Sprega elektromagnetskih sila i vibracija statorskoga paketa sinkronoga generatora.

Petrinić, Miroslav

Doctoral thesis / Disertacija

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:373252

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-24

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of Electrical Engineering and Computing repozitory

Sveučilište u Zagrebu FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Miroslav Petrinić

SPREGA ELEKTROMAGETSKIH SILA I VIBRACIJA STATORSKOGA PAKETA SINKRONOGA GENERATORA

DOKTORSKI RAD

Zagreb, 2019.

Sveučilište u Zagrebu FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Miroslav Petrinić

SPREGA ELEKTROMAGETSKIH SILA I VIBRACIJA STATORSKOGA PAKETA SINKRONOGA GENERATORA

DOKTORSKI RAD

Mentori: Prof. dr. sc. Željko Štih Prof. dr. sc. Hinko Wolf

Zagreb, 2019.

University of Zagreb FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Miroslav Petrinić

COUPLING OF ELECTROMAGNETIC FORCES AND VIBRATIONS OF SYNCHRONOUS GENERATOR STATOR CORE

DOCTORAL THESIS

Supervisors: Professor Željko Štih, PhD Professor Hinko Wolf, PhD

Zagreb, 2019.

Doktorska disertacija izrađena je na Sveučilištu u Zagrebu Fakultetu elektrotehnike i računarstva, na Zavodu za osnove elektrotehnike i električka mjerenja i u KONČAR – Institutu za elektrotehniku d.d., na Zavodu za rotacijske strojeve

Mentori: Prof. dr. sc. Željko Štih

Prof. dr. sc. Hinko Wolf

Disertacija ima: 252 stranice. DOKTORSKA DISERTACIJA BR.: _____

O mentoru

Željko Štih je rođen 1955. godine u Krapini. Diplomirao je 1978., magistrirao 1981. i doktorirao 1984. godine na Elektrotehničkom fakultetu u Zagrebu. Bio je zaposlen u Elektrotehničkom institutu "Rade Končar" na poslovima istraživanja i razvoja u Sektoru za transformatore te u RO "Infosistem" na poslovima razvoja grafičke programske podrške. Od 1986. godine zaposlen je na Sveučilištu u Zagrebu Fakultet elektrotehnike i računarstva. U znanstveno-nastavno zvanje redoviti profesor izabran je 2002. godine.

Prof. Štih je autor/koautor tri autorske knjige, dvije uredničke knjige, sedamdesetak znanstvenih radova i stotinjak stručnih elaborata. Trenutno je voditelj istraživačkog projekta "Numeričko modeliranje složenih elektromagnetskih pojava u transformatorima". U okviru znanstvene i stručne djelatnosti bavi se razvojem numeričkih proračuna elektromagnetskih polja i njihovom primjenom u projektiranju elektromagnetskih naprava.

Predsjednik je tehničkog odbora međunarodnog kolokvija "Transformer Research and Asset Management", a 1997. godine je dobio nagradu J.J. Strossmayer za znanstveno djelo s područja tehničkih znanosti.

About the Supervisor

Željko Štih was born in Krapina, Croatia, in 1955. He graduated in 1978 and received the PhD degree from the University of Zagreb, Faculty of Electrical Engineering, Croatia, in 1984. He worked at the Electrical Engineering Institute "Rade Končar" on research and development within the Transformer division and at the "Infosistem" on development of graphical programming support. Since 1986, he works at the University of Zagreb, Faculty of Electrical Engineering and Computing, where he became a Full Professor in 2002.

Professor Štih is the author or co-author of three books, two proceedings, more than seventy scientific papers and more than one hundred expert reports. At the moment he leads the research project "Numerical Modelling of Complex Electromagnetic Phenomena in Transformers". His research interest is computational electromagnetism and its application to power apparatus and systems.

He is chairman of the Technical Committee of the international colloquium "Transformer Research and Asset Management". In the year 1997 he received the J.J Strossmayer award for scientific book in the area of technical sciences.

O mentoru

Hinko Wolf rođen je 17.10.1962. godine u Zagrebu. Na Fakultetu strojarstva i brodogradnje Sveučilišta u Zagrebu diplomirao je 1987. godine, magistrirao je 1994., a doktorirao je 1997. Od 1987. do 1988. godine radio je u Institutu za elektrotehniku "Rade Končar". Od 1988. zaposlen je na Zavodu za tehničku mehaniku Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu. Od 2010. obnaša dužnost voditelja Katedre za primijenjenu dinamiku.

Surađivao je na više znanstveno-istraživačkih projekata, te djelovao kao voditelj znanstvenoistraživačkog projekta "Numerička i eksperimentalna istraživanja nelinearnih mehaničkih sustava". Samostalno ili u koautorstvu objavio je preko 70 znanstvenih radova. Koautor je četiri sveučilišna udžbenika. Tijekom 1992. i 1993. godine kao stipendist tvrtke Schlumberger Technologies u Beču specijalizira primjenu CAD/CAE programskih paketa na statičku i dinamičku analizu mehaničkih konstrukcija. 2007. godine nagrađen je s godišnjom nagradom Akademije tehničkih znanosti hrvatske "Rikard Podhorsky".

Govori engleski jezik. Član je Hrvatskog društva za mehaniku, Hrvatskog društva za teoriju strojeva i mehanizama i organizacijskog odbora ljetne škole i internacionalne konferencije za integritet i trajnost konstrukcija.

About the Supervisor

Hinko Wolf was born on October 17, 1962 in Zagreb. He graduated from the University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture in 1987; he took his master's degree in 1994 and his PhD in 1997 at the same university. From 1987 to 1988 he worked at Institute for Electrical Engineering "Rade Končar". Since 1988 he has been employed at the Department of Engineering Mechanics, Faculty of Mechanical Engineering and Naval Architecture University of Zagreb. From 2010 he is a head of the Chair of Mechanical Systems Dynamics.

He collaborated on several research projects and was a leading researcher of the project "Numerical and experimental research on non-linear mechanical systems" supported by the Ministry of Science and Technology of the Republic of Croatia. He is the author or co-author of over 70 scientific papers and co-author of four university textbooks.

During 1992 and 1993 as a scholar of Schlumberger Technologies in Vienna he specialized in the application of CAD/CAE software packages on the static and dynamic analysis of mechanical structures. In 2007 he received annual award of Croatian Academy of Engineering "Rikard Podhorsky".

He is a member of the Croatian Society of Mechanics, the Croatian Society for the theory of machines and mechanisms, and of the organizing committee of the International Conference on Structural Integrity and Durability & Summer School (ISCID)

ZAHVALA

Zahvaljujem se mentoru Prof. dr. sc. Željki Štihu, s kojim surađujem još od prvih godina zaposlenja. Vaše poznavanje osnova numeričkih proračuna, te tečajevi kojima ste me pripremili za upotrebu modernih proračunskih alata, temelj su bez kojeg ovaj rad ne bi bio moguć.

Zahvaljujem se mentoru Prof. dr. sc. Hinku Wolfu. Vaši konkretni stručni savjeti bili su velika pomoć u radu. Uz njih su analize i rezultati mehaničkih proračuna dobili novu dimenziju u očima elektrotehničke struke. Hvala na korisnim savjetima i razumijevanju.

Zahvaljujem se Prof. dr. sc. Stjepanu Caru, na korisnim savjetima i razumijevanju tijekom izrade disertacije. U Vama sam uvijek imao osobu kojoj sam se mogao obratiti u vezi s bilo kojim problemom, znajući da ću dobiti pomoć. Profesore, velika Vam hvala na svemu.

Puno hvala svim kolegama iz tvrtke KONČAR - Institut za elektrotehniku d.d.. Tu posebice moram istaknuti mag.sc. Marijana Boguta, Darka Šeremeta dipl.ing. i Milana Kovačevića ing. s kojima je bilo zadovoljstvo surađivati i od njih učiti. Te dodatno zahvaliti dr.sc. Stjepanu Tvoriću za savjete oko formalnih koraka u pripremi rada.

Hvala mojoj obitelji: majci Ružici, ocu Marijanu i baki Marici. Hvala vam što ste me uvijek podržavali. Bez vas ne bi bilo ove disertacije niti bilo kojeg mog uspjeha.

Nadasve, hvala supruzi Ivani, koja mi je pružala potporu i sa svojom vjerom u uspjeh dala dodatnu snagu. Hvala ti na strpljivosti i odricanjima koja si prošla zajedno sa mnom.

Posebnu zahvalnost dugujem ocu Marijanu, koji je najbolje iskusio sve muke izrade ove disertacije. Hvala na strpljenju, ohrabrenju koje si mi pružio i radovanju svakom mom uspjehu. A nadasve svim stručnim savjetima i pomoći kakvu može pružiti samo čovjek s dugogodišnjim iskustvom u struci i velikim poznavanjem električnih sinkronih generatora.

Sažetak

Češće promjene opterećenja, nesimetričnost opterećenja faza veća od standardima propisanih vrijednosti i mogućnost motorskog uz generatorski rad, neki su od postavljenih zahtjeva za suvremene sinkrone hidrogeneratore, a koji proizlaze iz potrebe za povećanjem dinamike regulacije energije. Ukoliko se pojave kakvi kvarovi u namotu tijekom eksploatacijski važnog perioda, pokušava se određeno vrijeme nastaviti rad uz takvo stanje ili uz neke brze privremene popravke kao što je odspajanje dijela namota, uslijed kojih dolazi do elektromagnetske nesimetrije generatora. Da bi strojevi mogli raditi u ovakvim, specifičnim stanjima, potrebno ih je projektirati na za to odgovarajući način. Mogućnost računske provjere rada generatora u nesimetričnom stanju i s različitim vrstama opterećenja stoga je od značajnog interesa. Uz povećanje gubitaka snage, nesimetrična radna stanja mogu biti popraćena i porastom iznosa vibracija te posljedično buke. Ovim radom pobliže su proučeni utjecaji električne nesimetrije na magnetske sile te njima uzrokovane vibracije električnog sinkronog stroja. Prikazana je veza između napona induciranog u mjernom svitku ispod zuba i radijalne sile koja djeluje na zub, raspodjela sila po zubima paketa statora te utjecaj promjene snage, faktora snage i različitih nesimetrija po fazama na ove sile. Prikazani su sastav harmonika vibracija paketa, njegova usporedba s harmonicima sila na zube te način na koji se ove sile i vibracije mijenjaju s promjenom opterećenja.

Kroz rad je predstavljena metodologija otkrivanja nesimetričnog opterećenja generatora s istaknutim polovima analizom magnetskog polja u zračnom rasporu. Ona se temelji na analizi napona induciranih u mjernim svitcima ugrađenim na zube statora po određenom rasporedu. Integracijom i kvadriranjem induciranih napona mjernih svitaka razmaknutih za pola polnog koraka i dvije trećine polnog koraka određeni su valni oblici radijalnih sila na zube, na osnovi čije razlike se utvrđuje postojanje nesimetrije. Usporedbom napona dijametralno postavljenih svitaka utvrđena je razlika stanja električne nesimetrije od ostalih vrsta poremećaja kao što su ekscentričnost rotora i kvar namota. Superpozicijom sila na zube generatora za segment stroja koji se elektromagnetski ponavlja po obodu, određena je ukupna radijalna magnetska sila na paket. Usporedbom frekvencijskog sastava izmjerenih akceleracija paketa s frekvencijskim spektrom radijalne sile paketa utvrđeni su elektromagnetski uzrokovani harmonici vibracija i odvojeni od mehanički uzrokovanih harmonika.

Za analizu stanja električne nesimetrije, najprije su izrađeni numerički 2D modeli generatora temeljeni na metodi konačnih elemenata (MKE) s ciljem izračuna magnetskih sila i njima uzrokovanih vibracija te provjere predložene metodologije za analizu napona mjernih svitaka i otkrivanje nesimetričnog opterećenja. Proračunima je dokazano da se magnetske sile i njima uzrokovane vibracije međusobno razlikuju za različita pogonska stanja te da je pomoću napona induciranih u mjernim svitcima moguće odrediti valne oblike koji se po harmonijskom sastavu poklapaju s radijalnom silom na pojedini zub. Utvrđeno je da se usporedbom ovih valnih oblika može otkriti i prepoznati nesimetrično električno opterećenje. Rezultati dobiveni MKE proračunima verificirani su mjerenjima u laboratoriju na sinkronom generatoru namijenjenom za napajanje različitih ispitivanih uređaja. Navedeni generator posebno je dorađen kako bi se moglo mjeriti vibracije izravno na statorskom paketu i magnetsko polje u zoni zračnog raspora.

Mjerenjem su potvrđeni rezultati numeričkih proračuna te je postignuto vrlo dobro slaganje istih. Analizom rezultata također su određeni optimalan raspored te broj potrebnih mjernih svitaka za otkrivanje nesimetričnih električnih opterećenja i ukupne radijalne magnetske sile koja djeluje na paket statora. Temeljem provedenih analiza i uočenih pravilnosti razvijen je algoritam kojim je moguće otkriti električno nesimetrično opterećenje i razlučiti ga od drugih mogućih uzroka magnetske nesimetrije u stroju. Algoritam omogućuje otkrivanje električne nesimetrije usporedbom valnih oblika napona induciranih u šest mjernih svitaka tijekom jednog punog okreta rotora. Razvijen je i algoritam pomoću kojeg se na osnovi napona mjernih svitaka određuje harmonijski sastav ukupne radijalne sile u promatranoj točki paketa, uspoređuju harmonici sile s harmonicima izmjerenih vibracija i utvrđuju dijelovi spektra vibracija uzrokovani elektromagnetskom pobudom. Prikazane metode za analizu radijalnih sila koje djeluju na zube statora i otkrivanje nesimetričnog električnog opterećenja moguće je koristiti kao dio ekspertnog sustava za nadzor i praćenje stanja sinkronog generatora.

Ključne riječi: sinkroni generator, nesimetrična opterećenja, mjerni svitak, magnetska indukcija, magnetske sile, vibracije, metoda konačnih elemenata, spregnuti proračuni

Coupling of Electromagnetic Forces and Vibrations of Synchronous Generator Stator Core

Introduction

Dynamics of today's energy grid increases the requirements placed upon operation of synchronous hydrogenerators. More frequent load changes, phase winding currents with higher asymmetries than proscribed by standards and the need to operate in motor and generator load conditions are examples of such demands. In some cases when winding fault of the machine occurs during the peak energy production period, operation is continued in such a state or shortly paused only to rapidly bypass faulted winding section and continue the production until a more suitable time for a proper repair. This kind of specific load condition can be safely maintained only if a generator was designed with such load operations in mind. Ability to analyze different asymmetric load conditions of the electric generator through calculations can therefore be of great interest. Asymmetric load conditions can lead to increased losses, vibrations and unwanted noise of the machine. This research deals with effects of electric asymmetries on the magnetic forces acting on the stator part of the synchronous generator and the vibrations caused by these forces. Effect of generator apparent power change, power factor changes, and load asymmetry change on force distribution over the stator teeth are investigated. Voltage induced within the measuring coils mounted on the stator teeth is also analyzed for these load conditions and connection between coil induced voltage and stator radial magnetic force is presented. Frequency spectrum of stator stack vibrations is compared with the frequency spectrum of magnetic forces acting upon the stator stack for different load states.

Methodology do detect asymmetric load condition of the salient pole generator based on the analyses of magnetic field within the machine air gap is presented. This detection is based on the analyses of the voltage induced within the measuring coils that are installed on the stator teeth in specific order. Through integration and squaring of the measured voltage signal a waveform of radial force acting upon the stator tooth is obtained. By comparing forces that act on the teeth mutually spaced for half of the pole pitch or two-thirds of the pole pitch, existence of electric asymmetry is determined. A method to distinguish electric load asymmetry from symmetric load condition is presented as well. Through superposition of forces acting on the stator that is electromagnetically repeated over machine circumference) a total radial magnetic force acting on the stator stack is determined.

Through comparison of frequency spectrum of measured accelerations on the stator stack with radial force frequency spectrum of the stator stack the harmonics of vibrations induced by electromagnetic causes are isolated from the remaining vibration spectrum.

Radial forces that act on the teeth, voltages induced in measuring coils and stator stack vibrations were calculated for different electromagnetic conditions of the machine by means of finite element method (FEM) analyses. Calculation results gave insight on ways how forces and vibrations change with the type of electric load conditions and how asymmetric load conditions can be distinguished from symmetric loads, rotor eccentricity or faulted winding condition. These results have been verified through laboratory measurements on synchronous generator specifically prepared for this experimental research. Through measurement results it was also proved that harmonics of vibration caused by magnetic radial forces can be distinguished from mechanically induced vibrations. One of the future goals is that the new findings regarding the air gap magnetic field analysis are implementation in expert monitoring systems for rotating machines. Eventually, this means having an industrial application that achieves better asset management of the key electrical power equipment.

Proven methods of force and vibration calculation

Most common causes of synchronous generator vibrations are listed in this chapter and existing methods for electric machine magnetic force and vibration calculation reviewed. Vibrations that can be caused by the design of machine active part, asymmetric load state, rotor eccentricity, bearings and some additional reasons like loose screws and unbalance of moving parts are shortly described.

Electromagnetic force and vibration calculation methods are divided into analytical and numerical methods based on finite element method described in some detail. Basic calculation principle of Maxwell stress tensor and Virtual work method for magnetic force calculation are presented, with the emphasis on the analyses of the forces acting within the electric machine. In the same manner the basics of FEM calculation of mechanical general motion equation are presented. Principle used for calculation of vibrations caused by forces acting on the stator core is described and the ability to determine potential vibration problem through comparison of stator eigen frequencies with force frequency spectrum.

Synchronous generator for experimental measurements and measuring equipment

In this chapter synchronous generator used for experimental measurement and FEM calculations is described. To perform required laboratory measurements, the analyzed 3-phase synchronous generator was specially reworked. The main reason for this change was to enable vibration measurement directly on the stator core. Using the generator, several symmetrical and electrically asymmetrical load conditions were measured. Measurements were performed using methods and technical solutions otherwise implemented in rotating machine monitoring systems, with measuring equipment that is commonly used in testing and diagnosis of electric devices. The measurement system used during the experimental work consisted of analyzed object (synchronous generator), measuring sensors (coils installed on stator teeth and accelerometers placed on stator core and stator casing), regulated 3-phase resistor bank, regulated 3-phase induction coil and measuring laboratory unit. Embedded coils measure the induced inner voltage, due to the variable magnetic flux that flows through the coil. This voltage is used in further data processing and analysis in order to determine radial force on the stator teeth, and to detect generator electric load asymmetry. The measuring coils is designed in the PCB technique with geometric dimensions corresponding to the stator tooth of the analyzed motor. The following machine parameters were only monitored with laboratory measuring unit NORMA AC Power Analyzer D 5255 S: line voltages, phase currents and load reactive current. The following machine parameters were recorded with laboratory measuring unit PULSE LAN-XI for further data processing and analyses: induced voltage of measuring coils and voltage signals from accelerometers. An integral part of the laboratory unit is the software program PULSE LabShop. With this software the data processing of the measured acceleration values was performed. In the last subsection of this chapter, the measurement uncertainty is described and the procedure for determining the uncertainty of experimental measurement is shown. According to the relevant standard, the measurement uncertainty of the overall experimental measurement is determined to be $\pm 16,75$ %.

Magnetic force determined on the base of measuring coil induced voltage

This chapter describes the methodology of magnetic radial force determination based on the induced voltage in measuring coil. Through means of integration and squaring of measuring coil induced voltage a waveform of radial force acting on stator tooth is derived. A method to determine frequency spectrum of the radial force acting on the entire stator core is presented.

To use suggested method, one needs to determine forces on all the teeth that are encompassed within the urpole part of the machine. The determined force frequency spectrum can then be used for comparison with measured vibration frequency spectrum to determine overlapping harmonics.

Also, a new method for asymmetric electric load detection is described, based on the comparison of maximum values of teeth radial forces determined via measuring coils. The three coils need to be installed on three equally spaced teeth of the machine that have the same absolute value of radial force when generator is operating in symmetric load conditions. When asymmetry occurs, these forces no longer share the same peak value. In order to distinguish electric load asymmetry situation from other asymmetries such as a broken rotor bar, short circuit of field winding or rotor eccentricity, a set of additional coils can be placed on the stator teeth that are located on the other end of the stator, compared to original three coils. If machine has even number of urpoles, diametrically opposite teeth share the same electromagnetic state. If the machine has the odd number of total urpoles, the distance in the number of the teeth between the original and the additional coils should be chosen as an integer multiplier of teeth encompassed by the machine urpole. If electric asymmetry is the cause of machine magnetic disturbance, then forces determined based on the opposing coils share the identical waveform.

Synchronous generator electromagnetic analysis by FEM method

This chapter describes FEM simulations that were conducted on the motor model designed in commercial software *ANSYS Electronics Desktop* and *ANSYS Mechanical*. Modal analysis was performed through mechanical 2D FEM calculation model comprising of the stator core and the stator casing machine middle part cross-section. Modal frequencies of the stator stack were detected, and their corresponding forms depicted within the frequency spectrum of 13 kHz.

FEM calculations were initially performed for symmetrical load operation situations. Afterwards, using the same FEM model but with modifications to the outer electric circuit, asymmetric load states were simulated. Conducted analysis showed that different load states result in different waveforms of radial forces and stator stack vibrations. It was noted that increase in amplitude values of radial forces leads to the increase of the vibration intensity. Calculation results also showed that when comparing symmetric and asymmetric load conditions of the same power level or of the same currents passing through the armature winding, higher forces and vibrations occur when asymmetry is present. Situations of eccentric rotor and field winding fault were also analyzed through comparison of stator teeth forces. It was shown that asymmetric load condition can be distinguished from other types of generator irregular states.

Synchronous generator measurement results

For the purpose of FEM results verification, it was necessary to perform experimental measurement on the modified synchronous generator. Bump test measurements were performed first, to determine modal frequencies of the generator. Test results verified the mechanical calculation model modal frequency values. Following were the measurements in steady state symmetrical load conditions, and measurements performed for electrically asymmetric load conditions. Measurement results of the measuring coils verified the results that were obtained by the electromagnetic FEM calculations. Frequency spectrum of measured vibration results verified FEM calculations and vibration dependence on magnetic forces acting within the machine. Accelerometer output was additionally measured for a case of electrically non excited mechanical rotor spin. These results showed that some additional vibrations, not caused by the electromagnetic state of generator, are present on the real machine.

Comparison of the results obtained by FEM and measurement

In this chapter, the comparison between calculated and measured results was performed. First, the induced voltages of the measuring coils were compared, then the radial forces determined through processing of these voltages. Finally, vibration measuring results on the outer diameter of stator core were compared.

Comparison of measuring coil induced voltages and radial forces of teeth showed good alignment for the analyzed symmetrical and asymmetrical load conditions. In both measured and calculated case, asymmetric load condition could be determined through comparison of radial force peak values of teeth that are mutually spaced for one half of the pole pitch. Overlap of measured and calculated vibration frequency spectrum proved that electromagnetically caused harmonics of vibration can be distinguished from mechanically caused vibration. Electromagnetically caused vibration harmonics were affected by load changes in the same manner for both the measured and calculated results.

Algorithm for recognition of asymmetric electric load of synchronous generator through the means of measuring coils

This chapter describes the algorithm and the methodology for recognition of asymmetric load condition of the synchronous generator. The input parameters for the proposed algorithm are induced voltages in three measuring coils spatially spaced for two thirds of the pole pitch, and additional three counterpart coils placed on the teeth that are in opposing position to original three. The first part of the algorithm determines peak radial force values of the three coils and compares these numbers. Based on the peak value difference the asymmetry occurrence is flagged. Second part of the algorithm compares induced voltages of measuring coils placed on opposite stator teeth. If these values do not differ for more than what is allowed by measuring uncertainty, a flag is activated signaling that the asymmetry in question is caused by asymmetric load condition. Otherwise, a disturbance other than the load asymmetry is signaled. In all three cases algorithm gives output result with the corresponding message. The proposed algorithm is designed in the *Octave* software.

Algorithm for determination of electromagnetically caused harmonics of vibration of synchronous generator

This chapter describes the algorithm and the methodology to distinguish the electromagnetically caused harmonics within the vibration frequency spectrum of the synchronous generator, based on the analyses of radial forces acting on stator teeth.

This algorithm comprises of measuring coil induced voltage determination across the urpole region of the generator teeth, processing of these voltages through integration and squaring to get the appropriate stator teeth radial forces, superposition of these forces to get the total magnetic force that effects the yoke of the stator core, frequency spectrum determination of this force, comparison of distinguished harmonics between force an vibration frequency spectrum and determination of frequencies where vibration harmonics coincide with magnetic force harmonics. Based on the FEM force calculations and vibration measurements, the goal of a functional algorithm for determination of electromagnetically caused vibration harmonics was achieved. Chapter presents and describes the proposed algorithm through the flowchart and explanations of the code that was written in the *Octave* software and added as the appendix of the document.

Conclusion

Within this dissertation a calculation and analysis of magnetic forces and vibrations caused by their effect were analyzed on the example of the synchronous salient pole generator. Effects of power level, power factor level and load asymmetry change were investigated. Distribution of radial magnetic forces acting on stator teeth was presented for different load situations and their correlation to stator stack vibrations were shown. The methodology used for stator teeth force determination that is based on the analyses of voltages induced in the measuring coils placed on the radial surfaces of the stator teeth was elaborated. This procedure includes integration and squaring of measuring coil voltage that is induced in the coil due to magnetic field changes within the machine air-gap region. By superimposing radial forces of teeth located within the urpole region of the machine, and performing fast Fourier transform a frequency spectrum of total radial force acting on the stator yoke is determined. Through comparison of frequency spectrum of measured accelerations with radial force frequency spectrum of the stator stack the harmonics of vibrations induced by electromagnetic causes are distinguished from the rest of vibration spectrum.

The methodology for asymmetric electric load detection, based on the analyses of measuring coil induced voltages that are installed on the stator teeth, was presented. The procedure requires the use of three coils mutually spaced for two thirds of a pole pitch. A procedure that uses only two measuring coils mutually spaced for half of the pole pitch has also been considered but proven to have unreliable recognition threshold. The detection procedure includes measurement of induced voltages of measuring coils and comparison of peak radial force values obtained through measured voltages. Asymmetry is determined based on the difference of the peak force values. For the purpose of distinguishing electric load asymmetry from rotor eccentricity and winding faults, additional coils need to be added, on the diametrically opposite side to the original three coils. Matching of voltages of the coils placed on the opposite stator teeth proves that machine has no asymmetries other than that of the electric load.

Calculations have been conducted by FEM to investigate asymmetric load conditions effect on stator core forces and vibrations. To confirm the thesis and verify FEM results, the corresponding measurements in the laboratory have been performed. Results confirmed that the stator yoke force determination methodology can be functionally implemented only if measuring coils are placed on every tooth of the urpole machine region. Calculations and measurements confirmed that asymmetric load detection methodology can be reliably implemented if 6 measuring coils are used. Conducted analyses proved that measuring coils placed within the air-gap region of the machine can be used to determine magnetic forces acting upon stator teeth of the machine, and that these results can be used to determine harmonic spectrum of the force acting on the stator core. It was also proven that forces calculated in this manner can be used as input for mechanical vibration calculation. This represents the first scientific contribution of this work.

The second scientific contribution are new insights of how asymmetric load conditions effect radial magnetic forces and vibrations of the stator core of synchronous generator. Analysis conducted using coupled electromagnetic and mechanical calculations showed how different load states effect waveforms of radial forces and stator stack vibrations. It was proven that forces and vibrations share mutual harmonics in their frequency spectrum, and that electromagnetically caused harmonics of vibrations can be distinguished from the rest of the vibration spectrum. It was proven that the increase in amplitude value of specific radial force harmonics leads to the corresponding harmonics increase of vibrations. Calculation results also showed that when comparing symmetric and asymmetric load conditions of the same power level or of the same currents passing through the armature winding, higher forces and vibrations occur when asymmetry is present. Comparison with measurements proved that calculated results match those of the real generator.

The third scientific contribution is related to the design of the algorithm for determination of electromagnetically caused vibration harmonics and algorithm for asymmetric load recognition of synchronous generator based on the analyses of the voltage induced in the measuring coils. Methods, which are based on the analyses of induced voltage of measuring coils, have previously shown its usefulness and reliability in other types of machine analyses like fault detection systems. Presented methods of force analyses can be implemented in such expert monitoring systems for rotating machines.

Keywords: salient pole generator, unbalanced load condition, measuring coil, induced voltage, magnetic force, vibrations, finite element method, coupled simulations

Sadržaj

1.	Uvod	1
2.	Uobičajene metode izračuna sila i vibracija	3
2	2.1. Uzroci vibracija	4
	2.1.1. Izvedba aktivnog dijela stroja	4
	2.1.2. Nesimetrično stanje opterećenja	5
	2.1.3. Ekscentričnost rotora kao uzrok vibracija	7
	2.1.4. Vibracije uzrokovane ležajevima	9
	2.1.5. Ostali uzroci vibracija	10
2	2.2 Metode izračuna sila i vibracija	11
	2.2.1. Analitički proračuni	12
	2.2.2. Numerički proračuni metodom konačnih elemenata	13
	2.2.3. Određivanje magnetskih sila metodom konačnih elemenata	14
	2.2.4. Vibracije uzrokovane magnetskim silama	18
3.	Sinkroni generator za eksperimentalna mjerenja i mjerna oprema	23
3	3.1. Sinkroni generator – objekt mjerenja	23
3	3.2. Mjerna oprema	30
	3.2.1. Mjerni svitak	32
	3.2.2. Akcelerometar	34
	3.2.2. Senzor brzine pomaka	37
	3.2.2. Impulsni čekić	39
	3.2.3. Akvizicijska mjerna stanica	40
	3.2.4. Analizator snage	42
	3.2.4. Mjerna nesigurnost	43
4.	Magnetske sile i inducirani napon mjernih svitaka	46
4	4.1. Odnos magnetske indukcije mjernog svitka i radijalne sile koja djeluje na zub	49
4	4.2. Detekcija nesimetričnog opterećenja upotrebom mjernih svitaka	54
5.	Proračuni generatora metodom konačnih elemenata	63
5	5.1. Izrada simulacijskog modela	64
	5.1.1. Model za elektromagnetske proračune	64
	5.1.2. Model za mehaničke proračune	68
	5.1.3. Povezivanje elektromagnetskog i mehaničkog proračuna	70
5	5.2. Rezultati elektromagnetskih proračuna za simetrično stanje	

5.2.1. Utjecaj povećanja snage na magnetske sile
5.2.2. Utjecaj promjene faktora snage na magnetske sile
5.2.3. Odnos između magnetske sile i napona mjernog svitka
5.3. Analiza utjecaja električki nesimetričnog opterećenja na magnetske sile i inducirane napone u mjernim svitcima određene numeričkim proračunima91
5.3.1. Utjecaj povećanja snage na sile zubi pri nesimetričnom opterećenju
5.3.2. Utjecaj promjene faktora snage na iznos sile
5.3.3. Utjecaj promjene aktivnih faza na raspored sile po zubima
5.3.4. Utvrđivanje nesimetričnog opterećenja analizom induciranih napona mjernih svitaka 106
5.3.5. Manje električne nesimetrije
5.3.5. Magnetske sile koje djeluju na zube u slučaju drugačijih vrsta poremećaja112
5.4. Izračun vlastitih frekvencija statora
5.5. Rezultati mehaničkih proračuna za simetrična opterećenja generatora119
5.6. Rezultati mehaničkih proračuna za nesimetrična radna stanja generatora
6. Rezultati mjerenja na generatoru
6.1. Mjerenje vlastitih frekvencija
6.2. Mjerenje električnih veličina za simetrična opterećenja
6.3. Mjerenje vibracija za simetrična opterećenja146
6.4. Mjerenje električnih veličina za nesimetrična opterećenja
6.5. Mjerenje vibracija za nesimetrična opterećenja
7. Usporedba rezultata određenih proračunima i mjerenjima
7.1 Usporedba vlastitih frekvencija statora generatora određenih proračunom i mjerenjem 161
7.2 Usporedba rezultata proračuna i mjerenja za stanje praznog hoda162
7.3 Usporedba rezultata proračuna i mjerenja za stanje simetričnog opterećenja167
7.4 Usporedba rezultata proračuna i mjerenja za stanje nesimetričnog opterećenja173
8. Algoritam za prepoznavanje nesimetričnog električnog opterećenja generatora analizom induciranih napona u mjernim svitcima
8.1 Svojstvene karakteristike električnog nesimetričnog opterećenja
8.2 Algoritam za otkrivanje nesimetričnog električnog opterećenja sinkronog generatora
8.2.1. Dio 1. Određivanje radijalnih magnetskih sila analizom napona 6 mjernih svitaka 184
8.2.2. Dio 2. Usporedba sila koje djeluju na zube
9. Algoritam za razlučivanje elektromagnetski uzrokovanih od mehanički uzrokovanih harmonika vibracija
9.1. Mogućnost usporedbe frekvencijskog sastava sila i vibracija paketa statora

9.1.1. Harmonijski sastav sile na paket statora	191	
9.1.2. Usporedba sastava magnetske sile i vibracija paketa statora	199	
9.2 Algoritam za razlučivanje harmonika vibracija uzrokovanih elektromagnetskim silama	201	
9.2.1. Određivanje radijalnih magnetskih sila za slučaj praznog hoda generatora	203	
9.2.2. Određivanje ukupne radijalne sile u smjeru pozicije akcelerometra	204	
9.2.3. Raspoznavanje harmonika vibracija uzrokovanih magnetskom radijalnim silama	208	
9.3. Poteškoće određivanja spektra harmonika magnetske sile paketa statora mjerenjem	213	
10. Zaključak	214	
11. Literatura	217	
Popis oznaka 222		
Popis slika	230	
Popis tablica	238	
Prilog A1: Kôd algoritma za izračun radijalnih sila koje djeluju na zube generatora ob induciranih napona 6 mjernih svitaka	oradom 240	
Prilog A2: Kôd algoritma za utvrđivanje električne nesimetrije analizom radijalnih si djeluju ne zube međusobno razmaknute za $\frac{2}{3} \tau_p$	la koje 241	
Prilog B1.1: Kôd algoritma za izračun sila na zube obuhvaćene prapolom generatora ob induciranih napona mjernih svitaka	oradom 242	
Prilog B1.2: Kôd algoritma za izračun sila na zube obuhvaćene prapolom generatora za praznog hoda	slučaj 243	
Prilog B2: Kôd algoritma za određivanje sile koja djeluje na odabrano mjesto vanjskog paketa statora vektorskim zbrajanjem radijalnih sila zubi	oboda 245	
Prilog B3: Kôd algoritma za razlučivanje elektromagnetski uzrokovanih harmoni mehanički uzrokovanih harmonika iz spektra vibracija	ika od 247	
Životopis	249	
Popis objavljenih radova	250	
Biography	252	

1. Uvod

Izvedba električnog sinkronog generatora određuje njegovu pouzdanost u radu, životni vijek i kvalitetu proizvedene energije. Ovo posebice dolazi do izražaja u suvremenim elektroenergetskim sustavima, kod kojih se dio energije proizvodi u obnovljivim izvorima kao što su solarne elektrane i vjetroelektrane. Kako proizvodnja ovakvih elektrana ovisi o vremenskim uvjetima, radi postizanje stabilne opskrbe energijom mijenja se i način upravljanja generatorima u klasičnim elektranama. Češće promjene opterećenja, a time i izloženost većim termičkim naprezanjima, nesimetričnost opterećenja faza veća od standardima propisanih vrijednosti [1, 2], mogućnost motorskog uz generatorski rad, neki su od tenderskih zahtjeva za suvremene sinkrone hidrogeneratore, a koji proizlaze iz potreba za povećanjem dinamike regulacije energije.

Kontinuirani rad uz nesimetrično električno opterećenje, osim kod klasičnih generatora, može biti zahtjev i za strojeve posebne namjene. Na primjer, u ispitnim stanicama može postojati potreba za napajanje trofaznih i jednofaznih potrošača. Takav primjer su ispitne stanice transformatora. Kada se trofazni generator koristi za ispitivanja jednofaznih transformatora, kroz njegove fazne namote teku bitno različite struje.

Pri nesimetričnim opterećenjima javljaju se pulsacije magnetskog polja dvostruko veće frekvencije od nazivne frekvencije napona. Oscilacije protjecanja uzrokuju promjene magnetske indukcije u zračnom rasporu, što dovodi do oscilacija elektromagnetskih (EM) sila koje djeluju unutar električnog stroja. Ovo dalje dovodi do pojačanih vibracija.

Da bi se osigurala dobra pogonska svojstva stroja, potrebno je što bolje poznavati elektromagnetske prilike koje na njih utječu. Stoga se osim klasičnih analitičkih proračuna [3-5], upotrebljavaju i složeniji postupci kao što su proračuni upotrebom metode konačnih elemenata (MKE) [6-24]. Analiza metodom konačnih elemenata omogućuje određivanje elektromagnetskih prilika u svakom segmentu stroja, pa time i proučavanje efekata kao što su lokalna magnetska zasićenja materijala te prostorna promjena magnetske indukcije uslijed električne ili geometrijske nesimetrije. Iz tog razloga MKE analiza pogodna je i za određivanje sila nastalih međudjelovanjem statorskog i rotorskog magnetskog polja u stroju.

Razvoj računala omogućio je primjenu MKE proračuna kojima se mogu simulirati dinamičke elektromagnetske pojave uz prisustvo mehaničkog gibanja. Takva izvodljivost proračuna potaknula je proučavanje sila koje se javljaju prilikom rada električnog stroja.

Analiza sila nastalih ekscentričnim rotacijskim gibanjem prvotno je proučavana na asinkronim motorima [8-11]. Budući da je radna točka asinkronog motora određena armaturnim

naponom U, frekvencijom f tog napona i momentom tereta M_t (veličine koje se mogu zadati kao ulazni podaci MKE proračuna), dinamička simulacija konvergira upravo u traženu radnu točku. Nakon njenog uspješnog izračuna moguće je analizirati elektromagnetske sile [12-18], vibracije [19-22] i buku [23] koje nastaju u radu električnog stroja. Radna točka sinkronog generatora određena je iznosima armaturnog napona U, armaturne struje I, te njihovim međusobnim faznim pomakom φ . Budući da MKE proračunom nije moguće istovremeno zadavanje iznosa napona i struje armaturnog namota (jedna od tih veličina mora biti izlazna), izračun elektromagnetskog stanja sinkronog generatora za željenu radnu točku složeniji je nego u slučaju asinkronog motora. Za rješavanje ovog problema pogodan je iterativni postupak [24].

Teorijska razmatranja u disertaciji, bazirana na elektromagnetskom proračunu, provedena su pomoću komercijalnog programskog paketa *ANSYS Maxwell*. U njemu su izrađeni proračunski modeli sinkronog generatora s istaknutim polovima za simulaciju električki simetričnog i nesimetričnog opterećenja sinkronog generatora. Upotrebom programskog paketa *ANSYS Mechanical* provedeni su mehanički proračuni za analizu vlastitih frekvencija statora i vibracija nastalih uslijed elektromagnetskih sila koje djeluju na stator generatora. Pri tome je zanemaren utjecaj vlastitih frekvencija rotora i mogući prijenos vibracija rotora na stator preko ležajeva. Eksperimentalna mjerenja izvedena su na stvarnom stroju radi potvrde rezultata numeričkog proračuna.

Cilj rada su doprinosi na:

- metodologiji sprege numeričkog proračuna magnetskog polja i numeričkog proračuna vibracija statorskog paketa sinkronog generatora temeljem proračuna magnetskih sila, što je opisano poglavljima 4 i 5,
- analizi utjecaja magnetskih sila na prirodu vibracija statorskog paketa sinkronog generatora pomoću rezultata svezanih numeričkih proračuna, u slučajevima simetričnih i nesimetričnih pogonskih stanja sinkronog stroja opisanih poglavljima 5, 6 i 7,
- razrada postupaka za razlučivanje elektromagnetskih uzroka vibracija sinkronog generatora iz mjerenja vibracija statorskog paketa i mjerenja magnetskih polja u zračnom rasporu opisanih poglavljima 8 i 9.

2. Uobičajene metode izračuna sila i vibracija

Sinkroni strojevi imaju nekoliko različitih uloga. Najviše se koriste kao generatori za proizvodnju električne energije. No također, mogu se koristiti i kao motori, kompenzatori jalove energije ili strojevi posebne namjene. Bez obzira kakva uloga sinkronog stroja bila, zahtjevi za radnim mogućnostima ovih strojeva rastu.

Primjerice, od motor-generatora u reverzibilnim hidroelektranama, namijenjenim skladištenju energije proizvedene vjetrom ili suncem, zahtijeva se mogućnost čestih promjena opterećenja. Također, za generatore koji se nalaze izolirani od ostatka mreže (daleko od potrošača i ostalih elektrana ili u otočnom radu) zahtijeva se mogućnost nesimetričnog opterećenja faza i do 20 %.

Zbog gubitaka u proizvodnji, do kojih dolazi zbog višetjednog stajanja generatora prilikom remonta, dugotrajni popravci planiraju se u vrijeme niske razine vode (mala proizvodnja). Ukoliko se pojave kvarovi u namotu tijekom eksploatacijski važnog perioda, pokušava se nastaviti rad uz neke brze popravke (primjerice odspajanje dijela namota generatora). U takvim situacijama generator radi u električki nesimetričnom stanju.

Da bi strojevi mogli raditi u ovakvim specifičnim pogonskom stanjima, treba ih projektirati na za to odgovarajući način. Mogućnost računske provjere rada generatora u nesimetričnom stanju i s različitim opterećenjima stoga je značajna.

Strojevi koji služe za proizvodnju električne energije spadaju u kategoriju kritičnih strojeva. Zadatak im je proizvodnja električne energije prema zahtjevima koje postavlja elektroenergetski sustav, odnosno trenutna potreba za električnom energijom. Kako bi se udovoljilo povećanim zahtjevima tržišta energije, generatori sve više rade u nepovoljnim pogonskim stanjima, čime se smanjuje njihov životni vijek i povećavaju troškovi održavanja.

Nesimetrija uzrokovana različitim električnim opterećenjem po fazama stroja, ekscentričnim položajem rotora u odnosu na stator ili kvarom namota dovodi do promjene elektromagnetskih sila koje se javljaju u aktivnim dijelovima električki uzbuđenog stroja. To najčešće znači povećanje iznosa ovih sila i pojavu dodatnih harmonika u njihovom frekvencijskom sastavu. Navedene promjene povećavaju vibracije paketa i kućišta statora električnog stroja.

2.1. Uzroci vibracija

Vibracije koje se pojavljuju u električnim rotacijskim strojevima mogu se podijeliti prema prirodi njihovog nastajanja na mehaničke i elektromagnetske. Mehanički uzroci obično su vezani uz konstrukcijske dijelove stroja (vratilo, ležajevi, ventilatori i dr.), dok su elektromagnetski uzroci najčešće povezani s aktivnim dijelovima stroja, u kojima nastaje elektromagnetska pretvorba energije, a karakterizira ih magnetska pobudna sila. U nastavku je dan kratki pregled najčešćih uzroka vibracija.

2.1.1. Izvedba aktivnog dijela stroja

Magnetske sile kod električnih strojeva u najvećoj mjeri uzrokuju naprezanja i vibracije. Magnetostrikcija se uslijed zanemarivog utjecaja na vibracije uglavnom ni ne razmatra. Ukoliko frekvencije nastalih vibracija spadaju u čujno područje (od 16 Hz do 20 kHz), kao posljedica sila može se pojaviti buka.

Ukoliko se neka vlastita frekvencija aktivnih dijelova stroja poklopi s frekvencijom pobudne sile dolazi do rezonancije, kod koje sila malog iznosa može uzrokovati značajne vibracije. Iz navedenog razloga potrebno je poznavati frekvencijski spektar magnetskih sila koje se javljaju u stroju te mehanička svojstva konstrukcije na koju one utječu.

Sljedeća geometrijska svojstva aktivnih dijelova stroja mogu imati utjecaj na frekvencijski spektar i iznos elektromagnetskih sila te njima uzrokovan mehanički odziv:

- međusobni odnos broja utora statora N₂, polova rotora 2p i broja faza m (broj utora po polu Q te broj utora po polu i fazi q);
- geometrija polova (oblik i dimenzije polne papuče);
- geometrija utora statora (oblik utora, veličina otvora utora);
- topologija prigušnog namota (broj i oblik utora, korak štapova, raspored po obodu polne papuče);
- izvedba armaturnog (statorskog) namota (broj faza, broj slojeva namota, korak namota, skraćenje koraka, broj i prostorni raspored paralelnih grana);
- zaklinjenje utora magnetskim klinovima;
- skošenje polova ili utora;
- veličina zračnog raspora;
- geometrijske nesimetrije (nesavršena okruglost provrta statora i oboda rotora);

- dimenzije ključnih presjeka (visina jarma statora, visina i širina zuba statora, visina i širina polne papuče);
- način učvršćenja statorskog paketa u kućištu;
- raspored rashladnih kanala (radijalnih ili aksijalnih);
- prigušni čimbenici (impregnacijski postupak, debljina magnetskih limova, interlaminacijski premazi, upotreba viskoelastičnih materijala)

2.1.2. Električki nesimetrična opterećenja

Tradicionalni pristup projektiranju električnih generatora podrazumijeva provedbu računskih analiza za stanja praznog hoda, kratkog spoja i karakteristična simetrična opterećenja. Međutim, u novije vrijeme zahtjevi na radne karakteristike električnih strojeva počeli su se značajno mijenjati:

- u proizvodnji električne energije pojavljuju se energetskim pretvaračima upravljani električni strojevi promjenjive brzine vrtnje (vjetrogeneratori, male hidroelektrane, dvostrano hranjeni motor-generatori za reverzibilne hidroelektrane);
- od generatora za klasične elektrane zahtjeva se siguran rad uz nesimetrično opterećenja faza do 20 %;
- u slučaju strojeva posebne namjene (kućni generatori za nuklearne elektrane, generatori za ispitne stranice) zahtjeva se mogućnost trajnog rada s jednofaznim teretom.

Magnetske sile i njima uzrokovane vibracije u uvjetima različitih električnih opterećenja mogu se međusobno značajno razlikovati. Slikom 2.1 usporedno su prikazane vibracije u jednoj točki vanjskog promjera paketa statora sinkronog generatora za šest različitih pogonskih stanja. Moguće je uočiti kako se za prikazana radna stanja vibracije međusobno razlikuju po srednjoj i vršnoj vrijednosti te valnom obliku.

Pri radu s pretvaračem, struje kroz namote osim osnovnog harmonika mogu sadržavati i značajne više harmonike zbog kojih raste opasnost od pojave rezonantnih vibracija i buke.

Slika 2.1 Radijalni vibracijski pomaci paketa statora za različita pogonska stanja električnog stroja

Kada je stroj simetrično opterećen, trofazni izmjenični sinusni sustav struja, međusobno fazno pomaknutih za 120 °el., formira okretno polje konstantne amplitude. To polje okreće se u smjeru mehaničke vrtnje rotora te ga stoga nazivamo direktnim poljem, a u dvoosnom d-q rotirajućem sustavu struju koja reprezentira to polje zovemo strujom u d-osi.

U uvjetima rada na jednofazni teret, struje triju faza nemaju istu amplitudu niti međusobni fazni pomak od 120 °el. (slika 2.2) pa to opterećenje nazivamo nesimetričnim. Ukoliko se takav nesimetrični trofazni sustav struja upotrebom Parkovih transformacija rastavi na rotirajući dvoosni sustav, moguće je vidjeti da uz direktnu, postoji i inverzna komponenta struje. Za razmatrani slučaj dvofaznog opterećenja, računskom provjerom na osnovi vektorskog dijagrama moguće je odrediti da amplituda inverzne komponente iznosi 33 % vrijednosti amplitude struje u direktnoj osi.

Inverzna komponenta protjecanja superponira se na direktno protjecanje, što rezultira pulsirajućim protjecanjem. Uz frekvenciju oscilacija dva puta veću od nazivne frekvencije mreže $(f=2:f_n)$ rezultantnom protjecanju Θ sinusno se mijenja amplituda u intervalu $1,3 \cdot \Theta_n - 0,7 \cdot \Theta_n$, gdje je s Θ_n označena nazivna vrijednost protjecanja.

Oscilacije protjecanja uzrokuju oscilacije magnetske indukcije u zračnom rasporu, što dovodi do oscilacija magnetskih sila unutar električnog stroja te zbog toga i do pojačanih vibracija statora.

Slika 2.2 Fazne struje generatora s namotom spojenim u zvijezdu pri radu na jednofazni teret

2.1.3. Ekscentričnost rotora kao uzrok vibracija

Proučavanje magnetskih sila električnog stroja posebno je zanimljivo za slučajeve vrtnje kod kojih obod rotora nije jednoliko udaljen od unutarnjeg promjera (provrta) statora. Takvo stanje, koje se naziva ekscentričnim, može biti uzrokovano greškom pri montaži (loše centriran rotor), mehaničkim deformacijama stroja (sedlasti progib vratila) ili stanjem ležajeva.

U svakom od tih slučajeva elektromagnetske prilike u zračnom rasporu stroja postaju nesimetrične, pa time dolazi i do neravnomjerne raspodjele magnetskih sila. To se posebice odnosi na radijalnu komponentu sile F_r , koja je najveća na mjestu najmanjeg zračnog raspora. Budući da iznos ove sile raste sa smanjenjem zračnog raspora [5], ona dodatno doprinosi povećanju ekscentričnosti te tako i većem naprezanju materijala. To može uzrokovati nestabilno gibanje rotora, pa čak i njegov mehanički kontakt sa statorom [3, 4].

Ekscentričnost rotora može se opisati položajem i vrstom gibanja rotora u odnosu na stator.

- Položaj rotora u odnosu na stator: aksijalni, paralelni i dijagonalni pomak osi rotora, te sedlasti progib vratila (slika 2.3)
- Vrsta gibanja aksijalne osi rotora: statička i dinamička ekscentričnost.

Slika 2.3 Vrste ekscentričnog pomaka rotora [26]

Paralelni pomak rotora predstavlja jednostavniji slučaj ekscentričnosti, budući da elektromagnetske prilike duž aksijalnog smjera statora ostaju nepromijenjene. Stoga je magnetske sile moguće odrediti 2D MKE proračunom. Kod dijagonalnog pomaka i sedlastog progiba mijenjaju se elektromagnetske prilike duž aksijalnog smjera, pa je za njihovo proučavanje potreban 3D model ili niz međusobno povezanih 2D modela kojima se simulirani stroj dijeli na nekoliko aksijalnih segmenata (tzv. '2,5D' ili 'multi-slice' modeliranje) [6, 9].

Statička ekscentričnost je gibanje kod kojeg se rotor stroja vrti, dok točka najmanjeg zračnog raspora, tj. položaj centralne aksijalne osi rotora, miruje u prostoru. Ovakva situacija simulira se jednako lako kao i slučaj savršeno centriranog rotora, budući da ne zahtijeva dodatne izračune ni posebne postavke MKE modela.

Slika 2.4 Eliptična i ovalna (lijevo) [6] te putanja proizvoljnog oblika (desno) aksijalne osi rotora [18]

Ukoliko aksijalna os rotora ne miruje, njeno gibanje može se opisati gibanjem po kružnici [4, 11], ovalnim gibanjem (slika 2.4 lijevo) [6], ili putanjom proizvoljnog oblika [8, 12, 18] (slika 2.4 desno).

U stvarnosti, određena razina statičke i dinamičke ekscentričnosti uvijek je prisutna. Dopuštena razina ekscentričnosti prema dostupnim istraživanjima iznosi do 10 % veličine zračnog raspora stroja [26].

2.1.4. Vibracije uzrokovane ležajevima

Većina električnih strojeva koristi klizne ili kotrljajuće ležajeve. Kotrljajući ležajevi sastoje se od unutarnjega i vanjskog prstena te niza valjnih tijela (npr. kuglica ili valjaka) smještenih u odgovarajuću kliznu stazu, koji rotiraju unutar tih prstena [52].

Oštećenja dijelova ležaja dovode do vibracija na specifičnim frekvencijama koje su funkcija geometrije ležaja i prikazane su sljedećim izrazima [52, 53]:

• za oštećenje vanjske staze prstena:

$$f_{\nu} = \frac{N_k}{2} f_r \left[1 - \frac{b_d \cos(\beta)}{d_p} \right] \quad \text{Hz},$$
(2.1)

• za oštećenje unutarnje staze prstena:

$$f_{v} = \frac{N_{k}}{2} f_{r} \left[1 + \frac{b_{d} \cos(\beta)}{d_{p}} \right]$$
 Hz, (2.2)

• za oštećenje valjnih tijela ležaja:

$$f_{v} = \frac{d_{p}f_{r}}{2b_{d}} \left\{ 1 - \left[\frac{b_{d}\cos(\beta)}{d_{p}} \right]^{2} \right\}$$
 Hz, (2.3)

• za oštećenje kaveza ležaja:

$$f_{\nu} = \frac{f_r}{2} \left[1 - \frac{b_d \cos(\beta)}{d_p} \right]$$
 Hz, (2.4)

gdje je f_v – frekvencija vibracije, f_r – frekvencija rotacije valjnih tijela, N_k – broj valjnih tijela, b_d – promjer valjnog tijela, d_p – promjer koraka valjnog tijela ležaja, β – kut kontakta valjnog tijela sa stazom.

Uzroci vibracija ležaja pretežito su mehaničke prirode te mogu biti posljedica:

- istrošenosti dijelova ležaja, tj. zamora materijala uslijed dugogodišnjeg rada;
- vlastite ekscentričnosti uslijed greške u proizvodnji ili nepravilne ugradnje ležaja;
- onečišćenja zbog prašine i sitnih čestica nastalih abrazijom ili zbog korozivnog djelovanja, npr. vode, kiselina i sl.;
- nedovoljnog podmazivanja, koje dovodi do zagrijavanja i abrazije.

Vibracije ležaja mogu biti i posljedica oštećenja nastalih uslijed električnih pojava kao što su:

- prisutnost ležajnih struja koje se mogu pojaviti uslijed magnetske nesimetrije i homopolarnog toka;
- lutajuće struje kroz ležajeve zbog napona prema uzemljenju (*common mode* kod pretvarača koji nemaju galvansko odvajanje).

2.1.5. Ostali uzroci vibracija

Osim prethodno navedenih, postoje i razni dodatni uzroci koji mogu dovesti do povećanih vibracija električnog stroja. U ovu kategoriju spadaju:

- statička i dinamička neuravnoteženost rotirajućih masa preostala nakon postupka balansiranja;
- neučvršćeni dijelovi kućišta;
- otpušten spoj kućišta na temelje;
- otklon vratila generatora na spoju s pogonskim strojem (kada nije postignuta koncentričnost i paralelnost).

2.2 Metode izračuna sila i vibracija

Analiza strojeva provodi se na osnovi rezultata proračuna i mjerenja. Proračune možemo podijeliti na način prikazan slikom 2.5. Brzi analitički proračuni primjenjivi su za simetrična stacionarna opterećenja, dok je za prijelazne pojave potrebno koristiti računski zahtjevnije metode.

Slika 2.5 Međupovezivost proračuna za izračun sila i njima uzrokovanih vibracija

Numerički proračuni ovdje su prikazani u "širem smislu". U ovu grupu proračuna spadaju analize pomoću nadomjesnih električnih krugova, logičkih krugova, ili regulacijskih krugova baziranih na *Laplaceovim* transformacijama koje se rješavaju upotrebom programskih paketa kao što su *MatLab*, *SciLab*, ili *ANSYS Simplorer*. No u užem smislu pod numeričkim proračunom podrazumijevaju se proračuni *Metodom Konačnih Elemenata* (MKE). Kroz ostatak rada se stoga pod pojmom numerički proračuni misli na MKE proračune.

MKE proračuni su obično točniji od bržih analitičkih proračuna jer uzimaju u obzir stvarnu geometriju, no računski su zahtjevniji i sporiji. Uobičajeno se analitički i MKE proračuni provode odvojeno jedni od drugih (jer se najčešće traži ili brza procjena ili što točniji rezultat).

Radi postizanja optimuma između brzine izvođenja i tražene točnosti moguće je koristiti neku kombinaciju analitičkih i numeričkih proračuna.

2.2.1. Analitički proračuni

Elektromagnetski analitički proračuni često sadrže neka zanemarenja i pojednostavljenja.

Tako se primjerice utjecaji magnetskih klinova na magnetska rasipanja uzimaju u obzir upotrebom iskustvenih korekcijskih faktora. Rashladni kanali u statorskom paketu i jarmu rotora te svornjaci i tlačne ploče utječu na zasićenje magnetskog kruga i iznos uzbudne struje, no njihov utjecaj se u analitičkim proračunima aproksimira korekcijskim faktorima ili zanemaruje. Oblik polne papuče matematički je opisan za neke, tipične geometrijske oblike (lučni, trapezni, sinusoidni). No prilikom revitalizacija starih generatora. susreću se i oblici polnih papuča koji odudaraju od proračunom podržanih.

Slika 2.6 Različiti oblici polnih papuča koji se susreću u praksi

Utjecaj prigušnog namota na valni oblik indukcije u zračnom rasporu, a time te na valne oblike protjecanja i napona na stezaljkama generatora ili se zanemaruje ili analizira za specijalne slučajeve uz određene pretpostavke i pojednostavljenja (sinusni oblik protjecanja, jednak korak štapova i sl.).

Sve analize provode se uz pretpostavku električno i geometrijski simetričnog stroja.

Analitički proračun vibracija, također se provodi uz niz pretpostavki:

 aktivni dijelovi generatora često se aproksimiraju pojednostavljenom geometrijom kao što su valjak (rotor) i prsten (stator);

- radijalnom raspodjelom mase ili promjenom gustoće pojedinih zona prstena (valjka) aproksimiraju se zone zubi i polova;
- analizira se neprigušeni titrajni sustav;
- krutost pojedinih dijelova stroja definira se aproksimativnim metodama (ležajevi, zamašne mase, lančani rotor);
- pretpostavlja se i analizira cilindrična simetrija sustava.

2.2.2. Numerički proračuni metodom konačnih elemenata

Analiza metodom konačnih elemenata omogućava određivanje elektromagnetskih prilika u svakom segmentu stroja, pa time i proučavanje efekata kao što su lokalna magnetska zasićenja materijala te prostorna promjena magnetske indukcije uslijed električne ili geometrijske asimetrije. Iz tog razloga MKE analiza pogodna je i za određivanje sila nastalih međudjelovanjem statorskog i rotorskog magnetskog polja u stroju.

Razvoj računala omogućio je primjenu MKE proračuna kojima se mogu simulirati dinamičke elektromagnetske pojave uz prisustvo mehaničkog gibanja. Izvodljivost takvih proračuna potaknula je proučavanje sila koje se javljaju prilikom rada električnog stroja.

Analiza sila nastalih ekscentričnim rotacijskim gibanjem prvotno je proučavana na asinkronim motorima [8-11]. Budući da je radna točka asinkronog motora određena naponom statorskog namota U, frekvencijom f tog napona i momentom tereta M_t (veličine koje se mogu zadati kao ulazni podaci MKE proračuna), dinamička simulacija konvergira upravo u traženu radnu točku. Nakon njenog uspješnog izračuna moguće je analizirati sile [13], vibracije [2, 5] i buku [14, 17], koje nastaju u radu električnog stroja.

Radna točka sinkronog generatora određena je iznosima armaturnog napona U, armaturne struje I, te njihovim međusobnim faznim pomakom φ . Budući da MKE proračunom nije moguće istovremeno zadavanje iznosa napona i struje armaturnog namota, izračun elektromagnetskog stanja sinkronog generatora za željenu radnu točku složeniji je nego u slučaju asinkronog motora. Za rješavanje ovog problema pogodan je iteracijski postupak [12, 18]. Automatizirani iterativni postupak određivanja radne točke na osnovi analize magnetske indukcije u zračnom rasporu sinkronog generatora [19], koristi se za proračun magnetskih sila za odabrano pogonsko stanje.

2.2.3. Određivanje magnetskih sila metodom konačnih elemenata

Primjenom numeričkih proračuna uvedene su u upotrebu metode pogodne za izračun magnetskih sila [2]. Te metode mogu se podijeliti u dvije grupe:

- izravne metode bazirane na iznosu magnetske indukcije Maxwellov tenzor naprezanja;
- metode bazirane na zakonu o sačuvanju energije metoda virtualnog rada.

Sile unutar električnog stroja, najčešće se računaju upotrebom metode Maxwellovog tenzora naprezanja ili metode virtualnog rada.

