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ABSTRACT 

Fiber optic sensor cable technology is a relatively new research area that combines a set of 

scientific and technical disciplines in order to meet distributed sensor systems needs and quality 

standards. This thesis discusses a particular fiber optic cable design with three tightly 

encapsulated fibers for multipurpose and multivalent sensing, presently commercialized for 

temperature, strain and acoustic measurements. Furthermore, it introduces a mechanism for 

birefringence change as a function of outer perturbations, such as pressure and cable bending, 

as a new capability and potential feature for future optical sensor products. The concept is based 

on using cable raw materials (optical fiber, stainless steel strips, matured manufacturing 

procedures) with standard geometries produced and commercialized in high volumes 

nowadays. It uses symmetrical elements only and it exploits the geometrical configuration of 

equilateral triangle with optical fibers in each vertex that are tight buffered within the stainless-

steel tube. This results with unsymmetrical loading of the optical fibers when exposed to 

external hydrostatic pressure thus giving rise to the birefringence change in the optical fibers. 

In this way the hydrostatic pressure as external mechanical measurand is coupled with optical 

parameters inside the interior optical fibers hermetically closed inside the stainless-steel tube. 

The concept was first evaluated with the Finite Element Analysis (FEA) commercial software 

tool resulted in proving the concept and giving the insight into the magnitude of tube 

compression.  

 

The prototype of the cable 1.24mm in diameter was manufactured and tested up to 1200bar in 

a 24m long high-pressure chamber, especially designed for such purposes, enabling both 

mechanical and optical characterization of the sensor cable. The polarimetric method was 

chosen to prove the concept of changing birefringence properties of optical fiber. Although 

non-linear and irreversible, it demonstrated a strong change in Stokes parameters during both, 

pressure increase as well as pressure decrease cycles. Furthermore, the high-pressure facility is 

further used for evaluation of tube compression without optical fibers. The compression of the 

tube 2.1mm in diameter and steel wall thickness of 0.4mm, steel grade 316L was measured and 

thus exhibited linear characteristics for the pressure range from 0 to 1200bar. Due to off-the-

center positions of optical fibers, the construction has the intrinsic capability to measure cable 

bending. The information on bending is always available since there is always at least one fiber 

in the compression zone and one in the extension zone. The sensor fibers were interrogated with 
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the Brillouin Optical Time Domain Analysis (BOTDA) interrogation method. For testing 

purpose, a 20m long sample was produced and arranged in a coil of different diameters, and 

BOTDA measurements demonstrated shift in Brillouin peak frequency for all three observed 

fibers. In this way it was confirmed that optical fibers 0.455mm in diameter, placed off-the 

center inside the stainless-steel tube of 1.25mm in diameter, can be used for fiber optic 

distributed pressure and/or cable bending evaluation using stimulated Brillouin scattering 

technique. 

 

 

Keywords: optical fiber, fiber optic measurements, monitoring systems, fully distributed 

optical fiber sensor, fiber in metal tube (FIMT), pressure sensors, acoustic sensors, strain 

sensors, temperature sensors, distributed optical fiber sensors, Brillouin effect, Brillouin 

Optical Time Domain Analysis (BOTDA) 
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Svjetlovodni senzorski kabel za istodobno distribuirano mjerenje više fizikalnih veličina 

U svijetu koji se digitalizira i u kojem količina podataka eksponencijalno raste i u kojem svi i 

sve dobivaju ulogu izvora ili korisnika podataka mjerna osjetila i mjerne metode nalaze se na 

samom početku tog lanca. Jedan od glavne ciljeva digitalizacije su dovoljna količina podataka 

korištenjem cjenovno i ekološko prihvatljivih tehnologija. Uz tradicionalne senzorske 

tehnologije koje se koriste u praćenju fizikalnih veličina koje se temelje na mehaničkim, 

električnim, magnetskim, kemijskim i biokemijskim i ostalim metodama i koji su uglavnom 

diskretnog tipa tj. ostvaruju mjerenje na jednom mjestu, pojavom svjetlovoda uvele su se nove 

mogućnosti u industriji. Niskih gubici, golemi mjerni doseg kao i neosjetljivost na 

elektromagnetsko okruženja, galvanske uvjete, postojanost na povišenim temperaturama i 

mogućnost ostvarivanja osjetilnih mikrostruktura u velikim nizovima u jezgru i omotač 

svjetlovoda ponudili su novi pristup i tip mjerenja – kvazi i potpuno distribuirano mjerenje. 

Ostvarene prednosti ovakvog pristupa koja su prepoznata u industriji su: 

- upotreba cjenovno jeftinih standardnih telekomunikacijskih vlakana u velikom broju 

primjena drastično pojeftinjuje mjerenja 

- gdje god se polaže svjetlovodna telekomunikacijska mreža moguće je iskoristit vlakna 

i za razna mjerenja za vrijeme rada telekomunikacijskog sustava koristeći se 

neosvijetljenim vlaknima ili nekorištenim valnim duljinama u osvjetljenim vlaknima 

- senzorski svjetlovodi mogu se zajedno sa ostalim standardnim vlaknima i metalnim 

vodičima integrirati u kabele koji se polažu i ugrađuju na poznate i rutinirane načine u 

zemlju, objekte, infrastrukturu itd. 

- broj mjernih točaka uzduž istog mjernog svjetlovodnog kabela može biti i do nekoliko 

stotina tisuća što donosi posebno povoljan odnos cijene po 1km instaliranog sustava 

Tehnologije koje se koriste za distribuirana mjerenja temelje se na nekoliko fizikalnih principa 

svjetlosnog raspršenja u svjetlovodom vlaknu; Ramanovo, Rayleighovo i Brillouinovo 

raspršenje te na uvođenju mikrostrukture u staklenu strukturu svjetlovoda. Ova doktorska 

disertacija  obrađuje  posebnu konstrukciju svjetlovodnog kabela sitnih dimenzija i trima 

stiješnjenih svjetlovoda, izrađenog tehnologijom laserskog varenja čelične cjevčice i koji u sebe 

može integrirati sva tri mjerna postupka i time ponuditi ne samo jedno nego minimalno 3 mjerna 

postupka. 
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Ova teza organizirana je u 5 glavnih poglavlja. Budući da je temeljna ideja bila fizički razviti 

kabelski senzor, ispitivanja i predložiti tehnike ispitivanja, organizacija poglavlja odraziti će 

tipičan razvoj proizvoda. 

Teza započinje uvodnim poglavljem koje daje detaljan opis učinaka dvolomnosti u 

jednomodnim optičkim vlaknima te mehaničkih i toplinskih poremećaja koji ga dovode do toga. 

Također je prikazan opis vlakana u tehnologiji proizvodnje metalnih cjevčica. 

U drugom poglavlju detaljnije je prikazana teorijska pozadina stimuliranog Brillouinovog 

raspršenja u svjetlovodu. Ono potom pregled neelastičnog optičkog raspršenja i uvodi 

relevantne zakone fizike koji opisuju ove učinke. Teorijska analiza započinje mikroskopskim 

opisom dielektričnog medija, električnom polarizacijom, protupropagirajućim  

elektromagnetskim valovima i efektom elektrostrikcije koja uzrokuje promjenu gustoće mase i 

pojavu akustičnog vala, zatim opisom Brillouinovog međudjelovanja i parametara bitnih za 

njegovu karakterizaciju i mjerenja koja su također data u poglavlju. 

Koncept kabela predložen je i detaljno obrazložen u Poglavlju 3. mehanizam utjecaja vanjskog 

hidrostatskog tlaka na svojstva dvolomnosti svjetlovoda predstavljen principima Newtonove 

mehanike. Koncept se zatim kvantitativno ispituje metodama analize konačnih elemenata koji 

pokazuju asimetrično opterećenje svjetlovoda i time dokazuje koncept. Proizvodnost 

konstrukcije prvo se ispituje i objašnjava mjerenjima slabljenja optičkog vala. Ispitivanja se 

nastavljaju uvođenjem Stokesovih polarimetrijskih parametara te polarimetrijskim mjerenjima 

koja se provode u komori visokog tlaka (posebno razvijena za visokotlačno i 

visokotemperaturno ispitivanje i ukratko predstavljena u poglavlju). Polarimetrijska mjerenja 

pokazuju snažnu ovisnost o promjenama tlaka. Poglavlje se završava testom kompresije cijevi 

koji pokazuje linearnu promjenu promjera metalne cijevi kao funkciju hidrostatskog tlaka.  

Poglavlje 4 predlaže, analizira i raspravlja o novoj metodi ispitivanja raspodijeljenog tlaka 

zasnovanoj na tzv. polarizacijskoj učinkovitosti polarizacije kod Brillouin-Lorentzianove 

dobitka i njezinoj ovisnosti o konstanti širenja i poziciji na ispitivanom vlaknu. Poglavlje 

objašnjava slabu ovisnost konstante širenja za slučaj uskog raspona valnih duljina kod 

interakcije protupropagirajućih valova stimuliranog Brillouinovog raspršenja te objašnjava 

snažnu ovisnost o vrijednosti vanjskog tlaka. Metoda ekstrakcije parametara dvolomnosti 

razvijena je u spektralno-prostornom domeni pomoću tehnike pretraživanja ekstrema. 

Poglavlje 5 govori o prednostima predložene konstrukcije kabela koja sadrži tri optička vlakna 
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koja su u ovom slučaju koristi za procjenu promjera savijanja svjetlovodnog kabela. Poglavlje 

daje opis koncepta ispitivanja primjenom tehnike stimulirane Brillouinovog raspršenja te 

razvijenog uzorka kao i dobivenih podataka mjerenja. 

Konstrukcija i mjerne metode obrađene u ovoj disertaciji predstavljaju osnovu za nove srodne 

konstrukcije i mjerne metode koje će biti predmet industrijskog razvoja u skorijoj budućnosti. 

Budući se radi vjerojatno o najučinkovitijoj i cjenovno najprihvatljivijoj tehnologiji i načinu za 

digitalizaciju velikih i dugih infrastrukturnih objekata, većih i manjih geografskih površina i 

geofizičkih polja očekuje se da će distribuirane senzorske svjetlovodne kabelske konstrukcije i 

nadalje biti predmet investicija i razvoja industrije svjetlovodnih kabela, specijalnih optičkih 

vlakana i svjetlovodnih mjernih metoda.    
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1. INTRODUCTION 

In Internet of Things (IoT) systems and massive digitalization of physical objects and 

infrastructure are the industry of the 21st century. There are different approaches to this call. 

All systems and solutions are based on either wireline, or wireless systems or a combination of 

the two. Among these two approaches, there are a few different technologies using photonic 

phenomena and employing optical fibers and cables of different types and sizes - such as 

measurement probes and sensors providing detection and measurement data at each segment in 

the length. They are referred to as distributed fiber optic sensors [1]-[3]. As such they add 

contribution to the digitalization efforts, especially in cases when measurement can be 

conducted only from one end of the long linear asset, i.e. long infrastructural object. Since 

detection and measurement regime is distributed by vocation, their costs are considered per-

meter or per-kilometer. This is where optical fiber sensing systems offer unmatched price-

performance ratio. It is also the reason for their growing success in the industry in the last 

decades. They have become the essential digitalization tools in energy discovery, production 

and transportation. Examples of this are: distributed temperature sensor (DTS) [4], [5] 

distributed temperature and strain sensor (DTSS) [6]-[10] and distributed acoustic sensor 

(DAS) systems [11]-[14]. Their further advantages are related to high sensitivity, 

electromagnetic and galvanic transparency, small size and weight etc.  

Meeting strict industrial and environmental standards represent engineering challenges on both 

- system and sensor design. It starts with material composition and selection, sensor 

construction, manufacturing processes and testing methods and procedures. These results are 

in need of constant improvements and specialization in all: sensing optical fiber, sensor cable 

design, interrogation hardware, as well as in signal processing, interpretation and visualization 

techniques. The smart design of optical fiber and cable constructions can dramatically impact 

and reduce the degree of complexity in upper layers of the measurement system, such as the 

one in the optical and signal processing layer. On the other hand, system designers must be 

aware of the system applicability on sites, too. This is especially true for sensing cables as they 

are set in contact with the physical environment and quantities that are referred to as 

measurands. Working on deployment sites in many cases involves harsh and extreme 

conditions. The best examples are geophysical and civil construction sites in which open optical 

fibers are exposed to water, hydrogen rich chemicals and mechanical stress. Therefore, they 

differ largely from laboratory conditions in which the systems are conceptualized and 
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constructed. The manipulation of fiber optic sensing cables that include working with sensitive 

optical fibers under such circumstances represents a constant challenge, and it very often 

requires special skills and experience from the technicians. On the other hand, the designers of 

sensor interrogation equipment, cables and application solutions must be aware of their 

applicability on sites.  

Fully distributed fiber optic detection and measurement systems are relatively new to the 

industry, yet they always play increasing roles in it. The reason for this is unique properties of 

optical fibers against other available technologies when it comes to long-range detection and 

measurements. There are more advantages but the most important are low loss and 

independence from environmental galvanic and electromagnetic circumstances. This is 

especially true for linear structures such as overhead lines, roads, pipelines and geophysical 

structures. There are also other non-fully distributed sensing and measurement techniques 

available in the industry today using 1D microstructures such as Fiber Bragg Grating (FBG) 

and punctual or quasi distributed systems. Nevertheless, industry recognized distinctive 

qualities of distributed measurements using optical fibers. From the technical point of view, 

this is long distance spatial profiling of physical quantities, from the interrogator set at one end 

of fiber optic sensing cable. From the economical point of view, it is its unique price per 

kilometer parameter making it very interesting for commercial deployment. Perhaps the best 

example of this is the industrial success of Raman based distributed temperature sensors [15]-

[17] which nowadays is standard equipment in many applications. Distributed strain and 

temperature sensors based on Brillouin scattering [18]-[21], [51], [52] and distributed acoustic 

sensors (DAS) [12]-[14], [21]-[24] are installed in monitoring systems of various long 

infrastructures, such as subsea and land pipelines, dams, dikes etc. The deployment site in many 

cases involves harsh and extreme conditions such as in geophysical and civil construction sites. 

They therefore differ largely from laboratory conditions where the systems are conceptualized 

from scratch. The manipulation of fiber optic sensing cables that include sensitive optical fibers 

in such circumstances represents a constant challenge, and it very often requires special skills 

and experience from technicians.  

This thesis presents and discusses a unique sensor cable design [29] presently used in industry 

in distributed strain and acoustic measurements. The thesis will show that this concept has the 

potential to be deployed in distributed pressure measurements as well, for example, by means 

of birefringence change techniques [30]-[32]. The cable sensor hereby proposed is based on 
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common industrial elements and raw materials with manufacturing conform geometries and is 

aimed for multipurpose and configuration multivalent distributed optical fiber sensing 

techniques, and among them, distributed pressure sensing which is considered as the largest 

technical challenge. Although various activities on distributed pressure sensing have been 

reported from all around the world, many of them refer to optical fiber only [25]-[28], [30]-[32] 

the fully & truly distributed pressure cable sensor and interrogation systems, in their industrial 

acceptable versions, which is still not commercially available to our knowledge, and it remains 

a challenge. In this thesis, it will be approached by means of the so-called Stimulated Brillouin 

Scattering Technique.  

 

Step-index optical fibers 

Optical fiber is a light guiding structure made of three or more layers; a waveguiding glass 

structure, protective coating made of a soft primary coat and a hard secondary coat on top of 

which there are one or more harder outer polymer jackets added as an option for more 

mechanical protection and robustness. Fig.-1.1 shows the typical geometry of optical fiber.  

 

Figure-1.1: Construction of optical fiber must meet mechanical and optical requirements. The coatings bring 

mechanical stability to the glass without compromising optical performance while buffering brings strength 

Inside the optical fiber the wave can propagate in more modes or in just one mode. In that 

respect, we distinguish multimode and single-mode propagation regime. Although both 

multimode and single-mode fibers are used in distributed sensing industry, we will focus on 
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single-mode optical fibers and propagation regime necessary for sensing techniques addressed 

in this thesis. 

 

Figure-1.2: Multimode and single-mode fibers 

All the standard optical fibers in their single-mode propagation regime are designed for the so 

called weakly-guiding condition, in which light is confined and therefore guided in two 

geometrically orthogonal propagation modes with an almost linearly polarized EM field, both 

of which comprise the single guiding mode designated as 11HE . The component in which the 

magnetic field is a dominant field, and aligned with x-axis and y-axis, is called xHE11and yHE11

respectively. In dielectric waveguides not all power is confined within the core - some of it 

exists in the cladding too, although rapidly decaying with the radius, so-called evanescent field. 

Bringing more light power in the cladding can be done by choosing a relatively small numerical 

aperture NA that reflects a small difference in refractive indexes between the core and the 

cladding. Figure-1 shows propagation modes in weakly guiding regime in optical fiber with 

NA=0.11. 
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Figure-1.3: Propagation modes in non-weakly guiding fibers, in this case n1=1.45, n2=1.00 

In the analysis of propagating modes in cylindrical structures, frequency appears as the most 

important parameter. In optical fiber, this role has taken the parameter called normalized 

frequency, or V-number. It contains all important parameters of a step-index construction and 

it defines the propagating modes. In other words, only one parameter is needed to characterize 

the fiber properties.  It is proportional to the frequency, thus the name normalized frequency. It 

reveals cut-off frequency/wavelength – that separates the multimodal regime from the single-

modal propagation regime for the step index design. Normalized frequency is defined with: 

𝑉 =
𝜔𝑎

𝑐
√𝑛𝑐2 − 𝑛𝑐𝑙

2 =
2𝜋𝑎

𝜆
√𝑛𝑐2 − 𝑛𝑐𝑙

2 =
2𝜋𝑎

𝜆
𝑁𝐴 (1.1) 

where: 

• 𝑎 – radius of optical fiber 

• 𝜔 – angular frequency of mode 

• 𝑛𝑐- refractive index of core 

• 𝑛𝑐𝑙- refractive index of cladding 

• 𝜆 – wavelength of light in vacuum 

• 𝑁𝐴 = √𝑛𝑐2 − 𝑛𝑐𝑙
2  - numerical aperture of fiber. 
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One another parameter important in analysis and design of single-mode optical fibers is Δ and 

is defined as: 

Δ =
𝑛1 − 𝑛2
𝑛1

≪ 1 (1.2) 

In practice, the difference 𝑛1 − 𝑛2 is very small, typically of the order of 10−3 and 10−4. The 

lower Δ means that light approaches transverse electromagnetic waves and in this case electric 

and magnetic components in the direction of propagation, 𝐸𝑧 and 𝐻𝑧, get very small compared 

to transverse components - but still non-zero . In this weakly propagating regime with lower Δ 

the modes form clusters of linear polarization modes or 𝐿𝑃𝑙𝑝 (Figure). l represents the number 

of zero crossings in the whole azimuthal range divided by two, and p represents the number of 

intensities in radial direction. 𝐿𝑃𝑙𝑝 modes exhibit an amplitude of an exceptional symmetry and 

may be linearly polarized either along the x or the y axis. 𝐿𝑃01 mode is solely made of 𝐻𝐸11 

mode. For example, for the 𝐿𝑃01 mode: its two degenerated polarization modes 𝐿𝑃01𝑥  and 𝐿𝑃01
𝑦  

exhibit the same propagation constant in a perfect cylindrically symmetric fiber.    

 

(a) 
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(b) 

Figure-1.4: Weakly guiding propagation regime - modes forms clusters of linear polarized modes; modes 

merging depicted in 𝜷 −V graph (a), and evolvement of linear polarization in the modes (b). Among all the 

modes, 𝑳𝑷𝟎𝟏is the most important in the applications 

Liner polarization and symmetrical propagation constant in both axes open a new range of 

application possibilities. Nowadays, all existing interferometric and polarimetric high speed 

telecommunication and sensing systems exploit these features.   

 

1.2  Introduction to birefringence in optical fibers 

In the ideal case, in which the fiber cross-section is perfectly circularly symmetric and optical 

properties in both axes are equal, light propagates with the same conditions in both axes, and 

therefore at the same velocity. Any perturbation that gives rise to asymmetry in optical or 

geometrical properties shall cause birefringence in the fiber. In such case, both characteristic 

components of lightwave that are launched at the same time through the fiber shall arrive at 

different times to the other end. This is called modal dispersion due to birefringence. 

Birefringence can therefore arise from the difference in refractive indices, or non-concentricity 

https://www.google.hr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiawYTFpPjhAhVBK1AKHedRCSwQjRx6BAgBEAU&url=/url?sa%3Di%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dimages%26cd%3D%26ved%3D%26url%3Dhttps://www.researchgate.net/figure/V-number-plot-for-the-first-four-modes-in-an-80-mm-few-mode-fiber-at-a-wavelength-of-780_fig8_268877516%26psig%3DAOvVaw2IZhAJcnJcgdlHR7K5HAnp%26ust%3D1556729746128802&psig=AOvVaw2IZhAJcnJcgdlHR7K5HAnp&ust=1556729746128802
https://www.google.hr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjC877WovjhAhXBYVAKHY6RD6gQjRx6BAgBEAU&url=https://www.researchgate.net/figure/Modes-of-a-circular-step-index-fiber-The-first-row-represents-exact-vector-solutions-of_fig1_227183505&psig=AOvVaw3oCPlIw2IvBVqSveXdn6Zj&ust=1556729068972128
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and elliptical deformation of the fiber cores. In general, the stress-induced birefringence 

dominates the geometry-induced one. In real practical fibers, birefringence is always present to 

some extent, and it impacts polarization states in optical fibers. Figure 2 depicts general spatial 

polarization evolution in the optical fiber core. 

There are two kinds of optical birefringence in optical fiber; linear and circular birefringence. 

Linear birefringence is defined as: 

∆𝑛 = 𝑛𝑒 − 𝑛𝑜 (1.3) 

where en and on are two effective refractive indices in two orthogonal directions in the cross-

section of optical fiber. Because of the difference in refractive indices, light shall travel with 

different propagation constants in two axes. Linear birefringence is therefore highly susceptible 

to mechanical stresses, such as bending and asymmetric pressure. To some extent, there is also 

circular birefringence always present in propagation of the lightwave. This physical background 

lies in the structure of fiber material, i.e. helix in molecular structure, and this phenomenon is 

referred to as optical activity, in which molecular electrons are subjected to different properties 

in rotational motions along the longitudinal propagation axis. Another cause of difference in 

rotational properties with the same repercussions can be due to an external longitudinal 

magnetic field. This all results in an effect in which the rotation of an electron is easier in one 

direction than in the other. It shall therefore introduce phase difference between orthogonal 

polarization states giving rise to a spiral rotation resulting in a transverse electric field either 

clockwise or counterclockwise. Because linear birefringence and circular birefringence are 

superimposed in optical fiber, the general polarization state shall be elliptical, changing its 

properties and shape along the length, being highly susceptible to mechanical stresses and 

magnetic fields. 
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Figure-1.5: Polarization evolution in single-mode optical fiber. Beat Length LB represents one cycle in which the 

polarization state makes one full circle across the fiber length 

Birefringence; linear, circular or elliptical oe nnn −= introduces phase change between two 

principal axes – the fast and the slow axis. This phase change is:   

𝜃 =
2𝜋𝑙

𝜆
 Δ𝑛 (1.4) 

where 𝜆 is the signal wavelength in free space and 𝑙 is the fiber length.  Longer optical fiber 

and/or larger refractive index differences cause larger phase shifts. This needs to be considered 

during fiber design. The length that represents the phase change of 𝜃 = 2𝜋 is called polarization 

beat length 𝐿𝐵, and it can vary in an optical fiber. 

