
Improving performance in software internet routers
through compact lookup structures and efficient
datapaths

Zec, Marko

Doctoral thesis / Disertacija

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:455203

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-29

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:455203
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:6611
https://dabar.srce.hr/islandora/object/fer:6611

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Marko Zec

IMPROVING PERFORMANCE IN
SOFTWARE INTERNET ROUTERS

THROUGH COMPACT LOOKUP
STRUCTURES AND EFFICIENT

DATAPATHS

DOCTORAL THESIS

Supervisors:
Associate Professor Miljenko Mikuc, PhD

Professor Luigi Rizzo, PhD

Zagreb, 2019

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Marko Zec

POBOLJŠANJE IZVEDBE
PROGRAMSKIH INTERNETSKIH

USMJERITELJA POMOĆU KOMPAKTNIH
PREGLEDNIH STRUKTURA I EFIKASNIH

PODATKOVNIH STAZA

DOKTORSKI RAD

Mentori:
izv. prof. dr. sc. Miljenko Mikuc

prof. dr. sc. Luigi Rizzo

Zagreb, 2019

Doktorski rad izrad̄en je na Sveučilištu u Zagrebu, Fakultetu elektrotehnike i računarstva, na

Zavodu za telekomunikacije.

Mentori:

izv. prof. dr. sc. Miljenko Mikuc

prof. dr. sc. Luigi Rizzo

Doktorski rad ima: 77 stranica

Doktorski rad br.:

Mentor’s Curriculum Vitae

Miljenko Mikuc is an Associate Professor at the University of Zagreb, Faculty of Electrical

Engineering and Computing, Department of Telecommunications. He graduated in 1987. and

received his PhD in the field of technical sciences, electrical engineering in 1997. from the

University of Zagreb, Faculty of Electrical Engineering and Computing (FER).

He has participated on seven scientific projects of the Ministry of Science, Education and

Sports of the Republic of Croatia and on the international project "Verification and valida-

tion methods for formal descriptions (COST 247). He participated and led projects with "The

Boeing Company - IDS, LabNet Analysis, Modeling Simulation and Experimentation", "In-

ternational Computer Science Institute / University of California, Berkeley", "The FreeBSD

Foundation", multi-year research project in the field of information and communication tech-

nology with Ericsson Nikola Tesla d.d., "Customized IMUNES for Ericsson (E-IMUNES)" and

IRI-project "New Generation Lawful Interception System - NG LI", where FER is a partner of

the company SedamIT d.o.o.

At the University of Zagreb, Faculty of Electrical Engineering and Computing, he is re-

sponsible for the following undergraduate and graduate courses: "Digital Logic", "Network

Programming", "Internet Security" and "Network and Services Management." At the postgrad-

uate doctoral study program, he is responsible for "Formalisms in Telecommunications" and

"Communication Protocols - Selected Topics". As a mentor, he successfully led more than 200

undergraduate and graduate students, while at the postgraduate study he was a mentor for 15

master theses and 3 doctoral theses.

He has published over 40 scientific and professional papers in journals and conference pro-

ceedings in the field of communication networks, protocols, virtualization, formal methods and

security. He is a member of a professional association of IEEE. He participates in the work of

the Technical Program Committee of the International Scientific Conference of SoftCOM and

as a reviewer at a number of international conferences.

Životopis mentora

Miljenko Mikuc je izvanredni profesor na Zavodu za telekomunikacije Fakulteta elektro-tehnike

i računarstva Sveučilišta u Zagrebu. Diplomirao je 1987. godine a doktorsku disertaciju iz

područja tehničkih znanosti, polja elektrotehnika, "Postupci provjere ispravnosti specifikacije

telekomunikacijskih procesa" obranio je 1997. godine.

Sudjelovao je kao istraživač na sedam znanstvenih projekata Ministarstva znanosti, obrazo-

vanja i sporta Republike Hrvatske te na med̄unarodnom projektu "Verification and validation

methods for formal descriptions (COST 247)". Bio je voditelj dva projekta Primjene informa-

i

cijske tehnologije pod pokroviteljstvom Ministarstva znanosti i tehnologije Republike Hrvatske.

Bio je voditelj projekata suradnje s "The Boeing Company - IDS, LabNet Analysis, Modeling

Simulation and Experimentation", "International Computer Science Institute", "The FreeBSD

Foundation" iz SAD-a te višegodišnjeg istraživačkog projekta u sklopu suradnje na području

informacijskih i komunikacijskih tehnologija s kompanijom Ericsson Nikola Tesla d.d., "Prila-

god̄en IMUNES za Ericsson (E-IMUNES)". Voditelj je IRI-projekta "Nova generacija rješenja

za zakonsko presretanje podataka - NG LI" na kojem je FER partner tvrtke prijavitelja SedamIT

d.o.o.

Sudjeluje u nastavi na preddiplomskom i diplomskom studiju kao nositelj ili su-nositelj

predmeta "Digitalna logika", "Mrežno programiranje", "Sigurnost u Internetu" i "Upravljanje

mrežom i uslugama". Na poslijediplomskom studiju su-nositelj je predmeta "Formalizmi u

telekomunikacijama" i "Odabrana poglavlja komunikacijskih protokola". Pod njegovim men-

torstvom uspješno je završilo studij više od 200 studenata na preddiplomskom i diplomskom

studiju. Na poslijediplomskom studiju bio je mentor pri izradi 15 magistarskih radova te 3

doktorska rada.

Objavio je preko 40 znanstvenih i stručnih radova u časopisima i zbornicima konferencija u

području komunikacijskih mreža, protokola, virtualizacije, formalnih metoda i sigurnosti. Član

je stručne udruge IEEE. Sudjeluje u radu tehničkog programskog odbora med̄unarodne znans-

tvene konferencije SoftCOM, te kao recenzent na većem broju med̄unarodnih konferencija.

ii

Mentor’s Curriculum Vitae

Luigi Rizzo is a Professor of Computer Engineering at the Universita‘ di Pisa, Italy. His re-

search focuses on computer networks and operating systems. He has published over 50 aca-

demic papers, including highly cited works on network emulation, scalable reliable multicast

and multicast congestion control, packet scheduling, high speed network I/O and virtual ma-

chine networking. His research projects received funding from the European Commission, as

well as many industrial partners including Microsoft, Cisco, Intel, Netapp, Verisign.

Much of his work has been implemented and deployed in popular operating systems and

applications, and widely used by the research community. His contributions include the popu-

lar dummynet network emulator (a standard component of FreeBSD and OS/X, and now also

available for Linux and Windows); one of the first publicly available erasure code for reliable

multicast; the qfq packet scheduler; and the netmap framework for fast packet I/O.

Prof. Rizzo has been a visiting researcher at several industrial and academic research institu-

tions, including ICSI (UC Berkeley), Intel Research Cambridge (UK), Intel Research Berkeley,

and recently Google Mountain View. He has served as General Chair for SIGCOMM 2006, TPC

Co-Chair for SIGCOMM 2009 and CoNEXT 2014, and TPC member/reviewer for a number

networking conferences and journals.

Životopis mentora

Luigi Rizzo je profesor računalnog inženjerstva na Sveučilištu Pisa, Italija. Glavna područja

njegovih istraživanja su računalne mreže i operacijski sustavi. Objavio je preko 50 radova koji

su citirani više od 8000 puta, uključujući radove o emulaciji računalnih mreža, skalabilnog po-

uzdanog višeodredišnog odašiljanja i kontrole zagušenja višeodredišnog odašiljanja, raspored̄i-

vanja paketa, brzog dohvaćanja i odašiljanja paketa, te umrežavanja virtualnih strojeva. Njegovi

istraživački projekti bili su financirani sredstvima Europske komisije, kao i brojnih industrijskih

partnera, uključujući Microsoft, Cisco, Intel, Netapp, Verisign.

Velik dio njegovih radova implementiran je i ugrad̄en u popularne operacijske sustave i apli-

kacije, te široko prihvaćen u istraživačkoj zajednici. Njegovi doprinosi uključuju popularni alat

za emulaciju mreža dummynet koji je standardna komponenta operacijskih sustava FreeBSD i

OS/X, te je dostupan i za Linux i Windows OS; jedan od prvih javno dostupnih brišučih kodova

za pouzdano višeodredišno odašiljanje; algoritam raspored̄ivanja paketa QFQ; te prilagodni sloj

za brzo dohvaćanje i odašiljanje paketa netmap.

Prof. Rizzo bio je gostujući istraživač na nizu industrijskih i sveučilišnih istraživačkih ins-

titucija, uključujući (UC Berkeley), Intel Research Cambridge (UK), Intel Research Berkeley,

te trenutno Google Mountain View. Predsjedao je znanstvenim skupom SIGCOMM 2006, su-

iii

predsjedao tehničkim programskim odborom skupova SIGCOMM 2009, CoNEXT 2014, te je

bio član programskih odbora ili recenzent niza časopisa i skupova iz područ računalnih mreža.

iv

Acknowledgments

Prof. Miljenko Mikuc and prof. Luigi Rizzo were great and patient advisors, and I thank them

and congratulate them both on finally graduating me. Jointly writing and polishing the original

DXR paper, which set the foundation for this thesis, was among the most fun and rewarding

experiences I recall in my whole career.

Most likely I would have never got this thesis complete without additional guidance from

a shadow advisor, prof. Maja Matijašević. Her help was also instrumental in getting the more

recent results documented and published in a decent form.

Denis Salopek set up our physical evaluation testbed and did the most of the benchmarking

and profiling work on a prototype packet processor based on DXR, the results of which unfor-

tunately could not be included in this thesis, but led to ironing out several subtle bugs in the

DXR library and the Click element.

Most of all, I wish to thank my wife Nataša and our kids for being patient and supportive

with me wasting time on stop-and-go efforts around this thesis over just too many years. Well,

it’s finally done!

v

Abstract

Expensive, inflexible, closed yet fast hardware packet datapath implementations have domi-

nated the high-speed and core Internet routing scene over the past two decades due to both real

and perceived lack of performance offered by software routers running on commodity hardware.

Today, software routers are mostly displaced to edge functions where the throughput pressure

is lower, or to applications where flexibility takes precedence over performance.

This thesis challenges the aforementioned status-quo by asserting that the performance po-

tential of contemporary multi-core microprocessors for applications in Internet routing data-

paths may be significantly greater than what is currently thought. The results suggest that

significant improvements in software-based Internet routing performance may be achieved by

carefully engineering data structures and algorithms to permit modern microprocessors to ef-

ficiently leverage their fast and sizable cache hierarchies, thereby extracting more parallelism

across multiple execution cores, while preserving the precious main memory bandwidth for

packet input and output, or other memory-intensive input / output tasks.

The research presented here focuses on longest prefix matching (LPM) as a fundamen-

tal operation which simultaneously presents a major performance bottleneck and implementa-

tion challenge in Internet Protocol (IP) routers, hardware and software based alike. The pro-

posed algorithm and the accompanying data structures sustain nearly 3.5 billion random LPM

lookups per second in a contemporary routing database containing 739,561 IPv4 prefixes with

148 unique next-hops, while running on conventional, commodity PC hardware. The same con-

figuration can exceed 7 billion lookups per second with locality in the stream of lookup keys.

The thesis dissects how the principles and techniques applied in the design and implementation

of the experimental prototype contribute to achieving those throughput levels.

Keywords: IP lookups, LPM, software packet processors, software routers, router perfor-

mance

vi

Poboljšanje izvedbe programskih internetskih usmjeritelja po-

moću kompaktnih preglednih struktura i efikasnih podatkov-

nih staza - prošireni sažetak

Tijekom proteklih dvadesetak godina programski ostvarene usmjeritelje temeljene na mikro-

procesorskim platformama opće namjene u jezgri Interneta su u potpunosti istisnuli iz upotrebe

visokopropusni ali skupi, zatvoreni, i nefleksibilni usmjeritelji temeljeni na specijaliziranim

sklopovljima. Ovaj rad preispituje navedeni status-quo hipotezom da potencijal modernih vi-

šejezgrenih mikroprocesora može biti dostatan za učinkovitu primjenu u podatkovnim stazama

brzih Internetskih usmjeritelja. Rezultati pokazuju da se povećanje propusnosti programski os-

tvarenih usmjeritelja može postići pažljivim odabirom i konstrukcijom podatkovnih struktura i

algoritama koji modernim mikroprocesorima omogućuju dobro iskorištenje predmemorija, što

se posredno odražava i učinkovitim paralelnim izvod̄enjem na više procesorskih jezgri uz malu

učestalost pristupa glavnoj memoriji, čija sabirnica više vremena ostaje slobodna za prihvat i

odašiljanje paketa, te za ostale memorijski zahtjevne ulazno / izlazne zadaće. Disertacija je

usredotočena na problem pretraživanja tablica usmjeravanja najduljim prefiksnim podudara-

njem (engl. longest prefix matching, LPM) kao temeljni postupak odlučivanja pri obradi paketa

u Internetskim usmjeriteljima. Predložene nove klase algoritama s pripadajućim podatkovnim

strukturama tijekom izvod̄enja na računalu opće namjene omogućuju postizanje propusnosti od

približno 3.5 milijarde pretraživanja u sekundi temeljem nezavisnih, slučajno odabranih klju-

čeva u tablici s 739.561 IPv4 zapisa i 148 moguća odredišta, preuzetoj iz usmjeritelja u jezgri

Interneta. Uz pretraživanje s uzastopnim ponavljanjem slučajno odabranih ključeva postiže se

propusnost do 7 milijardi upita u sekundi. U radu se analizira kako načela i postupci primjenjeni

u oblikovanju i ostvarenju eksperimentalnog prototipa doprinose postizanju ovakvih razina pro-

pusnosti.

Rad je podijeljen u sedam poglavlja.

U prvom, uvodnom poglavlju, identificiran je istraživački problem, motivacija i ciljevi istra-

živanja te je dan opis strukture rada. Izložen je kratak pregled razvoja tehnologije usmjeritelja

namjenjenih radu u jezgri Interneta. Opisana je tranzicija od široke primjene programski ostva-

renih usmjeritelja tijekom devedesetih godina prošlog stoljeća, do njihovog kasnijeg potpunog

napuštanja i zamjene specijaliziranim sklopovskim izvedbama. Rast propusnosti transmisij-

skih veza za nekoliko redova veličine, uz istodobni superlinearni rast broja mreža oglašenih u

globalne tablice usmjeravanja, bili su glavni čimbenici nedostatne propusnosti usmjeritelja te-

meljenih na tadašnjim mikroprocesorskim platformama opće namjene. Tijekom 90-ih godina

prošlog stoljeća predložen je niz algoritama za poboljšanje učinkovitosti programski ostvare-

nog pretraživanja globalnih tablica usmjeravanja, informacije o kojima Internetski usmjeritelji

vii

razmjenjuju putem protokola Border Gateway Protocol (BGP). Tadašnje tablice usmjeravanja

sadržavale su manje od 100.000, dok današnje premašuju 760.000 zapisa, pri čemu njihov broj i

dalje nezaustavljivo raste, trenutno dinamikom od oko 50.000 zapisa godišnje. Već na prijelazu

stoljeća do tada razvijeni algoritmi za programsko pretraživanje tablica usmjeravanja pokazali

su se nedostatnim za praktičnu primjenu u opisanim uvjetima i postupno se zamijenjuju spe-

cijaliziranim sklopovljem u novijim generacijama Internetskih usmjernika visoke propusnosti.

S druge strane, razvoj sve bržih specijaliziranih sklopovskih arhitektura (engl. application-

specific integrated circuits, ASIC) za usmjeravanje paketa, zbog izrazito visokih troškova može

pratiti svega nekoliko najvećih svjetskih proizvod̄ača komunikacijske opreme. Male kompa-

nije i akademske istraživačke grupe praktički nemaju izgleda za proboj i natjecanje u sve užem

krugu takvih proizvod̄ača, čime se koči razvoj inovacija. U praksi se pokazalo da, zbog svojih

fiksnih kapaciteta, sklopovske arhitekture Internetskih usmjeritelja imaju kratak eksploatacijski

rok trajanja, tipično od svega nekoliko godina. Problem je ilustriran primjerom iz kolovoza

2014. godine kad su zabilježene značajne oscilacije i nedostupnost pojedinih mreža u Inter-

netu zbog rasta globalnih tablica usmjeravanja preko praga od 512 * 1024 IPv4 zapisa, što je

bilo sklopovski uvjetovano ograničenje dijela tadašnjih usmjeritelja. Uz već spomenut visok

rizik, dugotrajnost, i cijenu razvoja, povećanje kapaciteta obrade specijaliziranih sklopovskih

usmjeritelja ograničeno je visokim razinama potrošnje i disipacije energije. Poseban problem

je nefleksibilnost specijaliziranog sklopovlja u smislu prilagodbe modernim trendovima eks-

ploatacije, kao što su virtualizacija mrežnih funkcija (engl. Network Function Virtualization,

NFV), i programski definiranih mreža (engl. Software Defined Networking, SDN). Napredak

tehnologije generičkih programirljivih logičkih sklopova (Field-Programmable Gate Array -

FPGA) omogućio je njihovu praktičnu primjenu u platformama za obradu mrežnog prometa

koje imaju bolje mogućnosti prilagodbe novim zahtjevima od usmjeritelja temeljenih na sklo-

povima ASIC, ali istodobno nude značajno manji kapacitet odnosno propusnost od sklopov-

skih rješenja. Upravo su spomenuta tehnološka ograničenja postojećih sklopovskih rješenja

potaknula autora na istraživanje mogućnosti (ponovne) primjene modernih mikroprocesorskih

platformi za brzu obradu paketa u Internetskim usmjeriteljima. U prvom poglavlju se opisuje

i trenutni raskorak izmed̄u zahtjeva za propusnošću današnjih transmisijskih tehnologija (10,

100, 400 Gbit/s) s kapacitetom obrade programski ostvarenih usmjeritelja temeljenih na ope-

racijskim sustavima (OS) opće namjene. Rezultati vlastitih eksperimenata konzistentni su s

izvješćima drugih autora koji ukazuju da je ograničenje propusnosti OS-a opće namjene reda

veličine jednog milijuna paketa u sekundi (Mpps) po mikroprocesorskoj jezgri, što je dostatno

tek za rad pri brzinama do 1 Gbit/s. Kao alternative tradicionalnom pristupu obradi paketa u jez-

gri OS-a citiraju se novije paradigme programske obrade mrežnog prometa, pri čemu niz autora

predlaže i demonstrira značajno poboljšanje propusnosti zaobilaženjem mrežnog stoga OS-a

prilikom prihvata i odašiljanja paketa. Med̄utim, rješenja problema učinkovitog pretraživanja

viii

tablica usmjeravanja do nedavno se i dalje tražilo isključivo kroz delegiranje (engl. offload) na

zasebno sklopovlje, npr. jezgre grafičkih procesora, ili raspored̄ivanjem prometa na više fizičkih

računala opće namjene.

Drugo poglavlje ("Programska obrada paketa: sklopovska perspektiva") ispituje ključna

svojstva suvremenih tržišno-dominantnih mikroprocesora: paralelizam i hijerarhije predme-

morija. Dan je pregled stanja modernih višejezgrenih mikroprocesora opće namjene, gledano

kroz prizmu zahtjeva za obradom velike količine med̄usobno nezavisnih podataka u jedinici

vremena, što je svojstveno obradi mrežnog prometa u Internetskim usmjeriteljima, te posebno

problemu brzog pretraživanja tablica usmjeravanja. Ističe se problem stagniranja rasta frekven-

cije radnog takta, koje su od početka 80-ih godina prošlog do prvih godina ovog stoljeća narasle

za približno tri reda veličine, od četiri MHz do nešto manje od četiri GHz, što je kroz zadnjih

petnaestak godina ostala gornja granica frekvencije radnog takta najbržih komercijalnih mikro-

procesora. Istodobno je nastavljen tehnološki razvoj litografskih postupaka u proizvodnji polu-

vodiča, odnosno gustoće integracije elektroničkih elemenata, da bi i napredak tih tehnoloških

procesa počeo pokazivati značajne trendove stagniranja tijekom posljednjih nekoliko godina.

Kao temeljni čimbenici zaustavljanja napretka u brzini rada mikroprocesora ističu se povećanje

propagacijskih kašnjenja unutar prospojnih puteva izmed̄u elektroničkih elemenata pri novi-

jim tehnološkim procesima, te posebno velika gustoća snage toplinske disipacije pri radu na

visokim frekvencijama takta. Isti tehnološki problemi uvjetuju i teškoće u razvoju novih gene-

racija specijaliziranih integriranih krugova za obradu i usmjeravanje Internetskog prometa, koji

su dodatno ekonomski opterećeni visokim troškovima razvoja sklopovlja prolagod̄enog najno-

vijim tehnološkim procesima poluvodičke litografije, koje je teško amortizirati kroz relativno

male serije u kojima se takvi specijalizirani sklopovi proizvode, za razliku od mikroprocesora

opće namjene koji se proizvode masovno i imaju veliko, još uvijek nepresušno tržište. Tako

je istaknut primjer dominantnog proizvod̄ača komunikacijske opreme čiji se usmjeritelji naj-

većeg kapaciteta predvid̄eni za rad u jezgri Interneta i dalje temelje na specijaliziranom proce-

soru predstavljenom još 2013. godine, a čija je propusnost za današnje prilike skromnih 280

Mpps. U nastavku poglavlja analiziraju se temeljne značajke modernih mikroprocesorskih plat-

formi opće namjene. To su mogućnost izvod̄enja više instrukcija u jednom ciklusu takta (engl.

instruction-level parallelism / superscalar execution), dinamičko predvid̄anje grananja (engl.

branch Ppediction), dinamički odabir i izvod̄enje instrukcija izvan programskog slijeda uz za-

državanje semantike slijednog izvod̄enja (engl. out-of-irder execution), višerazinske hijerarhije

predmemorija (engl. caches) kojima se vrijeme slučajnog pristupa približno udvostručuje sa

svakom razinom većeg kapaciteta, te glavne memorije velikog kapaciteta s vremenom slučaj-

nog pristupa reda veličine do 100 ns, odnosno od oko 300 ciklusa radnog takta procesorske

jezgre. Ispitivanje vremena slučajnog pristupa predmemorija i glavnoj memoriji provedeno je

vlastitim jednostavnim programom pokrenutim na nizu računala izgrad̄enim oko različitih pro-

ix

cesora proizvod̄ača Intel i AMD, a opaženi rezultati konzistentni su s vrijednostima objavljenim

od strane samih proizvod̄ača. Uslijed stagnacije povećanja brzina izvod̄enja jedne programske

dretve (engl. thread), moderni mikroprocesori sadrže sve više procesorskih jezgri koje dijele

zajedničku glavnu memoriju i dio (zadnju razinu) predmemorije. Svaka procesorska jezgra

uobičajeno podržava izvod̄enje do dvije nezavisne programske dretve, s glavnim ciljem iskori-

štenja sklopovlja u vrijeme dok druga programska dretva na istoj jezgri čeka na dohvat podataka

iz predmemorije ili iz glavne memorije. Kroz konkretni eksperiment paralelnog pretraživanja

tablica usmjeravanja prikazana je razlika u izvod̄enju algoritma na fizički odvojenim jezgrama

u usporedbi s izvod̄enjem dvije dretve na jednoj jezgri, koje je manje učinkovito. Na kraju

poglavlja iznosi se niz prijedloga za oblikovanje podatkovnih struktura i algoritama kao sinteza

vlastitih i opažanja drugih autora, a koje proizlaze iz svojstava današnjih mikroprocesorskih

platformi opće namjene. Zbog stagnacije napretka u brzini izvod̄enja pojedinačnih dretvi (engl.

single-thread performance) što je inherentno svim generacijama mikroprocesora uvedenih na

tržište tijekom proteklog desetljeća, ističe se nužnost fokusiranja na oblikovanje algoritama

i podatkovnih struktura prilagod̄enih učinkovitom paralelnom izvod̄enju na više procesorskih

jezgri. Zbog velikog raskoraka u brzini slučajnog pristupa predmemoriji i glavnoj memoriji

podatkovne strukture nužno je oblikovati tako da zauzimaju što manje memorijskog prostora,

kako bi čim većim dijelom i uz što manje istiskivanja (engl. spilling) mogle biti dohvaćane

iz predmemorija procesora. Umjesto tradicionale raspršenosti manjih fragmenata podatkov-

nih struktura po širem adresnom prostoru, organiziranje podatkovnih struktura u kompaktne

neprekinute blokove omogućuje konsolidaciju memorijskih stranica (engl. pages) uobičajene

veličine od 4 KB u veće cjeline (engl. superpages) koje obuhvaćaju 1 MB do 4 MB linear-

nog adresnog prostora, što smanjuje potrebu za intervenciju operacijskog sustava u upravljanju

sklopovskim translacijskim tablicama (engl. translation lookaside buffers - TLB) virtualne me-

morije. Korištenja pokazivača koji na današnjim 64-bitnim procesorskim arhitekturama imaju

mali omjer korisne informacije i zauzeća prostora treba gdje je moguće zamijeniti indeksira-

njem, primjena kojeg osim manjeg zauzeća memorije inherentno potiče organizaciju podataka

u kompaktnije, linearne, neraspršene strukture. Podatke koje se većinu vremena čita a rijetko

ažurira mogže se dijeliti izmed̄u više programskih dretvi, ali strukture koje se često ažuriraju

potrebno je alocirati u nezavisnim instancama za svaku dretvu, kako bi se smanjila potreba za

implicitnim (sklopovskim) i eksplicitnim (programskim) sinkronizacijskim operacijama nad di-

jeljenim blokovima podataka. Dugo vrijeme slučajnog pristupa podacima u glavnoj memoriji

može se dijelom kompenzirati korištenjem procesorskih instrukcija za najavu pristupa (prefet-

ching) kako bi se podaci unaprijed dohvatili u predmemoriju za tijekom izvod̄enja instrukcija

neovisnih o ciljanim podacima.

