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ABSTRACT 

The simplest multiplierless decimation filter is the cascaded-integrator-comb (CIC) 

filter. However, CIC filters introduce a passband droop, which is intolerable in many 

applications. The droop can be reduced by connecting a linear-phase finite-impulse-response 

filter called compensator in cascade with CIC filter. Since CIC filters are multiplierless, CIC 

compensators with multiplierless structures are preferable. In the thesis, two methods for the 

design of multiplierless CIC compensators have been proposed. Both methods are based on 

minimization of the maximum passband deviation. However, the first method provides an 

efficient compensation by using coefficients expressed as sums of powers of two (SPT), 

whereas the second method brings simple compensator's structures by representing each 

coefficient as signed power of two. In both approaches, the optimum coefficients are found by 

using global optimization. In processing of wideband signals, CIC filter is often incapable of 

meeting the requirement for high folding-band attenuations. To improve CIC filter folding-

band response, various structures have been developed. An efficient structure arises from 

polynomial sharpening of the folding-band response. This structure implements a so-called 

sharpened CIC (SCIC) filter. To obtain very high folding-band attenuations of SCIC filters, 

the minimax sharpening of the folding bands is proposed. In addition, to obtain multiplierless 

SCIC structures, polynomials with SPT coefficients are used. However, the SCIC response 

also introduces a high passband droop. The droop can be reduced by connecting a 

compensator in cascade with the SCIC filter. For the multiplierless SCIC filters, multiplierless 

compensators are preferable. In the thesis, two approaches for design of multiplierless SCIC 

compensators are proposed. The first approach brings a closed-form method based on 

maximally flat approximation. Such an approximation is suitable for narrowband SCIC filters. 

The second approach results in a global method based on the minimization of the maximum 

passband deviation. This method is preferable for wideband SCIC filters. 

 

 

Keywords: cascaded-integrator-comb (CIC) filters, compensation, decimation, finite-

impulse-response (FIR) filters, maximally flat approximation, minimax approximation, 

multiplierless, sharpening, signed power of two, sum of power of two (SPT) 

  



 

Decimacijski filtri bez množila temeljeni na izoštravanju i 
kompenzaciji amplitude 

Tijekom posljednja dva desetljeća, programski definiran radio postao je nezaobilazna 

tehnologija koja je prodrla u mnoge dijelove modernih komunikacijskih sustava. Popularnost 

ove tehnologije posljedica je mogućnosti programski definiranih prijamnika da podržavaju 

razne komunikacijske standarde koristeći isto sklopovlje. Programski definirani prijamnici 

temelje se na algoritmima za digitalnu obradu signala (Digital Signal Processing, DSP). Ovi 

algoritmi se uobičajeno implementiraju koristeći procesore te je njihova upotreba ograničena 

na niže frekvencije. Stoga se za obradu signala na ulazu u prijamnik često koristi integrirano 

sklopovlje dizajnirano za specifičnu primjenu. Međutim, razvoj programibilnih logičkih polja 

(Field Programmable Gate Arrays, FPGA) omogućio je korištenje DSP algoritama i u 

području međufrekvencija. 

Programski definiran radio prijamnik s kanonskom arhitekturom sadrži antenu te 

sklopove za analognu predobradu, analogno-digitalnu pretvorbu, digitalno-analognu 

pretvorbu te digitalnu obradu signala. Nažalost, zbog ograničenja trenutno dostupnih 

komponenata, programski definiran radio prijamnik u praksi je puno složeniji. Signal koji 

dolazi s antene se prvo filtrira koristeći niskopropusni filtar kako bi se potisnule komponente 

signala izvan Nyqustovog područja. Dobiveni signal se zatim atenuira koristeći programibilni 

atenuator te pojačava pojačalom s konstantnim pojačanjem kako bi se osigurala prihvatljiva 

razina signala na ulazu u analogno-digitalni pretvornik (Analog to Digital Converter, ADC). 

Nakon ADC-a, signal se obrađuje u digitalnom sklopovlju koje obavlja transpoziciju signala, 

filtriranje kanala, automatsku regulaciju pojačanja, demodulaciju te druge zadaće potrebne za 

dobivanje izlaznog signala. 

Prijamnik s uzorkovanjem u osnovnom frekvencijskom području ima arhitekturu 

najsličnijoj kanonskoj. Nakon niskopropusnog filtra signal se vodi na ADC. Kompleksna 

ovojnica se dobiva u digitalnoj domeni množenjem signala iz ADC-a s kompleksnom 

eksponencijalom koju daje numerički upravljan oscilator (Numerically Controlled Oscillator, 

NCO). Nakon množila, kompleksan signal se vodi na decimacijski filtar koji se koristi za 

spuštanje frekvencije uzorkovanja. Nakon decimacije, signal prolazi kroz kanalski filtar. 

Signal koji odgovara željenom kanalu dalje obrađuje sustav za automatsku regulaciju 

pojačanja (Automatic Gain Control, AGC) koji se koristi za prilagođavanje razine signala. Na 

kraju, ovisno o modulaciji, demodulator će obraditi kompleksni signal koji daje AGC sklop.  



 

Decimacijski filtar neizostavan je dio digitalnog prijamnika. Tijekom desetljeća, 

razvijene su razne metode i strukture u području dizajna decimacijskih filtara uzimajući u 

obzir njihovu složenost, potrošnju i brzinu. Konačno, poseban naglasak je stavljen na dizajn 

decimatora s visokim svojstvima koji u realizaciji ne koriste množila opće namjene. 

Najjednostavniji decimacijski filtar bez množila koji podržava visoke faktore pretvorbe 

frekvencije uzorkovanja sastoji se od kaskade integratorskih i češljastih sekcija (Cascaded 

Integrator-Comb, CIC). Međutim, CIC filtri visokog reda imaju veliki pad amplitudne 

karakteristike u području propuštanja, koji često nije prihvatljiv. Ovaj pad može se smanjiti 

spajanjem filtra s konačnim impulsnim odzivom (Finite-Impulse-Response, FIR) i linearnom 

fazom, zvanog CIC kompenzator, u kaskadu sa CIC filtrom. Moguć je i drugačiji pristup. Na 

primjer, u programski definiranom prijamniku kompenzatori se mogu ugraditi u FIR kanalski 

filtar koji dolazi neposredno iza decimacijskog filtra. U ovakvom pristupu se prijenosna 

funkcija filtra dobiva konvolucijom impulsnog odziva kompenzatora i polaznog kanalskog 

filtra. Prijenosna funkcija CIC kompenzatora može se dobiti i korištenjem klasičnih metoda za 

dizajn FIR filtara. Ove metode implementirane su u većini standardnih alata za obradu 

signala. Na primjer, MATLAB podržava dizajn CIC kompenzatora korištenjem kriterija 

jednolike valovitosti i kriterija najmanjih kvadrata. 

S obzirom na to da CIC filtri ne sadrže množila, preferiraju se i CIC kompenzatori koji 

ih ne sadrže. U literaturi se odvojeno razmatraju uskopojasni i širokopojasni kompenzatori 

bez množila. U posljednjem desetljeću razvijene su razne metode za njihov dizajn, 

pokrivajući pritom kompenzatore s dva, tri, pet i proizvoljnim brojem koeficijenata. Budući 

da kompenzatori s neparnim brojem koeficijenata forsiraju konstantnu amplitudu u širem 

frekvencijskom području nego kompenzatori s parnim brojem koeficijenata, uglavnom se 

koriste kompenzatori s neparnim brojem koeficijenata. 

U mnogim aplikacijama koriste se CIC kompenzatori s tri koeficijenta bez množila. 

Oni su učinkoviti u uskim frekvencijskim područjima. Za širokopojasne aplikacije koje 

zahtijevaju značajno manju valovitost amplitude, prikladniji su kompenzatori s više od tri 

koeficijenta ili kompenzatori koji sadrže više stupnjeva. Nedavno su razvijeni jednostupanjski 

i dvostupanjski širokopojasni kompenzatori bez množila s visokim stupnjem kompenzacije. 

Uobičajeno se takvi kompenzatori projektiraju da imaju jedinično pojačanje. Ovo svojstvo se 

obično postiže tako da se unaprijed definira središnji koeficijent kompenzatora. Međutim, 

bolja kompenzacija i jednostavnija struktura postižu se korištenjem slobodnog središnjeg 

koeficijenta. 



 

U obradi širokopojasnih signala, CIC filtar često ne može osigurati dovoljno velika 

gušenja u područjima preklapanja spektra. Za poboljšanje amplitude CIC filtra u područjima 

preklapanja spektra razvijene su razne strukture. Jedna od učinkovitih struktura proizlazi iz 

polinomnog izoštravanja amplitude. Ova struktura implementira takozvani izoštreni CIC 

(Sharpened CIC, SCIC) filtar. 

U literaturi se razmatraju dva pristupa dizajnu SCIC filtara. Prvi pristup istovremeno 

izoštrava područje propuštanja i područja preklapanja spektra, dok drugi uzima u obzir samo 

područja preklapanja spektra. Dizajn izoštrenih CIC filtara temelji se na određivanju 

koeficijenata polinoma koji osiguravaju željenu amplitudnu karakteristiku. Razvijeno je 

nekoliko metoda koje rezultiraju realnim i cjelobrojnim koeficijentima te koeficijentima 

izraženim sumama potencija broja 2 (Sum of Power of Two, SPT). Posljednji se preferiraju 

budući da rezultiraju strukturama koje ne sadrže množila. 

Najpoznatiju metodu izoštravanja amplitudne karakteristike razvili su Kaiser i 

Hamming. Oni su predložili polinom za promjenu amplitude, koji je dobiven forsiranjem 

glatkoće u točkama (0,0) i (1,1). Ovako dobiven polinom ima cjelobrojne koeficijente koji se 

dobivaju analitičkim izrazima. Nedavno je pokazano da se CIC filtar visokog reda može 

dobiti Kaiser-Hammingovim izoštravanjem u područjima preklapanja spektra primijenjenim 

na CIC filtar prvog reda. U tom smislu, CIC filtar višeg reda je zapravo maksimalno glatko 

izoštren CIC filtar prvog reda. Nedavno su predložene metode za dizajn SCIC filtara koje 

koriste kriterij najmanje otežane kvadratne pogreške i minimax kriterij. Ove metode daju 

SCIC filtre s malim odstupanjima u području propuštanja i dosta velikim gušenjima u 

područjima preklapanja spektra. Međutim, dobiveni koeficijenti poprimaju realne vrijednosti, 

što zahtijeva strukturu koja koristi množila. 

Nedavno je predloženo izoštravanje CIC filtra u područjima preklapanja spektra 

primjenom Chebyshevljevih polinoma. Dobiveni Chebyshevljevi SCIC filtri ne sadrže 

množila samo za određene granične frekvencije područja propuštanja. Ovakvi SCIC filtri 

rezultiraju s vrlo velikim gušenjem u području preklapanja spektra. Međutim, ovakvo gušenje 

plaćeno je velikim odstupanjem amplitude od konstantne vrijednosti u području propuštanja. 

U okviru rada, razmatrani su decimacijski filtri bez upotrebe množila temeljeni na 

kompenzaciji i izoštravanju amplitude CIC filtra. Prvo poglavlje disertacije opisuje 

programski definirani prijamnik s aspekta digitalne obrade signala. Uloga CIC decimacijskog 

filtra je pokazana na primjeru prijamnika s uzorkovanjem u osnovnom frekvencijskom 

području. Također je dan opći pregled modifikacija CIC filtra koje omogućavaju poboljšanja 

decimacijskih karakteristika filtra. 



 

Drugo poglavlje opisuje CIC filtar uključujući prijenosnu funkciju, rekurzivnu i 

nerekurzivnu realizaciju te amplitudnu karakteristiku. Poseban naglasak je stavljen na 

nedostatke amplitudnog odziva CIC filtra višeg reda razmatrajući maksimalno odstupanje 

amplitudnog odziva filtra od konstantne vrijednosti u području propuštanja i minimalnu 

atenuaciju u područjima preklapanja spektra. Također je dan pregled literature koja opisuje 

modifikacije CIC filtra za poboljšavanje amplitudne karakteristike u oba područja. 

Treće poglavlje opisuje modifikaciju amplitudne karakteristike CIC filtra temeljnu na 

kompenzaciji u području propuštanja korištenjem simetričnog FIR filtra spojenog u kaskadu s 

CIC filtrom. Dan je pregled uobičajenih kompenzatora s naglaskom na filtre bez množila 

uključujući filtre temeljena na: oblikovanju amplitudnog odziva sinusnom funkcijom, 

maksimalno glatkoj aproksimaciji, minimax aproksimaciji, minimalnoj fazi i višestupanjskim 

realizacijama. Dizajn CIC kompenzatora obično se temelji na minimizaciji maksimalne 

apsolutne pogreške u području propuštanja. Međutim, u dizajnu kompenzatora bez množila 

prikladnija je pogreška koja opisuje razliku između maksimalne i minimalne amplitude. Kako 

bi se smanjio pad amplitudne karakteristike CIC filtra predložene su dvije metode za dizajn 

temeljene na minimizaciji maksimalnog odstupanja u području propuštanja. Razmatrani su 

kompenzatori s jediničnim i nejediničnim pojačanjem. Koeficijenti kompenzatora s 

jediničnim pojačanjem izraženi kao sume potencija broja 2, dok su koeficijenti kompenzatora 

s nejediničnim pojačanjem izraženi kao predznačene potencije broja 2. Optimalni koeficijenti 

su dobiveni globalnim optimizacijskim postupcima temeljenim na intervalnoj analizi i 

iscrpnom pretraživanju. Također, opisana je prednost predloženih CIC kompenzatora u 

odnosu na uobičajene kompenzatore. 

Četvrto poglavlje opisuje modifikaciju amplitudne karakteristike CIC filtra temeljenu 

na polinomnom izoštravanju koje implementira izoštrenim CIC (SCIC) filtar. Opisana je 

amplitudna karakteristika, prijenosna funkcija i struktura SCIC filtra. Kako bi se postiglo 

veliko gušenja aliasa, razmatrani su filtri s izoštrenim područjima preklapanja spektra. Dan je 

pregled uobičajenih izoštrenih filtra koji ne koriste množila u realizaciji uključujući filtre 

temeljene na maksimalnoj glatkoj aproksimaciji i nedavno predložene filtre temeljene na 

Chebyshevljevim polinomima. Iako Chebyshevljevi SCIC filtri omogućavaju jako velika 

gušenja aliasa, ne sadrže množila samo za određene granične frekvencije područja 

propuštanja. Velika gušenja aliasa za proizvoljno frekvencijsko područje postignuto je 

dizajnom izoštrenih CIC filtara bez množila temeljenom na minimax aproksimaciji u području 

preklapanja spektra. Koeficijenti polinoma izoštravanje su izraženi kao suma potencija broja 

2. Dizajn je formuliran kao optimizacijski problem. Optimalni koeficijenti filtra dobiveni su 



 

korištenjem globalne optimizacijske tehnike temeljene na intervalnoj analizi. Pokazano je da 

dobiveni izoštreni filtri postižu jako velika gušenja u područjima preklapanja spektra bez 

korištenja množila. Također, opisana je prednosti predloženog filtra u odnosu na 

Chebyshevljev izoštreni CIC filtar. 

Peto poglavlje opisuje izoštrene CIC filtre koji u svojoj strukturi sadrže 

kompenzacijski filtar, uključujući izoštrene kompenzirane CIC filtre i kompenzirane izoštrene 

CIC filtre. Minimax i Chebyshevljevi izoštreni CIC filtri imaju vrlo visok gušenja u području 

preklapanja spektra. Međutim, takvo ponašanje je plaćeno velikim padom amplitudne 

karakteristike u području propuštanja. Stoga je predložena jednostavna metoda za dizajn 

kompenzatora za izoštrene CIC filtre temeljena na maksimalnoj glatkoj aproksimaciji. Za 

izoštrene filtre s cjelobrojnim ili SPT polinomnim koeficijentima čiji su decimacijski faktori 

potencije broja 2, predloženi kompenzatori se realiziraju bez upotrebe množila. Da bi se 

dobila učinkovitija kompenzacija u širem frekvencijskom pojasu i jednostavnije strukture bez 

množila nego u slučaju maksimalno glatke kompenzacije, predložen je dizajn SCIC 

kompenzatora s koeficijentima izraženim sumama potencija broja 2, temeljen na minimizaciji 

maksimalnog odstupanja amplitude u području propuštanja. Složenost kompenzatora 

određena je zadavanjem ukupnog broja zbrajala u strukturi. Pokazano je da kompenzatori za 

izoštrene CIC filtre značajno poboljšavaju amplitudnu karakteristiku filtra koristeći 

jednostavne strukture bez množila. 

U okviru rada razvijene su nove metode za dizajn decimacijskih filtara bez upotrebe 

množila koje osiguravaju vrlo velika gušenja u područjima preklapanja spektra, nisko 

odstupanje od konstante u području propuštanja te jednostavne strukture. Razmatrane su tri 

decimacijske strukture bez množila temeljenih na polinomnom izoštravanju i kompenzaciji 

amplitude: kompenzirani CIC filtri, izoštreni CIC filtri te kompenzirani izoštreni CIC filtri. 

Razvijene su dvije metode za dizajn CIC kompenzatora bez množila temeljene na 

minimizaciji maksimalnog odstupanja u području propuštanja razmatrajući kompenzatore s 

jediničnim i nejediničnim pojačanjem. Pokazano je da kompenzatori s jediničnim pojačanjem 

učinkovito poboljšavaju usko područje propuštanja koristeći FIR strukture s tri koeficijenta i 

do 5 zbrajala. Također je pokazano da predloženi kompenzatori s nejediničnim pojačanjem 

poboljšavaju široko područje propuštanja koristeći jednostavne FIR strukture s pet 

koeficijenata i samo 4 zbrajala. 

Vrlo male pogreške uslijed preklapanja spektara u obradi široko pojasnih signala 

postignuto je dizajnom izoštrenih CIC filtara bez množila temeljenog na minimax 

aproksimaciji. Pokazano je da predloženi filtri postižu slično ponašanje kao Chebyshevljevi 



 

izoštreni filtri, ali rezultiraju realizacijom bez množila za proizvoljne specifikacije što nije 

slučaj kod Chebyshevljevih filtra. 