𝐿𝐵 =
𝜆

Δ𝑛
 (1.5) 

From (1.5) we see that the smaller the refractive index difference increases polarization beat 

length. Several methods are typically used in the measurement of 𝐿𝐵. Taking the beat length 

from the measurements and knowing the wavelength used, we can calculate Δ𝑛. 

Birefringence itself is sensitive to many physical quantities [37]-[42]. We will here name a few 

of them, and they are: 

1. Noncircular core – if fiber is elliptical, the lightwave propagates in one principal axis 

for a longer time and in the other for a shorter time. This causes phase spatial mismatch 

and therefore this birefringence is referred to as geometrical birefringence  
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2. Presence of stresses  

a. Internal stress – stress introduces variations in the refractive index in silica over 

due to the elasto-optic effect. By means of specialty designs, such as the panda 

and bow-tie designs, internal stress is the method used to build highly 

birefringent fibers.      

b. External stresses - bending introduces stress birefringence due to introduction of 

asymmetry in the refractive index in sections with bending radii smaller or larger 

than the one of the neutral axes. This effect can be used for the evaluation of the 

cable bending radius using the cable design proposed in this thesis which is 

discussed in Chapter-5 

c. Twisting - introduces circular birefringence as it changes phase retardance 

between the fast and slow axis. Generally taken, the State-Of-Polarization (SOP) 

in the fiber is elliptical. In an ideal optical fiber, left-handed and right-handed 

eigenmodes are balanced. The twisting makes one eigenmode propagate at a 

different speed compared to the other introducing retardance. Thus, the 

polarization ellipse changes its form at the position of the twist. 

3. Presence of electromagnetic fields 

a. transversal electric fields – a very strong electric field perpendicular to the fiber 

axis (by means of the electro-optic Kerr effect) can introduce birefringence in 

optical fiber. Phase delay between the eigenmodes is proportional to the square 

of the electric field amplitude.   

b. longitudinal magnetic field – additional retardance in circular polarization is 

introduced in the optical fiber if a longitudinal magnetic field is present via 

Faraday magneto optic effect. 

This thesis will discuss how stress induces birefringence changes in linear polarization of a 

propagating lightwave by means of cable design that is explained in detail in the following 

chapters. 
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1.3 Fiber in Metal Tubes (FIMT) 

Measurement of physical quantities (so-called ‘the measurands’) such as temperature, strain 

and pressure set special requirements on sensing optical cables. On one hand, the cable must be 

designed to protect optical fibers against the environment and measurands, and on the other 

hand, it must expose the fibers to the environment and the measurands, but within acceptable 

limits. Optical fiber alone is too fragile and too sensitive for these requirements and it needs 

mechanical and chemical protection. For example, the lifetime of an optical fiber exerted to few 

percent of strain can be in the range of days or weeks. The standard optical fibers installed in a 

borehole conditions and operation will have an increase in attenuation, and finally, it will ‘get 

dark’ in hours or days due to hydrogen ingression. In the temperature measurements it is 

sufficient to encapsulate optical fibers inside robust metallic constructions in a loose way, as 

metallic encapsulations bring good mechanical and chemical protection and rapid transfer of 

thermal energy. Nevertheless, unlike temperature measurement in which optical fibers must 

reside loosely within the cable, in strain and pressure measurements it is necessary to bring 

optical fibers in physical contact with protective layers on top of them in order to ensure the 

transfer of mechanical quantities to the optical fiber. Fig-1.6 shows a few versions made for 

different kinds of optical fibers and tubes.  
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Figure-1.6: Various tight buffer constructions; top-left: all round watertight construction, top-right: rectangular 

fiber with round encapsulation tube with voids included, bottom-left: round fiber in rectangular tube, and 

bottom left: multifiber construction (three round fibers) within round tube  

These protective layers now have an additional task – they need to scale the magnitudes of the 

measurands to ranges acceptable for the normal operation of optical fibers. The way these 

requirements are realized determines the crucial sensing cable parameters and its success in the 

deployment. Conceptually it can be realized in different ways with a variety of materials and 

construction purposes. Since optical fiber is now tightly encapsulated in a more robust cable 

construction, it is not only mechanical properties of optical fibers that matters - now the whole 

construction is responsible for the performance. This represents a challenge, as the material 

properties are never ideal, and have hence become the source of ambiguities and inaccuracies 

in the measurements. This is the reason why sensing cables that are aimed for distributed strain 

and pressure measurements are far more difficult to design and manufacture than all loose tube 

designs constructed for telecom and temperature measurement applications. Since optical fibers 

are mechanically and chemically fragile in respect to the fields in which they must be deployed, 

the fiber in metal tubes (FIMTs), and especially their more specialized versions, are considered 

as the main and fundamental encapsulation techniques, the quality of which impacts all other 

cable making proceeding procedures. On the other hand, if these challenges in all strategic 

fields; specialty optical fiber, FIMT, sensing cable designs and manufacturing processes are 
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addressed with provable innovative approaches leading to solutions, then the industrial fruits of 

it can be numerous. The objective of this thesis goes in such direction – it shall suggest a new 

way toward distributed pressure measurements (DPS) techniques by means of combination of 

both; special cable design and the methods to interrogate them. It shall prove once again that 

the real solution with acceptable time-to-market approach is a multidisciplinary field requiring 

strong collaboration. 

FIMT production line [Fig.-1.7] comprises of several modules set inline along the production 

line. All the details of the production are out of scope of this thesis and hence will only be 

briefly explained. The line is basically segmented into 3 parts: 

• feed-in modules for the metal strip and optical fiber   

• main module with a jelly filling device, laser welding station, tube forming station, and tube 

reduction station 

• lead out modules with disk capstan, a seam testing unit and FIMT take up         

 

Figure-1.7: Fiber in Steel Tube production line [manufacturer Nexans - www.nexans.de] 

The production starts with purchasing the steel strips and mounting them on the payoff module 

– a vertically or horizontally module with a rotatable wheel that in a controllable way releases 

the strip into the line. Between the strip payoff module and strip edge trimming unit there is a 

fiber payoff module – a rack built for hosting the matrix of fibers spools. It unwinds optical 

fibers and can arrange them in bunches and lead them into the main station. Once the strip and 

optical fibers bunches reach the main module, the strip will be processed and final encapsulation 

of optical fibers with target diameter can take place. The strip edges are trimmed at the 
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beginning of the module, hence prepared for the welding process that must run smoothly and 

uneventfully for many kilometers. Within the tube forming tools the strip is (in more stages) 

formed into a closed pear-like form, now with optical fibers encapsulated within. The tube is 

then laser welded. The welding process is done using inert gasses (Helium, Argon) assuring 

quality welding and it is always monitored and welding parameters are documented. The split-

clamp capstan helps driving the process and mechanically stabilizes it. The ‘early FIMT’, now 

welded, is brought through a series of dyes in a tube reduction station to reach the target outer 

diameter (OD). After OD reduction the tube is eventually cleansed in a washing bath from all 

the residues of industrial lubricants and then dried. At this stage the tube leaves the main module 

and is forwarded to the disc capstan – the main pulling/driving module. The disc of the capstan 

hosts few windings on its circumference assuring enough friction required to transfer the 

rotational momentum into pulling force with good stability. After leaving the capstan the tube 

is checked at the seam testing unit performing the Eddy current check procedure and seeking 

in-homogeneities in the outer surface of the tube. After the test, the FIMT is wound onto a 

production reel at tube take-up system. This has been a description of the production line in 

general and specific production processes in production facilities around the world can be 

different, and additional modules can be seen in the premises, all according to industrial 

specialization of the actual production line and the needs in the market.  

 

1.4  Structure of the thesis 

This thesis is organized in the 5 main chapters. Since the essential idea was to physically 

develop a cable sensor, the tests and to propose novel interrogation techniques, the organization 

of chapters shall reflect typical product development.  

The thesis starts with the introductory chapter which provides a detailed description of 

birefringence effects in single-mode optical fibers, and of mechanical and thermal perturbations 

giving rise to it. The description of fiber in metal tube production technology is also presented.  

Chapter 2 presents the theoretical background of stimulated Brillouin scattering effects in more 

details. It gives an overview of inelastic optical scattering and introduces relevant laws of 

physics describing these effects. Theoretical analysis starts with a microscopic scale description 

of dielectric medium, electric polarization, counter-propagating electromagnetic waves and 
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electrostriction effect giving rise to the change in mass density and acoustic wave, the 

description of Brillouin interaction and of parameters relevant for its characterization and for 

the measurements are also given in the chapter. 

The cable concept is proposed and explained in detail in Chapter 3. The mechanism of the 

impact of external hydrostatic pressure on the birefringence properties of optical fibers is 

presented using Newtonian mechanics. The concept is then quantitatively tested using Finite 

Element Analysis methods exhibiting asymmetrical loading extorted to the optical fibers and 

proving the concept. The producibility of the construction is first tested and explained with 

optical loss measurements. The tests are proceeded with the introduction of Stokes polarimetric 

parameters and with polarimetric measurements conducted in the high-pressure chamber 

(specially developed for high-pressure and high-temperature testing and briefly presented in the 

chapter). The polarimetric measurements show strong dependence on pressure variation.  The 

chapter concludes with the tube compression test showing linear change in metal tube diameter 

as a function of hydrostatic pressure. 

Chapter 4 proposes, analyzes and discusses a novel distributed pressure interrogation method 

based on polarization efficiency of the Brillouin-Lorentzian gain and its dependence on the 

propagation constant and position along the tested fiber. The chapter explains weak dependency 

of the propagation constant for a case of narrow wavelength range, such as one in the Brillouin 

interaction process, and explains strong dependency on external pressure value. The method of 

extraction of birefringence parameters is developed in the spectral-spatial domain using 

extremes searching technique.   

Chapter 5 discusses the benefits of the proposed cable construction containing three optical 

fibers set for evaluation of cable bending.  The chapter gives a description of the interrogation 

concept using the stimulated Brillouin technique, and of the developed sample as well as the 

obtained measurement data. 
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2. STIMULATED BRILLOUIN SCATTERING  

The scattering in optical fibers can be elastic and inelastic. Elastic scattering is such a kind of 

scattering in which the scattered wave has the same wavelength and frequency as the incident 

wave. An example of elastic scattering is Rayleigh scattering. An inelastic scattering is a kind 

of scattering where the wavelength or frequency of the scattered wave is different for the 

incident wave. An example of inelastic scattering is Raman and Brillouin scattering; the latter 

being the subject of this chapter. Scattered light is frequency shifted and these frequencies can 

be downshifted and upshifted, all in accordance to with energy transition relative to ground 

states. In quantum physics such scattering processes are depicted in Fig.-2.1. Incident pumping 

photons are absorbed by molecules in an optical medium populating (a) few ground energy 

states. These molecules making upward transition to the higher quasi-stable virtual states can 

reside only shortly there and they transit back to ground energy states. In the downshifting 

process, a photon in elastic transition is emitted at the same wavelength as an incident photon, 

whereas in inelastic transitions, such as Brillouin, the photon is emitted at a different 

wavelength. In an inelastic Brillouin transition, two photons can be emitted; the Stokes and 

anti-Stokes photons. 

 

Figure-2.1: Photon absorption and emission processes in optical medium 

Photon emission, having lower frequency and therefore energy than pumping light, is referred 

to as Stokes emission, whereas emitted light with larger energy than the pumping energy is 

referred as to anti-Stokes emission. There is a fundamental difference between Raman and 

Brillouin scattering and it reflects the nature of these two physical effects; Raman scattering 
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reflects thermomechanical vibration and rotation perturbations in the atom bonds of an optical 

medium interacting with photons, thus causing frequency shifts. The source of frequency shifts 

in Brillouin effects are electric fields and the changes of density of the optical medium by means 

of electrostriction effect giving rise to an acoustical wave. Because of its nature, the frequency 

and wavelength shift in the Raman effect are much larger than shifts in Brillouin effects. The 

Raman wavelength shifts amount to several tenths of nanometers, while wavelength shifts in 

Brillouin amount to a few picometers. The wavelength measurements of the emitted lightwave 

reveals the thermal and mechanical conditions of optical fiber in Raman and Brillouin 

processes, respectively. 

 

Figure-2.2: Emission spectrum of optical medium for Raman and Brillouin scattering 

All energy transitions of photons and electrons in optical fibers obey the following physical 

laws crucial to understanding the processes 

1. From conservation of energy stating that energy emission is the transition from higher 

energy levels (higher frequencies shorter wavelengths) to lower energy levels (lower 

frequencies longer wavelengths). For the Stokes wave and anti-Stokes we have: 

Ω = 𝜔𝑝 − 𝜔𝑠 (2.1𝑎) 

Ω = 𝜔𝑎𝑠 − 𝜔𝑝 (2.1𝑏) 

2. Conservation of momentum stating that the propagation constant of a resulting wave 

equals the difference of the incident wave propagation constant and wavelength upshifted 

scattered wave. Again, for Stokes and anti-Stokes we have: 

𝑞⃗ = 𝑘⃗⃗𝑝 − 𝑘⃗⃗𝑠 (2.2𝑎) 
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𝑞⃗ = 𝑘⃗⃗𝑎𝑠 − 𝑘⃗⃗𝑝 (2.2𝑏) 

In case of Stimulated Brillouin Scattering (SBS) we will use two counter-propagating waves. 

In that case for Stokes we have: 

𝑞 = 𝛽𝑝 + 𝛽𝑠 (2.2𝑐) 

whereas for anti-Stokes we have: 

𝑞 = 𝛽𝑎𝑠 + 𝛽𝑝 (2.2𝑑) 

Here 𝛽𝑖 = |𝑘⃗⃗𝑖|.  

The Pump and the Stokes waves will give rise to a low frequency beating wave that travels in 

the direction of that component having a larger frequency and shorter wavelength. The beating 

wave is the course of the acoustic wave that will be described here in more details. 

 

2.1  Light in dielectric medium 

In order to analyze physical phenomena of interaction of light with an optical medium, we must 

take a look at it on the microscopic scale. We consider a molecule subjected to an electrical 

field 𝑬 turning to polarization dipole and developing the electric dipole moment 𝒑⃗⃗⃗, as depicted 

in figure 5.3. 
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Figure-2.3: Mechanism of molecular polarization in electric field 

The positive and negative microscopic charges are separated by an electrical force when a 

molecule is found in the electrical field. The concept of the molecular dipole moment 𝒑⃗⃗⃗ can be 

defined as: 

𝒑⃗⃗⃗ = 𝑞 ∙ 𝒅⃗⃗⃗ (2.3) 

where 𝑞 is the charge of molecule and 𝒅⃗⃗⃗ the displacement vector. Molecular polarizability 𝛼 is 

3x3 tensor characteristic of a medium. It links the electric dipole moment 𝒑⃗⃗⃗ with the electrical 

field 𝑬⃗⃗⃗ : 

𝒑⃗⃗⃗ = 𝜀𝑜𝛼𝑬⃗⃗⃗ (2.4) 

being in an E-field, it makes sense for a dipole to define its potential energy: 

𝑑𝑈 = −𝒑⃗⃗⃗ 𝑑𝑬⃗⃗⃗ (2.5) 

Therefore, the total work and potential energy stored is related to bringing the charges and 

dipole to the position and state of a uniform E-field 𝑬⃗⃗⃗: 

𝑈 = −∫ 𝒑 ⃗⃗⃗⃗ 𝑑𝑬⃗⃗⃗′ = −
1

2

𝐸

0

𝜀𝑜𝛼𝐸
𝟐 (2.6) 

The force exerted on a single dipole/molecule can be calculated using the gradient of potential 

energy: 

𝑭⃗⃗⃗ = −∇𝑈 =
1

2
𝜀𝑜𝛼𝛁(𝐸

2) (2.7) 

The direction of force 𝑭⃗⃗⃗ of a molecule dipole is in the direction of the increasing E-field. 
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This was from the microscopic point of view of a single molecule as a dipole. Now, for a much 

larger number of dipoles involved, we will continue with the derivation using the macroscopic 

point of view relevant to our case. Let us define a dipole moment per unit volume 𝑷⃗⃗⃗(𝒓⃗⃗) as: 

𝑷⃗⃗⃗(𝒓⃗⃗) =∑𝑁𝑖〈𝒑⃗⃗⃗𝑖〉

𝑖

 (2.8a) 

𝑷⃗⃗⃗(𝒓⃗⃗) = 𝜒𝜀0𝑬⃗⃗⃗ (2.8𝑏) 

where:  

- 〈𝒑⃗⃗⃗𝑖〉 is average dipole moment of the i-th of molecule making up the medium, and 

- 𝑁𝑖is the average number of such molecules per unit volume in the vicinity of point 𝒓⃗⃗ 

- 𝜒 is electrical susceptibility 

The connection between molecular polarizability 𝛼 and the dielectric constant is described   

by the Clausius-Mossotti relation: 

𝜀 − 1

𝜀 + 1
=
𝑁𝛼

3𝜀0
. (2.9) 

Now, for very strong fields such as those generated by laser lights, electric polarization (dipole 

moment per unit volume) becomes nonlinear. The concept of electric polarization can be 

modelled by linear and nonlinear susceptibility using Taylor expansion applied to (2.4). 𝜒(1) 

represents linear susceptibility and all the others are nonlinear susceptibilities 𝜒(𝑛), (n > 1). 

Therefore, the density of the dielectric medium and dielectric constant change and can be 

described with 𝜌 = 𝜌0 + Δ𝜌 and 𝜀𝑟 = 𝜀𝑟̃ + Δ𝜀𝑟 respectively. The link between change in the 

dielectric constant and change of density of the dielectric medium can be defined with the 

introduction of electro-strictive constant: 

∆𝜀 =
𝛿𝜀

𝛿𝜌
Δ𝜌 =

1

𝜌0
𝜁𝑒Δ𝜌 (2.10) 

Where 𝜁𝑒 = 𝜌0 (
𝛿𝜀

𝛿𝜌
). It defines the amount of change in the dielectric constant due to change of 

density of the optical material. Electrostatic energy density inside dielectric medium is given 

by: 
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𝑈 =
1

2
𝑬⃗⃗⃗ ∙ 𝑫⃗⃗⃗ =

1

2
𝜀0(𝜀𝑟̃ + Δ𝜀𝑟)𝐸

𝟐. (2.11) 

So, the change in electrostatic energy due to change of the dielectric constant is: 

∆𝑈 =
1

2
𝐸𝟐∆𝜀 =

1

2

𝜀0𝜁𝑒𝐸
𝟐

𝜌0
Δ𝜌. (2.12) 

The work done per unit volume is: 

∆𝑊 = 𝑝𝑠𝑡
Δ𝑉

𝑉
= −𝑝𝑠𝑡

Δ𝜌

𝜌0
(2.13) 

where 𝑝𝑠𝑡 is strictive pressure. 

The change in energy must equal the work done or ∆𝑈 = ∆𝑊. Therefore, we get the expression 

for strictive pressure: 

𝑝𝑠𝑡 = −
1

2
𝜀0𝜁𝑒𝐸

𝟐. (2.14) 

Strictive pressure as a mechanical quantity cannot oscillate with the rate of the rapidly changing 

electrical field 𝑬⃗⃗⃗ oscillation in terahertz ranges. The power (𝐸2) will have its low frequency 

components that can be followed by strictive pressure. Therefore, in further analysis we will 

use the time averaged field: 

𝑝𝑠𝑡 = −
1

2
𝜀0𝜁𝑒〈𝐸

2〉. (2.15) 

Now we can relate force-per-unit-volume to the intensity of the electric field: 

𝒇 = ∇𝑝𝑠𝑡 (2.16) 

∇𝒇 = ∇2𝑝𝑠𝑡 = −
1

2
𝜀0𝜁𝑒∇

2〈𝐸2〉 (2.17) 

Here we need to make a digression and dig into the analysis of an electrical field of a 

propagating wave: 
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1.2. Case study: two counter-propagating lightwaves 

We have two lightwave counter-propagating; 

- 𝑬⃗⃗⃗𝑝 electrical field of pump wave propagating in +z direction 

𝑬⃗⃗⃗𝑝(𝑧, 𝑡) = 𝒆⃗⃗𝑝𝐴𝑝 cos(𝛽𝑝𝑧 − 𝜔𝑝𝑡 + 𝜃𝑝) 

𝑬⃗⃗⃗𝑝(𝑧, 𝑡) = 𝒆⃗⃗𝑝(𝐴̃𝑝𝑒
𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝐴̃𝑝

∗ 𝑒−𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡]) (2.18) 

- 𝑬⃗⃗⃗𝑠 electrical field of Stokes wave propagating in -z direction 

𝑬⃗⃗⃗𝑠(𝑧, 𝑡) = 𝒆⃗⃗𝑠𝐴𝑠cos (−𝛽𝑠𝑧 − 𝜔𝑠𝑡 + 𝜃𝑠) 

𝑬⃗⃗⃗𝑠(𝑧, 𝑡) = 𝒆⃗⃗𝑠(𝐴̃𝑠𝑒
𝑖[−𝛽𝑠𝑧−𝜔𝑠𝑡] + 𝐴̃𝑠

∗𝑒−𝑖[−𝛽𝑠𝑧−𝜔𝑠𝑡]) (2.19) 

Where 𝐴̃𝑝 = 𝐴𝑝𝑒𝑖∅𝑝, 𝐴̃𝑠 = 𝐴𝑠𝑒𝑖∅𝑠 are phasors and 𝛽𝑝 =
2𝜋

𝜆1
;  𝛽𝑠 =

2𝜋

𝜆2
 are propagation constants. 