Metoda Maxwellovog tenzora naprezanja općeniti je postupak za određivanje sila koje djeluju na složenu geometrijsku strukturu, kao što je rotor stroja. Temelji se na određivanju sile F po površini volumena V koji obuhvaća promatrano tijelo. Za iznose sila nije bitan oblik obuhvatne površine S, već poznavanje jakosti magnetske indukcije B u svakoj njenoj točki (izračunato MKE postupkom) te ispunjenje uvjeta da materijal kroz koji se zatvara obuhvatna površina S bude jedinstven i magnetske permeabilnosti jednake vakuumu $\mu = \mu_0$ (slika 2.7).

Slika 2.7 Tijelo u magnetskom polju opisano volumenom V

Ukoliko je dS diferencijalni dio površine S, a \vec{n} vektor normale na tu površinu, tada se promjena sile po površini (gustoća sile) može napisati preko izraza za Maxwellov tenzor naprezanja:

$$\frac{\mathrm{d}\vec{F}}{\mathrm{d}s} = -\frac{1}{2\cdot\mu_0} \cdot |\vec{B}|^2 \cdot \vec{n} + \frac{1}{\mu_0} \cdot \left(\vec{B}\cdot\vec{n}\right) \cdot \vec{B} , \qquad (2.5)$$

Ako se za integracijsku površinu odabere ploha kružnog poprečnog presjeka, koja prolazi sredinom zračnog raspora električnog stroja, za analizu sila postaje pogodan cilindrični koordinatni
sustav. Kružni poprečni presjek integracijske površine ima nepromjenjiv radijus *R*, pa se određivanje diferencijalne površine d*S* pojednostavljuje u rješavanje umnoška diferencijalnog luka $R \cdot d\varphi$ i diferencijalne aksijalne duljine d*z*. Uz jedinični vektor \vec{n} postavljen u smjeru radijusa ($\vec{n} = \vec{\rho}$) cilindričnog koordinatnog sustava i vektor indukcije rastavljen na radijalnu, tangencijalnu i aksijalnu komponentu $\vec{B} = B_{rad} \cdot \vec{\rho} + B_{tan} \cdot \vec{\varphi} + B_{aks} \cdot \vec{z}$, raspisivanje izraza (2.5) dovodi do jednadžbi za komponente diferencijalne sile d $\vec{F} = dF_{rad} \cdot \vec{\rho} + dF_{tan} \cdot \vec{\varphi} + dF_{aks} \cdot \vec{z}$:

$$dF_{rad} = \frac{1}{2 \cdot \mu_0} \cdot \left(B_{rad}^2 - B_{tan}^2 - B_{aks}^2 \right) \cdot R \cdot d\varphi \cdot dz$$
(2.6)

$$dF_{tan} = -\frac{1}{\mu_0} \cdot B_{rad} \cdot B_{tan} \cdot R \cdot d\varphi \cdot dz$$
(2.7)

$$dF_{aks} = -\frac{1}{\mu_0} \cdot B_{rad} \cdot B_{aks} \cdot R \cdot d\varphi \cdot dz$$
(2.8)

Negativni predznak odraz je međusobnog odnosa smjera vektora normale na površinu i sile koja djeluje na stator.

Metoda virtualnog rada temelji se na zakonu o sačuvanju energije i primjeni principa virtualnog pomaka. Uslijed magnetskog polja koje se nalazi u zračnom rasporu ($\mu = \mu_0$), u stroju je pohranjena potencijalna magnetska energija E_p . Iznos te energije ovisi o volumenu promatranog materijala V, i njemu pripadnoj magnetskoj indukciji B. Određenim dijelom volumena dV obuhvaćen je dio potencijalne energije d E_p (slika 2.8) za koji vrijedi:

Slika 2.8 Volumni odsječak dV u kojem dolazi do promjene potencijalne energije uslijed gibanja

Kako se mijenja položaj rotora stroja, dolazi do promjene indukcije *B*, pa time i do promjene potencijalne energije volumnog odsječka d*V*. Ukoliko se pretpostavi da kratkotrajne promjene u mehaničkoj energiji ΔE_{meh} (vibracije) ne utječu na električne uvjete stroja (električna energija ostaje nepromijenjena tj. $\Delta E_{Elek} = 0$), promjena potencijalne energije diferencijalnog dijela volumena odgovara promjeni mehaničke energije, odnosno radu:

$$\Delta(\mathrm{d}W) = \Delta(\mathrm{d}E_{meh}) = \Delta(\mathrm{d}E_p) \Longrightarrow \mathrm{d}W = \mathrm{d}E_p \tag{2.10}$$

Iz gornje jednakosti proizlazi da je poznavanjem potencijalne energije d E_p promatranog volumnog odsječka moguće odrediti promjenu sile d F_x koja odgovara prividnom pomaku ∂x rotora:

$$dF_x = \frac{\partial(dW)}{\partial x} = \frac{1}{2 \cdot \mu_0} \cdot \left(dV \cdot \frac{\partial B^2}{\partial x} + B^2 \cdot \frac{\partial(dV)}{\partial x} \right)$$
(2.11)

(2.9)

Određivanje iznosa parcijalnih derivacija $\partial B^2/\partial x$ i $\partial (dV)/\partial x$, zahtjeva MKE model stroja podijeljen na tri područja: pomično (rotorsko), nepomično (statorsko) i prijelazno (dodirno) u zračnom rasporu. Volumenom dV treba biti obuhvaćeno prijelazno područje, kojem se mijenja oblik pod utjecajem virtualnog pomaka. Uz svođenje širine međuslojnog dijela na infinitezimalno malu veličinu, volumen dV postaje nepromjenjiv ($\partial (dV)/\partial x = 0$), pa se izraz (2.11) pojednostavljuje.

Upotrebom teorema divergencije, proračun sile može se svesti na integraciju po površini d*S* koja obavija promatrani volumen [2]. Izraz (2.12) opisuje površinsku gustoću sile koja djeluje u smjeru normale na površinu d*S*. Negativni predznak odraz je međusobnog odnosa smjera vektora normale na površinu i sile koja djeluje na stator.

$$\mathrm{d}F_n = -\frac{1}{2 \cdot \mu_0} \cdot (B_n^2) \cdot \mathrm{d}S \tag{2.12}$$

Aksijalna komponenta sile javlja se zbog utjecaja glava namota, skošenja statorskih utora ili polova te radijalne i aksijalne ekscentričnosti rotora. Budući da je za određivanje ove sile potrebno poznavati indukciju u aksijalnom smjeru (B_z), koja za navedene slučajeve uzduž stroja nije homogena, postupci za njeno računanje baziraju se na 3D MKE analizama. Kako su takvi proračuni računalno i vremenski vrlo zahtjevni, a aksijalna sila nije glavni uzročnik vibracija, njena analiza rijetko se provodi.

Slika 2.9 Prikaz vektora magnetskih sila u zračnom rasporu stroja [17]

Uz zanemarenje djelovanja aksijalne indukcije i pretpostavku jednolike raspodijele sila uzduž duljine stroja L, radijalnu i tangencijalnu silu moguće je odrediti uporabom 2D MKE proračuna (slika 2.9). U tom slučaju integracija sile po površini svodi se na integraciju po kružnom odsječku duljine L (Maxwellova metoda tenzora naprezanja).

Proračuni i mjerenja pokazuju kako je tangencijalna sila barem za red veličine manja od radijalne (slika 2.10), pa se često zanemaruje u analizi vibracija [5, 7, 14]. Budući da je radijalna komponenta sile najveća, o vibracijama i buci električnog rotacijskog stroja najčešće se zaključuje na osnovi njenog iznosa i harmonijskog sastava.

Slika 2.10 Komponente magnetske sile u zračnom rasporu stroja [17]

2.2.4. Vibracije uzrokovane magnetskim silama

Periodičnost valnog oblika magnetske sile u zračnom rasporu električnog stroja, uzrokuje titranje statorskog paketa. Ove vibracije ovise o amplitudi sile, no još više o njenoj frekvenciji ponavljanja, jer podudaranje frekvencije magnetske sile s vlastitom frekvencijom statora stroja uzrokuje rezonanciju [2, 6]. Iste sile utječu i na rotor. Zbog veće krutosti, vlastite frekvencije rotora nekoliko puta su više od statorskih. Stoga se utjecaj vibracija na deformaciju rotora najčešće zanemaruje [2].

Uz pretpostavku zanemarivog utjecaja vibracija na geometriju rotora, može se uzeti da vrijedi jednosmjerna ovisnost mehaničkih veličina o elektromagnetskima, tj. da mehaničke deformacije povratno ne utječu na elektromagnetske prilike u stroju [2]. Strukturna analiza električnog stroja može se provesti upotrebom općenite jednadžbe gibanja [2, 4, 5, 6, 13, 17]:

$$[M] \cdot \frac{d^2}{dt^2} [\vec{q}(t)] + [C] \cdot \frac{d}{dt} [\vec{q}(t)] + [K] \cdot [\vec{q}(t)] = [\vec{F}(t)]$$
(2.13)

U izrazu (2.13) [M] predstavlja matricu masa, [C] matricu prigušenja, [K] matricu krutosti, $[\vec{F}(t)]$ vektor vremenski promjenjivih sila, a $[\vec{q}(t)]$ vektor vremenski promjenjivih pomaka čvorova mreže. Veličine ovih matrica ovise o složenosti korištenog modela, koja može varirati od šupljeg cilindra kojim se pojednostavljeno opisuje stator (slika 2.11) do složene geometrijske strukture, pogodne za MKE analizu [6, 17] (slika 2.12).

Slika 2.11 Jednostavan model šupljeg cilindra za analizu vibracija statora

Slika 2.12 Složena geometrijska struktura 3D modela

Poznavanje vlastitih (prirodnih) frekvencija i formi (modova) vibriranja konstrukcije omogućava provedbu dinamičke analize stroja. Ukoliko se odziv periodički ponavlja, pomak $\vec{q}(t)$ može se pretpostaviti u obliku:

$$\vec{q}(t) = \vec{q}_0 \cdot e^{j \cdot \omega \cdot t} \tag{2.14}$$

Pri tom je \vec{q}_0 vektor amplitude pomaka, ω vlastita kružna frekvencija, a *j* imaginarna jedinica $(j^2 = -1)$. Druga derivacija dane harmonijske funkcije po vremenu (2.14) također je harmonijska funkcija:

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\vec{q}(t) = -\omega^2 \cdot \vec{q}(t) \tag{2.15}$$

Uz ove odnose i zanemarenje mehaničkog prigušenja ([C] = 0), izraz (2.13) poprima oblik:

$$-\omega^2 \cdot [M] \cdot [\vec{q}(t)] + [K] \cdot [\vec{q}(t)] = [0]$$
(2.16)

Rješavanjem determinante dobivenog izraza, dolazi se do svojstvene vrijednosti koja izražava slobodne vibracije konstrukcije na frekvenciji *o*.

$$\det([K] - \omega^2 \cdot [M]) = 0$$
 (2.17)

Magnetska sila periodički se ponavlja, pa ju je moguće rastaviti u Fourierov red.

$$\vec{F}(t) = \sum_{k=1}^{\infty} \vec{F}_k \cdot e^{j \cdot \Omega_k \cdot t}$$
(2.18)

Izrazom (2.18) prikazan je vremenski promjenjiv vektor ukupne magnetske sile \vec{F} kao suma harmonika, gdje je sa \vec{F}_k označen prostorni vektor *k*-tog harmonika magnetske sile, a s Ω_k kutna frekvencija uzbude *k*-tog harmonika.

Ukoliko je od interesa samo prepoznavanje pojave rezonancije, dovoljno je odrediti spektar frekvencija magnetske sile u zračnom rasporu i vlastite frekvencije konstrukcije $f_k(\omega_i)$. Usporedba ovih vrijednosti i njihovo (frekvencijsko) podudaranje ukazuje na potencijalni problem raspirivanja vibracija (slika 2.13).

Za određivanje točnog iznosa vibracija uzrokovanih silom u zračnom rasporu, potrebno je (analogno izrazu 2.18) na više harmonike rastaviti vektor pomaka \vec{q} .

$$\vec{q}(t) = \sum_{k=1}^{\infty} \vec{q}_k \cdot e^{j \cdot \Omega_k \cdot t}$$
(2.19)

$$([K] - \omega^2 \cdot [M]) \cdot \vec{q}_k = \vec{F}_k \tag{2.20}$$

$$\frac{d^2}{dt^2}\vec{q}_k = -\omega^2 \cdot \vec{q}_k \tag{2.21}$$

Za jedan po jedan harmonik pobudne sile, pomoću izraza (2.20) i (2.21) računa se prostorni vektor amplitude pomaka \vec{q}_k . Povećanje vremenske efikasnosti proračuna prisilnih vibracija moguće je postići upotrebom modalne analize. Ovo svojstvo vibracija dozvoljava određivanje jedinstvene prijenosne funkcije $G_{m_ik}(\omega_k)$ između pomaka i pobudne sile. Da bi se odredila prijenosna funkcija primjenjiva za sve frekvencije, potrebno je provesti dijagonalizaciju matrica mase, prigušenja i krutosti [2]. Vrijednosti matrice prigušenja [*C*] u stvarnosti složeno ovise o matricama masa i krutosti sustava, no da bi dijagonalizacija matrice [*C*] bila moguća, pretpostavlja se linearna ovisnost opisana izrazom 2.22 u kojem su k_{CI} i k_{C2} konstante:

$$[C] = k_{C1} \cdot [M] + k_{C2} \cdot [K]. \tag{2.22}$$

Podudaranje izračunatih rezultata s mjerenjima raste kako se povećava složenost simulacijskog modela. Stoga se najbolji rezultati u određivanju svojstvenih vektora postižu upotrebom mehaničkih MKE proračuna [13, 17], kojima je moguće precizno modelirati geometriju stroja. Takve analize, osim točnog izračuna vlastitih frekvencija, omogućavaju i grafički prikaz glavnih formi (modova) vibriranja stroja (slika 2.14).

Slika 2.14 Treća glavna forma (mod) vibriranja statora [17]

S povećanjem geometrijske složenosti modela rastu i računski zahtjevi, pa se traži kompromis između točnosti rezultata i vremena izvođenja simulacije. Tako se npr. za simulacije često odabire model statora bez armaturnog namota. Usporedba proračuna sa i bez armaturnog namota, pokazala je kako se pri vlastitim frekvencijama nižeg reda (k = 2, 3, 4) rezultati ovih dvaju tipova modela razlikuju manje od 5 % [13].

Podudaranje harmonika magnetske sile zračnog raspora s vlastitom frekvencijom konstrukcije stroja uzrokuje rezonantne vibracije. Stoga se ono pokušava spriječiti raznim metodama. Najpoznatiji način predstavlja promjena vlastitih frekvencija izmjenom mehaničkih karakteristika stroja (npr. radijalne dimenzije jarma statora ili učvršćenja statorskog paketa u kućištu). Numeričke proračunske metode (MKE) omogućuju dobivanje detaljne slike elektromagnetskih prilika u zračnom rasporu, te time i provedbu mjera za postizanje povoljnijeg harmonijskog sastava magnetske sile u fazi projektiranja. Neke mjere provode se u vidu promjene elektromagnetski aktivnih dijelova stroja (npr. veličine zračnog raspora, oblika polne papuče, izvedbe prigušnog namota, broja i oblika statorskih utora, koraka statorskog namota, zaklinjenje utora magnetskim klinovima, skošenja statorskih utora ili polova), a drugi izmjenama u električnom upravljanju (uvođenjem aktivnih sustava za smanjenje vibracija) [8, 16].

3. Sinkroni generator za eksperimentalna mjerenja i mjerna oprema

U poglavlju je opisan objekt mjerenja – sinkroni generator na kojem su provedena specifična laboratorijska mjerenja i verifikacija rezultata numeričkih proračuna. Također su prikazane i opisane značajke ispitivanog sinkronog stroja, posebnosti modela korištenog za numeričke proračune, mjerna oprema, postupak mjerenja, odabrani mjerni senzori za detekciju magnetskih polja i vibracija te procjena mjerne nesigurnosti.

3.1. Sinkroni generator – objekt mjerenja

Eksperimentalna mjerenja provedena su na trofaznom sinkronom generatoru tipa 2S 783-4, proizvedenom 1970. godine u tvornici *Rade Končar i* namijenjenom za električno napajanje raznih električnih uređaja u laboratoriju *Končar – Instituta za elektrotehniku*, (slika 3.1).

Slika 3.1 Sinkroni generator za provedbu ispitivanja

Ispitni generator je prirubničkim spojen povezan s pogonskim motorom, a regulacijom snage na vratilu i promjenom uzbude generatora, moguće je osigurati rad s različitim opterećenjima u cjelovitom rasponu induktivno-radnih faktora snage, uključujući i trajni rad s potpuno induktivnim teretom. Generator je projektiran za nazivnu snagu 400 kVA, uz napon od 400 V i frekvenciju 50 Hz. U tablici 3.1 prikazani su projektni podaci generatora, geometrijske dimenzije polova, utora statora i punjenje utora u milimetrima, a slikom 3.2 izmjerene osnovne karakteristične krivulje generatora.

Tablica 3.1 Projektni podaci sinkronog generatora 2S 783-4

			RAČ	RAČUNSKI PODACI															
		K	ΟN	ČA	٩R		TIP: 2S 783 - 4												
							3 fazr	3 fazni sinkroni generator											
U	400	Ι	5	78	N	1500	S	40	0		0,0	u	185,	5 i	2	25,4	f	50	nit
V		•			min ⁻¹		ĿVΛ			osq		V		_			- Ц-		terr
Bro	i polova	A a: 4	-	nog	on: ispit	ni	KVA			ŏ		V	 zagrija	vanie	: 80	/80 °(Γ		<u>н</u> .
) polo (<u>P°</u>	<u>som ispre</u>	S	tator			Rote	or		Zugrije	14,5				300	
ije	duljina	a žel	jeza -	- ras	por	355	+6x10			42.	5	╢┱						58	
lenz	Ø var	njski	-			780	zr.	raspo	or	54	45,8								15
dim	Ø uni	utarn	iji			555		4,6							1	65			95
<u>6</u> .	vrsta	lima	W/k	5		DL 53	(0,5) iz	zol	D	L 53	(0,5)		21,5			0,5		178	•
	vrsta	nam	ota				dvoslo	jni p	etlja	asti							Ċ	R10	1
	način	ugra	dnje	k	lin	ul	ožni								L_ +	4.6			425
	izolac	ija		k	lasa	po	sebna	na B				8,5	+	0,5			V		
	deblji	na lji	uske	m	naterijal	0,5	5 mm			Mi-	le		(=				0,5		
	br.uto	ra	pres	jek	utora	78	306,25 mm ²)					
	ut. ol među izo podlo		oblog	g	0,5			0,5 mm											
0			med	tuslo	ojna	2 m			1						<u> </u>		2,0		
atur			pod	loge	;	0,5		,5 mi	mm						6	1		2	
arm	prikra	ata	kora	ık	skoš.	17/1	.9,5	1 - 1	18	1	/ 78		5	3 5,7	e	5,4			4
namot	vodiča # dioni u utoru vodiča		nih a	par. grane	2 x 1		2	2 2		0,5	E		<u> </u>		0,5				
	dimen goli ve	dimenzije dir goli vodič izo		imer ol. v	nzije vodič	6 x 5,3		5,3 6,4 x 5,7		5,7								0,2	
	vodič		n	eto r	nasa	E - 0	Cu / 56			109	kg	# štapova dužina			zina	7 / pol 696			
	srednj	a du	ljina	ł	oroj	118	2 mm	78		not	mate	erijal			E – Cu / 56		56		
	vodiča	a		5	svitaka		2 11111		/ 8		nar	prom	omjer štapa				10 mm		
	q		0	por	faze		3,5		0,	0059	01 Ω	ušni	korał	s štapo	ova p	.n.	22,5 1	mm / 4,	645 °
	spoj		b	roj k	rajeva	Y	Γ/Δ			6 /	6	prig	težin	a			сс	a 11,7 1	kg
	istak		ir	npre	gnacija		-			Za kl	. B		dimenzija prstena		na	35	x 10 m	nm	
	izolac	ija	k	asa		po	sebna			В			Prazr	i hod			Krat	ki spoi	
	zavoja	a po	polu	#	žica	3	368			1								F -J	
ova	broj sv	vitak	a p	ar. g	rane		4			1		I	u0	11,2	2 A	I	uk	10,2	22 A
not pol	dimen goli ve	zije odič	d iz	imer ol. v	nzije vodič	2,7	x 2,7		3	,0 x	3,0	F	Pfe	5100) W	P	k75	1355	50 W
nam	vodič		n	eto r	nasa	E – 9	Cu / 56			126	kg	nap	oomen	a: ist	ak g	lave	namot	a od j	paketa
	spoj		b	roj i	zvoda	se	rijski			2		jed	nostra		a 240	mm	4a 1	11	
impregnacija otpor			Za	kl. B			5,24	Ω	izo	visina rotorskog namota bez izolacije prema papuči je cca 87			z podle mm.	oge 1					

Slika 3.2 Mjerenjem određene krivulje kratkog spoja, praznog hoda i regulacije

Mehanička zaštita stroja je IP 20, a vrsta hlađenja IC01. Ventilator za hlađenje smješten je na pogonskoj strani (PS) vratila generatora. Rashladni zrak ulazi u generator aksijalno kroz otvore štita na slobodnoj strani (SS), a izlazi kroz dva radijalna izlaza na obodu poklopca ventilatora. Na SS strani generatora smješteni su zamašnjak i klizni koluti za napajanje rotorskog uzbudnog namota.

Pogonski kraj vratila namijenjen je za prijenos momenta preko elastične spojke ili kardana. Generator je u ispitnoj stanici smješten horizontalno i fiksiran na metalno postolje s četiri vijka preko nosača koji su dio kućišta. Statorski paket razdijeljen je radijalnim rashladnim kanalima širine 10 mm na 7 aksijalnih dijelova, svaki duljine 59,2 mm. Statorski paket spojen je na kućište s osam cirkularno jednoliko međusobno razmaknutih pričvrsnih letvi, koje su cijelom duljinom zavarene na kućište i na paket. Izvodi armaturnog namota i uzbudne stezaljke povezani su s regulacijskom ormarima pomoću električnih energetskih vodova.

Slikama 3.3 i 3.4 prikazan je model generatora na kojem su vidljivi detalji kućišta, način spoja paketa statora na kućište pomoću pričvrsnih letvi, nosači preko kojih je stroj fiksiran na postolje, smještaj aktivnih dijelova unutar kućišta i ležajeva u štitovima, pozicija ventilatora i vanjski plašt kućišta s priključnim kutijama.

Slika 3.3 Izometrijski prikaz modela sinkronog generatora

Slika 3.4 Tlocrtni prikaz konstrukcijskih dijelova generatora

Statorski namot generatora je dvoslojni petljasti, izveden od profilnih vodiča. Se sastoji od 78 svitaka smještenih u poluotvorene utore skošene za jedan utorski korak, a u svakom utoru su smještena ukupno dva vodiča (svakom sloju pripada po jedan vodič sastavljen od dva diona vodiča).

Na rotoru se nalaze četiri istaknuta pola. Uzbudni namot na svakom polu ima 368 zavoja i mehanički je učvršćen s po tri potpore u svakom međupolnom prostoru. Na svakoj polnoj papuči trapeznog oblika nalazi se po sedam štapova prigušnog namota kružnog poprečnog presjeka promjera ϕ 10 mm, s međusobnim razmakom koji odgovara koraku utora statora. Model rotora prikazan je detaljnije na slici 3.5, statorski namot sa spojevima u čeonoj zoni na slici 3.6, a način učvršćenja paketa statora u kućištu na slici 3.7.

Slika 3.5 Izvedba polova, kliznih koluta, zamašnjaka i ventilatora rotora

Slika 3.7 Statorski paket ugrađen u kućište

U svrhu provedbe specifičnih laboratorijskih mjerenja, analizirani sinkroni generator je posebno dorađen kako bi se njime mogla provesti verifikacijska mjerenja. Ove dorade obuhvaćale su:

- izradu dva provrta promjera \$\overline{20}\$ mm na kućištu statora za potrebe izravnog smještaja akcelerometara na paket statora;
- ugradnju 8 mjernih svitaka na zube paketa statora u zoni zračnog raspora za potrebe određivanja i usporedbe magnetske indukcije za različita pogonska stanja;
- izradu mjerne priključne kutije na kućištu za spojeve izvoda ugrađenih mjernih svitaka.

Slika 3.8 Provrt na kućištu ispod kojeg je dostupan paket statora za montažu senzora

Slika 3.9 Mjesta ugradnje i brojčane oznake mjernih svitaka – pogled sa slobodne strane stroja

Slika 3.10 Priključna kutija s izvodima ugrađenih mjernih svitaka

r.br.]	l		2		3	4	1		5	(5		7	8	8
svitak	М	s1	M	s2	M	's3	M	s5	M	s6	М	s8	M	s7	M	s4
žica	Р	С	Р	С	Р	С	Р	С	Р	С	Р	С	Р	С	Р	С

3.2. Mjerna oprema

Za provedbu ispitnih mjerenja korištene su metode i tehnička rješenja prisutna u monitoringu rotacijskih strojeva, kao i oprema koja se uobičajeno koristi kod ispitivanja odnosno dijagnostike električnih rotacijskih strojeva. Principijelna shema mjernog sustava prikazana je na slici 3.11, koja je sastavljena od:

- objekta promatranja sinkroni generator,
- mjernih senzora mjerni svitci, akcelerometri Brüel & Kjaer CCLD 4508, senzor brzine vibracija Brüel & Kjaer VS 80
- impulsnog čekića za utvrđivanje vlastitih frekvencija Kistler 9724A,
- mjerne akvizicijske stanice Brüel & Kjaer PULSE Lan XI 3050-A-060,
- prijenosa podataka mjerenja na računalo,
- obrade i analize izmjerenih veličina.

Slika 3.11 Principijelna shema ispitnog mjernog sustava

Osim osnovnih elemenata navedenih principijelnom shemom, tijekom ispitivanja korištena je i dodatna oprema za provedbu kontrolnih mjerenja pri postavljanju ispitivanih pogonskih stanja:

- analizator snage tip NORMA AC Power Analyzer D 5255 S,
- prijenosna baterijska strujna kliješta Chauvin Arnoux F 407,
- beskontaktni laserski senzor za mjerenje brzine vrtnje, tip SLS -115/230.

Slika 3.12 Principijelna shema kontrolnih mjerenja

Terećenje generatora izvedeno je pasivnim teretom spojenim na stezaljke armaturnog namota. Pasivni teret sastojao se je od:

- kaskade omskih otpornika korištene za promjenu radnog opterećenja,
- trofazne regulacijske prigušnice za promjenu induktivnog opterećenja.

Slika 3.13 Kaskada otpornika (lijevo) i prigušnica promjenjivog induktiviteta (desno) korišteni za pasivno terećenje generatora

3.2.1. Mjerni svitak

Senzori korišteni za verifikacijska elektromagnetska mjerenja su mjerni svitci ugrađeni u na zube statora u zoni zračnog raspora generatora. Njima se mjeri napon induciran u svitku uslijed promjenjivog magnetskog toka obuhvaćenog tim svitkom, slika 3.14. Po zakonu elektromagnetske indukcije, *inducirani napon u strujnom krugu jednak je brzini kojom se mijenja magnetski tok ulančen strujnim krugom, a smjer induciranog napona je takav da protjera struje koje se protive promjeni toka* [32]. Napon induciran u ovakvom mjernom svitku koristi se potom u daljnjoj obradi i analizi sa svrhom otkrivanja pojedinog specifičnog kvara motora.

Slika 3.14 Definicija elektromagnetske indukcije [7]

Inducirani napon u vodljivoj petlji površine S_{sv} , koja je obrubljena konturom c, razmjeran je vremenskoj promjeni magnetskog toka koji petlja obuhvaća:

$$u_{ind} = \oint_c \vec{E} \cdot dl = -\frac{d\phi}{dt} = -\int_S \frac{\partial \vec{B}}{\partial t} \cdot \vec{n} \cdot dS_{sv}$$
(3.1)

Ako se uzme da se smjer polja podudara s normalom površine, u kojoj leži vodljiva petlja onda je:

$$u_{ind} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{S} \vec{B} \cdot \vec{n} \cdot \mathrm{d}S_{sv} = -\frac{\mathrm{d}B}{\mathrm{d}t} \cdot S_{sv}$$
(3.2)

Za vremensku promjenu magnetske indukcije:

$$B = B_m \sin(\omega \cdot t) \tag{3.3}$$

inducirani napon je:

$$u_{ind} = B_m \cdot \omega \cdot \cos(\omega \cdot t) \cdot S_{sv} \tag{3.4}$$

Za petlju s N_{sv} zavoja, odnosno svitak, inducirani napon jednak je:

$$u_{ind} = B_m \cdot \omega \cdot \cos(\omega \cdot t) \cdot S_{sv} \cdot N_{sv}$$
(3.5)

Na slici 3.15 prikazana je izvedba mjernog svitka izrađenog u PCB tehnici (engl. *PCB – printed circuit board* ili tiskana pločica). Svitci u PCB tehnici (mjerni svitak s točno određenim brojem zavoja utisnut je na tiskanu pločicu), koji su ugrađeni na objekt mjerenja, po dimenzijama su usklađeni s radijalnom površinom statorskog zuba. Na svitak je utisnuto 5 zavoja, kako bi razina induciranog napona u svitku bila dovoljna za utvrđivanje nejednakosti između različitih pogonskih stanja. Širina svitka (11,7 mm) određena je u skladu sa širinom radijalne plohe zuba statora, dok su debljina (0,24 mm) i duljina (198 mm) određene prema tehničkoj procjeni, kojom je uzela u obzir mogućnost ugradnje svitka u odnosu na širinu zračnog raspora i duljinu statorskog paketa (tablica 3.1). Svitci se na zub statora učvršćuju odgovarajućim dvokomponetnim ljepilom, čime je u potpunosti osigurano da izdrže sva električna, termička i mehanička naprezanja.

Slika 3.15 Mjerni svitak izrađen u PCB tehnologiji

Primjer ugradnje mjernih svitaka na sinkroni generator prikazan je na slici 3.16. Svitci su na zube statora ugrađeni po rasporedu koji omogućuje utvrđivanje postojanja električne i magnetske nesimetrije opisane u sljedećem poglavlju.

Slika 3.16 Mjerni svitak ugrađen na zub paketa statora

3.2.2. Akcelerometar

Senzore koji mjere ubrzanje nazivamo akcelerometrima. Ovakvi uređaji često se koriste u mjerenjima vezanima za vibracije. Njihov rad temelji se na Newtonovom zakonu gibanja, izraženog jednadžbom (3.6), u kojoj ja s F označena sila, s a akceleracija i s m poznata masa tijela koje se giba.

$$F = m \cdot a \Rightarrow a = \frac{F}{m} \tag{3.6}$$

Ovo znači da se akceleracija određuje posredno, na osnovi mjerenja sile koja djeluje na tijelo pri njegovom ubrzavanju.

Za potrebe mjerenja vibracija električnih strojeva pogodno je koristiti akcelerometre koje odlikuju volumen manji od 1 cm³, masa od nekoliko grama, širok raspon radnih temperatura (-50 do +250 °C), radni frekvencijski opseg od 0,5 do 15000 Hz, mjerna osjetljivost od 1÷100 mV/g, mehanička robusnost i mogućnost spajanja na akvizicijsku opremu s dugačkim jeftinim kabelima. Ovakve zahtjeve ispunjavaju akcelerometri koji djeluju na bazi piezoelektričnog efekta.

Piezoelektričnim efektom nazivamo pojavu kod koje se po površini nekih materijala pojavljuje električni naboj uslijed deformacija volumena tog materijala nastalih pod utjecajem sile. Ova pojava posebno dolazi do izražaja kod određenih monokristala (kvarc, *Seignetteova* sol, *Rochelleova* sol, amonijev-dehidrofosfat), polikristala određenih keramika (PZT-5, BaTiO3) i određenih polimera, kao npr. polivinidilen fluorid (PVDF).

Između primijenjene sile i deformacije piezoelektričnog materijala postoji linearna veza (slika 3.17). Stoga vrijedi sljedeća ovisnost napona U (na električnim stezaljkama pretvornika) o sili F:

$$U = \frac{\alpha \cdot F}{c} \tag{3.7}$$

gdje C predstavlja električki kapacitet a α piezoelektrični modul upotrijebljenog materijala.

Budući da za piezoelektrične materijale vrijedi linearna ovisnost izlaznog napona o primijenjenoj sili, moguće ih je upotrijebiti i za mjerenje akceleracije. Temeljem jednadžbi (3.6) i (3.7) dobiva se izraz:

$$a = \frac{F}{m} = \frac{U \cdot C}{\alpha \cdot m} \tag{3.8}$$

Slika 3.17 Ovisnost deformacije piezoelektrika o primijenjenoj sili [42]

Osim o materijalu, piezoelektrični modul ovisi i o vrsti deformacije (slika 3.18), pa tako za kvarc kod duljinske deformacije piezoelektrični modul iznosi $\alpha = 2,3$ pC/N, a za slučaj kutne deformacije $\alpha = 4,6$ pC/N.

Slika 3.18 Vrste rastezanja piezoelektričnog materijala [43]

Ovakvi akcelerometri sastoje se od tzv. seizmičke mase koju prilikom mirovanja i jednolikog gibanja u neutralnoj poziciji zadržavaju opruge. Prilikom ubrzavanja ta masa svojom inercijskom silom djeluje na piezoelektrični pretvornik (slika 3.19).

Slika 3.19 Princip mjerenja ubrzanja pomoću piezoelektrika [44]

Za potrebe ispitnih mjerenja korišteni su piezoelektrični akcelerometri *proizvođača Brüel & Kjaer* tipa *CCLD 4508*, čije su dimenzije prikazane slikom 3.20, a tehničke specifikacije tablicom 3.3.

Slika 3.20 Izgled akcelerometra tipa CCLD 4508 i dimenzije prikazane u milimetrima [38]

Specifikacija	CCLD 4508		
Raspon radne frekvencije	0,3 – 8000 Hz		
Radna temperatura	-54 +121 °C		
Naponska osjetljivost	10 mV / (ms ²) (98 mV / g)		
Rezidualna smetnja u opsegu radnih frekvencija (efektivno)	350 μg (35 mV)		
Maksimalna sinusna radna akceleracija (vršna vrijednost)	70 g		
Maksimalna nedestruktivni udar (vršna vrijednost)	5000 g (50 km/s ²)		
Vlastita frekvencija	25 kHz		
Vrsta konektora	10-32 UNF		
Tip izlaza	CCLD		
Način montaže	M3 vijak ili ljepilo		
Izlazna jedinica	mV		
Težina	4.8 g		
Dimenzije	10 x 10 x 10 mm		
Materijal kućišta	Titan ASTM gradacije 2		

Tablica 3.3	Tehničke	specifikacije	akcelerometra	tipa	CCLD	4508
-------------	----------	---------------	---------------	------	------	------

3.2.2. Senzor brzine pomaka

Ukoliko se želi mjeriti brzina vibracija, moguće je upotrijebiti pretvornike linearne brzine poznate pod kraticom VLT (kratica od engleskog naziva '*Velocity Transducer'*). Navedeni senzori sastoje se od svitka smještenog u magnetsko polje permanentnog magneta. Vibracijama uzrokovano gibanje dovodi do induciranja napona u svitku. Iznos induciranog napona proporcionalan je brzini gibanja svitka. Ako se s v označi translacijska brzina gibanja između magneta i svitka, s l duljina namota, a s B magnetska indukcija, pri čemu je izvedbom senzora osigurano da su smjerovi gibanja svitka, poprečne površine svitka i magnetskog toka međusobno okomiti, tada za inducirani napon U vrijedi izraz:

$$U = B \cdot l \cdot v \tag{3.9}$$

Frekvencijski odziv ovakvih senzora nalazi se u rasponu od 10 do 1000 Hz, što može ograničiti primjenu ukoliko se senzor koristi za mjerenje vibracija. Osim za mjerenje brzine vibracija, ovakvi senzori mogu se upotrijebiti i za utvrđivanje iznosa linijskog pomaka.

Zbog gravitacijske sile razlikuju se izvedbe namijenjene horizontalnom i vertikalnom radu, pa prilikom odabira senzora treba na ovo obratiti pažnju. Po izvedbi se mogu podijeliti još i na senzore s pomičnim magnetom i na one s pomičnim svitkom. Kako senzor mjeri brzinu/vibracije samo u jednom smjeru, za potpunu sliku gibanja u nekoj ravnini koriste se tri senzora, međusobno zakrenuta za 45°.

Slika 3.21 Shematski prikaz VLT pretvornika linearne brzine s pomičnim svitkom (gornji) i pomičnim magnetom (donji) [45]

Mjerenje brzine vibracija u vertikalnoj osi ispitivanog generatora provedeno je upotrebom senzora oznake VS - 080 proizvođača *Brüel & Kjaer*. Mjerne karakteristike senzora prikazane su slikom 3.22, a osnovni tehnički podaci dani su tablicom 3.4.

Slika 3.22 Ovisnost izlaznog napona U o mjerenoj brzini vibracija senzora VS - 080 [39]

Specifikacija	VS - 080
Mjerena veličina	Brzina vibracija
Smjer mjerenja	Horizontalno i vertikalno
Naponska osjetljivost pri f = 80 Hz	$E = \frac{75 \ mV}{mm \ /s} \times \frac{R_L}{3 \ k\Omega + R_L}$
Unutarnja impedancija	$3 \text{ k}\Omega \pm 5 \%$
Osjetljivost na poprečnu pobudu	≤ 5 %
Vlastita frekvencija f ₀	15 Hz ± 5 %
Temperaturni radni opseg	-40 +80 °C
Maksimalni dopustivi vibracijski pomak	± 1 mm
Maksimalna duljina spojnog kabela	200 m
Tip zaštite	IP 44
Način montaže	M8 vijak duljine 14 mm
Izlazna jedinica	mV
Težina	~ 250 g

Tablica 3.4 Tehničke specifikacije senzora brzine tipa VS - 080

3.2.2. Impulsni čekić

Alat koji služi za stvaranje impulsa sile, potrebnih za utvrđivanje vlastitih frekvencija ispitivanog objekta, naziva se impulsnim čekićem. Udarno čelo čekića od nehrđajućeg čelika sadrži akcelerometar niske impedancije izrađen na bazi kvarca. Na ovaj dio čekića mogu se pričvrstiti nastavci od gume, plastike i čelika različite tvrdoće, čime se omogućuje promjena vrste pobudnog udara. Na taj način može se mijenjati raspon pobuđenih frekvencija i mjerenja provoditi na konstrukcijama različite debljine.

Za ispitna mjerenja korišten je udarni čekić tipa 9724A2000 tvrtke Kistler. Izgled ovog čekića prikazan je slikom 3.23, a osnovni tehnički podaci dani su tablicom 3.5.

Slika 3.23 Prikaz impulsnog čekića Kistler 9724A2000

Specifikacija	Kistler 9724A200
Raspon sile	0 2220 N
Maksimalna sila	11100 N
Nazivna osjetljivost	2,25 mV/N
Vlastita frekvencija	27 kHz
Radni raspon frekvencija s čeličnim vrhom (~10 dB)	6600 Hz
Nazivna vremenska konstanta	500 s
Krutost	840 N/μm
Temperaturni radni opseg	-20 +70 °C
Puni opseg izlaznog napona	$\pm 5 \text{ V}$
Izlazna impedancija	$> 100 \ \Omega$
Napon napajanja	20 30 V
Stalna struja napajanja	2 20 mA
Težina	250 g
Promjer udarne glave	23 mm
Duljina tijela	90 mm
Duljina ručke	230 mm

3.2.3. Akvizicijska mjerna stanica

Mjernom akvizicijskom stanicom *Pulse LAN-XI* snimani su naponi inducirani u mjernim svitcima te naponski signali akcelerometara. Proizvođač mjerne stanice je tvrtka *Brüel & Kjaer*. Na slici 3.24 prikazana je korištena mjerna stanica s *LAN-XI* modulima za akviziciju podataka, a u tablici 3.6 dani su tehnički podatci opreme preuzeti iz kataloga proizvođača. *LAN-XI* procesne jedinice omogućuju prihvat 3 do 12 ulaznih mjernih signala (ovisno o odabranom modulu) i njihov prolaz kroz visokopropusni filtar. Analogni ulazni analogni signal pretvaraju u digitalni podatak, te prosljeđuju podatke prema računalu ili *PULSE* mjernoj centrali.

Slika 3.24 Mjerna stanica PULSE s LAN-XI procesnim modulima [40]

Modularan dizajn omogućuje objedinjavanje do 11 *LAN-XI* jedinica u složeniju akvizicijsku strukturu, a moguće je i svaki modul koristiti zasebno. *LAN-XI* jedinicu najjednostavnije je spajati s računalom putem standardnog mrežnog kabela. Budući da modul ima potrošnju <20 W, veza upotrebom mrežnog kabela ujedno služi i za električno napajanje modula.

U slučajevima gdje elektromagnetske smetnje ometaju bežičnu komunikaciju, a prijenos informacija mrežnim kabelom nije izvediv, mjerene podatke moguće je spremiti na memorijsku mikro-SD karticu veličine do 16 GB.

Kada je u pitanju mjerenje vibracija na generatoru, upotrebom akcelerometra tipa *CCLD* 4508, pogodno je za akviziciju koristiti *LAN-XI* modul tipa 3050. Po specifikacijama ova jedinica omogućuje prihvat izmjeničnih signala naponske razine \pm 10 V frekvencije do 52 kHz, uz 24 bitnu rezoluciju podataka.

Upotrebom računalnih programa *PULSE Labshop* ili *Test for I-deas software* moguće je mijenjati frekvenciju uzorkovanja podataka (10 Hz - 115 kHz) i propusnost visokopropusnog filtra (0,05 do 115 Hz). Uz linearnost na punom mjernom području 0-160 dB unutar ± 1 dB, točnost od $\pm 0,1$ dB za mjerno područje od 1 kHz i smetnje < 1200 µV_{ef}, garantiraju se pojačanje od 0,6 dB uzrokovano limiterom ulaznog napona i fazno odstupanje unutar $\pm 0,005^{\circ}$.

Ulazne karakteristike	LAN-XI 3050
Opseg frekvencije ulaznih i izlaznih signala	0 do 51,2 kHz
Broj ulaznih signala po modulu	6
A/D pretvorba	2 x 24 bit
Prijenos podataka	24 bit
Mjerni napon ulaznih signala	Do 10 $V_{vršno}$ / povećani opseg do 31,6 $V_{vršno}$
Maksimalni ulazni napon bez oštećenja	\pm 60 V _{vršno}
Ulazna impedancija	CCLD: >100 k $\Omega \parallel$ < 300 pF
Maksimalna smetnja u mjernom rasponu do 10 V	< 125 nV _{ef} / Hz
Apsolutna naponska greška pri 1 kHz i 1 V	do ± 0,05 dB (12,2 %) tipično ± 0,01 dB (2,3 %)
Izlazni konektor	2 x BNC
Izlazna vrijednost DC napona	0 do ±10 V
Izlazna vrijednost AC napona	10 V _{vršno}
Izlazna impedancija	50 Ω
Greška izlazne frekvencije	0,00025 %
Rezolucija frekvencije	1 mHz (definirana u PULSE softveru)
Težina	750 g
Dimenzije (ŠxDxV)	27,5 x 250 x 132,6 mm
Operacijski sustav	Microsoft® WINDOWS®

Tablica 3.6 Tehničke specifikacije akvizicijskog modula LAN-XI 3050

3.2.4. Analizator snage

Postavljanje generatora u odabrana stanja opterećenja zahtjeva izmjere faznih struja, linijskih napona i faktora snage. Ove vrijednosti kontrolno su mjerene upotrebom analizatora snage *NORMA AC Power Analyzer D 5255 S*, čije su tehničke karakteristike dane tablicom 3.7.

Analizator snage je precizni digitalni vatmetar. Ovakav instrument moguće je upotrijebiti za ispitivanje različitih vrsta električnih uređaja (npr. transformatora, generatora i motora), bilo za izmjeničnu ili istosmjernu struju. Na stezaljke analizatora dovode se tri signala proporcionalna mjerenom naponu i tri signala proporcionalna mjerenoj struji. Iz ovih veličina pomoću ugrađenog mikroprocesora izračunavaju se: radna, jalova i prividna snaga, faktor snage, impedancija, radni otpor i druge specifične veličine vezane uz objekt ispitivanja. Prilikom provedenih ispitivanja napon je mjeren izravno na mjernom području do 520 V, dok je struja mjerena na području 50 A preko strujnih mjernih transformatora kojima je prijenosni omjer 10:1.

Ulazne karakteristike	NORMA AC Power Analyzer D 5255 S				
Broj ulaznih kanala	3 naponska ulaza 3 strujna ulaza				
Mjerna područja strujnih kanala	0,1-0,2-0,5-1-2-5-10-20-50 ampera dozvoljeno preopterećenje 60 A trajno, 100 A kratkotrajno (5 sekundi)				
Mjerna područja65-130-260-520-650 voltinaponskih kanaladozvoljeno preopterećenje 800 V trajno, 1.4 kV kratkotrajno (5 sek					
Razlučivost	10 μA za mjerenje struje 10mV za mjerenje napona 1 mW za mjerenje snage 1 mWh za mjerenje energije				
Točnost mjerenja napona i struje	\pm (0,1 % izmjerene vrijednosti + 0,1 % mjernog područja) NAPOMENA: uz frekvenciju mjernog signala od 45 do 65 Hz				
Točnost mjerenja radne snage	za cosφ = $1 \pm 0,1$ % mjernog područja za cosφ = $0,1 \pm 0,5$ % mjernog područja NAPOMENA: uz frekvenciju mjernog signala od 45 do 65 Hz				
Točnost mjerenja prividne snage	suma pogrešaka pri mjerenju napona i struje				
točnost mjerenja faktora snage	suma pogrešaka pri mjerenju prividne i radne snage				
Temperaturni koeficijent	<0,1 % mjernog područja po kelvinu za mjerenja napona, struje i radne snage				
dugoročna točnost	$\pm 0,02$ % mjernog područja godišnje za mjerenja napona, struje i radne snage				
vrijeme mjerenja	480 ms uz napon napajanja 50 Hz				

Tablica 3.7 Tehnički podaci analizatora snage NORMA AC Power Analyzer D 5255 S

Slika 3.25 Analizator snage NORMA AC Power Analyzer D 5255 S [41]

3.2.4. Mjerna nesigurnost

Mjerna nesigurnost u širem smislu znači sumnju u valjanost mjernog rezultata, a definira se kao parametar pridružen rezultatu mjerenja, a opisuje rasipanje vrijednosti koje bi se razumno moglo pripisati mjerenoj veličini. Budući da se u disertaciji provode eksperimentalna mjerenja, u kojima se koriste mjerni uređaji te se u konačnici želi provjeriti i potvrditi metodologija detekcije kvarova rotora analizirana MKE proračunom, potrebno je iskazati mjernu nesigurnost. Na rezultate cjelokupnog mjerenja, a time i na određivanje ukupne mjerne nesigurnosti utječu sljedeći parametri:

- točnost mjerne stanice PULSE LAN-XI,
- točnost analizatora snage NORMA AC Power Analyzer D 5255 S,
- nesavršenost ugradnje mjernih svitaka na statorski paket motora,
- dopuštena tolerancija širine zračnog raspora,
- nesavršenosti izrade konstrukcijskih dijelova stroja,
- pogreška ponovljivosti mjerenja induciranih napona u mjernim svitcima,
- pogreška ponovljivosti mjerenja vibracija pomoću akcelerometara.

Postupak određivanja mjerne nesigurnosti proveden je prema izrazima i postupku koji se može pronaći u relevantnoj literaturi [33, 34]. Prvo je određena mjerna nesigurnost mjernih uređaja, a potom i ukupna nesigurnost mjerenja. U tablici 3.8 prikazana je mjerna nesigurnost određena za mjernu stanicu. Greška instrumenta i procijenjena nestabilnost izvora određeni su iz službene umjernice mjerne stanice, dok je doprinos ponovljivosti mjerenja određen na osnovi izmjerenih induciranih napona u mjernim svitcima dobivenim za ispravno stanje generatora (geometrijska os rotora podudara se s glavnom osi rotacije). Na osnovi svih doprinosa određena je mjerna nesigurnost mjerne stanice u iznosu od $\pm 3,98$ %.

U tablici 3.9 prikazana je mjerna nesigurnost dobivena za analizator snage. Greška instrumenta i procijenjena nestabilnost izvora određeni su iz službene umjernice univerzalnog instrumenta, dok je doprinos ponovljivosti mjerenja određen iz karakteristika strujnih transformatora. Na osnovi svih prikazanih doprinosa određena je mjerna nesigurnost analizatora snage od $\pm 4,2$ %.

Doprinos	Maksimalna greška	Razdioba	Standardna devijacija	Koeficijent osjetljivosti	Mjerna nesigurnost				
Ponovljivost mjerenja (mjerni svitci)	±4,77 %	normalna, k=2	±2,38 %	1	±2,38 %				
Greška senzora (akcelerometri)	± 5,0 %	pravokutna, $k = \sqrt{3}$	±2,89 %	1	±2,89 %				
Greška instrumenta (DC napon)	±2,3 %	pravokutna, $k = \sqrt{3}$	±1,32 %	1	±1,32 %				
Nestabilnost izvora	0,5 %	pravokutna, $k = \sqrt{3}$	0,3 %	1	0,3 %				
$\sum MJ.STAN. = \sqrt{2,38^2 + 2,89^2 + 1,32^2 + 0,3^2} = \pm 3,98\%$									

Tablica 3.8 Mjerna nesigurnost mjerne stanice

	Tablica 3	.9 Mjerna nesig	urnost analizato	ora snage	
orinos	Maksimalna greška	Razdioba	Standardna devijacija	Koeficijent osjetljivosti	Mj nesig
a ¥1za					

Doprinos	Maksimalna greška	Razdioba	Standardna devijacija	osjetljivosti	Mjerna nesigurnost				
Greška strujnog transformatora	±4,2 %	normalna, k = 1	±4,2 %	1	±4,2 %				
Greška instrumenta (AC struja)	±0,1 %	pravokutna, $k = \sqrt{3}$	$\pm0,058~\%$	1	$\pm0,058~\%$				
Greška instrumenta (AC napon)	$\pm0,1$ %	pravokutna, $k = \sqrt{3}$	$\pm0,058~\%$	1	$\pm0,058~\%$				
Nestabilnost izvora	0,5 %	pravokutna, $k = \sqrt{3}$	0,3 %	1	0,3 %				
$\sum UNIV.INSTR. = \sqrt{4,2^2 + 0,058^2 + 0,058^2 + 0,3^2} = \pm 4,21\%$									

Г

U tablici 3.10 navedena je ukupna mjerna nesigurnost, dobivena za eksperimentalno mjerenje zajedno s pojedinačnim doprinosom svakog faktora. Nadalje, utjecaj faktora nesavršenosti ugradnje mjernog svitka određen je na osnovi njegovih geometrijskih dimenzija i mjesta ugradnje (zub statora). Iznosi tolerancija na širinu zračnog raspora i dimenzije paketa statora definirani su temeljem dostupnih iskustvenih vrijednosti za sinkrone generatore srednjih snaga. Na osnovi svih prikazanih faktora određena je konačna ukupna mjerna nesigurnost eksperimentalnog mjerenja u iznosu od $\pm 8,37$ %. Ukoliko se cijeli postupak želi izraziti kao 95 % točnosti izračuna, tada je krajnji rezultat, odnosno ukupnu mjernu nesigurnost, potrebno povećati s faktorom k = 2. Dakle mjerna nesigurnost postupka tada iznosi $\pm 16,75$ %.

Faktor	Maksimalna greška	Razdioba	Standardna devijacija	Koeficijent osjetljivosti	Mjerna nesigurnost
Mjerna stanica	±3,98 %	normalna, k=1	±3,98 %	1	± 3,98 %
Analizator snage	±4,21 %	normalna, $k = 1$	±4,21 %	1	±4,21 %
Nesavršenost ugradnje mjernog svitka - uzdužno	±1,60 %	normalna, k=1	±1,60 %	1	±1,60 %
Nesavršenost ugradnje mjernog svitka - poprijeko	±2,00 %	normalna, k=1	±2,00 %	1	±2,00 %
Tolerancija nesimetrije zračnog raspora	10,00 %	normalna, k=2	5,00 %	1	2,50 %
Tolerancija izrade statorskog paketa	0,07 %	normalna, k=1	0,07 %	1	0,07 %
$\sum UK_MU = \sqrt{3,98^2 + 4,21^2 + 1,60^2 + 2,00^2 + 2,50^2 + 0,07^2} = \pm 8,37\%$					
$\sum MU_POSTUPAK = \sum UK_MU \times 2 = \pm 9,86 \% \times 2 = \pm 16,75 \%$					

Tablica 3.10 Mjerna nesigurnost cjelokupnoga eksperimentalnog mjerenja

4. Magnetske sile i inducirani napon mjernih svitaka

Magnetske sile koje djeluju unutar električnog stroja teško je mjeriti izravnim putem. Za potrebe eksperimentalnih istraživanja moguće je stroj izvesti na poseban način, tako da je aktivni dio statora povezan s vanjskim kućištem preko tenzometara [16].

Slika 4.1 Izravno mjerenje sile koja djeluje na paket statora. Stator stroja povezan s vanjskim kućištem preko tenzometara [16].

Navedenim pristupom moguće je odrediti ukupnu silu koja djeluje na stator stroja i oscilacije u iznosu te sile, koje mogu biti posljedica nesimetrije magnetskog polja. Uslijed nestandardne izvedbe ukruta, uvođenje ovakvog mjerenja sile može dovesti do povećanja troškova u izradi novog generatora, pa može biti teško primjenjivo na postojećim strojevima.

Nova metoda omogućuje analizu radijalne sile koja djeluje na zub paketa statora i utvrđivanje pojave nesimetrije u silama temeljem mjerenja napona induciranog u mjernim svitcima ugrađenim na zube statora uz zračni raspor. Slika 4.2 prikazuje način ugradnje mjernog svitka na zub električnog rotacijskog stroja. U nastavku je ukratko opisana sama metoda i njezino korištenje.

Slika 4.2 Način ugradnje svitka za mjerenje magnetskog polja na radijalnu plohu zuba paketa statora električnog stroja

Glavni magnetski tok sinkronog generatora s istaknutim polovima zatvara se putem koji obuhvaća: jaram statora \rightarrow zube statora \rightarrow zračni raspor \rightarrow pol rotora \rightarrow jaram rotora \rightarrow susjedni pol rotora \rightarrow zračni raspor \rightarrow zube statora \rightarrow početna pozicija u jarmu statora. Opisani put (magnetski krug stroja) grafički je prikazan silnicama magnetskog polja na slici 4.3.

Slika 4.3 Put glavnog magnetskog toka četveropolnog generatora s istaknutim polovima

Slika 4.4 Put magnetskog toka u zoni zračnog raspora

Većina silnica magnetskog toka pri prolazu kroz zračni raspor ulazi u stator kroz radijalnu plohu zuba, dok njihov manji dio u zub ulazi kroz bočne površine zuba (slika 4.4). O širini namota mjernog svitka, smještenog na radijalnu plohu zuba, ovisi količina obuhvaćenog magnetskog toka koji ulazi u zub. Tako će svitkom sa slike 4.4 označenim kao *Ms1* biti obuhvaćen manji magnetski tok nego svitkom *Ms2*.

Magnetski tok ϕ_{Ms} obuhvaćen mjernim svitkom od N_{sv} zavoja i inducirani napon u svitku $u_{ind Ms}$ povezuje izraz (4.1)

$$u_{ind\ Ms} = -N_{sv} \cdot \frac{\mathrm{d}\phi_{Ms}}{\mathrm{d}t} \Rightarrow \mathrm{d}\phi_{Ms} = -\frac{u_{ind\ Ms}}{N_{sv}} \cdot \mathrm{d}t \tag{4.1}$$

U slučaju mjerenja tj. određivanja magnetskog toka na temelju diskretiziranog broja mjernih točaka, izraz (4.1) prelazi u oblik (4.2) gdje je sa Δt označen vremenski period uzorkovanja, a sa $\Delta \phi$ promjena magnetskog toka kroz dotični period.

$$\Delta \phi_{MS} = -\frac{u_{ind\,MS}}{N_{Sv}} \cdot \Delta t \tag{4.2}$$

Iz snimke induciranog napona u n_t vremenskih točaka, iznos magnetskog toka za svaki vremenski trenutak t određuje se kao:

$$\phi_{Ms\ t} = -\frac{u_{ind\ Ms\ t}}{N_{sv}} \cdot \Delta t \quad , \quad t = 1 \tag{4.3}$$

$$\phi_{Mst} = \phi_{Mst-1} - \frac{u_{ind\,Mst}}{N_{sv}} \cdot \Delta t, \quad t \in [2, 3 \dots n_t]$$

$$(4.4)$$

Vremenska promjena magnetske indukcije mjernog svitka B_{Ms} određuje se iz valnog oblika magnetskog toka za svaki vremenski trenutak *t* na temelju izraza (4.5), u kojem S_{Ms} predstavlja površinu omeđenu mjernim svitkom.

$$B_{MSt} = \frac{\phi_{MSt}}{s_{MS}} \quad t \in [1, 2 \dots n_t]$$
(4.5)

Slika 4.5 Pretvorba induciranog napona mjernog svitka *u*ind Ms u magnetsku indukciju svitka *B*Ms

4.1. Odnos magnetske indukcije mjernog svitka i radijalne sile koja djeluje na zub

Napon induciran u mjernom svitku moguće je odrediti i računski upotrebom proračuna metodom konačnih elemenata (slika 4.6). Proračunski model s kojim se postiže dobro poklapanje rezultata proračuna i mjerenja induciranog napona mjernog svitka moguće je upotrijebiti za određivanje ukupne radijalne i tangencijalne komponente indukcije zuba statora.

Slika 4.6 Usporedni prikaz izmjerenog i izračunatog napona mjernog svitka

Kod sinkronih električnih generatora klasične izvedbe, radijalna komponenta magnetske indukcije B_{rad} značajno je većeg iznos od tangencijalne komponente B_{tan} (slika 4.7). Na napon mjernog svitka utječe komponenta magnetske indukcije okomita na plohu njegove petlje. Uslijed toga, magnetska indukcija određena temeljem napona mjernog svitka B_{Ms} po valnom obliku odgovara radijalnoj indukciji B_{rad} , dok se po iznosu razlikuje zbog mjerne netočnosti $B_{Ms} \sim B_{rad}$ (slika 4.8).

Slika 4.7 Usporedni prikaz radijalne B_{rad} i tangencijalne B_{tan} komponente magnetske indukcije zuba

Slika 4.8 Usporedni prikaz ukupne radijalne indukcije zuba B_{rad} i magnetske indukcije mjernih svitaka B_{Ms1} i B_{Ms2}
Proračunski model s kojim se postiže dobro poklapanje rezultata proračuna i mjerenja induciranog napona mjernog svitka moguće je upotrijebiti za određivanje ukupne radijalne F_{rad} i tangencijalne F_{tan} komponente sile na zub, metodom Maxwellovog tenzora naprezanja.

Kod sinkronih električnih generatora klasične izvedbe, radijalna komponenta sile F_{rad} značajno je većeg iznosa od tangencijalne komponente F_{tan} (slika 4.9). Uslijed ovakvog međusobnog odnosa, radijalna komponenta sile predstavlja primarni uzrok vibracija, te joj se stoga pridaje puno veća važnost u analizama i izračunima vezanima za vibracije i buku u odnosu na tangencijalnu komponentu.

Slika 4.9 Usporedni prikaz radijalne F_{rad} i tangencijalne F_{tan} komponente sile

U slučaju diskretiziranog broja mjernih točaka i uz pretpostavku nultog iznosa magnetske indukcije aksijalnog smjera ($B_{aks} = 0$), matematički izraz koji povezuje radijalnu silu i komponente magnetske indukcije (izraz 2.6) može se zapisati u obliku:

$$\Delta F_{rad\ t} = \frac{1}{2 \cdot \mu_0} \cdot \left(B_{rad\ t}^2 - B_{tan\ t}^2 \right) \cdot \Delta S \quad t \in [1, 2 \dots n_t]$$
(4.6)

U navedenom izrazu indeksom *t* označen je redni broj mjerenog podatka, a sa ΔF iznos sile koji se odnosi na parcijalnu površinu ΔS radijalne plohe zuba. Budući da je radijalna komponenta magnetske indukcije značajno veća od tangencijalne (B_{rad} $>> B_{tan}$), radijalnu silu moguće je dovesti u korelaciju s radijalnom indukcijom:

$$\Delta F_{rad\ t} \sim \frac{1}{2 \cdot \mu_0} \cdot B_{rad\ t}^2 \cdot \Delta S \quad t \in [1, 2 \dots n_t]$$
(4.7)

Kako je magnetska indukcija određena temeljem napona mjernog svitka B_{Ms} izravno povezana s radijalnom indukcijom $B_{Ms} \sim B_{rad}$, Moguće je preko izraza (4.7) dovesti u vezu i magnetsku indukciju mjernog svitka B_{Ms} s radijalnom silom koja djeluje na zub F_{rad} .

