement and no progress, i.e. when the deadlock is encountered. 

Similarly, Chulvi and González-Cruz [217] studied frustration as an emotion experienced 

during design tasks. Frustration is an emotion experienced as “irritable distress”, and results 

from disappointment caused by inability or uncertainty of goal achievement [218]. Frustration 

may be caused internally – due to perceived deficiencies in knowledge or capabilities, or 

externally – as a result of environmental or social barriers to goal attainment. It reduces 

inhibitions and can result in anger and irrational behaviour. On the other hand, the feeling of 

frustration can also elicit more effort, which can consequently lead to an improvement [218]. 

Negative emotional states, such as frustration, nervousness and anxiety, influence the reasoning 

process by restricting the thought process and narrowing the focus [203]. On the other hand, 

positive emotions are linked to broader thought processes and greater tolerance for novelty 

[219]. Researchers note that positive mood is associated with divergent thinking, increasing the 

chances of obtaining sudden insights - the so called Aha! Moments [220]. Hutchinson and 

Tracey [214], however, found the mixed results regarding emotions and creativity. Namely, in 

comparison to an indifferent state, both, positive and negative emotions resulted in increased 

creativity. One explanation for a link among higher levels of creativity and negative affective 

state may stem from previously emphasised increase in cognitive persistence and effort due to 

negative emotions [214].  

Building on the findings presented, one may conclude that at the task start the designers are 

motivated and positive, thus exploring the wide space of ideas. As time passes, the anxiety and 
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a sense of urgency force the designers to focus on solution finding and convergence. This 

behaviour is compliant with the solution space exploration behaviour implemented in agent-

based models of design teams such as [221], [222] by using, for example, simulated annealing. 

The studies of Gersick [223] suggest that at about half-time of the project people start to 

noticeably change their behaviour as a result of concerns due to deadlines. Although not 

studying the effect of emotions on designing, Stampfle and Badke-Schaub [202] observed the 

effect of approaching deadlines on the designer’s effort to converge to a solution, noting that if 

no acceptable solutions were proposed, the designers tend to re-examine the discarded 

solutions. 

4.4.3 Personality traits and cognitive ability 

To introduce diversity in the team model, one has to model individual differences such as 

cognitive ability and personality traits [38]. The cognitive ability, or intelligence [224], is often 

defined as a general mental capacity [225], [226], and it relates to aspects of information 

processing speed [227], learning [228] and sense-making [226]. Studies [180] suggest that a 

single construct of Working Memory Capacity (WMC) influences an individual’s ability to 

develop, maintain and update bindings, thus correlating with fluid intelligence. Further, 

research suggests that such working memory capacity differs among individuals [182], [183]. 

Preceding subsections discussed the ‘controversial’ nature of such WMC, where, for example, 

Cowan [183] argues that it ranges from 3 to 5 knowledge chunks focused at once. Similarly, 

Engle [229] explains that individual differences in working memory span influence one’s speed 

of focus shifting. 

Cognitive ability has been related to personality [230] with high cognitive ability often being 

linked to higher levels of openness to experience and emotional stability (i.e. lower levels of 

neuroticism), and negatively associated with conscientiousness. Listed personality traits are 

elements of one of the most established personality models: the Big Five or Five-Factor Model 

(FFM) of personality [231]. Aside from already listed, the factors comprising the FFM are 

extraversion and agreeableness. Based on the findings from several studies, the FFM 

personality traits are regarded as stable over time [232]. In their studies of impact personality 

traits have on job performance, Barrick and Mount [232] group personality traits as those 

contributing to “getting ahead”: conscientiousness, emotional stability/neuroticism and 

openness to experience, and those related to “getting along”: extraversion and agreeableness. 

The latter group of personality traits proves especially important in team settings. 
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Numerous studies have explored the interplay among cognitive ability, personality traits and 

individual and team performance (e.g. [232], [233]). Within the design field, an early study was 

reported in [234], generating several insights and directions for future work. For example, the 

authors found a significant negative relationship between heterogeneity of conscientiousness 

and team performance. Later studies [235] explored the influence of average team 

conscientiousness on design team performance, but no significant relations were found. Others 

[236], [237] studied the interplay among team personality composition and creativity. However, 

more research is needed to determine the relations among different aspects of personality and 

design team performance. 

As a starting point in modelling agent’s personality, the developed model (see Chapter 5) 

includes aspects of extraversion and agreeableness, i.e. the personality traits contributing to 

“getting along”. Extraverts are often described as sociable, assertive and talkative individuals 

[231], who enjoy interacting with others and are not afraid of criticism [237], [238]. Introverts, 

on the other hand, tend to be reserved in interactions with others and reflective. Baer et al. [237] 

argue that the level of extraversion influences the likelihood of a designer sharing ideas with 

the team.  

Agreeableness is a trait related to altruism and cooperativeness. Agreeable people are trusting, 

modest, friendly, and are viewed as supportive and tender-minded [231]. Conversely, 

disagreeable people can be hostile, argumentative, and seek other’s faults [239]. In a design 

team setting, the disagreeable personality may be manifested as criticism and dismissal of 

other’s ideas [237] 

4.4.4 Trust and transactive memory system 

Learning through interaction, observation and imitation of others, or what Tomasello [240] 

refers to as learning from and through others, is regarded as innate to humans. It is necessarily 

accompanied by learning about others. The perception each team member holds of others’ 

knowledge and beliefs, i.e. the transactive memory [241], [242] is shown to have a significant 

influence on the team performance and behaviours [243]. Therefore, a large number of 

computational models of teamwork implement a transactive memory system (e.g. [244]–[246]), 

arguing that it contributes to the bounded-rationality - and thus increases the behaviour realism 

- of the simulated actors [241].  

The perception of others is a basis for trust formation [247]. Trust has been defined as “the 

willingness of a party to be vulnerable to the actions of another party based on the expectation 
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that the other will perform a particular action important to the trustor, irrespective of the ability 

to monitor or control that other party” ([248], p. 712). Salas et al. [32] note that a lack of trust 

among members of a team leads to putting extra effort into inspecting other’s work, which in 

turn prolongs the time needed to complete the task and may result in disagreements and 

conflicts.  

Various forms of trust have been studied in the literature. For example, Webber [249] 

distinguishes early trust, affective trust and cognitive trust. Early trust is a one-dimensional 

construct build on reputation, prior knowledge of one’s competence, and likability. As 

familiarity among individuals’ increases, trust can be separated into the cognitive and affective 

component. The former is based on reliability and competence, while the latter is related to the 

level of concern and formed emotional bonds. Marsh [250] categorised trust into: basic trust – 

a trust disposition not directed towards anything or anyone specific, general notion of the 

agent’s propensity to trust; general trust – an overall trust the agent holds in a particular team 

member; and situational trust – a trust towards other agent with the respect to the current 

situation (as perceived by the trustor agent). Listed categorisations clearly emphasise the 

dynamic and context-dependent nature of trust [247].  

Trust is viewed to arise from the trustee’s perceived trustworthiness – which is a function of 

ability, benevolence and integrity [248], [251], and trustor’s propensity to trust [252]. Mayer et 

al. argued that people have an inherent propensity to trust [248], rooted in one’s personality. 

Similarly, researchers [253], [254] have found traits such as agreeableness to be a significant 

predictor of trust propensity. Future experiences and perceived team performance, shape the 

further development of both, transactive memory and trust [243], [247]. Literature review on 

the transactive memory system research [243] revealed discrepancies in how researchers view 

the relationship between trust and transactive memory system. Namely, while cognitive-based 

trust is sometimes regarded as an important dimension of transactive memory [255], others 

have described trust as a transactive memory system’s antecedent [256] or a mediator of the 

influence of transactive memory system on team performance [257]. The research presented 

herein, however, does not aim to capture a detailed interplay among these elements. As detailed 

in the next chapter, the developed model includes only the perceptions agents have on “who-

knows-what”, which is based on the task-related competencies and expertise (thus relating only 

to cognitive-based trust and transactive memory). 
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5 MODEL IMPLEMENTATION 
This chapter presents details of the developed model: first on the agents representing design 

team members and then concerning their interactions and tasks performed. Similar to Section 

4.4, to ease reading and support understanding, the description of modelled team member agent 

is organised into sections describing the agent’s mental model, affect, personality and trust. 

Each of the specified sections consists of an implementation description and a short overview 

discussing the limitations of the implementation. The chapter then details communication 

among agents and describes technical aspects regarding task representation, generation, 

sequencing and completion. Finally, an outline of a simulation run is presented.  

The conceptual model presented in this chapter is implemented using MASON [258], and the 

adequacy of both, conceptual and computational models, is assessed in experiments reported in 

the next chapter. 

5.1 Team member agent 

The team member agent, as indicated by its name, is a computational representation of a single 

member of a team and represents the most elaborate element of the developed model. In contrast 

to the majority of agent-based models reviewed in Chapter 3, the developed agent is cognitively 

rich, affective, and its actions are guided by its previous experiences. Inclusion of multiple 

aspects of human behaviour in agents serves to achieve the goal of obtaining a multi-purpose 

tool for team studies. However, models that constitute such detailed agents (as opposed to 

models where a few simple rules guide agent’s actions) have several limitations, most notably 

difficult verification and validation [259]. In order to ease verification and validation, as well 

as to enhance flexibility in designing simulation experiments, the agent is implemented in a 

modular fashion: with the exception of the core elements and processes of the agent’s mental 

model, the effects of the personality, memory and affective aspects can be switched off, 

therefore enabling isolated studies of a particular element’s impact on the overall behaviour. 

These implementation details are explained in the following sections. 

5.1.1 Team member agent’s mental model 

Following a theoretical background and relevant work presented in the previous chapter, this 

subsection gives the details on the developed model. First, the agent’s mental model is 

described in light of the design research by using FBS design ontology to model the agent’s 
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knowledge. FBS framework is further used to describe the agent’s reasoning processes 

modelled as spreading activation over the knowledge network. Additionally, mechanisms of 

inhibition, learning and chunk formation are described. Taken altogether, these mechanisms 

explain the agent’s cognitive behaviour on a single task.  

Further subsections are dedicated to describing the team member agent’s mental model update 

in between two tasks, and mental model initialisation at the simulation start. Finally, an 

overview is presented and limitations of the current implementation are discussed. 

5.1.1.1 Development of a design-related mental model: Relation to FBS ontology 

Based on the FBS framework, the design knowledge can be represented as a network of 

functions, behaviours and structures, while design processes can be modelled as a traversal over 

such network. This idea inspired the team member agent’s mental model depicted in Figure 5.1. 

As shown in the figure, the mental model is represented as a multi-layered network. Layers 

correspond to ontological categories distinguished by FBS framework (i.e. function layer, 

behaviour layer and structure layer), each of which contains nodes of their corresponding type. 

Similar to the FBS framework, there are links from function nodes to behaviour nodes, and 

from behaviour nodes to structure nodes. There are no links among nodes of the same type, nor 

direct links from functions to structures [260].  

Agent’s mental model does not include description nodes as the Documentation process is 

omitted from this study (thus forming one direction for future work). On the other hand, 

requirements had to be included to provide a source of activation. Requirements define the task 

to be solved and are modelled as a combination of behaviours which a structure has to meet 

(i.e. the structure has to be linked to the required behaviours) to be accepted as a solution. A 

particular function node can, therefore, be seen as relevant for the requirement if (and only if) 

it is connected to one or more relevant behaviour nodes. Although not illustrated in Figure 5.1, 

links from requirements to function nodes can be established based on the relevance of a 

function node for the given requirement. In this manner, an activation starting at the 

requirement can be spread to function nodes, and further passed to behaviour nodes. This 

activation passing corresponds to Formulation process of FBS ontology. The activation can 

then be forwarded to structure nodes, representing the process of Synthesis. 

The Analysis process could have been modelled as an activation spreading from the 

“sufficiently active” (i.e. firing) structure node back to behaviour nodes, i.e. the structure node 

acting as a source. In this manner, the behaviour nodes active due to activation spread from the 
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requirements would be regarded as a set of expected behaviours (Be), while behaviour nodes 

active due to activation spread from the structure node would generate the Bs set, thus 

permitting Evaluation process. 

 

Figure 5.1 Team member agent’s mental model [261] 

However, such a simple model does not instil a manner in which new structure nodes (and their 

relations to behaviour nodes) can be created. A straightforward solution is to predefine all of 

the possible structure nodes and their connections to behaviour nodes, or to implement a random 

assignment of behaviour-structure links during simulation runtime. But implementing these 

mechanisms would limit the capability to study solution space expansion and properties. 

Another approach is to endow each structure node with a structure representation that enables 

calculation of various properties. For example, associating each structure with a number allows 

observation of the features of being positive/negative, odd/even, prime/composite or 

integer/rational. The calculation of such properties simulates the process of the behaviour 

determination (i.e. Analysis). Further, incorporating representations of structures can provide 

the means for new structure node generation. For example, one can represent a structure as a 

vector in an n-dimensional space and associate behaviour nodes with a specific orientation, 
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length or direction. Creation of new structures can then be modelled as an application of vector 

operations (e.g. vector addition or scalar multiplication). Or, one can reuse the idea presented 

in [78] by associating each structure with a geometric shape, enabling shape overlap (to create 

new shapes/structures), and regarding each behaviour node as representing the property of – for 

example – having a specific number of sides or covering a particular area. 

A design structure is often regarded as a network of parts (components) [262]–[264], which 

inspired the structure representation implemented herein. As shown in Figure 5.1, in this work 

each structure node is associated with a (binary and undirected) network, and behaviour nodes 

are associated with certain network properties. More precisely, each behaviour node 

corresponds to a certain range of a particular network property (e.g. the number of components 

being within range ⟨3, 5]). An example of a structure node and its associated behaviour nodes 

is presented in Figure 5.2.  

 

Figure 5.2 An example of a structure node and associated behaviour nodes 

Once the structure node’s activation exceeds a threshold, an agent can calculate the important 

network properties (i.e. those corresponding to behaviour nodes that the requirements are posed 

upon) and determine if the structure node qualifies as a solution. This simulates the processes 

of Analysis and Evaluation. If an unmet requirement is detected during the Evaluation process, 

an agent (re)directs the activation to the relevant function nodes (i.e. function nodes related to 

the relevant behaviour nodes), thus simulating the Reformulation III process. The 

Reformulation II process is not explicitly modelled. Instead, its functionality is achieved by 
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subsequent passing of the activation (redirected through Reformulation III) over the function-

behaviour links. 

Finally, the Reformulation I process occurs through the process of new structure generation. 

Currently, two structure generation mechanisms are implemented: union and concatenation. 

First is triggered each time two structure nodes are simultaneously active beyond a predefined 

threshold, and it creates a structure node whose respective network is obtained by overlaying 

networks associated with the two activated structure nodes. This process simulates the act of 

combining two distinct structures into one, and is depicted in Figure 5.3a. The concatenation 

process, on the other hand, requires just one sufficiently active structure node and consists of 

collapsing two of structure node network’s nodes (i.e. “parts”) into one. It is a process inspired 

by the act of combining two parts of a structure into a single part (e.g. coupling a mobile phone’s 

screen and a keyboard into a touchscreen). When a structure node is active, its associated 

network’s links are scanned to determine if any can be replaced. This process is stochastic, and 

it is guided by the frequency of the link’s occurrence in networks of all of the structure nodes 

known to the agent. More precisely, the precondition for concatenation is that a sufficient 

number of distinct structure nodes contain the link to be replaced. If this precondition is met, a 

ratio of the number of known structures in which the link exists, and the number of known 

structures in which the parts to be collapsed are not linked determines the likelihood of a 

replacement occurrence. The concatenation process is shown in Figure 5.3b. Only one 

combination and/or concatenation can be performed in a single step. 

a) 

 

b) 

 

Figure 5.3 Generation of new structures a) The union process b) The concatenation process 
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Irrespective of the generation mechanism applied, the properties of the resulting network often 

differ from the original network’s properties - which suggests that a new network can display 

a previously unseen combination of properties. On the FBS node level, this means that a new 

structure node can be connected to a set of behaviour nodes different (or even disjoint) from 

the set(s) of behaviour nodes related to original structure node(s). Thus, the defined generation 

processes equip team member agents with the mechanism to find a solution even if the structure 

with required behaviours was not previously known to any of them. 

It is important to note the effect of the interplay between the two generation processes. While 

union results in a network whose size (i.e. the number of nodes and links) is larger than or equal 

to the original networks, concatenation reduces both, the number of links and the number of 

nodes. This enables agents to generate structures of a wide range of behaviours. More 

importantly, the inclusion of both, union and concatenation generation processes renders the 

solution space as unbounded in the sense that agents can always generate new structures. Since 

the structure node networks are binary, the union of a network S1 and its subnetwork S2 results 

in S1. Thus, if the only available mechanism were the union, the agents would eventually 

exhaust the set of possible combinations. Similarly, applying only the concatenation process 

would subsequently lead to networks with no links, and no new structures could be generated. 

However, if an initial space is sufficiently rich, one can generate an infinite number of structures 

by utilising the processes of concatenation and union. It can easily be shown (see Appendix B) 

that an initial space containing just one structure node whose network consists of two links with 

an intersecting node is sufficient to generate – through union and concatenation - an unbounded 

solution space. The unboundedness of the solution space was ensured in every simulation study 

performed by utilising the model presented herein. 

5.1.1.2 Additional processes of activation regulation 

The described processes of activation spread over the links and activation redirection due to 

encountered discrepancies are in line with the FBS design processes and serve to model the 

working memory mechanisms. As noted earlier, researchers [179], [229] regard working 

memory as containing those long-term memory elements that are active above a certain 

threshold. Similar to the stance taken in ACT-R [170] architecture, in this work, the 

accessibility of nodes is correlated with their activation. Highly activated nodes are accessible 

to conscious awareness, meaning that they can be communicated and reasoned upon. In this 

work, two activation level thresholds are introduced: the first, lower one, guides which nodes 

enter the consciousness and can be verbalised. This threshold is thus called the activation 
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threshold. However, not every node that an agent is aware of will be reasoned upon in detail. 

Thus, the second, higher threshold guides which nodes can be analysed (i.e. analysis threshold). 

For example, a structure node network’s properties can be analysed only when the structure 

node’s level of activation exceeds the second threshold. Similarly, reasoning upon which 

function nodes are relevant for the task at hand can be initiated only when the requirement’s 

level of activation meets the analysis threshold. As described, initial activation impulse is 

generated in the requirement node (i.e. the task), and is then spread over the links in the agent’s 

mental model. If, at any time, the activation disappears (in a sense that activation of every node 

is below the activation threshold), the activation of the relevant requirement node is reinitiated. 

The (re)activation of requirement nodes simulates the prefrontal cortex’s function of active goal 

maintenance by (re)directing the attention towards goals [265]. 

Working memory has a crucial role in attention switching and (intentional) inhibition of 

irrelevant or unsuitable information [169]. The attention switching is included as previously 

described and follows FBS processes. But additional mechanisms had to be included to simulate 

intentional inhibition of unsuitable nodes. Namely, if a structure is deemed as non-satisfactory, 

although it might be the best structure found so far (i.e. the one satisfying the most 

requirements), the agent can intentionally inhibit it for a certain period to allow further search 

for structures which would meet all of the requirements. The inhibition is implemented as a 

gradual increase in a negative impulse (i.e. the impulse subtracted from the activation impulse), 

at the rate proportional to the number of requirements that the structure fails to satisfy. Since 

inhibition simulates a voluntary process, it can stop the agent from analysing a particular 

structure (i.e. inhibition caused the activation to drop below the level of activation needed for 

the analysis). However, inhibition cannot decrease the level of activation enough to cause the 

agent not to be aware of the node. In other words, the maximal level of inhibition still permits 

the node to have an activation level above the activation threshold. 

Finally, to equip team member agents with the capability to change their behaviour based on 

the experiences, the learning mechanisms had to be implemented in agent’s mental model. 

Building on the ideas presented in [153], [170], the weight of the links in agent’s mental model 

increases by the links’ use. The link weight influences the amount of activation that can be 

passed along the link in a single step, thus representing the ease of the links’ processing. This 

is indicated by the differences in links’ thickness in Figure 5.1. As the nodes’ activation exceeds 

the analysis threshold, the links associated with the node can be processed and increased in 

weight. Following the proposal presented in [266], the link weight increase follows a sigmoid 
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curve. Namely, the weight is updated following the logistic function of the form: 

𝑤(𝑥) =  
1

1 +  𝑒−(𝑥−5)
 , (5.1) 

where 𝑥 ∈ [0, 10], meaning that weight of the link does not exceed the value of 1 (i.e. 𝑤(𝑥) ∈

⟨0,1⟩). Each weight update is guided by the formula 𝑤(𝑥𝑖)  → 𝑤(𝑥𝑖+1), where 𝑥𝑖+1 =  𝑥𝑖 + 𝑐, 

and 𝑐 is a predefined constant. If the link does not exist within the agent’s mental model, its 

weight is regarded as being equal to zero. 

To align agent cognitive behaviour with the prominent theories of human thinking, a link weight 

threshold (that separates “grounded” from “ungrounded” links) is introduced. The link whose 

weight is above the reflex threshold is regarded as grounded and can be processed at almost no 

cost - thus simulating System 1 thinking [194], or reflexive reasoning [196]. More precisely, 

links whose weight does not exceed the threshold require (at least) one step to transfer enough 

activation for receiving node to become active. On the other hand, grounded links can pass 

activation immediately (i.e. as a reflex), thus allowing the receiving node to forward the 

activation in the same step. For example, if a link from function node 𝑓 ∈ 𝐹 to behaviour node 

𝑏 ∈ 𝐵 is grounded, and node 𝑓 is active, the activation can pass from 𝑓 to 𝑏 and then be further 

passed towards structure nodes linked to 𝑏 in just one step. The presented interpretation of 

System 1 and System 2 thinking in the FBS context nicely aligns with Kannengiesser’s and 

Gero’s studies on design thinking through the lenses of Kahneman’s dual-system theory [195], 

[267].  

The learning (i.e. link grounding) is closely related to expertise gain and knowledge chunk 

formation [186], [268]. Namely, nodes connected with well-grounded links can be regarded as 

a chunk that can be processed as a single knowledge unit. As stated in [195], System 1 thinking 

(i.e. processing of links within a chunk) does not use working memory resources. In other 

words, when modelling working memory capacity, elements forming a chunk should be 

regarded as occupying a single “slot”. This work builds on Cowan’s [183] view of working 

memory, thus assuming the working memory capacity to range between 3 and 5 knowledge 

chunks that can be focused (or “fire”) in one simulation step. Within this work, the size of one 

chunk is not limited so chunks can grow with experience. However, the assumption of 

unboundedness of chunk size may create unrealistic situations in which large number of nodes 

is active. This aspect of the implemented model is further explored in the next chapter, but 

additional refinement is needed to implement theoretical implications in more detail. 
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Although the view in which well-connected entities form a chunk has been frequently utilised 

(e.g. [268]), it is not evident how this notion should be translated to the model at hand. For 

example, if a structure node S is the most active node, and it is tightly connected to a node B, 

which in turn shares well-grounded links to several other structures - do all of them form a 

chunk? As currently implemented, the process of extracting the agent’s focus (in one simulation 

step) follows a simple algorithm (Figure 5.4). First, nodes active above the activation threshold 

are collected and ordered by the amount of activation. Starting from the most active node, the 

immediate grounded surrounding (i.e. one grounded link apart) of the node is extracted and 

organised to form a chunk. If two chunks intersect, they are combined into a single chunk. This 

process is continued until the working memory capacity is reached, or no active nodes are left. 

 

Figure 5.4 An example of extraction of nodes focused in a single step 

Once the focused nodes are extracted, they fire, thus spreading their activation through the 

network. The firing nodes on the receiving end of the grounded links can pass on their own 

activation as well as the activation from the focused nodes on the other end of the grounded 

links. The spreading activation follows the formula [153]: 

𝐴𝑖(𝑡) = 𝐴𝑖(𝑡 − 1) ∗ (1 − 𝑑𝑒𝑐𝑎𝑦) + (∑ 𝐴𝑗(𝑡 − 1) ∗ 𝑤𝑗,𝑖

𝑘

𝑗=0,
𝐴𝑗∈ 𝑓𝑜𝑐𝑢𝑠𝑒𝑑

) (1 − 𝐴𝑖(𝑡 − 1)), (5.2) 
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where k is the overall number of nodes, 𝐴𝑖(𝑡) denotes the activation of the i-th node in the step 

t, decay is a predefined factor, and 𝑤𝑗,𝑖 is the weight of the link from j-th node to the i-th (and 

zero if such link does not exist). Note, only focused nodes pass their activation to other nodes. 

The described processes guide team member agent’s behaviour on a single task. A summary of 

the agent’s cognitive behaviour in each simulation step is presented in Figure 5.5.  

 

Figure 5.5 Agent’s cognitive behaviour (on one task) 

5.1.1.3 Mental model update over multiple tasks 

The previous subsection describes agent’s cognitive behaviour on a single task. To model 

behaviour over multiple tasks additional mechanisms had to be included. Namely, a one-task 

simulation is intended to simulate several work hours, during which no significant forgetting is 
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expected to occur. But if one wishes to study the change of the mental models over several 

tasks, it is necessary to implement knowledge decline, as well.  

Therefore, two levels of link weight update are implemented. The first one – temporary change 

occurring during a single task - is implemented as defined previously. To model learning and 

forgetting occurring between tasks, the new weight of each link in the agent’s mental model is 

based on the difference between the weight at the start of the previous task and the weight at 

task end. Namely, if there is no change, the link has not been used in the task. Therefore, its 

weight declines following the formula: 

𝑤𝑠𝑡𝑎𝑟𝑡(𝑛) = 𝑓𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗ 𝑤𝑠𝑡𝑎𝑟𝑡(𝑛 − 1), (5.3) 

where n denotes the ordinal number of the task in a task sequence, and 𝑤𝑠𝑡𝑎𝑟𝑡(𝑛) initial weight 

of the link (i.e. weight of the link at the start of n-th task). If, on the other hand, the weight has 

increased during the past task, new weight is calculated as: 

𝑤𝑠𝑡𝑎𝑟𝑡(𝑛) = 𝑤𝑠𝑡𝑎𝑟𝑡(𝑛 − 1) + 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗ (𝑤𝑒𝑛𝑑(𝑛 − 1) − 𝑤𝑠𝑡𝑎𝑟𝑡(𝑛 − 1)). (5.4) 

where 𝑤𝑒𝑛𝑑(𝑛) denotes the final weight of the link w, i.e. the weight at the end of the n-th task. 

The described processes are sufficient to model reasoning and knowledge change, and thus they 

form the core mechanisms of the agent’s mental model. Additional methods are included to 

provide a richer set of possibilities when designing simulation experiments and, as noted earlier, 

can be easily added to or excluded from simulation studies. One such method is intended to 

account for the effect of memories of the past tasks. Namely, similarities of the preceding tasks 

and current situation may cause specific nodes to be easier to evoke, or may tie negative affect 

to the node (e.g. due to failure of the past task), thus causing one to avoid verbalising or 

considering it in the current task. The implementation of this mechanism is inspired by the base-

level activation in ACT-R architecture. However, in this model, it serves a different purpose. 

In ACT-R each node’s base-level activation accounts for the context-independent ease of 

activation (due to recency and frequency of the node’s use). Here, the effect of recency and 

frequency of use is captured by the weight of the links. Base-level activation, on the other hand, 

serves to take into account the “context” formed as a result of memories. In short, base-level 

activation serves to capture the tendency of a node to be activated due to similarities between 

past situations (in which the node was deemed as important and thus may have emotional tone 

tied to it) and the current task. 
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To implement the described mechanism, each agent memorises the past tasks in the following 

manner: for each task, a set of nodes that were focused (and, therefore, deemed as relevant) 

during the task is remembered. However, not each node is equally important/easy to remember. 

The importance of a node for the task is approximated by the number of times it was focused, 

while the node that was chosen as a final solution is deemed as the most important. The number 

of times the nodes were focused (i.e. the nodes’ importance) is normalised so that the nodes’ 

importance is within range [0.2, 0.8], while the most important node – final solution – gains the 

importance 1. One consequence of such implementation is that different agents may have 

different recollections of the previous experiences. At the start of the task, current requirements 

are compared to the past, remembered tasks. The similarity of the past tasks and the task at 

hand, as well as the importance of the nodes for the past tasks, guides the base-level activation 

of each node. Similar to the SOAR’s implementation [171], the default number of tasks an 

agent can remember - maximal number of past tasks remembered - is set to ten.  

Formally, a task can be defined as a set of required behaviour nodes: 

𝑇 =  {𝑏𝑘 | 𝑏𝑘 ∈ 𝐵}, 

where B is a set of all behaviour nodes. Then, a similarity between past task 𝑇𝑖 and current task 

𝑇𝑗 can be calculated by – for example – the Sørensen–Dice coefficient [269], [270], Jaccard 

index [271] or overlap coefficient [272]. In the current implementation, Sørensen–Dice (or Dice 

for short) coefficient is used. Then, a base-level activation (BLA) for a particular node 𝑛𝑜𝑑𝑒𝑘 

in the task 𝑇𝑗 is obtained following the equation: 

𝐵𝐿𝐴(𝑛𝑜𝑑𝑒𝑘) =  
∑ 𝐷𝑖𝑐𝑒(𝑇𝑖, 𝑇𝑗) ∗ (𝑗 − 𝑖)−1 ∗  𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

𝑗−1
𝑖=1 (𝑛𝑜𝑑𝑒𝑘)

∑ (𝑗 − 𝑖)−1𝑗−1
𝑖=1

, (5.5) 

where 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖(𝑛𝑜𝑑𝑒𝑘) denotes the perceived importance of the node 𝑛𝑜𝑑𝑒𝑘 for the task 

𝑇𝑖. The value obtained following the proposed formula can further be scaled by a parameter 

(maximumBLA) to set the maximum value (and, thus the effect) that base-level activation can 

have. At each simulation step, a node’s activation equals its base-level activation, plus the 

activation obtained by spreading (or activation redirecting, as described earlier).  

Further, since this process is aimed to account for the affect tied to a node, it also serves to set 

the initial inhibition value for each node. Particularly, if the node is a structure node proposed 

as a final solution in a task 𝑇𝑖, or if it is a behaviour node linked to the final solution, then its 

initial inhibition is set based on the success of the task 𝑇𝑖: 
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𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑛𝑜𝑑𝑒𝑘) = |𝑚𝑖𝑛𝑖𝑚𝑢𝑚 (
∑ 𝐷𝑖𝑐𝑒(𝑇𝑖, 𝑇𝑗) ∗ (𝑗 − 𝑖)−1 ∗ 

𝑗−1
𝑖=1 𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑇𝑖)

∑ (𝑗 − 𝑖)−1𝑗−1
𝑖=1

, 0)|, (5.6) 

where 𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑇𝑖) equals −1 if the task 𝑇𝑖 was unsuccessful, and 1 otherwise. Similar to base-

level activation, inhibition can be scaled with a factor (𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛) guiding 

the maximal value that initial inhibition can take. While base-level activation remains 

unchanged during the task, inhibition value can be changed (both, increased or decreased) due 

to subsequent reasoning on the node’s utility for the task. 

5.1.1.4 Mental model initialisation 

The remaining aspect of the team member agent’s mental model, which needs to be explicated 

is its initialisation – how to create a mental model if no previous experiences are obtained (i.e. 

no tasks performed).  