Now the summing electrical field is: 

|𝑬⃗⃗⃗|
𝟐
= |𝑬⃗⃗⃗𝑝(𝑧, 𝑡) + 𝑬⃗⃗⃗𝑠(𝑧, 𝑡)|

2
= (2.20) 

= |𝒆⃗⃗𝑝1
1

2
(𝐴̃𝑝𝑒

𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝐴̃𝑝
∗ 𝑒−𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡]) + 𝒆⃗⃗𝑠1

1

2
(𝐴̃𝑠𝑒

𝑖[−𝛽𝑠𝑧−𝜔𝑠𝑡] + 𝐴̃𝑠
∗𝑒−𝑖[−𝛽𝑠𝑧−𝜔𝑠𝑡])|

2

 

|𝑬⃗⃗⃗|
𝟐
=

= |𝒆⃗⃗𝑝1
1

2
𝐴̃𝑝𝑒

𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝒆⃗⃗𝑝1
1

2
𝐴̃𝑝
∗ 𝑒−𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝒆⃗⃗𝑠1

1

2
𝐴̃𝑠𝑒

𝑖[−𝛽𝑠𝑧−𝜔𝑠𝑡] + 𝒆⃗⃗𝑠1
1

2
𝐴̃𝑠
∗𝑒−𝑖[−𝛽𝑠𝑧−𝜔𝑠𝑡]|

2 

(2.21) 

Physically only a few components fall into the detectable/measurable range; 

1. rectification summands and 

2. summands containing (𝜔𝑝 − 𝜔𝑠) 

Therefore, we can continue: 

|𝑬⃗⃗⃗|
𝟐
= |𝐴̃𝑝𝐴̃𝑝

∗ + 𝐴̃𝑠𝐴̃𝑠
∗ + 𝜉(𝐴̃𝑝𝐴̃𝑠

∗𝑒𝑖[(𝛽𝑝+𝛽𝑠)𝑧−(𝜔𝑝−𝜔𝑠)𝑡] + 𝑐. 𝑐. )| (2.22) 
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where 𝑐. 𝑐. stands for complex conjugate. We have introduced the following substitutions: 

- Ω = 𝜔𝑝 − 𝜔𝑠 being angular frequency of a new low frequency wave (phonon) 

- 𝑞 =  𝛽𝑝 + 𝛽𝑠 being wavevector of low frequency slowly changing wave 

- 𝜉 = (𝒆⃗⃗𝑝 ∙ 𝒆⃗⃗𝑠) is polarization efficiency 

|𝑬⃗⃗⃗|
𝟐
= |𝐴̃𝑝𝐴̃𝑝

∗ + 𝐴̃𝑠𝐴̃𝑠
∗ + 2𝜉

1

2
(𝐴̃𝑝𝐴̃𝑠

∗𝑒𝑖[𝑞𝑧−Ω𝑡] + (𝐴̃𝑝𝐴̃𝑠
∗)
∗
𝑒−𝑖[𝑞𝑧−Ω𝑡])| . (2.23) 

Written otherwise for electric field 𝑬: 

|𝑬⃗⃗⃗|
𝟐
= |
|𝐴̃𝑝𝐴̃𝑝

∗ + 𝐴̃𝑠𝐴̃𝑠
∗

⏟        
𝑅𝑒𝑐𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

+ 2𝜉𝐴̃𝑝𝐴̃𝑠
∗𝑐𝑜𝑠(𝑞𝑧 − Ω𝑡)⏟              

𝑃ℎ𝑜𝑛𝑜𝑛 𝑤𝑖𝑡ℎ 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
Ω=𝜔𝑝−𝜔𝑠

 |
| (2.24a) 

|𝑬⃗⃗⃗|
𝟐
= |𝐴𝑝

2 + 𝐴𝑆
2 + 2𝜉𝐴̃𝑝𝐴̃𝑠

∗𝑐𝑜𝑠(𝑞𝑧 − Ω𝑡)|. (2.24𝑏) 

The resulting optical power made by two counter-propagating lightwaves has the DC and AC 

component. The DC component is proportional to the sum of power of each wave, whereas the 

AC component is a wave that propagates in positive z direction. This power will interact with 

the optical medium and cause the change in strictive internal pressure that will, in turn, change 

the local density of the material. In other words, a phonon wave – an acoustical wave in 

ultrasonic frequency range is excited and will propagate in the medium. 

∇𝒇⃗⃗ = −𝜀0𝜁𝑒𝜉
𝜕2

𝜕𝑧2
(𝐴̃𝑝𝐴̃𝑝

∗ + 𝐴̃𝑠𝐴̃𝑠
∗ + 𝐴̃𝑝𝐴̃𝑠

∗𝑒𝑖[𝑞𝑧−Ω𝑡] + 𝑐. 𝑐. ). (2.25) 

For the case in which amplitudes of the pump and Stokes wave change only slowly with 

distance, such as in optical fibers, the second derivative of the first two terms vanishes and 

(2.25) becomes: 

∇𝒇⃗⃗ ≅  𝜀0𝜁𝑒𝜉𝑞
2[𝐴̃𝑝𝐴̃𝑠

∗𝑒𝑖(𝑞𝑧−Ω𝑡) + 𝑐. 𝑐. ]. (2.26) 

The result (2.26) tells us that divergence of force is a wave. This divergence exists only if 𝑞 is 

non-zero as in the case of counter propagating waves. In fact, in such cases, the divergence of 

force is very strong, and it gives rise to the electrostriction effect even at lower levels of laser 

powers. 



 FIBER-OPTIC SENSOR CABLE FOR SIMULTANEOUS DISTRIBUTED MEASUREMENTS 

 

25 

 

We will consider this wave in more detail using an example as follows: 

Angular frequency of an acoustical wave is Ω = 𝜔𝑝 − 𝜔𝑠 and its wavenumber is 𝑞 =  𝛽𝑝 + 𝛽𝑠 

for counterpropagating EM-waves. For standard telecommunication fibers the former can be 

taken to be 10.6GHz and the latter can be approximated with 𝑞 ≅ 2 𝛽𝑝. Propagation constant 

𝛽𝑝can be calculated for 1550nm as: 

𝛽𝑝 =
2𝜋

𝜆0
𝑛1 =

2 ∗ 3.14

1.55 ∙ 10−6
1.46 = 5.91

𝑟𝑎𝑑

𝜇𝑚
. 

Using 𝜈𝜆 = 𝑐 we can calculate 𝜔𝑝 (𝜈 denotes frequency in optical frequency range): 

𝜔𝑝 = 2𝜋
𝑐

𝜆0
𝑛1 = 2 ∗ 3,14 ∗ 194.414 𝑇𝐻𝑧 = 1215

𝑇𝑟𝑎𝑑

𝑠
. 

The propagating electromagnetic wave has the form:  

cos(𝛽𝑝𝑧 − 𝜔𝑝𝑡) = 𝑐𝑜𝑠(𝛽𝑝𝑣𝑝 − 𝜔𝑝)𝑡 = 𝑐𝑜𝑠(𝜔𝑝 − 𝛽𝑝𝑣𝑝)𝑡 

Inserting the values into the equation we get: 

𝑐𝑜𝑠 (1215
𝑇𝑟𝑎𝑑

𝑠
−
5.91𝑟𝑎𝑑

𝜇𝑚
𝑣𝑝) 𝑡. 

We apply the same principle to the acoustic wave: 

cos(𝑞𝑧 − Ω𝑡) = 𝑐𝑜𝑠(𝑞𝑣𝑝 −Ω)𝑡 = 𝑐𝑜𝑠(Ω − 𝑞𝑣𝑝)𝑡 

𝑐𝑜𝑠 (66,06
𝐺𝑟𝑎𝑑

𝑠
−
11.82𝑟𝑎𝑑

𝜇𝑚
𝑣𝑝) 𝑡. 

For the same 𝑧, 𝑡 variables (and therefore also 𝑣𝑝 =
𝑧

𝑡
) the above calculations show that the 

periodicity of the acoustic wave is by far longer than the one from the electromagnetic wave. 

In other words, for many periods of the electromagnetic wave, the acoustic wave can be taken 

as almost constant. This is beneficial and can be used in further analysis when spatial and time 

derivatives are considered. 
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2.2 Polarization nonlinearity of 2nd order 

Dependence of (macroscopic dipole) polarization density (per-unit-volume) in the electric field 

consists of linear and nonlinear terms: 

𝑷⃗⃗⃗ = 𝜀0𝜒
(1)𝑬⃗⃗⃗⏟    

𝐿𝑖𝑛𝑒𝑎𝑟 𝑠𝑢𝑚𝑚𝑎𝑛𝑑 𝑃⃗⃗𝐿

+ 𝜀0𝜒
(2)𝑬⃗⃗⃗2 + 𝜀0𝜒

(3)𝑬⃗⃗⃗3 +⋯⏟                
𝑆𝑒𝑟𝑖𝑒 𝑜𝑓 𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑢𝑚𝑚𝑎𝑛𝑑𝑠 𝑃⃗⃗𝑁𝐿

(2.27) 

Where 𝜒-s represent susceptibilities of the medium. 

It shall be noted that both linear and non-linear terms are extensively used in modern optics in 

order to produce various effects useful in science and in industry.  The electric displacement 

field 𝑫⃗⃗⃗ is (by definition) dependent on the electric field and dipole polarization: 

𝑫⃗⃗⃗ = 𝜀0𝑬⃗⃗⃗ + 𝑷⃗⃗⃗ = 𝜀0𝑬⃗⃗⃗ + 𝜀0𝜒0
(1)
𝑬⃗⃗⃗ + 𝑷⃗⃗⃗𝑵𝑳 = 𝜀0(1 + 𝜀0𝜒0

(1)
)⏟        𝑬⃗⃗⃗

𝜀̃=𝜀0𝜀̃𝑟

+ 𝑷⃗⃗⃗𝑵𝑳 (2.28) 

𝑫⃗⃗⃗ = 𝜀̃𝑬⃗⃗⃗ + 𝑷⃗⃗⃗𝑵𝑳 (2.29) 

where 𝜀0 is vacuum permittivity, and 𝜀̃ permittivity of optical medium. 

Taking that 𝑷⃗⃗⃗𝑵𝑳for small amplitudes of 𝑬⃗⃗⃗ can be approximated as: 

𝑷⃗⃗⃗𝑵𝑳 = 𝜀0Δ𝜀𝑟 𝑬⃗⃗⃗ (2.30) 

where Δ𝜀𝑟is relative (to free space) permittivity of the optical medium. 

Introducing the substitution Δε = 𝜀0Δ𝜀𝑟 we get: 

𝑫⃗⃗⃗ = 𝜀0𝜀𝑟̃ 𝑬⃗⃗⃗ + 𝜀0Δ𝜀𝑟 𝑬⃗⃗⃗ = 𝜀0(𝜀𝑟̃ + Δ𝜀𝑟)𝑬⃗⃗⃗ (2.31) 

𝑩⃗⃗⃗ = 𝜇0𝜇𝑟 𝐻⃗⃗⃗. (2.32) 

For a dielectric non-magnetic optical medium, as in our case, we take 𝜇𝑟 = 1. Now applying 

the Maxwell equation to a non-magnetic dielectric optical medium: 

𝛁 × 𝑬⃗⃗⃗ = −
𝜕

𝜕𝑡
𝑩⃗⃗⃗ (2.33) 
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𝛁 × 𝑯⃗⃗⃗⃗ =
𝜕

𝜕𝑡
𝑫⃗⃗⃗ (2.34) 

𝛁 × 𝑩⃗⃗⃗ = 𝜇0
𝜕

𝜕𝑡
𝑫⃗⃗⃗ = 𝜇0𝜀0

𝜕

𝜕𝑡
[(𝜀𝑟̃ + Δ𝜀𝑟)𝐸⃗⃗] (2.35) 

Using substitution for 𝜇0𝜀0 =
1

𝑐0
2: 

𝛁 × 𝑩⃗⃗⃗ =
1

𝑐0
2 (𝜀𝑟̃

𝜕

𝜕𝑡
𝑬⃗⃗⃗ +

𝜕

𝜕𝑡
𝑬⃗⃗⃗Δ𝜀𝑟) (2.36) 

And now taking the derivative with respect to time: 

𝛁 ×
𝜕

𝜕𝑡
𝑩⃗⃗⃗ =

𝜀𝑟̃

𝑐0
2

𝜕2

𝜕𝑡2
𝑬⃗⃗⃗ +

𝜕2

𝜕𝑡2
𝑬⃗⃗⃗Δε. (2.37) 

Taking 𝛁 × 𝑬⃗⃗⃗ = − 𝜕

𝜕𝑡
𝑩⃗⃗⃗ and applying the rule 𝛁 × 𝛁 × 𝑬⃗⃗⃗ = −∇2𝑬⃗⃗⃗ we get: 

∇2𝑬⃗⃗⃗ −
𝜀𝑟̃

𝑐0
2

𝜕2

𝜕𝑡2
𝑬⃗⃗⃗ =

𝜕2

𝜕𝑡2
𝑬⃗⃗⃗Δε (2.38) 

Equation (2.38) describes propagation of the basic electromagnetic wave within a medium in a 

weak nonlinear operation mode. 

2.3 Evolution of acoustic wave 

So far, we have seen that optical power from two counter-propagating coherent beating 

electrical fields from lasers has its AC and DC components (2.24). This power will modulate 

density of the optical medium by the electro-striction mechanism. Further analysis continues 

using principles of hydrodynamics involving mass density and temperature as variables. Mass 

density of material due to electric field 𝑬⃗⃗⃗ can be described with: 

𝜌𝑡(𝑧, 𝑡) = 𝜌0 + 𝛥𝜌 (2.39) 

Where: 

- 𝜌0 is the equilibrium mass density of the medium 

- 𝛥𝜌 is a varying part of 𝜌𝑡(𝑧, 𝑡) and can be described as a wave 
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𝛥𝜌 = 𝜌𝑚cos(𝑞𝑧 − Ω𝑡 + Φ𝜌) =

=
1

2
[𝜌𝑚𝑒

iΦ𝜌𝑒𝑖(𝑞𝑧−Ω𝑡) + 𝜌𝑚𝑒
−iΦ𝜌𝑒−𝑖(𝑞𝑧−Ω𝑡)] = 𝜌̃𝑒𝑖(𝑞𝑧−Ω𝑡) + 𝑐. 𝑐. (2.40)

 

Analogously we apply the same principle to pressure 𝑝𝑡(𝑧, 𝑡), temperature 𝑇̃𝑡 and velocity 𝑣𝑡. 

Pressure will be a periodic function, but temperature and velocity will not. 

𝑝𝑡(𝑧, 𝑡) = 𝑝0 + 𝛥𝑝 (2.41) 

𝑇𝑡(𝑧, 𝑡) = 𝑇0 + 𝛥𝑇 (2.42) 

𝒗⃗⃗⃗𝒕 = 𝒗⃗⃗⃗ (2.43) 

The rigorous analysis of an optical medium invokes principles and methods in fluid mechanics 

[1]. 

1. Equation of continuity 

𝜕𝜌𝑡
𝜕𝑡
+ 𝛁𝜌𝑡 𝒗⃗⃗⃗𝒕 = 0 (2.44) 

2. Equation of momentum transfer (conservation of momentum, generalization of Navier-

Stokes equation) 

𝜌𝑡
𝜕

𝜕𝑡
𝒗⃗⃗⃗𝒕 + 𝜌𝑡(𝒗⃗⃗⃗𝒕∇)𝒗⃗⃗⃗𝒕 = 𝒇̃ − 𝛁𝑝𝑡 + (2𝜂𝑠 + 𝜂𝑑)∇(∇ 𝒗⃗⃗⃗𝒕) − 𝜂𝑠∇ × (∇ × 𝒗⃗⃗⃗𝒕) (2.45) 

3. Equation of heat transfer (conservation of energy) 

𝜌𝑡𝑐𝑣
𝜕

𝜕𝑡
𝑇̃𝑡 + 𝜌𝑡𝑐𝑣(𝒗⃗⃗⃗𝒕∇𝑇𝑡) + 𝜌𝑡𝑐𝑣 (

𝜉 − 1

𝛽𝑝
) (∇ 𝒗⃗⃗⃗𝒕) = −∇𝑸̃ + 𝜙̃𝑛 + 𝜙̃𝑒𝑥𝑡 (2.46) 

Where: 

- 𝒇̃ internally imposed forces per unit volume 

- 𝒗⃗⃗⃗𝒕 velocity of fluid unit volume 

- 𝜂𝑠 shear viscosity coefficient 

- 𝜂𝑑 dilatation viscosity coefficient 

- 𝑐𝑣 specific heat at constant volume 
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- 𝜁 =
𝑐𝑝

𝑐𝑣
 adiabatic index 

- 𝛽𝑝 = −
1

𝜌0
(
𝜕𝜌

𝜕𝑇
)
𝑝
thermal expansion coefficient 

- 𝑄̃ heat flux vector that satisfies ∇𝑸̃ = −𝜅∇2𝑇𝑡 

- 𝜙̃𝑛 viscous energy deposited per unit volume per unit time 

- 𝜙̃𝑒𝑥𝑡 viscous energy deposited from external sources per unit volume per unit time 

In further analysis we will assume small amplitudes of varying parts compared to equilibrium 

states, that is: 

|𝜌𝑚| ≪ 𝜌0, |𝑝𝑚| ≪ 𝑝0, |𝛥𝑇| ≪ 𝑇0, |𝒗⃗⃗⃗𝒕| ≪ |𝑣𝑎| 

where 𝑣𝑎 is the velocity of the acoustic wave (sound velocity). 

Taken that 𝑝,  𝜌,  and 𝑇 are independent variables, correlation between them can be expressed 

as: 

𝛥𝑝 = (
𝜕𝑝

𝜕𝜌
)
𝑇

𝛥𝜌 + (
𝜕𝑝

𝜕𝑇
)
𝜌
𝛥𝑇 (2.47) 

𝑝 =
𝑣𝑎
2

𝜁
(𝜌 + 𝛽𝑝𝜌0𝑇). (2.48) 

Combining (2.46), (2.47), taking divergence on (2.48) and using (2.44) and (2.45) we obtain: 

𝜕2

𝜕𝑡2
𝜌 −

2𝜂𝑠 + 𝜂𝑑
𝜌0

∇2
𝜕

𝜕𝑡
𝜌 −

𝑣𝑎
2

𝜁
∇2𝜌 −

𝑣𝑎
2

𝜁
𝛽𝑝𝜌0∇

2𝑇 = ∇𝑓. (2.49) 

Since temperature changes are very slow, the second derivate of temperature is very small and 

can be neglected. With the introduction of new substitutions, we get: 

𝜕2

𝜕𝑡2
𝜌 − Γ′∇2

𝜕

𝜕𝑡
𝜌 − 𝑣2∇2𝜌 = ∇𝑓 (2.50) 

where: 

- Γ′ = 2𝜂𝑠+𝜂𝑑
𝜌0

 damping coefficient of acoustic wave 

- 𝑣2 = 𝑣𝑎
2

𝜉
 effective speed of sound in the medium 
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Equation (2.50) now governs the mass density wave due to electro-strictive force that is a result 

of beating optical fields. 

Implementing (2.25) and limiting (2.50) to z- axis only: 

𝜕2

𝜕𝑡2
𝜌 − Γ′

𝜕2

𝜕𝑧2
𝜕

𝜕𝑡
𝜌 − 𝑣2

𝜕2

𝜕𝑧2
𝜌 = 𝜀0𝜁𝑒𝜉𝑞

2[𝐴̃𝑝𝐴̃𝑠
∗𝑒𝑖(𝑞𝑧−Ω𝑡) + 𝑐. 𝑐. ]. (2.51) 

We have to combine (2.40) with (2.51). We need to work out all spatial and temporal 

derivatives. For the 1st time, derivative: 

𝜕

𝜕𝑡
[ 𝜌̃𝑒𝑖(𝑞𝑧−Ω𝑡)] = (

𝜕

𝜕𝑡
 𝜌̃ − 𝑖 𝜌̃Ω) 𝑒𝑖(𝑞𝑧−Ω𝑡) 

and the 2nd time, derivative: 

𝜕2

𝜕𝑡2
[ 𝜌̃𝑒𝑖(𝑞𝑧−Ω𝑡)] =

𝜕

𝜕𝑡
(
𝜕

𝜕𝑡
[ 𝜌̃𝑒𝑖(𝑞𝑧−Ω𝑡)]) =

𝜕

𝜕𝑡
(
𝜕

𝜕𝑡
 𝜌̃ − 𝑖 𝜌̃Ω) 𝑒𝑖(𝑞𝑧−Ω𝑡)

= [−𝑖Ω(
𝜕

𝜕𝑡
 𝜌̃ − 𝑖 𝜌̃Ω) + (

𝜕2

𝜕𝑡2
 𝜌̃ − 𝑖Ω

𝜕

𝜕𝑡
 𝜌̃)] 𝑒𝑖(𝑞𝑧−Ω𝑡)

= (
𝜕2

𝜕𝑡2
 𝜌̃ − 2𝑖Ω

𝜕

𝜕𝑡
 𝜌̃ − Ω2 𝜌̃) 𝑒𝑖(𝑞𝑧−Ω𝑡) 

the 2nd spatial derivative: 

𝜕2

𝜕𝑧2
[ 𝜌̃𝑒𝑖(𝑞𝑧−Ω𝑡)] =

𝜕

𝜕𝑧
(
𝜕

𝜕𝑧
[ 𝜌̃𝑒𝑖(𝑞𝑧−Ω𝑡)]) = (

𝜕2

𝜕𝑧2
 𝜌̃ + 2𝑖q

𝜕

𝜕𝑧
 𝜌̃ − q2 𝜌̃) 𝑒𝑖(𝑞𝑧−Ω𝑡). 

Equation (2.50) now becomes: 

(
𝜕2

𝜕𝑡2
 𝜌̃ − 2𝑖Ω

𝜕

𝜕𝑡
 𝜌̃ − Ω2 𝜌̃) 𝑒𝑖(𝑞𝑧−Ω𝑡) + Γ∇2 [(

𝜕

𝜕𝑡
 𝜌̃ − 𝑖 𝜌̃Ω) 𝑒𝑖(𝑞𝑧−Ω𝑡)] +∙∙∙

−𝑣𝑎
2 (
𝜕2

𝜕𝑧2
 𝜌̃ + 2𝑖q

𝜕

𝜕𝑧
 𝜌̃ − q2 𝜌̃) 𝑒𝑖(𝑞𝑧−Ω𝑡) = 𝜀0𝜁𝑒𝜉𝑞

2𝐴̃𝑝𝐴̃𝑠
∗𝑒𝑖(𝑞𝑧−Ω𝑡). (2.52)

 

As we can see the equation (2.52) includes 1st and 2nd temporal and spatial derivatives. The 

phase elements suggest slow changes relative to fast alternating pumping and stokes fields. The 

fact is that mass density acts inertially and cannot follow fast changes of electromagnetic fields. 

Therefore, without losing generality, we can limit our analysis to the special case – slow varying 
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amplitude approximation (SVEA). This will be introduced in several steps. This means that 

from this point onward we shall assume that acoustic wave amplitude  𝜌̃ varies only slowly. We 

can instantly neglect all terms that involves derivatives of 2nd kind. 

Nevertheless, in the first step we can introduce approximation to the term in which only the 

exponential part varies along 𝑧-axis and therefore 2nd derivate is small and it can be neglected: 

Γ∇2 [(
𝜕

𝜕𝑡
 𝜌̃ − 𝑖 𝜌̃Ω) 𝑒𝑖(𝑞𝑧−Ω𝑡)] = −𝑖Γ𝑞2Ω 𝜌̃𝑒𝑖(𝑞𝑧−Ω𝑡). (2.53) 

With this approximation (2.52) becomes: 

(
𝜕2

𝜕𝑡2
 𝜌̃ − 2𝑖Ω

𝜕

𝜕𝑡
 𝜌̃ − Ω2 𝜌̃) − 𝑣𝑎

2 (
𝜕2

𝜕𝑧2
 𝜌̃ + 2𝑖q

𝜕

𝜕𝑧
 𝜌̃ − q2 𝜌̃) − 𝑖Γ𝑞2Ω 𝜌̃ = 𝜀0𝜁𝑒𝜉𝑞

2𝐴̃𝑝𝐴̃𝑠
∗(2.54) 

Regrouping the summands, we have: 

(
𝜕2

𝜕𝑡2
− 𝑣𝑎

2
𝜕2

𝜕𝑧2
)  𝜌̃ − 2𝑖Ω

𝜕

𝜕𝑡
 𝜌̃ − (Ω2 − 𝑣𝑎

2q2 + 𝑖Γ𝑞2Ω) 𝜌̃ − 2𝑖𝑣𝑎
2q
𝜕

𝜕𝑧
 𝜌̃ = 𝜀0𝜁𝑒𝜉𝑞

2𝐴̃𝑝𝐴̃𝑠
∗(2.55) 

We may now introduce the substitution Ω𝐵 = 𝜈𝑎𝑞 and Γ𝐵 = Γ𝑞2. Here Γ𝐵represents material 

specific Brillouin linewidth and it is corelated with photon lifetime with 𝜏𝑝 = Γ𝐵−1. Now, 

neglecting 2nd derivatives terms, which are rather very small, we obtain: 

−2𝑖Ω
𝜕

𝜕𝑡
 𝜌̃ + (Ω𝐵

2 − Ω2 − 𝑖Γ𝐵Ω) 𝜌̃ − 2𝑖𝑣𝑎
2q
𝜕

𝜕𝑧
 𝜌̃ = 𝜀0𝜁𝑒𝜉𝑞

2𝐴̃𝑝𝐴̃𝑠
∗ (2.56) 

Equation (2.56) describes the propagation of the phonon wave. It has an exponential form and 

its strength is dependent on the product of magnitudes between the pump and the Stokes wave. 