Treće poglavlje ("Direktno / rasponsko pretraživanje najdužih prefiksnih podudaranja") pred-

stavlja temeljna načela koja se nalaze iza ključnog doprinosa, sheme pretraživanja nazvane

x

Direct / Range, skraćeno DXR. U uvodnom dijelu poglavlja opisuju se glavne značajke po-

pularnog IPv4 LPM postupka DIR-24-8, razvijenog krajem prošlog stoljeća s ciljem (tada)

učinkovite sklopovske izvedbe uz korištenje dediciranih memorijskih modula DRAM, a danas

je u širokoj primjeni kao standardni modul odnosno biblioteka u programskim platformama za

obradu mrežnog prometa Click i DPDK. Postupak DIR-24-8 se oslanja na dvije pregledne ta-

blice, od kojih se glavna (veća) formira projiciranjem IPv4 prefixa iz izvorne tablice s mrežnim

maskama širine do 24 bita na linearno polje veličine 224 elemenata. Elementi glavne pregledne

tablice sadrže informaciju o usmjeravanju (engl. next hop, NH), ili u slučaju da u izvornoj ta-

blici postoje zapisi s identičnih 24 bita veće težine ali s mrežnom maskom koja zahvaća više

od 24 bita, element glavne pokazuje na segment druge (pomoćne) tablice u kojem se indek-

siranjem s preostalih 8 bitova traženog ključa pronalazi konačna informacija o usmjeravanju.

Opisana podjela odabrana je temeljem razdiobe širina mrežne maske (engl. prefix length) IPv4

zapisa u tablicama usmjeravanja u jezgri Interneta, u kojima su najzastupljenije mrežne maske

širine do uključivo 24 bita, dok su širine mrežne maske od 25 bitova i više razmjerno rijetke.

LPM pretraživanje u postupku DIR-24-8 je trivijalno, a svodi se na direktno indeksiranje glavne

pregledne tablice pomoću 24 bita veće težine traženog IPv4 ključa, te po potrebi dodatnim in-

deksiranjem pomoćne tablice preostalim bitovima ključa. Med̄utim, kako pregledne tablice

postupka DIR-24-8 svojom veličinom nadilaze kapacitet predmemorija većine mikroprocesora

opće namjene, uz upite ključevima disperziranima po cijelom IPv4 adresnom spektru pred-

memorije gube na učinkovitosti, što je temeljni nedostatak postupka pri paralelnom izvod̄enju

na višejezgrenim mikroprocesorima s dijeljenom glavnom memorijom. U nastavku poglavlja

opisuje se koncept transformiranja tablica mrežnih prefixa u ured̄en slijed susjednih adresnih

raspona (engl. ranges), koji obuhvaćaju cijeli IPv4 adresni prostor. Nakon takve transforma-

cije LPM pretraživanje svodi se na trivijalno binarno pretraživanje adresnih raspona. Kako je

svaki raspon definiran početnom i završnom 32-bitnom adresom te NH oznakom za koju se

u praksi pokazalo da je dovoljno 16 bitova, za svaki zapis o adresnom rasponu dovoljno je

10 byteova, uz pretpostavku da se zapisi pohranjuju slijedno u kontinuirano polje kako bi se

isto moglo iteracijski pretraživati. U ovakvoj podatkovnoj strukturi značajan je višak infor-

macije, budući da je početna adresa svakog adresnog raspona uvijek jednaka završnoj adresi

prethodnog uvećanoj za jedan. Izostavljanjem završne adrese raspona iz zapisa, koja se može

izvesti iz početne adrese slijedećeg, veličina zapisa smanjuje se na 6 byteova. Veličina tablice

s adresnim rasponima u najgorem slučaju proporcionalna je broju zapisa u izvornoj tablici, što

bi za današnje izvorne tablice usmjeravanja s preko 750.000 IPv4 mreža rezultiralo tablicom

raspona s do 1.5 milijun elemenata, ukupne veličine do 9 MByte, za pretraživanje koje bi bilo

nužno do 20 iteracijskih koraka, što je neostvarivo u ciljanim vremenskim okvirima od nekoliko

desetaka ciklusa procesorskog takta. Zauzeće memorije može se smanjiti podjelom adresnog

prostora na 2K jednakih blokova, te korištenjem početnih K bitova tražene adrese za direktno

xi

indeksiranje dodatno uvedene pregledne tablice, pri čemu se adresni rasponi razvijaju zasebno

za svaki od uniformnih blokova. Uz odabir vrijednosti K veći ili jednak 16, 16 bitova veće

težine u zapisima s početnim adresama adresnih raspona postaju suvišni, pa se veličina poje-

dinog zapisa smanjuje s 6 na 4 bytea. Dodatno optimiranje veličine zapisa može se ostvariti

za adresne raspone koji ne proizlaze iz IPv4 mreža s mrežnom maskom širom od 24 bita, te

ukoliko mogućih odredišta (next hop) nema više od 256, u kojem slučaju nije potrebno pamtiti

8 bitova najmanje težine početne adrese raspona (uvijek su nula), pa je zauzeće memorije po

zapisu moguće sažeti na svega 2 bytea. U nastavku poglavlja opisan je postupak iteracijskog

pretraživanja s konkretnom izvedbom u programskom jeziku C. Postupak pretraživanja anali-

zira se iz perspektive organizacije predmemorija modernih mikroprocesora u tzv. retke (engl.

lines) veličine 64 bytea, što uz spomenutu linearnu organizaciju zapisa o adresnim rasponima

osigurava da se zapisi pri završnim koracima iteracijskog postupka pretraživanja dohvaćaju iz

razine predmemorije koja je najbliža procesorskoj jezgri te ima najmanje trajanje dohvata po-

dataka. Slijedi opis i analiza postupka formiranja i ažuriranja preglednih tablica uz korištenje

tablice usmjeravanja preuzete iz usmjernika u jezgri Interneta. Kao izvorišna baza (tablica) za

pohranu informacija o IPv4 mrežama koristi se već postojeća, provjerena implementacija binar-

nog stabla sa skraćenim putevima preuzeta iz operacijskog sustava FreeBSD, na temelju koje

se formiraju direktna tablica (engl. direct table) i tablica adresnih raspona (engl. range table).

Zavisno od odabira vrijednosti parametra K, u rasponu izmed̄u 16 i 20, postižu se ukupne ve-

ličine preglednih tablica izmed̄u jednog i pet MByte, odnosno od 1.76 do 7.32 bytea po IPv4

mreži u izvorišnoj tablici. Odabirom veće vrijednosti parametra K smanjuje se broj iteracija

potrebnih za razriješenje LPM upita, ali se povećava zauzeće memorije te vrijeme potrebno

za formiranje preglednih tablica. Analizom tablice adresnih raspona za K veći ili jednak 16,

uočena je pojavnost raspona koji imaju identične bitove manje težine i pripadajuće informacije

o usmjeravanju, ali su povezani s odvojenim dijelovi IPv4 adresnog prostora, odnosno imaju

različite prvih K bitova veće težine. Kako se K bitova veće težine ne pohranjuje u zapisima o

adresnim rasponima, nego se razrješuju indeksiranjem prve tablice, opisane identične adresne

raspone moguće je objediniti, i time smanjiti zauzeće memorije, što se pokazalo posebno učin-

kovito pri odabiru parametra K većih od 19. U nastavku poglavlja prikazani su i analizirani

rezultati ispitivanja propusnosti algoritma s nizovima slučajno odabranih ključeva. Ispitivana

su tri tipska scenarija za različite izvorišne tablice preuzete s usmjernika iz jezgre Interneta, s

različitim konfiguracijama parametra K, na nizu različitih računala temeljenim na komercijalno

dostupnim mikroprocesorima proizvod̄ača AMD i Intel. U prvom tipskom scenariju svi su slu-

čajno odabrani ispitni ključevi med̄usobno nezavisni. U drugom tipskom scenariju u ispitnu

proceduru umjetno se uvodi med̄uzavisnost izmed̄u uzastopnih pretraživanja superponiranjem

rezultata prethodnog pretraživanja sa slijedećim slučajno odabranim ključem, čime se u značaj-

noj mjeri blokira mogućnost mikroprocesorske jezgre za špekulacijskim izvod̄enjem. U trećem

xii

tipskom scenariju za svaki od slučajno odabranih ključeva LPM upit se ponavlja osam puta,

s ciljem simuliranja pojave usnopljenosti mrežnih tokova. Rezultati eksperimenata pokazuju

da se za prvi tip ispitivanja s nezavisnim slučajno odabranim ključevima najviša propusnost na

jednoj procesorskoj jezgri, razina do 230 milijuna upita u sekundi (engl. million lookups per

second - Mlps), postiže pri odabiru parametra K izmed̄u 19 i 22, zavisno od mikroprocesora na

kojem se eksperiment provodi, odnosno veličine njegovih predmemorija. U drugom tipskom

ispitnom scenariju, s med̄uzavisnošću izmed̄u slijednih LPM upita, postižu se propusnosti do

70 Mlps na jednoj procesorskoj jezgri. Pri paralelnom izvod̄enju algoritma na više procesorskih

jezgri postižu se propusnosti do 2490 Mlps na 16-jezgrenom procesoru AMD Ryzen 7-1700.

Eksperimenti pokazuju približno linearan rast propusnosti algoritma s raspored̄ivanjem na više

procesorskih jezgri, dok isti eksperiment proveden s algoritmom DIR-24-8 pokazuje stagnaciju

i pad ukupne propusnosti pri raspored̄ivanju na više od šest jezgri, u kojim uvjetima se postiže

propusnost od ukupno 430 Mlps, dakle skoro red veličine manje od optimalne konfiguracije

algoritma DXR na istom stroju. Poglavlje završava analizom učestalosti promašaja pri dohvatu

podataka iz predmemorije (engl. cache miss) temeljem očitanja sklopovskih brojila takvih do-

gad̄aja u mikroprocesoru. Konkretno, za mikroprocesor Intel i7-4771 koji je opremljen s 8

MByte predmemorije zadnje razine (engl. last level cache), broj promašaja pri dohvatu iz pred-

memorije konstantan je za sve ispitivane konfiguracije algoritma do uključno K = 21, za koju

je pregledne tablice zauzimaju ukupno 8.35 MByte. Prikazana je usporedna analiza učestalosti

promašaja dohvata iz predmemorije za odabrane konfiguracije algoritma DXR i DIR-24-8 u

režimu paralelnog izvod̄enja na više jezgri, iz kojih je vidljva značajno veća učestalost proma-

šaja pri izvod̄enju LPM pretraživanja algoritmom DIR-24-8, koja doseže razinu od 0.8 do 1

promašaja po LPM pretrazi, zavisno od kapaciteta predmemorije procesora na kojem se pro-

vodi ispitivanje. Za optimalno odabrane konfiguracije algoritma DXR bilježe se razine od 0.1

promašaja po LPM pretrazi, koje su neizbježno uvjetovane dohvatom unaprijed pripremljenih

slučajno odabranih ključeva iz zasebne tablice. U opisanim mjerenjima promašaja dohvata iz

predmemorije zabilježena je propusnost LPM pretraga algoritma DXR u rasponu od približno

1.5 do 5 puta većoj od propusnosti algoritma DIR-24-8.

Četvrto poglavlje ("Daljnje vremenske i prostorne optimizacije") opisuje i analizira opti-

mizacije algoritma DXR koje se postižu uvod̄enjem dodatne tablice, kojom se direktno indek-

siranje temeljem prvih K bitova ključa rastavlja u dva koraka. Razdvojene tablice nazvane

su direktna (engl. Direct) i proširena (engl. eXtension) tablica. Direktna tablica indeksira se

s početnih D bitova ključa, dok se s dodatnih X bitova indeksira odabrani blok u proširenoj

tablici, pri čemu je zbroj D+X = K. Uvod̄enjem druge, proširene tablice, omogućuje se sma-

njenje zauzeća memorije, pronalaženjem i objedinjavanjem (engl. deduplication) blokova koji

pokazuju na iste zapise u tablici adresnih raspona. Postupak objedinjavanja blokova proširene

tablice pokazao se posebno učinkovit pri odabiru parametara D = 16, te X > 3. Konkretno, za

xiii

konfiguraciju D = 16,X = 6 postiže se sažimanje memorije od približno 70% u usporedbi s od-

govarajućom konfiguracijom K = 22 temeljne inačice algoritma. Gledano iz druge perspektive,

uz približno isto zauzeće memorije, inačica algoritma s dvije tablice moći će razriješiti do dva

bita ključa više indeksiranjem tablica, prije prelaska na sporiji, iteracijski postupak pretrage

tablice adresnih raspona. Skraćenje iteracijskog binarnog pretraživanja odražava se na pove-

ćanje propusnosti koja pri izvod̄enju na jednoj procesorskoj jezgti dosežu do 40% više razine

u usporedbi s temeljnom inačicom. Pri paralelnom izvod̄enju optimiranog algoritma u konfi-

guraciji D = 16,X = 6 na svim logičkim jezgrama procesora AMD Ryzen-7 1700 postiže se

propusnost od 3204 Mlps, u usporedbi s 2490 Mlps koje na istom računalu ostvaruje konfi-

guracija K = 20 temeljne inačice. Najviša ukupna propusnost od 3491 Mlps ostvarena je pri

ispitivanju algoritma na procesoru AMD ThreadRipper 1950X. Spomenute razine propusnosti

odnose se na prvi tipski test, uz nezavisne slučajno odabrane ključeve, dok se uz ponavljajuće

upite za isti ključ (treći tipski test) na procesoru AMD 1950X postiže ukupna propusnost od

7207 Mlps. Važno svojstvo optimirane inačice algoritma je i značajno manje zauzeće memorije

kod tablica usmjeravanja s malim brojem zapisa u usporedbi s temeljnom inačicom. Primjerice,

mala tablica usmjeravanja sa samo pet IPv4 mreža i konfiguraciji D = 12,X = 9 preslikat će se

u pregledne tablice sa zauzećem memorije od svega 15 Kbyte.

Peto poglavlje ("Integracija u podatkovne staze") opisuje mogućnosti integriranja algoritma

DXR u programski ostvarene IPv4 usmjeritelje. Obrazlažu se razlozi odustajanja od početnih

napora za ugradnju algoritma DXR u jezgru operacijskog sustava FreeBSD, te odluke da se

algoritam implementira u dvije inačice nezavisne od OS-a. Inačica na kojoj su se provela sva

ispitivanja opisana u ovom radu implementirana je kao lookup modul u popularnoj programskoj

platformi za obradu paketa Click, pri čemu je najveći dio modula ostvaren u programskom je-

ziku C++, uz enkapsuliranje komponenti preuzetih iz operacijskog sustava FreeBSD (radixtree)

u zasebnu klasu. Na temelju te referentne implementacije razvijena je i ispitana samostalna

DXR biblioteka ostvarena u ANSI C-u, s ciljem lakše integracije u aplikacije neovisne o plat-

formi Click. Korištenjem spomenute biblioteke i platforme za brzo dohvaćanje i odašiljanje

paketa netmap konstruirana je ispitna aplikacija koja je pokazala mogućnost proslijed̄ivanja pa-

keta uz provod̄enje LPM pretraga bez gubitaka pri brzini od 10 Gbit/s, odnosno 14.88 Mpps,

korištenjem samo jedne mikroprocesorske jezgre. Ispitivanja rada pri višim brzinama prijenosa

nije bilo moguće provesti tijekom izrade ovog rada uslijed nedostatka odgovarajuće opreme,

odnosno mrežnih kartica.

Šesto poglavlje ("Pregled literature") daje kritički osvrt na stanje istraživanja u području

teme doktorskog rada i objavljene rezultate drugih istraživača, s naglaskom na evoluciju LPM

algoritma namijenjenih izvod̄enju na mikroprocesorskim platformama opće namjene, nakon

čega slijede završne napomene u sedmom poglavlju.

Zaključno, znanstveni doprinos disertacije uključuje novu klasu algoritama i kompaktnih

xiv

podatkovnih struktura za brzo programsko pretraživanje usmjerivačkih informacija za proto-

kol IPv4; poboljšanja učinkovitosti podatkovnih staza u programskoj komutaciji paketa boljim

iskorištavanjem prostornih i vremenskih mogućnosti paralelne obrade na procesorima opće na-

mjene; te izvedbu dvije parametrizirane verzije sheme pretraživanja DXR, kao programske bi-

blioteke i kao komponente za korištenje u modularnom programskom usmjeritelju Click, uz

empirijsku provjeru ispravnosti njihovoga rada.

Ključne riječi: internetski usmjeritelji, pretraživanje najdužih prefiksnih podudaranja, pro-

gramska komutacija paketa

xv

Contents

1. Introduction . 1

1.1. Background and motivation . 1

1.2. Thesis overview . 4

1.3. Summary . 5

2. Packet processing software: a hardware perspective 6

2.1. Moore’s law demise . 7

2.2. Parallelism in contemporary CPUs . 8

2.3. Memory hierarchies and latencies . 10

2.4. Recommendations . 12

3. Direct-Rrange longest prefix matching lookups 15

3.1. Prefix expansion into address ranges . 16

3.2. Building the search data structure . 17

3.3. Saving space and time . 19

3.4. Lookup algorithm . 22

3.5. Updating . 26

3.6. Performance evaluation . 30

4. Further space and time optimizations . 41

4.1. Data structures, deduplication . 42

4.2. Lookup algorithm . 44

4.3. Performance evaluation . 45

5. Datapath integration . 52

5.1. FreeBSD kernel . 52

5.2. The Click Modular Router . 54

5.3. User-space Packet Processing Library . 55

5.4. Future directions . 56

6. Related work . 57

7. Conclusion . 62

Bibliography . 64

Acronyms . 72

Curriculum Vitae . 73

Životopis . 76

Chapter 1

Introduction

1.1 Background and motivation

In the early 21st century, the availability of ubiquitous, affordable, reasonably fast and reliable

packet-switched communication on a global scale, in a network known as the Internet, became

simply taken for granted, just like running water, electrical energy distribution, or mass trans-

portation, became infrastructural norms over the course of the previous century. The entire

human society is becoming intrinsically dependent on packet-switched communication.

The increases in global Internet traffic volume [1], the pressure on the global routing sys-

tem [2] [3] [4], and particularly the advances in transmission link speeds, have been among the

major driving forces behind the development and evolution of the global Internet infrastructure,

particularly its core. The perpetual race between the raising demands at improving the speed,

scalability, power consumption, cost effectiveness, and hardware lifecycle duration in the Inter-

net core has been driving the engineering response and led to the introduction, adoption, as well

as demise of numerous concepts and packet switching technologies over the past two decades.

In the aftermath of extensive research, development, and operational deployment on a his-

torically unparalleled scale, backed by a multi-trillion dollar per year industry, a widely held

public perception is that packet switching in the Internet is a solved technical problem, i.e.,

something which "just works", yet the reality can be different from popular beliefs. For ex-

ample, on August 12, 2014, due to forwarding tables of certain widely deployed routers being

limited to supporting no more than 512K IPv4 prefixes, significant world-wide Internet con-

nectivity outages were observed when the number of prefixes announced in the global routing

system exceeded the aforementioned threshold [5] [6]. Approximately a year prior to that event,

on the launch date of its latest flagship core router, a dominant network equipment vendor ad-

mitted that the product’s interface cards based on a newly designed, state-of-the-art application-

1

Introduction

specific integrated circuits (ASIC) would not be capable of line rate packet forwarding, but had

to be designed oversubscribed at a greater than 1:2 ratio in terms of packets per second for-

warding rate capacity [7], far from the full line rate minimum-sized packet forwarding capacity

which previously stood among the paramount requirements and performance metrics for core

Internet routers since the turn of the century. Even as link speeds progress from 100 to 200

and 400 Gbit/s, the high complexity, risks and enormous costs of developing new ASIC routing

hardware are reflected in the difficulty of the industry to deliver improved chips. For example,

the Cisco’s flagship nPower X1 ASIC from 2013 still has no publicly announced successor at

the time of this writing (early 2019).

Software based routers have lost the performance parity with their hardware-based counter-

parts more than two decades ago. The technological advances in link speeds, in particular 10

Gbit/s Ethernet becoming ubiquitous in recent years, made the already known performance lim-

itations of the traditional network stacks in general purpose operating system (OS) kernels more

pronounced. As an example, while a general-purpose OS may successfully forward minimum-

sized packets at line rates or emulate networked environments operating in 1 Gbit/s range in

real time, it typically struggles with faster link speeds. The measurements the author performed

on the FreeBSD operating system (the reference platform used in the experiments throughout

this thesis) revealed that its packet forwarding throughput is currently limited to around 1 mil-

lion packets per second (Mpps) per central processing unit (CPU) core, and that it saturates at

even lower speeds if packet filtering is applied, while exhibiting relatively poor scaling proper-

ties when running on multicore CPUs. This is consistent with our earlier experiments [8] [9],

while others, e.g., Bianco et al. [10]; Bolla et. al. [11]; Brouer [12] observed similar levels of

performance in different operating systems. Since a single 10 Gbit/s Ethernet packet flow may

require processing up to 14.88 Mpps unidirectionally, the widening performance gap between

link speeds and capabilities of contemporary operating systems becomes more palpable.

Advances [13] [14] [15] in improving packet processing efficiency in software have demon-

strated that modern commodity CPUs and network interface cards may indeed be capable of

absorbing and forwarding packet flows at around 10 Gbit/s line rates. The key to achieving

higher throughputs seems to be in blending together several techniques aimed at lowering the

effective per-packet handling overhead: processing packets in batches, by carefully engineered

data prefetching, minimizing lock contentions, and bypassing the OS network stack altogether.

Nevertheless, packet forwarding based on IPv4 (and IPv6) routing lookups is still deemed too

demanding a task for a purely software implementation above 10 Gbit/s speeds with large rout-

ing tables characteristic for today’s Internet exchange points, so the spectrum of different pro-

posals ranges from offloading routing lookups to general-purpose (GP) graphical processing

unit (GPU) hardware [14] to distributing the load among multiple physical machines [13] for

increased aggregate throughputs.