Temeljem magnetske indukcije mjernog svitka B_{Ms} i površine zuba S_{zub} , pomoću izraza 4.8 moguće je odrediti radijalnu silu F_{MS} koja djeluje na zub.

$$F_{Mst} = \frac{1}{2 \cdot \mu_0} \cdot B_{Mst}^2 \cdot S_{zub} \quad t \in [1, 2 \dots n_t]$$

$$\tag{4.8}$$

Slika 4.10 Pretvorba magnetske indukcije mjernog svitka B_{Ms} u iznos sile F_{Ms}

Radijalna sila na zub određena preko mjernog svitka F_{MS} razlikuje se od ukupne radijalne sile koja djeluje na zub F_{rad} (slika 4.11). Razlozi za ovo su:

- Odstupanje radijalne magnetske indukcije određene mjernim svitkom od ukupne magnetske indukcije, uslijed magnetskog toka koji u zub ulazi mimo mjernog svitka;
- Zanemarenje utjecaja tangencijalne i aksijalne komponente magnetske indukcije na radijalnu silu;
- mjerna nesigurnost uslijed nesavršenosti ugradnje mjernih svitaka, geometrijskih nesavršenosti u izradi stroja (okruglost paketa statora, ekscentrični pomak rotora) i točnosti korištene mjerne opreme.

Slika 4.11 Usporedni prikaz radijalne sile F_{rad} i sila F_{Ms1} i F_{Ms2} koje odgovaraju kvadratu indukcije mjernih svitaka Ms1 i Ms2

4.2. Detekcija nesimetričnog opterećenja upotrebom mjernih svitaka

Za rad stroja je idealna situacija u kojoj vlada električna i mehanička simetrija. U takvom slučaju sile na sve zube generatora u praznom hodu istovjetnog su valnog oblika, a međusobno se razlikuju samo po faznom zakretu (slike 4.12 i 4.13). Fazna razlika sila između dva susjedna zuba $\Delta \varphi_{Zub}$ ovisi o broju utora statora N_2 i broju polova generatora 2p, te se u električnim kutovima osnovnog harmonika može prikazati preko izraza:

$$\Delta \varphi_{Zub} = 360_{el}^{\circ} \cdot \frac{2p}{N_2} \tag{4.9}$$

Slika 4.12 Ujednačene radijalne sile po zubima za prazni hod mehanički simetričnog generatora

Slika 4.13 Ujednačene tangencijalne sile po zubima za prazni hod mehanički simetričnog generatora

Kada kroz sve tri faze armaturnog namota električnog stroja teku sinusne struje iste amplitude i međusobno fazno pomaknute za 120°, sile na zube donekle se međusobno razlikuju u valnom obliku, uslijed rasporeda namota koji okružuje pojedini zub (slika 4.14 i 4.15).

Slika 4.14 Radijalne sile po zubima za simetrično opterećenje generatora

Slika 4.15 Tangencijalne sile po zubima za simetrično opterećenje generatora

U strojevima s faznim namotima projektiranim po uvjetima simetrije, elektromagnetska slika kružno se ponavlja duž oboda. Veličinu karakterističnog segmenta aktivnog dijela stroja, poznatog i pod nazivom prapol, moguće je odrediti na osnovi broja utora statora po polu i fazi *q*:

$$q = \frac{N_2}{2p \cdot m} = \frac{a}{b} \tag{4.10}$$

U navedenom izrazu s N_2 je označen ukupni broj utora statora, 2p je broj polova, *m je* broj faza, dok su s *a* i *b* označeni reducirani brojnik i nazivnik broja utora po polu i fazi *q*.

Najmanji cjelobrojni nazivnik broja utora po polu i fazi odgovara broju polova obuhvaćenih prapolom stroja. Kada je ovaj broj jednak jedinici (b = 1) stroj ima cijeli broj utora po polu i fazi ($q \in N$), a magnetska slika stroja ponavlja se pod svakim polom. Kada je reducirani nazivnik broja q veći od jedinice, kažemo da stroj ima razlomljen namot. Izrazom 4.11 moguće je odrediti broj cirkularnih segmenata stroja s jednakom magnetskom slikom N_{prapol} :

$$N_{prapol} = \frac{2p}{b}.$$
(4.11)

Ovaj broj ujedno ukazuje koliko statorskih zubi stroja dijeli jednaku elektromagnetsku sliku. Međusobni razmak $\Delta N_{zub_{pz}}$ između zubi na koje djeluju jednake magnetske sile može se odrediti izrazom:

$$\Delta N_{zub_pz} = \frac{N_2}{N_{prapol}}.$$
(4.12)

Najveći razmak dva zuba koji u stroju dijele jednaku elektromagnetsku sliku $\Delta N_{zub_pz_maks}$ (zadovoljavaju izraz 4.12.) može se odrediti izrazom:

$$\Delta N_{zub_pz_maks} = \left\lfloor \frac{N_{prapol}}{2} \right\rfloor \cdot \Delta N_{zub_pz} .$$
(4.13)

U navedenom izrazu '[]' predstavlja matematički simbol zaokruživanja broja na najbližu nižu cjelobrojnu vrijednost.

Ako je broj prapolova neparan ($N_{prapol}/2 \notin N$, $N_{prapol} > I$), razmak među zubima statora za koji su ispunjeni navedeni uvjeti manji je od dijametralnog.

Ako je broj prapolova paran ($N_{prapol}/2 \in N$), kao što je slučaj kod analiziranog generatora, par statorskih zubi za koji su ispunjeni navedeni uvjeti (vrijedi jednakost magnetskih sila), dijametralno je razmaknut, tj. međusobno udaljen za $N_2/2$ zubi. U mjernim svitcima ugrađenima na dijametralno postavljene zube ovakvog stroja inducirati će se stoga istovjetni naponi.

Slikom 4.16 prikazan je raspored namota po utorima statora na primjeru četveropolnog generatora s istaknutim polovima. Radi lakšeg raspoznavanja, vodiči različitih faza označeni su međusobno drugačijim bojama:

- vodiči faze A crvena boja;
- vodiči faze B plava boja;
- vodiči faze C žuta boja.

Kružnim oznakama naznačene su lokacije četiri para dijametralno razmaknutih zubi, također međusobno označenih drugačijim bojama radi lakšeg raspoznavanja:

- par A1-A2 crvena boja;
- par B1-B2 plava boja;
- par C1-C2 žuta boja;
- par D1-D2 zelena boja.

Sve istaknute lokacije označavaju zube koji se nalaze na granici dviju faznih zona:

- u utorima s jedne strane zuba smješteni su vodiči jedne faze (npr. faze C za lokacije C1, C2, D1 i D2);
- u utorima s druge strane zuba smješteni su vodiči različitih faza (npr. faze C i B za lokacije C1, C2, D1 i D2).

U prikazanom slučaju broj utora statora po polu i fazi q nije cijeli broj (4.14) :

$$q = \frac{N_2}{2p \cdot m} = \frac{78}{4 \cdot 3} = \frac{13}{2} = 6,5.$$
(4.14)

Uslijed ovako razlomljenog namota, parovi zubi *A*-*C* i *B*-*D* međusobno su razmaknuti za kut različit od polovice polnog koraka τ_p , pa valni oblici ovih parova međusobno nisu u fazi (slika 4.17).

$$\tau_p = \frac{360}{2p} = \frac{360}{4} = 90^{\circ}. \tag{4.15}$$

Kako su lokacije svih razmatranih zubi slične s obzirom na raspored namota po susjednim utorima, u slučaju simetričnog opterećenja (simetričnih struja po fazama) na navedene zube djeluju sile jednakih valnih oblika, koje se međusobno poklapaju po vršnim i efektivnim vrijednostima, a razlikuju samo po faznom zakretu (slika 4.17).

Slika 4.17 Radijalne sile na odabrane zube za simetrično opterećen generator

Ukoliko se na radijalne plohe zubi označenih točkama *A*, *B*, *C* i *D* postave mjerni svitci, valni oblici u njima induciranih napona također će biti istih vršnih i efektivnih vrijednosti (slika 4.18). Inducirani naponi dijametralno razmaknutih svitaka (prikazani punim i crtkanim linijama) međusobno će se poklapati.

Slika 4.18 Inducirani naponi mjernih svitaka za simetrično opterećen generator

U slučaju nesimetričnog električnog opterećenja, kroz tri fazna namota ne teku struje jednakih amplituda. Uslijed nejednolikosti reakcije armature po obodu, u rezultirajućem magnetskom polju javlja se oscilirajuća komponenta, koja dovodi do nejednolikog rasporeda sila po zubima duž oboda stroja.

Slika 4.20 Tangencijalne sile na zube za nesimetrično opterećenje po fazama generatora

Zubi parova *A-B* i *C-D* nalaze se pod namotima različitih faza, pa se u slučaju nesimetričnog opterećenja međusobno razlikuju i sile koje na njih djeluju (slika 4.21). Isto tako međusobno se razlikuju i inducirani naponi mjernih svitaka postavljenih ispod ovih zubi (slika 4.22).

Slika 4.21 Radijalne sile na promatrane zube za nesimetrično opterećenje po fazama generatora

Slika 4.22 Inducirani naponi mjernih svitaka za nesimetrično opterećenje po fazama generatora

Radi lakšeg uočavanja razlika uzrokovanih nesimetričnim opterećenjem, napone mjerene svitcima moguće je dodatno obraditi na način opisan izrazima (4.3), (4.5) i (4.8). Time se usporedba može svesti na analizu radijalnih sila koje djeluju na zube (slika 4.21.).

Na osnovi međusobnih razlika valnih oblika napona induciranih u mjernim svitcima (amplituda i efektivnih vrijednosti), moguće je razlikovati situacije simetričnog i električki nesimetričnog opterećenja.

Iako u slučaju električne nesimetrije inducirani napon mjernog svitka na pojedinom zubu ima drugačiji valni oblik nego kod simetričnog opterećenja (slika 4.23), kod dijametralno razmaknutih parova zubi (npr. *A1-A2*) i dalje će se međusobno poklapati valni oblici sila i induciranih napona u mjernim svitcima (slika 4.24).

Jednaki naponi dijametralno postavljenih svitaka situaciju nesimetričnog električnog opterećenja razlikuju od slučajeva ekscentričnosti rotora ili kvarova štapova, koji su razmatrani u [40, 41]. Tablicom 4.1 prikazan je sažet pregled razlika između spomenutih nesimetričnih stanja.

Vrsta mjerenja	Ispravno simetrično stanje	Kvar namota	Ekscentričnost	Nesimetrično opterećenje
Valni oblik sila određenih pomoću dijametralno postavljenih svitaka	Jednak	Različit	Različit	Jednak
Vrsta razlike sila određenih pomoću dijametralno postavljenih svitaka	a ću Nema Periodička pojava izraženih vrhova u razlici sila		Razlika sila ima značajnu efektivnu vrijednost	Nema
Valni oblik sila određenih pomoću svitaka smještenih pod različitim faznim zonama	u h Jednak Različit		Različit	Različit
Vrsta međusobne razlike sila određenih pomoću svitaka smještenih pod različitim faznim zonama	Nema razlike	Periodička pojava izraženih vrhova u razlici sila	Valni oblici sličnog harmonijskog sastava i različite efektivne vrijednosti	Valni oblici različitog harmonijskog sastava i različite efektivne vrijednosti

5. Proračuni generatora metodom konačnih elemenata

Prilikom dimenzioniranja magnetskih i električnih krugova električnih strojeva najčešće se primjenjuju analitički proračuni koji se zasnivaju na pretpostavkama i pojednostavljenjima kao što su: apsolutna simetričnost dizajna, jednaka raspodjela magnetske indukcije pod svim polovima, zanemaren ili pojednostavljen utjecaj lokalnih magnetskih zasićenja. Točnije određivanje karakteristika i ponašanja stroja moguće je korištenjem numeričkih metoda. Takvim metodama, moguće je detaljno proučavati utjecaj jednog ili više parametara na dinamičko ponašanje stroja. Pored toga, ovim metodama moguće je čak provesti analize specifičnih pojava u stroju, koje nije moguće ispitati u stvarnim pogonskim ili laboratorijskim uvjetima. Najrasprostranjenija numerička metoda, koja se primjenjuje u analizi rotacijskih električnih strojeva, je metoda konačnih elemenata (MKE). Ona se može primijeniti u rješavanju dvodimenzionalnih i trodimenzionalnih problema kod elektromagnetskih polja i mehaničkih naprezanja, a rješenja se mogu dobiti za statičke, vremenski promjenjive i prijelazne pojave. U slučaju primjene MKE proračuna, posebna se pozornost posvećuje točnosti podataka o značajkama materijala konstrukcijskih dijelova stroja i dimenzijama konačnih elemenata pri generiranju mreže. Promjene magnetskog toka u zračnom rasporu i posljedično u zubima paketa statora odražavaju se na magnetske sile. Iz ovog razloga mreža čvorova u kojima se računa magnetsko polje upravo u tom području mora biti izrazito gusta te što pravilnije raspoređena. Time se ostvaruju točniji i pouzdaniji rezultati elektromagnetskih proračuna. Magnetske sile određene ovakvim elektromagnetskim proračunom, mogu se upotrijebiti kao ulazni podatak za mehanički MKE proračun. Da bi se sprezanje elektromagnetskog i mehaničkog proračuna izvelo na ispravan način, potrebno je obratiti pozornost i na gustoću mreže geometrijskih elemenata koje dijele oba proračunska modela. U slučaju izračuna vibracija statorskih dijelova električnog stroja, najveću pažnju treba pridati definiranju mreže zubi paketa statora, jer na ovaj dio statora djeluju vremenski promjenjive sile najvećeg iznosa. Često se analize magnetskih polja i mehaničkih naprezanja paketa statora električnih strojeva mogu predstaviti kao dvodimenzionalni problem. Međutim, valja imati na umu da se u stvarnosti radi o trodimenzionalnim problemima i da su rješenja dobivena analizom dvodimenzionalnog problema samo približno točna, jer primjerice ne uzimaju u obzir utjecaj čeonih zona stroja na elektromagnetska polja, te njima uzrokovane sile i vibracije.

5.1. Izrada simulacijskog modela

Danas se u projektiranju i modeliranju rotacijskih električnih strojeva koriste programski paketi koji upotrebom numeričke MKE metode, uz zadane početne i rubne uvjete, omogućuju točnije izračune elektromagnetskih i mehaničkih prilika za realne konstrukcije strojeva. Jedan od njih je i komercijalni programski paket *ANSYS*, koji je korišten za izradu 2D simulacijskih modela i proračune sinkronog generatora. Navedeni programski paket sastoji se od niza specijaliziranih programa za MKE izračune, od kojih je za rješavanje elektromagnetskih problema moguće koristiti *ANSYS Maxwell*, a za mehaničke probleme *ANSYS Mechanical*. Automatizirano povezivanje ovih programa moguće je provesti upotrebom programa *ANSYS Workbench*.

5.1.1. Model za elektromagnetske proračune

Program *ANSYS Maxwell* omogućuje rješavanje elektromagnetskih problema uz simuliranje uvjeta različitih pogonskih stanja (uključujući i ona nesimetrična) za razne vrste električnih strojeva, aparata i uređaja. Na ovaj način moguće je izvršiti kontrolu provedenih mjerenja ili pak analitičkih proračuna i utvrditi područje odstupanja ulaznih podataka unutar kojih proračun ostaje dovoljno točan u usporedbi s mjerenjima.

Na osnovi projektnih podataka sinkronog generatora (tablica 3.1) i dimenzija konstrukcijskih dijelova provjerenih mjerenjem izrađen je 2D MKE model za izračun mehaničkog odziva paketa i kućišta generatora za različite slučajeve pobudnih sila, a koji su posljedica situacije simetričnih i nesimetričnih električnih opterećenja. Utjecaj pojedinog analiziranog pogonskog stanja generatora na inducirane napone u mjernim svitcima izračunat je primjenom MKE. Proračunskim modelom u obzir su uzeti nelinearnost materijala (željezna jezgra izrađena od dinamo limova) i stvarna geometrija stroja. MKE izračuni na modelu koji odgovara stvarnom stroju nužni su kako bi se provjerila odabrana metodologija za analizu nesimetričnih opterećenja.

Na slici 5.1 prikazan je 2D model sinkronog generatora pomoću kojeg su provedeni izračuni magnetskih indukcija, induciranih napona i magnetskih sila. Za provedbu proračuna korišten je programski modul *"Magnetic Transient"*, koji omogućuje izračune uz simulaciju vrtnje rotora. Simulacijski proračuni provedeni su za napon 400 V, frekvencije 50 Hz (sinusno napajanje), kako bi bilo moguće rezultate dobivene MKE proračunom usporediti s rezultatima mjerenja provedenih u laboratoriju.

Mreža konačnih elemenata modela generatora prikazana je na slici 5.2, dok je slikama 5.3 i 5.4. prikazan statorski električni krug stroja za slučajeve simetričnog i nesimetričnog opterećenja.

Pomoću vanjskog električnog kruga fazni namoti statora spojeni su u zvijezdu. Efekti čeone zone generatora (otpor glava namota i rasipni magnetski tokovi) uzeti su u obzir dodavanjem otpora i induktiviteta u vanjski električki krug statorskog namota. Vrijednosti ovih veličina preuzete su iz analitičkog proračuna generatora. Štapovi prigušnog namota spojeni su međusobno u paralelu upotrebom *End Connection* modula [37]. Skošenje za jedan utorski korak statora modelirano je s 5 aksijalnih presjeka, upotrebom tzv. *Multi slice* metode ugrađene u programski paket [37]. Opterećenja generatora modelirana su upotrebom pasivnog trofaznog i jednofaznog tereta, s ciljem da se proračunska stanja približe mjerenima.

Uz veličinu konačnih elemenata odabranu po aktivnim dijelovima generatora na način prikazan tablicom 5.1, ukupna mreža modela sadrži 150000 elemenata. Proračuni su provedeni uz rješavanje diferencijalnih jednadžbi po vremenu primjenom *Backward-Euler* metode, uz iznos nelinearnog ostatka (greške u konvergenciji rješenja) manji od 0,0001. MKE proračuni provedeni su u dva koraka. Najprije je uz korak od 20 točaka po periodi izračunato početnih 5 perioda osnovnog harmonika napona radi postizanja ustaljenog stanja, a nakon toga dvije električne periode tj. puni okret rotora s korakom od 400 točaka po periodi. U tablici 5.2 navedeni su uvjeti simulacijskog proračuna gdje t_{sim} označava vrijeme trajanja simulacije, a $t_{sim,kr}$, vremenski korak simulacije.

Dio modela	Veličina konačnog elementa [mm]		
Stator jaram	20		
Stator zubi	1		
Zračni raspor (iznad pola)	1		
Zračni raspor (međupolno)	15		
Štapovi prigušnog namota	3		
Polna stopala	12		
Polne jezgre	20		
Jaram rotora	20		

Tablica 5.1 Veličina konačnih elemenata po dijelovima modela za EM proračune

U[V]	f[Hz]	<i>t_{sim 1}</i> [ms]	<i>t_{sim.kr 1}</i> [ms]	<i>t</i> _{sim 2} [ms]	<i>t_{sim.kr 2}</i> [ms]
400	50	100	1	40	0,05

Tablica 5.2 Uvjeti elektromagnetskog simulacijskog proračuna

Slika 5.1 Dvodimenzionalni model generatora u programskom okruženju ANSYS Maxwell

Slika 5.2 Mreža konačnih elemenata MKE modela za elektromagnetske proračune

Slika 5.3 Vanjski električni krug MKE modela za simetrično opterećenje

Slika 5.4 Vanjski električni krug MKE modela za slučaj nesimetričnog opterećenja po fazama

5.1.2. Model za mehaničke proračune

Program *ANSYS Mechanical* omogućuje rješavanje mehaničkih problema uz simuliranje različitih pobudnih uvjeta (statičkih i vremenski promjenjivih sila), za razne vrste složenih geometrijskih struktura i konstrukcija. Ovakvim proračunom moguće je utvrditi mehaničke odzive neke konstrukcije i uočiti potencijalne mehaničke probleme prije fizičke izrade. Proračunskim simulacijama moguće je izvršiti i kontrolu provedenih mjerenja te utvrditi područje odstupanja ulaznih podataka unutar kojih proračun ostaje dovoljno točan u usporedbi s mjerenjima.

Na osnovi projektnih podataka (tablica 3.1) i izmjerenih dimenzija konstrukcijskih dijelova sinkronog generatora, izrađen je 2D MKE model za izračun mehaničkog odziva paketa i kućišta statora za različite slučajeve pobudnih sila, a koji su posljedica situacije simetričnih i nesimetričnih električnih opterećenja.

Slikom 5.5 prikazan je 2D model sinkronog generatora, pomoću kojeg su provedeni izračuni vibracijskih pomaka, brzine i akceleracije za različita pogonska stanja. Model je baziran na poprečnom presjeku centralnog dijela statora generatora, za koji postoji zrcalna simetrija oko vertikalne osi i na kojem je bilo moguće provesti mjerenja.

Dodirne plohe između sljedećih komponenti modela definirane su kao čvrsti spoj:

- letve s paketom i plaštem kućišta (koji je izveden zavarom);
- utorske izolacije, vodiča, utorskih klinova i unutarnje plohe utora (fiksirani su impregnacijskom smolom);
- jarma statora i zubi, koji u modelu postoji samo radi točnijeg preslikavanja sila iz elektromagnetskog proračuna (u stvarnosti je poprečni presjek cijelog paketa statora izrađen od jednog lima).

Učvršćenje generatora na postolje (temeljnu ploču) modelirano je pomoću fiksnih potpora nogu kućišta.

Masa glava namota u čeonim dijelovima stroja uzeta je u obzir povećanjem specifične gustoće vodiča smještenih u utore 2D modela.

Mreža konačnih elemenata modela prikazana je na slici 5.6. Većini komponenti modela definirana je maksimalna veličina trokutastih elemenata od 3 mm, osim za zube statora gdje je mreža izrađena s elementima veličine 0,5 mm. Uz ovakve postavke, ukupna mreža modela sadrži 184000 elemenata.

Analize su provedene pomoću *Plane Stress* 2D računskog modela, upotrebom programskog modula "*Modal*" za izračun vlastitih frekvencija i modula "*Harmonic Response*" za izračun ukupnog odziva na periodičku pobudu, metodom superpozicije harmonika. U tablici 5.3 navedeni su osnovni uvjeti simulacijskog proračuna.

Slika 5.5 Dvodimenzionalni model generatora u programskom okruženju ANSYS Mechanical

Slika 5.6 Mreža konačnih elemenata MKE modela za mehaničke proračune

Uvjet	Oznaka	Iznos
Raspon analiziranih vlastitih frekvencija	<i>f</i> vl raspon 0-13000 Hz	
Frekvencijski raspon pobudne sile	$f_{pobuda\ raspon}$	0-10000 Hz
Frekvencijski raspon računatog mehaničkog odziva	fodziv raspon	0-6000 Hz

Tablica 5.3 Uvjeti mehaničkog simulacijskog proračuna

5.1.3. Povezivanje elektromagnetskog i mehaničkog proračuna

Povezivanje elektromagnetskog i mehaničkog proračuna provedeno je u frekvencijskoj domeni upotrebom alata *ANSYS Workbench* (slika 5.7).

Da bi se uspješno povezali proračuni programa ANSYS Maxwell i ANSYS Mechanical te spregnutom metodom izračunale vrijednosti vibracija paketa statora električnog stroja, potrebno je ispuniti sljedeće uvjete:

- geometrija paketa statora mora se poklapati u oba proračuna;
- u elektromagnetskom proračunu potrebno je aktivirati izračun sila po zubima;
- mreža konačnih elemenata u zoni zubi mora biti dovoljno gusta da se sile na ispravan način izračunaju i prenesu iz elektromagnetskog u mehanički proračun;
- broj simulacijskih točaka unutar jedne periode osnovnog harmonika sile mora biti oko 10 puta veći od željenog broja pouzdano izračunatih harmonika;
- frekvencija najvišeg izračunatog harmonika sile trebala bi se poklapati ili biti veća od reda najvišeg analiziranog harmonika vibracijskog pomaka.

Uz odabrani broj simulacijskih točaka (N_t =400 po periodi) elektromagnetskog proračuna, upotrebom brze *Fourierove* transformacije u automatiziranom algoritmu programa *ANSYS Maxwell* rastavlja se valni oblik sile na $N_t/2 = 200$ harmoničkih članova (raspon 0-10000 Hz) i ovi članovi automatizirano se prenose u *ANSYS Mechanical*.

Slika 5.7 Povezivanje elektromagnetskog i mehaničkog proračuna upotrebom ANSYS Workbench programskog alata

Kod električnih rotacijskih strojeva, najveće promjene magnetskih sila javljaju se u zoni zračnog raspora i zubi statora. Magnetske sile na zube glavna su pobuda za proračun mehaničkog odziva statora električnog stroja, pa je važno ispravno odrediti gustoću mreže u ovoj zoni za oba proračuna. Gustoću mreže moguće je podesiti na temelju izvještaja o uspješnosti preslikavanja sila iz elektromagnetskog u mehanički proračun, koji je dostupan preko sučelja programa *ANSYS Mechanical* (slika 5.8).

Exporting Volume Force Density Without Scaling						
Object	Total Force From Maxwell 2D	Total Force Mapped	Ratio			
Zub	(-253.323N, -39.7738N, 0N)	(-290.759N, -53.8912N, 0N)	0.867152			
Zub_1	(-14.3314N, -7.43465N, 0N)	(-16.6234N, -9.49511N, 0N)	0.843349			
Zub_2	(-4.02054N, 1.35191N, 0N)	(-3.96854N, 0.774949N, 0N)	1.84003			
Zub_3	(-125.658N, 2.68952N, 0N)	(-115.139N, 1.26878N, 0N)	1.09154			
Zub_4	(-1172.63N, -238.09N, 0N)	(-1141.08N, -259.986N, 0N)	1.02242			
Zub_5	(-1694.1N, -619.593N, 0N)	(-1683.04N, -604.442N, 0N)	1.0087			
Zub_6	(-2344.45N, -939.014N, 0N)	(-2261.14N, -992.906N, 0N)	1.02266			
Zub_7	(-3668.27N, -2000.59N, 0N)	(-3427.05N, -2015N, 0N)	1.05101			
Zub_8	(-3441.08N, -2584.28N, 0N)	(-3086.86N, -2270.53N, 0N)	1.12303			
Zub_9	(-3228.29N, -2893.57N, 0N)	(-3138.63N, -2820.31N, 0N)	1.02741			
Zub_10	(-2957.11N, -3189.21N, 0N)	(-2696.72N, -3277.9N, 0N)	1.02463			
Zub_11	(-2706.94N, -3363.14N, 0N)	(-2437.54N, -3032.38N, 0N)	1.10964			
Zub_12	(-2453.93N, -3580.65N, 0N)	(-2423.14N, -3488.92N, 0N)	1.02189			
Zub_13	(-2158N, -3766.25N, 0N)	(-2051.83N, -3675.37N, 0N)	1.03121			
Zub_14	(-1827.04N, -3924.12N, 0N)	(-1979.59N, -4137.63N, 0N)	0.943708			
Zub_15	(-1498.49N, -4069.31N, 0N)	(-1541.98N, -3841.34N, 0N)	1.04763			
Zub_16	(-690.35N, -3685.73N, 0N)	(-713.176N, -3709.92N, 0N)	0.992584			
Zub 17	(-346.083N, -2229.82N, 0N)	(-261.177N, -2202.29N, 0N)	1.01749			

Slika 5.8 Izvještaj o uspješnosti preslikavanja sila iz elektromagnetskog u mehanički proračun dostupan kroz sučelje programa *ANSYS Mechanical*

Navedene razlike nastaju zbog toga što elektromagnetski i mehanički program koriste zasebne alate za izradu mreže konačnih elemenata. Izrađene mreže nemaju savršeno preklapanje, pa se sile izračunate po elementima elektromagnetskog proračuna interpolacijskim algoritmom preslikavaju na mrežu mehaničkog proračuna (tzv. *Force Mapping*).

Da bi se za potrebe analiza spregnutim proračunima greška u prenosu sile iz elektromagnetskog u mehanički proračun svela na < 5 %, gustoća mreže zuba povećana je 3 puta (na 10 - 15 čvorova po širini zuba) u odnosu na slučaj za standardne elektromagnetske proračune (4 - 5 čvorova po širini zuba). Ova razlika prikazana je slikom 5.8.

Slika 5.9 Mreža prikladna za standardne elektromagnetske proračune (lijevo) i mreža povećane gustoće za potrebe spregnutih numeričkih proračuna (desno)

Ukoliko se žele analizirati sile na pojedine zube, potrebno je svaki zub definirati kao zasebni element modela. Ovakav način modeliranja nije nužan za sprezanje elektromagnetskog i mehaničkog proračuna, ali je poželjan. Naime, ako su zubi i jaram statora modelirani kao jedna komponenta modela, tada za cijeli paket statora mora biti definirana gušća mreža konačnih elemenata, a ovo može značajno povećati potrebne računske resurse i usporiti proračune.

Izračuni napona mjernih svitaka, magnetskih sila koje djeluju na zube i vibracija statora, provedeni su za odabrana pogonska stanja, koja se međusobno razlikuju po izlaznoj snazi, faktoru snage, broju uključenih faza i iznosu fazne struje. Za simetrična i nesimetrična opterećenja navedena u tablici 5.4 provedena su i mjerenja, radi kasnije usporedbe rezultata. Kolonama u tablici prikazane su sljedeće veličine:

S – prividna izlazna snaga generatora;

 $cos \varphi$ – faktor snage;

- P-radna izlazna snaga generatora;
- Q reaktivna (jalova) izlazna snaga generatora;
- I-efektivna vrijednost fazne struje;
- U linijski napon.

Tablica 5.4 Pregled računatih	simetričnih i električki	nesimetričnih pogo	nskih stanja generatora
- 8		10	J 8

Stanje praznog hoda							
Red br.	S [kVA]	$\cos \varphi [-]$	<i>P</i> [kW]	Q [kVAr]	<i>I</i> [A]	U[V]	
0.1.	0	0	0	0	0	200	
0.2.	0	0	0	0	0	400	
		Simetrid	čna optereće	enja			
Red br. S [kVA] $\cos \varphi$ [-] P [kW] Q [kVAr] I [A] U [V]							
1.1.	90	1,0	90	0	130	400	
1.2.	90	0,7	68	69	130	400	
1.3.	90	0,08	7,2	91	130	400	
1.4.	180	1,0	180	0	260	400	
1.5.	180	0,7	129	131	260	400	
1.6.	180	0,08	15,9	180	260	400	
	Električl	ki nesimetri	čna optereć	enja po faza	ma		
Red br. S [kVA] $\cos \varphi$ [-] P [kW] Q [kVAr] I [A] U [V						U[V]	
2.1.	52	1,0	52	0	130	400	
2.2.	52	0,7	36,4	37,1	130	400	
2.3.	52	0,0	0	52	130	400	
2.4.	90	0,7	63	64	225	400	
2.5.	104	1,0	104	0	260	400	
2.6.	104	0,7	73	74	260	400	
2.7.	104	0,0	0	104	260	400	

5.2. Rezultati elektromagnetskih proračuna za simetrično opterećenje

Osim numeričkih izlaznih rezultata, programski paket *ANSYS Maxwell* omogućuje i grafički prikaz magnetskog polja u stroju za određeni trenutak. Slika 5.10 prikazuje raspodjelu gustoće magnetskog toka (magnetske indukcije) u 2D modelu za stanje praznog hoda generatora, uz vrijednost linijskog napona U = 400 V, u vremenskom trenutku t = 140 ms, kad je završen simulacijski proračun, a slika 5.11 raspodjelu sila koje djeluju na jedan zub. Osim raspodjele sila po čvorovima, programom je moguće odrediti i rezultantni vektor sile na zub, zajedno s koordinatama njegovog ishodišta.

Slika 5.10 Raspodjela gustoće magnetskog toka sinkronog generatora u praznom hodu

U uzbuđenom generatoru magnetske sile privlače zube prema polovima rotora, tj. u smjeru suprotnom od radijalne osi cilindričnog koordinatnog sustava (slika 5.11). Slikom 5.12 prikazana je vremenska promjena radijalne sile na jedan zub tijekom jedne periode osnovnog harmonika napona (t=20 ms), u navedenom koordinatnom sustavu. Na slici su usporedno prikazani valni oblici radijalne sile za prazni hod generatora uz vrijednosti linijskog napona 200 V i 400 V. Radi prirodnije grafičke vizualizacije, podudarnosti pojmova veće=više i lakšeg objašnjavanja fizikalnih pojava, u nastavku rada prikazane su apsolutne vrijednosti radijalne sile (slika 5.13).

Slika 5.12 Radijalna sila na zub statora za slučajeve praznog hoda s linijskim naponom iznosa 200 i 400 V

Slika 5.13 Apsolutna vrijednost radijalne sile na zub za slučajeve praznog hoda s linijskim naponom iznosa 200 i 400 V

U 2D modelu generatora za svaki zub statora moguće je odrediti vremensku promjenu sile kroz jednu periodu osnovnog harmonika napona. Na mjestima gdje su modelirani mjerni svitci za analizu magnetskog polja (pozicije mjernih svitaka u proračunskom modelu stroja prikazane su na slici 5.14), moguće je odrediti i vremensku promjenu induciranih napona tijekom vrtnje rotora.

Slika 5.14 Pozicije mjernih svitaka Ms1-Ms8 u proračunskom modelu generatora

Slika 5.15. prikazuje napone inducirane u mjernim svitcima, a slika 5.16 valne oblike radijalnih sila na zube ispod kojih se ti svitci nalaze.

Slika 5.16 Radijalne sile na pozicijama mjernih svitaka Ms1-Ms8

Kako bi se objasnili valni oblici napona induciranih u mjernim svitcima i sila na zube, potrebno je poznavati fizikalnu sliku stroja, ali i utjecaj aktivnih dijelova generatora na njihov oblik. Za osnovno razumijevanje valnih oblika ovih veličina, dovoljno je proučiti situaciju za jedan odabrani zub.

Slikom 5.18 prikazana je vremenska promjena iznosa radijalne sile zuba iznad mjernog svitka oznake *Ms1* (pozicija u modelu generatora prema slici 5.14) za prazni hod generatora. Na istoj slici prikazana je korelacija pozicije i oblika polova rotora s valnim oblikom sile. Prikazana polna papuča tzv. trapeznog oblika može se podijeliti na tri segmenta: Središnji lučni dio iznad kojeg je udaljenost između pola i unutarnjeg promjera statora konstantna i dva rubna segmenta kod kojih se postepeno povećava zračni raspor prema statoru.

Kad nakon međupolnog prostora u zonu promatranog zuba nailazi trapezni dio polne papuče, smanjuje se zračni raspor između tog zuba i rotora. Uslijed toga povećavaju se iznosi magnetske indukcije zuba i magnetske sile koja djeluje na promatrani zub statora. Dok se ispod zuba nalazi centralni dio polne papuče, iznos sile na zub dostiže najveću vrijednost, a manje oscilacije su posljedica djelovanja prigušnog namota smještenog u utore na centralnom dijelu polne papuče. Izlazom centralnog dijela polne papuče iz zone promatranog zuba sila se počne smanjivati, sve do nulte vrijednosti u trenutku kad ispod zuba prolazi simetrala međupolnog prostora. Prikazani valni oblik sile simetričan je u odnosu na centralnu os pola. Ovo je u skladu sa simetričnom raspodjelom magnetskog polja na oba kraja polne papuče u praznom hodu (slika 5.10).

Slika 5.17 Vremenska promjena napona mjernog svitka u praznom hodu generatora

Slika 5.18 Vremenska promjena sile na jedan zub u praznom hodu

Ako se promotri naponski odziv svitka *Ms1*, u valnom obliku induciranog napona mogu se uočiti nagli porasti i propadi. Napon u svitku inducira se uslijed promjene njime obuhvaćenog magnetskog toka. Najveća promjena napona javlja se u trenutku kada rub polne papuče nailazi na ili izlazi iz zone zuba. Drugi značajno istaknuti vrh u valnom obliku napona pojavljuje se kad ispod zuba polna papuča prelazi iz trapeznog u lučni segment. Dok se ispod zuba nalazi centralni dio polne papuče, nema veće promjene toka pa ni značajnijeg napona u svitku. U ovoj zoni uočljivi manji vrhovi napona javljaju se uslijed prolaza štapova prigušnog namota ispod promatranog zuba.

Magnetski tokovi u zubima ispod susjednih polova međusobno su suprotnog magnetskog polariteta. Do promjene smjera magnetskog toka kroz zub dolazi kada se ispod zuba nalazi međupolni prostor.

Upotrebom brze *Fourierove* transformacije moguće je odrediti spektar frekvencija valnog oblika radijalne sile koja djeluje na zub. Na slici 5.19 red harmonika definiran je preko višekratnika osnovne frekvencije od 50 Hz.

Slika 5.19 Frekvencijski spektar valnog oblika radijalne sile na zub u praznom hodu

U harmonijskom sastavu radijalne sile uz srednju vrijednost (0. harmonik) uočavaju se sljedeći istaknuti harmonici:

- 2. definiran osnovnim harmonikom magnetske indukcije;
- 4. definiran omjerom širine lučnog dijela polne papuče i dva polna koraka $2 \cdot \tau_p$;
- 6. definiran omjerom širine zone štapova prigušnih namota i dva polna koraka $2 \cdot \tau_p$;
- 8. definiran omjerom širine međupolnog prostora i dva polna koraka $2 \cdot \tau_p$;
- 10. definiran omjerom trapeznog dijela polne papuče i dva polna koraka $2 \cdot \tau_p$;
- 12. i 14. utorski harmonici prigušnog namota 1. reda:

$$h_{pn\,1} = 1 \cdot \left(\frac{2}{3} \cdot \frac{360^{\circ}}{\tau_{pn} \cdot 2p} \pm 1\right)$$
(5.1)

- 16. definiran širinom međupolnog prostora na kojem je vrijednost sile bliska nuli;
- 18. definiran razmakom krajnjeg utora prigušnog namota od trapeznog brida papuče;
- 24. i 28. utorski harmonici prigušnog namota 2. reda:

$$h_{pn\,2} = 2 \cdot \left(\frac{2}{3} \cdot \frac{360^{\circ}}{\tau_{pn} \cdot 2p} \pm 1\right) \tag{5.2}$$

Korak prigušnog namota kod analiziranog generatora jednak je koraku utora statora:

$$\tau_{pn} = \tau_s = \frac{360^\circ}{N_2} = \frac{360^\circ}{78}.$$
(5.3)

5.2.1. Utjecaj povećanja snage na magnetske sile

Magnetska slika opterećenog stroja (slika 5.20) može se značajno razlikovati od one u praznom hodu. Slikom 5.20 prikazana je slika raspodjele gustoće magnetskog toka za slučaj opterećenja uz jedinični faktor snage, pri smjeru vrtnje suprotnom od kazaljke na satu.

U slučaju opterećenja, struje armaturnog namota stvaraju vlastito magnetsko polje, koje međudjeluje s magnetskim poljem rotora. Ovo dovodi do promjena magnetskom toka unutar stroja pa time i do promjena sila koje djeluju na zube.

Slika 5.20 Raspodjela gustoće magnetskog toka sinkronog generatora za simetrično opterećenje U=400 V, S=180 kVA, $\cos \varphi = 1$

Slikom 5.21 usporedno su prikazani valni oblici radijalne sile jednog zuba za slučajeve praznog hoda, opterećenja iznosa S=90 kVA i S=180 kVA uz nazivni napon U=400 V i jedinični faktor snage $\cos \varphi = 1$. Moguće je uočiti da su valni oblici sile na zub za razmatrana opterećenja značajno drugačiji nego u praznom hodu. S povećanjem snage, povećava se i maksimalna vršna vrijednost sile koja djeluje na zub. Kod približno radnog opterećenja (faktor snage $\cos \varphi = 1$), glavno magnetsko polje zaostaje za polovima, tj. njegov maksimum pomaknut je od simetrale pola suprotno smjeru rotacije. U takvom slučaju iznos radijalne sile najveći je upravo kada završni dio lučnog dijela pola prolazi ispod zuba.

Slika 5.21 Utjecaj povećanja snage na valni oblik radijalne sile na zub za slučaj jediničnog faktora snage $\cos \varphi = 1$.

Slika 5.22 Utjecaj povećanja snage na harmonike radijalne sile na zub za slučaj jediničnog faktora snage $\cos \varphi = 1$.

Slikom 5.22 prikazana je promjena harmonika radijalne sile s povećanjem snage uz faktor $\cos \varphi = 1$. Moguće je vidjeti da u ovom slučaju srednja vrijednost magnetske sile (0. harmonik) ostaje neizmijenjenog iznosa, dok se porast bilježi kod harmonika 2., 6., 8., 10., 12. i 16. reda. Zanimljivo je primijetiti kako se iznos 4. harmonika smanjuje s povećanjem opterećenja.

Slika 5.23 Utjecaj povećanja snage na valni oblik napona mjernog svitka

Povećanje snage dovodi i do promjene valnog oblika napona induciranog u mjernom svitku (slika 5.23). I ovdje valni oblik prestaje biti simetričan, tj. sve se više izobličuje s porastom snage. Ovo je očekivana pojava, budući da je u slučaju jediničnog faktora snage magnetski tok nesimetrično raspoređen po obodu polne papuče. Na strani polne papuče gdje pol nailazi ispod zone promatranog zuba, smanjuje se iznos vrhova u valnom obliku induciranog napona. Na izlazu polne papuče iz prostora zuba, javlja se recipročno povećan vrh u induciranom naponu svitka. Tijekom prolaska centralnog dijela polne papuče ispod mjernog svitka, magnetski tok svitka povećava se približno linearno, uslijed čega se u induciranom naponu pojavljuje istosmjerna komponenta. Što je opterećenje veće, to je na ovom dijelu krivulje veće odstupanje induciranog napona od nulte vrijednosti.

5.2.2. Utjecaj promjene faktora snage na magnetske sile

Električni generatori kojima je primarna svrha proizvodnja električne energije, većinom rade s radno-induktivnim faktorom snage koji se nalazi unutar granica $0,7 \le \cos \varphi \le 1$. Međutim, postoje i strojevi specijalne namjene kao što su generatori za ispitne stanice transformatora, koji rade u tzv. induktivnom (naduzbuđenom) radu s faktorom snage bliskim nuli ($\cos \varphi \ge 0$). Radi utvrđivanja kako sila na zub ovisi s promjenom faktora snage provedeni su usporedni proračuni za tri različita iznosa faktora snage: $\cos \varphi = 1$; $\cos \varphi = 0,7$ i $\cos \varphi = 0,08$. Slikom 5.24 usporedno su prikazane sile za ova tri slučaja, uz prividnu snagu S=180 kVA, a slikom 5.25 za prividnu snagu dvostruko manjeg iznosa S=90 kVA.

Slika 5.24 Utjecaj promjene faktora $\cos \varphi$ pri S=180 kVA na valni oblik radijalne sile zuba

Usporedbom valnih oblika moguće je uočiti kako unutar raspona faktora snage uobičajenih za generatore namijenjene proizvodnji električne energije $(0,7 \le \cos \varphi \le 1)$, sile na zub imaju karakteristike slične prikazanima u prethodnom poglavlju. Uočljivo je da se s padom faktora snage smanjuje maksimalna vršna vrijednost sile dok se nagib njenog porasta tijekom prolaska polne papuče ispod zuba ublažava. Za slučaj rada s faktorom snage bliskim nuli, valni oblik sile postaje sličan onome u praznom hodu. U frekvencijskom spektru najveće promjene uočljive su na 2. i 4. harmoniku, no zamjećuje se i razlika srednje vrijednosti sile (0. harmonik).

Slika 5.26 Utjecaj promjene faktora $\cos \varphi$ pri S=180 kVA na harmonike radijalne sile

Slika 5.27 Utjecaj promjene faktora $\cos \varphi$ pri S = 90 kVA na harmonike radijalne sile zuba

Slika 5.28 Utjecaj promjene faktora snage $\cos \varphi$ pri S=180 kVA na napon mjernog svitka

Proučavanjem napona mjernog svitka, moguće je zamijetiti kako promjena faktora snage ima najveći utjecaj na napon koji se u svitku inducira pri nailasku polne papuče pod promatrani zub. Zanimljivo je uočiti i da situacija pri izlazu pola iz prostora promatranog zuba praktički ne ovisi o faktoru snage. Što je faktor snage niži, to je valni oblik simetričniji i više podsjeća na valni oblik sile u praznom hodu.

Razlike između situacije praznog hoda i opterećenja uz faktor snage blizak nuli prikazane su slikama 5.30, 5.31 i 5.32.

Usporedbom valnih oblika radijalne sile koja djeluje na zub pri faktoru snage $\cos \varphi = 0.08$ (slika 5.30), moguće je uočiti kako s porastom opterećenja dolazi do sedlastog pada iznosa sile u zoni koja odgovara prolazu centralnog dijela polne papuče ispod zuba. Razlika se uočava i na dijelovima krivulje koji odgovaraju prolasku trapeznog dijela polne papuče ispod zuba, gdje raste vrijednost sile s porastom opterećenja. S porastom snage povećavaju se 4. i 14. harmonik te srednja vrijednost sile, dok se 2. harmonik sile smanjuje.

Slika 5.30 Utjecaj povećanja snage na valni oblik radijalne sile koja djeluje na zub za slučaj izrazito induktivnog faktora snage $\cos \varphi = 0.08$

Slika 5.31 Utjecaj povećanja snage na frekvencijski spektar radijalne sile na zub za slučaj izrazito induktivnog faktora snage $\cos \varphi = 0.08$
Naponi inducirani u mjernim svitcima, za analizirana tri pogonska stanja s faktorom snage bliskim nuli, vrlo su slični. Razlikuju se samo u amplitudama vršnih vrijednosti, koje odgovaraju pojavi krajnjeg ruba i ruba trapeznog dijela polne papuče ispod zuba. Što je opterećenje veće, to su veći i iznosi vršnih vrijednosti napona.

Slika 5.32 Utjecaj promjene prividne snage S na napon mjernog svitka

Tablicom 5.6 usporedno su prikazani iznosi efektivnih i vršnih vrijednosti induciranih napona za analizirana simetrična pogonska stanja generatora

	Pogo	onsko stan	je	Vršna vrijednost			Efektivna vrijednost			
Red.br.	U [V]	S [kVA]	$\cos \varphi$ [-]	U _{Ms1 maks} [V]	U _{Ms5 maks} [V]	ΔU_{maks} [%]	U _{Ms1 ef} [V]	U _{Ms5 ef} [V]	ΔU_{ef} [%]	
1.	200	0	-	3,82	3,83	0,26	1,53	1,53	0,01	
2.	400	0	-	9,05	9,11	0,66	3,01	3,02	0,33	
3.	400	90	0,08	9,99	10,09	0,99	3,18	3,20	0,63	
4.	400	90	0,70	10,49	10,63	1,32	3,15	3,18	0,94	
5.	400	90	1,00	10,48	10,72	2,24	3,03	3,07	1,30	
6.	400	180	0,08	10,91	10,93	0,18	3,37	3,40	0,88	
7.	400	180	0,70	11,57	11,68	0,94	3,30	3,33	0,90	
8.	400	180	1,00	11,54	11,87	2,78	3,09	3,14	1,59	

 $\frac{1}{2}\tau_p$ pri različitim simetričnim opterećenjima

Tablica 5.5 Efektivne i vršne vrijednosti napona mjernih svitaka međusobno razmaknutih za

5.2.3. Odnos između magnetske sile i napona mjernog svitka

Provedenim analizama ustanovljeno je da valni oblici radijalne sile na zub i induciranih napona u mjernom svitku ovise o pogonskom stanju generatora. Također je zamijećeno da su ove razlike lakše uočljive u valnim oblicima sile nego u valnim oblicima napona mjernih svitaka. Za promatrane zube određeni su iznosi sile F_{Ms} temeljem analize napona mjernih svitaka modela U_{Ms} , dok je radijalna sila F_{rad} određena za svaki zub. Radi mogućnosti proširenja analiza podataka prikupljenih mjerenjem, navedene vrijednosti sila određene su za svako analizirano pogonsko stanje. Određivanje sila provedeno je na način opisan u poglavlju 4.1. Pri tome su za izračun korištene geometrijske veličine prikazane tablicom 5.6. Slikama u nastavku usporedno su prikazani valni oblici ukupne radijalne sile dobivene MKE proračunom i sile određene temeljem napona mjernog svitka za nekoliko pogonskih stanja generatora.

Veličina	Oznaka	Iznos
Broj zavoja mjernog svitka	N _{sv}	5
Srednja širina zavoja mjernog svitka	b_{sv}	11,5 mm
Srednja duljina zavoja mjernog svitka	L_{sv}	198 mm
Širina zuba na promjeru provrta	b_z	13,85 mm
Idealna duljina zuba	L_i	402 mm
Površina omeđena mjernim svitkom	S_{sv}	0,002277 m ²
Površina radijalne plohe zuba	S _{Zub}	0,0055677 m ²

Tablica 5.6 Geometrijske veličine korištene pri određivanju odnosa $U_{Ms} - F_{rad}$

Slika 5.34 Izračun sile preko napona mjernog svitka za rad uz S=180 kVA, $\cos \varphi = 0.08$

Slika 5.35 Izračun sile preko napona mjernog svitka za rad uz S=180 kVA, $\cos \varphi = 0.7$

Provedenim proračunima za simetrična pogonska stanja utvrđeno je da:

- pri simetričnom električnom opterećenju na zube statora generatora djeluju podjednake sile;
- maksimalna vrijednost sile koja djeluje na zub raste s povećanjem snage S;
- maksimalna vrijednost sile na zub raste s povećanjem faktora snage $\cos \varphi$;
- analizom napona mjernih svitaka moguće je utvrditi valni oblik sile koji korelira s valnim oblikom ukupne radijalne sile zuba određene metodom virtualnog rada;
- temeljem napona induciranog u mjernom svitku, koji je uži od utorskog koraka statora (poglavlje 4.1), dobiva se sila na zub manjeg iznosa od ukupne radijalne sile dobivene metodom virtualnog rada;
- međusobno odstupanje valnog oblika ukupne radijalne sile na zub i radijalne sile određene putem mjernog svitka užeg od utorskog koraka statora ovisi o faktoru snage, tako da raste s njegovim smanjenjem.

5.3. Analiza utjecaja električki nesimetričnog opterećenja na magnetske sile i inducirane napone u mjernim svitcima određene numeričkim proračunima

U ovom dijelu prikazani su rezultati simulacijskih proračuna dobiveni za situaciju nesimetričnog električnog opterećenja sinkronog generatora. Analiziran je utjecaj rada generatora s jednofaznim teretom (prikazanog slikom 5.4) na radijalne sile zubi i napone inducirane u mjernim svitcima. Ukoliko je armaturni namot stroja spojen u zvijezdu, pri ovakvom opterećenju kroz dvije faze armaturnog namota teče struja jednake amplitude no suprotnog predznaka, dok je struja treće faze jednaka nuli. U slučaju ovakvog rada javljaju se oscilacije magnetskog polja rotora s periodom dvostruko veće frekvencije od napona mreže.

Slika 5.37 Struje faznih namota pri radu na jednofazni teret

Slika 5.38 Oscilacije magnetskog polja rotora prisutne pri nesimetričnom opterećenju

Kao što je prethodno navedeno u tablici 5.4, na MKE modelu stroja provedena je analiza nesimetričnog opterećenja za sljedeća pogonska stanja:

- tri iznosa prividne snage: S = 52 kVA, 90 kVA i 104 kVA;
- tri faktora snage: $\cos \varphi = 0.08$; 0.7 i 1;
- nesimetrični rad za tri kombinacije aktivnih (strujom protjecanih) faza: A-B, A-C i B-C.

5.3.1. Utjecaj povećanja snage na sile zubi pri nesimetričnom opterećenju

Pulsacije magnetskog polja prisutne u slučaju nesimetričnog opterećenja uzrokuju nejednakost sile po zubima statora. Referentne oznake zubi i faza prikazane su slikom 5.39. Utjecaj nesimetrije faznih struja na radijalne sile svih zubi prikazan je za tri električki nesimetrična opterećenja (S = 52 kVA, 90 kVA i 104 kVA, uz faktor snage $\cos \varphi = 0,7$ i nazivnu vrijednost linijskog napona U = 400 V) slikama 5.40 do 5.42. U prikazanom slučaju teret je spojen na faze *A*-*B*, dok kroz fazu *C* namota ne teče struja. Na dotičnim grafovima, sile na zube okružene vodičima faze *A* istaknute su crvenom bojom, sile na zube okružene vodičima faze *B* plavom bojom a sile na zube okružene vodičima faze *C* žutom bojom.

Slika 5.39 Referentne oznake zubi i faznih namota

Moguće je uočiti kako se u prikazanom slučaju sile najveće vršne vrijednosti javljaju na zubima koji se nalaze između faza *B* i *C*, a sile najmanje amplitude između faza *A* i *C*. Lokacija maksimalne i minimalne vrijednosti sile prostorno je razmaknuta za polovicu polnog koraka $(\frac{1}{2}\tau_p)$, odnosno za 90 električnih stupnjeva. U slučaju rada pri frekvenciji osnovnog harmonika napona od 50 Hz (perioda 20 milisekundi) to odgovara vremenskom razmaku od 5 milisekundi.

Slika 5.40 Radijalne sile po zubima pri nesimetričnom opterećenju S=52 kVA, $\cos \varphi = 0,7$

Slika 5.41 Radijalne sile po zubima pri nesimetričnom opterećenju S=90 kVA, $\cos \varphi = 0.7$

Slikom 5.43 prikazani su zubi ispod kojih su smješteni mjerni svitci, a koji se nalaze između zona faznih namota. Slikom 5.44 usporedno su prikazane radijalne sile na navedene zube, za tri analizirana slučaja opterećenja.

Slika 5.43 Referentne oznake mjernih svitaka ispod zubi za analizu sila

Slika 5.44 Radijalne sile po zubima na kojima se nalaze mjerni svitci *Ms1* i *Ms5* pri nesimetričnom opterećenju za različite iznose prividne snage uz $\cos \varphi = 0.7$

Slika 5.44 ukazuje kako s povećanjem snage rastu sile na zube, te se povećavaju razlike između maksimalne i minimalne vršne vrijednosti sile promatranih zubi. Zanimljivo je primijetiti kako sile dijametralno razmaknutih zubi imaju jednak valni oblik (slika 5.45).

Slika 5.45 Poklapanje valnih oblika radijalnih sila dijametralno razmaknutih parova mjernih svitaka *Ms1-Ms3* i *Ms5-Ms7* u slučaju nesimetričnog opterećenja po fazama

5.3.2. Utjecaj promjene faktora snage na iznos sile

Utjecaj promjene faktora snage na valne oblike radijalne sile svih zubi prikazan je slikama 5.46 do 5.48 za slučaj iznosa prividne snage S=104 kVA, nazivnog napona U=400 V i nesimetričnog opterećenja kod kojeg kroz namot faze *C* ne teče struja. Prikazani slučajevi odgovaraju iznosima faktora snage od $\cos\varphi=0,08$; $\cos\varphi=0,7$ i $\cos\varphi=1$, dok su slikom 5.49 usporedno prikazani valni oblici sile za zube ispod kojih se nalaze mjerni svitci.

Slika 5.46 Radijalne sile po zubima pri nesimetričnom opterećenju S=104 kVA, $\cos \varphi = 0.08$

Slika 5.47 Radijalne sile po zubima pri nesimetričnom opterećenju S=104 kVA, $\cos \varphi = 0,7$

Usporedbom valnih oblika za sve tri situacije vidi se kako s porastom faktora snage dolazi do povećanja maksimalne vršne vrijednosti i razlike između maksimalne i minimalne vršne vrijednosti sila po zubima. Također je moguće uočiti kako se s promjenom faktora snage mijenjaju zubi na koje djeluje maksimalna sila. U slučaju induktivnog faktora snage ($\cos \varphi = 0,08$) maksimalne vršne vrijednosti postižu se kod zubi koji se nalaze bliže zoni vodiča faze *B*, dok su kod radnog opterećenja ($\cos \varphi = 1$) to zubi bliži zoni faze *C*.

Slika 5.49 Radijalne sile po zubima na kojima se nalaze mjerni svitci Ms1 i Ms5pri nesimetričnom opterećenju faza A-B za različite faktore snage pri S=104 kVA

Prikaz sila za dva karakteristična zuba s ugrađenim mjernim svitcima potvrđuje pravilnosti uočene na cjelokupnoj raspodjeli sila po zubima. Najveće razlike sila na dva promatrana zuba uočljive su pri jediničnom faktoru snage (čisto radnom opterećenju). Kod izrazito induktivnog opterećenja ($\cos \varphi = 0,08$) sile na promatrana dva zuba imaju vrlo blisku vršnu vrijednost, no značajno različit valni oblik (slika 5.50). Iz ovog razloga vrijedi razmotriti razliku u frekvencijskom spektru sila između ova dva valna oblika (5.51).

Slika 5.50 Radijalne sile na zube iznad mjernih svitaka Ms1 i Ms5

pri nesimetričnom opterećenju faza A-B uz S=104 kVA, $\cos \varphi = 0.08$

Slika 5.51 Frekvencijski spektar radijalne sile na zube iznad mjernih svitaka Ms1 i Ms5

pri nesimetričnom opterećenju faza A-B uz S=104 kVA, $\cos \varphi = 0.08$

Pregledom harmonijskog sastava sila koje djeluju na dva promatrana zuba (slika 5.51), najveće razlike sila pri nesimetričnom električnom opterećenju uočljive su u iznosima srednje vrijednosti (harmonik 0. reda) i harmonika 2. reda, koji su posljedica osnovnog harmonika magnetskog polja. Budući da ovakve razlike između sila dotičnih zubi ne postoje u slučaju simetričnog opterećenja, nesimetrično opterećenje moguće je prepoznati utvrđivanjem razlike između srednje ili efektivne vrijednosti sila koje djeluje na dva promatrana zuba.

5.3.3. Utjecaj promjene aktivnih faza na raspored sile po zubima

Analizirani tip nesimetričnog opterećenja moguće je ostvariti uz tri kombinacije aktivnih faza: A-B, A-C ili B-C. U svrhu analize Ovih nesimetričnih opterećenja, radi prostorne simetrije poželjno je usporedno prikazati valni oblik sile za tri zuba, koji su međusobno razmaknuti za po 120 električnih stupnjeva. Kod četveropolnog stroja ovaj električni kut odgovara geometrijskom kutu od 60°, što odgovara razmaku od 13 zubi (slika 5.52).

Slika 5.52 Prostorna raspodjela tri zuba odabrana za analizu sila

Utjecaj promjene faza kroz koje teče struja na valne oblike radijalne sile svih zubi prikazan je slikama 5.53 do 5.55 za slučaj iznosa prividne snage S=52 kVA, uz nazivni napon U=400 V i faktor snage $\cos \varphi = 1$.

Proučavanjem valnih oblika prikazanih ovim slikama, moguće je uočiti kako se maksimalna vrijednost sile pojavljuje u blizini, tj. neposredno nakon zubi isključene faze:

- Struja protječe fazama A-B: Maksimum sila djeluje na zub iza zone faze C;
- Struja protječe fazama A-C: Maksimum sila djeluje na zub iza zone faze B;
- Struja protječe fazama B-C: Maksimum sila djeluje na zub iza zone faze A;

Slika 5.53 Radijalne sile po zubima pri nesimetričnom teretu uz faze A-B protjecane strujom

Slika 5.54 Radijalne sile po zubima pri nesimetričnom teretu uz faze A-C protjecane strujom

Slika 5.55 Radijalne sile po zubima pri nesimetričnom teretu uz faze B-C protjecane strujom

Globalna slika bitno se ne mijenja s promjenom aktivnih faza. Za isti iznos opterećenja, sila maksimalne i sila minimalne vršne vrijednosti ostati će istog iznosa. No sila na pojedini zub može se značajno razlikovati za tri navedena dvofaznog opterećenja.

Narednim slikama usporedno su prikazani valni oblici sila koje djeluju na odabrane zube, za tri moguća slučaja dvofaznog rada. Uz valne oblike prikazan je i usporedni frekvencijski spektar razmatranih sila.

Slika 5.56 Radijalne sile tri zuba uz faze A-B protjecane strujom

Slika 5.57 Radijalne sile tri zuba uz faze A-C protjecane strujom

Slika 5.58 Radijalne sile tri zuba uz faze B-C protjecane strujom

Slika 5.59 Frekvencijski spektar radijalnih sila na tri zuba uz faze A-B protjecane strujom

Usporednim prikazom moguće je uočiti kako se u sva tri slučaja napajanja ponavlja sličan međusobni odnos sila odabranih zubi. Vršne vrijednosti sila međusobno se razlikuju, pri čemu se najveća vrijednost bilježi na zubu okruženom namotom isključene faze. Frekvencijski spektar valnih oblika ovih sila razlikuje se uglavnom u iznosu srednje vrijednosti (harmonik 0. reda) i harmoniku 2. reda, uslijed različitih osnovnih harmonika magnetskog polja, pa je razliku moguće utvrditi i usporedbom efektivnih vrijednosti ovih sila.

