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abstract

Directional data emerge o�en in many aspects of mobile robotics. Measurements from
various sensors yield direction-only information of the objects of interest. Since probabilis-
tic methods have been widely accepted and successfully utilized in many mobile robotics
problems, question arises if such modeling could o�er prospects in the context of proba-
bilistic representation of directional data gathered by a mobile robot. One of the goals of
this thesis is to develop directional statistics based methods for moving object tracking by
omnidirectional sensors of a mobile robot. In that mindset the thesis addresses moving
object tracking via two di�erent problems, namely speaker detection, localization and
tracking with a microphone array, and moving object detection, tracking and following
with an omnidirectional camera. Furthermore, in the thesis we also address the challenge
of heterogenous sensor fusion through the prism of moving object tracking.

�e speaker localization and tracking problem is solved by modeling the measurement
of a microphone array with a convex mixture of von Mises distributions, where the tracking
is thus performed by way of particle �ltering.�is approach is later extended, to circumvent
the sample based techniques, by keeping the tracking procedure fully in the analytical
domain via a mixture �lter based on the vonMises distribution. Furthermore, a prerequisite
for robust speaker localization and tracking is voice activity detection. In the thesis we
analyze this problem from the standpoint of model based voice activity detection methods
which are enhanced by supervised learning algorithms. Speci�cally, a detector based on
the Rayleigh and Rice distributions is coupled with a number of carefully chosen spectral
and temporal features in a supervised classi�cation approach. Apropos of omnidirectional
camera, where spherical projection model coupled with displacement information from
motor encoders is proposed to segment out features that do not belong to the static scene
around the mobile robot, directional statistics is used in the context of movement tracking
on the sphere with a Bayesian �lter based on the von Mises-Fisher distribution. Finally,
fusion of heterogenous sensors for object tracking is analyzed in a comparative study of the
extended information �lter, the unscented information �lter and the particle �lter.

keywords: moving object tracking, directional statistics, speaker localization, von Mises
distribution, microphone array, voice activity detection, sensor fusion, mobile robotics
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sažetak

otkrivanje i praenje gibajuih objekata svesmjernim senzorima
mobilnoga robota

Informacije o smjeru, poput azimuta ili smjera gibanja te elevacije često se javljaju umnogim
primjenama uključujući i mobilnu robotiku. U mobilnoj je robotici problem modeliranja
takvih veličina prisutan zbog korištenja senzora koji mogu mjeriti isključivo kutne veličine
detektiranih objekata. Razmatrajući navigaciju mobilnih robota, kutne veličine prisutne su
u odometriji, pošto je smjer gibanja robota kutna varijabla. Perspektivne kamere se koriste
u problemu navigacije s kutnim vrijednostima radi ispravljanja i potiskivanja pogrešaka
odometrije. Razmatrajući praćenje smjera gibajućih objekata, korištene su svesmjerne i
perspektivne kamere postavljene na mobilnoga robota. Također, u području akustike pos-
toji znatan broj radova koji se bave lokalizacijom i praćenjem govornika, problem koji se
tipično rješava koristeći polje mikrofona od četiri, osam ili samo dva mikrofona (inspiri-
rano biološkim auditornim funkcijama). Za sve navedene pristupe, bez obzira radi li se o
odometriji, kamerama ili polju mikrofona na mobilnom robotu ili letjelici, svi oni moraju
raditi s kutnim veličinama, tj. samo s azimutom ili azimutom i elevacijom. Radeći s ovakvim
podacima, pogotovo u prisustvu nesigurnosti, predstavlja se problem njihovog prikazivanja
u vjerojatnosnim okvirima. U većini se slučajeva kutne veličine tretiraju koristeći Gaussove
slučajne varijable, što je opravdano kada su varijacije u iznosima kuteva male. U suprot-
nome, ne ulazeći trenutno u detalje nedostataka Gaussove razdiobe u slučaju modeliranja
kutnih slučajnih varijabli, može se napomenuti da u području statistike posvećene kutnim
veličinama postoji nekoliko kružnih razdioba: von Misesova, kardoidna, „namotana” Pois-
sonova, Cauchijeva te Gaussova razdioba. „Namotane” razdiobe su analitički zahtjevne zbog
elementa beskonačnog zbroja. Glavna upotreba kardoidne distribucije je aproksimacija von
Misesove s velikom nesigurnosti. Stoga, najčešće se koristi upravo von Misesova razdioba
za koju se može pokazati da proizlazi iz istih pretpostavki kao i Gaussova, ali u slučaju
kada se razmatra de�nicija razdiobe na jediničnoj kružnici. Iako nije do sada korištena u
velikom broju istraživanja, robotičarska je zajednica prepoznala prednosti te razdiobe u
problematici lokalizacije i navigacije. Cilj je ovoga rada razviti metode praćenja gibajućih
objekata svesmjernim senzorima mobilnoga robota koristeći kružne razdiobe i usmjernu
statistiku. Iako ove razdiobe imaju mnoge prednosti, ipak ih nije jednostavno uključiti u
postojeće paradigme.
Prvi razmatrani problem u disertaciji je problem lokalizacije i praćenja govornika poljem
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mikrofona. Ovaj je problem riješen modelirajući mjerenje polja mikrofona konveksnim
zbrojem vonMisesovih razdioba gdje je praćenje ostvareno čestičnim�ltrom.Ovaj je pristup
potom nadalje razvijen u okviru Bayesovih metoda estimacije na način da se je praćenje
riješilo u potpunosti zbrojem von Misesovih razdioba. Na taj je način cijeli postupak ostao
analitički i u eksplicitnom obliku koristeći samo vonMisesovu razdiobu. Nadalje, razmatran
je postupak estimacije ne samo azimuta govornika već i same udaljenosti. Uzimajući u
obzir i pomake robota moguće je implicitno raditi triangulaciju te na taj način estimirati
udaljenost govornika od polja mikrofona. U ovome su dijelu korištena dva mikrofona
na sfernoj glavi te je dobiveni model senzora bila tzv. funkcija pseudo-vjerodostojnosti.
Kako bi se poboljšala estimacija udaljenosti, diskretna je funkcija pseudo-vjerodostojnosti
opisana zbrojem kontinuiranih von Misesovih razdioba minimizirajući kvadratnu grešku te
je korišten čestični �ltar za postupak estimacije. Urađeni su eksperimenti koji su pokazali
da u prosjeku ovakav postupak poboljšava točnost estimacije udaljenosti.
Kako bi metoda lokalizacije radila pouzdano i u uvjetima promjenjive okoline s prisut-

nim šumom, razvijen je i algoritam otkrivanja govorne aktivnosti. Algoritam je temel-
jen na modelsko-statističkim metodama koje modeliraju razdiobu koe�cijenata diskretne
Fourierove transformacije. U radu su modelirani koe�cijenti kompleksnom Gaussovom
razdiobom te je praćena distribucija ovojnice signala koja pod hipotezom prisutnosti samo
šuma daje Rayleighovu razdiobu, a pod pretpostavkom prisutnosti i govora i šuma daje
Riceovu distribuciju. Izračunat je omjer funkcija vjerodostojnosti ove dvije razdiobe te je
dobivena metoda otkrivanja govora zasnovana na Rayleighovoj i Riceovoj razdiobi. Kako
bi se nadalje unaprijedile performanse otkrivanja govora, metodi su dodane različite spek-
tralne i temporalne značajke što je činio skup od 71 značajke na temelju kojeg je trebalo
otkrivati prisutnost govora. Međutim, prije korištenja algoritama nadziranog učenja, skup
je analiziran metodom parcijalne zajedničke informacije čime su eliminirane korelirane
značajke. Time se je dobio reducirani skup koji se je sastojao od ukupno 13 značajki. Potom
su korištena i uspoređena tri algoritma nadziranog učenja: stroj potpornih vektora, Boost i
umjetne neuronske mreže. Usporedba je napravljena koristeći bazu koja je sadržavala šest
različitih govornika s tri različita tipa šuma i tri različite razine signal-šum.
Sljedeće područje istraživanja koje je razmatrano u disertaciji je otkrivanje i praćenje

gibajućih objekata svesmjernomkamerom. Svesmjerne kamere imaju prednost nad standard-
nim kamerama u vidu puno većeg kuta gledanja. Međutim, te prednosti prate i nedostaci
poput distorzija uzrokovanih ogledalom ili lećom te nižom rezolucijom jer ipak prikazuju
puno veće područje na jednakoj veličini senzora. U većini istraživanja svesmjerne kamere
koristile su se za procjenu vlastitog gibanja i za lokalizaciju. Nadalje, problem detekcije
gibajućih objekata u slici je dodatno otežan činjenicom da kamera namobilnom robotu zbog
vlastitog gibanja bilježi i vlastiti optički tok. U ovome je radu predložena metoda detekcije
gibajućih objekata koja se zasniva na računanju optičkog toka u svesmjernoj slici. Nakon
što je izračunat optički tok, pošto je korištena kalibrirana kamera, svaka točka toka može se
prikazati na jediničnoj sferi. Potom, uzimajući podatke o rotaciji i translaciji koordinatnih
sustava iz odometrije robota, na temelju prethodne i trenutne slike može se de�nirati luk
glavne kružnice na kojoj bi krajnja točka toka trebala ležati ako je optički tok bio uzrokovan
samo gibanjem robota. U suprotnome, smatra se da je optički tok bio uzrokovan gibajućim
objektom. Nakon što su vektori optičkog toka grupirani na temelju sličnosti azimuta, ele-



vacije i duljine, izračunat je centar mase vektora što je dalo točku na jediničnoj sferi koja
je predstavljala mjerenje ovoga senzora. To je mjerenje nadalje modelirano razdiobom na
jediničnoj sferi, tj. von Mises-Fisherovom razdiobom. Kao i u slučaju praćenja govornika,
u ovome je dijelu disertacije razvijena metoda praćenja gibajućeg objekta u potpunosti
zasnovana na von Mises-Fisherovoj razdiobi. Na kraju, da bi mobilni robot pratio gibajući
objekt, proračunat je algoritam upravljanja metodom vizualnog slijeđenja.
Posljednje poglavlje disertacije, pored zaključka, posvećeno je fuziji senzora. U ovome su

poglavlju razmatrane dvije metode fuzije: centralizirana i hijerarhijska fuzija. Centralizirana
fuzija se zasniva na ideji da svaki senzor centru fuzije odašilje svoje trenutno mjerenje,
odnosno svoju funkciju vjerodostojnosti, koji potom izvršava algoritam estimacije tako što
na temelju modela gibanja vrši predikciju i potom na temelju svih mjerenja radi korekciju.
Pod pretpostavkom uvjetne nezavisnosti mjerenja, korekcija se može računati na način da
se sve funkcije vjerodostojnosti međusobno pomnože. U slučaju hijerarhijske fuzije, svaki
od senzora lokalno računa estimaciju te potom centru fuzije šalje procijenjenu vrijednost
zajedno sa svojom nesigurnosti. Centar fuzije, koji također vrši estimaciju, prije nego li
izvršava fuziju mora uzeti u obzir da radi sa estimacijama, a ne sa mjerenjima, jer bi u tom
slučaju višestruko brojao informaciju iz predikcije svakog od senzora. U tom slučaju fuzija
se ispravno radi na način da se svaka estimacija senzora podijeli sa svojom predikcijom kako
bi se izlučila funkcija vjerodostojnosti i samo ona koristila pri korekciji estimacije centra
fuzije. Ovaj problem je analiziran na primjeru praćenja gibajućih objekata dvama senzorima.
Predstavljeno je rješenje zasnovano na proširenom informacijskom �ltru, nederivacijskom
informacijskom �ltru te čestičnom �ltru. Također, predloženo je i rješenje za slučaj ako se
vrši fuzija različitih vrsta �ltara, npr. čestičnog i proširenog informacijskog �ltra. Na kraju,
predstavljeni su rezultati eksperimenta praćenja više ljudi trima heterogenim senzorima:
laserskim senzorom udaljenosti, poljem mikrofona i RGB-D kamerom.

kljune rijei: praćenje gibajućih objekata, usmjerna statistika, lokalizacija govornika,
von Misesova razdioba, polje mikrofona, otkrivanje govorne aktivnosti, fuzija senzora,
mobilna robotika
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1
Introduction

Do not follow the path.
Go where there is no path and begin the trail.

—Ashanti proverb

T he introduction chapter presents and elaborates the motivation behind the
research conducted in the thesis. We shall start by discussing what exactly do we mean

by omnidirectional sensors and which in particular were used in the thesis. Ensuingly, we
analyze the measurements potential of the omnidirectional sensors and their dimension.
We shall also discuss and break down the title of thesis and see how it relates to the contents
of the thesis research. Furthermore, we shall discuss why the focus was set on directional
measurements and how they appear in the �eld of mobile robotics. Subsequently, a discus-
sion is in order on why circular distributions were utilized as a basis for estimation, inlieu
of the pervasive Gaussian distribution.�erea�er, the original contributions of the thesis
will be presented and described in more detail, while at the end of the chapter, outline and
structure of the thesis will be sketched along with a brief summary of the chapter contents.

1.1 motivation and problem statement

What do we consider by omnidirectional sensors? Essentially these are sensors that enable
us to capture the surrounding scene of the sensor in a single frame, i.e. sensors which capture
data from all directions.�is pertains more to the �eld-of-view in the horizontal plane,
which for omnidirectional sensors is by de�nition 360○. In this thesis two omnidirectional
sensors were used, namely a microphone array and an omnidirectional camera. What is in
common for both of these sensors, in the application manner used in the thesis, is that they
provide directional measurements. For the case of the omnidirectional cameras these are
measurements of the direction in 3d, i.e. a vector on the unit sphere. For the case of the
microphone array these are angular measurements in 2d, i.e. measurements of the bearing 1
(azimuth) or a vector on the unit sphere. Although the microphone array can be setup so
as to provide direction measurements in 3d like the omnidirectional camera, and if the
geometry of the room and reverberations are taken into account it can be used to provide
also the distance to the object, in this thesis all the microphones are coplanar and we shall

1 In the thesis this will denote the angle of the measured phenomena relative to the heading of the mobile
robot or the x-axis of the local coordinate system.