2

Introduction

Examining IP routers [16] as a particular category of packet processors, especially in soft-

ware based implementations, reveals that IPv4 (and subsequently IPv6) next hop lookups have

become a major performance bottleneck already more than two decades ago. The Classless

Interdomain Routing (CIDR) [2] principle mandates that an Internet router must select a next

hop associated with the most specific network prefix matching the each packet’s destination

address, i.e., perform a longest prefix matching (LPM) search in the entire routing database. In

routers participating in global routing information exchange via the Border Gateway Protocol

(BGP) [17] the size of the routing (forwarding) database as of today exceeds 760,000 prefixes,

and the prefix count growth shows no signs of abating. As early routing database structures and

algorithms (such as [18]) were designed to balance lookup throughput and database updating

efficiency, they could not cope with the explosive growth of both BGP table sizes and increas-

ing link speeds. In late 1990s, following a few proposals for more efficient routing lookups in

software, such as [19] [20], which soon become impractical due to swift increases in BGP table

sizes, both the research community as well as the network equipment industry shifted their fo-

cus to hardware-based routing lookup schemes and implementations, a trend which continued

up to the present time.

While hardware-based routing lookup methods, for example [21] [22], have solved the per-

formance issues in the past and continue to be applied successfully in various flavors in mod-

ern high-performance Internet routers, they generally exhibit several significant shortcomings.

First, hardware-based lookup implementations must balance the room for future growth in rout-

ing table sizes and link speeds within constrained power (current consumption) and thermal

(heat dissipation) envelopes. Moreover, such implementations are generally prohibitively ex-

pensive and thus reserved only for carrier-grade Internet routers. And finally, hardware-based

routing lookup solutions lack the flexibility which is called for in the emerging virtualization

and software defined networking (SDN) [23] scenarios and applications. As a consequence,

experimentation and innovation in high-speed routing has gradually become constrained in the

realm of only a small and closed circle of network equipment vendors who can afford to develop

and build ASIC required for the job. Recent advances in field-programmable gate array (FPGA)

integrated circuit (IC) densities and speeds has led to proposals [24] which are moving experi-

mentation with network processing in hardware again closer within the reach of the academic

research community and smaller companies, but still at more than an order of magnitude lower

speeds as compared to top of the line commercial routers.

This thesis revisits the capabilities and limitations of modern commodity microproces-

sors for routing lookup applications by proposing a class of efficient longest prefix matching

schemes, and subjecting them to a thorough empirical performance evaluation. The practical

result is a polyvalent implementation, embodied both as a C library, and as a lookup element in

the Click [25] modular router, validated for correctness of operation by comparing the lookups

3

Introduction

against the proven (yet slow) PATRICIA trie variant [18] borrowed from the FreeBSD OS, us-

ing real-life, full-view BGP snapshots obtained from various open Internet exchange points.

The proposed class of schemes outperform other common software IPv4 LPM implementa-

tions, particularly when running on multi-core commodity CPUs, where near linear scaling in

lookup throughput gains can be observed. The small memory footprint of the proposed lookup

structures makes them particularly suitable for both network virtualization scenarios, and for

scenarios where cascaded lookups in multiple databases may be required on a single packet

forwarding or real-time traffic analysis datapath.

1.2 Thesis overview

The thesis is organized as follows:

The second chapter examines the key properties of contemporary mainstream microproces-

sors with emphasis on the widening access speed gaps across memory cache hierarchies, and

attempts to establish guidelines for data structure and access pattern design aimed at extracting

the most of the performance potential from the abundance of execution cores and symmetric

multithreading support available in modern CPUs.

The third chapter introduces the Direct-eXtend-Range (DXR) LPM lookup scheme, presents

its fundamental principles of operation, motivates the design choices, and discusses implemen-

tation tradeoffs. That chapter is based on and contains revised material from the author’s initial

work [26] as well as from the more recent paper [27].

The fourth chapter discusses further optimization options, which include tradeoffs between

memory footprint reduction through data deduplication at the expense of an additional search

step, along with implementational microoptimizations which aim at further compensation of

memory access latencies in a single instruction stream through batching and prefetching. The

impact of the optimizations is dissected through performance analysis under a set of different

operating conditions, which also includes a comparison of DXR with other routing lookup

schemes.

The fifth chapter discusses the possibilities for DXR’s application in data processing datap-

aths.

Chapter six describes the related work in the field, followed by concluding remarks pre-

sented in the seventh chapter.

4

Introduction

1.3 Summary

The contributions of this thesis include:

∙ A new class of algorithms and compact data structures for high-speed IPv4 routing lookups

in software;

∙ Practical implementations of two parametrizable DXR lookup scheme variants, as ready-

to-use software libraries or Click elements, and their empirical validation for correctness

of operation;

∙ A thorough analysis of lookup throughput of various DXR configurations running on

diverse commodity CPUs;

∙ Improvements in efficiency of software packet processing datapaths by extracting more

performance from spatial and temporal parallel processing capabilities of general-purpose

CPUs.

5

Chapter 2

Packet processing software: a hardware
perspective

Internet router vendors had to work hard to start introducing 100 Gbit/s interfaces to the mar-

ket, yet providing sufficient routing lookup throughput remains among the major challenges

in designing router interface cards for even higher speeds (200, 400 Gbit/s and above). To

forward minimum-sized IPv4 packets at 400 Gbit/s Ethernet line speed, a core Internet router

must perform 579 million routing lookups per second (Mlps) in a database which today con-

sists of approximately 760,000 network prefixes [28] and is continually growing, as shown in

Figure 2.1. This requirement is more than four times higher than the capacity of a dedicated,

state-of-the-art router ASIC from a dominant vendor, which is reportedly limited to 140 Mlps

of unidirectional packet forwarding, or 280 Mlps bidirectional [7].

The evolution of routing ASICs is bounded not only by technological challenges in contem-

porary silicon design and power dissipation management issues at peak operating conditions,

but also by the long, complex and risky development cycles, as well as prohibitively high cost

of access to advanced silicon manufacturing processes, which permits only a handful of core

router vendors to invest in the increasingly expensive design efforts. Consequently, smaller

companies and especially academia are faced with a practically impenetrable barrier of entry to

innovation in the field of high-performance router design, which negatively impacts the pace of

further technological advances.

Compared to software-based routers, a significant drawback of routing ASICs is their rela-

tive inflexibility, which becomes more pronounced as network operators embrace various levels

of routing function virtualization, and as the ability to quickly respond to unpredictable mali-

cious threats and security challenges is becoming vital to real-world network operations.

A considerable interest has therefore arisen in (re)exploring the feasibility of utilizing general-

purpose CPUs in the forwarding path of high-performance routers, a concept which has been all

but abandoned around two decades ago, as it was deemed by far too slow for the rapid increases

6

Packet processing software: a hardware perspective

Figure 2.1: The growth of the global IPv4 BGP routing table as of 09/2018. The current trend indicates
an annual growth of approximately 50,000 prefixes. Source: BGP Routing Table Analysis Reports [28]

in transmission rates. However, compared to their counterparts from 15 years ago, contem-

porary multi-core general-purpose CPUs offer a significantly improved performance potential,

which an increasing number of recent proposals [29] [30] [31] [26] aim to leverage to offer

routing lookup throughputs which rival or exceed the performance of dedicated router ASICs.

The rest of this chapter focuses on key architectural aspects of contemporary commodity

CPUs, aimed at identifying both the potential for efficient resolving of queries in large routing

databases, as well as identifying pitfalls which should be avoided when designing data structures

and the accompanying lookup algorithms.

2.1 Moore’s law demise

For the past five decades, the semiconductor technology has been improving at a pace which

enabled transistors per area density to roughly double every two years, a rule of thumb which

has been colloquially known as the Moore’s law [32]. Today’s top-of-the-line CPUs are being

produced with transistor geometries which are only 14 nm or 12 nm accross. However, as

the manufacturers are having a hard time to further shrink the semiconductor process node,

there’s a widespread consensus that the already faltering Moore’s law is about to halt in the near

future [33].

As visible in Figure 2.2, even with manufacturing processes considered mature by today’s

standards, steady increases in microprocessor clock frequencies characteristic for the the past

century already hit the ceiling more than a decade ago at around 3.5 GHz [34].

7

Packet processing software: a hardware perspective

 4

 40

 400

 4000

1982 1988 1994 2000 2006 2012 2018
 10

 100

 1000

C
P

U
 /

 c
lo

c
k
 f
re

q
u

e
n

c
y
 (

M
H

z
),

 l
o
g

 s
c
a

le

L
it
o

g
ra

p
h

y
 p

ro
c
e

s
s
 n

o
d
e

 (
n

m
),

 l
o
g

 s
c
a

le

Year

Frequency (MHz)
Litography (nm)

6

16

33

100

60

200
233

450
600

1400

2000

3800
3200 3600 4000

3400

80286

386DX

486DX

486DX4

Pentium

PPro
P-II

P-II
P-III

P-III

P-4

P-4
i7-965FX-8150i7-6700K

TR-1950X

Figure 2.2: Evolution of commodity CPU clock frequencies. Manufacturing process geometry is indi-
cated as crosses vertically aligned to each processor, ranging from 1500 nm in 1982 down to 14 nm node
which was first introduced in 2015. Sources: Intel and AMD online product sheets.

Reductions in transistor sizes of more than two orders of magnitude (from 180 nm to 14

nm) over the past decade and a half yielded only a two-fold improvement in processor speeds

(from 2 GHz to 4 GHz) due to numerous factors, including wire propagation delays starting

to dominate timing budgets at tiny process geometries, ever increasing static leakage currents,

enormous dynamic power dissipation per area which became increasingly difficult to manage,

timing uncertainties in clock distribution trees, etc. [35].

The same set of technological problems is making advances in ASIC performance just as

difficult as with the CPUs. However, the microprocessor industry has so far kept itself ahead of

the ASIC world by at least one process technology node, due to the economies of scale which

permitted CPU vendors to pour more money in the adoption of newer silicon manufacturing

processes, to introduce more advanced products faster to the market, and to compensate for

lower yields when moving to finer process geometries.

2.2 Parallelism in contemporary CPUs

Faced with the inability to continue leveraging clock frequency increases for extracting more

performance, CPU designers shifted their focus to less rewarding areas and concepts, such as

reducing branch penalties by shortening execution pipelines, increasing cache sizes, extract-

ing more single-stream instruction-level parallelism (ILP) by increasing the number of parallel

8

Packet processing software: a hardware perspective

functional units, introducing advanced memory prefetch and branch prediction units etc.

However, the most notable differentiator between contemporary lower-end, low-power, em-

beddable CPUs, and their general-purpose counterparts which power today’s laptops, worksta-

tions and datacenters, is the ability of the later to speculatively execute instructions far beyond

of unresolved data dependencies, a technique known as out-of-order instruction scheduling and

execution (OoO). Combined with the abundance of memory load / store buffers found in modern

CPUs [36], OoO is the key mechanism which offers an effective compensation for a dramatic

mismatch between CPU clock frequencies and slow main memory access times, provided that

data access patterns are designed, and the programs are written and compiled in a manner which

permits speculative execution deep into an instruction stream, i.e., without excessive data inter-

dependencies. Nevertheless, it was established early on that ILP and OoO have firm limits,

which may vary widely depending on the workload type and effectiveness of compiler opti-

mizations, but in general for integer applications can be expected to rarely exceed the range

between two and three instructions per cycle (IPC) [37].

The recent series of discoveries revealing a whole class of security vulnerabilities in contem-

porary CPU hardware, which elaborate various side-channel exploits of speculative execution

hardware mechanisms [38] [39] [40], prompted responses from CPU vendors which in one

form or another disabled or crippled certain speculative execution hardware blocks in attempts

to prevent, or at least minimize, the possibility of data leakages to unauthorized applications. It

is therefore reasonable to expect that further advances in single-thread computing performance,

i.e., in ILP, which have been bound to speculative execution techniques and machinery, will

remain marginal if not negative in the foreseeable future.

Realizing that microarchitectural innovations are likely to yield only incremental improve-

ments in effective single-thread performance, approximately a decade and a half ago the whole

CPU industry shifted towards integrating multiple processing cores en masse on a single silicon

die. Therefore, as shown in Figure 2.3, a modern general-purpose processor consists of several

execution cores sharing usually three levels of cache hierarchy, along with external memory

controller(s), peripheral interfaces, interrupt routing and multiprocessing synchronization units,

among other subsystems.

Each physical execution core typically appears as two virtual cores (threads) to the operating

system or application software, although the virtual cores share the same execution units in

various time-division schemes, all aimed at finding some useful work to do in times of pipeline

stalls due to excessive memory access latencies. Cache blocks closer to execution cores are

smaller in size but provide faster response to data access requests. The largest, third level (L3)

cache, depicted as a single unit in Figure 2.3, in practice usually comprises multiple smaller

blocks bonded together via a high-speed interconnect, which may be of ring, point-to-point,

or some other topology, the choice of which varies among CPU vendors and their product

9

Packet processing software: a hardware perspective

Figure 2.3: A simplified structural diagram of a typical general-purpose contemporary microprocessor,
comprising multiple execution cores, a hierarchy of cache memories, and external interfaces. First-level
(L1) instruction (I$) and data (D$) caches are separated. Second (L2) and third (L3) caches are unified.

lines [41]. Throughout the memory hierarchy, the main unit of work in hardware interconnects

and synchronization machinery is a cache line, an aligned array of 2N bytes, where the industry

appears to have settled on 64 byte blocks as the line size.

Adding more and more cores, regardless whether on a single CPU die or in various multi-

die / multi-chip topologies, is far from a trivial endeavor, given that all processing cores in

general-purpose computing systems must have the ability to access the whole system’s main

memory using an uniform addressing scheme, a concept colloquially known as symmetric mul-

tiprocessing (SMP). As the number of computing cores rise, the more challenging it becomes

to efficiently maintain cache coherency and synchronization throughout the memory hierarchy,

which itself gains further complexity by partitioning execution cores among separate silicon

dies, each typically with its own (local) memory controller, in topologies known as non-uniform

memory access (NUMA) [41].

2.3 Memory hierarchies and latencies

In contrast to increases by several orders of magnitude in microprocessor clock frequencies, as

well as both cache sizes and speeds, which took place over the past four decades, contemporary

dynamic random access memory (DRAM) has roughly the same access latencies as their ancient

predecessors, at around 50 ns. Effective random access latency as observed from a software

thread is somewhat higher, as each request and the corresponding data has to pass through all

levels of cache hierarchy which further adds up to the total delay [42].

Memory access latencies of several contemporary microprocessors were characterized us-

ing a trivial program which populates a large memory pool with random data and then accesses

it inside a timing loop in a way which makes each subsequent memory access dependent on

the previous one, thus preventing out-of-order execution mechanics from pipelining or inter-

10

Packet processing software: a hardware perspective

Table 2.1: Characterization of microprocessor cache hierarchies and access latencies. The results are in
line with data put forth in Intel’s reference manual [36], which estimates L1, L2 and L3 cache latencies at
4, 11 and approx. 34 cycles respectively. The AMD ThreadRipper 1950X CPU includes two silicon dies
in a single package, and exhibits increased DRAM latency when accessing physical memory on a die
adjacent to the one where the test program was executing, so two DRAM latencies are reported, "local"
and "far".

Level 1 Cache Level 2 Cache Level 3 Cache DRAM

Cores / Clock Size Latency Size Latency Size Latency Latency

Processor Year Threads GHz KB cycles ns KB cycles ns KB cycles ns cycles ns

Intel i5-3210M 2012 2 / 4 2.5 32 7 2.9 256 13 5.3 3072 24 9.7 214 85.8

Intel i3-4150 2014 2 / 4 3.5 32 9 2.6 256 16 4.6 3072 35 10.1 243 69.6

Intel i7-4771 2013 4 / 8 3.5 32 9 2.6 256 16 4.6 8192 38 10.9 260 74.3

Intel i7-5930K 2014 6 / 12 3.5 32 9 2.6 256 15 4.3 15360 51 14.6 263 75.2

Intel E5-2658 2013 10 / 20 2.4 32 9 3.8 256 16 6.7 25600 46 19.2 237 98.8

AMD R7-1700 2017 8 / 16 3.4 32 10 3.0 512 21 6.2 2 * 8192 43 12.7 352 103.8

AMD TR-1950X local 2018 16 / 32 3.4 32 8 2.4 512 14 4.2 4 * 8192 46 13.6 296 87.3

AMD TR-1950X far 2018 16 / 32 3.4 32 8 2.4 512 14 4.2 4 * 8192 46 13.6 452 133.2

leaving multiple memory accesses. The offset from the previous memory address is alternating

from positive to negative, which in addition to randomness harvested from previous reads is

aimed at preventing the hardware prefetch units from predicting the location(s) of next memory

access(es), initiating such reads speculatively, and thereby compensating for a portion of the

effective access latency. The results, presented in table 2.1, indicate that on all tested platforms

a DRAM read access would cause a software thread to stall for around 250 clock cycles or at

least 70 ns, whichever is longer, unless the CPU’s execution scheduler would be able to find

instructions not depending on the data in flight from the DRAM and execute those instructions

out-of-order. The measurements further show that consistently across all observed platforms

each cache level has access latencies approximately double of its counterpart closer to the CPU

core, and that DRAM access latency is nearly an order of magnitude longer (slower) than a

last-level cache hit.

The physical external memory is inherently partitioned into uniform banks (typically 8 in-

ternal banks per chip for modern double data rate (DDR) DRAM memory). The banks can

be accessed in an interleaved manner, i.e., while one bank is blocked due to access latency,

data can be written to or read from another bank on the same memory chip. A memory con-

troller typically uses an interleaved addressing mapping scheme in order to scatter contiguous

data blocks over multiple banks, in an attempt to permit multiple threads, or multiple out-of-

order requests from a single thread, to make progress while one bank is blocked. Similarly,

consumer-grade microprocessors offer multiple (typically two to four) independent physical

memory channels, which can be configured for (again) interleaved addressing scheme, permit-

ting further parallelism or better compensation for lengthy random access cycles. The details

of low-level memory interleaving machinery have been traditionally opaque to the operating

11

Packet processing software: a hardware perspective

 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads

Ryzen 1700
Ryzen 1700

Xeon E5-2658
Xeon E5-2658

Figure 2.4: The effects of scheduling routing lookup worker threads on virtual SMT cores. In the first ex-
periment, for each of the two microprocessors (AMD Ryzen, Intel Xeon) the workload was scheduled on
idle physical cores until all became busy, followed by scheduling a second thread with identical workload
on each simultaneous multi-threading (SMT) core, leaving a pronounced "knee" in aggregate through-
put increase for the second half of worker threads. In the second experiment, identical worker threads
were scheduled sequentially in pairs on idle cores, which can be observed as staircase-like throughput
increases.

system or application level programs.

Modern CPU cores include resources for multiple (typically two) SMT hardware threads to

share the same execution infrastructure utilizing an opaque time-division scheduling scheme,

which permits the core to remain utilized in situations when a single thread can not make further

progress while waiting for data to arrive from higher levels of cache hierarchy or from external

DRAM [43]. The extent to which such a scheduling scheme can make use of otherwise idle

CPU cycles, is both hardware and workload dependent. SMT does not come for free, as it

typically mandates partitioning L1 caches in two smaller and independent logical blocks, which

unavoidably negatively impacts single-thread performance.

As an illustration, the impact of scheduling threads to SMT virtual cores can be observed in

Figure 2.4. In the specific experiments presented here, scheduling a second worker thread on a

single physical core yielded an increase in table lookup throughput of around 40%, compared to

nearly linear scaling (99.7% increase) when the second thread would be scheduled on a separate

and otherwise idle physical core.

2.4 Recommendations

Extracting performance from modern microprocessors calls for careful design of data structures

and the accompanying algorithms and access patterns, which have to be closely matched to the

underlying physical machine structures. A set of guidelines is summarized here based on afore-

mentioned properties and limitations of contemporary microprocessors, based on observations

12

Packet processing software: a hardware perspective

obtained from the experiments described in later chapters, as well as backed by reports from

other authors in the field.

∙ Single-thread performance (ILP) on general-purpose computing platforms is stagnating

and is unlikely to further improve in the foreseeable future, therefore significant advances

in processing performance may be obtained only by designing data structures and algo-

rithms which are suitable for scalable parallel execution on multiple computing cores.

∙ DRAM random access latency is the major processing performance obstacle in most

packet processing applications, which becomes more pronounced with concurrent access

from multiple execution cores as congestions form in memory controller blocks [42].

Hence, keeping both shared and thread-local data working sets as small as possible helps

to minimize data spilling from higher levels of cache hierarchies to the lower ones, or to

the main memory.

∙ Sharing of read-only, or read-mostly data between execution cores improves L3 cache

effectiveness compared to maintaining a separate copy of data for each core (but not

necessarily on NUMA topologies). However, multiple threads should avoid sharing the

same cache lines with frequent write patterns, as this will trigger excessive synchroniza-

tion traffic and incur high access latencies until cache synchronization operations com-

plete [44] [45].

∙ Keeping the data structures small helps not only to achieve high data cache utilization, but

permits consolidation and promotion of smaller (4K) memory pages into virtual memory

(VM) objects of bigger size (1M to 4M) which are often called superpages, provided the

structures may be organized in a contiguous block of memory. Utilization of superpages

may significantly reduce the occurrence of translation lookaside buffer (TLB) spills and

refills and thus improve performance [46].

∙ In cases when location of data which will be required within a short timeframe can be

computed in advance, the CPU can be instructed to start fetching such data while other

unrelated computations take place, thus preempting excessive memory load stalls. The

technique should be used with care as data prefetched too far in advance may be displaced

from the buffers / cache by the time it is actually needed, effectively doubling the required

traffic throughout the cache hierarchy [45] [15].

∙ Branches hurt performance, especially those dependent on data which has to arrive from

main memory. Branch predictors in modern CPUs may be reasonably accurate for a

broad range of general-purpose workloads, thus permitting for speculative execution far

ahead of unresolved data dependencies. Nevertheless, when dealing with unpredictable

data, such as streams of random keys in LPM applications, the value of branch predictors

diminishes. Hence, if branches are unavoidable, the data they depend upon should be

already in L1 caches.

13

Packet processing software: a hardware perspective

∙ With the general-purpose computing industry converging to 64-bit CPU architectures, the

lavish use of pointers should be revisited. The problem with pointers is two-fold. First,

being 8 bytes wide, pointers carry little useful information for the amount of memory they

consume, and often significantly contribute to the large footprint of data structures based

on their excessive use. And second, use of pointers promotes scattering of data struc-

tures over broad spans of memory addresses, which may exacerbate data access stalls,

as random access latencies to main memory are measured in hundreds of wasted CPU

cycles. Replacing pointers with (smaller) indices in linear arrays may significantly re-

duce memory footprints. Today’s CPUs provide efficient bit manipulation instructions

which make it feasible to instantly extract smaller bit groups (such as array indices) from

naturally (power-of-two) aligned fundamental data types, so attempts should be made to

compactly encode data, even if that requires unnatural splits inside 16, 32 or 64-bit words.

∙ Relying on memory access requests to complete within a fixed timeframe is no longer a

practical goal on moder CPUs, because memory subsystem latencies cannot be guaran-

teed to be bounded as the increasing number of cores compete for the shared main mem-

ory. Cache synchronization and coherency mechanisms may further interfere with intro-

ducing additional delays, and structural competition between SMT contexts for shared

execution units on a single CPU core adds more variance to the problem. Last but not

least, packet processing systems will typically operate under significant direct memory

access (DMA) load originating from network interface card (NIC)s. Therefore, latency

variations must be offset by introducing sizeable queues between hardware and software

components of packet processing datapaths.

14

Chapter 3

Direct-Rrange longest prefix matching
lookups

The author’s interest in improving the performance of software packet datapaths originates from

his earlier work on network stack virtualization in the FreeBSD OS kernel [47], and subsequent

collaboration on control and data plane integration between the eXtensible Open Router Plat-

form (XORP) [48] and Click [25] platforms.

The routing database (most often colloquially referred to as a "table") in the FreeBSD OS

is based on an implementation of Practical Algorithm to Retrieve Information Coded in Al-

phanumeric (PATRICIA) tree [18], which was originally designed to provide a flexible means

of storing, indexing, and retrieving information in a large file, while not requiring rearrange-

ment of text or index as new material is added or deleted [49]. Adoption of such an algorithm

for dual-purpose role, i.e., serving as a main routing database, and servicing routing lookups on

per-packet basis in the data plane, was an optimal engineering choice at the time when commu-

nication links were slow by today’s standard. In the era when 10 megabits per second (Mbps)

Ethernet and 16 Mbps Token Ring were the fastest (local) network technologies and routing

tables were minuscule from today’s perspective, supporting packet rates which would rarely

exceed 10 thousand packets per second (kpps) was within the reach of an algorithm with search

time bounded by the length of the search key, i.e., 32 bits in the particular case of LPM lookups

for IPv4 addresses.