Za poboljšanje područja propuštanja izoštrenih CIC filtara, razvijene su dvije metode 

za dizajn SCIC kompenzatora bez množila. Prva metoda temeljena je na maksimalnoj glatkoj 

aproksimaciji. Pokazano je da predloženi kompenzatori poboljšavaju usko područje 

propuštanja koristeći FIR strukture s tri koeficijenta i do 10 zbrajala. S druge strane, za 

kompenzaciju SCIC filtera u širokom području propuštanja, razvijena je metoda za dizajn 

SCIC kompenzatora s ograničenim ukupnim brojem zbrajala temeljena na minimizaciji 

maksimalnog odstupanja u području propuštanja. Pokazano je da predloženi filtri značajno 

poboljšavaju široko područje propuštanja koristeći samo do 8 zbrajala. 

 

 

Ključne riječi: kaskada integratorskih i češljastih sekcija, kompenzacija, decimacija, filtar sa 

konačnim impulsnim odzivom, maksimalno glatka aproksimacija, minimax aproksimacija, 

strukture bez množila, izoštravanje, predznačene potencije broja dva, suma potencija broja 

dva 
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1.  INTRODUCTION 

During last two decades, software radio technology has penetrated in all parts of 

wireless communications. It is a consequence of the ability of software radio receivers (SRRs) 

to cover various standards using the same hardware [1]. SRRs are based on digital signal 

processing (DSP) algorithms. These algorithms are usually implemented on digital signal 

processors. However, their use is limited to lower frequencies. Therefore, application specific 

integrated circuits are often used for processing the signals near the receiver's front end. 

However, development of field-programmable-gate-array (FPGA) devices has enabled their 

use at some intermediate frequencies as well. 

In [1], the architecture of the canonical software radio receiver is considered. It 

contains antenna, RF preprocessing, and a single chip with analog to digital and digital to 

analog conversion and digital signal processing. Unfortunately, due to limitations of the 

components available at the present state of technology, a real-world software radio receiver 

is more complex [2]. The block diagram of a digital receiver is shown in Figure 1.1. The 

signal from the antenna is first filtered by a low-pass filter to remove the components outside 

the Nyquist band. The signal obtained is attenuated by a programmable attenuator and 

amplified by a fixed-gain amplifier to ensure the appropriate level at the input of the analog to 

digital converter (ADC). The signal from ADC is further processed by a digital receiver. It 

performs mixing, channel filtering, automatic gain control, demodulation, and other functions 

required to obtain demodulated signal. 

The signal from ADC is fed to mixers together with the signals from numerically 

controlled oscillator (NCO). After the mixers, the signals are fed to cascaded-integrator-comb 

(CIC) decimators which are used to reduce the sampling rate. The decimators are realized 

using Hogenauer's method [3]. CIC decimators are computationally-efficient narrowband-

lowpass filters supporting high sample-rate conversion factors. High decimation factor used in 

the decimator stage gives certain amount of freedom in the design of channel filters. 

However, CIC filter introduces a high passband droop which can be reduced by connecting a 

linear-phase finite-impulse-response (FIR) filter called CIC compensator in cascade with the 

CIC decimator. The compensated signal is then fed to the channel filters. The signal within 

the desired channel is further processed by automatic gain control (AGC), which is used to 

adjust the signal to keep its level within some desired range. Finally, depending on the 
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modulation scheme, the demodulator (DEM) will process the complex signal taken after the 

AGC circuit. 

 

 

Figure 1.1 Block diagram of digital receiver. 

 

Decimation filters are unavoidable part of digital receivers. During decades, various 

design methods and structures for the decimation filters have been developed. The decimator 

design makes a tradeoff among complexity, efficiency, power consumption, and delay. Recent 

development of these filters considers multiplierless structures with high decimation 

capabilities. 

The doctoral thesis presents the methods for the design of decimation filters having 

very high folding-band attenuations and low deviations from constant in the passband, as well 

as the filter structures which do not contain general-purpose multipliers. These methods and 

structures arise from improving the amplitude response of the CIC filter. 

The CIC filter is the simplest multiplierless decimation filter. Since it is multiplierless, 

a CIC compensator with multiplierless structure is preferable as well. During the last two 

decades, various methods for the design of multiplierless CIC compensators have been 

developed. Commonly, these methods consider low-order transfer functions with the 

coefficients expressed as sums of powers of two. To obtain the compensator's coefficients, 

most of the methods employ classical error functions and optimization techniques. This 

doctoral thesis presents new methods for improving the existing compensation techniques by 

applying new error functions and global optimization procedures. 

In processing of wideband signals, the CIC filter is often incapable of meeting the 

requirement for high folding-band attenuations. To improve the CIC-filter folding-band 

response, various structures have been developed. An efficient structure arises from the 

polynomial sharpening of the folding-band response. This structure implements so-called 

sharpened CIC filter. The thesis presents the sharpened CIC filters with very high folding-
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band attenuations obtained by applying the polynomial sharpening within the folding bands 

only. In addition, since the original CIC filters are multiplierless, sharpened CIC filters with 

multiplierless structures are also preferable. To obtain such structures, the sharpening 

polynomials whose coefficients are expressed as sums of powers of two are considered. 

Polynomial sharpening of the CIC filter within the folding bands introduces a high 

passband droop. This thesis proposes the passband improvement accomplished by connecting 

the compensator in cascade with the sharpened CIC filter. The compensation is performed by 

using low-order transfer functions. Furthermore, for multiplierless sharpened CIC filters, the 

thesis considers multiplierless transfer functions for the compensation. The multiplierless 

compensation makes a trade-off between compensator's complexity and capability. Therefore, 

narrowband and wideband compensators are considered separately. The thesis describes how 

to obtain compensators' transfer functions by using classical and new approximation 

techniques, which include the coefficients expressed as sums of powers of two. 

The thesis is organized as follows. The second chapter describes the transfer function 

and multiplierless structure of the CIC filter. The third chapter describes common and 

proposed methods for the design of multiplierless CIC compensators. In the fourth chapter, 

common transfer functions and multiplierless realizations of sharpened CIC filter are 

described. The fifth chapter presents the compensation of the sharpened CIC filters together 

with the methods for the design of multiplierless compensators suitable for narrowband and 

wideband sharpened CIC filters.
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2. CASCADED-INTEGRATOR-COMB FILTER 

2.1 Transfer function 

Cascaded-integrator-comb (CIC) filter [3] is a symmetric finite-impulse-response 

(FIR) filter. It is often used in multi-rate signal-processing applications requiring high sample 

rate conversion factors. The impulse response of the CIC filter is given by 

   
1

0

1 R
CIC

k
h n n k

R


−

=

= −  (2.1) 

where R is the sample rate conversion factor. The corresponding transfer function is given by 

1

0

1( )
R

k
CIC

k
H z z

R

−
−

=

=   (2.2) 

It is clear that HCIC (z) is a geometric series. By applying the formula for the sum of the first R 

terms of geometric series, transfer function in (2.2) can be rewritten in a recursive form as in 

[3] 
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The amplitude response of the CIC filter is given by 

sin
1 2( )
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


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 
 
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 
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 (2.4) 

If the CIC filter is employed as a decimation filter, its amplitude response represents the 

antialiasing filter. However, the response in (2.4) is usually incapable of providing high 

folding-band attenuations. For such requirements, the cascade of CIC filters is rather used. 

The cascade of N filters is called the CIC filter of Nth order. Its transfer function is thus given 

by 
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The corresponding amplitude response has the form 
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 (2.6) 

 

The impulse response of the Nth-order CIC filter is obtained by multiple 

autoconvolutions of the response in (2.1). Since the response in (2.1) is all positive function, 

the cascade response is also all positive function. It is given by [3] 

 

  ( ) ( )
/
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11 1 ; 0,..., 1
n R

l
CIC N

l

N N n Rl
h n n R N

l n RlR

  

=

− + −  
= − = −  

−  
  (2.7) 

 

A simple calculation of the impulse response coefficients can be found in [4]. Figure 2.1 

shows the impulse responses of the CIC filters with N = 1, 2, 3 and R = 10. The corresponding 

amplitude responses are shown in Figure 2.2. The folding-band responses are placed within 

the dashed lines, assuming passband edge frequency is ωp = π/4/R. It is clear from the figure 

that the folding-band attenuation is significantly improved by an increase in the filter order. 
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Figure 2.1 Impulse responses of CIC filters with N = 1, 2, 3 and R = 10. 

 

 

Figure 2.2 Magnitude responses of CIC filter with N = 1, 2, 3 and R = 10. 
Folding-band edges are plotted in dashed lines. Passband edge 
frequency is ωp = π/4/R. 
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2.2 Multiplierless realization 

The decimation filter in (2.5) can be realized as a recursive FIR filter which is 

composed of N integrators and N combs connected in the cascade. Figure 2.3 shows the 

structure of an Nth-order CIC filter operating at the high sampling rate. 

 

 

Figure 2.3 Realization of Nth-order CIC decimation filters operating at high 
sampling rate. 

 

By using the noble identity, the combs can be placed after the downsampler [3]. The structure 

obtained is shown in Figure 2.4. It is clear that the cascaded-integrator-comb filter has a 

multiplierless structure. Furthermore, it employs only two building blocks and it does not 

need additional storage for the filter coefficients. 

 

 

Figure 2.4 Realization of Nth-order CIC decimation with comb filters operating at 
low sampling rate [3]. 

 

For decimation factors expressed as R = 2m, the transfer function of the CIC filter can 

be factorized as 

12 1
2

0 0

1 1( ) (1 )
2 2

m
k

N
m

k N
CIC m mN

k k
H z z z

−−
− −

= =

 
 = = +
 
 

   (2.8) 

Such a decimation filter can be realized as the cascade of m identical non-recursive FIR 

filters, each followed by the downsampler with factor two. Figure 2.5 shows the non-recursive 

structure. 
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Figure 2.5 Non-recursive realization of CIC filter whose decimation factor is 
expressed as power of two. 

 

The non-recursive realizations can also be obtained for the decimation factors 

expressed as a power of three [5] or for the factors taking an arbitrary integer value [6]. The 

summary of non-recursive realizations can be found in [7]. However, these structures are 

often considered as complex [8]. 

2.3 Measures for CIC response 

The amplitude response of the CIC filter, given in (2.6), has monotonically decreasing 

passband response. Consequently, the CIC filter introduces the passband droop which is often 

intolerable in many digital-signal-processing applications. To improve the passband, various 

compensation techniques have been proposed. Some of these techniques will be discussed in 

the third chapter. 

The second measure of the CIC response is the minimum folding-band attenuation. 

This attenuation is achieved at the lower edge of the first folding-band. Figure 2.6 and 

Figure 2.7 show the passband droops and the minimum folding-band attenuations of the CIC 

filters with 1 ≤ N ≤ 8 and R = 10. The droop and attenuations are measured for the passband 

edge frequencies ωp = π/4/R, ωp = π/3/R, and ωp = π/2/R. It is clear from the figures that high 

folding-band attenuations are paid with high passband droops. For example, the eight-order 

CIC filter bringing the minimum folding-band attenuation of 80 dB introduces the passband 

droop of 7 dB, assuming ωp = π/2/R. 
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Figure 2.6 Passband droops of CIC filters with 1 ≤ N ≤ 8 and R = 10, obtained for 
various passband edge frequencies ωp. 

 

 

Figure 2.7 Minimum folding-band attenuations of CIC filters with 1 ≤ N ≤ 8 and 
R = 10, obtained for various passband edge frequencies ωp. 

 



2. CASCADED-INTEGRATOR-COMB FILTER 

 

  

10 

 

2.4 Modifications of CIC filter 

To improve the amplitude response, various modifications of the CIC filter have been 

developed [9]−[23]. In [9]−[11], the CIC filter is decomposed in several recursive stages 

implementing so-called multi-stage CIC filters. This approach brings higher folding-band 

attenuations. In [10], the multi-stage CIC filter is realized using a non-recursive structure. In 

[12], the folding-band response is improved by using a cosine filter. This approach is further 

improved in [13] and [14]. However, the cosine filters usually operate at high sampling rates 

only. In [15], the third-order modified CIC (MFC) filter based on the rotation of the CIC 

filter's transfer function zeros has been described. Later, a generalization of this approach 

resulting in the generalized comb filters (GCF) has been presented in [16], [17]. In general, 

the GCF filters have the real-valued coefficients. However, a quantization of the GCF 

coefficients bringing multiplierless realization is used in [18]. Finally, in [19], the decimation 

structure obtained by a hybrid between the CIC and GCF filter has been proposed. 

Recently, a closed-form design of selective multiplierless FIR filters based on the CIC 

transfer functions has been proposed [20]−[23]. In [23], the amplitude response of the CIC-

based filter is given by 

 

 

1( ) ( , ) ( , 3) ( , 2) ( , 1)

( , 1) ( , 2) ( , 3)

SS
CIC based CIC CIC CIC CIC

S
CIC CIC CIC

H H R H R H R H R

H R H R H R

    

  

+
− = − − −

 + + −

 (2.9) 

where HCIC (ω, R + α) is the amplitude response of the first-order CIC filter with the 

decimation factor R + α, and S is the parameter taking an integer value. As an example, the 

CIC-based filter with the lowest complexity (S = 1) is compared to the original CIC filter with 

N = 8. Both filters use eight integrators and eight comb filters in recursive realization. 

Figure 2.8 shows the magnitude responses of these filters, assuming R = 10. It is clear that the 

CIC-based filter provides higher folding-band attenuation than the original CIC filter. 

However, it requires a more complex structure. 
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Figure 2.8 Magnitude responses of CIC [3] and CIC-based filter [23]. 

 

Other CIC-based FIR decimation filters have been proposed in [24]−[26]. In [24], the 

design of multiplierless decimation filters by using the cyclotomic polynomials is introduced, 

and further improved in [25]. In [26], very sharp decimators obtained by using frequency-

response masking (FRM) technique have been proposed. 
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3. MULTIPLIERLESS COMPENSATORS FOR 
CIC FILTERS 

3.1 Ideal compensator 

High-order CIC filters introduce a high passband droop which is intolerable in many 

applications, such as in multi-standard receivers [27]−[29]. The most popular technique for 

reducing the droop is connecting an FIR filter called compensator in cascade with CIC filter. 

If a CIC filter is used as decimator, the compensator is connected at its output. Consequently, 

it compensates the CIC response relative to the low sampling rate. This response is given by 

sin
1 2( )

sin
2

N

C CICH H
R R

R








  
      = = 
    
    

 (3.1) 

The ideal compensator has the amplitude response 
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H
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=  (3.2) 

The ideal response can only be approximated. Since the CIC filter is a linear-phase system, 

the compensator with a linear-phase transfer function is preferable as well. The amplitude 

response of the FIR compensator with L coefficients is given by 
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

c  (3.3) 

where c is the vector of coefficients. 
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3.2 FIR compensators 

3.2.1 Selective compensators 

CIC filters are originally developed to support high sample rate conversion factors. For 

high R, the CIC response in (3.1) can be approximated as 

sin
2( )

2

N

CH






  
  
  

 
  

 (3.4) 

It is clear that the response in (3.4) corresponds to the Nth power of sinc function. 

Consequently, the compensator approximates the inverse of the Nth power of sinc function. 

Such an approach originated from the early phase of compensator design. During this phase, 

the selectivity was often incorporated into the compensator response. To achieve selectivity, 

high-order FIR transfer functions were used. In their design, the Parks-McClellan design [30] 

was usually employed. Many signal processing toolboxes, such as MATLAB, support the 

equiripple design of the selective inverse-sinc compensators [31]. 

Figure 3.1 shows the high-rate magnitude response of the CIC filter with N = 5 and 

R = 1024 together with the response of the equiripple compensator with 51 coefficients, 

obtained for ωp = π/4/R and 40 dB folding-band attenuation. 

 

Figure 3.1 Magnitude responses of CIC filter with N = 5 and R = 1024 and 
selective FIR compensator with 51 coefficients, assuming ωp = π/4/R. 
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3.2.2 Low-order compensators 

If the requirement for selectivity is excluded, the design of compensators deals with 

the passband only. In the minimax design, the error function is defined as the maximum 

passband deviation of the compensated response. It is thus given by 

0
( ) max ( ) ( , ) 1

p
CH H

 
  

 
= −c c  (3.5) 

where ωp is the passband edge frequency at the low rate, taking a value from the interval 

0  ωp  π. The error in (3.5) can be written as 

0

1( ) max ( ) ( , )
( )p

C
C

H H
H 

  
 

 
= − 

 
c c  (3.6) 

It is clear that the function in (3.6) represents a weighted maximum deviation, where the ideal 

response in (3.2) is considered as the desired response and the CIC low-rate response 

corresponds to the weighting function. By using the error in (3.6), the optimum minimax 

compensators are obtained by solving the problem 

ˆ arg min ( )=
c

c c  (3.7) 

It is clear that the problem in (3.6) and (3.7) corresponds to the weighted minimax design of 

FIR filters. Therefore, the optimum compensator coefficients can be found by the Parks-

McClellan algorithm [30]. Consequently, the optimum coefficients take real values. 

The minimax design is illustrated with an example considering the CIC filter with 

N = 5 and R = 32, assuming the passband edge frequency is ωp = π/3. Figure 3.2 shows the 

magnitude responses of the ideal compensator and FIR compensators having five and six 

coefficients. It is clear that the FIR compensators with a low number of coefficients efficiently 

approximate the ideal response within the passband. However, compensator with five 

coefficients approximates the ideal response in a wider band. Such behavior is expected since 

even-symmetric FIR filter with an even number of coefficients has a transfer function zero at 

z = −1. Consequently, its amplitude response has a steep slope in the vicinity of the frequency 

|ω| = π. Therefore, compensators with an odd number of coefficients are preferred [32]. 
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Figure 3.2 Magnitude responses of ideal compensator and FIR compensators with 
five and six coefficients for CIC filter with N = 5 and R = 32, assuming 
ωp = π/3. 