1
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analyze the case when the array provides bearing-only measurements. To summarize, by
omnidirectional sensors we consider sensors with a 360○ horizontal �eld-of-view which
report directional measurements either in the form of the bearing or a vector on a unit
sphere.
Let us continue now by decomposing the title of the thesis.�e ‘moving object’ implies

that the phenomena that we will be measuring will not be stationary. Our task will thus
be to either detect this motion (in the camera image) or detect some other phenomena
that the moving object produces (speaker’s voice).�erea�er, these measurement will
be used by a tracking method which will estimate the state of the moving object, whose
dimension depends on the utilized sensor. Since the sensors we use are omnidirectional,
appropriate modeling of such measurements will be required and this will lead us to the
�eld of directional statistics. Furthermore, since the application scenarios involves a mobile
robot we can expect that the sensors will be in motion. For the microphone array this will
mean that the surroundings will not be stationary—the robot will experience di�erent types
of noise as well as ego-motion noise, while for the camera this will present an inconvenience
in moving object detection since the movement of the robot will also induce optical �ow in
the image besides the one induced by the moving objects.
Directional measurements, like the bearing, emerge o�en in some of the most funda-

mental problems in mobile robotics, like SLAM and navigation.�e origin of bearing-only
measurements comes as an inherent property of commonly used sensors like cameras (both
perspective and omnidirectional), which are widely utilized due to their low cost, small
dimensions, power consumption etc. In navigation bearing values are o�en encountered in
odometry, since essentially heading of the robot is an angular variable. By analyzing the
pervasiveness of, not just bearing, but bearing-only scenarios in mobile robotics, we can
conclude that the best possible modeling of angular values would surely bring an improve-
ment or simpli�cation to some of the mentioned mobile robotics problems. Probabilistic
approaches to problems in mobile robotics have been widely accepted and tested in a variety
of problems and scenarios. Working with directional data, especially under uncertainty,
imposes a problem on how to represent them in probabilistic frameworks. Angular variables
have hitherto been mostly modeled in a probabilistic manner as Gaussian random variables,
which does not unfortunately capture well the non-euclidean properties of angular data.
�e �rst issue is that angular data is periodic and that, e.g., values like 1○ and 361○ should
be equally probable. Furthermore, the problem becomes more involved if we simply want
to calculate the maximum likelihood value of the mean of a set of independent identically
distributed angular random variables, since we cannot simply take the mean value as the
Gaussian distribution would suggest. In Bayesian inference, o�en two distributions are
multiplied so as to yield a new updated belief in the state. How should the case be handled if
we have equally certain but antipodal means like 90○ and 270○? Should the product always
yield a more certain distribution than any of the initial multiplicands were (like in the case
of the Gaussian distribution)? Are two bad angular measurements always better than one
bad angular measurement? Some of these problems can be solved by simple methods, like
placing a modulo π operation on the considered values, but for the most the solution is
not that simple and by using a proper directional distribution we can be at ease that some
of these question are implicitly considered in the distribution itself.�erefore, directional
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(circular) distributions constitute a fundamental part of the contributions of the thesis
which also strives to o�er answers to the aforementioned questions.

1.2 original contributions

�e original contributions of the thesis essentially revolve about probabilistic methods in
moving object tracking and voice activity detection. Concerningmoving object tracking, this
pertains to utilization of methods from the �eld of directional statistics.�e contributions
and a brief elaboration follow in the sequel.

• Speaker tracking method by an omnidirectional microphone array of a mobile robot
based on a mixture of von Mises distributions.

�is contribution encompasses algorithms developed for speaker tracking by a mi-
crophone array placed on a mobile robot. Firstly, a convex combination of von Mises
distributions is proposed to model the microphone array measurements, which is
then employed in a particle �ltering scheme to estimate the bearing of the active
speaker.�is approach is subsequently expanded in the frame of a Bayesian mixture
�lter based on the von Mises distribution. In the end, the concept is utilized in an
active speaker localization approach where by exploiting the information from robot’s
ego-motion, both the bearing and the range are consequently estimated.

• Robust voice activity detection algorithm based on modeling of the signal envelope,
likelihood ratio and supervised learning.

�is contribution comprises the voice activity detection algorithm that discriminates
speech fromnoise by calculating the likelihood ratio of the distributions of the discrete
Fourier transform coe�cients conditioned on the speech/non-speech hypotheses
and a supervised learning approach with carefully selected input variables.�ree
learning algorithms are compared for the task: support vector machine, Boost and
arti�cial neural networks.

• Moving object detection and tracking method by an omnidirectional camera of a
mobile robot based on optical �ow estimation and directional statistics.

�is contribution covers the developed method for detecting motion in an omnidirec-
tional image with a moving sensor.�e optical �ow is estimated and the �ow vectors
are li�ed to a unit sphere where they are classi�ed as either stemming from the static
background or dynamic objects.�e discrimination is based on determining the
rigid transform between the two locations where the images were captured and on
projecting hypothetical locations on the sphere where the static features might have
been projected onto. Once the motion is detected the moving object is tracked on the
sphere via a Bayesian �lter based on the von Mises-Fisher distribution.

1.3 outline of the thesis

�e thesis is organized into seven chapters. Each chapter begins with a short abstract which
serves to present generally the content of the chapter, results and the insights it o�ers.
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A�erwards the reader is gradually introduced with the problem and with the related work
in the �eld. A�er the body of the chapter, in the end, a summary is given which restates
some the main results of the chapter and its contributions. Herea�er, we present the outline
of the thesis with a short summary of the contents.

ª chapter 2. �is chapter presents the general mathematical background for the thesis
and sets up the context of the problem. An emphasis is set on probabilistic methods for
moving object tracking and especially on distributions stemming from the �eld of directional
statistics. Hence, the von Mises distribution—a distribution on the unit circle—and the
von Mises-Fisher distribution—a distribution on the unit sphere—are presented along
with some of their characteristics and methods for parameter estimation and simulation.
Furthermore, the Kalman and the particle �lter are also presented and a framework for a
Bayesian mixture �lter with arbitrary densities is formulated.

ª chapter 3. �e chapter comprises the speaker localization methods. Firstly, the mod-
eling of the microphone array with a mixture of vonMises distributions is presented and the
experimental results of speaker tracking via a particle �lter are presented. Subsequently, this
approach is extended to tracking with a mixture �lter based on the von Mises distribution.
In other words, the estimator is based solely on the analytical densities to perform the
tracking. In the end, an active speaker localization algorithm is presented which fuses the
bearing measurements and the motion of the robot to estimate both the bearing and the
range of the speaker.

ª chapter 4. A novel approach to voice activity detection based on the likelihood ratio
of two hypotheses producing the Rayleigh and Rice distributions and supervised learning
is presented. Firstly, the Rayleigh and Rice detector is compared to two other statistical
model based detectors.�en a feature set consisting of the likelihood ratio and seventy
other spectral and temporal features is created and the most utile features are selected via a
partial mutual information method. In the end three supervised learning algorithms are
tested and their performance is compared for the task of voice activity detection: support
vector machine, Boost and arti�cial neural networks.

ª chapter 5. In this chapter a method based on processing on the unit sphere for mov-
ing object detection, tracking and following with an omnidirectional camera mounted on a
mobile robot is presented. A projection model which enables us to li� the omnidirectional
image to the unit sphere is coupled with displacement information from motor encoders
and used to segment out vectors that do not belong to the static scene around the mobile
robot. Once the motion is detected in the image, the center of gravity of the dynamic �ow
vectors is calculated and probabilistically structured in order to be included in the tracking
framework based on the Bayesian estimation on the sphere with the von Mises-Fisher dis-
tribution. Given the estimated position a control law based on visual servoing is calculated
which in turn makes the robot follow the moving object.
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ª chapter 6. In this chapter Bayesian methods for sensor fusion are presented.�e
methods are divided in two groups based on the information that each sensor modality
reported: a centralized independent likelihood fusion where each sensor only reported
its measurement, and hierarchical fusion where each sensor ran its �lter and reported its
own estimate along with the uncertainty.�e explicit expressions for the fusion solution
are given in the form of the extended information �lter, unscented information �lter and
the particle �lter. Ensuingly, the problem of tracking multiple moving objects with mul-
tiple heterogeneous sensors is addressed.�e integration of multiple sensors is solved by
asynchronously updating the tracking �lters as new data arrives and the data association is
solved by applying the joint probabilistic data association �lter. Experimental results are
presented for the case of people tracking with a laser range sensor, microphone array and
an rgb-d camera.

ª chapter 7. �is chapter brings conclusions and summary of the scienti�c contribu-
tions. Some ideas for future work are given as well.



2
General background and problem setting

T his chapter presents mathematical background and several tools utilized in
the thesis. As we shall see an emphasis is set on probabilistic methods for moving

object tracking and especially on distributions stemming from the �eld of directional
statistics. We also give a setting to these mathematical tools, namely the omnidirectional
sensors that were used in the thesis and the scenario of moving object tracking with such
sensors.�e mobile robot setup with a microphone array and an omnidirectional camera
is presented and described. Furthermore, a distribution on the unit circle, the von Mises
distribution, that is proposed to model angular measurements and system state is described.
Methods for parameter estimation and distribution simulation are presented. Since the von
Mises distribution su�ers from numerical problems for the cases when it is very sharp, a
numerically stable procedure is also derived and presented. For the case of 3d directional data
a parametric distribution on the unit sphere, the vonMises-Fisher distribution, is presented.
Just like the circular von Mises, this distribution is proposed to be utilized for directional
measurements and system states. Methods for parameter estimation and simulation of the
distribution are presented and a numerically stable procedure for distribution evaluation is
described. Since the emphasis in this thesis is on probabilistic methods for object tracking,
i.e. state estimation methods, a general description of the class of Bayesian estimation
methods is presented and discussed. In the end, three explicit forms of the estimators are
presented: the Kalman �lter, the particle �lter and the mixture �lter.

2.1 introduction

A mobile robot, if it is to behave autonomously in a changing highly-dynamic environment,
is destined to be equipped with at least some of the sensors shown in Fig. 2.1. Each of the
depicted sensors has its advantages and disadvantages, some are active and some are passive.
�e laser range sensor (LRS) is a very accurate sensor but it operates in a single horizontal
plane, while the RGB-D and the stereo cameras o�er an image rich with information by way
of a point cloud—each operating on a di�erent principle but with a somewhat smaller �eld-
of-view (FOV).�e omnidirectional camera and the microphone array, which are sensors
of interest in this thesis, just by themselves cannot measure the distance, but they o�er the
prospects of a very large FOV, speci�caly the microphone array if arranged in a 3d fashion
can truly measure the phenomena in any given direction, while the omnidirectional camera,
depending on the setup, has a ○ FOV in the horizontal plane and o�en more than ○ in

6
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Figure 2.1: Example of di�erent sensors utilized in mobile robotics

the vertical plane. Given that, we can imagine that an autonomous mobile robot, which is
to behave robustly in a challenging environment, can only pro�t by rationally combining
various heterogeneous sensors.�e raw measurements of each of these sensors is subjected
to signal processing which can then be utilized in the task of moving object detection and
tracking which can further be exploited by the local path planing and localization and map
building algorithms as shown in Fig. 2.1. As stated in Chapter 1 directional measurements,
both in 2d (bearing/azimuth) and 3d, are o�en encountered in some of the fundamental
problems in mobile robotics like SLAM, localization, navigation, moving object tracking,
and in the sequel we present some of the examples.
An overview and comparison of various bearing-only SLAM algorithms can be found in

[1, 2]. In [3] a uniform probability on range was imposed to yield a new probability density
function for bearing-only measurements for SLAM (bearing was modeled as a Gaussian
variable). Since in the pertinent problem landmarks are always bearing-only measurements,
research on proper initialization is still active [4–6]. Furthermore, bearing-only SLAM
was applied to acoustic landmarks which were detected with a microphone array [7]. A
related problem is mobile robot localization in an already built map from bearings-only
measurements. In [8] a Monte-Carlo localization was implemented based on measurements
from an omnidirectional camera, in [9] localization was solved by an optimization on a set
of linear constraints governed by each bearing measurement, while in [10] a triangulation
method was used for localization based on bearing measurements of arti�cial landmarks.
In [11] an optimal landmark placement for range-only, bearing-only and range-and-bearing
sensors was analyzed and proposed in regard to achieving a bound on themaximal deviation
from the desired trajectory. Moreover, there exists recent works on cooperative localization
with bearing-only sensors [12–15]. In navigation bearing values are o�en encountered in
odometry, since essentially heading of the robot is an angular variable. In [16] monocular
images were used in a bearing-only navigation scenario to correct robot heading and
suppress odometric error. In [17] bearing measurements were used for 2d/3d homing of
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ground and aerial vehicles with an omnidirectional camera in a visual servoing framework.
When considering tracking with bearing-only values, the pertinent problem was tackled

foremostly in naval warfare. In [18] it was shown that tracking in modi�ed polar coordinates
with an extended Kalman �lter provided better and more stable results that when tracking
in Cartesian coordinates.�is model was further developed in [19] where the tracking
was performed with a bank of range parametrized extended Kalman �lters in modi�ed
polar coordinates. Although this problem has been researched for few decades, it still
receives attention due to emerging new �ltering methods. In [20] three di�erent �lters were
compared for the task, while in [21] various methods for tracking and decentralized sensor
fusion were studied, including bearing-only scenarios.
In mobile robotics this problem has been present, again, due to utilization of sensors

like cameras and microphone arrays, which are able only to measure bearing values of the
objects. In [22–25] an omnidirectional camera was utilized to track dynamic objects/humans
with a mobile robot. If analyzing the �eld of acoustics, there exists a many papers on
the problem of speaker tracking and localization which is usually solved by utilizing a
microphone array of four, eight or just two microphones (inspired by biological auditory
functions) [26–31]. In [26] the authors used a microphone array for tracking multiple
speakers where the state was modeled and estimated with the particle �lter. In [32] the
authors propose a multiple hypothesis square root unscented Kalman �lter for localization
of intermittent moving sources, while in [33] the authors further develop general eigenvalue
decomposition multiple signal classi�cation (MUSIC) algorithm to meet real-time and high
resolution requirements. Microphone arrays have even been used in outdoor environments
and mounted on quadcopters to be used for sound source localization [34, 35]. Furthermore,
some microphone arrays for robotics applications have reached impressive dimensions
[36–38]. For all these approaches, regardless of a microphone array being mounted on a
mobile robot, a quad-copter, consisting of two or 64 channels, they all work with angular
variables, i.e. bearing, or bearing and elevation.
However, we need to stress out that in some research areas bearing-only tracking assumes

that a�er some iterations the �lter will converge to a location in 2d (determined by both
bearing and range).�is is not a problem if the tracked object is stationary, as in the case of
landmarks in SLAM and localization, or if the moving platform can outmaneuver the tracked
object. Indeed, optimal maneuvers for bearing-only tracking have been an interesting topic
of research [39–41]. But in some aspects of mobile robotics, like human-robot interaction,
it might be su�cient to estimate just the bearing of the tracked object.�e limitations
on the robot speed and maneuverability in closed o�ce-like environments might make it
sometimes di�cult for the robot to outmaneuver the tracked object.