The term on the right 𝜀0𝜁𝑒𝑞2𝐴̃𝑝𝐴̃𝑠∗  dominates over 2𝑖𝑣𝑎2q
𝜕

𝜕𝑧
 𝜌̃ because phonon magnitude 

vanishes quickly with distance. If we consider a steady-state condition in which magnitude of 

density change does not vary with time, thus  𝜕
𝜕𝑡
𝜌̃ = 0 we get the amplitude of the acoustic 

wave: 

 𝜌̃ = 𝜀0𝜁𝑒𝑞
2

𝜉 𝐴̃𝑝𝐴̃𝑠
∗

(Ω𝐵
2 − Ω2 − 𝑖Γ𝐵Ω)

(2.57) 
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We see that the acoustic wave has a Lorentzian profile and will reach its maximum for Ω = Ω𝐵. 

It is also dependent on polarization efficiency 𝜉. 

We return now to the analysis of (2.38). Combining equations (2.10) and (2.38) we can write: 

∇2𝑬⃗⃗⃗ −
𝜀𝑟̃

𝑐0
2

𝜕2

𝜕𝑡2
𝑬⃗⃗⃗ =

𝜁𝑒
𝜌0

𝜕2

𝜕𝑡2
(𝑬⃗⃗⃗𝛥𝜌) (2.58) 

(5.56) now needs to be evaluated. This can be done using phase matching conditions between 

the left- and right-hand sides. The overall electric field 𝑬⃗⃗⃗ is the sum of two components 𝑬⃗⃗⃗𝑝 and 

𝑬⃗⃗⃗𝑠: 

𝑬⃗⃗⃗𝛥𝜌 = (𝑬⃗⃗⃗𝑝 + 𝑬⃗⃗⃗𝑠)𝛥𝜌 = 𝑬⃗⃗⃗𝑝𝛥𝜌 + 𝑬⃗⃗⃗𝑠𝛥𝜌. (2.59) 

For the pump and the Stokes wave respectively, we have: 

∇2𝑬⃗⃗⃗𝑝  −
𝜀𝑟̃

𝑐0
2

𝜕2

𝜕𝑡2
𝑬⃗⃗⃗𝑝 + ∇

2𝑬⃗⃗⃗𝑠  −
𝜀𝑟̃

𝑐0
2

𝜕2

𝜕𝑡2
𝑬⃗⃗⃗𝑠 =

𝜉𝑒
𝜌0

𝜕2

𝜕𝑡2
(𝑬⃗⃗⃗𝛥𝜌) (2.60) 

Now we evaluate each term and apply phase matching criteria. We start from the right and first 

evaluate phase matching conditions on 𝑬⃗⃗⃗𝑝𝜌 and 𝑬⃗⃗⃗𝑠𝜌: 

𝑬⃗⃗⃗𝑝𝛥𝜌 = (𝐴̃𝑝𝑒
𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝐴̃𝑝

∗ 𝑒−𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡])(𝜌̃𝑒𝑖(𝑞𝑧−Ω𝑡) + 𝜌̃∗𝑒−𝑖(𝑞𝑧−Ω𝑡)) (2.61) 

 

𝑬⃗⃗⃗𝑝𝛥𝜌 = 𝐴̃𝑝𝜌̃𝑒
𝑖[(𝑞+𝛽𝑝)𝑧−(𝜔𝑝+Ω)𝑡]⏟              

𝐴

+ 𝐴̃𝑝
∗ 𝜌̃𝑒𝑖[(𝑞−𝛽𝑝)𝑧−(𝜔𝑝−Ω)𝑡]⏟              

𝐵

+ 

+ 𝐴̃𝑝𝜌̃
∗𝑒−𝑖[(𝑞−𝛽𝑝)𝑧+(𝜔𝑝−Ω)𝑡]⏟                

𝐶

+ 𝐴̃𝑝
∗ 𝜌̃∗𝑒−𝑖[(𝑞+𝛽𝑝)𝑧−(𝜔𝑝+Ω)𝑡]⏟                

𝐷

. (2.62) 

Now the same for the 𝑬⃗⃗⃗𝑠𝛥𝜌: 

𝑬⃗⃗⃗𝑠𝛥𝜌 = (𝐴̃𝑠𝑒
−𝑖[𝛽𝑠𝑧+𝜔𝑠𝑡] + 𝐴̃𝑠

∗𝑒𝑖[𝛽𝑠𝑧+𝜔𝑠𝑡])(𝜌̃𝑒𝑖(𝑞𝑧−Ω𝑡) + 𝜌̃∗𝑒−𝑖(𝑞𝑧−Ω𝑡)) 

𝑬⃗⃗⃗𝑠𝛥𝜌 = 𝐴̃𝑠𝜌̃𝑒
𝑖[(𝑞−𝛽𝑠)𝑧−(𝜔𝑠+Ω)𝑡]⏟              

𝐸

+ 𝐴̃𝑠
∗𝜌̃𝑒𝑖[(𝑞+𝛽𝑠)𝑧+(𝜔𝑠−Ω)𝑡]⏟              

𝐹

+ 
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𝐴̃𝑠𝜌̃
∗𝑒𝑖[(𝑞+𝛽𝑠)𝑧+(𝜔𝑠−Ω)𝑡]⏟              

𝐺

+ 𝐴̃𝑠
∗𝜌̃∗𝑒−𝑖[(𝑞−𝛽𝑠)𝑧−(𝜔𝑠+Ω)𝑡]⏟              

𝐻

. (2.63) 

We name all the terms with the letters; A, B, C, D, E, F, G, and H. We check each term for 

phase matching conditions. It means they shall comply to (2.1) and (2.2) that represent basic 

laws of physics. For the pump wave we have 𝛽𝑝 = 𝑞 − 𝛽𝑠 and 𝜔𝑝 = 𝜔𝑠 + Ω  so it is only the 

term labeled E and its complex conjugate H which meet phase matching conditions, whereas 

for the Stokes wave 𝛽𝑠 = 𝑞 − 𝛽𝑝 and 𝜔𝑠 = 𝜔𝑝 − Ω  only C meets this condition. We may 

continue now with finding derivatives for both waves, first with spatial derivates: 

∇2𝑬⃗⃗⃗𝑝 =
𝜕2

𝜕𝑧2
(𝐴̃𝑝𝑒

𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝑐. 𝑐. ) =
𝜕

𝜕𝑧
[
𝜕𝐴̃𝑝

𝜕𝑧
𝑒𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝑖𝛽𝑝𝐴̃𝑝𝑒

𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝑐. 𝑐. ]

=
𝜕2𝐴̃𝑝

𝜕𝑧2
𝑒𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝑖𝛽𝑝

𝜕𝐴̃𝑝

𝜕𝑧
𝑒𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡]

+ 𝑖𝛽𝑝 (
𝜕𝐴̃𝑝

𝜕𝑧
𝑒𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝑖𝛽𝑝𝐴̃𝑝𝑒

𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡]) + 𝑐. 𝑐 

∇2𝑬⃗⃗⃗𝑝 = (
𝜕2𝐴̃𝑝

𝜕𝑧2
+ 2𝑖𝛽𝑝

𝜕𝐴̃𝑝

𝜕𝑧
− 𝛽𝑝

2𝐴̃𝑝) 𝑒
𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝑐. 𝑐. (2.64) 

We continue with temporal derivatives: 

𝜕2

𝜕𝑡2
𝑬⃗⃗⃗𝑝 = (

𝜕2𝐴̃𝑝

𝜕𝑡2
− 2𝑖𝜔𝑝

𝜕𝐴̃𝑝

𝜕𝑡
− 𝜔𝑝

2𝐴̃𝑝) 𝑒
𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] 

𝜕

𝜕𝑡
[
𝜕

𝜕𝑡
(𝐴̃𝑠𝜌̃𝑒

𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝑐. 𝑐. )] = (
𝜕2𝐴̃𝑠𝜌̃

𝜕𝑡2
− 2𝑖𝜔𝑝

𝜕𝐴̃𝑠𝜌̃

𝜕𝑡
− 𝜔𝑝

2𝐴̃𝑠𝜌̃) 𝑒
𝑖[𝛽𝑝𝑧−𝜔𝑝𝑡] + 𝑐. 𝑐. (2.65) 

This brings the following form of the pump wave: 

(
𝜕2𝐴̃𝑝

𝜕𝑧2
+ 2𝑖𝛽𝑝

𝜕𝐴̃𝑝

𝜕𝑧
− 𝛽𝑝

2𝐴̃𝑝) −
𝜀𝑟̃

𝑐0
2 (
𝜕2𝐴̃𝑝

𝜕𝑡2
− 2𝑖𝜔𝑝

𝜕𝐴̃𝑝

𝜕𝑡
− 𝜔𝑝

2𝐴̃𝑝) =

=
𝜉𝑒
𝜌0
(
𝜕2𝐴̃𝑠𝜌̃

𝜕𝑡2
− 2𝑖𝜔𝑝

𝜕𝐴̃𝑠𝜌̃

𝜕𝑡
− 𝜔𝑝

2𝐴̃𝑠𝜌̃) . (2.66)

 

We assume again that amplitude varies only slowly in time and space, as follows: 

• 𝜕2𝐴̃𝑝

𝜕𝑧2
, 𝜕

2𝐴̃𝑝

𝜕𝑡2
 and 𝜕

2𝐴̃𝑠𝜌̃

𝜕𝑡2
 are very small and can be neglected 



 FIBER-OPTIC SENSOR CABLE FOR SIMULTANEOUS DISTRIBUTED MEASUREMENTS 

 

34 

 

• 2𝜔𝑝
𝜕𝐴̃𝑠𝜌̃

𝜕𝑡
is small compared to 𝜔𝑝2𝐴̃𝑠𝜌̃ and can be omitted. 

• 𝜕𝐴̃𝑝

𝜕𝑧
 and 𝜕𝐴̃𝑝

𝜕𝑡
 describe change of amplitude with z and t 

So (2.66) transforms into a simpler form: 

(2𝑖𝛽𝑝
𝜕𝐴̃𝑝

𝜕𝑧
− 𝛽𝑝

2𝐴̃𝑝) +
𝜀𝑟̃

𝑐0
2 (2𝑖𝜔𝑝

𝜕𝐴̃𝑝

𝜕𝑡
+ 𝜔𝑝

2𝐴̃𝑝) = −
𝜁𝑒
𝜌0
𝜔𝑝
2𝐴̃𝑠𝜌̃. (2.67) 

Taking  𝑛𝑐 = √𝜀𝑟̃ and 𝛽𝑝 =
𝜔𝑝

𝑐0
𝑛 leading to 𝜔𝑝2 = 𝛽𝑝2𝑐𝑜2

1

𝑛𝑐
2, thus we have: 

(2𝑖𝛽𝑝
𝜕𝐴̃𝑝

𝜕𝑧
− 𝛽𝑝

2𝐴̃𝑝) +
𝑛𝑜
2

𝑐0
2 (2𝑖𝜔𝑝

𝜕𝐴̃𝑝

𝜕𝑡
+ 𝛽𝑝

2𝑐𝑜
2
1

𝑛𝑐2
𝐴̃𝑝) = −

𝜁𝑒
𝜌0
𝜔𝑝
2𝐴̃𝑠𝜌̃. (2.68) 

After manipulation of the summands we finally obtain the form describing the pump wave: 

𝜕𝐴̃𝑝

𝜕𝑧
+
𝑛𝑐
𝑐0

𝜕𝐴̃𝑝

𝜕𝑡
= 𝑖

𝜁𝑒𝜔𝑝

𝑛𝑐𝜌0
𝜌̃𝐴̃𝑠. (2.69) 

We use the same procedure for the Stokes wave: 

−
𝜕𝐴̃𝑠
𝜕𝑧

+
𝑛𝑐
𝑐0

𝜕𝐴̃𝑠
𝜕𝑡

= 𝑖
𝜁𝑒𝜔𝑝

𝑛𝑐𝜌0
𝜌̃∗𝐴̃𝑝. (2.70) 

From both equations we can see the exponential dependence of amplitude with length. The 

exponential growth of the pump wave is dependent on the product of density change and Stokes 

wave magnitudes, whereas the Stokes wave is dependent on the product of density change and 

pump wave magnitudes. In other words, the equations are coupled as magnitudes of both optical 

waves which are mutually dependent. 

Stimulated Brillouin effect within a lossless medium is fully described with (2.56), (2.69) and 

(2.70). Using (2.57) equations (2.69) and (2.70) can be written in a simpler form. If we defined 

intensities as 𝐼𝑖 = 2𝑛𝜀0𝐴̃𝑖𝐴̃𝑖∗, multiply (2.69) and (2.70) with 𝐴̃𝑝∗  and 𝐴̃𝑠∗ respectively, and then 

applied identities: 

𝜕(𝐴̃𝑝𝐴̃𝑝
∗ )

𝜕𝑢
= 𝐴̃𝑝

∗
𝜕𝐴̃𝑝

𝜕𝑢
+ 𝐴̃𝑝

𝜕𝐴̃𝑝
∗

𝜕𝑢
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𝜕(𝐴̃𝑠𝐴̃𝑠
∗)

𝜕𝑢
= 𝐴̃𝑠

∗
𝜕𝐴̃𝑠
𝜕𝑢

+ 𝐴̃𝑠
𝜕𝐴̃𝑠

∗

𝜕𝑢
 

where 𝑢 = 𝑧, 𝑡. Then (2.69) and (2.70) would take the simpler form: 

[
𝑛𝑐
𝑐0

𝜕

𝜕𝑡
+
𝜕

𝜕𝑧
] 𝐼𝑃 = −𝑔𝐵𝐼𝑃𝐼𝑆 (2.71) 

[
𝑛𝑐
𝑐0

𝜕

𝜕𝑡
−
𝜕

𝜕𝑧
] 𝐼𝑆 = −𝑔𝐵𝐼𝑃𝐼𝑆 (2.72) 

Where 𝑔𝐵 is Brillouin gain with frequency difference 𝑓𝐷 = 𝑓𝑆 − 𝑓𝐵 between Stokes frequency 

and central frequency 𝑓𝐵 (frequency of the peak): 

𝑔𝐵 = 𝜉 ∙ 𝑔𝐵𝑚𝑎𝑥
1

1 + 4 (
𝑓𝐷 − 𝑓𝐵
Δ𝑓𝐵

)
(2.73) 

𝑔𝐵𝑚𝑎𝑥 =
2𝜋2𝑛7𝑝12

2

𝑐𝜆2𝜚0𝜉𝑆𝑐𝑆
(2.74) 

Where: 

• 𝑛 - refractive index of core 

• 𝑐 - speed of light 

• 𝜆 - wavelength in vacuum 

• 𝑝12 - electrostriction coefficient 

• 𝜚0 – average mass density 

• 𝜉𝑆 - acoustic attenuation coefficient 

• 𝑔𝐵𝑚𝑎𝑥 – maximum gain coefficient at zero detuning 

• 𝑓𝐷 = 𝑓𝑝 − 𝑓𝑠 - frequency difference/distance between pump and Stokes light 

• 𝑓𝐵 - peak frequency of Brillouin profile  
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• Δ𝑓𝐵 - bandwidth (full width at half maximum - FWHM) of Brillouin gain profile 

• 𝑐𝑆 - speed of acoustic wave 
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2. FIBER OPTIC PRESSURE SENSING CABLE 

This chapter introduces a sensor cable that is, for the time being, commercially available for 

distributed strain and acoustic measurements. It also introduces and discusses technical 

possibilities for fully distributed pressure (DPS) measurements. Without any doubts, DPS 

measurement, the truly fully distributed version of it, represents a major technical challenge, not 

only for sensor cable construction but also for interrogation methods. Therefore, the intentions 

and objectives in this chapter are the following: 

• propose and discuss DPS cable candidates with intrinsic birefringence change capability 

• propose DPS interrogation methods based on stimulated Brillouin scattering technique. 

The industrial potential for fully distributed pressure sensing systems using birefringence change 

techniques [26], [30], [31], [56] is generally believed to be enormous.  Since strain and 

temperature measurements are available in industry, it represents the missing piece in the world 

of fully distributed measurements. For the purpose of distributed pressure measurements, both 

approaches - the Brillouin and Rayleigh backscattering measurement methods qualify for the 

call. Because of availability of the DTSS unit (Omnisens Ditest) [18] and experience gained in 

previous years in working with both systems, only stimulated Brillouin techniques are the focus 

of discussion here.  

2.1. Sensing cable construction and verification methods 

Stainless steel tubing (SST) in its various forms is traditionally used for production of optical 

power ground wire where it was used for telecommunication exchange in power transmission 

systems, i.e. in overhead power lines. The other application in industry is subsea 

telecommunication lines. These are traditional industries for which laser welded tubes with 

optical fibers are produced. This sort of tubing is proven to provide quality protection for 

numerous applications, rather than the fragile and sensitive optical tubing. Such an application 

is measurement and sensing in harsh environments such as geophysical downhole applications. 

Because of its metallic nature, SST exhibits intrinsically large thermal conductivity providing 

easy and fast thermal energy transmission through the walls of the SST. Another advantage is 

that optical fibers enclosed in SST – referred to as Fiber in Metal Tube (FIMT) - can survive 

harsh environmental conditions, such as in aggressive chemical and mechanically demanding 
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conditions. This counts especially for down-hole applications where pressure and temperature 

ranges exceed 900 bar and 350°C, respectively. 

The proposed sensor cable consists of three optical fibers (Fig.-3.1), positioned at 120° in a cross-

section azimuthal plane and tightly encapsulated in a metal tubing by means of FIMT (Fiber in 

Metal tube) production machinery using the laser welding technique. An industrial version is 

shown in Fig.-3.2. Tight encapsulation here means that all fibers are in physical contact with the 

metal tubing on top. The amount of physical contact in terms of pressure between optical fibers 

and the inner wall of the metallic tubing can be regulated during the production process. The 

basic idea for this design is to arrange tight-buffer construction producible with three fibers in 

long lengths. All three fibers must be in optimum contact with the steel encapsulation on top of 

it. Information on the quality of contact and all parameters can be obtained from various 

measurements. Two techniques are particularly useful; Rayleigh backscattering using Optical 

Time Domain Reflectometry (OTDR) [62] and acoustics measurement techniques such as 

Brillouin Optical Time Domain Analysis (BOTDA) [47], [48]. Our interests are the spatial 

Brillouin-Lorentzian profile and its parameters. From the pressure measurement point of view, 

both the mechanical and optical properties are equally important and need to be addressed in this 

technical challenge. Inside the construction optical fiber is clamped in the position and touching 

the inner wall of the tube. It is surrounded by two voids and two other adjacent fibers. Hence, it 

is subjected to three forces on its circumference; one from encapsulation tubing and the other 

two - one from each adjacent fiber. 

2.2. Three optical fibers working together 

The cable consists of three optical fibers (Fig.-3.1) positioned at 120° in a cross-section 

azimuthal plane and tightly encapsulated in metal tubing by means of FIMT production 

machinery using the laser welding technique. The amount of physical contact in terms of 

pressure between optical fibers and the inner wall of the metallic tube can be regulated during 

the production process. The basic idea for this design is to arrange tight-buffer construction 

with three fibers with such stability in the production process that it can be produced in long 

lengths. Therefore, all three fibers must be in optimum contact with the steel encapsulation on 

top of it, not too much - as it introduces additional losses, and not too little as it stops transferring 

exterior measurands to inner optical fibers.    
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(a) 

 

(b) 

Figure-3.1: Cable prototype with overall diameter 1.25mm; the initial sketch (a) and the prototype (b) 

The information on the quality of contact, together with all other pressure parameters, can be 

obtained from measurements that can vary. 

Pressure measurement, the one with good accuracy, brings mechanical and optical properties 

of the cable to our focus. They are equally important for a successful outcome. In order to assure 

the change of birefringence, the configuration must provide asymmetrical loading to each fiber. 

The concept is depicted in Fig.-3.2. Hydrostatic pressure exerts the loads to the round tube, all 
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that homogenously along the circumference. The tube, in turn, exerts asymmetrical load to 

round optical fibers inside the tube.   

 

(a) 

 

(b) 

Figure-3.2: Concept of a sensor cable based on three optical fibers encapsulated in a metal or plastic jacket; (a) 

cable design, (b) configuration of forces exerted on optical fiber. 

The fiber under consideration is fixed and ‘sandwiched’ into the position by surrounding 

encapsulation tubing and two others adjacent fibers. Thus, it shall see three forces exerted on 

its circumference; one from encapsulation tubing and one from each adjacent fiber. 

Consequently, in static equilibrium we will have: 

∑𝐹𝑥𝑖
𝑖

= 0; ∑𝐹𝑦𝑖
𝑖

= 0 (3.1) 
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For the x’-axis we have: 

𝐹𝑜 − 2𝐹𝑖 cos(30°) = 0 (3.2) 

𝐹𝑜 = √3𝐹𝑖 (3.3) 

The same analysis approach for y’-axis gives: 

0 + 𝐹𝑖 sin(30°) − 𝐹𝑖 sin(30°) = 0 (3.4) 

In other words, y’ components are cancelled.  

Because 𝐹𝑜 = √3𝐹𝑖 in x’-axis and 0 in y’-axis we can now say that the fiber is asymmetrically 

loaded. This gives rise to birefringence in the core of the optical fiber as pressure increases. In 

this way birefringence as an asymmetrical phenomenon is generated by means of symmetrical 

elements that are easily available in industry. 

2.3. Optical loss consideration for cable design  

From the optical performance point of view, the first and most important technical requirement 

is that the design can be manufactured in a very long length without introducing additional 

losses but with good repetition. Fig.-3.3 shows fiber attenuation (i.e. losses) results from the 

optical time domain measurement (OTDR Exfo FTB-500). The measurements show average 

attenuation of 0.347 dB/km at 1310nm and 0.20 dB/km at 1550nm and 0.211dB/km at 1625nm 

from all three fibers, respectively. It proves that the design does not introduce significant 

additional losses and they are within an acceptable range and comparable with uncabled optical 

fiber. 
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Figure-3.3: Characteristic losses obtained from all three fibers of the prototype, each at different wavelength; 

(a) fiber-1 @ 1310nm, (b) fiber-2 @ 1550nm and (c) fiber-3 @ 1625nm. 