In addition to the minimax design, Kim et al. [27] proposed a weighted-least-squares 

(WLS) design of the compensators with three coefficients. Compared to the minimax design, 

the computational time of WLS in significantly lower. However, for the same number of 

coefficients, the WLS design yields a higher deviation of the compensated response than does 

the corresponding minimax design. 

3.2.3 Multiplierless compensators 

The direct-form structure of a linear-phase CIC compensator with an odd number of 

coefficients is shown in Figure 3.3. In general, one multiplier is needed for the multiplication 

of an input sample by each compensator coefficient. This multiplication is realized as a 

constant multiplier. However, the efficient realization of the constant multiplier can be 

achieved by using only shifts, adders, and subtractors. Such a realization is known as 

multiplierless. For example, in MATLAB, the DSP System Toolbox supports the design of 

multiplierless compensators [33]. However, the multiplierless structures can be further 

optimized with respect to the complexity. The common measure of the multiplierless filter's 

complexity is the number of adders or, shortly, adder cost. Since the implementations of 

adders and subtractors have similar hardware complexity, in the cost measure, subtractors are 

usually counted as adders. 



3. MULTIPLIERLESS COMPENSATORS FOR CIC FILTERS 

 

  

16 

 

 

Figure 3.3 Structure of symmetric CIC compensator with odd number of 
coefficients. 

 

In a multiplierless realization, the constant multipliers are expressed using the signed-

powers-of-two (SPT) representation. The SPT representation of constant multiplier c is given 

by 

1

0
2

W
i

i
i

c b
−

−

=

=   (3.8) 

where W is the wordlength and bi ϵ {−1,0,1}. Each bi ≠ 0 represents one SPT term. This 

representation is also called singed digit (SD) representation [34]. In the realization of the 

constant multipliers, the adder cost is usually calculated as the total number of terms 

decreased by one. The SPT representation with the minimum number of non-zero terms is 

called minimum-signed-digit (MSD) representation. In multiplierless design, a common MSD 

representation is canonical-signed-digit (CSD) where two non-zero terms cannot be adjacent. 

This representation is obtained by adding the constraint bibi+1 = 0 to (3.8). For example, the 

CSD representation of c = 2805 is c = 212 − 210 − 28 − 24 + 22 + 20. 

Dempster et al. [35] proposed an optimum MSD representation of the constant 

multipliers obtained by the network of shifts and adders represented with the directed graphs 

described with a set of edges (lines between connections) and vertices (connections). These 

graphs are called directed acyclic graphs (DAGs). In [36], Gustafson et al. presented all 

possible unique DAGs with adder cost up to five. These graphs are shown in Figure 3.4. Note 

that the graphs denote the signed-power-of-two multiplication. Graph's edges represent shifts, 

whereas the graph's vertexes represent adders. In addition, the adder cost in a single vertex is 

equal to the number of its inputs reduced by one. For example, a graph with adder cost equal 

to zero represents a shift, that is, multiplication by c = ±2k. The graph with the unity cost 

represents the addition of two differently shifted input values, that is, multiplication by 

c = ±2m ± 2n. More complex graphs are formed by additive graphs or by multiplicative graphs. 

From Figure 3.4, it is clear that some graphs are formed as leapfrog. For illustration, c = 2805 
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is represented with the DAG having adder cost equal to three (see the third graph within the 

Cost 3 part in Figure 3.4). By using the exhaustive search over the graphs, 

c = (23 + 21 + 20)(28 − 20) is found. It is clear that this representation results in the structure 

needing two adders less than the structure incorporating the CSD representation of c. 

 

 

Figure 3.4 Unique directed acyclic graphs having adder cost up to five [36]. 
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3.3 Common methods for design of multiplierless compensators 

During the last decade, various methods for the design of multiplierless CIC 

compensators having simple structures and/or exhibiting high compensation capabilities have 

been developed. Many of these methods separately consider narrowband and wideband 

compensation. The narrowband methods usually deal with ωp ≤ π/4, whereas the wideband 

methods assume ωp > π/4. Furthermore, the CIC compensators can also be applied to improve 

modified CIC filters, such as multi-stage [10], [11], generalized [18], [37], and cosine-based 

[12]−[14] CIC filters as wells as selective CIC-based filters [23]. 

It is well known that compensators with two [38] and three [27]−[29], [32], [39]−[42] 

coefficients significantly improve narrow passbands. Moreover, in such compensation the 

coefficients need a low number of SPT terms, thus resulting in simple compensator structures. 

On the other hand, to efficiently improve wideband responses, more complex structures are 

required. Such compensators are usually realized as single-stage compensators having more 

than three coefficients [32], [42], [43] or as multi-stage compensators [44]−[46]. 

In the following sections, common methods for the design of narrowband and 

wideband multiplierless compensators are described in detail. 

3.3.1 Sine-based compensators 

3.3.1.1 Narrowband compensators 

In [39], Doleček and Mitra proposed the design of compensators based on the 

estimation of compensator magnitude response with the sine function. The estimation is given 

by 

2( ) 1 2 sin ( / 2)j bH e  −= +  (3.9) 

where b is the parameter taking an integer value. By substituting sin2(ω/2) = [1 − cos(ω)]/2 

into (3.9), the corresponding transfer function takes the form 

1 2( ) (1 )H z A Bz z− −= + +  (3.10) 

where A = −2−(b + 2) and B = −(2b + 2 + 2). The optimum compensators are obtained by the 

exhaustive search of b over the integer space. For the CIC filters with 2 ≤ N ≤ 6 and R = 16, 
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assuming ωp = π/8 (narrowband) and ωp = 3π/5 (wideband), the optimum values of b together 

with the adder cost are tabulated in Table 3.1. 
 

Table 3.1 Values of parameter b together with adder cost NA for CIC filters with 
2 ≤ N ≤ 6 and R = 16 [39]. 

 

 ωp = π/8 ωp = 3π/5 
N b NA b NA 
2 2 3 1 3 
3 2 3 0 3 
4 1 3 0 3 
5 0 3 −1 2 
6 0 3 −1 2 

 

Figure 3.5 shows the maximum passband deviations of the original and compensated 

CIC filters of various orders for ωp = π/8. It is clear that the compensated filters exhibit the 

deviations less than 0.1 dB by employing three adders. 

 

Figure 3.5 Maximum passband deviations of original and compensated CIC filters  
with 2 ≤ N ≤ 6 and R = 16, assuming ωp = π/8 [39]. 

3.3.1.2 Wideband compensators 

In [41], Doleček and Vazquez proposed a generalization of the previously described 

compensators, which includes wideband compensation. In the paper referred to, the 
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magnitude response of the compensator is obtained by replacing 2−b with B in (3.9), where B 

takes real values. The response is hence given by 

2( ) 1 sin ( / 2)jH e B = +  (3.11) 

The corresponding transfer function has the form 

2 1 2 2 1( ) 2 ( 1 2 ) 2H z z z B z− − − − = − + − +
 

 (3.12) 

To obtain the compensators providing given maximum passband deviation of the 

compensated response, δp, the authors assume the passband having ωp = π/2. Such a design is 

described with the optimization problem  

   

   

/20

2

min

10 / (4 ) sin / (4 )
subject to: ; 1,...,

sin / (4 ) sin / (4 )

p

k
k

N N

k N

B b

k K k K
b k K

k K k K


 

 

=

−
= =

 (3.13) 

where K is the number of uniformly spaced frequency points within the passband. The 

problem in (3.13) is simple. Therefore, the authors suggested the exhaustive search for its 

solving. Furthermore, since the optimum values of B are not SPT representable, they 

recommended the rounding of B to r = 2−2. For the CIC filters with 1 ≤ N ≤ 5 and R = 16, the 

SPT values of B and the corresponding adder cost for δp = 0.4 dB are tabulated in Table 3.2. 
 

Table 3.2 Values of parameter B together with adder cost NA for the CIC filters 
with 1 ≤ N ≤ 5 and R = 16, assuming δp = 0.4 dB and ωp = π/2 [41]. 

 

N B NA 
1 2−2 3 
2 2−1 3 
3 2−1 + 2−2 4 
4 1 3 
5 1 + 2−2 4 

 

Figure 3.6 shows the maximum passband deviations of the original and compensated 

CIC filters of various orders. It is clear that the deviation increases up to 0.4 dB with an 

increase in the CIC-filter order. Moreover, a significant reduction of the droop is achieved for 

N = 4 by the compensator requiring three adders only. 
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Figure 3.6 Maximum passband deviations of original and compensated CIC filters 
with 1 ≤ N ≤ 5 and R = 16, assuming ωp = π/2 [41]. 

3.3.2 Maximally flat compensators 

3.3.2.1 Compensator with arbitrary number of coefficients 

In [32], Molnar and Vučić proposed closed-form design of compensators based on a 

maximally flat approximation. To obtain the compensator coefficients, they used the error 

function 

ideal( ) ( ) ( )E H H  = −  (3.14) 

To satisfy the maximally flat error criterion at ω = 0, first n derivates of the error function at 

ω = 0 are set to 0, resulting in 

( ) ( )
ideal0 0

( ) ( )n nH H
 

 
= →

=  (3.15) 

The responses H(ω) and Hideal(ω) are even functions of ω. Therefore, their odd-derivatives at 

ω = 0 are 0. The even derivates of Hideal(ω) when ω → 0 are given by 

/2 2 2( )
ideal 2 20 1

1( ) (2 1) 1
2 2

q
n n qn

n q
q

N B
H q

n q R


− +

− +→
=

 
 

 = − − 
− +  

 

  (3.16) 
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where Bn−2q+2 are even-indexed Bernoulli numbers. In this section, only compensators with 

odd number of coefficients are considered. Therefore, the even derivatives of H(ω) at ω = 0 

are given by 

( 1)/2
( ) /2

0 1
( ) 2 ( 1)

L
n n n

k
k

H k c



−

→
=

= −  (3.17) 

Using (3.15)−(3.17), the system of linear equations can be formed. A linear system of 

equations has unique solution if the number of variables and the number of equations is equal. 

Therefore, the even-order derivates of orders from n = 2 to n = L − 1 are considered. The 

system is obtained in the form 

=Ac b  (3.18) 

where c = [c1, ..., c(L−1)/2]T. The matrix A and column vector b are given by 

 

2
, ,

(2 )
ideal 0

, 2( 1)

1,2,..., ( 1) / 2, 1,2,..., ( 1) / 2

, ( ) , 1,2,..., ( 1) / 2

u u
u v u v

u
u u

A A v

u L v L

b b H u L



→

 = = − 

= − = −

= = = −

A

b

 (3.19) 

The solution of the system in (3.18) is found as 

1−=c A b  (3.20) 

Coefficient c0 is still unknown. It is determined by setting E(ω) = 0 as ω → 0, it follows 

( 1)/2

0
1

1 2
L

k
k

c c
−

=

= −   (3.21) 

The features of the maximally flat compensators are illustrated by the compensation of 

the CIC filter with N = 7 and R = 16. Figure 3.7 shows the compensated responses for 

L = 1, 3, 5, 7, 9, and 17 where L = 1 corresponds to the original response. The CIC filter 

introduces the droop of 4 dB. It is clear that droop is improved over the wide band if L 

increases. For example, for the passband edge frequency ωp = 2π/5, the droop of 0.1 dB is 

achieved for L ≥ 9. Figure 3.8 shows the bandwidth of the compensated CIC filters where the 

maximum passband deviation is 0.1 dB. The curves are plotted for the CIC filters with 

1 ≤ N ≤ 7 and R = 16. It is clear that the bandwidth significantly increases with an increase in 



3. MULTIPLIERLESS COMPENSATORS FOR CIC FILTERS 

 

  

23 

 

L. However, for compensators with higher number of coefficients the reduction is 

insignificant. 

 

Figure 3.7 Magnitude responses of original and compensated CIC filter with 
N = 7 and R = 16 using compensators with up to 17 coefficients [32].  

 

 

Figure 3.8 Normalized bandwidths of compensated CIC filters of various orders 
within which maximum passband deviation is 0.1 dB [32]. 
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3.3.2.2 Multiplierless realization 

In general, the coefficients of maximally flat compensators take real values. However, 

in particular cases they can be expressed as SPT, thus providing multiplierless structures. 

These structures have been proposed by Vazquez and Doleček in [42]. 

To obtain the coefficients, the authors defined error function 

( ) ( ) ( ) 1CICE H R H  = −   (3.22) 

where H(Rω) is the amplitude response of the compensator relative to the high sampling rate. 

To satisfy maximal flat criterion at ω = 0, first n derivates of the error function in (3.22) at 

ω = 0 are set to 0. It results in 

(0) (0) 1 0E H= − =  (3.23) 

( ) ( ) ( ) ( )
0 0 1 0

( ) ( ) ( ) ( ) 0
n

n n l n l
CIC CIC

l

n
E H H R H

l 


   −

= =
= =

   = +  =    
  (3.24) 

The responses H(Rω) is even function of ω. Therefore, its odd-order derivatives at ω = 0 are 

set to 0. The even-order derivates of H(Rω) when ω = 0 are given by 

( 1)/2
( ) /2

0 1
( ) 2 ( 1)

L
l l l l

k
k

H R R c k



−

=
=

=  −    (3.25) 

Substituting (3.25) into (3.24) and setting n = 2q, (3.24) can be rewritten as 

( )
( 1)/2

2 2 (2 2 ) (2 )
01 1 0

2
2 1 ( ) ( )

2

q L
l l l q l q

k CIC CIC
l k

q
R c k H H

l 


 
−

−

=
= = =

   −   = −    
   (3.26) 

The optimum compensator's coefficients are obtained by solving the system of linear 

equations in (3.23) and (3.26). These coefficients are identical to the coefficients obtained by 

design in [32]. However, in addition to the design procedure, Vazquez and Doleček proposed 

the multiplierless realization of maximally flat compensators having three and five 

coefficients. 

For the compensators with L = 3, the equations in (3.23) and (3.26) can be written as 

0 12 1c c+ =  (3.27) 
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(2)
1 2 0

1
2

CICc H
R =

=  (3.28) 

where 

2
(2)

0

( 1)
12CIC

N RH
=

−
= −  (3.29) 

Solving the system in (3.27)−(3.29), the coefficients are obtained as 

2
5

1 0 12
12 , 1 2
1 2

Rc N c c
−

−

−

−
= − = −

−
 (3.30) 

By defining A = (1 − R−2)/(1 − 2−2), the coefficients take the form 

5 4
1 02 , 1 2c NA c NA− −= − = +  (3.31) 

Figure 3.9 shows the realization of maximally flat compensators with three 

coefficients. To ensure multiplierless realization, constant multiplier A needs to be defined in 

SPT space. This is achieved for the decimation factors equal to a power of two. Moreover, A 

is represented with the directed acyclic graph described in Section 3.2.3. 

 

Figure 3.9 Multiplierless realization of maximally flat compensator with three 
coefficients [42]. 

 

For the compensators with L = 5, the coefficients have the form 

8 3 2
2 2 (2 1 2 )c NB NB C− − −= + −  (3.32) 

6 3 2
1 2 (2 3 2 )c NB NB C− − −= − + −  (3.33) 
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0 1 21 2( )c c c= − +  (3.34) 

where B and C are given by 

2

2
1
1 2

RB
−

−

−
=

−
 (3.35) 

2

4
1 (2 )

1 2
RC

−

−

−
=

−
 (3.36) 

Figure 3.10 shows the realization of maximally flat compensators with five 

coefficients. Here, a multiplierless realization is also achieved for decimation factors equal to 

powers of two. Constant multipliers B and C are also represented with the directed acyclic 

graphs. 

 

 

Figure 3.10 Multiplierless realization of maximally flat compensator with five 
coefficients [42]. 
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3.3.3 Minimax compensators with five coefficients 

Recently, Romero and Jimenez [43] proposed the design of efficient wideband 

compensators based on the minimax error criterion. They deal with the error function 

0 /2
( ) max 1 ( , ) ( )CH H

 
  

 
= −c c  (3.37) 

where c = [c0, c1, c2]T. To obtain multiplierless compensator, each coefficient in c is 

represented in CSD space. The optimum coefficients are obtained by solving the problem 

 ˆ arg min ( )

subject to : (0, ) 1
CSD

H

=

=



c
c c

c
c

 (3.38) 

The problem in (3.38) is solved using the particle swarm optimization algorithm. An 

additional reduction of compensator’s complexity is achieved by searching identical 

expressions, called sub-expressions, among the filter's coefficients. The obtained sub-

expressions are realized only ones and then shared between the coefficients. 

For the CIC filters with 1 ≤ N ≤ 6 and R = 16, the optimum coefficients and the 

corresponding sub-expressions together with the adder cost are given in Table 3.3. In 

addition, the authors proposed the multiplierless structure of the compensator. Figure 3.11 

shows the compensator structure for the CIC filters with N = 4. 
 

Table 3.3 Compensator coefficients, sub-expressions, and adder cost NA for CIC 
filters with 1 ≤ N ≤ 6 and R = 16, assuming ωp = π/2 [43]. 

 

Sub-expressions: x1 = 22 − 1, x2 = 22 + 1, x3 = 23 − 1, x4 = 23 + 1 
N c2 c1 c0 NA 
1 2 − (2 x4) 25 x4 5 
2 x2 − (23 x2) 26 x2 + 2 x1 7 
3 x4 − (26 + 1) 29 − 24 x4 7 
4 2 x3 − (25 x1 − 2) 27 x1 + 25 8 
5 24 + x2 − (27 + 1) 29 − 23 x2 8 
6 25 − x1 − (27 + 23 x2) 29 + 25 − 2 x2 10 
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Figure 3.11 Multiplierless realization of minimax compensator for CIC filter with 
N = 4 [43]. 

 

Figure 3.12 shows the maximum passband deviations of the compensated CIC filters 

of various orders. The compensators improve the wide passband efficiently providing the 

deviations up to 0.07 dB. However, such a high passband improvement is paid with the adder 

cost of up to ten adders. 

 

Figure 3.12 Maximum passband deviations of compensated CIC filters with 
1 ≤ N ≤ 6 and R = 16, assuming ωp = π/2 [43]. 