2.2 utilized sensors

One of the main goals of the thesis was to develop tracking methods tailored to omnidi-
rectional sensors. As stated in Chapter 1 by omnidirectional sensors we consider sensors
which are able to make measurements in all directions and usually provide measurements
in angles. In other words, in 2d this can be translated to making measurements on the unit
circle, while in 3d we can consider the measurements as being made on the unit sphere. We
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shall see in Section 2.3 how these measurements can be modeled with techniques from the
�eld of directional statistics, but �rstly we shall present the sensors utilized in this thesis
and we shall refrain from using de�nitions and the vernacular of the �eld in order to �rst
introduce the general concept behind utilized sensors.

�e sensor that we primarily used and modeled as an omnidirectional sensor in 2d is
the microphone array. A microphone array consists of several microphones arranged in a
speci�c geometry, o�en omnidirectional themselves in the sense that they equally receive
signals from all directions.�e geometry depends, naturally, on the space constraints of the
platform that the sensors are being placed on and, as we shall see in Chapter 3, the error
sensitivity of the array depends on this geometry.�e microphone signals are acquired
by a multichannel synchronized card, which have become light and small in dimensions
so that they can be incorporated on mobile robots [42] or even small �ying vechicles [34,
35]. An example of a mobile robot equipped with a microphone array is shown in Fig. 2.2.
�e microphone array can be arranged in a scenario where there are no objects preventing
direct path of sound waves from one microphone to the other. In such a set-up, most
o�en the time it takes the signal to reach one microphone from the other is taken as the
acoustical cue for calculating the direction from which the signal came. We can imagine
that placing an object between the microphones can only perturb such measurements, but
on the contrary, if we can model this speci�c ‘perturbation’ we can take it to our advantage
and incorporate additional cues, like the di�erence in the level of the signals, into our signal
processing framework. Indeed, approaches to determining the direction of the signal with
a microphone array or just a pair of microphones are numerous, as we shall in Chapter 3.
But the primary contribution of the thesis in the �eld of speaker localization is not in
the development of new signal processing algorithms for determining the location of the
speaker, but in probabilistic modeling and tracking with such measurements. In that sense,
the methods presented in the thesis are universal and could be utilized with any of the
localization approaches which yield directional measurements.

�e sensor that we utilized primarily in the context of an omnidirectional sensor with
3d directional measurements is the omnidirectional camera.�e omnidirectional camera
is a general concept and signi�es a camera that provides a 360○ view of the surrounding
scene in a single image.�e realizations of the omnidirectional camera are achieved either
by a synchronized combination of multiple cameras facing di�erent directions, or by a
combination of a camera and a mirror or a wide-angle (�sh-eye) lens. An example of a
mobile robot equipped with an omnidirectional camera is shown in Fig 2.3. An important
theoretical concept behind image formation in omnidirectional cameras is the so-called
uni�ed projection model which enables us to map each pixel in the image to a point on
the unit sphere [43, 44].�is model is theoretically valid only for certain camera-mirror
combinations, but it has been shown in practice to be valid also for �sh-eye lenses [45].
�erefore, by focusing on the processing of the sphere we can obtain general approaches
which can be applied to any omnidirectional image. In that spirit, so has the work in the
thesis focused on developing algorithms for detection and tracking of moving objects with
directional measurements on the unit sphere. In essence, all the measurements and states
are considered as unit sphere vectors coupled with corresponding uncertainty, thus creating
a framework for probabilistic state estimation on the sphere.�e methods presented in
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Figure 2.2: Mobile robot equipped with a four channel microphone array

this thesis concerning the tracking on the unit sphere are universal and could be applied to
any direction-only state estimation problem, including the previously discussed problem
of speaker localization when the microphone array in not planar and measures also the
elevation angle.

2.3 directional statistics and circular distributions

Directional statistics studies mainly observations which are unit vectors either in the plane
or in a three dimensional space. In the former case usually the sample space will be a circle,
while in the latter case the sample space will be a sphere. Given the observation space,
special methods are required in order to deal with the intricacies of such data. In this thesis,
both the data on the circle and on the sphere will be analyzed and appropriate methods
utilized. Majority of the tools and concepts come from monograms [46–49] from which
also this section is constructed in order to give a gentle introduction to the subject matter.
Circular data can arise inmany situations, commonly coming asmeasurements from two

principal circular instruments, the compass and the clock. In meteorology wind direction
provides a natural source of circular data, while the time of the day at which thunderstorms
or heavy showers occur can also be treated as such. In biology studying animal navigation
usually leads to circular data, e.g. turtle orientation a�er laying eggs, vanishing angles of
birds to name but a few. Regarding the physics, one of the fundamental circular distributions
arose when Richard von Mises proposed to test if measured atomic weights were indeed
integers subject to error by verifying if the resulting distribution of fractional parts has
a mode at 0○[50].�e robotics community has recognized the bene�ts of the von Mises
distribution to model directional data. In [51] the von Mises (VM) distribution was used
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Figure 2.3: Mobile robot equipped with an omnidirectional camera (perspective camera and a hy-
perbolic mirror)

in odometry to deal with the heading changes for topological model learning. In [52] the
authors proposed a solution for solving large-scale partially observable Markov decision
processes and tested the algorithm �rst on a synthetic problem of a circular corridor,
where the transition and observation probabilities were modeled with the VM distribution.
In [53] the emission distribution of a hidden Markov model was learned by estimating
parameters of theVM distribution in order tomodel compassmeasurements in a localization
problem. In our previous work [54–56] we also utilized the VM distribution in the context
of speaker localization and tracking in order to model the state and the microphone array
measurements as a VMmixture in the context of Bayesian estimation framework.
Spherical data, since the surface of the earth is approximately a sphere, arise readily

in earth sciences, e.g. the location of the earthquake’s epicenter, the paleomagnetic direc-
tions of the earth’s magnetic pole etc. Furthermore, many astronomical observations are
points on the celestial sphere and as such yield spherical data. It is interesting to note that
Gauss developed theory of errors primarily for the analysis of astronomical measurements.
However, since the measurements were concentrated in a small region, it was reasonable
to approximate the sphere locally with a tangential plane thus leading to the development
of the theory of statistics on the Euclidean spaces rather than on the sphere [46]. One of
the fundamental spherical distributions arose in statistical mechanics while studying the
moment of weakly interacting dipoles subjected to external electric �eld [57]. In robotics
the von Mises-Fisher (VMF) distribution has also been recognized and utilized. In [58]
in the context of collaborative robot localization VMF was used to model the errors in
relative orientation measurements. For the purpose of C-space sampling in humanoid
robot con�gurations the authors in [59] used VMF for the orientation variable. In [60] the



12 2. general background and problem setting

distribution was used to introduce perturbations in the 3d rotation for the purpose of a
dissimilarity measure between point cloud representations of segmented shapes near object
grasping points. In our previous work [61] we used VMF to model the measurements of
an omnidirectional camera and to represent the state (direction) of a moving object as a
point on the unit sphere. In the sequel we present both the VM and the VMF distribution
and show some of their properties.

2.3.1 Von Mises distribution

�e von Mises distribution, also referred to as normal circular distribution, is a continuous
parametric probability distribution de�ned on the unit circle, or equivalently on interval
[, π), with probability density function (PDF) given by [50]

p(x; µ, κ) = 
πI(κ) exp{κ cos(x − µ)} ,  ≤ x < π, (2.1)

where µ ∈ [, π) denotes the mean angle, κ ≥  is the concentration parameter, and I is
the modi�ed Bessel function of the �rst kind and of order zero [46]. Recall, the modi�ed
Bessel function of the �rst kind and of order n ∈ N is de�ned by

In(κ) = 
π ∫

π


exp(κ cos ξ) cos(nξ)dξ. (2.2)

In many ways the von Mises distribution is considered as the circular analogue of the
normal distribution on the real line: it is unimodal, symmetric around mean angle µ, and
the concentration parameter κ is analogous to the inverse of the variance. Furthermore,
it is characterized by the maximum entropy principle in the sense that it maximizes the
Boltzmann-Shannon entropy − ∫ π f (x) log f (x)dx under prescribed circular mean (�rst
trigonometric moment) equal to I(κ)/I(κ)e iµ [46]. An illustration of several VM distribu-
tions with di�erent concentration parameters can be seen in Fig. 2.4, while an algorithm for
simulating the distribution is shown in Algorithm 1 [46].�e latter could be used in the
example of adding von Mises noise to angular measurements. Also, note that values such as
x ± kπ, k ∈ N all have equal probabilities.
Von Mises distribution, like many well known parametric distributions (Gaussian, Pois-

son, Gamma, Dirichlet etc.), is an exponential family [49]. A parametric set of probability
distributions de�ned on a sample space X and parametrized by the natural parameter
θ ∈ Θ is called exponential family if their probability densities admit the following canonical
representation

p(x; θ) = exp(T(x) ⋅ θ − F(θ) + C(x)), x ∈ X . (2.3)

Map T ∶ X → Rd is called the minimal su�cient statistics, and functions F and C denote
the log-normalizer (log-partition) and the carrier measure, respectively.
It can be readily checked from (2.1) that our study example, the von Mises distribution,

p(x; µ, κ) with standard parameters µ and κ, is an exponential family parametrized by
the natural parameter θ = (κ cos µ, κ sin µ) ∈ Θ = R.�e minimal su�cient statistics is
the standard parametrization of the unit circle T(x) = (cos x , sin x), the log-normalizer is
given by F(θ) = log(πI(

√
θ + θ)), and the carrier measure is trivial, C = . Canonical

parametrizations (2.3) for other exponential families can be found in [62].
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Figure 2.4:�e von Mises distribution with µ =  and for various concentration parameters
Algorithm 1: Simulation of the von Mises distribution
Require: Distribution parameters µ, κ
Ensure: A sample θ from the distribtion

1: a ←  +
√
 + κ, b ← a −

√
a

κ
, r ←  + b

b
2: # Sample from the uniform distribution

U ← U[,],U ← U[,]
3: z ← cos(πU), f ← ( + rz)/(r + z), c ← κ(r − f )
4: if c( − c) −U >  then
5: go to (11)
6: end if
7: Sample U ← U[,]
8: if log(c/U) +  − c <  then
9: go to (2)
10: end if
11: sample U ← U[,]
12: θ = µ + sign(U − .) arccos( f )

ª von mises distribution parameter estimation. When having a number of
bearing measurements and if we reason that they are sampled from a unimodal distribution,
then we can estimate the µ and κ parameters via maximum likelihood (ML) estimation.
Firstly, some auxiliary values are calculated, namely the Cartesian coordinates of the center
of mass

sC = 
N

N

∑
i=
cos θ i , sS = 

N

N

∑
i=
sin θ i . (2.4)
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Furthermore, the mean resultant length is given by

sR =
√

(sC + sS). (2.5)

Given the aforementioned variables, when sR >  we can calculate the ML estimate of the
mean direction as [46]

µ̂ = atan(sS , sC). (2.6)

�e ML estimation of the concentration parameter is a solution to the following equation
[46]

A(κ̂) = sR, (2.7)

where
A(κ̂) = I(κ̂)

I(κ̂) , (2.8)

is the ratio of the modi�ed Bessel functions of order one and order zero.�is equation
is solved by numerically inverting A( . ). However, a simpler and computationally less
expensive approach can be adopted. It is based on good approximations of the inverse of
A( . ) for certain intervals of sR

κ̂ = sR + sR + sR/, sR < .

κ̂ = −. + .sR + .
 − sR

, . ≤ sR < .

κ̂ = .
 − sR

, sR ≥ ..

(2.9)

Furthermore, in [63] a good approximation for estimation of the concentration parameter
κ has been empirically discovered

κ̂ = 
sR − sR

 − sR
. (2.10)

ª calculation of von mises distributions with large κ. �e direct form
of the VM distribution su�ers from numerical issues when working with large concentration
parameter κ.�e main problem is that for large κ both the exponent and the modi�ed
Bessel function of the �rst kind quickly reach the maximum value that can be stored in
double precision �oating point representation.
To solve this problem, we move the normalizer of the VM distribution in the exponent

as follows

p(x; µ, κ) = exp{κ cos(x − µ) − log(πI(κ))}
= exp{κ cos(x − µ) − log(π) − log(I(κ))} .

(2.11)

We can now see that in the exponent we have log(I(κ)) on whose approximation we
shall concentrate. In [64] a solution for computing the logarithm of the modi�ed Bessel
function of the �rst kind was presented in the context of parameter estimation of the von
Mises-Fisher distribution. In this section, we utilize this idea and present a solution for
computation of the VM with large κ.
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�e I(x) has the following power series expansion [46]

I(x) =
∞

∑
k=


(k!) (

x

)
k
=

∞

∑
k=

fk(x). (2.12)

Since fk(x)→  when k →∞ we can expect to have a good approximation for large k. In
order to evaluate log(I(x)) we apply the following property of the exponential function

log(I(x)) = log
∞

∑
k=
exp{k log x


−  log k!}

= log
∞

∑
k=
exp{k log x


− 

k

∑
r=
log r}

= log
∞

∑
k=
exp{tk(x)} .

(2.13)

�e term log k! is still problematic from a numerical standpoint, which is why we used the
equality log k! = ∑k

r= log r to yield a computable solution. Please note that the aforemen-
tioned calculation of log k! can be calculated o�-line for a given k and stored for a simple
look-up operation.
At this point we can still expect large values in the exponent in (2.13) and in order to

solve this problem we de�ne m(x) = max{tk(x)} and perform the following algebraic
manipulation

log(I(x)) = m(x) + log
∞

∑
k=
exp{tk(x) −m(x)} , (2.14)

where tk(x) = k log x
 − ∑

k
r= log r and m(x) = max{tk(x)}.�e number of the terms

in (2.14) required to have an accurate approximation depends on the κ. Comparing this
method of VM evaluation to Matlab implementation based on [65], which su�ered from
numerical problems for large κ, we did not notice any increase in the computational expense.