For this purpose, each agent is assigned a domain of expertise (or expertise, for short). First, the 

set of behaviour nodes is created by selecting several properties of interest (i.e. network 

measures), dividing the possible values of each property into a finite set of disjoint intervals, 

and, finally, assigning each property range to a distinct behaviour node. Then, several of the 

created behaviour nodes are selected to form the agent’s domain of expertise and are included 

in the agent’s initial mental model. Function nodes are created and randomly connected to 3-5 

behaviour nodes. Function nodes that are connected to the behaviour nodes within agent’s 

expertise are added to the agent’s initial mental model, and the weight of function-behaviour 

links is set to be higher than mean link weight value (i.e. above 0.5). Finally, structure nodes 

whose network properties fit within the range of agent’s expertise are created and added to the 

initial mental model (again, with well-established links to behaviour nodes). In this manner, a 

portion of knowledge related to a specific set of behaviours is created – thus forming the agent’s 

expertise. Knowledge (i.e. nodes and links) outside agent’s expertise area may also be added to 

the agent’s initial mental model. However, the weight of non-expertise links is set to be below 

0.5. 

The domain of expertise may serve to set base-level activations if the agent has no other 

experiences (no past tasks). If no tasks were yet performed, the similarity between the agent’s 

domain of expertise and the current task is calculated, and base-level activations of expertise-

relevant nodes are set accordingly. In this case, the importance of nodes (for the expertise-

related nodes) is calculated based on the average strength of their connections to behaviour 

nodes within the expertise domain.  
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Agent’s domain of expertise may serve as an indication of its role in a task. Therefore, 

additional, optional, aspect of the implemented model modifies the agent’s priorities based on 

the parts of the task that are closest to its expertise. In other words, it is assumed that each agent 

will be preoccupied with those aspects of the task which are the most similar to its domain of 

expertise. The agent’s task-based profile serves to calculate agent’s priorities (i.e. tendency 

towards resolving certain requirements). Namely, if the set of network measures upon which 

the current task’s requirements are posed is denoted with requiredMeasures, and for each 

measure at least one interval (which corresponds to one behaviour node) rB is required, then an 

agent’s profile is defined as:  

𝑝𝑟𝑜𝑓𝑖𝑙𝑒 ∈  ℝ𝑚 • 𝑚 =  |𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠|   

𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑖 =
𝐷𝑖𝑐𝑒(𝑒𝑥𝑝𝑒𝑟𝑡𝑆𝑒𝑡𝑖, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑒𝑡𝑖) 

∑ 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑗𝑚
𝑗=1

 𝑤ℎ𝑒𝑟𝑒  (5.7) 

𝑒𝑥𝑝𝑒𝑟𝑡𝑆𝑒𝑡𝑖 = {𝑏 ∈ 𝑒𝑥𝑝𝑒𝑟𝑡𝑖𝑠𝑒 | 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑏) = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑖} 𝑎𝑛𝑑 (5.8) 

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑒𝑡𝑖 = {𝑟𝐵 ∈ 𝐵 | 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑟𝐵) = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑖 } (5.9) 

In other words, the profile is calculated by determining the similarity between a set of required 

behaviour nodes and a set of expertise behaviour nodes, for each of the network measures upon 

which the requirements are posed. Again, Sørensen–Dice coefficient is used to calculate set 

similarity, although alternative coefficients can be used as well. The priority of a particular 

measure i (i.e. 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑖) is proportional to the similarity of required and expert node-sets, and 

the profile is normalised so that ∑ 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑖 = 1.𝑚
𝑖=1   

The profile, thus, indicates the amount of interest the agent is committing to each of the required 

properties (i.e. network measures). This is manifested through the amount of activation spread 

from the requirement node to function nodes (where each function node gains the amount of 

activation proportional to the priority of the behaviour nodes connected to it), and through the 

structure evaluation process (where fulfilment of a requirement contributes to the overall 

structure’s score in proportion to the perceived relevance of the requirement). The agent’s 

profile guides the order of resolving the requirements, as it is more likely that the agent will 

focus on the prioritised requirements first. Note, however, once a certain requirement is 

satisfied, the activation is sent only to the unmet requirements (Reformulation III process). Such 

activation is again divided based on the agent’s profile, but - once the most important 

requirements are resolved - the requirements of minor importance will also gain attention.  
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5.1.1.5 Overview and limitations 

The developed team member agent’s cognitive model builds on the work on cognitive 

architectures by incorporating several important aspects in a design-related mental model, and 

manages to capture different modes of human thinking. In other words, the developed mental 

model brings together previous work and theoretical research presented in Section 4.4.1.  

The key aspects of the implemented model can be summarised as follows: 

1. In contrast to the majority of existing agent-based models of teamwork in product 

development, the developed agent mental model is design-related – thus providing a 

means for comparison of the empirical studies’ results and agent’s behaviour. On the 

other hand, the level of abstraction in an agent’s knowledge representation permits 

studies of artificial designers or design teams without overburdening the simulation with 

technical details of a particular design task. 

2. The team member agent’s mental model builds on the existing cognitive architectures 

and theories of human thinking to simulate reasoning processes, knowledge acquisition, 

grounding and forgetting. These processes render the mental model as dynamic, 

consequently enabling the change of agent’s behaviour based on past experiences.  

3. The solution space the agents search is unbounded (i.e. agents can always create new 

structure nodes). Past experiences influence the search process, and the agent’s actions 

dictate which structures can be generated in subsequent steps. The developed 

implementation permits studies on the structure space’s expansion and properties across 

tasks. 

Although the listed aspects match the characteristics of the desired model (as laid out in Chapter 

4), the described agent’s mental model has several limitations that should be mitigated in the 

future model refinements. Several shortcomings were already emphasised, such as the fact that 

the developed model does not capture all of the relevant aspects and processes of the FBS 

framework. Namely, Reformulation II is not included directly, and the Documentation process 

is omitted. Inclusion of these processes would require further research and model extension. 

For example, if one wishes to include sketching process [273], studies on what triggers 

sketching, how do designers chose what is to be sketched, how does observing a sketch affect 

the observers’ mental models, how does producing (and observing) a sketch influence the 

mental model of the person sketching, or how long does the process take would have to be 

considered. Relatedly, as emphasised in [175], processing of visual input may be different in 

terms of speed and capacity than the processing of, for example, audio input or a (non-
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verbalised) thought. Manual actions are also likely to demand certain processing effort. How 

these actions would be best integrated into the current model remains a direction for future 

work.  

Further shortcomings of the current model are related to the representation of the requirements. 

As implemented, the task is defined as requirements posed on the behaviours of the solution. 

However, a task may consist of functional requirements or requirements posed on a structure, 

as well [274]. Thus, future studies will explore, for example, how to model functional 

requirement fulfilment.  

Limitations of the developed model may also be regarded from the perspective of cognitive 

science. Following the discussion on the nature of the working memory capacity, a refinement 

of the current model may consist of limiting the amount of overall activation present in the 

network at any given time. In the developed model, the activation of each node is limited, but 

no limitations on the number of active nodes (and, thus, on the overall amount of activation) 

are posed. Prominent cognitive architecture, SOAR [171] and ACT-R [170], limit the source 

activation and model activation spreading as a division (in proportion to the link weight) of the 

source activation among connected knowledge units. The activation obtained by each receiving 

node gets smaller as the number of connections the source has increases, which is known under 

the name fan effect. However, the inclusion of fan effect in the current model was not 

convenient due to the disproportionally large number of nodes in the structure layer in 

comparison to function and behaviour layers of the mental model. Such disproportions emerge 

because agents are capable of creating new structure nodes, while the number of known 

behaviour and function nodes increases only through communication - as will be further 

discussed in following subsections. Dividing activation from one behaviour node to dozens of 

connected structure nodes would result in an insignificant amount of activation obtained by 

each structure. On the other hand, the implemented mechanism permits a single, well-connected 

note to transmit a sufficient amount of activation to activate a large number of nodes. Although 

the resulting situation is potentially unrealistic (in a sense that an agent is “aware” of a large 

number of nodes), the subsequent process of focus selection limits the agent’s reasoning 

processes to a specific number of chunks. Nevertheless, future studies should be targeted at the 

refinement of the mechanisms related to working memory capacity modelling. 

Another cognitive aspect not included in the present model is habituation – a phenomenon of 

a decrease in a response to stimulus as a consequence of repeated exposure to it [275]. In the 

model, node activation indicates the level of attention directed towards the node (i.e. the 
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response is always proportional to the amount of activation), irrespective of the frequency 

and/or magnitude of past activations. Similarly, it may be discussed how well the false-

memories (i.e. Deese-Roediger-McDermott[276]) effect is captured. A limitation of the model 

is the fact that many of the cognitive phenomena rely on the associative links and similarities 

among concepts that are currently not modelled. For example, reasoning upon one structure 

may evoke another one due to similarities among their parts (rather than through spreading 

activation from nodes corresponding to network properties, i.e. activation due to similarities 

among network properties). In ACT-R [189] this is modelled by inclusion of activation obtained 

from partial matching (along spreading activation and base-level activation) which accounts 

for similarities among concepts. It is unclear, however, how such a notion should be applied to 

similarities among design issues (i.e. functions, behaviours and structures).  

Finally, each of the implementation decisions presented in this subsection (i.e. Section 5.1.1) 

has its shortcomings. The agent’s solution-grading mechanism, for example, is oversimplified 

in a sense that a score assigned to each structure depends solely on whether the structure meets 

the requirements or not, and how confident the agent is in relevant behaviour-structure links. If 

the agent identifies two structure nodes as solutions, and is certain (i.e. the links are grounded) 

in its assessment, no additional comparison mechanisms are provided. In reality, it would be 

possible to compare the structures based on, for example, their optimality and creativity. Thus, 

future model refinements will necessarily be directed at equipping agents with novelty 

assessment mechanisms that will – together with already implemented utility assessment – form 

the basis for agents to determine the creativity level of each solution. 

5.1.2 Team member agent’s emotional state and affect 

It can be argued that in the developed model, the motivational aspect is implicitly included. 

Namely, if the motivation is assumed to be correlated with the level of attention, the amount of 

activation present in the agent’s mental model may act as motivation proxy. However, the 

impact of negative emotions such as fear due to uncertainty of goal achievement, or frustration 

due to lack of progress is not included in the core elements of the agent’s mental model. Thus, 

the affective component described in this subsection adds the impact of negative emotions. For 

simplicity, the negative emotional states of anxiety, uncertainty, fear, anger and frustration are 

unified under the name frustration. 

Following the theoretical background laid out in the previous chapter, at the simulation start, 

the behaviour of agents is unaffected by negative emotions. This period relates to what Norman 
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[203] calls creative stage. However, as the simulation unfolds and no progress is made, the 

frustration factor starts to rise and causes the agents to try to converge to a solution. The amount 

of negative affect experienced is assumed to be correlated with the probability of failure. Thus, 

the equation from [57], originally used to model the probability of not meeting the customer’s 

demands, can be utilised: 

𝑓𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) =  1 − 𝑒(𝑐1∗𝑡𝑙𝑒𝑓𝑡−𝑐2)×(1 −𝑠𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡), (5.10) 

where 𝑓𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) marks the level of frustration in a time (i.e. step) t, 𝑡𝑙𝑒𝑓𝑡 is the amount 

of time left, i.e. 𝑡𝑙𝑒𝑓𝑡 =  
𝑇𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒−𝑡

𝑇𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒
 where 𝑇𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒  represents the maximal time – or number of 

steps – the agents have to solve the task (i.e. task duration - number of simulation steps allocated 

for the task), 𝑠𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 is the score of the best-performing (as rated by the agent) structure 

proposed so far, and 𝑐1 and 𝑐2 are constants.  

To simulate an increased effort to reach the solution, the amount of frustration obtained by the 

presented equation is added to the overall activation of the currently active or remembered 

structure nodes. In other words, if the affective component is enabled, at each time step past the 

pre-specified time-point, the agent calculates its level of frustration. If no structures are 

currently active above the analysis threshold, the impulse equal to the frustration level is added 

to each of the structures that were either focused within the current step, or were proposed 

during the task. If at a particular step, a structure becomes sufficiently active to be analysed, 

the frustration effect is temporarily suspended to simulate agent’s focus on the structure’s 

analysis. If the structure is deemed as unsuitable, the frustration level is again taken into account 

(see Figure 5.6).  

Since the findings reported in [223] suggest that irrespective of the task duration, the 50% of 

the time allocated marks the change in the team behaviour, 𝑇𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒

2
 was taken as a default time 

at which frustration level can rise above zero. In other words, the default value for the 

parameter 𝑡𝑙𝑒𝑓𝑡_min is 0.5 (see Appendix C). When this requirement is added to the equation, it 

easily follows that 𝑐1 = 2𝑐2. 

To specify both constants 𝑐1 and 𝑐2, additional requirement has to be set. The default setting is 

obtained by modelling that when 90% of the simulation is done (𝑡𝑙𝑒𝑓𝑡_max = 0.1) and none of 

the requirements is satisfied (i.e. 𝑠𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 = 0), the agent acts by randomly analysing 

structures (i.e. 𝑓𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛(0.1) = 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). However, other configurations 
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may also be chosen, which enables simulation of variations in agent’s capability to cope with 

stress, i.e. its level of neuroticism. The general equation is calculated as: 

𝑓𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) =  1 − 𝑒

𝑡𝑙𝑒𝑓𝑡−𝑡𝑙𝑒𝑓𝑡_min

𝑡𝑙𝑒𝑓𝑡_max − 𝑡𝑙𝑒𝑓𝑡_min
×(1 −𝑠𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡)×log(1−𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

, (5.11) 

(where log stands for natural logarithm) for cases where 𝑡 >  𝑡𝑙𝑒𝑓𝑡_min, while equals zero 

otherwise. 

 

Figure 5.6 The inclusion of affect in agent’s mental model 
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5.1.2.1 Overview and limitations 

As described in Section 5.1.1.3, the memories of the past failures may cause the agent to 

(perhaps unreasonably) avoid building upon a certain structure or behaviour nodes. Similarly, 

the frustration introduced in the previous subsection modifies the agent’s reasoning processes. 

The implemented model of frustration: 

1. relates the level of frustration to the perceived team performance by modelling an 

increase in frustration when deadlocks are encountered [216]; 

2. biases the agent’s cognitive behaviour by directing the agent’s focus towards 

(possibly unsuitable) structures – thus simulating an increase in cognitive persistence 

and effort [218], but also potentially preventing the agent from sufficiently analysing 

the problem and exploring the solution space.  

The simple mechanism implemented in the model captures the notion of designers’ tendency 

to re-examine discarded solutions when pressured by deadlines and no suitable alternatives 

have been found [202]. Namely, the frustration impulse is taken into account only after a pre-

specified period of “undisturbed” reasoning has finished, and it simulates the designer’s effort 

to focus on the structures in order to find a suitable one. It can be noted that the presented 

implementation does not pose any further constrains on the problem and solution space 

exploration: e.g. agents can start to explore the solution space immediately if the problem is 

well-understood, can generate either large number of alternative solutions or focus on the single 

one, and can shift between the problem and solution space in all stages of the task.  

Since the same amount of activation is added to all of the structures that were either discussed 

by the team or recently focused by the agent, those most active in agent’s mental model will be 

brought to the agent’s attention first. This process may cause the agents to re-evaluate the 

previously discarded structures and determine that they were, in fact, suitable as solutions: 

during the evaluation, the relevant behaviour-structure links may be further grounded which 

influences the agent’s assessment of the structure. On the other hand, if the structure is rated as 

insufficiently good, the activation will be passed on to the unmet requirements, thus focusing 

the agent’s reasoning towards the relevant behaviour nodes. In certain situations, this may cause 

agents to completely focus on a particular set of (unmet) requirements, repeatedly discussing 

the relevant knowledge links, or fixating a set of insufficient structures, thus generating what 

Norman [203] refers to as tunnel vision.  



Model implementation 

83 

Additionally, a possible extreme situation is the one in which many unsuitable structures were 

proposed and/or focused, but all of their activation levels are similar. In this case, all of these 

structures will become active at once, causing the agent to select among them randomly. This 

behaviour, however, is in contrast with the claims that negative emotions narrow the focus and 

reduce the working memory capacity [277]. Another way of implementing the effect of 

negative emotions is by modifying the spreading activation algorithm. Particularly, a frustration 

level may serve as a variable indicating which links should be dismissed: i.e. all of the links 

whose weight is below a certain value can be (temporarily) discarded and thus omitted from 

the spreading activation process. This mechanism would simulate the agent’s effort to inhibit 

unrelated thoughts and concentrate on the well-grounded knowledge, rather than exploring the 

loose connections and broad range of ideas. Future studies will study the differences, 

advantages and limitations of the two (i.e. implemented and proposed) mechanisms. 

The future work should also address the individual differences in coping with negative 

emotions. Since it depends on the individual’s perception of the team progress, the current 

mechanism enables the agents to differ in the level of frustration. However, the studies from 

psychology note that individuals cope with stress differently, with some being more prone to 

anxiety and neurotic thoughts [231]. Chulvi and González-Cruz [217] found that – irrespective 

of the design task solved or method used – personality has a significant impact on the level of 

frustration experienced during designing. Such differences may be included by varying the 

amount of time needed for the agent to start experiencing the frustration impact, and by varying 

the time at which the frustration level reaches the maximum (equating 1.0 activation impulse). 

The described model of emotions is rather simple: the agent’s affective state is summarised in 

one variable and arises as a response to a situation. Such model of emotions is frequently 

implemented and, due to its simplicity, has the advantages of being easy to develop, use and 

understand [278]. But additional work is needed to achieve a more realistic affective behaviour. 

For example, researchers [214], [216] found various emotions dominating different phases of 

the design process. How to include them in the current model, and simulate the interplay among 

these emotions [279] remains an open question. Similarly, the effect of other team member’s 

emotions on the agent’s affective state should be considered. 

Finally, more thought should be dedicated to modelling the agent’s initial motivational state. 

Hutchinson and Tracey [214] note the importance of the initial emotional sub-tone tied to the 

design task. Currently, the developed model only includes negative emotions related to specific 

nodes (as indicated by the inhibition value) due to past failures. However, one may be more or 
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less motivated to solve a task at hand. For example, one may be bored by the repetition of 

similar tasks, or anxious due to perceived task difficulty and knowledge insufficiencies. Such 

a lack of perceived fit among capabilities and task requirements may influence the initial levels 

of motivation and attention, which could be modelled by varying the degree of initial activation.  

5.1.3 Team member agent’s personality and cognitive ability 

The reasoning processes and mechanisms described in previous subsections are universal 

among agents. However, in many applications, it may be convenient to introduce differences 

in the agent’s knowledge, skills or personality. The expertise area, as discussed previously, can 

vary among agents, thus introducing the differences in their knowledge and permitting the 

studies of the effect of knowledge overlap on the team performance. In this subsection, another 

way of adding variety is discussed: through modelling of different personality traits and 

cognitive abilities. 

In the developed model, cognitive ability and personality traits are modelled as parameters and 

remain constant (for an agent) during the simulation. As a default setting, each of the aspects is 

presumed to follow a normal distribution and is, thus, set by drawing a random number from 0 

to 1, with a mean set to 0.5 and a standard deviation of 0.166. The 0.5 of each dimension marks 

the average/balanced ability/personality; and smaller amounts indicate individuals with less 

cognitive skills, and more introverted or disagreeable personality.  

As emphasised previously, in this work, Cowan’s [183] view of working memory is used. Thus, 

once the cognitive ability parameter (ranging from 0 to 1) is set, it dictates the value of focus 

capacity parameter as follows: if the cognitive ability parameter is within one standard deviation 

from the average value, the focus capacity is set to 4; otherwise the value is set to 3 or 5 

depending on the cognitive ability value. Formally: 

𝑓𝑜𝑐𝑢𝑠𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  {

3,                         𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒𝐴𝑏𝑖𝑙𝑖𝑡𝑦 < 𝜇 − 𝜗

4, 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒𝐴𝑏𝑖𝑙𝑖𝑡𝑦 ∈ [𝜇 − 𝜗, 𝜇 + 𝜗]
5,                        𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒𝐴𝑏𝑖𝑙𝑖𝑡𝑦 >  𝜇 + 𝜗

 (5.12) 

where 𝜇 = 0.5, and 𝜗 = 0.166. 

As its name implies, the focus capacity parameter specifies the number of chunks that can be 

processed (i.e. focused) in a single simulation step. The cognitive ability parameter also guides 

learning. Namely, at each update of knowledge link weight, the increment (c parameter) is 
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scaled with the cognitive ability parameter, thus capturing the notion that individuals with 

higher levels of cognitive skills acquire knowledge easier. 

The modelled personality traits influence the agent’s interactions and communication with 

others (as Section 5.2 further details). For an agent to decide that certain knowledge element 

(i.e. a knowledge link or a structure) is worth sharing with others, activation or a score of the 

knowledge element has to exceed a sharing threshold. The extraversion parameter guides the 

value of the sharing threshold, thus indicating the higher or lower levels of reservation towards 

others. Formally, the sharing threshold is calculated as:  

𝑠ℎ𝑎𝑟𝑖𝑛𝑔𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 2 𝛿 (1 − 𝑒𝑥𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑖𝑜𝑛), (5.13) 

where 𝛿 = 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. Therefore, if the agent has average 

(i.e. 0.5) level of extraversion, it is comfortable with sharing the knowledge elements it has 

analysed. In the extremes, if the agent is overly extraverted (i.e. extraversion = 1), it will share 

anything active sufficiently to enter its ‘consciousness’. On the other hand, as a default, an 

extremely introverted agent (i.e. extraversion = 0) shares only the knowledge elements active 

to their maximal level.  

Agreeableness influences how agents process messages (i.e. knowledge elements) expressed 

by others. The agreeableness parameter dictates the level of initial trust the agent holds in others 

(see Section 5.1.4). Each time a team member communicates a knowledge link, the amount of 

activation sent to relevant knowledge nodes (in the listener agent’s mental model) is 

proportional to the agent’s trust in the speaker. The amount of activation governs whether the 

relevant link will be created in the listener’s mental model. In other words, the more agreeable 

the agent is, the more likely it is to hold high trust in others, and thus to pay more attention to 

other’s messages: the agreeable agent is more likely to learn from others. However, even if the 

agent loses trust in others, it may still feel the urge to comply with the group solution. Therefore, 

the level of agreeableness (irrespective of the trust level) influences the amount of activation 

the agent will send to the structures proposed by its team members. The level of structure’s 

activation affects the thoroughness of its analysis. Thus, the more agreeable the agent is, the 

more likely it is to adopt team member’s structures and build on them. Finally, the effect of 

perceived warmth/hostility is included in agent’s evaluations: the team members will perceive 

agent’s evaluation of the proposed structure as more positive or more negative than actual, 

depending on the agent’s agreeableness level. In the extreme cases where agreeableness of the 
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rater is 1 (or 0), the perceived score is 0.05 higher (or lower) than the actual score the agent 

assigned to the structure. 

5.1.3.1 Overview and limitations 

The previous subsection presented a simple model of the effects of cognitive ability, 

extraversion and agreeableness parameters on the agent’s behaviour. In particular: 

4. Cognitive ability parameter governs the learning speed and captures the individual 

differences in the working memory capacity by regulating the number of elements that 

can be processed in a single step.  

5. Extraversion parameter sets the threshold the knowledge element’s activation has to 

surpass in order to be eligible for communicating to others.  

6. Agreeableness parameter guides the level of attention the agent will dedicate to other’s 

ideas and can influence the team members’ perception of the agent’s remarks.  

It should be noted, however, that more research is needed to determine if labels “agreeableness” 

and “extraversion” are ontologically suitable (or there are more specific terms) for the effects 

captured by the implemented mechanisms. For example, the implemented agreeableness 

influence has many similarities to what [106] denotes as group conformity. 

The absence of influences of the “getting ahead” group of personality traits (neuroticism, 

conscientiousness and openness) is a clear limitation of the proposed model. The possible effect 

of anxiety (a facet of neuroticism) on the frustration modelling is discussed previously. Further, 

a neurotic person is often described as prone to guilt, emotional reactions and insecurity [238] 

and thus may react to the dismissal of their ideas more pronouncedly than their emotionally 

stable colleagues. For example, in response to criticism, their sharing threshold may change or 

their focus can be directed towards well-grounded knowledge.  

Conscientiousness is a trait ascribed to cautious, careful and responsible people who like to 

follow well-established rules [231]. Thus, conscientious agents may, for example, be more 

motivated (i.e. have higher levels of activation present in their mental model) and have a higher 

threshold for solution acceptance (i.e. do not accept solutions which do not fit all of the 

requirements). Further, they may dismiss knowledge links which are not well-grounded, and be 

more reluctant to abandon solutions which were successful in the past (e.g. by modelling a 

slower increase in inhibition of past solutions). 

Openness is associated with preference for new and unexplored, and it signals that a person is 

more apt to change [280]. Once the current model is extended to include the requirement of 
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novelty (i.e. that a structure agents propose as solution necessarily has to be new in a context 

of a task or situation), agents may be modelled to place different emphasis on solution’s utility 

(i.e. meeting the requirements) and solution’s novelty. Then, a conscientious agent may be 

modelled to place a great emphasis on structure’s utility [236], while agent high on openness 

would have a higher tolerance for novelty and place a greater emphasis on that component of 

the solution’s score. These ideas build on the work of Norman [203] who suggested that an 

average person may be willing to accept a structure not meeting all of the requirements if it is 

viewed as fun and creative. To implement a desired “preference for novelty” aspect, the future 

model development will follow the work on curiosity in computational agents [281].  

The developed model of cognitive ability’s and personality factors’ influence on reasoning does 

not come close to capturing the rich interplay among these and other factors (e.g. gender or age) 

observed in real-world settings (e.g. see [282]). For example, cognitive ability is related to 

social learning, memory duration, habituation, generalisation and many other aspects [283]. 

The model does not explicitly include the correlations among personality traits [284], nor 

relations between cognitive ability and personality [230]. Influence of personality on the 

motivational factors is also omitted [232]. Further, a large number of studies noted the effect 

personality traits have on the cognitive ability of older adults [285]. Aside from age, the current 

model neglects the gender [286] or cultural [239] differences of participants.  

The current model views personality traits as stable (which is consistent with the literature 

[287]). However, researchers note that various situational aspects may dictate which aspects of 

personality will be manifested [288]. This stream of research relates to the necessity of a more 

detail modelling of emotions, moods and states. The current model, however, takes a 

straightforward approach to modelling the interplay of situation, affect and personality. For 

example, the implemented agents are more susceptible to frustration than to (dis)agreeableness, 

so the frustration impulse is equally distributed to both, structures which were proposed by 

others, and to those which were proposed by the agent. This may cause the agent to suggest 

structures which it rejected several steps prior. The future work directed towards mitigating 

these limitations may build on the ideas from computational models of emotions which utilise 

FFM (e.g. Mamid [289] and Alma [290]). 

Personal differences can also be expressed in respect to cognitive style variations [111]. 

Another point of interest may be modelling differences in learning and forgetting. Namely, 

research suggests that forgetting rate (and perhaps the learning rate), although stable, varies 

across domains [291]. The many examples of possible sources of variety among people (and 
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agents) are too broad to be captured by this model. However, the prioritisation of the future 

improvements will be led by the research on adaptation and creativity.  

5.1.4 Team member agent’s reputation, trust and perception of others 

A final aspect of agent’s architecture deals with the way the agent perceives - and is perceived 

by – other agents. Particularly, this subsection covers the elements related to agent’s learning 

about and from its colleagues, a perquisite for the group of agents to simulate a team (rather 

than an isolated work of multiple agents).  

The agent’s (cognitive) trust in others is tied to their domain of expertise. Since the current 

implementation defines agent’s domain of expertise as a set of behaviour nodes (see Section 

5.1.1.4), the notion of transactive memory and trust are similarly associated only with the 

behaviour layer knowledge elements. For every behaviour node b (known to agent 𝑎𝑖) and a 

team member 𝑎𝑗, agent 𝑎𝑖 determines the value 𝑡𝑟𝑢𝑠𝑡𝑖(𝑏, 𝑎𝑗 , 𝑛) representing the current (i.e. in 

the n-th task in a task sequence) perceived level of 𝑎𝑗’s expertise in the subject b. Following the 

research presented in the Section 4.4.4, the initial values of trust are based on the agent 𝑎𝑖's 

agreeableness and the domain of expertise of the agent 𝑎𝑗. More precisely, for every behaviour 

node 𝑏 ∈ 𝐵𝑖 known to the agent 𝑎𝑖 (where 𝐵𝑖 represents a set of behaviour nodes known to the 

agent 𝑎𝑖), and every agent 𝑎𝑗 ∈ 𝐴 \ {𝑖} (where A is the set of all agents), the initial value 

of  𝑡𝑟𝑢𝑠𝑡𝑖 ∶ 𝐵 ×  𝐴 \ {𝑖} × ℕ0 →  ℝ function is set to a sum of agent 𝑎𝑖’s agreeableness and a 

randomly generated number representing the perceived agent 𝑎𝑗’s competence 𝑡𝑚𝑖(𝑏, 𝑎𝑗 , 𝑛): 

𝑡𝑟𝑢𝑠𝑡𝑖(𝑏, 𝑎𝑗 , 0) = ∆𝑇𝑟𝑢𝑠𝑡 (𝑎𝑔𝑟𝑒𝑒𝑎𝑏𝑙𝑒𝑛𝑒𝑠𝑠𝑖 + 𝑡𝑚𝑖(𝑏, 𝑎𝑗 , 0)) + 𝑚𝑖𝑛𝑇𝑟𝑢𝑠𝑡, 

∆𝑇𝑟𝑢𝑠𝑡 = 𝑚𝑎𝑥𝑇𝑟𝑢𝑠𝑡 − 𝑚𝑖𝑛𝑇𝑟𝑢𝑠𝑡, 
(5.14) 

𝑡𝑚𝑖(𝑏, 𝑎𝑗 , 0) = {
0.5 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,0.5), 𝑏 ∈ 𝑒𝑥𝑝𝑒𝑟𝑡𝑖𝑠𝑒𝑗

0.5 − 𝑟𝑎𝑛𝑑𝑜𝑚(0,0.5), 𝑏 ∉ 𝑒𝑥𝑝𝑒𝑟𝑡𝑖𝑠𝑒𝑗
. (5.15) 

This reveals several of the developed model’s limitations: the current implementation neglects 

other aspects of trustworthiness (benevolence and integrity), presumes an equal influence of 

agreeableness and competence, and assumes that agent’s domain of expertise is known to others 

even if they have no prior experience in working together.  

The modelling decision to tie a specific trust value to each of the behaviour nodes enables 

straightforward definitions of general trust (held in a particular agent) and situational trust. If 
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the agent 𝑎𝑖 perceives the current situation as consisting of a set of behaviour nodes 𝐵𝑖
′ ⊆ 𝐵𝑖, 

the situational trust in agent 𝑎𝑗 is formed as an average of trust values for the relevant nodes: 

𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑇𝑟𝑢𝑠𝑡𝑖(𝑎𝑗 , 𝑛) =
1

|𝐵𝑖
′|

 ∑ 𝑡𝑟𝑢𝑠𝑡𝑖(𝑏, 𝑎𝑗 , 𝑛)

𝑏∈𝐵𝑖
′

 . (5.16) 

The perception of the set of required behaviour nodes may change during the task, as the agent 

can learn new behaviour nodes and realise they are required. Along with the changes in the 

perceived set of required behaviour nodes 𝐵𝑖
′, the situational trust in the agent 𝑎𝑗 changes as 

well.  