3.3.4 Minimum phase compensators 

In general, minimum-phase FIR filters can have identical amplitude responses as 

linear-phase FIR filters by using less complex structures. Such filters are appropriate for low-

delay applications. In [38], Romero et al. proposed the design of simple minimum-phase 

compensators having the magnitude response 
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2( ) 1 sin ( / 2)jH e A = +  (3.39) 

The multiplierless realization is ensured by setting A = 2d(1 + 2d − 2), where d takes an integer 

value. The corresponding transfer function has the form 

2 2 1( ) 1 2 2d dH z z− − −= + −  (3.40) 

The function in (3.40) has a root in zroot = 2d − 2/(1 + 2d − 2). Therefore, the minimum phase is 

achieved for any d. 

Figure 3.13 shows the realization of the described compensators. It is clear from the 

figure that these compensators employ only two adders in total. 

For the CIC filters with 2 ≤ N ≤ 6 and R = 16, and assuming ωp = π/8 and ωp = 3π/5, 

the optimum values of d together with the corresponding adder cost are given in Table 3.4. In 

addition, Figure 3.14 shows the passband deviations obtained by the narrowband 

compensation. It is clear that the deviations up to 0.15 dB are achieved by using two adders 

only. 

 

Figure 3.13 Multiplierless realization of minimum-phase compensator [38]. 

 

Table 3.4  Values of parameter d together with adder cost NA for CIC filters with 
2 ≤ N ≤ 6 and R = 16 [38]. 

 

 ωp = π/8 ωp = 3π/5 
N d NA d NA 
2 −1 2 0 2 
3 −1 2 0 2 
4 0 2 1 2 
5 0 2 1 2 
6 1 2 1 or 2 2 
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Figure 3.14 Maximum passband deviations of original and compensated CIC 
filters with 2 ≤ N ≤ 6 and R = 16, assuming ωp = π/8 [38]. 

3.3.5 Multi-stage compensators 

In many applications, single-stage compensators are sufficient. However, the wideband 

applications requiring significant droop reduction prefer multi-stage compensators. These 

compensators are realized as the cascades of several single-stage compensators. In the 

following sections, two-stage compensators [44] and compensators with arbitrary number of 

stages [45] are presented. 

3.3.5.1 Two-stage compensators 

In [44], Doleček et al. proposed a two-stage compensator with high compensation 

capability. They define the overall magnitude response of the compensator as 

1 2

4
1 1

2
2 2
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( ) 1 sin ( / 2)

( ) 1 sin ( / 2)

j j j

j

j

H e H e H e

H e B
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







=

= +

= +

 (3.41) 

where B1 and B2 are the parameters of the sine-based compensators, described in 

Section 3.3.1. From (3.41), the compensator transfer function is obtained as 
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To obtain B1 and B2, the authors assumed that response H(ejω) is approximately equal 

to the unity in two arbitrary frequency points, ω1 and ω2. For high decimation factors, this 

assumption results in approximations of B1 and B2 as in 

2

2
2

2 2
1 4

2

1

1
2 2

1

2
sin ( 2)

1
1 sin ( 2)
sin ( 2)

21
sin( 2)

sin ( 2)

N

N

BB

B















 
 
 − +
+



 
− +  

 

 (3.43) 

It is clear from (3.43) that the values of B1 and B2 are not SPT representable. Therefore, B1 is 

rounded to the closest power of two. Afterward, the new value of B2 is obtained using the 

rounded value of B1 and then applying the design procedure described in Section 3.3.1.2. 

Such design is described as in 
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 (3.44) 

where δp is maximum passband deviation of the compensated response and K is a number of 

uniformly spaced frequency points within the passband. The problem in (3.44) is simple. 

Therefore, for its solving, the authors suggested exhaustive search. Furthermore, since the 

optimum values of B2 are not SPT representable, they recommended the rounding of B2 to 

r = 2−6. 

The features of the method are illustrated with the design of wideband compensators, 

assuming ω1 = ωp/4, ω2 = ωp = π/2, and δp = 0.1 dB for each sine-based compensator. The 
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design is performed for the CIC filters with 1 ≤ N ≤ 6 and R = 16. The obtained SPT values of 

B1 and B2 together with the adder cost are given in Table 3.5. 
 

Table 3.5 Values of B1 and B2 together with adder cost NA  for CIC filters with 
1 ≤ N ≤ 6 and R = 16, assuming ωp = π/2 and δp = 0.1 [44]. 

 

N B1 B2 NA 
1 0 2−2 − 2−5 4 
2 2−2 2−2 + 2−4 10 
3 2−1  2−1 − 2−4 10 
4 2−1  2−1 + 2−3 + 2−4 11 
5 1 1 − 2−2 − 2−5 11 
6 1 1 − 2−6 10 

 

In addition, Figure 3.15 shows the maximum passband deviations of the compensated 

CIC filters of various orders. The deviation less than 0.1 dB is achieved by the structure 

employing up to 11 adders. 

 

Figure 3.15 Maximum passband deviations of original and compensated CIC 
filters with 1 ≤ N ≤ 6 and R = 16, assuming ωp = π/2 [44]. 

3.3.5.2 Compensator with arbitrary number of stages 

In [45], Romero proposed the design of wideband multi-stage compensators with an 

arbitrary number of stages. These compensators are obtained by cascading the compensators 
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with the same transfer function. In the paper referred to, the author uses the following 

function 

3 3 1( ) 1 2 2H z z− − −= + −  (3.45) 

The optimum number of cascades, K, is obtained by approximating the ideal compensator 

response in a minimax sense within the passband ωp = π/2. Such a design problem is 

described by 

ideal
0 /2

ˆ arg min ( ) ( )
KjK H H e 

 


 

= −  (3.46) 

The optimum values of K for various orders of the CIC filters with R = 16 are given by 

; 2
1 ; 3 6

2 ; 7

N N
K N N

N N




= −  
 − 

 (3.47) 

Figure 3.16 shows the maximum passband deviations of the original and compensated 

CIC filters of various orders. The deviations less than 0.6 dB are obtained by employing the 

compensators with up to 10 adders. 

 

Figure 3.16 Maximum passband deviations of original and compensated CIC 
filters with 2 ≤ N ≤ 6 and R = 16, assuming ωp = π/2 [45]. 
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3.4 CIC compensators with minimum passband deviation 

Common approach in the design of compensators is based on the minimization of 

maximum absolute passband deviation. However, in the design of compensators with SPT 

coefficients, the minimization of the difference between maximum and minimum passband 

response opens a possibility for further passband improvement. Recently, two classes of such 

compensators have been proposed. They cover the transfer functions with unity [48] and non-

unity gain [49]. In this section, these functions and the corresponding multiplierless structures 

are described in detail. 

3.4.1 Compensators with unity gain 

3.4.1.1 Objective function 

To preserve the gain of a CIC filter, the compensation is performed by using the 

transfer functions with unity gain. In [48], unity gain is ensured by setting H(0) = 1. 

Consequently, central coefficient c0 takes the value 

( 1)/2

0
1

1 2
L

k
k

c c
−

=

= −   (3.48) 

By substituting (3.48) into (3.3), the amplitude response of the compensator takes the form 

 
( 1) 2

1
( ) 1 2 cos( ) 1

L

k
k

H c k 
−

=

= + −  (3.49) 

To obtain compensator's coefficients, the error function is defined as the difference between 

the maximum and the minimum passband amplitude, as in 

( ) max ( ) ( , ) min ( ) ( , )C CH H H H


    


= −c c c  (3.50) 

where 1 2 ( 1)/2, , ...,
T

Lc c c − =  c  is the vector of compensator’s coefficients and 

Ω = [−p, p], 0 < p < , is the passband. In the design of the compensators, (c) is 

calculated by using the responses evaluated on uniformly spaced frequency grid 

Q = {k, k=0, ..., K−1} defined within . Hence, the objective function is obtained as 
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( ) max ( ) ( , ) min ( ) ( , )
kk

C k k C k k
QQ
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

= −c c c  (3.51) 

To find the optimum SPT coefficients, the number of SPT terms per coefficient is 

restricted to a value P. Therefore, the optimum coefficients providing minimum passband 

deviation are obtained by solving the problem 

 
1

,
0

1
,

0

ˆ arg min ( )

1subject to : 2 ; 1,2,...,
2

1; 1,2,...,
2

(0, ) 1

W
p

k k p
p

W
k p

p

Lc b k

Lb P k

H



−
−

=

−

=

=

−
= =

−
= =

=





c c

c

 (3.52) 

where bk,p  {−1, 0, 1} and W is the wordlength of compensator's coefficients.  

3.4.1.2 Optimization based on interval analysis 

To solve the problem in (3.51) and (3.52), a global optimization technique based on the 

interval analysis is used [50], [51]. The main idea of the interval analysis is bounding the 

result of an operation or function. Instead of numbers, the interval analysis deals with interval 

numbers, or shortly, intervals. A real interval number x is equivalent to the closed interval 

 ,x x=x  (3.53) 

where x  and x  denote the interval's lower and upper bound. For real intervals, elementary 

operations are defined in [50], [51]. The interval extensions can be obtained for elementary 

functions as well. 

Let the optimization problem have the form 

 arg min f( )opt =
x

x x  (3.54) 

where xopt is expected within the box 

 0 1 2( , ,..., ) | ,1T n
n i i ix x x x x x i n=     X  (3.55) 

Using the interval analysis, this problem can be solved globally.  
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The optimization based on the interval analysis uses a branch and bound algorithm. 

The basic algorithm operates with an upper bound of the global solution,  , and with two 

lists of boxes, called the input list and the final list. In the beginning,  is assumed. The input 

list contains only the initial box, X0, whereas the final list is empty. The lists are then 

processed by using the following procedure [50], [51]: 

1. Remove the box X from the input list. 

2. Calculate the interval extension of the function f as y = f(X). Note that ,y y =  y , 

where y  is the lower and y  is the upper bound of f within the box X. Depending on y, 

the following actions are performed: 

a. If y  <  , then  = y  is a new bound for y. 

b. If y  >  , then X does not contain the optimum. Discard X from further 

analysis. 

c. If y  ≤  , it is still possible that X contains the global optimum. If the size of 

X is smaller than some prescribed tolerance, insert X in the final list. 

Otherwise, split X into two boxes and insert them in the input list. 

3. Repeat steps 1 and 2 if the input list is not empty. 
 

The result of this procedure is the final list, which contains a set of small boxes in 

which the global optimum is placed. 

The above algorithm works with continuous variables. In [52], this algorithm is 

modified to deal with SPT variables. Such an algorithm has already been applied in the design 

of multiplierless FIR filters [52] and CIC compensators [53]. Here, it is used to solve the 

optimization problem in (3.51) and (3.52). 

3.4.1.3 Compensator structure 

Figures 3.17 and 3.18 show the multiplierless structures of the obtained compensators 

with three and five coefficients. It is clear that the computational complexity of the 

compensators depends on the implementations of constant multipliers. Since each SPT 

coefficient employs P − 1 adders, the total number of adders required in the structure is 

2AN P= +  (3.56) 

for the compensator with three coefficients, and 
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2( 2)AN P= +  (3.57) 

for the compensator with five coefficients. 

 

 

Figure 3.17 Multiplierless structure of unity-gain CIC compensator with three 
coefficients providing minimum passband deviation [48].  

 

 

Figure 3.18 Multiplierless structure of unity-gain CIC compensator with five 
coefficients providing minimum passband deviation [48]. 

3.4.1.4 Design examples 

The features of the proposed technique are illustrated with the design of narrowband 

and wideband compensators. The design is performed for CIC filters with decimation factor 

R = 32 and K = 1024 frequency points. The optimum SPT coefficients are found for W = 18. 

The coefficients obtained are given in Tables 3.6 and 3.7. They are tabulated for various 

passband edge frequencies and CIC filter orders. It is well known that for a given order of the 

CIC filter, the amplitude response negligibly changes the shape within the passband for 



3. MULTIPLIERLESS COMPENSATORS FOR CIC FILTERS 

 

  

38 

 

R ≥ 10 [3]. In that sense, the tabulated coefficients can be used for compensation of any CIC 

filter with R ≥ 10. 

 

Table 3.6 Optimum SPT coefficients with P terms of compensators for CIC filter 
with 2 ≤ N ≤ 4 and R ≥ 10, obtained for various passband edge 
frequencies p [48]. 

 

 P=1 P=2 P=3 P=1 P=2 P=3 P=1 P=2 P=3 
ck N=2 N=3 N=4 

L=3 and p=/5 
c1 –2–4 –2–4–2–5 –2–4–2–6–2–7 –2–3 –2–3–2–7 –2–3–2–7+2–14 –2–3 –2–3–2–4 –2–3–2–4+2–7 

L=3 and p=/4 
c1 –2–4 –2–4–2–5 –2–4–2–5+2–8 –2–3 –2–3–2–6 –2–3–2–7–2–8 –2–3 –2–3–2–4 –2–3–2–4+2–9 

L=3 and p=/3 
c1 –2–3 –2–4–2–5 –2–4–2–5–2–9 –2–3 –2–3–2–6 –2–3–2–6–2–7 –2–2 –2–3–2–4 –2–3–2–4–2–6 

L=3 and p=/2 
c1 –2–3 –2–3+2–7 –2–3+2–7+2–11 –2–3 –2–3–2–4 –2–3–2–4+2–9 –2–2 –2–2–2–7 –2–2–2–7–2–9 

L=5 and p=/3 
c1 –2–3 –2–3–2–6 –2–3–2–6+2–11 –2–2 –2–2+2–5 –2–2+2–5–2–11 –2–2 –2–2–2–5 –2–2–2–4–2–7 
c2 2–7 2–6–2–10 2–6–2–10–2–14 2–5 2–5–2–7 2–5–2–7+2–12 2–6 2–5–2–8 2–5+2–7+2–11 

L=5 and p=2/5 
c1 –2–3 –2–3–2–6 –2–3–2–6–2–8 –2–2 –2–2+2–7 –2–2+2–6–2–10 –2–2 –2–2–2–4 –2–2–2–4–2–5 
c2 2–7 2–6–2–10 2–6+2–12+2–14 2–5 2–5+2–12 2–5–2–9–2–12 2–6 2–5+2–8 2–4–2–6+2–12 

L=5 and p=/2 
c1 –2–3 –2–3–2–5 –2–3–2–5+2–11 –2–2 –2–2–2–8 –2–2–2–8–2–10 –2–2 –2–2–2–3 –2–2–2–3+2–9 
c2 2–8 2–6+2–8 2–6+2–8+2–11 2–5 2–5+2–8 2–5+2–8+2–10 –2–8 2–4–2–8 2–4–2–8–2–11 

L=5 and p=3/5 
c1 –2–3 –2–3–2–5 –2–3–2–5–2–6 –2–2 –2–2–2–5 –2–2–2–5–2–14 –2–1 –2–1+2–4 –2–1+2–4+2–6 
c2 2–7 2–6+2–8 2–5–2–8+2–12 2–5 2–4–2–6 2–4–2–6+2–10 2–3 2–4+2–6 2–4+2–6+2–9 

L=5 and p=2/3 
c1 –2–3 –2–3–2–4 –2–3–2–4+2–7 –2–2 –2–2–2–4 –2–2–2–4+2–7 –2–1 –2–1+2–4 –2–1+2–4–2–6 
c2 2–7 2–5+2–8 2–5+2–10–2–12 2–5 2–4+2–9 2–4–2–10–2–11 2–3 2–3–2–5 2–3–2–5+2–8 
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Table 3.7 Optimum SPT coefficients with P terms of compensators for CIC filter 
with 5 ≤ N ≤ 7 and R ≥ 10, obtained for various passband edge 
frequencies p [48]. 

 

 P=1 P=2 P=3 P=1 P=2 P=3 P=1 P=2 P=3 
ck N=5 N=6 N=7 

L=3 and p=/5 
c1 –2–2 –2–2+2–5 –2–2+2–5–2–7 –2–2 –2–2–2–6 –2–2–2–6–2–7 –2–2 –2–2–2–4 –2–2–2–4–2–7 

L=3 and p=/4 
c1 –2–2 –2–2+2–6 –2–2+2–6–2–10 –2–2 –2–2–2–5 –2–2–2–5–2–8 –2–2 –2–2–2–4 –2–2–2–4–2–5 

L=3 and p=/3 
c1 –2–2 –2–2–2–7 –2–2–2–7–2–10 –2–2 –2–2–2–4 –2–2–2–4–2–8 –2–1 –2–2–2–3 –2–2–2–3–2–8 

L=3 and p=/2 
c1 –2–2 –2–2–2–4 –2–2–2–4–2–5 –2–1 –2–1+2–4 –2–1+2–4–2–11 –2–1 –2–1–2–5 –2–1–2–5–2–7 

L=5 and p=/3 
c1 –2–2 –2–1+2–4 –2–1+2–4+2–6 –2–1 –2–1–2–5 –2–1–2–4+2–7 –2–1 –2–1–2–2 –2–1–2–3–2–5 
c2 –2–9 2–4–2–9 2–4–2–7–2–12 2–4 2–4+2–7 2–4+2–6+2–10 2–5 2–3–2–9 2–3–2–5–2–9 

L=5 and p=2/5 
c1 –2–2 –2–1+2–5 –2–1+2–4–2–6 –2–1 –2–1–2–4 –2–1–2–4–2–6 –2–1 –2–1–2–2 –2–1–2–2+2–6 
c2 –2–6 2–4+2–7 2–4+2–9+2–13 2–4 2–4+2–6 2–3–2–5–2–7 2–5 2–3–2–9 2–3–2–7+2–10 

L=5 and p=/2 
c1 –2–1 –2–1+2–9 –2–1–2–8+2–11 –2–1 –2–1–2–3 –2–1–2–3–2–5 –20 –2–1–2–2 –20+2–3+2–5 
c2 2–4 2–4+2–6 2–4+2–6+2–8 2–5 2–3–2–5 2–3–2–7–2–8 2–2 2–3–2–9 2–3+2–5+2–9 

L=5 and p=3/5 
c1 –2–1 –2–1–2–4 –2–1–2–4–2–7 –20 –2–1–2–2 –2–1–2–2–2–7 –20 –20+2–6 –20+2–5–2–8 
c2 2–4 2–3–2–6 2–3–2–7–2–8 2–2 2–3+2–5 2–3+2–5+2–8 2–2 2–2–2–5 2–2–2–5–2–8 

L=5 and p=2/3 
c1 –2–1 –2–1–2–3 –2–1–2–3–2–10 –20 –20+2–3 –20+2–3+2–5 –20 –20–2–4 –20–2–4–2–6 
c2 2–4 2–3+2–6 2–3+2–6+2–9 2–2 2–2–2–5 2–2–2–5–2–6 2–2 2–2+2–6 2–2+2–6+2–8 

 

 

Example 1. Narrowband design is illustrated with the compensation of the CIC filter with 

N = 5 and R = 32 by compensators with three coefficients and P ≤ 3. The passband edge 

frequency p = /5 is chosen. Figure 3.19 shows compensated passband responses. The 

uncompensated CIC filter introduces the droop of 0.72 dB. However, the compensated CIC 

filter yields maximum passband deviation of 0.08 dB for P = 1, 0.03 dB for P = 2, and 

0.02 dB for P = 3, resulting in the compensator with three, four, and five adders, respectively. 
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Figure 3.19 Magnitude responses of compensated CIC filter with N = 5 and 
R = 32, assuming p = /5, L = 3 and 1 ≤ P ≤ 3 [48]. 