2.3.2 Von Mises-Fisher distribution

�e direct generalization to the sphere of the von Mises distribution on the circle is the
von Mises-Fisher distribution which serves as an all-purpose probability model for direc-
tions in space and directional measurement errors [48]. When considering directions in
p dimensions, i.e. unit vectors in p dimensional Euclidean space Rp, one can represent
them as points on Sp−, i.e. the p −  dimensional sphere with unit radius and center at
the origin. In other words, a p-sphere is de�ned as a set of points in (p + ) dimensional
Euclidean space, hence a 1-sphere is the circle and the 2-sphere is the surface of a ball in
three-dimensional space. A three-dimensional unit random vector x is said to have a von
Mises-Fisher distribution if its PDF is of the following form

p(x; κ, µ) = κ
π sinh κ

exp (κµTx) , x ∈ S, (2.15)

where µ, also a unit vector (∣∣µ∣∣ = ), is the mean direction, κ is the concentration parameter
and S is the unit 2-sphere. Because (2.15) is symmetrical about µ, the mean direction of x
is µ. For κ > , the distribution has a mode at the mean direction µ, whereas when κ = 
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the distribution is uniform.�e larger the κ the greater the clustering around the mean
direction. Since (2.15) depends on x solely through µTx, the VMF is rotationally symmetric
about µ. An example of several VMF distributions with di�erent concentration parameters
are depicted in Fig. 2.5.
For large concentration parameters double precision arithmetic can over�ow easily.

�erefore a numerically more reliable form of the PDF which works over a larger range of
concentration parameters can be used [66]

p(x; µ, κ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩


π
, κ = 0

κ
π( − exp(−κ)) exp (κ(µTx − )) , κ > .

(2.16)

It can be readily checked that the VMF distribution p(x; µ, κ) de�ned by (2.15) with
standard parameters µ and κ, is an exponential family parametrized by the natural parameter
θ = κµ, θ ∈ R.�e minimal su�cient statistics is T(x) = x, the log-normalizer is given
by F(θ) = log π sinh(κ)/κ, and the carrier measure is trivial C = . An algorithm for
simulating VMF based on [66, 67] is shown in Algorithm 2. Note that the result is a random
vector from the VMF with the given κ and µ = [, , ]T; in order to get the desired direction
we only need to apply the appropriate rotation.

Algorithm 2: Simulation of the von Mises-Fisher distribution
Require: Distribution concentration parameter κ
Ensure: A sample r from the distribution with µ = [, , ]T

1: sample ξ ∼ U [,]

2: w ←  + κ− (log ξ + log( − ξ − 
ξ
exp(−κ)))

3: sample θ ∼ U [,π]

4: v ← [cos θ , sin θ]T
5: r ← [v

√
 −w,w]

In the literature this distribution is also referred to as the Fisher distribution [46], while
the von Mises-Fisher distribution is used to denote a family of distributions on the (p − )-
sphere. In [48] it is also referred to as the Fisher distribution with a note that it is also
called the von Mises-Fisher distribution, while the term Langevin distribution is used
to represent a family of distributions on the (p − )-sphere. A historical account on this
distribution can be found in [48]. In the thesis, if not otherwise stated, henceforth we use
the term von Mises-Fisher distribution to denote the distribution on the 2-sphere in the
three-dimensional Euclidean space and the term sphere to denote simply the 2-sphere.

ª von mises-fisher distribution parameter estimation. When facing a
group of N unit vectors on the sphere, x, x, . . . , xN , and wanting to infer about the VMF
distribution, the need for calculating the parameters µ and κ arises.�e ML estimation of
the parameters is then as follows [46]. If we denote the sample mean vector as

sx = 
N

N

∑
i=

x i (2.17)
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Figure 2.5: Illustration of samples from three von Mises-Fisher distributions: κ =  (red), κ = 
(green), κ =  (blue)

and the mean resultant length as
sR = ∣∣sx∣∣ (2.18)

then the mean value and the concentration parameter are calculated via

µ̂ = sx
sR

(2.19)

A(κ̂) = sR = coth κ − 
κ
. (2.20)

Since numerical methods are necessary to solve (2.20) simpler equations have been de-
rived for some limiting cases. When κ is large, for sR ≥ . the following approximation is
satisfactory

κ̂ = 
 − sR

. (2.21)

When κ is small, for sR < . the following approximation is satisfactory

κ̂ = sR ( + 

sR + 


sR) . (2.22)

Furthermore, in [63] a good approximation for estimation of κ has been empirically discov-
ered

κ̂ = 
sR − sR

 − sR
. (2.23)

�e previously presented methods for parameter estimation have been derived for general
p −  dimensional spheres, while here they are presented only for the special case of p = .
Please confer [46, 63, 68] for a more general approach.

2.4 bayesian filtering

�e general idea behind the approach to be presented in this section is the assumption
that the quantity we are trying to estimate is a random variable.�e approach is termed
Bayesian since its implementation is explicitly based on the Bayes theorem, which enables
us to incorporate some prior knowledge on the value we are trying to estimate. As it shall be
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demonstrated, the resulting �ltering approach has a recursive formwith general applicability.
It can be further said that the Bayes �lter (estimator) is optimal on average, or with respect
to the assumed prior PDF of the value we are striving to estimate [69]. In this section we
present the general derivation of the Bayes �lter and several of its realizations.
Let us say that x is a quantity we would like to infer from z in a probabilistic manner.

In other words we would like to estimate p(x ∣ z), i.e. the PDF of the quantity x given the
observed z (in our case usually the noisy sensor data).�e Bayes rule [70] allows us to solve
this problem as follows

p(x ∣ z) = p(z ∣ x)p(x)
p(z) . (2.24)

In the sequel we de�ne each term in (2.24) and o�er an interpretation in the context of
tracking and/or speaker localization.�e quantity p(z ∣ x) is the likelihood function, i.e. in
our context the sensor model to which we assign a PDF to model just how noisy our mea-
surements are.�is model does not have to necessarily capture just the noise of the sensor,
but also the uncertainty (or ignorance) we might have due to the environmental conditions,
e.g. in speaker localization problem the corruption due to the reverberation in the room.
�e quantity p(x) is called the prior distribution, which represents our knowledge we had
about x prior to making the observation z. In practice it could be a uniform distribution
over the state space—signifying absolute ignorance, or a very wide distribution over the
�rst measurement. For an example, in the context of speaker tracking we could place a
uniform distribution over [, π), i.e. the vonMises with the concentration parameter κ = .
To continue, note that the quantity p(z) does not depend on x and actually serves as a
normalizer in (2.24) to ensure that the resulting distribution integrates to unity. Analytically,
it can be evaluated via

p(z) = ∫ p(z ∣ x)p(x)dx , (2.25)

or as in the case of the particle �lter taken into account by normalizing the weights of
the particles. Finally, the quantity p(x ∣ z) is the posterior distribution, i.e. the PDF of the
value we infer a�er incorporating the noisy observation z to the prior knowledge about x.
An interesting interpretation of the former logic is that it is a quantitative form of weak
syllogisms (epagoge) which deal not with absolutes, but with degrees of plausibility [71].
To derive the Bayes �lter, we will turn to the quantities of interest as vectors with a

temporal dimension, i.e. we will want to infer the state x t given z∶t . In other words, with the
Bayes �lter we are striving to estimate the density p(x t ∣ z∶t), i.e. the PDF of the state x t at
time instant t given the history of all the measurements z∶t . Firstly, we start by decomposing
the measurement vector and applying the Bayes theorem

p(x t ∣ z∶t) = p(x t ∣ z t , z∶t−)

= p(z t ∣ x t , z∶t−)p(x t ∣ z∶t−)
p(z t ∣ z∶t−)

.
(2.26)

�e current measurement z t given the current state x t is conditionally independent of all
the previous measurements z∶t− and this results with the following simpli�cation

p(z t ∣ x t , z∶t−) = p(z t ∣ x t). (2.27)
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At the moment the Bayes �lter has the following form

p(x t ∣ z∶t) =
p(z t ∣ x t)p(x t ∣ z∶t−)

p(z t ∣ z∶t−)
. (2.28)

�e PDF p(z t ∣ x t) represents our sensor model (measurement probability) which describes
the noisy measurements of the sensor

z t = h(x t) + nt , (2.29)

where h(x t) is a nonlinear function in the system state and nt is measurement noise.�e
PDF p(x t ∣ z∶t−) is the prior, i.e. the knowledge about the state at time instant t before taking
the measurement z t . It is actually a prediction of the state to time t and is evaluated by
expanding p(x t ∣ z∶t−)

p(x t ∣ z∶t−) = ∫ p(x t ∣ x t−)p(x t− ∣ z∶t−)dx t−, (2.30)

where p(x t ∣ x t−) is the probabilistic model of the state evolution and p(x t− ∣ z∶t−) is the
posterior from the time instant t − .�e model p(x t ∣ x t−) is de�ned by the state transition
equation and known statistics of the process noise

x t = f (x t−, ut) + νt , (2.31)

where f (x t) is a nonlinear function in the system state and control actions and νt is process
noise. At this point we exploit the assumption that the state x t− is complete, i.e. that no
variables prior to x t− may in�uence the stochastic evolution of future states, as all the
information is already contained in x t−. Expression (2.30) is an immediate consequence of
the total probability theorem and is o�en known under the name Chapman-Kolmogorov
equation.�e normalizer p(z t ∣ z∶t−) can be analytically evaluated by expansion

p(z t ∣ z∶t−) = ∫ p(z t ∣ x t)p(x t ∣ z∶t−)dx t . (2.32)

To conclude, the Bayes �lter is a recursive algorithm that iterates between prediction (2.30)
and update (2.28) steps.

2.4.1 Kalman �lter

When the underlying distribution x t of the state is Gaussian, and the transition andmeasure-
ment equations are linear, then the Bayesian �lter takes the form of the Kalman �lter (KF).
A complete derivation of the KF via (2.30) and (2.28) can be found in [72]. In this section
we shall only present a brief treatment of the subject and �nal expressions.
Let us assume that the transition equation has the following form

x t = Atx t− + But +Gνt , (2.33)

where x t ∈ Rn is the state vector, ut ∈ Rc is the known control input, νt ∈ Rq represents a
random variable describing the uncertainty in the evolution of the state, At is the n× n state
matrix, B is the n × c input matrix, and G is the n × q noise matrix. If our estimation of
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the state at time t −  is a Gaussian distributionN (x t−; µt−, Pt−), and (2.33) describes the
transition equation, then solution to (2.30) is a Gaussian distribution with the following
parameters

µt∣t− = Atµt− + Btut

Pt∣t− = AtPt−ATt +GQ tGT,
(2.34)

where Q t is the q × q process noise covariance matrix.
So far we have presented the equations for the prediction part. If we assume that the

sensor model p(z t ∣ x t) is de�ned by

z t = H tx t + nt , (2.35)

where z t ∈ Rm is the observation vector, nt ∈ Rm is the random variable describing uncer-
tainty in the observation, and H t is the m × n measurement matrix, then the solution to
(2.28) takes the following form

K t = Pt∣t−HTt (H tPt∣t−HTt + Rt)−

µt∣t = µt∣t− + K t(z t −H tx t∣t−)
Pt∣t = (I − K tH t)Pt∣t−,

(2.36)

where Rt is the m ×m measurement noise covariance matrix.�us, our state estimation
at time t is again a Gaussian distributionN (x t ; µt∣t , Pt∣t). It is important to mention that
the random variables νt and nt describing process and observation noise are all Gaussian,
zero-mean, white, and themselves uncorrelated. If some of the assumptions about the
uncorrelatedness are violated, this can still be accounted for in the KF algorithm by, for
example, whitening the observations, but such situations are not analyzed in the thesis.
If the transition and/or measurement equations are not linear, then we need to relax the
linearity assumption and the solution is to utilize the extended Kalman �lter (EKF) or the
unscented Kalman �lter (UKF) [72]. However, if the underlying distribution it not Gaussian
and possibly multimodal then di�erent approaches need to be utilized.

2.4.2 Particle �lter

Particle �ltering is a versatile method for recursive Bayesian state estimation. It can handle
nonlinear dynamics and measurements models, as well as non-Gaussian noises.�e poste-
rior PDF of the state at any time t conditioned on the sequence of observedmeasurements up
to t is estimated by means of a point-mass probability distribution with stochastic support,
i.e. weighted particle set. Let {x p,wp}Pp= denote the random measure that characterizes
the posterior state PDF p(x t ∣ z∶t), where each particle in the set {x p}Pp= is associated to
the respective weight in {wp}Pp=.�e weights satisfy ∑pwp = , so that p(x t ∣ z∶t) can be
approximated as [73, 74]

p(x t ∣ z∶t) ≈
P

∑
p=

wp
t δ(x t − x p

t ), (2.37)

with δ(.) the Dirac delta measure. In other words, sampling from p(x t ∣ z∶t) returns to
sampling a particle with a probability equal to its associated weight. As the number of
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samples becomes very large, this characterization becomes an equivalent representation to
the usual function description of the posterior PDF, and the particle �lter approaches the
optimal Bayesian estimate. How to reach (2.37) via a Bayesian procedure is discussed in the
sequel.