However, at the turn of the century this concept was no longer sufficient for sustaining

lookup rates in Mpps ranges associated with the ubiquitous 1 gigabits per second (Gbps) Eth-

ernet and the emerging faster link speeds. As the frequencies of routing table updates became

many orders of magnitude slower than packet rates in the data plane, a software incarnation of

the DIR-24-8 [21] [50] scheme was selected for implementation as a Click IPv4 lookup module.

The implementation uses two separate data structure groups, one for database maintenance, spe-

cialized for reasonably fast database updating, and the other for performing time-efficient LPM

15

Direct-Rrange longest prefix matching lookups

lookups. The comparatively high computational cost of reconstructing the lookup table from

the primary database was compensated by delaying the reconstruction process until the updat-

ing of the primary database was completed. For IPv4 address space sections which contain

only prefixes with prefix lengths of no more than 24 bits, and those (still) represent the bulk

of address space announced in the global routing system, the DIR-24-8 scheme resolves LPM

lookups in a single memory access, by using the most significant 24 bits of the key as the index

to a precomputed linear array of next hop data. For the small portion of address space corre-

sponding to prefixes with prefix lengths longer than 24 bits, another lookup in an auxiliary table

is performed. The scheme was originally designed for dedicated hardware which could be con-

structed so that multiple DRAM chips could be accessed in a parallel and / or pipelined fashion.

However, when implemented in software, the scheme does not take advantage of modern CPUs

caches, given that the size of its lookup arrays exceeds cache capacities. Nevertheless, due to its

simplicity it still significantly outperforms the traditional radix tries, like the BSD PATRICIA

variant, or the conceptually similar trie in the Linux kernel. DIR-24-8 thus remains a popular

choice in software packet processing platforms, not only in Click, but also as the standard LPM

lookup library in Data Plane Development Kit (DPDK) [45].

It was the experience with implementing the DIR-24-8 scheme as a Click module which

made the author aware of the potential of observing the entire IPv4 address space as a con-

tinuous sequence of disjoint address ranges, which could be compactly encoded while being

arranged in a manner which permits efficient LPM searching. Once it became obvious that the

microprocessor industry was heading towards integrating not only a few, but dozens of execu-

tion cores onto a single silicon die, surrounded by abundance of reasonably fast and spacious

local cache memory blocks, the idea was revisited, prototyped, and gradually further developed

over time. The rest of this chapter presents the key ideas behind the proposed LPM algorithm

called Direct-Range, shortened as DXR.

3.1 Prefix expansion into address ranges

DXR and its data structures stem from the aforementioned concept of projecting a routing table

onto a set of contiguous, non-overlapping address ranges covering the entire address span of a

network protocol. The address range containing the search key can then be found through bi-

nary search. The idea was already explored before by others, e.g., Lampson and Varghese [20],

and according to [51], until 2005. at least a few vendors have implemented this scheme into

hardware. In hardware, the use of a wide memory access (to reduce the base of the logarithm)

and pipelining (to allow one lookup per memory access) could have made this scheme suffi-

ciently fast for line speeds of that time, i.e., around 10 Gbps. However, the lack of significant

follow-up work suggests that this approach was not further pursued, particularly not as a soft-

16

Direct-Rrange longest prefix matching lookups

ware LPM method, possibly due to impractically large size of the proposed data structures (10

to 20 bytes per prefix [52]), combined with relatively high number of memory accesses, and the

high number of branches per lookup.

While the concept of binary search on address ranges is not new, the novelty in DXR is in

careful encoding of the routing information, so that address range descriptors consume small

amount of memory, and are organized in a way which inherently exploits cache organization

and hierarchies of modern CPUs in order to achieve high lookup speeds and parallelism of

execution on multiple processor cores.

Implementing a universal routing lookup scheme was never among the author’s goals: data

structures and algorithms described here have been optimized exclusively for the IPv4 protocol.

Direct lookups [21], which DXR relies upon to speed up the iterating process before proceeding

with binary search on address ranges, are infeasible with IPv6 due to longer keys and sparsely

populated address space (0.028%, vs. 66.17% for IPv4) [28].

3.2 Building the search data structure

A network prefix is commonly indicated as a pair {address / prefix length}, where the later is

the number of leftmost bits in the address to be matched against the key; the remaining bits are

ignored. The LPM principle mandates that among all the prefixes found in a routing database

which match the given key, the one with the longest (most specific) prefix length must be used

for selecting the target, which is usually a next hop (NH) in routing applications, or some other

tag or object relevant for making further decisions on packet’s fate.

Consider a sample routing database specified in a canonical {prefix, next hop} notation as

shown in Figure 3.1. Building of the search data structure begins by expanding all prefixes

from the database into address ranges, and taking into account that more specific prefixes take

precedence over less specific ones. This results in a sorted sequence of non-overlapping address

ranges which cover the entire IPv4 address space.

Note that the process is irreversible, i.e., unless the information about which table entry

corresponds to each range is stored along each range. In practice, if lookup speed is the main

design goal, and the size of the lookup structures is inversely proportional to the effectiveness of

CPUs caching mechanisms, the cross-reference from ranges to prefix table entries is omitted, as

that would consume precious space in the lookup structures. Hence, as it becomes impossible

to reverse the transformation using the information remaining in the range table, an auxiliary

prefix database as the storage from which the lookup structures can be derived must also be

maintained.

Encoding of address ranges in a form more compact than the one shown in Figure 3.1 is

possible. Assuming that the ranges are stored in a sorted contiguous linear array, which is

17

Direct-Rrange longest prefix matching lookups

 IPv4 prefix NH
1: 0.0.0.0/0 A
2: 1.0.0.0/8 B
3: 1.2.0.0/16 C
4: 1.2.3.0/24 D
5: 1.2.4.5/32 C

IPv4 address range NH
0.0.0.0 .. 0.255.255.255 A
1.0.0.0 .. 1.1.255.255 B
1.2.0.0 .. 1.2.2.255 C
1.2.3.0 .. 1.2.3.255 D
1.2.4.0 .. 1.2.4.4 C
1.2.4.5 .. 1.2.4.5 C
1.2.4.6 .. 1.2.255.255 C
1.3.0.0 .. 1.255.255.255 B
2.0.0.0 .. 255.255.255.255 A

=

Figure 3.1: An example of a transformation of routing information from a canonical prefix table form
into a sequence of contiguous address ranges. The process is non-restoring if only next hop information
is stored in range descriptors, while references to the originating prefixes are not. The illustrated range
encoding requires 10 bytes per range: 4 bytes for range base, 4 bytes for range end, and 2 bytes for a
next hop identifier, typically an index in a table of next hop specific objects.

already a prerequisite for efficient binary search, the end address of a range entry can be derived

from the start address of the next one. Therefore each entry only needs the start address (4

bytes) and the next hop (1 or 2 bytes to index an entry in an external next hop descriptor table),

for the total of max. 6 bytes per entry, as illustrated in Figure 3.2.

Base NH
0.0.0.0 A
1.0.0.0 B
1.2.0.0 C
1.2.3.0 D
1.2.4.0 C
1.2.4.5 C
1.2.4.6 C
1.3.0.0 B
2.0.0.0 A

IPv4 address range NH
0.0.0.0 .. 0.255.255.255 A
1.0.0.0 .. 1.1.255.255 B
1.2.0.0 .. 1.2.2.255 C
1.2.3.0 .. 1.2.3.255 D
1.2.4.0 .. 1.2.4.4 C
1.2.4.5 .. 1.2.4.5 C
1.2.4.6 .. 1.2.255.255 C
1.3.0.0 .. 1.255.255.255 B
2.0.0.0 .. 255.255.255.255 A

=

Figure 3.2: A more compact encoding of address ranges can be achieved by omitting the upper bound
of each range entry, as it can be determined from the lower bound of the subsequent one. Only 6 bytes
per address range are required.

Neighboring address ranges that resolve to the same next hop are then merged. In the exam-

ple shown in Figure 3.3, several ranges resolve to the same next hop "C", so the ranges can be

aggregated, thus further saving precious storage space. The process is performed transparently

during the rebuild of range table and its computational burden is neglectable. Most importantly,

the process is highly effective for real-world routing tables, as often many neighboring prefixes

point to the same next hop, due to excessive deaggregation which appears to be a common

(although unwelcome and highly discouraged) practice in today’s global BGP system [3].

Any routing table containing P prefixes generates no more than 2P+ 1 non-overlapping

ranges. Provided that such a table is kept sorted, it can be searched in logarithmic time in

the number of address range entries. With sizes of global BGP routing tables today exceeding

760,000 prefixes, the worst case results in 1.52 ·106 elements, about 9 Mbytes of memory and

18

Direct-Rrange longest prefix matching lookups

Base NH
0.0.0.0 A
1.0.0.0 B
1.2.0.0 C
1.2.3.0 D
1.2.4.0 C
1.3.0.0 B
2.0.0.0 A

Base NH
0.0.0.0 A
1.0.0.0 B
1.2.0.0 C
1.2.3.0 D
1.2.4.0 C
1.2.4.5 C
1.2.4.6 C
1.3.0.0 B
2.0.0.0 A

Figure 3.3: Neighboring ranges referencing the same next hop can be merged together, reducing the
memory footprint of the range table. The process is especially effective due to high degree of prefix
deaggregation in today’s BGP tables, many of which resolve to the same next hop.

20 search steps, both prohibitively large for the target search times.

3.3 Saving space and time

The next construction step is to shorten the search by splitting the entire range in 2K chunks,

and using the initial K bits of the address to reach, through a direct lookup table, with the range

table entries corresponding to separate chunks. The transformation is illustrated in Figure 3.4.

The concept of indexing the lookup tables with a relatively large portion of the IPv4 key was

inspired by DIR-24-8 [21], and is effective because of the small key size (32 bit). Compared

to DIR-24-8, DXR uses fewer index bits (K = 16..20 is used to choose a suitable space/time

tradeoff), resulting in smaller lookup tables so that the whole data structure can fit as high as

possible in the CPU cache hierarchy.

Base NH
0.0.0.0 A
1.0.0.0 B
1.2.0.0 C
1.2.3.0 D
1.2.4.0 C
1.3.0.0 B
2.0.0.0 A

Index NH
0000: A
00FF: A
0100: B
0101: B
0102: range
0103: B
01FF: B
0200: A
FFFF: A

K = 16
Base NH
1.2.0.0 C
1.2.3.0 D
1.2.4.0 C

...

...

...

...

...

...

Figure 3.4: Introduction of a direct lookup table reduces the number of iterations required to complete
the binary search. In the depicted example a direct lookup table hit is sufficient to resolve search for
the entire IPv4 address space, except for 1.2.0.0/16, which has to be resolved via binary search in a
corresponding range table chunk. Direct lookup table uses 4 bytes per entry for encoding the range
chunk’s position in the range table, as well as the chunk’s length.

Lookup table entries: Each entry in the direct lookup table must contain the position and size

of the corresponding chunk in the range table. 32 bits per entry are used, with 1 bit to indicate

the format of the chunk (see below), 12 bits for the size, and 19 bits for the position of the

19

Direct-Rrange longest prefix matching lookups

chunk in the range table. Chunks with only one entry bypass the range table (e.g., the entries

from 0x0000 to 0x0101, and entries from 0x0103 to 0xffff in Figure 3.4). A special value for

size indicates that the 19 bits are an offset into the next-hop table, i.e., that further iteration over

range table is unnecessary. In this case the lookup requires a single L2 or L3 cache access,

depending on direct table size.

This arrangement works for up to 219 address ranges after aggregation, and up to 4096

entries per chunk. These numbers should provide ample room for future growth. The decision

on how to split the bits can be changed at runtime when rebuilding the tables, and it is trivial

to recover extra bits, i.e., by artificially extending chunks so that they have a multiple of 2, 4, 8

entries, with negligible memory overhead.

Range table entries: With K bits already consumed to index the lookup table, the range table

entries only need to store the remaining 32−K address bits, and the next hop index. Thus, if

K ≥ 16 bits is chosen for the lookup index, and assuming each next hop can be encoded with

16 bits, 4 bytes suffice for these “long” entries. The example in Figure 3.5 shows the more

space-efficient encoding for the chunk covering the range for 1.2.0.0/16.

Index NH
0000: A
00FF: A
0100: B
0101: B
0102: range
0103: B
01FF: B
0200: A
FFFF: A

Base NH
1.2.0.0 C
1.2.3.0 D
1.2.4.0 C

...

...

...

...

...

...

Base NH
0.0 C
3.0 D
4.0 C

=

Figure 3.5: Provided that direct lookup table is indexed with at least 16 bits, this permits range descrip-
tors to be further compacted, by allowing range base encoding space to be reduced to only two bytes.
By the time the range table is accessed, the leftmost 16 (or more) bits of the search key will already be
resolved using the direct lookup table, therefore those bits are entirely redundant information for the rest
of the search process. 4 bytes per range descriptor are now sufficient: 2 bytes for range base, plus 2 bytes
for next hop info.

A further optimization is especially effective for large BGP views, where the vast majority

of prefixes are /24 or less specific, and the number of distinct next hops is typically small, as

indicated by prefix length distribution shown in Figure 3.7. If all entries in a chunk contain /24

or less specific ranges, and all the corresponding next hops references can be encoded in 8 bits,

a “short” format is used with only 16 bits per entry (the least significant 8 bits of each range

base are redundant and do not need to be stored in such cases). Figure 3.6 illustrates this case.

As mentioned, one bit in the lookup table entry is used to indicate whether a chunk is stored

in long or short format.

20

Direct-Rrange longest prefix matching lookups

Index NH
0000: A
00FF: A
0100: B
0101: B
0102: range
0103: B
01FF: B
0200: A
FFFF: A

...

...

...

...

...

...

Base NH
0 C
3 D
4 C

=

Base NH
0.0 C
3.0 D
4.0 C

Figure 3.6: Ranges which correspond to prefixes with prefix lengths of 24 bit or less are inherently
guaranteed to have all range bases with the 8 least significant bits set to zero. If all ranges in a chunk
also include references to next hops which can be encoded no more than 8 bits, the range descriptor’s
memory footprint can be reduced from 4 to only 2 bytes.

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 8 10 12 14 16 18 20 22 24 26 28 30 32

F
ra

c
ti
o

n
 o

f
p

re
fi
x
e

s

Prefix length

LINX
UOR

Figure 3.7: Distribution of prefix lengths for two of the linx.routeviews.org [53] BGP snapshots, April
2017. The majority of prefixes have a prefix length of 24 bits or less. The University of Oregon snapshot
has an unusually high proportion of prefixes with prefix lengths higher than 24, compared to other BGP
snapshots.

21

Direct-Rrange longest prefix matching lookups

3.4 Lookup algorithm

As described in the previous section, the two DXR’s main lookup structures are the fixed-size

(direct) lookup table, accompanied by the variable-length range descriptor table. Figure 3.8

shows the arrangement for K = 16, followed by C definitions of each table’s elements.

Figure 3.8: An example of DXR’s data structures. The lookup table has fixed size (2K 32-bit entries),
whereas the size of the range table is variable.

#define DESC_BASE_BITS 19

struct direct_entry {

uint32_t

fragments :(31 - DESC_BASE_BITS),

long_format :1,

base:DESC_BASE_BITS;

};

struct range_entry_long {

uint16_t nexthop;

uint16_t start;

};

struct range_entry_short {

uint8_t nexthop;

uint8_t start;

};

22

Direct-Rrange longest prefix matching lookups

The lookup algorithm is trivial: the K leftmost bits of the key are used as an index in

the lookup table. If the entry points to the next hop, the lookup is complete. Otherwise, the

(position, size) information in the entry select the portion of the range table on which to perform

a binary search of the (remaining bits of the) key.

Since range table entries are small (2 or 4 bytes), as the binary search proceeds, it becomes

more probable that the entries which remain to be accessed have already migrated from L3 / L2

to the L1 CPU cache, which inherently further speeds up the lookup process. Given that cache

line size is today 64 bytes long on virtually all general-purpose microprocessor platforms, the

small range entry size (2 or 4 bytes), means that the last 5 (or 4) search iterations are guaranteed

to be serviced from L1 cache, assuming the most compact DXR configuration (D16R) and

today’s distribution of prefixes and prefix lengths in the global BGP databases.

A similar effect will speed up fetching of descriptors for biger ranges from the DRAM. All

DRAM memories are phyisically organized in pages, which in modern silicon range from 512

bytes to 2 Kbytes. The first access to a DRAM page incurs a significant latency overhead, due to

the (slow) time required to fetch the entire page into a matchingly wide SRAM register. Once

the page data is in the register, it may be transferred from the DRAM chip towards the CPU

with significantly lower delay (around 20 ns) compared to the first access initiating "opening"

of a page, which typically lasts for 40 to 50 ns. The extent to which the algorithm will be

able to exploit hitting the already open DRAM pages depends on how the memory controller

maps multiple DRAM chips into the physical address space visible to the CPU, as different

implementations will follow different memory block interleaving strategies.

Given the lookup algorithm’s simplicity, and the brevity of its C implementation, it is pre-

sented here in its entirety. The key part, the binary search in a range chunk, tracks upper and

lower bounds of already probed range space, and narrows the pool of remaining ranges until

the lower and upper bounds converge. The body of the search loop is abstracted as a macro

(shown below) so that it can be applied for iterating over both short and long format ranges

without code duplication. Moreover, this approach allows for experimenting with manual loop

unrolling which may slightly improve the performance on some CPU microarchitectures. The

macro was chosen instead of an inline function because the former gets more efficiently blended

into loops by the current generation of C / C++ compilers (gcc, clang).

23

Direct-Rrange longest prefix matching lookups

#define DXR_LOOKUP_STAGE \

if (masked_dst < range[middle].start) { \

upperbound = middle; \

middle = (middle + lowerbound) / 2; \

} else if (masked_dst < range[middle + 1]. start) { \

lowerbound = middle; \

break; \

} else { \

lowerbound = middle + 1; \

middle = (upperbound + middle + 1) / 2; \

} \

if (upperbound == lowerbound) \

break;

In the actual lookup function implementation shown below, individual bit fields are ex-

tracted / masked manually from packed structures, in order to circumvent compiler inneficien-

cies, which in some cases can be observed as redundant bitmask or shift instructions being

emited.

The base index in the range table (rt) is extracted from the direct table (dt) lookup. If

the extracted index amounts to the reserved value (BASE_MAX), the next hop information is

encoded in the remaining bits of the (dt) entry, and the lookup completes.

Otherwise, depending on the format of the range chunk, different computation is performed

for determining the starting values for upperbound, lowerbound and middle for short and long

format ranges, as the former is twice more compact than the later. The iterative search then

begins, which is expanded from the DXR_LOOKUP_STAGE macro within (seemingly infi-

nite) do-while loops, which are terminated from within the macro as soon as the binary search

converges.

24

Direct-Rrange longest prefix matching lookups

int dxr_lookup(uint32_t dst , struct direct_entry *dt,

struct range_entry_long *rt)

{

uint32_t *fdescp; /* range fragment descriptor pointer */

int32_t nh;

uint32_t masked_dst , uint32_t upperbound , middle , lowerbound;

masked_dst = dst & DXR_RANGE_MASK;

fdescp = (uint32_t *) &dt[dst >> DXR_RANGE_SHIFT];

lowerbound = *fdescp;

nh = lowerbound >> (32 - DESC_BASE_BITS); /* nh == .base */

if (nh != BASE_MAX) {

if (lowerbound & 0x1000) { /* .long_format set? */

struct range_entry_long *range;

upperbound = lowerbound & 0xfff; /* .frags */

range = &rt[nh]; /* nh == .base */

middle = upperbound / 2;

lowerbound = 0;

do {

DXR_LOOKUP_STAGE

} while (1);

nh = range[lowerbound]. nexthop;

} else {

struct range_entry_short *range;

middle = lowerbound & 0xfff; /* .frags */

masked_dst >>= 8;

range = (struct range_entry_short *) &rt[nh];

upperbound = middle * 2 + 1;

lowerbound = 0;

do {

DXR_LOOKUP_STAGE

} while (1);

nh = range[lowerbound]. nexthop;

}

} else

/* nexthop is encoded in the fragments field */

nh = lowerbound & 0xfff; /* .frags */

return (nh);

}

25

Direct-Rrange longest prefix matching lookups

3.5 Updating

DXR’s lookup structures store only the information necessary for resolving LPM searches, so

a separate database which stores detailed information on all the prefixes is required for rebuild-

ing the lookup structures. DXR uses the proven PATRICIA radix tree implementation already

available in FreeBSD as a reasonably portable C library (usable in both kernel and user space

applications) which is well suited for that purpose, although in principle other routing database

formats could work with DXR as well.

Updates (additions and removals of individual prefixes) are handled as follows: first, updates

covering multiple chunks (prefix length < K) are expanded in smaller entries, each covering a

single chunk; then each chunk is processed independently and rebuilt from scratch.

The process of rebuilding a chunk begins by finding the best matching route for the first

IPv4 address belonging to the chunk, translating it to an range table entry, and storing it on a

heap. The algorithm then continues to search the primary database for the next longest-matching

prefix, until the search falls out of the scope of the current chunk. As more prefixes are found, if

they point to the same next hop as the descriptor currently on the top of the address range heap,

they are simply skipped over, until a prefix pointing to a different next hop is encountered. This

allows for very simple yet surprisingly efficient aggregation of routing information, and is the

key factor which contributes to the small footprint of the lookup structures. If the range table

heap contains only a single element when the process ends, the next hop can be directly encoded

in the lookup table, and the range table heap may be released.

The rebuild time can be reduced by coalescing multiple updates into a single rebuild (this

was implemented by delaying the reconstruction for several milliseconds after the first update is

received), and processing chunks in parallel, if multiple cores are available (this does not reduce

the total work but does reduce the wall clock time).

A suitable tradeoff between lookup table size and reduction in number of remaining iterative

search steps can be tuned by choosing an appropriate value for K. As reducing the effective

memory access latency depends on enabling data structures to reside as high as possible in the

CPU cache hierarchy, in practice the most useful choices for K have been shown to be in 16 to

20 range, which corresponds to lookup structure footprints from around 1 to 5 MBytes, or 1.76

to 7.32 bytes per prefix, as shown in Table 3.2.

Table 3.1 shows the fraction of IPv4 address space which requires n binary search itera-

tions in the range table, for a range of DXR configurations depending on parameter K. As K

increases, both the size of the range table, and the fraction of address space which has to be

resolved via binary search gets reduced.

For the most compact configuration, D16R (K = 16), in the worst (and highly unlikely)

case resolving a lookup may require 8 iterations. Assuming that the corresponding range chunk

26

Direct-Rrange longest prefix matching lookups

Table 3.1: Fraction of addresses that require exactly n iterations in the binary search (n = 0 means a
match in the direct lookup table). Size of the range table is shown in colum 2. Distribution based on
the September 2018 snapshot of a forwarding information base (FIB) from a Equinix Internet Exchange
(EQIX) router.

K bytes 0 1 2 3 4 5 6 7 8

16 809308 71.413% 2.090% 5.127% 5.177% 5.165% 5.075% 3.911% 1.973% 0.069%

17 804060 77.556% 2.145% 5.051% 4.724% 4.449% 3.721% 2.229% 0.126% 0%

18 784448 83.136% 2.269% 4.556% 3.894% 3.511% 2.399% 0.234% <0.001% 0%

19 735420 88.229% 2.007% 3.594% 3.290% 2.466% 0.412% 0.001% 0% 0%

20 625428 92.140% 1.555% 3.210% 2.452% 0.639% 0.002% <0.001% 0% 0%

21 372600 94.863% 1.800% 2.412% 0.921% 0.003% <0.001% 0% 0% 0%

22 81912 97.299% 1.370% 1.325% 0.005% 0.001% <0.001% 0% 0% 0%

23 10012 98.697% 1.293% 0.008% 0.001% <0.001% 0% 0% 0% 0%

24 4548 99.996% 0.003% <0.001% <0.001% 0% 0% 0% 0% 0%

would be using the long format encoding (4 bytes per range), and given that cache line size is

64 bytes long, the data for the last 3 search iterations will be serviced from L1 cache. In other

words, worst-case number of L3 cache memory references will include a direct lookup table

reference, plus additional 5 accesses associated with the binary search, for a total of 6 of L3 and

3 L1 cache accesses in the final stage of the search process. Given the estimated L3 latency of

13.6 ns and L1 latency of 2.4 ns (Table 2.1), the total memory access latency of such worst-case

scenario amounts to 88.8 ns.