 

Example 2. Simple wideband compensators incorporate only three coefficients, as for 

example the sine-based compensators described in [41] and [11]. Hence, the proposed 

wideband compensator with three coefficients and P = 3 is compared with the compensators 

referred to. Figure 3.20 shows the obtained passband responses for the CIC filter with N = 5 

and R = 32, assuming p =  / 2. The uncompensated CIC filter introduces the droop of 

4.6 dB. The compensated response has the passband deviation of 0.58 dB, whereas the 

deviations in [41] and [11] are 0.71 dB and 0.88 dB. It is clear that the proposed 

compensation is better. However, in comparison with the compensator in [41], it is paid by 

increasing the total number of adders by one. 

 

Example 3. Wideband compensation is illustrated with compensation of the CIC filter with 

N = 5 and R = 32 by compensators with five coefficients and P ≤ 3. For illustration, the 

passband edge frequency p = 3 / 5 is chosen. Figure 3.21 shows the obtained passband 

responses. The CIC filter introduces the droop of 6.6 dB. However, the compensated CIC 

filter results in maximum deviation of 0.68 dB for P = 1, 0.28 dB for P = 2, and 0.25 dB for 

P = 3, which are obtained by using six, eight, and ten adders, respectively. 
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Figure 3.20 Magnitude responses of compensated CIC filter with N = 5 and 
R = 32, assuming p =  / 2 and L = 3. For compensation, proposed 
compensator with P = 3 (red) and compensators in [41] (green) and 
[11] (blue) are used. All compensator have NA adders [48]. 

 

 

Figure 3.21 Magnitude responses of compensated CIC with N = 5 and R = 32, 
assuming p = 3/5, N = 3 and 1 ≤ P ≤ 3 [48]. 
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Example 4. Recently, a multiplierless CIC compensation using the cascade of two linear-

phase compensators has been proposed [44]. In this cascade, the first compensator has three 

coefficients, whereas the second compensator has five coefficients. Here, the proposed single-

stage compensator having five coefficients and P = 2 is compared to the two-stage 

multiplierless compensator from [44]. The compensation of the same CIC filter is considered. 

Figure 3.22 shows the compensated responses obtained for p = /2. Both responses ensure 

the deviation close to 0.1 dB. However, the proposed compensator employs less number of 

adders. 

 

Example 5. The proposed compensators can be applied to improve the passband of CIC-

based decimation filters proposed in [22]. These filters provide very high stopband 

attenuations. However, they introduce a rather high passband droop. In the paper referred to, 

CIC compensators are suggested to reduce the droop. Here, the compensator with five 

coefficients and P = 2 are used to improve the filter obtained by N = 10 and R = 10 [22]. The 

passband with p = /2 is chosen. The optimum compensator coefficients are obtained as 

c1 = −1 −2−1 and c2 = 2−2 + 2−4, resulting in structure with eight adders. Figure 3.23 shows the 

magnitude response relative to the high sampling rate for compensated CIC-based filter 

together with the response of the original filter. Figure 3.24 shows the corresponding 

responses relative to the low sampling rate. The CIC-based filter ensures minimum folding-

band attenuation of 128 dB and introduces the droop of 9.4 dB. However, the proposed 

compensator significantly improves the passband, resulting in the deviation of 0.6 dB. 
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Figure 3.22 Magnitude responses of compensated CIC filter with N = 5 and 
R = 32, assuming p = /2 and L = 5. For compensation, proposed 
compensator with P = 2 (red) and compensator in [44] (blue) are 
used. Both compensators ensure maximum deviation close to 0.1 dB 
and have NA adders [48]. 

 

 

Figure 3.23 High-rate magnitude responses of original [22] and compensated 
CIC-based filter with R = 10, assuming p = /2, L = 10 and P = 2 
[48]. 
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Figure 3.24 Low-rate magnitude responses of the original [22] and compensated 
CIC-based filter with R = 10, assuming p = /2, L = 10 and P = 2 
[48]. 

3.4.2 Compensators with non-unity gain 

3.4.2.1 Objective function 

All previously described compensators are designed to have unity gain. This property 

is usually achieved by dealing with predefined central compensator's coefficient. However, 

setting this coefficient free opens the possibility for further droop reduction. Consequently, 

such an approach introduces a floating gain into the design process. 

In [49], c0 is used as a free variable. To ensure the error function in (3.50) is 

independent of the compensator's gain at  = 0, the compensator response H(, c) is 

normalized to H(0, c). The objective function thus takes the form 

( ) ( , ) ( ) ( , )( ) max min
(0, ) (0, )

C CH H H H
H H

   



= −

c cc
c c

 (3.58) 

where 0 1 ( 1)/2, , ...,
T

Lc c c − =  c  and Ω = [−p, p] is the passband. It is clear that the 

normalization eliminates the coefficients which satisfy H(0, c) = 0. The gain H(0, c)  is easily 

obtained as 

( 1)/2

0
1

(0, ) 2
L

k
k

H c c
−

=

= + c  (3.59) 

In the proposed design, (c) is calculated using the responses evaluated on uniformly spaced 

frequency grid Q = {k, k=0, ..., K−1} defined within . Hence, the objective function is 

obtained as 

( ) ( , ) ( ) ( , )( ) max min
(0, ) (0, )kk

C k k C k k
QQ

H H H H
H H

   



= −

c cc
c c

 (3.60) 

To obtain a simple multiplierless compensator, each coefficient is represented as a 

signed power of two. Therefore, the optimum compensators’s coefficients that provide 

minimum passband deviation are obtained by solving the problem 
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 ˆ arg min ( )

subject to: 2 ; 0,1, , ( 1) / 2
(0, ) 0

kp
k kc b k L

H

=

= = −



c
c c

c
 (3.61) 

where bk  {−1,1} and pk is a non-negative integer. For a given wordlength W, exponent pk 

takes the value from the interval 0 ≤ pk ≤ W−1. 

From (3.60) it is clear that ε(c) = ε(−c). Apparently, two global minimizers with 

opposite signs exist. However, the minimizer that provides positive gain is preferred. It is 

achieved by adding c0 > 0 to the constraints in (3.61). This constraint simplifies the search 

because the optimization deals with only half of the overall coefficient space. 

For small L and W, the problem in (3.61) is simple and it can be solved by using the 

exhaustive search. The exhaustive search proves fast for compensators with L ≤ 7 and W ≤ 12, 

which is sufficient for many applications. For convenience, an example of MATLAB code for 

calculating the coefficients is provided. The function is called ciccomp [49]. Its input 

parameters are the order of the CIC filter N, decimation factor R, a number of coefficients L, 

wordlength W, and passband edge frequency p. The function returns the coefficients 

expressed as real numbers, which can be easily converted into the sums of SPT terms. In the 

function, the objective function is evaluated on the frequency grid with K = 64. To ensure 

H(0, c) is close to the unity, the result of the exhaustive search is scaled by an appropriate 

power-of-two factor. 

 
function c=ciccomp(N,R,L,W,wp) 

% frequency grid 

K=64; 

w=linspace(0,wp,K)'; 

 

% CIC response at low rate 

HC=ones(size(w)); 

k=(w~=0); 

HC(k)=(1/R*sin(w(k)/2)./sin(w(k)/2/R)).^N; 

 

% compensator response 

HH=cos(w(:)*(0:(L-1)/2));  

HH(:,2:end)=2*HH(:,2:end); 

 

% the space of coefficients 

ck=[-2.^((0:W-1)),0,2.^((0:W-1))]; 

C=[]; 

for p=0:(L-1)/2 

 P=repmat(ck(1:2*W+1)',1,(2*W+1)^(p))'; 

 P=P(:); 
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 C=[repmat(P,(2*W+1)^((L+1)/2)/length(P),1),C]; 

end 

 

% exhaustive search 

epsi_min=realmax; 

for q=1:length(C) 

 c=(C(q,:))'; 

 H=HH*c; 

 if H(1)~=0 && c(1)>0 

  epsi=max(HC.*H/H(1))-min(HC.*H/H(1)); 

  if epsi<epsi_min 

   epsi_min=epsi; 

   c_kappa=c'; 

  end 

 end 

end 

 

% calculation of the gain closest the unity 

h=[fliplr(c_kappa(2:end)),c_kappa]; 

gain_offset=zeros(1,2*W+1); 

for k=-W:W 

 gain_offset(k+W+1)=abs(1/sum(2^k*h)-1); 

end 

ind=find(gain_offset==min(gain_offset)); 

 

% the optimum coefficients 

c=2^((ind-W)-1)*c_kappa; 

 

3.4.2.2 Adder cost 

The compensators with non-unity gain are realized using the direct form shown in 

Figure 3.3. Since the compensator coefficients are realized using signed-power-of-two 

constant multipliers, the total number of adders required in the structure is given by 

1AN L= −  (3.62) 

3.4.2.3 Design examples 

The features of the proposed method are illustrated with the design of several 

wideband compensators. The compensators with L = 3, 5, and 7 coefficients for the CIC 

filters of various orders and decimation factors are considered. The coefficients are obtained 

for W = 12. 

 

Example 1. Narrowband design is illustrated with compensation of the CIC filter with N = 4 

and R = 32 by using the compensators with three coefficients. The passband edge frequency 

p = /4 is chosen. The optimum coefficients are obtained as c = [1, −2−3]. Figure 3.25 shows 

the compensated passband response together with the response obtained by the sine-based 

compensator proposed in [39]. The proposed response is normalized to the gain at  = 0, 
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which is equal to −2.50 dB. The CIC filter introduces the droop of 0.90 dB. The compensator 

in [39] provides the deviation of 0.28 dB by using three adders. However, the proposed 

compensator yields the deviation of 0.09 dB by employing two adders only. 

 

Example 2. Nowadays, multiplierless compensators with five coefficients are often required 

since they significantly improve wide passbands. Hence, the proposed compensator with 

L = 5 is compared with the compensators recently proposed in [43] and [48]. For illustration, 

the CIC filter with N = 6 and R = 32 is improved, assuming p = /2. The optimum 

coefficients are obtained as c = [2, −2−1, 2−5]. Figure 3.26 shows the obtained passband 

responses. The response of the proposed compensator is normalized to the gain at  = 0, 

which equals 0.53 dB. The uncompensated CIC filter has the droop of 5.47 dB. The proposed 

compensator yields the deviation of 0.66 dB by employing four adders only. The deviations 

obtained by the compensators from [43] and [48] are 0.12 dB and 0.57 dB. However, their 

somewhat lower deviations are paid by increasing the total number of adders by six and two, 

respectively. 

 

Figure 3.25 Magnitude responses of compensated CIC with N = 4 and R = 32, 
assuming p = /4 and L = 3. For compensation, proposed 
compensator (red) and compensators in [39] (blue) are used. All 
compensator have NA adders [49]. 
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Figure 3.26 Magnitude responses of compensated CIC filter with N = 6 and 
R = 32, assuming p = /2 and L = 5. For compensation, proposed 
compensator (red) and compensators in [43] (green) and [48] (blue) 
are used. All compensator have NA adders [49]. 

Example 3. A two-stage multiplierless compensator that consists of one compensator with 

three and one compensator with five coefficients has been recently proposed in [44]. From the 

transfer-function point of view, this cascade corresponds to a compensator with seven 

coefficients. Hence, the proposed single-stage compensator with L = 7 is compared with the 

two-stage compensator from [44]. The same CIC response as in the previous example is 

improved. The optimum compensator coefficients are obtained as c = [2, −2−1, 2−7, 2−5]. 

Figure 3.27 shows the compensated responses. The compensator in [44] ensures the deviation 

of 0.10 dB by employing ten adders. The proposed compensator is shown normalized to the 

gain of 0.65 dB. It provides the deviation of 0.27 dB by using six adders. 
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Figure 3.27 Magnitude responses of compensated CIC filter with N = 6 and 
R = 32, assuming p = /2. For compensation, proposed compensator 
(red) and compensators in [44] (blue) are used. All compensator have 
NA adders [49]. 

 

Example 4. The proposed compensators can also be used to improve the passband of CIC-

based decimation filters [23]. Here, the compensator with seven coefficients is used to 

improve the filter in [23], obtained by S = 1 and R = 10. The passband with p = 2/5 is 

chosen. The obtained coefficients are c = [2, −2−1, −2−4, 2−4], providing the unity gain at 

 = 0. Figure 3.28 shows the original and compensated magnitude responses relative to the 

high sampling rate. Figure 3.29 shows the corresponding responses relative to the low 

sampling rate. The original filter introduces the droop of 4.76 dB. The proposed compensation 

significantly improves the passband, resulting in the deviation of 0.24 dB and the structure of 

six adders. 
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Figure 3.28 High-rate magnitude responses of original [23] and compensated 
CIC-based filter with R = 10, assuming p = 2/5 and L = 7 [49]. 

 

 

Figure 3.29 Low-rate magnitude responses of original [23] and compensated CIC-
based filter with R = 10, assuming p = 2/5 and L = 7 [49]. 
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4. SHARPENED CASCADED-INTEGRATOR-COMB 

FILTERS 

4.1 Polynomial sharpening 

In the processing of wideband signals, the CIC filter is often incapable of meeting the 

requirement for high folding-band attenuations. To improve the CIC-filter folding-band 

response, various structures have been developed. An efficient structure arises from the 

polynomial sharpening of CIC response [54]. This structure implements a so-called sharpened 

CIC (SCIC) filter. 

The design of sharpened CIC filters is based on searching the polynomial coefficients 

ensuring required magnitude response. Several design methods have been developed, 

resulting in real, integer, and sum-of-powers-of-two (SPT) coefficients. The latter are 

preferable since they result in multiplierless structures. 

Well-established sharpening method was developed by Kaiser and Hamming [55]. It 

gives integer coefficients using the analytic expression. The incorporation of the Kaiser-

Hamming polynomial in SCIC filter was first presented in [56]. This structure is further 

improved in [57]−[60]. Recently, the Chebyshev polynomials have been used in the design of 

SCIC filters with very high folding-band attenuations [61]. Furthermore, closed-form methods 

for the design of SCIC filters using the weighted least-squares [62] and minimax [63] error 

criterion in the passband and folding-bands have been proposed. These methods provide SCIC 

filters ensuring small passband deviations and rather high folding-band attenuations. 

However, the coefficients obtained take real values, which results in the structure employing 

multipliers. In [64], the particle swarm optimization has been used to calculate SPT 

polynomial coefficients in order to achieve a given passband deviation. In [65], partially 

sharpened CIC filters have been developed, employing the polynomials in Bernstein's form 

[66], [67]. The proposed filters are multiplierless, but they only support power-of-two 

decimation factors. In [68] and [69], the sharpening has been combined with passband 

compensation. 
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4.2 Transfer function 

The sharpening polynomial of the Mth order is given by 

0
( )

M
m

m
m

f x a x
=

=   (4.1) 

The amplitude response of the SCIC filter is obtained by substituting x = HCIC(ω) into (4.1). It 

is given by 

0
( ) ( )

M
m

SCIC m CIC
m

H a H 
=

=   (4.2) 

In implementing the CIC filter, the input sampling rate is maximized by adding an 

extra delay term in each integrator stage, as in 

1
1

1 1 1( ) ( ) ( )
1

NR
N N R

CIC N N
zH z z I z C z

R z R

−
−

−

 −
= = 

 − 

 (4.3) 

where 

1

1( )
1

zI z
z

−

−
=

−
 (4.4) 

and 

1( ) 1C z z−= −  (4.5) 

The extra delay in (4.3) allows the realization of the integrators in (4.4) which deliver the data 

from the delay elements rather than from the adders [63]. 

The phase of the filter in (4.3) is θ(ω) = −ωD, where D = N(R + 1)/2. Thus, the phase 

of the CIC filter sharpened with Mth order polynomial is φ(ω) = Mθ(ω). By adding the phase 

φ(ω) to (4.2), the frequency response of the SCIC filter is obtained as 

( ) ( ) ( ) ( )

0
( ) ( )

M
jM m jm j M m

SCIC m CIC
m

H e a H e e       −

=

=   (4.6) 
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The transfer function of the SCIC filter is easily obtained from (4.6) as 

( )

0
( ) ( )

M
m M m D

SCIC m CIC
m

H z a H z z− −

=

=   (4.7) 

It is well known that the amplitude response of the original CIC filter has zeros placed 

at the central frequencies of the folding-bands. Such a placement of zeros is convenient since 

it eliminates DC component caused by the aliases. In sharpened CIC filter, these zeros are 

kept if a0 = 0. Therefore, the amplitude response takes the form 

1
( ) ( )

M
m

SCIC m CIC
m

H a H 
=

=   (4.8) 

The corresponding transfer function is given by 

( )

1
( ) ( )

M
m M m D

SCIC m CIC
m

H z a H z z− −

=

=   (4.9) 

To illustrate the sharpening technique, the amplitude response of the second-order CIC 

filter with R = 10 is improved with f (x) = 3x2 − 2x3 [55]. Figure 4.1 shows the amplitude 

responses of the sharpened filter and the original CIC filter. It is clear that this polynomial 

simultaneously improves passband and folding-bands. Figure 4.2 shows the impulse 

responses of the sharpened and the original filter. Since this sharpening improves filter’s 

selectivity, the obtained filter has the impulse response with ringing. 
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Figure 4.1 Magnitude responses of original CIC filter with N = 2 and R = 10 and 
CIC filter sharpened with f (x) = 3x2 − 2x3. 