�e expectation of some function f (x) integrable with respect to the PDF p(x) is

E [ f (x)] = ∫ f (x)p(x) dx , (2.38)

and the approximation of the integral with particles is

E [ f (x)] ≈ 
P

P

∑
p=

f (x p), (2.39)

where x p ∼ p(x) and the expectation converges to the true values as P →∞. O�en, it is
hard to sample from the true distribution, hence importance sampling is used.�e main
idea is to sample from the importance density q(x) which encompasses the support space
of p(x), and then we can rewrite (2.38) as

E [ f (x)] = ∫ f (x) p(x)
q(x)q(x) dx = ∫ f (x)w(x)q(x) dx , (2.40)

where the importance weights w(x) is given as w(x) = p(x)/q(x). An estimate of the
expectation is then given by

E [ f (x)] ≈ 
P

P

∑
p=

f (x p)w(x p). (2.41)

To summarize, the particles are drawn according to the importance density, then weighted
so that the consequent random measure constitutes a sound approximation to the posterior
PDF.
In particle �ltering o�en the importance density is the one that matches the prior

dynamics p(x t ∣ x t−), i.e. each particle x p
t at time t is drawn from its predecessor x

p
t− at

time t −  according to the proposal density x p
t ∼ p(x t ∣ x p

t−).�en, the weights of the �lter
are updated by evaluating the likelihood p(z t ∣ x p

t ) prior to setting

wp
t ∝ wp

t−p(z t ∣ x
p
t ), (2.42)

where p(z t ∣ x t) represents the sensor model. In the end, all the particle weights are normal-
ized so that they sum up to unity.�e former procedure corresponds to the Bayes update
(2.28) under the assumptions that the importance density is chosen to be the prior density
[73]. It is also possible to perform particle �lter size adaptation through the KLD-sampling
procedure proposed in [75].
Since, for any recursive particle �lter, the signi�cant weights tend to concentrate on a

limited set of particles a�er few iterations, a resampling step is inserted, which consists in
turning {x p

t ,w
p
t }Pp= into the equivalent evenly weighted set {x

∗p
t , P}Pp= by independently

sampling (with replacement) x∗pt according to P(x
∗p
t = x p

t ) = wp
t .�e resampling step can

be applied at each iteration or only when the number of e�ective weights Pe� = /∑p(wp)
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is less than a given threshold, e.g. 33 of the total number of particles P. One problem with
the particle �ltering is sample impoverishment which means that a�er resampling, in the
worst case if there is no process noise, the �lter might degenerate to having P copies of a
single sample. Some of the approaches to solving this problem are the so-called auxiliary
and regularized particle �lter [73, 74]. Furthermore, particle �lters are still a�ected by the
problem of inadequate state-space exploration, especially if the prior distribution has little
overlap with the likelihood function. One solution is to �t kernel or mixture models to the
particle set, which being a form of regularization, also address the �rstly described problem
of sample impoverishment [21, 74].

2.4.3 Mixture �lter

�e idea behind mixture �ltering is as follows. Not much unlike the particle �lter where the
state is represented by a set of particles with corresponding weights, inmixture �lter the state
is represented by a set of PDFs, or hypotheses, de�ned by their parameters and corresponding
weights. Note that all the components are allowed to have di�erent parameters, i.e. in the
case of the VM distribution themeans, concentration parameters andweights.More formally,
the idea is to represent the state as a sum of N density functions

p(x) =
N

∑
i=

wipi(x) (2.43)

where the component weights wi sum up to unity.
In order to perform the Bayesian �ltering with mixtures, one needs to solve the predic-

tion (2.30) and the update step (2.28) of the �lter. Firstly, we shall analyze the prediction step.
Let us assume that the posterior state at t −  is represented by p(x t− ∣ z∶t−) and that the
state transition probability is a single PDF, then the prediction step amounts to the following
nonlinear convolution [76]

p(x t ∣ z∶t−) = ∫ p(x t ∣ x t−)p(x t− ∣ z∶t−)dx t−

= ∫ pνt(x t − f (x t−, ut))p(x t− ∣ z∶t−)dx t−,
(2.44)

where pνt(x) represent a density whose uncertainty parameter is de�ned by the noise
statistics νt . If the state is represented by a density mixture then the prediction step becomes

p(x t ∣ z∶t−) = ∫ pνt(x t − f (x t−, ut))
N

∑
i=

wipσ i ,t−(x t− − µ i ,t−)dx t−

= ∫
N

∑
i=

wipνt(x t − f (x t−, ut))pσ i ,t−(x t− − µ i ,t−)dx t−.
(2.45)

We can see from (2.45) that in order to calculate the prediction we need to convolve each
component from the posterior at t −  with the state transition probability. In this thesis
we will focus on a simpler scenario where the motion model will be represented just by
independent identically distributed additive noise. As we shall see in Section 3.5 for the von
Mises distribution this can be evaluated analytically, while for the Gaussian mixture case
the reader is directed to [21]. More elaborate methods for calculating the prediction lie in
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solving the Fokker-Planck equation and for possible solutions the reader is referred to [77,
78].
Concerning the update step, let us assume that the likelihood p(z t ∣ x t), i.e. the sensor

model, is also modeled as a density mixture. Since from the prediction step (2.45) our new
prior is also a mixture, the update via Bayes rule amounts to the following

p(x t ∣ z∶t)∝ p(z t ∣ x t)p(x t ∣ z∶t−)

∝
M

∑
i=

γipn i ,t(z i ,t − x t)
N

∑
i=

wipσ i ,t∣t−(x t − µ i ,t∣t−),
(2.46)

where the normalizer p(z t ∣ z∶t−), omitted for clarity, is calculated via (2.32). By inspecting
(2.28) we can see that the result of the update will be a component-wise multiplication of
density mixtures, which in an ideal scenario results in a mixture consisting of the same
densities numbering NM components. For von Mises mixtures a multiplication of two
distributions will yield an unnormalized distribution, but due to the normalizer p(z t ∣ z∶t−)
the overall result will be correctly normalized.
If we took the new posterior from time t with NM components and ran again the

predict-update procedure, we would obtain a mixture with NM components at time t + .
By continuing this trend we would be faced with a geometric increase in the number of
components.�erefore, mixture �ltering schemes usually employ a mixture reduction
procedure a�er each update step. In our case, we can see that a�er the �rst update step we
have ended up with a mixture consisting of NM components, and hence what we would
like to achieve with the reduction is to reduce this number to just N components and loose
as little information as possible.
Existing literature on mixture reduction schemes is mostly related to Gaussian mixture

models. A reduction scheme for Gaussian mixtures in the context of Bayesian tracking
systems in a cluttered environment, which successively merges the closest pair of compo-
nents was proposed in [79]. A simpli�cation of this algorithm can be done by �rst sorting
the components according to their weights and then calculating the distance between the
component with the smallest weight and all other components of the mixture. Once the
components with the smallest distance are merged, the new component is inserted accord-
ing to its resulting weight.�e process is repeated until the required number of components
is reached.�e idea behind is that in each step we merge the component which brings the
least information to the mixture.�is approach, known as the West’s algorithm, is one of
the computationally most e�cient and it was proposed in [80] for component number
reduction of mixtures of Gaussian distributions.�e main drawback of these schemes are
their local character, which gives no information about the global deviation of the reduced
mixture from the original one. In [81] the mixture reduction was formulated as an opti-
mization problem for the integral square di�erence cost function. A better suited distance
measure between probability distributions is the Kullback-Leibler (KL) distance [82], but
it lacks a closed form formula between mixtures, what makes it computationally inconve-
nient. Several concepts have been employed to circumvent this problem. A new distance
measure between mixture distributions, based on the KL distance, which can be expressed
analytically was derived in [83], and utilized to solve the mixture reduction problem. In
[84] an upper bound for the KL distance was obtained and used as dissimilarity measure in
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a successive pairwise reduction of Gaussian mixtures, which gives a control of the global
deviation of the reduced mixture from the original one. Introducing the notion of Bregman
information, the authors in [85] generalized the previously developed Gaussian mixture
reduction concepts to arbitrary exponential family mixtures. Further development of these
techniques for exponential family mixtures can be found in [86–89].
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2.5 summary

In this chapter we have discussed the pervasiveness of directional measurements in mobile
robotics. We have seen that these measurements stem from the nature of the measurements
of various utilized sensors. We have described the sensors that are utilized throughout
the thesis—the microphone array and the omnidirectional camera—and how directional
statistics and pertaining distributions relate to these sensors.�erea�er, we have presented
the distribution on the unit circle and the unit sphere, namely the von Mises and the von
Mises-Fisher distribution. As it was discussed, the von Mises distribution will be used
for modeling the measurements of the microphone array, while the von Mises-Fisher
distribution will serve as a measurement model in omnidirectional images. Furthermore,
methods for parameter estimation, stable evaluation, simulation and illustrations of the
two distributions were also presented. Subsequently, Bayesian estimation was introduced
in a general manner by deriving the recursive equations of the estimator which results in
successive application of the prediction and update steps. In the end, three methods for
Bayesian state estimation were presented: (i) the Kalman �lter, optimal estimator suitable
for linear and Gaussian systems and measurements, (ii) the particle �lter, which o�ers more
versatility in the shape, modality and type of the state distribution and measurement, and
(iii) the mixture �lter, which is interesting since in place of particles it o�ers the opportunity
to include probability density functions.



3
Speaker localization and tracking

T his chapter deals with the problem of localizing and tracking a moving speaker
over the full range around the mobile robot.�e problem is initially solved by taking

advantage of the phase shi� between signals received at spatially separated microphones.
�e proposed algorithm is based on estimating the time di�erence of arrival by maximizing
the weighted cross-correlation function in order to determine the bearing of the detected
speaker (angle between robots heading and the speaker in question).�e cross-correlation
is enhanced with an adaptive signal-to-noise estimation algorithm to make the bearing
estimation more robust in noisy surroundings. A post processing technique is proposed
in which each of these microphone-pair determined bearings are further combined into a
mixture of von Mises distributions, thus producing a practical probabilistic representation
of the microphone array measurement. It is shown that this distribution is inherently multi-
modal and that the system at hand is non-linear.�erefore, particle �ltering is applied for
tracking task. Furthermore, two most common microphone array geometries are analyzed
and exhaustive experiments were conducted in order to qualitatively and quantitatively test
the algorithm and compare the two geometries. Also, a voice activity detection algorithm
based on the aforementioned signal-to-noise estimator was implemented and incorporated
into the existing speaker localization system. Moreover, another approach to tracking when
dealing with multimodal distributions is presented; namely, tracking with a mixture of
von Mises distributions.�e algorithm o�ers the prospects of covering the whole state
space with an analytical density mixture.�e experimental results are compared to the
implementation based on the particle �lter. At the end of the chapter a maximum likelihood
method for estimating the bearing from interaural phase and level di�erence between two
microphones mounted on a spherical head is utilized in an active speaker localization
scenario where both the range and the bearing are estimated.

3.1 introduction

In biological lifeforms hearing, as one of the traditional �ve senses, elegantly supplement
other senses as being omnidirectional, not limited by physical obstacles, and absence of
light. Inspired by these unique properties, researchers strive towards endowing mobile
robots with auditory systems to further enhance human–robot interaction, not only by
means of communication but also, just as humans do, to make intelligent analysis of the
surrounding environment. By providing speaker location to other mobile robot systems,

26
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like path planning, speech and speaker recognition, such a system would be a step forward
in developing fully functional human–aware mobile robots.

�e auditory system must provide robust and non–ambiguous estimate of the speaker
location, and must be updated frequently in order to be useful in practical tracking applica-
tions. Furthermore, the estimator must be computationally non-demanding and possess
a short processing latency to make it practical for real-time systems.�e aforementioned
requirements and the fact of an auditory system being placed on a mobile platform, thus
having to respond to constantly changing acoustic conditions, make speaker localization
and tracking a formidable problem.
Existing speaker localization strategies can be roughly categorized in four general groups.

�e �rst group of algorithms refers to beamforming methods in which the array is steered
to various locations of interest and searches for the peak in the output power [26, 27, 90–
93].�e second group includes methods based upon analysis of spatiospectral correlation
matrix derived from the signals received at the microphones [33, 34, 38, 94–97].�e third
group relies on the inspiration from physiologically known parts of the hearing system, e.g.
binaural cue processing [28, 98–103].�e fourth group of localization strategies is based on
estimating the time di�erence of arrival (TDOA) of the speech signals relative to pairs of
spatially separated microphones and then using that information to infer about the speaker
location. Estimation of the TDOA and speaker localization from TDOA can be considered
as two separate problems.�e former is usually calculated by maximizing the weighted
cross-correlation function [104], while the latter is commonly known as multilateration, i.e.
hyperbolic positioning, which is a problem of calculating the source location by �nding
the intersection of at least two hyperbolae [105–108]. In mobile robotics, due to small
microphone array dimensions, usually hyperbolae intersection is not calculated, only the
angle (bearing and/or elevation) is estimated [29, 109–112]. However, in some approaches the
range is estimated besides the bearing by exploiting the known movement of the robot [32,
101, 113, 114] or by exploiting sound re�ections via a known geometry of the room [115–119].
In [120, 121] the von Mises distribution is used to model error between the predicted and
observed interaural phase di�erence of a binaural system, but was later substituted with a
Gaussian distribution since the deviations were much smaller than π. Even though the
TDOA estimation based methods are outperformed to a certain degree by several more
elaborate methods [30, 122, 123], they still prove to be extremely e�ective due to their
elegance and low computational costs.
In this chapter we �rst propose a new speaker localization and tracking method based

on TDOA estimation, probabilistic measurement modeling based on von Mises distribution,
and particle �ltering. Speaker localization and tracking based on particle �ltering was also
used in [26, 124–126], but the novelty of this approach is the proposed measurement model
used for a posteriori inference about the speaker location.�e bene�ts of the proposed
approach are that it solves the front-back ambiguity, increases the robustness by using all
the available measurements, and localizes and tracks a speaker over the full range around
the mobile robot, while keeping low computational complexity of TDOA estimation based
algorithms. Subsequently, we extend this approach by replacing the particle �lter with a
mixture �lter based solely on the von Mises distribution.�e bene�ts of this approach
are that the state is represented in an analytical instead of sample-based manner, thus
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covering the whole state space, and that relatively few parameters are required to describe
the posterior distribution. In the end, an active speaker localization strategy based on ML
estimation of the bearing with a binaural spherical head and von Mises mixture �tting is
presented.�e approach enables us to estimate both the bearing and the range of the speaker
by fusing the information from the robot movement and bearing measurements. Some
of the results and novelties from this chapter have been proposed in [54, 55, 109] which
concern the analysis and comparison of di�erent microphone array con�gurations and
the application of the von Mises distribution to microphone array measurement modeling
and particle �ltering, in [56, 114] which regard the von Mises mixture tracking and active
localization, and in [127] where exponential family mixture reduction with emphasis on
the VM distribution is extensively analyzed under the notion of Rényi α-divergence and
composite metric distances.

3.2 time difference of arrival estimation

�e main idea behind TDOA-based locators is a two step one. Firstly, TDOA estimation of the
speech signals relative to pairs of spatially separated microphones is performed. Secondly,
this data is used to infer about speaker location.�e TDOA estimation algorithm for two
microphones is described �rst.

3.2.1 Principle of TDOA

A windowed frame of L samples is considered. In order to determine the delay ∆τi j in the
signal captured by two di�erent microphones ( i and j), it is necessary to de�ne a coherence
measure which will yield an explicit global peak at the correct delay. Cross-correlation is
the most common choice, since we have at two spatially separated microphones (in an ideal
homogeneous, dispersion-free, far-�eld and lossless scenario) two identical time-shi�ed
signals. Cross-correlation is de�ned by the following expression

Ri j(∆τ) =
L−

∑
n=

xi[n]x j[n − ∆τ], (3.1)

where xi and x j are the signals received by microphone i and j, respectively. As stated earlier,
Ri j is maximal when correlation lag in samples, ∆τ, is equal to the delay between the two
received signals.