Za navedena tri slučaja moguće je promotriti i sile na zube ispod kojih se nalaze svitci *Ms1* i *Ms5* (lokacije svitaka prikazane slikom 5.43).

Slika 5.60 Radijalne sile na zube iznad mjernih svitaka uz faze A-B protjecane strujom

Slika 5.61 Radijalne sile na zube iznad mjernih svitaka uz faze A-C protjecane strujom

Slika 5.63 Harmonici sile na zube iznad mjernih svitaka uz faze A-B protjecane strujom

Slika 5.64 Harmonici sile na zube iznad mjernih svitaka uz faze A-C protjecane strujom

Upotrebom dva svitka međusobno razmaknuta za 10 zubi, što odgovara razmaku od približno polovice polnog koraka tj. za ~90 električnih stupnjeva, mogu se utvrditi različite sile po zubima za slučaj nesimetričnog opterećenja. No, moguća je i pojava situacija nesimetričnog opterećenja kod kojih je razlika upotrebom samo dva svitka teško uočljiva. U ovdje analiziranom slučaju radi se o situaciji kad struje teku kroz faze A i C (slike 5.61 i 5.64 i tablica 5.7).

U slučaju upotrebe tri svitka međusobno razmaknuta za $\frac{2}{3}$ polnog koraka tj. za 120 električkih stupnjeva, dobiva se značajno pouzdaniji i ujednačeniji pokazatelj nesimetrije sila po zubima. Tablicom 5.8 prikazane razlike vršnih vrijednosti sile od ~16,5 % određene su za slučaj najniže analizirane snage iznosa 52 kVA. Narednim poglavljem 5.3.4. utvrđeno je kako se s povećanjem opterećenja povećavaju i razlike u efektivnim i vršnim vrijednostima sila.

Aktivni fazni namoti	A - B	A-C	B-C
Maksimalne vrijednosti si	la		
Frad maks 1 [N]	2215	1999	1900
Frad maks 5 [N]	1909	2047	2125
$\Delta F_{rad\ maks}$ [N]	307	48	225
$\Delta F_{rad\ maks}$ [%]	16,1	2,4	11,8
Efektivne vrijednosti sila			
Frad ef 1 [N]	1361	1281	1329
Frad ef 5 [N]	1317	1355	1310
$\Delta F_{rad\ ef}[N]$	44	74	19
$\Delta F_{rad ef}$ [%]	3,3	5,8	1,5

Tablica 5.7 Razlike vršnih vrijednosti valnih oblika sila za dva zuba međusobno razmaknuta ½ τ_p

Tablica 5.8 Razlike vršnih vrijednosti valnih oblika sila za tri zuba međusobno razmaknuta $\frac{3}{2}\tau_p$

Aktivni fazni namoti	A - B	A-C	B-C					
Maksimalne vrijednosti sila								
Frad Maks A [N]	2006	1896	2211					
Frad Maks B [N]	1908	2208	1990					
$F_{\mathit{rad}\mathit{Maks}\mathit{C}}\left[\mathrm{N} ight]$	2215	1990	1893					
ΔFrad Maks [N]	312	312	318					
$\Delta F_{rad Maks}$ [%]	16,4	16,5	16,8					

5.3.4. Utvrđivanje nesimetričnog opterećenja analizom induciranih napona mjernih svitaka

Oscilacije magnetskog polja uzrokovane nesimetričnim opterećenjem uzrokuju nejednake magnetske tokove kroz zube statora. Kako napon induciran u mjernom svitku ovisi o magnetskom toku, nesimetričnim opterećenjem uzrokovani poremećaji polja utječu na valni oblik ovog napona. Slikom 5.66 prikazan je izgled valnog oblika napona induciranog u dva para mjernih svitaka Ms1-Ms3 i Ms5-Ms7 međusobno razmaknutih za približno pola polnog koraka, za slučaj nesimetričnog opterećenja S=104 kVA, U=400 V, $\cos\varphi$ =1, uz napajanje tereta kroz faze A i B.

Slika 5.66 Razlike u naponima mjernih svitaka za nesimetrično opterećenje.

Razlike se uočavaju u naponima mjernih svitaka međusobno razmaknutih za pola polnog koraka. Istaknuti vrhovi napona imaju različite maksimalne vrijednosti, a na specifičnom segmentu valnog oblika gdje se pojavljuje niz vrhova manjih amplituda uočava se razlika u iznosu srednje vrijednosti napona. Zanimljivo je primijetiti kako se valni oblici induciranih napona dijametralno postavljenih mjernih svitaka međusobno u potpunosti poklapaju, kao i u slučaju simetričnog opterećenja.

Razlike uzrokovane nesimetričnim opterećenjem moguće je dodatno istaknuti obradom valnog oblika mjernih svitaka, primjenom metode opisane u poglavlju 4.1. Slikom 5.67 prikazani su valni oblici sila određeni navedenom pretvorbom, za slučaj induciranih napona sa slike 5.66 Moguće je uočiti kako nesimetrično opterećenje po fazama uzrokuje veće razlike maksimalnih vrijednosti kod valnih oblika sila nego kod valnih oblika induciranih napona. Ove razlike prikazane su i brojčano u tablici 5.9.

Slika 5.67 Valni oblici sile određeni analizom napona mjernih svitaka i usporedba s valnim oblikom radijalne sile zubi za nesimetrično opterećenje.

Vrijednosti u tablici 5.9 pokazuju kako nesimetrično opterećenje koje uzrokuje razliku maksimalnih vrijednosti napona manju od 6 % dovodi do razlike maksimalnih vrijednosti sila od \sim 30 %. Treba primijetiti i da se postotne razlike među silama, određenima pomoću mjernih svitaka, dobro poklapaju s postotnom razlikom radijalnih sila izračunatih izravnim postupkom (zadnji stupac tablice 5.9). Tablicom 5.10 prikazane su razlike sila ovih dvaju zubi za niz nesimetričnih opterećenja generatora.

Tablica 5.9 Razlike maksimalnih iznosa napona i sila određenih pomoću mjernih svitaka za nesimetrično opterećenje S = 104 kVA, U = 400 V, $\cos \varphi$ = 1, uz napajanje faza *A*-*B*

Vršna vrijednost	Ms1-Ms3	Ms5-Ms7	Razlika	Razlika [%]
Napon svitka U _{Ms} [V]	11,77	11,14	0,63	5,7
Nekorigirana sila svitka F _{Ms} [N]	2096	1608	488	30,3
Radijalna sila <i>F_{rad}</i> [N]	2615	2037	578	28,4

Red.		Pogons	sko stanje		Sila od pomoću	lređena 1 svitka	Razlika	
Br.	U[V]	S[kVA]	$\cos \varphi[-]$	Aktivne faze	Ms1 F _{maks} [N]	Ms5 F _{maks} [N]	$ \Delta F_{maks} $ [N]	$ \Delta F_{maks} $ [%]
1	400	52	0,08	A-B	2083	2013	70	3,5
2	400	52	0,70	A-B	2222	2003	219	10,9
3	400	52	1,00	A-B	2215	1909	307	16,1
4	400	90	0,70	A-B	2465	2146	319	14,9
5	400	104	0,08	A-B	2292	2191	101	4,6
6	400	104	0,70	A-B	2543	2197	346	15,7
7	400	104	1,00	A-B	2615	2037	578	28,4

Tablica 5.10 Razlike vršnih vrijednosti sila pri različitim stanjima nesimetričnog opterećenja temeljem proračunske analize za dva zuba međusobno razmaknuta $\frac{1}{2} \tau_p$

Analizom sila obrađenom u točki 5.3.3 uočeno je kako za utvrđivanje električne nesimetrije, neovisno o rasporedu struja po fazama, dovoljno je pratiti iznose sila za tri zuba, međusobno razmaknuta za $\frac{2}{3}$ polnog koraka τ_p (slika 5.52). Tablica u nastavku pokazuje iznose sila po ovim zubima i njihove razlike za niz nesimetričnih radnih stanja.

Tablica 5.11 Razlike vršnih vrijednosti sila pri različitim stanjima nesimetričnog opterećenja temeljem proračunske analize za tri zuba međusobno razmaknuta $\frac{1}{2} \tau_p$

Ded	Pogonsko stanje				Sila odre	eđena pomoć	Razlika		
Br.	U[V]	<i>S</i> [kVA]	$\cos \varphi [-]$	Aktivne faze	Svitak A F _{maks} [N]	Svitak B F _{maks} [N]	Svitak C F _{maks} [N]	$ \Delta F_{maks} $ [N]	$ \Delta F_{maks} $ [%]
1	400	52	0,08	A-B	1928	2013	2083	155	8,1
2	400	52	0,70	A-B	1939	2002	2222	283	14,6
3	400	52	1,00	A-B	2006	1908	2215	312	16,4
4	400	90	0,70	A-B	2036	2145	2465	429	21,0
5	400	104	0,08	A-B	2037	2192	2292	255	12,5
6	400	104	0,70	A-B	2071	2197	2543	472	22,8
7	400	104	1,00	A-B	2185	2035	2615	580	28,5

5.3.5. Manje električne nesimetrije

Prethodno prikazane situacije odnosile su se na slučajeve nesimetričnih električnih opterećenja u kojima je isključena jedna faza namota statora, a kroz druge dvije faze teku struje barem dva puta manje od nazivne vrijednosti. U praksi većina strojeva ne radi u ovakvim uvjetima, već se u njihovom radu mogu očekivati nesimetričnosti tereta značajno manjih iznosa. Kod sinkronih električnih generatora primarno namijenjenih proizvodnji električne energije, iznos dopuštene električne nesimetrije po fazama pri punoj snazi kreće se unutar granica 5-10 % [1]. Zanimljivo je stoga proučiti kako se električne nesimetrije ovakvih iznosa odražavaju na magnetsko stanje stroja. Slikom 5.68 označeni su zubi za koje su u nastavku prikazani iznosi radijalnih sila.

Slika 5.68 Pozicije analiziranih zubi u modelu generatora

Kao referentno pogonsko stanje odabrana je radna točka nazivnog napona U=400 V i nazivne prividne snage S=400 kVA, uz $\cos \varphi = 0.9$. Sile određene pomoću mjernih svitaka za ovakvo simetrično opterećenje prikazane su slikom 5.69 Moguće je uočiti kako u ovakvom slučaju opterećenja sile zubi međusobno razmaknutih $\frac{2}{3}\tau_p$ imaju jednake valne oblike i vršne vrijednosti. Također je vidljivo da se valni oblici sila, određenih pomoću dijametralno postavljenih svitaka, međusobno preklapaju.

Slika 5.69 Valni oblici sila za simetrično opterećenje U=400 V, S=400 kVA, $\cos \varphi = 0.9$

Slikom 5.70 prikazan je slučaj nesimetričnog opterećenja, koji se u odnosu na referentnu situaciju razlikuje po tome što kroz fazu C teče struja 10 % manja od nazivne vrijednosti. U ovakvom slučaju uočava se razlika u vršnim vrijednostima valnih oblika sila. Kao i kod većih nesimetrija, valni oblici sila dijametralno postavljenih svitaka u potpunosti se preklapaju.

Slika 5.70 Valni oblici sila 10 % niži iznos struje faze C

Slikom 5.71 prikazan je slučaj koji se u odnosu na referentnu situaciju razlikuje po tome što kroz fazu C teče struja 20 % manja od nazivne vrijednosti. U ovom slučaju također se uočava razlika u vršnim vrijednostima valnih oblika sila zubi međusobno razmaknutih za $\frac{2}{3}\tau_p$. Radi lakše usporedbe, tablicom 5.12 prikazane su vršne vrijednosti sila i njihove razlike.

Slika 5.71 Valni oblici sila uz 20 % niži iznos struje faze C

Pogonsko stanje	Simetrično $I_a=I_b=I_c=I_n$	10 % nesimetrije $I_a=I_b=I_n; I_c=0,9 \cdot I_n$	15 % nesimetrije $I_a=I_b=I_n; I_c=0,75 \cdot I_n$	20 % nesimetrije $I_a=I_b=I_n$; $I_c=0,8 \cdot I_n$
Maksimalne vri	ijednosti sila			
Frad Maks A [N]	2625	2607	2597	2591
Frad Maks B [N]	2617	2618	2615	2618
Frad Maks C [N]	2638	2697	2717	2747
ΔFrad Maks [N]	21	90	119	156
ΔF _{rad Maks} [%]	0,82	3,44	4,59	6,01

Tablica 5.12 Razlike vršnih vrijednosti valnih oblika sila za tri zuba međusobno razmaknuta $\frac{3}{2}\tau_p$

Pregledom rezultata tablice 5.12, moguće je uočiti kako maksimalna razlika promatranih sila približno proporcionalno ovisi o razlici efektivnih vrijednosti faznih struja. Također se može uočiti kako je postotna razlika vrhova sila oko 3 puta manja od postotnog smanjenja struje faze C. Ovo otežava utvrđivanje nesimetrija manjeg iznosa. Za nesimetrije faznih struja do 10 %, razlika u amplitudama je ispod granice mjerne nesigurnosti akvizicijske mjerne stanice i dodatne nesigurnosti uslijed geometrijskih nesavršenosti stroja. Nesimetriju iznosa 20 % moguće je odrediti mjerenjem, no potrebno je koristiti mjerne instrumente dovoljno visoke točnosti.

5.3.5. Magnetske sile koje djeluju na zube u slučaju drugačijih vrsta poremećaja

U nastavku su prikazani rezultati simulacijskih elektromagnetskih proračuna za neke situacije koje uzrokuju magnetsku nesimetriju u stroju, a nisu posljedica nesimetričnog opterećenja po fazama. I u ovom slučaju je za referentno stanje korišteno simetrično trofazno opterećenje U=400 V, S=400 kVA uz $\cos \varphi=0.9$, kod kojega sile na zube imaju valne oblike jednakih vršnih vrijednosti, a valni oblici sila dijametralno razmaknutih zubi međusobno se preklapaju (slika 5.69).

Slikom 5.72 lijevo prikazan je smjer pomaka rotora za slučaj analize statičke radijalne ekscentričnosti rotora u iznosu od 10 % zračnog raspora u smjeru zuba *C*, a slikom 5.73 izračunati valni oblici radijalnih magnetskih sila promatranih zubi za dotični slučaj ekscentričnosti. Između sva tri dijametralno postavljena para svitaka (A-Ad, B-Bd i C-Cd) uočavaju se razlike u valnim oblicima. Najveće razlike vidljive su za par C-Cd. Budući da je zračni raspor najmanjeg iznosa pozicioniran ispod zone *C*, uslijed smanjenog magnetskog otpora i povećane magnetske indukcije, valni oblik sile na ovaj zub ima najveću vršnu vrijednost. Sukladno tome, vršna sila na zub Cd, koji se nalazi u zoni najvećeg zračnog raspora, najmanjeg je iznosa. Parovi zubi A-Ad i B-Bd nalaze se u sličnim pozicijama u odnosu na smjer ekscentričnog pomaka, pa su i razlike vršnih vrijednosti sila ovih parova dijametralno razmaknutih zubi sličnog iznosa. Kako se u paru A-Ad zub Ad nalazi u zoni smanjenog zračnog raspora, sila na ovaj zub veća je nego sila na zub A. Kod para B-Bd zub B nalazi se u zoni koja ima manji zračni raspor, pa je sila tog zuba veća od sile na zub Bd.

Slika 5.72 Statička ekscentričnost (lijevo) i dinamička ekscentričnost (desno)

Slika 5.73 Valni oblici sila uz statičku ekscentričnost rotora iznosa 10 % zračnog raspora

U drugom slučaju modelirana je tzv. dinamička ekscentričnost kod koje se mjesto najmanjeg zračnog raspora tijekom vrtnje uvijek nalazi iznad centra odabrane polne papuče (slika 5.72 desno). Valni oblici sila na promatrane zube određeni uz ovakvu simulaciju za slučaj ekscentričnosti od 10 % minimalnog zračnog raspora prikazani su slikom 5.74.

I u ovom slučaju se kod sva tri para dijametralno postavljenih svitaka (*A*-*Ad*, *B*-*Bd* i *C*-*Cd*) uočavaju razlike između valnih oblika sila. Kako se vrti rotor, pol s minimalnim zračnim rasporom prolazi ispod označenih zubi po rasporedu *A*, *B*, *C*, *Ad*, *Bd*, *Cd*. Kada se ispod pojedinog zuba nalazi ovaj pol (npr. zub *B*), sila na taj zub poprima veću vrijednost od sila koje djeluju na ostale zube. U tom trenutku na dijametralno razmaknutoj poziciji (zub *Bd*) nalazi se pol s najvećim zračnim rasporom iznad papuče, pa sila na taj zub ima najmanji iznos.

U trećem slučaju analizirana je situacija u kojoj je na jednom polu za 10 % smanjen broj zavoja (kratki spoj 10 % zavoja jednog pola). Dotični pol uslijed ovoga ima smanjen magnetski tok. I kod ovakvog poremećaja se valni oblici sila dijametralno postavljenih parova svitaka (*A*-*Ad*, *B*-*Bd* i *C*-*Cd*) međusobno razlikuju (slika 5.75). Kako se vrti rotor, pol sa smanjenim brojem zavoja prolazi ispod označenih zubi po rasporedu *A*, *B*, *C*, *Ad*, *Bd*, *Cd*. Kada se ovaj pol nalazi ispod promatranog zuba (npr. zub B), sila na taj zub poprima manju vrijednost od sila koje djeluju na ostale zube.

Tablicom 5.13 usporedno su prikazane maksimalne razlike sila dijametralnih parova zubi i maksimalno postotno odstupanje od vršne vrijednosti sile idealnog simetričnog stanja prikazane slikom 5.68 ($F_{maks \ sim} = 2627$ N). Moguće je vidjeti kako razlike sila određene pomoću dijametralno postavljenih mjernih svitaka za analizirane slučajeve nesimetrija iznose od 6,9 do 16,9 %. Ovakve razlike moguće je detektirati mjerenjem.

Vrsta nesimetrije	Statička ekscentričnost 10 % zr.raspora	Dinamička ekscentričnost 10 % zr.raspora	Pol s 10 % manje uzbudnih zavoja				
Maksimalne razlike sila							
$\Delta F_{rad Maks A-Ad}$ [N]	79	233	375				
$\Delta F_{rad Maks B-Bd}$ [N]	81	201	444				
$\Delta F_{rad Maks C-Cd}$ [N]	182	228	318				
$\Delta F_{rad Maks}$ [%]	6,9	8,9	16,9				

Tablica 5.13 Razlike vršnih vrijednosti sila određenih pomoću dijametralno postavljenih svitaka

Proračunima provedenima za nesimetrična radna stanja utvrđeno je da:

- pri nesimetričnom električnom opterećenju postoji nesimetrija magnetskih sila koje djeluju na pojedine zube generatora;
- anvelopa maksimuma sila svih zubi ima izraženu valovitost, koja ne postoji u slučaju simetričnih pogonskih stanja. Uočena valovitost anvelope sila koje djeluju na zube ima 2 puta veću frekvenciju od osnovnog magnetskog polja. U analiziranom slučaju radi se o frekvenciji od 100 Hz;
- u nesimetričnom električnom električki nesimetričnom pogonskom stanju, maksimalne sile koje djeluju na zube uz istu izlaznu snagu generatora S veće su nego u slučaju simetričnog opterećenja;
- u nesimetričnom električnom stanju (rad na jednofazni teret), maksimalne sile koje djeluju na zube uz jednake iznose faznih struja veće su nego u simetričnom stanju;
- maksimalna vrijednost sile i nesimetrija sila po zubima rastu s povećanjem snage *S*;
- mjesto na obodu stroja (zub) na koje djeluje maksimalna sila neće se promijeniti s povećanjem snage S;
- maksimalna vrijednost i nesimetrija sila po zubima rastu s povećanjem faktora snage $\cos \varphi$.
- mjesto na obodu stroja (zub) na koje djeluje maksimalna sila promijeniti će se s promjenom faktora snage $\cos \varphi$;
- u slučaju nesimetričnog radnog opterećenja, s jediničnim faktorom snage (cosφ=1),
 maksimalna vrijednost sile javlja se ispod fazne zone neopterećenog namota;
- u slučaju nesimetričnog induktivnog opterećenja, s faktorom snage cosφ≈0, maksimalna vrijednost sile javlja se ispod fazne zone opterećenog namota koja slijedi faznu zonu isključenog namota;
- analizom napona mjernih svitaka ugrađenih na zube paketa statora moguće je utvrditi pojavu nesimetričnog opterećenja po fazama;
- upotrebom tri mjerna svitka moguće je utvrditi nesimetriju na temelju veće razlike signala nego u slučaju upotrebe samo dva mjerna svitka za isto pogonsko stanje;
- iznos električnog nesimetričnog opterećenja veći od 20 % jedne faze moguće je detektirati analizom napona mjernih svitaka;
- u slučaju radijalnih ekscentričnosti i kvarova uzbudnog namota dolazi do razlike u silama dijametralno postavljenih svitaka;
- razlike u silama dijametralno pozicioniranih zuba moguće je odrediti mjerenjem za ekscentrične pomake koji prelaze iznos od 10 % zračnog raspora;

5.4. Izračun vlastitih frekvencija statora

Određivanje vlastitih frekvencija proučavane konstrukcije uobičajeni je prvi korak u analizi mehaničkog odziva. Poznavanjem ovih frekvencija za paket i kućište statora dobiva se prvi uvid u mehaničke karakteristike stroja. Vlastite frekvencije koje odgovaraju glavnim formama (modovima) vibriranja analizirane konstrukcije važno je poznavati jer ukazuju na frekvencije pobude za koje je konstrukcija izrazito osjetljiva. Ukoliko se neki harmonik pobudne sile poklopi s vlastitom frekvencijom mehaničke konstrukcije, dolazi do znatnog povećanja amplituda vibracija poznatog kao rezonancija. Vlastite frekvencije konstrukcije moguće je utvrditi i mjerenjem, pa se temeljem ovih podataka može provesti kalibracija računskog modela.

U analiziranom slučaju proračun je proveden na rasponu frekvencije 0 - 13 kHz, pri čemu su određeni modovi vibriranja konstrukcije sastavljene od kućišta i paketa statora, te vodiča, izolacije i klinova u utorima. U tablici 5.14 prikazane su izračunate vrijednosti za prvih 60 vlastitih frekvencija, koje je moguće podijeliti na dvije skupine:

- frekvencije dijelova kućišta (slika 5.76).
- frekvencije paketa s namotom (slike 5.77 do 5.79);

Vrijednosti frekvencija vezanih uz paket statora posebno su istaknute u tablici, a pripadne forme vibriranja zasebno su prikazane slikama u nastavku.

R. Br.	1	2	3	4	5	6	7	8	9	10
f_{vl} [Hz]	77	1571	1631	537 ₂	5662	705	716	736	767	801
R. Br.	11	12	13	14	15	16	17	18	19	20
f_{vl} [Hz]	870	913	1076	1236	1248	1283	1288	1295	14543	14733
R. Br.	21	22	23	24	25	26	27	28	29	30
f_{vl} [Hz]	1572	1626	1925	1938	2254	2410	24174	2471	2489	2537
R. Br.	31	32	33	34	35	36	37	38	39	40
f_{vl} [Hz]	2550	2594	2645	2810	2821	3055	3125	3184	3205	36365
R. Br.	41	42	43	44	45	46	47	48	49	50
f_{vl} [Hz]	36445	3744	3847	3957	4057	4123	4178	4180	4200	4483
R. Br.	51	52	53	54	55	56	57	58	59	60
f_{vl} [Hz]	4582	49566	49616	5092	5094	5876	5903	5917	5937	5968

Tablica 5.14 Vlastite frekvencije mehaničkog modela statora s kućištem

* Plavom pozadinom označene su vlastite frekvencije koje pripadaju paketu statora, a indeksom je označen broj istaknutih vrhova deformacije koji se pojavljuje po obodu paketa statora pri dotičnoj frekvenciji.

Slika 5.76 Primjeri formi vibriranja kućišta

Slika 5.77 Prva i druga forma vibriranja paketa statora

Slika 5.78 Treća i četvrta forma vibriranja paketa statora

Slika 5.79 Peta i šesta forma vibriranja paketa statora

5.5. Rezultati mehaničkih proračuna za simetrična opterećenja generatora

Analiza odziva stroja na prisilnu pobudu započela je izradom mehaničkog modela, pomoću kojeg su određene vlastite frekvencije kućišta i paketa statora. Za svako analizirano pogonsko stanje, sile prethodno izračunate elektromagnetskim proračunom unesene su u mehanički model te su uz takvu pobudu provedeni izračuni. Osim općenitog rezultata kojim se utvrđuju deformacije cjelokupne analizirane geometrije (slika 5.80), moguće je odrediti i iznose pomaka, brzine ili akceleracije na točno odabranom mjestu modela. Radi mogućnosti kasnije usporedbe s rezultatima mjerenja, proračunom su određeni iznosi amplituda akceleracija vibracija za četiri mjesta na modelu prikazana slikom 5.81. Oznakama *P1* i *P2* označena su mjesta određivanja iznosa akceleracija izravno na paketu, a sa *K1* i *K2* mjesta na plaštu kućišta, koja se nalaze izravno iznad spojnih letvi paketa i kućišta.

Slika 5.80 Rezultati mehaničkog proračuna

Slika 5.81 Mjesta za koja su proračunskim modelom određivani iznosi vibracija.

Slikom 5.82 prikazani su valni oblici akceleracija na četiri navedene lokacije za slučaj praznog hoda uz nazivnu vrijednost linijskog napona U=400 V. Usporedbom valnih oblika moguće je uočiti kako se vibracijski odzivi na četiri odabrane lokacije međusobno razlikuju. Valni oblici na mjestima *P1* i *P2* paketa su međusobno bližih iznosa i sličnijih valih oblika od onih na lokacijama *K1* i *K2* plašta kućišta. Pri tome se na jednom mjestu kućišta bilježi veća, a na drugom manja vrijednosti vibracija od onih na pozicijama P1 i P2 paketa.

Slika 5.83 Frekvencijski spektar valnog oblika akceleracije za poziciju P2

Frekvencijski spektar valnog oblika akceleracije za promatranu točku *P2*, koja se nalazi na obodu paketa statora, sadrži niz istaknutih harmonika (slika 5.83):

- 75; 135; 490; 540; 1465 Hz uslijed međusobnog odnosa ukruta, nosača kućišta i utora
- 100 Hz određen protjecanjem osnovnog magnetskog polja
- 200 Hz određen brojem polova
- 800 Hz određen međupolnim razmakom
- 600; 700; 1200 i 1400 Hz harmonici određeni korakom utora
- 1300 Hz određen prostornim rasporedom faznih zona armaturnog namota
- 3900 Hz definiran ukupnim brojem utora statora generatora (78 harmonik)
- 1800; 1900; 2000 i 2100 Hz određeni prvim redom utorskih harmonika

$$h_{u\,1} = 2 \cdot Q \pm 3^x, \ x \in [0,1]$$
 (5.4)

- 3000; 3600; 3800; 4000; 4200 i 4800 Hz – određeni drugim redom utorskih harmonika

$$h_{u\,2} = 2 \cdot (2 \cdot Q \pm 3^x), \quad x \in [0,1,2]$$
 (5.5)

- 2500; 3200; 4600 i 5300 Hz – određeni redom utorskih harmonika

$$h_{u\,2_7} = 2 \cdot (2 \cdot Q \pm y \cdot 7), \quad y \in [1,2]$$
 (5.6)

- 2600 i 5200 Hz – određeni redom utorskih harmonika

$$h_{u\,2_13} = 2 \cdot (2 \cdot Q \pm 13) \tag{5.7}$$

Zanimljivo je primijetiti kako na prikazu amplitude istaknutih harmonika ne iskaču kao diskretne vrijednosti već se amplitude povećanog iznosa zamjećuju i u okolici ovih frekvencija. Ovakvo rješenje rezultat je proračunske metode kojom je omogućen izračun odziva za frekvencijski raspon proizvoljnog koraka, pa se može analizirati odziv i na frekvencijama koje su bliske pobudnoj. U ovom slučaju izračun je proveden uz osnovni korak od 10 Hz, tj. uz pet puta manji korak od osnovnog harmonika frekvencije napona.

Slikom 5.84. usporedno su prikazani valni oblik i frekvencijski spektar akceleracije vibracija na mjestu P2 za slučajeve praznog hoda s naponima 200 V (lijevo) i 400 V (desno). Manji napon ostvaruje se slabljenjem magnetskog polja rotora. Približno vrijedi linearan odnos između smanjenja magnetskog toka i napona na stezaljkama. Budući da sile ovise o kvadratu gustoće magnetskog toka, dvostruko povećanje napona dovodi do povećanja magnetskih sila od ~4 puta. Ovakvo povećanje značajno se odražava i na povećanje vibracija kroz puni spektar frekvencija.

Slika 5.84 Usporedba akceleracije točke P1 za prazni hod pri naponu 200 V (lijevo) i 400 V (desno)

Usporedni prikaz valnih oblika akceleracija za dva različita opterećenja (S=90 kVA i S=180 kVA, uz isti faktor snage $\cos \varphi = 1$) dan je na slici 5.85. Moguće je uočiti kako se veći iznosi amplituda pojavljuju pri većem električnom opterećenju, no i kako ova razlika nije proporcionalna povećanju snage. U spektru frekvencija najveća razlika uočava se kod osnovnog harmonika akceleracije frekvencije 100 Hz i na višim frekvencijama povezanima s utorskim harmonicima.

Slika 5.85 Usporedba akceleracije točke P2 za snagu S = 90 kVA (lijevo) i S = 180 kVA (desno)

Utjecaj promjene faktora snage na valni oblik akceleracije prikazan je slikom 5.86, za iznos prividne električne snage S=180 kVA, nazivni napon U=400 V, uz radno ($\cos\varphi=1$) i izrazito induktivno ($\cos\varphi=0,08$) opterećenje. Valni oblik kod kojeg vibracije dostižu veće vršne vrijednosti odgovara stanju radnog opterećenja. Istaknuti harmonik frekvencije 100 Hz stoga je veći u tom pogonskom stanju. Zanimljivo je primijetiti da su utorski harmonici oko 3900 Hz nešto veći u slučaju induktivnog tereta.

Slika 5.86 Usporedba akceleracija točke *P1* za snagu *S*=180 kVA uz faktor snage $\cos \varphi = 1$ (lijevo) i izrazito induktivni faktor snage $\cos \varphi = 0,08$ (desno)

Prikazani primjeri ukazuju da se utjecaj promjena pogonskog stanja sinkronog generatora, iako zamjetljiv na različitim harmonicima akceleracija, najjasnije uočava na istaknutom harmoniku frekvencije 100 Hz. Tablicama u nastavku dan je pregled efektivnih vrijednosti valnog oblika i amplituda harmonika akceleracija frekvencije 100 Hz za analizirana pogonska stanja generatora. Prikazani su iznosi akceleracija vibracija za četiri analizirana mjesta na modelu statora generatora i njihove srednje vrijednosti.

Tablica 5.15 Amplitude harmonika akceleracija na 100 Hz za analizirane četiri lokacije na modelu statora izračunatih za simetrična radna stanja generatora

		1	Akcelerac	ije	vibracija –	Amplitude	ha	rmonika na	a 1(00 Hz			
	Pog	onsko sta	nje		Ν	Ijesta na pa	ke	tu		Ν	Ijesta na ku	ćiš	tu
Red.br.	U [V]	S [kVA]	$\cos \varphi$ [-]		a_{P1} [mm/s ²]	<i>a</i> _{P2} [mm/s ²]	$\frac{\overline{a}_{P sr}}{[mm/s^2]}$		a_{K1} [mm/s ²]	a_{K2} [mm/s ²]		$\frac{\overline{a}_{K sr}}{[mm/s^2]}$	
1.	200	0	-		32	63		48		17	87		52
2.	400	0	-		115	201		158		56	278		167
3.	400	90	0,08		91	195		143		61	268		165
4.	400	90	0,70		100	196		148		55	267		161
5.	400	90	1,00		112	212		162		62	287		175
6.	400	180	0,08		63	186		125		58	257		158
7.	400	180	0,70		92	204		148		71	270		171
8.	400	180	1,00		109	243		176		73	329		201

Tablica 5.16 Efektivne vrijednosti akceleracija za analizirane četiri lokacije na modelu statora izračunatih za simetrična radna stanja generatora

	Akceleracije vibracija - Efektivne vrijednosti													
	Pog	onsko sta	nje		Ν	Ijesta na pa	ke	tu		Ν	ljesta na ku	ićiš	tu	
Red.br.	U [V]	S [kVA]	cosφ [-]		a_{P1} [mm/s ²]	a_{P2} [mm/s ²]		$\frac{\overline{a}_{P sr}}{[mm/s^2]}$		a_{K1} [mm/s ²]	a_{K2} [mm/s ²]		$\frac{\overline{a}_{K sr}}{[mm/s^2]}$	
1.	200	0	-		259	256		258		215	244		230	
2.	400	0	-		829	865		847		857	814		836	
3.	400	90	0,08		918	930		924		878	871		875	
4.	400	90	0,70		945	950		948		936	901		919	
5.	400	90	1,00		957	957		957		921	908		915	
6.	400	180	0,08		1002	980		991		998	958		978	
7.	400	180	0,70		986	1042		1014		989	995		992	
8.	400	180	1,00		989	1054		1022		974	947		961	

Provedenim proračunima za simetrična radna stanja utvrđeno je da:

- vibracije rastu s povećanjem napona;
- vibracije rastu s povećanjem faktora snage;
- vibracije rastu s porastom prividne izlazne snage;
- vibracije pojedinih mjesta paketa i kućišta međusobno se razlikuju;
- vibracije pojedinih mjesta kućišta mogu imati veće i manje iznose od vibracija paketa;
- utorski harmonici u valnom obliku vibracija mogu imati veće amplitude od harmonika na 100 Hz, tj. osnovnog harmonika magnetske sile kojem je frekvencija dvostruko većeg iznosa od frekvencije mreže;.
- uslijed značajnih amplituda viših harmonika, ukupna efektivna vrijednost akceleracija značajno je većeg iznosa od efektivne vrijednosti harmonika na 100 Hz;
- amplitude istaknutih viših harmonika rastu s povećanjem snage, no bitno se ne mijenjaju s promjenom faktora snage;
- efektivna vrijednost akceleracije vibracija raste s povećanjem snage;

5.6. Rezultati mehaničkih proračuna za nesimetrična radna stanja generatora

Prilikom nesimetričnog opterećenja, sile koje djeluju na pojedine zube međusobno se razlikuju po amplitudni i valnom obliku (slika 5.40 poglavlja 5.3.1). Stoga se i vibracije duž oboda paketa statora uzrokovane ovakvim silama mogu također međusobno značajno razlikovati. Slikom 5.87 usporedno je prikazan valni oblik vibracija na odabranim lokacijama paketa i kućišta statora, za slučaj nesimetričnog opterećenja U=400 V, S=52 kVA, $\cos \varphi=1$. Najveće vibracije u slučaju nesimetričnih električnih opterećenja bilježe se na obodu paketa. U odnosu na stanja simetričnih opterećenja, uočava se međusobna razlika vibracija na mjestima *P1* i *P2*. Promatrajući forme vibriranja paketa (slike 5.77 i 5.78) uočavamo kako se lokacije *P1* i *P2* nalaze na vibracijski različitim pozicijama, pa ista pobudna sila može uzrokovati drugačiji mehanički odziv.

Slika 5.87 Valni oblici akceleracija točaka *P1* i *P2* paketa i *K1* i *K2* plašta kućišta statora pri nesimetričnom opterećenju U=400 V, S=52 kVA, $\cos \varphi = 1$

Slikom 5.88 usporedno je prikazan rezultat proračuna vibracija na vanjskom obodu paketa statora (točka *P2*) za simetrično i nesimetrično opterećenje po fazama stroja, uz isti iznos izlazne snage S=90 kVA, $\cos \varphi = 0.7$ i napon U=400 V. Kada stroj radi s nesimetričnim opterećenjem, uz napajanje samo dviju faza, kroz aktivne namote mora teći za $\sqrt{3}$ puta veća struja nego u slučaju trofaznog simetričnog opterećenja s jednakom izlaznom snagom. Stoga ne začuđuje što se usporedbom valnih oblika i spektra harmonika uočava da su vibracije u slučaju nesimetričnog opterećenja značajno većeg iznosa od onih kod električki simetričnog opterećenja. Vršne vrijednosti valnog oblika akceleracije veće su za ~60 %, a istaknuti harmonik na 100 Hz za ~40 %.

Slika 5.88 Usporedba akceleracija točke P2 za istu izlaznu snagu trofazno (lijevo) i dvofazno (desno) opterećenog generatora pri U=400 V, S=90 kVA, $\cos\varphi=0.7$

Da bi se pokazalo kako struja većeg iznosa nije jedini razlog većih vibracija, provedena je usporedba odabranog simetričnog stanja (U=400 V, S=90 kVA, $cos \varphi=0,7$, I=130 A) sa stanjem nesimetričnog opterećenja, kod kojeg kroz dva fazna namota teče struja istog iznosa (U=400 V, S=52 kVA, $cos \varphi=0,7$, I=130 A).

Slika 5.89 Usporedba akceleracija točke *P2* uz istu struju armature I = 130 A za simetrično (lijevo: S = 90 kVA) i nesimetrično (desno: S = 52 kVA) opterećenje pri U = 400 V, $\cos \varphi = 0.7$

Usporedbom grafova prikazanih slikom 5.89 može se vidjeti kako i u slučaju jednakih struja kroz fazne namote u slučaju magnetske nesimetrije dolazi do većih vibracija nego kod simetričnog stanja. Istaknuti harmonik na 100 Hz je ~ 20 % većeg iznosa nego kod usporednog simetričnog stanja.

Slika 5.90 Usporedba akceleracija na mjestu *P1* za nesimetrično opterećenje uz faktor snage $\cos \varphi = 0.08$ (lijevo) i $\cos \varphi = 0.7$ (desno) pri U = 400 V, S = 52 kVA

Slika 5.91 Usporedba akceleracija na mjestu *P2* za nesimetrično opterećenje uz faktor snage $\cos \varphi = 0.08$ (lijevo) i $\cos \varphi = 0.7$ (desno) pri U = 400 V, S = 52 kVA

Utjecaj promjene faktora snage na vibracije pri istoj prividnoj snazi S = 52 kVA prikazan je za lokaciju *P1* (slika 5.90) i *P2* (slika 5.91). Moguće je uočiti kako na pozicijama *P1* i *P2* povećanje faktora snage ima obrnuti efekt. Dok na lokaciji *P1* povećanje faktora snage dovodi do povećanja vibracija kao i u slučaju simetričnog opterećenja, na lokaciji *P2*, gdje se bilježe manje sile, dolazi do pada vibracija s povećanjem faktora snage. Ovo je posljedica razlike vibracijskog odziva (forme vibriranja) na pozicijama *P1* i *P2* te ovisnosti pozicije zuba izloženog najvećim radijalnim silama o iznosu faktora snage cos φ , koja je prikazana u poglavlju 5.3.4.

Analizom nesimetričnih opterećenja prikazanom kroz točku 5.3.3. uočeno je kako pozicija zuba na koji djeluje sila maksimalnog iznosa ovisi o tome koja su dva fazna namota stroja protjecana strujom. Da bi se utvrdilo ima li ova razlika utjecaj i na vibracije, provedena je računska usporedba za dva slučaja isključenja faza, pri radnom opterećenju S=52 kVA, $\cos \varphi = 1$, U=400 V. Na lijevoj strani slike 5.92 prikazan je slučaj vibracija kod kojeg je na poziciji senzora *P1* zabilježena sila manjih amplituda (faze *A*-*C* protjecane strujom), a s desne strane prikazan je slučaj na istom mjestu zabilježene radijalne sile većeg iznosa (faze *B*-*C* protjecane strujom). Usporedba pokazuje kako se vibracije pojedinog mjesta na paketu mogu za pojedine harmonike razlikovati do dva puta, ovisno o rasporedu pobudnih sila po obodu stroja.

Slika 5.92 Usporedba akceleracija na mjestu *P1* za opterećenje faza *A*-*C* (lijevo) i *B*-*C* (desno) pri opterećenju U=400 V, *S*=52 kVA, $\cos \varphi$ =1

Tablicama u nastavku dan je pregled efektivnih iznosa ukupnog valnog oblika i amplituda istaknutog harmonika akceleracija na 100 Hz za analizirana radna stanja generatora. Prikazani su iznosi amplituda i efektivnih vrijednosti akceleracije vibracija za četiri analizirana mjesta na modelu statora generatora i njihove srednje vrijednosti.

				Akcel	era	cije – Amp	litude harm	nor	nika na 100	Hz	Z			
		Pogonsk	o stanje			Ν	Ijesta na pa	ıke	tu		Μ	ljesta na ku	ćiš	tu
Red.br.	U [V]	S [kVA]	$\cos \varphi$ [-]	Akt. faze		a_{P1} [mm/s ²]	a_{P2} [mm/s ²]		$\frac{\overline{a}_{P sr}}{[mm/s^2]}$		a_{K1} [mm/s ²]	a_{K2} [mm/s ²]		$\overline{a}_{K sr}$ [mm/s ²]
1.	400	52	0,08	<i>B</i> - <i>C</i>		247	268		258		35	402		219
2.	400	52	0,70	<i>B</i> - <i>C</i>		321	234		278		44	335		190
3.	400	52	1,00	<i>B</i> - <i>C</i>		304	160		232		47	208		128
4.	400	52	1,00	A - C		153	229		191		91	334		213
5.	400	52	1,00	A - B		217	298		258		55	446		251
6.	400	90	0,7	<i>B</i> - <i>C</i>		484	273		379		26	417		222
7.	400	104	0,08	<i>B</i> - <i>C</i>		502	360		431		22	454		238
8.	400	104	0,70	<i>B</i> - <i>C</i>		549	292		421		22	454		238
9.	400	104	1,00	<i>B</i> - <i>C</i>		548	253		401		60	230		145
10.	400	104	1,00	A - B		424	339		382		63	607		304

Tablica 5.17 Amplitude harmonika akceleracija na 100 Hz za četiri analizirane lokacije na modelu statora izračunate za nesimetrična radna stanja generatora

Tablica 5.18 Efektivne vrijednosti akceleracija za četiri analizirane lokacije na modelu statora, izračunate za nesimetrična radna stanja generatora

				L	Ak	celeracije –	- Efektivne	vr	ijednosti				
		Pogonsko	o stanje			Ν	Ijesta na pa	ke	tu	М	ljesta na ku	íciš	tu
Red.br.	U [V]	S [kVA]	$\cos \varphi$ [-]	Akt. faze		<i>a</i> _{P1} [mm/s ²]	a_{P2} [mm/s ²]		$\frac{\overline{a}_{P sr}}{[mm/s^2]}$	a_{K1} [mm/s ²]	a_{K2} [mm/s ²]		$\overline{a}_{K sr}$ [mm/s ²]
1.	400	52	0,08	B- C		1076	1037		1057	1042	987		1015
2.	400	52	0,70	B- C		1145	1053		1099	1095	979		1037
3.	400	52	1,00	<i>B</i> - <i>C</i>		1057	1136		1097	1017	1091		1054
4.	400	52	1,00	A - C		1086	924		1005	1022	908		965
5.	400	52	1,00	A - B		1011	1057		1034	918	973		946
6.	400	90	0,7	<i>B</i> - <i>C</i>		1233	1182		1208	1330	1106		1218
7.	400	104	0,08	B- C		1546	1291		1419	1350	1153		1252
8.	400	104	0,70	<i>B</i> - <i>C</i>		1377	1285		1331	1444	1175		1310
9.	400	104	1,00	<i>B</i> - <i>C</i>		1349	1340		1345	1137	1279		1208
10.	400	104	1,00	A - B		1327	1346		1337	1136	1279		1208

Provedenim proračunima za nesimetrična pogonska stanja utvrđeno je da:

- vibracije rastu s porastom prividne izlazne snage u širem rasponu nego kod simetričnih opterećenja;
- vibracije se mijenjaju s promjenom faktora snage u širem rasponu nego kod simetričnih opterećenja;
- vibracije pojedinog mjesta na obodu stroja ovise o rasporedu namota tj. o aktivnim fazama namota;
- vibracije pojedinih mjesta paketa i kućišta međusobno se razlikuju u širem rasponu nego kod simetričnih opterećenja;
- vibracije pojedinih mjesta paketa mogu imati veće iznose od vibracija kućišta;
- harmonik vibracija na frekvenciji 100 Hz značajno se mijenja s promjenom opterećenja;
- iznos harmonika vibracija na frekvenciji 100 Hz korelira s iznosom maksimalne sile pri nesimetričnom opterećenju (koja se po obodu stroja pojavljuje dva puta po paru polova);
- u odnosu na simetrično opterećenje iste snage, amplitude istaknutih viših harmonika akceleracije vibracija veće su kod nesimetričnog opterećenja po fazama;
- efektivna vrijednost akceleracije vibracija raste s povećanjem nesimetrije opterećenja.

6. Rezultati mjerenja na generatoru

U ovom poglavlju prikazani su rezultati mjerenja na sinkronom generatoru tipske oznake 2*S* 783-04. Mjerenja su provedena s ciljem potvrde postavljenih teza i rezultata dobivenih proračunom. Na slici 6.1 prikazana je principijelna shema spoja ispitnog okruženja u kojem je provedeno ispitivanje sinkronog generatora. Kao izvor radne snage (pogonski motor) korišten je trofazni sinkroni stroj istih kataloških podataka kao i ispitivani generator. Pomoću regulatora broja okretaja pogonskog motora osigurana je konstantna brzina vrtnje od 1500 o/min, tj. frekvencija osnovnog harmonika napona sinkronog generatora od 50 Hz, neovisno o ispitivanom pogonskom stanju.

Slika 6.1 Principijelna shema spoja: 1 – pogonski motor, 2 – ispitivani objekt (sinkroni generator), 3 – pasivni teret (kaskada otpornika i regulacijska prigušnica)

Na radijalnu plohu zuba statora ugrađeno je ukupno 8 mjernih svitaka, jednoliko raspodijeljenih duž oboda (slika 6.2). Prilikom montaže generatora (umetanja rotora u stator) došlo je do oštećenja jednog svitka, no redundancija postignuta ugradnjom većeg broja svitaka od minimalno potrebnog za provjeru proračunskih rezultata omogućila je provedbu mjerenja bez potrebe za dodatnim remontom.

Slika 6.2 Mjerni svitci ugrađeni na zube generatora

Slika 6.3 prikazuje raspored i međusobni položaj ugrađenih svitaka u zračni raspor stroja. Svitci na slici 6.3 označeni istom bojom međusobno su dijametralno udaljeni i razmaknuti za dva polna koraka $(2 \cdot \tau_p)$. Postavljanje svitaka na razmak koji odgovara točno polnom koraku (τ_p) i točno polovici polnog koraka $(\frac{1}{2}\tau_p)$ nije bilo moguće izvesti zbog razlomljenog broja utora po polu (Q = 19,5). Stoga su parovi susjednih svitaka međusobno udaljeni za korak blizak polovici polnog koraka $(\sim \frac{1}{2}\tau_p)$ tj. postavljeni na zube čija se lokacija najbolje podudarala s razmakom od pola polnog koraka. Mjerni svitak oštećen prilikom sastavljanja stroja nosi oznaku *Ms8* i dodatno je naznačen na slici 6.3.

Slika 6.3 Mjesta ugradnje i oznake mjernih svitaka – pogled s pogonske strane stroja

Akcelerometri su pričvršćeni na paket statora upotrebom produljenih nosača s magnetnom bazom, umetnutih kroz prethodno probušene rupe na plaštu kućišta (slika 6.4 lijevo). Akcelerometri za provjeru vibracija kućišta montirani su na vanjski obod njegovog plašta, upotrebom nosača s magnetnom bazom standardne izvedbe (slika 6.4 desno). Pozicije smještaja akcelerometara po stroju prikazane su slikom 6.5. Pomoću oklopljenih spojnih kabela, izvodi ugrađenih svitaka i akcelerometara spojeni su na ulaze mjerne akvizicijske stanice. Mjerenja su provedena u praznom hodu i za različita opterećenja. Radi verifikacije proračuna, mjerenja su provedena za odabrane primjere simetričnih i nesimetričnih opterećenja.

Slika 6.4 Akcelerometri spojeni na paket statora pomoću produljenog nosača kroz probušenu rupu plašta kućišta (lijevo) i na plašt kućišta upotrebom standardnog nosača (desno)

Slika 6.5 Pozicije i oznake senzora za mjerenje vibracija

Slika 6.6 Izvodi senzora spojeni na mjernu akvizicijsku stanicu

Slikom 6.7 prikazana je shema spoja pasivnog tereta na generator u slučaju rada sa simetričnim trofaznim teretom, a slikom 6.8 shema za slučaj rada s dvije aktivne faze. Naponi i struje na izlazu iz generatora provjeravani su pomoću mjerne centrale *NORMA AC Power Analyzer D 5255 S.* Tablicama 6.1 i 6.2 prikazana su mjerena pogonska stanja s odgovarajućim iznosima struja te otpora i induktiviteta tereta. Sklopka između generatora i tereta omogućila je potpuno odspajanje pojedine faze tereta (ostvarenje različitih uvjeta nesimetričnog opterećenja), bez da se cijeli pogon zaustavlja.

Slika 6.7 Spoj pasivnog tereta na stezaljke generatora za simetrično opterećenje

Slika 6.8 Spoj pasivnog tereta na stezaljke generatora za nesimetrično opterećenje

Red br.	S [kVA]	cosφ [-]	P [kW]	Q [kVAr]	<i>I</i> [A]	I_R [A]	<i>IL</i> [A]	$R_{R(C)}$ [Ω]	$\begin{matrix} R_{S(B)} \\ [\Omega] \end{matrix}$	$R_{T(A)}$ [Ω]	<i>L_{R (C)}</i> [mH]	<i>L_{S (B)}</i> [mH]	<i>L_{T (A)}</i> [mH]
1.	90	1,0	90	0	130	130	0	1,770	1,770	1,770	-	-	-
2.	90	0,7	63	64	130	91	93	2,527	2,527	2,527	7,872	7,872	7,872
3.	90	0	70	90	130	0	130	-	-	-	5,632	5,632	5,632
4.	180	1,0	180	0	260	260	0	0,885	0,885	0,885	-	-	-
5.	180	0,7	126	128	260	182	186	1,263	1,263	1,263	3,936	3,936	3,936
6.	180	0	0	180	260	0	260	-	-	-	2,816	2,816	2,816

Tablica 6.1 Parametri pasivnog tereta i struje kroz otpornik I_R i prigušnicu I_L

Tablica 6.2 Parametri pasivnog tereta i struje kroz otpornik I_R i prigušnicu I_L

Red. br.	S [kVA]	$\cos \varphi$ [-]	Р [kW]	Q [kVAr]	<i>I</i> [A]	I_R [A]	<i>I</i> _{<i>L</i>} [A]	$R_{R(C)}$ [Ω]	$R_{S(B)}$ [Ω]	$R_{T(A)}$ [Ω]	<i>L_{R (C)}</i> [mH]	<i>L_{S (B)}</i> [mH]	<i>L_{T (A)}</i> [mH]
1	52	1,0	52	0	130	130	0	1,538	1,538	-	-	-	-
2	52	1,0	52	0	130	130	0	-	1,538	1,538	-	-	-
3	52	1,0	52	0	130	130	0	1,538	-	1,538	-	-	-
4	52	0,7	36,4	37,1	130	91	93	2,198	2,198	-	6,845	6,845	-
5	52	0,0	0	52	130	0	130	-	-	-	4,897	4,897	-
6	90	0,7	63	64	225	158	161	1,266	1,266	-	3,954	3,954	-
7	104	1,0	104	0	260	260	0	0,769	0,769	-	-	-	-
8	104	1,0	104	0	260	260	0	-	0,769	0,769	-	-	-
9	104	0,7	73	74	260	182	186	1,099	1,099	-	3,423	3,423	-
10	104	0,0	0	104	260	0	260	-	-	-	2,449	2,449	-

za analizirana nesimetrična pogonska stanja generatora

6.1. Mjerenje vlastitih frekvencija

Prije glavnih ispitivanja provedeno je mjerenje frekvencijskog odziva generatora na impuls mehaničke pobude (tzv. *Bump test*) u svrhu određivanja vlastitih frekvencija generatora. Odziv je mjeren akcelerometrom postavljenim na vanjski obod paketa, za 8 udarnih lokacija raspoređenih po kućištu statora na način prikazan slikom 6.9.

Slika 6.9 Izvodi senzora spojeni na mjernu akvizicijsku stanicu

Slika 6.10 Stvaranje mehaničkog pobudnog impulsa udarcem čekića o kućište statora

Na svakoj lokaciji provedena su po tri mjerenja (tri udarca čekićem) za koja je snimljen vibracijski odziv paketa. Slikom 6.11 prikazan je impuls sile nastao kao posljedica udarca čekićem, a slikom 6.12 spektar frekvencija za koji se udarcem čekića može odrediti valjani odziv kućišta. Vremenski odziv paketa na udarac čekićem prikazan je slikom 6.13.

Slika 6.11 Impuls sile kod udarca čekićem

Slika 6.12 Spektar frekvencija obuhvaćen udarcem čekića

Slika 6.13 Vremenski odziv paketa na udarac čekićem

Slika 6.14 Snimljeni odzivi za udarce čekića na osam analiziranih lokacija

Slikom 6.14 usporedno su prikazani vibracijski odzivi kućišta u frekvencijskoj domeni za svih osam analiziranih lokacija, uz naznačene iznose frekvencija najizraženijih harmonika. Moguće je vidjeti kako se odziv na pobudu aksijalnih krajeva (točke 1, 3, 4 i 8) značajno razlikuje od odziva na pobudu centralnog dijela stroja (točke 5, 6 i 7). Također se može vidjeti kako se istaknuti harmonici točaka 5, 6 i 7 centralne zone prilično dobro međusobno poklapaju. Budući da se vibracije mjere u centralnoj zoni stroja za koju je proveden i proračun, potpuniji popis frekvencija istaknutih harmonika za pozicije mjerenja 5, 6 i 7 prikazan je zasebno u tablici 6.3.

		f_{vl}	[Hz	z]	
Red.br.	Točka	Točka		Točka	Srednja
harmonika	5	6		7	vrijednost
1	77	78		77	77
2	164	164		164	164
3	197	197		197	197
4	246	246		246	246
5	339	339		339	339
6	467	465		464	465
7	558	552		525	545
8	592	617		594	601
9	690	706		671	689
10	752	759		748	753
11	833	858		831	841
12	903	887		912	901
13	956	952		949	952
14	972	969		978	973
15	1031	1031		1026	1029
16	1110	1117		1131	1119
17	1169	1175		1161	1168
18	1220	1223		1228	1224
19	1262	1251		1252	1255
20	1296	1283		1296	1292
21	1386	1398		1395	1393
22	1477	1472		1469	1473
23	1535	1543		1511	1530
24	1574	1589		1580	1581

Tablica 6.3 Izmjerene vlastite frekvencije za centralni dio stroja

6.2. Mjerenje električnih veličina za simetrična opterećenja

Nakon ispitivanja vlastitih frekvencija statora, provedena su mjerenja za prazni hod i simetrična opterećenja generatora. Tijekom mjerenja neprekidno su promatrani valni oblici induciranih napona u mjernim svitcima i iznosi vibracija mjereni senzorima postavljenima na kućište i paket statora. Referentno očitanje vibracija provedeno je u mehaničkoj vrtnji neuzbuđenog generatora, da bi se utvrdile moguće smetnje i problemi s očitanjem mjernih signala. Po postavljanju tereta za svaku radnu točku napravljen je snimak svih praćenih veličina u trajanju od ~10 sekundi. Snimljeni rezultati su kroz daljnja poglavlja rada prikazani za vrijeme koje odgovara jednoj električnoj periodi tj. vremenu poluokreta rotora.

Na slici 6.15 prikazani su inducirani naponi u mjernim svitcima Ms1-Ms7, dobiveni mjerenjem u vremenskom intervalu od pola električne periode (10 ms), za situaciju praznog hoda i simetričnog opterećenja S=180 kVA, $\cos \varphi=1$, uz napon U=400 V. U valnom obliku induciranog napona ponovno se mogu uočiti pozicije vrhova koje koreliraju s pozicijama rubova polnih papuča, prijelazima iz trapeznog u lučni segment te pozicijom štapova prigušnog namota. Uočava se kako dijametralno postavljeni svitci imaju međusobno podudaran valni oblik napona te da su maksimalne vršne vrijednosti napona podjednakog iznosa za sve mjerne svitke. Kod opterećenja ponovno se uočava značajno povećanje najvećeg vrha u odnosu na prazni hod i značajna razlika između dva najistaknutija susjedna vrha, dok su u praznom hodu ova dva vrha međusobno ujednačenog iznosa.

Slika 6.15 Snimljeni valni oblici napona mjernih svitaka u praznom hodu (lijevo) i kod simetričnog opterećenja (desno)

Slika 6.16 Snimljeni valni oblici dijametralno postavljenih svitaka i njihova razlika

Slikom 6.16 usporedno su prikazani valni oblici dijametralno postavljenih svitaka *Ms5* i *Ms7*. Može se vidjeti dobro međusobno poklapaju ovih naponskih valnih oblika, ali i da postoji određena razlika između njih. Razlike su posljedica nesavršenosti i grešaka prilikom ugradnje te pozicioniranja mjernih svitaka, tolerancije u izradi i sastavljanju generatora, tj. svih faktora koji utječu na rezultate mjerenja. Ove tvrdnje potkrepljene su i mjernom nesigurnošću koja je određena i prikazana u tablici 3.10, gdje su navedeni doprinosi nesavršenosti mjerne opreme i izvedbe stroja netočnosti mjerenja, pomoću kojih je određeno da za analizirani generator mjerna nesigurnost iznosi \pm 8,37 %.

	Poge	onsko stan	ije	Vr	šna vrijednost	-	Efekt	tivna vrijedn	lost
Red.br.	U [V]	S [kVA]	$\cos \varphi$	$U_{Ms1 maks}$ [V]	U _{Ms5 maks} [V]	ΔU_{maks} [%]	$U_{Msl ef}$ [V]	U _{Ms5 ef}	ΔU_{ef} [%]
1.	200	0	-	3,83	3,79	1,04	1,48	1,45	2,03
2.	400	0	-	8,65	8,50	1,73	2,96	2,91	1,69
3.	400	90	0,08	9,83	9,69	1,42	3,20	3,15	1,56
4.	400	90	0,70	10,16	10,04	1,18	3,14	3,12	0,64
5.	400	90	1,00	10,11	9,88	2,27	3,02	2,97	1,66
6.	400	180	0,08	10,80	10,61	1,76	3,44	3,39	1,45
7.	400	180	0,70	11,59	11,40	1,64	3,37	3,33	1,19
8.	400	180	1,00	11,54	11,34	1,73	3,14	3,09	1,59

T-1.1	·	· ·		1	
Tablica 6.4 IZm	ierene vriiednost	induciranin n	apona miernin svita	ika za simetricha	opterecenta
1.001100 011 1211	jerene injemiese				epter et enge

Tablicom 6.4 usporedno su prikazane vršne i efektivne vrijednosti napona svitaka međusobno razmaknutih za približno pola polnog koraka ($\frac{1}{2}\tau_p$), za analizirana simetrična pogonska stanja. Brojke pokazuju kako vrijede slične zakonitosti kao i one utvrđene proračunima. Povećanjem linijskog napona na stezaljkama generatora U i prividne snage S povećavaju se vršna i efektivna vrijednost induciranog napona u svitcima. Uslijed geometrije ugrađenih mjernih svitaka (utjecaj širine mjernog svitka opisan u točki 5.2.3), utjecaj promjene faktora snage $\cos \varphi$ na vrijednosti induciranog napona nije jasno izražen. Ovo je prikazano i slikom 6.13. Međusobne razlike amplituda i efektivnih vrijednosti uzrokovane netočnostima mjerenja nalaze se unutar 3 %.

Postupkom opisanim u točki 5.2.3. provedena je analiza snimljenih induciranih napona, u svrhu određivanja valnih oblika radijalnih sila. Narednim slikama prikazani su ovako dobiveni valni oblici za nekoliko izmjerenih simetričnih pogonskih stanja.