If the agent does not know any of the required behaviour nodes, its level of trust in each of its 

team members equals the general trust value. Formally, general trust is defined as: 

𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑇𝑟𝑢𝑠𝑡𝑖(𝑎𝑗 , 𝑛) =
1

|𝐵𝑖|
 ∑ 𝑡𝑟𝑢𝑠𝑡𝑖(𝑏, 𝑎𝑗, 𝑛)

𝑏∈𝐵𝑖

. (5.17) 

Trust the agent holds in a trustee influences the agent’s perception of the messages shared by 

the trustee. To simulate the amount of attention dedicated to the communicated knowledge link, 

the activation of relevant (i.e. communicated) nodes is increased by the value of (situational) 

trust held in a speaker. If the activation surpasses the node activation threshold, the listener 

agent will learn, or further ground, the communicated link. Additionally, the activation received 

as a result of listening can cause relevant nodes to enter the focus of attention. 

Trust also serves to determine one’s influence on the acceptance of the final solution. A value 

named reputation (or a team trust) denotes the average level of trust that team members hold 

in the agent 𝑎𝑖 and it guides the level of importance the team assigns to the agent’s solution 

evaluation. Thus: 

𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑖(𝑛) =  
1

|𝐴| − 1
 ∑ 𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑇𝑟𝑢𝑠𝑡𝑗

|𝐴|

𝑗=1
𝑗 ≠𝑖

(𝑎𝑖, 𝑛). (5.18) 

When determining if the team will accept a structure as a solution (see Section 5.2. for details), 

the agent’s reputation defines its ‘share’ in the structure’s score formation. Thus, if every agent 

in the team is equally (dis)respected, their assessments of the proposed structure are averaged. 

Otherwise, the more respected members get more influence over the structure’s acceptance or 

dismissal. 
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Trust among agents changes as a result of team successes and failures. At the end of each task, 

the team receives an evaluation of their solution, which states which requirements were or were 

not satisfied. Then, for each of the relevant behaviour nodes, agent 𝑎𝑖 updates values of trust in 

others. As before, let 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑖 denote a particular property (i.e. network measure) 

upon which the requirements are posed, and let n denote the ordinal number of the task in a task 

sequence. Further, let 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑒𝑡𝑖 denote a set of allowed behaviour nodes (i.e. intervals 

allowed for the particular property): 

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑒𝑡𝑖 = {𝑟𝐵 ∈ 𝐵 | 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑟𝐵) = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑖 }. (5.19) 

The structure meets the requirement posed upon the 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑖 property, if it is 

connected to one of the behaviour nodes in 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑒𝑡𝑖 set. Then, the agent increases the 

trust in its team members (only) for the particular behaviour node obtained. In other words, 

upon completion of the n-th task during which a behaviour node 𝑟𝐵 ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑒𝑡𝑖 is 

obtained, the trust in an agent 𝑎𝑗  (to be used in the next task) is updated as: 

𝑡𝑟𝑢𝑠𝑡𝑖(𝑟𝐵, 𝑎𝑗 , 𝑛 + 1)

=  𝑡𝑟𝑢𝑠𝑡𝑖(𝑟𝐵, 𝑎𝑗 , 𝑛) + 𝑡𝑟𝑢𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒

∗ (𝑚𝑎𝑥𝑇𝑟𝑢𝑠𝑡 −  𝑡𝑟𝑢𝑠𝑡𝑖(𝑟𝐵, 𝑎𝑗 , 𝑛)).  

(5.20) 

If, on the other hand, for a certain 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑘 property, the obtained behaviour node 

does not correspond to any of the acceptable intervals, the trust value is decreased for each of 

the 𝑟𝐵 ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑒𝑡𝑘 nodes. The trust is lowered for every agent 𝑎𝑗:  

𝑡𝑟𝑢𝑠𝑡𝑖(𝑟𝐵, 𝑎𝑗 , 𝑛 + 1)

=  𝑡𝑟𝑢𝑠𝑡𝑖(𝑟𝐵, 𝑎𝑗 , 𝑛) + 𝑡𝑟𝑢𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒

∗ (𝑚𝑖𝑛𝑇𝑟𝑢𝑠𝑡 −  𝑡𝑟𝑢𝑠𝑡𝑖(𝑟𝐵, 𝑎𝑗 , 𝑛)). 

(5.21) 

5.1.4.1 Overview and limitations 

The included model of transactive memory, trust and reputation is very simple and models only 

several aspects of the agent’s perception of its team members. In particular: 

1. The agent forms perception of every of its team members based on their (perceived) 

capability to resolve particular requirements (i.e. capability to produce structures with 

particular behaviours).  

2. Trust and reputation are each approximated by a single value calculated based on the 

formed perceptions. 
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3. Perceptions the agents have about each other are dynamic and influence communication 

and learning within the team. 

As described, trust value guides the level of attention the agent pays to messages (i.e. 

knowledge links) proposed by a trustee. This may seem contrary to the proposition of Salas et 

al. [32], who noted that a lack of trust causes people to spend more time checking the other’s 

input. However, in the context of the simulated task, the “input” is strictly in the form of 

messages transmitting knowledge. As modelled, the trust level signals the perceived amount of 

other’s expertise, and a lack of trust may cause agents to dismiss others’ messages due to 

perceived incompetence. In line with the implementation are findings of [292], which argued 

that trust influences communication and a lack of trust might result in aggressive 

communication and distortion or dismissal of facts. As currently implemented, the lack of trust 

undermines the effects of communication, thus inhibiting the dissemination of knowledge. The 

lack of trust, therefore, may – in line with Salas et al. [32]’s findings - result in the prolonged 

time needed to complete the task. The experiments reported in the next chapter test whether the 

current implementation indeed has such an effect. 

The initial trust formation neglects the influence of a trustee’s characteristics: one’s likability, 

enthusiasm and benevolence are not taken into account. Further, the developed model assumes 

that each team member can recognise which requirements are falling within other’s expertise 

area. This may sometimes be the case, but future model versions will include the ability of 

simulating teams without any presumptions of others’ knowledge. Additional shortcomings are 

related to the lack of affective trust [249] and trust-generating structures’ [293] modelling. The 

agents are currently not affected by homophily [241], and there is no transitivity or reciprocity 

of trust. As the most negative influence of (the lack of) trust, the current model includes the 

dismissal of messages. There are no other negative influences: e.g. distrust [294], workspace 

gossip [295] or conflicts [296], and, thus, their influences on reputation are not modelled.  

Another limitation of the current implementation is the lack of more thorough reasoning on 

team performance. For example, agents faced with failure will reduce trust in all of the team 

members, irrespective of the task dynamics: agent 𝑎𝑖’s trust in agent 𝑎𝑗 will decrease even if 

agent 𝑎𝑗 had good ideas (which were dismissed by the team). 

The current model assumes agent-to-team communication, and thus no learning form 

observation is included. Further, all of the communication is regarded as face-to-face (i.e. no 

influence of communication technology is modelled). Future model versions will likely need 
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to allow additional modes of communication, learning from observation and their impact on 

trust formation. For example, research [252] demonstrates the differences in trust formation 

and influence in teams operating in virtual settings.  

Finally, the agent’s perception of others can be detailed to enable inferences about other’s 

knowledge, preferences or motivation. For example, an agent can have a perception of others’ 

priorities. Similar to the agent’s profile definition (see Section 5.1.1.4), the agent’s model can 

be extended to enable 𝑎𝑖 to calculate other agent’s (𝑎𝑗) profile and use it to determine which 

requirements (i.e. properties) the agent 𝑎𝑗 prioritises. The profile perception can influence 

communication among agents: agent 𝑎𝑖 may give more thought to those message aspects which 

are perceived as relevant to 𝑎𝑗, thus increasing the likelihood of learning the respective 

behaviour-structure links. 

5.2 Communication and interactions among team member agents 

Section 5.1 introduced much of the details regarding the communication among agents. This 

section serves to clarify the interaction rules further and to provide a comprehensive overview 

of the communication protocols.  

In order to enable communication among agents, the agent’s cognitive behaviour diagram 

(Figure 5.5 and Figure 5.6) had to be extended. The agent working in a team setting has to be 

able to influence and be influenced by its team members. A sharing threshold is introduced 

(see Section 5.1.3) to serve as guidance on whether the agent has a potential solution to propose 

to the team. If the structure’s score is perceived as above sharing threshold, the agent will try 

to propose it to the team. The structure’s score depends on the weight of the relevant behaviour-

structure links and – if enabled – on the agent’s profile (i.e. priorities). More precisely, for every 

required property (𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑖), the agent assesses whether the structure’s network 

fits within a desired range (i.e. obtained behaviour node 𝑟𝐵 is within 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑒𝑡𝑖). If the 

structure meets the requirement, the weight of the link from 𝑟𝐵 to the structure, scaled by the 

perceived priority of the requirement (denoted 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑖) is added to the structure’s score. Thus, 

if the structure is denoted with 𝑠 ∈ 𝑆, one can write: 

𝑠𝑐𝑜𝑟𝑒(𝑠) =  ∑ 𝑤𝑟𝐵,𝑠 ∗  𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑖

𝑚

𝑖= 1,

𝑟𝐵 ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑆𝑒𝑡𝑖

, (5.22) 
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where m denotes the number of properties the requirements are posed upon. Note, if the profile 

is not calculated, each agent is modelled to regard requirements as equally important (i.e. 

then 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑖 =  
1

𝑚
 for every required property i). 

If the agent has no structures to propose, it checks whether any of the links is sufficiently active 

to be communicated. The “link activation” depends on the activation of its nodes, and the 

weight of the link. Each of the three elements (two nodes’ activation and link weight) has to 

surpass the sharing threshold to be eligible for communicating. If more than one link meets this 

requirement, the most active link is shared. 

The agents that ‘wish’ to share a knowledge element with others apply for communication by 

sending a message to a control agent. Control agent is not meant to represent any real-world 

entity. Instead, it serves as simulation support by directing the communication among agents, 

taking care of the task sequencing, and collecting the statistics on the performed simulations.  

At each simulation step, the control agent receives all of the team member agents’ applications 

and randomly selects a speaker. Speaker’s message is then transmitted to every team member 

agent. If the communicated message contains a structure proposed as a solution, the agents are 

prompted to evaluate it against their mental models and to send back (to the control agent) their 

evaluations. Control agent receives the evaluations, weights each with the respect to the 

reputation of the sender, and presents the overall score (i.e. team score) to the team member 

agents. If the team score exceeds a predefined acceptance threshold, the structure is deemed as 

accepted by the team and the task is finished. Note, however, if the acceptance threshold is set 

to be below 1.0 value (i.e. maximal score), the team may accept an unsuitable structure as a 

solution. Such situation, for example, occurs if every agent in a team assigns a very low priority 

to a certain requirement. 

If the communicated message contains a knowledge link, or if the acceptance threshold is not 

met, the agents continue their search for the solution. Communication affects agents’ mental 

models. If the link is communicated, listener agents will activate the respective nodes and 

possibly (i.e. if the nodes become sufficiently active) learn or further ground the communicated 

link. As discussed previously, the amount of activation depends on the trust the listener holds 

in the speaker. Similarly, the explication of the scoring team assigned to the structure has an 

impact on the activation of the structure in the listener’s mental model. The listener agent 

compares its score with the team score. If a discrepancy is detected, the listener agent adjusts 

the level of inhibition of the structure. The change in inhibition depends on the scores’ 
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difference (team score – agent’s score), and the agreeableness of the listener. The team member 

agent’s cognitive behaviour on a single task performed in a team setting is presented in Figure 

5.7. 

 

Figure 5.7 Agent’s cognitive behaviour in a task performed in a team setting 

The presented communication model has many limitations. A modelling decision that only 

knowledge links present in agent’s mental model can be communicated, results in only five 

message types which team member agent can transmit: 

1. Requirement node – Function node link, 

2. Function node – Behaviour node link, 
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3. Behaviour node –Structure node link, 

4. Solution proposal, 

5. Proposed solution’s evaluation. 

Studies of designers demonstrated that all of the FBS processes occur - and are verbalised – 

during teamwork [201]. Additionally, designers are shown to externalise thoughts implying the 

occurrence of System 1 thinking, i.e. expressing Function node – Structure node links [267]. 

Although the developed agents are capable of performing almost every of the FBS processes 

internally, they have no means of explicating all of them. Thus, the current model has 

deficiencies in its capability to replicate the real-world design communication. Consequently, 

the communication patterns extracted from simulation results cannot (yet, i.e. from the current 

implementation) be directly compared to the real-world data. Similarly, the developed model 

neglects important aspects of team communication such as asking for clarification. The 

simulated communication follows the so-called “Process 2” of the processes of thinking in 

design teams identified in [202], but many details remain to be added to increase the realism of 

agent communication.  

A related issue is that of noise modelling. Currently, agents may dismiss others’ messages due 

to trust deficiencies. Further, even when trust is sufficient, the agent may ‘choose’ to focus on 

unrelated knowledge elements. However, there are no errors such as mistakenly activating 

nodes that resemble (based on some criteria) communicated ones. Similarly, proposed 

structures are always correctly encoded in agent’s mental model: the structure’s network, no 

matter how complex, is fully understood by the listeners – and the listeners make no mistakes 

in analysing its properties. The newly learnt structures are likely to receive low scores at first 

evaluations, as the behaviour-structure links take time forming. Thus, several simulation steps 

are needed for agents to get a realistic view of the structure, which may account for some of the 

time needed to ‘present and explain’ the structure (to others) in the real world. Nevertheless, 

future implementations should include faulty reasoning, information loss and a more realistic 

model of structure explication. 

The detailing of an information loss and noise model will enable improvements regarding 

several communication aspects. For example, each time the agent is interested in the message 

but does not manage to capture it in its entirety or is not familiar with the content, it should be 

able to send a request for clarification. The agents could answer the requests for clarification 

by explicating links whose processing led to the communicated message. Thus, noise modelling 

can be coupled with enabling “Process 1” thinking in design teams [202]. 
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Another limitation of the current implementation is a predefined order of the agent’s actions. 

For example, agents always give priority to solution proposal: if the agent has found a structure 

whose score is perceived to be sufficiently high, it will propose the structure, irrespective of the 

activity level of processed links. It is plausible that one would like first to introduce relevant 

links, and only then propose a structure as a solution. Similarly, if the solution is proposed, 

agents (as currently modelled) are required to evaluate it immediately. Instead, agents should 

be given an option to choose the desired action (e.g. evaluate, ignore the proposal, request 

clarification, offer a solution modification) by utilising, for example, Luce’s choice axiom [297] 

where trust in speaker and activation of the relevant nodes may be used to determine the choice 

weights. Note, if one wishes to simulate brainstorming (where no solution evaluations should 

be shared [298]), then a step consisting of evaluation sharing should be completely omitted.  

Finally, as already emphasised, all agent communication is restricted to messages that can be 

formed using FBS ontology. Thus, agents currently cannot coordinate task assignments, discuss 

managerial issues, joke, or engage in personal and other non-design communication. Jiang 

[201] notes that such communication is related to extra-design activities or is not directly 

relevant to the task. However, such communication may be important for studies of social ties’ 

impact on the team, or conflict modelling. Thus, future efforts may be directed toward capturing 

these aspects of communication. 

5.3 Task representation 

A task is defined as a set of requirements. Currently, requirements are posed only on a structure 

network’s properties and are thus tied to behaviour nodes. The first step in defining a task is the 

selection of one or more network properties. Let 𝐺 =  (𝑉, 𝐸) denote a graph G defined by a set 

of vertices V and a set of edges E. The properties implemented to date include: 

 Diameter [299]: defined as a maximum - over all node pairs – of the shortest path 

lengths. To set an upper boundary of possible values, the obtained diameter value is 

further divided by the number of nodes in the network (i.e. scaled to fit [0, 1] interval). 

Formally, let 𝐷(𝑖, 𝑗) denote a shortest path between nodes i and j, if such path exist 

(otherwise 𝐷(𝑖, 𝑗) = 0). Then diameter is defined as: 

  𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(G) = max𝑖,𝑗∈𝑉(𝐷(𝑖, 𝑗)) (5.23) 

If the graph is disconnected then the value is calculated on the set of all pairs of 

connected vertices [300]. Then, the final diameter property value (i.e. used in 
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simulations) is obtained as: 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(G) 𝑣⁄  where 𝑣 denotes the number of nodes in a 

graph 𝑣 = |𝑉|. 

 Network degree centralisation [301], [302] defined as follows: let 𝑑𝑒𝑔𝑟𝑒𝑒𝑚𝑎𝑥 =

max𝑖∈𝑉(𝑑𝑒𝑔𝑟𝑒𝑒(𝑖)) where 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖) denotes the out-degree of node i. Then, network 

degree centralisation is calculated as: 

𝑑𝑒𝑔𝑟𝑒𝑒𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛(G) =  
∑ (𝑑𝑒𝑔𝑟𝑒𝑒𝑚𝑎𝑥 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖))𝑖∈𝑉

(𝑣 − 1)(𝑣 − 2)
. (5.24) 

 Network closeness centralisation [301], [302]: Let 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝑚𝑎𝑥 =

max𝑖∈𝐺(𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑖)) where 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑖) is the closeness centrality of node i 

calculated using [303]. Then, network closeness centralisation is calculated as  

𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛(G) =  
∑ (𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝑚𝑎𝑥 − 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑖))𝑖∈𝑉

(𝑣 − 1)(𝑣 − 2)
2𝑣 − 3⁄

, (5.25) 

if the graph is connected. Otherwise, the value is calculated on the network’s largest 

connected component [304].  

 Network betweenness centralisation [301], [302]: Let 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑒𝑠𝑠(𝑖) denote 

betweenness centrality of the node 𝑖 ∈ 𝑉 calculated using [305]. Then, network 

betweennes centralisation value is calculated as∶ 

𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛(G)

=  
∑ (𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑚𝑎𝑥 − 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠(𝑖))𝑖∈𝑉

(𝑣 − 2)(𝑣 − 1)2
, 

(5.26) 

where 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑚𝑎𝑥 =  max𝑖∈𝑉(𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠(𝑖)).  

 Average clustering coefficient [306]: Clustering coefficient for node i is often 

calculated as a fraction of node i’s neighbours that are neighbours themselves. Thus, the 

average clustering coefficient is: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(G) =  
1

𝑣
∑ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝑖)

𝑖∈𝑉

. (5.27) 

 Hierarchy measure [307]: Let 𝐷(𝑖, 𝑗) again denote the shortest path from node i to 

node j [308]. The hierarchy value of the network is calculated as: 

ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦(G) =  
1

𝑣 − 1
 ∑(ℎ𝑚𝑎𝑥 − ℎ(𝑖))

𝑖∈𝑉

, (5.28) 
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where ℎ(𝑖) =  
1

𝑣−1
∑

1

𝑑(𝑖,𝑗)𝑗∈𝐺  and ℎ𝑚𝑎𝑥 =  max𝑖∈𝑉(ℎ(𝑖)). 

 Density [299], [302] is defined as a portion of the network links which are realised. 

Formally: 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(G) =  
2 ∗  |𝐸|

𝑣 ∗ (𝑣 − 1)
. (5.29) 

Once a set of properties is selected, for each property, an interval of permitted values (i.e. an 

interval within which structure’s properties will have to fall to satisfy task requirements) is 

chosen. The behaviour nodes tied to the permitted property values are, thus, regarded as 

required. In the studies presented herein, every task was designed to have a feasible solution: 

i.e. it was reassured that a network satisfying all of the requirements can be constructed.  

When creating a space of all possible behaviour nodes, for each of the properties, a random 

number from 3 to 10 is selected, indicating the number of subintervals the property’s range is 

divided into. Each of the created subintervals is assigned to one behaviour node. Thus, the 

number of behaviour nodes in a simulation ranges from 21 to 70.  

Note, each of the properties currently modelled has a codomain (i.e. a range of plausible values) 

of [0, 1]. When dividing this range into subintervals, the subintervals’ boundaries are not chosen 

as equidistant. There are two reasons for such modelling decision. First is the fact that 

irrespective of the property taken, not all values within the property’s [0, 1] range are equally 

probable. Secondly, the mechanisms used for structure creation (i.e. union and contraction 

mechanisms) shape the solution space in such a way that certain values become much easier to 

achieve. For example, employing union creates larger and larger networks for which low 

betweenness centrality values are more probable than high betweenness centrality values. Thus, 

if the subintervals were chosen to be of the same length, the (randomly) created tasks would 

significantly differ in their difficulty – even if they posed requirements on the same properties, 

and the same number of intervals were considered admissible. With the aim of enabling the 

(partial) control over task difficulty, a set of 100,000 simulations of default (i.e. 1,000 steps) 

length were performed, and the properties of every created structure’s network were collected. 

Then, an analysis of each of the properties was conducted and the intervals of approximately 

equal probability (of a structure’s property values falling into it) were determined. It should be 

noted, however, that the conducted analysis did not study correlations among properties, thus 

preventing the user from gaining complete control over the task difficulty. The required analysis 

of network properties will be performed in the future.  
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A structure is considered feasible (i.e. a task solution) if each of its network’s properties fits 

within the property’s allowed range. Thus, a structure either is, or is not, a solution for a given 

task. Such binary nature of structure’s viability is overly simplistic. A more realistic approach 

would, for example, include a ‘desired value’ and an ‘acceptable range’ (which contains the 

desired value) of a property, so that several structures meeting the requirements could be ranked 

based on how close they are to the optimum (i.e. desired solution). But real-world situation is 

much more complex: conflicting, soft or ill-defined requirements are common in design [202]. 

Often the exact requirements are unknown at a task start [57], new requirements are introduced 

during task execution [309], or the existing requirements are changed or dismissed [310]. The 

future efforts will necessarily be directed towards enabling the simulation of such cases. 

Several other limitations of the current task implementation have already been discussed. For 

example, the requirements are currently posed only on the behaviour nodes and the prerequisite 

of solution’s novelty is not by default included in the task requirements. Additional refinements 

of the current model may be aimed at tailoring the simulation to fit different task types (e.g. 

brainstorming), model various task environments (e.g. virtual teams) or permit usage of 

external resources such as databases or documentation of past projects during the task 

performance. Finally, future studies may take a closer look into the nature of the simulated 

network properties, and possibly match them to real-world behaviours. Additional network 

properties, as well as new agent’s structure-creating mechanisms, should also be modelled. 

5.4 Simulation outline and scenarios 

Figure 5.8 shows the agent’s behaviour over a sequence of tasks, i.e. over one simulation run. 

At the simulation start, agent’s mental model (known function, behaviour and structure nodes 

and the links among them) and expertise, personality, cognitive ability and initial trust in others 

are set. After each task, the agent’s knowledge is updated (as described in Section 5.1.1.3): 

weights of the links used in the previous task are increased, while links not used are decreased 

in weight. Further, the agent’s trust in others is modified based on the success of the completed 

task. At the start of the next task, (if relevant modules are enabled), the agent uses past 

experiences to assign base-level activation and initial inhibition values to knowledge nodes. 

Further, its perception of the priority of the next task’s requirements is formed. Throughout the 

simulation, the agent learns and consequently changes its behaviour. 
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Figure 5.8 Agent’s behaviour over a sequence of tasks 

The implemented model enables various simulation configurations. To define one task, the 

model’s user selects: 

 Number of agents involved  

 Number of steps allocated (i.e. simulation length)  

 Whether to include optional aspects of agent’s architecture (base level activation and 

initial inhibition computation on the past tasks’ basis, profile calculation, personality 

and cognitive ability, affect, trust)  

Additionally, one can specify agents’ personalities and cognitive ability, choose the level of 

overlap among agents’ expertise area, or modify agent’s communication to allow only solution-

proposing message exchange (and no knowledge link sharing). Naturally, if needed, one can 

modify any of the parameters listed in Appendix C. 

To specify a task sequence, the user can select:  

 The number of tasks (and for which the statistics is collected),  

 The similarities among tasks: do the tasks share some of the requirements or are they 

unrelated (or if the level of overlap is irrelevant),  

 The pattern among tasks: do some tasks repeat,  

 Whether the tasks need to be progressively more difficult (pose requirements on larger 

number of properties and specify a stricter range of acceptable values),  
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 If it is necessary to check that agents do (not) know the solution in advance,  

 After which tasks the agents’ mental models need to be restarted or a property changed.  

The listed options enable great flexibility in experiments design. One should, however, keep in 

mind the limitations of the task generating mechanisms (as described in Section 5.4). For 

example, the only manner in which task difficulty is controlled is by extending or reducing the 

intervals of permitted property values. Due to the deficiency in modelling and control of 

correlations among properties, it may happen that, for example, extending the permitted range 

for one property does not reduce the overall task difficulty (if satisfying other requirements 

necessarily implies the values for the property to be outside of the ‘added’ subinterval). 
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6 VERIFICATION AND VALIDATION OF THE 
DEVELOPED MODEL 

This chapter presents a series of tests conducted to study the behaviour of the developed model. 

In particular, the tests are aimed to ensure that implemented mechanisms are bug and error-free 

(i.e. verification) [311] and to assess the level of alignment between simulated behaviour and 

prominent theories, existing models or empirical findings of real-world studies (i.e. validation) 

[312]. Model’s validity is its most important property [313], but the validation of agent-based 

models is often a cumbersome and lengthy process [40], [314]. In fact, in his book on 

modelling, Sterman [315] wrote: 

“Instead of seeking a single test of validity models either pass or fail, good modellers seek 

multiple points of contact between the model and reality by drawing on many sources of data 

and a wide range of tests. Instead of viewing validation as a testing step after a model is 

completed, they recognise that theory building and theory testing are intimately intertwined in 

an iterative loop. Instead of presenting evidence that the model is valid, good modellers focus 

the client on the limitations of the model so it can be improved and so clients will not misuse 

it.” (p.850). 

Following the cited thought, multiple aspects of the model and its implementation were tested, 

and the obtained results are reported in this chapter. Through the presentation of model 

behaviour in various simulation settings, this chapter aims to demonstrate the model’s 

capabilities and point out the model’s limitations. The previous chapter discussed several 

limitations of the developed system. The tests reported herein serve to further the studies of the 

impact of model assumptions. Obtained results will guide the future model refinements, but 

could also provide valuable insights into the effects of the interplay of the implemented theories 

– inspiring, in turn, new empirical studies. Thus, as noted by [315], the developed model should 

not be regarded as ‘completed’. Instead, the model, as well as theories it is based upon, will be 

further developed, increasing the level of validity of simulation output. 

The validity of a model cannot be separated from the model’s purpose [316], as a model is 

always validated in a certain context. As described in Chapter 1, the developed model is 

envisioned as a computational laboratory that will provide a means of conducting ‘what-if’ 

analysis and serve as a theory-testing tool. As a result, the model should increase the 

understanding of teams: the interplays of team processes, as well as the emergence of team 

properties and behaviours. Klügl [313] notes that such objectives do not require thorough 
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statistical validation (in terms of calibration of the model to real-world data). In this chapter, 

the model’s internal working and outputs are compared to the patterns observed in the real 

world. Nevertheless, future work will necessarily be aimed at achieving higher validity levels 

[314].  

To conduct systematic testing of the implemented model, proposals reported in [259] and [316] 

are followed. The hierarchical testing was conducted: first by studying each of the agent’s 

internal mechanisms in isolation, then by integrating them and simulating the behaviour of a 

single agent on one task, and afterwards by studying the agent’s behaviour over multiple tasks. 

Once testing of the agent’s work in isolation was completed, a team of agents was simulated in 

various scenarios to study the impact of different aspects (e.g. personality) on the team 

behaviour. To detect bugs, techniques such as animation, traces, code walkthroughs and internal 

consistency checks were used in each testing stage [317]. Further, model parameter values were 

varied to study their impact on the simulation outcomes. This chapter presents some of the most 

important results of such analysis. 

6.1 Model testing in individual-agent setting 

To test the individual agent’s performance, a ‘team’ of one agent was created, and its 

performance on sequences of tasks was observed. Each of the conducted tests was aimed at 

studying a specific aspect of the agent’s architecture that has an impact on the individual work. 

In particular, this subsection presents the impact of learning, inhibition, base-level activation, 

cognitive ability, affect and expertise area on agent’s behaviour. The remaining aspects 

introduced in the previous chapters (e.g. personality) do not influence agents working in 

isolation – and were, thus, tested only in the team setting - the results of which are presented in 

Section 6.2. In each of the experiments comprising a single agent, the settings regarding 

communication were similar to the case where multiple agents are working collaboratively on 

a task. In other words, although it is performing alone, the agent simulates ‘think aloud’ studies 

by explicating structures and knowledge links that meet the sharing threshold (as described in 

the previous chapter). Such modelling decision was made to enable comparisons of the 

communicated content in individual and team settings. 

6.1.1 Learning, forgetting and mental model update 

The first step in testing the agent’s learning (and forgetting) performance consisted of checking 

whether the agent’s knowledge gets updated as expected during and in between tasks. Aside 
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from code walkthrough and knowledge link weights’ tracking, two experiments were 

conducted: one aimed to inspect if the agent’s behaviour (in terms of differences in solution 

space exploration and explicated content) changes when it is repeatedly exposed to a task, and 

second aimed at studying agent’s performance over a sequence of multiple (different) tasks.  

6.1.1.1 Learning over a repeated task 

The first experiment consisted of exposing the agent to a single task 10 times. In other words, 

a task sequence corresponding to one simulation run was of the form 

𝑇1𝑇1𝑇1𝑇1𝑇1𝑇1𝑇1𝑇1𝑇1𝑇1 where 𝑇1, is a randomly generated task. The agent’s performance on 

each task instance was tracked. To enable detail analysis, a distinction was made based on the 

agent’s success on the performed task sequence. A task sequence (i.e. one simulation run) was 

deemed as successful if the agent managed to find - and settle for - a structure satisfying the 

requirements in at least one of the task performances. First, learning from successful task 

performances was studied. Then a separate analysis was conducted on a set of tasks for which 

the agent did not manage to find a solution within a specified number of simulation steps. The 

data were collected from 600 simulation runs performed (300 successful and 300 unsuccessful 

task sequences). Similar experiments of agent’s learning over a sequence of identical tasks were 

conducted in, for example, for example, [268] and [177]. 

The average number of steps (and standard deviations) for each task in a ‘successful’ task 

sequence is presented in Figure 6.1. Further details on the number of steps needed to finish the 

task are shown in Table 6.1. 

 

Figure 6.1 Average number (and standard deviation) of steps needed to perform a task over multiple 
repetitions 
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As evident from Figure 6.1 and Table 6.1, when repeatedly faced with a task it is capable of 

solving, the agent improves its performance in terms of the number of steps needed to find a 

solution. Even if the first several trials were unsuccessful (i.e. agent did not manage to find a 

solution within a default timeframe of 1,000 steps), once the agent manages to find a solution, 

it succeeds in every subsequent attempt. Statistical significance of the improvement in between 

tasks was tested using pairwise Wilcoxon tests, which confirmed the differences among every 

pair of task runs (p < 0.01). 

Table 6.1 The statistics on the number of steps needed to perform a task over multiple repetitions (in 
successful runs) 

 
To gain deeper insights into the changes in the agent’s performance in successful simulation 

runs, the number of new links learnt, the number of new structures created, and the number of 

explicated knowledge elements (i.e. links and structures) were counted. The boxplots for these 

values are presented in Figure 6.2. Further, as presented in Figure 6.3, the number of focused 

links and nodes was collected. 