�e most appealing property of the cross-correlation is the ability to perform calculation
in the frequency domain, thus signi�cantly lowering the computational intensity of the
algorithm. Since we are dealing with �nite signal frames, we can only estimate the cross-
correlation

R̂i j(∆τ) =
L−

∑
k=

Xi ,kX∗
j,k e

jπ k∆τ
L , (3.2)

where Xi ,k and X j,k are the discrete Fourier transforms (DFTs) of xi[n] and x j[n], (.)∗ de-
notes complex-conjugate, and k represents the frequency bin. We are windowing the frames
with rectangular window and no overlap.�erefore, before applying Fourier transform to
signals xi and x j, it is necessary to zero-pad them with at least L zeros, since we want to
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calculate linear, and not circular convolution. A major limitation of the cross-correlation
given by (3.2) is that the correlation between adjacent samples is high, which has an e�ect
of wide cross-correlation peaks.�erefore, appropriate weighting should be used.

3.2.2 Spectral weighting

�e problem of wide peaks in unweighted, i.e. generalized cross-correlation (GCC), can
be solved by whitening the spectrum of signals prior to computing the cross-correlation.
�e most common weighting function is the phase transform (PHAT) [104]. What PHAT
function (ψPHAT = /∣Xi ,k ∣∣X∗

j,k ∣) does, is that it whitens the cross-spectrum of signals xi and
x j, thus giving a sharpened peak at the true delay. In the frequency domain, GCC-PHAT is
computed as

R̂PHATi j (∆τ) =
L−

∑
k=

Xi ,kX∗
j,k

∣Xi ,k ∣ ∣X j,k ∣
e jπ

k∆τ
L . (3.3)

�e main drawback of the GCC with PHAT weighting is that it equally weights all fre-
quency bins regardless of the signal-to-noise ratio (SNR), thus making the system less robust
to noise, and this is especially noticeable when the sound source is narrowband. To overcome
this issue, as proposed in [26], a modi�ed weighting function based on SNR is incorporated
into GCC framework.
Firstly, a gain function for such modi�cation is introduced (this is simply the Wiener

gain)

Gi ,k(l) =
ξi ,k(l)
 + ξi ,k(l)

, (3.4)

where ξi ,k(l) is the a priori SNR at the i-th microphone, at time frame l , for frequency bin
k and ξi = ξmin.�e a priori SNR is de�ned as ξi ,k(l) = λs

i ,k(l)/λn
i ,k(l), where λs

i ,k(l) and
λn
i ,k(l) are the speech and noise variance, respectively. It is calculated by using the decision
directed (DD) approach proposed in [128]

ξi ,k(l) = αe[Gi ,k(l − )]γi ,k(l − ) + ( − αe)max{γi ,k(l) − , }, (3.5)

where αe is the adaptation rate, γi ,k(l) = ∣Xi ,k(l)∣/λn
i ,k(l) is the a posteriori SNR, and

λi ,k() = ∣Xi ,k()∣.
In stationary noise environments, the noise variance of each frequency bin is time

invariant, i.e. λn
i ,k(l) = λi ,k for all l . But if the microphone array is placed on a mobile

robot, most surely due to robot’s changing location, we will have to deal with non-stationary
noise environments. An algorithm used to estimate λi ,k(l) is based on minima-controlled
recursive averaging (MCRA) developed in [129, 130].�e noise spectrum is estimated by
averaging past spectral power values, using a smoothing parameter that is adjusted by
the speech presence probability. Speech absence in a given frame of a frequency bin is
determined by the ratio between the local energy of the noisy signal and its minimum
within a speci�ed time window.�e smaller the ratio in a given spectrum, more probable
the absence of speech is. Further improvement can be made in (3.4) by using a di�erent
spectral gain function [131]. A more detailed description of the DD and MCRA algorithms is
deferred to Chapter 4.
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To make the TDOA estimation more robust to reverberation, it is possible to modify the
noise estimate λi ,k(l) to include a reverberation term λrevi ,k(l)

λi ,k(l)← λi ,k(l) + λrevi ,k(l), (3.6)

where λrevi ,k(l) is de�ned using reverberation model with exponential decay [26]

λrevi ,k(l) = αrevλrevi ,k(l − ) + ( − αrev)δ∣Gi ,k(l − )Xi ,k(l − )∣, (3.7)

where αrev is the reverberation decay, δ is the level of reverberation and λrevi ,k() = . Equation
(3.7) can be seen as modeling the precedence e�ect [132, 133], in order to give less weight to
frequencies where recently a loud sound was present.
Using just PHAT weighting, poor results were obtained and we concluded that the e�ect

of the PHAT function should be tuned down. As it was explained and shown in [134], themain
reason for this is that speech can exhibit both wide-band and narrow-band characteristics.
For example, if uttering the word “shoe”, “sh” component acts as a wide-band signal and
voiced component “oe” as a narrow-band signal.
Based on the discussion above, the enhanced GCC-PHAT-β has the following form

R̂PHAT-βei j (∆τ) =
L−

∑
k=

Gi ,kXi ,kG j,kX∗
j,k

(∣Xi ,k ∣ ∣X j,k ∣)
β e jπ

k∆τ
L . (3.8)

where  < β <  is the tuning parameter.

3.2.3 Direction of arrival estimation

�e TDOA between microphones i and j can be found by locating the peak in the cross-
correlation

∆τi j = argmax
∆τ

R̂PHAT−βei j (∆τ). (3.9)

Once TDOA estimation is performed, it is possible to compute the bearing of the sound
source through series of geometrical calculations. It is assumed that the distance to the
source is much larger than the array aperture, i.e. we assume the so called far-�eld scenario.
�us the expanding acoustical wavefront is modeled as a planar wavefront. Although this
might not always be the case, being that human-robot interaction is actually a mixture of
far-�eld and near-�eld scenarios, this mathematical simpli�cation is still a reasonable one.
Using the cosine law we can state the following (Fig. 3.1)

φi j = ± arccos(
c∆τi j

ai j
) , (3.10)

where ai j is the distance between the microphones, c is the speed of sound, and φi j is the
direction of arrival (DOA) angle.
Since we will be using more than two microphones one must make the following

transformation in order to fuse the estimated DOAs. Instead of measuring the angle φi j

from the baseline of the microphones, transformation to bearing θ i j measured from the x
axis of the array coordinate system (bearing line is parallel with the x axis when θ i j = ○) is
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Figure 3.1: Direction of arrival angle transformation

performed.�e transformation is done with the following equation (angles φ+
 and θ+ in

Fig. 3.1)

θ±i j = αi j ± φi j

= atan(
y j − yi
x j − xi

) ± arccos(
c∆τi j

ai j
) .

(3.11)

At this point we should note the following:

• under the far-�eld assumption, all the DOA angles measured anywhere on the baseline
of the microphones are equal, since the bearing line is perpendicular to the expanding
planar wavefront (angles θ− and θ+ in Fig. 3.1)

• front-back ambiguity is inherent when using only two microphones (angles φ−
 and

φ+
 in Fig. 3.1).

HavingM microphones, (3.11) will yield  ⋅ (M ) possible bearing values. How to solve the
front-back ambiguity and fuse the measurements is explained in Section 3.4, but at this
point we turn to the analysis of microphone array geometry.

3.3 microphone array geometry

We �nd that microphone arrangement on a mobile robot is also an important issue and
should be carefully analyzed. If we constrain the microphone placement in 2d, then two
most common con�gurations present:

• square array – four microphones are placed on the vertices of a square.�e origin of
the reference coordinate system is at the intersection of the diagonals

• Y array – three microphones are placed on the vertices of an equilateral triangle,
and the fourth is in the orthocenter which represents the origin of the reference
coordinate system.
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Figure 3.2: Possible microphone placement scenarios

�e dimensions of the microphone array depend on the type of the surface it is placed on.
In this section two microphone array con�gurations are compared as if placed on a circular
surface with �xed radius r (see Fig. 3.2). Hence, both arrays are de�ned by their respective
square and triangle side length a, which is equal to a = r

√
 and a = r

√
, respectively.

Estimation of TDOA is in�uenced by the background noise, channel noise and reverberation,
and the goal of (3.8) is to make the respective estimation as insensitive as possible to these
in�uences. Under assumption that the microphone coordinates are measured accurately, we
can see from (3.11) that the estimation of the bearing θ±i j depends solely on the estimation of
the TDOA.�erefore, it is reasonable to analyze the sensitivity of bearing estimation to TDOA
estimation error. Furthermore, it is shown that this sensitivity depends on the microphone
array con�guration. Firstly, we de�ne the error sensitivity of bearing estimation to TDOA
measurement, si j, as follows [133]

si j =
∂θ i j

∂(∆τi j)
. (3.12)

By substituting (3.10) and (3.11) into (3.12) and applying simple trigonometric transforma-
tions, we gain the following expression

si j =
c
ai j


∣ sin(θ i j − αi j)∣

. (3.13)

From (3.13) we can see that there are two means by which error sensitivity can be decreased.
�e �rst is by increasing the distance between the microphones ai j.�is is kept under
constraint of the robot dimensions and is analyzed for circle radius r =  cm, thus yielding
square side length a = . cm and triangle side length a = . cm.�e second is to keep
the azimuth θ i j as close to 90○ relative to αi j as possible.�is way we are ensuring that
the impinging source wave will be parallel to the microphones baseline.�is condition
could be satis�ed if all the microphone pair baselines have the maximum variety of di�erent
orientations.
For the sake of the argument, let us set c = .�e error sensitivity curves si j, as a function

of bearing θ i j, for Y and square array are shown in Fig. 3.3. We can see from Fig. 3.3 that
the distance between the microphones ai j mostly contributes to the o�set of the sensitivity
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Figure 3.3: Error sensitivity of azimuth estimation for Y (upper plot) and square array (bottom plot)

curves, and that the variety of orientations a�ects the e�ectiveness of angle coverage. For Y
array, Fig. 3.3 shows two groups of sensitivity curves: one for ai j = r (bottom marked by the
upper black line), the length of the baseline connecting the microphones on the vertices
with the microphone in the orthocenter, and other for ai j = r

√
 (bottom marked by the

lower black line), the length of the baseline connecting the microphones on the vertices of
the triangle.�e �rst group has the largest error sensitivity value of 3.8 approximately, and
the second group has the largest error sensitivity value of 2.2 approximately. For the square
array, Fig. 3.3 shows also two groups of sensitivity curves: one for ai j = r

√
 (bottommarked

by the upper black line), the side length of the square, and the other for ai j = r (bottom
marked by the lower black line), the diagonal length of the square.�e �rst group has the
largest error sensitivity value of 3.3 approximately, and the second group has the largest error
sensitivity value of 2.3 approximately. From the above discussion and �gures we can see that
the Y array maximizes baseline orientation variety, while the square array maximizes total
baseline length (this length is de�ned as sum of all the distances between the microphones
and is in favor by factor 1.2 for square array).�is type of analysis can also be easily made for
bigger and more complex microphone array systems in order to search for the best possible
microphone placements. A possible scenario is that one of the microphones gets occluded
and its measurement is unavailable or completely wrong. For Y array we have selected that
one of the microphones on the vertices is occluded, since this is the most probable case, and
for the square array it makes no di�erence, since the situation is only symmetrical for any
microphone. Robustness of error sensitivity with respect to microphone occlusion is shown
in Fig. 3.4 for both Y and square array, from which it can be seen that the result is far worse
for Y array.�is is logical, since we removed from the con�guration two microphone pairs
with largest baseline lengths. From the above discussion we can conclude that the square
array is more robust to microphone occlusion.
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Figure 3.4: Error sensitivity of azimuth estimation for Y (upper plot) and square array (bottom plot)
with one microphone occluded

To conclude, we can state the following; although Y array con�guration places micro-
phones in such a way that no two microphone-pair baselines are parallel (thus ensuring
maximum orientation variety), square array has larger total baseline length, yielding smaller
overall error sensitivity and greater robustness to microphone occlusion.
Furthermore, when considering microphone placement on a mobile robot from a

practical point of view, square array has one more advantage. If the microphones are placed
on the body of the robot (as opposed to the top of the robot, e.g. the head), problem occurs
for Y array con�guration considering the placement of the fourth microphone (the one in
the orthocenter). However, the advantages of Y array should not be le� out when considering
tetrahedra microphone con�gurations (see [31]). Also if the two con�gurations are analysed
with both having the same total baseline length, Y array would prove to have superior angle
resolution [109].

3.4 tracking with the particle filter

�e problem at hand is to analyze and make inference about a dynamic system. For that,
two models are required: one predicting the evolution of the speaker state over time (system
model), and second relating the noisy measurements to the speaker state (measurement
model). We assume that both models are available in probabilistic form.�us, the approach
to dynamic state estimation consists of constructing the a posteriori pdf of the state based
on all available information, including the set of received measurements, which are further
combined due to circular nature of the data, as a mixture of von Mises distributions.
Before presenting the models and the algorithm in details, we describe in general major

successive steps of the algorithm.�e algorithm starts with an initialization step at which
we assume that the speaker can be located anywhere around the mobile robot, i.e. we
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assume that the angle has a uniform distribution. At this point it would be practical to
devise a way of discerning if the processed signal frame contains speech or not.�is method
would prevent misguided interpretations of the TDOA estimation due to speech absence, i.e.
estimation from signal frames consisting of noise only. Hence, any further action is taken
only if voice activity is detected by an appropriate algorithm (Chapter 4 is dedicated solely
to voice activity detection algorithms). When the voice presence condition is ful�lled, the
algorithm proceeds with predicting the state of the speaker trough the kinematics model
described in Section 3.4.1. Once measurements are taken, a measurement model based on a
mixture of von Mises distributions, described in Section 3.4.2, is constructed. Since this
model is inherently multimodal, particle �ltering approach, described in general form in
Section 2.4.2 and particularly for this application in the ensuing Section 3.4.3, is utilized
to represent the PDF of such measurement model and to e�ectively estimate the speaker
bearing as the expected value of this PDF.