For the configuration which yielded the best average throughput on most CPUs (see next

section), D21R (K = 21), worst-case iteration count is reduced by 3 steps (with extremely low

occurence probability), i.e., by 3 L3 and 3 L1 accesses, which translates to 48 ns. A naive

analysis would translate this latency to approximately 20 Mlps of worst-case throughput, but

in practice, if a traffic pattern would focus on the tiny address space portion which requires the

most extensive binary search, the corresponding range chunks would migrate towards the L1

cache, reducing the latency to 6 ·2.4 or 14.4 ns, which corresponds to approximately 69.4 Mlps.

Given that OoO machinery might further hide some of that latency by pipelining consecutive

lookup requests, but that more time will be lost in (mispredicted) branches throughout the iter-

ative search process, worst-case lookup latency averaging in range of 20 ns could be taken as a

reasonable estimate.

The original DXR code was written in ANSI-C and targeted for execution inside the FreeBSD

kernel. The algorithm was recoded in C++ and implemented as a processing module inside the

Click modular router [25]. For simplicity, it was decided to retain the original BSD radix tree

code [18] as a backing store for the routing table, hence the ANSI-C implementation of BSD

tree was encapsulated in an additional Click class / element. Such an approach simplified the

27

Direct-Rrange longest prefix matching lookups

Table 3.2: Characterization of the DXR data structures for several different IPv4 routing tables. The
time to rebuild the lookup structures from scratch is also given, in milliseconds.

k = 16 (D16R scheme) k = 20 (D20R scheme)

Table IPv4 Next Footprint Direct Range fragments Build Footprint Direct Range fragments Build

snapshot prefixes hops (bytes) coverage short long (ms) (bytes) coverage short long (ms)

PAIX 2014 504818 58 879964 75.6 % 269536 19687 70.1 4636992 94.0 % 210208 5568 316.0

EQIX 2014 493049 58 807280 77.6 % 236388 18090 92.0 4563208 94.7 % 177834 3309 687.2

LINX 2014 513644 239 954568 75.3 % 269850 38181 98.7 4706452 93.8 % 237728 9173 758.9

PAIX 2017 675791 85 970664 73.3 % 313376 20442 94.1 4694696 93.0 % 237316 6440 501.0

EQIX 2017 672790 159 952136 73.7 % 302256 21370 120.0 4663640 93.2 % 220446 7111 911.3

LINX 2017 663729 560 1170504 73.0 % 280318 86931 120.4 4856504 92.7 % 293006 19047 900.4

UOR 2017 713253 34 1192072 72.4 % 287726 88619 102.1 4873896 92.6 % 286844 26476 524.3

EQIX 2018 739561 148 1071452 71.4 % 377030 13812 95.0 4819732 92.1 % 305498 3608 757.0

construction of a portable synthetic testbench. Implementation inside Click also resulted in

instant portability to other operating systems, such as Linux. The new implementation allows

multiple independent DXR instances to coexist inside a single Click configuration, which will

permit future experimentation focused on network function virtualization implications.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 16 17 18 19 20 21 22 23 24

R
a

n
g

e
 d

e
s
c
ri
p

to
rs

,
s
h

o
rt

 t
y
p

e
 (

2
 b

y
te

s
)

DXR configuration (K)

After aggregation
Before aggregation

Figure 3.9: Aggregation of short type range descriptors

As an improvement over the original implementation, the revised DXR/Click version im-

plements chunks as reference counted objects, which reduces the lookup structure’s memory

footprint by the size of each identical chunk copy. As the chunks are being rebuilt, new chunks

are compared against the existing ones, and if a match is found, a reference to an existing chunk

is used, while the newly allocated range entries are discarded. In practice, this has been shown

to yield virtually no impact with most compact (K = 16 or K = 17) lookup structure configura-

tions. However, for higher values of K the size reduction of range table becomes measurable,

especially for the chunks with short type encoding. The effect becomes significant beyond

K = 19, and compression ratios of nearly 90% are achieved for K = 22, as shown in Figure 3.9.

28

Direct-Rrange longest prefix matching lookups

The compression effectivenes improves with higher values of K because the number of ranges

per chunk decreases, and as the chunks get smaller, more of them happen to have an identical

layout for the lower bits of the lookup key.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16 17 18 19 20 21 22 23 24

R
a

n
g

e
 d

e
s
c
ri
p

to
rs

,
lo

n
g

 t
y
p

e
 (

4
 b

y
te

s
)

DXR configuration (K)

After aggregation
Before aggregation

Figure 3.10: Aggregation of long type range descriptors

The process is by far less effective for the chunks of long type, as shown in Figure 3.10.

Given that short type ranges dominate in volume over long type ones by an order of magnitude

(at least until K = 23), the ineffectivenes of long type range aggregation is not detrimental for

the overall data deduplication success.

The overall memory footprint of lookup structures for a range of DXR configurations is

shown in Figure 3.11.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 16 17 18 19 20 21 22

M
e

m
o

ry
 f

o
o

tp
ri
n

t
(M

B
y
te

s
)

DXR configuration (K)

EQIX BGP snapshot, 739561 prefixes, 148 nexthops

direct + range table size
range table size

Figure 3.11: DXR memory footprint as a function of K from 16 to 22, which yield lookup structures of
practical sizes. As K is increased, the size of range chunks decreases, and so does the number of iterative
search steps required for completing the lookup, at the expense of direct lookup table’s exponential
growth. Configurations with K > 22 are not shown, as their size, which exceed the capacity of even
largest L3 caches of contemporary CPUs, makes them useless for real-world applications.

Finally, the DirectIPLookup Click element which embodies the DIR-24-8 lookup scheme [21]

was also reimplemented from scratch. This was necessary since the original DirectIPLookup

29

Direct-Rrange longest prefix matching lookups

implementation (dating from 2005) could not build lookup structures corresponding to contem-

porary databases of around 760,000 prefixes in reasonably short timeframes. A fully functional

DirectIPLookup element permitted us not only to compare DXR against DIR-24-8 performance-

wise, but to check them both for correctness against the proven BSD radix tree implementation,

which led to discovery of several subtle bugs in the original DXR version, which were subse-

quently rectified.

3.6 Performance evaluation

Request patterns: Rather than relying on a specific traffic traces which typically exhibit ad-

dress locality, lookup performance was measured using synthetic streams of random IPv4 ad-

dresses. Large arrays (500 million entries) of precomputed random IPv4 keys were used, uni-

formly distributed across the entire address space excluding multicast and other reserved ranges.

The precomputation removed the cost of random number generation from the measurement.

During the tests, each CPU core issued lookup requests in a tight loop, reading keys from an

independent section of the array in order to avoid multiple worker threads synchronizing on the

same stream of keys, which could artificially increase CPU cache locality.

Lookup results were stored in a separate array, otherwise the CPU’s OoO machinery could

discard the results once the destination register would become overwritten, which would yield

unrealistically high throughput results. Hence, all the reported throughput levels include the

overhead of fetching the inbound keys, as well as storing the results back to memory.

Three different request patterns were used:

∙ RND (random): each key is looked up only once. The test loop has no data dependen-

cies between iterations, so that CPUs with OoO capabilites can achieve increased single-

thread throughput, primarily by pipelining memory access requests, which is enabled by

processing of lookup requests in batches. This workload tries to replicate the worst case

for a high performance router working in the core of the network, where flows are spread

across the entire IPv4 address space with minimum or no temporal locality.

∙ SEQ (sequential): same as RND, but the timing loop has an artificial data dependency

between iterations so that requests become effectively serialized. This pattern is meant to

emulate the behavior with individual lookups, or cases when a decision / branch must

be taken immediately based on the lookup result. Such behavior is also inherent to

CPUs without efficient out-of-order execution capabilities, where no instructions may

make progress ahead of unresolved memory fetches.

∙ REP (repeated): each key is looked up 8 times interleaved with 7 other keys from a sliding

window progressing over the precomputed array of random keys, constructed in the same

30

Direct-Rrange longest prefix matching lookups

way as for the RND test. This represents an optimistic situation where the majority of

requests can be served from L1 cache, but the sliding window method attempts to defeat

the CPU’s branch predictor from becoming overly trained and thus unrealistically precise.

This test attempts to mimic what might happen on a router handling a small number of

interleaved flows. The throughput levels observed using the REP test are in most cases

higher compared to RND tests using the same FIB database and DXR configuration. In

author’s opinion those results are of questionable value, since it is the RND test which

subjects the CPU caches and memory subsystem to the highest stress levels. However,

since a trend in recent publications is observable where other authors tend to rely on traffic

“patterns” and “traces” for relaxing the pressure on CPU caches in their experiments, and

reviewers apparently have no objections to such twists, benchmarks with certain locality

in the key stream may be useful for comparision against proposals and reports which do

not provide any insight on throughput with random lookup keys.

Databases: Prefixes with lengths of /24 dominate in all snapshots, followed by less specifics,

similar to two snapshots shown earlier in Figure 3.7. Since networks with prefix lengths more

specific than /24 typically originate from peering links between BGP speakers in Internet ex-

change points, they are less often globally announced. A 2017 snapshot from the University of

Oregon (UOREG) stands out from the rest by including a disproportionate amount of prefixes

with prefix lengths higher than 24, which also contributes to the total number of prefixes which

in that particular snapshot exceeds the average of other Internet exchange points by around

40,000, an anomaly which we did not further investigate. Instead, a London Internet Exchange

(LINX) snapshot from 2017 was chosen as the baseline for most of the experiments, since it

includes the largest number of unique next hops, and as such minimizes the opportunities for

route / range aggregation. More recently performed tests are based on snapshots from Septem-

ber 2018. Nevertheless, an experiment where the impact of routing table properties (the number

of prefixes and next hops) on aggregate lookup throughput was explored shows that the perfor-

mance variations with different snapshots are minimal (around 5%), as visible in Figure 3.12.

Hardware / OS: Most of the experiments and measurements were conducted on an 8-core, 16-

thread, 3.4 GHz AMD Ryzen 7 1700 with 8 Gbytes of RAM, and an quad-core, 8-thread, 3.5

GHz Intel i7-4771 with 16 Gbytes of RAM. Several other machines were also used for certain

tests, depending on their availability. Cache hierarchy characterization and other key info about

test machines were presented earlier in Table 2.1

Each timing test ran for 10 seconds (which in many cases amounts to a billion lookups per

CPU core, or more), averaging the throughput over the entire test. While the measurements had

very low variance (less than 1%), at these speeds even small changes in the test code, compiler

optimizations, or memory configuration may lose or gain 10% to 20% in the performance. For

31

Direct-Rrange longest prefix matching lookups

this reason, all tests ran on the same platform/compiler (FreeBSD 11.1-RELEASE, amd64,

clang/LLVM compiler version 6.0.0).

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 6 8 10 12 14 16

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD Ryzen 7-1700, D20R, RND test

PAIX 2014
EQIX 2014
LINX 2014
PAIX 2017
EQIX 2017
LINX 2017
UOR 2017

Figure 3.12: Aggregate lookup throughput for different BGP table snapshots as a function of the number
of active worker threads subjected to streams of uniformly random lookup keys. The reduced slope in
throughput increase beyond the 8th worker thread is due to a lower contribution of thread pairs scheduled
on simultaneous multi-threading (SMT) virtual cores.

 0

 50

 100

 150

 200

 16 17 18 19 20 21 22 23 24

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

DXR configuration: direct lookup bits (K), RND test

i5-3210M
i3-4150

i7-5930K
E5-2658

Ryzen 1700

Figure 3.13: Single-thread performance for different DXR configurations. LINX 2017 snapshot, RND
test (a stream of uniformly random keys). CPUs with more spacious L3 cache exhibit peak performance
with more bits of the lookup key used for direct indexing, as long as the overall size of the lookup
structures is lower than L3 cache size. Depending on the CPU, the performance sweetspot is the DXR
configuration for which the structures expand to approximately 0.5 of the CPU’s L3 cache size.

Figure 3.13 shows how the arrangement of DXR structures (parameter K) influences peak

single-thread lookup throughput, driven by a stream of uniformly random (RND) keys. The

same experiment was repeated on five machines with different core counts, cache sizes, clock

speeds and memory access latencies, as shown in Table 2.1. The machines with bigger L3

caches benefited more from DXR configurations with higher values of K, but as soon as the size

of lookup structures approached or exceeded the cache size, lookup throughputs collapsed due

to excessive latencies of fetching data from the external DRAM. As there were no dependencies

32

Direct-Rrange longest prefix matching lookups

between successive queries, even when data has to be fetched from cache layers far from the

processor core or even DRAM, out-of-order execution mechanics could begin to resolve the

next key, thus effectively interleaving several lookups.

 0

 20

 40

 60

 80

 100

 16 17 18 19 20 21 22 23 24

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

DXR configuration: direct lookup bits (K), SEQ test

i5-3210M
i3-4150

i7-5930K
E5-2658

Ryzen 1700

Figure 3.14: Single-thread performance for different DXR configurations. LINX 2017 snapshot, SEQ
test (each key is subjected to the lookup process 8 times in a sliding window of random keys).

Figure 3.14 shows the effects of introducing artificial dependencies between successive

lookups by logically XORing each key with the result of the previous query. In such a set-

ting the CPU’s out-of-order scheduler is prevented from pipelining memory reads since the

address of each memory read could not be computed before the previous lookup was com-

pletely resolved. The top effective throughput was significantly lower compared to operation

on independent keys (70 Mlps vs. 235 Mlps).

 0

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10 12 14 16

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD Ryzen 7-1700, RND test

D16R
D18R
D20R
D21R

DIR-24-8

Figure 3.15: Aggregate lookup throughput for DIR-24-8 and four different DXR configurations as a
function of the number of active worker threads, using LINX-2017 table snapshot (663729 prefixes, 560
nexthops) and streams of uniformly random lookup keys. The throughput with DXR configurations up
to K = 20 scales nearly linearly with additional CPU cores due to lookup structures fitting in cache
hierarchies, while D21R and DIR-24-8 are limited by DRAM’s random access throughput.

The choice of parameter K determines how the algorithm scales on multiple execution cores,

as shown in Figure 3.15. The graph shows the increases in lookup throughput with additional

33

Direct-Rrange longest prefix matching lookups

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12 14 16

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD Ryzen 7-1700, SEQ test

D16R
D18R
D20R
D21R

DIR-24-8

Figure 3.16: Aggregate lookup throughput, LINX-2017 table snapshot, uniformly random lookup keys
with artificial dependencies. Working threads operate independently, but within a thread each lookup
must be resolved before proceeding to the next key.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD Ryzen 7-1700, REP test

D16R
D18R
D20R
D21R

DIR-24-8

Figure 3.17: Aggregate lookup throughput, LINX-2017 table snapshot, uniformly random lookup keys
with repeated queries. Each key within a sliding window is looked up 8 times, in an attempt to emulate
locality in traffic patterns, while still preventing CPU’s branch predictors to become over-trained and
yield overly optimistic results.

worker threads on an AMD Ryzen 7-1700 machine, using a stream of independent, uniformly

random lookup keys (RND test) as a stimulus. Similar trending was observed on other machines

as well, with different choices of K yielding the best overall throughput which can be correlated

to the size of CPU caches, as previously shown in Figures 3.13 and 3.14. Only the graph for the

AMD machine is shown, since it was the most modern machine available for experimentation,

and since it yielded the top aggregate throughput among all tested CPUs at 2,449 Mlps, i.e.,

2.45 billion lookups per second. Another important result that can be observed in Figure 3.15 is

how well the DXR scheme scales compared to DIR-24-8, which has a working-set footprint of

around 33 MB, and which thus does not fit the lookup structures in CPU’s caches. While DXR

and DIR-24-8 yielded comparable throughputs on a single CPU core, as soon as more worker

threads were introduced, the throughput of DIR-24-8 saturated and even slightly collapsed due

34

Direct-Rrange longest prefix matching lookups

to the inability of the DRAM subsystem to service random access read patterns beyond a certain

threshold.

Again, introducing artificial dependencies between subsequent queries had negative impact

with multiple worker threads, as shown in Figure 3.16 (SEQ test). Conversely, Figure 3.17

illustrates how the tested algorithms could behave when subjected to traffic patterns with certain

degree of locality (REP test), which is a natural property of regular (non-malicious) transfers in

the Internet. In this test a small sliding window was introduced under which random keys were

repeatedly used, which permitted the lookup structures to be reused for several times after they

migrated to L1 cache, before being displaced by other random keys. Both DXR and DIR-24-8

show an increase in overall throughput under such conditions, though DIR-24-8 benefits more

from traffic locality, as its pressure on the DRAM subsystem gets significantly reduced.

Further tests were aimed at determining the levels of pressure on the DRAM subsystem by

tracking last-level-cache miss counters [54]. The experiments were conducted on several Intel

machines which have mature support for accessing hardware performance monitoring coun-

ters (HWPMC). Unfortunately, the drivers for HWPMC tracking on AMD CPUs turned out to

produce inconclusive and unreliable results, which where therefore not further pursued.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 16 17 18 19 20 21 22 23 24
 0

 0.2

 0.4

 0.6

 0.8

 1

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

L
3
 c

a
c
h
e
 m

is
s
e
s
 /
 l
o
o
k
u
p

DXR configuration (K), RND test, single thread

Mlps
L3 misses / lkp

Figure 3.18: Single-thread lookup throughput with the corresponding L3 cache misses for a range of
DXR configurations. RND test, UOREG 2018 snapshot, Intel i7-4771 CPU.

Figure 3.18 shows how the choice of DXR configuration (parameter K) impacts the single-

thread lookup throughput and cache misses. On the particular machine used in this experiment,

Intel i7-4771, as reported via the HWPMC infrastructure, the L3 cache miss rate is constant for

configurations from K = 16 to K = 20, at a level of approximately 0.0939 misses per lookup.

For K = 21 the miss rate rises only slightly to 0.0988 misses per lookup. Those L3 misses can

be attributed to the influx of inbound keys (4 bytes) and to the stream of lookup results (2 bytes

per lookup) being written to the main memory. Given that cache line size is 64 bytes wide, this

in / out “overhead” amounts to 6/64, or 0.09375 cache line misses per lookup. Since the gap

between the measured and computed miss rate is minimal, a conclusion follows that for con-

35

Direct-Rrange longest prefix matching lookups

figurations up to K = 21, which also exhibits the top throughput at 211.18 Mlps, all references

to lookup structures have been serviced from on-chip caches. Given that DXR total memory

footprint for this particular configuration and FIB amounts to approximately 8.35 MBytes, and

that the i7-4771 CPU is equipped with 8 MBytes of L3 cache, a conclusion can be drawn that

the lookup algorithm efficiently utilizes the CPUs cache hierarchy, with negligible spilling to

main memory.

For DXR configuration with K = 22, which requires approx. 16.08 Mbytes for the lookup

structures, the cache miss rate bursts to 0.546 misses per lookup, and the lookup throughput

collapses.

 10

 20

 30

 40

 50

 60

 70

 80

 16 17 18 19 20 21 22 23 24
 0

 0.2

 0.4

 0.6

 0.8

 1

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

L
3
 c

a
c
h
e
 m

is
s
e
s
 /
 l
o
o
k
u
p

DXR configuration (K), SEQ test, single thread

Mlps
L3 misses / lkp

Figure 3.19: Single-thread lookup throughput with the corresponding L3 cache misses for a range of
DXR configurations. SEQ test, UOREG 2018 snapshot, Intel i7-4771 CPU.

Figure 3.19 shows that while changing the request mode to serialized (SEQ) yields roughly

threefold decrease in lookup throughput, cache miss rate per lookup remains unchanged for the

same values of configuration parameter K.

 100

 150

 200

 250

 300

 350

 400

 450

 16 17 18 19 20 21 22 23 24
 0

 0.2

 0.4

 0.6

 0.8

 1

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

L
3
 c

a
c
h
e
 m

is
s
e
s
 /
 l
o
o
k
u
p

DXR configuration (K), REP test, single thread

Mlps
L3 misses / lkp

Figure 3.20: Single-thread lookup throughput with the corresponding L3 cache misses for a range of
DXR configurations. REP test, UOREG 2018 snapshot, Intel i7-4771 CPU.

36

Direct-Rrange longest prefix matching lookups

Finally, when the same dataset is subjected to repeated lookups using the same key (REP

test) in a 8-key sliding-window mode, a reduction in L3 cache misses compared to the previous

two tests is observable, as shown in Figure 3.20. The baseline cache miss rate, as reported

by HWPMC, is 0.0126 misses per lookup. Given that each 4-byte key is used 8 times, this

corresponds to effectively 0.5 bytes of main memory loads per lookup, plus 2/8 = 0.25 bytes of

memory stores per lookup, which amounts to 0.75/64 = 0.0117 cache line misses per lookup,

very close to the actually recorded levels.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

L
3
 c

a
c
h
e
 m

is
s
e
s
 /
 l
o
o
k
u
p

Active worker threads, Intel i3-4150, RND test

Mlps, D19R
Mlps, DIR-24-8

L3 misses / lkp, D19R
L3 misses / lkp, DIR-24-8

Figure 3.21: Lookup throughput and L3 cache misses for DXR with K = 19 and DIR-24-8. RND test,
LINX 2017 snapshot, Intel i3-4150 CPU.

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

L
3
 c

a
c
h
e
 m

is
s
e
s
 /
 l
o
o
k
u
p

Active worker threads, Intel i3-4150, SEQ test

Mlps, D19R
Mlps, DIR-24-8

L3 misses / lkp, D19R
L3 misses / lkp, DIR-24-8

Figure 3.22: Lookup throughput and L3 cache misses for DXR with K = 19 and DIR-24-8. SEQ test
(artificial dependencies between queries), LINX 2017 snapshot, Intel i3-4150 CPU.

In a followup experiment, Figure 3.21 shows the correlation between lookup throughput for

DXR configured with K = 19 and DIR-24-8 on a low-end Intel CPU. Per statistics harvested

from the HWPMC L3 miss counter, DIR-24-8 saturated the DRAM subsystem already with

two worker threads at around 120 millions L3 cache misses per second, while achieving the

top lookup throughput with three worker threads. In contrast to this, DXR scaled well to all

37

Direct-Rrange longest prefix matching lookups

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8
 0

 0.2

 0.4

 0.6

 0.8

 1

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

L
3
 c

a
c
h
e
 m

is
s
e
s
 /
 l
o
o
k
u
p

Active worker threads, Intel i7-4771, RND test

Mlps, D21R
Mlps, DIR-24-8

L3 misses / lkp, D21R
L3 misses / lkp, DIR-24-8

Figure 3.23: Lookup throughput and L3 cache misses for DXR with K = 21 and DIR-24-8. RND test,
2018 UOREG snapshot, Intel i7-4771 CPU.

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8
 0

 0.2

 0.4

 0.6

 0.8

 1

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

L
3
 c

a
c
h
e
 m

is
s
e
s
 /
 l
o
o
k
u
p

Active worker threads, Intel i7-4771, SEQ test

Mlps, D21R
Mlps, DIR-24-8

L3 misses / lkp, D21R
L3 misses / lkp, DIR-24-8

Figure 3.24: Lookup throughput and L3 cache misses for DXR with K = 21 and DIR-24-8. SEQ test
(artificial dependencies between queries), 2018 UOREG snapshot, Intel i7-4771 CPU.

CPU cores, while achieving peak lookup throughput roughly four times higher than DIR-24-8,

at a fraction of L3 cache misses. Again, a portion of L3 misses in all cases can be attributed

to unavoidable fetching of random keys from the memory, as well as storing the results (next

hop indices) back to another memory array. Figure 3.22 shows the similar effect on L3 cache

trashing with the SEQ test which introduces artificial dependencies between successive lookups.