The presented figures (Figure 6.2 and Figure 6.3) demonstrate how the agent is adapting its 

search due to the experience gained in the previous task performances. The number of structures 

explicated decreases with each repetition, reaching the median of two structure considered (one 

of which was accepted) in the tenth task. Similarly, as the agent learns, it reduces the number 

of links explicated, thus indicating that it narrowed its search by grounding several links 

required to reach the solution. Similar findings can be obtained by observing the number of 

links and nodes focused on each task (Figure 6.2): with each task repetition, the number of 

knowledge elements focused decreases, and converges indicating that agent has found and 

grounded a set of knowledge elements tightly tied to the current task which it uses to reach the 

solution. The task repetition also has an impact on agent’s learning of new links and structures: 

once the task is well understood, and the solution is found, the agent stops exploring the 

Task 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Min 99 63 51 43 38 32 27 20 16 13 

1st  Q 335.5 96.25 72 60 51 42 35 28 23 18 

Median 806.5 138 90.5 70 58.5 50.5 41 34 28 22 

Mean 704.3 399.7 258.9 190.6 160.8 131.9 95.1 59.3 41.2 30.4 

3rd Q 1000 957.75 129.8 91 74.75 60.75 51.75 42 34 28 

Max 1000 1000 1000 1000 1000 1000 1000 1000 902 461 
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knowledge space and quickly converges to the solution. Therefore, as the agent performs the 

same task repeatedly, it stops learning new knowledge elements: by the 8th task, the median of 

new links learnt and new structures created is zero.  

 

 

Figure 6.2 The number of new knowledge elements learnt and the number of knowledge elements 
explicated during each of the tasks (in a successful sequence) 

 

Figure 6.3 The number of focused nodes and links over the course of the task (in a successful 
sequence) 

The similar trends in communicating the knowledge elements cannot be observed in case of 

tasks where the agent is unable to find a solution. Namely, although the number of new links 
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and structures does decrease as the task gets repeated, the number of communicated links does 

not change significantly (as tested by pairwise Wilcoxon tests). The number of proposed 

structures stabilises after several task repetitions. The data shown in Figure 6.4 indicates that 

after several task repetitions the agent has explored the knowledge space but - as it is unable to 

find a solution - it is ‘stuck’ creating a small number of new structures and learning a few new 

links in each new attempt to solve the task. 

 

 

Figure 6.4 The number of knowledge elements learnt and explicated in a sequence of unsuccessful 
tasks 

The differences between unsuccessful and successful tasks can also be observed when 

comparing the number of focused knowledge elements (i.e. the number of distinct knowledge 

elements which were focused during the task execution). Namely, as the agent is unable to find 

a solution, the links related to the task are repeatedly used, which results in further link 

grounding. Each time a task is reinitiated, the agent re-examines the relevant nodes and links 

and creates and grounds several more. Thus, as seen in Figure 6.5, the number of focused 

elements increases with each repetition of an unsuccessful task.  

Finally, one can observe how the content of messages communicated by the agent changes 

throughout a task sequence performance. Figure 6.6 shows the average amount of each of the 
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possible message types (requirement-function, function-behaviour and behaviour-structure 

links, solution proposal message and solution evaluation message) for each of the tasks in a 

sequence. In Figure 6.6, one can observe how – by gaining experience in performing the task 

successfully – agent’s messages shift toward solution-related issues (particularly, solution 

proposal and evaluation). This indicates that the agent grounded relevant requirement-function, 

function-behaviour and behaviour-structure links and is capable of quickly traversing them. In 

other words, as the agent repeatedly performs a task for which it has found a solution, it starts 

proposing the solution without reasoning on the problem-related issues. On the other hand, 

during the unsuccessful tasks, the agent rarely creates a structure deemed suitable for proposing 

as a solution. Rather, the agent is forced to re-examine the links related to the unmet 

requirements (due to the implementation of Reinforcement III process) and, thus, the proportion 

of the links related to requirements and functions does not decrease with such a large slope as 

seen in the case of successful tasks. 

 

Figure 6.5 The number of focused nodes and links over the course of a sequence of unsuccessful tasks 

 

Figure 6.6 The distribution of agent’s messages for a) successful and b) unsuccessful tasks 

The findings of the conducted experiments align well with expectations drawn from the 

presented implementation. The collected data provided evidence of the agent’s learning and 
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demonstrated its impact on the agent’s performance. Thus, the obtained results - coupled with 

the structured programming, code walkthroughs, syntax check and use of traces to determine 

the adequacy of link weight update - increase the confidence in the correctness of the 

implemented learning mechanism. 

6.1.1.2 Learning over a sequence of different tasks 

To study whether the agent’s performance improves over a sequence of different tasks, the 

conducted experiment consisted of 1,000 simulation runs, where one run simulated a sequence 

of ten different tasks. Agent’s performance on each task was compared to the performance the 

agent would display if no previous experience was gained. In other words: one simulation run 

was of the form 𝑇1 𝑇2 … 𝑇10 𝑇1𝑇2 … 𝑇10. The agent was permitted to learn in between the first 

ten tasks (i.e. update its mental model after the task completion). After the first ten tasks, the 

agent’s mental model was restarted back to its initial state and was similarly restarted after each 

subsequent task performance. In this manner, one can study the agent’s performance 

improvement by comparing it to the one the agent would display if no experience (other than 

initial) was gained. 

In contrast to the experiment reported in Section 6.1.1.1, when simulating a sequence of various 

tasks, it should not be expected that successful performance on one task is followed by 

successful performance in every subsequent task. Thus, the analysis of the results did not make 

any success-based distinction among simulated runs. Figure 6.7 and Figure 6.8 present the 

change in success rate and steps distributions over the simulated task sequences. As evidenced 

by figures, the agent’s performance improves over the course of the simulated run. While 

success rate remains approximately 34% after the 5th task, the mean number of steps required 

to find a solution drops with almost (as 7th and 8th task have very similar means) every 

subsequent task performed (Table 6.2). 

 

Figure 6.7 Agent’s change in performance in terms of a success rate 
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Figure 6.8 Agent’s change in performance in terms of the number of steps over a sequence of 
different tasks 

To test whether the distributions of steps required to find a solution significantly differ among 

cases, pairwise Wilcoxon sign rank tests with continuity correction were conducted, and Holm–

Bonferroni correction method for multiple comparisons was used. Results of the tests are 

reported in Table 6.3. As seen in the table, p-values for pairwise comparisons indicate that in 

most of the cases, one can conclude - at the level of significance of 0.05 - that distributions 

differ. In other words, on average, the number of steps required to finish the task drops as the 

agent gains experience. Several task cases were not found to be significantly different from 

their immediate predecessors or successors, but a general trend shows the improvement of 

performance over the course of a simulation run. The increase in the percentage of successful 

tasks and a decrease in the number of steps needed to finish the task serve as evidence of the 

agent’s learning and experience gain. 

Table 6.2 Statistics on the number of steps needed to perform a sequence of different tasks 

 

Task 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Min 84.0 62.0 52.0 8.0 17.0 30 13.0 25.0 23.0 10.0 

1st  Q 1000.0 945.2 857.5 827.0 813.8 721.2 661.0 678.2 643.8 496.0 

Median 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Mean 894.1 876.7 857.1 841.0 838.2 807.8 784.8 786.5 777.5 758.0 

3rd Q 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Max 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 
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Table 6.3 The p-values for each of the pairwise Wilcoxon tests conducted to compare the differences 
in steps distribution for each task in a sequence 

Task 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 

2nd 0.0126         

3rd 1.2e-05 0.0232        

4th 5.2e-08 0.0010 0.1278       

5th 2.3e-08 0.0005 0.0953 0.4371      

6th 6.2e-16 3.0e-09 6.0e-05 0.0039 0.0059     

7th 0.0000 0.0000 3.1e-11 4.9e-08 1.1e-07 0.0041    

8th 0.0000 1.3e-14 6.4e-09 3.2e-06 6.3e-06 0.0289 0.7599   

9th 0.0000 0.0000 5.1e-11 5.6e-08 1.2e-07 0.0032 0.4420 0.2001  

10th 0.0000 0.0000 0.0000 1.3e-12 3.6e-12 5.2e-06 0.0324 0.0062 0.0495 

* Non-significant values (p > 0.05) are marked red 

6.1.2 Inhibition 

To test whether the implemented inhibition mechanisms affect the agent’s performance, a 

comparison of agent’s behaviour on a sequence of five tasks during which inhibition was 

enabled was compared to the performance on the same set of tasks when inhibition is not 

included. More precisely, each simulation run was formed as follows: a sequence of tasks 

consisted of 5 different tasks, each performed twice: 𝑇1𝑇2 … 𝑇5𝑇1𝑇2 … 𝑇5. During the first five 

tasks the inhibition mechanism was included in the agent’s mental model. Then, the agent’s 

mental model was restarted and the agent again performed each of the five tasks, but this time 

without the inhibition mechanism enabled. Note, during both of the five tasks long sub-

sequences, the agent was permitted to learn in between tasks. The experiment consisted of 2,000 

simulation runs.  

Figure 6.9 presents the difference in success rates caused by the enabling (or disabling) the 

inhibition mechanism. It can be observed that omission of the inhibition mechanisms prevents 

the agent from building on past experiences and current perceptions to improve its success rate. 

On the other hand, if the agent can inhibit the structures not suitable for the task at hand, and 

use memories to set initial inhibitions on the start of each task, the agent improves its 
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performance on each subsequent task. Correspondingly, in case of enabled inhibition 

mechanism, the number of steps needed to find a solution continuously decreases as the 

simulation progresses (Figure 6.10).  

 

Figure 6.9 The change in a success rate in cases with and without inhibition mechanism enabled 

 

Figure 6.10 Change in the number of steps required to solve a task with and without inhibition 
mechanism enabled 

To further study the effect of inhibition mechanism, particular attention was given to the agent’s 

behaviour regarding solution space exploration. Figure 6.11a presents the distribution of the 

number of new structures created over the task sequence. In both cases – with and without 

inhibition enabled – the number of new structures created tends to decrease as the agent gains 

experience. In the first simulated task, the agent without inhibition mechanism creates more 

structures than the (otherwise similar) agent with inhibition mechanism enabled. These 

differences result from the tendency of the ‘with-inhibition’ agent to dismiss the structures 

which are deemed as unsuitable, while the ‘without-inhibition’ agent keeps the structures active 
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for a longer period and, thus, increases the likelihood of modifying or combining activated 

structures into new ones. However, the ‘without-inhibition’ agent is unlikely to switch its 

attention towards newly generated structures. Instead, it will likely remain focused on the first-

activated (and often unsuitable) structure. Although the ‘with-inhibition’ agent does not create 

as many structures, the inhibition enables it to search a more diverse space of solutions: if one 

solution is inhibited, the agent’s attention shifts towards other, different (in terms of properties) 

structures, until the suitable solution is found. Such search of a wider space creates a basis for 

the ‘with-inhibition’ agent to find appropriate solutions in subsequent tasks: although the 

number of new structures generated decreases as a task sequence progresses, the overall success 

rate increases. Thus, as more experience is gained, the ‘with-inhibition’ agent manages to find 

a suitable solution more often and does so with less solution-space exploration.  

The ‘without-inhibition’ agent, on the other hand, is less likely to learn about the new structures 

(due to its continuous focus on the first-activated one). This, in turn, means that the links 

relevant for the focused structure will get even more grounded, increasing the likelihood that 

the agent will focus the same structure in subsequent tasks as well. Such structure will probably 

be unsuitable – leaving the agent in a deadlock in which no new structures can be created (the 

structures generated from the focused structure have already been made in previous tasks), and 

attention cannot be shifted. Due to these processes, the ‘without-inhibition’ agent gradually 

starts proposing a smaller number of distinct structures (Figure 6.11b). 

 

Figure 6.11 The comparison of effect of inhibition mechanism on solution space exploration in terms 
of a) the number of new structures created, and b) the number of distinct structures proposed during 

the task 

6.1.3 Base-level activation 

The similar experimental setup as that conducted for the studies of inhibition effect was used 

to study the effect of base-level activation on the agent’s performance. In other words, the 
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simulation design in which simulation runs were of the form:  𝑇1𝑇2 … 𝑇5𝑇1𝑇2 … 𝑇5 was reused. 

During the first five task performances, the agent was permitted to initialise the base-level 

activations for each known node based on the recollections of the past tasks and its expertise. 

After the completion of the first task 𝑇5 the agent’s mental model was restarted, and the base-

level activation mechanism was switched off for every remaining task in a simulated sequence. 

Again, 2,000 simulation runs were performed. 

In cases in which the agent had no previous experience and base-level activation mechanism 

was enabled (i.e. first 𝑇1 task), the base-level activations were based solely on the agent’s 

expertise area. In each of the subsequent tasks of the first subsequence (𝑇2 … 𝑇5), both, agent’s 

expertise area and past tasks performed were used to set base-level activations.  

Based on the implementation developed in the previous chapter, it can be expected that the 

impact of base-level activation is correlated with the similarity among the current task and past 

experiences and expertise. However, such impact may not necessarily be positive: if one is 

primed with very similar tasks, the memories of the past solutions - which were suitable in 

plenty of past tasks, but are not solutions for the current task - may be detrimental. Thus, the 

first experiment studied the correlation among similarity (of the current task and past 

experiences), and the difference in steps required to perform tasks with and without base-level 

activation mechanism enabled. The absolute difference in steps between two conditions was 

hypothesised to be significantly related to the similarity among past and current tasks. The 

results obtained are presented in Figure 6.12a. For clarity, Figure 6.12b presents the same data 

in the form of boxplots. Using Spearman’s rank correlation test, a very week (ρ = 0.117), but 

statistically significant (p < 0.001) correlation was found.  

 

Figure 6.12 The relation among difference in steps needed to find the solution with and without base-
level activation mechanism, and similarity among past experiences and the current task a) scatterplot 

b) boxplot representation 
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Then, the data were classified based on the ‘polarity’ of the base-level activation’s influence: 

cases in which agent without base-level activation perform better (i.e. base-level activation had 

a negative influence) were separated from cases in which agent with base-level activation 

enabled was more successful. The scatterplots for each case are reported in Figure 6.13. In cases 

in which agent performed worse when base-level activation is enabled, the statistical analysis 

using the Spearman’s rank correlation test found no significant relation between similarity (of 

past experiences and current task) and step difference. Regarding the cases where agent 

benefited from base-level activations, a weak (ρ = 0.151), but significant (p < 0.0001) relation 

was found. 

 

Figure 6.13 The relation between similarity among tasks and difference in steps introduced by 
addition of the base-level activation to the agent’s mental model; a) Cases where base-level activation 

had a negative effect, b) Cases where base-level activation had a positive effect 

Finally, the data were analysed to extract the success rates and step distributions for each task 

of the two simulated conditions. The results are presented in Figure 6.14.  

 

Figure 6.14 The change in performance regarding success rate (a) and number of steps needed to 
finish the task (b) in cases where base-level mechanism was and was not enabled 

As can be observed from Figure 6.14, the agent manages to improve its performance regardless 

of the base-level activation inclusion – thus demonstrating how learning in terms of new 
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knowledge elements creation and link grounding affects the agent’s success on the tasks. But 

the figure also shows how base-level activations add to the effect of the learning process and 

positively influence the agent’s task performance. Nevertheless, future experiments should 

study more closely the conditions in which memories are beneficial – and in which they may 

hinder the performance. 

6.1.4 Cognitive ability 

To study the effect of cognitive ability (and a related parameter of focus capacity) on individual 

agent’s performance, several experiments were conducted. In order to gain better understanding 

of the influence of the focus capacity, the experiments included two values outside of the 

permitted focus capacity range: 2 and 6. 

The first experiment aimed to study how different values of focus capacity influence the success 

of an individual agent on a single task. The simulated task did not include any prior learning; 

i.e. the simulated agent used only the initial knowledge and expertise to perform the task. 

Similar to the studies reported in previous subsections, to study the relationship between agent’s 

cognitive ability and task performance, the overall score (i.e. value stating whether agent failed, 

or found and accepted a solution) and the steps needed to perform the task were collected. In 

the designed simulation experiment, each simulation run consisted of five repetitions of a single 

task where the agent’s mental model was restarted at the end of each. Further, in between two 

task performances, agent’s focused capacity was gradually increased. More precisely, one 

simulation run consisted of a sequence: 𝑇1𝑇1𝑇1𝑇1𝑇1, where agent’s cognitive ability (the first 

pair value) and focus capacity (the second pair value) were changed as follows: (0.01, 2) in the 

first, (0.168, 3), (0.5, 4), (0.832, 5) in second, third and fourth, and (0.99, 6) in the fifth task 

performance. Overall, 5,000 simulations were run.  

Figure 6.15a presents the success rate for each cognitive ability case. As can be deduced from 

the success rates, the median value of steps needed to perform the task equals the number of 

allocated steps (i.e. 1,000) in each case. The distribution of the steps needed to perform the task 

in cases in which the solution was found and agreed upon (i.e. ‘successful tasks’) is presented 

in Figure 6.15b. 

The hypothesis that agents with higher focus capacity levels reach a solution in fewer steps (in 

cases in which a solution is found) is tested using pairwise Wilcoxon signed-rank tests – all of 

which confirmed a statistical significance of the differences (p < 0.05). 
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Figure 6.15 Success rate (a) and distribution of required steps in successful trials (b) on a single task 
performed by agents with different focus capacity levels 

To further study the impact of distinct cognitive ability levels on the agent’s performance, a 

change of agent’s performance over a sequence of tasks was tracked. Similar to the conducted 

study of agent’s learning over a task sequence (Section 6.1.1), separate analyses studied the 

agent’s performance on a repeated task and agent’s performance over a sequence of different 

tasks. 

Figure 6.16 presents the agent’s performance over ten repetitions of a single task. Figure 6.16a 

shows an improvement in a success rate, while Figure 6.16b for clarity represents only the 

average number of steps required to complete the task. As can be seen on the figure, as the 

agent repeatedly performs the task, its performance improves while following an exponential 

learning curve, which is compliant with theoretical proposals [318]. The slope of the 

performance improvement varies with the change in focus capacity (and cognitive ability): 

more capable agents show more considerable improvement over time. 

 

Figure 6.16 The relation among cognitive ability/focus capacity and a change in (a) success rates, and 
(b) the average number of steps needed to finish a task over multiple repetitions 

Similarly, when tracked over a sequence of ten different tasks, all of the agents (i.e. the agent’s 

instances diversified solely based on the cognitive ability/focus capacity parameters) display 
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the performance improvement. This serves to show that all of the agents are capable of learning. 

However, cognitive ability influences the learning rate. To clearly depict the differences in the 

performance improvement over the course of the simulated task sequence, Figure 6.17a 

represents the increase in the success rate of each agent benchmarked against the performance 

it would display if no previous tasks were performed. The least competent, ‘theoretically 

implausible’ agent – which is capable of focusing only two knowledge chunks in a single 

simulation step - improves its performance by solving approximately 3% more tasks (in 

comparison to the success rate it would display if it had no experience). On the other hand, the 

most capable agent (whose focus capacity is also outside of the permitted range and equals six 

knowledge chunks) learns sufficiently to solve up to 20% more tasks than it would if it had no 

experience. The performance improvement of the agents with plausible values of focus capacity 

(i.e. from 3 to 5) ranges from 7.5% for the least capable agent, to slightly more than 15% for 

the highly capable agent. The trend in change of the average number of steps needed to finish 

the task is in accordance with the improved rate of successful task completion (Figure 6.17b).  

 

Figure 6.17 The relative change in success rate (a) on a sequence of different tasks and the average 
number of steps needed to finish the tasks for each focus capacity value 

The simulated experiments demonstrate how cognitive ability mechanism captures the 

differences in learning among agents. If their level of knowledge and experience is similar (as 

in the first simulated task – see Figure 6.15a), highly capable agents are more likely to find a 

solution. Additionally, the more capable agent will make a better use of subsequent experiences 

by managing to learn more and using the obtained knowledge to improve its performance 

further. In other words, the less capable agent will have to put in more effort (i.e. will be 

required to gain more experience) to match the performance level of its more capable 

counterpart. These results are in line with the findings that cognitive ability is one of the 

strongest predictors of task success [226], [233], [319]. 
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6.1.5 Affect 

To test whether the implemented affective mechanism has an impact on agent’s performance, 

a set of 2,000 simulations were run. Each simulation consisted of two repetitions of a single 

task: one in which affective module was enabled, and the second in which the affect was not 

taken into account. Thus, the simulation runs consisted of a sequence 𝑇1𝑇1. To enable 

comparisons, the agent’s mental model was restarted in between two task performances.  

First, a success rate the agent obtained in each of the conditions was extracted. The agent 

managed to find the solution in 25.3% of the simulation runs in which the frustration variable 

was allowed to change. In the cases in which the agent was unaffected by the frustration value, 

the success rate was 13.9%. Wilcoxon signed ranked test confirmed the statistical significance 

(p = 0.0123) of the differences in distributions of steps needed to find a solution. Thus, at the 

level of significance of 0.05, an alternative hypothesis stating that affective agents take less 

time to finish the task can be accepted. These results imply that a frustration parameter indeed 

influences the agent’s behaviour by directing it towards finding the solution.  

To further study the impact of the affect model and implementation, the agent’s performances 

were separated based on the maximal frustration value achieved during the task performance. 

In other words, for each of the simulated tasks in which affect was taken into account, the 

maximal value of frustration the agent experienced was recorded. The obtained maximal 

frustration value was used to separate the data into nine bins of approximately equal size: i.e. 

each containing 220 simulated pairs of tasks (with and without frustration considered). The 

boxplots shown in Figure 6.18 demonstrates the differences between the two tasks’ settings 

regarding the number of steps needed to finish the task - with respect to the maximal frustration 

value achieved. As can be observed in the Figure 6.18, the tasks which were ‘easier’ – and, 

thus, the frustration levels were low – were shorter (in terms of steps needed to find a solution) 

in cases where the affective component was enabled. However, when the agent’s frustration 

level was high, the affective agent’s performance (regarding steps needed to conclude the task) 

was not different than that of an affectless agent. Wilcoxon signed ranked test applied to cases 

where frustration did not exceed 0.2 confirmed the statistical difference between the two 

simulated settings (p = 0.0004). The collected data does not provide a distinction among the 

remaining cases with (i.e. in which frustration level is greater than 0.2) and without affective 

component. This finding is not surprising as the implementation intertwines high frustration 

level and task failure: if the task is difficult to solve, the frustration level rises. Additional 
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experiments will be conducted in the future to further study the effect of high frustration levels 

on task success. 

 

Figure 6.18 Task duration distribution with and without affective component enabled, with the respect 
to the maximal level of frustration experienced when affect is enabled 

To study the effect of frustration on the agent’s solution space exploration, the data were 

inspected to detect if agents with the affective component focus more on the solution-finding. 

Figure 6.19 shows the differences regarding the number of new structures created (a) and the 

number of distinct structures proposed (b) between the affective and affectless agents’ 

behaviour. Figure 6.19 demonstrates how agents with lower levels of frustration generate a 

relatively large number of new structures. As the frustration level increases, the number of 

newly created structures decreases. This behaviour is in line with the theoretical background 

laid out in Section 4.4.2, e.g. [203], [219]. However, it is important to note that in the current 

model implementation, the low frustration level does not result in a high number of new 

structures. Rather, it is the other way round: the ‘easier tasks’ are those closer to the agent’s 

knowledge. Thus, more knowledge elements get activated, which in turn facilitates the creation 

of a large number of structures. These structures are likely to display at least some of the 

required properties. Therefore, the agent’s level of frustration remains low. In short, the 

negative correlation between frustration levels and the number of newly generated structures is 

a result of task difficulty. The behaviour of affectless agents confirms such statement: although 

its frustration level does not change, the number of new structures follows the same trend as 

that of the affective agent.  
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Despite the similarities of structure generation trends, there are differences in the overall 

number of new structures created. Wilcoxon signed rank test was employed to study the 

differences in the creation of the new structures for each of the frustration levels. The results 

showed that irrespective of the frustration level taken, at the level of significance of 0.05, the 

affective agent generates more new structures than the agent unaffected by the emotions. The 

obtained results demonstrate the effect of frustration on the solution space exploration: due to 

an increase in a frustration level, the affective agent focuses more on the solution space, which 

increases the number of newly generated structures. Similar results can be obtained when 

studying the differences in the number of distinct structures proposed. At the level of 

significance of 0.05, for every frustration level can be concluded that the affective agent 

proposes more structures than the affectless agent. These results demonstrate how affective 

state can motivate the agent to elicit more effort in finding a solution [218]. 

 

Figure 6.19 The difference in agent’s solution space exploration behaviour – in terms of the number 
of new structures created (a) and the number of distinct structures proposed - when affective 

component is and is not enabled 

The affect component is intended to influence task dynamics. Thus, an analysis was directed 

towards studying the change in the content of messages communicated by the agent over the 

task course. Particularly, the number of distinct structures proposed, as well as the ratio of 

problem- and solution- related messages were studied. Figure 6.20 represents a typical change 

of the PS indicator [320] for affective and affectless agents over the course of an unsuccessful 

(a) and a successful (b) task. PS indicator is a measure that relates to the focus of design activity. 

It is calculated as the ratio of the difference in a number of problem- and solution-related 

messages, and the overall duration of the design task. Thus, it ranges from -1 to 1, and positive 

values indicate a problem-oriented design activity (while negative signals solution-oriented 

activity).  
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To create graphs shown in Figure 6.20, first, a set of tasks where frustration had an impact had 

to be extracted. Thus, simulations for which more than 500 steps (i.e. 50% of the simulated task 

duration) were needed to find a solution were selected and classified based on the success of 

the task. Then, a PS indicator was calculated using the moving window whose size was set to 

10% of the overall task duration. Finally, the obtained PS indicators were averaged over each 

of the time steps.  

The results demonstrate the differences in behaviour between two simulated agents. Similar to 

the affective agent, the affectless agent spends the first task period exploring the problem space. 

Then affectless agent’s PS indicator value stabilises showing a constant ratio of the number 

problem and solution related issues (among which solution-related design issues are slightly 

more prevalent). Affective agent, on the other hand, starts changing its behaviour (diverging 

from the affectless agent) once the frustration begins to influence its mental model. Due to an 

increased effort to find a solution, the affective agent reconsiders the past solutions (see Section 

5.1.2), determines their insufficiencies and as a consequence relates back to the unsatisfied 

requirements. In other words, the agent shifts back to the problem space exploration. Such shifts 

may lead to progress, which in turn enables solution finding (as shown in Figure 6.20b).  

 

Figure 6.20 Moving PS indicator for a) unsuccessful, and b) successful tasks 

In other cases, however, the agent becomes aware of its inability to satisfy the requirements, 

and its frustration continuously increases. As a result, the relevant requirement-function and 

function-behaviour links are repeatedly focused and further grounded, while the structures 

connected to focused behaviour nodes get more inhibited (since they do not meet all of the 

requirements). These processes in sum stop the agent from shifting its attention towards 

structures which – albeit less related to the problem – could serve in the generation of the 

suitable solutions (through union and concatenation processes). In other words, the agent enters 
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a deadlock in which it is unable to shift its attention towards more fruitful knowledge paths. 

This process could be understood as what Norman [203] refers to as tunnel vision.  

To further study the dynamics of the affective agent’s behaviour, the number of distinct 

structures proposed in the first and the second half of the simulation were collected (Figure 

6.21). Since the agents are not affected by the frustration value during the first half of the task, 

the number of proposed structures has a similar distribution in both affective and affectless, 

cases. In the second simulation half, however, the affectless agent proposes significantly fewer 

structures than its affective counterpart. On the other hand, both – affective and affectless – 

agents propose a smaller number of structures in the second simulation half. This behaviour is 

in line with the view of initial task stages as a more creative stage of the design process [203]. 

 

Figure 6.21 The number of distinct structures mentioned during the first and the second half of the 
simulated task 

A final analysis studied the portion of each of the agent’s message types in different phases of 

the simulated task. To account for the differences in tasks’ duration, each task was represented 

in terms of percentiles. Then, the number and type of the messages communicated during each 

of 10% task intervals were collected, which enabled calculation of the relative frequency 

distribution of message types for each of the 10% intervals. The results of such analysis are 

presented in Figure 6.22. The results obtained for the affective agent demonstrate its effort to 

converge to a solution: as the second half of the task progresses, the agent spends more time 

proposing and evaluating the structures. The behaviour of the affectless agent remains 

undisturbed by the approaching deadline. Thus, its distribution of communicated message types 

remains stable throughout the simulated task. Such behaviour of the affectless agent is difficult 
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to validate: can anyone have a constant motivation but be unaffected by emotions and drives? 

Nevertheless, the obtained behaviour matches the expectations based on the developed model 

implementation. Thus, the obtained results increase the confidence in the correctness (in terms 

of the absence of bugs) of the implemented mechanisms. 

 

Figure 6.22 The relative distribution of the message types in a task performed by a) an affective and 
b) an affectless agent 

6.1.6 Expertise 

A final element of the agent’s architecture that needs to be tested is the agent’s expertise area. 

To study the impact of the expertise area on the task performance, a series of simulation runs 

were conducted and diversified based on the level of overlap (i.e. similarity) between the 

simulated task requirements and the agent’s expertise area. The similarity was calculated using 

the Dice coefficient. In the experiments reported in this subsection, the number of behaviours 

within the agent’s expertise ranged from a single behaviour node to five behaviour nodes. The 

number of expertise areas was randomly drawn from a uniform distribution. The simulation 

runs were carried out until 1500 data points were collected for each of the similarity categories 

defined by the bounds 0, 0.3, 0.5, 0.7 0.9, and 1.0. Thus, in – for example, second similarity 

category, tasks had at least some overlap with the agent’s expertise area (i.e. overlap is higher 

than 0), but the overall similarity was lower or equal to 0.3.  

Due to the manner in which the agent’s expertise area is modelled, the agent necessarily knows 

at least one structure satisfying the requirements within its expertise domain. Thus, it is 

expected that the agent will successfully finish each task that perfectly aligns with its expertise 

area. As the similarity among the required and the expert sets of nodes decreases, the agent will 

likely have less success in finding the tasks’ solutions. The described experiments were aimed 

at testing these hypotheses. 
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The results regarding the overall success rate and the distribution of the number of steps needed 

to finish the task are shown in Figure 6.23. As seen on the figure, the success rate is correlated 

with the similarity of task requirements and the agent’s expertise. In accordance, the number of 

steps needed to find a solution is higher as the knowledge required for task solving is more 

distant from the agent’s expertise area. These results align well with the laid out expectations. 

 

Figure 6.23 The impact of similarity between task and agent’s expertise on the task performance 
regarding a) success rate, and b) number of steps needed to find a solution  

Additionally, one can explore if the similarity of task’s requirements and the agent’s expertise 

has an impact on the agent’s search of the solution space. Figure 6.24a presents the distributions 

of the number of new structures created for each of the defined similarity categories. Since the 

agent already knows the solution to the task perfectly aligned with its expertise area, when faced 

with such task the agent does not create a large number of structures. Instead, it simply proposes 

some of the already known solutions. This behaviour is also evidenced in Figure 6.24b where 

the median number of structures proposed (in case of the perfect task-expertise match) equals 

one.  

 

Figure 6.24 The relation between similarity of tasks and agent’s expertise and agent’s solution space 
exploration behaviour regarding a) the number of new structures created, and b) the number of distinct 

structures proposed 



Verification and validation of the developed model 

126 

If the task differs from the expertise area, the agent is forced to search the space in order to find 

a suitable structure. The similarity among required and expertise behaviour nodes provides the 

agent with multiple (relevant) knowledge elements on which it can build its search for the 

solution. Thus, the more similar the task is to its expertise, the more (already known) knowledge 

elements can the agent use – consequently generating a large number of potential solutions. 

With a decrease in task-expertise similarity, the amount of the agent’s initial knowledge useful 

for the task decreases and restricts its search process. The distributions of the number of new 

structures created, and the number of distinct structures proposed, are significantly different for 

every pair of the similarity categories (p < 0.05) and follow the predicted trend. It is interesting 

to note, however, that in case of no overlap between the task and the agent’s expertise the 

number of structures proposed shows a large variance – i.e. in some simulations the agent 

suggested a large number of structures. The data revealed that such occurrence is a result of the 

deficiencies in the agent’s knowledge and frustration level: since the agent knows little about 

the task requirements, it knows several structures equally (un)suitable for the task. Due to low 

performance, the frustration level rises, eventually generating an impulse sufficient to activate 

these structures. The agent then proposes the structures one by one but dismisses them once 

they are subjected to a more thorough analysis. For the same reason, these structures are not 

used further to generate new structures – and, thus, the number of newly created structures 

remains low. 