Slika 6.18 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za prazni hod uz $U\!=\!400~{\rm V}$

Slika 6.19 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za simetrično opterećenje U=400 V, S=90 kVA, $\cos \varphi$ =0,08

Slika 6.20 Amplitude valnih oblika radijalnih sila na zube određeni analizom napona svitaka za simetrično opterećenje U=400 V, S=90 kVA, $\cos \varphi$ =1

Na slikama 6.18 do 6.21 vidi se da valni oblici sila na zube razmaknute za približno pola polnog koraka, za pojedino simetrično pogonsko stanje imaju međusobno slične amplitude. Valni oblici mijenjaju se s promjenom opterećenja. Što je iznos prividne snage i faktora snage veći, veće su amplitude i efektivne vrijednosti valnih oblika ovih radijalnih sila na zube.

Slika 6.21 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za simetrično opterećenje U=400 V, S=180 kVA, $\cos \varphi$ =1

Tablicom 6.5 usporedno su prikazane vršne i efektivne vrijednosti valnih oblika radijalnih sila, određene temeljem napona svitaka međusobno razmaknutih za približno pola polnog koraka ($\frac{1}{2} \tau_{p}$), za analizirana simetrična pogonska stanja. Brojke pokazuju kako vrijede slične zakonitosti kao i one utvrđene proračunima. Povećanje linijskog napona na stezaljkama generatora U i prividne snage S povećava amplitudne i efektivne vrijednosti valnih oblika radijalnih sila. Uslijed geometrije ugrađenih mjernih svitaka (širine svitka manje od koraka utora statora) utjecaj promjene faktora snage $\cos \varphi$ na efektivnu vrijednost sile nije jasno izražen.

	Poge	onsko star	nje	Vr	šna vrijednost		Efekt	tivna vrijedn	iost
Red.br.	U [V]	S [kVA]	$\cos \varphi$ [-]	F _{k Ms1 maks} [N]	F _{k Ms5 maks} [N]	ΔF_{maks} [%]	F _{k Ms1 ef} [N]	F _{k Ms5 ef} [N]	$\frac{\Delta F_{ef}}{[\%]}$
1.	200	0	-	359	350	2,56	214	209	2,15
2.	400	0	-	1323	1314	0,69	843	833	1,18
3.	400	90	0,08	1369	1346	1,68	863	847	1,87
4.	400	90	0,70	1434	1403	2,19	845	841	0,54
5.	400	90	1,00	1516	1477	2,58	853	841	1,35
6.	400	180	0,08	1377	1360	1,22	863	853	1,15
7.	400	180	0,70	1572	1547	1,61	870	868	0,26
8.	400	180	1,00	1737	1703	1,99	887	880	0,86

Tablica 6.5 Vrijednosti radijalnih sila određene analizom izmjerenih induciranih napona u mjernim svitcima za niz pogonskih stanja

6.3. Mjerenje vibracija za simetrična opterećenja

Iznosi vibracija na odabranim mjestima generatora praćeni su tijekom cijelog ispitivanja upotrebom programskog alata posebno namijenjenog za analizu vibracija (slika 6.22). Ovakav pristup omogućio je obradu i provjeru netom snimljenih podataka i otklanjanje potencijalnih problema mjerenja, kakve npr. mogu uzrokovati loš spoj akcelerometra na kućište ili dovodnog kabela na mjernu centralu te smetnje u prijenosu podataka.

Slika 6.22 Spektri frekvencija obrađeni programskim alatom za obradu snimljenih podataka *PULSE LabShop v17* neposredno nakon provedbe mjerenja

Prvo mjerenje provedeno je u mehaničkoj vrtnji neuzbuđenog generatora, pri brzini vrtnje od 1500 o/min, radi određivanja referentne vrijednosti odziva senzora i provjere da stroj u neopterećenom stanju nema problema s povećanim vibracijama. Valni oblici akceleracija snimljeni na mjestima P1, P2, K1 i K2 prikazani su slikom 6.23. Ovim mjerenjem utvrđeno je da su iznosi vibracija u očekivanim granicama za ispravan stroj, no i da njihovi iznosi mogu otežati uočavanje promjena u vibracijama nastalim djelovanjem magnetskih sila. Ovo je posebice istaknuto za mjerna mjesta K1 i K2 na plaštu kućišta, gdje su snimljene akceleracije oko četiri puta većeg vršnog iznosa od vrijednosti izmjerenih na paketu. Mogući uzrok ovih vibracija je ventilatorsko kolo, čiji broj lopatica odgovara rednom broju harmonika koje se pojavljuje u snimci vibracija. Time se također objašnjava zašto su amplitude ove frekvencije značajnijeg iznosa na plaštu nego na paketu statora.

Slika 6.23 Izmjereni valni oblici akceleracija na odabranim mjestima pri mehaničkoj vrtnji

Slikom 6.24 prikazani su snimljeni valni oblici akceleracija na četiri analizirana mjesta za prazni hod pri nazivnom naponu U=400 V, a slikom 6.25 za simetrično opterećenje U=400 V, S=180 kVA, $\cos \varphi = 1$. Zbog superpozicije mehanički uzrokovanih vibracija, iz prikazanih grafova vizualno je praktički nemoguće utvrditi razliku koju unosi magnetsko polje uzbuđenog stroja. Iz navedenog razloga, rezultati vibracijskih mjerenja analizirani su preko harmonijskog sastava, uz naglasak na vibracije izmjerene na paketu.

Slika 6.24 Izmjereni valni oblici akceleracija na odabranim mjestima u praznom hodu

Slika 6.25 Izmjereni valni oblici akceleracija na odabranim mjestima pri opterećenju $U{=}\,400~{\rm V},\,S{=}180~{\rm kVA},\,\cos\varphi{=}1$

Slikom 6.26 prikazan je frekvencijski spektar vibracija paketa na lokaciji *P1* i *P2* u mehaničkoj vrtnji, slikom 6.27 u praznom hodu pri naponu U=400 V, a slikom 6.28 za simetrično opterećenje U=400 V, S=180 kVA, $\cos \varphi = 1$.

Slika 6.27 Izmjereni spektar frekvencija akceleracija paketa u praznom hodu

Slika 6.28 Izmjereni spektar frekvencija akceleracija paketa pri opterećenju $U=400 \text{ V}, S=180 \text{ kVA}, \cos \varphi = 1$

Usporedbom harmonijskog sastava akceleracija moguće je uočiti da se vibracije na mjestima *P1* i *P2* međusobno značajno razlikuju. Na mjestu *P1*, koje se nalazi ispod priključne kutije, prisutan je niz značajno istaknutih visokih harmonika u rasponu 1000 do 1300 Hz i 5000 do 6000 Hz, koji su posljedica rasporeda spojnih letvi kućišta i paketa, nosača kućišta te međusobnog odnosa broja spojnih letvi i broja zubi statora. Mogući razlog većih iznosa ovih harmonika na mjestu *P1* je smanjena krutost kućišta u ovoj zoni uslijed otvora na plaštu kroz koji su provedeni vodiči namota prema priključnoj kutiji (slika 6.29). Elementi priključne kutije također mogu uzrokovati dodatne vibracije u ovoj zoni statora te utjecati na rezultate mjerenja akcelerometra.

Slika 6.29 Pozicija mjernog mjesta P1

Na mjestu *P1* zamjetan je i iznos harmonika frekvencije 25 Hz, koji u praznom hodu čak i nadmašuje iznos osnovnog harmonika frekvencije 100 Hz, uzrokovanog osnovnim magnetskim poljem stroja. Ovaj harmonik nije zabilježen u rezultatima provedenih MKE proračuna, te je

moguća posljedica mehanički sila uzrokovanih debalansom rotora, budući da 25 Hz odgovara jednom punom okretu rotora. S povećanjem tereta vrijednost ovog harmonika se smanjuje, kao i vrijednosti harmonika u rasponu od 1000 do 1300 Hz i 5000 do 6000 Hz. Mogući razlog smanjenja ovih harmonika s povećanjem tereta je veće zagrijanje stroja, s kojim dolazi do toplinskog širenja paketa i time do njegovog dodatnog ukrućenja, kao i do povećanja krutosti cijelog elastičnog sustava paket – kućište statora.

Osnovni harmonik vibracija uzrokovan magnetskim silama, frekvencije 100 Hz istaknut je u rezultatima oba mjerna mjesta, no većeg je iznosa na mjestu *P2*. S porastom opterećenja raste iznos ovog harmonika, što je u skladu s rezultatima proračuna. Tablicom 6.6 prikazani su iznosi amplitude osnovnog harmonika akceleracije za mjerenjem analizirana električna simetrična pogonska stanja na sve četiri lokacije mjerenja vibracija.

		I	Akcelerad	cije	e vibracija -	– Amplitud	e ł	narmonika	na	100 Hz			
	Pog	onsko sta	nje		Μ	ljesta na pa	ke	tu		М	jesta na ku	ćiš	tu
Red.br.	U [V]	S [kVA]	$\cos \varphi$ [-]		a_{P1} [mm/s ²]	a_{P2} [mm/s ²]		$\frac{\overline{a}_{p sr}}{[\text{mm/s}^2]}$		a_{K1} [mm/s ²]	a_{K2} [mm/s ²]		$\frac{\overline{a}_{K sr}}{[mm/s^2]}$
0.	0	0	-		7	22		15		16	13		15
1.	200	0	-		37	47		42		15	39		27
2.	400	0	-		150	202		176		123	111		117
3.	400	90	0,08		167	160		164		121	146		134
4.	400	90	0,70		196	183		190		127	167		147
5.	400	90	1,00		161	252		207		137	154		146
6.	400	180	0,08		161	150		156		110	136		123
7.	400	180	0,70		186	176		181		142	149		146
8.	400	180	1,00		164	279		222		167	112		140

Tablica 6.6 Amplitude harmonika akceleracija na 100 Hz za analizirane četiri lokacije na statoru stroja, izmjerene za simetrična pogonska stanja generatora

Provedenim mjerenjima za simetrična pogonska stanja utvrđeno je da:

- mehanički uzrokovane vibracije zašumljuju odziv uzrokovan magnetskim silama;
- harmonik frekvencije 25 Hz ukazuje na postojanje ekscentričnosti rotora;
- temeljem analize osnovnog harmonika protjecanja frekvencije 100 Hz moguće je uočiti razlike između različitih pogonskih stanja;
- iznos harmonika frekvencije 100 Hz raste s porastom prividne izlazne snage i faktora snage;
- vibracije pojedinih mjesta paketa i kućišta međusobno se razlikuju.

6.4. Mjerenje električnih veličina za nesimetrična opterećenja

Nesimetrično opterećenje po fazama armaturnog namota popraćeno je povećanim gubicima u stroju. Zbog navedenog razloga, ispitivanja nesimetričnih opterećenja provedena su pri snagama značajno manjeg iznosa od nazivnih 400 kVA (tablica 6.2). Mjerenja su provedena na jednak način kao i kod simetričnih opterećenja, s time da su u ovom slučaju struje tekle samo kroz dvije faze, dok treća faza nije bila spojena na teret. Za sva analizirana nesimetrična pogonska stanja snimljeni su inducirani naponi mjernih svitaka i obradom tih vrijednosti određeni su valni oblici radijalne sile koja djeluje na zub.

Slika 6.30 Snimljeni valni oblici napona mjernih svitaka za nesimetrično opterećenje $U=400 \text{ V}, S=104 \text{ kVA}, \cos \varphi = 1 \text{ uz faze } B-C \text{ protjecane strujom}$

Slikom 6.30 prikazani su snimljeni inducirani naponi mjernih svitaka za nesimetrično pogonsko stanje U=400 V, S=104 kVA, $\cos \varphi = 1$, pri čemu struje teku kroz namote faza *B* i *C*. Pri ovakvom radu uočavaju se razlike u naponima mjernih svitaka razmaknutih za pola polnog koraka ($\frac{1}{2}\tau_p$), a koje nisu uočene pri simetričnim opterećenjima. Ova razlike detaljnije su istaknute na slici 6.31.

Na slici 6.30 uočava se međusobno poklapanje napona dijametralno postavljenih parova svitaka kao i u slučaju simetričnog tereta (parovi valnih oblika označeni kao *Ms1-Ms3*, *Ms2-Ms4* i *Ms5-Ms7*). Između napona ovih parova svitaka ponovno postoji određena razlika kao posljedica netočnosti mjerenja (slika 6.32), koja je uočena i kod simetričnih opterećenja.

Slika 6.31 Razlike napona svitaka razmaknutih za $\frac{1}{2}\tau_p$ pri nesimetričnom opterećenju

Slika 6.32 Poklapanje napona dijametralno postavljenih svitaka i njihova međusobna razlika uzrokovana netočnostima mjerenja

Provedbom postupka analize induciranih napona mjernih svitaka, opisanog u točki 5.2.3., određeni su valni oblici radijalnih sila. Ovakva analiza provedena je radi zornijeg utvrđivanja utjecaja nesimetričnog električnog opterećenja na razlike sila po zubima stroja. Slikama u nastavku usporedno su prikazani dobiveni valni oblici sila, na primjeru nekoliko izmjerenih karakterističnih nesimetričnih opterećenja, za svitke međusobno razmaknute pola polnog koraka ($\frac{1}{2} \tau_p$).

Slikom 6.33 prikazani su valni oblici sila, određeni na temelju induciranih napona prikazanih slikom 6.31, za pogonski stanje U=400 V, S=10 kVA, $\cos \varphi = 1$, pri čemu struje teku kroz namote faza *B* i *C*. Moguće je primijetiti kako se slikom 6.33 usporedno prikazani valni oblici određeni za lokacije svitaka *Ms1* i *Ms5* međusobno razlikuju po vršnoj vrijednosti i valnom obliku. Ovo predstavlja značajnu razliku u odnosu na rezultate simetričnih opterećenja prikazane u točki 6.2 ovog rada.

Slika 6.33 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za nesimetrično opterećenje U=400 V, S=104 kVA, $\cos \varphi$ =1 uz faze B-C protjecane strujom

Slika 6.34 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za nesimetrično opterećenje U=400 V, S=104 kVA, $\cos \varphi$ =0,08 uz faze B-C protjecane strujom

Slikom 6.34 prikazani su valni oblici radijalnih sila za pogonsko stanje u kojem kroz namote teku isti iznosi struja kao i u prethodnom slučaju (slika 6.33), ali pri izrazito induktivnom faktoru snage $\cos \varphi = 0.08$. Moguće je vidjeti kako su u ovom slučaju valni oblici značajno različitog oblika, u odnosu na slučaj radnog opterećenja s faktorom snage $\cos \varphi = 1$. Maksimalna zabilježena vršna vrijednosti sile u slučaju induktivnog rada značajno je nižeg iznosa i javlja se na uzlaznom bridu valnog oblika sile. I u ovom slučaju uočava se međusobna razlika valnih oblika na mjestima *Ms1* i *Ms5*. No sada je međusobna razlika vršnih vrijednosti ovih valnih oblika značajno manja.

Slika 6.35 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za nesimetrično opterećenje $U=400 \text{ V}, S=52 \text{ kVA}, \cos \varphi = 1 \text{ uz faze } B-C$ protjecane strujom

Slika 6.36 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za nesimetrično opterećenje U=400 V, S=52 kVA, $\cos \varphi = 1$, uz faze *A*-*C* protjecane strujom

Slikama 6.35 i 6.36 usporedno su prikazani valni oblici za lokacije Ms1 i Ms5 pri istom opterećenju U=400V, S=52 kVA, $\cos \varphi=1$, za slučajeve kad struja jednom teku kroz namote faza B i C, a drugi put kroz namote faza A i C. Moguće je uočiti znatne razlike među valnim oblicima sile u dva razmatrana slučaja napajanja faza. Dok se u slučaju aktivnih faza B i C veća vršna vrijednost pojavljuje kod valnog oblika određenog preko napona svitka Ms5, u slučaju aktivnih faza A i C veća vršna vrijednost bilježi se kod valnog oblika svitka Ms1. Ukoliko se promotre valni oblici sa slika 6.33 i 6.35, moguće je vidjeti kako se u slučaju protjecanja struja kroz iste faze (u ovom slučaju B i C) i istog faktora snage ($\cos \varphi=1$) zadržava pozicija pojavljivanja maksimalne vrijednosti sile. Zabilježene razlike u skladu su s rezultatima izračuna.

Tablicom 6.7 prikazane su amplitude valnih oblika radijalnih sila, određene na osnovi izmjerenih vrijednosti induciranog napona u mjernim svitcima za sva mjerena nesimetrična pogonska stanja. Pregledom ovih rezultata moguće je uočiti kako vršna vrijednost sile raste s povećanjem prividne snage S. Moguće je zamijetiti i kako promjena faktora snage $\cos \varphi$ i promjena faza kroz koje teče struja utječe na iznos sila i lokaciju zuba ispod kojeg se bilježi veća vrijednost sile.

Red. Br.	Pogonsko stanje				Sila određena pomoću svitka		Razlika	
	U[V]	<i>S</i> [kVA]	$\cos \varphi$ [-]	Aktivne faze	Ms l F _{maks} [N]	Ms5 F _{maks} [N]	$ \Delta F_{maks} $ [N]	$ \Delta F_{maks} $ [%]
1	400	52	0,08	<i>B-C</i>	1264	1319	55	4,2
2	400	52	0,70	<i>B-C</i>	1163	1210	47	3,9
3	400	52	1,00	<i>B-C</i>	1288	1386	98	7,1
4	400	52	1,00	A-C	1379	1254	124	9,0
5	400	52	1,00	A-B	1272	1210	62	4,9
6	400	90	0,7	<i>B-C</i>	1141	1213	72	5,9
7	400	104	0,08	<i>B-C</i>	1337	1408	70	5,0
8	400	104	0,70	<i>B-C</i>	1155	1230	75	6,1
9	400	104	1,00	<i>B-C</i>	1415	1605	190	11,8
10	400	104	1,00	A-B	1423	1364	59	4,1

Tablica 6.7 Vršne vrijednosti radijalnih sila određene analizom izmjerenih induciranih napona u mjernim svitcima za niz nesimetričnih pogonskih stanja

Provedenim mjerenjima za nesimetrična opterećenja potvrđeno je da:

- pri nesimetričnom električnom opterećenju postoji nesimetrija induciranih napona u mjernim svitcima koji se nalaze ispod različitih zubi generatora;
- analizom napona mjernih svitaka moguće je odrediti valne oblike sile koji odgovaraju valnim oblicima proračunske radijalne sile;
- kod nesimetričnog električnog opterećenja maksimalne vrijednosti valnih oblika radijalnih sila na zube statora uz istu izlaznu snagu S, veće su nego u slučaju simetričnog opterećenja;
- kod električki nesimetričnog opterećenja maksimalne vrijednosti valnih oblika radijalnih sila na zube, uz iste struje faznih namota, veće su nego u slučaju simetričnog opterećenja;
- maksimalne vrijednosti valnih oblika radijalnih sila i njihova nesimetrija po lokacijama mjerenja rastu s povećanjem snage S;
- mjesto na obodu stroja (zub) na kojem se pojavljuje najveća vrijednost radijalne sile neće se promijeniti s povećanjem snage S;
- mjesto na obodu stroja (zub) na kojem se bilježi najveća vrijednost radijalne sile promijeniti će se s promjenom faktora snage $\cos \varphi$;
- analizom napona mjernih svitaka ugrađenih na zube paketa statora moguće je utvrditi pojavu nesimetričnog opterećenja po fazama.

6.5. Mjerenje vibracija za električki nesimetrična opterećenja

Mjerenja vibracija za električki nesimetrična opterećenja generatora provedena su usporedno s mjerenjima električnih veličina, na jednak način kao i kod ispitivanja za simetrična opterećenja.

Pri odabranoj snazi od S=52 kVA provedena su mjerenja za tri moguće kombinacije uključenih faza A-B, A-C i B-C. Za kombinaciju uključenih faza, kod koje je mjerenjem na paketu (mjerna mjesta P1 i P2) utvrđen maksimalni iznos vibracija, provedena su ispitivanja za preostala odabrana nesimetrična opterećenja.

Slikom 6.37 prikazani su snimljeni valni oblici akceleracija za analizirana mjesta *P1*, *P2*, za nesimetrično opterećenje $U=400 \text{ V} S=52 \text{ kVA} \cos \varphi=1$, strujom protjecane namote faza *B* i *C*. Slikom 6.38 prikazani su valni oblici za isto pogonsko stanje, ali uz strujom protjecane namote faza *A* i *C*. Kao i u slučaju simetričnog opterećenja, u snimljenim valnim oblicima uočljive su vibracije mehaničkog porijekla. Kod električne nesimetrije, u valnim oblicima vibracija uočava se i valovita komponenta frekvencije 100 Hz (ponavljanje od 2 puta unutar 20 ms). Navedena komponenta vibracija zorno se primjećuje na snimcima akcelerometara postavljenih izravno na paket statora (lokacije *P1* i *P2*).

Slika 6.37 Izmjereni valni oblici akceleracija na mjestima *P1* i *P2* paketa statora pri nesimetričnom opterećenju U=400 V, S=52 kVA, $\cos \varphi = 1$ uz faze *B-C* protjecane strujom

Slika 6.38 Izmjereni valni oblici akceleracija na mjestima *P1* i *P2* paketa statora pri nesimetričnom opterećenju U=400 V, S=52 kVA, $\cos \varphi = 1$ uz faze *A-C* protjecane strujom

Usporedbom valnih oblika akceleracije snimljenih na lokacijama P1 i P2, za dvije situacije prikazane slikama 6.37 i 6.38, moguće je uočiti kako su vibracije većih amplituda prisutne u slučaju kad struje teku kroz namote faza B i C. Ovo je u skladu s rezultatima sila određenih na temelju mjerenja napona induciranih u mjernim svitcima (slike 6.33 do 6.35), kod kojih su na lokaciji Ms5 (ispod lokacije akcelerometra P2) uočeni najveći iznosi sile upravo za slučaj protjecanja struja kroz ove faze.

Slika 6.39 Izmjereni valni oblici akceleracija na mjestima *P1* i *P2* paketa statora pri nesimetričnom opterećenju U=400 V, S=104 kVA, $\cos \varphi = 1$ uz faze *B-C* protjecane strujom

Slikom 6.39 prikazane su snimljene akceleracije na lokacijama *P1* i *P2* za nesimetrično opterećenje U=400 V, S=104 kVA, $\cos\varphi=1$, pri čemu struja teće kroz namote faza *B* i *C*. Uočava se izraženija valovitost akceleracije, od one pri manjoj snazi S=52 kVA. I ovo je u skladu s rezultatima dobivenih obradom induciranih napona mjernih svitaka, po kojima iznos sila na zube raste s povećanjem opterećenja.

Slika 6.40 Izmjereni valni oblici akceleracija na mjestima *P1* i *P2* paketa statora pri nesimetričnom opterećenju U=400 V, S=104 kVA, $\cos \varphi = 0.08$ uz faze *B-C* protjecane strujom

Slikom 6.40 prikazane su snimljene akceleracije na lokacijama *P1* i *P2* za nesimetrično opterećenje U=400 V, S=104 kVA, $\cos \varphi = 0,08$, pri čemu struja teće kroz namote faza *B* i *C*. Uočava se kako su vibracije manjeg iznosa od onih pri radnom faktoru snage $\cos \varphi = 1$. Ovo je u skladu s rezultatima obrade induciranih napona mjernih svitaka, po kojima sile manjih iznosa djeluju na zube u zoni senzora *P2* kod induktivnog opterećenja.

Za svako izmjereno pogonsko stanje generatora provedena je harmonijska analiza valnih oblika akceleracija snimljenih na sve četiri mjerene lokacije. Uslijed mehaničke komponente vibracija, koja značajno utječe na sveukupni valni oblik, analiziran je harmonik frekvencije 100 Hz, za koji je utvrđeno da se značajno mijenja s promjenom opterećenja. Tablicom 6.8 prikazane su utvrđene amplitude ovog harmonika.

			Akce	leracij	e v	ibracija – A	Amplitude	ha	rmonika na	a 1(00 Hz			
	Pogonsko stanje					Mjesta na paketu					Mjesta na kućištu			tu
Red.br.	U [V]	S [kVA]	cosφ [-]	Akt. faze		a_{P1} [mm/s ²]	a_{P2} [mm/s ²]		$\frac{\overline{a}_{psr}}{[\text{mm/s}^2]}$		a_{K1} [mm/s ²]	a_{K2} [mm/s ²]		$\frac{\overline{a}_{K sr}}{[mm/s^2]}$
1.	400	52	0,08	<i>B</i> - <i>C</i>		153	287		220		138	260		199
2.	400	52	0,70	<i>B</i> - <i>C</i>		261	226		244		113	160		137
3.	400	52	1,00	<i>B</i> - <i>C</i>		352	153		253		100	98		99
4.	400	52	1,00	A - C		91	346		219		149	290		220
5.	400	52	1,00	A - B		360	199		280		108	248		178
6.	400	90	0,7	<i>B</i> - <i>C</i>		385	300		343		105	274		190
7.	400	104	0,08	<i>B</i> - <i>C</i>		331	427		379		161	435		298
8.	400	104	0,70	<i>B</i> - <i>C</i>		437	331		384		104	315		210
9.	400	104	1,00	<i>B</i> - <i>C</i>		653	264		459		94	303		199
10.	400	104	1,00	A - B		520	246		383		128	376		252

Tablica 6.8 Amplitude osnovnog harmonika akceleracije (100 Hz) izmjerene na četiri analizirane lokacije za nesimetrična pogonska stanja generatora

Analizom izmjerenih rezultata vezanih za vibracije nesimetričnih pogonskih stanja, utvrđene su sljedeće pravilnosti prethodno zamijećene temeljem rezultata proračuna:

- vibracije rastu s porastom prividne izlazne snage;
- vibracije se mijenjaju s promjenom faktora snage;
- vibracije pojedinih mjesta paketa i kućišta međusobno se razlikuju;
- amplituda osnovnog harmonika akceleracija frekvencije 100 Hz značajno se mijenja s promjenom nesimetričnog pogonskog stanja.
- amplituda harmonika akceleracija frekvencije 100 Hz korelira s rezultatima električnih mjerenja;
- što je veći iznos sile utvrđen za zub ispod lokacije *P2* (na osnovi mjerenja induciranog napona), to su na toj lokaciji izmjerene i veće vibracije.

7. Usporedba rezultata određenih proračunima i mjerenjima

U ovom poglavlju dan je kratki pregled usporedbe rezultata određenih MKE proračunima i mjerenjem na generatoru za nekoliko karakterističnih pogonskih stanja. U nastavku su prikazani rezultati usporedbe za:

- vrijednosti određenih vlastitih frekvencija;
- prazni hod pri naponu 400 V;
- simetrično opterećenje uz S=180 kVA, $\cos \varphi = 1$;
- nesimetrično opterećenje uz S=104 kVA, $\cos \varphi = 1$ i struju kroz namote faza B i C.

7.1 Usporedba vlastitih frekvencija statora generatora određenih proračunom i mjerenjem

Mehaničkim proračunima moguće je utvrditi rezultate usporedive s izmjerenim vrijednostima, ukoliko se ispune sljedeći uvjeti:

- poklapanje geometrije stvarnog stroja i modela;
- poklapanje karakteristika materijala;
- ispravno definiranje spojeva među različitim dijelovima konstrukcije;
- ista vrsta i mjesto pobude.

Provjera ispravnosti modela po pitanju geometrije, upotrijebljenih materijala i vrste spojeva može se utvrditi usporedbom vlastitih frekvencija analizirane konstrukcije. U nastavku je dana tablica s usporedno prikazanim vrijednostima vlastitih frekvencija određenih mjerenjem i proračunom za geometriju kućišta i paketa statora u centralnoj zoni analiziranog sinkronog generatora.

Pregledom rezultata uočava se dobro poklapanje vlastitih frekvencija vezanih za paket statora unutar raspona frekvencija 0-1600 Hz. Ovo ukazuje da je izrađenim 2D modelom moguće odrediti vibracijski odziv paketa statora na magnetski uzrokovane sile (mjesta mjerenja označena sa *P1* i *P2*), unutar navedenog raspona frekvencije.

Dobro poklapanje računskih i izmjerenih vlastitih frekvencija vanjskih dijelova kućišta postoji na desetak frekvencija. No mjerenjem u opsegu 0-6000 Hz utvrđene su i dodatne vlastite frekvencije kućišta. Ovo je očekivani rezultat, budući da je geometrija kućišta stvarnog stroja značajno kompleksnija od one obuhvaćene mehaničkim 2D modelom. No ovo ujedno znači i da se mogu očekivati veća odstupanja izračunatih vibracija vanjskih dijelova samog kućišta od stvarno izmjerenih vrijednosti (mjesta označena sa K1 i K2).

	Vlastite frekvencije f_{vl} [Hz]												
Red.br.	Mjerenje	Proračun		Red.br.	Mjerenje	Proračun		Red.br.	Mjerenje	Proračun			
1	77	77		11		716		21	1168				
2		157		12		736		22	1224	1234			
3	164	163		13	753	767		23	1255	1248			
4	197			14		801		24		1288			
5	246			15	841	870		25	1292	1295			
6	339			16	901	913		26	1393				
7	465			17	952			27		1454			
8	545	537		18	973			28	1473	1473			
9	601	566		19	1029			29	1530				
10	689	705		20	1119	1076		30	1581	1572			

Tablica 7.1 Usporedba izmjerenih i izračunatih vlastitih frekvencija kućišta i paketa statora u centralnoj zoni stroja

* Plavom pozadinom označene su vlastite frekvencije paketa statora

* Narančastom bojom označene su vlastite frekvencije kućišta, bliske pobudnim silama

7.2 Usporedba rezultata proračuna i mjerenja za stanje praznog hoda

Prazni hod predstavlja jedno od osnovnih pogonskih stanja stroja, koje se često koristi za definiranje referentnih vrijednosti u analizama električnih sinkronih generatora. Za prvu usporedbu je stoga odabran prazni hod generatora, uz nazivnu vrijednosti linijskog napona od U=400 V. Slika 7.1 prikazuje napone inducirane u mjernom svitku *Ms1* određene MKE proračunom i mjerenjem. Usporedba pokazuje dobro slaganje valnih oblika induciranog napona, dobivenih proračunom i mjerenjem. Istaknuti vrhovi valnog oblika napona međusobno su jednako razmaknuti i postoji fazno poklapanje manjih vrhova koji koreliraju s pozicijama utora prigušnog namota na obodu polne papuče. No postoji i odstupanje u iznosu amplitude pojedinih vrhova induciranog napona. Sličnost valnih oblika potkrepljuje i usporedba harmonijskog sastava prikazana slikom 7.2.

Slikama 7.3 i 7.4 dana je usporedba valnih oblika radijalnih sila dobivenih obradom valnih oblika izračunatog i izmjerenog induciranog napona svitaka *Ms1* i *Ms5*. Pregledom ovih oblika uočava se poklapanje harmonijskog sastava i konstantna razlika amplituda.

Slika 7.1 Usporedba valnog oblika napona induciranog u mjernom svitku Ms1 određenog MKE proračunom i mjerenjem za prazni hod generatora uz U=400 V

Slika 7.2 Usporedba harmonijskog sastava napona induciranog u mjernom svitku Ms1 određenog MKE proračunom i mjerenjem za prazni hod generatora uz U=400 V

Slika 7.3 Usporedba valnih oblika radijalnih sila na zube određenih MKE proračunom i mjerenjem, temeljem napona mjernih svitaka Ms1 i Ms5 za prazni hod uz U=400 V

Slika 7.4 Usporedba harmonijskog sastava valnih oblika radijalnih sila na zube određenih MKE proračunom i mjerenjem, temeljem napona mjernih svitaka Ms1 i Ms5 za prazni hod generatora uz U=400 V

Slika 7.5 Spektar frekvencija akceleracija do 1500 Hz određen MKE proračunom i mjerenjem na mjestu P1 za prazni hod generatora uz U=400 V

Slika 7.6 Spektar frekvencija akceleracija do 1500 Hz određen MKE proračunom i mjerenjem na mjestu P2 za prazni hod generatora uz U=400 V

Slika 7.7 Spektar frekvencija akceleracija do 6000 Hz određen MKE proračunom i mjerenjem na mjestu P1 za prazni hod generatora uz U=400 V

Slika 7.8 Spektar frekvencija akceleracija do 6000 Hz određen MKE proračunom i mjerenjem na mjestu P2 za prazni hod generatora uz U=400 V

Slikama 7.5 i 7.7 prikazan je spektar frekvencija akceleracija na poziciju *P1* dobiven MKE proračunom i mjerenjem, a slikama 7.6 i 7.8 na poziciji *P2*. U oba slučaja uočava se pojava istaknutih harmonika na 75, 100, 1900, 3800 i 3900 Hz. Dobro poklapanje amplituda izračunatih i izmjerenih harmonika vibracija ostvaruje se na frekvencijama 75 i 100 Hz. Viši harmonici pojavljuju se na istim frekvencijama, no dok su rezultati proračuna ujednačeni za lokacije *P1* i *P2*, rezultati mjerenja pokazuju značajne razlike u amplitudama ovih harmonika. Kod istaknutih harmonika na 3800 i 3900 Hz, senzorom *P1* izmjerene su oko 2 puta manje, a senzorom *P2* oko 3 puta veće amplitude od izračunatih. Mogući uzrok ovakvih razlika su drugačije krutosti konstrukcije kućišta na mjestima *P1* i *P2*, koje utječu na harmonijski odziv mehaničkog sustava. Mjerenjima određene akceleracije sadrže dodatne niže i više harmonike, koji nisu obuhvaćeni izračunatim spektrom. Ovo je očekivana pojava, budući da usporedba vlastitih frekvencija određenih proračunom i mjerenjem ukazuje na to da stvarna konstrukcija ima veći spektar vlastitih frekvencija od korištenog pojednostavljenog 2D proračunskog modela. Radi boljeg poklapanja s mjerenjem, trebalo bi upotrijebiti složeniji 3D model za mehaničke proračune.

7.3 Usporedba rezultata proračuna i mjerenja za simetrično opterećenje

Simetrično trofazno opterećenje opisano parametrima U=400 V, S=180 kVA, $\cos \varphi = 1$ odabrano je za drugu usporedbu. Slika 7.9 prikazuje napone inducirane u mjernom svitku *Ms1*, određene MKE proračunom i mjerenjem. Usporedba pokazuje dobro slaganje rezultata proračuna i mjerenja po valnom obliku, kao i u slučaju praznog hoda. Istaknuti vrhovi valnog oblika međusobno su jednako razmaknuti te postoji fazno poklapanje manjih vrhova koji koreliraju s pozicijama utora prigušnog namota na obodu polne papuče. Razlike amplituda pojedinih vrhova induciranog napona pojavljuju se na sličan način kao i u praznom hodu. Sličnost valnih oblika potkrepljuje i usporedba spektra harmonika prikazana slikom 7.10.

Slikama 7.11 i 7.12 dana je usporedba valnih oblika radijalne sile, dobivenih obradom izračunatog i izmjerenog induciranog napona mjernih svitaka *Ms1* i *Ms5*. U harmonijskom sastavu radijalnih sila uočava se dobro poklapanje frekvencija i razlike u amplitudama pojedinih harmonika.

Slika 7.9 Usporedba valnog oblika napona induciranog u mjernom svitku *Ms1* određenog MKE proračunom i mjerenjem za simetrično opterećenje U=400 V, S=180 kVA, $\cos \varphi = 1$

Slika 7.10 Usporedba harmonijskog sastava napona induciranog u mjernom svitku Msl određenog MKE proračunom i mjerenjem za simetrično opterećenje U=400 V, S=180 kVA,

 $\cos \varphi = 1$

Slika 7.11 Usporedba valnih oblika radijalnih sila na zube određenih MKE proračunom i mjerenjem, temeljem napona mjernih svitaka *Ms1* i *Ms5* za simetrično opterećenje U=400 V, S=180 kVA, $\cos \varphi = 1$

Slika 7.12 Usporedba harmonijskog sastava valnih oblika radijalnih sila na zube određenih MKE proračunom i mjerenjem, temeljem napona mjernih svitaka *Ms1* i *Ms5* za simetrično opterećenje U=400 V, *S*=180 kVA, cos φ =1

Slikama 7.13 i 7.15 prikazani su spektri frekvencija akceleracija na poziciji *P1* dobiveni MKE proračunom i mjerenjem, a slikama 7.14 i 7.16 na poziciji *P2*. U oba slučaja uočavaju se istaknuti harmonici na 75, 100, 1900, 2000, 3800 i 3900 Hz. Dobro poklapanje izračunatih i izmjerenih amplituda ostvaruje se na frekvencijama 75 i 100 Hz. Kao i u slučaju praznog hoda, viši harmonici proračunskih i izmjerenih rezultata pojavljuju se na istim frekvencijama, no dok su rezultati proračuna ujednačeni za lokacije *P1* i *P2*, mjerenjem su dobivene znatno različite amplitude ovih harmonika. Ove razlike posebice su uočljive kod istaknutih harmonika na 3800 i 3900 Hz, kod kojih su senzorom *P1* izmjerene oko 3 puta manje, a sa senzorom *P2* oko 3 puta veće amplitude od izračunatih. Navedene razlike veće su nego u praznom hodu generatora. Mjerenjima određene akceleracije sadrže dodatne niže harmonike i neke više harmonike koji nisu obuhvaćeni spektrom izračunatih rezultata. Ovo je očekivana pojava, budući da su harmonici istih frekvencija uočeni i u rezultatima mjerenja za prazni hod generatora.

Tablicom 7.2 usporedno su prikazane izračunate i izmjerene vrijednosti amplituda harmonika frekvencije 100 Hz za sva analizirana pogonska stanja. Moguće je uočiti kako se na lokaciji *P2* postiže bolje poklapanje rezultata proračuna i mjerenja nego kod lokacije *P1*. Ovo je očekivani rezultat jer se lokacija *P1* u stvarnosti nalazi unutar priključne kutije i blizu priključnih sabirnica, tj. okružena dodatnim elementima čiji utjecaj nije uzet u obzir proračunskim modelom.

	Akceleracije vibracija – Amplitude harmonika na 100 Hz												
	Род	zonsko sta	ınje		Mjesto na paketu <i>P1</i>					Mjesto na paketu P2			
Red.br.	U [V]	S [kVA]	$\cos \varphi$ [-]		a _{izračun} [mm/s ²]	a _{mjerenje} [mm/s ²]		Δa _{p1} [%]		a _{izračun} [mm/s ²]	a _{mjerenje} [mm/s ²]		$\frac{\Delta a_{p2}}{[\%]}$
0.	0	0	-		-	7		-		-	22		-
1.	200	0	-		32	37		-13,5		63	47		34,0
2.	400	0	-		115	150		-23,3		201	202		-0,5
3.	400	90	0,08		91	167		-45,5		195	160		21,9
4.	400	90	0,70		100	196		-49,0		196	183		7,1
5.	400	90	1,00		112	161		-30,4		212	252		-15,9
6.	400	180	0,08		63	161		-60,9		186	150		24,0
7.	400	180	0,70		92	186		-50,5		204	176		15,9
8.	400	180	1,00		109	164		-33,5		243	279		-12,9

Tablica 7.2 Usporedba izračunatih i izmjerenih amplituda harmonika akceleracija na 100 Hz za lokacije *P1* i *P2* na paketu statora za analizirana simetrična radna stanja

Slika 7.13 Spektar frekvencija akceleracija do 1500 Hz određen MKE proračunom i mjerenjem, na mjestu *P1* za simetrično opterećenje U=400 V, *S*=180 kVA, $\cos \varphi$ =1

Slika 7.14 Spektar frekvencija akceleracija do 1500 Hz MKE proračunom i mjerenjem, na mjestu P2 za simetrično opterećenje U=400 V, S=180 kVA, $\cos \varphi$ =1

Slika 7.15 Spektar frekvencija akceleracija do 6000 Hz određen MKE proračunom i mjerenjem, na mjestu *P1* za simetrično opterećenje U=400 V, *S*=180 kVA, $\cos \varphi$ =1

Slika 7.16 Spektar frekvencija akceleracija do 6000 Hz MKE proračunom i mjerenjem, na mjestu P2 za simetrično opterećenje U=400 V, S=180 kVA, $\cos \varphi$ =1

7.4 Usporedba rezultata proračuna i mjerenja za električki nesimetrično opterećenje

Nesimetrično dvofazno opterećenje opisano parametrima U=400 V, S=104 kVA, $\cos \varphi = 1$, uz faze *B* i *C* protjecane strujom, odabrano je za treću usporedbu. U ovom pogonskom stanju kroz namote teče struja istog efektivnog iznosa I=260 A, kao i u prethodno prikazanom slučaju trofaznog simetričnog opterećenja. Slika 7.17 prikazuje napone inducirane u mjernom svitku *Ms1*, određene MKE proračunom i mjerenjem. Usporedba pokazuje dobro slaganje rezultata proračuna i mjerenja po valnom obliku, kao i u slučaju simetričnih opterećenja. Istaknuti vrhovi valnog oblika međusobno su jednako razmaknuti i postoji fazno poklapanje manjih vrhova, koji koreliraju s pozicijama utora prigušnog namota na obodu polne papuče. Odstupanja amplituda pojedinih vrhova induciranog napona prisutna su na sličan način kao u praznom hodu i pri simetričnom trofaznom opterećenju. Sličnost valnih oblika potkrepljuje i usporedba harmonijskog sastava prikazana slikom 7.18. Ista pravila podudarnosti vrijede i za valni oblik napona induciranog u mjernom svitku *Ms5*, prikazan slikama 7.19 i 7.20.

Na slikama 7.21 i 7.22 dana je usporedba valnih oblika radijalne sile, dobivenih obradom izračunatog i izmjerenog induciranog napona svitaka *Ms1* i *Ms5*. Pregledom ovih oblika sile uočava se dobro poklapanje harmonijskog sastava i razlike u amplitudama za izmjerene i izračunate vrijednosti. Razlike vršnih vrijednosti valnih oblika sile prikazane slikom 7.21. također se poklapaju.

Slika 7.17 Usporedba valnog oblika napona induciranog u mjernom svitku *Ms1* određenog MKE proračunom i mjerenjem za nesimetrično opterećenje U=400 V, S=104 kVA, $\cos \varphi = 1$

Slika 7.18 Usporedba harmonijskog sastava napona induciranog u mjernom svitku *Ms1* određenog MKE proračunom i mjerenjem za nesimetrično opterećenje U=400 V, S=180 kVA, $\cos \varphi = 1$

Slika 7.19 Usporedba valnog oblika napona induciranog u mjernom svitku *Ms5* određenog MKE proračunom i mjerenjem za nesimetrično opterećenje U=400 V, S=104 kVA, $\cos \varphi = 1$

Slika 7.20 Usporedba harmonijskog sastava napona induciranog u mjernom svitku Ms5 određenog MKE proračunom i mjerenjem za nesimetrično opterećenje U=400 V, S=104 kVA, $\cos \varphi = 1$

Slika 7.21 Usporedba valnih oblika radijalne sile na zube određenih MKE proračunom i na osnovi mjerenja napona mjernih svitaka *Ms1* i *Ms5* za nesimetrično opterećenje U=400 V, S=104 kVA, $\cos \varphi = 1$

Slika 7.22 Usporedba harmonijskog sastava valnih oblika radijalnih sila na zube određenih MKE proračunom i na osnovi mjerenja napona mjernih svitaka *Ms1* i *Ms5* za nesimetrično opterećenje U=400 V, *S*=104 kVA, cos φ =1

Spektri frekvencija akceleracija, dobiveni na osnovi MKE proračuna i mjerenja na poziciji P1 prikazani su slikama 7.23 i 7.25, a na poziciji P2 slikama 7.24 i 7.26. Zbog većih amplituda harmonika frekvencije 100 i 3800 Hz, na prikazima spektra akceleracija za nesimetrično opterećenje povećane su skale u odnosu na prethodno prikazane spektre za prazni hod i simetrično opterećenje. U izračunatim i izmjerenim spektrima vibracija kod nesimetričnog opterećenja uočava se pojava najistaknutijih harmonika na 75, 100, 1800, 1900, 2000, 3700, 3800 i 3900 Hz. Dobro poklapanje izračunatih i izmjerenih amplituda ostvaruje se na frekvencijama 75 i 100 Hz. Kao i u praznom hodu generatora, viši harmonici određeni proračunom i mjerenjem pojavljuju se na istim frekvencijama. Međutim, dok su rezultati proračuna ujednačeni za lokacije P1 i P2, rezultati mjerenja pokazuju razlike u amplitudama pojedinih harmonika. Kod istaknutih harmonika na 3800 i 3900 Hz senzorom P1 izmjerene su oko 2 puta manje, a sa senzorom P2 oko 4 puta veće amplitude od izračunatih. Navedene razlike veće su nego u slučajevima simetričnog opterećenja. Mjerenjem određene akceleracije sadrže dodatne niže harmonike i neke više harmonike, koji nisu obuhvaćeni izračunatim spektrom. Ovo je očekivana pojava, jer su harmonici istih frekvencija uočeni veći u mehaničkoj vrtnji.

Tablicom 7.3 usporedno su prikazane izračunate i izmjerene amplitude harmonika frekvencije 100 Hz, za sva analizirana nesimetrična pogonska stanja. Usporedbom sa simetričnim pogonskim stanjima, moguće je uočiti kako je postignuto nešto manje odstupanje između izračunatih i izmjerenih vrijednosti kod obje analizirane lokacije.

Tablica 7.3 Usporedba izračunatih i izmjerenih amplituda harmonika akceleracija na 100 Hz za lokacije *P1* i *P2* na paketu stroja za analizirana nesimetrična opterećenja

			Al	kcelera	cij	e vibracija -	– Amplitude	haı	monika n	a 1	00 Hz				
		Pogonsk	o stanje			Mj	Mjesta na paketu P1					Mjesta na paketu P2			
Red.br.	U [V]	S [kVA]	cosφ [-]	Akt. faze		a _{izračun} [mm/s ²]	a _{mjerenje} [mm/s²]		Δa _{p1} [%]		a _{izračun} [mm/s²]	a _{mjerenje} [mm/s²]		Δa_{p2} [%]	
1.	400	52	0,08	<i>B</i> - <i>C</i>		247	153		61,4		268	287		-6,6	
2.	400	52	0,70	<i>B</i> - <i>C</i>		321	261		23,0		234	226		3,5	
3.	400	52	1,00	<i>B</i> - <i>C</i>		304	352		-13,6		160	153		4,6	
4.	400	52	1,00	A - C		153	91		68,1		229	346		-33,8	
5.	400	52	1,00	A - B		217	360		-39,7		298	199		49,7	
6.	400	90	0,7	<i>B</i> - <i>C</i>		484	385		25,7		273	300		-9,0	
7.	400	104	0,08	<i>B</i> - <i>C</i>		502	331		51,7		360	427		-15,7	
8.	400	104	0,70	<i>B</i> - <i>C</i>		549	437		25,6		292	331		-11,8	
9.	400	104	1,00	<i>B</i> - <i>C</i>		548	653		-16,1		253	264		-4,2	
10.	400	104	1,00	A - B		424	520		-18,5		339	246		37,8	

Slika 7.23 Spektar frekvencija akceleracija do 1500 Hz određen na osnovi MKE proračuna i mjerenja na mjestu P1 za nesimetrično opterećenje U=400 V, S=104 kVA, $\cos \varphi$ =1

Slika 7.24 Spektar frekvencija akceleracija do 1500 Hz određen na osnovi MKE proračuna i mjerenja na mjestu P2 za nesimetrično opterećenje U=400 V, S=104 kVA, cos φ =1

Slika 7.25 Spektar frekvencija akceleracija do 6000 Hz određen na osnovi MKE proračuna i mjerenja na mjestu P1 za nesimetrično opterećenje U=400 V, S=104 kVA, $\cos \varphi$ =1

Slika 7.26 Spektar frekvencija akceleracija do 6000 Hz određen na osnovi MKE proračuna i mjerenja na mjestu P2 za nesimetrično opterećenje U=400 V, S=104 kVA, cos φ =1

8. Algoritam za prepoznavanje nesimetričnog električnog opterećenja generatora analizom induciranih napona u mjernim svitcima

U ovom poglavlju opisani su algoritam i metoda raspoznavanja nesimetričnih električnih opterećenja na osnovi induciranih napona u mjernim svitcima. Korištenjem rezultata određenih MKE proračunom i mjerenjima na sinkronom generatoru s istaknutim polovima, izrađen je algoritam za prepoznavanje nesimetričnih električnih opterećenja. Analizirana su različita stanja nesimetričnog električnog opterećenja i utvrđen je način njihovog prepoznavanja, u odnosu na simetrično opterećenje generatora. Metoda prepoznavanja temelji se na analizi induciranih napona u mjernim svitcima ugrađenim na zube paketa statora. Prethodnim poglavljima prikazano je kako se upotrebom MKE proračuna mogu odrediti naponi mjernih svitaka, koji se dobro poklapaju s rezultatima mjerenja te da se obradom ovih napona mogu odrediti valni oblici radijalnih sila na zube. Prije objašnjenja algoritma, u nastavku su ukratko još jednom prikazane karakteristike svojstvene nesimetričnom električnom opterećenju.

8.1 Svojstvene karakteristike električnog nesimetričnog opterećenja

Nesimetrično električno opterećenje može se pouzdano utvrditi analizom vršnih vrijednosti radijalnih sila, koje djeluju na zube međusobno razmaknute za dvije trećine polnog koraka. U slučaju praznog hoda ili simetričnog trofaznog opterećenja sinkronog generatora, ove vršne vrijednosti jednakog su iznosa (slika 8.1). Međutim, kod nesimetričnog opterećenja javljaju se razlike prikazane slikom 8.2. Razlike vršnih vrijednosti radijalnih sila na zube mogu biti uzrokovane i drugim vrstama poremećaja, kao što su npr. ekscentrični pomak rotora ili kvarovi namota. Situaciju nesimetričnog električnog opterećenja moguće je razlikovati od ostalih vrsta poremećaja promatranjem radijalnih sila na dijametralno postavljene zube. Valni oblici sila na ove zube međusobno su jednaki u slučaju simetričnog i električki nesimetričnog opterećenja (slike 8.1 i 8.2), dok se međusobno razlikuju u slučaju drugih vrsta poremećaja (slika 8.3) kao što su ekscentrično gibanje rotora ili kratki spoj zavoja uzbudnog namota.

Slika 8.1 Valni oblici sile određeni mjernim svitcima za simetrično opterećenje

Slika 8.2 Svojstvena razlika valnih oblika sila u slučaju nesimetričnog električnog opterećenja uz poklapanje valnih oblika dijametralno postavljenih svitaka

8.2 Algoritam za otkrivanje nesimetričnog električnog opterećenja sinkronog generatora

U ovom potpoglavlju objašnjen je algoritam za otkrivanje i prepoznavanje nesimetričnog električnog opterećenja po fazama namota sinkronog generatora, čiji dijagram toka je prikazan na slici 8.4. Na osnovi prethodno prikazanih rezultata proračuna i mjerenja utvrđeno je da ulazni parametri algoritma moraju biti inducirani naponi u mjernim svitcima *MsA*, *MsAd*, *MsB*, *MsBd*, *MsC* i *MsCd*, određene za minimalno jednu električnu periodu izlaznog napona generatora. Dijagram toka algoritma na slici 8.4 može se podijeliti u sljedeće četiri faze:

- Faza 1: Inicijalizacija varijabli i učitavanje ulaznih podataka unos vrijednosti induciranog napona za šest mjernih svitaka deklariranih oznakama MsA, MsAd, MsB, MsBd, MsC i MsCd za jednu periodu valnog oblika napona, pri čemu su svitci MsA, MsB i MC međusobno razmaknuti za ²/₃ τ_p, a parovi svitaka MsA-MsAd, MsB-MsBd i MsC-MsCd međusobno dijametralno pozicionirani. Definiranje praga dozvoljenog odstupanja maksimuma sila pri detekciji električne nesimetrije i praga dozvoljene razlike dijametralno postavljenih svitaka.
- Faza 2: Obrada i analiza podataka određivanje valnih oblika radijalne sile integracijom i kvadriranjem valnih oblika induciranih napona, određivanje vršnih vrijednosti valnih oblika sila; izračun razlike između dijametralno postavljenih svitaka.
- Faza 3: Donošenje odluka provjera međusobnih odnosa valnih oblika sila prema definiranim kriterijima. Dio algoritma za utvrđivanje razlike vršnih sila određenih preko svitaka međusobno razmaknutim za ²/₃ τ_p. Dio algoritma za utvrđivanje razlike sila između dijametralno postavljenih svitaka.

Faza 4: Signaliziranje – prikaz informacije o tome je li radno stanje simetrično, nesimetrično uzrokovano električnim teretom na stezaljkama stroja ili poremećajem neke druge vrste.

Slika 8.4 Dijagram toka algoritma za prepoznavanje nesimetričnog električnog opterećenja sinkronog generatora

Algoritam se po vrsti obrade podataka može podijeliti na dva dijela. Prvi dio odnosi se na određivanje valnih oblika sila iz snimljenih valnih oblika induciranog napona, a u drugom dijelu se na osnovi valnih oblika sila utvrđuje postojanja nesimetričnog električnog opterećenja. U nastavku je opisan puni tijek algoritma, čiji su grafički prikazi i kôd izvedeni upotrebom programa *Octave* [36]. Kôd algoritma za određivanje radijalnih magnetskih sila na zube paketa statora dan je u Prilogu A1. Kôd algoritma za utvrđivanje postojanja električne nesimetrije temeljem analize radijalnih magnetskih sila koje djeluju na zube paketa statora dan je u Prilogu A2. Oznake nizova i varijabli u nastavku teksta odgovaraju onima korištenim u kôdu.

8.2.1. Dio 1. Određivanje radijalnih magnetskih sila analizom napona 6 mjernih svitaka

Algoritam kao ulazne vrijednosti koristi inducirane napone u mjernim svitcima *MsA*, *MsB*, *MsC*, *MsAd*, *MsBd* i *MsCd*, učitane za minimalno jednu punu periodu izlaznog napona. Ove vrijednosti učitavaju se iz ulazne datoteke naziva 'U_MS.csv' u dvodimenzionalni niz naziva *Niz_U_Ms*. Po učitavanju ovih vrijednosti određuje se ukupan broj vremenskih točaka *N* kojeg dijele svi učitani nizovi i vremenski korak između dva učitana podatka *Delta_t*. Temeljem napona svakog pojedinog mjernog svitka potrebno je odrediti radijalnu magnetsku silu na dotični zub. Ovaj postupak, baziran na analizi opisanoj poglavljem 4.1, provodi se za jedan po jedan svitak unutar *for* petlje. U svakom koraku ove petlje vrijednost brojača oznake *i* jedinično se povećava u rasponu od 1 do 6. Tablicom 8.1 prikazan je poredak napona mjernih svitaka po oznaci ovog brojača.

Tablica 8.1 Pripadnost rednog broja učitanog napona mjernim svitcima

Redni broj (i)	1	2	3	4	5	6
Mjerni svitak	MsA	MsB	MsC	MsAd	MsBd	MsCd

Na početku *for* petlje, vrijednost napona *i*-tog svitka dijeli se brojem zavoja svitka *Nsv* i sprema u pomoćni niz oznake *Niz_U*. Ovom operacijom određen je napon po jednom zavoju mjernog svitka. Nakon toga određuje se valni oblik magnetskog toka obuhvaćenog petljom mjernog svitka postupkom integracije napona po vremenu. Vremenski niz vrijednosti magnetskog toka sprema se u pomoćnu varijablu *Niz_Fi*. Za prvu vremensku točku magnetskog toka postavlja se iznos koji odgovara negativnom umnošku prve vrijednosti niza napona *Niz_U* i vremenskog koraka između dva učitana podatka *Delta_t*.

$$Niz_Fi(1) = -Niz_U(1) \cdot \text{Delta}_t$$
(8.1)

Vrijednosti ovog niza za svih ostalih N točaka određuju se unutar druge (*for*) petlje u kojoj se kao brojač koraka koristi varijabla oznake *j*. U svakom koraku određuje se umnožak vremenskog koraka *Delta_t* i napona iz niza *Niz_U* te oduzima od iznosa magnetskog toka određenog za prethodni korak:

$$Niz_Fi(j) = Niz_Fi(j-1) - Niz_U(j) \cdot Delta_t$$
(8.2)

Uklanjanje istosmjerne komponente iz valnog oblika magnetskog toka *Niz_Fi* provodi se određivanjem srednje vrijednosti *Fi_sr* ovog valnog oblika upotrebom funkcije *mean* ugrađene u program Octave i korekcijom niza *Niz_Fi* za ovaj iznos:

$$Fi_sr = mean(Niz_Fi)$$
, (8.3)

$$Niz_Fi = Niz_Fi - Fi_sr .$$
(8.4)

Valni oblik radijalne komponente magnetske indukcije za analizirani mjerni svitak *Niz_B_Ms* određuje se dijeljenjem vremenskog niza magnetskog toka *Niz_Fi* s površinom koju zatvara petlja tog svitka *Ssv:*

$$Niz_B_Ms = \frac{Niz_Fi}{Ssv}.$$
(8.5)

Valni oblik radijalne magnetske sile koja djeluje na zub iznad mjernog svitka $Niz_F_Ms_zub$ određuje se kvadriranjem valnog oblika magnetske indukcije Niz_B_Ms i množenjem s radijalnom površinom zuba *Sz*. Kako se iznos sile određuje u zračnom rasporu, tik uz radijalnu plohu zuba, iznos određen kvadriranjem dijeli se s konstantom magnetske permeabilnosti u zraku označenom u kodu sa u0:

$$Niz_F_Ms_zub = \frac{1}{2 \cdot u_0} \cdot (Niz_B_Ms^2) \cdot Sz \quad . \tag{8.6}$$

Za kvadriranje niza vrijednosti pohranjenih u *Niz_B_Ms* unutar Octave kôda koristi se sintaksa oblika 'Niz_B_Ms.^2', u kojoj točka ispred znaka potencije '.^' označava da se operacija kvadriranja provodi simultano za sve elemente niza. Ovime se izbjegava upotreba dodatne *for* petlje tj. provedba kvadriranja jedan po jedan element niza i time ubrzava izvođenje algoritma.

Izračunati valni oblik sile za pojedini zub *Niz_F_Ms_zub* smješta se u dvodimenzionalni niz *Niz_F_Ms* na poziciju *i*-tog stupca. Nakon što se postupak provede za svih 6 mjernih svitaka, algoritam izlazi iz *for* petlje te se izračunati valni oblici sila spremaju u dokument naziva '*F_MS.csv'* po redoslijedu učitanih napona mjernih svitaka. Na ekranu glavnog prozora ispisuje se poruka 'Sile za 6 mjernih svitaka izračunate su i spremljene u dokument F_MS.csv'. Time završava dio algoritma vezana za obradu napona mjernih svitaka.

8.2.2. Dio 2. Usporedba sila koje djeluju na zube

Na početku ovog dijela algoritma sile određene temeljem napona mjernih svitaka, pohranjene u dvodimenzionalni niz Niz_F_Ms , smještaju se u šest zasebnih nizova. Tablicom 8.2. prikazan je poredak sila po zubima iznad mjernih svitaka i nazivi pomoćnih nizova.

Redni broj (i)	1	2	3	4	5	6
Mjerni svitak	MsA	MsB	MsC	MsAd	MsBd	MsCd
Naziv niza sile	Niz_F_A	Niz_F_B	Niz_F_C	Niz_F_Ad	Niz_F_Bd	Niz_F_Cd

Tablica 8.2 Podjela radijalnih sila na zube po pomoćnim nizovima

Za svaki od prva tri niza (Niz_F_A , Niz_F_B i Niz_F_C) određuje se vršna vrijednost sile upotrebom funkcije max ugrađene u program Octave. Ove tri vršne vrijednosti sila spremaju se u pomoćni tročlani niz Niz_F_Vrh . Najveći iznos od ove tri vrijednosti zapisane u Niz_F_Vrh određuje se na istovjetan način i sprema u pomoćnu varijablu Maks_abc. Najmanji iznos od tri vrijednosti zapisane u Niz_F_Vrh određuje se upotrebom funkcije min ugrađene u program Octave i pridružuje varijabli Min_abc. Razlika između ovako određene maksimalne i minimalne vršne vrijednosti pohranjuje se u varijablu Delta_abc, a postotno odstupanje u odnosu na minimalnu vršnu vrijednost u varijablu Delta_abc_p:

$$Delta_abc = Maks_abc - Min_abc,$$
(8.7)

$$Delta_abc_p = \frac{Delta_abc}{Min_abc} \cdot 100.$$
(8.8)

Daljnjom obradom utvrđuje se odstupanje sila dijametralno postavljenih svitaka. Za svaki par sila ovih svitaka određuje se po jedan niz koji sadrži razlike sila kroz sve vremenske trenutke:

$$Niz_F_A_r = Niz_F_A - Niz_F_Ad, \qquad (8.9)$$

$$Niz_F_B_r = Niz_F_B - Niz_F_Bd, \qquad (8.10)$$

$$Niz_F_C_r = Niz_F_C - Niz_F_Cd.$$
(8.11)

Unutar svakog od navedena tri niza određuje se maksimalna vrijednost odstupanja upotrebom funkcije *max* i postotno odstupanje u odnosu na vršnu vrijednost zapisanu u Niz_F_Vrh . Ove vrijednosti zapisuju se u pomoćnu tročlani niz $Niz_F_Odstup_p$.

$$Niz_F_Odstup_p(1) = \frac{\max(Niz_F_A_r)}{Niz_F_V rh(1)} \cdot 100, \qquad (8.12)$$

$$Niz_F_Odstup_p(2) = \frac{\max(Niz_F_B_r)}{Niz_F_Vrh(2)} \cdot 100, \qquad (8.13)$$

$$Niz_F_Odstup_p(3) = \frac{\max(Niz_F_C_r)}{Niz_F_V rh(3)} \cdot 100.$$
(8.14)

Najveći iznos od tri vrijednosti zapisane u *Niz_F_Odstup_p* sprema se u pomoćnu varijablu *Maks_Dia*.