Figure 3.23 and Figure 3.24 show the results of the same experiment sequence repeated

on another CPU, the Intel i7-4771. DXR outperforms DIR-24-8 by a factor of four when dis-

tributing lookup load over all 8 cores. A staircase-formed throughput pattern can be observed, as

worker thread pairs are being scheduled on physical CPU cores which share two SMT execution

contexts, and compete for processing units (ALU, memory interface), resulting in non-uniform

throughput increases in case of DXR, and even slight decreases with DIR-24-8. An anomaly in

L3 miss rates associated with DIR-24-8 are visible, as miss rates unexpectedly decrease for odd

numbers of worker threads.

38

Direct-Rrange longest prefix matching lookups

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8 9 10 11 12
 0

 0.2

 0.4

 0.6

 0.8

 1
M

ill
io

n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

L
3
 c

a
c
h
e
 m

is
s
e
s
 /
 l
o
o
k
u
p

Active worker threads, Intel i7-5930K, RND test

Mlps, D21R
Mlps, DIR-24-8

L3 misses / lkp, D21R
L3 misses / lkp, DIR-24-8

Figure 3.25: Lookup throughput and L3 cache misses for DXR with K = 21 and DIR-24-8. RND test,
2018 UOREG snapshot, Intel i7-5290K CPU.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6 7 8 9 10 11 12
 0

 0.2

 0.4

 0.6

 0.8

 1

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

L
3
 c

a
c
h
e
 m

is
s
e
s
 /
 l
o
o
k
u
p

Active worker threads, Intel i7-5930K, SEQ test

Mlps, D21R
Mlps, DIR-24-8

L3 misses / lkp, D21R
L3 misses / lkp, DIR-24-8

Figure 3.26: Lookup throughput and L3 cache misses for DXR with K = 21 and DIR-24-8. SEQ test
(artificial dependencies between queries), 2018 UOREG snapshot, Intel i7-5390K CPU.

39

Direct-Rrange longest prefix matching lookups

Finally, Figure 3.25 and Figure 3.26 show the results of the same experiment sequence

repeated on a more recent Intel i7-5390k processor. The staircase throughput pattern is even

more pronounced here compared to the previous case, as is the anomaly of decreasing L3 miss

rates with odd numbers of worker threads. The anomaly calls for further examination, which

was not performed at this time.

40

Chapter 4

Further space and time optimizations

As shown in the previous chapter, DXR’s memory footprint is reasonably compact for large and

densely populated global routing tables (BGP), where the scheme offers a broad spectrum of

practical space-speed configuration tradeoffs, depending on target application goals. However,

when used with sparsely populated FIBs, such as in access routers or end hosts with static

routing tables, typically consisting of only a few local networks and a default route, the scheme

becomes highly inefficient in terms of required memory per prefix ratios. For example, with

the best performing D21R scheme and a small static FIB with 5 prefixes, the lookup structures

will occupy unreasonable 1.6 MBytes per prefix. This does not compare favorably compared to

other LPM schemes, especially in private networks, where the number of prefixes is typically

two to three orders of magnitude smaller compared to the global BGP view, and the prefixes are

mostly constrained to a narrow fraction of the address space (e.g., 10.0.0./8).

Can a split of the direct lookup step into two stages improve DXR’s spatial efficiency, with-

out (significantly) sacrificing performance for the target (most challenging) application with full

view BGP tables?

If such splitting of the single direct lookup step in multiple smaller ones could improve

the spatial efficiency for sparsely populated tables, would it morph the DXR proposal into a

standard multibit trie structure variant, which have been shown to exhibit LPM throughput

levels inferior to DXR due to data dependencies and associated branches which have to be

resolved while traversing through trie levels?

This section presents a proposal for spatial optimizations of DXR lookup structures, based

on splitting the single direct stage in two, which are dubbed Direct and eXtended tables. An

implementation of such a proposal is then subjected to a performance evaluation.

41

Further space and time optimizations

4.1 Data structures, deduplication

The space-optimized proposal builds upon the fact that DXR already performs leaf compres-

sion, i.e., identical range chunks are being deduplicated during the update process and are main-

tained as reference-counted objects, which was described previously in section 3.5. The hereby

proposed extensions explore the idea that if the direct table gets split into two, the leaf blocks

of the resulting intermediate table might also exhibit certain level of redundancy, and permit

deduplication rates of practical value.

Using the existing DXR structures as a starting point, constructing two-level table structure

is straingthforward. The address space previously covered by K bits is decomposed into D +

X bits, where D + X = K. A relatively small primary direct lookup table is now indexed by D

leftmost bits of the lookup key, which holds indices to uniform blocks in the extension table,

with each encompassing 2X range table descriptors. 2 bytes suffice for storing indices in the

direct table, if D is chosen such that D ≤ 16. The middle X bits of the search key are used as an

offset in the extension table block, which is then referenced to either resolve the lookup, or to

proceed to a binary search in the range table chunk based on the remainder bits of the lookup

key. The arrangement is show in in Figure 4.1.

Figure 4.1: An example of lookup structure arrangement in the extended DXR scheme. In addition
to range chunks which are already deduplicated, blocks of the extension table are also maintained as
deduplicated, reference counted objects, permitting significant memory footprint savings compared to
the original DXR’s monolithic direct lookup table.

Since all the blocks in the extension table already have their references to the range table

consolidated, identical blocks can be easily merged. Figure 4.2 reveals that the compression ra-

tio is insignificant for configurations with K = 16, because range chunks are large, and therefore

42

Further space and time optimizations

range compression is ineffective, as previously shown in Figure 3.9. However, with K = 21, or

more, the compression becomes more efficient, particularly with D = 16 (D16X*R). The mem-

ory savings can extend up to 70%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 17 18 19 20 21 22 23 24

S
iz

e
 r

a
ti
o

 v
s
 o

ri
g

.
D

X
R

DXR configuration (K = d + x)

D12X*R
D14X*R
D16X*R

Figure 4.2: The ratio of the extended scheme’s overall memory footprint compared the original DXR
arrangement. D12X*R stands for D = 12, D14X*R for D = 14, and D16X*R for D = 16. X = K −D.

The almost four-fold improvement in memory footprint efficiency permits longer portion

of the key to be used for direct + extension table indexing. It becomes feasible to choose

values of K by one to two bits longer compared to the original DXR arrangement. Therefore

the remaining binary search over address range is on average reduced by up to two iterations,

which may compensate for the additional small direct table lookup step introduced over the

original DXR scheme. As the performance evaluation presented in Section 4.3 will show, in

certain configurations the scheme actually significantly speeds up the search process.

Deduplication of the extension table is based on generating a hash of each recomputed block,

and comparing it against a table of already existing reference-counted blocks, and is therefore

both trivial and fast. Thus, lookup structure updating speed remains virtually unaffected com-

pared to the original DXR scheme.

Figures 4.3, 4.4 and 4.5 show the total memory footprint for various arrangements of pa-

rameters D and X , with D being fixed to 12, 14 and 16 bits respectively. The size of the range

table remains exactly the same for all configurations with the same value of K, including the

original unoptimized DXR arrangement, but the size of direct and extension lookup tables vary

significantly.

Although more configuration choices for D and X than those presented in Figures 4.3, 4.4

and 4.5 are possible, 16 bits is the largest practical choice for parametar D, as it results with

the direct table having a footprint of 128 KBytes, which presents a good fit for today’s L2 CPU

caches, varying in size from 256 go 512 KBytes. Increasing D to 17 or more would require

widening the size of direct table entries from 16 to 32 bits, so a step from 16 to 17 bits for D

would yield a four-fold expansion of direct table size, from 128 to 512 KBytes, i.e., double the

43

Further space and time optimizations

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 16 17 18 19 20 21 22 23 24

M
e

m
o

ry
 f

o
o

tp
ri
n

t
(M

B
y
te

s
)

D12X*R configuration (K = d + x)

EQIX BGP snapshot, 739561 prefixes, 148 nexthops

total table size
range table size

Figure 4.3: D12XR memory footprints for ascending values of K. D = 12, X = K - 12. EQIX 2018 FIB
snapshot.

 0

 5

 10

 15

 20

 25

 30

 35

 16 17 18 19 20 21 22 23 24

M
e

m
o

ry
 f

o
o

tp
ri
n

t
(M

B
y
te

s
)

D14X*R configuration (K = d + x)

EQIX BGP snapshot, 739561 prefixes, 148 nexthops

total table size
range table size

Figure 4.4: D14XR memory footprints for ascending values of K. D = 14, X = K - 14. EQIX 2018 FIB
snapshot.

capacity of contemporary Intel CPU’s L2 caches.

Lower values of D may present a better space/speed tradeoff for sparsely populated FIBs.

For example, with D = 12, the size of direct table is only 8 KBytes. A small static FIB with 5

prefixes and D12X9R configuration (D = 12, X = 9, K = 21) will have the total memory footprint

of all the lookup structures combined as low as 15 Kbytes. At 3 Kbytes per prefix this is over

two orders of magnitude lower than the memory footprint of the original D21R arrangement,

which operates with the same level of K = 21, and uses an identical range layout of range table.

4.2 Lookup algorithm

The lookup algorithm is straightforward as already outlined in the previous section: the smaller

direct table indexed by D leftmost bits of the lookup key, which resolves a position of the

next block in the extension table. The extension table block is indexed by the next X bits of

44

Further space and time optimizations

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 16 17 18 19 20 21 22 23 24

M
e

m
o

ry
 f

o
o

tp
ri
n

t
(M

B
y
te

s
)

D16X*R configuration (K = d + x)

EQIX BGP snapshot, 739561 prefixes, 148 nexthops

total table size
range table size

Figure 4.5: D16XR memory footprints for ascending values of K. D = 16, X = K - 16. EQIX 2018 FIB
snapshot.

the lookup key. If the referenced extension table entry points to the next hop, the lookup is

complete. Otherwise, the (position, size) information in the entry select the portion of the range

table on which to perform a binary search of the (remaining bits of the) key.

Resolving into the extension table always performed, i.e., there is no branching based on

the readout from the direct table. This mandates two cache read accesses for all lookups, but

permits OoO to pipeline the direct + extension memory fetch, and in our experiments has shown

better performance than branching based on hits in the direct table.

Further speed gains have been achieved by precomputing a sliding window of extension ta-

ble readouts, before going back several packets and checking the actual data, and either proceed

with range lookup or be done at that point.

4.3 Performance evaluation

The same benchmarking methodology using streams of synthetic keys was used as described

previously in section 3.6.

The first series of tests were aimed at determining single-thread throughput of several con-

figurations of the extended DXR scheme, including a comparisson against the version presented

in the previous chapter, which is included again in further benchmarks as a reference.

Figures 4.6, 4.7, and 4.8 show the observed throughput on a a machine equipped with the

Intel i7-4771 CPU using a single worker thread subjected to random (RND), repeated (REP),

and artificially serialized (SEQ) test patterns respectively, for the single-level direct table DXR,

and for three modified variants configured with D = 12, D = 14, and D = 16.

As the number of bits (K) resolvable by direct and extension table lookups increase, all

four DXR arrangements exhibit similar LPM throughput levels up to K = 21 in the RND test

(Figure 4.6). With K = 22 the throughput of the reference version collapses, while the D16X6R

45

Further space and time optimizations

(D = 16, X = 6) configuration reaches its top performance at 255.4 Mlps. The throuhput of

D14X6R (D = 14, X = 8) peaks at 220.3 Mlps, while D12X10R drops slightly to 177.6 Mlps

from the peak of 205.7 Mlps at D12X7R.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 16 17 18 19 20 21 22 23 24

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, Intel i7-4771, RND test

DXR
D12X*R
D14X*R
D16X*R

Figure 4.6: Single-thread lookup throughput comparisson between four base DXR variants configured
with K = 16..24. RND test, UOREG 2018 snapshot, Intel i7-4771 CPU.

Figure 4.7 shows that throuhgputs in excess of nearly 400 Mlps are possible with locality in

the stream of inbound keys, e.g., 397.0 Mlps with D16X6R and 409.5 with D21R. While those

figures are of questionable real-world value, they are important as a reference for comparison

against reports from other authors, who often lean towards benchmarking with focus on traffic

traces, which cover only a fraction of the IPv4 address span.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 16 17 18 19 20 21 22 23 24

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, Intel i7-4771, REP test

DXR
D12X*R
D14X*R
D16X*R

Figure 4.7: Single-thread lookup throughput comparisson between four base DXR variants configured
with K = 16..24. REP test, UOREG 2018 snapshot, Intel i7-4771 CPU.

Figure 4.8 shows that even with artificial dependencies between the lookups, all DXR vari-

ants exceed 50 Mlps throughput per CPU core. The test is significant for applications where

further decisions must be taken immediately based on the lookup result, such as in packet filters.

Figures 4.9, 4.10, and 4.11 show the single-thread throughput on AMD Ryzen 1700 CPU

for RND, REP, and SEQ tests. The throughput peaks at 370 Mlps in the most significant test

46

Further space and time optimizations

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 16 17 18 19 20 21 22 23 24

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, Intel i7-4771, SEQ test

DXR
D12X*R
D14X*R
D16X*R

Figure 4.8: Single-thread lookup throughput comparisson between four base DXR variants configured
with K = 16..24. SEQ test, UOREG 2018 snapshot, Intel i7-4771 CPU.

 50

 100

 150

 200

 250

 300

 350

 400

 16 17 18 19 20 21 22 23 24

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD Ryzen 1700, RND test

DXR
D12X*R
D14X*R
D16X*R

Figure 4.9: Single-thread lookup throughput comparisson between four base DXR variants configured
with K = 16..24. RND test, UOREG 2018 snapshot, AMD Ryzen 1700 CPU.

(RND).

Figures 4.12, 4.13, and 4.14 show cache miss rates for extended DXR arrangement with D

= 12, D = 14, and D = 16, with a single worker thread on an Intel i7-4771 CPU.

The subsequent figures show how the throughput of DXR variants scales on two AMD

multi-core CPUs, the Ryzen 7-1700, and ThreadRipper 1950X. In all the tests the D16XR vari-

ant yields the best results, and all DXR variants significantly outperform the DIR-24-8 scheme,

the throughput of which saturates quickly due to its high pressure on the main memory.

47

Further space and time optimizations

 50

 100

 150

 200

 250

 300

 350

 400

 450

 16 17 18 19 20 21 22 23 24

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD Ryzen 1700, REP test

DXR
D12X*R
D14X*R
D16X*R

Figure 4.10: Single-thread lookup throughput comparisson between four base DXR variants configured
with K = 16..24. REP test, UOREG 2018 snapshot, AMD Ryzen 1700 CPU.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 16 17 18 19 20 21 22 23 24

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD Ryzen 1700, SEQ test

DXR
D12X*R
D14X*R
D16X*R

Figure 4.11: Single-thread lookup throughput comparisson between four base DXR variants configured
with K = 16..24. SEQ test, UOREG 2018 snapshot, AMD Ryzen 1700 CPU.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 16 17 18 19 20 21 22 23 24
 0

 0.2

 0.4

 0.6

 0.8

 1

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

L
3
 c

a
c
h
e
 m

is
s
e
s
 /
 l
o
o
k
u
p

D12X*R configuration (K), RND test, single thread

Mlps
L3 misses / lkp

Figure 4.12: Single-thread lookup throughput with the corresponding L3 cache misses for a range of
D12XR configurations. RND test, UOREG 2018 snapshot, Intel i7-4771 CPU.

48

Further space and time optimizations

 60

 80

 100

 120

 140

 160

 180

 200

 220

 16 17 18 19 20 21 22 23 24
 0

 0.2

 0.4

 0.6

 0.8

 1

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

L
3
 c

a
c
h
e
 m

is
s
e
s
 /
 l
o
o
k
u
p

D14X*R configuration (K), RND test, single thread

Mlps
L3 misses / lkp

Figure 4.13: Single-thread lookup throughput with the corresponding L3 cache misses for a range of
D14XR configurations. RND test, UOREG 2018 snapshot, Intel i7-4771 CPU.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 16 17 18 19 20 21 22 23 24
 0

 0.2

 0.4

 0.6

 0.8

 1

M
ill

io
n
s
 I
P

v
4
 l
o
o
k
u
p
s
 /
 s

e
c
o
n
d

L
3
 c

a
c
h
e
 m

is
s
e
s
 /
 l
o
o
k
u
p

D16X*R configuration (K), RND test, single thread

Mlps
L3 misses / lkp

Figure 4.14: Single-thread lookup throughput with the corresponding L3 cache misses for a range of
D16XR configurations. RND test, UOREG 2018 snapshot, Intel i7-4771 CPU.

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12 14 16

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD Ryzen 7-1700, SEQ test

D16X6R
D20R

D16X2R
D16R

DIR-24-8

Figure 4.15: LPM throughput scaling with parallel worker threads. SEQ test (artificial dependencies
between lookup iterations). EQIX 2018 snapshot, AMD Ryzen 1700 CPU

49

Further space and time optimizations

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10 12 14 16

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD Ryzen 7-1700, RND test

D16X6R
D20R

D16X2R
D16R

DIR-24-8

Figure 4.16: LPM throughput scaling with parallel worker threads. RND test (uniformly random keys).
EQIX 2018 snapshot, AMD Ryzen 1700 CPU

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD Ryzen 7-1700, REP test

D16X6R
D20R

D16X2R
D16R

DIR-24-8

Figure 4.17: LPM throughput scaling with parallel worker threads. REP test (simulated locality in traffic
patterns). EQIX 2018 snapshot, AMD Ryzen 1700 CPU

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD ThreadRipper 1950X, SEQ test

D16X6R
D20R

D16X2R
D16R

DIR-24-8

Figure 4.18: LPM throughput scaling with parallel worker threads. SEQ test (artificial dependencies
between lookup iterations). EQIX 2018 snapshot, AMD ThreadRipper 1950X CPU

50

Further space and time optimizations

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD ThreadRipper 1950X, RND test

D16X6R
D20R

D16X2R
D16R

DIR-24-8

Figure 4.19: LPM throughput scaling with parallel worker threads. RND test (uniformly random keys).
EQIX 2018 snapshot, AMD ThreadRipper 1950X CPU

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
ill

io
n

s
 I

P
v
4

 l
o

o
k
u

p
s
 /

 s
e

c
o

n
d

Active worker threads, AMD ThreadRipper 1950X, REP test

D16X6R
D20R

D16X2R
D16R

DIR-24-8

Figure 4.20: LPM throughput scaling with parallel worker threads. REP test (simulated locality in traffic
patterns). EQIX 2018 snapshot, AMD ThreadRipper 1950X CPU

51

Chapter 5

Datapath integration

At minimum, a LPM implementation or library must support three elementary operations: in-

sertion of a {pre f ix, label} paire, deletion of a pre f ix, and finally a lookup function for a given

key. Prototyping DXR started with implementing those operators, and gradually others were

added. This chapter discusses the specifics of the author’s efforts at integrating DXR in several

conceptually different packet processing datapaths, each with a different application program-

ming interface (API)s.

5.1 FreeBSD kernel

The initial DXR prototype [26] was implemented inside the FreeBSD kernel. The original mo-

tivation was driven by the observation that the standard BSD radix trie [18] was becoming the

major bottleneck in packet forwarding applications with anything but trivial FIBs, and espe-

cially so when the FIB would correspond to a full-view BGP dataset of network prefixes. The

goal was to provide a more efficient alternative to the standard FreeBSD LPM lookup func-

tion, in hope that this would make the OS feasible (again) for moderately fast Internet routing

applications.

To retain compatibility with the existing routing protocol daemons, such as Quagga [55] or

XORP [48], the obvious design choice was to retain all the existing userland to kernel routing

APIs. As it was also obvious that DXR will need an auxiliary database from which the lookup

structures will be derived, the already in-place and proven BSD radix trie was selected for

that purpose. The existing BSD radix trie structure was extended with a single field which

permited keeping track of next hop data along each stored prefix in form of a small integer

index in an additional reference-counted next hop table. This was implemented in addition to

the (inefficient) standard practice in BSD to keep a full copy of next hop information along

each stored network prefix, which was retained for compatibility with the existing tools and

52

Datapath integration

applications.

As BSD routing socket API only provides methods for managing individual network pre-

fixes, even partial recomputation of DXR’s lookup structure on each prefix insertion or deletion

was clearly not feasible, particularly with BGP databases consisting of several hundred thou-

sands of prefixes. Therefore, deferred updating of lookup tables was implemented, which would

be triggered following any change in the radix tree database, but only after the routing socket

would remain idle for a predefined time interval (several milliseconds). This permitted multiple

(thousands of) prefix insertions or deletions to be coalesced before updating the lookup struc-

tures, which is a process requiring the entire address space affected by the added or removed

network prefixes to be traversed.

Finally, the DXR’s lookup function was planted in the packet forwarding path, inside a

modified version of the existing ip_fastforward() function. The choice of the LPM method

could be made at run time, permitting tests to be conducted which confirmed that both the

standard and the replacement function forwarded the packets in an identical way.

The primary value of the described development effort was that an initial implementation of

DXR materialized, and that it could be shown to function correctly, by comparing the outcomes

of the lookup process against a proven reference implementation, both using real traffic as well

as synthetic (random) key streams.

However, the effort stopped short of achieving a real breakthrough in improving packet

forwarding performance. Once the LPM bottleneck problem was solved, it became apparent

that other non-trivial factors stood in the way of reaching packet forwarding rates in or above

the 10 Mpps range. FreeBSD encapsulates packets in a structure called mbu f , which was

designed when packet rates were miniscule by today’s standards, while a more pressing issue

was the amount of available memory for buffering packets. Therefore mbu f s were devised to

permit various modes of chaining smaller buffers, and over the years they accumulated a broad

spectrum of auxiliary fields and flags targeting numerous specialized tasks, such as checksum

flags of all kinds, or other transport-layer specific information. By the time device drivers

properly populate and adjust all the required fields for each received packet, precious time is

already irrevocably lost, even before any packet processing even begins. Once a device driver

delivers the packet to the inbound part of the network stack, the software has to traverse over a

plethora of flags and fields in extremely branchy sections of considerably complex code.

To compensate for the overhead of inefficient handing over each packet individually from

device drivers to the network stack, an attempt was made to chain (group) multiple packets

together before delivery to the next layer for further processing. However, the existing kernel

code above the link layer was structurally composed with individual packet processing in focus,

so that attempts at further improvements in the network layer were deemed futile and therefore

stopped.

53

Datapath integration

The whole effort was finally abandoned once a more viable generic framework for packet

input / output (I/O) called netmap became available. The troubles with developing and debug-

ging kernel-level code, compared to far more comfortable work in the user space which netmap

offered, cemented the decision to abandon further efforts in improving FreeBSD kernel’s packet

forwarding datapath.

5.2 The Click Modular Router

Click [25] is a widely used software architecture for building flexible and configurable packet

processing datapaths, which are assembled from libraries of modules (called elements in Click’s

parlance) using well-defined interfaces. Originally designed to run in the Linux kernel for

efficient packet handoff, it may also work as a user space application, even more efficiently

using netmap for packet I/O compared to the legacy kernel mode.

The simplicity of the already provided interfaces inside Click, combined with the platform’s

popularity motivated the author to (re)implement DXR as a Click module. Developing a cus-

tom Click processing module was a relatively straightforward task. The DXR bringup effort

included porting the BSD radix tree code to Click as an auxilirary database, as previously men-

tioned in section 3.5.

The already available Click’s routing table interfaces, such as the ability to atomically

instantiate and populate large FIBs, greatly simplified experiemtation cycles, as almost no

time was wasted for experiment setup, compared to relatively lengthy FIB setup procedures

in FreeBSD when shell scripting was used for injecting routes into the kernel.

An optimized lookup function which operates on blocks (batches) of packets was also im-

plemented, but since Click’s traffic handoff interfaces were designed to operate on packet-by-

packet basis only, the speed of performing LPM lookups over blocks of keys could be tested

using synthetic load, since OoO execution mode makes it next to impossible to accurately and

reliably capture the duration of extremely short individual code sequences.