3.4.1 Kinematics and state space equation

�e sound source kinematics is modeled by the well behaved Langevin motion model [125]

[ẋt
ẏt
] = α [ẋt−

ẏt−
] + β [υx

υy
]

[xt
yt
] = [xt−

yt−
] + δ [ẋt

ẏt
]

(3.14)

where [xt , yt]T is the location of the speaker, [ẋt , ẏt]T is the velocity of the speaker at
time index t, υx , υy ∼ N (, συ) is the stochastic velocity disturbance, α and β are model
parameters, and δ is the time between update steps. Although the motion model of the
speaker is de�ned in 2d by (3.14), which is found to describe well motion of the speaker [26,
124–126], in the end we will calculate the estimated speaker bearing via

θ t = atan (yt , xt) . (3.15)

3.4.2 Von Mises distribution based measurement model

Measurement of the sound source state with M microphones can be described by the
following equation

zt = ht(θ t , nt), (3.16)

where ht(.) is a non-linear function with noise term nt , and zt = [θ±i j, . . . , θ±M ,M−]t , i ≠
j, {i , j} = { j, i} is the measurement vector de�ned as a set of bearings calculated from
(3.11). Working with M microphones gives N = (M ) microphone pairs and N bearing
measurements. Since zt is a random variable of circular nature, we propose to model it
with the von Mises distribution presented in Section 2.3.1. We restate the PDF here for
completeness

p(θ; µ, κ) = 
πI(κ) exp{κ cos(θ − µ)}, (3.17)

where µ is the mean direction, κ is the concentration parameter and I( . ) is the modi�ed
Bessel function of the �rst kind and order zero. According to (3.11), a microphone pair
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Figure 3.5: A mixture of several von Mises distributions wrapped on a unit circle (most of them
having a mode at ○)

{i , j}measures two possible bearings θ+i j and θ−i j. Since we cannot discern from a single
microphone pair which bearing is correct, we can say, from a probabilistic point of view,
that both angles are equally probable.�erefore, we propose to model each microphone
pair as a sum of two von Mises densities, yielding a bimodal PDF of the following form

pi j (θ t ; θ±i j,t , κ) =


pi j (θ t ; θ+i j,t , κ) +



pi j (θ t ; θ−i j,t , κ)

= 
πI (κ) exp [κ cos (θ t − θ+i j,t)]+

+ 
πI (κ) exp [κ cos (θ t − θ−i j,t)] .

(3.18)

Having all pairs modeled as a sum of two von Mises densities, we propose a convex
combination of all those pairs to represent the microphone array measurement model. Such
a model has the following multimodal PDF

p(zt ∣ θ t) =
N

∑
{i , j}=

wi jpi j (θ t ; θ±i j,t , κ) , (3.19)

where∑wi j =  is the mixture coe�cient.�ese mixture coe�cients are selected so as to
minimize the overall error sensitivity. As it has been shown, the error sensitivity is function
of the bearing.�e goal of the coe�cients wi j is to give more weight in (3.19) to the most
reliable PDF.
By looking at (3.13), we can see that the error sensitivity is the greatest when the argument

in the sine function is zero.�is corresponds to a situation when speaker is located at the
baseline of a microphone pair. Furthermore, we can see that the error sensitivity is the
smallest when speaker is on a line perpendicular to the microphone pair baseline. Since we
need the coe�cientswi j to give the least weight to a microphone pair in the former situation
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and the most weight to a microphone pair in the latter situation, it would be appropriate to
calculate wi j by inverting (3.13). However, we use scaled and inverted (3.13)

wi j =
. + ∣sin(θ t− − αi j)∣

.
. (3.20)

where the ratio c/ai j is set to one, since it is constant, and the coe�cients are scaled so as to
never cancel out completely a possibly unfavourable PDF. We can also see that the mixture
coe�cients are a function of the estimated bearing and that this form can only be applied
a�er we have a reliable estimate of the bearing.

�e model (3.19) represents our belief in the sound source bearing. A graphical rep-
resentation of the analytical (3.19) is shown in Fig. 3.5. Of all the N measurements, half
of them will measure the correct bearing, while their counterparts from (3.11) will have
di�erent (not equal) values. So, by forming such a linear opinion pool, PDF (3.19) will have
a strong mode at the correct bearing value.

3.4.3 Particle �ltering for bearing estimation from a von Mises mixture

We have presented the particle �lter (PF) in its more general form in Section 2.4.2, while in
this section we brie�y recall it and connect it with the problem at hand. From a Bayesian
perspective, we need to calculate some degree of belief in the state θ t , given the measure-
ments zt .�us, it is required to construct the PDF p(θ t ∣ zt) which bears multimodal nature
due to TDOA based localization algorithm.�erefore, particle �ltering algorithm is utilized,
since it is suitable for non-linear systems and measurement equations, non-Gaussian noise,
multimodal distributions, and it has been shown in [26, 124–126] to be practical for sound
source tracking. Moreover, in [26] it is successfully utilized to track multiple sound sources
and in the same vein we will use the motion model (3.14) for the prediction part and later
normalize the particles to a unit circle. In PF the posterior density function p(θ t ∣ zt) is
represented by a set of random samples (particles) with associated weights and computes
estimates based on these samples and weights.
Let {θ p

t ,w
p
t }Pp= denote a randommeasure that characterises the posterior PDF p(θ t ∣ zt),

where {θ p
t , p = , . . . , P} is a set of particles with associated weights {wp

t , p = , . . . , P}.
�e weights are normalized so that∑pw

p
t = .�en, the posterior density at time instant t

can be approximated as [73]

p(θ t ∣ zt) ≈
P

∑
p=

wp
t δ(θ t − θ p

t ), (3.21)

where δ(.) is the Dirac delta measure.�us, we have a discrete weighted approximation to
the true posterior p(θ t ∣ zt).

�e weights are calculated using the principle of importance resampling, where the pro-
posal distribution is given by (3.14). In accordance to the sequential importance resampling
(SIR) scheme, the weight update equation is given by [73]

wp
t ∝ wp

t−p(zt ∣ θ
p
t ), (3.22)

where p(zt ∣ θ p
t ) is calculated by (3.19), thus replacing θ t with particles θ p

t .�e next impor-
tant step in PF is the resampling itself.�e resampling step is solved by generating a new
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Figure 3.6: Flowchart diagram of the speaker localization and tracking algorithm based on the von
Mises mixture likelihood and particle �ltering

set of particles by resampling (with replacement) P times from an approximate discrete
representation of p(θ t ∣ zt). A�er the resampling all the particles have equal weights, which
are thus reset towp

t = /P. In the SIR scheme, resampling is applied at each time index. Since
we have wp

t− = /P ∀p, the weights are simply calculated from

wp
t ∝ p(zt ∣ θ p

t ). (3.23)

�e weights given by the proportionality (3.23) are, of course, normalised before the resam-
pling step.

�e θ t is then estimated simply via the following equation (3.15)

θ̂ t = E [θ t] = atan (E[yt], E[xt]) = atan (E [sin(θ t)] , E [cos(θ t)])

= atan
⎛
⎝

P

∑
p=

wp
t sin(θ p

t ),
P

∑
i=p

wp
t cos(θ p

t )
⎞
⎠
,

(3.24)

where E[ .] is the expectation operator.
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3.4.4 Algorithm summary

In order to get a clear overview of the complete algorithm, we present its �owchart diagram
in Fig. 3.6, and herea�er describe each step of the algorithm with implementation details.

Initialization: At time instant t =  a particle set {θ p
 ,w

p
}Pp= (velocities ẋ, ẏ set to zero)

is generated and distributed accordingly on a unit circle. Since the sound source can be
located anywhere around the robot, all the particles have equal weights wp

 = /P,∀p, i.e.
we assume that the angle has a uniform distribution.

Prediction: In this step all the particles are propagated according to the motion model
given by (3.14).

Voice activity detection: In the speaker detection part a voice activity detector is applied
to recorded signals. If no voice activity is detected, we proceed to a decision logic in which
we either apply the motion model (3.14), in order to account for speaker moving during a
silence period, or if this state lasts longer than a given threshold, the algorithm is reset and
we simply go back to the initialization step. If voice activity is detected, then the algorithm
proceeds to measurement model construction.

Measurement model construction: Upon receiving TDOAmeasurements, DOAs are cal-
culated from (3.11) and for each DOA a bimodal PDF is constructed from (3.18). To form
the proposed measurement model, all the bimodal PDFs are combined to form (3.19).�e
particle weights are calculated from (3.23), (3.19), and then normalized.

Bearing estimation: At this point we have the approximate discrete representation of the
posterior density (3.19).�e bearing is estimated via (3.24).

Resampling: �is step is applied at each time index ensuring that the particles are
resampled respective to their weights. A�er the resampling, all the particles have equal
weights: {θ p

t ,w
p
t }Pp= ← {θ p

t , /P}Pp=.�e SIR algorithm is used (see [73]), but particle size
adaptation is not performed, since we have a modest number of particles required for
this algorithm. When the resampling is �nished, the algorithm loops back to the speaker
detection step.

3.4.5 Experiments

�e proposed algorithm was thoroughly tested by simulation and experiments with a
microphone array composed of four microphones arranged in either Y or square geometry
(depending on the experiment).�e circle radius for both array con�gurations was set to
r =  cm, yielding side length of a = . cm for Y array and a = . cm for square array.
Herea�er we present �rst an illustrative simulation and then the experimental results.

ª simulation. In order to get a deeper insight into particle behaviour, in this section
we present an illustrative simulation. We constructed a measurement vector zt similar to
one that would be experienced during experiments. Six measurements were distributed
close to the true value (θ = ○), while the other six were their counterparts, thus yielding

zt = [θ− θ− θ+ θ+ θ+ θ+ θ+ θ+ θ− θ− θ− θ−]
= [○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ] .

(3.25)
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Figure 3.7: Simulation results of speaker localization with microphones in the Y con�guration (red),

the initial particle set (green) and the resampled particle set (blue)

�e algorithm was tested with such zt for the �rst four iterations of the algorithm
execution.�e results are shown in Fig. 3.7 where particles before and a�er the resampling
are shown. We can see that in the �rst step the particles are spread uniformly around the
microphone array. A�er the �rst measurement, the particle weights are calculated and the
particles are resampled according to their respective weights.�is procedure is repeated
throughout the next iterations, and we can see in Fig. 3.7 that the particles converge to the
true bearing value.

ª real-world data. �e microphone array consisting of four omnidirectional mi-
crophones was placed on a Pioneer 3dx robot as shown in Fig. 2.2. Audio interface is
composed of low-cost microphones, pre-ampli�ers and external USB soundcard (whole
equipment costing circa 150 Euros). All the experiments were done in real-time, yielding
L/Fs = .ms system response time. Real-time multichannel signal processing for the
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Matlab implementation was realised with the Playrec1 utility.�e experiments were con-
ducted in a classroom which has dimensions of 7m× 7m× 3.2m, parquet wooden �ooring,
one side covered with windows and a reverberation time of 850 ms. During the experi-
ments, typical noise conditions were present, like computer noise and air ventilation. In the
experiments two types of sound sources were used; a white Gaussian noise (WGN) source
and a single speaker uttering a test sequence.

�e �rst set of experiments was conducted in order to qualitatively assess the perfor-
mance of the algorithm. Two types of experiments were performed; one with a stationary
robot and the other with a moving robot.
In the experiments with the stationary robot Y array con�guration was used, and a

loud white noise sound source, since it represents the best-case scenario in which all the
frequency bins are dominated by the information about the sound source location. Two
cases were analyzed. Figure 3.8a shows the �rst case in which a sound source moved around
the mobile robot at a distance of 2m making a full circle. Figure 3.8b shows the results from
the second case, where a sound sourcemade rapid angle changes under 0.5 s, thus simulating
a turn-take scenario at a distance of 2m . Both experiments were repeated with smaller
array dimensions (a =  cm), resulting in smaller angle resolution, and no signi�cant
degradations to the algorithm were noticed.

�e second set of experiments was conducted in order to quantitatively assess the
performance of the algorithm. In order to do so, a ground truth system needed to be
established.�e Pioneer 3dx platform on which the microphone array was placed was
also equipped with sick lms200 LRS.�e adaptive sample-based joint probabilistic data
association �lter (ASJPDAF) for multiple moving objects developed in [135] was used for
leg tracking.�e authors �nd it to be a good reference system in controlled conditions.
Measurement accuracy of the lms200 LRS is ±35mm, and due to determining the speaker
location as the centre between the legs of the speaker, we estimate the accuracy of theASJPDAF
algorithm to be less than 0.5○. In the experiments, a human speaker walked around the
robot uttering a sequence of words, or carried a mobile phone for white noise experiments,
while the ASJPDAF algorithm measured range and bearing from the LRS scan.
In this set of experiments three parameters were calculated: detection reliability, root-

mean-square error (RMSE) and standard deviation. To make comparison possible, the
chosen parameters are similar to those in [26].�e detection reliability is de�ned as the
percentage of samples that fall within ±5○ from the ground truth bearing, RMSE is calculated
as deviation from the ground truth bearing, while standard deviation is simply the deviation
of the measured set from its mean value.

�e experiments were performed at three di�erent ranges for both the Y and square
array con�gurations, and, furthermore, for each con�guration voice and white noise source
were used.�e white noise source was a train of 50 element 100ms long bursts, and for the
voice source speaker uttered: "Test, one, two, three", until reaching the number of 50 words
in a row. In both con�gurations the source changed angle in 15○ or 25○ intervals, depending
on the range, thus yielding in total 4150 sounds played.�e results of the experiments are
summed up in Table. 3.1, fromwhich we can see (for both array con�gurations) that for close

1 http://www.playrec.co.uk/

http://www.playrec.co.uk/
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Figure 3.8: Tracking a moving white Gaussian noise sound source

Table 3.1: Experimental results of the algorithm performance for Y and square array con�guration

Y-array Square array

Range W. noise Voice W. Noise Voice

Detection [%]
1.50 [m] 97.43 98.93 99.43 97.71
2.25 [m] 97.71 92.86 98.00 96.0
3.00 [m] 94.57 86.86 96.00 91.43

RMSE [○]
1.50 [m] 1.90 2.20 1.72 2.19
2.25 [m] 1.61 3.07 1.99 2.83
3.00 [m] 2.38 4.58 1.80 3.95

Std. deviation [○]
1.50 [m] 0.96 1.59 0.94 1.36
2.25 [m] 1.10 2.78 1.04 2.30
3.00 [m] 1.65 3.85 1.14 3.01

interaction the results are near perfect. High detection rate and up to 2○ error and standard
deviation rate at distance of 1.5m are negligible. In general, for both array con�gurations
performance slowly degrades as the range increases. With the range increasing the far-�eld
assumption does get stronger, but the angular resolution is lower, thus resulting in higher
error and standard deviation. Concerning di�erent array con�gurations, it can be seen that
square array shows better results in all three parameters, on average up to 2.3 in detection,
0.4○ in RMSE, and 0.4○ in standard deviation.
In [26], where an array of eight microphones was used and a beamforming approach,

similar experiments were performed with an open and closed array con�guration. For
the open con�guration, our algorithm shows smaller detection reliability of less than 4
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Figure 3.9: Tracking a moving speaker with the microphone array and laser range sensor

on average, and larger RMSE of less than 2○ on average. For the closed con�guration, our
algorithm shows the same detection reliability on average, and larger RMSE of less then 1○

on average.
From the previous discussion we can see that the algorithm proposed in [26] shows

better or equal performance, on average, in both detection reliability and RMSE. However, in
[26] an array of eight, compared to four,microphoneswas used and a beamforming approach
was utilized.�e beamforming approach is based on dividing the space around the mobile
robot into a direction grid, steering the microphone array to all possible directions, and for
each direction an expression like (3.8) is calculated for all microphone pairs. Although more
complex, it does however have an advantage of being able to track multiple simultaneously
talking speakers.