Ovdje započinje treća faza algoritma u kojoj se provodi usporedba izračunatih razlika vršnih iznosa sila s iznosima dopuštenih odstupanja *F_prag_odstup* i *F_prag_nesim* u svrhu utvrđivanja vrste pogonskog stanja sinkronog generatora.

Prag odstupanja sile dijametralno postavljenih svitaka F_prag_odstup od 4,74 % postavljen je kao korijen sume kvadrata maksimalnog odstupanja iznosa sila od 2,58 % utvrđenog mjerenjem za 8 simetričnih radnih stanja (tablica 6.5) i određenog iznosa mjerne nesigurnosti mjerene stanice od 3,98 % prikazane tablicom 3.8.

Prag dopuštene nesimetrije F_{prag_nesim} od 6,07 % postavljen je kao korijen sume kvadrata iznosa mjerne nesigurnosti mjerene stanice od 3,98 % i računski utvrđenog međusobnog odstupanja vršnih vrijednosti sila za slučaj električne nesimetrije od 15 %, koja na osnovi analiza prevedenih u poglavlju 5.3.5. iznosi 4,59 % (tablica 5.12). U dotičnom poglavlju analizirane su situacije odstupanja koje su u skladu sa standardnim nesimetričnim opterećenjem generatora [1]. Po pitanju vrste nesimetrije svejedno je radi li se o slučaju kod kojeg je struja jedne faze za 15 % manja ili za 15 % veća od iznosa struja preostalih dviju faza.

$$F_prag_odstup = \sqrt{2,58^2 + 3,98^2} = 4,74.$$
(8.15)

$$F_prag_nesim = \sqrt{4,59^2 + 3,98^2} = 6,07.$$
 (8.16)

Navedene vrijednosti određene su za slučaj ispitivanog generatora, te mogu imati drugačiji iznos za neki drugi ispitivani stroj. Stoga je poželjno da se vrijednosti ovih iznosa za svaki generator najprije računski provjere i definiraju ovisno o korištenoj mjernoj opremi i dopuštenom iznosu nesimetričnog električnog opterećenja.

Provjera postojanja nesimetrije radnog stanja provodi se kroz dva *if* uvjeta. Prvim uvjetom provjerava se iznos odstupanja sila na dijametralno suprotno smještene zube. Ukoliko je vrijednost varijable *Maks_Dia* veća od praga definiranog ulaznim podatkom *F_prag_odstup*, detektiran je poremećaj koji nije posljedica nesimetričnog opterećenja. U ovom slučaju, u varijablu za tekstualni ispis *Tekst_ispis* upisuje se *"POREMEĆAJ NIJE NESIMETRIČNO ELEKTRIČNO OPTEREĆENJE - RAZLIKA SILA DIJAMETRALNIH ZUBI OD:"* i postotna vrijednost odstupanja zabilježena u varijabli *Maks_Dia*. Time prestaju daljnje provjere radnog stanja.

Ako se vrijednost varijable $Max_Odstupanje$ nalazi unutar dopuštenog odstupanja, tj. utvrđena je podudarnost sila na dijametralno smještene zube, slijedi provjera drugog *if* uvjeta. Ovim drugim uvjetom provjerava se iznos međusobnog odstupanja vršnih vrijednosti radijalnih sila na tri zuba, međusobno razmaknuta za $\frac{2}{3}\tau_p$. Ukoliko je određeno postotno odstupanje $Delta_abc_p$ veće od dopuštenog praga nesimetrije F_prag_odstup , detektiran je poremećaj koji predstavlja električno nesimetrično opterećenje. U ovom slučaju, u varijablu za tekstualni ispis $Tekst_ispis$ unosi se tekst 'NESIMETRIČNO ELEKTRIČNO OPTEREĆENJE - RAZLIKA VRHOVA SILA OD:' te postotna vrijednost odstupanja zabilježena u varijabli $Delta_abc_p$. Time prestaju daljnje provjere radnog stanja. Ukoliko se vrijednost varijable $Delta_abc_p$ nalazi unutar dopuštenog odstupanja, u varijablu za tekstualni ispis $Tekst_ispis$ unosi se tekst 'Regularno radno stanje' i time prestaju daljnje provjere.

U četvrtoj fazi ispisuje se sadržaj varijable *Tekst_ispis* na glavnom ekranu programa Octave. Za potrebe izrade grafa definira se niz vremenskih trenutaka *t*. Na istom grafu iscrtava se svih 6 valnih oblika sila u različitim bojama, pri čemu su valni oblici dijametralno postavljenih svitaka dodatno naznačeni crtkanom linijom. Kao naslov grafa ispisuje se sadržaj *Tekst_Ispis* varijable.

Slikom 8.5 prikazan je izlazni rezultat algoritma za slučaj ispravnog stanja generatora, slikom 8.6. za slučaj utvrđene električne nesimetrije, a slikom 8.7 slučaj poremećaja različitog od električne nesimetrije.

Slika 8.5 Izlazni rezultat algoritma za otkrivanje nesimetričnog električnog opterećenja – ispravno simetrično radno stanje

Slika 8.6 Izlazni rezultat algoritma za otkrivanje nesimetričnog električnog opterećenja – utvrđeno nesimetrično električno opterećenje

Slika 8.7 Izlazni rezultat algoritma za otkrivanje nesimetričnog električnog opterećenja – utvrđen poremećaj koji ne odgovara nesimetričnom električnom opterećenju

9. Algoritam za razlučivanje elektromagnetski uzrokovanih od mehanički uzrokovanih harmonika vibracija

Na osnovi rezultata MKE proračuna i mjerenja provedenih na sinkronom generatoru izrađen je algoritmom za prepoznavanje vibracija paketa statora, koje su posljedica radijalnih magnetskih sila na zube statora. U prethodnim poglavljima prikazani su rezultati određivanja sile na pojedini zub statora. Pokazano je da se matematičkim MKE modelom može utvrditi kako promjene radnog stanja utječu na iznose magnetskih sila koje djeluju na zube statora. Na osnovi izračunatih sila provedeni su i mehanički proračuni te su na taj način određene proračunske vrijednosti vibracija paketa statora. Veza između magnetskih sila na zube i vibracija paketa time je utvrđena. Međutim, za raspoznavanje harmonika vibracija uzrokovanih elektromagnetskim silama iz izmjerenog spektra frekvencija nije nužno provoditi mehanički proračun. Prije opisa postupka koji ovo omogućuje, dodatno je pojašnjena veza između sila i vibracija paketa, koja je osnova za funkcioniranje razvijenog algoritma.

9.1. Mogućnost usporedbe frekvencijskog sastava sila i vibracija paketa statora

Frekvencijski spektar izmjerenih vibracija sadrži harmonike koji se poklapaju s izračunatim vrijednostima, no i harmonike koji u izračunatom spektru nedostaju. Harmonici prisutni pri mehaničkoj vrtnji neuzbuđenog generatora posljedica su mehaničkih karakteristika (vlastitih frekvencija) stroja. No moguća je i pojava mehanički uzrokovanih harmonika vibracija koji nisu uočljivi u mehaničkoj vrtnji. Primjerice, kroz radne cikluse električnog stroja mogu se uslijed nejednakog termičkog širenja pojaviti povećane vibracije, koje ne postoje u hladnom stanju niti kod trajnih radnih temperatura. Uzrok vibracija može biti i nejednoliko zagrijanje stroja pri nesimetričnom opterećenju, kod kojeg kroz sve tri faze namota ne teče ista struja pa gubici snage u statoru generatora nisu jednoliko raspodijeljeni.

Za razlučivanje elektromagnetski uzrokovanih od mehanički uzrokovanih vibracija, potrebno je poznavati puni spektar frekvencija pobudne sile koja djeluje na određeni dio stroja. Za bilo koje radno stanje stroja moguće je usporediti ovaj spektar frekvencija magnetskih sila sa spektrom frekvencija vibracija i utvrditi poklapaju li se njihovi najistaknutiju harmonici vibracija sa spektrom frekvencija magnetskih sila ili ne. Ako se ne utvrdi poklapanje najistaknutijih harmonika vibracija s harmonicima pobudne magnetske sile, radi se o mehaničkom uzroku vibracija i rješavanje problema može se svesti na promjene konstrukcijskih dijelova stroja. Ako se utvrdi poklapanja istaknutih harmonika vibracija s harmonicima sile, vibracija su posljedica elektromagnetskog stanja stroja.

U slučaju da dotične vibracije prelaze prihvatljive granice, rješenje za njihovo smanjenje ili uklanjanje mora se tražiti u promjenama aktivnog dijela stroja.

Ovakve intervencije mogu obuhvaćati zaklinjenje statorskih utora magnetskim klinovima, skošenje statorskih utora ili polova te potpuni električni redizajn stroja. U nastavku je opisan mogući postupak određivanja magnetskih sila koje djeluju na paket statora i postupak usporedbe spektra frekvencija ukupne magnetske sile na paket statora s njegovim vibracijama.

9.1.1. Harmonijski sastav sile na paket statora

Poglavljem 5 prikazano je kako se sile na pojedine zube međusobno razlikuju po amplitudi i faznom zakretu. Radijalna sila koja djeluje u nekoj točki oboda paketa predstavlja superpoziciju sila na pojedine zube statora. Njen iznos moguće je odrediti vektorskim zbrajanjem radijalnih sila zubi određenih za polovicu stroja, pri čemu su za razmatranu zonu početni zub (*Zub Start*) i zadnji zub (*Zub Stop*) podjednako udaljeni od lokacije za koju se određuje ukupna sila (slika 9.1).

Slika 9.1 Komponenta radijalne sile zubi u smjeru odabrane lokacije oboda statora

Za svaki zub *i* ove zone potrebno je odrediti kut $\beta_{Zub i}$ između vektora radijalne sile zuba $F_{rad Zub i}$ i radijalnog smjera sumarne sile F_{suma} . Komponenta sile svakog zuba $F_{A Zub i}$ koja djeluje u radijalnom smjeru lokacije A za svaki trenutak *t* unutar vremena T određuje se po izrazu 9.1. Sumom ovako određenih komponenti sila za sve zube u okolici lokacije A određuje se valni oblik rezultantne radijalne sile koja djeluje na odabrano mjesto jarma statora (9.2).

$$F_{A Zub i}(t) = F_{rad Zub i}(t) \cdot cos(\beta_{Zub i}) \quad t \in [0, T]$$
(9.1)

$$F_{suma}(t) = \sum_{i=Zub \ Start}^{i=Zub \ Start} F_{A \ Zub \ i}(t), \quad t \in [0,T]$$
(9.2)

Slikom 9.2 prikazane su radijalne sile na zube generatora pri simetričnom radnom stanju $S=180 \text{ kVA } \cos \varphi = 1$, U=400 V. Prikazane sile odgovaraju situaciji sa slike 9.1, gdje pozicija Zub Start odgovara zubu pod rednim brojem 7, pozicija Zub Stop odgovara zubu broj 45, a lokacija za koju se određuje sumarna sila odgovara poziciji iznad zuba broj 26. Slika 9.2 prikazuje kako su prilikom simetričnog opterećenja radijalne sile svih zubi sličnog iznosa i valnog oblika. Komponente ovih sila koje djeluju u smjeru lokacije A (određene izrazom 9.1) prikazane su slikom 9.3. Moguće je uočiti kako sila na zub broj 26 ima nepromijenjenu vrijednost, budući da se radijalni smjer sile ovog zuba poklapa s pozicijom na jarma statora za koju se određuje sumarni iznos sile. Doprinosi sila preostalih zubi manjih su iznosa, jer se njihov radijalni smjer ne poklapa sa smjerom vektora sumarne sile. Što je zub udaljeniji od lokacije A, to je doprinos njegove radijalne sile u iznosu sumarne sile manji.

Slika 9.2 Radijalne sile zubi na polovici stroja koja okružuje odabranu lokaciju na obodu paketa statora pri simetričnom opterećenju S=180 kVA, $\cos \varphi=1$, U=400 V

Slika 9.3 Komponente sila analiziranih zubi u smjeru odabrane lokacije na obodu jarma paketa statora pri simetričnom opterećenju S=180 kVA, $\cos \varphi=1$, U=400 V

Slikom 9.4 prikazan je valni oblik sumarne sile koja djeluje u smjeru odabrane lokacije A na jarmu paketa statora. U valnom obliku sile vidljiva je je izrazita valovitost dvostruko veće frekvencije od frekvencije osnovnog magnetskog polja. Zanimljivo je primijetiti kako se vršne vrijednosti ovog valnog oblika javljaju u trenucima koji su za ~ 90 °el. pomaknuti u odnosu na vršnu vrijednosti sile zuba broj 26.

Slika 9.4 Rezultantna radijalna sila odabrane lokacije na obodu paketa statora pri simetričnom opterećenju S=180 kVA, $\cos \varphi=1$, U=400 V

Slikom 9.5 prikazan je harmonijski sastav valnog oblika rezultantne sile bez srednje vrijednosti (0. harmonik). Frekvencijski spektar određen je na osnovi jedne električne periode valnog oblika napona, pa prvom harmoniku prikazanog reda odgovara frekvencija 50 Hz. Kako harmonik 2. reda iznosom zasjenjuje sve ostale istaknute harmonike, slikom 9.6 pobliže je prikazan spektar frekvencija za raspon sile 0-200 N. Na ovoj slici moguće je primijetiti kako uz prethodno opisane više harmonike do 28. reda, uočene u spektru frekvencija sile pojedinog zuba (slika 5.19), u ovom spektru frekvencija postoje i dodatni harmonici višeg reda. Navedeni harmonici definirani su brojem utora stroja, pa ih se obično naziva utorskim harmonicima.

Slika 9.5 Spektar harmonika sumarne sile u smjeru odabrane lokacije paketa statora pri simetričnom opterećenju S=180 kVA, $\cos \varphi = 1$, U=400 V

Slika 9.6 Uvećani prikaz amplituda harmonika sumarne radijalne sile (drugi harmonik djelomično prikazan) pri simetričnom opterećenju S=180 kVA, $\cos \varphi=1$, U=400 V - 1. harmoniku odgovara 50 Hz
Slikom 9.7 prikazane su radijalne sile na zube generatora za slučaj električki nesimetričnog radnog stanja S=104 kVA $\cos\varphi=1$, U=400 V. Na slici 9.8 prikazane su komponente sila u smjeru odabrane točke na jarmu paketa statora, a slikom 9.9 valni oblik rezultantne sile.

Slika 9.7 Radijalne sile zubi na polovici stroja koja okružuje odabranu lokaciju na obodu paketa statora pri nesimetričnom opterećenju S=104 kVA, $\cos \varphi =1$, U=400 V

Slika 9.8 Komponente sila analiziranih zubi u smjeru odabrane lokacije na obodu jarma paketa statora pri nesimetričnom opterećenju S=104 kVA, $\cos \varphi=1$, U=400 V

Slika 9.9 Rezultantna radijalna sila na odabranoj lokaciji oboda paketa statora pri nesimetričnom opterećenju S=104 kVA, $\cos \varphi = 1$, U=400 V

Pri nesimetričnom električnom opterećenju generatora, radijalne sile zubi imaju nejednake iznose, tj. raspodjelu različitu od situacije simetričnog rada. Ove nejednakosti dovode do promjene iznosa komponenti sila koje djeluju u smjeru odabrane točke jarma paketa statora (slika 9.8). Posljedično, valni oblik sumarne sile (slika 9.9) ima izraženiju valovitost i veće vršne vrijednosti od situacije simetričnog opterećenja (slika 9.4).

Slika 9.10 Sastav harmonika rezultantne sile u smjeru odabrane lokacije paketa statora pri nesimetričnom opterećenju S=104 kVA, $\cos \varphi=1$, U=400 V

Slika 9.11 Povećani prikaz amplituda harmonika sumarne radijalne sile (drugi harmonik djelomično predočen) pri simetričnom opterećenju S=104 kVA, $\cos \varphi=1$, U=400 V - 1. harmoniku odgovara 50 Hz

Slikama 9.10 i 9.11 prikazan je sastav harmonika sumarne sile pri nesimetričnom opterećenju, ($S=104 \text{ kVA}, \cos \varphi=1$). U detaljnije prikazanom spektru frekvencija sumarne sile za slučaj simetričnog i nesimetričnog opterećenja (slike 9.6. i 9.11) moguće je uočiti sljedeće istaknute harmonike:

- 38. i 40. – određeni prvim redom utorskih harmonika

$$h_{u\ 10} = 2 \cdot Q \pm 3^0 = 2 \cdot \frac{N_2}{2p} \pm 1,$$
 (9.3)

- 36. i 42. – određeni prvim redom utorskih harmonika

$$h_{u\ 11} = 2 \cdot Q \pm 3^1 = 2 \cdot \frac{N_2}{2p} \pm 3,$$
 (9.4)

- 78. – definiran ukupnim brojem utora statora generatora

$$h_{u\,2} = N_2,$$
 (9.5)

- 76.i 80. – određeni drugim redom utorskih harmonika

$$h_{u\ 20} = 2 \cdot (2 \cdot Q \pm 3^0) = 4 \cdot \frac{N_2}{2p} \pm 2,$$
 (9.6)

- 60.i 96. – određeni drugim redom utorskih harmonika

$$h_{u\,22} = 2 \cdot (2 \cdot Q \pm 3^2) = 4 \cdot \frac{N_2}{2p} \pm 18,$$
 (9.8)

Slikom 9.12 usporedno je prikazan frekvencijski spektar sumarne sile za nesimetrično električno opterećenje (S=104 kVA, $\cos \varphi=1$, U=400 V) sa spektrom pri simetričnom opterećenju (S=180 kVA, $\cos \varphi=1$, U=400 V). Radi zornije usporedbe viših harmonika, prikaz sile ograničen je na raspon 0-200 N. Uslijed ovako odabranih granica prikaza, harmonik 2. reda (frekvencije 100 Hz), kojem amplituda za analizirano stanje simetričnog opterećenja dostiže iznos od 1697 N, a za slučaj analiziranog nesimetričnog opterećenja iznos od 2560 N, prikazan je samo djelomično.

Iako u navedena dva radna stanja kroz fazne namote teče struja iste efektivne vrijednosti I=260 A, drugačija magnetska slika uslijed različitog opterećenja po fazama rezultira s različitim sastavom harmonika valnog oblika sumarne magnetske sile paketa statora.

Moguće je uočiti kako se u slučaju električki nesimetričnog opterećenja u spektru frekvencija pojavljuju harmonici sile koji u stanju simetričnog opterećenja nisu primjetni (16.; 20.; 22.; 28.; 32.; 44. harmonik). Zamjetan je i porast amplituda harmonika zabilježenih u stanju simetričnog opterećenja (2.; 4.; 8.; 10.; 12; 14; 18.; 36.; 38.; 42.; 76; 80. harmonik). Ovakve promjene harmonika sile ukazuju kako se uz jednake iznose faznih struja u slučaju električki nesimetričnog opterećenja mogu očekivati veći iznosi vibracija od stanja simetričnog opterećenja.

Slika 9.12 Usporedba spektra harmonika sumarne radijalne sile za simetrično opterećenje S=180 kVA i nesimetrično opterećenje S=104 kVA, uz U=400 V, I=260 A i $\cos \varphi = 1$ (povećani prikaz harmonika s djelomično predočenim drugim harmonikom)

9.1.2. Usporedba sastava magnetske sile i vibracija paketa statora

Vibracijski odziv paketa statora snima se kroz vrijeme znatno dulje od jedne periode valnog oblika napona. Osim zbog uklanjanja mogućih smetnji, ovakav pristup omogućuje frekvencijsku analizu i utvrđivanje istaknutih harmonika na frekvencijama nižim od 50 Hz.

Kod analiziranog stroja vrijeme snimanja iznosilo je 10 sekundi za svaku mjerenu radnu točku. Spektar frekvencija određen je metodom usrednjavanja, kod koje je snimka podijeljena na 30 međusobno preklopljenih segmenata, od kojih svaki obuhvaća vrijeme snimanja od 1 s. Za svaki segment određen je spektar frekvencija uz korak 1 Hz te je rezultat usrednjen kroz svih 30 analiziranih segmenata snimke.

Radi lakše usporedbe sastava harmonika izmjerenih vibracija i pobudnih magnetskih sila, njihove iznose moguće je normirati na jedinične vrijednosti (pu) i tako prikazati na istom grafu.

Slika 9.13 Usporedba sastava harmonika radijalne magnetske sile i akceleracije na mjestu P2 paketa statora za simetrično opterećenje S=180 kVA, $\cos \varphi=1$, U=400 V (povećani prikaz djelomičnim predočenjem harmonika na 100 i 200 Hz)

Slikom 9.13 na ovaj način usporedno je prikazan harmonijski sastav magnetske sile koja djeluje na jaram statora i spektar frekvencija snimljenih vibracija na mjernom mjestu P2 paketa statora, za trofazno simetrično radno stanje S=180 kVA, $\cos \varphi=1$, U=400 V. moguće je uočiti kako u spektru harmonika akceleracija postoje harmonici koji se poklapaju sa spektrom radijalne sile.

Za ove harmonike može se ustvrditi da su posljedica radijalnih magnetskih sila koje djeluju na paket statora. Također se u spektru uočavaju harmonici akceleracije koji se ne poklapaju s harmonicima magnetske sile. Ovi harmonici nalaze se na rasponu frekvencije od 25-100 Hz; 3300-3600 Hz i 5300-5600 Hz. Uzrok pojave ovih harmonika nisu radijalne magnetske sile na paket statora.

Na jednak način moguće je usporediti sastav harmonika radijalne sile i izmjerene akceleracije paketa za slučaj nesimetričnog električnog opterećenja S=104 kVA, $\cos\varphi=1$, U=400 V. Na slici 9.14 moguće je uočiti kako postoji poklapanje istaknutih harmonika akceleracija s harmonicima radijalnih sila na većem broju frekvencija nego kod simetričnog opterećenja. Također je vidljivo kako su veće amplitude pojedinih harmonika sile doveli do povećanja harmonika akceleracija istih frekvencija. Kao i kod simetričnog opterećenja, u harmonijskom sastavu akceleracije postoje istaknuti harmonici na rasponu 3300-3600 Hz i 5100-5600 Hz, kojima je primarni uzrok vjerojatno mehaničke prirode. No unutar ovih frekvencija sada su prisutni i određeni istaknuti harmonici rezultantne radijalne sile zubi (3300 Hz, 5200 Hz i 5300 Hz).

9.2 Algoritam za razlučivanje harmonika vibracija uzrokovanih elektromagnetskim silama

U ovom potpoglavlju objašnjen je algoritam za prepoznavanje harmonika vibracija statora sinkronog generatora s istaknutim polovima, koji su posljedica radijalnih magnetskih sila na zube paketa statora. Ovaj algoritam primjenjiv je za slučajeve analize ispravnog generatora, kod kojeg nema kvarova namota ili nedopuštenih ekscentričnih pomaka rotora. Ispravno stanje stroja može se utvrditi postupkom prikazanim u poglavlju 8. Dijagram toka algoritma za razlučivanje harmonika vibracija uzrokovanih elektromagnetskim silama prikazan je slikom 9.15. Iz prethodno prikazanih rezultata (i proračuna i mjerenja) proizlazi da za ulazne podatke algoritma treba koristiti valne oblike napona mjernih svitaka postavljenih na jednom prapolu stroja, tj. na segmentu stroja čija se elektromagnetska slika ponavlja duž oboda. Posebni slučaj predstavlja situacija praznog hoda kod koje je, na osnovi analiza i rezultata 4. 5. i 6. poglavlja, dovoljno poznavati napon samo jednog mjernog svitka za određivanje radijalnih sila ostalih zubi stroja. Za određivanje vibracija paketa dovoljno je koristiti jedan akcelerometar za mjerenje radijalnih ubrzanja, smješten izravno na paket ili na plašt kućišta u zoni njihovog spoja.

Dijagram algoritma sa slike 9.15 može se podijeliti u sljedeće četiri faze:

- Faza 1: Inicijalizacija varijabli i učitavanje ulaznih podataka vrijednosti napona mjernih svitaka za zube obuhvaćene prapolom generatora; ukupno vrijeme snimka sila; niz harmonika izmjerenih akceleracija (izlazni rezultat mjerenja akvizicijske mjerne stanice); frekvencija osnovnog harmonika akceleracija, prag sile, prag akceleracije, raspon frekvencije unutar kojeg se pretražuju harmonici akceleracije bliski harmonicima sile.
- Faza 2: Obrada i analiza podataka određivanje radijalnih sila zubi, superpozicija valnih oblika sila, određivanje spektra harmonika sumarne sile upotrebom brze *Fourierove* transformacije.
- Faza 3: Usporedba usporedba spektra frekvencija rezultantne sile sa spektrom frekvencija izmjerenih vibracija; provjera praga detekcije harmonika sile i harmonika vibracija; provjera postojanja istaknutih harmonika vibracija u blizini frekvencija istaknutih harmonika sile.
- Faza 4: Zapisivanje formiranje ispisnih vrijednosti na osnovi izlaznih parametara iz faze 3 te obavještavanje korisnika o pronađenim poklapanjima spektra frekvencija sila i spektra vibracija.

Slika 9.15 Dijagram toka algoritma za raspoznavanje harmonika vibracija uzrokovanih magnetskim radijalnim silama

Kôd algoritma pisan je u sintaksi programa *GNU Octave* [36] i sastoji se od tri dijela. Prvim dijelom algoritma, iz snimljenih valnih oblika napona mjernih svitaka određuju se valni oblici radijalnih sila na zube. Algoritam primjenjiv za proizvoljno pogonsko stanje generatora prikazan je u Prilogu B1.1. Ovaj algoritam matematički je istovjetan onome opisanom u točki 8.2.1., uz jedinu razliku što se obrada ne provodi za 6 zubi već za sve zube obuhvaćene prapolom generatora. Budući da se logički i matematički radi o istom algoritmu, on u nastavku nije ponovno opisivan. Algoritam za izračun sila na zube, primjenjiv samo za prazni hod generatora, prikazan je zasebno u Prilogu B1.2 i dodatno opisan u nastavku.

Kôd drugog dijela algoritma služi za određivanje ukupne radijalne sile koja djeluje u smjeru akcelerometra i dan je u Prilogu B2.

Kôd trećeg dijela algoritma, koji služi za raspoznavanje harmonika vibracija uzrokovanih magnetskim radijalnim silama paketa statora, dan je u Prilogu B3. Oznake nizova i varijabli u nastavku teksta odgovaraju korištenima u kôdu.

9.2.1. Određivanje radijalnih magnetskih sila za prazni hod generatora

Osnovni ulazni podatak algoritma predstavlja inducirani napon mjernog svitka snimljen za minimalno jednu punu periodu izlaznog napona. Uz napon mjernog svitka ugrađenog na referentni prvi zub, iz razloga zalihosti algoritmom se obrađuju i valni oblici napona dodatnih mjernih svitaka. U nastavku je opisan postupak analize za situaciju 6 mjernih svitaka ugrađenih u stroj. Dio algoritma kojim su obuhvaćene radnje, od učitavanja podataka u niz naziva *Niz_U_Ms* do izračuna valnog oblika radijalne sile pojedinog zuba smještenog u niz *Niz_F_Ms_Zub*, jednak je onome prikazanom u poglavlju 8.2.1. U nastavku je stoga opisana obrada podataka koja slijedi nakon prethodno navedenog dijela.

U praznom hodu generatora, sile na sve zube teoretski imaju isti sastav harmonika, a valni oblici međusobno se razlikuju samo po faznom pomaku. Ovaj električni pomak *Delta_Ang* ovisi o razmaku između dva susjedna utora pa je navedenu vrijednost u radijanima moguće odrediti poznavanjem ukupnog broja utora (zubi) paketa statora *N2* i broja pari polova:

$$Delta_ang = \frac{2 pi}{N^2} \cdot p \quad . \tag{9.9}$$

$$Niz_F_mag(i) = \sqrt{F_am^2 + F_bm^2}$$
 (9.10)

Fazni pomaci harmonika F_{ang} određuju se za prvi zub kao inverzni tangens omjera imaginarnih F_{bm} i realnih vrijednosti F_{am} upotrebom funkcije *atan2* ugrađene u program *Octave*.

Srednja vrijednost amplitude za svaki pojedini harmonik sile određuje se na osnovi vrijednosti pohranjenih u dvodimenzionalni niz Niz_F_mag , određenih za zube svih N_sv mjernih svitaka, upotrebom funkcije *mean*. Ovi iznosi pohranjuju se u niz F_mag_sr . Usrednjeni iznos istosmjerne vrijednosti također se izračunava pomoću funkcije *mean* i pohranjuje u varijablu F_0_sr .

Valni oblik sile određuje se za jedan po jedan zub prapola upotrebom nove *for* petlje. Unutar ove petlje valni oblik radijalne sile određuje se kao suma sinusnih vremenskih valnih oblika svih analizom određenih harmonika. Sile svih zubi dijele usrednjenu vrijednost istosmjerne komponente F_0 sr i usrednjene amplitude harmonika F_mag_sr , a međusobno se razlikuju po iznosu faznog zakreta. Svi fazni zakreti sadrže komponentu F_ang određenu za referentni prvi zub, a razlikuju se po dodatnom pomaku u odnosu na taj zub, koji se može izraziti kao umnožak kutnog razmaka između dva susjedna zuba *Delta_ang* i broja zubi između referentnog i *i*-tog zuba (*i*-1). U ovom postupku koriste se: pomoćni jedinični niz *I* s brojem elemenata koji odgovara broju podataka vremenskog niza, niz *t* vremenskih trenutaka za koje se izračunava valni oblik, niz *k* rednih brojeva analiziranih harmonika i varijabla *w* koja predstavlja kutnu brzinu osnovnog harmonika napona izraženu u radijanima.

Izračunati valni oblik sile za pojedini zub smješta se u dvodimenzionalni niz *Niz_F_zubi* na poziciju *i*-tog stupca. Nakon što se postupak provede za sve zube prapola, algoritam izlazi iz *for* petlje te se izračunati valni oblici sila spremaju u dokument naziva '*F_zubi_prapol.csv'*. Na ekranu glavnog prozora ispisuje se poruka '*Sile za zube prapola izračunate su i spremljene u dokument 'F_zubi_prapol.csv'*. Time završava dio algoritma vezan za izračun radijalnih sila zubi u praznom hodu generatora na osnovi napona mjernih svitaka.

9.2.2. Određivanje ukupne radijalne sile u smjeru pozicije akcelerometra

Algoritam kao ulazne podatke koristi valne oblike sila za zube obuhvaćene prapolom generatora, učitane za minimalno jednu punu periodu izlaznog napona. Ove vrijednosti učitavaju se iz ulazne datoteke naziva '*F_zubi_prapol.csv*' u dvodimenzionalni niz naziva *Niz_F*, s brojem kolona jednakim broju učitanih sila i brojem redaka jednakim broju učitanih vremenskih trenutaka valnog oblika sile.

Dodatni ulazni podaci potrebni za provedbu algoritma su ukupni broj zubi statora N2, broj zubi statora obuhvaćen prapolom Nzubi i kut između pozicije akcelerometra i prvog zuba iz učitanog niza sila *alfa_Zub1* (slika 9.16).

Slika 9.16 Međusobni odnos pozicija akcelerometra i zuba za koji su učitane sile

Po učitavanju ulaznih podataka određuje se ukupan broj vremenskih točaka *N*, kojeg dijele svi učitani valni oblici sila smješteni u dvodimenzionalni niz *Niz_F*, upotrebom funkcije *length* ugrađene u program *Octave*. U ovoj fazi određuju se i pomoćne varijable, potrebne u kasnijim koracima obrade podataka: utorski korak zuba statora *TauS* izražen u geometrijskim stupnjevima, broj zubi polovice stroja *N2_pola*, cijeli broj zubi koji je obuhvaćen četvrtinom stroja *N2_cetvrtina* i varijabla *Nepar* kojom se utvrđuje je li broj zubi obuhvaćen polovicom stroja paran ili neparan.

Iznos varijable *N2_cetvrtina* određuje se kao cijeli dio rezultata dijeljenja polovine broja zubi statora *N2_pola* s brojem 2 upotrebom funkcije *floor*, dok se iznos varijable *Nepar* određuje kao ostatak ovog dijeljenja, upotrebom funkcije *mod*. Obje spomenute funkcije *floor* i *mod* ugrađene su u program *Octave*. Nakon ovoga slijedi faza obrade podataka.

Prema uvjetima simetrije namota, koji su osnova za projektiranje električnih strojeva [49], svi prapolovi stroja imaju međusobno jednaku raspodjelu faznih vodiča po utorima, a dvije polovice stroja cirkularno su simetrične u slučaju parnog broja prapolova.

Za takav slučaj, broj prapolova na polovici stroja *N_prapol_seg* određuje se kao omjer broja zubi polovice stroja *N2_pola* i broja zubi jednog prapola *Nzubi*.

Upotrebom *if* uvjeta provjerava se je li broj prapolova na polovici stroja N_prapol_seg veći od 1. U slučaju ovdje analiziranog stroja broj zubi prapola jednak je polovici ukupnog broja zubi statora ($Nzubi = N2_pola = 39$) tj. N_prapol_seg jednak je jedinici pa se dvodimenzionalni niz Niz_F ne proširuje. Ukoliko stroj sadrži veći broj prapolova na polovici oboda, valne oblike učitanih radijalnih sila potrebno je definirati i za preostale zube polovice stroja. Ovaj postupak provodi se upotrebom dvostruke *for* petlje. Vanjskom petljom povećava se brojač *j* u rasponu od drugog do N_prapol_seg segmenta. Unutarnjom petljom se upotrebom pomoćnog brojača *i* za svaki zub prapola definira indeks *k* koji u *j-tom* prapol segmentu dijeli isti valni oblik radijalne sile sa *i*-tim zubom. Za svaki novi *k* indeks proširuje se dvodimenzionalni niz Niz_F i pod novi indeks se kopira valni oblik sukladne radijalne sile *i*-tog zuba.

Izračunom kuta *alfa_acc* određuje se odstupanje radijalne osi pozicije akcelerometra od referentne osi polovice stroja, određene zubom broj 1 na koji je postavljen prvi mjerni svitak.

$$alfa_acc = alfa_Zub1 - \frac{Taus}{2} \cdot \left(\frac{N2}{2} - 1\right)$$
(9.11)

Na temelju omjera kuta *alfa_acc* i utorskog koraka *TauS* utvrđuje se broj cijelih zubi *Nzub_pomak*, za koji su međusobno pomaknute ove dvije osi. Ostatak kutne razlike smješta se u varijablu *Kut_acc*.

Pomoću *if* uvjeta provjerava se broj zubi *Nzub_pomak* za koje je pozicija akcelerometra udaljena od osi definirane zubom prvog mjernog svitka. Ukoliko ova razlika postoji, u polju *Niz_F* rotira se poredak niza sila, tako da se pod indeks 1 smješta valni oblik sile zuba koji je za *Nzub_pomak* mjesta pomaknut od zuba prvog mjernog svitka. Ovo se provodi pomoću funkcije *circshift* ugrađene u program *Octave*. Cirkularnom zamjenom indeksa, valni oblici sila koji su bili na početku polja *Niz_F* prebacuju se na krajnje pozicije. Ovakva zamjena je korektna jer dvodimenzionalni niz *Niz_F* sadrži valne oblike sila za polovicu zubi stroja, a dijametralno smješteni zubi (u analiziranom slučaju to su parovi 1-40, 2-41, 3-42,...39-78) imaju jednake valne oblike sila u regularnom stanju generatora, tj. u situaciji kada ne postoji kvar namota ili ekscentričnost rotora. Po provedbi ove operacije, pod indeksom 1 polja *Niz_F* nalazi se valni oblik sile zuba *Zub_Start*, a pod zadnjim indeksom *N2_pola* valni oblik sile zuba *Zub_Stop*.

Pomoću *if* uvjeta, ovisno o iznosu varijable *Nepar* utvrđuju se kutni razmaci osi simetrala krajnjih zubi *Zub_Start* i *Zub_Stop* od radijalne osi pozicije akcelerometra:

Ako polovica stroja sadrži neparan broj zubi (*Nepar* = 1), kut za početni zub *Kut_Start* i kut za završni zub *Kut_Stop* određuju se po izrazima:

$$Kut_Start = -N2_cetvrtina \cdot TauS - Kut_acc, \qquad (9.12)$$

$$Kut_Stop = N2_cetvrtina \cdot TauS - Kut_acc.$$
(9.13)

 Ako polovica stroja sadrži paran broj zubi (*Nepar* = 0) kut za početni i završni zub određuju se po izrazima:

$$Kut_Start = -\left(N2_cetvrtina - \frac{1}{2}\right) \cdot TauS - Kut_acc , \qquad (9.14)$$

$$Kut_Stop = \left(N2_cetvrtina - \frac{1}{2}\right) \cdot TauS - Kut_acc .$$
(9.15)

Uz ovako određene iznose početnog *Kut_Start* i završnog *Kut_Stop* kuta te poznavanje utorskog koraka *TauS*, određuje se niz kutova za polovicu zubi statora simetrično raspoređenih u odnosu na poziciju akcelerometra. Ove vrijednosti izražene u geometrijskim stupnjevima smještaju se u niz *Kut_Zub*, dok se njihovi iznosi u radijanima smještaju u niz *Kut_Zub_rad*.

Za svaki zub polovice stroja, koja okružuje poziciju akcelerometra, određuje se komponenta radijalne sile čiji se smjer poklapa sa smjerom radijalne osi akcelerometra. Ove komponente utvrđuju se množenjem vrijednosti radijalnih sila zubi spremljenih u Niz_F s kosinus vrijednostima pripadnih kutova spremljenih u niz Kut_Zub_Rad . Izračunati iznosi spremaju se u pomoćni dvodimenzionalni niz $Niz_F a$.

Ukupna vrijednost radijalne sile koja djeluje na poziciji akcelerometra određuje se sumiranjem sila svih $N2_pola$ zuba pohranjenih u dvodimenzionalni niz Niz_F_a . Ovaj postupak, provodi se pomoću *for* petlje za jednu po jednu vremensku točku. Pritom se vrijednost brojača oznake *i* jedinično povećava u rasponu od 1 do *N*. U svakom koraku ove petlje određuje se vrijednost sume sila svih zubi upotrebom funkcije *sum* ugrađene u program *Octave*. Ova vrijednost sprema se u pomoćni niz naziva F_suma .

Obradom podataka utvrđen valni oblik rezultantne radijalne sile, koja djeluje na poziciji akcelerometra, pohranjuje se u datoteku naziva '*F_suma.csv*'. Time završava dio algoritma namijenjen izračunu ove sile.

9.2.3. Raspoznavanje harmonika vibracija uzrokovanih magnetskom radijalnim silama

Glavne ulazne podatke ovog dijela algoritma predstavlja valni oblik sumarne radijalne sile koja djeluje na poziciji akcelerometra i mjerenjem određen spektar frekvencija akceleracija paketa statora. Sumarna radijalna sila, čiji valni oblik obuhvaća vrijeme od minimalno jedne pune periode izlaznog napona, preuzima se iz prethodnog dijela algoritma ili učitava iz ulazne datoteke naziva ' $F_suma.csv'$ u niz naziva F_suma . Spektar frekvencija akceleracija paketa statora učitava se iz ulazne datoteke naziva ' $a_paket.csv'$ u niz naziva a_Mag .

Frekvencijski korak niza harmonika akceleracija ovisi o postavkama akvizicijske mjerne stanice namijenjene za snimanje vibracija. Iz ovog razloga je uz niz amplituda akceleracija potrebno unijeti i iznos frekvencije prvog harmonika spektra akceleracija *f1a*. Slično je potrebno unijeti i podatak o ukupnom vremenu *T*, koje odgovara učitanom valnom obliku sile. Uz navedene ulazne podatke, u početnoj fazi potrebno je definirati i raspon susjednih frekvencija za koji se provjerava utjecaj pojedinog harmonika sile na spektar vibracija *f_raspon*. Ovaj raspon frekvencija određuje se temeljem iznosa ukupnog vremena učitanih snimaka, koji u ovom slučaju iznosi T=0,02 s i iznosa ukupne mjerne nesigurnosti, koja ovdje iznosi 8,37 %. Ukoliko se rasponom žele obuhvatiti harmonici uz 95 % točnosti izračuna, ukupnu mjernu nesigurnost potrebno proširiti s k=2, pa ona tada iznosi ±16,75 %. Raspon promatranih frekvencija određen temeljem ovih podataka iznosi:

$$f_raspon = \pm \frac{16,75}{100 \cdot T} = \pm \frac{16,75}{100 \cdot 0,02} = \pm 8,37 \text{ Hz}$$
 (9.16)

U ovom slučaju spektar frekvencija vibracija određen je uz korak od $f_a=1$ Hz, pa je potrebno provjeriti po 8 viših i nižih harmonika vibracija oko svakog promatranog harmonika sile.

Nakon učitavanja ulaznih podataka određuje se ukupan broj vremenskih točaka N učitanog niza sile, broj harmonika za analizu sile N_F i broj učitanih harmonika niza akceleracija N_a . Također se određuju redni niz harmonika sile k_F i akceleracija k_a te odgovarajući nizovi frekvencija f_F i f_a .

Rastav harmonika valnog oblika sumarne sile pohranjenog u niz F_suma provodi se postupkom brze *Fourierove* transformacije upotrebom *fft* funkcije. Amplitude harmonika sile određuju se za svaki harmonik kao korijen sume kvadrata realne i imaginarne vrijednosti *fft f*unkcijom određenih članova, te se pohranjuju u niz F_mag .

Postotne granice za detekciju istaknutog harmonika sile F_prag_p i akceleracije a_prag_p u iznosu od 8,37 % postavljene su na temelju izračunate ukupne mjerne nesigurnosti ispitnih mjerenja (tablica 3.10). Ovi pragovi ovise o parametrima stroja i mjernoj konfiguraciji (karakteristikama mjerne opreme, netočnosti ugradnje i karakteristikama mjernih senzora) pa je njihove vrijednosti potrebno odabrati sukladno ovim uvjetima mjerenja.

Apsolutni iznos granične vrijednosti sile F_prag određuje se množenjem vrijednosti osnovnog harmonika sile s iznosom F_prag_p . Pomoću funkcije *find* ugrađene u program *Octave*, u nizu frekvencija harmonika akceleracija pronalazi se indeks h_al , koji odgovara frekvenciji osnovnog harmoniku sile. Množenjem vrijednosti a_prag_p s harmonikom akceleracije indeksa h_al određuje se apsolutna granična vrijednost a_prag .

Iz spektra akceleracija uklanjaju se harmonici iznosa manjeg od definiranog praga prepoznatljivosti *a_prag*. Ovo se provodi upotrebom *for* petlje pri čemu se vrijednost brojača oznake *i* jedinično povećava u rasponu od 1 do *N_a*. U svakom koraku ove petlje upotrebom *if* uvjeta provjerava se je li pojedini harmonik akceleracije manji od granične vrijednosti *a_prag*. Ukoliko jest manji, vrijednosti mu se postavlja na ništicu.

U trećoj fazi algoritma provodi se usporedba harmonika sila s harmonicima vibracija harmonik po harmonik. Kako vibracije mogu biti uzrokovane mehaničkim pojavama bitno različitih frekvencija od električnih, uobičajeno su harmonici akceleracije određeni s manjim frekvencijskim korakom od harmonika sila. Ovo znači da se unutar raspona frekvencija dva susjedna harmonika sile može nalaziti više harmonika vibracija. U svrhu povećanja brzine provedbe algoritma, harmonici sile definirani su kao niz za primarni prolaz, a harmonici vibracija kao niz za sekundarni prolaz usporedne *for* petlje.

U vanjskoj *for* petlji brojač harmonika sile *i* povećava se u rasponu od 1 do N_F . U svakom koraku petlje provjerava se ima li amplituda *i-tog* harmonika sile $F_mag(i)$ veću vrijednost od definiranog praga F_prag . Ako dotični harmonik sile prelazi definirani prag, na osnovi iznosa njegove frekvencije f_F i ulaznih postavki određenog raspona pretraživanja f_raspon određuje se raspon susjednih frekvencija za provjeru harmonika akceleracija.

$$f_start = f_F - f_Raspon \tag{9.17}$$

$$f_stop = f_F + f_Raspon$$
(9.18)

Pomoću *if* uvjeta provjerava se postavljena vrijednost varijabli f_start i f_stop . Ako ove vrijednosti izlaze iz raspona obuhvaćenih spektrom frekvencija akceleracija, provodi se korekcija. Vrijednost varijable f_start prilikom provjera prvih harmonika niza a_Mag može

poprimiti vrijednost nižu od prve frekvencije *f1a*. U slučaju da se to dogodi, iznos ove varijable postavlja se na frekvenciju najnižeg harmonika u nizu *f1a*.

Na sličan način vrijednost varijable f_stop korigira se na frekvenciju najvišeg harmonika u nizu $f_a(N_a)$, ako vrijednost određena jednadžbom 9.13. premaši iznos najvećeg harmonika obuhvaćenog nizom a_Mag .

Upotrebom funkcije *find* u nizu frekvencija harmonika akceleracija pronalazi se indeks h_start , koji odgovara početnoj frekvenciji pretrage f_start i indeks h_stop , koji odgovara završnoj frekvenciji pretrage f_stop .

Unutarnja *for* petlja izvodi se uz promjenu brojača harmonika akceleracija *j* u rasponu od h_start do h_stop . Unutar ovog raspona, za svaki harmonik akceleracija upotrebom *if* uvjeta provjerava se prelazi li iznos amplitude $a_mag(j)$ graničnu vrijednost a_prag . Ako je ovaj uvjet zadovoljen, na *j* poziciju niza *EM_Flag* postavlja se vrijednost '1'.

Nakon što završe petlje provjere, u četvrtoj fazi formiraju se vrijednosti za ispis. Zbrojem vrijednosti niza *EM_Flag* pomoću funkcije *sum* određuje se ukupni broj istaknutih harmonika akceleracija koji se poklapa s harmonicima magnetskih sila. Broj ovih harmonika pohranjuje se pomoćnu varijablu *Det_Harm*. Upotrebom *if* uvjeta provjerava se postoje li harmonici akceleracija uzrokovani magnetskim silama. Ukoliko je vrijednost *Det_Harm* jednaka nuli, tj. nije pronađeno poklapanje ni za jedan harmonik, na glavnom ekranu *Octave* sučelja ispisuje se poruka '*Nije pronađen ni jedan harmonik akceleracija koji se podudara sa harmonicima sile*' i program prekida s radom.

Ukoliko ovakvi harmonici postoje, definiraju se dva zasebna niza harmonika. U jedan, naziva a_EM , smještaju se amplitude svih harmonika akceleracija za koje je aktivirana EM_Flag oznaka, dok se u drugi niz naziva a_Meh smještaju amplitude svih preostalih istaknutih harmonika iz niza a_Mag .

Istovjetnim postupkom razdvajaju se i vrijednosti niza frekvencija f_a na frekvencije označene EM_Flag nizom, smještene u niz f_a_EM , i na preostale frekvencije spremljene u niz f_a_Meh .

$$a_EM = EM_flag \cdot a_Mag \tag{9.19}$$

$$a_Meh = a_Mag - a_EM \tag{9.20}$$

 $f_a EM = EM_f lag \cdot f_a \tag{9.21}$

$$f_a Meh = f_a - f_a EM$$
(9.22)

Ovako definirani nizovi sadrže i elemente iznosa jednakog nuli. Upotrebom funkcije *nonzeros* ugrađene u program *Octave* u dvodimenzionalni niz *Niz_EM* smještaju se nizovi a_EM i f_a_EM s uklonjenim ništicama, a u *Niz_Meh* na jednak način sažeti nizovi a_Meh i f_a_Meh .

Vrijednosti niza *Niz_EM*, koji sadrži harmonike akceleracija prisutne u sastavu harmonika radijalnih sila, pohranjuju se u datoteku naziva '*a_EM.txt'*. Vrijednosti niza *Niz_Meh*, u kojem se nalaze harmonici akceleracija koji su posljedica mehaničkih uzroka, pohranjuju se u datoteku naziva '*a_Meh.txt'*. Nizovi harmonika *a_EM* i *a_Meh* prikazuju se usporedno na istom stupčanom grafu u međusobno različitim bojama, upotrebom naredbe *bar*. Slikom 9.17 prikazan je primjer zapisa pohranjenog u '*a_EM.txt'* datoteku, slikom 9.18 ispisni graf algoritma za raspon frekvencija 0-1600 Hz, a slikom 9.19 za raspon 0-6400 Hz.

f

_EM[Hz]	a_EM [m/s^2]
49	0.03193242865802725
50	0.06228129735321832
51	0.03052918276010676
96	0.05097872105104246
97	0.03264919600847776
99	0.1380050723705473
100	0.2642831814550445
101	0.1264393135065198
149	0.0828122575468149
150	0.1548063306199071
151	0.07292729255909615
154	0.02788797231782906
155	0.03379334253961866
156	0.04122147498574014
157	0.02245548930662612
158	0.0314508664427548
199	0.02796592569538867
200	0.05044145120830684
201	0.02349810630667927
252	0.02267196506701613
400	0.03275438901887807
1699	0.06506327689257589
1700	0.0654
1798	0.07938060216450868
1799	0.367332274650622
1800	0.3562569297571628
1801	0.0692514981787398
1849	0.03884726502599636
1850	0.03688414293432884
1898	0.05509310301662088
1899	0.2385673908982533
1900	0.222813150419808
1901	0.0406176070196165
1949	0.08699752870053264
1950	0.07963114968402754
1998	0.1648957246262013
1999	0.6715809705463668
2000	0.6038667071465358

Slika 9.17 Ispisna lista harmonika koji se podudaraju s EM silama iz a_EM.txt dokumenta

Slika 9.18 Rezultat algoritma za razlučivanje harmonika vibracija: analiza za raspon f=0-1600 Hz

Raspodjela harmonika akceleracija na elektromagnetski i mehanički uzrokovane

9.3. Poteškoće određivanja spektra harmonika magnetske sile paketa statora mjerenjem

Kroz poglavlje4.1 i točku 5.2.3 prikazan je način određivanja radijalne magnetske sile koja djeluje na pojedini zub, obradom induciranog napona mjernog svitka postavljenog na radijalnu plohu zuba. Analizama provedenim u poglavlju 5 dobiven je uvid u periodičnost ponavljanja radijalnih magnetskih sila zubi statora za simetrična i nesimetrična opterećenja, koja je potvrđena rezultatima mjerenja prikazanima u poglavlju 6. Pomoću ovih informacija moguće je utvrditi najmanji broj zubi na temelju kojeg se može odrediti sastav harmonika ukupne radijalne sile paketa statora.

Prazni hod generatora predstavlja posebno pogonsko stanje po pitanju izračuna magnetskih sila. Kroz fazne namote ne teku struje pa je magnetsko polje stroja definirano samo uzbudom rotora. Radijalna sila svakog zuba tada ima jednak sastav harmonika. Radijalne sile na zube međusobno se razlikuju samo po faznom zakretu koji se jednostavno izračunava temeljem osnovnih geometrijskih obilježja stroja. U ovom posebnom slučaju sile na zube moguće je odrediti na osnovi mjerenja napona samo jednog mjernog svitka, po postupku opisanom u točki 9.2.1.

U slučaju električnog opterećenja sinkronog generatora s istaknutim polovima, za određivanje magnetske sile na paket statora potrebno je poznavati silu za broj zubi obuhvaćen prapolom stroja, tj. za segment stroja čija se elektromagnetska slika ponavlja duž oboda. Da bi se mjerenjem mogao odrediti sastav harmonika ukupne magnetske sile na paket električki opterećenog sinkronog generatora, potrebno je ugraditi po jedan mjerni svitak na svaki od ovih zubi.

Međutim, ukoliko postoji ekscentrični pomak rotora ili neka vrsta poremećaja, kao što je npr. međuzavojni kratki spoj uzbudnog namota, više ne vrijede pravila elektromagnetske simetrije duž oboda stroja. U takvim slučajevima je potrebno promatrati silu svih zubi generatora i to tijekom jednog punog okreta rotora.

Ugradnja mjernih svitaka na svaki zub stroja predstavlja nepraktično rješenje, koje može lako zakazati ako se pojavi kvar i na jednom od mjernih svitaka. Popravak predstavlja tehnički problem budući da zamjena svitka podrazumijeva vađenje rotora iz prostora statora, a njegovo ponovno umetanje može dovesti do novih oštećenja svitaka.

Uslijed navedenih poteškoća, umjesto mjerenja induciranih napona po svim zubima, pogodnije je u stroj ugraditi svega nekoliko na odgovarajući način razmještenih svitaka te njihove odzive iskoristiti za analizu sila u praznom hodu i verifikaciju računskog MKE modela. Takvim modelom moguće je izračunati sile i spektar frekvencija izmjerenih vibracija uspoređivati s računski određenim silama za različita pogonska stanja generatora.

10. Zaključak

Disertacijom je obrađeno područje izračuna i analize magnetskih sila i njima uzrokovanih vibracija za slučajeve simetričnih i električki nesimetričnih pogonskih stanja sinkronog generatora s istaknutim polovima. Analiziran je utjecaj promjene snage, faktora snage i različitih kombinacija isključenja faza statorskog namota, na raspodjelu magnetskih sila po zubima statora i njima uzrokovanih vibracija paketa.

U cilju utvrđivanja valnih oblika radijalnih sila koje djeluju na zube paketa statora, opisan je odgovarajući postupak obrade napona induciranih u mjernim svitcima smještenim na radijalne plohe zubi statora. Ovaj postupak podrazumijeva integraciju i kvadriranje valnog oblika napona induciranog u mjernom svitku uslijed promjena magnetskog polja u zračnom rasporu stroja. Razrađena je metodologija superpozicije radijalnih sila za zube obuhvaćene prapolom, tj. segmentom aktivnog dijela stroja čija se elektromagnetska slika ponavlja po obodu. Ovim postupkom utvrđuje se sastav harmonika ukupne magnetske sile koja djeluje u promatranoj točki jarma paketa statora. Usporedbom spektra harmonika akceleracija određenih mjerenjem i spektra harmonika radijalne sile koja djeluje na paket, razlučuju se harmonici vibracija uzrokovani elektromagnetskom pobudom. Razrađene metodologije određivanja valnog oblika radijalne sile iz induciranog napona mjernog vitka, superpozicije radijalnih sila i usporedbe harmonika rezultantne radijalne sile s harmonicima vibracija predstavljaju prvi znanstveni doprinos.

Analize naponskih odziva mjernih svitaka, radijalnih magnetskih sila na zube statora i njima uzrokovanih vibracija paketa statora najprije su provedene za slučajeve praznog hoda i simetričnih pogonskih stanja generatora. MKE proračunima i mjerenjima utvrđeno je na koji način se ove vrijednosti mijenjaju s opterećenjem. Potvrđeno je kako su sile na pojedine zube u ovakvim pogonskim stanjima podjednakih iznosa.

Nakon simetričnih pogonskih stanja, slične analize su provedene za niz električki nesimetričnih opterećenja generatora. Međusobnom usporedbom izračunatih i izmjerenih veličina potvrđeno je kako u nesimetričnim pogonskim stanjima postoje zamjetne razlike među silama na pojedine zube. Potvrđeno je kako pri nesimetričnim opterećenjima vršne vrijednosti magnetskih sila zubi i njima uzrokovane vibracije poprimaju značajno veće iznose od u simetričnim pogonskim stanjima, uz isti iznose izlazne snage ili statorske struje. Mjerenjima su potvrđeni proračunski rezultati o utjecaju snage i faktora snage na mjesto pojave i iznos maksimalne sile.

Potvrđeno je da vibracije paketa ovise o iznosima magnetskih sila na zube statora i da raspored sila po zubima utječe na mjesto pojave povećanih vibracija. Dokazano je da se proračunom mogu odrediti ove međuovisnosti.

Također je pokazano da se usporedbom numerički određenih i izmjerenih akceleracija mogu razlučiti elektromagnetski uzrokovane od mehanički uzrokovanih vibracija. Rezultatima je utvrđeno kako za pouzdanu funkcionalnost razmatrane metodologije utvrđivanja harmonijskog sastava sumarne sile na jaram statorskog paketa treba radijalne sile odrediti barem za zube obuhvaćene zonom jednog prapola. Nove spoznaje o utjecaju nesimetričnog električnog opterećenja na magnetske sile zubi statora i vibracije paketa statora predstavljaju drugi znanstveni doprinos.

Radi utvrđivanja električne nesimetrije putem magnetskih polja u zračnom rasporu stroja, razrađena je metodologija koja se bazira na analizi napona mjernih svitaka postavljenih na radijalnu plohu zuba statora. Raspored mjernih svitaka ugrađenih u stroj omogućio je utvrđivanje pojave nesimetričnog opterećenja. Proračunom i mjerenjima dokazano je da se pri nesimetričnim opterećenjima valni oblici induciranih napona dijametralno postavljenih svitaka za generator s parnim brojem prapolova međusobno poklapaju. Potvrđeno je kako se upotrebom dva svitka međusobno razmaknuta za pola polnog koraka može prepoznati pojava električne nesimetrije, no i da navedeni raspored svitaka nije najbolji izbor za ovakvu primjenu.

Na osnovi provedenih analiza razvijen je algoritam za otkrivanje nesimetričnog električnog opterećenja za stroj s parnim brojem prapolova, baziran na obradi induciranih napona šest mjernih svitaka. Od toga su prva tri svitka međusobno razmaknuta za po dvije trećina polnog koraka, a druga tri su dijametralno postavljeni parovi od prva tri svitka. Utvrđivanje električne nesimetrije podrazumijeva obradu snimljenih napona mjernih svitaka i usporedbu obradom dobivenih valnih oblika radijalnih sila koje djeluju na zube iznad dotičnih svitaka. Pojava nesimetrije utvrđuje se na osnovi međusobne razlike vršnih vrijednosti radijalnih sila koje djeluju na zube međusobno razmaknute za po dvije trećine polnog koraka. S ciljem razlikovanja slučaja nesimetričnog električnog opterećenja od drugačijih vrsta poremećaja, kao što su ekscentrični pomak rotora ili kvar uzbudnog namota, promatraju se naponi na međusobno dijametralno smještenim svitcima. Poklapanje valnih oblika napona induciranih u ovako postavljenim svitcima dokazuje kako u stroju nema poremećaja drugih vrsta. Navedenom metodom moguće je primjenjivost monitoring sustava s mjernim svitcima proširiti na utvrđivanje drugih tipova poremećaja električnih sinkronih generatora.

Na kraju je razvijen algoritam za razlučivanje elektromagnetski uzrokovanih od mehanički uzrokovanih harmonika vibracija. Obradom valnih oblika radijalnih sila koje djeluju na zube paketa statora, utvrđuje se spektar harmonika radijalne magnetske sile na jaram statora. Navedenim algoritmom uspoređuje se spektar izmjerenih istaknutih harmonika akceleracija kućišta ili paketa sa spektrom radijalne sile koja djeluje u smjeru akcelerometra. Rezultat usporedbe je razdvajanje električki uzrokovanih harmonika od mehaničkih uzrokovanih harmonika vibracija. Ovime je predstavljen treći znanstveni doprinos. Navedenu metodu moguće je upotrijebiti u sklopu dijagnostičkih mjerenja i analiza uzroka vibracija električnih sinkronih generatora.

Radi daljnjih istraživanja, na osnovi rezultata utvrđenih tijekom ovog istraživanja planira se nastavak analiza magnetskih sila i njima uzrokovanih vibracija za različite kombinacije kvarova namota, nesimetričnih opterećenja i pomaka rotora, nadogradnja proračunskih analiza vibracija proračunom buke te provedba analiza za drugačije izvedbe sinkronih generatora. Pod time se podrazumijevaju i provjere metoda analize na sinkronim generatorima s permanentnim magnetima i s cilindričnim rotorom. Rezultate istraživanja planira se dodatno verificirati na generatorima s različitim brojem polova i izvedbama statorskog namota od analiziranog stroja.