6.2 Model testing in multi-agent setting 

Following the testing of a model in scenarios comprising a single agent, the additional 

simulation experiments were conducted to study the model’s behaviour in a more complex 

setting: the one where multiple interacting agents are simulating a team of designers. Unless 

stated differently, the simulations presented in this section utilise teams of three agents working 

together on a task by explicating the relevant knowledge links and proposing the possible 

solutions (see Section 5.2).  

This section commences with an experiment directed towards studying the implications of a 

chunk formation implementation (as described in Section 5.1.1). The second subsection is 

dedicated to a study of the impact of communication on team behaviour. The third subsection 

examines the effect of personality (i.e. extraversion and agreeableness) on the team 

performance, and finally, the fourth subsection deals with the effect of trust on the team 

behaviour. 
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6.2.1 The number of focused nodes in one simulation step 

As already discussed in Section 5.1.1, no upper bound on the chunk size was posed. This may 

create an unrealistic situation in which a large number of knowledge elements are 

simultaneously active in the agent’s mental model. This issue is related to learning and, thus, 

can be studied by utilising simulations of an individual agent’s performance. However, the 

primary purpose of the developed model is to simulate teams. Thus, it is important to collect 

the data from both settings (i.e. work in isolation and teamwork).  

The experiment consisted of a series of 1,000 sequences, where each sequence contained ten 

different tasks (in between which the agents were learning). The tasks were performed by the 

agent working in isolation, as well as by the team of three agents. The data regarding the number 

of focused nodes were collected for each step of every simulated task. Figure 6.25 presents the 

results of such analysis. Although in both settings the agents focused ten or fewer knowledge 

nodes in the majority of simulation steps, one can also note several instances in which agents 

focused a very high number of nodes in a single step - up to 40. Additionally, Figure 6.25 

demonstrates how in team settings agents tend to (simultaneously) activate more knowledge 

elements than when working in isolation. These differences are likely due to the diversity of 

knowledge introduced by difference in expertise areas (and thus communicated content) of 

team members. 

 

Figure 6.25 Distributions of the number of focused nodes in a single step: a) when the agent is 
working in isolation, and b) when agent is working in a team setting 

Figure 6.26 shows the distribution of the maximal number of nodes that were simultaneously 

active during a simulation. As shown in the figure, the maximal number of nodes the agent will 

focus (in a single step) while working in isolation tends to be between 7 and 17. When working 

in a team setting, the agent’s maximal focus in a single step typically contains between 15 and 

25 knowledge nodes. Although it is difficult to determine a plausible range for the number of 

simultaneously active knowledge elements, the future studies will necessarily have to take a 
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closer look at the implications and possible refinements of the current model regarding this 

issue. 

 

Figure 6.26 The distribution of the maximal number of nodes focused in a single step: a) when the 
agent is working in isolation, and b) when the agent is working in a team setting 

6.2.2 Communication 

The implementation of communication mechanisms was studied using animations to display 

the knowledge nodes’ activations in each of the agents’ mental models and to track if the 

activations occur as expected. Further, each of the aspects related to the control agent (see 

Section 5.2), e.g. random speaker selection, message propagation and solution evaluation and 

acceptance process, were tested in isolation.  

To study the impact of communication on the agents’ task performance, an experiment was 

designed as follows: while the solution proposing, evaluation and acceptance occurred as 

described in Section 5.2, messages containing knowledge links were not forwarded to the 

speaker’s team members. In other words, the agents discussed the solutions as a team, but the 

remaining processes (i.e. processes of problem formulation and solution synthesis) were not 

explicated among the team members. It is hypothesised that such restriction of communication 

will have a negative effect on team performance by slowing down - or completely preventing 

– team’s convergence to a final solution. Thus, each simulation run consisted of two repetitions 

of a task: 𝑇1𝑇1. During the first task performance, the agents communicated knowledge links, 

solution proposals and evaluations. Then, the agents’ mental models were restarted, and the 

task was reinitiated – but during the second task performance, the communication of knowledge 

links was suspended. Such experimental design enabled pairwise comparisons of the simulation 

outcomes. 

The effect of communication restriction is likely to depend on the similarity of agents’ initial 

knowledge. Thus, particular attention was given to the overlap in agents’ expertise areas in 
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every simulation run. The number of expertise areas was set to two for each agent within a 

team. There were no agents with the same set of expertise nodes, but a partial overlap was 

enabled. In other words, the experiments were created to enable five possible configurations of 

agents’ expertise areas. The similarity among team members’ expertise areas was calculated 

using the Dice coefficient. 

The teams’ success rates in both, finding and converging to a solution are depicted in Figure 

6.27. It can be observed that agents that are allowed to communicate knowledge links perform 

better in every simulated configuration. Further, one can observe that the differences in success 

rates increase with the increase in diversity of the team’s expertise areas. Namely, the difference 

in success rate - regarding the number of cases in which the agents manage to settle for the 

solution - in case of the largest expertise overlap (i.e. an instance with three distinct knowledge 

areas) equals 0.017 - meaning that communication enables solving 1.7% more tasks. The agents 

whose expertise areas are disjoined solve approximately 5% more tasks when they can 

communicate knowledge links. 

 

Figure 6.27 The success rates with respect to communication settings and similarity of agents’ 

expertise areas. a) Percentage of tasks in which one of the team members proposed a suitable solution, 
and b) Percentage of tasks in which the team managed to find and settle for a solution 

In addition to a success rate, one can study the differences in distributions of steps required to 

converge to a solution. Figure 6.28 shows relation of the expertise area overlap and the 

distributions of steps for the two simulated conditions (only the successful trials are filtered). 

The obtained findings nicely align with the proposed hypothesis. Wilcoxon signed rank test 

confirmed a statistical significance of the differences (p < 0.05) in steps required to finish the 

task with and without communication enabled for simulated pair of settings (i.e. for every level 

of expertise overlap). Additionally, the tests showed how the effect of communication 

inclusion/exclusion is amplified by the amount of knowledge overlap among team members. 
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Namely, as the number of distinct expertise areas present in the team increases, the effect of 

communication on the team performance became more pronounced. 

 

Figure 6.28 The distribution of steps (in successful trials) in conditions in which communication is 
and is not enabled 

Additionally, similar to the studies reported in ‘individual agent’ setting, one can study the 

differences in the team’s exploration of the solution space by considering the statistics regarding 

the number of newly generated structures and the number of distinct structures proposed during 

the task performance. Figure 6.29 presents differences in teams’ exploration of the solution 

space in successful tasks. One can observe how the communicating agents search the solution 

space to a lesser extent. When all of the tasks (i.e. both successful and unsuccessful) are taken 

into account, a different trend can be seen: namely, while the number of proposed structures 

does not differ significantly among cases (see Figure 6.30), the communicating agents tend to 

explore the solution space more in search of the solution. This indicates that, if the agents are 

not able to find the task solution, communication helps them to extend their search and consider 

a larger number of potential solutions. 

 

Figure 6.29 The teams’ solution space exploration behaviour in successful tasks: a) the number of 
new structures and b) the number of structures proposed 
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Figure 6.30 The teams’ solution space exploration behaviour (all tasks considered): a) the number of 
new structures and b) the number of structures proposed 

6.2.3 Personality 

This subsection presents the results of tests directed at studying the impact of the team 

composition - regarding two implemented personality factors - on the overall team behaviour 

and performance. Default settings randomly draw agent’s extraversion and agreeableness from 

a normal distribution. To include the boundary values (i.e. very high or very low values), in the 

experiments presented herein, this mechanism was modified by increasing the likelihood of 

occurrences of values as low as 0.01, and as high as 0.99. Overall, the simulations included 

36,000 tasks performed by teams of agents of various agreeableness levels. Similarly, data on 

36,000 tasks were collected to study the effect of team member’s extraversion on team 

performance. 

6.2.3.1 Agreeableness 

Figure 6.31 depicts the differences in steps distributions for various values of average team 

agreeableness. First, the data regarding average agreeableness of the members of a team were 

analysed to separate the obtained data points into categories of equal size. In this manner, the 

boundaries used to create Figure 6.31 were derived - the value written on the x-axis below each 

boxplot represents the upper boundary of the agreeableness category. The data presented in 

Figure 6.31 demonstrates the beneficial effect of the average level of team members’ 

agreeableness on the convergence of the team. Following the implementation presented in 

Section 5.1.3, these results accord with the expectations: the highly compliant agents try to 

build on other’s ideas and are less likely to dismiss other’s solution proposals – which in turn 

facilitates quick settling for a proposed solution. As the average team agreeableness decreases, 

the number of steps needed for the agents to reach the consensus increases. Interestingly, the 
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least agreeable group shows a slight performance improvement (in comparison to the second-

least agreeable group). 

 

Figure 6.31 The relation between the average team agreeableness and the number of steps needed to 
complete the task 

Figure 6.32b corroborates such findings by revealing that team’s success rate (measured as the 

percentage of tasks in which the team agreed upon a solution) in most cases declines with a 

decline in average agreeableness. These results are consistent with the claims of agreeableness 

being one of the predictors of task success in a team setting [232]. The lowest agreeableness 

category does not follow this trend – as teams in this category solve more tasks than those in 

the second lowest agreeableness category. 

However, Figure 6.32a reveals an interesting insight: if the successful task is regarded as that 

in which at least one agent managed to find (and explicate) the solution – irrespective of whether 

the said solution was agreed upon – the findings on what constitutes a good team is almost 

completely contrary to that obtained by observing Figure 6.32b. Namely, the agents in the 

second-lowest agreeableness category are the most likely to find at least one suitable solution. 

This capacity declines with an increase in team members’ average agreeableness. In other 

words, more agreeable agents are more successful in recognising and adopting the suitable 

structures proposed by others – which is a behaviour intended to be captured by the 

implementation (as described in Section 5.1.3). On the other hand, disagreement among 

members seems to promote solution space exploration [237]. These results align well with the 

findings reported in [214] stating that hostility and negative interpersonal communication 

facilitate creativity, but undermine its implementation.  
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Figure 6.32 The success rates with respect to the average agreeableness of team members a) 
Percentage of tasks in which one of the team members proposed a suitable solution, and b) Percentage 

of tasks in which the team managed to settle for a solution 

In accordance with the drawn conclusions are the data represented in Figure 6.33 which depicts 

the team’s solution space exploration behaviour with respect to average agreeableness of its 

members. The level of solution space exploration declines with an increase in the average 

agreeableness. The two pairs of agreeableness categories were not found to be statistically 

different. Namely, the two most agreeable categories (i.e. categories corresponding to 

agreeableness ranges above the 0.6644) were statistically indistinguishable. Similarly, the pair 

of categories covering the agreeableness range from 0.4725 to 0.6644 was not found to be 

significantly different. Nevertheless, Wilcoxon signed rank test confirmed the statistical 

significance of differences among every other pair of categories, thus confirming the observed 

trend. Figure 6.33 also hints at the reason the most disagreeable teams tend to perform better 

than the second-disagreeable in terms of time required for solution convergence. A close 

inspection of the data revealed that very disagreeable agents - due to how the agreeableness is 

implemented – mostly dismiss other’s input, i.e. their work resembles the agent’s work in 

isolation. Since the agents are likely to have deficiencies regarding the required knowledge (to 

solve the task in isolation), often their search for a solution does not result in highly successful 

structures. Thus, they are more prone to frustration. If the frustration becomes sufficiently high, 

the agent starts considering the previously proposed solutions. Since the number of newly-

created and proposed structures is small (Figure 6.33), the agents’ will likely start considering 

event the structures that were submitted by others - and in some cases, this will lead to the team 

success. As already noted in Section 5.1.3.1, future model refinements will be directed at 

refining the interplay among affective mechanisms and personality. 



Verification and validation of the developed model 

134 

 

Figure 6.33 The relation between average agreeableness of team members and solution space 
exploration behaviour regarding a) number of newly created structures, and b) number of distinct 

structures proposed 

Following these results one can conclude that the desired teams’ characteristics depend on a 

task setting: if the team is working in an environment where the overall team score is taken to 

depend on the best-performing solution found by any of the members (as simulated in [111]), 

the disagreement among members may be beneficial. If, on the other hand, team members have 

to reach consensus (and do so quickly), the more agreeable members will perform better. 

However, one should note that high levels of group conformity sometimes results in team 

members accepting the solutions that do not satisfy all of the requirements (see Figure 6.34). 

Such a situation occurs if the highly agreeable agent is ‘in charge’ of the requirements (i.e. the 

requirements are close to its expertise) on which others pose low priorities. These results accord 

with the research published in [321] stating that high levels of agreeableness may cause 

premature consensus, thus negatively affecting team problem-solving. 

 

Figure 6.34 Percentage of unsuitable solutions accepted by the team 
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6.2.3.2 Extraversion 

The extraversion parameter guides the value of the agent’s sharing threshold. Thus, the first 

step in the assuring the implementation adequacy consisted of confirming that the agent’s share 

in the overall team communication aligned well with its extraversion parameter and the level 

of knowledge relevant for the task (relative to the extraversion and expertise of others’). To 

study the effect of extraversion on the team performance further, similar analysis as that in the 

case of agreeableness was conducted. Figure 6.35 shows the distributions of steps for different 

values of average values of team members’ extraversion. A curvilinear relationship suggesting 

that the best-performing team consists of ‘moderate’ extraverts can be detected. 

 

Figure 6.35 The relation between the average team extraversion and the number of steps needed to 
complete the task 

Expectedly, the figure depicting step distribution is in accordance with data presented in Figure 

6.36b. Figure 6.36b shows how a team whose average extraversion is slightly above average 

manages to successfully conclude the highest number of the tasks in a given timeframe. Such 

curvilinear relationship has also been reported in the literature (e.g. [322], [323]). In particular, 

Barry and Stewart note [322] that when the team has to come up with a single solution, having 

many extraverts creates a situation in which there are many ‘leaders’ but no ‘followers’, thus 

introducing the conflicts and prolonging the time for convergence. 

On the other hand, Figure 6.36a shows how members of the most extraverted team are the most 

successful in terms of detecting a solution. This finding is not surprising since highly 

extraverted agents tend to communicate – but also to create – significantly more structures than 

the less extraverted teams (Figure 6.37). In other words, extraverted team members may be 

beneficial to team performance on tasks that require creativity and generation of a large number 
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of ideas [237]. But in a setting where agents need to converge to a single structure such a large 

extent of ideas seems to ‘overburden’ the team and prevents any solution from standing out. 

 

Figure 6.36 The success rates with respect to the average extraversion of team members a) Percentage 
of tasks in which one of the team members proposed a suitable solution, and b) Percentage of tasks in 

which the team managed to settle for a solution 

 

Figure 6.37 The relation between average extraversion of team members and solution space 
exploration behaviour regarding a) number of newly created structures, and b) number of distinct 

structures proposed 

Additionally, data presented in Figure 6.37 demonstrates how a team of very introverted agents 

communicates a significantly lower number of structures. In turn, there are fewer opportunities 

for idea cross-fertilisation [237], and the agents do not produce as many new structures. All of 

this leads to low success rates for a highly introverted team. 

Finally, one can discuss these ideas from the perspective of the desired team diversity (with 

regards to the extraversion of members). If the data is categorised based on a difference in 

extraversion parameter of the most introverted and the most extraverted team members, one 

can conclude that a slight variability is beneficial to the team: if agents are all equally 

extraverted, their share in communication is similar – either leading to agents trying to express 

their thoughts (thus creating a ‘noise’ in other agent’s mental processes), or to agents that take 

time to reassure the quality of their ideas (thus creating a long periods of silence, omitting 
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communication of some important knowledge elements and prolonging the time needed to 

solve the task). On the other side of the spectrum are teams where (at least) one agent is very 

introverted, and (at least) one agent is very extraverted. The reason for the weak performance 

of such team may be the presence of very introverted agents. Barrick et al. [233] found that in 

situations in which all of the team members have to contribute to the solution, the presence of 

introverts may harm the team performance. In the study at hand, the introverted agent possesses 

expertise distinct from that of its co-workers. If the agent does not communicate its thoughts, 

the remaining team members may be unable to fill in the knowledge gaps needed to solve the 

task. 

 

Figure 6.38 The relation between success rate and the difference in members’ extraversion scores 

It should be noted, however, that due to the modifications of mechanism assigning extraversion 

parameters, the distribution of extraversion does not follow a normal curve. This means that in 

the population of teams whose difference in extraversion equals zero, the highly introverted 

and highly extraverted agents are equally likely as the team of agents all scoring ‘moderate’ 

values in extraversion. The success rate presented in Figure 6.36 will likely be higher if the 

default extraversion assignment mechanism was used. Future studies will test such claims. 

Additionally, the analysis regarding the minimal and maximal extraversion score, as well as the 

variance of extraversion among team members will be calculated and tested for relations with 

team performance [233]. 

6.2.4 Trust 

A final study regarding the elements of the implemented model dealt with the impact of trust 

on the team performance. To study the effect of trust, in each simulation run, agents with low, 
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moderate and high levels of trust performed a task. In other words, the experimental setup was 

of the form 𝑇1𝑇1𝑇1, where agents’ mental models were restarted in between two task 

performances, and the trust values were changed. In the study presented herein, the trust was 

considered as symmetric, thus leading all agents to have low, moderate or high levels of trust 

in others. Overall, 5,000 simulations were run. 

Figure 6.39 shows that the agents’ success rates are comparable, with the non-trusting team 

scoring slightly lower than the team of moderately-trusting and high-trusting agents. To test 

whether the lack of trust prolongs the time needed to solve a task, the number of steps required 

to reach the solution is observed. These data is presented in Figure 6.40a.  

 

Figure 6.39 The success rates with respect to trust among team members a) Percentage of tasks in 
which one of the team members proposed a suitable solution, and b) Percentage of tasks in which the 

team managed to settle for a solution 

Wilcoxon signed rank test was employed to study the differences in steps distributions among 

teams of varying trust levels. The teams low on trust value performed statistically significantly 

worse (p < 0.01) – with the regards to time needed to finish the task – then moderate- and high-

trusting teams. This accords with the proposition laid out in Salas et al. [32]. In other words, as 

modelled, low-trust agents do not rely on knowledge links communicated by others. Rather, 

they opt to ensure the adequacy of communicated knowledge by themselves. This, as 

demonstrated, prolongs the time needed for a team to find and converge to a solution. However, 

no statistically significant differences were found between the two remaining simulated 

conditions. 

Additionally, one can study if the amount of trust has an effect on the team’s solution space 

exploration. Although the attention given to other’s solutions is mostly guided by the related – 

but separate – agreeableness parameter, the higher amounts of trust facilitate learning from 

others and thus can provide agents with new ‘paths’ (i.e. knowledge links) leading to solutions. 
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The found differences among the simulated cases were small (see Figure 6.40b), but significant 

(p < 0.05). Since the agents in high-trust condition do not take significantly more time to finish 

the task (or, in fact, solve the task quicker than non-trusting agents), the obtained result indicate 

that the agents managed to more quickly traverse the problem-space related links and activated 

more structures (and used them to generate new ones).  

 

Figure 6.40 The distribution of a) steps needed to finish the task, and b) the number of new structures 
created with the respect to the level of trust among team members 

The conducted analysis revealed the small, yet significant, impact of trust on the team’s 

behaviour and performance. Additional refinements will have to be made to elaborate on the 

potential influences of trust further. For example, as currently modelled, all of the knowledge 

links present in agent’s mental model are ‘correct’, and most can be deduced by agents (by, for 

example, analysing the structure’s properties). However, if the agents were primed with the 

‘wrong’ knowledge links, the effect of trust on team performance may be amplified. Similarly, 

as currently modelled, the minimal amount of trust studied still permits learning from others. 

Thus, future refinements will include changing the lower (and perhaps upper) bounds of viable 

trust range. Finally, in the experiment reported here, all of the trust values were shared among 

agents. In other words, each agent had a similar reputation. Thus, the effect of trust on solution 

evaluation and acceptance was not studied within the frame of the experiment presented. Future 

work will include simulations were, for example, one well-respected agent does not trust its 

team members. 
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7 STUDY OF DESIGN TEAM LEARNING AND 
ADAPTATION 

The previous chapter studied the interplay of various modelled elements and mechanisms. This 

chapter aims at demonstrating the model’s capability to serve as a tool for studies of teams over 

time. In particular, as discussed in Chapter 4, the aim is to study the team learning and 

adaptation processes.  

Two experimental setups were created to study how the behaviour of a simulated team changes 

over time. The first – reported in Section 7.1.1– tested if the team’s behaviour changes when 

the team is faced with the task it was exposed to previously. The second – detailed in Section 

7.1.2 - serves to study teams’ change in behaviour across different tasks. These experiments, in 

sum, display the simulated team’s capability of learning and changing its behaviour over time. 

As emphasised in previous chapters, within this work, team learning is modelled as an emerging 

phenomenon resulting from interactions among agents. To capture team learning and 

adaptation, the change in team performance regarding success rate and convergence speed were 

extracted. These metrics accord with literature (e.g. [31], [167]) stating that team learning can 

be observed through the lenses of team performance and cooperation improvement. Further, 

the details on communication among team members are collected, and the communicated 

content is analysed. The data on newly created and communicated knowledge elements 

(structures and links) depict the changes in the collective knowledge and, thus, serve as an 

indicator the team learning has occurred [167]. 

7.1.1 Effect of learning and experience on team performance on a similar task 

The study reported in this subsection extends the work published in [261]. In particular, the 

study presented here reuses the experimental setup introduced in the cited work. Thus, one 

simulation run consisted of four task sequences of the form: 𝐴𝐵1𝐵2 … 𝐵𝑛𝐴 where n equals 1, 3, 

5 and 10. Every task 𝐵𝑚 is different from task 𝐴 (for any m). Any two 𝐵𝑖 and 𝐵𝑗 can - but do 

not have to - share some of the requirements. 

The team’s performance on the first task A was compared to its performance on the second task 

occurrence. It is expected that the experience gained in between two task-A performances 

enables the agents to find a solution more often, converge to a solution quicker, and improve 

their search process on the second task-A performance. Thus, the hypotheses are introduced as 

follows: 
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H1: As team members work together over time, they become more efficient. 

H2: As team members work together over time, they explore less. 

To test the listed hypotheses, 1500 simulation runs were performed. Each run consisted of the 

four task sequences composed of 3, 5, 7 and 11 tasks – of which first and the last task were 

similar.  

Figure 7.1 shows the results obtained regarding the first hypothesis (H1). In the figure, the x-

axis labels are set as follows: A0 denotes the performance achieved on the first task A. A1, A3, 

A5 and A10 denote the scores obtained on the second task-A performance where the number 

indicates how many tasks (𝐵𝑚) were performed in between two task-A performances. 

 

Figure 7.1 Comparison of team’s performance on the two instances of the same task regarding a) the 

success rate and b) the distribution of steps needed to finish the task 

Although the Figure 7.1a demonstrates a positive correlation between task success and the 

number of tasks performed in between two task-As, the Figure 7.1b shows the agents were 

significantly quicker to find a solution if the first task-A was performed very recently (i.e. with 

one task in between). These results indicate that when two task-A performances are separated 

by just one other task, the team is capable of recalling previously found solution and proposes 

it promptly. As more time passes between two task-A performances, the agents forget their 

initial solution (i.e. the links leading to it decrease in weight) and the team tries to reconstruct 

it. The inspection of the data revealed that, when performing task A1 after the A0 was 

successfully finished, the agents picked the same solution as that proposed in the first task in 

84.1% of the cases. In other words, the agents differ from the originally proposed (successful) 

solutions in less than 16% of the cases. As more time passes, the likelihood of the agents 

remembering the exact solution proposed in the first task-A performance drops. Namely, the 

same solution is recalled after three tasks 71.89% of times in case of A3, and 70% of the times 
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in task A5. After ten tasks (i.e. in task A10), the agents converge to the same solution as the one 

found in the first (successful) task in 54.3% of the cases. 

The listed statistics indicates that after a certain time (counted by the number of tasks) had 

passed in between two performances of the same task, the agents forget their initially produced 

ideas (i.e. recalling them takes more time). Thus, although the more experienced agents are 

more successful (Figure 7.1a), they may, in some cases, be slower to reach the solution. 

Namely, if their knowledge is not yet sufficiently developed to support quick convergence to a 

new solution, the more experienced agents may take more time to converge to a solution than 

they did in the first trial (case A3). If however, even more time passes in between two task 

performances, the agents gain experience on which they can rely to generate new solutions (if 

the past ones cannot be recalled).  

Wilcoxon signed-rank test was used to determine the significance in step distribution 

differences, and the resulting p-values are presented in Table 7.1. As one can observe from the 

table, the second time agents are performing the task A, the convergence is quicker (than in ‘no-

experience’ A0 case), irrespective of the number of tasks conducted in the meantime. However, 

a significant drop in performance occurs if three, rather than only one task is performed in 

between tasks A. As more tasks are performed, the performance starts to improve slowly, 

ultimately improving significantly from A3 case. 

Table 7.1 The statistical significance (p-values) of the steps distributions differences 

  

To study the agents’ behaviour regarding the exploration of the solution space (H2), the 

statistics on the number of new structures generated, as well as the overall number of distinct 

structures proposed during the performances of task A are conducted (see Figure 7.2). 

Additionally, the details on the number of new links learnt and number of distinct links 

communicated are obtained and presented in Table 7.2.  

Task A AB1A AB1,2,3A AB1,..,5A 

AB1A 0.0000    

AB1,2,3A 0.0000 0.0182   

AB1,..,5A 0.0000 0.4429 0.1625  

AB1,...,10A 0.0000 0.1882 0.0038 0.1174 
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Figure 7.2 The change in a) the number of new structures generated, and b) the number of distinct 
structures proposed as a result of experience gain 

Table 7.2 The change in task performance as a result of experience gain 

 

Task A AB1A AB1,2,3A AB1,..,5A AB1,...,10A 

St
ep

s 

min 8.0 14.0 13.0 11.0 10.0 
1st Q 671.0 231.2 279.2 226.2 192.0 
median 1000.0 743.5 824.0 809.5 755.0 
mean 811.2 630.6 671.4 647.9 618.6 
3rd Q 1000.0 1000.0 1000.0 1000.0 1000.0 
max 1000.0 1000.0 1000.0 1000.0 1000.0 

N
ew

 li
nk

s 
cr

ea
te

d 

min 3.0 1.00 6.00 1.0 0.0 
1st Q 252.0 85.25 86.25 85.0 54.0 
median 482.5 194.00 229.00 232.5 175.0 
mean 887.0 402.23 518.42 535.6 502.3 
3rd Q 1139.5 450.50 641.75 641.5 617.5 
max 7256.0 5289.00 4336.00 10501.0 4362.0 

N
ew

 st
ru

ct
ur

es
 

cr
ea

te
d 

min 0.0 0.00 0.00 0.00 0.00 
1st Q 31.0 11.00 11.00 9.00 5.00 
median 69.0 27.50 34.00 33.00 23.00 
mean 146.4 68.78 86.41 89.99 82.43 
3rd Q 190.8 78.00 106.00 101.00 99.50 
max 1271.0 975.00 804.00 2082.00 816.00 

L
in

ks
 

co
m

m
un

ic
at

ed
 

min 0.00 0.00 1.00 0.0 0.00 
1st Q 22.00 18.00 18.00 18.0 13.00 
median 28.00 24.00 26.00 25.0 25.00 
mean 28.46 24.43 25.08 24.8 23.36 
3rd Q 36.00 31.00 32.00 32.0 33.00 
max 68.00 57.00 68.00 67.0 70.00 

St
ru

ct
ur

es
 

pr
op

os
ed

 

min 0.0 1.00 1.00 1.0 1.00 
1st Q 10.0 8.00 8.00 8.0 7.00 
median 14.0 10.00 11.00 11.0 11.00 
mean 17.1 13.77 14.17 13.7 12.83 
3rd Q 22.0 15.00 16.00 15.0 16.00 
max 72.0 73.00 64.00 62.0 54.00 
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In general, the presented data aligns well with the previously presented discussion on the 

difference in the number of steps: if the task is repeated shortly after the first completion, it is 

performed quickly and with less solution space exploration. If the sufficient time passes for the 

links relevant for the task to decrease in weight, the agents’ performance depends on the level 

of experience obtained: the more experienced the agent, the quicker the convergence (and the 

fewer solutions are generated and proposed). 

Finally, the change in the content of the messages exchanged during the first and second 

performances of task A can be explored. Figure 7.3 presents the relative frequency of message 

types over the course of task A performances.  

 

 

 

Figure 7.3 The content of the communicated messages in the repeated performance of a task 
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From Figure 7.3, one can observe how inexperienced agents commence the task by exchanging 

an approximately equal number of function-behaviour and behaviour-structure links. The 

second half of the task shows an increase in solution proposal and evaluation messages, but 

also a slight increase in communication of requirement-function links. This behaviour stems 

from agents’ discussion of the problem space due to Reformulation III processes (occurring due 

to detection of unsatisfied requirements). The second task performance – irrespective of the 

number of tasks performed in between – commences with a greater focus on the problem 

formulation, and less to synthesis (than the behaviour displayed by novices). This difference 

stems from the fact that – in comparison to more experienced agents - the ‘novices’ know fewer 

function nodes. Thus, when faced with a task, a few function nodes get activated, the relevant 

links discussed, and the agents start communicating (more numerous) behaviour-structure links. 

As the agents gain experience, more relevant function nodes are learnt and can be activated, 

thus influencing agents’ communication. Finally, after multiple tasks are performed, the agent’s 

function-behaviour and behaviour-structure links get sufficiently grounded, so the agents 

performing task A10 can quickly traverse such nodes and propose structures – thus displaying 

an increase in solution proposal and evaluation during the first periods of the task. 

Similarly, the differences in communication trends of experienced and inexperienced teams can 

be observed with regards to the later phases of the task. The most evident such difference is a 

gradual increase in a share of solution proposal and evaluation messages, which stems from the 

experience gained by the team. These trends accord with the literature [309], [324] discussing 

the effect of experience on the solution space exploration. The study reported in the next section 

takes a closer look into this behaviour.  

7.1.2 Effect of learning and experience on team performance on different 
tasks 

To further study the effect of learning on the team behaviour, the analysis similar to the one 

reported in the previous subsection was conducted, this time taking a closer look into agents’ 

behaviour over various tasks.  

The study reported in this subsection extends the work presented in [325]. Similar to the 

experiments reported in the cited research, the simulated task sequences consisted of several 

different tasks. To enable comparisons, each of the tasks was performed by both – experienced 

agents (‘experts’) and inexperienced agents (‘novices’). The simulation runs were of the form 

 𝑇1 𝑇2 … 𝑇7 𝑇1𝑇2 … 𝑇7, and – similar to the study presented in Section 6.1.1.2 – the agents 
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learned over the first set of tasks, while during the second set of tasks the agents’ mental models 

were restarted in between every task pair. Overall, 1500 simulation runs were performed. 

Following the theoretical background laid out in [325], the hypotheses tested in this subsection 

are formulated as follows:  

H3: Experienced (expert) teams perform better than inexperienced (novice) 

teams in terms of time needed to find a solution. 

H4: Experienced teams spend more time than inexperienced teams 

exploring the solution space than the problem space. 