 

2.4. Validation of impact on birefringence and pressure sensitivity using FEM 

From the mechanical perspective, the concept can be validated using FEM - Finite Element 

Method. For this purpose, Abacus simulation software has been used. The analysis has been 

made on a relatively large design (Fig.-3.4) with an outer diameter (OD) of 2.213mm and wall 

thickness (WT) of approximately 0.25mm. Young modulus (𝐸) and Poisson ratio (𝑣) along 

with other parameters and information of interest are: 

Parameters used for FEM: 

- Steel: E = 210 GPa, ν = 0.30 

- Polymer: E = 2.7 GPa, ν = 0.34 

- Loads: static pressure, magnitude up to 1200 bars 

- Finite element type: plane strain, quadratic, reduced integration (CPE8R) 

 

Evaluated parameters: 

- Inner diameter changes of steel tube (delta Rx, delta Ry) 

- Outer diameter changes of optical fiber (delta Rx, delta Ry, delta R_30°/90°/150°) 
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure-3.4: Validation using Finite Element Method (FEM) applied to cable; (a) geometry with dimensions and 

observation angles, (b) FEM mesh configuration with legend showing pressure magnitudes in TPa, (c) change in 

inner diameter, and (d) radial deformation of fiber-1 due to asymmetrical loading obtained at observed angles. 

Note that lines for angles 90°and 150° almost overlap. 

The results for fiber-1 are shown in Fig.-3.4a. As it can be seen from it, FEM analysis 

confirms the assumption of asymmetrical loading. The results provide also insight in 

magnitudes of tube compression for pressure up to 1200 bar. The analysis is taken at different 

angles on the fiber circumference. They give magnitude of fiber radial compression at an angle 

of 30° and radial extension at angles 90° and 150°. Note that the considered angles 90° and 

150° are between the angles for which fiber-1 is in contact with the metal tube and the other 

fibers inside the tube (0° and 60°, respectively). 

 

2.5. Validation using polarization measurements and Stokes parameters 

The first optical validation can be conducted using the straight-through polarimetric technique 

[5,6]. In our case, the birefringent element is the length of cables that is pressurized on its 

circumference. This method offers also a neat method to observe and trace the changes by 

means of the Poincare sphere approach that fully describes polarization states of light and as 

the output of the sample. The projections of the electric field vector 𝑬⃗⃗⃗(𝑧, 𝑡) on fast and slow 

axis of the birefringent fiber are: 
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𝑒𝑥(𝑧, 𝑡) = 𝐸0𝑥 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧 + 𝛿𝑥) (3.5𝑎) 

𝑒𝑦(𝑧, 𝑡) = 𝐸0𝑦 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧 + 𝛿𝑦) (3.5𝑏) 

𝛿 = 𝛿𝑥 − 𝛿𝑦 (3.6𝑎) 

𝛿𝑥 = 𝛥𝑘𝑥𝑧 + 𝜙𝑥 (3.6𝑏) 

𝛿𝑦 = 𝛥𝑘𝑦𝑧 + 𝜙𝑦. (3.6𝑐) 

Here we have put all asymmetric effects into 𝛿𝑥 and 𝛿𝑦 (difference in propagation constants, 

phases at the input). Hence, 𝑘 represents the average propagation constant. We introduce 

substitution with 𝜏 = 𝜔𝑡 − 𝑘𝑧 - the propagator: 

𝑒𝑥(𝑧, 𝑡) = 𝐸0𝑥 𝑐𝑜𝑠(𝜏 + 𝛿𝑥) (3.7𝑎) 

𝑒𝑦(𝑧, 𝑡) = 𝐸0𝑦 𝑐𝑜𝑠(𝜏 + 𝛿𝑦) (3.7𝑏) 

𝑒𝑥
𝐸0𝑥

= 𝑐𝑜𝑠(𝜏)𝑐𝑜𝑠(𝛿𝑥) − 𝑠𝑖𝑛(𝜏)𝑠𝑖𝑛(𝛿𝑥) (3.8𝑎) 

𝑒𝑦

𝐸0𝑦
= 𝑐𝑜𝑠(𝜏)𝑐𝑜𝑠(𝛿𝑦) − 𝑠𝑖𝑛(𝜏)𝑠𝑖𝑛(𝛿𝑦) (3.8𝑏) 

𝑒𝑥
𝐸0𝑥

𝑠𝑖𝑛(𝛿𝑦) −
𝑒𝑦

𝐸0𝑦
𝑠𝑖𝑛(𝛿𝑥) = 𝑐𝑜𝑠(𝜏)𝑠𝑖𝑛(𝛿𝑥 − 𝛿𝑦) (3.9𝑎) 

𝑒𝑥
𝐸0𝑥

𝑐𝑜𝑠(𝛿𝑦) −
𝑒𝑦

𝐸0𝑦
𝑐𝑜𝑠(𝛿𝑥) = 𝑐𝑜𝑠(𝜏)𝑠𝑖𝑛(𝛿𝑥 − 𝛿𝑦) (3.9𝑏) 

Squaring equations and adding them together gives: 

𝑒𝑥
2

𝐸0𝑥
2 +

𝑒𝑦
2

𝐸0𝑦
2 − 2

𝑒𝑥
𝐸0𝑥

𝑒𝑦

𝐸0𝑦
𝑐𝑜𝑠(𝛿) = 𝑠𝑖𝑛2(𝛿) (3.10) 

We can notice that the propagator has been excluded in the last manipulation. The equation 

describes the relation between quantities of the electromagnetic wave independent of the 

propagator. The only variables dependent on time and position along z-axis are 𝑒𝑥 and 𝑒𝑦. The 

beauty of this equation is that the squared forms and multiplication products of these variables 
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are observables of the optic field and they can be measured easily because they represent optical 

power (more precisely power density). Therefore, it is necessary to find a way of expressing 

equation (3.7) in terms of the observables. Using multiplication products means taking the 

average over the time of observation. Since 𝑒𝑥 and 𝑒𝑦 are time dependent and the averaging can 

be done over a long period of time  

〈𝑒𝑖(𝑡)𝑒𝑗(𝑡)〉 = 𝑙𝑖𝑚
𝑇→∞

1

𝑇
∫ 𝑒𝑖(𝑡)
𝑇

0

𝑒𝑗(𝑡)𝑑𝑡        𝑖, 𝑗 = 𝑥, 𝑦 

Because 𝑒𝑥 and 𝑒𝑦 are periodic, it would be enough to take just one period for averaging. Thus, 

taking the average of (3.7) we get: 

〈𝑒𝑥
2(𝑡)〉 =

1

2
𝐸0𝑥
2 (3.11𝑎) 

〈𝑒𝑦
2(𝑡)〉 =

1

2
𝐸0𝑦
2 (3.11𝑏) 

〈𝑒𝑥(𝑡)𝑒𝑦(𝑡)〉 =
1

2
𝐸0𝑥𝐸0𝑦𝑐𝑜𝑠𝛿 (3.12) 

Multiplying (3.10) with 4𝐸0𝑥𝐸0𝑦 we obtain: 

4𝐸0𝑦
2 〈𝑒𝑥

2(𝑡)〉 + 4𝐸0𝑥
2 〈𝑒𝑦

2(𝑡)〉 − 8𝐸0𝑥𝐸0𝑦〈𝑒𝑥(𝑡)𝑒𝑥(𝑡)〉cos𝛿 = (2𝐸0𝑥𝐸0𝑦𝑐𝑜𝑠𝛿)
2

(3.13) 

Substituting (3.11) and (3.12) into (3.13) yields: 

(𝐸0𝑥
2 + 𝐸0𝑦

2 )
2
− (𝐸0𝑥

2 − 𝐸0𝑦
2 )

2
− (2𝐸0𝑥𝐸0𝑦cos𝛿)

2
= (2𝐸0𝑥𝐸0𝑦sin𝛿)

2
(3.14) 

Now, we can introduce new substitutions related to the so-called Stokes parameters [36]-[38] 

𝑆0 = 𝐸0𝑥
2 + 𝐸0𝑦

2 (3.15𝑎) 

𝑆1 = 𝐸0𝑥
2 − 𝐸0𝑦

2 (3.15𝑏) 

𝑆2 = 2𝐸0𝑥𝐸0𝑦cos𝛿 (3.15𝑐) 

𝑆3 = 2𝐸0𝑥𝐸0𝑦sin𝛿 (3.15𝑑) 



 FIBER-OPTIC SENSOR CABLE FOR SIMULTANEOUS DISTRIBUTED MEASUREMENTS 

 

47 

 

Thus, (3.14) can be now rewritten as: 

𝑆0
2 = 𝑆1

2 + 𝑆2
2 + 𝑆3

2 (3.16) 

These Stokes parameters (named after Sir George Gabriel Stokes) describe distribution of light 

energy into different polarization states by means of optical field observable – the power of 

light. 𝑆0 is the sum of power in both orthogonal axis and represents the total power of light, 𝑆1is 

the difference of power in both axes. Both  𝑆0 and 𝑆1bear information on linear polarizations 

only, and 𝑆2 and 𝑆3 are powers that include phase difference – phase retardation - between the 

axes giving rise to elliptical and circular polarizations. Now, they can be rewritten in a slightly 

different form, i.e. the complex form: 

𝑆0 = 𝐸𝑥𝐸𝑥
∗ + 𝐸𝑦𝐸𝑦

∗ (3.17𝑎) 

𝑆1 = 𝐸𝑥𝐸𝑥
∗ − 𝐸𝑦𝐸𝑦

∗ (3.17𝑏) 

𝑆2 = 𝐸𝑥𝐸𝑦
∗ + 𝐸𝑦𝐸𝑥

∗ (3.17𝑐) 

𝑆3 = 𝑖(𝐸𝑥𝐸𝑦
∗ − 𝐸𝑦𝐸𝑥

∗) (3.17𝑑) 

Here 𝐸𝑥 = 𝐸0𝑥𝑒𝑗𝛿𝑥  and 𝐸𝑦 = 𝐸0𝑦𝑒𝑗𝛿𝑦   represent complex amplitudes of 𝑒𝑥 and 𝑒𝑦 or phasors, 

respectively. Stokes parameters form the so called Stokes vector 𝑆 =  [𝑆0 𝑆1 𝑆2 𝑆3]𝑇. Stokes 

parameters can be further normalized with 𝑆0. In such case they are called normalized Stokes 

parameters and each polarization state can be described with a vector 𝑆𝑛 = [𝑆1 𝑆2 𝑆3]𝑇. The 

normalized Stokes parameters span spherical vector space, the so called Poincare sphere, with 

radius 1. The Poincare sphere shows polarization states of light. The rotation and trace of the 

sphere shows all the change of actual State-Of-Polarization (SOP) due to perturbation exerted 

to the optical medium or sample. These perturbations can be of different types, such as:  

• mechanical – influence of twist, strain and pressure  

• thermal – change of temperature of fiber and thus its polarization parameters 

• optical – refractive index, phase and wavelength change 

For the principle validation purpose of the pressure impact on birefringence, measurement 

polarimetric set-up was arranged (Fig.-3.5) in which polarimetric properties of fiber and cables 
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samples are measured and characterized. The sample of a sensor cable is brought through a 24m 

long chamber and then sealed on both ends and pressurized using silicon oil. As a light source, 

the coherent laser source (Yenista Tunics 100R) is used and input polarization state was set to 

linear vertical polarization. On the receiver side, polarimeter (Thorlabs PAX 1000) measures 

polarization states and shows them in the form of a Stokes parameters curve. The rotation of 

SOP at Poincare sphere combines integrating features of more devices into one: the passive 

polarization analyzer, optoelectrical converter and power measurement and visualization in one 

single unit. After installation and sealing, the sample is subjected to pressure increase from 0 to 

800bar in steps of 100bar. The total length of the sample is around 24m. 

 

Figure-3.5: Polarimetric measurement set-up integrating pressure chamber in which cable samples were set 

and sealed 

Table-3.1 lists the Stokes parameters acquired and Fig.-3.6 depicts the changes of SOP by 

means of rotation of the Poincare sphere. 

TABLE-3.1: THE CHANGE OF STOKES PARAMETERS WITH PRESSURE RATE 

Pressure rate [bar] 0.00 25.00 50.00 75.00 100.00 

S1 -0.78 -0.82 -0.90 -0.90 -0.85 

S2 -0.12 -0.04 0.10 0.33 0.52 

S3 -0.61 -0.57 -0.42 -0.29 -0.10 

      
Pressure rate [bar]  125.00 150.00 175.00 200.00 

S1  -0.70 -0.47 -0.42 -0.55 

S2  0.70 0.84 0.83 0.74 

S3  0.09 0.27 0.36 0.40 

      
Pressure rate [bar]  225.00 250.00 275.00 300.00 

S1  0.19 0.62 0.76 0.40 

S2  0.82 0.74 0.58 0.25 

S3  0.53 0.25 -0.28 -0.88 

      
Pressure rate [bar]  325.00 350.00 375.00 400.00 
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S1  -0.18 -0.80 -0.18 -0.78 

S2  0.06 -0.13 0.06 -0.11 

S3  -0.98 -0.58 -0.98 0.61 
 

Pressure rate [bar]  425.00 450.00 475.00 500.00 

S1  -0.02 0.76 0.91 0.41 

S2  -0.03 0.24 0.35 0.18 

S3  1.00 0.60 -0.24 -0.89 

      
Pressure rate [bar]  525.00 550.00 575.00 600.00 

S1  -0.22 -0.42 0.02 0.66 

S2  -0.27 -0.76 -1.00 -0.68 

S3  -0.94 -0.50 0.05 0.31 

      
Pressure rate [bar]  625.00 650.00 675.00 700.00 

S1  0.93 0.63 0.11 -0.61 

S2  0.02 0.56 0.73 0.45 

S3  0.36 0.54 0.68 0.65 

      
Pressure rate [bar]  725.00 750.00 775.00 800.00 

S1  -0.88 -1.00 -0.93 -0.73 

S2  0.03 0.01 0.33 0.62 

S3  0.48 0.10 -0.16 -0.28 
 

 

(a) 
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(b) 

Figure-3.6: Polarization changes due to pressurization of the sample; (a) test set up, (b) Poincare sphere 

rotation and (c) rotation projection on S1-S2 plane 

Although the Poincare sphere exhibits irregular rotation, it proves strong birefringence 

dependence on external pressure. It shall be kept in mind that these are straight-through kinds 

of measurements and the irregularity is believed to be a result of inhomogeneous sensitivity 

along the length (24m) of the cable sample. After this validation, we can expect that fully 

distributed measurements shall provide further insight, now broken into resolution segments of 

the cable.  

2.6. Compression of the stainless-steel tube in high-pressure condition 

It was of interest to evaluate the behavior of the SST when subjected to high hydrostatic 

pressure. With this objective in mind, it was necessary to build high pressure and a high 

temperature chamber for optical and mechanical measurements and characterization of optical 

fibers and FIMTs. The chamber is specially designed for distributed optical pressure and 

temperature measurements, see Fig.-3.7 showing construction details of the pressure chamber. 

The pressure consists of low pressure and high-pressure segments. Low pneumatic pressure is 

used to build hydraulic high-pressure. Silicon oils are used as pressurization liquids. Since its 

length exceeds 24 m, all relevant resolution lengths in distributed optical sensing are supported 

with the design. For example, pressure and temperatures can be used to check impact on both; 

attenuation and birefringence for most of FIMT tight buffer and specialty optical fiber 

constructions. Furthermore, the pressure chamber is particularly useful for simulation of 

borehole conditions. For example, using this test chamber, the collapse pressure of the samples 
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can be determined as a measure of precision in the manufacturing process. From theoretical 

background we know that collapse pressure is inversely proportional to the ellipticity of the 

sample under the test and the ratio between the outer diameter and wall thickness.  

Let us demonstrate the possibilities of the developed chamber as an example of measurements. 

The special benefit of the chamber are the tests for determination of compression magnitude, 

as well as its measurement repeatability in the pressure cycling. In this test the SST sample with 

no optical fibers is filled with water and brought through the pressure chamber and sealed on 

both ends (Fig.-3.8). 
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Figure-3.7: Simplified block scheme of the high-pressure chamber 
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(a) 

 

(b) 

Figure-3.8: Measurement of the change in tube outer and inner diameter under high pressure (a) evaluation 

set-up; (b) measurement results 

The water tank is installed on the right end of the sample, whereas the water level indicator is 

placed to its left terminal. Both ends of the sample are led outside the pressure chamber and are 

thus freed from the pressure impact. The water is then led through the sample, all the way to 

the water indicator on the other side of the set-up. The tank valve is then closed, and the water 

reference level is indicated. Hence, during pressurization the water can only escape on the 

indicator side and the water level is increased following the change in cable diameter. The 

reduction in inner and outer diameter of the sample due to compression has been observed and 
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measured. Knowing the geometry of the sample SST, the effective length of the pressure 

chamber, and indicator dimensions, and observing the volume that is pushed out towards the 

indicator, we can now set the equation: 

(
𝐼𝐷𝐼𝑁𝐷
2

)
2

𝜋∆ℎ = (
𝐼𝐷𝑆𝑆𝑇
2
)
2

𝜋𝐿𝐶𝐻 − (
𝐼𝐷𝑆𝑆𝑇 − ∆𝐼𝐷𝑆𝑆𝑇

2
)
2

𝜋𝐿𝐶𝐻 (3.18) 

The change in water level due to pressure increase shall be: 

Δℎ =  
Δ𝐼𝐷𝑆𝑆𝑇(2𝐼𝐷𝑆𝑆𝑇 − Δ𝐼𝐷𝑆𝑆𝑇)

𝐼𝐷𝐼𝑁𝐷
2 𝐿𝐶𝐻 (3.19) 

From this equation ΔIDSST can be extracted: 

Δ𝐼𝐷𝑆𝑆𝑇 = 𝐼𝐷𝑆𝑆𝑇 (1 − √1 −
Δℎ

𝐿𝐶𝐻
(
𝐼𝐷𝐼𝑁𝐷
𝐼𝐷𝑆𝑆𝑇

)
2

) (3.20) 

Where;  

• Δh is the water level change due to pressure change in the indicator  

• ΔIDSST is the change in the inner diameter of the steel tube 

• IDSST is the initial inner diameter of the steel tube 

• IDIND is the inner diameter of the water level indicator  

• Lch is the effective pressure chamber length 

The obtained results (Fig.-3.8b) are obtained for the 316L SST and they show linear 

characteristics in both cycles; pressurization (blue line) and depressurization (red line). Hence, 

it qualifies stainless steel tubes for the purpose of distributed pressure measurements within the 

pressure range from 0 to 1200 bar. In other measurements it was observed that different steels 

provide different characteristics and more cycling brings more linearity. SST qualifies for the 

purpose of pressure transducer, scaling the pressure to the range that assures long term integrity 

and lifetime of the optical fiber – which is of strategic importance in the applications. All this 

yields to a range of possibilities for further optimization techniques that shall be discussed later 

on. 
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3. FULLY DISTRIBUTED PRESSURE INTERROGATION 

METHODS USING STIMULATED BRILLOUIN SCATTERING 

 

So far it has been demonstrated that all three fibers are asymmetrically loaded and therefore 

intrinsically birefringent due to the encapsulation process during the manufacturing of the cable. 

Optical fibers inside the encapsulation tube must be compressed to some extent. Therefore, they 

are intrinsically birefringent. The increase of pressure on the circumference in the pressurization 

cycle causes increase of fiber birefringence, too. With stimulated Brillouin scattering 

techniques (SBS) we need two lightwaves to cause their interaction in the optical medium. 

Therefore, birefringence increase will have impact on both waves, and we need appropriate 

mathematical models describing birefringence increase and polarization effects in the fiber for 

both waves. A model, particularly suitable for this task, was found and described in [10]. 

For the pump wave we can introduce the following model:  

𝑒𝑝 = 𝐸𝑝0(𝑡, 𝑧) {
𝑐𝑜𝑠(𝛼𝑝) 𝑐𝑜𝑠[𝜔𝑝𝑡 + 𝜑𝑝(𝑡, 𝑧) − 𝑘𝑝,𝑥𝑧 + 𝛿𝑝]

𝑠𝑖𝑛(𝛼𝑝) 𝑐𝑜𝑠[𝜔𝑝𝑡 + 𝜑𝑝(𝑡, 𝑧) − 𝑘𝑝,𝑦𝑧 − 𝛿𝑝]
} (4.1) 

𝑒𝑝 = 𝐸̃𝑝(𝑡, 𝑧) {
𝑐𝑜𝑠(𝛼𝑝) 𝑒

−𝑗𝑘𝑝,𝑥𝑧+𝑗𝛿𝑝

 𝑠𝑖𝑛(𝛼𝑝) 𝑒
−𝑗𝑘𝑝,𝑦𝑧−𝑗𝛿𝑝

} (4.2) 

The same for the Stokes waves: 

𝑒𝑠 = 𝐸𝑠0(𝑡, 𝑧) {
𝑐𝑜𝑠(𝛼𝑠) 𝑐𝑜𝑠[𝜔𝑠𝑡 + 𝜑𝑠(𝑡, 𝑧) − 𝑘𝑠,𝑥(𝐿 − 𝑧) + 𝛿𝑠]

𝑠𝑖𝑛(𝛼𝑠) 𝑐𝑜𝑠[𝜔𝑠𝑡 + 𝜑𝑠(𝑡, 𝑧) − 𝑘𝑠,𝑦(𝐿 − 𝑧) − 𝛿𝑠]
} (4.3) 

𝑒𝑠 = 𝐸̃𝑠(𝑡, 𝑧) {
𝑐𝑜𝑠(𝛼𝑠) 𝑒

𝑗𝑘𝑠,𝑥(𝑧−𝐿)+𝑗𝛿𝑠

𝑠𝑖𝑛(𝛼𝑠) 𝑒
𝑗𝑘𝑠,𝑦(𝑧−𝐿)−𝑗𝛿𝑠

} (4.4) 

Where: 

• 𝐸̃𝑝(𝑡, 𝑧) = 𝐸𝑝0(𝑡, 𝑧)𝑒
𝑗𝜑𝑝(𝑡,𝑧) and 𝐸̃𝑠(𝑡, 𝑧) = 𝐸𝑠0(𝑡, 𝑧)𝑒𝑗𝜑𝑠(𝑡,𝑧) are phasors for the pump 

and Stokes waves, respectively. 

• 𝛼𝑠 and 𝛼𝑃 – initial polarization angles of the Stokes and pump field strength vectors 

with respect to slow and fast axis of propagation in xy-plane  
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• 𝛿𝑆 and 𝛿𝑃 – initial phase difference (retardation) of Stokes and pump waves launched at 

both ends of the fiber closed in the loop. 

• 𝜑𝑆 and 𝜑𝑃 represent phase shifts due to the source and perturbations in the optical 

medium. It can be neglected in these considerations. 