 

 

Figure 4.2 Impulse responses of CIC filter with N = 2 and R = 10 and CIC filter 
sharpened with f (x) = 3x2 − 2x3. 
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4.3 Structure of sharpened CIC filter 

The Saramaki-Ritoniemi structure of the sharpened CIC filter is shown in Figure 4.3 

[54]. It is clear that one constant multiplier is necessary for each polynomial coefficient. In 

addition, if a high-order polynomial with real coefficients is employed, the structure becomes 

very complex. However, by using the polynomial coefficients expressed as SPT, the 

multiplierless SCIC structure is obtained. The adder cost of such a structure is given by 

( )
0

2 1
M

A A k
k

N NM M N a
=

= + − +   (4.10) 

where NA(ak) is the number of adders needed for the multiplication with ak. 

It should be noted that the structure in Figure 4.3 is suitable if the delay elements 

introduce integer delays. It is achieved if N(R+1) is an even number. The structure can be 

further simplified such that elements with delays greater than R are split into two blocks by 

applying the noble identity. Consequently, one element operates at high, whereas the other 

one operates at a low sampling rate. 

4.4 Sharpening polynomials 

Two approaches to the design of sharpened CIC filters have been considered in the 

literature. The first approach simultaneously sharpens passband and folding-band response. 

The sharpening polynomial is obtained using the maximally flat [55], [67], least-squares [62], 

or minimax [63] approximation. The second approach considers sharpening only within the 

folding-bands. Such an approach includes the design based on the Chebyshev polynomials 

[61]. For high folding-band attenuations, the second approach is preferable. 

In the following sections, common polynomials suitable for the design of 

multiplierless sharpened CIC filters are described in detail. 
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Figure 4.3 Realization of sharpened CIC filter [54]. 
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4.4.1 Maximally flat sharpening 

4.4.1.1 Kaiser-Hamming polynomial 

In [55], Kaiser and Hamming proposed sharpening polynomial based on maximally 

flat conditions. They constructed the polynomial which has a pth-order tangency at x = 1, qth-

order tangency at x = 0, and passes through the points (1, 1) and (0, 0). These conditions are 

formulated in Table 4.1.The polynomial satisfying these conditions is given by the Bernstein 

form 

( )1
,

0

( )!( ) 1
! !

p
rq

p q
r

q rf x x x
q r

+

=

+
= −  (4.11) 

where p + q = M − 1, and p and q are positive integers. The choice of p and q depends on the 

application at hand. To obtain the SCIC filters with low passband droop, p should be large. 

On the other hand, to obtain the filters with high folding-band attenuations, q should be large. 

In particular, p = 0 and q = M − 1 bring the SCIC filters obtained by the sharpening within the 

folding-bands only. 
 

Table 4.1 Maximally flat conditions to sharpening polynomial [55]. 
 

x = 1 x = 0 
f (1) = 1 f (0) = 0 

f (1)(1) = 0 f (1)(0) = 0 
    

f (p)(1) = 0 f (q)(0) = 0 
 

For p = 0 and q = M − 1, the Kaiser-Hamming polynomial takes the form 

f0,M−1(x) = xM. Such a polynomial applied to the Nth-order CIC filter results in the CIC filter of 

order NM. Therefore, the CIC filter of order MN is actually the Kaiser-Hamming SCIC filter 

obtained by the folding-band sharpening of N-th order CIC response. 

The third-order Kaiser-Hamming polynomials having p + q = 2 are shown in 

Figure 4.4. The sharpened responses obtained by applying these polynomials to the CIC 

response with N = 2 and R = 10 are shown in Figure 4.5. It is clear from the figures that 

folding-band attenuation is increased by an increase in q. As expected, the maximum 

attenuation is achieved for p = 0 and q = 2. 
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Figure 4.4 Third-order Kaiser-Hamming polynomials having p + q = 2 [55]. 

 

 

Figure 4.5 Magnitude responses of CIC filter with N=2 and R=10 sharpened with 
third-order Kaiser-Hamming polynomials having p + q = 2 [55]. 
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4.4.1.2 Generalized Kaiser-Hamming polynomial 

A generalization of the Kaiser-Hamming polynomial was proposed by Samadi in [67]. 

In the paper referred to, Samadi constructed the polynomial having a pth-order tangency to 

the line y = 1 − σ(1 − x) at x = 1 and qth-order tangency to the line y = δx at x = 0. The Samadi 

polynomial is given by 

, , , ,0 ,1 ,2
1

( ) ( )
M

m
p q m m m

m q
f x x b b b x    

= +

= + − −  (4.12) 

where 

,0 ,1 ,2m m mb b b= +  (4.13) 
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In this generalization, the Kaiser-Hamming polynomial is obtained by setting σ = 0 and δ = 0. 

The Samadi polynomials have real coefficients. However, in [65] the multiplierless 

SCIC structure is obtained by setting δ = 0, p = 1, and by rounding σ to the power of two. 

4.4.2 Chebyshev sharpening 

In [61], Coleman proposed folding-band sharpening based on Chebyshev polynomials 

of the first kind. An nth-order Chebyshev polynomial of the first kind is defined by the 

recurrence relation 

1 2

1 ; 0
( ) ; 1

2 ( ) ( ) ; 1
n

n n

n
f x x n

xf x f x n− −

=


= =
 − 

 (4.16) 

The Chebyshev polynomials of an even order contain even powers only. Therefore, 

sharpening of the first-order CIC filter with even-order polynomials can be considered as 

sharpening of the second-order CIC filter. Furthermore, to control passband edge frequency 
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ωp and, consequently, the widths of folding-bands, Coleman deals the CIC response 

normalized with γR, where γ determines ωp. The maximum value of γ is given by 

max
1
2 p

CICR H
R


 

=
− 

  
 

 
(4.17) 

Coleman incorporated the normalization into the Chebyshev polynomial in (4.16), 

resulting in sharpening polynomial 

22( ) ( )M u xf x f R u
=

=   (4.18) 

The coefficients of the polynomial in (4.18) can be expressed as SPT only for specific values 

of γ. In opposite, they take real values, thus requiring general purpose multipliers in SCIC 

structure. Furthermore, Coleman proposed an efficient realization of the SCIC filter where 

additional constant multiplier, bi, is added in cascade with each comb filter CN(z) in 

Figure 4.3. Apparently, coefficients bi can be folded back into the branch with coefficients ai. 

However, the separation of coefficients often results in a simpler realization. For illustration, 

using (4.18), the third-order polynomial has the form 

2 2 4 4 2 6 6 3  1 8( )  1   48   32f x R x R x R x  =− + − +  (4.19) 

This polynomial is further factorized by using the Horner algorithm, resulting in 

0 1 20 1 2

2 2 2 2 2 2( ) 1 2 9 8 ( 3 2 )
a a ab b b

f x R x R x R x  

 
 = − + + − +
 
 

 (4.20) 

The coefficients bi and ai are thus obtained straightforward. The multiplierless realization of bi 

is ensured by setting γ2 = η2−l, where η and l are integers. 

For illustration, the CIC filter with N = 2 and R = 10 is sharpened with previously 

described polynomial. To obtain a simple structure, η = 3 is chosen. Furthermore, parameter l 

is chosen to ensure passband edge frequencies ωp ≈ 0.3, 0.4, and 0.5. Therefore, simple 

multiplierless Chebyshev SCIC filters are designed, resulting in 
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 (4.21) 

Figure 4.6 shows the magnitude responses of the obtained sharpened filters. It is clear that 

these filters exhibit very high folding-band attenuations. In addition, each filter requires only 

17 adders. 

 

 

Figure 4.6 Magnitude responses of SCIC filter with N = 2 and R = 10, obtained by 
third-order Chebyshev polynomials having η = 3 and l =2, 3, and 4 
[61]. 

4.5 Minimax sharpened CIC filter 

4.5.1 Objective function 

Chebyshev sharpening results in very high alias rejection. However, it has 

multiplierless structures only for particular values of passband edge frequencies. To obtain 

multiplierless SCIC filters exhibiting similar folding-band behavior, an optimization-based 

design using the minimax sharpening of the folding-bands over the SPT polynomial 

coefficient space is developed [76]. To obtain these filters, the error function is defined as in 
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( ) max ( ) ( , ) ( )SCIC dw H H


   


= −a a  (4.22) 

where  1 2
T

Ma a a=a  is the vector of the polynomial coefficients, w(ω) is the 

positive weighting function, and Hd(ω) is the desired amplitude response defined within the 

band Ω. The error function in (4.22) should take into account only the folding-bands. They 

are given by 

2 2
; 1, , 1

2
p p

p

n n Rn
R R

R

   



  

− +
  = −


 = 

 −  


 (4.23) 

for an even R, and by 

2 2 1; 1, ,
2

p pn n Rn
R R

   


− + −
 =   =  (4.24) 

for an odd R, where ωp is passband edge frequency relative to the low sampling rate. In the 

folding-bands, the desired response is zero. In addition, the unity weighting function is 

assumed. By substituting Hd(ω) = 0 and w(ω) = 1 into (4.22), the error function is obtained as 

( ) max ( , )SCICH


 


=a a  (4.25) 

Note that function in (4.25) does not consider filter’s passband gain. Therefore, the SCIC 

amplitude response is normalized to constant passband gain at one frequency. Here, the unity 

gain at ω = 0 is chosen. The error function thus takes the form of relative folding-band 

attenuation, as in 

( , )( ) max
(0, )

SCIC

SCIC

H
H





=

aa
a

 (4.26) 

The expression for HSCIC(0, a) is easily obtained by substituting ω = 0 into (4.3), resulting in 

1
(0, )

M
SCIC m

m
H a

=

= a  (4.27) 

Finally, by substituting (4.27) into (4.26), the error function is obtained as 
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1

1

( )
( ) max

M
m

m CIC
m

M
m

m

a H

a




 =



=

=





a  (4.28) 

In the proposed design, (a) is calculated using the responses evaluated on uniformly 

spaced frequency grid Q = {k, k=0, ..., K−1} defined within . Hence, the objective function 

is obtained as 

1

1

( )
( ) max

k

M
m

m CIC k
m

MQ
m

m

a H

a




 =



=

=





a  (4.29) 

To obtain simple multiplierless sharpened CIC filters, each polynomial coefficient is 

expressed as sum of the SPT terms. Furthermore, the total number of SPT terms is restricted 

to a specified value, P. To obtain the optimum SPT coefficients of the SCIC filter in the 

minimax sense, the design is described by the optimization problem 

 
1

,
0

1

,
0

ˆ arg min ( )

subject to : 2 ; 1,2,...,

; 1, 2,...,

W
p

k k p
p

W

k p
p

a b k M

b P k M



−
−

=

−

=

=

= =

= =





a a

 (4.30) 

where bk,p  {−1, 0, 1} and W is the wordlength of coefficients. From (4.29) it is clear that 

ε(a) = ε(−a). Apparently, two global minimizers with opposite signs exist. However, the 

minimizer that provides a positive gain of the filter is preferred. It is achieved by adding the 

constraint HSCIC(0, a) > 0 to the objective function. It simplifies the search because the 

optimization deals with only half of the overall SPT coefficient space. To obtain the optimum 

SPT coefficients, a global optimization technique based on the interval analysis is used. The 

optimization procedure is given in Section 3.4.1.2. 
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4.5.2 Adder cost 

The minimax SCIC filter is realized using the Saramaki and Ritoniemi structure [54], 

which is shown in Figure 4.3. It is clear that filter's computational complexity depends on the 

implementations of constant multipliers. Since each SPT coefficient requires P−1 adders, the 

total number of adders in the structure is given by 

2 1AN NM MP= + −  (4.31) 

Note, for P = 1, the coefficients are realized only by using shifts. 

4.5.3 Design examples 

The design of SCIC filters is performed for the CIC filters with decimation factor 

R = 10 by using K = 900 frequency points. The optimum SPT coefficients are found for 

W = 20. The obtained coefficients are given in Table 4.2. They are tabulated for various 

passband edge frequencies and SCIC filter orders. It is well known that for a given order of 

the CIC filter, the amplitude response negligibly changes the shape within the passband and 

folding-bands for R ≥ 10. In that sense, the tabulated SPT coefficients can be used for 

sharpening of any CIC filter with R ≥ 10 [3]. 

 

Example 1. Simple SCIC filters are illustrated with the sharpening of the CIC response with 

N = 2 and R = 10, by using the polynomial with M = 3 and P = 1, and the passband edge 

frequencies given in Table 4.2. Figure 4.7 shows the magnitude responses of the SCIC filters 

obtained for ωp = 0.2π and ωp = 0.5π. The filter with ωp = 0.2π ensures the minimum folding-

band attenuation of 132 dB, whereas the filter with ωp = 0.5π exhibits the minimum 

attenuation of 81 dB and, as expected, higher passband droop. Other simple SCIC filters have 

the passband and folding-band responses placed somewhere between the described responses. 

From Table 4.2, it is clear that minimax SCIC filters exhibit rather high folding-band 

attenuations. However, they have structures in which three general-purpose multipliers are 

replaced by only one adder. In addition, they have similar responses within || ≤ 0.5/R, what 

makes them suitable for uniform passband compensation. 
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Table  4.2 SPT poynomial coefficients, passband droop (), and minimum folding-band 
attenuation (s) of various minimax sharpened CIC filters with N = 2 and 
R ≥ 10 [76]. 

 

M=3 

am 
p=0.2 p=0.25 p= /3 p=0.4 p=0.5 

P=1 P=2 P=1 P=2 P=1 P=2 P=1 P=2 P=1 P=2 
a1 2–14 2–14+2–19 2–12 2–12–2–14 2–10 2–10–2–12 2–11 2–9+2–14 2–8 2–8–2–12 
a2 –2–6 –2–6–2–10 –2–5 –2–5+2–11 –2–4 –2–4–2–9 –2–4 –2–3+2–7 –2–3 –2–3–2–8 
a3 20 20–2–5 20 20+2–3 20 20+2–2 20 21–2–1 20 20+2–7 

, dB 0.86 0.86 1.35 1.35 2.43 2.42 3.52 3.54 5.69 5.70 
S, dB 132 142 125 129 106 113 94.9 102 81.0 89.3 

M=4 

am 
p= /3 p=0.4 p=0.5 p=0.6 p=2 /3 

P=1 P=2 P=1 P=2 P=1 P=2 P=1 P=2 P=1 P=2 
a1 0 –2–16+2–19 2–15 –2–15–2–17 2–13 –2–12+2–18 –2–14 –2–11–2–14 –2–12 –2–9+2–14 
a2 2–10 2–9–2–14 –2–14 2–8+2–14 2–9 2–6+2–10 2–6 2–5–2–7 2–6 2–4+2–10 
a3 –2–4 –2–4–2–6 –2–4 –2–3+2–8 –2–3 –2–2–2–4 –2–2 –2–2–2–5 –2–2 –2–1–2–3 
a4 20 20+2–8 20 20+2–3 20 21–2–2 20 20+2–6 20 21–2–3 

, dB 3.23 3.24 4.67 4.73 7.50 7.62 11.4 11.5 14.3 14.7 
S, dB 144 150 128 139 110 120 96.4 105 87.7 97.6 

M=5 

am p=0.5 p=0.6 p=2 /3 p=0.75 p=0.8 
P=1 P=2 P=1 P=2 P=1 P=2 P=1 P=2 P=1 P=2 

a1 –2–18 2–18 –2–16 2–14 –2–14 2–13+2–18 2–12 2–11–2–13 –2–10 2–12–2–17 
a2 2–12 –2–11+2–17 2–13 –2–8 2–9 –2–7+2–12 2–11 –2–6+2–10 2–8 –2–6–2–10 
a3 2–10 2–6+2–10 2–6 2–4+2–6 2–8 2–3+2–6 –2–13 2–2–2–4 2–3 2–2–2–7 
a4 –2–3 –2–2+2–5 –2–2 –2–1–2–3 –2–2 –20–2–6 –2–2 –20+2–5 –20 –20–2–2 
a5 20 20–2–6 20 21–2–2 20 21+2–1 20 21–2–2 21 21+2–3 

, dB 9.32 9.52 14.0 14.4 17.7 18.3 22.9 24.7 28.7 29.2 
S, dB 139 150 122 132 109 123 93.6 111 91.7 102 
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Figure 4.7 Magnitude responses of minimax SCIC filters with N = 2, R = 10, 
M = 3 and P = 1, assuming ωp = 0.2π and ωp = 0.5π [76]. 

 

Example 2. In this example, the design of multiplierless SCIC filters with high alias rejection 

is described. Such a filter can be obtained by the sharpening of the CIC response with N = 2 

and R = 10, by using the polynomial with M = 4 and P = 2. The passband edge frequency 

ωp = 0.4π is chosen. The optimum multiplierless filter is compared with the filter obtained by 

Chebyshev sharpening which utilizes real coefficients [61]. Figure 4.8 shows the magnitude 

responses of both filters. Generally, filters with SPT coefficients contain real gain constants, 

which is usually not implemented in practice. Therefore, only for comparison purposes, 

responses are normalized to 0 dB at ω = 0. It is clear from the figure that the responses are 

very similar. The Chebyshev response ensures the minimum folding-band attenuation of 

141 dB, whereas the multiplierless filter exhibits somewhat smaller attenuation of 139 dB. In 

the passband, both filters introduce nearly the same droop of 4.73 dB. From the complexity 

point of view, the Chebyshev SCIC filter [61] needs five general-purpose multipliers to 

incorporate sharpening polynomial. On the other hand, the proposed filter employs only six 

adders. 
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Figure 4.8 Magnitude responses of sharpened CIC filter with N = 2 and R = 10, 
obtained by minimax SPT sharpening with M = 4 and P = 2, and by 
Chebyshev sharpening of fourth-order [61], assuming ωp = 0.4π [76]. 