As seen in Figure 7.4, the experience gained throughout past tasks enables ‘expert’ agents to 

improve their performance continuously, consequently increasing the difference in obtained 

success rates and the success rates achieved by ‘novice’ agents. In line with these results, Figure 

7.5 shows the effect of experience on the number of steps needed to find a solution. The 

distribution of steps presented in the figure provides support for the hypothesis H3 – but 

differences in steps required to finish the task can be a result of the increasing success rate. To 

determine if the ‘expert’ and ‘novice’ agents differ in cases where the solution was found by 

both teams, the details regarding the novices’ performances and experts’ performance in each 

of the tasks (marked with T1-T7) are presented in Table 7.3. For simplicity, the novices’ 

performances on every task are aggregated under the name T0.  

 

Figure 7.4 The success rates with respect to the team members expertise gain a) Percentage of tasks in 
which one of the team members proposed a suitable solution, and b) Percentage of tasks in which the 

team managed to settle for a solution 

In addition to data presented in Table 7.3, Figure 7.6 and Figure 7.7 depict the differences in 

agents’ solution space exploration in both – successful and unsuccessful – tasks. The agents’ 

performance on the successful tasks aligns well with the second hypothesis proposed in the 
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previous subsection. Namely, as the agents gain more experience, they tend to create fewer new 

structure nodes (Figure 7.6a) and propose fewer structures (Figure 7.7a). Unsuccessful tasks, 

however, elicit different behaviour. In an attempt to solve a task, the more experience agents 

extensively search the solution space – therefore generating a large number of structures. The 

number of new structures created (in unsuccessful tasks) increases with the increase in agents’ 

experience. Interestingly, although the more experienced agents generate a significantly higher 

number of structures, they propose fewer distinct structures than inexperienced agents. This 

behaviour is a result of the behaviour-structure links grounding: while novices rate newly 

generated structures as similar (in score) to known structures - and, thus, worth sharing; due to 

well-grounded behaviour-structure links, experienced agents favour known (albeit unsuitable) 

structures to new ones – until sufficient analysis is performed to determine the suitability of the 

newly generated structures. 

 

Figure 7.5 The distribution of steps needed to finish each task in a sequence of different tasks 

 

Figure 7.6 The distribution of the number of new structures created in a) successful and b) 
unsuccessful tasks 
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Table 7.3 Details of the team performance in successful tasks 

 

To test the second hypothesis proposed in this subsection (H4), the PS index and PS indicator 

[320] values were calculated for each of the tasks (Table 7.4). PS index and PS indicator 

measure the ratio of the time spent in a problem space and time spend in a solution space. 

The PS index value above 1.0 and PS indicator value below zero indicate the more solution-

focused task performance. As seen in Table 7.4, in all of the tasks, simulated agents tend to be 

more solution-oriented, which accords with the studies on behaviour of designers (e.g. [326]). 

Task T0 T1 T2 T3 T4 T5 T6 T7 

St
ep

s 

min 87.0 86.0 68.0 70.0 51.0 35.0 45.0 32 
1st Q 379.0 323.0 308.0 294.5 251.8 232.0 207.0 219 
median 612.0 594.0 579.5 535.0 462.0 471.5 392.0 419 
mean 585.5 562.8 559.1 535.7 500.4 499.0 460.8 464 
3rd Q 767.0 771.0 798.8 773.0 743.0 778.8 717.0 714 
max 999.0 999.0 999.0 999.0 998.0 999.0 999.0 999 

p - value  0.0607 0.0089 0.0005 0.0000 0.0000 0.0000 0.0000 

N
ew

 li
nk

s 
cr

ea
te

d 

min 74 49 35.0 26.0 27.0 23.0 23.0 16 
1st Q 559 319 280.0 270.5 249.8 269.0 216.0 221 
median 1067 783 614.0 648.0 685.0 698.0 563.0 670 
mean 1311 1067 973.1 962.5 1000.6 998.5 942.2 1003 
3rd Q 1790 1509 1394.0 1358.5 1413.2 1391.5 1352.0 1494 
max 6165 7147 5603.0 6552.0 6385.0 7920.0 10488.0 6154 

p - value  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

N
ew

 st
ru

ct
ur

es
 

cr
ea

te
d 

min 6.0 3.0 2.0 1.0 0.0 0.0 0.0 0.00 
1st Q 74.0 40.0 33.0 33.5 30.0 31.0 25.0 26.0 
median 169.0 123.0 89.0 99.0 104.5 105.0 82.0 97.0 
mean 216.7 175.7 157.2 155.9 162.2 162.0 151.9 161.3 
3rd Q 302.0 254.0 229.5 215.5 230.0 230.5 223.0 242.0 
max 1282.0 1506.0 1027.0 1319.0 1168.0 1467.0 2031.0 1190.0 

p - value  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

L
in

ks
 

co
m

m
un

ic
at

ed
 

min 0.00 2.00 2.00 0.0 0.00 0.00 0.00 1.00 
1st Q 26.00 24.00 24.00 23.00 23.00 21.00 19.00 20.00 
median 31.00 29.00 28.00 28.00 28.00 27.00 26.00 27.00 
mean 31.45 29.65 28.63 28.09 28.21 27.07 25.81 26.34 
3rd Q 37.00 35.00 34.00 33.50 34.00 33.00 32.00 33.00 
max 69.00 58.00 64.00 59.00 58.00 54.00 56.00 71.00 

p - value  0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

St
ru

ct
ur

es
 

pr
op

os
ed

 

min 4.0 4.0 2.00 2.00 1.00 1.00 1.0 1.00 
1st Q 13.0 11.0 10.00 10.00 10.00 9.00 9.0 9.00 
median 17.0 15.0 14.00 14.00 14.00 14.00 13.0 13.00 
mean 19.7 17.4 16.43 16.34 16.12 16.18 15.1 15.64 
3rd Q 25.0 22.0 22.00 20.00 20.00 21.00 20.0 20.00 
max 75.0 62.0 52.00 59.00 59.00 64.00 57.0 55.00 

p - value  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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However, the claim that experienced agents tend to display a more significant focus on solutions 

than their inexperienced counterparts is not displayed until sufficient experience is obtained. 

Namely, it is not until the 7th task that the differences in the ratio of the problem and solution 

space exploration between experience and inexperience agents become statistically significant. 

 

Figure 7.7 The distribution of the number of distinct structures proposed in a) successful and b) 
unsuccessful tasks 

Table 7.4 Statistics regarding PS index and PS indicator values for each of the tasks 

 

Finally, the analysis of the task dynamics regarding the content of the messages exchanged can 

be studied. Figure 7.8 and Figure 7.9 depict how the experience changes the content of 

communication among agents. When all tasks are taken into account (Figure 7.8), trends similar 

to those detected in the previous subsection can be seen: the increase in experience seems to 

decrease the amount of behaviour-structure links, and - in turn - increase the number of solution 

proposal and evaluation messages. Additionally, one can observe a significant increase in 

function-behaviour links in the second half of the task. This trend is a consequence of the 

Task T0 T1 T2 T3 T4 T5 T6 T7 

PS
 in

de
x 

min 0.0000 0.0010 0.0023 0.0000 0.0000 0.0000 0.0000 0.0000 
1st Q 0.3523 0.3232 0.3214 0.3287 0.3458 0.3093 0.2671 0.2664 
median 0.6876 0.6307 0.6442 0.6564 0.6537 0.6347 0.6000 0.5604 
mean 0.8077 0.9083 0.9708 0.9857 0.9079 0.8650 0.8363 0.7699 
3rd Q 1.0704 1.0811 1.1502 1.1387 1.0746 1.0508 1.0704 0.9571 
max 10.108 7.4530 7.1868 8.8617 7.3373 10.263 8.1613 9.1429 

PS
 in

di
ca

to
r 

min -1.000 -0.998 -0.995 -1.000 -1.000 -1.000 -1.000 -1.000 
1st Q -0.479 -0.511 -0.514 -0.505 -0.486 -0.526 -0.578 -0.579 
median -0.185 -0.226 -0.216 -0.207 -0.209 -0.223 -0.250 -0.282 
mean -0.220 -0.217 -0.197 -0.198 -0.211 -0.238 -0.261 -0.289 
3rd Q 0.0340 0.0389 0.070 0.065 0.0360 0.0248 0.0340 -0.022 
max 0.8200 0.7634 0.756 0.797 0.7601 0.8224 0.7817 0.8028 

p - value  0.5091 0.9306 0.4361 0.09727 0.07049 0.1724 0.0007 
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frustration parameter and the Reformulation III processes occurring due to detected unsatisfied 

requirements. 

 

 

Figure 7.8 The content of the communicated messages of the teams of various levels of experience 
(performance on both – successful and unsuccessful - tasks taken into account) 

When only the successful tasks are considered (Figure 7.9), one can observe the significant 

increase in the messages related to solution proposal and evaluation. Further, the share of 

behaviour-structure links reduces with the experience obtained. The experienced agents tend to 

first discuss the problem-related issues (more so than the novice agents), and then gradually 

shift to the solution proposal and evaluation. In the successful tasks, the frustration remains 

low, and thus there is no increase in problem-related issues in the second phase of the task. 

Some of the obtained trends align well with the existing theories: for example, experienced 

agents outperform novices [327], [328], experts are considering fewer options in favour of high-

quality solutions [329], and experts’ space exploration is more biased towards solutions than 

that of novices [330], [331]. However, some of the trends are not in accordance with theoretical 

findings. For example, Liikkanen and Perttula [332] found that novice agents tend to start by 

exploring the problem space, while experts were able to propose solutions quickly. On the other 

hand, however, it should be emphasised that: limitations in agent’s communication mechanism 

(see Section 5.2), the prespecified preference for solution (rather than knowledge link) sharing, 
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and the significant grounding in function-behaviour links due to Reformulation III processes 

all impact the distributions of the message types. Future experiments should be directed towards 

mitigating these limitations and calibrating the agents’ communication to align the distribution 

of message types with real-world data. Nevertheless, the experiments conducted provided 

support for the hypotheses listed in this subsection. 

 

Figure 7.9 The content of the communicated messages of the teams with no experience (i.e. novices) 
and the teams with the 7-tasks experience (only successful tasks regarded) 

The experiments reported in Section 7.1.1 and Section 7.1.2 demonstrated that model’s output 

manages to capture several trends observed in the real world. However, one should ensure these 

findings are not dependent on the simulated team’s size. Thus, the reported experiment was 

repeated on the teams comprising five and ten agents. Each of the experiments consisted of 500 

simulation runs. 

7.1.2.1 Simulations comprising five agents 

Similar to the findings obtained in case of teams consisting of three agents, the five-member 

teams use past experiences to improve their success rates (Figure 7.10) and converge to a 

solution in fewer steps (Figure 7.11). 

Further, the number of new structures created (Figure 7.12a) and the number of distinct 

structures proposed (Figure 7.12b) decline as the agents gain more experience – thus confirming 

the hypotheses that experienced agents tend to explore less and converge quicker.  

Finally, the analysis of the communication content is performed. From Figure 7.13, several 

similarities with the case of a smaller team can be deduced: the share of behaviour-structure 

links decreases, while the number of messages related to solution proposal and evaluation 

increases with the experience gained. Further, the period during which the number of function-

behaviour links communicated increases is noticeable in the second simulation half.  
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Figure 7.10 The success rates of five-member teams with respect to the expertise gain a) Percentage 
of tasks in which one of the team members proposed a suitable solution, and b) Percentage of tasks in 

which the team managed to settle for a solution 

 

Figure 7.11 The distribution of steps needed for a five-member team to finish each task in a sequence 
of different tasks 

 

Figure 7.12 Distributions of the number of a) new structures created and b) distinct structures 
proposed by a five-member team 

In comparison to smaller teams, teams of five agents spend more time searching the solution 

space. This difference is even more evident when regarding only the performance on the 
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successful tasks Figure 7.14. The results obtained for the five-member team align well with 

those of a smaller team. 

 

Figure 7.13 The content of the communicated messages of the five-membered teams of various levels 
of experience (performance on both – successful and unsuccessful - tasks taken into account) 

 

Figure 7.14 The content of the communicated messages of the five-membered teams of various levels 
of experience (only successful tasks taken into account) 

7.1.2.2 Simulations comprising ten agents 

Similar to the findings obtained for three- and five-member teams, as a consequence of learning 

over the previous tasks, the ten-member teams improve their performance over the course of 

simulation (Figure 7.15 and Figure 7.16). Accordingly, in subsequent tasks, ten-member teams 

propose and create fewer structures (Figure 7.17).  

One additional remark can be made: the inspection of the data regarding the solution acceptance 

revealed that – while three-member agent accepted approximately 0.19% of the unsuitable 

solutions, only a few such instances were observed in five-member setting (three in 7500 

simulated tasks), while none was observed in the ten-member teams. This finding is not 

surprising: larger teams consist of team members with diverse expertise and, thus, more diverse 

priorities. This, in turn, means that every requirement is considered as important by at least one 

member. On the other hand, the plurality of preferences is likely to hinder quick convergence 
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to a solution. Future work will explore the relation between the number of members in a team 

and the steps needed to reach the consensus.  

 

Figure 7.15 The success rates of ten-membered teams with respect to the expertise gain a) Percentage 
of tasks in which one of the team members proposed a suitable solution, and b) Percentage of tasks in 

which the team managed to settle for a solution 

 

Figure 7.16 The distribution of steps needed for a ten-member team to finish each task in a sequence 
of different tasks 

 

Figure 7.17 Distributions of the number of a) new structures created and b) distinct structures 
proposed by a ten-member team 
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The final analysis – as in the case of three- and five-member teams – concerns the content of 

the communicated messages. Figure 7.18 and Figure 7.19 demonstrate how in ten-member 

teams, there is a large focus on solution proposal and evaluation. One explanation is that, in 

larger teams, a particular agent does not get to explicate its thoughts as often. In between two 

of its ‘speaking turns,’ the agent manages to find a solution it deemed as worth sharing.  

 

Figure 7.18 The content of the communicated messages of the ten-membered teams of various levels 
of experience (performance on both – successful and unsuccessful - tasks taken into account) 

 

Figure 7.19 The content of the communicated messages of the ten-membered teams of various levels 
of experience (only successful tasks taken into account) 

For completeness purposes, Figure 7.20 represents the data from Figure 7.8, Figure 7.13, and 

Figure 7.18 side by side to facilitate comparisons. One may note how adding members to a 

team increases the number of solution proposals and evaluations: both, novice and expert ten-

member teams propose significantly more solutions than smaller teams of equivalent 

experience (in terms of tasks performed). The first decile of the task performed by (either novice 

or expert) teams of ten members contains significantly more solution proposals than the same 

period in smaller teams. This indicates that every member of the team had a solution idea to 

share with others. But in the next periods (2nd and 3rd decile), larger teams focus more strongly 

on the communication of function-behaviour links. Such an exchange is necessary for every 
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team member to understand the task requirements. Namely, due to the diversity of their 

expertise areas, each of the team members has a particular “view” of the importance of 

functions and behaviours and wishes to share them with others.  

 

 

 

Figure 7.20 Comparison of message type distributions of novices and experts (after 7 tasks) for three-
member, five-member and ten-member teams 

As discussed earlier, in the later phases of a task, larger teams demonstrate more solution-

oriented communication. One possible cause of such behaviour has already been stated. But it 

may also be that diversity of knowledge enables larger teams to propose a suitable solution 

quicker. In particular, one limitation of the developed model is the relatively small number of 

behaviours (network properties) upon which requirements are posed. A ten-member team has 
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a higher chance of being faced with a task for which one of its members knows a solution in 

advance (or knows a partial solutions satisfying most of the requirements). Thus, the absence 

of an increase in problem-related messages in the second simulation half may stem from the 

low frustration levels of team members - as a suitable solution has been found, but not yet 

accepted. If such is the case, then the data presented indicate that larger teams take longer time 

to reach consensus. Future work will examine the differences in communication patterns 

displayed by teams of various sizes more closely. 
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8 AN EXAMPLE OF DEVELOPED MODEL’S USAGE 
The agent-based model of product development team presented in preceding chapters was 

developed with a goal of enabling simulation and study of a wide range of scenarios. This 

chapter describes an example of the model’s usage. In particular, although the modelled agents 

do not (as currently implemented) explicitly assess creativity of proposed solutions, this chapter 

demonstrates how the developed model can be used to further the studies on creativity. The 

results outlined in this chapter are published in [333]. 

The capability of modelled agents to learn from past experiences, change its behaviour, and 

produce new structures can be exploited in studies of the impact of solution space change on 

the creativity assessment. In other words, one can utilise the developed model to track the 

solution space expansion and study the dependence between the structure’s creativity score and 

the context in which said creativity was assessed. This chapter takes such situated view of one 

creativity dimension – novelty. Therefore, the chapter commences with a short introduction in 

novelty, its definition and measurement. Then, a hypothesis stating that novelty assessment is 

situated is introduced, and experiments used to test the hypothesis are described. The results of 

the simulations conducted by utilising the developed agent-based model of a product 

development team are presented, and their implications for computational creativity studies are 

discussed.  

8.1 Novelty 

In order to earn a label ‘creative’, a design necessarily has to be seen as novel. Boden’s [334] 

theory of creativity marks novelty, alongside with value, as a necessary feature of a creative 

idea. Similarly, many authors [335] define a creative artefact as the one marked as novel and 

appropriate, or novel and useful [336], [337].  

Earlier studies of creativity [334], [338] regarded novelty as a term covering aspects of 

originality and surprise. However, later work [339] emphasised that if novelty is viewed as a 

measure of unusualness or difference of a design in comparison to the existing designs, its 

definition does not necessarily imply violation of expectations (i.e. surprise) in a space of 

projected designs. Maher et al. [339] further note that a creative design should be unexpected, 

thus deeming surprise as a third relevant aspect of creativity. Following such distinction 

between surprise and novelty, researchers [340], [341] introduced measures of novelty and 

surprise based on k-means clustering and Euclidean distance. The proposed approach uses 
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design’s features to assign it with a position within the conceptual space. The space of existing 

and possible designs is clustered utilising the k-means algorithm, and novelty of each design is 

defined as a distance to its cluster’s centroid. On the other hand, surprise is assessed based on 

the design’s distance to all of the present centroids. Authors [340], [341] note that, if a new 

design is distant to all of the existing clusters, it essentially forms a new cluster – thus failing 

the previously established expectations. Since it uses well-known and easy to implement 

mechanisms, the described measure is particularly suitable for computational creativity studies. 

Another measure of computationally-assessed novelty can be found in works of Marsland, 

Nehmzow, and Shapiro [342] whose novelty-detection approach is based on Self-Organizing 

Maps. Although the work of Marsland, Nehmzow and Shapiro [342] concerns real-time novelty 

detection of a mobile robot roaming the environment, its premises are relevant for this work as 

robot is learning through experience and is situated within its environment. Novelty detection 

and measurement have been studied within multiple scientific fields. For example, the field of 

signal processing offers multiple different approaches to novelty detection (for a review, see 

[343]). The overview of measures used in design field can be found in, for example, the work 

of Ranjan, Siddharth, and Chakrabarti [344]. 

8.2 Hypotheses 

The aim of the work presented in this chapter is to study how the design’s novelty assessment 

changes with the change in a design frame. Following the literature presented in previous 

chapters, a situated stance on design is taken. The situation in which the design occurs shapes 

the perception of design’s novelty. In other words, novelty - in terms of difference from other 

designs - of each design is situation-dependent. The hypothesis stating that novelty 

measurement in design is situated can be detailed through the formulation of two sub-

hypotheses: 

H5: Over the time course of designing, (some of) the solutions that were previously 

recognised as novel, will become not novel. 

H6: Over the time course of designing, (some of) the solutions that were previously not 

regarded as novel, can be recognised as novel. 

The proposed hypothesis is tested on a series of experiments conducted using the model 

described in the previous chapter. For this study, however, one modification of the detailed 

implementation was made. Namely, the original settings deem the simulation as over when the 

agents find and agree upon a structure that satisfies the requirements. Since this study aims to 
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compare multiple solutions based on their novelty score, it is necessary that agents continuously 

search and expand the solution space (irrespective of whether some solutions have already been 

found or not). The mechanism preventing team fixation on a single feasible structure was 

implemented as follows: if team members propose a unique structure repeatedly over 10 

simulation steps, and all of the links from relevant (i.e., required) behaviour nodes to the 

structure are well-grounded (i.e., the link’s weight exceeds the reflex threshold) in each team 

member agent’s mental model, the structure is inhibited and agents reduce the weight of 

relevant behaviour – structure links. As a consequence, the structure is not used in (at least 

some) subsequent steps, but the activation level of behaviours connected to the structure 

remains unchanged, thus influencing the further search. The described mechanism simulates 

the situation in which all of the team members agree upon one solution and “leave it aside” to 

produce additional ideas (while still remembering the behaviour and properties of the solution). 

8.3 Design of the experiments 

To enable structures’ novelty assessment and comparison among structures, a representation of 

each structure within a design space had to be created. Thus, each structure is characterised by 

some of its respective network’s properties. However, as described previously, the task poses 

constraints on the solution network’s properties. As a consequence, structures which can be 

labelled as solutions necessarily have (at least) some of the properties in common. To 

distinguish the task-related properties and properties upon which the novelty assessment is 

performed (and avoid high correlations among them), in work presented in this chapter the tasks 

have been modified to pose requirements on the properties of the largest connected component 

of a structure’s network. As before, structures’ properties (used for novelty assessment) were 

calculated on the whole respective network. In particular, each structure is characterised by 

three values: network degree centralisation, average clustering coefficient and hierarchy 

measure (see Section 5.3). For the study presented here, tasks were modelled to pose 

requirements on the diameter, closeness and/or betweenness centralities of the largest 

connected component. 

The details on all of the agent-generated structures were collected throughout each simulation 

run. At each time step, a reachable structure space was determined: at a step 𝑡, the reachable 

structure space (RSSt) consist of all structures which can be created by the team in the next 

step. Thus, it is a space of all structures which can be derived by utilising union and contraction 

mechanisms (see Section 5.1.1) on the structures known to agents at the step 𝑡. At each step 𝑡, 
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a subset of structures which meet the requirements can be extracted from the reachable structure 

space (RSSt). Such subset forms a reachable feasible solutions space (RFSSt): a space of all 

structures meeting the task requirements which can be generated in the step 𝑡 + 1. Finally, a 

subset of all reachable feasible solutions can be considered as novel, thus constituting a space 

called reachable novel solution space (RNSSt). Mahalanobis distance was used to detect 

feasible solutions sufficiently different from others, thus extracting RNSSt from its 

corresponding RFSSt. Mahalanobis distance is frequently used to detect outliers in multivariate 

data and has often been utilised in machine learning systems to identify data distinct from the 

samples used for the system’s training [343], [345]. 

Overall, 300 simulations were run, each terminating when the size of a reachable structure space 

reached 100,000 nodes. 

8.4 Results 

The average sizes and standard deviations of the size of reachable structure space (RSS) and 

reachable feasible solution space (RFSS) over time are represented in Figure 8.1. Similarly, 

Figure 8.2a depicts the corresponding values for the number of novel solutions encountered 

(RNSS). Since the simulation experiments were of varying lengths, to average over all of the 

simulation experiments, the data from each simulation run was sampled to extract values 

obtained at a hundred of equidistant time steps (essentially representing the percentage of 

simulation duration covered). Finally, to express the relation between the size of the feasible 

structure space and the number of (feasible) novel structures, the percentage of feasible 

structures which were marked as novel is presented in Figure 8.2b.  

 

Figure 8.1 The average number (and standard deviation) of reachable structures and reachable 
feasible solution over time 
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Figure 8.2 The average a) number (and standard deviation) of novel solutions over time and b) 
percentage (and standard deviation) of novel solutions over time 

To test for the hypotheses posed in Section 8.2, the statistics on the number of structures which 

– throughout simulation - turned from being labelled as novel to being regarded as not novel 

was collected. Similarly, each structure which initially (i.e., at the time of their first occurrence 

within reachable structure space) was not seen as novel, only to be labelled as such as the 

simulation progressed was counted. The average (aggregate) numbers of solutions turned from 

novel to not novel, or from not novel to novel, and the respective standard deviations are given 

in Table 8.1. Finally, to illustrate the dynamics of simulated experiments and to provide deeper 

insights into the obtained results, Figure 8.3 presents a series of snapshots extracted from one 

simulation run. The figure shows feasible solutions and further differentiates them based on 

their novelty status. The structures coloured in red are those that are more than two standard 

deviations apart from the sample mean. In other words, they are considered novel. 

Table 8.1 Statistics on the number of novel solutions turned nonnovel and nonnovel solutions turned 
novel 

Number of  
Novel -> Not Novel 

transitions per simulation 

Number of 
Not Novel -> Novel  

transitions per simulation 

Average Standard deviation Average Standard deviation 

187 167.06 653 256.88 

8.5 Discussion 

Figure 8.1 demonstrates how implemented mechanisms of union and concatenation enable 

agents to extend the solution space and to create new (feasible or not) structures over time. In 

accordance, as seen in Figure 8.2a, the number of novel solutions found in each simulation step 
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increases throughout the simulation. On the other hand, the percentage of feasible solutions 

recognised as novel slowly declines over time (Figure 8.2b). 

More precisely, during the early stages of simulation (the first one-fifth of the simulation run), 

the number of novel solution is small (less than 100). In this period, the percentage of novel 

solutions shows several increases and decreases, accompanied by a large standard deviation, 

thus reflecting the differences between simulation runs. Namely, in some cases, agents needed 

several steps to find novel solutions. At other runs, however, the structures generated at the 

early stages of the simulation were diverse, and thus several were already labelled as novel. As 

the simulation progresses, the percentage stabilises and starts to decline.  

It is interesting to note that significantly more structures turned from not novel to novel, than 

the other way around (see Table 8.1). To understand this, one may take a look at Figure 8.3, 

which displays the dynamics of one simulation run. The top left subfigure displays the RFSS 

at the simulation start, where one can notice several nodes on the left side of the space marked 

as novel. However, as the simulation progresses and agents learn and create more structures, 

the RFSS changes to include structures closer to those previously regarded as new. As a 

consequence, the notion of what is novel (i.e., different from others) gradually shifts from the 

left to the far right of the space (third subfigure). As the process continues, the space of 

reachable feasible structures grows, and the majority of structures in RFSS concentrate in a 

cluster on the left of the space. Consequently, the standard deviation of the population decreases 

and a relatively large number of structures which are at the outskirts of the cluster will now be 

labelled as novel. This example demonstrates how agent-produced solutions, after some time, 

start to converge to “similar looking” structures satisfying the requirements. As already 

discussed in the previous chapters, such a process is a consequence of two things: first, the lack 

of the agent’s perception of the structure’s novelty. Since the agents are unable to determine 

the novelty score of the proposed solutions, they are restricted from detecting that subsequently 

generated structures moved the space towards increasingly similar structures. Secondly, the 

implemented synthesis mechanisms (union and contraction, among which union is more 

frequently applied) led to the generation of larger, well-connected networks for which 

calculated measures differ to a lesser extent. Due to these limitations of the system, over time, 

the majority of reachable structures “concentrates”. As a consequence, the number of structures 

which will be marked as novel and then changed to not novel decreases over time. On the 

contrary, as the simulation progresses, the large proportion of the previously not novel 

structures will become regarded as novel. 
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Figure 8.3 An example of the simulation run 

Despite the discussed limitations, the obtained results enable interesting insights. If a task is 

reframed to broaden the solution space, the difference in characteristics between the initial and 

newly obtained space may cause some solutions to no longer be regarded as novel. Perhaps 

more surprisingly, the same act of broadening the solution space can cause some (previously 
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uninteresting) solutions to stand out. Another way of discussing this effect may be through the 

notion of “norms” and development of immutable expectations. An example presented by 

Maguire, Maguire, and Keane [346], [347] emphasises the importance of width of knowledge 

in assessing surprise, noting that a “flying rabbit” may not be as surprising to a child as it would 

be to an adult. Although the present work is not primarily concerned with surprise, the 

complementarity of the findings can easily be deduced. For example, a novice designer aware 

only of the solutions presented in the first subfigure of Figure 8.3 would differently assess 

novelty of each design than would do an expert familiar with broader design space. In a sense, 

the large proportion of structures concentrated in a cluster over time created a “norm” of how 

agent-generated solutions look like, thus shaping the perception of what is “different.” 

An interesting direction for future work may consist of studying whether similar results would 

be obtained if the agents were modelled as the mentioned robot with real-time novelty-detection 

mechanism [342]. Marsland et al. [342] robot has habituation and recovery mechanisms which 

enable the agent to get accustomed to stimuli, develop different value system and forget. As a 

result, the agent sometimes marks a stimulus as novel even though the stimulus has already 

been encountered in previous stages of the simulation. 

8.6 Conclusion 

This chapter builds on the notion of situatedness and uses it to demonstrate how the 

computational model introduced in previous chapters can be used to study creative aspects of 

design. Utilising the computational model and relying on the existing empirical findings and 

computational models of creativity in design, this chapter explored how a vital aspect of 

creativity – novelty – changes with respect to a situation. A series of computational experiments 

were conducted using the developed agent-based model of a product development team with 

the aim of studying how agents explored and extended the solution space. At each simulation 

step, structures present in the solution space were categorised based on their assessed novelty 

(i.e. difference from other solutions) and the changes in structures’ novelty status over a 

simulation run were observed. The obtained results demonstrated the importance of a frame 

within which the design is occurring in assessing novelty. As a design frame (or a situation as 

defined by Kelly and Gero [348]) is changing to broaden the solution space, a design may turn 

from appearing as novel to being regarded as not different from the majority of others. In 

contrast, a change of a design frame may cause a design previously marked as ‘typical’ (i.e., 
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not sufficiently different from other solutions), to be considered as interesting and different 

from others. 

The performed computational simulations utilised the Mahalanobis distance to assess novelty 

status, i.e. to detect structures distant from the general distribution of designs. It can be studied 

if similar results would be obtained by using previously established metrics (e.g., [339]). Thus, 

future experiments can be directed towards comparing different measures and assessing their 

capability to capture the notion of novelty. Such studies will help determine whether the 

observed trends are emerging from the chosen novelty measure. Furthermore, once 

insufficiencies in the agent’s synthesis mechanisms are mitigated, the experiments similar to 

the ones presented here will be conducted, and the obtained results will be matched against the 

results presented herein. An additional limitation of the presented study is the fact that the 

developed framework does not enable the dynamic introduction of new variables along which 

solutions can differ. It is likely that some of the subsequently added structures which were 

determined to “belong to the cluster of similar ideas” would be found as novel based on some 

additional dimension (i.e., different network characteristic). In the present study, the difference 

in designs is manifested through either new values for a particular attribute or as a novel 

combination of attributes. But, as Gero [128] postulated and Maher and Fisher (2012) 

demonstrated on the example of Bloom Laptop design, new (and surprising) designs can 

introduce new variables (i.e., dimensions) along which designs can differ. 

Nevertheless, the conducted experiments emphasise the importance of regarding novelty as a 

situated measure. Numerous examples from fashion [349], or even healthcare industry [350], 

illustrate how “old” designs can again come under the spotlight due to the change in the 

contextual factors. Finally, there is still much to be understood about the relationship of the 

core aspects of creativity (novelty, value and surprise). For example, research regarding 

questions such as: how come that some designs are rated as highly creative, but quickly lose 

their appeal (e.g., [349] notes such examples in fashion industry), while others maintain their 

creative status over long periods of time; how different, useful and surprising should the product 

be to be regarded as creative and how does each of these aspects of creativity change over time; 

– and many others would benefit from taking the situated perspective. The developed agent-

based model of a product development teamwork may again prove to be useful in such studies. 
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9 CONCLUSION 
The final chapter concludes the work by reflecting on the research aim, hypothesis and scientific 

contributions formulated in the introductory chapter of this work. The developed model is 

discussed with regards to the existing agent-based models of product development teams, and 

its capabilities, as well as limitations, are emphasised. Finally, the chapter discusses the 

directions for future research efforts which build on the identified shortcomings and the model’s 

capabilities. 