11. Literatura

- [1.] IEC 60034-1:2004 "Rotating electrical machines Part 1: Rating and Performance", IEC, Geneve, Switzerland, June 2004. ISBN: 2-8318-7455-6 (76 pages)
- [2.] IEC 60034-14:2004 "Rotating electrical machines Part 9: Mechanical vibration of certain machines with shaft heights 56 mm and higher Measurement, evaluation and limits of vibration severity", IEC, Geneve, Switzerland, November 2004. ISBN: 978-0-580-601-28-6 (24 pages)
- [3.] H. Sprysl, H. Vögele, G. Ebi: "The influence of magnetic forces on the stability behavior of large electrical machines", VDI Berichte Nr. 1285, 1996. (10 pages)
- [4.] Yong Xu, Zhaohui Li: "Computational Model for Investigating the Influence of Unbalanced Magnetic Pull on the Radial Vibration of Large Hydro-Turbine Generators", Journal of Vibration and Acoustics, volume 134, Issue 5, June 2012, INSPEC Accession Number: 051013 (9 pages)
- [5.] D. G. Dorrel: "Sources and Characteristics of Unbalanced Magnetic Pull in 3-phase Cage Induction Motors with Axial-Varying Rotor Eccentricity", IEEE Transactions on Industry Applications, Vol. 47. No 1, 2011 (8 pages)
- [6.] J. Pedro, A. Bastos, N. Sadowski: "Electromagnetic modeling by finite element methods", Publication by Marcel Dekker, 2003. ISBN: 0-8247-4269-9 (497 pages)
- [7.] A. Elez: "Sustav za otkrivanje međuzavojnih kratkih spojeva namota sinkronih strojeva", Doktorska disertacija, FER Zagreb, 2010. (241 stranica)
- [8.] A. Tenhunen: "Finite-element calculation of unbalanced magnetic pull and circulating current between parallel windings in induction motor with non-uniform eccentric rotor", IEE Proceedings – Electrical Power Applications, Vol. 150, No. 6, 2003. (6 pages)
- [9.] A. Tenhunen, T. P. Holopainen, A. Arkkio: "Impulse method to calculate the frequency response of the electromagnetic forces on whirling cage rotors", Proceedings of Electromotion'01, Bologna, Italy, June 2001. (5 pages)
- [10.] D. G. Dorrel, A. Hermann, B. B. Jensen: "Analyses of Unbalanced Magnetic Pull in Wound Rotor Induction Machines using Finite Element Analysis – Transient, Motoring and Generating Modes", IECON 2013, 39th Annual Conference of the IEEE, November 2013., ISBN 978-1-4799-0224-8/13 (6 pages)

- [11.] R. Belmans, A. Vandenput, W. Geysen: "Calculation of the flux density and the unbalanced pull in two pole induction machines", Arhiv für Elektrotechnik, Springer-Verlag, 1987. (11 pages)
- [12.] B. A. T. Iamamura, Y. Le Menach, A. Tounzi, N. Sadowski, E. Guillot: "Study of Synchronous Generator eccentricities using analytical approach and FEM", ICEM 2010, 19. International Conference on Electrical Machines, September 2010. (6 pages)
- [13.] B. A. T. Iamamura, Y. Le Menach, A. Tounzi, N. Sadowski, E. Guillot, T. Jacq, J. Langlet: "Study of Synchronous Generator Static Eccentricities FEM Results and Measurements", ICEM, Marseille, France, October 2012, Print, pp 1829-1835, ISBN 978-1-4673-0143-5 (7 pages)
- [14.] M. Wallin, J. Bladh, U. Lundin: "Damper Winding Influence on Unbalanced Magnetic Pull in Synchronous Machines with Rotor Eccentricity", IEEE Transactions on magnetics, Issue 89, April 2013. TMAG.2013.2259633 (8 pages)
- [15.] M. Wallin, U. Lundin: "Dynamic unbalanced pull from field winding turn short circuits in hydropower generators", Taylor and Francis, Journal of Electric Power Components and Systems, Vol. 41, Issue 16, October 2013. (6 pages)
- [16.] M. Wallin, M. Ranlöf, U. Lundin: "Design and construction of a synchronous generator test setup", ICEM 2010, 19. International Conference on Electrical Machines, September 2010. (5 pages)
- [17.] M. Wallin: "Measurement and modelling of unbalanced magnetic pull in hydropower generators", Doctoral Dissertation, Uppsala U University, Švedska, April 2013. (62 pages)
- [18.] D. Žarko, D. Ban, I. Vazdar, V. Jarić: "Calculation of unbalanced magnetic pull in a salient-pole synchronous generator" EPE/PEMC 14. Conference, September 2010., ISBN 978-1-4244-7856-9, pp T4-116 T4-122. (7 pages)
- [19.] N. L. P. Lundström, J.-O. Aidapää: "Dynamic consequences of electromagnetic pull due to deviations in generator shape", Elsevier ScienceDirect, Journal of Sound and Vibration 301, 2007. (19 pages)
- [20.] Z. Cai, N. Feng: "Effects of constant unbalanced magnetic pull to the vibration behaviours of turbomachinery", ICSV15, 15th International Congress on Sound and Vibration, Daejeon, Korea, July 2008. (8 pages)

- [21.] P. Pennacchi: "Computational model for calculating the dynamical behaviour of generators caused by unbalanced magnetic pull and experimental validation", Elsevier ScienceDirect, Journal of Sound and Vibration 312, 2008. (22 pages)
- [22.] Z. Fengge, T. Ningze, W. Fengxiang: "Analysis of vibration modes for large induction motor", IEEE Proceedings of the ICEMS Conference, September, 2005, ISBN 7-5062-7407-8, pp 64-67 vol1 (4 pages)
- [23.] J. Roivainen: "Unit-wave response-based modeling of electromechanical noise and vibration of electrical machines", Doctoral Dissertation, Faculty of electronics, communications and automation, Helsinki, June, 2009. (186 pages)
- [24.] M. Petrinić, S. Car, A. Elez: "Iterative Procedure for determination of synchronous generator load point using finite element method", IEEE proceedings of the ICEM'12- XX International Conference on Electrical Machines", Francuska -Marseilles 2012 g. ISBN 978-1-4673-0143-5, pp 339-345 (7 pages)
- [25.] A. Elez, S. Car, S. Tvorić: "Air gap magnetic field key parameter for synchronous and asynchronous machine fault detection", International Review of Electrical Engineering (IREE). 8, 3, 1-8, 2013.
- [26.] S. Tvorić: "Otkrivanje kvarova rotora kaveznog asinkronog motora analizom magnetskog polja u zračnom rasporu", Doktorska disertacija, FER Zagreb, 2019. (203 stranice).
- [27.] I. Onel, K.B. Dalci, I. Senol: "Detection of bearing defects in three-phase induction motors using Park's transform and radial basis function neural networks", Sadhana Vol. 31, Part 3, June 2006.
- [28.] G.A. Capolino, J.A. Antonino-Daviu, M. Riera-Guasp: "Modern Diagnostics Techniques for Electrical Machines, Power Electronics and Drives", IEEE Transactions on Industrial Electronics, Vol.62, No.3, March 2015.
- [29.] J. Sobra, T. Vaimann, A. Belahcen: "Mechanical Vibration Analysis of Induction Machine Under Dynamic Rotor Eccentricity", 17th International Scientific Conference on Electric Power Engineering (EPE), Prague, Czech Republic, 16-18 May 2016
- [30.] M.Y. Kaikaa, M. Hadjami: "Effects of the Simultaneous Presence of Static Eccentricity and Broken Rotor Bars on the Stator Current of Induction Machine", IEEE Transactions on Industrial Electronics, Vol.61, No.5, May 2014.

- [31.] J. Sobra, V. Kindl, B. Skala: "Determination of the Force Caused by Broken Rotor Bar and Static Eccentricity in an Induction Machine", ELEKTRO, Rajecke Teplice, Slovakia, 19-20 May 2014.
- [32.] Z. Haznadar, Ž. Štih: "Elektromagnetizam I, II", Školska knjiga, Zagreb, Hrvatska, 1997.
- [33.] V. Bego: "Mjerenja u elektrotehnici", Graphis, Zagreb, Hrvatska, 2003.
- [34.] JCGM 100:2008: "Evaluation of measurement data Guide to the expression of uncertainty in measurement", September 2008.
- [35.] Z. Haznadar: "Teorijska elektrotehnika: Elektromagnetska teorija i polja", Element, Zagreb, 2001.
- [36.] J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring: "GNU Octave A high-level interactive language for numerical computations Edition 4 for Octave version 4.4.1", Free Software Foundation Inc., Franklin Street, Fifth Floor, Boston, MA, USA, August 2018.
- [37.] ANSYS Electronics desktop v.19.0 User Manual, ANSYS inc., Pittsburgh, USA, February 2018.
- [38.] Brüel & Kjaer: "Tehnical specifications of CCLD 4508 sensor", Danmark, 2008.
- [39.] Brüel & Kjaer: "Tehnical specifications of VS-080 sensor", Danmark, 2008.
- [40.] Brüel & Kjaer: "Product data LAN-XI dana Acquisition Hardware for PULSETM and Test for IdeasTM", Danmark, 2008.
- [41.] T. Čorak: "Sustav automatiziranog ispitivanja asinkronog stroja u tvornici", magistarski rad, FER Zagreb, 2001.
- [42.] Piezopedia, "Piezoline-worth knowing about piezo mechanics", Dostupno na: https://www.piezosystem.com/piezopedia/piezotheory/ (1. kolovoza 2019.)
- [43.] J.G. Webster: "The Measurement, Instrumentation and Sensors Handbook", CRC Press LCC, 1999, ISBN: 3-540-64830-5
- [44.] Wikipedia The Free Encyclopedia, "Piezoelectric accelerometer", dostupno na: <u>https://en.wikipedia.org/wiki/File:PiezoAccelTheory.gif</u> (1. kolovoza 2019.)
- [45.] C. P. Pinneym W.E. Baker: "Velocity Measurement", CRC Press LCC, 2000.
- [46.] R. Wolf: "Osnove električnih strojeva", Školska knjiga, Zagreb,01995 ISBN: 953-0-30609-1

- [47.] XIN GE: "Simulation of Vibrations in Electrical Machines for Hybrid-electric Vehicles", Master's Thesis, Chalmers University of Technology, Švedska, December 2014. (56 pages)
- [48.] CJ. Carpenter, "Surface Integral Methods of Calculating Forces on Magnetized Iron Parts", The Institute of Electrical Engineers, Monograph No. 342, August 1959.
- [49.] G. Bevan, E. Voss, "A Practical Investigation Into the Measurement of Forces on the Stator Teeth of Electrical Machines", 2013 Annual MTech Conference, November 2013
- [50.] A. Balan, S.P. Verma, "Measurement techniques for vibration and acoustic noise of electrical machines", Proceedings of 6th International Conference on Electrical Machines and Drives. Oxford, UK, 1993. IEE Conf. Publ. No. 376.
- [51.] V. Kuterovac, "Utjecaj rasporeda namota na vibracije statora sinhronih generatora", X stručno savjetovanje, JUKO CIGRE, Dubrovnik. 11.-16. Listopad 1970.
- [52.] M. Blödt, P. Granjon, B. Raison, G. Rostaing: "Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring", IEEE Transactions on industrial electronics, Vol. 55, No. 4, April 2008.
- [53.] S. Nandi, H.A. Toliyat, X. Li: "Condition Monitoring and Fault Diagnosis of Electrical Motors", *IEEE transactions on energy conversion*, Vol. 20, No. 4, December 2005.

Popis oznaka

т	broj faza
N_2	broj utora statora
2p	broj polova
р	broj pari polova
q	broj utora statora po polu i fazi
Q	broj utora statora po polu
r	radijus
x	oznaka apscisne vrijednosti pravokutnog koordinatnog sustava
У	oznaka ordinatne vrijednosti pravokutnog koordinatnog sustava
Θ	magnetsko protjecanje
Θ_n	magnetsko protjecanje za nazivni rad generatora
t	vremenski trenutak
ω	kružna frekvencija
ω_k	kružna frekvencija k-tog reda
f_v	frekvencija vibracije
f_r	frekvencija rotacije kuglica
N_k	broj kuglica
b_d	promjer kuglice
d_p	promjer koraka kuglice ležaja
β	kut kontakta kuglice sa stazom
μ_0	magnetska permeabilnost vakuuma
\vec{B}	vektor magnetske indukcije
B_x	magnetske indukcija u smjeru x osi pravokutnog koordinatnog sustava
B_y	magnetska indukcija u smjeru y osi pravokutnog koordinatnog sustava
B_z	magnetske indukcije u smjeru z osi pravokutnog koordinatnog sustava
Brad	komponenta magnetske indukcije u radijalnom smjeru
B _{tan}	komponenta magnetske indukcije u tangencijalnom smjeru
Baks	komponenta magnetske indukcije u aksijalnom smjeru
B_m	Amplituda magnetske indukcije
B_{Ms}	Magnetska indukcija mjernog svitka
$B_{Ms \ k}$	Magnetska indukcija mjernog svitka u vremenskom trenutku t

\vec{F}	vektor sile
\vec{F}_k	vektor sile k-tog reda
Frad	komponenta sile u radijalnom smjeru
<i>F</i> _{tan}	komponenta sile u tangencijalnom smjeru
Faks	komponenta sile u aksijalnom smjeru
F_n	sila u smjeru normale
F_{Ms}	vrijednost radijalne sile određena obradom napona mjernog svitka U_{Ms}
φ	kutna koordinata u cilindričnom koordinatnom sustavu
R	radijus
S	površina
V	volumen
E_p	potencijalna energija
W	rad
\vec{n}	vektor normale
L	aksijalna duljina stroja
L_{sv}	duljina svitka
[M]	matrica masa
[m]	dijagonalna matrica masa
[C]	matrica prigušenja
[c]	dijagonalna matrica prigušenja
[K]	matrica krutosti
[k]	dijagonalna matrica krutosti
$[P_m]$	modalna matrica
u_k	svojstvena vrijednost k-tog reda
\vec{q}	vektor pomaka
\vec{q}_k	vektor pomaka k-tog reda
\vec{r}	vektor modalnog pomaka
$G_{m_{ik}}(\omega_k)$	jedinstvena prijenosna funkcija između pomaka i pobudne sile
k	konstanta matrice vektora modalnog pomaka
<i>k</i> C1	konstanta matrice masa
<i>kC</i> ²	konstanta matrice krutosti
ϕ	magnetski tok
ϕ_{Ms}	magnetski tok kroz mjerni svitak

$\phi_{Ms\ t}$	magnetski tok kroz mjerni svitak u vremenskom trenutku t
Ν	broj zavoja
n _t	broj vremenskih trenutaka
т	masa
a	akceleracija
v	brzina
l	duljina
k	redni broj
i	radni broj (brojač)
С	električni kapacitet
α	piezoelektrični modul
l	duljina petlje
С	kontura petlje svitka
u_{ind}	inducirani napon
$u_{ind Ms}$	inducirani napon mjernog svitka
$u_{ind Ms t}$	inducirani napon mjernog svitka u trenutku t
Nsv	broj zavoja mjernog svitka
S_{sv}	površina obuhvaćena mjernim svitkom
Szub	površina radijalne plohe zuba
\vec{E}	vektor električnog polja
$\Delta arphi_{Zub}$	fazna razlika sila između dva susjedna zuba
Nprapol	broj cirkularnih segmenata stroja s jednakom magnetskom slikom
ΔN_{zub_pz}	međusobni razmak između dva zuba na koja djeluju jednake magnetske sile
$\Delta N_{zub_pz_maks}$	Najveći međusobni razmak dva zuba na koja djeluju jednake magnetske sile
$ au_p$	polni korak stroja
t _{sim 1}	vrijeme prvog segmenta simulacijskog proračuna
$t_{sim 2}$	vrijeme drugog segmenta simulacijskog proračuna
tsim.kr 1	vremenski korak prvog segmenta simulacijskog proračun
tsim.kr 2	vremenski korak drugog segmenta simulacijskog proračun
f_{vl}	vlastita frekvencija
f_{vl} raspon	raspon analiziranih vlastitih frekvencija
f_{pobuda} raspon	frekvencijski raspon pobudne sile
f_{odziv} raspon	frekvencijski raspon izračunatog mehaničkog odziva

N_t	broj simulacijskih točaka
U	linijski napon generatora
U_n	nazivni linijski napon
Ι	fazna struja generatora
S	prividna izlazna snaga generatora
Р	radna izlazna snaga generatora
Q	reaktivna izlazna snaga generatora
cosφ	faktor snage
Δt	vremenski interval
f	frekvencija napona generatora
f_n	nazivna frekvencija napona generatora
h _{pn}	redni broj harmonika određenog korakom utora prigušnog namota
$ au_{pn}$	korak utora prigušnog namota
b_{sv}	srednja širina zavoja mjernog svitka
L _{sv}	srednja duljina zavoja mjernog svitka
L_z	širina zuba na promjeru provrta
L_i	idealna duljina zuba
Ms1	mjerni svitak broj jedan
Ms2	mjerni svitak broj dva
Ms3	mjerni svitak broj tri
Ms4	mjerni svitak broj četiri
Ms5	mjerni svitak broj pet
Ms6	mjerni svitak broj šest
Ms7	mjerni svitak broj sedam
Ms8	mjerni svitak broj osam
MsA	mjerni svitak zone A
MsAd	mjerni svitak postavljen dijametralno u odnosu na mjerni svitak MsA
MsB	mjerni svitak zone B
MsBd	mjerni svitak postavljen dijametralno u odnosu na mjerni svitak MsB
MsC	mjerni svitak zone C
MsCd	mjerni svitak postavljen dijametralno u odnosu na mjerni svitak MsC
U_{Ms1} maks	vršna vrijednost napona mjernog svitka broj jedan
U_{Ms5} maks	vršna vrijednost napona mjernog svitka broj pet
ΔU maks	razlika vršnih vrijednosti napona

U _{Ms1 ef}	efektivna vrijednost napona mjernog svitka broj jedan
$U_{Ms5\ ef}$	efektivna vrijednost napona mjernog svitka broj pet
$\Delta U_{e\!f}$	razlika efektivnih vrijednosti napona
σ	standardna devijacija
Frad maks 1	vršna vrijednost radijalne sile na zub iznad mjernog svitka br. 1
Frad maks 5	vršna vrijednost radijalne sile na zub iznad mjernog svitka br. 5
ΔF rad maks	razlika vršnih vrijednosti radijalnih sila na zube
Frad ef 1	efektivna vrijednost radijalne sile zub iznad mjernog svitka br. 1
Frad ef 5	efektivna vrijednost radijalne sile na zub iznad mjernog svitka br. 5
$\Delta F_{rad\ ef}$	razlika efektivnih vrijednosti radijalnih sila na zube
$F_{rad\ maks\ A}$	vršna vrijednost radijalne sile na zub iznad mjernog svitka A
Frad maks B	vršna vrijednost radijalne sile na zub iznad mjernog svitka B
$F_{\it rad\ maks\ C}$	vršna vrijednost radijalne sile na zub iznad mjernog svitka C
Fmaks	vršna vrijednost sile
<i>P1</i>	prva lokacija akcelerometra na paketu
P2	druga lokacija akcelerometra na paketu
K1	prva lokacija akcelerometra na kućištu
<i>K2</i>	druga lokacija akcelerometra na kućištu
a_{P1}	akceleracija vibracija prve lokacije na paketu
<i>AP2</i>	akceleracija vibracija druge lokacije na paketu
\overline{a}_{psr}	srednja vrijednost akceleracije paketa
a_{Kl}	akceleracija vibracija prve lokacije na kućištu
a_{K2}	akceleracija vibracija druge lokacije na kućištu
$\overline{a}_{K sr}$	srednja vrijednost akceleracije paketa
I_R	struja kroz kaskadu otpornika pasivnog tereta
I_L	struja kroz prigušnicu pasivnog tereta
$R_{R(C)}$	omski otpor kaskade otpornika faze R (C)
Rs (B)	omski otpor kaskade otpornika faze S (B)
$R_{T(A)}$	omski otpor kaskade otpornika faze T (A)
$L_{R(C)}$	induktivitet prigušnice faze R (C)
L _{S (B)}	induktivitet prigušnice faze S (B)
L _{T (A)}	induktivitet prigušnice faze T (A)
F_{kMs1} maks	vršna vrijednost sile određene pomoću mjernog svitka broj 1
F_{kMs5} maks	vršna vrijednost sile određene pomoću mjernog svitka broj 5

Miroslav Petrinić – doktorska disertacija

ΔF_{maks}	razlika vršnih vrijednosti sila zubi određenih pomoću mjernog svitka
F_{kMs1ef}	efektivna vrijednost sile određene pomoću mjernog svitka broj 1
F_{kMs5ef}	efektivna vrijednost sile određene pomoću mjernog svitka broj 5
ΔF_{ef}	razlika efektivna vrijednosti sila zubi određenih pomoću mjernog svitka
<i>a</i> izračun	akceleracija vibracija određena izračunom
<i>A</i> mjerenje	akceleracija vibracija određena mjerenjem
Δa_{pl}	razlika akceleracija vibracija određenih izračunom i mjerenjem za lokaciju P1
Δa_{p2}	razlika akceleracija vibracija određenih izračunom i mjerenjem za lokaciju P2
Niz_U_Ms	niz učitanih valnih oblika napona mjernih svitaka
Ν	broj vremenskih trenutaka učitanog valnog oblika
Delta_t	vremenski korak između dva učitana podatka
Niz_U	pomoćni niz u koji se pohranjuje valni oblik napona
Niz_Fi	niz u koji se pohranjuje valni oblik magnetskog toka
Fi_sr	srednja vrijednost magnetskog toka
Niz_B_Ms	niz u koji se pohranjuje valni oblik magnetske indukcije određen pomoću
	mjernog svitka
Niz_F_Ms_Zu	bniz u koji se pohranjuje valni oblik radijalne sile određen pomoću mjernog svitka
Niz_F_Ms	dvodimenzionalni niz u koji se pohranjuje niz valnih oblika radijalne sile
Niz_F_A	niz za pohranu valnog oblika radijalne sile određene pomoću svitka MsA
Niz_F_Ad	niz za pohranu valnog oblika radijalne sile određene pomoću svitka MsAd
Niz_F_B	niz za pohranu valnog oblika radijalne sile određene pomoću svitka MsB
Niz_F_Bd	niz za pohranu valnog oblika radijalne sile određene pomoću svitka MsBd
Niz_F_C	niz za pohranu valnog oblika radijalne sile određene pomoću svitka MsC
Niz_F_Cd	niz za pohranu valnog oblika radijalne sile određene pomoću svitka MsCd
Niz_F_Vrh	niz za pohranu vršnih vrijednosti radijalnih sila
Niz_F_A_r	niz za pohranu razlike radijalnih sila pohranjenih u <i>Niz_F_A</i> i <i>Niz_F_Ad</i>
$Niz_F_B_r$	niz za pohranu razlike radijalnih sila pohranjenih u <i>Niz_F_B</i> i <i>Niz_F_Bd</i>
$Niz_F_C_r$	niz za pohranu razlike radijalnih sila pohranjenih u <i>Niz_F_C</i> i <i>Niz_F_Cd</i>
Niz_F_Vrh	niz za pohranu vršnih vrijednosti sila
Niz_F_Odstup	<i>p_p</i> postotno odstupanje od vršnih vrijednosti
Maks_abc	varijabla za pohranu maksimalnog iznosa od tri vršne vrijednosti
Min_abc	varijabla za pohranu minimalnog iznosa od tri vrsne vrijednosti
Delta_abc	razlika između maksimalne i minimalne vršne vrijednosti
Delta_abc_p	postotna razlika između maksimalne i minimalne vršne vrijednosti

Maks_Dia	varijabla za pohranu maksimalnog odstupanja sila na dijametralno postavljene zube
F_prag_odstu	<i>p</i> prag dopuštenog odstupanja sila na dijametralno postavljene zube
F_prag_nesin	prag dopuštenog odstupanja maksimuma sila na zube zone A, B i C
Tekst_ispis	string za ispis izlazne poruke
Zub_Start	početni zub razmatrane zone stroja
Zub_Stop	završni zub razmatrane zone stroja
$eta_{Zub\ i}$	kut između vektora radijalne sile i-tog zuba i radijalnog smjera rezultantne sile
$F_{rad \ Zub \ i}$	radijalna sila i-tog zuba
$F_{A Zub i}$	komponenta radijalne sile i-tog zuba usmjerena prema lokaciji rezultantne sile
Fsuma	sumarna radijalne sila
h_{ux}	utorski harmonik x-tog reda
Delta_Ang	električni kut između dva utora statora
F_fft	niz u koji se spremaju kompleksna rješenja brze Fourierove transformacije
F_am	realna rješenja brze Fourierove transformacije
F_bm	imaginarna rješenja brze Fourierove transformacije
Niz_F_mag	niz za pohranu amplituda harmonika sile
F_ang	niz za pohranu vrijednosti faznih pomaka harmonika sile
<i>F_</i> 0	istosmjerna vrijednost valnog oblika sile
F_0_sr	srednja istosmjerna vrijednost valnog oblika sile za niz zubi
F_mag_sr	srednja vrijednost amplituda harmonika sile za niz zubi
Ι	jedinični niz
Nzubi	broj učitanih zubi
alfa_Zub_1	kutni pomak između prvog zuba i pozicije akcelerometra
alfa_acc	kutno odstupanje radijalne osi akcelerometra od polovice stroja određene zubom 1
Nzub_pomak	broj utora za koji je udaljen akcelerometar od centralne osi
Kut_acc	ostatak razlike za koji je udaljen akcelerometar od centralne osi
TauS	korak utora statora
N2_pola	polovica ukupnog broja utora statora
N2_cetvrtina	četvrtina ukupnog broja utora statora
Nepar	varijabla za utvrđivanje neparnosti broja
N_prapol_seg	broj prapolova na polovici stroja
Kut_Start	Kut između početnog zuba i akcelerometra
Kut_Stop	Kut između završnog zuba i akcelerometra
Kut_Zub	niz kutova za zube koji okružuju akcelerometar

Niz_F_a	niz komponenti sila svih zubi u smjeru akcelerometra
F_suma	rezultantne sila
a_Mag	niz učitanih amplituda akceleracija
f_raspon	raspon susjednih frekvencija za koji se provjerava utjecaj pojedinog harmonika
fla	frekvencijski korak harmonika akceleracije
N_F	broj učitanih harmonika sile
N_a	broj učitanih harmonika akceleracije
k_F	redni niz harmonika sile
k_a	redni niz harmonika akceleracije
f_F	niz frekvencija za harmonike sile
f_a	niz frekvencija za harmonike akceleracije
F_mag	niz amplituda harmonika sile
F_prag	apsolutna vrijednost praga detekcije pojedinog harmonika sile
F_prag_p	postotna vrijednost praga detekcije pojedinog harmonika sile
a_prag	apsolutna vrijednost praga detekcije pojedinog harmonika akceleracije
a_prag_p	postotna vrijednost praga detekcije pojedinog harmonika akceleracije
h_al	indeks koji odgovara osnovnom harmoniku sile u nizu harmonika akceleracija
f_start	početna frekvencija za usporedbu
f_stop	završna frekvencija za usporedbu
h_start	indeks početnog elementa u nizu za usporedbu
h_stop	indeks završnog elementa u nizu za usporedbu
EM_Flag	pokazivač stanja usporedbe
a_EM	niz harmonika akceleracije uzrokovan elektromagnetskim pojavama
a_Meh	niz harmonika akceleracije uzrokovan mehaničkim pojavama
f_a_EM	frekvencije koje odgovaraju nizu harmonika <i>a_EM</i>
f_a_Meh	frekvencije koje odgovaraju nizu harmonika <i>a_Meh</i>
Niz_EM	niz za pohranu podataka – elektromagnetski uzrokovani harmonici vibracija
Niz_Meh	niz za pohranu podataka – mehanički uzrokovani harmonici vibracija

Kut_Zub_rad niz kutova za zube koji okružuju akcelerometar u radijanima

Popis slika

Slika 2.1 Radijalni vibracijski pomaci paketa statora za različita pogonska stanja električnog stroja	6
Slika 2.2 Fazne struje generatora s namotom spojenim u zvijezdu pri radu na jednofazni teret	7
Slika 2.3 Vrste ekscentričnog pomaka rotora [26]	8
Slika 2.4 Eliptična i ovalna (lijevo) [6] te putanja proizvoljnog oblika (desno) aksijalne osi rotora [18]	8
Slika 2.5 Međupovezivost proračuna za izračun sila i njima uzrokovanih vibracija	11
Slika 2.6 Različiti oblici polnih papuča koji se susreću u praksi	12
Slika 2.7 Tijelo u magnetskom polju opisano volumenom V	. 14
Slika 2.8 Volumni odsječak d V u kojem dolazi do promjene	16
Slika 2.9 Prikaz vektora magnetskih sila u zračnom rasporu stroja [17]	17
Slika 2.10 Komponente magnetske sile u zračnom rasporu stroja [17]	18
Slika 2.11 Jednostavan model šupljeg cilindra za analizu vibracija statora	19
Slika 2.12 Složena geometrijska struktura 3D modela	. 19
Slika 2.13 Primjer podudaranja vlastite frekvencije s frekvencijom sile [2]	20
Slika 2.14 Treća glavna forma (mod) vibriranja statora [17]	21
Slika 3.1 Sinkroni generator za provedbu ispitivanja	23
Slika 3.2 Mjerenjem određene krivulje kratkog spoja, praznog hoda i regulacije	25
Slika 3.3 Izometrijski prikaz modela sinkronog generatora	26
Slika 3.4 Tlocrtni prikaz konstrukcijskih dijelova generatora	26
Slika 3.5 Izvedba polova, kliznih koluta, zamašnjaka i ventilatora rotora	.27
Slika 3.6 Izvedba statorskog paketa i namota sa spojevima u čeonoj zoni	.27
Slika 3.7 Statorski paket ugrađen u kućište	.27
Slika 3.8 Provrt na kućištu ispod kojeg je dostupan paket statora za montažu senzora	28
Slika 3.9 Mjesta ugradnje i brojčane oznake mjernih svitaka – pogled sa slobodne strane stroja	28
Slika 3.10 Priključna kutija s izvodima ugrađenih mjernih svitaka	29
Slika 3.11 Principijelna shema ispitnog mjernog sustava	30
Slika 3.12 Principijelna shema kontrolnih mjerenja	31
Slika 3.13 Kaskada otpornika (lijevo) i prigušnica promjenjivog induktiviteta (desno) korišteni za	
pasivno terećenje generatora	31
Slika 3.14 Definicija elektromagnetske indukcije [7]	32
Slika 3.15 Mjerni svitak izrađen u PCB tehnologiji	33
Slika 3.16 Mjerni svitak ugrađen na zub paketa statora	33
Slika 3.17 Ovisnost deformacije piezoelektrika o primijenjenoj sili [42]	35
Slika 3.18 Vrste rastezanja piezoelektričnog materijala [43]	35
Slika 3.19 Princip mjerenja ubrzanja pomoću piezoelektrika [44]	35
Slika 3.20 Izgled akcelerometra tipa CCLD 4508 i dimenzije prikazane u milimetrima [38]	36
Slika 3.21 Shematski prikaz VLT pretvornika linearne brzine	S
pomičnim svitkom (gornji) i pomičnim magnetom (donji) [45]	37
Slika 3.22 Ovisnost izlaznog napona U o mjerenoj brzini vibracija senzora $VS - 080$ [39]	38
Slika 3.23 Prikaz impulsnog čekića Kistler 9724A2000	39
Slika 3.24 Mjerna stanica PULSE s LAN-XI procesnim modulima [40]	40
Slika 3.25 Analizator snage NORMA AC Power Analyzer D 5255 S [41]	43
Slika 4.1 Izravno mjerenje sile koja djeluje na paket statora. Stator stroja povezan s vanjskim kućište	em
preko tenzometara [16]	46
Slika 4.2 Način ugradnje svitka za mjerenje magnetskog polja na radijalnu plohu zuba paketa statora	
--	-----
električnog stroja	47
Slika 4.3 Put glavnog magnetskog toka četveropolnog generatora s istaknutim polovima	47
Slika 4.4 Put magnetskog toka u zoni zračnog raspora	48
Slika 4.5 Pretvorba induciranog napona mjernog svitka $u_{ind Ms}$ u magnetsku indukciju svitka B_{Ms}	49
Slika 4.6 Usporedni prikaz izmjerenog i izračunatog napona mjernog svitka	49
Slika 4.7 Usporedni prikaz radijalne B_{rad} i tangencijalne B_{tan}	
komponente magnetske indukcije zuba	50
Slika 4.8 Usporedni prikaz ukupne radijalne indukcije zuba B_{rad}	i
magnetske indukcije mjernih svitaka B_{Ms1} i B_{Ms2}	50
Slika 4.9 Usporedni prikaz radijalne F_{rad} i tangencijalne F_{tan} komponente sile	51
Slika 4.10 Pretvorba magnetske indukcije mjernog svitka B_{Ms} u iznos sile F_{Ms}	52
Slika 4.11 Usporedni prikaz radijalne sile F_{rad} i sila F_{Ms1} i F_{Ms2} koje odgovaraju kvadratu indukcije mjern	nih
svitaka <i>Ms1</i> i <i>Ms2</i>	53
Slika 4.12 Ujednačene radijalne sile po zubima za prazni hod mehanički simetričnog generatora	54
Slika 4.13 Ujednačene tangencijalne sile po zubima za prazni hod mehanički simetričnog generatora	54
Slika 4.14 Radijalne sile po zubima za simetrično opterećenje generatora	55
Slika 4.15 Tangencijalne sile po zubima za simetrično opterećenje generatora	55
Slika 4.16 Prikaz rasporeda razlomljenog namota i četiri para dijametralno razmaknutih zubi označenih	
točkama različitih boja	57
Slika 4.17 Radijalne sile na odabrane zube za simetrično opterećen generator	58
Slika 4.18 Inducirani naponi mjernih svitaka za simetrično opterećen generator	59
Slika 4.19 Radijalne sile na zube za nesimetrično opterećenje po fazama generatora	59
Slika 4.20 Tangencijalne sile na zube za nesimetrično opterećenje po fazama generatora	60
Slika 4.21 Radijalne sile na promatrane zube za nesimetrično opterećenje po fazama generatora	60
Slika 4.22 Inducirani naponi mjernih svitaka za nesimetrično opterećenje po fazama generatora	61
Slika 4.23 Napon mjernog svitka za simetrično i električki nesimetrično opterećenje	61
Slika 4.24 Istovjetni naponi dijametralno postavljenih mjernih svitaka	
za slučajeve simetričnog (lijevo) i električki nesimetričnog (desno) opterećenja	62
Slika 5.1 Dvodimenzionalni model generatora u programskom okruženju ANSYS Maxwell	66
Slika 5.2 Mreža konačnih elemenata MKE modela za elektromagnetske proračune	66
Slika 5.3 Vanjski električni krug MKE modela za simetrično opterećenje	67
Slika 5.4 Vanjski električni krug MKE modela za slučaj nesimetričnog opterećenja po fazama	67
Slika 5.5 Dvodimenzionalni model generatora u programskom okruženju ANSYS Mechanical	69
Slika 5.6 Mreža konačnih elemenata MKE modela za mehaničke proračune	69
Slika 5.7 Povezivanje elektromagnetskog i mehaničkog proračuna upotrebom ANSYS Workbench	
programskog alata	71
Slika 5.8 Izvještaj o uspješnosti preslikavanja sila iz elektromagnetskog u mehanički proračun	
dostupan kroz sučelje programa ANSYS Mechanical	71
Slika 5.9 Mreža prikladna za standardne elektromagnetske proračune (lijevo) i mreža povećane	
gustoće za potrebe spregnutih numeričkih proračuna (desno)	72
Slika 5.10 Raspodjela gustoće magnetskog toka sinkronog generatora u praznom hodu	.74
Slika 5.11 Sile izračunate po elementima zuba (lijevo) i pretvorba u rezultantni vektor (desno)	.74
Slika 5.12 Radijalna sila na zub statora za slučajeve praznog hoda s linijskim naponom iznosa 200 i	
400 V	75

Slika 5.13 Apsolutna vrijednost radijalne sile na zub za slučajeve praznog hoda s linijskim naponpm
iznosa 200 i 400 V
Slika 5.14 Pozicije mjernih svitaka Ms1-Ms8 u proračunskom modelu generatora
Slika 5.15 Inducirani naponi na pozicijama mjernih svitaka Ms1-Ms876
Slika 5.16 Radijalne sile na pozicijama mjernih svitaka <i>Ms1-Ms8</i>
Slika 5.17 Vremenska promjena napona mjernog svitka u praznom hodu generatora
Slika 5.18 Vremenska promjena sile na jedan zub u praznom hodu
Slika 5.19 Frekvencijski spektar valnog oblika radijalne sile na zub u praznom hodu
Slika 5.20 Raspodjela gustoće magnetskog toka sinkronog generatora za simetrično opterećenje
$U = 400 \text{ V}, S = 180 \text{ kVA}, \cos \varphi = 1$
Slika 5.21 Utjecaj povećanja snage na valni oblik radijalne sile na zub za slučaj jediničnog faktora
snage $\cos \boldsymbol{\varphi} = 1$
Slika 5.22 Utjecaj povećanja snage na harmonike radijalne sile na zub za slučaj jediničnog faktora
snage $\cos \boldsymbol{\varphi} = 1$
Slika 5.23 Utjecaj povećanja snage na valni oblik napona mjernog svitka
Slika 5.24 Utjecaj promjene faktora $\cos \varphi$ pri S=180 kVA na valni oblik radijalne sile zuba 83
Slika 5.25 Utjecaj promjene faktora $\cos \varphi$ pri $S = 90$ kVA na valni oblik radijalne sile zuba
Slika 5.26 Utjecaj promjene faktora $\cos \varphi$ pri S=180 kVA na harmonike radijalne sile
Slika 5.27 Utjecaj promjene faktora $\cos \varphi$ pri S=90 kVA na harmonike radijalne sile zuba
Slika 5.28 Utjecaj promjene faktora snage $\cos \varphi$ pri $S=180$ kVA na napon mjernog svitka
Slika 5.29 Utjecaj promjene faktora $\cos \varphi$ pri S=90 kVA na napon mjernog svitka
Slika 5.30 Utjecaj povećanja snage na valni oblik radijalne sile koja djeluje na zub za slučaj izrazito
induktivnog faktora snage $\cos \varphi = 0.08$
Slika 5.31 Utjecaj povećanja snage na frekvencijski spektar radijalne sile na zub za slučaj izrazito
induktivnog faktora snage $\cos \varphi = 0.08$
Slika 5.32 Utjecaj promjene prividne snage <i>S</i> na napon mjernog svitka
Slika 5.33 Izračun sile preko napona mjernog svitka za prazni hod pri $U=400$ V
Slika 5.34 Izračun sile preko napona mjernog svitka za rad uz $S = 180$ kVA, $\cos \varphi = 0.08$
Slika 5.35 Izračun sile preko napona miernog svitka za rad uz $S=180$ kVA. $\cos \sigma = 0.7$
Slika 5.36 Izračun sile preko napona miernog svitka za rad uz $S = 180 \text{ kVA}$ cos $\varphi = 1$
Slika 5.37 Struje faznih namota pri radu na jednofazni teret (1)
Slika 5.38 Oscilacije magnetskog polja rotora prisutne pri nesimetričnom onterećenju 91
Slika 5.39 Referentne oznake zubi i faznih namota
Slika 5.40 Radijalne sile po zubima pri nesimetričnom opterećenju $S = 52$ kVA, $\cos \varphi = 0.7$
Slika 5.41 Radijalne sile po zubima pri nesimetričnom opterećenju $S = 90$ kVA, cos $\varphi = 0,7$
Slika 5.42 Radijalne sile po zubima pri nesimetričnom opterećenju $S = 104$ kVA, $\cos \varphi = 0.7$
Slika 5.43 Referentne oznake mjernih svitaka ispod zubi za analizu sila
Slika 5.43 Referentne oznake mjernih svitaka ispod zubi za analizu sila
Slika 5.43 Referentne oznake mjernih svitaka ispod zubi za analizu sila
Slika 5.43 Referentne oznake mjernih svitaka ispod zubi za analizu sila
Slika 5.43 Referentne oznake mjernih svitaka ispod zubi za analizu sila
Slika 5.43 Referentne oznake mjernih svitaka ispod zubi za analizu sila

Slika 5.48 Radijalne sile po zubima pri nesimetričnom opterećenju $S=104$ kVA, $\cos \varphi = 1$	96
Slika 5.49 Radijalne sile po zubima na kojima se nalaze mjerni svitci Ms1 i Ms5	97
Slika 5.50 Radijalne sile na zube iznad mjernih svitaka Ms1 i Ms5	98
Slika 5.51 Frekvencijski spektar radijalne sile na zube iznad mjernih svitaka Ms1 i Ms5	98
Slika 5.52 Prostorna raspodjela tri zuba odabrana za analizu sila	99
Slika 5.53 Radijalne sile po zubima pri nesimetričnom teretu uz faze $A-B$ protjecane strujom	. 100
Slika 5.54 Radijalne sile po zubima pri nesimetričnom teretu uz faze $A-C$ protjecane strujom	. 100
Slika 5.55 Radijalne sile po zubima pri nesimetričnom teretu uz faze $B-C$ protjecane strujom	. 100
Slika 5.56 Radijalne sile tri zuba uz faze $A-B$ protjecane strujom	. 101
Slika 5.57 Radijalne sile tri zuba uz faze $A-C$ protjecane strujom	. 101
Slika 5.58 Radijalne sile tri zuba uz faze $B-C$ protjecane strujom	. 102
Slika 5.59 Frekvencijski spektar radijalnih sila na tri zuba uz faze $A-B$ protjecane strujom	. 102
Slika 5.60 Radijalne sile na zube iznad mjernih svitaka uz faze $A-B$ protjecane strujom	. 103
Slika 5.61 Radijalne sile na zube iznad mjernih svitaka uz faze $A-C$ protjecane strujom	. 103
Slika 5.62 Radijalne sile na zube iznad mjernih svitaka uz faze $B-C$ protjecane strujom	. 103
Slika 5.63 Harmonici sile na zube iznad mjernih svitaka uz faze $A-B$ protjecane strujom	. 104
Slika 5.64 Harmonici sile na zube iznad mjernih svitaka uz faze $A-C$ protjecane strujom	. 104
Slika 5.65 Harmonici sile na zube iznad mjernih svitaka uz faze $B-C$ protjecane strujom	. 104
Slika 5.66 Razlike u naponima mjernih svitaka za nesimetrično opterećenje	. 106
Slika 5.67 Valni oblici sile određeni analizom napona mjernih svitaka i usporedba s valnim obliko	m
radijalne sile zubi za nesimetrično opterećenje.	. 107
Slika 5.68 Pozicije analiziranih zubi u modelu generatora	. 109
Slika 5.69 Valni oblici sila za simetrično opterećenje $U = 400$ V, $S = 400$ kVA, $\cos \varphi = 0.9$. 110
Slika 5.70 Valni oblici sila 10 % niži iznos struje faze C	. 110
Slika 5.71 Valni oblici sila uz 20 % niži iznos struje faze C	. 111
Slika 5.72 Statička ekscentričnost (lijevo) i dinamička ekscentričnost (desno)	. 112
Slika 5.73 Valni oblici sila uz statičku ekscentričnost rotora iznosa 10 % zračnog raspora	. 113
Slika 5.74 Valni oblici sila uz dinamičku ekscentričnost rotora iznosa 10 % zračnog raspora	. 113
Slika 5.75 Valni oblici sila uz 10 % kratko spojenih zavoja uzbudnog namota jednog pola	. 114
Slika 5.76 Primjeri formi vibriranja kućišta	. 117
Slika 5.77 Prva i druga forma vibriranja paketa statora	. 118
Slika 5.78 Treća i četvrta forma vibriranja paketa statora	. 118
Slika 5.79 Peta i šesta forma vibriranja paketa statora	. 118
Slika 5.80 Rezultati mehaničkog proračuna	. 119
Slika 5.81 Mjesta za koja su proračunskim modelom određivani iznosi vibracija	. 120
Slika 5.82 Usporedni prikaz valnih oblika akceleracija za odabrana mjesta u praznom hodu	. 120
Slika 5.83 Frekvencijski spektar valnog oblika akceleracije za poziciju P2	. 121
Slika 5.84 Usporedba akceleracije točke P1 za prazni hod pri naponu 200 V (lijevo) i 400 V (desno)	. 122
Slika 5.85 Usporedba akceleracije točke $P2$ za snagu $S = 90$ kVA (lijevo) i $S = 180$ kVA (desno)	. 123
Slika 5.86 Usporedba akceleracija točke <i>P1</i> za snagu $S=180$ kVA uz faktor snage $\cos \varphi = 1$ (lijevo	o) i
izrazito induktivni faktor snage $\cos \varphi = 0.08$ (desno)	. 123
Slika 5.87 Valni oblici akceleracija točaka <i>P1</i> i <i>P2</i> paketa i <i>K1</i> i <i>K2</i> plašta kućišta statora pri	
nesimetričnom opterećenju $U = 400 \text{ V}, S = 52 \text{ kVA}, \cos \varphi = 1$. 126

Slika 5.88 Usporedba akceleracija točke P2 za istu izlaznu snagu trofazno (lijevo) i dvofazno (dest	no)
opterećenog generatora pri $U=400 \text{ V}, S=90 \text{ kVA}, \cos \varphi = 0,7$. 127
Slika 5.89 Usporedba akceleracija točke P2 uz istu struju armature $I = 130$ A za simetrično (lijevo: S	=90
kVA) i nesimetrično (desno: $S = 52$ kVA) opterećenje pri $U = 400$ V, $\cos \varphi = 0,7$. 127
Slika 5.90 Usporedba akceleracija na mjestu P1 za nesimetrično opterećenje	
uz faktor snage $\cos \varphi = 0.08$ (lijevo) i $\cos \varphi = 0.7$ (desno) pri $U = 400$ V, $S = 52$ kVA	. 128
Slika 5.91 Usporedba akceleracija na mjestu P2 za nesimetrično opterećenje	
uz faktor snage $\cos \varphi = 0.08$ (lijevo) i $\cos \varphi = 0.7$ (desno) pri $U = 400$ V, $S = 52$ kVA	. 128
Slika 5.92 Usporedba akceleracija na mjestu <i>P1</i> za opterećenje faza <i>A-C</i> (lijevo) i <i>B-C</i> (desno) pri	
opterećenju $U = 400 \text{ V}, S = 52 \text{ kVA}, \cos \boldsymbol{\varphi} = 1$. 129
Slika 6.1 Principijelna shema spoja: 1 – pogonski motor, 2 – ispitivani objekt (sinkroni generator),	3 –
pasivni teret (kaskada otpornika i regulacijska prigušnica)	. 132
Slika 6.2 Mjerni svitci ugrađeni na zube generatora	. 132
Slika 6.3 Mjesta ugradnje i oznake mjernih svitaka – pogled s pogonske strane stroja	. 133
Slika 6.4 Akcelerometri spojeni na paket statora pomoću produljenog nosača kroz probušenu rupu	
plašta kućišta (lijevo) i na plašt kućišta upotrebom standardnog nosača (desno)	. 134
Slika 6.5 Pozicije i oznake senzora za mjerenje vibracija	. 134
Slika 6.6 Izvodi senzora spojeni na mjernu akvizicijsku stanicu	. 134
Slika 6.7 Spoj pasivnog tereta na stezaljke generatora za simetrično opterećenje	. 135
Slika 6.8 Spoj pasivnog tereta na stezaljke generatora za nesimetrično opterećenje	. 135
Slika 6.9 Izvodi senzora spojeni na mjernu akvizicijsku stanicu	. 137
Slika 6.10 Stvaranje mehaničkog pobudnog impulsa udarcem čekića o kućište statora	. 137
Slika 6.11 Impuls sile kod udarca čekićem	. 138
Slika 6.12 Spektar frekvencija obuhvaćen udarcem čekića	. 138
Slika 6.13 Vremenski odziv paketa na udarac čekićem	. 138
Slika 6.14 Snimljeni odzivi za udarce čekića na osam analiziranih lokacija	. 139
Slika 6.15 Snimljeni valni oblici napona mjernih svitaka u praznom hodu (lijevo) i kod simetrično	g
opterećenja (desno)	. 141
Slika 6.16 Snimljeni valni oblici dijametralno postavljenih svitaka i njihova razlika	. 142
Slika 6.17 Snimljeni naponi svitka Ms1 uz prividnu snagu S=180 kVA za različite faktore snage	. 142
Slika 6.18 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za prazni	hod
uz $U = 400 \text{ V}$. 143
Slika 6.19 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za simetr	ično
opterećenje $U = 400 \text{ V}, S = 90 \text{ kVA}, \cos \varphi = 0.08 \dots$. 144
Slika 6.20 Amplitude valnih oblika radijalnih sila na zube određeni analizom napona svitaka za	
simetrično opterećenje $U=400 \text{ V}, S=90 \text{ kVA}, \cos \varphi = 1$. 144
Slika 6.21 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za simetr	ično
opterećenje $U=400 \text{ V}, S=180 \text{ kVA}, \cos \varphi = 1$. 145
Slika 6.22 Spektri frekvencija obrađeni programskim alatom za obradu snimljenih podataka PULS	E
LabShop v17 neposredno nakon provedbe mjerenja	. 146
Slika 6.23 Izmjereni valni oblici akceleracija na odabranim mjestima pri mehaničkoj vrtnji	. 147
Slika 6.24 Izmjereni valni oblici akceleracija na odabranim mjestima u praznom hodu	. 147
Slıka 6.25 Izmjereni valni oblici akceleracija na odabranim mjestima pri opterećenju	
$U = 400 \text{ V}, S = 180 \text{ kVA}, \cos \varphi = 1$. 148
Slika 6.26 Izmjereni spektar frekvencija akceleracija paketa u mehaničkoj vrtnji	. 148

Slika 6.27 Izmjereni spektar frekvencija akceleracija paketa u praznom hodu	148
Slika 6.28 Izmjereni spektar frekvencija akceleracija paketa pri opterećenju	
$U = 400 \text{ V}, S = 180 \text{ kVA}, \cos \varphi = 1$	149
Slika 6.29 Pozicija mjernog mjesta P1	149
Slika 6.30 Snimljeni valni oblici napona mjernih svitaka za nesimetrično opterećenje	
$U = 400 \text{ V}, S = 104 \text{ kVA}, \cos \varphi = 1 \text{ uz faze } B - C \text{ protjecane strujom } \dots$	151
Slika 6.31 Razlike napona svitaka razmaknutih za $\frac{1}{2} \tau_p$ pri nesimetričnom opterećenju	152
Slika 6.32 Poklapanje napona dijametralno postavljenih svitaka i njihova međusobna razlika	
uzrokovana netočnostima mjerenja	152
Slika 6.33 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za	
nesimetrično opterećenje $U=400 \text{ V}, S=104 \text{ kVA}, \cos \varphi = 1 \text{ uz faze } B-C \text{ protjecane strujom}$	153
Slika 6.34 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za	
nesimetrično opterećenje U=400 V, S=104 kVA, cos q =0,08 uz faze B-C protjecane strujom	153
Slika 6.35 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za	
nesimetrično opterećenje $U = 400 \text{ V}, S = 52 \text{ kVA}, \cos \varphi = 1 \text{ uz faze } B - C \text{ protjecane strujom}$	154
Slika 6.36 Valni oblici radijalnih sila na zube određeni analizom napona mjernih svitaka za	
nesimetrično opterećenje $U = 400 \text{ V}, S = 52 \text{ kVA}, \cos \varphi = 1$, uz faze A-C protjecane strujom	154
Slika 6.37 Izmjereni valni oblici akceleracija na mjestima P1 i P2 paketa statora pri nesimetričnom	ı
opterećenju $U = 400 \text{ V}, S = 52 \text{ kVA}, \cos \varphi = 1 \text{ uz faze } B - C \text{ protjecane strujom } \dots$	157
Slika 6.38 Izmjereni valni oblici akceleracija na mjestima P1 i P2 paketa statora pri nesimetričnom	ı
opterećenju $U = 400 \text{ V}, S = 52 \text{ kVA}, \cos \varphi = 1 \text{ uz faze } A - C \text{ protjecane strujom } \dots$	158
Slika 6.39 Izmjereni valni oblici akceleracija na mjestima P1 i P2 paketa statora pri nesimetričnom	ı
opterećenju $U=400 \text{ V}, S=104 \text{ kVA}, \cos \varphi = 1 \text{ uz faze } B-C \text{ protjecane strujom}$	159
Slika 6.40 Izmjereni valni oblici akceleracija na mjestima P1 i P2 paketa statora pri nesimetričnom	
opterećenju $U = 400 \text{ V}, S = 104 \text{ kVA}, \cos \varphi = 0.08 \text{ uz faze } B-C \text{ protjecane strujom}$	159
Slika 7.1 Usporedba valnog oblika napona induciranog u mjernom svitku <i>Ms1</i> određenog MKE	
proračunom i mjerenjem za prazni hod generatora uz U = 400 V	163
Slika 7.2 Usporedba harmonijskog sastava napona induciranog u mjernom svitku Ms1 određenog	
MKE proračunom i mjerenjem za prazni hod generatora uz $U = 400$ V	163
Slika 7.3 Usporedba valnih oblika radijalnih sila na zube određenih MKE proračunom i mjerenjem,	
temeljem napona mjernih svitaka <i>Ms1</i> i <i>Ms5</i> za prazni hod uz <i>U</i> = 400 V	164
Slika 7.4 Usporedba harmonijskog sastava valnih oblika radijalnih sila na zube određenih MKE	
proračunom i mjerenjem, temeljem napona mjernih svitaka <i>Ms1</i> i <i>Ms5</i> za prazni hod generatora u	JZ
U = 400 V.	164
Slika 7.5 Spektar frekvencija akceleracija do 1500 Hz određen MKE proračunom i mjerenjem na	
mjestu <i>P1</i> za prazni hod generatora uz $U = 400$ V	165
Slika 7.6 Spektar frekvencija akceleracija do 1500 Hz odreden MKE proracunom i mjerenjem na	105
mjestu P_2 za prazni nod generatora uz $U = 400$ V	165
siika 7.7 Spektar frekvencija akceleracija do 6000 Hz odreden Mike proracunom i mjerenjem na	100
injestu r_1 za prazini nou generatora uz $U = 400$ V	тор
sinka 7.0 spektai mekvencija akceleracija uo 0000 Π 2 određen ivike proracunom i mjerenjem na mjestu P2 za prazni bod generatora uz $II = 400 \text{ V}$	166
Slika 7.9 Usporedba valnog oblika napona induciranog u miernom svitku <i>Ms1</i> određenog MKE	100
proračunom i miereniem za simetrično opterećenie $U = 400 \text{ V}$. $S = 180 \text{ kVA}$. $\cos \alpha = 1$	168
j = j	

Slika 7.10 Usporedba harmonijskog sastava napona induciranog u mjernom svitku <i>Ms1</i> određenog
MKE proračunom i mjerenjem za simetrično opterećenje $U = 400 \text{ V}$, $S = 180 \text{ kVA}$, $\cos \varphi = 1$
Slika 7.11 Usporedba valnih oblika radijalnih sila na zube određenih MKE proračunom i mjerenjem,
temeljem napona mjernih svitaka <i>Ms1</i> i <i>Ms5</i> za simetrično opterećenje U = 400 V, S = 180 kVA,
cos <i>φ</i> =1
Slika 7.12 Usporedba harmonijskog sastava valnih oblika radijalnih sila na zube određenih MKE
proračunom i mjerenjem, temeljem napona mjernih svitaka Ms1 i Ms5 za simetrično opterećenje
$U = 400 \text{ V}, S = 180 \text{ kVA}, \cos\varphi = 1$
Slika 7.13 Spektar frekvencija akceleracija do 1500 Hz određen MKE proračunom i mjerenjem, na
mjestu <i>P1</i> za simetrično opterećenje <i>U</i> = 400 V, <i>S</i> = 180 kVA, $\cos \varphi$ = 1
Slika 7.14 Spektar frekvencija akceleracija do 1500 Hz MKE proračunom i mjerenjem, na mjestu P2 za
simetrično opterećenje U = 400 V, S = 180 kVA, $\cos \varphi = 1$
Slika 7.15 Spektar frekvencija akceleracija do 6000 Hz određen MKE proračunom i mjerenjem, na
miestu <i>P1</i> za simetrično opterećenje <i>U</i> = 400 V, <i>S</i> = 180 kVA, $\cos \varphi$ = 1
Slika 7.16 Spektar frekvencija akceleracija do 6000 Hz MKE proračunom i mjerenjem, na mjestu P2 za
simetrično opterećenje U = 400 V, S = 180 kVA, $\cos \varphi = 1$
Slika 7.17 Usporedba valnog oblika napona induciranog u mjernom svitku <i>Ms1</i> određenog MKE
proračunom i mjerenjem za nesimetrično opterećenje $U = 400 \text{ V}$, $S = 104 \text{ kVA}$, $\cos \varphi = 1$
Slika 7.18 Usporedba harmonijskog sastava napona induciranog u mjernom svitku <i>Ms1</i> određenog
MKE proračunom i mjerenjem za nesimetrično opterećenje $U = 400 \text{ V}$, $S = 180 \text{ kVA}$, $\cos \varphi = 1$
Slika 7.19 Usporedba valnog oblika napona induciranog u mjernom svitku <i>Ms5</i> određenog MKE
proračunom i mjerenjem za nesimetrično opterećenje $U = 400 \text{ V}$, $S = 104 \text{ kVA}$, $\cos \varphi = 1$
Slika 7.20 Usporedba harmonijskog sastava napona induciranog u mjernom svitku <i>Ms5</i> određenog
MKE proračunom i mjerenjem za nesimetrično opterećenje $U = 400 \text{ V}$, $S = 104 \text{ kVA}$, $\cos \varphi = 1$
Slika 7.21 Usporedba valnih oblika radijalne sile na zube određenih MKE proračunom i na osnovi
mjernja napona mjernih svitaka <i>Ms1</i> i <i>Ms5</i> za nesimetrično opterećenje U = 400 V, S = 104 kVA,
cos <i>ø</i> =1
, Slika 7.22 Usporedba harmonijskog sastava valnih oblika radijalnih sila na zube određenih MKE
proračunom i na osnovi mjernja napona mjernih svitaka <i>Ms1</i> i <i>Ms5</i> za nesimetrično opterećenje
$U = 400 \text{ V}, S = 104 \text{ kVA}, \cos\varphi = 1$
Slika 7.23 Spektar frekvencija akceleracija do 1500 Hz određen na osnovi MKE proračuna i mjerenja
na mjestu <i>P1</i> za nesimetrično opterećenje <i>U</i> = 400 V, <i>S</i> = 104 kVA, $\cos \varphi = 1$
Slika 7.24 Spektar frekvencija akceleracija do 1500 Hz određen na osnovi MKE proračuna i mjerenja
na mjestu <i>P2</i> za nesimetrično opterećenje <i>U</i> = 400 V, <i>S</i> = 104 kVA, $\cos \varphi = 1$
Slika 7.25 Spektar frekvencija akceleracija do 6000 Hz određen na osnovi MKE proračuna i mjerenja
na mjestu <i>P1</i> za nesimetrično opterećenje <i>U</i> = 400 V, <i>S</i> = 104 kVA, $\cos \varphi = 1$
Slika 7.26 Spektar frekvencija akceleracija do 6000 Hz određen na osnovi MKE proračuna i mjerenja
na mjestu <i>P2</i> za nesimetrično opterećenje <i>U</i> = 400 V, <i>S</i> = 104 kVA, $\cos \varphi = 1$
Slika 8.1 Valni oblici sile određeni mjernim svitcima za simetrično opterećenje
Slika 8.2 Svojstvena razlika valnih oblika sila u slučaju nesimetričnog električnog opterećenja uz
poklapanje valnih oblika dijametralno postavljenih svitaka
Slika 8.3 Nesimetrija valnih oblika uzrokovana poremećajem koji se razlikuje od nesimetričnog
električnog opterećenja - valni oblici dijametralno postavljenih svitaka se ne poklapaju