4.5.4 Passband droop 

The design of SCIC filters proposed in [61] and [76] results in filters with very high 

alias rejection. However, such a rejection is paid by monotonically decreasing passband 

response with rather high droop. To illustrate this behavior, minimax SCIC filters with N = 2, 

R = 10, 1 ≤ M ≤ 4, and P = 1 are used. Figure 4.9 and Figure 4.10 show the obtained passband 

droops and the minimum folding-band attenuations, assuming ωp = π/4, ωp = π/3, and 

ωp = π/2. It is clear from Figure 4.10 that the folding-band attenuations increase with an 

increase in M. However, such behavior is paid by a high passband droop. This behavior is 

similar to the behavior of the CIC filters described in Section 2.3. Even though minimax SCIC 

filters have a better amplitude response than the CIC filters, their passband droop is still rather 

high. For example, for a given passband edge frequency ωp = π/2, the SCIC filter with N = 2, 

M = 3, and P = 1 has the minimum folding-band attenuation of 80 dB. However, it introduces 

the passband droop of 6 dB.  
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Figure 4.9 Passband droops of minimax SCIC filters with N = 2, R = 10, 
1 ≤ M ≤ 4 and P = 1, assuming ωp = π/4, π/3 and π/2. 

 

 

Figure 4.10 Minimum folding-band attenuations of minimax SCIC filters with 
N = 2, R = 10, 1 ≤ M ≤ 4 and P = 1, assuming ωp = π/4, π/3 and π/2. 
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5. COMPENSATORS FOR SHARPENED CIC FILTERS 

Two approaches to the design of SCIC filters with incorporated passband 

compensation have been considered in the literature. In the first approach, the polynomial 

sharpening is used to improve the compensated CIC response [68], [69]. In comparison to the 

SCIC filters obtained by simultaneous sharpening the passband and folding-band response, 

these filters bring a similar response by employing sharpening polynomial of lower order. 

However, this approach results in the realization which incorporates multiple compensators 

having the same structure. The second approach is compensation of the sharpened CIC 

response. Here, the CIC response is improved by connecting a linear-phase FIR filter called 

SCIC compensator to the output of the SCIC decimator. Recently, single-stage SCIC 

compensators based on maximally flat [79] and minimax [80] approximations have been 

developed. 

In the following sections, both approaches are described in detail. 

5.1 Sharpening of compensated CIC filter 

In [68], Romero et al. proposed sharpening of compensated CIC response. The 

compensated response has the form 

( ) ( ) ( )CICF H H R  =  (5.1) 

where H(ωR) is the amplitude response of the compensator relative to the high sampling rate. 

By substituting x = F(ω) into (4.1), the amplitude response of the sharpened compensated CIC 

filter is obtained. It is given by 

0
( ) ( )

M
m

SF m
m

H a F 
=

=   (5.2) 

The filter in (5.2) can be realized by adding compensator H(z) in cascade with each 

comb filter CN(z) in Figure 4.3. Multiplierless realization of such structure is ensured by 

representing the sharpening coefficients as SPT, assuming compensator is multiplierless. In 

[68], the sharpening coefficients are defined as 



5. COMPENSATORS FOR SHARPENED CIC FILTERS 

 

  

70 

 

2 ; 0,1,...,B
m ma p m M−= =  (5.3) 

where B is wordlength of coefficient's fractional part and pm is an integer value. 

To obtain the coefficients, response in (5.2) is evaluated on uniformly spaced 

frequency grid Qp = {k,p, k = 1, ..., K} defined within the passbands band Ωp=[0, p], and on 

uniformly spaced frequency grid Qs = {k,s, k = 1, ..., K} defined within the first folding-band 

Ωs = [2π/R − p/R, 2π/R + p/R]. Assuming the passband, δp, and stopband, δs, deviations are 

specified, the design is described by a constrained mixed-integer programming (MILP) 

problem, as in 

ˆ arg min

subject to :

T=



s
s f s

As b
 (5.4) 

where vectors s, b, f, and matrix A are given by 

     ,, , ,i i i j is f A b = = = = s f A b  (5.5) 

2

; 1
; 2,3,..., 2i

i

i
s

p i M


−

=
= 

= +
 (5.6) 

 

1 ; 1
0 ; 2,3,..., 2i

i
f

i M
=

= 
= +

 (5.7) 

 

2
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2,
,

2
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2
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1 ; 1 2 , 1
/ ; 2 4 , 1

2 ( ) ; 1 , 2 2

2 ( ) ; 2 , 2 2

2 ( ) ; 2 3 , 2 2

2 ( ) ; 3 4 , 2 2

s p
jB

i p

jBi j
i K p

jB
i K s

jB
i K s

i K j
K i K j

F i K j M

A F K i K j M

F K i K j M

F K i K j M
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







−−

−−
−

−−
−

−−
−

−   =


−   =



      +  


=   −     + 


      +  

  −     + 

 (5.8) 
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1 ; 1
1 ; 2

0 ; 2 3
0 ; 3 4

i

i K
K i K

b
K i K
K i K

 


−  
= 

 
  

 (5.9) 

and polynomial coefficients are determined by 

22 ; 0,1,...,B
m ia s m M−

+= =  (5.10) 

The optimization problem in (5.4)−(5.10) is generally simple. Therefore, the solution 

can be obtained straightforward. An example of MATLAB code for solving this problem can 

be found in [78]. For illustration, the design is worked out for the CIC filter with N = 2 and 

R = 10, assuming the sine-based compensator described in Section 3.3.1.1, with b = 1 is 

incorporated in the structure. The sharpening polynomials are obtained assuming M = 3 and 

ωp = π/4, π/3, and π/2. Figure 5.1 shows the magnitude responses of the obtained filters. It is 

clear that the passband is efficiently improved. However, such sharpening does not provide 

high alias rejection, especially in the wideband case. 

 

Figure 5.1 Magnitude responses of sharpened compensated CIC filter with N = 2 
and R = 10, M = 3 [68]. 
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5.2 Compensation of sharpened CIC filter 

5.2.1 Narrowband compensators for sharpened CIC filters 

The design of SCIC filters proposed in [61] and [76] results in filters with very high 

alias rejection. However, such a rejection is paid by monotonically decreasing passband 

response with rather high droop, leaving open the possibility of its improvement. In this 

section, the passband response is improved by connecting an FIR compensator in cascade 

with the SCIC filter [79]. 

5.2.1.1 Objective function 

In [79], a closed-form method for the design of SCIC compensators which is based on 

the maximally flat error criterion has been developed. To obtain such compensator, the error 

function is defined as 

( ) ( ) ( ) (0) (0)C CE H H H H  = −  (5.11) 

where HC(ω) is the amplitude response of the sharpened CIC filter relative to the low 

sampling rate. The gain of the SCIC filter at ω = 0 can be easily obtained as 

0
(0)

M
C m

m
K H a

=

= =   (5.12) 

To ensure that K is also the gain of the cascade, H(0) = 1 is assumed. Therefore, the error 

function is obtained as 

( ) ( ) ( )CE H H K  = −  (5.13) 

To satisfy the maximally-flat error criterion at ω = 0, the first n derivatives at ω = 0 of the 

error function are set to 0, that is 

( )
0

( ) 0nE



→

=  (5.14) 

By substituting (5.13) into (5.14) and applying the Leibniz rule for the n-th derivative of a 

product, it follows 
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( )( )
0 00

( ) ( ) 0
n

n kk
C

k

n
H H

k  
 −

= →
=

 
= 

 
  (5.15) 

The responses H(ω) and HC(ω) are even functions of ω. Therefore, their odd-order derivatives 

evaluated at ω = 0 are 0. The even-order derivatives at ω = 0 of H(ω) are given by 

( 1)/2
( ) /2

0 1
( ) 2( 1)

L
n n n

k
k

H k c



−

=
=

= −   (5.16) 

The even-order derivatives of HC(ω) when ω → 0 can be expressed as 

/2
( ) ( 2 1)

00 0 1
( ) (2 1) ( )

2

qM n
n n q

mC
m q

mNH a q F


 − +

→→
= =

 
= − − 

 
   (5.17) 

where 

1( ) cot cot
2 2

F
R R

 


   
= −   

   
 (5.18) 

Since n is even, it is clear from (5.17) that only odd-order derivatives of F(ω) are required to 

find the derivatives of HC(ω). The closed-form expression for odd-order derivatives of F(ω) 

when ω → 0 is given by [32] 

2 2( 2 1)
2 20

1( ) 2 1
2 2

n qn q
n q

B
F

n q R


− +− +

− +→

 
= − 

− +  
 (5.19) 

where Bn − 2q + 2 are even-indexed Bernoulli numbers. They are given in an explicit form 

1
2 2

( 1) 2(2 )! (2 )
(2 )

r
r r

rB r


−−
=  (5.20) 

where ζ(s) is the Riemann zeta function [81]. By substituting (5.19) into (5.17), derivatives of 

HC(ω) are obtained as 

/2 2 2( )
2 20 0 1

1( ) (2 1) 1
2 2

q
M n n qn

mC n q
m q

mN B
H a q

n q R


− +

− +→
= =

 
 

 = − − 
− +  

 

   (5.21) 

To design an SCIC compensator with an odd number of coefficients, the system of 

linear equations is formed by using (5.15), (5.16), and (5.21). For a given L, the even-order 
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derivatives of the orders from n = 2 to n = L − 1 are used in forming the system. Using (5.15), 

the system is obtained as 

=Qc b  (5.22) 

where matrix Q and column vectors c and b are given by 

   ,
1

(2 2 )1
000

, ,

21 1( 1) ( ) ;
2 2

1, 2, ..., ( 1) / 2 ; 1, 2, ..., ( 1) / 2

u v u u
u

u ru r
u r C

r

Q c b

u
b b H b

rK

u L v L




−
−+ −

→
=

 = = = 

 
= − = 

 

= − = −



Q c b

 (5.23) 

The solution of the system in (5.22) is found as 

1−=c Q b  (5.24) 

Note that c contains compensator's coefficients c1, c2, ..., c(L − 1)/2, whereas the coefficient c0 is 

still unknown. Its value is determined using the assumption H(0) = 1, it is given by 

( 1)/2

0
1

1 2
L

k
k

c c
−

=

= −   (5.25) 

Finally, the impulse response of the compensator is formed as 

( 1)/2 1 0 1 ( 1)/2, , , , , ,L Lc c c c c− − =  h  (5.26) 

Since the CIC filter is a special case of the SCIC filter, the proposed method can be 

considered as a generalization of the method in [32] 

To illustrate the features of the proposed compensators, the compensation is performed 

using the Chebyshev SCIC filter [61] with N = 2, R = 10, and M = 3. Figure 5.2 shows the 

passband droop of the compensated Chebyshev SCIC filter obtained by different 

compensator's complexities. The curves are plotted for SCIC filters with passband edge 

frequencies ωp = π/5, ωp = π/4, and ωp = π/3, and for compensators with L = 3, 5, 7, 9, and 11. 

The cases with L = 1 correspond to the droops of uncompensated filters. For the given band of 

interest, the Chebyshev SCIC filter introduces a rather high droop. The droop of the 

compensated filter generally decreases with an increase in the compensator's complexity. 

However, a significant decrease is accomplished for L = 3. The droop as low as 0.1 dB is 

achieved for L = 5, whereas a small improvement is encountered for L = 7. 
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Figure 5.2 Passband droops of Chebyshev SCIC filters [61] with N = 2, R = 10, 
M = 3 compensated with maximally flat compensators [79]. 

 

It is known that the coefficients of maximally flat CIC compensators can be expressed 

in canonical-signed-digit (CSD) form if the decimation factors are powers of two. 

Consequently, the implementation of maximally flat CIC compensators is also multiplierless. 

This property also exists in described maximally flat SCIC compensators if the coefficients of 

the sharpening polynomials are from integer or SPT space. Following the previous discussion, 

only the compensators with three and five coefficients are considered. By using the 

framework in [42], for the compensator with three coefficients, compensator coefficients are 

defined as 

0 0 1 1
1 1;c d c d
K K

= =  (5.27) 

where 

5
0 1 12 ; 2d K d d NA−= − = −  (5.28) 

and 
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2

2
1
1 2

RA
−

−

−
=

−
 (5.29) 

0

M
m

m
ma

=

=   (5.30) 

If R = 2I, where I is a positive integer, A takes the SPT form [42] 

1
2

0
2

I
i

i
A

−
−

=

=   (5.31) 

It is clear that K in (5.12) and α in (5.30) can also be expressed using SPT representation if the 

sharpening polynomial coefficients are integers or sums of powers of two. Consequently, the 

coefficients d0 and d1 in (5.28) are CSD representable. Based on (5.27), it follows that d0 and 

d1 are the coefficients of the multiplierless compensator. By applying the same framework for 

the compensator with five coefficients, compensator coefficients are obtained as 

0 0 1 1 2 22 2 2
1 1 1; ;c s c s c s

K K K
= = =  (5.32) 

where 

2
0 1 22 2s K s s= − −  (5.33) 

6 2 2 2 1
1 2 2 3 2 (2 )s NB NB K K NB C   − − − − = − + − +

 
 (5.34) 

8 2 2 2 1
2 2 2 2 (2 )s NB NB K K NB C   − − − − = + − +

 
 (5.35) 

and 

2

2
1
1 2

RB
−

−

−
=

−
 (5.36) 

2

4
1 (2 )

1 2
RC

−

−

−
=

−
 (5.37) 
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2

0

M
m

m
m a

=

=   (5.38) 

If R = 22J−1, assuming J is a positive integer, B and C take the SPT form [42], as in 

2 2
2

0
2

J
j

j
B

−
−

=

=   (5.39) 

1
4

0
2

J
j

j
C

−
−

=

=   (5.40) 

In addition, if sharpening polynomial coefficients are from integer or SPT space, β in (5.38) 

and, consequently, s0, s1, and s2 in (5.33)−(5.35) can be expressed using CSD representation. 

From (5.32) it follows that s0, s1, and s2 are the coefficients of the multiplierless compensator. 

The sharpening of the second-order CIC filter is common in literature. Such sharpening brings 

an additional reduction in the compensator complexity, what is illustrated with the 

compensator with five coefficients. By substituting N = 2 into (5.34) and (5.35); coefficients 

s1 and s2 take the reduced form 

5 1 2 2
1 2 2 3 2 ( )s B B K K B C   − − − = − + − +

 
 (5.41) 

7 1 2 2
2 2 2 2 ( )s B B K K B C   − − − = + − +

 
 (5.42) 

 

5.2.1.2 Compensator structure 

Figure 5.3 and Figure 5.4 show the structures of the multiplierless compensators with 

three and five coefficients that improve the sharpened CIC filter of the second order. It is clear 

that the complexity of the compensator with three coefficients depends on realizations of 

constant multipliers Aα and K, whereas the complexity of the compensator with five 

coefficients depends on realizations of B, α, Bα, K(Bβ + Cα), K, and K2. The realization of B 

is given in [42]. However, the realizations of the remaining constant multipliers can be found 

representing them with a directed acyclic graphs described in Section 3.2.3. 
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Figure 5.3 Structure of multiplierless compensator with three coefficients for 
sharpened CIC filter of second order [79]. 

 

 

Figure 5.4 Structure of multiplierless compensator with five coefficients for 
sharpened CIC filter of second-order [79]. 

 

5.2.1.3 Design examples 

Example 1. To illustrate the arithmetic complexity of the compensators, optimum realization 

of the compensators with three and five coefficients is considered. For the compensation, the 

minimax [76] and Chebyshev [61] SCIC are used, assuming N = 2, R = 32 with M = 2 and 

M = 3. For illustration, the minimax filters with one term per polynomial coefficient (case 

P = 1 in [76]) is designed. The M-th order Chebyshev sharpening of the CIC response with 

N = 2 is obtained by applying the Chebyshev polynomial of order 2M to the CIC response of 

the first order. Using the sharpening polynomial in (4.18), the simple multiplierless 

Chebyshev SCIC filters are designed, resulting in 
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2 7
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0.226 , 2
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 

 
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 

 

−

−

−

−

 =

 =

= 
= 


= 

 (5.43) 

Searching for the optimum multiplierless realization of constant multipliers is a rather 

difficult task. To find the compensators for the given minimax and Chebyshev SCIC filters, 

we use the method based on graph representation described in Section 3.2.3. The 

corresponding constant multipliers are found by using the exhaustive search over the graphs 

shown in Figure 3.4. The constant multipliers and the total number of adders used in the 

compensators are given in Table 5.1 together with the passband droops and minimum folding-

band attenuations of the compensated filters. It is clear that the compensators with three 

coefficients employ up to 10 adders and ensure the droop less than 0.1 dB. On the other hand, 

the compensators with five coefficients employ a high number of adders. However, they 

significantly improve the droop for passbands with ωp > 0.3π. 

 

Example 2. In this example, two techniques for the improvement of the CIC filter amplitude 

response are compared. The first one simultaneously sharpens CIC amplitude response in the 

folding-bands and passband. The second sharpens CIC amplitude response in folding-bands 

and improves passband using proposed SCIC compensators. For comparison, the CIC filter 

with N = 2, R = 32, and ωp = 0.226π is chosen. In both techniques, multiplierless realizations 

are considered. The first technique is represented with compensated CIC filter 

y = [1 + 2−2 − 2−2cos(R)]HCIC() sharpened with the polynomial f(y) = −3y + 195y 2− 128y3 

[68]. Second technique is illustrated with two examples: (i) Chebyshev SCIC filter obtained 

by the polynomial f(x) = 1 − 29x + 215x2 [61] and then cascaded with the maximally flat 

compensator with L = 3, and (ii) minimax SCIC filter obtained by the polynomial 

f(x) = −2−6x + x2 [76] and then compensated with the maximally flat compensator with L = 3. 