9.1 Reflection on the developed model 

The research presented in this thesis is motivated by the potential of computational models to 

provide a cost-effective, easily-controllable environment for various studies of teams. In 

particular, the need for improved understanding of design teams’ cognitive behaviour and the 

emergence of team properties and processes, renders simulation frameworks as valuable 

research tools within a product development domain. Thus, the work presented herein strived 

to develop a theoretical and computational model of a product development team which enables 

studies of emergent team properties and behaviours. 

To support studies of diverse aspects of teamwork, this thesis presented a synthesis of theories 

and results from multiple research domains and used it to develop a multi-purpose simulation 

tool. Following the literature review regarding the important components of human behaviour 

modelling and team performance studies (Chapter 4), the model encompasses cognitive, social, 

affective and situated aspects of designer’s work. The prominent theories and empirical 

research on cognition, human thinking and emotions formed the basis for the model 

development. Similarly, the existing cognitive architectures and agent-based models of design 

teams offered many points of interest and informed the model implementation. For example, 

the Bott and Mesmer’s [105] approach to modelling the agent’s mental processes demonstrated 

the benefits of employing design ontologies in representing the agent’s knowledge. The model 

developed in this work utilised similar idea and furthered coupled it with the algorithms and 

approaches used in well-known cognitive architectures (e.g. [170], [171]). Similarly, the model 

developed in [78] inspired the implementation of the agent’s search for the solution as the 

process which builds on the previous knowledge and reuses it to generate new, different (in 

terms of their behaviour) solutions. The aspects of the developed model such as the 

representation of the agents’ domain of expertise, trust, transactive memory, cognitive ability 

and personality all stem from the ideas obtained through a comprehensive review of the state-
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of-the-art (Chapter 3). Building on the previous work promotes comparison with the existing 

models and can be used to achieve greater validity of the models. For example, the similarity 

of the conceptualisations of transactive memory implemented in Singh et al. [131] model and 

the model presented in this work enables the replication of the experiments conducted in [131] 

and, consequently, corroboration of the reported findings.  

The model presented herein, thus, integrated and further extended various aspects of existing 

models and theories. In order to ensure internal validity and enable a seamless integration of 

the multiple model elements, a structured, hierarchical testing framework was employed 

(Chapter 6). As a result of integration, extension and testing, a coherent simulation framework 

for team studies is obtained. Referring back to the essential elements of team performance 

models discussed in [38], one can note that the developed model addresses the vast majority of 

aspects within ‘must-be-modelled’ and ‘should-be-modelled’ categories. The detailing of the 

agent’s characteristics and interactions enables conducting a great variety of experiments. A 

sample of the possible studies is presented in Chapter 6. However, the number and a broad 

scope of implemented aspects increase the model complexity and may pose difficulties in the 

results’ interpretation and validation. To mitigate these limitations, the model’s implementation 

followed the approach taken in the PECS framework [148] and separated the agent’s cognition, 

affect, personality and cognitive ability, and trust and transactive memory into the respective 

components. The components can easily be excluded from the simulation, modified and 

extended, and interactions among components can be redefined to study the interplay among 

the modelled elements.  

The most elaborated element of the developed agent-based model is the agent’s cognitive 

behaviour. The model is implemented with a specific aim of capturing the details on one’s 

information processing, new structure generation, derivation of new knowledge links, memory 

formation and retrieval, knowledge grounding and forgetting, and learning from interaction 

with others. As a result, this work presents one of the most elaborate models of design cognition 

(among the implemented agent-based models of design teams reviewed in Chapter 3). The 

detailing of agents’ knowledge acquisition, and knowledge sharing among team members, 

provides the means for studying team learning as an emergent team property [167]. Individual 

and team learning demonstrates as a change in the behaviour, i.e. adaptation. The capability of 

the developed model to enable studies of team learning and adaptation is demonstrated in the 

experiments reported in Chapter 7. In the introductory chapter of this work, the research aim 

was stated as follows: “The main goal of the doctoral research is to develop and validate a 



Conclusion 

169 

theoretical and computational model of teamwork in order to enable simulation and study of 

team’s capability to adapt to changes in circumstances occurring during the product 

development activities”. The results reported in Chapter 7 demonstrate the model’s capability 

to satisfy the intended goal of this thesis and, in turn, offer support for the hypothesis proposed 

at the beginning of the study reported in this work. 

As discussed in Section 1.4, the scientific contribution of the work reported in this thesis is 

threefold and manifests in: 

1. A theoretical model of a product development team which consists of a model of an 

individual team member, a model of a team environment regarding tasks and resources, 

and a definition of mechanisms guiding the interactions among team members, and 

between team members and their environment. The work in Chapter 4 specified 

important aspects and the theoretical background of the developed model. Building on 

this, Chapter 5 introduces the details of the developed theoretical model of a product 

development team. The model description is organised into sub-sections that represent 

each of the model elements (i.e. model of an individual member, a model of a team 

environment, and a model of interactions). The developed model encompasses many 

important aspects of the design task, designer’s behaviour, and their interactions. 

2. A computational prototype in the form of a multi-agent system which is built based on 

the theoretical model and which enables the study of emergent team properties and 

behaviour. Along with the description of the theoretical model, the implementation 

details are presented in Chapter 5. The capabilities of the developed multi-agent system 

to capture numerous aspects of design teamwork and enable studies of emergent team 

properties are further explored in Chapter 6. 

3. A framework for calibration and validation of the developed model and computational 

prototype of team behaviour, with a focus on the component of the team adaptability 

and learning. In order to ensure the internal validity of the model, and to increase the 

credibility of its results, numerous aspects of the developed model are tested (Chapter 

6). In particular, the hierarchical testing was employed where the model’s performance 

was first examined in the simple settings comprising a single agent performing a task. 

A gradual increase in the simulated complexity enabled detail insights into the 

performance and interplay of the implemented mechanisms. Finally, the model (in its 

full functionality) is tested to study the model’s capability to represent trends in design 
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teams’ change in behaviour resulting from the previous experience gain, i.e. adaptation 

due to learning. The results of such experiments are reported in Chapter 7. 

The listed scientific contributions, taken altogether, form the desired ‘computational laboratory’ 

for design team studies, serving for the theory-testing and hypothesis formation. 

9.2 Limitations 

The developed model should by no means be regarded as ‘finished’. As emphasised in the first 

chapter, the work presented in this thesis only sets the ground for future model developments 

and iterative refinements based on new empirical findings and research efforts. As such, 

numerous shortcomings of the conducted research and derived model implementation are 

emphasised throughout Chapter 5. Each of the implemented model’s components should be 

further refined, and the greater emphasis should be placed on the studies of the 

interdependencies among the cognitive, affective and social aspects of human behaviour. 

The most significant limitation of the current research stems from the lack of application of the 

simulated experiments to real-world cases. Similarly, due to the shortcomings of the 

implemented communication mechanisms (see Section 5.2), the simulation output regarding 

the agents’ interactions cannot readily be calibrated to the data obtained through protocol 

studies. Similar to many of the existing models, the model presented in this work is a generator: 

it explores whether implemented theories can produce behavioural patterns observed in the real 

world, and enables experiments aimed at increasing the understanding of little-understood 

aspects of design teamwork. In other words, the developed model is directed towards offering 

possible explanations, directions for future work and hypothesis formation. For such use cases 

- in which acquiring a highly-accurate prediction of the real-world outcomes is not the 

simulation goal - a comprehensive calibration and statistical validation of the model is not 

necessary [313]. Nevertheless, the future work should be directed towards refining the model 

in a manner which enables more direct comparisons to the available real-world data. 

Modelling of tasks is an additional aspect of the model, which requires further attention to ease 

the understanding of the simulation outcomes. In particular, a study of the interdependences of 

the network properties (used to simulate structure’s behaviours) should be conducted, and the 

obtained results should serve to determine the task generation mechanisms which enables full 

control of the task difficulty. Relatedly, the task definition should be refined to capture the 

requirement of novelty, as well as the ambiguity, dynamism and conflicts among the design 

requirements. To equip agents with the capability to respond to requirements posed on the 
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design’s creativity level, the agent’s personality traits and affective mechanisms should be 

further developed. The absence of conflicting, ambiguous or ill-defined requirements, as well 

as the static nature of the implemented task requirements, emphasise that the developed model 

has limitations similar to the majority of models reviewed in Chapter 3. Namely, the model 

assumes the existence of the objective performance function with multiple optima, captures 

only the technical aspects of the design’s performance and neglects fluctuations in customer 

preferences. 

There is also a need for refinement of the agent’s cognitive behaviour regarding the nature of 

working memory capacity, differences in processing sensorial input, cognitive phenomena such 

as habituation and other mechanisms guiding the agent’s attention shifting. The implemented 

agent’s affective mechanisms are very simple and short-term (e.g. no modelling of moods and 

states, and the frustration from one task does not impact the next tasks). Implementation is 

missing for several personality traits. Noise is not affecting the agent’s communication. The 

impact of distrust, generalisations formed from transactive memory, or cultural differences on 

the interactions are not modelled. And many other aspects of the implemented framework 

require further research and refinement (see Chapter 5 for a detail discussion). 

Finally, one can discuss the limitations of the computational approaches used in the current 

model’s implementation. For example, one can consider how to implement the agent’s learning 

and memory formation more efficiently and how the implementation of the algorithms such as 

spreading activation, can be optimised. In addition, the current implementation takes a 

sequential approach to schedule the simulated agents’ and runs a single simulation at the time. 

But parallelisation can be employed to speed up the simulation runs. 

9.3 Directions for future research 

Following the discussed limitations of the developed model, numerous future work directions 

aimed at refining and extending the model can be derived. However, the high flexibility of the 

model presented in this work also offers several research opportunities for which little to no 

model extensions are needed. An example of the docking of Singh et al. [131] model and the 

developed model has already been mentioned. A similar type of comparison can, for example, 

be conducted when extracting the influence of trust on team performance and comparing the 

results to those obtained in [130] model.  

The detail modelling of the agent’s cognition can be used to extract the similarities among 

agents’ mental modes, thus permitting studies on the conditions facilitating the emergence of 
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shared mental models. Studies of team adaptability can be furthered by simulating membership 

change and studying its impact on team performance. For example, an experiment may consist 

of removing or adding agents to the team in the middle of the task performance (or in between 

two tasks), observing the achieved team performance and behaviour, and comparing it to the 

one the team would display if no change in membership occurred. Similarly, one can study how 

knowledge transfer occurs between the teams by simulating the agents with temporary 

membership, as described in models [44] and [132]. 

A research question of great importance for supporting the design teamwork relates to the 

emergence of team fixation and the possible strategies to prevent or reduce its effects. The 

developed model may offer a basis for simulations directed at tackling this question. 

Sub-team formation may offer another stream of research for which the developed model can 

be readily utilised. The study [351] has shown that, when teams consist of ten or more members, 

sub-teams start to emerge, thus hindering the effectiveness of team interactions [62]. The recent 

work on co-design and sub-team formation [274] within design teams may offer multiple points 

of comparison among the real-world teams and the simulated agents’. 

Aside from team cognition, one can study the emergence of team cohesion and climate. Such 

studies would require detailing the agent’s motivational state and social interactions. 

Nevertheless, such research would provide insights into an emergent team state critical for team 

effectiveness [26] that is seldom explored by the existing models (see Table 3.1). 

In addition to team cohesion, one can study how one of the ‘Big five’ components of teamwork 

- team leadership - emerges within a team irrespective of the hierarchy imposed by the 

organisation. The reputation parameter implemented in the developed model may serve as a 

starting point for such studies. However, detailing the individual’s motivation and attitudes 

([106]) should be conducted to enable more detail insights.  

Each of the listed future research directions necessarily results in a refinement of the developed 

model. Namely, following the discussion presented in Section 1.3, the model and the body of 

knowledge are interconnected in an iterative loop where findings obtained by the model trigger 

a new cycle of refinement. In future refinements, special attention should be given to detailing 

the agent’s knowledge of the social context (regarding culture and norms derived from past 

experiences) [150]. The authors in [150] also emphasise the detailing of the agent’s cognitive 

constraints and biases (e.g. the effect of emotions). They argue that enabling a high level of 



Conclusion 

173 

social context knowledge, coupled with a realistic representation of cognitive constraints, leads 

to a highly veridical representation of human behaviour in a social setting. 
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APPENDIX A: SCOPE AND CHARACTERISTICS OF 
AGENT-BASED MODELS OF PRODUCT 
DEVELOPMENT TEAMWORK 

Table A.1 Scope of agent-based models of product development teamwork 

Model and 
references  

Year of 
development 

Purpose Application area 

Virtual Design Team 
- VDT [80], [87], 
[88] model 

1994-2012 Estimation of project duration, 
production cost, coordination cost and 
process quality based on the 
simulation of project team's task 
execution and coordination. 

Project teams performing 
routine engineering 
design or product 
development tasks. Later 
extensions enable 
simulation of teams 
executing non-routine 
tasks (e.g. health care 
delivery or equipment 
maintenance, agile 
software development 
teams). 

Design Information-
Flow Simulation 
(DiFS) [81] model 

1995 Simulation of information exchange 
and coordination in teams during the 
design process. 

Small design team (5 to 
10 engineers) working on 
a 3 to 6 months long 
design process. 

Mihm et al. [110] 
model 

2003 Exploration of how project size (i.e. 
number of components) and team 
communication affect team 
performance. 

Teams working on 
complex distributed 
design project. 

TEAm Knowledge-
based Structuring - 
TEAKS [83], [130], 
[352] model 

2003-2011 Support of team configuration process. Teams working on 
engineering projects for 
which tasks can be 
predefined. 

Gero and 
Kannengiesser [44] 
model 

2004 Exploration of how team expertise 
emerges in temporary design teams. 

Temporary design teams. 

Sosa and Gero [71] 
model 

2005 Studies of impact the social context 
has on designer's creativity and 
creative behaviour. 

Groups of designers, not 
necessarily a team in 
terms of cooperating 
agents (competing 
designers simulated). 

InventSim [70], [353] 2005-2007 Simulation of product invention 
process to investigate the utility of 
different search heuristics. 

Groups of designers, not 
necessarily a team in 
terms of cooperating 
agents (competing 
designers simulated). 

Gonçalves et al. [82] 
model  

2006 Support of team configuration process 
for a specific cooperative task (e.g. 
brainstorming). 

Design team performing 
a collaborative task (e.g. 
brainstorming). 

Singh and Gero [132] 
model 

2007 Simulation of temporary design teams 
behaviour. 

Temporary design teams. 

Bellamine-Ben Saoud 
and Mark [95] model 

2007 Support of cooperative processes 
planning by 1) providing a virtual 
collaboration environment for 
cooperation scenarios evaluation, and 
2) enabling the study of group 
behaviour while monitoring an 

Space mission design 
teams in aerospace 
organisations. 
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information source and recovering 
errors. 

Zhang et al. models 
[84], [98], [120], 
[121], [126], [354] 

2007-2014 Evaluation of human and 
organisational factors in collaborative 
product development process. 

Collaborative product 
development teams. 

Crowder et al. [137], 
[138] model 

2008-2012 Examination of team performance 
sensitivity to changes in team 
configuration or processes. 

Integrated product teams. 

Olson et al. [94] 
model  

2009 Theory building and research of 
interaction patterns arising during the 
collaborative design of complex 
systems. 

Teams designing 
complex systems; 
modelled to imitate 
NASA’s Jet Propulsion 
Laboratory design team 

Le and Panchal [90], 
[355] model 

2009-2011 Study of the co-evolution of the 
product and the community of 
developers. 

Mass collaborative 
product development 
teams. 

Singh et al. [131], 
[139] model 

2009-2013 Study of the effect of team familiarity 
(i.e. transactive memory system) and 
social learning on team performance. 

Design teams (either flat, 
distributed flat or 
functional) 

Zhong and Ozdemir 
[72] model 

2010 Study of the social structure influence 
on the speed of innovation. 

Groups of designers, not 
necessarily a team in 
terms of cooperating 
agents (competing 
designers simulated). 

Virtual 
Organisational 
Imitation for 
Construction 
Enterprises - VOICE 
[86], [100], [114] 
model 

2010-2014 Assessing and managing the business 
complexity of construction enterprises. 

Construction engineering 
and management (CEM) 
teams. 

Blau et al. [96] model 2011 Study of how incentive schemes 
(individual or group) affect the teams’ 
backlog dependency resolution 
behaviour. 

Large-scale, lean 
software development 
team. 

Son and Rojas [101], 
[103] model 

2011-2015 Evolution of inter- and intra- team 
collaboration networks and their 
influence on team performance. 

Temporary construction 
engineering and 
management teams. 

Dehkordi et al. [77] 
model 

2012 Study of the effect of project overload 
on innovation. 

Advanced engineering 
teams. 

Sosa and Gero [78] 
model 

2012 Study of effect the team structure has 
on idea generation. 

Design team working on 
a simple task of 
divergent reasoning. 

Levine and Prietula 
[91] model 

2013 Study on how the cooperativeness of 
participants, the diversity of their 
needs, and the degree to which the 
goods are rival (subtractable) affects 
the performance of open collaboration. 

Teams working on open 
collaborative projects. 

Hsu et al. [102], 
[356] model  

2013-2016 Comparison of different team member 
selection methods in different market 
contexts. 

Small, long-term 
construction design 
teams. 

Ambler [104] model 2015 Examination of general methods for 
improving design in the form of 1) 
general strategies that incentivise 
beneficial collaborative team-

Large collaborative 
engineering design 
teams. 
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formation dynamics, and 2) optimally 
structuring a design approach to 
minimise structural design complexity. 

Dutta et al. [115] 
model 

2015 Estimation of project duration, 
production cost, coordination cost and 
process quality. Simulation of actions 
and interactions of team members to 
assess the emerging team 
phenomenon. 

Teams participating in 
large engineering design 
projects (thousands of 
participants and tasks). 

Farhangian et al. [97] 
model 

2015 Evaluation of team performance based 
on skill competency and team 
members' personality composition. 

Software development 
teams. 

Herrmann [122] 
model 

2015 Study of the effect of different 
problem-solving approaches on the 
team performance. 

Product design teams. 
Problem-solving tasks 
simulated. 

Singh and Casakin 
[75] model 

2015 Study of effects use of analogy has on 
design team cohesion and 
collaboration.  

Product design teams. 

Zhang et al. [92] 
model 

2015 Simulation of individual's behaviour in 
mass collaborative product 
development, with particular emphasis 
on help-seeking behaviour. 

Mass collaborative 
product development 
teams. 

Agent Model for 
Planning and 
rEsearch of eaRly 
dEsign - AMPERE 
[57], [357] model 

2015-2017 Modelling early phases of complex 
design in order to provide planning 
support. Enables studies of team’s 
ability to deal with uncertainty and 
requirement change. 

Product development 
teams working on a 
complex design. Early 
design phase simulated. 

Cognitively-Inspired 
Simulated Annealing 
Teams - CISAT 
[112], [358] model 

2015-2019 Simulation and analysis of design 
team's processes and performance 
achieved on a problem-solving task. 

Small, flat design teams. 
Problem-solving tasks 
simulated. 

Martynov and 
Abdelzaher [108] 
model 

2016 Study of the effect that knowledge 
overlap, search width and problem 
complexity have on team performance 
on a problem-solving task. 

Teams performing 
problem-solving 
activities. 

Xia et al. [99] model 2016 Study of the impact that task-
assignment strategies have on the 
learning process and evolution of 
knowledge. 

Software R&D teams 
performing programming 
tasks (design tasks not 
modelled). 

Zhang and Thomson 
[116], [359] model 

2016-2019 Studies of the impact of knowledge 
and learning on a product design team 
performance and complexity 
mitigation. 

Product design teams. 

Zhou et al. [93] 
model 

2016 Examining the impact of participants' 
characteristics (knowledge and 
cooperation willingness) on the 
evolution of the community project. 

Teams working on open 
source design 

Hulse et al. [113], 
[360] model 

2018-2019 Studies of the effect of learning and 
collaboration on design outcomes in a 
distributed design task. 

Teams performing 
complex engineering 
design tasks. 
Multidisciplinary design 
tasks simulated. 

Bott and Mesmer 
[105] model 

2019 Studies of effectiveness (in terms of 
team productivity) of waterfall and 
Agile processes in hardware-intensive 
systems 

Hardware-intensive 
design teams. Every 
design phase modelled. 
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Singh et al. [106] 2019 Studies of the impact of social and 
cognitive features (e.g. self-efficacy, 
conformity, confidence, mental 
inertia) on team performance and 
design outcomes. 

Flat teams performing 
co-design activities in 
early design phase. 

KAI Agent-Based 
Organisational 
Optimisation Model - 
KABOOM [111], 
[127] model 

2019 Studies of the effect of team member’s 
cognitive-style preferences, 
communication patterns and 
specialisation on team processes and 
performance 

Design teams performing 
problem-solving tasks. 

Jafari Songhori et al. 
[109] model 

2019 Studies of the impact of team 
formation strategies (regarding 
diversity and communication patterns) 
on the product quality. 

Product development 
teams. 

 

Table A.2 Characteristics of agent-based models for product development teamwork simulation 

Model and references  Key characteristics, positive Limitations 

Virtual Design Team - 
VDT [80], [87], [88] 
model 

First versions extensively validated. 
Agent's skill and experience level are 
included, attention allocation and effect of 
workload are modelled. 
Later versions include modelling of a 
dynamic transactive memory system of 
each agent, learning, forgetting, and effect 
of trust and cultural differences.  
Uncertainty and complexity of tasks are 
included; rework, failures and exceptions 
are modelled. 
Various communication tools are 
modelled, noise in communication 
included, meetings modelled, help-
seeking behaviour implemented. 

Later versions not extensively 
validated. Versions enabling non-
routine task simulations not 
extensively validated. 
Agent's personality traits such as 
social competencies or extraversion 
not modelled. 
Agents do not learn by observation 
or imitation of others. Knowledge 
grounding, conception and creativity 
not represented. 
 

Design Information-Flow 
Simulation (DiFS) [81] 
model 

Verified and validated; sufficiency, 
plausibility and predictive power tested 
by comparison with real-world data. 
Synchronous and asynchronous 
communication modelled. Informal 
communication modelled. 
Task dependencies modelled. 
Agent's work and communication 
efficacy, short-term memory, 
environmental awareness and knowledge 
of tasks and contacts modelled.  

Only small teams and short projects 
can be simulated due to a great level 
of detail represented. 
Noise in communication not 
modelled. 
Exception handling behaviour not 
modelled.  
Agents do not learn. Trust, shared 
mental models and effect of 
familiarity not modelled. Static 
agent parameters. 

Mihm et al. [110] model Verified; results' robustness to parameter 
change is tested.  
Scheduled and spontaneous information 
exchange between agents modelled.  
Agents' cooperative style (cooperative or 
uncooperative) and communication 
frequency varied. Effect of 
communication of preliminary 
information and partially connected 
networks studied. 
Performance function of each component 
(i.e. agent) is influenced by other agent's 

No empirical validation provided. 
Noise and effect of social factors 
(e.g. trust in others) on 
communication not modelled. 
Agents do not differ in cooperative 
style or problem-solving capability. 
Local performance functions have a 
single optimum and equally affect 
other components. All agents are 
assumed to have skills to reach a 
local optimum. 
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performance. Local performance 
functions change throughout the 
simulation. 

TEAm Knowledge-based 
Structuring - TEAKS 
[83], [130], [352] model 

Validated through face validity and 
comparison with historical data. 
Personality traits, motivational factors and 
emotions included in the model.  
Collaborative tasks modelled. Agent's 
social capability, trust and emotions 
influence the collaborative task 
performance.  
 

Tasks need to be predefined and 
preassigned to agents. Rework and 
exception handling not modelled. 
Agents do not learn. 
Reputation not modelled. 
Help-seeking behaviour not 
simulated. Agents do not interact 
informally or form trust relationship 
by providing back-up behaviour. 

Gero and Kannengiesser 
[44] model 

Agents are forming generalised 
knowledge about the world and their 
peers. Knowledge is dynamic, and 
knowledge grounding is included in the 
model. 
Agents are situated and form situated 
views of others' expertise (in the form of 
their function, behaviour and structure.)  
Agents interact with others and learn 
through interaction. 

No verification or validation 
reported. 
Other aspects of teamwork not 
modelled (e.g. formation of social 
ties, personality traits, or task 
performance). 
No implementation details provided. 

Sosa and Gero [71] 
model 

Verified; replicated to ensure internal 
validity. 
Designer agents learn through imitation of 
others and experimentation. They learn 
rules and form strategies. 
Agents differ in processing and synthetic 
abilities. 
Adopter's evaluation effect on designer's 
behaviour modelled. 

No testing against empirical data 
reported. 
Designer agents do not form social 
relationships or exchange 
information. Their interaction is 
restricted to the imitation of one 
another. 

InventSim [70], [353] Verified; sensitivity analysis performed. 
Several real-world search heuristics 
embedded in the agents (e.g. anchoring, 
trial-and-error, copying) 
Market demands and influence of 
competition on product's success are 
modelled. 
Dependency between product components 
taken into account, and product 
performance represented as rugged 
landscape. 

Validation not reported.  
Agents are not characterised by 
personality traits, cognitive abilities, 
affect or social behaviour.  
No interactions between producers. 
Producers do not learn through 
observations of others.  
Rugged landscape (NK model) does 
not change during simulation - no 
effect of market change simulated. 

Gonçalves et al. [82] 
model  

Agent behaviour based on the empirical 
data. 
Agent's cognition, goals and motivation 
included in the model.  
The quality of brainstorming session 
measured regarding time, the number of 
states, cooperation level, divergence, and 
levels of indecision. 

No verification or validation 
performed. Initial phases of the 
project described. 
No implementation details provided. 
Impractical task representation due 
to a large number of possible 
brainstorming states. 

Singh and Gero [132] 
model 

Comprehensive agent model: agents are 
characterised by motivation, attitude, 
skills, expertise, memories, experience, 
and beliefs. Agents are adaptive, have 
constructive memory, interact with others, 
and form and update mental model of the 
team. By building on their past 
experiences, agents are forming 

No verification or validation 
reported.  
Implementation details not provided.  
Interaction rules and task 
representation details not defined. 
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generalisations and grounding their 
knowledge. 

Bellamine-Ben Saoud 
and Mark [95] model 

Verified and validated; sensitivity 
analysis performed and simulation output 
compared to empirical data. 
Discussions between subgroups in a team 
modelled. Agent's attention allocation and 
hearing modelled. Agents can overhear 
sidebars (i.e. small group) discussions 
between other team members and decide 
whether to join. 
Noise affects information exchange and 
error detection. 
Sidebar discussions and information 
exchange enable error detection. 

Large amounts of data are necessary 
to run the model. 
Only two sidebar-joining strategies 
modelled. Agents cannot leave 
discussion once joined (until it 
finishes). 
Noise level depends only on the 
number of current sidebar 
discussions. 
Occurrence and duration of sidebars 
predefined. Agents can detect errors 
only during sidebar discussions. 

Zhang et al. models [84], 
[98], [120], [121], [126], 
[354] 

Models [84], [120], [126], [354] validated 
by comparison with empirical data. 
Detail modelling of agent's tasks. Task 
scheduling behaviour modelled and can 
be interrupted and re-continued 
iteratively. Task importance, urgency and 
personal preferences included in the 
utility function. Memory recovery time, 
learning and forgetting taken into account. 
Rework, exception handling and conflict 
resolution are modelled. 
Collaborative behaviour modelled. 

Models [98], [121] not reported to 
be validated.  
The impact of motivational, social 
or affective aspects on agent's 
performance not modelled. 
Social aspects, e.g. trust, not 
considered during partner selection. 
Shared mental models not modelled. 
A transactive memory system is 
predefined and fixed. 

Crowder et al. [137], 
[138] model 

Rules guiding agent's behaviour are based 
on empirical data. Face validation of 
simulation outcomes performed. 
Task difficulty and dependencies 
modelled. 
The inclusion of learning from resources 
and peers. When agents have insufficient 
competencies, they request help from 
others. 
Shared mental models, trust and 
motivation modelled. 

Simulation not applied to a real-
world problem. 
Tasks are predefined and prescribed 
to agents. Agents can work only on 
one task at the time and must finish 
a given task to perform the next one. 
Agents do not learn through 
observation or by doing (only 
through interactions between peers 
and resources). Agents do not have 
transactive memory and send help 
requests to all other agents. 

Olson et al. [94] model  Verified.  
Agent's mental model implemented and 
trained on past projects. Resolution of a 
problem (in case team performance is not 
satisfactory) modelled, thus simulating 
the effect of discussions initiated by the 
team leader. Collaborative tasks 
modelled, iterative and direct negotiations 
modelled. Agents differ in progress rate. 
Agent's problem-solving strategies based 
on processes observed in real-world. 
Agents can autonomously decide what 
task to work on next. 

No validation reported. 
Significant amount of work needed 
to extend the model’s applicability. 
In particular, much effort is needed 
to develop rich domain models. 
The agent’s implementation 
statistically tailored for particular 
domain. 
 

Le and Panchal [90], 
[355] model 

The first model of mass collaborative 
product development teamwork. 
Agents decide whether to join by 
reasoning on cost and benefits of 
participation. 
Developed product is represented as a 
network of modules. 

No validation reported. 
Cost and benefits are constant 
throughout the simulation. 
The number of modules is fixed, and 
product structure does not change 
during the simulation. The growth 
rate of each module implemented in 
the model. No distinction in skills or 
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expertise requirements between 
modules modelled. 
No modelling of errors and 
difficulties caused by incongruent 
agent's goals. Differences in agents' 
skills, behaviour, or experience not 
modelled. Agents do not learn. 

Singh et al. [131], [139] 
model 

Verified, validated based on theoretical 
predictions. 
Model of social learning. Different kinds 
of learning modelled: learning by direct 
communication, learning by observation 
of other member's interactions and 
learning by observation of team members 
performing tasks. Agents have a (not 
necessarily accurate) mental model of 
"who knows what" and update it through 
direct or indirect interactions. 
Effects of communication frequency, 
business and membership retention 
studied. Different team structures 
simulated and compared. 

Not applied to a real design 
problem. 
To isolate effects of social learning, 
aspects such as noise in 
communication, task delegation due 
to workload (and not due to lack of 
competencies) or learning by doing 
not modelled. 
Other aspects of teamwork not 
modelled. 

Zhong and Ozdemir [72] 
model 

Producers are represented with genetic 
algorithms, and possess sets of potential 
and realised relationships with their peers, 
over which they can exchange 
information. 
Agents are characterised by learning 
capability and can learn new skills 
through interactions with high performing 
peers. Three learning mechanisms 
modelled: probabilistic change, uphill 
climbing and crossover mechanism. 
Production guided by rewards obtained 
(i.e. consumer satisfaction). 

Validation not reported. 
Agent's transactive memory system 
is accurate. Other aspects (e.g. 
influence of collaboration frequency 
or competition on knowledge 
exchange) not modelled. 
Consumers' preference function has 
a single optimum. All consumers 
share the same idea of the ideal 
product. Consumers' preference 
function does not change throughout 
simulation (no market change). 

Virtual Organisational 
Imitation for 
Construction Enterprises 
- VOICE [86], [100], 
[114] model 

Verification and face validation 
performed.  
Task attributes such as priority, difficulty, 
workload and dependencies modelled. 
Agent's attributes related to task execution 
and error handling (e.g. capacity, quality 
preference, work quality) included. 
Meetings and communication due to 
increased workload or informational 
dependencies modelled.  