Similarly to the first prototype developed for kernel-level operation in FreeBSD, the Click

variant was shown to function correctly by comparing the outcomes of the lookup process

against another LPM lookup Click module. Although the functional test with real traffic was

successfull, benchmarking with real packets was not performed. Rather, the focus was put on

implementing auxiliary handlers for controlling and monitoring benchmarking with synthetic

key streams, such as selecting test parameters, preparing streams of random keys, triggering the

benchmarks and collecting the results.

54

Datapath integration

5.3 User-space Packet Processing Library

To enable embedding of DXR in standalone packet processing applications, the code from the

Click prototype had to be backported from C++ to plain ANSI C. Again, BSD radix tree was

retained as the auxiliary database for storing network prefixes.

The LPM cores of the two implementations (C++ / Click, and the standalone C library) are

currently being kept in sync, but the difference is that the standalone library no longer keeps the

reference counted table of next hop information, but rather passes the burden of that function to

the specific application. Instead, the standalone DXR library expects the application to tag each

prefix with a small integer label, which remains opaque to the library itself. This permits the

application to interpret this label as it sees fit: the tag / label may be used for indexing a table

of next hop information in router applications, while in traffic filtering scenarios the label may

have different semantics.

The burden of populating and maintaining the network prefix database is also left entirely

to the application, which furthermore must make the decision on when to update the lookup

structures as a followup to any changes in the prefix database.

The small size of DXR’s lookup structures permits for adopting an efficient synchronization

strategy in which several independent versions of lookup structures may coexist at the same

time. Once a new version of the structures is prepared, multiple worker threads may gradually

switch from the old to using the new version, without having to block during the recomputation

of lookup structures, or even being aware that an update is in progress. After all worker threads

have signaled that they have switched over to using the new version, the old one may be safely

deallocated. A minor complication with such a synchronization scheme is that labels which are

attached to prefixes must remain valid over two consecutive versions of the lookup tables, but

again, the burden of ensuring this constraint is met is left to the application.

The library was field-tested by having been incorporated in a packet processor application

built on top of netmap [15] [56]. The application spawns multiple worker threads, each of

which is assigned to servicing a single receive queue associated with a network interface. An

additional thread is responsible for control and management tasks.

Load distribution over multiple queues / worker threads is performed in NIC hardware,

beyond applications control. The NIC hardware uses an opaque hash function for distributing

packets among processing cores, ensuring that packets belonging to a single traffic flow are

always processed by the same core / thread.

Tests in a 10 GBit/s testbed have shown that zero-loss forwarding of packets with uniformly

random source and destination addresses was possible at full line speed, i.e., at 14.88 Mpps,

while performing DXR LPM lookups on each packet using a single CPU core. However, as the

goals of the project which included the construction of a packet processing application built on

55

Datapath integration

top of netmap and DXR were beyond the scope of this thesis, more specific results could not be

disclosed at the time of this writing.

5.4 Future directions

Full 10 Gbps Ethernet line rate packet forwarding (14.88 Mpps) using a single CPU core can

be sustained while doing DXR LPM lookups, even when running with reduced core frequency.

Therefore, performing further experiments in a testbed equipped with faster (40G, 100G) inter-

face cards would be justified for testing the practical limitations of the proposed LPM scheme.

56

Chapter 6

Related work

IP lookup algorithms have been well studied in the past, first for software-based solutions,

and eventually focusing on designs that could be implemented in hardware to overcome the

perceived (or actual) mismatch between network and CPU speeds. Ruiz-Sanchez et al. [57]

and Waldvogel et al. [58] provide comprehensive surveys of software solutions up to the year

2001, which covers most of the research on software lookups. Gupta’s thesis from 2000 [50]

and Varghese book [51] from 2005 provide a more broader hardware / software insight, gar-

nished with some anecdotal evidence from the industry. Therefore this section provides a brief

summary only of the main techniques and proposals predating Varghese’s book, along with an

overview of selected more recently published works.

Traditional solutions involve tries [18], optimized to reduce the number of search steps

by compressing long paths (Level-Compressed tries, [59]), or using n-ary branching (Multibit

Tries, [60]). Given the small and fixed problem size, some ad-hoc solutions have been proposed

that expand the root into a 2k array of pointers to subtrees, as in DIR-24-8 [21] and in Lampson-

Varghese [20]. Prefixes can be transformed into address ranges or intervals, which reduces the

lookup to a binary search into an array of ranges [20]. Similarly exploiting the problem size, the

Lulea scheme [19] partitions the trie in three levels (using 16, 8, 8 bits) and then uses a compact

representation of the pointers.

As an alternative, Waldvogel et al. [58] propose the use of separate hash tables for each

prefix length, starting the search from the most specific prefix and then moving up. This scheme

is elegant but not particularly fast compared to other solutions for IPv4.

Caching recent lookup results using on-chip memory is discussed for instance in [61] and

[62]. Chiueh and Pradhan achieved around 88 Mlps with host address caching on a 500 MHz

DEC Alpha with 1 Mbyte of L2 cache (updates were not discussed) in 1999 [61]. The approach

presented in [62] relies on temporal locality in the lookups, which is frequent in the leaves but

less so in the core of the network.

Especially important in [57] is the comparison of actual run times of multiple algorithms,

57

Related work

which permits ranking them irrespective of absolute performance. The peak performance re-

ported in the literature for such software solutions ranges between 2 and 5 Mlps on 1999 ma-

chines [57], and 3 to 20 Mlps on 2006 hardware [63].

Scaling these figures to modern hardware is not trivial, because the performance is domi-

nated by memory access latencies. In fact, all the rest being equal, performance may vary by

an order of magnitude or more depending on routing table size and request distributions. This

also means that the memory footprint of a lookup scheme has a strong impact on its feasibility,

especially as the number of prefixes grows (going from approx. 38 K prefixes in 1997 to the

current 760 K prefixes in a full BGP table). In this respect, existing schemes tend to have quite

large memory footprints, from the 24 bytes per prefix of the Lampson-Varghese scheme [20] to

the 4.5 bytes per prefix of the Lulea [19].

The problem size can be reduced by performing routing table aggregations. SMALTA [64]

shows a practical, near-optimal FIB aggregation scheme that shrinks the forwarding table size

without modifying routing semantics or the external behavior of routers, and without requiring

changes to FIB lookup algorithms and associated hardware and software. The claimed storage

reduction is by at least 50%.

Due to the general inability of performing packet processing at line rates in software, a

shift of interest towards hardware-based solutions for routing lookups was evident over the past

decade and a half. As mentioned in the previous section, however, the combination of faster

processing nodes, and an increased interest in virtualization, makes software IP lookups relevant

again.

These performance numbers were/are not adequate for multi Gbit software routers, espe-

cially considering that the route lookup is only one of the many operations that must be per-

formed on incoming traffic, hence may consume only a fraction of the total CPU time avalable

for packet processing.

Therefore a general shift of interest ocured towards solutions that are suitable to efficient

hardware implementation. Shape Shifting Trie proposed in 2005 [65] claims wire-speed pro-

cessing for OC192 link using a single quad data rate II (QDRII) static random access memory

(SRAM) chip using seven data structure accesses for route tables with more than 150,000 IPv6

prefixes. In 2006 Leu and Chang [66] proposed a lookup algorithm for IPv4 and IPv6. The

main advantage is that time complexity is not related to the length of IP addresses, as for LC-

Trie, Binary Search Architecture and Asymmetric-Tree schemes, so it can be applied on IPv6

addresses. There are only some simulation results presented and the reported performance is

modest, from 400µs (best) to 700µs per lookup.

Alternatives to the use of a trie do exist. The Lulea scheme [19] does binary search on the

number of prefix lengths. Lampson et al. [20] propose expanding prefixes into ranges which

can be looked up with a binary search scheme. The whole set is partitioned in 216 subset, using

58

Related work

the first 16 bits as an index to reach the correct subset. Reported performance is similar to that

of the Lulea scheme [19], and between 2 and 10 times faster than the BSD scheme on the same

hardware. Compared to the DXR scheme, [20] has a large memory footprint (700 Kbytes for

just 38 K prefixes in 1999) which does not scale well with the 740 K prefixes of today’s table.

There are a lot of hardware based implementations, such as [67] that uses hash-based mem-

bership query to limit off-chip memory accesses per lookup to one and to balance memory

utilization among the memory modules (using a data structure called Prefix-Compressed Trie

that reduces the size of a bitmap by more than 80%). The achieved simulation and imple-

mentation results [67] show that FlashTrie can achieve 160-Gbps worst-case throughput while

simultaneously supporting 2-M prefixes for IPv4 and 279-k prefixes for IPv6 using one FPGA

chip and four DDR3 synchronous dynamic random access memory (SDRAM) chips. FlashTrie

also supports incremental real-time updates.

Another approach to fast IP lookups is the use of memory pipelines as proposed in [68],

[69] and [70]. A long pipeline is used to produce one lookup in every clock cycle. In 1998 [21]

reported 20 x 106 lookups per second implemented in hardware, using pipelined architecture

with 50ns DRAM.

Early IP routers were all entirely software-based. Since by today’s standards both line

speeds and routing tables were miniscule, this worked well until mid-1990s when the Internet

begun to expand at unprecedented rates. A wider adoption of faster transmission technologies,

such as 155 Mbit/s Asynchronous Transfer Mode (ATM) or 100 Mbit/s Ethernet, along with

rapid increases in global routing table sizes and the introduction of CIDR [2] pushed software

routers to their limits and called for rapid innovations.

None of the software-based proposals could keep up with the exponential growth of both

transmission speeds (1 and 10 Gbit/s) and the global routing table size, which by 1997 included

over 40,000 prefixes. The schemes had quite large memory footprints, from 24 bytes per prefix

of the Lampson-Varghese scheme [20] to 4.5 bytes per prefix of the Lulea [19], which prevented

the lookup structures to fit into CPU caches as BGP table sizes continued to grow.

Both the research community and the industry eventually shifted their focus to routing

lookup methods optimized for dedicated hardware. Early implementations were constructed

around ternary content-addressable memory (TCAM) [71], but again those could not keep up

with BGP table increases due to TCAM’s low density and high power dissipation [22].

To cope with unabated BGP table growth, proposals to cache recent lookups in small but

fast on-chip memories have surfaced occasionally (such as [61] or [62]) but never got embraced

since both the vendors and operators learned that betting on traffic locality does not work well

inside the Internet core due to unpredictable and constantly evolving traffic patterns.

A class of hardware-optimized approaches expands the root of the tree into a 2k array of

pointers to sub trees, such as DIR-24-8 [21] which could yield around 20 Mlps using a pipelined

59

Related work

ASIC- or FPGA-based implementation and two external commodity DRAM chips. As more

throughput could be achieved by simply throwing more parallel hardware (DRAM chips) at the

task, the major router vendors have been reportedly taking that route [72] to scale their ASICs

into 100-300 Mlps throughput range, but cannot scale much further.

Recent proposals shift the focus back to CPUs for solving the problem of fast routing

lookups. This author’s initial DXR proposal [26] from 2012 reported compact FIB encoding

from 1.8 Bytes per IPv4 prefix, and over 700 Mlps on an 8-core commodity CPUs.

Retvari et al. [73] [29] propose an information-theoretic approach for FIB compression to

less than a byte per prefix, and projected lookup speeds to around 18 Mlps per CPU core for

a FIB dataset of 440.000 prefixes. A recent derivate of their approach goes a step further by

proposing lossy compression [74] of LPM structure, which is of questionable practical value,

particularly in software, but also with TCAMs which that proposal puts in focus. Nevertheless,

despite the reported lookup throughputs being an order of magnitude lower compared to other

contemporary schemes, Retvari’s et al. contribution in achieving high compression rates is

significant. Their proposal for detecting and reducing redundancies in leaf levels of the tree

encouraged the quest for appropriate techniques which could be applied to improving DXR’s

space / speed tradeoffs.

Yang et al. propose SAIL [31] [75], claiming LPM throughputs of 236 Mlps with random

traffic and 625 Mlps with localities in traffic patterns. Their scheme is based on four-level

multibit trie, of which the majority of lookups can be resolved by one access per each of the

first three tables. The fourth serves as an overflow table for (rare) prefixes more specific than

/24, similarly to the DIR-24-8 scheme. The authors elaborate that the first two levels have

memory footprint bounded to 2.13 MBytes, but the sizes of the subsequent two tables cannot

be deduced from their report, besides that than those are considerably larger than the previous

two. Independent reviewers [30] report memory footprints in excess of 40 MBytes for SAIL.

The source code which the authors made publicly available reveals that inside their test loop all

lookup results are simply discarded. This not only unrealistically reduces the pressure on the

memory subsystem (results never go to the main memory), but the OoO machinery can clobber

(i.e., discard) the previous lookup result even before it gets completely resolved, by writing the

next (partially resolved) result over the same CPUs architectural register.

Asai and Ohara propose Poptrie [30], which reportedly peaks between 174 and 240 Mlps

with a single core and tables with 500-800k routes, and can achieve 914 Mlps with four CPU

cores. Poptrie is an extension of a multiway trie, and splits the lookup tables into two, one for

internal and the other for leaf nodes. Lookup key is processed 6 bits at a time, or alternatively

in a single direct lookup of a wider stride. Similarly to DXR, Poptrie performs merger of a

set of prefixes with the identical nex hop that belong to a subtree without any gap. Overall, in

terms of memory footprint and reported performance, per Asai’s report Poptrie offers similar

60

Related work

throughputs and space / speed tradeoffs to DXR.

61

Chapter 7

Conclusion

The author’s early DXR proposal, which forms the basis for this thesis, was among the first

recent impulses which prompted the research community to begin reviewing its (di)stance to-

wards software routing lookups, which were perceived as a completely lost cause for almost

a decade and half. The field become active again, with several other practical and efficient

proposals emerging over the past few years.

During the interval from when the original proposal was published (late 2012) to the time

when this thesis is being submitted (early 2019) the size of the global BGP routing database

almost doubled, from 417,000 to over 760,000 prefixes, and the number is still growing. The

proposed hybrid direct / range LPM lookup concept not only stood the test of time by easily

absorbing this unabating BGP table inflation, but thanks to the refinements first published in

this thesis, its performance grew almost five-fold, from approximately 700 Mlps to 3.5 billion

routing lookups per second (Glps) in synthetic tests when subjected to streams of random lookup

keys, and exceeding 7 Glps with locality in key streams. Much of the mentioned performance

gain is due to improved ILP and cache efficiency in contemporary CPUs compared to their

counterparts from 2012, although the most significant contributor is the increasing number of

available processing cores. DXR makes efficient use of parallel processing units with near

linear throughput scaling, which raises expectations that further performance gains might be

obtainable on future microprocessor platforms with even bigger processing core counts.

An area left for future work is exploring the potential of NUMA architectures. A full

throughput saturation was observed when scheduling LPM test threads on the second half of an

inherently NUMA CPU, the AMD ThreadRipper. Strategies for better scaling in NUMA topolo-

gies, such as replicating lookup structures to physical memory blocks local to each NUMA

node, as well as allocating per-node memory blocks for both inbound keys and the lookup

results, should be further developed and evaluated.

Nevertheless, to the best of the author’s knowledge, the 3.5 Glps throughput level puts

DXR far ahead of all LPM (software) lookup proposals published to this date. The achieved

62

Conclusion

throughput is more than an order of magnitude higher than the capacity of a state-of-the-art

router ASIC, the Cisco nPower X1, and almost two orders of magnitude faster than the most

recent proposal based on multiway range LPM search implemented in an FPGA.

Moreover, among the recent LPM lookup proposals with throughputs which break the 50

Mlps per CPU core barrier, DXR has the lowest memory footprint, only 1.32 bytes per IPv4 pre-

fix in the most compact configuration. Other proposals with even more compact FIB encoding

(below 0.5 bytes per prefix) have emerged recently, but their lookup performance significantly

lags behind (by more than an order of magnitude), because of overly branchy code with lengthy

iterations required for LPM resolution over the compressed data structures. Two of the other re-

cent proposals for fast LPM in software, SAIL and PopTrie, have so far not been demonstrated

to scale as far as DXR on general-purpose CPUs with large number of processing cores.

The fact that the direct / range LPM proposal strikes a useful balance between high lookup

throughputs and reasonable sizes of its data structures makes it a practical, viable option for

application in today’s virtualized software packet datapaths, where several routing contexts

compete not only for CPU cycles, but even more so for cache space. The throughput / foot-

print balance is equally important in applications where lookups over multiple tables have to be

performed on per-packet basis in a single datapath.

An implementation of DXR as a C library was integrated in an experimental datapath and

subsequently field-tested by forwarding all departmental IPv4 traffic at Gbps speeds for several

months. While the primary goal of that particular experiment was beyond the scope of this the-

sis, it indicates DXR’s suitabilty for practical application in real-life, robust packet processors.

Experiments in a 10 Gbps Ethernet testbed have shown that a packet datapath built on top of

netmap and DXR sustains line rate throughput (14.88 Mpps) while performing LPM lookups

using a single CPU core, even when running with reduced core frequency.

Much of the performance and scaling potential of DXR comes from the simplicity of the

algorithm and the small size of its data structures, especially in the variant which peforms

leaf node deduplication on the intermediate (extension) lookup table. At its core, this thesis

resurrects several concepts well-known but old, thus mostly abandoned as overly simple and

obsolete, and applies them effectively to a contemporary problem and contemporary general-

purpose computing hardware.

63

Bibliography

[1] Coffman, K. G., Odlyzko, A. M., “Internet growth: Is there a "Moore’s Law" for data

traffic?”, in Handbook of massive data sets. Springer, 2002, pages 47–93.

[2] Fuller, V., Li, T., Yu, J., Varadhan, K., “Classless inter-domain routing (CIDR): an address

assignment and aggregation strategy”, Tech. Rep., 1993.

[3] Cittadini, L., Muhlbauer, W., Uhlig, S., Bush, R., Francois, P., Maennel, O., “Evolution of

internet address space deaggregation: myths and reality”, IEEE Journal on Selected Areas

in Communications, Vol. 28, No. 8, 2010, pages 1238–1249.

[4] Meyer, D., Zhang, L., Fall, K., “Report from the IAB workshop on routing and

addressing”, Internet Requests for Comments, RFC 4984, September 2007, available

from: http://www.rfc-editor.org/rfc/rfc4984.txt

[5] Huston, G., “What’s so special about 512?”, Internet Protocol Journal, Vol. 17, No. 2,

2014, pages 2–18.

[6] Edwards, C., “Internet routing failures bring architecture change back to

the table”, ACM News, 2014, available from: http://cacm.acm.org/news/

178293-internet-routing-failures-bring-architecture-changes-back-to-the-table/fulltext

[7] Wobker, L., “Evolution of core routing hardware and software”, CiscoLive, 2014,

available from: https://www.alcatron.net/Cisco%20Live%202014%20Melbourne/Cisco%

20Live%20Content/Service%20Provider/BRKSPG-2640%20%20Evolution%20of%

20Core%20Routing%20Hardware%20and%20Software.pdf

[8] Zec, M., Mikuc, M., “Real-time ip network simulation at gigabit data rates”, in Proc.

International Conference on Telecommunications (ConTEL), Zagreb, Croatia. Citeseer,

2003.

[9] Salopek, D., Vasić, V., Zec, M., Mikuc, M., Vašarević, M., Končar, V., “A network testbed

for commercial telecommunications product testing”, in Software, Telecommunications

and Computer Networks (SoftCOM), 2014 22nd International Conference on. IEEE, 2014,

pages 372–377.

64

http://www.rfc-editor.org/rfc/rfc4984.txt
http://cacm.acm.org/news/178293-internet-routing-failures-bring-architecture-changes-back-to-the-table/fulltext
http://cacm.acm.org/news/178293-internet-routing-failures-bring-architecture-changes-back-to-the-table/fulltext
https://www.alcatron.net/Cisco%20Live%202014%20Melbourne/Cisco%20Live%20Content/Service%20Provider/BRKSPG-2640%20%20Evolution%20of%20Core%20Routing%20Hardware%20and%20Software.pdf
https://www.alcatron.net/Cisco%20Live%202014%20Melbourne/Cisco%20Live%20Content/Service%20Provider/BRKSPG-2640%20%20Evolution%20of%20Core%20Routing%20Hardware%20and%20Software.pdf
https://www.alcatron.net/Cisco%20Live%202014%20Melbourne/Cisco%20Live%20Content/Service%20Provider/BRKSPG-2640%20%20Evolution%20of%20Core%20Routing%20Hardware%20and%20Software.pdf

Bibliography

[10] Bianco, A., Birke, R., Bolognesi, D., Finochietto, J. M., Galante, G., Mellia, M., Prashant,

M., Neri, F., “Click vs. Linux: two efficient open-source IP network stacks for software

routers”, in High performance switching and routing, 2005. HPSR. 2005 workshop on.

IEEE, 2005, pages 18–23.

[11] Bolla, R., Bruschi, R., “The IP lookup mechanism in a Linux Software Router: perfor-

mance evaluation and optimizations”, in High Performance Switching and Routing, 2007.

HPSR’07. Workshop on. IEEE, 2007, pages 1–6.

[12] Brouer, J. D., “Network stack challenges at increasing speeds”, in Proceedings of the

Linux Conference, Auckland, New Zealand, 2015, pages 12–16.

[13] Dobrescu, M., Egi, N., Argyraki, K., Chun, B.-G., Fall, K., Iannaccone, G., Knies,

A., Manesh, M., Ratnasamy, S., “RouteBricks: Exploiting parallelism to scale software

routers”, in SOSP ’09. Big Sky, Montana, USA: ACM, 2009, pages 15–28, available

from: http://doi.acm.org/10.1145/1629575.1629578

[14] Han, S., Jang, K., Park, K., Moon, S., “PacketShader: a GPU-accelerated software router”,

in SIGCOMM ’10. ACM, 2010, pages 195–206.

[15] Rizzo, L., “netmap: A novel framework for fast packet I/O”, in Usenix ATC 2012. Usenix,

2012.

[16] Baker, F., “Requirements for IP version 4 routers”, RFC 1812, 1995.

[17] Rekhter, Y., Li, T., Hares, S., “A border gateway protocol 4 (BGP-4)”, RFC 4271, 2006.

[18] Sklower, K., “A tree-based packet routing table for Berkeley Unix”, in USENIX Winter

Conference, 1991, pages 93-104.

[19] Degermark, M., Brodnik, A., Carlsson, S., Pink, S., “Small forwarding tables for fast

routing lookups”, SIGCOMM Computer Communication Review, Vol. 27, No. 4, Oct.

1997, pages 3–14, available from: http://doi.acm.org/10.1145/263109.263133

[20] Lampson, B., Srinivasan, V., Varghese, G., “IP lookups using multiway and multicolumn

search”, IEEE/ACM Trans. on Networking, 1998, pages 324–334.

[21] Gupta, P., Lin, S., McKeown, N., “Routing lookups in hardware at memory access

speeds”, in INFOCOM, 1998, pages 1240-1247.

[22] Zane, F., Narlikar, G., Basu, A., “CoolCAMs: Power-efficient TCAMs for forwarding en-

gines”, in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Com-

puter and Communications. IEEE Societies, Vol. 1. IEEE, 2003, pages 42–52.

65

http://doi.acm.org/10.1145/1629575.1629578
http://doi.acm.org/10.1145/263109.263133

Bibliography

[23] Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., Uhlig, S.,

“Software-defined networking: A comprehensive survey”, Proceedings of the IEEE, Vol.

103, No. 1, 2015, pages 14–76.

[24] Naous, J., Gibb, G., Bolouki, S., McKeown, N., “NetFPGA: reusable router architec-

ture for experimental research”, in Proceedings of the ACM workshop on Programmable

routers for extensible services of tomorrow. ACM, 2008, pages 1–7.

[25] Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M. F., “The click modular router”,

ACM Transactions on Computer Systems (TOCS), Vol. 18, No. 3, 2000, pages 263–297.

[26] Zec, M., Rizzo, L., Mikuc, M., “DXR: towards a billion routing lookups per second in

software”, ACM SIGCOMM Computer Communication Review, Vol. 42, No. 5, 2012,

pages 29–36.