Table 5.2 shows the obtained maximum passband deviations and minimum folding-band 

attenuations for all filters, whereas Figure 5.5 shows the corresponding magnitude responses 

relative to the high sampling rate. It is clear that the sharpened compensated-CIC filter 

ensures the lowest passband droop with the most complex structure. The compensated 

Chebyshev and minimax SCIC filter ensure the droop less than 0.1 dB. However, the 

compensated minimax SCIC filter is preferable with respect to the total number of adder. 
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Table 5.1 Constant multipliers and total Number of adders (NA) used in 
multiplierless compensators together with passband droop (δP) and 
minimum folding-band attenuation (δS) of various compensated 
minimax and Chebyshev SCIC filters [79]. 

 

Compensated minimax SCIC filter with N = 2 and R = 32 

M = 2 and p = /5, p(x) = −2−7x + x2 and S = 86.0 dB 

L = 3 A = (2 + 2−1)(1 + 2−4)(1 − 2−10), 
K=1 − 2−7 

P = 0.04 dB 
NA = 7 

M = 2 and p = /4, p(x) = −2−6x + x2 and S = 82.5 dB 

L = 3 A = (2 + 2−1)(1 + 2−4)(1 − 2−9) − 2−7, 
K = 1 − 2−6 

P = 0.09 dB 
NA = 8 

M = 3 and p = /5, p(x) = 2−14x − 2−6x2 + x3 and S = 134 dB 

L = 3 A = [(22 + 2−4 + 2−6)(1 + 2−10) + 2−17](1 − 2−5), 
K = 1 − 2−6 + 2−14 

P = 0.07 dB 
NA = 10 

M=3 and p=/3, p(x)=2−10x−2−4x2+x3 and S=106 dB 

L = 5 

B = (1 + 2−2)(1 + 2−4) + 2−8,  = 2 + 1 − 2−3 + 2−10, 
B = 22 − (2 + 1)(1 − 2−3)(2−4 + 2−9 − 2−15), 

K(B + C) = [24 −(2 + 2−1)(1 − 2−8)](1 + 2−3)(1 − 2−5)3, 
K = (1 − 2−5)2, K2 = (1 − 2−5)4 

P = 0.10 dB 
NA = 33 

Compensated Chebyshev SCIC filter with N = 2 and R = 32 

M = 2 and p = 0.164, p(x) = 1 − 210x + 217x2 and S = 102 dB 

L = 3 A = (212 − 22)(24 + 1)(22 + 1), 
K = 217 − 210 + 1 

P = 0.02 dB 
NA = 8 

M = 2 and p = 0.226, p(x) = 1 − 29x + 215x2 and S = 90.2 dB 

L = 3 A = (29 − 1)(24 + 1)(23 + 2) − 28, 
K = 215 − 29 + 1 

P = 0.06 dB 
NA = 9 

M = 3 and p = 0.187, p(x) = −1 + 27(26x − 214x2 + 220x3) and S = 149 dB 

L = 3 A = (216 − 214 − 29 + 1)(210 − 1)(2 + 2−2), 
K = (220 − 214 + 26)(23 + 1)(22 − 1) − 1 

P = 0.05 dB 
NA = 13 

M = 3 and p = 0.354, p(x) = −1 + 27(24x − 210x2 + 214x3) and S = 112 dB 

L = 5 

B = (1 + 2−2)(1 + 2−4) + 2−8,  = (213 + 24)(25 − 1)(22 + 1), 
B = (29 + 1)[(29 + 1)(23 − 2−1 − 2−4) − 29], 

* B + C = [(216 + 28)(22 − 1) + 2−3](25 + 1) − 26(22 − 1), 
K = (210 − 26 + 1)(25 + 24)(23 + 1) − 1, 

K2 = (235 − 212 − 27)(22 + 1) + (224 + 1)(25 + 1) − 221 + 217 

* leapfrog 

P = 0.14 dB 
NA = 43 
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Table 5.2 Maximum passband deviation (δP), minimum folding-band attenuation 
(δS), and the total number of adders (NA) for various multiplierless CIC-
based filters incorporating sharpening and compensation with 
ωp = 0.226π [79]. 

 

CIC-based filter with N=2 and R=32 P, dB S, dB NA 

Sharpened compensated-CIC (M=3) [68] 2e−3 74.8 27 

Compensated Chebyshev SCIC (M=2, L=3) [61] 0.06 90.2 19 
Compensated minimax SCIC (M=2, L=3) [76] 0.06 84.2 17 
 

 

Figure 5.5 Magnitude responses at high rate of filters given in Table 5.2. 
Responses are shown up to third folding-band [79]. 

 

5.2.2 Wideband compensators for sharpened CIC filters 

To obtain higher compensation capability in a wider passband than in the case of 

maximally flat compensation [79], the design of minimax SCIC compensators with minimum 

passband deviation over the SPT coefficient space has been developed [80]. In this design, all 

compensator coefficients are set as free variables. The complexity of the minimax 

compensators is controlled by specifying the total number of adders in the structure. In 

literature, such a design is known as the total budget design. 
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5.2.2.1 Objective function 

To obtain wideband compensators, an objective function which measures maximum 

passband deviation normalized to the compensator's gain at ω = 0 is used. The function is 

given by [49] 

( ) ( , ) ( ) ( , )( ) max min
(0, ) (0, )

C CH H H H
H H

   



= −

c cc
c c

 (5.44) 

where c = [c0, c1, …, c(L−1)/2]T is the vector of compensator's coefficients and HC() denotes 

the amplitude response of the first-order CIC filter. To obtain a minimum deviation, all 

coefficients are used as free variables. Furthermore, they are expressed as sums of SPT terms. 

Finally, the total number of SPT terms is restricted to a specified value, B. The optimum 

coefficients can be obtained by solving the problem 

 

1
,

0
( 1)/2 1

,
0 0

ˆ arg min ( )

subject to: 2 ; 0,1, , ( 1) / 2

(0, ) 0
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= =
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=
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

 

c
c c

c

 (5.45) 

where bk, r  {−1, 0, 1} and W is maximum coefficients' wordlength. To calculate (c), the 

responses HC() and H(, c) are evaluated on uniformly spaced frequency grid within 

0 ≤  ≤ p. The grid with 64 points is appropriate for the proposed compensator design. Note 

that the optimization in (5.45) does not force compensator's unity gain. Such an approach is 

common in the design of multiplierless filters. It is clear from (5.44) that (c) = (−c). 

Therefore, two global minimizers with opposite signs exist. However, we prefer the 

minimizer with c0 > 0. This constraint is added to the constraints in (5.45). It simplifies the 

optimization because with this constraint only half of the coefficient space should be 

examined. 

For small L, W, and B, the problem in (5.45) is simple and it can be solved by using the 

exhaustive search. The exhaustive search proves fast for compensators with L ≤ 7, W ≤ 9, and 

B ≤ 6, which is sufficient for many applications. For convenience, we provide an example of 

MATLAB code implementing the entire design. The design function is called sciccomp [80]. 

Its input parameters are vector w containing the frequency grid, response HC evaluated on w, a 
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number of coefficients L, wordlength W, and the total number of terms, B. The function 

returns the coefficients expressed as integers, which can be easily converted into the sums of 

SPT terms. 

 
function c=sciccomp(w,Hc,L,W,B) 

 

% generation of coefficients 

b=[-1,0,1]; [X{W:-1:1}]=ndgrid(1:3); 

ck=b(reshape(cat(W+1,X{:}),[],W)); ck=ck(sum(abs(ck),2)<=B-1,:); 

ck=sortrows([ck*2.^(W-1:-1:0)',sum(abs(ck),2)],[1,-2]); 

u=[diff(ck(:,1))~=0; true]; bk=ck(u,2); ck=ck(u,1); 

for Bk=0:B-1; Ck{Bk+1}=ck(bk==Bk); end; 

K=(L+1)/2; N=0:B-1; [Y{K:-1:1}]=ndgrid(1:B); 

P=N(reshape(cat(K+1,Y{:}),[],K)); 

Q=P(sum(abs(P),2)==B,:); 

 

Hcos=ones(length(w),K); Hcos(:,2:K)=2*cos(w(:)*(1:K-1)); 

 

% optimization 

epsi_min=realmax; 

for q=1:size(Q,1) 

 for k=1:K; S{k}=Ck{Q(q,k)+1}'; end; 

 C=single(combvec(S{:})); 

 H0=C(1,:)+2*sum(C(2:end,:),1); C=C(:,H0~=0 & C(1,:)>0); 

 if ~isempty(C) 

  H0=repmat(C(1,:)+2*sum(C(2:end,:),1),length(w),1); 

  HC=repmat(Hc(:),1,size(C,2)); 

  [epsi,ind]=min(max(HC.*(Hcos*C)./H0)-min(HC.*(Hcos*C)./H0)); 

  if epsi<epsi_min; epsi_min=epsi; c=C(:,ind); end; 

 end 

end 

 

% calculation of the gain closest the unity 

while all(mod(c,2)==0); c=c/2; end; 

 

5.2.2.2 Compensator structure and adder cost 

The compensator is realized in a direct form, shown in Figure 3.3. It is well known that 

the computational complexity of the filter depends on the implementations of constant 

multipliers. The total number of adders required in the structure is 

 

( 1)/2

0
1 ( )

L

A A k
k

N L N c
−

=

= − +   (5.46) 
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5.2.2.3 Design examples 

Example 1. To illustrate features of the proposed design, sixth-order CIC filter [3] and the 

minimax SCIC filter with f(x) = 2−8x2 − 2−3x4 + x6 [76] are compensated, assuming R = 32, 

N = 1 and p = π/2. These filters introduce the droops of 5.47 dB and 5.74 dB. Figure 5.6 

shows the obtained passband deviations of the compensated filters for different compensators' 

complexities, assuming W = 9 and 2 ≤ B ≤ 6. It is clear that the deviations decrease with an 

increase in B. However, for the compensators with L = 3, a significant improvement is 

encountered for B ≤ 3, whereas for L = 5 the improvement is significant for B ≤ 5. The 

compensators with L = 3 and B = 2 as well as with L = 5 and B = 3 correspond to the 

compensators described in [49]. 

 

Example 2. Figure 5.7 shows magnitude response of the CIC filter with N = 6 and R = 32, 

compensated with compensator given in [48] and proposed compensator. Passband edge 

frequency is p = π/2. The compensator with L = 3 in [48] provides the deviation of 0.76 dB 

by using four adders. However, the proposed compensator with L = 3 and B = 3 ensures a 

similar deviation by employing one adder less. It has the coefficients ĉ = [26, 1 – 24].  

 

Example 3. In Figure 5.8, the proposed compensator is compared to recently proposed 

compensator with five coefficients [43]. For compensation, CIC filter from previous example 

is used. In [43], the CIC compensator with five coefficients exhibits the deviation of 0.11 dB 

by using 10 adders. Proposed compensator with L = 5 and B = 6 provides the same deviation, 

but it requires only seven adders. Its coefficients are ĉ = [–1 + 27, –23 – 25, –1 + 23]. 
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Figure 5.6 Passband deviations CIC and minimax SCIC filter with R = 32, 
assuming || ≤ /2 and L = 3 and 5 [80]. 

 

 

Figure 5.7 Magnitude responses of compensated CIC filter with N = 6 and R = 32, 
assuming p = π/2 and L = 3. For compensation, proposed 
compensator with B = 3 (red) and compensator in [48] (blue) are used. 
Compensators have NA adders [80]. 
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Figure 5.8 Magnitude responses of compensated CIC filter with N = 6 and R = 32, 
assuming p = π/2 and L = 5. For compensation, proposed 
compensator with B = 3 (red) and compensator in [43] (blue) are used. 
Compensators have NA adders [80]. 

 

Example 4. This example illustrates the compensation of various minimax [76] and 

Chebyshev [61] SCIC filters with p > π/5, R = 32 and N = 1. The optimum coefficients and 

total number of adders used in the compensators are given in Table 5.3 together with 

passband droops of the original filters and the deviations of the compensated filters. In 

comparison with multiplierless SCIC compensators in [79], the proposed compensators 

generally bring lower deviations having a significantly lower number of adders at the same 

time. It is expected since the compensators in [79] were obtained by using the maximally-flat 

error criterion and without the control of complexity.To illustrate robustness of the design, 

CIC filter with R = 32 and N = 1 sharpened with polynomial f(x) = −2−14x2 + 2−6x4 − 2−2x6 + x8 

[76] is compensated using the compensator given in Table 5.3. Figure 5.9 shows original and 

compensated responses. Original response has rather high passband deviation of 11.5 dB. The 

proposed compensation results in the deviation of 0.24 dB, which is obtained by the 

compensator having only eight adders in structure. 
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Table 5.3 Optimum coefficients and total number of adders, NA, used in 
compensators together with passband droop δP [80]. 

 

Compensated minimax SCIC filter with R = 32 and N = 1  
f(x) = −2−6x2 + x4, p = /4,  = 0.90 dB 

L = 3, W = 7, B = 4 ĉ = [2+26, –1–23] p = 0.03 dB, NA = 4 
f(x) = 2−10x2 − 2−4x4 + x6, p = /3,  = 2.46 dB 

L = 5, W = 7, B = 4 ĉ = [26, –1–24, 2] p = 0.05 dB, NA = 5 
f(x) = 2−8x2 − 2−3x4 + x6, p = /2,  = 5.74 dB 

L = 5, W = 9, B = 6 ĉ = [28, –22–24–26, –1+24] p = 0.13 dB, NA = 7 
f(x) = −2−14x2 + 2−6x4 − 2−2x6 + x8, p = 3/5,  = 11.5 dB 

L = 7, W = 8, B = 6 ĉ = [27, –26, 1+22+24, –22] p = 0.24 dB, NA = 8 
Compensated Chebyshev SCIC filter with R = 32 and N = 1 

f(x) = 1 − 29x2 + 215x4, p = 0.226,  = 0.74 dB 
L = 3, W = 5, B = 3 ĉ = [–1+24, –2] p = 0.02 dB, NA = 3 

f(x) = −1 + 27(24x2 − 210x4 + 214x6), p = 0.354,  = 2.77 dB 
L = 5, W = 9, B = 5 ĉ = [–25+28, –26, 1+23] p = 0.03 dB, NA = 6 

f(x) = −1 + 27(23x2 − 28x4 + 211x6), p = 0.483,  = 5.33 dB 
L = 5, W = 8, B = 6 ĉ = [27, –1–23–25, –1+23] p = 0.12 dB, NA = 7 

f(x) = 1 − 28x2 + 5∙211x4 − 217x6 + 219x8, p = 0.579,  = 10.6 dB 
L = 7, W = 8, B = 6 ĉ = [27, –26, 1+22+24, –22] p = 0.21 dB, NA = 8 

 

Figure 5.9 Magnitude responses of original and compensated SCIC filter [76] 
with N = 1, M = 4 and R = 32, assuming L = 7 and B = 6 [80]. 
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Example 5. In this example, the CIC-based FIR decimation filter proposed in [23] is 

compensated with the described compensator. In this case, HC() in (5.44) denotes the 

passband response of the used CIC-based filter, rather than the response of an SCIC filter. As 

an example, the compensator with L = 5, W = 8, and B = 5 is designed for the filter with N = 8 

and R = 10, assuming p = 2π/5. The optimum coefficients are obtained as 

ĉ = [27, 1 + 24 − 26, 23]. Figure 5.10 and 5.11 show the magnitude response of the original and 

compensated CIC-based filter relative to the high and low sampling rate. The original filter 

introduces the droop of 4.76 dB. The proposed compensation results in the deviation of 

0.05 dB, which is obtained by the compensator with only six adders. 

 

All presented compensators have the coefficients with one, two, or three terms. 

However, if the design results in a coefficient with more than three terms, an additional 

decrease in number of adders is possible using the optimum realization of constant-coefficient 

multipliers, which is described in Section 3.2.3. 

 

 

Figure 5.10 High-rate magnitude responses of original and compensated CIC-
based FIR filter [23] with R = 10, assuming p = 2π/5 and L = 5 [80]. 

 



5. COMPENSATORS FOR SHARPENED CIC FILTERS 

 

  

89 

 

 

Figure 5.11 Low-rate magnitude responses of original and compensated CIC-
based filter [23] with R = 10, assuming p = 2π/5 and L = 5 [80]. 
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6. CONCLUSION 

New methods for the design of multiplierless decimation filters with very high folding-

band attenuations and low passband deviations have been developed. The methods consider 

the decimation filters incorporating folding-band sharpening and passband compensation into 

the CIC response. Three multiplierless filter structures have been considered, and include 

compensated CIC filters, sharpened CIC filters, and compensated sharpened-CIC filters. 

To improve the passband droop of the CIC filter, two methods for the design of 

multiplierless CIC compensators have been developed. Both methods are based on 

minimization of the maximum passband deviation. However, the first method considers the 

design of unity gain compensator, whereas the second method considers the design of non-

unity gain compensators. The obtained unity-gain compensators significantly improve narrow 

passbands by using the FIR transfer functions with three coefficients and by requiring the 

structures up to five adders. The proposed non-unity-gain compensators significantly improve 

wide passbands by using the transfer functions with five coefficients, which require structures 

with four adders only. 

To increase the folding-band attenuation of CIC filters, the multiplierless sharpened 

CIC filters based on minimax sharpening have been proposed. The obtained filters exhibit 

similar amplitude response as the Chebyshev sharpened CIC filters. However, they provide 

multiplierless structures for arbitrary filter's specifications, which is not the case with the 

Chebyshev filters. 

To improve the passband of the sharpened CIC filters, a straightforward method for the 

design of FIR compensators has been developed. The method is based on the maximally flat 

error criterion at the zero frequency. For the multiplierless sharpened-CIC filters with 

decimation factors expressed as a power of two, the maximally flat compensators can be 

realized as multiplierless. In addition, a narrow passband of the minimax and Chebyshev 

sharpened CIC filters can be efficiently improved by using the compensators with three 

coefficients, which require up to ten adders. On the other hand, for wideband sharpened-CIC 

compensation, a method for the design of multiplierless compensators providing the minimum 

passband deviation has been developed. The compensators obtained improve very high 

droops significantly, by employing the structures having up to eight adders.
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