Now, the birefringence ∆𝑛 = 𝑛𝑥 − 𝑛𝑦 induced will cause difference in propagation constants 

in x- and y- axis for both waves. This difference is: 

∆𝑘𝑝 = 𝑘𝑝,𝑥 − 𝑘𝑝,𝑦 =
2𝜋𝑓𝑝

𝑐
(𝑛𝑥 − 𝑛𝑦) (4.5𝑎) 

∆𝑘𝑠 = 𝑘𝑠,𝑥 − 𝑘𝑠,𝑦 =
2𝜋𝑓𝑠
𝑐
(𝑛𝑥 − 𝑛𝑦) (4.5𝑏) 

Since one axis will be compressed while the other decompressed, we can now introduce average 

and initial equilibrium propagation constants 𝑘𝑝,0 and 𝑘𝑠,0 as: 

𝑘𝑝,𝑥 = 𝑘𝑝,0 +
1

2
∆𝑘𝑝 (4.6𝑎) 

𝑘𝑝,𝑦 = 𝑘𝑝,0 −
1

2
∆𝑘𝑝 (4.6𝑏) 

𝑘𝑠,𝑥 = 𝑘𝑠,0 +
1

2
∆𝑘𝑠 (4.6𝑐) 

𝑘𝑠,𝑦 = 𝑘𝑠,0 −
1

2
∆𝑘𝑠 (4.6𝑑) 

We substitute (4.6) in (4.2) and (4.4) and get: 

𝑒𝑝 = 𝐸̃𝑝(𝑡, 𝑧)𝑒
−𝑗𝑘𝑝,0𝑧 {

cos(𝛼𝑝) 𝑒
−𝑗0.5∆𝑘𝑝𝑧+𝑗𝛿𝑝

sin(𝛼𝑝) 𝑒
+𝑗0.5∆𝑘𝑝𝑧−𝑗𝛿𝑝

} (4.7𝑎) 

𝑒𝑠 = 𝐸̃𝑠(𝑡, 𝑧)𝑒
𝑗𝑘𝑠,0(𝑧−𝐿) {

cos(𝛼𝑠) 𝑒
𝑗0.5∆𝑘𝑠𝑧(𝑧−𝐿)+𝑗𝛿𝑠

sin(𝛼𝑠) 𝑒
−𝑗0.5∆𝑘𝑠𝑧(𝑧−𝐿)−𝑗𝛿𝑠

} (4.7𝑏) 

In this form both waves are suitable for polarization and phase considerations related to 

birefringence and pressure sensitivity. The following considerations matter now:  
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• 𝑘𝑠,0 and 𝑘𝑝,0 are the propagation constants of Stokes and pump waves at the entrance of 

the pressure sensitive cable segment. Their dependence of the wavelength on the small 

bandwidth is minor and can be neglected. Hence, from this point further we can take 

𝑘𝑠,0 = 𝑘𝑝,0 = 𝑘 and ∆𝑘𝑝 = ∆𝑘𝑝 = ∆𝑘 

• 𝛼𝑠 and 𝛼𝑝 are input angles of Stokes and pump waves in xy-plane that is geometrically 

perpendicular to the propagation direction in z-axis. They are both dependent on 

wavelength (but can be set confined to a particular polarization state by means of a 

passive polarizer). 

• ∆𝑘𝑠 and ∆𝑘𝑝 are propagations constant differences (between linearly polarized waves 

with E-fields confined with the fast and slow axes) reflecting the magnitude of 

birefringence and therefore directly pressure dependent. The increase in ∆𝑘 due to 

pressure increase will increases frequency and lower the beat-length of both waves 

within the fiber. The beat-length is the distance required for polarization stares to repeat. 

In that respect, pressure can be measured simply by means of spatial beat-length 

measurements. 

• 𝛿𝑠 and 𝛿𝑝 are the phase difference between the axes (Fig.-4.1) determining whether the 

input state of polarization will be linear, circular or elliptical [8]. If input retardance is 0, 

the wave is linearly polarized and if π/4 the wave is circularly polarized. All other values 

will cause elliptical polarization of the wave at input. 

 

Figure 4.1: Polarization states in optical fibers [8]; linear polarization (a) with no retardance 𝜹𝒙 − 𝜹𝒚 =

𝟎 between the x- and y- axis, any retardance 𝜹 = 𝜹𝒙 − 𝜹𝒚 will cause elliptical polarization, and the case 𝜹 =

𝜹𝒙 − 𝜹𝒚 =
𝝅

𝟐
 giving circular polarization 
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Further, we should also consider the refractive index difference in x- and y- axis giving rise to 

birefringence, hence constituting the basic mechanism for pressure change detection and 

measurement using the proposed cable concept. In weakly guiding fibers such as standard 

telecom fibers we have: 

∆=
𝑛𝑐 − 𝑛

𝑛
≤ 0.01 (4.8) 

For example, if we take 𝑛 = 1.48 and apply it to (4.8) we get ∆𝑛 = 0.0148 that is slightly 

different and used to design weakly guiding optical fibers. No we will make an extraction of 

∆𝑛 that can be measured by modern optical measurement equipment. For ∆𝑘𝑠 and ∆𝑘𝑝 in (4.5) 

we have:  

∆𝑘𝑖 = 
2𝜋 × 193.54 × 1𝐸(+12)

3 × 1𝐸(+8)
× ∆𝑛 (4.9) 

∆𝑘𝑖 = 4.053𝐸(+6) × ∆𝑛 (4.10) 

where 𝑖 = 𝑆, 𝑃; S for Stokes and P for pump wave. ∆𝑘𝑖
𝑘

 can be expressed using frequency spectra: 

∆𝑘𝑖
𝑘
=
∆𝑓𝑖
𝑓
= 4.0531E(+6) ×

∆𝑛

𝑛
. (4.11) 

So, if we take frequency 𝑓 = 193.54 𝑇𝐻𝑧 and the frequency resolution ∆𝑓𝑖 = 0.1𝑀𝐻𝑧 of a 

typical unit or measurement set-up, such as the one based on a stabile heterodyne interferometer 

with two phase locked lasers or the Brillouin Optical Time Domain Analyzer (BOTDA), we can 

calculate ∆𝑛: 

∆𝑛 =
1

4.0531E(+6)
×
∆𝑓𝑖
𝑓
× 𝑛 (4.12) 

∆𝑛 =
1

4.053E(+6)
×

1𝐸(+6)

193.54𝐸(+12)
× 1.48 (4.13) 

∆𝑛 = 1.8866𝐸(−15) (4.14) 
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If we choose ∆𝑓𝑖 = 0.001 𝑀𝐻𝑧 - that is easily provided with modern interferometer set-up - 

then we get ∆𝑛 = 1.8866𝐸(−18). We see that an extremely small differences in refractive 

indices can be detected and measured with measurement devices presently available at the 

market. In terms of wavelength, we can perform similar calculations: 

∆𝑘𝑖 =
𝑑𝑘𝑖(𝜆𝑖)

𝑑𝜆
∆𝜆𝑖 (4.15) 

𝑘𝑖(𝜆𝑖) =
2𝜋

𝜆𝑖
. (4.16) 

From (4.15) and (4.16) follows: 

∆𝑘𝑖 = −2𝜋
1

𝜆2
∆𝜆𝑖 (4.17) 

∆𝜆𝑖 = −
𝜆2

2𝜋
∆𝑘𝑖 (4.18) 

The conversion from wavelength to frequency range will be important in considering frequency 

scanning of the Stokes signal. Table-4.2 quantitatively provides the conversion of wavelength 

change to frequency and propagation change. Note that Brillouin interaction at 1550nm and 

Brillouin-Lorentzian profiles do not exceed 100MHz of frequency ranges which correspondents 

to ~0.8 pm and ~2.1 rad/m of wavelength and propagation constant change, respectively. In the 

same way, the finest scanning resolution available from BOTDA unit used is 0.1 MHz 

corresponding to ~0.8 fm and ~2.1mrad/m of wavelength and propagation constant change, 

respectively. The blue numbers denote common FWHM parameters of the Brillouin-Lorentzian 

profile measured on standard telecommunication fibers. 
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TABLE-4.2: CONVERSION OF WAVELENGTH CHANGE TO FREQUENCY  

AND PROPAGATION CONSTANT RANGE 

Speed of light c[m/s]: 3.000000E+08 
 

Wavelength range 𝜆0[m]: 1.550000E-06 
 

Refractive Index n[-]: 1.000000 (free space) 

Δλ -wavelength width Δν - frequency 
width 

Δk -
propagation 

constant 

[pm] [GHz] [rad/m] 

1000.0000 124.869927 -2.6139E+03 

100.0000 12.486993 -2.6139E+02 

10.0000 1.248699 -2.6139E+01 

1.0000 0.124870 -2.6139E+00 

0.1000 0.012487 -2.6139E-01 

0.6400 0.079917 -1.6729E+00 

0.4000 0.049948 -1.0456E+00 

0.0100 0.001249 -2.6139E-02 

0.0010 0.000125 -2.6139E-03 

0.0001 0.000012 -2.6139E-04 

 

Substituting (4.10) into (4.18) we have: 

∆𝜆𝑖 = −4.0531E(+6) ×
𝜆2

2𝜋
× ∆𝑛 (4.19) 

If we take measurement set-up based on spectrum analysis using the standard optical spectrum 

analyzer (OSA) having wavelength resolution of ∆𝜆𝑖 = 0.3𝑛𝑚 (commonly found on the market) 

we can calculate ∆𝑛: 

∆𝑛 = −
2𝜋

4.0531E(+6)

∆𝜆𝑖
𝜆2

(4.20) 

∆𝑛 = 193.58𝐸(−6) (4.21) 

If, for spectral resolution, we take ∆𝜆𝑖 = 1 𝑝𝑚, commonly available from modern tunable lasers, 

we obtain ∆𝑛 = 64.52𝐸(−6).  Therefore, when comparing (4.21) and (4.14) we can notice a 

large difference from which we can draw a few conclusions: 
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• Interferometric techniques e.g. phase-OTDRs, and Brillouin frequency scanning 

techniques, e.g. BOTDA are suitable candidates for pressure measurement systems. They 

offer more sensitivity with respect to ∆𝑛 for both Stokes and the pump wave. This counts 

especially for the cases where robust cables are required providing more protection to 

optical fibers. In such case, the dynamic range ∆𝑛 is smaller and it is sacrificed on 

account of the robustness of the cable   

• SBS techniques can be considered as a special case of heterodyne interferometer with 

two counter-propagating lightwaves. In such form, a change pressure detection and 

measurement is suitable. Brillouin interaction can be regarded as an amplified 

interference of two lightwaves in the optical medium, and the peak of the spectral 

Brillouin-Lorentzian profile represents a maximum of this interference. Fiber loop 

represents one or a series of passive interferometers.   

• Brillouin-Lorentzian profile of SBS interference shall be considered as a range of fine 

optical spectrum analysis (OSA) suitable for wavelength scanning by means of Stokes 

wave. 

• Both distributed interferometric and Brillouin techniques can intrinsically profile ∆𝑘, ∆𝑛 

and the environmental pressure 𝑝 in which the cable is immersed. 

• Since distributed interferometric and distributed Brillouin techniques qualify for 

distributed pressure profiling, additional work is needed in the analysis of their 

performance and characteristics, and the comparison between the two. 

Because of strong interaction, the considerations above lead to the conclusion that the fiber optic 

cable aimed for pressure measurements can be interrogated with the stimulated Brillouin 

scattering measurement technique [10] with best available precision to our knowledge.  

Maximal SBS interaction and interrogation of optical fibers involves two counter-propagating 

lightwaves. This is arranged with optical fiber in the loop configuration as described in Fig.-4.2. 

There are two ports from which the lights are launched: pump and Stokes port. The cable sample 

is inserted within the first half closer to the pump port. It is also efficient since the pump in that 

segment is non-depleted and thus more pump power is invested into the inelastic Brillouin 

interaction and generation of acoustic wave causing a backscattered signal at Stokes wavelength.  
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Figure-4.2: Stimulated Brillouin measurement set-up requires interaction of two waves counter-propagating 

within the fibers; the pump delivers energy and spatial profiling and the Stokes wave – also referred to as ‘the 

probe’ - scans the frequency ranges where Brillouin interaction takes place. 

 

As shown in Chapter-2, the intensity of pumped and Stokes optical signals (IP and IS) can be 

described with the following differential equations: 

[
𝑛

𝑐

𝜕

𝜕𝑡
−
𝜕

𝜕𝑧
+ 𝛼] 𝐼𝑃 = −𝑔𝐵𝐼𝑆𝐼𝑃 (4.22𝑎) 

[
𝑛

𝑐

𝜕

𝜕𝑡
−
𝜕

𝜕𝑧
+ 𝛼] 𝐼𝑆 = −𝑔𝐵𝐼𝑆𝐼𝑃 (4.22𝑏) 

Where:  

• 𝐼𝑝 =
𝑛𝜀0𝑐

2
|𝐸̃𝑝|

2
 - pump intensity 

• 𝐼𝑠 =
𝑛𝜀0𝑐

2
|𝐸̃𝑠|

2
 - Stokes (scanning) light intensity 

• 𝜉 - polarization efficiency   

• 𝑔𝐵 - gain of Brillouin signal 

• 𝛼 - characteristic attenuation 

The polarization-dependent amplification factor 𝜉 reflects polarization and birefringence 

effects. The propagation constant difference Δ𝑘 bears the information on birefringence between 

the axes:  
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𝜉 =
1

2
[𝑐𝑜𝑠2(𝛼𝑆 − 𝛼𝑃) − 𝑐𝑜𝑠

2(𝛼𝑆 + 𝛼𝑃)][1 + 𝑐𝑜𝑠[2Δ𝑘𝑧 − Δ𝑘𝐿 + 2(𝛿𝑆 − 𝛿𝑃)]] +

+𝑐𝑜𝑠2(𝛼𝑆 + 𝛼𝑃) (4.23)
 

The Brillouin gain is described with (2.73) and (2.74), 

A typical analysis of the SBS backscatter involves profiling of a Brillouin-Lorentzian shape, 

known as “the bell”. It is obtained from each sampled segment along the length of the cable. 

From the profile, we can determine two important parameters - the frequency position of the 

peak and its shifts across the length of the cable and full-width-at-half-maximum (FWHM), the 

results of which are shown in Fig.-4.3a and Fig.-4.3b, respectively. DiTest BOTDA unit from 

Omnisens is used for these measurements. The Brillouin-Lorentzian profile is an appropriate 

tool that reveals information on the quality of the cable and its production process. 

 
(a) 

 
(b) 

Figure-4.3: Measurement results obtained from all three fibers from the prototype; (a) spatial Brillouin profile 

of the monitored cable segment, (b) frequency (Lorentzian) profile of Brillouin backscattered signal 
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Since optical fibers are in tight contact with the steel tube, all the strain exerted on the steel 

encapsulation will, in an ideal case, be transferred to optical fibers with the same magnitude. 

This can be measured using both BOTDR and BOTDA techniques in which the central peak of 

the Brillouin-Lorentzian profile is proportional to the strain applied to the fiber. The 

measurement results (Fig.-4.4) confirm strong coupling and full strain transfer to the optical 

fibers of the strain exerted on the tube. All three fibers react in the same way and the 

characteristics obtained are linear. 

 

(a) 

 

(b) 
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(c) 

Figure-4.4: One-way stress-strain (SS) measurements of cable prototype characteristics; (a) measurement set-

up, (b) strain characteristics for all three fibers (one on top of the other two) exhibiting highly linear behavior, 

and (c) Brillouin strain characteristics 

 

As a function of the both; the strain 𝜀 and temperature T of the Brillouin-Lorentzian profile will 

move left or right in the spectral or Δ𝑘𝑧-plane. The strain and temperature of optical fiber does 

not impact the shape of the Brillouin-Lorentzian profile, and it will remain unchanged only 

shifted. On the other hand, the change of temperature will introduce phase shifts in polarization 

efficiency 𝜉. Presuming that the temperature change impact both waves and both axes of the 

fiber equally, it means that  the form of the blueprint in Δ𝑘𝑧-plane will not change since the 

blueprint is dependent on product Δ𝑘𝑧 and the phase difference of both waves (4.23) only. On 

one hand, due to the cable design, pressure change will change Δ𝑘 dramatically and that will, 

in turn, change the blueprint of  𝜉 in Δ𝑘𝑧-plane. The change of  𝜉 depicted in Δ𝑘𝑧-plane will 

also cause change in the Brillouin-Lorentzian profile (2.73). 

 

3.1. The Brillouin-Lorentzian profile and the investigation of polarization 

efficiency 𝝃 application in distributed pressure measurements 

Polarization efficiency 𝜉 represents a factor that multiplies the Brillouin-Lorentzian profile 

(2.73) and defines the strength of the interaction of the two counter-propagating waves. On one 

hand it impacts the altitude of the Brillouin-Lorentzian peak in the profile, and on the other it 
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connects the spatial (𝑧) to the spectral domain (Δ𝑘) that is related to the wavelength range Δ𝜆 

with (4.15) and (4.18). When no birefringence is involved between the axes then Δ𝑘 = 0 and 

polarization efficiency 𝜉 is a smooth function that does not change with the length - given that 

polarization parameters of the wave are constant. In case Δ𝑘 ≠ 0, the periodic function 

𝑐𝑜𝑠[2Δ𝑘𝑧 − Δ𝑘𝐿 + 2(𝛿𝑆 − 𝛿𝑃)] from (4.23) will be nonzero and it will give rise to ripples in  

𝜉. In other words, the blueprint of 𝜉 in Δ𝑘𝑧-plane changes. These ripples are a function of 

birefringence, the position 𝑧, and phase difference 𝛿𝑆 − 𝛿𝑃. As an example, we provide several 

illustrations (Fig.-4.5) of the function 𝑦 = 𝑐𝑜𝑠[Δ𝑘(2𝑧 − 𝐿) + 2(𝛿𝑆 − 𝛿𝑃)] in Δ𝑘𝑧 −plane for 

Δ𝑘 = 0 ÷ 3 and 250 sample position points presuming δS − δP = 0.  

 
(a) 
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(b) 

Figure-4.5: Contour blueprint of 𝒄𝒐𝒔[𝜟𝒌(𝟐𝒛 − 𝑳) + 𝟐(𝜹𝑺 − 𝜹𝑷)] in 𝜟𝒌𝒛-plane for 𝒛 = 𝟎 ÷ 𝟐𝟓𝟎 samples and 

𝜹𝑺 − 𝜹𝑷 = 𝟎; (a) periodicity in 𝚫𝒌𝒛 −plane in both axes, and (b) the zoomed version showing no periodicity for 

𝜟𝒌 = 𝟎  and evolution of first extremes as 𝚫𝒌 increases. 

 

Hence, the product Δ𝑘𝑧 defines the blueprint of 𝜉 in Δ𝑘𝑧-plane. The phase difference 𝛿𝑆 − 𝛿𝑃 

will only shift the same configuration across Δ𝑘𝑧-plane. We know from earlier that Δ𝑘 is 

directly dependent on birefringence Δ𝑛, and, due to the construction of the cable, also on  

hydrostatic pressure. It means that pressure measurements can be deducted from the 

measurement of Δ𝑘. The difference in propagation constant Δ𝑘 is the subject of our optical 

measurements, e.g. with BOTDA. The measurement techniques that lead to Δ𝑘 read-out need 

to be developed first. There are several possible approaches to that. Since Δ𝑘 can be measured 

in both domains, there can be at least 2 known measurements - one in the spectral domain and 

one in the spatial domain. A convenient way to that objective would be without requiring 

intervention into interrogation equipment, i.e. to avoid additional cost and investments.  We 

need to investigate whether this can be realized simply with manipulation of both lightwaves at 

their launch sides, as depicted in Fig-4.6. At both terminals of the fiber loop, sets of polarization 
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controllers and variable retarders are inserted which enables passive manipulation of light. This 

new set-up will help us investigate the properties of lights and their interaction defined in (4.23)  

 
Figure-4.6: Interrogation method suggested for distributed 𝜟𝒌 measurements. The lightwaves are manipulated 

in polarization and phase at both ends before launched in the fiber 

 

Our interest is to investigate the impact of Δ𝑘 on polarization efficiency 𝜉, and in which way 

we can use 𝜉 to conclude and calculate the difference in the propagation constant Δ𝑘. Since Δ𝑘 

is a function of pressure 𝑝 change, Δ𝑘 = Δ𝑘(𝑝), and because our BOTDA equipment 

characterizes the optical fiber in a fully distributed way, we shall be able to profile the pressure 

change fully as well as distributively. In other words, we need to investigate properties and 

characteristics of 𝜉 in more details and in particular for the following conditions: 

• 𝝃 vanishes (𝝃 = 𝟎); 

• 𝝃 has extremes in spectral domain 𝚫𝒌  

• 𝝃 has extremes in spatial domain 𝒛 

Case 𝝃 vanishes (𝝃 = 𝟎) 

From (4.23) we see that 𝜉 will vanish under the following condition:  

a) Δ𝑘(2𝑧 − 𝐿) + 2(𝛿𝑆 − 𝛿𝑃) = 0 (4.24) 

b) 𝛼𝑆 − 𝛼𝑃 =
𝜋

2
(4.25) 

Applying condition (4.26a) to 𝜉 we get:  
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Now adding condition (4.26b) we get 𝜉 = 0. Hence, for stimulated Brillouin interaction to 

vanish it takes:  

1. Orthogonality of field strength vectors with respect to fast and slow axes, and 

2. One of the two  

o Both Δ𝑘 = 0 and 𝛿𝑆 − 𝛿𝑃 = 0 or 

o Δ𝑘 = −2 𝛿𝑆−𝛿𝑃
2𝑧−𝐿

 

This condition (4.25a) reflects the fact that the stimulated Brillouin effect is built only with 

those components of the waves that are parallel, and not by those that are perpendicular (Fig.-

4.7). It sets in the relation Δ𝑘, position on the fiber 𝑧, and launching retardancies 𝛿𝑆 and 𝛿𝑃 

required for 𝜉 = 0. If Δ𝑘 is constant (vertical line in Δ𝑘𝑧-plane) and distance z grows, then 

positions having 𝜉 = 0 detected in the measurements can reveal phase differences 𝛿𝑆 − 𝛿𝑃.  

In a different case in which we will have 𝛼𝑆 − 𝛼𝑃 = 0 (but not 𝛼𝑆 = 𝛼𝑃 = 0!), the polarization 

efficiency 𝜉 will be nonzero, all that regardless of the position z, propagation constant difference 

Δ𝑘 or the input retardance difference 𝛿𝑆 − 𝛿𝑃.  

 
Figure-4.7: Polarization efficiency as a function of Pump and Stokes wave polarization [15] 

With Δ𝑘 nonzero, there is a number of spots in which interaction of the Stokes and pump wave 

has an extreme. They shall be observed in Brillouin gain measurements and recognized as 

ripples with valleys and peaks in the signal, all in accordance with (4.23).  
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3.2. Extraction method 1: finding extremes of 𝝃 in the spectral domain 

The Stimulated Brillouin Scattering technique uses two lightwaves; the pump delivering energy 

for the interaction process, and Stokes bringing frequency/wavelength scanning into the system. 

The scanning features of the system can be regarded as a specialty non-linear optical spectrum 

analysis (OSA) system based on tunable laser technique. As such, it brings one additional 

benefit. The polarization efficiency 𝜉 is dependent only on polarization parameters and at input 

on Δ𝑘𝑧 product and on retardance 𝛿𝑆 − 𝛿𝑃. Nonzero Δ𝑘 causes ripples in the whole Δ𝑘𝑧-plane, 

for all Δ𝑘 and 𝑧 positions. But in the measurements not all the ripples in the Δ𝑘𝑧-plane will be 

observed - only the segment of a few 10ths of MHz in Δ𝑘𝑧-plane where stimulated Brillouin 

interaction takes place will be observed with BOTDA. We have mentioned earlier that the 

position of the Brillouin-Lorentzian profile in the spectral domain depends on strain and 

temperature. This is not the case for polarization efficiency 𝜉 – its blueprint in the Δ𝑘𝑧-plane 

remains unaffected by the changes in strain and temperature – the changes that the fiber is 

subjected to. It means that the ripples in Δ𝑘𝑧-plane are dependent on pressure change and not 

on temperature and strain change, and they can be used for measurements of Δ𝑘 and hence the 

pressure change 𝑝.    