[27] Zec, M., Mikuc, M., “Pushing the envelope: Beyond two billion IP routing lookups per

second on commodity CPUs”, in Software, Telecommunications and Computer Networks

(SoftCOM), 2017 25th International Conference on. IEEE, 2017, pages 1–6.

[28] Huston, G., “BGP routing table analysis reports”, 2018, available from: http:

//bgp.potaroo.net/

[29] Rétvári, G., Tapolcai, J., Kőrös i, A., Majdán, A., Heszberger, Z., “Compressing IP for-

warding tables: towards entropy bounds and beyond”, IEEE/ACM Transactions on Net-

working, Vol. 24, No. 1, 2016, pages 149–162.

[30] Asai, H., Ohara, Y., “Poptrie: A compressed trie with population count for fast and scal-

able software IP routing table lookup”, in ACM SIGCOMM Computer Communication

Review, Vol. 45, No. 4. ACM, 2015, pages 57–70.

[31] Yang, T., Xie, G., Li, Y., Fu, Q., Liu, A. l. X., Li, Q., Mathy, L., “Guarantee IP lookup

performance with FIB explosion”, ACM SIGCOMM Computer Communication Review,

Vol. 44, No. 4, 2015, pages 39–50.

[32] Mack, C. A., “Fifty years of Moore’s law”, IEEE Transactions on semiconductor manu-

facturing, Vol. 24, No. 2, 2011, pages 202–207.

[33] Waldrop, M. M., “The chips are down for Moore’s law.”, Nature, Vol. 530, No. 7589,

2016, pages 144–147.

[34] Danowitz, A., Kelley, K., Mao, J., Stevenson, J. P., Horowitz, M., “CPU DB: recording

microprocessor history”, Communications of the ACM, Vol. 55, No. 4, 2012, pages 55–63.

66

http://bgp.potaroo.net/
http://bgp.potaroo.net/

Bibliography

[35] Calhoun, B. H., Cao, Y., Li, X., Mai, K., Pileggi, L. T., Rutenbar, R. A., Shepard, K. L.,

“Digital circuit design challenges and opportunities in the era of nanoscale CMOS”, Pro-

ceedings of the IEEE, Vol. 96, No. 2, 2008, pages 343–365.

[36] Intel, “Intel 64 and ia-32 architectures optimization reference manual”, 2016.

[37] Butler, M., Yeh, T.-Y., Patt, Y., Alsup, M., Scales, H., Shebanow, M., “Single instruction

stream parallelism is greater than two”, in ACM SIGARCH Computer Architecture News,

Vol. 19, No. 3. ACM, 1991, pages 276–286.

[38] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Mangard,

S., Kocher, P., Genkin, D. et al., “Meltdown: Reading kernel memory from user space”,

in 27th USENIX Security Symposium (USENIX Security 18), 2018, pages 973–990.

[39] Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard, S.,

Prescher, T., Schwarz, M., Yarom, Y., “Spectre attacks: Exploiting speculative execution”,

arXiv preprint arXiv:1801.01203, 2018.

[40] Gras, B., Razavi, K., Bos, H., Giuffrida, C., “Translation leak-aside buffer: Defeating

cache side-channel protections with TLB attacks”, in 27th USENIX Security Symposium

(USENIX Security 18), 2018, pages 955–972.

[41] Molka, D., Hackenberg, D., Schöne, R., Nagel, W. E., “Cache coherence protocol and

memory performance of the Intel Haswell-ep architecture”, in Parallel Processing (ICPP),

2015 44th International Conference on. IEEE, 2015, pages 739–748.

[42] Wu, Z. P., Krish, Y., Pellizzoni, R., “Worst case analysis of DRAM latency in multi-

requestor systems”, in Real-Time Systems Symposium (RTSS), 2013 IEEE 34th. IEEE,

2013, pages 372–383.

[43] Tullsen, D. M., Brown, J. A., “Handling long-latency loads in a simultaneous multithread-

ing processor”, in Microarchitecture, 2001. MICRO-34. Proceedings. 34th ACM/IEEE

International Symposium on. IEEE, 2001, pages 318–327.

[44] Clements, A. T., Kaashoek, M. F., Zeldovich, N., Morris, R. T., Kohler, E., “The Scal-

able Commutativity Rule: Designing Scalable Software for Multicore Processors”, ACM

Transactions on Computer Systems (TOCS), Vol. 32, No. 4, 2015, page 10.

[45] Intel, D., “Intel Data Plane Development Kit”, Programmer’s Guide–http://dpdk. org/-

doc/guides/prog_guide, 2016.

67

Bibliography

[46] Navarro, J., Iyer, S., Druschel, P., Cox, A., “Practical, transparent operating system support

for superpages”, ACM SIGOPS Operating Systems Review, Vol. 36, No. SI, 2002, pages

89–104.

[47] Zec, M., “Implementing a Clonable Network Stack in the FreeBSD Kernel”, in USENIX

Annual Technical Conference, FREENIX Track, 2003, pages 137–150.

[48] Handley, M., Kohler, E., Ghosh, A., Hodson, O., Radoslavov, P., “Designing extensible

IP router software”, in Proceedings of the 2nd conference on Symposium on Networked

Systems Design & Implementation-Volume 2. USENIX Association, 2005, pages 189–

202.

[49] Morrison, D. R., “PATRICIA-practical algorithm to retrieve information coded in alphanu-

meric”, Journal of the ACM (JACM), Vol. 15, No. 4, 1968, pages 514–534.

[50] Gupta, P., Mckeown, N. W., Algorithms for routing lookups and packet classification.

Stanford University Diss, 2000.

[51] Varghese, G., Network Algorithmics: An Interdisciplinary Approach To Designing Fast

Networked Devices, ser. The Morgan Kaufmann Series in Networking. Elsevier/Morgan

Kaufmann, 2005, available from: http://books.google.hr/books?id=01QORuRF6fIC

[52] Suri, S., Varghese, G., Warkhede, P. R., “Multiway range trees: Scalable IP lookup with

fast updates”, in Proc. IEEE GLOBECOM ’01 , v3 2001, 2001, pages 1610–1614.

[53] “University of Oregon RouteViews project”, Eugene, OR.[Online]. Available:

http://www.routeviews.org.

[54] Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A., “Reverse en-

gineering Intel last-level cache complex addressing using performance counters”, in In-

ternational Workshop on Recent Advances in Intrusion Detection. Springer, 2015, pages

48–65.

[55] Jakma, P., Lamparter, D., “Introduction to the quagga routing suite.”, IEEE Network,

Vol. 28, No. 2, 2014, pages 42–48.

[56] Rizzo, L., “Revisiting network I/O APIs: the netmap framework”, Comm. of the ACM,

Vol. 55, No. 3, 2012, pages 45–51.

[57] Ruiz-Sanchez, M., Biersack, E. W., Dabbous, W., “Survey and taxonomy of IP address

lookup algorithms”, IEEE Network, Vol. 15, 2001, pages 8–23.

68

http://books.google.hr/books?id=01QORuRF6fIC

Bibliography

[58] Waldvogel, M., Varghese, G., Turner, J., Plattner, B., “Scalable high-speed prefix

matching”, ACM Trans. Comput. Syst., Vol. 19, No. 4, Nov. 2001, pages 440–482,

available from: http://doi.acm.org/10.1145/502912.502914

[59] Nilsson, S., Karlsson, G., “IP-address lookup using LC-tries”, IEEE Journal on Selected

Areas in Communications, Vol. 17, No. 6, 1999, pages 1083–1092, available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=772439

[60] Srinivasan, V., Varghese, G., “Faster IP lookups using controlled prefix expansion”,

in SIGMETRICS ’98/PERFORMANCE ’98. ACM, 1998, pages 1–10, available from:

http://doi.acm.org/10.1145/277851.277863

[61] Tzi-cker Chiueh, Pradhan, P., “High performance IP routing table lookup using CPU

caching”, in INFOCOM, 1999, pages 1421-1428.

[62] Song, H., Hao, F., Kodialam, M. S., Lakshman, T. V., “IPv6 lookups using distributed and

load balanced bloom filters for 100 Gbps core router line cards”, in INFOCOM, 2009,

pages 2518-2526.

[63] Fu, J., Hagsand, O., Karlsson, G., “Performance evaluation and cache behavior of LC-trie

for IP-address lookup”, in IEEE Workshop on High Perf. Switching and Routing, Poznan,

2006.

[64] Uzmi, Z. A., Nebel, M., Tariq, A., Jawad, S., Chen, R., Shaikh, A., Wang, J., Francis, P.,

“SMALTA: practical and near-optimal FIB aggregation”, in CoNEXT ’11. ACM, 2011,

pages 29:1–29:12, available from: http://doi.acm.org/10.1145/2079296.2079325

[65] Song, H., Turner, J., Lockwood, J., “Shape shifting tries for faster IP route lookup”, in

Proceedings of the 13TH IEEE International Conference on Network Protocols, ser. ICNP

’05. Washington, DC, USA: IEEE Computer Society, 2005, pages 358–367, available

from: http://dx.doi.org/10.1109/ICNP.2005.36

[66] Leu, S., Chang, R.-S., “A fast and scalable IPv4 and 6 address lookup algorithm”,

Computer Communications, Vol. 29, No. 16, 2006, pages 3020 - 3036, available from:

http://www.sciencedirect.com/science/article/pii/S014036640500438X

[67] Bando, M., Chao, H. J., “FlashTrie: Hash-based prefix-compressed trie for IP route

lookup beyond 100 Gbps”, in Proceedings of the 29th conference on Information

communications, ser. INFOCOM’10. Piscataway, NJ, USA: IEEE Press, 2010, pages

821–829, available from: http://dl.acm.org/citation.cfm?id=1833515.1833653

69

http://doi.acm.org/10.1145/502912.502914
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=772439
http://doi.acm.org/10.1145/277851.277863
http://doi.acm.org/10.1145/2079296.2079325
http://dx.doi.org/10.1109/ICNP.2005.36
http://www.sciencedirect.com/science/article/pii/S014036640500438X
http://dl.acm.org/citation.cfm?id=1833515.1833653

Bibliography

[68] Hasan, J., Vijaykumar, T. N., “Dynamic pipelining: making IP-lookup truly scalable”,

SIGCOMM Comput. Commun. Rev., Vol. 35, No. 4, Aug. 2005, pages 205–216,

available from: http://doi.acm.org/10.1145/1090191.1080116

[69] Jiang, W., Wang, Q., Prasanna, V. K., “Beyond TCAMs: An SRAM-based parallel

multi-pipeline architecture for terabit IP lookup.”, in INFOCOM. IEEE, 2008, pages

1786-1794, available from: http://dx.doi.org/10.1109/INFOCOM.2008.241

[70] Kumar, S., Becchi, M., Crowley, P., Turner, J., “CAMP: fast and efficient IP lookup

architecture”, in Proceedings of the 2006 ACM/IEEE symposium on Architecture for

networking and communications systems, ser. ANCS ’06. New York, NY, USA: ACM,

2006, pages 51–60, available from: http://doi.acm.org/10.1145/1185347.1185355

[71] McAuley, A. J., Francis, P., “Fast routing table lookup using CAMs”, in INFOCOM’93.

Proceedings. Twelfth Annual Joint Conference of the IEEE Computer and Communica-

tions Societies. Networking: Foundation for the Future, IEEE. IEEE, 1993, pages 1382–

1391.

[72] Scudder, J., “Router scaling trends”, in RIPE-54 Meeting, 2007.

[73] Rétvári, G., Tapolcai, J., Kőrös i, A., Majdán, A., Heszberger, Z., “Compressing IP for-

warding tables: towards entropy bounds and beyond”, in ACM SIGCOMM Computer

Communication Review, Vol. 43, No. 4. ACM, 2013, pages 111–122.

[74] Rottenstreich, O., Tapolcai, J., “Optimal rule caching and lossy compression for longest

prefix matching”, IEEE/ACM Transactions on Networking (TON), Vol. 25, No. 2, 2017,

pages 864–878.

[75] Yang, T., Xie, G., Liu, A. X., Fu, Q., Li, Y., Li, X., Mathy, L., “Constant ip lookup with

fib explosion”, IEEE/ACM Trans. Netw., Vol. 26, No. 4, Aug. 2018, pages 1821–1836,

available from: https://doi.org/10.1109/TNET.2018.2853575

70

http://doi.acm.org/10.1145/1090191.1080116
http://dx.doi.org/10.1109/INFOCOM.2008.241
http://doi.acm.org/10.1145/1185347.1185355
https://doi.org/10.1109/TNET.2018.2853575

Acronyms

API application programming interface. 52, 53

ASIC application-specific integrated circuits. 1–3, 6–8, 60, 63

ATM Asynchronous Transfer Mode. 59

BGP Border Gateway Protocol. 3, 4, 7, 18–20, 23, 41, 52, 53, 58, 59, 62

CIDR Classless Interdomain Routing. 3, 59

CPU central processing unit. 2, 4–14, 16–18, 23, 26, 27, 29–32, 35, 36, 38, 43, 44, 46, 55–60,

62, 63

DDR double data rate. 11, 59

DMA direct memory access. 14

DPDK Data Plane Development Kit. 16

DRAM dynamic random access memory. 10–13, 16, 37, 60

DXR Direct-eXtend-Range. 4, 5, 16, 17, 19, 22, 23, 26–39, 41–43, 46, 52–56, 59–63

EQIX Equinix Internet Exchange. 27

FIB forwarding information base. 27, 31, 36, 41, 44, 45, 52, 54, 58, 60, 63

FPGA field-programmable gate array. 3, 59, 60, 63

Gbps gigabits per second. 15, 16, 63

Glps billion routing lookups per second. 62

GP general-purpose. 2

GPU graphical processing unit. 2

HWPMC hardware performance monitoring counters. 35, 37

I/O input / output. 54

IC integrated circuit. 3

ILP instruction-level parallelism. 8, 9, 13, 62

IPC instructions per cycle. 9

kpps thousand packets per second. 15

71

Acronyms

LINX London Internet Exchange. 31–34, 37

LPM longest prefix matching. 3, 4, 13, 15–17, 26, 41, 46, 52–56, 60, 62, 63

Mbps megabits per second. 15

Mlps million routing lookups per second. 6, 27, 36, 46, 57, 58, 60, 62, 63

Mpps million packets per second. 2, 15, 53, 55, 56, 63

NIC network interface card. 14, 55

NUMA non-uniform memory access. 10, 13, 62

OoO out-of-order instruction scheduling and execution. 9, 27, 30, 54, 60

OS operating system. 2, 4, 15, 52

PATRICIA Practical Algorithm to Retrieve Information Coded in Alphanumeric. 15, 26

QDRII quad data rate II. 58

SDN software defined networking. 3

SDRAM synchronous dynamic random access memory. 59

SMP symmetric multiprocessing. 10

SMT simultaneous multi-threading. 12, 14, 38

SRAM static random access memory. 58

TCAM ternary content-addressable memory. 59, 60

TLB translation lookaside buffer. 13

VM virtual memory. 13

XORP eXtensible Open Router Platform. 15

72

Curriculum Vitae

Marko Zec was born in 1971 in Zagreb. He received the Dipl. Ing. degree in Electrical En-

gineering from the University of Zagreb in 1997. From 1996 until 2005 he worked as a sys-

tems and network administrator, designer and consultant, at the Rud̄er Bošković Institute, IBM,

AT&T, and local system integration companies, when his assigments included design, deploy-

ment, and management of nation-wide and campus networks for major government agencies.

In 2005 he joined the Department of Telecommunications of the University of Zagreb, Faculty

of Electrical Engineering and Computing (FER) where he currently holds the position of an

associate researcher.

The main areas of his interest are computer networks, operating systems and programmable

logic. His pioneering work from 2002 at virtualizing networking state in a general-purpose op-

erating system was further developed at FER and merged into the mainline FreeBSD kernel in

2008, while the concept was later embraced by Linux and Solaris as well. At that time novel,

network stack virtualization technology became the foundation for a popular network emula-

tion tool called IMUNES, which together with professor Miljenko Mikuc he developed with

initial funding from Croatian Ministry of Science (2004-2005). In 2004 he helped establishing

research collaboration between FER and the International Computer Science Institute (ICSI),

University of California, Berkeley. His major subsequent projects were backed by international

and industrial funding: XORP (ICSI Berkeley, 2004-2006); VIRTNET (FreeBSD Foundation,

2007-2008); NXIX (Boeing Integrated Defense Systems, 2008-2012); E-IMUNES (Ericsson

Nikola Tesla, 2012-2016).

In addition to IMUNES, which became a standard teaching tool used in several computer

networks related courses at FER as well as at numerous universities worldwide, his educational

contributions comprise the introduction of practical, FPGA-based laboratory exercises accom-

panying a digital logic course. This included design of low-cost FPGA development boards

and IP components ranging from simple sequential logic blocks to complex modules such as a

pipelined CPU core, multi-ported RAM controllers, and video frame buffers.

Marko Zec published eight peer-reviewed papers in international journals and conferences,

delivered seven invited talks, and has appered as a speaker at diverse international technical

conventions.

73

Curriculum Vitae

He lives in Zagreb with his wife and their three kids.

List of publications

Journals
∙ Zec, M., Rizzo, L., Mikuc, M. DXR: towards a billion routing lookups per second in

software. ACM Computer Communications Review, Vol 42 Issue 5, October 2012.

Conference proceedings
∙ Zec, M., Mikuc, M. Pushing the Envelope: Beyond Two Billion IP Routing Lookups per

Second on Commodity CPUs. (Best paper award). SoftCOM, Split, 2017.

∙ Salopek, D., Vasić, V., Zec, M., Mikuc, M., Vašarević, M., Končar, V. A network testbed

for commercial telecommunications product testing. SoftCOM, Split, 2014.

∙ Zec, M., Mikuc, M. Operating system support for network emulation in IMUNES. OASIS

/ ASPLOS XI, Boston, MA, 2004.

∙ Zec, M. Implementing a clonable network stack in the FreeBSD kernel. USENIX Annual

Technical Conference, FREENIX Track. San Antonio, Texas, 2003.

∙ Zec, M., Mikuc, M. Real-Time IP Network simulation at gigabit data rates. ConTEL,

Zagreb, 2003.

∙ Zec, M., Mikuc, M., Žagar, M. Estimating the impact of interrupt coalescing delays on

steady state TCP throughput. SoftCOM, Split, 2002.

∙ Musa, N., Zec, M., Kos, M. A method for managing distributed IP packet forwarding in

ATM/LANE based networks. MIPRO, Rijeka, 2002.

Invited talks
∙ Area / speed tradeoffs in a retargetable FPGA-optimized processor core. Center for Em-

bedded and Cyber-Physical Systems, University of California, Irvine, 15. 07. 2016.

∙ Operating system kernel as a building block for scalable and fast network topology emu-

lation. Forschungzentrum Telekomunikation Wien, 18. 05. 2009.

∙ IMUNES: project status and future goals. Siemens AG, Munich, 11. 05. 2009.

∙ Operating system kernel as a building block for scalable and fast network topology emu-

lation. Center for Embedded Computer Systems, University of California, Irvine, 25. 05.

2007.

∙ Network stack virtualization in FreeBSD kernel. Information Sciences Institute, Univer-

sity of Southern California, Marina del Rey, 20. 10. 2004.

∙ Using an operating system kernel as a building block for scalable and fast network topol-

ogy emulation. International Computer Science Institute, University of California, Berke-

ley, 27. 10. 2004.

74

Curriculum Vitae

∙ Clonable / virtualized BSD network stack: implementation, performance, applications.

Apple Inc., Cupertino, 20. 05. 2004.

International conference and workshop appearances
∙ Zec, M., Jadrijević, D. FPGArduino: A Cross-Platform RISC-V IDE for masses. 4th

RISC-V workshop, MIT, Cambridge, MA, 12. 07. 2016.

∙ Zec, M. Network emulation using the virtualized network stack in FreeBSD. MeetBSD

2010, Krakow, Poland, 03. 07. 2010.

∙ Zec, M. Network stack virtualization for FreeBSD 7.0. BSDCan 2007, Ottawa, 18. 05.

2007.

∙ Zec, M. Towards and beyond network stack virtualization in the FreeBSD kernel. NLUUG

2007, Ede, The Netherlands, 10. 05. 2007.

∙ Zec, M. FreeBSD network stack virtualization. EuroBSDCon, Amsterdam, 16. 11. 2002.

75

Životopis

Marko Zec rod̄en je 1971. godine u Zagrebu. Diplomirao je 1997. na Fakultetu elektrotehnike i

računarstva Sveučilišta u Zagrebu. Od 1996. do 2005. bio je zaposlen kao administrator opera-

cijskih sustava i računalnih mreža, te kao projektant i konzultant, na Institutu Rud̄er Bošković,

u IBM Hrvatska, AT&T Hrvatska, te drugim tvrtkama za integraciju IT sustava. Tijekom tog

razdoblja njegove projektne zadaće obuhvaćale su projektiranje, implementaciju, te nadzor i

upravljanje nekoliko velikih WAN i campus mreža tijela državne uprave.

2005. godine zapošljava se na Zavodu za telekomunikacije Fakulteta elektrotehnike i raču-

narstva kao zavodski suradnik na istraživačkim projektima, gdje 2013. godine prelazi na mjesto

višeg laboranta, a od 2017. je na radnom mjestu stručnog suradnika u Zavodu.

Glavna područja interesa su mu računalne mreže, operacijski sustavi, te programirljiva lo-

gika. Njegov rad iz 2002. na virtualizaciji mrežnog stoga operacijskog sustava opće namjene

integriran je u standardnu jezgru operacijskog sustava FreeBSD, a isti je koncept kasnije prihva-

ćen i u operacijskim sustavima Solaris i Linux. Koncept emulacije topologije računalnih mreža

korištenjem virtualiziranog mrežnoG stoga postao je temelj alata IMUNES, kojeg je zajedno s

prof. Mikucem započeo razvijati uz potporu MZOS (2004/2005). Kao vanjski suradnik FER-a,

2004. godine pomaže pri uspostavi istraživačke suradnje izmed̄u FER/a i International Compu-

ter Science Institute, University of Califoria, Berkeley. Projekti na kojima je kasnije radio bili

su financirani kroz med̄unarodnu suradnju i / ili od strane gospodarstva: XORP (ICSI Berke-

ley, 2004-2006); VIRTNET (The FreeBSD Foundation, 2007/2008); NXIX (Boeing Integrated

Defense Systems, 2008-2012); E-IMUNES (Ericsson Nikola Tesla, 2012-2016).

Uz IMUNES koji je usvojen kao standardni alat na nekoliko kolegija iz područja računalnih

mreča na FER-u te na nizu drugih sveučilišta širom svijeta, doprinio je unaprijed̄enju nastave

i kroz razvoj praktičnih laboratorijskih vježbi iz digitalne logike, što uključuje i razvoj cije-

nom dostupnih FPGA razvojnih pločica, te širokog skupa logičkih modula, od jednostavnih

sekvencijskih blokova do procesorske jezgre, vanjskih RAM sučelja s integriranim arbitrom,

generatora slike itd.

Objavio je osam radova s med̄unarodnom recenzijom u časopisu i na konferencijama te je

održao niz predavanja na med̄unarodnim stručnim skupovima. Pozvana predavanja održao je u

Apple Inc., Cupertino; ICSI, UC Berkeley; ISI, University of Southern California; UC Irvine;

76

Životopis

Siemens AG, München; i Forschungzentrum Telekomunikation, Beč.

Oženjen je i otac troje djece.

77

	Introduction
	Background and motivation
	Thesis overview
	Summary

	Packet processing software: a hardware perspective
	Moore's law demise
	Parallelism in contemporary CPUs
	Memory hierarchies and latencies
	Recommendations

	Direct-Rrange longest prefix matching lookups
	Prefix expansion into address ranges
	Building the search data structure
	Saving space and time
	Lookup algorithm
	Updating
	Performance evaluation

	Further space and time optimizations
	Data structures, deduplication
	Lookup algorithm
	Performance evaluation

	Datapath integration
	FreeBSD kernel
	The Click Modular Router
	User-space Packet Processing Library
	Future directions

	Related work
	Conclusion
	Bibliography
	Acronyms
	Curriculum Vitae
	Životopis