No validation based on empirical 
data reported. 
Informal information exchange not 
included. Agents are not 
characterised by personality traits, 
motivational level, or emotional 
state. Agents do not learn, form 
mental models or expertise. 
Agents do not seek help from their 
peers, learn through observation or 
collaboration, or form trust and 
transactive memory system. 

Blau et al. [96] model Verified, sensitivity analysis performed. 
Face validity performed. 
Lean and agile principles are modelled. 
Agent's local fitness function and learning 
factor are modelled. 

The model was not tested against 
empirical data. 
Backlog processing time fixed. 
Agents do not differ in learning 
factors. 
Agents have no social features, 
expertise, or skills. Noise in 
communication and failures not 
modelled. 

Son and Rojas [101], 
[103] model 

Verified; sensitivity analysis and 
debugging reported. Model assumptions 
grounded in theory. 

No validation of model outcomes 
reported. 
Other factors such as work structure 
and complementarity of knowledge 
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Simple. Familiarity between agents and 
sociality parameters used to model the 
probability of agent's encounter. 
Familiarity decreases if agents do not 
interact. Each agent decides whether to 
cooperate (share info), or not based on 
payoff function. 

do not influence collaboration. 
Contact is based only on social 
elements, and goal-driven 
collaboration is not modelled. The 
number of relationships is limited to 
three. Effect of indirect relationships 
is not considered. 

Dehkordi et al. [77] 
model 

Agents characterised by knowledge, 
capacity, preferred workload (number of 
parallel projects), and motivation. 
Agent's motivation is influenced by 
workload, as well as with other team 
members' motivation levels and 
knowledge. 
Agent's creativity parameter included. 
Agent's knowledge increases during 
interaction with more knowledgeable 
agents.  

Not validated (modelled behaviour 
not compared to the real-world 
data).  
Theoretical background of model 
assumptions not explicated. 

Sosa and Gero [78] 
model 

Brainstorming task is represented as 
shape generation task.  
Agents can explore by random shape 
drawing and transformation, evaluate 
existing shapes in order to create new 
concepts, or exploit by applying learned 
concepts.  
Group influence parameter determines the 
percentage of concepts shared between 
members. 

No validation reported.  
Influence of motivation and 
personality factors on the number of 
ideas shared and evaluations not 
modelled. 
Effects of trust and leadership style 
not modelled. 

Levine and Prietula [91] 
model 

Verified, sensitivity analysis performed. 
Validated by comparison with literature-
based predictions. 
Agent's cooperative type modelled 
(cooperator, free rider or reciprocator). 
Agents send requests for help based on 
their transactive memory system. 
Resources (knowledge) are characterised 
by rivalry which affects the cost that an 
agent bear when cooperating. 

Not tested on a real-world data. 
Agents do not form trust 
relationships or organise in 
communities. Agents do not learn 
about others’ cooperativeness. 
Transactive memory system is static 
and accurate. Effect of ostracism not 
modelled. Agents do not differ in 
skills. 
Agents only produce resources 
prescribed by their tasks. 

Hsu et al. [356][102] 
model  

Verified through extensive testing, code 
work through and debugging. Validated 
by comparison with empirical data. 
Detail representation of agent's technical 
competencies and work-related features 
(e.g. education, license, working 
experience, salary). 

Team performance measured only 
through profit. Quality or 
differences in project completion 
time not simulated. 
Agent's social competencies, 
personality traits, affective states or 
cognition not modelled. 

Ambler [104] model Verified; sensitivity analysis performed. 
Agents are guided by their understanding 
of the situation and reason about their 
next steps, are forming a perception of 
others (i.e. of their fitness) and 
exchanging information with them. 
Design space represented as NK model. 
Builds on principles of design from 
Axiomatic design 

No validation reported. 
Agents do not differ in terms of 
preferences or goals and have the 
same understanding of the fitness 
function. No personality traits or 
social or affective aspects (e.g. trust, 
social competences) modelled. 
Static design landscape 
representation. Economic, market, 
legislative, and regulatory 
constraints not included. 
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Dutta et al. [115] model Individuals can work on two tasks 
simultaneously, and several agents can 
work on the same task. 
Composite (team-level) measures 
introduced: composite capability, 
motivation and availability. 
Validated against data obtained from 
interviews. 

Task iterations and rework not 
considered. 
Agents learn only from a leader or 
resource (i.e. no knowledge 
exchange between team members). 
Composite measures depend only on 
task-owners characteristics, and not 
on interactions between team 
members. Agents do not form an 
opinion about others (their 
knowledge, expertise, social 
competencies, trustworthiness, etc.). 

Farhangian et al. [97] 
model 

Agent's personality and skill competency 
are modelled.  
Team performance measure takes into 
account the estimation of how well team 
members get along in terms of matching 
of their personalities, creativity, roles 
capabilities and stress handling. 

No validation of assumptions or 
results reported. 
Affective and motivational aspects 
not included.  
Demographic factors such as gender, 
age or social roles do not influence 
the relationships among agents. 

Herrmann [122] model Design problem-solving modelled as 
solution space exploration. 
Several collaboration (e.g. serial), 
problem-separation ("all at once" vs 
separating the problem to sub-problems) 
and search strategies ("hill climbing", 
“fixed effort” and “target values”) 
modelled and compared. 

Validation not reported. 
Design space is static (does not 
address requirements change or 
market fluctuations).  
Expertise, experience, learning, and 
difference in agent's knowledge and 
skill not modelled. 

Singh and Casakin [75] 
model 

Study of the effect of the use of analogy 
on team performance. The distinction 
between analogy purposes (problem 
identification, function finding, solution 
generation or explanation) modelled. The 
expertise of team members and analogical 
distance are taken into account. 
Team members characterised by their 
knowledge and expertise domains. Each 
agent possesses a transactive memory. 

No validation reported. 
Implementation details not provided 
(initial phase of research). 
The transactive memory system is 
fixed and accurate. 

Zhang et al. [92] model Modelling of individual's behaviour in 
terms of initiative, collaboration and 
autonomy. Uncertainty and complexity of 
processes taken into account. 
Three types of agents modelled: 
management, technical core and common 
development agent. Based on agent's type, 
its goals and behaviours differ. 
Agents can collaborate in off-line or on-
line manner. If a problem encountered is 
difficult, not urgent and requires longer 
time, agents will collaborate in an off-line 
manner. If the problem is urgent, can be 
resolved quickly and is not difficult, 
agents will collaborate in an on-line 
manner. 

No validation reported. 
No detail description of behaviours 
presented. 
Agents' interactions restricted to 
collaboration due to difficulties 
encountered. Agents do not form a 
transactive memory system. 

Agent Model for 
Planning and rEsearch of 
eaRly dEsign - AMPERE 
[57], [357] 

Belief-Desire-Intention (BDI) model of 
agency used. 
Customer, Project Lead and Design 
agents modelled. Design agents vary in 
the level of experience (Senior and 
Junior) which is reflected in their 
workload (and consequently time 
committed to a particular project), team 

Performance not compared to the 
real-world data (i.e. no validation 
reported). 
Agents are characterised solely 
regarding time needed to complete a 
task, quality improvement, and 
actions they can perform. 
Personality (e.g. in response to 
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influence, rate at which their work 
improves the solution, and work cost. 
Coordination of resources, change in 
requirements, risk evaluation, and 
solution submission to the customer 
modelled. These actions are directed by a 
project lead agent.  
Requirement change, iteration, rework 
and daily variability in individual 
performance included in the model.  

stress) and interpersonal relations do 
not influence collaboration or 
performance. 
Adaptation to change modelled 
simply as a drop in solution quality. 
Approaching deadlines do not affect 
design agents, just the project lead 
agent which directs resources 
accordingly.  

Cognitively-Inspired 
Simulated Annealing 
Teams - CISAT [112] 

Characteristics of individuals are based on 
theory and are implemented to 
realistically represent human behaviour. 
Agents are biased in favour of their 
designs, interact in irregular intervals, and 
learn by doing. They tend to focus on 
most promising alternatives, avoid 
premature convergence by exploring 
different concepts, and employ different 
breadth- and depth-first search strategies, 
until a satisfying solution is found. 
Agents exchange ideas and evaluate each 
other's solutions. 
Problem-solving modelled as a search 
over rugged landscape. Agent's behaviour 
is based on simulated annealing and 
stochastic optimisation algorithms (which 
resemble problem-solving process 
employed by human designers). 
Verified and validated against empirical 
data. 

Agent's characteristics like cognitive 
ability, personality traits or 
motivation not modelled. Agent's do 
not differ in their characteristics and 
do not form social relationships with 
others. 
The impact of conflicting goals or 
differences in understanding of 
design requirements not modelled. 
The rugged landscape does not 
change over the course of the 
simulation.  
Management or leader influence on 
agent's search not modelled. 

Martynov and 
Abdelzaher [108] model 

Design space modelled as a rugged 
landscape (NK model). 
Difference in agent’s expertise and 
knowledge taken into account: agents are 
capable of accurately rating only solution 
components which fall into their area of 
expertise. 
Noise in communication modelled.  

Validation not reported. 
Design space is static. 
Agents do not increase their 
knowledge during the simulation. 
Agent's evaluations of the proposals 
not influenced by trust, agents are 
not self-biased.  
Exclusive use of majority rule to 
aggregate heterogeneous knowledge 
of team members.  

Xia et al. [99] model Verified, validated by comparison with 
theory-based predictions.  
Learning by doing and forgetting 
modelled as system dynamics model. 

Agents never attempt to finish tasks 
(or learn) by the trial-and-error 
method. 
Agents do not differ in learning and 
forgetting rate. 
Effect of mutual trust, previous 
collaborative experiences or social 
capabilities on collaborative 
behaviour not modelled. Agents 
have a perfect knowledge of “who 
knows what”. 

Zhang and Thomson 
[116], [359] model 

Product complexity modelled. Technical 
and integration complexity differentiated.  
Rework, work efficiency and experience 
gain modelled. 
Consultation (i.e. meetings) and 
communication of the tasks outcomes 
among agents included.  

Assumes that functional 
decomposition of the product is 
known in advance and static. 
Personality, affective and 
motivational aspects not included. 
Trust among agents not modelled. 
Static transactive memory system. 
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Agents’ performance on a task 
implemented as a system dynamics 
model. 
Learning depends on the technical 
complexity, agent’s knowledge, 
consultation effort and helper’s 
knowledge. Communication delay 
modelled. 
Verification, validation and sensitivity 
analysis reported. 

Agents are learning only through 
consultation and communication 
(e.g. learning through doing not 
included). Forgetting not modelled. 
 

Zhou et al. [93] model Verified; sensitivity analysis performed. 
The inclusion of preferential attachment 
(collaboration is more likely between 
agents which already collaborated 
successfully). Agents learn through 
collaboration. 
Definition of agent's types based on 
participants’ comments, information 
dissemination, and innovation ability. 

No validation reported. 
Agents do not learn by performing a 
task in isolation, do not form 
expertise or preference towards 
certain tasks. Forgetting is not 
implemented. Agents do not form 
transactive memory. 
Incentives (e.g. committed effort, 
perceived value of the product, 
learning motivation, sense of group 
belonging) not modelled. Tasks 
selected randomly rather than based 
on preference, knowledge, urgency, 
or perceived importance. 

Hulse et al. [113], [360] 
model 

Control over design variables is 
distributed among agents to simulate 
collaboration on a complex engineered 
system. 
Agents are learning based on the received 
feedback. Agents adapt the level of 
solution space exploration (and 
exploitation) based on the performance of 
the past designs. 
Collaboration between agents (can be) 
included and varied. Comparison among 
three collaboration modes (collaboration, 
component asynchrony and variable 
asynchrony) presented. 
 

The agent’s behaviour not compared 
to the real-world scenarios (i.e. 
simulation validation not 
conducted). 
Communication biases (e.g. noise, 
delay, incomplete information 
received, misunderstandings) not 
included. 
Agents do not differ in their 
competence or personality (e.g. 
exploration is based solely on 
performance, and not influenced by 
preferences).  

Bott and Mesmer [105] 
model 

Agent’s cognitive states are modelled as 
FBS processes (using first-order Markov 
process to model transitions from one 
state to the other). 
Verified. Calibrated and validated against 
real-world data. 
Coupling of design choices between 
design teams modelled. 

Synthesis, analysis and evaluation 
collapsed into a single activity. 
Communication among agents 
modelled to be with zero time lag, 
and no noise or misunderstandings. 
 

Singh et al. [106] Agents’ mental models change with 
experience (i.e. agents are capable of 
learning and forgetting). Agents differ in 
learning ability (or mental inertia) and 
forgetting rate. 
Agents are affected by others’ ideas; 
conformity is included in the model. 
Self-efficacy parameter included and 
modelled to depend on motivation and 
experience. 

Validation and verification not 
reported. No implementation details 
provided. 
Solution space exploration modelled 
as a search over a static surface. 
No noise in communication 
modelled. 
Transactive memory system and 
social factors such as homophily do 
not influence agent’s decision to 
conform to other’s solutions. 
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KAI Agent-Based 
Organisational 
Optimisation Model - 
KABOOM [111], [127] 

Problem-solving simulated as a search 
over a rugged landscape. Agent’s search 
influenced by simulated-annealing 
technique: temperature guides the 
probability of acceptance of other agent’s 
solutions not improving the overall score. 
Agent’s search strategy and perception of 
solution quality depend on agent’s 
cognitive style. 
Agents have memory of past solutions, 
memory is biased to represent serial 
position effect. 
Agents are biased to move towards or 
away from other’s solutions (influenced 
by a group conformity parameter). 
Communication among agents is 
modelled and occurs either in pairs (one-
to-one), or in team meetings (all-to-all). 
Effect of cognitive gap on communication 
success included. 

Acceptance of team’s solution is 
based solely on solution’s objective 
value (i.e. the solution scoring 
highest is accepted). Influence of 
authority, trust, conflicting goals or 
agent’s bounded-rationality not 
taken into account. 
Interaction probability is a global 
constant. Communication pairs are 
chosen randomly (e.g. expertise-
based, trust-based or homophily-
based communication not 
modelled).  
Solution space modelled as static, 
symmetrical and bounded.  
Assumes perfect decomposition of 
problem variables along mutually 
exclusive dimensions. 

Jafari Songhori et al. 
[109] model 

Coordinated search process modelled as a 
search over a modified NK landscape 
(one parameter guides interactions among 
elements within the same subsystem, 
other parameter guides interactions 
among different subsystems). 
Agents have incomplete knowledge and 
domain of expertise. A pair of agents 
similar in expertise has a higher 
probability of successfully 
communicating solutions. 
Product complexity and product 
architecture modelled 
Teams grouped into clusters determining 
the rate of interactions among them. 
Teams differ in the level of diversity 
(regarding their domain of expertise) of 
their members. 

No validation or verification 
reported. 
Landscape does not change during 
the simulation. 
Agents do not differ in capabilities 
or personality.  
Communication only in pairs and 
solely based on the organisational 
interactions. Designer’s interactions 
are based (only) on the connected 
cavemen model. 
Product development processes 
executed simultaneously for all 
subsystems. 
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APPENDIX B: CONDITIONS FOR THE SOLUTION 
SPACE UNBOUNDEDNESS 

An essential aspect of the developed model is the fact that agents are capable of generating new 

structures and expanding the solution space. Therefore, the necessary and sufficient conditions 

for the solution space unboundedness (in terms of the number of different structure nodes that 

can be generated) had to be explored.  

If the generation mechanisms are union and concatenation as introduced in Chapter 5, it can 

easily be seen that an initial space composed of a network (or networks) with two links and a 

single intersecting node (i.e. an initial space composed of two links and three nodes) can serve 

to generate an infinite number of networks. These links can either be contained within two 

structure node networks, or form a single structure node network. Let each of the links form 

one structure node network (the analogous process can be applied in case of a single structure 

node): 𝑆1 contains the first, and 𝑆2 the second link. Since both of these networks contain 

elements not present in the other network, a union operation creates a new network different 

from both of them. Formally, let 𝑆 denote a structure node network (regarded as a collection of 

nodes and links), and define 𝑛𝑜𝑑𝑒𝑠(𝑆) and 𝑙𝑖𝑛𝑘𝑠(𝑆) as functions returning the set of nodes, 

and set of links respectively. Let (𝑎, 𝑏) denote an undirected and unweighted link connecting 

nodes 𝑎 and 𝑏, thus (𝑎, 𝑏)  =  (𝑏, 𝑎). It can be written: 

𝑛𝑜𝑑𝑒𝑠(𝑆1) = {𝑎, 𝑏}, 𝑙𝑖𝑛𝑘𝑠(𝑆1) = {(𝑎, 𝑏)} 

𝑛𝑜𝑑𝑒𝑠(𝑆2) = {𝑏, 𝑐}, 𝑙𝑖𝑛𝑘𝑠(𝑆2) = {(𝑏, 𝑐)} 

𝑆1 ⊈ 𝑆2 ⋀ 𝑆2 ⊈ 𝑆1 → ∃𝑆3 = 𝑆1 ∪ 𝑆2 • 𝑆3 ≠ 𝑆1 ⋀ 𝑆3 ≠ 𝑆2 

𝑛𝑜𝑑𝑒𝑠(𝑆3) = {𝑎, 𝑏, 𝑐}, 𝑙𝑖𝑛𝑘𝑠(𝑆3) = {(𝑎, 𝑏), (𝑏, 𝑐)} 

The created network 𝑆3 has two distinct links and three different nodes. Now, a concatenation 

operation can be applied to 𝑆3 which will concatenate two of its nodes into a new node (e.g. 

link 𝑏 − 𝑐), thus creating a new network. It is important to note that the newly generated 

network is necessarily different from the existing networks (since it contains a new node), but 

it also inevitably shares one node with either 𝑆1 or 𝑆2. Formally: 

#𝑙𝑖𝑛𝑘𝑠(𝑆3) ≥ 1 →  ∃𝑆3
′ •  𝑆3

′ ≠ 𝑆3 

𝑙𝑖𝑛𝑘𝑠(𝑆3
′ ) = {(𝑎, 𝑑)} 

𝑛𝑜𝑑𝑒𝑠(𝑆3
′ ) = {𝑎, 𝑑} • 𝑎 ∈ 𝑛𝑜𝑑𝑒𝑠(𝑆3) ⋀ 𝑑 ∉ 𝑛𝑜𝑑𝑒𝑠(𝑆3) 
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Which can be written as: 

𝑎 ∈ 𝑛𝑜𝑑𝑒𝑠(𝑆1 ∪ 𝑆2) ⋀ 𝑑 ∉ 𝑛𝑜𝑑𝑒𝑠(𝑆1 ∪ 𝑆2) 

(𝑎 ∈ 𝑛𝑜𝑑𝑒𝑠(𝑆1) ⋁ 𝑎 ∈ 𝑛𝑜𝑑𝑒𝑠(𝑆2) ) ⋀ 𝑑 ∉ 𝑛𝑜𝑑𝑒𝑠(𝑆1) ⋀ 𝑑 ∉ 𝑛𝑜𝑑𝑒𝑠(𝑆2) 

Thus, 𝑆3
′ ≠ 𝑆𝑖 ∀𝑖 ∈ {1,2,3}, and network 𝑆3

′  and one of the original structures (in this particular 

example, 𝑆1) form an exactly the same situation as the starting one: two networks with 

intersecting links. Therefore, the described process (i.e. a union followed by a concatenation) 

can be reapplied to these two networks (𝑆3
′  and 𝑆1), generating new networks 𝑆4 and 𝑆4

′ . It is 

easy to show that this procedure can be performed infinitely many times, each time generating 

a pair of new networks (albeit, with similar properties). The newly generated networks can be 

further combined with the existing ones to generate more diverse networks with different 

properties. Note, the described process generates an infinite number of networks even if 

concatenation of the two initial nodes results in the third (e.g. if 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑎, 𝑏) = 𝑐), the 

only difference being that the concatenation necessarily has to be applied to the other (i.e. 𝑏 −

𝑐) link. Further, the described process can be directly applied to networks consisting of more 

nodes and links (as long as the two of the links present in the initial space share a node). 

As described, the sufficiency of these conditions (i.e. initial space consisting of two intersecting 

links) to serve as a basis for an unbounded space can be proven by mathematical induction. The 

proof of necessity is similarly simple. The condition can be separated in two parts:  

1. #𝑙𝑖𝑛𝑘𝑠 ≥ 2, 

2. ∃𝑙1 = (𝑎, 𝑏),  𝑙2 = (𝑐, 𝑑) ∈ 𝑙𝑖𝑛𝑘𝑠 •  𝑙1 ≠ 𝑙2 ⋀ (𝑎 = 𝑐 ⋁ 𝑎 = 𝑑 ⋁ 𝑏 = 𝑐 ⋁ 𝑏 = 𝑑). 

The necessity of the condition is discussed as follows: 

 If an initial space consists of none or only one node, the proof of boundedness of the 

space is trivial as application of transformations does not change the initial space. A 

similar situation is one in which an initial space consists of two nodes and no links. 

Namely, if the nodes are separated in their respective networks, the only new structure 

which can be generated is the union of the two. If the initial space consist of a single 

network (𝑆1 • 𝑛𝑜𝑑𝑒𝑠(𝑆1) = {𝑎, 𝑏}, 𝑙𝑖𝑛𝑘𝑠(𝑆1) =  ∅), or of three networks (𝑆1 •

𝑛𝑜𝑑𝑒𝑠(𝑆1) = {𝑎, 𝑏}, 𝑙𝑖𝑛𝑘𝑠(𝑆1) =  ∅; 𝑆2 • 𝑛𝑜𝑑𝑒𝑠(𝑆2) = {𝑎}, 𝑙𝑖𝑛𝑘𝑠(𝑆2) =  ∅; 𝑆3 •

𝑛𝑜𝑑𝑒𝑠(𝑆3) = {𝑏}, 𝑙𝑖𝑛𝑘𝑠(𝑆3) =  ∅), no new networks can be generated as the union 

does not create a new network, and there are no links for concatenation to be applied. 

In short, if two nodes and no links form the initial space no concatenations can be 
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performed, so irrespective of the initial space, the only way to expand the solution space 

is by performing unions. The largest number of transformations can be applied to the 

initial space in which each of the nodes forms one network. Taken the other way, the 

situation with two nodes and no links is equivalent to producing all non-empty subsets 

of a node-set {𝑎, 𝑏}, meaning that the size of the space cannot exceed 22 − 1. Similar 

reasoning can be applied in the case of an initial space containing n nodes and no links. 

Irrespective of the initial space, the possible space cannot exceed the size of  ∑ (𝑛
𝑖
)𝑛

𝑖=1 =

 2𝑛 − 1. 

 If there is just a single link (and two or more nodes) the similar bound can be found. 

Without loss of generality, let {𝑎𝑖 | ∀𝑖 ∈ {1, … , 𝑛}} denote the 𝑛 nodes, and (𝑎1, 𝑎2) a 

link. It is important to note that, although concatenation (potentially) generates a new 

node 𝑎𝑛+1 =  𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑎1,𝑎2), in this case the new node is isolated – thus meaning 

that no further concatenations can be done. Let the initial space consists of 𝑛 + 1 

networks, 𝑛 with a single node and one with only the link. One new network can be 

added by concatenation, (possibly) increasing the overall number of distinct nodes 

to 𝑛 + 1. Now, this problem can be regarded as creation of all non-empty subsets of a 

set {𝑎𝑖| ∀𝑖 ∈ {1, … , 𝑛 + 1}} for networks that do not contain the link, and all non-empty 

subsets of a set {𝑎𝑖| ∀𝑖 ∈ {3, … , 𝑛 + 1}} for networks that do contain the link. Overall, 

the number of networks which can be generated is: 2𝑛+1 − 1 of the networks which do 

not contain the link, and 2𝑛−1 − 1 of the networks that do contain the link. Since it is 

evident that other initial spaces would generate even smaller number of new networks 

then the case presented, it can be concluded that the generated space cannot exceed the 

size of 2𝑛+1 − 1 +  2𝑛−1 − 1 =  5 ∗  2𝑛−1 − 2. 

 Finally, if the initial space consists of more than one link (𝑚 ≥ 2), but these links have 

no intersections, following the same reasoning as in the case of one link and 𝑛 nodes, it 

can be concluded that the space to be generated is constrained. Since there are no 

intersections, a finite number of concatenations (𝑚) can be performed – therefore 

generating a finite set of elements (maximal possible number being 2𝑚 + 𝑛). Now, the 

upper bound for the generated space size can again be obtained by calculating the 

number of all non-empty subsets. 

For clarity, several points should be emphasised. First, concatenation is implemented as an 

injective function (i.e. each unordered pair of nodes is concatenated into a distinct node which 

cannot be obtained by concatenating any other two nodes). Similarly, concatenation of two 
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particular nodes always returns the same node. Finally, no network can contain more than one 

instance of a particular node. In other words, if 𝑆1 • 𝑛𝑜𝑑𝑒𝑠(𝑆1) = {𝑎, 𝑏}, 𝑙𝑖𝑛𝑘𝑠(𝑆1) = {(𝑎, 𝑏)}, 

and 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑎, 𝑏) = 𝑐, then: 

𝑆1
′ • 𝑛𝑜𝑑𝑒𝑠(𝑆1

′) = {𝑐}, 𝑙𝑖𝑛𝑘𝑠(𝑆1
′) = ∅, 

𝑆1 ∪ 𝑆1
′ = 𝑆2 • 𝑛𝑜𝑑𝑒𝑠(𝑆2) =  {𝑎, 𝑏, 𝑐}, 𝑙𝑖𝑛𝑘𝑠(𝑆2) = {(𝑎, 𝑏)}, 

but if concatenation is applied to 𝑆2 no new networks will be generated as 𝑆2
′ =  𝑆1

′ . Namely, 

concatenation would transform the link (𝑎, 𝑏) into the node 𝑐 (𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒{𝑎, 𝑏} = 𝑐), but a 

network cannot contain two instances of the same node, thus meaning that the only node left in 

the node-set of the 𝑆2
′  network would be node 𝑐. Since 𝑆2

′  and 𝑆1
′  have the same node-set and 

link-set, they are the same network (i.e. generate the same structure node in the structure space). 

To summarize, the space which can be generated by application of union and concatenation 

processes (as defined herein), is unbounded if and only if the initial space contains network(s) 

with at least two intersecting links. 
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APPENDIX C: LIST OF PARAMETER DESCRIPTIONS 
AND THEIR DEFAULT VALUES 

Table C.1 presents a list of default parameter values as set in the studies conducted by the 

developed simulation tool. Any deviations from the overview presented herein are emphasised 

in the study description. The default parameter values were derived from the theories (e.g. 

[183], [231]), empirical studies ([223]) and existing computational models ([171]). Several 

parameters were derived from others to capture specific interdependencies: for example, the 

relation among sharing and activation thresholds (see Section 5.1.3 for details). Such 

interdependencies are clarified in Table C.1. Finally, several parameters guiding the agent’s 

cognitive behaviour were set experimentally to tailor the simulation outcomes to fit the real-

world behaviour (for example, so that agents tend to create and propose a credible number of 

structures [201], [326]). Nevertheless, due to deficiencies in the modelling of agents’ 

communication (see Section 5.2), the formal calibration was not performed. The future work 

will experiment with the different parameter setups to study the impact of their change on the 

obtained results. 

Table C.1 List of parameter descriptions and their default values 

Parameter name Parameter description Range Default value 

activationThreshold The level of node activation 
necessary for the node to 

become eligible for 
communicating and reasoning 

upon 

[0,1] 0.50 

analysisThreshold The level of node activation 
necessary for the node to 
become eligible for detail 

analysis which permits new link 
creation 

[0,1] 0.75 

C Link weight growth parameter; 
guides link grounding during the 

task performance 

[0,10] 0.03 

decay Guides the decay of node’s 
activation in between two tasks 

steps 

[0,1] 0.20 

reflexThreshold Threshold guiding the difference 
between System 1 and System 2 
thinking; links whose weight is 

[0,1] 0.99 
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above this threshold are 
processed at ‘no cost’. 

forgettingRate Parameter guiding how much of 
the prior-task link’s weight is 

retained after the task 
completion if the link has not 

been used in the task 

[0,1] 0.90 

learningRate Parameter guiding how much of 
the link’s weight increase is 

retained after the task 
completion (if the link has been 

used) 

[0,1] 0.30 

Number of behaviour 
nodes within the agent’s 
domain of expertise 

An integer indicating how many 
behaviour nodes the agent can be 

an expert in 

[1,5] Random uniform, 
unif(1,5) 

Number of past tasks 
remembered 

An integer indicating how many 
of the past task the agent can 
remember. Used to set initial 
values for inhibition and base 
level activation (if enabled) 

ℕ0 10 

maximumBLA The maximal amount of 
activation which can be added to 

the node’s (regular) activation 
due to relevance of the node in 

previous similar tasks 

[0,1] 0.25 (activation 
threshold * 0.50) 

maximumInitialnhibition The maximal initial (i.e. at task 
start) amount of activation which 

can be subtracted from the 
node’s regular activation due to 
negative associations tied to the 

node 

[0,1] 0.25 (activation 
threshold * 0.50) 

maximumInhibition The maximal amount of 
activation which can be 

subtracted from the node’s 
regular activation due to 

negative associations tied to the 
node 

[0,1] 0.50 (activation 
threshold) 

𝑡𝑙𝑒𝑓𝑡_min  Percentage of time left when 
affect starts influencing agent’s 

behaviour 

[0,1] 0.50 

𝑡𝑙𝑒𝑓𝑡_max  Percentage of time left when 
affect reaches the node analysis 

[0,1] 0.10 
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threshold if none of the 
requirements is met  

cognitiveAbility Parameter guiding agent’s 
focused capacity and an initial 
weight of newly learnt links 

[0,1] 0.50 or random from 
Normal(0.5,0.166) 

focusCapacity Parameter guiding the number of 
knowledge chunks which can be 
processed in one simulation step 

{3,4,5} 4 (due to default 
values of cognitive 
ability parameter) 

extraversion Parameter influencing agent’s 
sharing threshold.  

[0,1] 0.50 or random from 
Normal(0.5,0.166) 

sharingThreshold The necessary link’s activation 
(i.e. respective node’s activation 
and link weight) or node’s score 
threshold above which the agent 

wishes to communicate the 
knowledge element 

[0,1] 0.75 (analysis 
threshold) 

Maximal agreeableness 
influence on perception 
of remarks  

Parameter influencing the 
perception of other agent’s 

scores assigned to the proposed 
structure; a maximal value that 
can be added or subtracted from 
other agent’s structure rating (it 

is scaled by the agent’s 
agreeableness) 

[0,1] 0.05 

agreeableness Parameter guiding initial trust 
value and perception of other 

agents’ messages  

[0,1] 0.50 or random from 
Normal(0.5,0.166) 

maxTrust The maximal amount of trust the 
agent has in a particular team 

member 

[0,1] 0.75 (analysis 
threshold) 

minTrust The minimal amount of trust the 
agent has in a particular team 

member 

[0,1] 0.25 (1 - analysis 
threshold) 

trustChangeRate Parameter guiding the update of 
trust in between two tasks  

[0,1] 0.10 

acceptanceThreshold Parameter guiding the team’s 
acceptance of a particular 

structure as a final solution. 
Team score assigned to a 

structure needs to exceed the 
acceptance threshold for the 

[0,1] 0.95 
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structure to be declared as a 
solution, thus terminating the 

simulation 

Number of agents Number of agents forming a 
team 

ℕ 3 

Task duration (number 
of steps) 

Number of simulation steps 
allocated for one task 

ℕ 1,000 
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