Therefore, the measurement of birefringence is reduced to the measurements of ripples in the 

spectral domain. In that sense we need to investigate extremes in the spectral domain. The 

spectral domain is interrogated with the Stokes wave only - the pump can be left unchanged 

and shall be beneficial as such (Fig.-4.8). For this purpose, we need a slight adaptation of (4.23). 

It shall now reflect the fact that all polarization parameters of the Stokes wave are wavelength 

dependent.   

 

Figure-4.8: The segment to be interrogated for determination of 𝜟𝒌. Polarization properties of light in the 

segments along the fiber are random and cannot be predicted. 
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Using trigonometric identities 2𝑐𝑜𝑠2𝜃 = 1 + 𝑐𝑜𝑠2𝜃 the equation (4.23) can be rewritten in a 

form more suitable for manipulation: 

𝜉(Δ𝑘) =
1

2
[𝑐𝑜𝑠2(𝛼𝑆0 − 𝛼𝑃0) − 𝑐𝑜𝑠2(𝛼𝑆0 + 𝛼𝑃0)]𝑐𝑜𝑠

2Θ + 𝑐𝑜𝑠2(𝛼𝑆0 + 𝛼𝑃0) (4.26)  

where: 

Θ = Δ𝑘 (𝑧 −
𝐿

2
) + (𝛿𝑆 − 𝛿𝑃0). (4.27) 

We shall now investigate extremes of the function 𝜉(Δ𝑘): 

𝑑

𝑑(Δ𝑘)
𝜉(Δ𝑘) = 0 (4.28) 

𝜉′ = −[𝑐𝑜𝑠2(𝛼𝑆0 − 𝛼𝑃0) − 𝑐𝑜𝑠2(𝛼𝑆0 + 𝛼𝑃0)]𝑐𝑜𝑠ΘsinΘ ∙ Θ
′ (4.29) 

Using identity 𝑠𝑖𝑛(2𝛩) = 2𝑠𝑖𝑛𝛩𝑐𝑜𝑠𝛩: 

𝜉′ = −
1

2
[𝑐𝑜𝑠2(𝛼𝑆0 − 𝛼𝑃0) − 𝑐𝑜𝑠2(𝛼𝑆0 + 𝛼𝑃0)]sin2Θ ∙ Θ

′ (4.30) 

From (4.27) we also have:  

Θ′ = (𝑧0 −
𝐿

2
) (4.31) 

Substituting (4.27) and (4.31) in (4.30) we get: 

𝜉′ = −
1

2
(𝑧0 −

𝐿

2
) [𝑐𝑜𝑠2(𝛼𝑆0 − 𝛼𝑃0) − 𝑐𝑜𝑠2(𝛼𝑆0 + 𝛼𝑃0)]sin[Δ𝑘(2𝑧0 − 𝐿) + 2(𝛿𝑆 − 𝛿𝑃0)](4.32) 

𝜉(Δ𝑘) has extremes when the following condition is fulfilled:  

Δ𝑘(2𝑧0 − 𝐿) + 2(𝛿𝑆0 − 𝛿𝑃0) = 𝑚𝜋 (4.33) 

Δ𝑘 that fulfills the condition (4.33) can be calculated as: 

Δ𝑘 =  
𝑚𝜋 − 2(𝛿𝑆 − 𝛿𝑃0)

(2𝑧0 − 𝐿)
. (4.34) 
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From the equation (4.34) we can see that the position of extremes depends on the phase of the 

Stokes wave 𝛿𝑆 and we can make use of it. For example, we can take the measurement by means 

of a common BOTDA unit and external passive manipulation of 𝛿𝑆, e.g. using a variable 

retarder at Stokes wave input (Fig.-4.9). By varying 𝛿𝑆, shifts in Δ𝑘𝑧-plane will be introduced. 

 
Figure-4.9: Measurement set up for 𝜟𝒌 profiling in spectral domain 

 

Fig.-4.10 shows shifts in Δ𝑘𝑧-plane induced for 𝛿𝑆 − 𝛿𝑃 = 0, 𝜋 3⁄ , 2𝜋 3⁄ , 𝜋. The procedure is 

the following – we set fixed input linear polarization parameters and continue scanning our 

Brillouin-Lorentzian profile within the available spectral range of the unit as usual. Now we 

additionally introduce and measure phase change that moves over the working point Δ𝑘0z0 

(where Δ𝑘0 can be zero) in the Δ𝑘𝑧-plane that we had set. The phase manipulation 𝛿𝑆 changes 

the magnitude of the Brillouin-Lorentzian gain that we measure with the BOTDA unit.  

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure-4.10: Contour representation of 𝝃 in 𝜟𝒌𝒛-plane and impact of phase shift in Stokes wave 𝜹𝑺 for different 

values  𝟎 (a), 
𝝅

𝟑
𝒓𝒂𝒅 (b), 

𝟐𝝅

𝟑
 (c) and 𝝅 (c). The phase 𝜹𝑺 shifts 𝝃 in vertical direction 

 

During the process we observe and note the strength of Brillouin gain at every phase position 

that we use for recovering the initial periodic function with phase change as its argument. Since 

manipulating the Stoke wave phase 𝛿𝑆 shifts 𝜉 in the Δ𝑘𝑧-plane only vertically, we stay always 

for all shifts at the same Δ𝑘. The change of Δ𝑘, e.g. due to pressure change, moves us to the 

other position on Δ𝑘-axis where other phase dynamics exist. Therefore, manipulating only with 

retardance 𝛿𝑆 at the Stokes wave entrance, and monitoring 𝜉 and its extremes, we can calculate 

Δ𝑘 for the position 𝑧0. The distance between two adjacent minimums, say 𝑚 and 𝑚 + 2 with 

retardances 𝛿𝑆1 and 𝛿𝑆2, can be calculated using (4.34): 

(Δ𝑘2 − Δ𝑘1)(2𝑧 − 𝐿) = (𝑚 + 2)𝜋 − 2(𝛿𝑆2 − 𝛿𝑃) − 𝑚𝜋 − 2(𝛿𝑆1 − 𝛿𝑃)  

(Δ𝑘2 − Δ𝑘1)(2𝑧 − 𝐿) = 2𝜋 − 2(𝛿𝑆2 − 𝛿𝑆1)  

(Δ𝑘2 − Δ𝑘1) = 2
𝜋 − ∆𝛿𝑆2−𝑆1
(2𝑧0 − 𝐿)

(4.35) 
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Δ𝑘2(𝑝)⏟    
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

= 2
𝜋 − ∆𝛿𝑆2−𝑆1⏞    

𝑡ℎ𝑒 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 
𝑓𝑟𝑜𝑚  𝑉𝑅 

(2𝑧0 − 𝐿)
+ Δ𝑘1(𝑝 = 0)⏟      
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒
(𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛)

(4.36) 

The value of ∆𝛿𝑆1−𝑆2 - required for the transition from one to the next minimum position of 𝜉, 

can be read from the variable retarder (VR). 𝛿𝑆1 is a reference value and can be set to 𝛿𝑆2 = 0. 

In such case ∆𝛿𝑆2−𝑆1 = 𝛿𝑆2.  

 

3.3. Extraction method 2: finding extremes of  𝝃 in the spatial domain 

Analogously, another method for determining Δ𝑘 can be developed in the spatial domain. In an 

earlier case, we conducted derivatives on the Δ𝑘, whereas in this case we will do it with respect 

to the length. In the fiber observed we cannot have information on its polarization states and 

will rely on the spatial profile of 𝜉 which we measure from the BOTDA unit. The condition for 

finding extremes that 𝜉(𝑧) undergoes along the length 𝑧 is: 

𝑑

𝑑𝑧
𝜉(𝑧) = 0 (4.37) 

𝑑

𝑑𝑧
𝜉 = {

1

2
[𝑐𝑜𝑠2(𝛼𝑆0 − 𝛼𝑃0) − 𝑐𝑜𝑠2(𝛼𝑆0 + 𝛼𝑃0)]𝑐𝑜𝑠

2Θ + 𝑐𝑜𝑠2(𝛼𝑆0 + 𝛼𝑃0)}
′

(4.38) 

Using identity 2𝑠𝑖𝑛Θ𝑠𝑖𝑛𝜑 = cos(Θ − 𝜑) + cos((Θ + 𝜑): 

𝜉′ = −2sin (2𝛼𝑆0)𝑠𝑖𝑛(2𝛼𝑃0)sin (2𝛩)𝛩
′. 

Since Θ = Δ𝑘(𝑧 − 𝐿

2
) + [𝛿𝑆0 − 𝛿𝑃0] the derivative of  Θ is Θ′ = Δ𝑘, and it follows: 

𝜉′ = −2Δ𝑘 ∙ 𝑠𝑖𝑛(2𝛼𝑆0)𝑠𝑖𝑛(2𝛼𝑃0)𝑠𝑖𝑛(2Θ) 

𝜉′ = −2Δ𝑘 ∙ 𝑠𝑖𝑛(2𝛼𝑆0)𝑠𝑖𝑛(2𝛼𝑃0)𝑠𝑖𝑛[Δ𝑘(2𝑧 − 𝐿) + 2(𝛿𝑆0 − 𝛿𝑃0)] (4.39) 

we set 𝜉′ = 0 to investigate for extremes. This requires following conditions to be met: 

• Condition-1:  
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Δ𝑘 = 0 (4.40) 

which means there is no change in 𝜉, hence there is no birefringence present in the fiber 

• Condition-2: 

𝑠𝑖𝑛(2𝛼𝑆0)𝑠𝑖𝑛(2𝛼𝑃0) = 0 (4.41) 

This condition can be fulfilled if we have:  

𝛼𝑆0(𝑧) = 𝑚
𝜋

2
(4.42𝑎) 

or: 

𝛼𝑃0(𝑧) =  𝑚
𝜋

2
(4.42𝑏) 

For 𝑚 = 0, 1, 2… In that case 𝜉 = 1 and we have maximum gain. Physically the condition 

(4.47) means that the polarization of both waves is linear along the principal polarization axes. 

• Condition-3: 

𝑠𝑖𝑛[Δ𝑘(2𝑧 − 𝐿) + Δ𝑘(2𝑧 − 𝐿)] = 0 (4.43) 

Δ𝑘(2𝑧 − 𝐿) + 2(𝛿𝑆 − 𝛿𝑃) = 𝑚𝜋 (4.44) 

𝑧 =
1

2
 [
𝑚𝜋 − 2(𝛿𝑆 − 𝛿𝑃)

Δ𝑘
+ 𝐿] (4.45) 

Now, it shall be noticed that condition-3 in combination with the condition 𝛼𝑆0 − 𝛼𝑃0 =
𝜋

2
, in 

which polarizations of linearly polarized pump and Stokes waves are orthogonal, will result 

with 𝜉 = 0. Hence, in such case there is no gain. In order to generate such a condition, we need 

to manipulate the polarization on both launch ends, the pump and the Stokes port, until we 

observe 𝜉 = 0. The situation is depicted in Fig.-4.11. As with the earlier case, 𝜉 undergoes 

periodic changes along the fiber length 𝑧 and extremes are periodically located. If Δ𝑘 is 

constant, 𝜉 across Δ𝑘𝑧-plane is a straight vertical line, exhibiting clear periodic characteristics. 

But if Δ𝑘 is changing along the length, then 𝜉 will be a curve undergoing slower or faster 

changes depending on Δ𝑘. In other words, perturbed Δ𝑘 modulates 𝜉. The change rate of  𝜉 
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reveals the information that Δ𝑘 changes along the length.  This now suggests the following; 

applying the pure signal processing technique, for example Fourier transformation (FFT) on 𝜉, 

it can lead us to the conclusion on Δ𝑘 values. From the practical point, this technique requires, 

if feasible, provision of several sampling points in order to profile Δ𝑘 in each point of interest 

within one spatial resolution length. From the industrial point of view, this method is worth 

investigating if a BOTDA with spatial resolution in [cm] range is available, however, this is not 

our case for the time being.  

 

Figure-4.11: The constant 𝜟𝒌, 𝜟𝒌 = ∆𝒌𝟎 – blue line (1), results with the polarization efficiency function 𝝃 

having regular sinusoidal periodicity, whereas varying 𝜟𝒌 (2) causes frequency modulated 𝝃 – red line (2). The 

distance between extremes is larger for lowest 𝜟𝒌 values. 

Therefore, we will continue with the method of Δ𝑘 determining according to the idea of 

observing 𝜉 and seeking extremes along the length of the fiber. The distance between two 

adjacent extreme positions in which 𝜉 has a minimum (𝜉 = 0) is: 

Δ𝑧 = 𝑧(𝑚 + 2)⏟      
𝑡ℎ𝑒 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑜𝑓 𝜉
𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑓𝑜𝑟 Δ𝑘0

− 𝑧(𝑚)⏟  
𝑡ℎ𝑒 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑜𝑓 𝜉
𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑓𝑜𝑟 𝛥𝑘0

(4.46)

 

For the same Δ𝑘 = Δ𝑘0 we are confined with a vertical line in Δ𝑘𝑧-plane and we have: 
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Δ𝑧 =
1

2
 [
(𝑚 + 2)𝜋 − 2(𝛿𝑆 − 𝛿𝑃)

Δ𝑘0
+ 𝐿] −

1

2
 [
𝑚𝜋 − 2(𝛿𝑆 − 𝛿𝑃)

Δ𝑘0
+ 𝐿] (4.47) 

Δ𝑧 =
2𝜋

Δ𝑘0
(4.48) 

In other words, Δ𝑧Δ𝑘0 = 2𝜋. Hence, the larger Δ𝑘0 requires smaller ∆𝑧 to jump from one 

minimum to the next minimum along the vertical line in Δ𝑘𝑧-plane. For smaller Δ𝑘0 it is just 

the opposite and larger ∆𝑧 is required to make the phase shift of 2𝜋. 

Let us consider now one 2𝜋 shift in the arbitrary direction in Δ𝑘𝑧-plane. For such transition 

from (𝑧𝑚, Δ𝑘1) to (𝑧𝑚+2, Δ𝑘2) and using (4.34) we can write: 

Δ𝑧21 = 𝑧𝑚+2 − 𝑧𝑚 

Δ𝑧21 =
1

2
 [
(𝑚 + 2)𝜋 − 2(𝛿𝑆 − 𝛿𝑃)

Δ𝑘2
+ 𝐿] −

1

2
 [
𝑚𝜋 − 2(𝛿𝑆 − 𝛿𝑃)

Δ𝑘1
+ 𝐿] (4.49) 

And with some manipulation we obtain: 

Δ𝑘2 =
(𝑚 + 2)𝜋 − 2(𝛿𝑆 − 𝛿𝑃)

𝑚𝜋 + 2Δ𝑘1Δ𝑧21 − 2(𝛿𝑆 − 𝛿𝑃)
(4.50) 

Expressed in another way, for Δ𝑧21: 

Δ𝑧21 =
1

2
{(
1

Δ𝑘2
−

1

Δ𝑘1
) [𝑚𝜋 − 2(𝛿𝑆 − 𝛿𝑃)] +

2𝜋

Δ𝑘2
} (4.51) 

The expression (4.51) can be easily tested. For example, if we set Δ𝑘1 = Δ𝑘2 = Δ𝑘0 in (4.51) 

we will get (4.48) again. This now represents a more general case in Δ𝑘𝑧-plane and Fig.-4.12 

shows these general transitions in Δ𝑘𝑧-plane. 
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Figure-4.12: Graphical representation of general transition from one extreme to the other giving the phase shift 

of 𝟐𝛑 radians. Increase in 𝚫𝐤 must be compensated by decrease in ∆𝐳 in order to maintain the same phase 

distance. 

 

Let us now summarize the analysis so far, the measurement perspectives, and provide 

comments regarding the possible impact of the temperature in the measurements: 

• Both concepts exploit Δ𝑘𝑧-plane defined with (4.23). It is a plane on which 

polarization efficiency 𝜉 makes its blueprint.  

• The configuration of 𝜉 in the Δ𝑘𝑧-plane can be changed by changing polarization 

parameters 𝛼𝑆0, 𝛼𝑃0, and phase retardances 𝛿𝑃0, and 𝛿𝑆0 at the inputs. 

• With 𝛼𝑆0, 𝛼𝑃0, 𝛿𝑃0 constant and varying the Stokes wave phase 𝛿𝑆 this blueprint can 

be shifted vertically in Δ𝑘𝑧-plane. At the same position 𝑧0 and with the manipulation 

of the Stokes wave phase 𝛿𝑆 we can calculate Δ𝑘. 
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• Finding extremes in 𝜉 is a method that can give Δ𝑘. The most convenient way of 

scanning the Δ𝑘𝑧-plane can be horizontal, by means of changing the phase of the 

Stokes wave, and vertical, by means of tracking the Brillouin gain signal across the 

length. The scanning can also be made in the arbitrary direction and the benefits 

then needs to be considered in a separate analysis.  

• In the horizontal scanning method, we presumed that for the frequency span of the 

Brillouin interaction, Δ𝑘 can be taken as independent from wavelength scanning but 

proportional to pressure change, because of the pressure-birefringence mechanism 

featured by the cable. Horizontal scanning can be conducted by setting an initial 

working point (Δ𝑘1, 𝑧0) and then manipulating phase difference 𝛿𝑆 − 𝛿𝑃 by 

changing and noting the 𝛿𝑆 (and leaving 𝛿𝑃 unchanged), until 𝜉 undergoes the next 

extreme with the 2𝜋 shift. Knowing (Δ𝑘1, 𝑧0), the overall loop length, and measuring 

𝛿𝑆 we can calculate Δ𝑘2 according to (4.36). From the practical point of view, an 

accurate measurement requires calibration of the sensor cable, measurement of 

Brillouin-Lorentzian profile, and manipulation of the phase of Stokes wave, and 

finally the calculation of Δ𝑘2. In the calibration process we determine the Δ𝑘(𝑝) 

characteristics along the whole length of the cable. The horizontal method includes 

only phase manipulation and it does not require data from more spatial sampling 

points. Hence, Δ𝑘2 can be determined in just one sampling location.    

• In the vertical scanning method, we must move along sampling points until we find 

the same phase – it means 2𝜋 phase shift. We measure the distance and calculate 

Δ𝑘0 using (4.48). The transition to a larger Δ𝑘0 value will make the 2𝜋 phase shift 

to appear sooner. In this case no phase shift is included and monitoring of 𝜉 is 

sufficient. This is the main difference between the methods; methods using phase 

shift require only one sampling position to calculate Δ𝑘2, whereas methods requiring  

a series of sampling positions in profiling 𝜉 require longer segments with constant 

Δ𝑘0values to calculate it. The first approach uses an additional device for phase 

manipulation, and the second spares the investment of the cost of the minimum 

resolution length required for acquisitions of data. As it is usually the case, the 

decision shall be made according to requirements from the application. 
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• Temperature impact: temperature change introduces the phase shift in polarization 

efficiency 𝜉 along the fiber. When 𝛼𝑆0, 𝛼𝑃0, 𝛿𝑃0, and 𝛿𝑆0 are constant, the form of 

the blueprint of 𝜉 in the Δ𝑘𝑧-plane shall remain the same and it will be only shifted 

vertically - as long as Δ𝑘 is constant. Should Δ𝑘 be affected by temperature change, 

and this coupling is due to the cable, the blueprint of 𝜉 will also change. In that case 

our job is to make the cable with Δ𝑘 dependent on pressure only and free from 

temperature impacts, at least in the temperature range of our interest.  

 

  



 FIBER-OPTIC SENSOR CABLE FOR SIMULTANEOUS DISTRIBUTED MEASUREMENTS 

 

82 

 

3.4. Measurement set-up and results 

This chapter will give an example of the measurement based on extraction method 2 described 

above. The measurement is conducted using a 24m long pressure chamber in which the cable 

prototype is installed and sealed and then integrated into BOTDA (Omnisens Vision Dual) [18] 

closed fiber loop configuration (Fig.-4.13). The pressure change 𝑝 will change Δ𝑘 in the optical 

fibers inside the cable, that will, in turn, give rise to the ripples in 𝜉.  

 

Figure-4.13: Measurement set-up for determination of distributed Brillouin gain dependence on pressure rate 

 

The instrument performs the configuration first, and the measurement afterwards. In the 

configuration phase it seeks the maximum in the Brillouin interaction. Launching polarizations 

are adjusted and regulated to generate maximum gain. Once the maximum Brillouin interaction 

along the length is found, pump polarization is fixed and remains unchanged. The perturbances 

within the fiber, i.e. within the tested part of the fiber loop, can impact polarization properties 

of the pump light and cause variations in Brillouin gain. Since both lights are generated from 

the same laser source, the stabile wavelength difference between the two lights is assured which 

is required for accurate wavelength scanning and quality of measurement results. During the 

measurement, the Stokes wave scans the fiber across the Brillouin interaction range, and 

measurement data are acquired. 

The measurement is done in steps. In each step pressure is increased by 100bar. The applied 

pressure range is from 0 to 800bar. The spatial resolution and Stokes frequency scanning step 

was taken to be 1.02m and 2MHz, respectively, and the spatial sampling interval was 0.4m. So, 

we had 2 sampling points along 1 resolution length.  
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In order of avoid zero gain at certain locations along the cable, BOTDA samples the backscatter 

signal in characteristic axes and then averages the results. In this way polarization fading of the 

Brillouin signal is completely mitigated. The measurement concept and data analysis start with 

Brillouin gain processing. The equation (2.73) can be written in the form: 

𝑔𝐵[∆𝑘(∆𝑝)]⏟        
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

= 𝜉 ∙ ∆𝑘(∆𝑝)⏟    
𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 ∆𝑘

∙ 𝑔𝐵𝑚𝑎𝑥⏟  
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝑔𝑎𝑖𝑛
𝑚𝑎𝑥𝑖𝑚𝑢𝑚

∙ 𝑓(𝜀, 𝑇)⏟  
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝑠ℎ𝑎𝑝𝑒 𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

. (4.54)

 

Now taking the first derivative: 

𝑔𝐵
′ = 𝑔𝐵𝑚𝑎𝑥 ∙ 𝑓 ∙ 𝜉

′ (4.55) 

Using (4.23) we can write: 

𝜉′ = −
1

2
(2𝑧 − 𝐿)[𝑐𝑜𝑠2(𝛼𝑆 − 𝛼𝑃) − 𝑐𝑜𝑠

2(𝛼𝑆 + 𝛼𝑃)] ∙ Δ𝑘(∆𝑝)
′ ∙ 𝑠𝑖𝑛[Δ𝑘(∆𝑝)(2𝑧 − 𝐿) + 2(𝛿𝑆 − 𝛿𝑃)](4.56) 

Expression (4.56) in combination with (4.55) gives: 

𝑔𝐵
′ [∆𝑘(𝑝)] = 𝜂 ∙ 𝜉′[∆𝑘(𝑝)] (4.57) 

Where 𝜂 is defined as 𝜂 = 𝑔𝐵𝑚𝑎𝑥 ∙ 𝑓 and includes everything except phase and launching 

polarization conditions. 

This means that both 𝑔𝐵′  and 𝜉′ will share the same form and will undergo extremes for the 

same argument ∆𝑘(𝑝). Hence, they share the same blueprint in Δ𝑘𝑧-plane. The only difference 

is the coefficient 𝜂.  