Slika 8.4 Dijagram toka algoritma za prepoznavanje nesimetričnog električnog opterećenja sinkronog generatora
Slika 8.5 Izlazni rezultat algoritma za otkrivanje nesimetričnog električnog opterećenja – ispravno
simetricno radno stanje
Slika 8.6 Izlazni rezultat algoritma za otkrivanje nesimetričnog električnog opterećenja – utvrđeno
nesimetrično električno opterećenje
Slika 8.7 Izlazni rezultat algoritma za otkrivanje nesimetričnog električnog opterećenja – utvrđen
poremećaj koji ne odgovara nesimetričnom električnom opterećenju 189
Slika 9.1 Komponenta radijalne sile zubi u smjeru odabrane lokacije oboda statora 191
Slika 9.2 Radijalne sile zubi na polovici stroja koja okružuje odabranu lokaciju na obodu paketa
statora pri simetričnom opterećenju S=180 kVA, $\cos \varphi$ =1, U=400 V
Slika 9.3 Komponente sila analiziranih zubi u smjeru odabrane lokacije na obodu jarma paketa statora
pri simetričnom opterećenju $S=180$ kVA, $\cos \varphi = 1$, $U=400$ V
Slika 9.4 Rezultantna radijalna sila odabrane lokacije na obodu paketa statora pri simetričnom
opterećenju $S = 180 \text{ kVA}, \cos \varphi = 1, U = 400 \text{ V}$ 193
Slika 9.5 Spektar harmonika sumarne sile u smjeru odabrane lokacije paketa statora pri simetričnom
opterećenju <i>S</i> = 180 kVA, $\cos \varphi$ = 1, <i>U</i> = 400 V
Slika 9.6 Uvećani prikaz amplituda harmonika sumarne radijalne sile (drugi harmonik djelomično
prikazan) pri simetričnom opterećeniu S=180 kVA, $\cos \sigma$ =1, U=400 V - 1, harmoniku odgovara 50 Hz.194
Slika 9.7 Radijalne sile zubi na polovici stroja koja okružuje odabranu lokaciju na obodu paketa
statora pri pesimetričnom opterećeniu $S = 104 \text{ kVA}$ cos $\boldsymbol{m} = 1$ $U = 400 \text{ V}$ 195
Slika 9.8 Komponente sila analiziranih zubi u smjeru odabrane lokacije na obodu jarma naketa statora
pri pesimetričnom opterećenju $S=104$ kVA $\cos \alpha = 1$ $U=400$ V 195
Slika 9 9 Rezultantna radijalna sila na odabranoj lokaciji oboda naketa statora pri nesimetričnom
onterećeniu $S = 1.04 \text{ kVA}$ cos $\sigma = 1.U = 400 \text{ V}$ 196
Slika 9 10 Sastav harmonika rezultantne sile u smjeru odabrane lokacije naketa statora nri
nesimetričnom onterećeniu $S = 104 \text{ kVA}$ cos $\alpha = 1.11 = 400 \text{ V}$
Slika 9 11 Povećani prikaz amplituda harmonika sumarne radijalne sile (drugi harmonik dielomično
predočen) pri simetričnom opterećenju $S=104 \text{ kVA}$ cos $m=1$ $L=400 \text{ V}$ 1 harmoniku odgovara 50 Hz 107
Slike 0.12 Usporedba spektra harmonika sumarna radijalna sila za simetrično optaraćanja $S = 180$
Sinka 9.12 Osporedoa spektra narmonika sumarne radijame sne za sinetricito opterecenje $S = 100$
k v A i nesimetricho opterecenje S = 104 k v A, uz $U = 400$ v, $T = 260$ A i $\cos \varphi = 1$ (povecani prikaz
narmonika s djelomicno predocenim drugim narmonikom)
Slika 9.13 Usporedba sastava harmonika radijalne magnetske sile i akceleracije na mjestu P2 paketa
statora za simetrično opterećenje S = 180 kVA, $\cos \varphi = 1$, $U = 400$ V (povećani prikaz
djelomičnim predočenjem harmonika na 100 i 200 Hz) 199
Slika 9.14 Usporedba sastava harmonika radijalne magnetske sile i akceleracije na mjestu P2 paketa
statora za nesimetrično električno opterećenje S = 104 kVA, $\cos \varphi$ =1, U = 400 V (povećani prikaz s
djelomičnim predočenjem harmonika na 100 i 200 Hz) 200
Slika 9.15 Dijagram toka algoritma za raspoznavanje harmonika vibracija uzrokovanih magnetskim
radijalnim silama 202
radijalnim silama
radijalnim silama
 radijalnim silama

Popis tablica

Tablica 3.1 Projektni podaci sinkronog generatora 2S 783 – 4	23
Tablica 3.2 Shema ožičenja priključne kutije s izvodima mjernih svitaka	29
Tablica 3.3 Tehničke specifikacije akcelerometra tipa CCLD 4508	36
Tablica 3.4 Tehničke specifikacije senzora brzine tipa VS – 080	38
Tablica 3.5 Tehničke specifikacije impulsnog čekića Kistler 9724A2000	39
Tablica 3.6 Tehničke specifikacije akvizicijskog modula LAN-XI 3050	41
Tablica 3.7 Tehnički podaci analizatora snage NORMA AC Power Analyzer D 5255 S	42
Tablica 3.8 Mjerna nesigurnost mjerne stanice	44
Tablica 3.9 Mjerna nesigurnost analizatora snage	44
Tablica 4.1 Razlike u detekciji kvara namota rotora, mehaničke i električne nesimetrije	62
Tablica 5.1 Veličina konačnih elemenata po dijelovima modela za EM proračune	65
Tablica 5.2 Uvjeti elektromagnetskog simulacijskog proračuna	66
Tablica 5.3 Uvjeti mehaničkog simulacijskog proračuna	70
Tablica 5.4 Pregled računatih simetričnih i električki nesimetričnih pogonskih stanja generatora	73
Tablica 5.5 Efektivne i vršne vrijednosti napona mjernih svitaka međusobno razmaknutih za $\frac{1}{2} \tau_p$	pri
različitim simetričnim opterećenjima	87
Tablica 5.6 Geometrijske veličine korištene pri određivanju odnosa $U_{Ms} - F_{rad}$	88
Tablica 5.7 Razlike vršnih vrijednosti valnih oblika sila za dva zuba međusobno razmaknuta $\frac{1}{2} \tau_p$	105
Tablica 5.8 Razlike vršnih vrijednosti valnih oblika sila za tri zuba međusobno razmaknuta $\frac{2}{3}\tau_p$	105
Tablica 5.9 Razlike maksimalnih iznosa napona i sila određenih pomoću mjernih svitaka za	
nesimetrično opterećenje S = 104 kVA, $U = 400$ V, $\cos \varphi = 1$, uz napajanje faza A-B	107
Tablica 5.10 Razlike vršnih vrijednosti sila pri različitim stanjima nesimetričnog opterećenja teme	eljem
proračunske analize za dva zuba međusobno razmaknuta $\frac{1}{2} \tau_{p}$	108
Tablica 5.11 Razlike vršnih vrijednosti sila pri različitim stanjima nesimetričnog opterećenja teme	eljem
proračunske analize za tri zuba međusobno razmaknuta $\frac{2}{3}\tau_{p}$	108
Tablica 5.12 Razlike vršnih vrijednosti valnih oblika sila za tri zuba međusobno razmaknuta $\frac{3}{2}\pi$	111
Tablica 5.13 Razlike vršnih vrijednosti sila određenih pomoću dijametralno postavljenih svitaka	114
Tablica 5.14 Vlastite frekvencije mehaničkog modela statora s kućištem	116
Tablica 5.15 Amplitude harmonika akceleracija na 100 Hz za analizirane četiri lokacije na modelu sta	tora
izračunatih za simetrična radna stanja generatora	124
Tablica 5.16 Efektivne vrijednosti akceleracija za analizirane četiri lokacije na modelu statora izračun	atih
za simetrična radna stanja generatora	124
Tablica 5.17 Amplitude harmonika akceleracija na 100 Hz za četiri analizirane lokacije na modelu sta	tora
izračunate za nesimetrična radna stanja generatora	130
Tablica 5.18 Efektivne vrijednosti akceleracija za četiri analizirane lokacije na modelu statora, izračur	nate
za nesimetrična radna stanja generatora	130
Tablica 6.1 Parametri pasivnog tereta i struje kroz otpornik I_R i prigušnicu I_L	za
analizirana simetrična pogonska stanja generatora	136
Tablica 6.2 Parametri pasivnog tereta i struje kroz otpornik I_R i prigušnicu I_L	za
analizirana nesimetrična pogonska stanja generatora	136
Tablica 6.3 Izmjerene vlastite frekvencije za centralni dio stroja	140
Tablica 6.4 Izmjerene vrijednosti induciranih napona mjernih svitaka za simetrična opterećenja	143

Prilog A1: Kôd algoritma za izračun radijalnih sila koje djeluju na zube generatora obradom induciranih napona 6 mjernih svitaka

```
clc; close all; clear all;
% 1. FAZA – ULAZNI PARAMETRI % podaci za generator 2S 783-4
u0=4*pi*0.0000001;
                      % konstanta permeabilnosti vakuuma [Vs/Am]
f=50;
                      % Frekvencija osnovnog harmonika [Hz]
Nsv=5;
                      % Broj zavoja mjernog svitka
Lsv=198;
                      % Srednja aksijalna duljina mjernog svitka [mm]
bsv=11.5;
                      % Srednja širina mjernog svitka [mm]
                      % Broj utora/zubi statora
N2=78;
Lz=402;
                      % Aksijalna duljina zuba [mm]
bz=13.85;
                      % Širina zuba pri zračnom rasporu [mm]
                      % Površina mjernog svitka [m^2]
Ssv=Lsv*bsv/1e6;
Sz=Lz*bz/1e6;
                      % Površina radijalne plohe zuba [m^2]
                      % prag prorade obavijesti električne nesimetrije [%]
F_prag_nesim=6,07;
F_prag_odstup=4.74; % prag prorade obavijesti nesimetrije dijametralno postavljenih svitaka [%]
% 1. FAZA – UČITAVANJE PODATAKA (naponi mjernih svitaka)
ImeFile_CSV_U='U_MS.csv';
                              % Naziv dokumenta u kojem se nalaze inducirani naponi mjernih svitaka
Niz_U_Ms = dlmread(ImeFile_CSV_U,',',1,1); % Učitavanje .csv podataka
NizTest=Niz U Ms(:,1);
                                      % Formiranje niza podataka
                                      % Određivanje broja učitanih podataka
N=length(NizTest);
Delta_t=(1/f)/N;
                                      % Određivanje vremenskog koraka između dva podatka
% 2. FAZA – OBRADA PODATAKA
for i=1:6
                                      % Za napon svakog od 6 učitanih mjernih svitaka
   Niz_U=-Niz_U_Ms(:,i)/Nsv;
                                         % Postavljanje napona i-tog mjernog svitka u pomoćni niz i
                                         % dijeljenje s brojem zavoja mjernog svitka
   % Integracija valnog oblika (podatak o podatak) – Izračun magnetskog toka kroz mjerni svitak
   Niz_Fi(1)=-Niz_U(1)*Delta_t;
                                                % Preuzimanje prve vrijednosti niza
   for j=2:N
                                           % Za svaki naredni podatak niza
      Niz_Fi(j)=Niz_Fi(j-1)-Niz_U(j)*Delta_t;
                                              % Zbroj prethodne vrijednosti i površine trenutne vrijednosti
   end
                                           % (integracija po vremenu)
   Fi_sr=mean(Niz_Fi);
                                                % Određivanje srednje vrijednosti (radi pomaka nule)
   Niz_Fi=Niz_Fi-Fi_sr;
                                                % Korekcija za srednju vrijednost
   Niz B Ms=Niz Fi/Ssv:
                                               % Izračun radijalne magnetske indukcije
   Niz_F_Ms_zub=1/(2*u0)*(Niz_B_Ms.^2)*Sz; % Izračun valnog oblika radijalne sile
                                             % Smještanje izračunatog valnog oblika u dvodimenzionalni niz
   Niz F Ms(:,i)= Niz F Ms zub;
end
                                          % Kraj for petlje
% 3. FAZA – SPREMANJE OBRAĐENIH PODATAKA (sile na zube)
Niz_F_Nazivi=('F_MS_A, F_MS_B, F_MS_C, F_MS_Ad, F_MS_Bd, F_MS_Cd')
fid = fopen ('F_MS.csv', 'w'); % Otvaranje dokumenta u načinu pisanja uz prebrisivanje postojećeg sadržaja
fdisp (fid, Niz F Nazivi); fclose (fid);
                                     % Upis naziva stupaca u 'F MS.csv'
dlmwrite('F_MS.csv',Niz_F_Ms, '-append', 'delimiter', ',', 'roffset',1);
                                                                      % Upis podataka u dokument
fprintf('\n Sile za 6 mjernih svitaka izračunate su i spremljene u dokument F_MS.csv \n'); % Ispisna poruka
```

Prilog A2: Kôd algoritma za utvrđivanje električne nesimetrije analizom

radijalnih sila koje djeluju ne zube međusobno razmaknute za $^{2}\!\!\!/_{3}\,\tau_{p}$

% 2. FAZA – NASTAVAK OBRADE F	PODATAKA		
Niz_F_A=Niz_F_Ms(:,1);	% Formiranje niza za mjerni svitak A		
Niz_F_B=Niz_F_Ms(:,2);	% Formiranje niza za mjerni svitak B		
Niz_F_C=Niz_F_Ms(:,3);	% Formiranje niza za mjerni svitak C		
Niz_F_Ad=Niz_F_Ms(:,4);	% Formiranje niza za dijametralno postavljen mjerni svitak A		
Niz_F_Bd=Niz_F_Ms(:,5);	% Formiranje niza za dijametralno postavljen mjerni svitak B		
Niz_F_Cd=Niz_F_Ms(:,6);	% Formiranje niza za dijametralno postavljen mjerni svitak C		
Niz_F_Vrh(1)= max(Niz_F_A);	% Određivanje vršnog iznosa iz niza za mjerni svitak A		
Niz_F_Vrh (2)= max(Niz_F_B);	% Određivanje vršnog iznosa iz niza za mjerni svitak B		
Niz_F_Vrh (3)= max(Niz_F_C)	% Određivanje vršnog iznosa iz niza za mjerni svitak C		
Maks_abc = max(Niz_F_Vrh)	% Određivanje maksimalnog iznosa od tri vršne vrijednosti		
Min_abc = min(Niz_F_ Vrh)	% Određivanje minimumalnog iznosa od tri vršne vrijednosti		
Delta_abc= Maks_abc- Min_abc	% Određivanje razlike između maksimalnog i minimalnog vrha		
Delta_abc_p= Delta_abc/ Min_abc*	100 % Određivanje postotnog odstupanja vrhova sila		
Niz_F_A_r= Niz_F_A- Niz_F_Ad;	% Razlika dijametralno postavljenih mjernih svitaka A		
Niz F B r= Niz F B- Niz F Bd;	% Razlika dijametralno postavljenih mjernih svitaka B		
Niz F C r= Niz F C- Niz F Cd;	% Razlika dijametralno postavljenih mjernih svitaka C		
Niz F Odstup p(1)= max(Niz F A	r) / Niz F Vrh(1)*100; % Određivanje makimalnog odstupanja svitaka A		
Niz F Odstup p(2)= max(Niz F B I) / Niz F Vrh(2)*100; % Određivanje makimalnog odstupanja svitaka B		
Niz F Odstup p(3)= max(Niz F C r) / Niz F Vrh(3)*100 % Određivanje makimalnog odstupanja svitaka C		
Maks Dia = max(Niz F Odstup p)	% Određivanje maksimalnog iznosa odstupanja dijametralnih sila		
% 3. FAZA – UTVRĐIVANJE VRSTE F	POGONSKOG STANJA		
if (Maks Dia > F prag odstup) % A	.ko nema nedozvoljenog odstupanja između dijametralnih svitaka		
Tekst ispis = ({['POREMEĆALNUE ELEKTRIČNO NESIMETRIČNO OPTEREĆENJE']. ['RAZLIKA DIJAMETRALNIH			
$\Gamma = \{1, 1, 2, 2, 3, 1, 3, 2, 3, 3, 4, 3, 1, 3, 2, 3, 3, 4, 3, 1, 3, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$	ELEKTRICNU NESIWETRICNU UPTERECENJE , RAZLIKA DIJAWETRALNIH		
SILA OD: ', num2s	tr(Maks_Dia, '%4.1f'), ' %']}); % Tekst – pronađena nesimetrija		
SILA OD: ', num2s	tr(Maks_Dia, '%4.1f') , ' %']}); % Tekst – pronađena nesimetrija % Ako detektirano odstupanje dijametralnih svitaka		
else if (Delta abc p> F prag nesim)	tr(Maks_Dia, '%4.1f'), ' %']}); % Tekst – pronađena nesimetrija % Ako detektirano odstupanje dijametralnih svitaka % Ako postoji razlika koja indicira nesimetriju struja po fazama		
else if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI	 ************************************		
else if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f')	 ************************************		
else if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f') , else	 KAZLIKA DIJAMETRICKO OPTERECENJE J, [KAZLIKA DIJAMETRALNIH tr(Maks_Dia, '%4.1f'), ' %']}); % Tekst – pronađena nesimetrija % Ako detektirano odstupanje dijametralnih svitaka % Ako postoji razlika koja indicira nesimetriju struja po fazama NO NESIMETRIČNO OPTEREĆENJE'], ['RAZLIKA VRHOVA SILA OD: ', ,' %']}); % tekst – pronađena nesimetrija % Tekst-pronađena nesimetrija % Ako je razlika ispod postavljenog praga aktivacije 		
else if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p	 Telektrikicho Nesimetrikicho OPTerecende J, [KAZLIKA DIJAMETRALINIH tr(Maks_Dia, '%4.1f'), ' %']}); % Tekst – pronađena nesimetrija % Ako detektirano odstupanje dijametralnih svitaka % Ako postoji razlika koja indicira nesimetriju struja po fazama NO NESIMETRIČNO OPTEREĆENJE'],['RAZLIKA VRHOVA SILA OD: ', ' %']}); % tekst – pronađena nesimetrija % Tekst-pronađena nesimetrija % Ako je razlika ispod postavljenog praga aktivacije Ogonsko stanje']}: % Tekst – nema nesimetrije 		
else if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p	 VO NESIMETRIČNO OPTEREČENJE J, [KAZLIKA DIJAMETRALNIH tr(Maks_Dia, '%4.1f'), ' %']}); % Tekst – pronađena nesimetrija % Ako detektirano odstupanje dijametralnih svitaka % Ako postoji razlika koja indicira nesimetriju struja po fazama NO NESIMETRIČNO OPTEREĆENJE'],['RAZLIKA VRHOVA SILA OD: ', ' %']}); % tekst – pronađena nesimetrija % Tekst-pronađena nesimetrija % Ako je razlika ispod postavljenog praga aktivacije ogonsko stanje']}); % Tekst – nema nesimetrije 		
else if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end	 by the second standard standar		
else if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end	 Check (Construction of the formation of the form		
else if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA – PRIKAZ REZULTATA	 Check Construction (Construction of the recent) is the recent of the recent o		
else if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA – PRIKAZ REZULTATA fprintf('\n_%s', Tekst_ispis):	<pre>% Ispisna poruka u glavnom sučelju Octave programa</pre>		
<pre>sile se if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA – PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta t:1/f-Delta t]*1000;</pre>	<pre>% Ispisna poruka u glavnom sučelju Octave programa % Formiranje vremenskog niza u milisekundama</pre>		
<pre>sile se if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA - PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta_t:1/f- Delta_t]*1000; figure: hold on: grid:</pre>	 % Provide the second of the sec		
else if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA – PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta_t:1/f- Delta_t]*1000; figure; hold on; grid; plot(t.Niz_E_C. 'Color', [255/255.192	<pre>% Ispisna poruka u glavnom sučelju Octave programa % Formiranje grafičkog prozora za iscrtavanje valnih oblika % Definiranje grafičkog prozora za iscrtavanje valnih oblika % Ispisna C.</pre>		
<pre>sile se if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA - PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta_t:1/f-Delta_t]*1000; figure; hold on; grid; plot(t,Niz_F_C, 'Color', [255/255,192 plot(t.Niz_F_C, 'color', [255/255,192 plot(t.Niz_F_C, 'color', [152/255]);</pre>	<pre>% Ispisna poruka u glavnom sučelju Octave programa % Formiranje grafičkog prozora za iscrtavanje valnih oblika % Definiranje grafičkog prozora za iscrtavanje valnih oblika % Definiranje grafičkog prozora za iscrtavanje valnih oblika % Oztanje valnog oblika – Sila zuba Cd</pre>		
<pre>sile se if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA – PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta_t:1/f- Delta_t]*1000; figure; hold on; grid; plot(t,Niz_F_C, 'Color', [255/255,192 plot(t,Niz_F_Cd,','Color', [152/255, plot(t Niz_F_B, 'Color' [0, 176/255, 255, 102]</pre>	<pre>% Ispisna poruka u glavnom sučelju Octave programa % Formiranje vremenskog niza u milisekundama % Definiranje grafičkog prozora za iscrtavanje valnih oblika % Definiranje grafičkog prozora za iscrtavanje valnih oblika % Definiranje grafičkog prozora za iscrtavanje valnih oblika % Ortanje valnog oblika – Sila zuba Cd 40/2551 'LineWidth' 2): % Crtanje valnog oblika – Sila zuba B</pre>		
<pre>sile se if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA - PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta_t:1/f- Delta_t]*1000; figure; hold on; grid; plot(t,Niz_F_C, 'Color', [255/255,192 plot(t,Niz_F_B, 'Color', [0,176/255,2- plot(t,Niz_F_B, 'Color', [0,176/255,2- plot(t Niz_F_B, 'Color', [0,176/255,2-</pre>	<pre>% Ispisna poruka u glavnom sučelju Octave programa % Formiranje vremenskog niza u milisekundama % Definiranje grafičkog prozora za iscrtavanje valnih oblika % Definiranje grafičkog prozora za iscrtavanje valnih oblika % Crtanje valnog oblika – Sila zuba B 5 96/2551 'LineWidth',2); % Crtanje valnog oblika – Sila zuba B % Crtanje valnog oblika – Sila zuba B % Crtanje valnog oblika – Sila zuba B</pre>		
<pre>sile se if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA - PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta_t:1/f- Delta_t]*1000; figure; hold on; grid; plot(t,Niz_F_C, 'Color',[255/255,192 plot(t,Niz_F_B, 'Color',[0,176/255,2- plot(t,Niz_F_Bd, '', 'Color',[0,32/25 plot(t,Niz_F_Bd, '','Color',[0,32/25 plot(t Niz_F_A 'Color',[255/255,124</pre>	 % Ispisna poruka u glavnom sučelju Octave programa % Formiranje grafičkog prozora za iscrtavanje valnih oblika % Definiranje grafičkog prozora za iscrtavanje valnih oblika % Crtanje valnog oblika – Sila zuba C % Crtanje valnog oblika – Sila zuba Bd % Crtanje valnog oblika – Sila zuba Bd 		
<pre>sile se if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA - PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta_t:1/f- Delta_t]*1000; figure; hold on; grid; plot(t,Niz_F_C, 'Color', [255/255,192 plot(t,Niz_F_Bd, '', 'Color', [152/255, plot(t,Niz_F_Bd, '', 'Color', [0,32/25 plot(t,Niz_F_A, 'Color', [255/255,124 plot(t,Niz_F_A, 'Color', [255/255,124 plot(t,Niz_F_A, 'Color', [255/255,124 plot(t,Niz_F_A, 'Color', [255/255,124</pre>	<pre>% Ispisna poruka u glavnom sučelju Octave programa % Ako je razlika ispod postavljenog praga aktivacije ogonsko stanje']}); % Tekst – nema nesimetrija % Ako je razlika ispod postavljenog praga aktivacije ogonsko stanje']}); % Tekst – nema nesimetrije</pre>		
<pre>sile se if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA - PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta_t:1/f- Delta_t]*1000; figure; hold on; grid; plot(t,Niz_F_Cd, '', 'Color', [152/255, 192 plot(t,Niz_F_Bd, '', 'Color', [0,32/25 plot(t,Niz_F_Ad, '', 'Color', [192/255 XIm=xlim: YIm=xlim: X_x=XIm(2); X</pre>	<pre>% lspisna poruka u glavnom sučelju Octave programa % Ako je razlika ispod postavljenog praga aktivacije ogonsko stanje']}); % Tekst – nema nesimetrija % Ako je razlika ispod postavljenog praga aktivacije ogonsko stanje']}); % Tekst – nema nesimetrija % Ako je razlika ispod postavljenog praga aktivacije ogonsko stanje']}); % Tekst – nema nesimetrija % Definiranje vremenskog niza u milisekundama % Definiranje grafičkog prozora za iscrtavanje valnih oblika /255,0],'LineWidth',2); % Crtanje valnog oblika – Sila zuba C 7/2/255,7/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba B 5,96/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba B 5,96/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba A 6,0,0],'LineWidth',2); % Crtanje valnog oblika – Sila zuba A 7,2,2,3,*,Ylm(2)/10; X x=-,Ylm(2)/8; X y=-Ylm(2),% Lokacija koordinata</pre>		
<pre>sile se if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA - PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta_t:1/f- Delta_t]*1000; figure; hold on; grid; plot(t,Niz_F_Cd,'','Color',[152/255,192 plot(t,Niz_F_Bd, '','Color',[0,32/25 plot(t,Niz_F_Ad, '','Color',[192/255,124 plot(t,Niz_F_Ad, '','Color',[192/255 Xlm=xlim; Ylm=ylim; X_x=Xlm(2); X_x xlabel ('t_fms]' 'Position' [X x X yl):</pre>	<pre>% Ispisna poruka u glavnom sučelju Octave programa % Ako je razlika ispod postavljenog praga aktivacije ogonsko stanje']}); % Tekst – nema nesimetrija % Ako je razlika ispod postavljenog praga aktivacije ogonsko stanje']}); % Tekst – nema nesimetrije</pre> % Ispisna poruka u glavnom sučelju Octave programa % Formiranje vremenskog niza u milisekundama % Definiranje grafičkog prozora za iscrtavanje valnih oblika /255,0],'LineWidth',2); % Crtanje valnog oblika – Sila zuba C 40/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba C 40/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba B 5,96/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba B 5,96/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba A 6,0,0],'LineWidth',2); % Crtanje valnog oblika – Sila zuba A 7,2/3*YIm(2)/10; Y_x=-XIm(2)/8; Y_y=YIm(2); % Lokacije koordinata 7,2/3*YIm(2)/10; Y_x=-XIm(2)/8; Y_y=YIm(2); % Lokacije koordinata		
<pre>sile se if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA - PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta_t:1/f- Delta_t]*1000; figure; hold on; grid; plot(t,Niz_F_C, 'Color',[255/255,192 plot(t,Niz_F_Bd, '','Color',[152/255, plot(t,Niz_F_Bd, '','Color',[0,32/25 plot(t,Niz_F_Ad, '','Color',[192/255,24 plot(t,Niz_F_Ad, '','Color',[192/255,24 plot(t,Niz_F_Ad, '','Color',[192/255,25] Xlm=xlim; Ylm=ylim; X_x=Xlm(2); X_xlabel ('t [ms]','Position',[X_x X_y]); title(Tekst_ispis):</pre>	* LEEKTRICHO NESIMETRICHO OPTERECENJE J, [KAZLIKA DIJAMETRALINIH tr(Maks_Dia, '%4.1f'), '%']}); % Tekst – pronađena nesimetrija % Ako detektirano odstupanje dijametralnih svitaka % Ako postoji razlika koja indicira nesimetriju struja po fazama NO NESIMETRIČNO OPTEREĆENJE'], ['RAZLIKA VRHOVA SILA OD: ', .' %']}); % tekst – pronađena nesimetrija % Tekst-pronađena nesimetrija % Ako je razlika ispod postavljenog praga aktivacije ogonsko stanje']}; % Tekst – nema nesimetrije % Ispisna poruka u glavnom sučelju Octave programa % Formiranje vremenskog niza u milisekundama % Definiranje grafičkog prozora za iscrtavanje valnih oblika /255,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba C .72/255,7/255], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba C 40/255], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba B 5,96/255], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0], 'LineWidth',2); % Crtanje valnog oblika – Sila zuba A RGB y=-2/3*Ylm(2)/10; Y_x=-Xlm(2)/8; Y_y=Ylm(2); % Lokacije koordinata ylabel ('F [N]', 'Position',[Y_x Y_y], 'Rotation',0); % Postavljanje natpisa osi		
<pre>sile se if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA - PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta_t:1/f- Delta_t]*1000; figure; hold on; grid; plot(t,Niz_F_C, 'Color', [255/255,192 plot(t,Niz_F_Cd,'', 'Color', [152/255 plot(t,Niz_F_Bd, '', 'Color', [152/255 plot(t,Niz_F_Bd, '', 'Color', [0,32/25 plot(t,Niz_F_A, 'Color', [0,32/25 plot(t,Niz_F_Ad, '', 'Color', [192/255 Xlm=xlim; Ylm=ylim; X_x=Xlm(2); X_xlabel ('t [ms]', 'Position', [X_x X_y]); title(Tekst_ispis); legend ('Erad A' 'Erad B' 'Erad C' 'Erad')</pre>	<pre>% Ispisna poruka u glavnom sučelju Octave programa % Ako je razlika ispod postavljenog praga aktivacije ogonsko stanje']}); % Tekst – nema nesimetrija % Ako je razlika ispod postavljenog praga aktivacije ogonsko stanje']}); % Tekst – nema nesimetrije</pre> % Ispisna poruka u glavnom sučelju Octave programa % Formiranje vremenskog niza u milisekundama % Definiranje grafičkog prozora za iscrtavanje valnih oblika /255,0],'LineWidth',2); % Crtanje valnog oblika – Sila zuba C /72/255,7/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba C 40/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba B 5,96/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba A i,0,0],'LineWidth',2); % Crt		
<pre>sile if (Delta_abc_p> F_prag_nesim) Tekst_ispis = ({['ELEKTRIČI num2str(Delta_abc_p, '%4.1f'), else Tekst_ispis = ({['Regularno p end end % 4. FAZA – PRIKAZ REZULTATA fprintf('\n %s', Tekst_ispis); t=[0: Delta_t:1/f- Delta_t]*1000; figure; hold on; grid; plot(t,Niz_F_C, 'Color', [255/255,192 plot(t,Niz_F_Cd,'', 'Color', [152/255, plot(t,Niz_F_Bd, '', 'Color', [152/255, plot(t,Niz_F_Bd, '', 'Color', [0,32/25 plot(t,Niz_F_Ad, '', 'Color', [192/255 Xlm=xlim; Ylm=ylim; X_x=Xlm(2); X_ xlabel ('t [ms]', 'Position', [X_x X_y]); title(Tekst_ispis); legend ('Frad A', 'Frad B', 'Frad C', 'Fra for intf('\n Krai \n'); % Icnis teket</pre>	* LEXARICNO NESIMETRICNO OPTERECENJE J, [RAZLIKA DIJAMETRALINH tr(Maks_Dia, '%4.1f'), '%']}); % Tekst – pronađena nesimetrija % Ako detektirano odstupanje dijametralnih svitaka % Ako postoji razlika koja indicira nesimetriju struja po fazama NO NESIMETRIČNO OPTEREĆENJE'],['RAZLIKA VRHOVA SILA OD: ', '%']}); % tekst – pronađena nesimetrija % Tekst-pronađena nesimetrija % Ako je razlika ispod postavljenog praga aktivacije ogonsko stanje']}); % Tekst – nema nesimetrije % Ispisna poruka u glavnom sučelju Octave programa % Formiranje vremenskog niza u milisekundama % Definiranje grafičkog prozora za iscrtavanje valnih oblika /255,0],'LineWidth',2); % Crtanje valnog oblika – Sila zuba C 72/255,7/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba Cd 40/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba B 5,96/255],'LineWidth',2); % Crtanje valnog oblika – Sila zuba A 6,0,0],'LineWidth',2); % Crtanje valnog oblika – Sil		

Prilog B1.1: Kôd algoritma za izračun sila na zube obuhvaćene prapolom generatora obradom induciranih napona mjernih svitaka

```
clc; close all; clear all;
% 1. FAZA – ULAZNI PARAMETRI % podaci za generator 2S 783-4
u0=4*pi*0.0000001;
                      % Konstanta permeabilnosti vakuuma [Vs/Am]
f=50;
                      % Frekvencija osnovnog harmonika [Hz]
Nsv=5;
                      % Broj zavoja mjernog svitka
Lsv=198;
                      % Srednja aksijalna duljina mjernog svitka [mm]
bsv=11.5;
                      % Srednja širina mjernog svitka [mm]
                      % Broj utora/zubi statora
N2=78;
Lz=402;
                      % Aksijalna duljina zuba [mm]
                      % Širina zuba pri zračnom rasporu [mm]
bz=13.85;
                      % Površina svitka [m^2]
Ssv=Lsv*bsv/1e6
Sz=Lz*bz; /1e6
                      % Površina radijalne plohe zuba [m^2]
Nzubi=39;
                      % Broj zubi prapola
% 1. FAZA – UČITAVANJE PODATAKA (naponi mjernih svitaka)
                                      % Naziv dokumenta u kojem se nalaze inducirani naponi svitaka
ImeFile_CSV_U='U_MS_prapol.csv';
Niz_U_Ms = dlmread(ImeFile_CSV_U,',',1,1); % Učitavanje .csv podataka
NizTest=Niz U Ms(:,1);
                                      % Formiranje niza podataka
N=length(NizTest);
                                      % Određivanje broja učitanih podataka
Delta t=(1/f)/N;
                                      % Određivanje vremenskog koraka između dva podatka snimka
% 2. FAZA – OBRADA PODATAKA
for i=1:Nzubi
                                         % Za napon svakog mjernog svitaka prapola
   Niz_U=-Niz_U_Ms(:,i)/Nsv;
                                            % Postavljanje napona i-tog mjernog svitka u pomoćni niz i
                                            % dijeljenje s brojem zavoja svitka
   % Integracija valnog oblika (podatak o podatak) – izračun magnetskog toka kroz svitak
   Niz Fi(1)=-Niz U(1)*Delta t;
                                           % Preuzimanje prve vrijednosti niza
   for j=2:N
                                           % Za svaki naredni podatak niza
      Niz_Fi(j)=Niz_Fi(j-1)-Niz_U(j)*Delta_t;
                                              % Zbroj prethodne vrijednosti i površine trenutne vrijednosti
                                                 % (integracija po vremenu)
   end
                                            % Određivanje srednje vrijednosti (radi pomaka nule)
   Fi_sr=mean(Niz_Fi);
   Niz_Fi=Niz_Fi-Fi_sr;
                                            % Korekcija za srednju vrijednost
   Niz B Ms=Niz Fi/Ssv;
                                             % Izračun radijalne magnetske indukcije
   Niz F Ms zub=1/(2*u0)*(Niz Bsv.^2)*Sz; % Izračun valnog oblika radijalne sile
   Niz_F_Ms(:,i)= Niz_F_Ms_zub;
                                            % Smještanje izračunatog valnog oblika u dvodimenzionalni niz
end
                                     % Kraj for petlje
% 3. FAZA - SPREMANJE OBRAĐENIH PODATAKA (sile na zube)
Niz_F_Nazivi=('Valni oblici: sile zuba prapola [N ]'); % Formiranje naziva
fid = fopen ('F_zubi_prapol.csv', 'w');
                                     % Otvaranje dokumenta u načinu pisanja uz prebrisivanje
fdisp (fid, Niz_F_Nazivi); fclose (fid);
                                      % Upis naziva stupaca
dlmwrite('F_zubi_prapol.csv',Niz_F_Ms, '-append', 'delimiter', ',', 'roffset',1); % Upis podataka u dokument
fprintf('\n Sile za zube prapola izračunate su i spremljene u dokument F zubi prapol.csv\n'); % Ispisna
                                                                                            poruka
```

Prilog B1.2: Kôd algoritma za izračun sila na zube obuhvaćene prapolom

generatora za prazni hod generatora

```
clc; close all; clear all;
% 1. FAZA – ULAZNI PARAMETRI % podaci za generator 2S 783-4
u0=4*pi*0.0000001; % Konstanta permeabilnosti vakuuma [Vs/Am]
p=2;
                      % Broj pari polova
                      % Frekvencija osnovnog harmonika napona [Hz]
f=50;
N ms=6;
                      % Broj mjernih svitaka
N2=78;
                      % Broj utora/zubi statora
Nzubi=39;
                      % Broj zubi prapola
                      % Broj zavoja mjernog svitka
Nsv=5;
Lsv=198;
                      % Srednja aksijalna duljina mjernog svitka [mm]
                      % Srednja širina mjernog svitka [mm]
bsv=11.5:
Lz=402;
                      % Aksijalna duljina zuba [mm]
bz=13.85;
                      % Širina zuba pri zračnom rasporu [mm]
Ssv=Lsv*bsv/1e6
                      % Površina mjernog svitka [m^2]
                      % Površina radijalne plohe zuba [m^2]
Sz=Lz*bz; /1e6
w=2*pi*f;
                       % Kutna brzina [rad/s]
Delta_ang=2*pi/N2*p; % Električna kutna razlika između dva zuba [rad]
% 1. FAZA – UČITAVANJE PODATAKA (naponi mjernih svitaka)
ImeFile CSV U='U MS PH.csv'; % Naziv dokumenta u kojem se nalaze inducirani naponi mjernih svitaka
Niz_U_Ms = dlmread(ImeFile_CSV_U,',',1,1); % Učitavanje .csv podataka
N=length(Niz_U_Ms(:,1));
                                      % Određivanje broja učitanih podataka
Delta_t=(1/f)/N;
                                      % Određivanje vremenskog koraka između dva podatka [s]
k=1:N/2;
                                       % Raspon harmoničkih članova
% 2. FAZA – OBRADA PODATAKA
Niz F mag=zeros(N/2,N ms);
                                         % Inicijalizacija niza
for i=1:N ms
                                         % Za napon svakog mjernog svitka prapola
   Niz_U=-Niz_U_Ms(:,i)/Nsv;
                                         % Postavljanje napona zavoja i-tog mjernog svitka u pomoćni niz
  % Integracija valnog oblika (podatak o podatak) – Izračun magnetskog toka kroz mjerni svitak
                                           % Preuzimanje prve vrijednosti niza
   Niz_Fi(1)=-Niz_U(1)*Delta_t;
   for j=2:N
                                               % Za svaki naredni podatak niza
      Niz_Fi(j)=Niz_Fi(j-1)-Niz_U(j)*Delta_t;
                                              % Zbroj prethodne vrijednosti i površine trenutne vrijednosti
                                                 % (integracija po vremenu)
   end
                                            % Određivanje srednje vrijednosti (radi pomaka nule)
   Fi sr=mean(Niz Fi):
   Niz_Fi=Niz_Fi'-Fi_sr;
                                            % Korekcija za srednju vrijednost
                                             % Izračun radijalne magnetske indukcije
   Niz B Ms=Niz Fi/Ssv;
   Niz_F_Ms_zub=1/(2*u0)*(Niz_Bsv.^2)*Sz; % Izračun valnog oblika radijalne sile
  % Rastav valnog oblika pomoću brze Fourierove transformacije
   F_fft=fft(Niz_F_Ms_zub,N);
                                           % Rastav valnog oblika na Fourierove članove
   Niz_F_0(i) = F_fft(1)/N;
                                            % Izdvajanje istosmjerne vrijednosti
   F_am=2*real(F_fft(k+1))/N;
                                            % Izdvajanje elemenata realnog niza
   F bm=-2*imag(F fft(k+1))/N;
                                           % Izdvajanje elemenata imaginarnih članova
   Niz_F_mag(:,i)=sqrt(F_am.^2+ F_bm.^2); % Pohrana amplituda harmonika sila i skupni niz
   if (i==1)
                                            % Ako se radi o 1. podatku
     F_ang=atan2(F_bm,F_am);
                                              % Utvrđivanje faznih zakreta harmonika sile
  end
                                     % Kraj for petlje
end
```

% Srednji iznosi amplituda na t F_0_sr=mean(Niz_F_0); F_mag_sr=mean(Niz_F_mag,2	emelju učitanih N_ms % Određivanje srec); % Određivanje sre	podataka Inje vrijednosti istosmjerne dnjih vrijednosti amplituda	kompnente po harmonicima
% Određivanje valnih oblika za Niz_F_zubi=zeros(N,Nzubi); I= ones(N,1);	zube prapola temeljer % Definiranje niza za v % Jedinični niz	n električnog kutnog pomal ralne oblike sila koje djeluju	ka između dva zuba na prapol broj zuba
for i=1:Nzubi ang=-w*t'*k +(i-1)*Delta_ar trenutak t	% Za svaki zub prapola ng*k + I*(F_ang+pi/2)';	n % Određivanje kuteva po h	armonicima za svaki
Niz_F_zubi(:,i)=F_0_sr+sin(a end	ng)*F_mag_sr;	% Određivanje valnog oblil	ka sile
% 3. FAZA – SPREMANJE OBR Niz_F_Nazivi=('Valni oblici: sile fid = fopen ('F_zubi_prapol.csv fdisp (fid, Niz_F_Nazivi); fclos dlmwrite('F_zubi_prapol.csv', dokument	AÐENIH PODATAKA (si 2 zubi prapola [N]'); ', 'w'); % Otvaranje e (fid); % Upis naziv Niz_F_zubi, '-append',	le na zube) e dokumenta u načinu pisan va stupaca 'delimiter', ',', 'roffset',1);	ja uz brisanje % Upis podataka u
fprintf('\n Sile za zube prapola poruka	izračunate su i spremlj	ene u dokument F_zubi_pr	apol.csv\n'); % Ispisna

Prilog B2: Kôd algoritma za određivanje sile koja djeluje na odabrano mjesto vanjskog oboda paketa statora vektorskim zbrajanjem radijalnih sila zubi

```
clc; close all; clear all;
% 1. FAZA - INICIJALNI PARAMETRI % podaci za generator 2S 783-4
N2=78;
                          % Broj utora/zubi statora
Nzubi=39;
                          % Broj zubi prapola
alfa Zub1= 25*360/N2; % Kut između akcelerometra i zuba kojem odgovara prva učitana sila [deg]
% 1. FAZA - UČITAVANJE PODATAKA (valni oblici sila po zubima u zoni prapola)
ImeFile_CSV_F='F_zubi_prapol.csv'; % Naziv dokumenta u kojem se nalaze radijalne sile na zube prapola
Niz_F= dlmread(ImeFile_CSV_F,',',1,1); % Učitavanje .csv podataka – valni oblici sila prapola [N]
N=length(Niz_F(:,1));
                                % Određivanje broja učitanih vremenskih podataka sile
TauS=360/N2;
                                % Kut između dva zuba / utorski korak zuba statora [deg]
N2 pola=N2/2;
                                % Broj zubi na polovini stroja
N2 cetvrtina=floor(N2 pola/2) % Cijeli broj zubi unutar četvrtine stroja
                              % Ostatak dijeljenja kojim se utvrđuje ima li polovica stroja neparan broj zubi
Nepar=mod(N2,4);
% 2. FAZA - OBRADA PODATAKA
% Definiranje iznosa radijalnih sila na segmentu polovice stroja
N prapol seg=(N2 pola)/Nzubi; % Broj prapol segmenata unutar polovice stroja (uvijek je cijeli broj)
                                 % Ako se unutar polovice stroja nalazi više segmenata veličine prapola
if (N_prapol_seg>1)
 for j=2:N_prapol_seg
                                 % Za svaku dodatnu sekciju prapola
   for i=1:Nzubi
                                      % Za svaki zub prapola
                                      % Definiranje rednog broja podatka
     k=(j-1)*Nzubi+i;
                                      % Definiranje iznosa radijalne sile dotičnog zuba
     Niz_F(:,k)=Niz_F(:,i);
   end
 end
end
% Određivanje odmaka akcelerometra od centra polovice zubi
alfa_acc= alfa_Zub1-(TauS*(N2_pola-1)/2)) % Kut akcelerometra u odnosu na sredinu razmatrane sekcije
zubi
Nzub pomak=floor(alfa acc/TauS)
                                            % Broj cijelih zubi između akcelerometra i sredine sekcije zuba
Kut_acc=alfa_acc-Nzub_pomak*TauS;
                                           % Ostatak kuta pomaka
% Usklađivanje poretka sila u nizu s pozicijom akcelerometra
if (Nzub pomak>0) % Ako se akcelerometar ne nalazi na centru razmatrane sekcije zubi
Niz F=circshift (Niz F, [0,-Nzub pomak]); % Cirkularna zamjena pozicija (indeksa) sila na zube u nizu
end
```

% Određivanje kuteva između zubi i pozicije akcelerometra
<pre>if (Nepar>0) % Ako prapol zona sadrži neparan broj zubi Kut_Start=-N2_cetvrtina*TauS-Kut_acc; % Kut između početnog zuba i akcelerometra Kut_Stop= N2_cetvrtina *TauS-Kut_acc; % Kut između završnog zuba i akcelerometra else % Ako prapol zona sadrži paran broj zubi Kut_Start=-(N2_cetvrtina -1/2)*TauS-Kut_acc; % Kut između početnog zuba i akcelerometra Kut_Stop=(N2_cetvrtina -1/2)*TauS-Kut_acc; % Kut između završnog zuba i akcelerometra end Kut_Zub=[Kut_Start:TauS:Kut_Stop]; % Formiranje niza kuteva [deg]; Kut_Zub rad= Kut_Zub*ni/180;</pre>
% Određivanje iznosa ukupne radijalne sile koja djeluje na poziciji akcelerometra
Niz_F_a=Niz_F.*cos(Kut_Zub_rad); for i=1:N% Određivanje komponenti sila koja djeluju u smjeru akcelerometra % Za svaki vremenski trenutak % Zbrajanje iznosa komponenti koje djeluju u smjeru akcelerometra end
% 3. FAZA - ZAPIS PODATAKA
fid = fopen ('F_suma.csv', 'w'); % Otvaranje dokumenta u načinu pisanja uz prebrisivanje postojećeg sadržaja fdisp (fid, 'F_suma [N]'); fclose (fid); % Upis naslova dlmwrite('F_suma.csv', F_suma, '-append', 'delimiter', ',', 'roffset',1); % Upis niza F_suma u dokument
fprintf('\n Izračun sumarne sile završen. \n Podaci zapisani u dokument naziva: f_suma.csv \n'); % Ispis teksta

```
% 1. FAZA - INICIJALNI PARAMETRI % podaci za generator 2S 783-4
T=0.02;
                       % Ukupno vrijeme snimka sila [s]
f1f=1/T;
                       % Bazna frekvencija harmonika sila [Hz]
                       % Bazna frekvencija harmonika akceleracija [Hz]
f1a=1;
                       % Prag prorade istaknutog harmonika sile [%]
F_prag_p =8.36;
                       % Prag prorade istaknutog harmonika akceleracija [%]
a_prag_p =8.36;
                       % Raspon susjednih frekvencija akceleracija koji se razmatra provjerom [Hz]
f_raspon=8* f1a;
f prikaz=6400
                       % Raspon frekvencija za grafički prikaz [Hz]
% 1. FAZA - UČITAVANJE PODATAKA (valni oblici sila po zubima i spektar frekvencija akceleracija paketa)
ImeFile_CSV_F='F_suma.csv'; % Naziv dokumenta u kojem se nalaz valni oblik sumarne sile
ImeFile CSV a='a paket.csv'; % Naziv dokumenta u kojem se nalaze harmonici akceleracije paketa
F_suma = dlmread(ImeFile_CSV_F,',',1,1); % Učitavanje .csv podataka – valni oblik sumarne sile [N]
a_mag = dlmread(ImeFile_CSV_a,',',1,1); % Učitavanje .csv podataka – amplitude akceleracije [m/s^2]
% 2. FAZA - OBRADA PODATAKA
N=length(F suma);
                                  % Određivanje broja učitanih vremenskih podataka sile
N F=N/2+1;
                                  % Broj harmoničkih članova sile
                                  % Određivanje broja učitanih harmonika akceleracije
N_a= length(a_mag);
                                  % Definiranje niza raspona harmoničkih članova sile
k_F=1:N_F;
k_a=1: N_a ;
                                  % Definiranje niza raspona harmoničkih članova akceleracije
f_F=f1f* k_F;
                                  % Formiranje niza frekvencija spektra harmonika sile
                                  % Formiranje niza frekvencija spektra harmonika akceleracije
f_a=f1a* k_a;
% Određivanje amplituda harmonika
% Brza Fourierova analiza
F_fft=fft(F_suma,N);
                                      % Rastav valnog oblika na Fourierove članove
F_0 = F_ft(1)/N;
                                      % Izdvajanje istosmjerne vrijednosti
F_am=2*real(F_fft(k_F+1))/N;
                                      % Izdvajanje elemenata članova realnog niza
F_bm=2*imag(F_fft(k_F+1))/N;
                                      % Izdvajanje elemenata članova imaginarnog niza
F_mag=sqrt(F_am.^2+ F_bm.^2);
                                     % Utvrđivanje amplituda harmonika sila
% 3. FAZA - USPOREDBA PODATAKA
% Apsolutni prag vrijednosti za usporedbu podataka
F_prag= F_mag(1)*F_prag_p/100; % Definiranje graničnog iznosa sile u [N]
h a1=find(f a==(f1f));
                                  % Pronalazak indeksa koji odgovara frekvenciji osnovnog harmonika sile
a_prag= a_mag(h_a1)*a_prag_p/100; % Definiranje graničnog iznosa akceleracije u [m/s^2]
for i=1:N a
                                     % Za svaki harmonik akceleracije
   if (a_mag(i)< a_prag)</pre>
                                    % Ako harmonik akceleracije ima amplitudu manju od praga
       a_mag(i)=0;
                                        % Postavi dotičnu vrijednost na nulu
  end
end
```

Prilog B3: Kôd algoritma za razlučivanje elektromagnetski uzrokovanih harmonika od mehanički uzrokovanih harmonika iz spektra vibracija

EM Flag=zeros(1.N a); % Inicijalizacija flag niza s nulama
for i=1: N F % Za svaki harmonik sile
if (F_mag (i)> F_prag) % Ako harmonik sile ima amplitudu veću od praga
f_start= f_F(i)- f_raspon; % Definiranje minimalne frekvencije za pregled
if (f_start < f1a) f_start = f1a; end % Osiguranje da se startna frekvencija nalazi unutar raspona
f_stop= f_F(i)+ f_raspon; % Definiranje aksimalne frekvencije za pregled
if (f_stop> f_a(N_a)) f_stop = f_a(N_a); end % Osiguranje da se frekvencija nalazi unutar raspona
h_start=find(f_a== f_start); % Pronalazak indeksa niza koji odgovara startnoj frekvenciji
h_stop=find(f_a== f_stop); % Pronalazak indeksa niza koji odgovara završnoj frekvenciji
for j=h_start: h_stop % Za elemente niza koji odgovaraju rasponu pregledanih frekvencija
if (a_mag (i)> a_prag) EM_Flag(j)=1; end % Postavljanje indeksa za harmnik veći od praga
end
end
enu
Det Harm =sum(FM_Elag): % Utvrđivanje broja propađenjih barmonika
if (Det Harm ==0): % Ukoliko nije propađen ni jedan harmonik
fprintf('\n Krai – Nije pronađen ni jedan harmonik akceleracija koji se podudara s harmonicima sile \n').
quit % Izlaz iz skripte bez dalinieg nastavka izvršavanja koda
end
% 4. FAZA – PRIPREMA, SPREMANJE I PRIKAZ REZULTATA USPOREDBE
% Spremanje rezultata u izlazne datoteke
a_EM= EM_Flag.*a_mag; % Formiranje niza harmonika koji se podudaraju s harmonicima sile
f_a_EM= EM_Flag.*f_a; % Formiranje niza frekvencija EM harmonika vibracija
Niz_EM(:,1)=nonzeros(f_a_EM); % Reducirani niz – uklanjanje praznih mjesta
Niz_EM(:,2)=nonzeros(a_EM); % Reducirani niz – uklanjanje praznih mjesta
a_Nazivi_EM=' f_EM [Hz] a_EM [m/s^2] '; % Definiranje naziva stupaca
fid = fopen ('a_EMI.txt', 'W'); fdisp (fid, a_Nazivi_EMI); fciose (fid); % Upis hasiova
dimwrite('a_EM.txt', Niz_EM, '-append' , 'delimiter', '\t', 'roffset',1); % Upis podataka u dokument
a Meh-a mag-a FM: % Formiranje piza barmonika uzrokovanih mehaničkim pojavama
f a Meh= f a- f a FM: % Formiranje niza frekvencija Meh harmonika vibracija
Niz Meh(: 1)=nonzeros(f a Meh): % Reducirani niz – uklanianie praznih miesta
Niz Meh (:.2)=nonzeros(a Meh): % Reducirani niz – uklanjanje praznih mjesta
a Nazivi Meh=' f Meh [Hz] a EM [m/s^2]'; % Definiranje naziva stupaca
fid = fopen ('a_Meh.txt', 'w'); fdisp (fid, a_Nazivi_Meh); fclose (fid); % Upis naslova
dlmwrite('a_Meh.txt', Niz_Meh, '-append', 'delimiter', '\t', 'roffset',1); % Upis podataka u dokument
% Grafički prikaz razlučenih harmonika vibracija
BrHarm=find(f_a==f_prikaz)
Amplituda=[a_EM (1: BrHarm)', a_Meh(1: BrHarm)']; % Definiranje nizova za prikaz
figure; h=bar(f_a(1: BrHarm),Amplituda,1);grid % Definiranje prikaza harmonika na stupčastom grafu
set(h(1), 'facecolor', 'r', 'edgecolor', 'r'); % Prikaz elektromagnetski uzrokovanih sila u crvenoj boji
set(h(2), 'facecolor', 'b', 'edgecolor', 'b'); % Prikaz mehanički uzrokovanih sila u plavoj boji
axis([0 f_prikaz 0 5]); set(gca, 'XTick',[0:f_prikaz_2/8:f_prikaz_2]); XIm=xlim; YIm=ylim; % Definiranje prikaza
$X_x=XIm(2); X_y=-2/3^{YIm}(2)/10; Y_x=-XIm(2)/8; Y_y=YIm(2); % Definition pozicija naslova osi$
xlabel('f [Hz]', Position ,[X_X X_Y]) % Postavijanje natpisa x-osi
yiabel(a [III/S ¹²], Position, [I_X I_y], Rotation, 0) % Postavijanje hatpisa y-osi
Tekst ispis – ([['Baspodiela harmonika akceleracija na elektromagnetski i mehanički uzrokovane'] ['Baspon
frekvencija do: ', num2str(f, prikaz, '%d'), ' Hz']}; title(Tekst, ispis): % Tekst naslova grafa
fprintf('\n Kraj \n'); % Ispis teksta – kraj izvođenja algoritma

Životopis

Miroslav Petrinić rođen je u Zagrebu 1983. godine. Srednju prirodoslovno matematičku (V.) gimnaziju završio je 2002. godine u Zagrebu, a diplomirao je 2007. godine na Fakultetu elektrotehnike i računarstva u Zagrebu. Od 2007. godine je trajno zaposlen u KONČAR – Institutu za elektrotehniku u Zagrebu kao razvojni inženjer na području električnih rotacijskih strojeva. Znanstveno istraživačkim radom usmjeren je prema proračunskim analizama i razvojnim istraživanjima sinkronih električnih strojeva. Autor je i koautor nekoliko članaka objavljenih u časopisima, zbornicima, znanstvenim i stručnim konferencijama u zemlji i inozemstvu.

Nagrađen je dvjema godišnjim nagradama "JOSIP LONČAR" za najboljeg studenta zavoda za elektrostrojarstvo i automatizaciju Fakulteta elektrotehnike i računarstva (FER) Zagreb. Član je studijskog odbora za rotacijske strojeve HRO CIGRÉ.

Popis objavljenih radova

Radovi u časopisima

- A. Elez, Ma. Petrinić, Mi. Petrinić, B. Vaseghi, A. Abasian: "Salient Pole Synchronous Generator Optimization by Combined Application of Slot Skew and Damper Winding Pitch Methods", Progress in electromagnetics research M, Vol. 73, 81-90 – 2018.
- A. Elez, J. Študir, Ma. Petrinić, Mi. Petrinić: "The slot skew method to reduce losses in salient pole synchronous generator windings", International journal on hydropower & dams, 24, 5, 102-107 – 2017.

Radovi na međunarodnim znanstvenim i stručnim konferencijama

- J. Študir, A. Elez, Ma. Petrinić, Mi. Petrinić, "Loss Reduction Methods of Salient Pole Synchronous Generator Damper Winding by Means of Slot Skew", Set of Papers: CIGRE SESSION 46, Paris, 21.-26. August 2016.
- Tomičić, Branko; Petrinić, Miroslav; Tvorić, Stjepan, "Calculation of Synchronous Generator Short Circuit Currents by Means of 3D Numerical Simulation", ISEF 2015 -XVII International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, Valencia, Spain, September 10-12, 2015
- V. Poljančić, M. Brčić, Mi. Petrinić, "The Effect of Stator Clamping Plate Design on End Region Power Losses of Vertical Hydro Generators", CIGRE 2015, Madrid, Spain. pages. 1-10, September 6th-11th, 2015.
- Mi. Petrinić, S. Tvorić, S. Car: "The Effects of Pole Number and Rotor Wedge Design on Unbalanced Magnetic Pull of the Synchronous Generator", Proceedings 2014 International Conference on Electrical Machines - ICEM 2014, Berlin, 2-5 Sept. 2014.
- Mi. Petrinić, S. Car, A. Elez, "Iterative Procedure for Determination of Synchronous Generator Load Point Using Finite Element Method", XXth International Conference on Electrical Machines, ICEM 2012 : Proceedings, Marseille, France, September 2-5, 2012.
- A. Elez, B. Tomčić, Mi. Petrinić, "Detection of inter-coil short circuits in coils of salient poles synchronous generator excitement winding on the basis of analysis of magnetic field in the machine", International Conference on Renewable Energies and Power Quality (ICREPQ'10), Granada, 2010.
- Mi. Petrinić, Ž. Jakopović, "Modeling and simulation of PEM fuel cell power converter system", MIPRO 2007, Opatija, Croatia, May 2007.

- 8. Mi. Petrinić, Ž. Štih, B. Tomičić, H. Vidović, "Elektromagnetske sile nesimetrično opterećenog sinkronog generatora", 13. savjetovanje HRO CIGRÉ, Šibenik, 2017.
- 9. B. Tomičić, H. Vidović, Hrvoje, S. Đaković, Mi. Petrinić, "Sinkroni cijevni visokonaponski generator male snage", 13. savjetovanje HRO CIGRÉ, Šibenik, 2017.
- H. Vidović, B. Tomičić, Mi. Petrinić, "Agregat za napajanje transformatora namijenjen za tvornička ispitivanja", 13. savjetovanje HRO CIGRÉ, Šibenik, 2017.
- H. Vidović, B. Tomičić, T. Tandarić, Mi. Petrinić, "Optimiranje projekta sinkronog uzbudnika za HE Dubrovnik obzirom na specifičnosti regulacijskog sustava", 12. savjetovanje HRO CIGRÉ, Šibenik, 2015.
- H. Vidović, B. Tomičić, S. Majer, P. Jagunić, Mi. Petrinić, "Sinkroni generator s cilindričnim rotorom u kompaktnoj izvedbi za MHE Prančevići", 12. savjetovanje HRO CIGRÉ, Šibenik, 2015.
- H. Vidović, B. Tomičić, S. Đaković, S. Majer, Mi. Petrinić, Miroslav, "Sinkroni cijevni generator male snage", 11.savjetovanje HRO CIGRÉ, Cavtat, 2013.
- 14. V. Poljančić, M Brčić, Mi. Petrinić, "Metode smanjenja gubitaka u tlačnim pločama statora vertikalnih hidrogeneratora", 11. savjetovanje HRO CIGRÉ, Cavtat, 2013.
- Mi. Petrinić, D. Šeremet, S. Car, J. Treger, "Sila jednostranog privlačenja magnetski zasićenog generatora i njen utjecaj na dinamičku stabilnost rotora", 11.savjetovanje HRO CIGRÉ, Cavtat, 2013.
- Mi. Petrinić, Ž. Jakopović, Z. Benčić, "Modeling and Simulation of PEM Fuel Cell-Power Converter System - Comparison of MatLab/Simulink and Simplorer", Proceedings of EDPE 2007, Košice, 2007.

Biography

Miroslav Petrinić was born in Zagreb, Croatia, in 1983. He graduated from the Natural and Mathematics High school (V. Gymnasium) in Zagreb, and studied at the University of Zagreb, Faculty of Electrical Engineering and Computing (FER). After his college graduation in 2007, he was employed on the permanent basis at the KONČAR – Electrical Engineering Institute in Zagreb. There he works as a R&D engineer on the field of electrical rotating machines. His scientific research activities are aimed at analyses and calculation development of synchronous electric machines. He is a co-author of several papers published in proceedings of scientific and expert conferences and gatherings in the country and abroad.

M. Petrinić received two Annual rewards "JOSIP LONČAR" for best student of Dept. of Electrical Machines, Drives and Automation, Faculty of Electrical Engineering and Computing (FER) Zagreb. He is a member of a Croatian Section HRO CIGRÉ A1 committee for rotating machines.