Now, our task is to profile 𝑔𝐵 in Δ𝑘𝑧-plane and from that we will estimate 𝜉′. Fig.-4.14 roughly 

shows the spatial Brillouin profile and gain variations as a function of pressure change for the 

tested sample. For more precise measurements new measurement set-up must be arranged, this 

time with a finer pressure increase step. Pressure 𝑝 is referenced to atmospheric pressure.  

The results of the Brillouin gain are depicted in Fig.-4.15. At pressure levels between 0-100bar 

there is a uniform drop in Brillouin gain across the whole length. At higher pressure rates, 

Brillouin gain undergoes ripples.  
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(a) 

 

(b) 

Figure-4.14: Spatial profile of Brillouin gain as a function of pressure. The reference curve (a) shows loop 

segment details, and periodic variations (b) due to birefringence change. It was observed that variations are 

higher for low pressure values and lower on higher pressure values. 
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Figure-4.15: Brillouin gain with ripples due to birefringence as a result of applying the external pressure on the 

sample. The gain is dependent on pressure values on all positions along the sample. 

 

The change in Brillouin gain is uniform along the length in the chamber (Fig.-4.16), and the 

Brillouin-Lorentzian peaks (Fig.-4.16b) and the FWHM (Fig.-4.16c) remains unperturbed 

during the pressurization process. The pressurized segment changes its birefringence and it 

impacts Brillouin interaction of the rest of the fiber loop, meaning that the gain characteristics 

from pressure-free segments in the loop, on the left and right side of the chamber, will change. 

Since it changes the spatial distributions of the pump and the Stokes waves, the introduction of 

one birefringent segment into a birefringence-free loop impacts the Brillouin interaction along 

the entire fiber.  

For our consideration, only ripples in the gain are of our interest. For that purpose, taking the 

derivative of the gain profile gives better insight into periodicity of the ripples as a result of 

applied pressure (Fig.-4.17). This 2𝜋 periodicity can be observed as a span between the colored 

segments having the same color transitions (yellow-red transition), as depicted in Fig.-4.17. The 

results presented graphically suggest that there is a difference in sensitivity between the 

segments of the cable inside the chamber and across the pressure range. Nevertheless, the most 

coherent and homogenous results for all segments are found in the pressure range around 100bar 
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(Fig.-4.18). It can be observed that the segments in the range nr. 0-10 have similar pressure 

sensitivity and follow the same pattern, as well as those above segment nr. 36. 

 

 

(a) 

 

(b) 

 

(c) 

Figure-4.16: Brillouin gain parameters for pressure rates 0bar (green line), 100bar (pink) and 800bar (white 

line); the spatial gain profile (a), peak frequency profile 𝒇𝑩 (b), and the Brillouin-Lorentzian FWHM width profile 

∆𝒇𝑩 (c). Both 𝒇𝑩 and ∆𝒇𝑩 remain approximately unchanged in the process. The examined sample is located 

between 24m and 48m in the trace. 
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Figure-4.17: Mesh representation of Brillouin gain derivative in ∆𝒌𝒛-plane revealing 𝟐𝝅 phase periods. The 

minimums are found in the transition zones from yellow to red, in the direction left to right. The distance from 

two adjacent minimums corresponds to 𝟐𝝅 phase shift. 
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Figure-4.18: Brillouin gain derivative. The most homogenous results for all segments are found in the pressure 

range around 100bar 

 

According to the results, approximate sensitivity can be calculated for the sample (Table-4.3).  
 

TABLE-4.3: EVALUATION OF PRESSURE DISTRIBUTION ALONG THE SAMPLE IN THE PRESSURE 

CHAMBER 

Segment nr. /range Pressure range Sensitivity 

 [bar] rad/bar 

0-10 100 - 380 1.65E(-2) 

0-38 380 - 580 3.14E(-2) 

   
The purpose of this chapter was to show and discuss the directions of development of fully 

distributed fiber optic pressure measurement systems. They are based on BOTDA 

measurements, but possibilities are not limited to one interrogation technique. It has the 

potential to be greatly improved in the future. For even better concepts and results, access to 

raw data from the BOTDA unit is necessary. Namely, some of the usable measurement data is 

are not available and remain hidden in the system hardware. In the time this thesis was being 

written, the high-pressure chamber was in the process of moving to a new location and 

unavailable for more tests with better precision. New activities on pressure measurements 

involving the approach with higher precision and advanced interrogation techniques (now based 
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on novel knowledge acquired) and data processing are planned in the near future. Without any 

doubts, with slight technical adaptation in commercially available BOTDA units, further 

improvement can be realized, especially in measurement precision and data processing. For that 

reason, we contacted the manufacturer of the BOTDA unit – the company Omnisens [18]. It 

can be said with confidence that further advances of distributed pressure measurements 

techniques will be made in the years ahead.  

The other, larger part necessary for the success of the fiber optic fully distributed pressure 

sensing concept and its industrial acceptance lay in the hands of sensor cable manufacturers, 

especially in the quality and the precision of cables that present manufacturing technology can 

offer. In that respect, linear characteristics and the calibration of such cables are probably the 

largest challenge. If we denote the 𝛥𝑘2 − 𝛥𝑘1 transition distance and define sensitivity of the 

cable as 𝑠𝑝 =
𝑑

𝑑𝑝
𝛥𝑘 then for some phase transition, φ we can write: 

𝜑 =
2𝜋

Δ𝑘2 − Δ𝑘1
∙ 𝑠𝑝 ∙ (𝑝2 − 𝑝1) (4.58) 

𝑝2⏟
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

=
𝜑⏞

𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑉𝑅

2𝜋
∙ ( Δ𝑘2⏟

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

− Δ𝑘1⏟
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

) ∙
1

𝑠𝑝⏟
𝑐𝑎𝑏𝑙𝑒 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

+ 𝑝1⏟
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

(4.59) 

In case we select the 2𝜋 phase transition from Δ𝑘1 to  Δ𝑘2, take that the reference pressure 𝑝1 =

0 , and calculate Δ𝑘2 using the above described methods, we then get: 

𝑝2 =
Δ𝑘2 − Δ𝑘1

𝑠𝑝
(4.60) 

Once again (Δ𝑘1, 𝑝1) must be known from calibration. Because this method belongs to a 

relative type of measurements for accurate pressure estimation, the cable calibration 𝑠𝑝 is of 

major importance. The repetition of the same parameters on every meter along the length during 

the production process makes the calibration easier. If that cannot be accomplished, then the 

calibration process of long cable lengths would be very costly and challenging. Hence, one of 

the most important objectives in the pressure sensing cable design is the simplicity of the 

calibration process. The simpler the calibration, the lower the costs in production are and the 

easier is the acceptance from the industry.   
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4. BENDING OF THE CABLE  

 

The availability of more tightly buffered off-centered fibers inside the metal encapsulation tube 

is growing in industry thus introducing new possibilities for cable bending detection and 

measurements. Bending measurement is based on principles of bar bending (Fig.-5.1) in which 

the cross-section above neutral axis is subjected to extension, while the cross-section below the 

neutral axis is subjected to compression. The line that is confined with the neutral axis plane is 

subjected to none of it, no compression and no extension and hence it will be not subjected to 

stress.  

 
Figure 5.1: Bent bar and its normal stress distribution 𝜺𝒏 

 

In order to evaluate bending of fiber optic cable, the optical fibers shall be grouped into an 

extension and compression zones of the cable cross-section. In case they are located 

symmetrically with respect to neutral axis, the strain induced perturbations shall be equal in 

magnitude but antisymmetric, hence have the opposite signs. Such a cable is depicted in Fig. 

5.2.  



 FIBER-OPTIC SENSOR CABLE FOR SIMULTANEOUS DISTRIBUTED MEASUREMENTS 

 

91 

 

 
(a) 

 
(b) 

Figure 5.2: Concept of bar bending and detection using optical fibers 

 

Normal strain in the beam can be expressed as follows. 
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Figure 5.3: Model of a cable bend 

 

The circumference of the circularly bended cable with radius 𝜌 is calculated as (Fig.-5.3):  

𝑂 = 2𝜌𝜋 (5.1) 

Now, we use proportionalities that involve: 

- arc 𝑙 

- circumference 𝑂 

- angle 𝛼  

𝑙

𝑂
=
𝛼

2𝜋
(5.2) 

𝑙

2𝜌𝜋
=
𝛼

2𝜋
(5.3) 

Here we obtain: 

𝛼 =
𝑙

𝜌
(5.4) 

Relative strain 𝜀 is defined as: 
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𝜀𝑟 =
∆𝑙

𝑙
(5.5) 

Therefore, we can write: 

∆𝑙 =
𝑑𝑙

𝑑𝜌
∆𝜌 (5.6) 

Combining (5.6) with (5.4) we have:  

∆𝑙 =
𝑑

𝑑𝜌
(𝛼𝜌)∆𝜌 (5.7) 

So, we obtain: 

∆𝑙 = 𝛼∆𝜌 (5.8) 

Using (5.4) and (5.5) we get:  

∆𝑙 =
𝑙

𝜌
∆𝜌 (5.9) 

𝜀𝑟 =
∆𝑙

𝑙
=
∆𝜌

𝜌
(5.10) 

We can replace increment of the radius ∆𝜌 with the distance from the cable’s neutral axis 𝑧: 

∆𝜌 = 𝑧 

𝜀𝑟 =
1

𝜌
𝑧 (5.11) 

As the radius of the curvature grows to infinity, normal strain decreases to zero. Table 5.1 and 

Fig.-5.4. show relative elongation due to bending in micro-strain units. 
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TABLE 5.1: RELATIVE ELONGATION IN 𝜀 AS A DEPENDENCE OF DISTANCE FROM NEUTRAL AXIS 𝑧 WITH 

CABLE BENDING OD AS PARAMETER 

 

 

Figure 5.4: Relative elongation in dependence of distance from neutral axis z with cable bending OD as parameter 

The bending of the cable with two fibers depicted in Fig.-5.4 is dependent on the azimuthal 

position of the fibers. The extension and compression is antisymmetric and as such it can be 

measured. The sensitivity of the configuration with 2 fibers is twice the one with one fibers and 

peaks at the farthest point within the compression or extension zones relative to the neutral axis. 

If both fibers are positioned in the neutral plane, the situation will change. In such case, the 

fibers are free from mechanical loads and the bending effect will be lost. The measurement 

results from both fibers shall be zero and no antisymmetric curves will be detected. This 

represents a drawback of such a concept. Since keeping/regulating the position of fibers in very 

z 2000 1750 1500 1250 1000 750 500

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

0,10 100,00 114,29 133,33 160,00 200,00 266,67 400,00

0,20 200,00 228,57 266,67 320,00 400,00 533,33 800,00

0,30 300,00 342,86 400,00 480,00 600,00 800,00 1200,00

0,40 400,00 457,14 533,33 640,00 800,00 1066,67 1600,00

0,50 500,00 571,43 666,67 800,00 1000,00 1333,33 2000,00

0,60 600,00 685,71 800,00 960,00 1200,00 1600,00 2400,00

0,70 700,00 800,00 933,33 1120,00 1400,00 1866,67 2800,00

0,80 800,00 914,29 1066,67 1280,00 1600,00 2133,33 3200,00

0,90 900,00 1028,57 1200,00 1440,00 1800,00 2400,00 3600,00

1,00 1000,00 1142,86 1333,33 1600,00 2000,00 2666,67 4000,00

Bending OD
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long production lengths is impossible, the information on cable bending at some locations can 

be lost.   

 

Figure 5.4: Configuration providing bending unperturbed optical fibers 

With three fibers with an azimuthal offset angle of 120°, the situation is quite different (Fig.-

5.4). In such configuration at least one fiber will always be in the compression and one in the 

extension zone assuring necessary antisymmetric balance in the measurement, no matter what 

azimuth angle optical fibers will take during cable production. Therefore, in this way there will 

always be available information on cable bending status presuming that all three fibers are 

interrogated. The cost of this additional option is a necessity for the introduction of the third 

fiber into the sensor cable and conducting one additional measurement. The concept with three 

fibers (Fig.-5.5) comes with some additional benefits.   

 

(a) 
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(b) 

Figure 5.5: Trisens cable bended; (a) dimensions and (b) zoomed cross-section 

In comparison with the two-fiber system, the three-fiber configuration introduces a difference 

in stress magnitude among the fibers (Fig.-5.6a). For the three-fiber system, the only position 

in which magnitudes of the two fibers can be equal in magnitude but opposite in sign is the 

position in which one fiber is positioned in the neutral plane (Fig. 5.6b).     
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(a) 

 

(b) 

 

(c) 

Figure 5.6: Azimuthal configuration of the cross-section and magnitudes in extension and compression zones; 

(a) magnitudes are different, (b) magnitudes are the same, and (c) same as (a) but with opposite sign 

In other words, looking at the responses from the optical fiber, we can evaluate angles and 

magnitude of the bending the cable is subjected to. The bending measurement using BOTDA 
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is organized by coiling a 20m long cable segment (Fig. 5.7a). The diameters of the coils are 

200cm, 175cm, 150cm, 125cm, 100cm, 75cm and 50cm (Fig. 5.7b). It was connected to the 

measurement set-up (Fig. 5.7c) by a fusion splice in a splice tray.  The full Brillouin-Lorentzian 

profile measurement is shown in the upper-right picture bearing all information necessary for 

evaluation of the bending. The unit provides information on; Brillouin gain and width (FWHM), 

and frequency position of the peak. The latter is the most important parameter in the application 

as it bears information on the strain and the temperature. The information on strain is the focus 

of our measurements.  

 

(a) 
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(b) 

 

(c) 

Figure 5.7: The samples and the measurement (a) the construction of the sample, (b) coiling/bending of the 

sample and (c) measurement set-up 

Fig.-5.8 shows BOTDA measurement results from all three fibers with all details; the upper 

right pictures depict the Brillouin-Lorentzian profile and the rest of the figures show the details 

of it - the upper-left curve profiles frequency position of the peak, bottom-left shows the gain, 

and the bottom right shows FWHM width of the Brillouin-Lorentzian profile.  

The coil is arranged in the following procedure;  

- The straight cable sample is laid on the floor and the center is marked and taken for 

making the very first winding with the diameter required.  

- The rest of the cable is coiled by coiling each side separately  

There is a very special event in the center of the Brillouin frequency peak measurement profile 

of the cable sample. It is the result of the cable twist in the first coil. The first coil is the cause 

of one additional effect – in the first twist the fibers exchange their azimuthal positions. What 

once was in the extension zone is now transferred to the compression zone, and vice versa. This 

is evident for all three fibers - with some difference due to inability to repeat the coiling process 

exactly in the same way with other diameters. 
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(a) 

 

(b) 
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(c) 

Figure 5.8: Visualized measurement results from all three fibers. The Brillouin-Lorentzian profile (“the bell”) can 

be seen in the upper-right picture. The rest of the pictures are a result of it; upper-left curve profiles movement 

of the peak, bottom-left shows gain and bottom-right shows width of Brillouin-Lorentzian profile; (a) fiber nr. 1, 

(b) fiber nr. 2 and (c) fiber nr. 3 

The changes in Brillouin-Lorentzian profiles due to change in diameters are clearly observed, 

especially the magnitude and direction of the shifts of Brillouin profile peaks. This change is 

different for different fibers. As an example, let’s consider location 1031m Fig.-5.9. with Table 

5.3 giving quantitative information on the Brillouin peak shifts. The shifts vs. bending diameters   

summarized in Fig. 5.10. clearly show the opposite tendencies in Brillouin peak frequencies as 

a function of bending radius for the fibers. From Fig.-5.10 it can be concluded that the position 

of the fibers inside the sensing cable complies with Fig.-5.6a.         
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(a) 

 

(b) 
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(c) 

Figure 5.9: Brillouin profiles around the location 1031m for all three fibers; (a) Fiber-1, (b) Fiber-2 and (c) Fiber-

3 

It also makes sense to qualitatively compare these results with other perturbations to which the 

Brillouin peak shift is susceptible. These are strain and temperature. The relative shift for the 

coil with OD 50cm at the location 1031m is shown in Table 5.2, where the Brillouin profile for 

the 200cm bending is taken as a reference. 

 

TABLE 5.2. BRILLOUIN PEAK FREQUENCY SHIFTS TRANSITION DUE TO BENDING AT THE LOCATION 

1031M 

Brillouin Peak/ Coil OD 200cm 150cm 100cm 50cm Slope Sign 

Fiber1 10.6277 10.6252 10.6216 10.6154 Negative 

Fiber2 10.6509 10.6478 10.6458 10.6409 Negative 

Fiber3 10.6405 10.6465 10.6585 10.6840 Positive 
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Figure 5.10: Brillouin frequency peak shift with bending at position 1031m 

For the calculation of an equivalent reference, bare fiber sensitivity values of 0.05MHz/με 

(500MHz/%) and 1MHz/°C are used for strain and temperature, respectively.  

𝛼 (
𝑧

𝜌
−

𝑧

𝜌𝑟𝑒𝑓
) = ∆𝑓 

𝛼 (1 −
𝜌

𝜌𝑟𝑒𝑓
)

⏟        
𝛼𝑟𝑒𝑓

 
𝑧

𝜌
= ∆𝑓 

𝛼𝑟𝑒𝑓𝜀𝑟 = ∆𝑓 

𝜀𝑟 =
1

𝛼𝑟𝑒𝑓
∆𝑓 

𝛼𝑟𝑒𝑓 =
0.05MHz

με
(1 −

0.5

2
) = 0.0375

MHz 

με
 

Since the unit offers frequency scanning resolution of 100kHz (the Stokes wave) and maximum 

measurement accuracy of 2με, it now becomes clear that even much smaller bending diameters 

can be detected and measured. 
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TABLE 5.3. RELATIVE FREQUENCY SHIFTS OF THE PEAK FOR THE COIL WITH OD 500MM TAKING OD 2000MCM AS A 

REFERENCE, AND EQUIVALENT SHIFTS OF STRAIN AND TEMPERATURE 

Fiber nr. Relative shift Equivalent relative 

strain shift 

Equivalent relative 

temperature shift 

 [MHz] [με] [°C] 

1 12,00 320,00 12,00 

2 10,00 266,66 10,00 

3 43,36 1156,26 43,36 

 

Comparing Table-5.1 and Table-5.3 and the dimensions of the cable from Fig.-5.5.  discrepancy 

between the two can be noticed. For a given design, the relative strain in Table-5.3 is in 

magnitude much larger than the values listed in Table-5.1. For example, for a fiber with an 

outer diameter of 455μm to reach the strain magnitude of 867,20με and taking measurement 

case with an outer diameter of 200cm as a reference, one must bend the cable more than of an 

outer diameter 50cm. This requires explanation. As already stated earlier, there is an event in 

the center of the sample in which the fibers make a transition from one zone to the other (Fig.-

5.11). This transition is larger on smaller outer diameters, since the stress exerted to the fiber it 

larger. The white, red and green lines represent fibers that undergo bending of outer diameter 

of 50cm, 100cm and 150cm, respectively.   

 

 

(a) 
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(b) 

 

(c) 

Figure 5.11: Transition of fibers from one strain zone to the opposite; white line OD 50cm, red line OD 100cm, 

green line OD 150cm, reference is OD 200cm; (a) fiber-1 (b) fiber-2 and (c) fiber-3 

From the left side we can observe that with increasing frequencies on the ordinate axis, the 

order of the colors is the same for fibers 1 and 2 (white-red-green). For fiber 3 (Fig.-5.11c) it is 

just the opposite - the order is green-red-white. Each line slope reveals the reaction of the fiber 

to the twist. The stress increases or decreases depending whether the fibers are found in the 

extended or the compressed zone, just about before they change the zone in the center. The 

positive slope means stress on the fiber increases, while the negative slope means the fiber is 

compressed due to twist. This excessive stress that is added to the bending stresses is due to 

torsion. This effect peaks in the center where the color order is reversed in the center for a short 

length of 1m and then reversed again to its starting order. The reason for this is the twist 
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reaching a critical position in which fibers change zones. The total stress measured is the sum 

of bending and torsion stresses. From 5.10 we can calculate the bending induced relative 

elongation between OD 50cm and OD 200cm at amounts to 765με. The rest of the value 

measured 867,20με belongs to the twist.           
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CONCLUSION 

The cable design discussed in this thesis, with three tightly encapsulated optical fibers in a metal 

tubing with the outer diameter 1.22mm, is nowadays producible in relatively long lengths 

(presently 15km continuous length). Its linear strain characteristics is the reason for its 

adaptation and deployment into various geotechnical and geophysical, commercial and 

scientific applications for strain, temperature, acoustic, seismic and vibration measurements. In 

this thesis it was proven that the potential goes beyond these features and can now involve 

pressure and cable bending detection and measurement. It is not limited to one interrogation 

technique and can support all three categories: point-measurements, quasi-distributed, and fully 

fiber optic distributed interrogation techniques. Moreover, because it is based on three fibers, it 

has intrinsic capabilities for temperature compensation techniques required in many 

applications.  

 

Within the very propulsive industrial discipline of fully distributed optical fiber measurement 

systems, providing data on temperature, strain, acoustic, seismic and vibration measurement, 

the missing piece still remains distributed optical fiber pressure sensing. There are two reasons 

for that: lack of adequate interrogation techniques and lack of adequate sensor cable. Although 

the fully distributed pressure interrogation techniques are proposed in the scientific community, 

their deployment in real applications, such as geophysical and geotechnical, are still limited. 

The reasons for this can be found on both sides; applications dealing with harsh conditions 

(high temperature ranges, hydrogen ingression problems in optical fibers, request on robust 

cable designs etc.), and interrogation techniques requiring very special optical fibers that are 

challenging to manufacture at industrial scales and to integrate into robust industrial cable 

designs. For that reason, two approaches were proposed in this thesis, both exploiting 

Stimulated Brillouin Scattering (SBS) effects and in particular a variation of the Brillouin gain.  

 

SBS in optical fiber uses counter-propagating waves, the pump and the Stokes ones. It can be 

regarded as a heterodyne interferometric system with fully distributed passive interaction in 

each segment along the length of the fiber. The interaction takes place within a narrow 

wavelength range in which the change of the propagation constant is mostly dependent on the 

birefringence properties of the fiber, thus variation of the wavelength can be neglected. The 

interrogation methods proposed in this thesis exploit these possibilities. They are based on 
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investigation of the polarization efficiency of the SBS gain obtained from the Brillouin-

Lorentzian gain profiles. It suggests using the standard BOTDA unit for performing 

measurements and it involves external passive manipulation of the Stokes wave at the input of 

the fiber loop. Polarization efficiency is dependent only on polarization parameters, propagation 

constant and phase differences among the pumping and the Stokes waves. Because of the cable 

design, the propagation constant is dependent mostly on external pressure only. Hence, all other 

external perturbations, including temperature and vibration, can make only indirect impact to 

the polarization efficiency though these parameters. The developments of such measurement 

strategies along with an appropriate calibration technique are crucial for its further industrial 

success and they are objectives of future research.  

 

The industrial interests are obviously in one single cable design deployable in the field with 

single installation providing data for different measurands from multiple and independent 

distributed measurements. The multi-fiber cable design, proposed in this thesis, complies to 

these requirements. It is expected that further innovation in interrogation methods along with 

advances in optical fiber design together with precise production processes will offer even more 

features integrated in the small sized sensing cables. It can be said with good confidence - the 

cable concepts, as proposed in this thesis, will continue to be object of both academic and 

industrial research and will present a valuable asset toward cost-efficient digitalization of 

energy cables, large structures and linear assets in the near future.  
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