�e third set of experiments was conducted in order to assess the tracking performance
of the algorithm. A speaker made a semicircle at approximately 2m range around the
robot uttering: “Test, one, two, three”, while at the same time legs were tracked using LRS.
�e experiment was made for both array con�gurations. Figures 3.9a and 3.9b show the
bearing measured with the leg tracker and with the microphone array arranged in the Y
and square con�gurations, respectively. It can be seen that the square array, in this case,
shows bigger deviations from the laser measured bearing than the Y array does. In Fig. 3.9b
at 6.3 s, one of the drawbacks of the algorithm can be seen. It is possible that at an occasion,
erroneous measurements might outnumber the correct ones. In this case, wrong bearing
will be estimated for that time, but as can be seen in Fig. 3.9b the algorithm gets back on
track in a short time period.

3.5 tracking with the von mises mixture

In this section, we propose to model the complete bearing-only tracking process with
the von Mises distribution; from the state representation and transition probability to the
measurement likelihood. Compared to the PF, the bene�ts of the proposed approach lie in
representing the function and not just the density, and in the fact that less components are
needed to model the state. For the classical Bayesian tracking procedure with a mixture of
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Figure 3.10: Convolution p(x; µc , κc) of two von Mises distributions p(x; µi , κi) and p(x; µ j , κ j)
von Mises densities we show the solution to the following problems: (i) the convolution and
(ii) the product of two von Mises distributions, (iii) the algorithm for component reduction
of a mixture of von Mises distributions, and (iv) the analytical expression for the entropy of
a mixture of vonMises distributions in order to have a measurement of the state uncertainty.
�e solution for the �rst two problems are presented from the literature, the third problem
is solved by adapting a component reduction technique for Gaussian distributions, while
the fourth problem is solved by deriving the entropy from the beginning.
As stated in Section 2.4 Bayesian tracking procedure consists of two steps: prediction

and update [72, 73].�e prediction step involves calculating the prior PDF via the total
probability theorem (or Chapman-Kolmogorov equation). In this section we shall assume
that our motion model consists only of adding von Mises noise to the previous state which
will enable us to calculate the prediction step analytically (since a sum of independent
random variables has a distribution which is result of the convolution of the summands).
In the next, update, step, the posterior at time t is calculated via the Bayes theorem which
includes the product of two distributions and their respective normalization. Given that,
we now explicitly calculate the relations (2.28) and (2.30) for von Mises distributions.

3.5.1 Convolution of the von Mises distributions

Given two von Mises PDFs, p(θ; µi , κi) and p(θ; µ j, κ j), the resulting convolution of a
predicted state will be of the following form [46]

h(θ) = 
πI(κi)I(κ j)

I ({κi + κj + κiκ j cos(θ − [µi + µ j])}
/) , (3.26)
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which in fact is not a von Mises distribution, but can be well approximated by the following
von Mises PDF [46]

h(θ) ≈ p(θ; µi + µ j,A−(A(κi)A(κ j)) (3.27)

where we recall the function A( . ) from Chapter 2

A(κ) = I(κ)
I(κ) , κ ≥  (3.28)

as the ratio of the modi�ed Bessel functions of order one and order zero, and A−( . ) is its
inverse. An illustration of the convolution is shown in Fig. 3.10.

3.5.2 Product of the von Mises distributions

�e numerator in the update step given by (2.28) involves a calculation of a product of two
von Mises distributions. Given the following von Mises PDFs, p(θ; µi , κi) and p(θ; µ j, κ j),
the resulting product is of the following form (see Appendix A.1) [136]

g(θ) = 
πI(κi)I(κ j)

exp [κi j cos(θ − µi j)]

=
I(κi j)

πI(κi)I(κ j)


πI(κi j)
exp{κi j cos(x − µi j)},

(3.29)

where

µi j = µi + atan (− sin ∆µ, κi/κ j + cos ∆µ) (3.30)

κi j =
√

κi + κj + κiκ j cos ∆µ, (3.31)

and ∆µ = µi − µ j.�e product in (3.29) is an unnormalized von Mises distribution scaled
by the factor

I(κi j)
πI(κi)I(κ j)

. (3.32)

Note that in order to complete the update step, we still need to calculate (2.32) which will
normalize the result from (3.29) and yield a true density. An illustration of the normalized
product is shown in Fig. 3.11.
It is interesting to note at this point that the product of vonMises distributions calculated

by (3.29) has very di�erent properties than the product of Gaussian distributions. For an
example, the concentration parameter of the product is a function of the factor pair mean
directions and concentrations, while in the case of Gaussian distributions, the variance of the
product is only function of the factor pair variances. Given that, if the distance between factor
pair mean directions is large enough, it is possible that the concentration parameter of the
product will be smaller (representing higher uncertainty) than any concentration parameter
of the factor pair. Indeed, a product of von Mises distributions with equal concentration
parameters and antipode mean directions will yield a uniform distribution.
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Figure 3.11: Product p(x; µp , κp) of two von Mises distributions p(x; µi , κi) and p(x; µ j , κ j)
3.5.3 Von Mises mixture �ltering for bearing estimation

Although there are several distributions appropriate for circular models [46], the von
Mises distribution is the most commonly used and studied, since it provides a closed-form
analytical framework for many applications. Given that, we represent the posterior at time
t −  as a convex combination of N von Mises PDFs

p(θ t− ∣ z∶t−) =
N

∑
i=

wt−,i


πI(κt−,i)
exp [κt−,i cos(θ t− − µt−,i)] , (3.33)

where ∑i wt−,i = . As stated earlier, the state transition involves just adding von Mises
noise to the previous state, which, in e�ect spreads the posterior (increases the uncertainty)
in the prediction step.�us the state evolution density is given by

p(θ t ∣θ t−) =


πI(κq) exp [κ
q cos(θ t − θ t−)] . (3.34)

Now, the prediction step of the mixture �lter consist of convolving (3.33) with (3.34) which
yields the predicted VMmixture

p(θ t ∣ z∶t−) =
N

∑
i=

wt∣t−,i


πI(κt∣t−,i)
exp [κt∣t−,i cos(θ t − µt∣t−,i)] , (3.35)

where µt∣t−,i = µt−,i , wt∣t−,i = wt−,i and κt∣t−,i = A−(A(κt−,i)A(κq)).
Following a similar train of thought as for (3.33), we also write the sensor model as a

convex combination ofM von Mises PDFs

p(z t ∣ θ t) =
M

∑
i=

wz
i


πI(κz

i )
exp [κz

i cos(θ t − zt,i)] , (3.36)
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Figure 3.12: Bayesian update examples of a single von Mises prior with a 2-component von Mises
likelihood

where∑wz
i = . Note that by doing so, we also allow the sensor model to be a multimodal

PDF.�e concentration parameters of the sensor model and the state evolution density are
determined empirically. Now, the update step of the VMmixture �lter consists of multiplying
(3.36) and (3.35) and normalizing the product according to the Bayes rule.�e update step
normalizes properly the posterior mixture, but the process a�ects also the component
weights, i.e. the weight of the resulting component is not just the product of the individual
factor weights but is also scaled by (3.32).�is scaling factor bears a striking similarity to
the convolution of two von Mises densities (3.26), and indeed by integrating the product of
the prediction and likelihood we are convolving the pairs of components in θ t . Just as (3.26)
is well approximated by (3.27) so can the scaling factor (3.32) be approximated by a von
Mises distribution which has the following form for a combination of a predicted mixture
component i and a likelihood component j


πI(κ̃) exp [κ̃ cos(zt, j − µt∣t−,i)] , (3.37)

where κ̃ = A−(A(κz
j)A(κt∣t−,i)).�is result is similar to the case of Gaussian distributions

[137] and in the form of (3.37) can be seen as a kind of von Mises ‘innovation’. In the actual
implementation it is not necessary to use the approximation in (3.37)—it simply o�ers an
intuitive form for an interpretation. In the end, the updated VMmixture is as follows

p(θ t ∣ z∶t) =
NM

∑
i=k

wt∣t,k


πI(κt∣t,k)
exp [κt∣t,k cos(θ t − µt∣t,k)] , (3.38)

where the posterior µt∣t,i and κt∣t,i are calculated via (3.30) and (3.31), while the posterior
component weights are evaluated as

wt∣t,k = wt∣t−,iwz
j ⋅

I({κt∣t−,i + κ(z)
j

+ κt∣t−,iκz

j cos(zt, j − µt∣t−,i)}/)
πI(κt∣t−,i)I(κz

j)

≈ wt∣t−,iwz
j ⋅


πI(κ̃) exp [κ̃ cos(zt, j − µt∣t−,i)]

(3.39)
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An illustration of the Bayes update process of a single vonMises priorwith a 2-component
von Mises likelihood is shown in Fig. 3.12.�e �rst example in Fig. 3.12a shows update with
a likelihood whose components of equal concentration parameters were symmetrically
situated around the prior’s mean direction, which resulted in ‘splitting’ the prior in the
direction of the two likelihood components.�e second example in Fig 3.12b shows update
with a likelihood where one component was close to being antipodal to the prior’s mean
direction.�is basically resulted with the update ignoring this distant component, since,
indeed, given the prior such measurement is deemed as unlikely.
Finally, from a multimodal distribution we infer the state θ t as a maximum a posteriori

(MAP) estimate from the posterior p(θ t ∣ z∶t)

θ̂ t = argmax
θ t

p(θ t ∣ z∶t). (3.40)

�is is solved by numerically evaluating the mixture with a suitably chosen resolution and
then taking the maximum value of the density.
Basically, a Bayesian tracking algorithm with previously de�ned state representation,

motion model and sensor model, would consist of: (i) initially setting up an a priori distribu-
tion via (3.33) (N von Mises PDFs uniformly spread with small κ), (ii) convolving (3.33) with
the state evolution PDF (3.34), (iii) multiplying the result of the convolution with (3.36), (iv)
estimating the state, and then repeating steps (ii), (iii), and (iv) over time.�e only problem
with the previous procedure is the step (iii), where the state representation consisting of N
von Mises PDFs is multiplied withM von Mises PDFs of the sensor model.�is yieldsMN
von Mises PDFs and would hence grow geometrically in time. In order to solve this problem,
we need to reduce the number of the components in the mixture.

3.5.4 Reducing the number of mixture components

Since in this thesis the main goal is to utilize the reduction in the context of tracking, thus
putting a constraint on the execution time, we propose a variant of the West’s algorithm
[80] for reduction of the number of von Mises components, which in its original form has
computational complexity ofO(N logN) [21]. For a more in-depth study of the problem
of von Mises mixture reduction please confer [127], while for a comparison of reduction
algorithms in Gaussian mixtures confer [21]. West’s algorithm, in essence, reduces the
number of components by searching for the nearest neighbour, and then replaces the pair
with a single component whose parameters are an average of the pair’s values. Originally,
this algorithm was developed to reduce the number of components with equal variances,
with similarity criteria being the nearest neighbour in the mean value. In order to adapt the
algorithm for reducing the mixture of von Mises components, we introduce the following
modi�cations.
Let us assume that we have the following two VM components: wipi = wip(θ; µi , κi)

and w jp j = w jp(θ; µ j, κ j). Since we are not working with true PDFs, but with mixture
components, which are scaled PDFs, as a measure of similarity we consider the scaled
symmetrized KL distance [138], de�ned by

DsKL(wipi ,w jp j) =


(wiDKL(pi , p j) +w jDKL(p j, pi)) +



(wi −w j) log

wi

w j
, (3.41)
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where DKL represents the KL distance between the two von Mises components (see Ap-
pendix A.2) [82, 127]

DKL(pi , p j) = log
I(κ j)
I(κi)

+ A(κi)(κi − κ j cos(µi − µ j)). (3.42)

Note that the KL distance is a generalized distance functional, which is not symmetric
nor it satis�es the triangle inequality, but it is positive de�nite, i.e. DKL(pi , p j) ≥  and
DKL(pi , p j) =  if and only if pi = p j. However, with symmetrization we have assured that
DKL(pi , p j) = DKL(p j, pi).
Oncewe have selected the components to bemerged, e.g.wip(θ; µi , κi) andw jp(θ; µ j, κ j),

we calculate the new component parameters, w∗, µ∗ and κ∗, via following equations which
in e�ect are optimal in the KL distance sense (see Appendix A.3) [127]

tan µ∗ =
wiA(κi) sin µi +w jA(κ j) sin µ j

wiA(κi) cos µi +w jA(κ j) cos µ j
(3.43)

w∗A(κ∗) = wi A(κi) +wjA(κ j) + wiw jA(κi)A(κ j) cos(µi − µ j), (3.44)

where w∗ = wi +w j. We can see that computing κ∗ involves an implicit equation (3.44) that
is a ratio of Bessel functions and that it cannot be solved analytically. In [63] the following
approximation was proposed. If we divide (3.44) by w∗, take the square root, and denote
the right-hand side of the resulting equation with r, then the approximate solution to κ∗ is

κ∗ = r − r

 − r
. (3.45)

�is approximation could be further re�ned by using (3.45) as a starting point in iterative
numerical procedures for solving A(κ∗) − r = . Note the close relation of (3.45) and (2.10).
�e rest of the modi�cations are minor, and the pseudocode is given in Algorithm 3.

3.5.5 Entropy of the von Mises mixture

In tracking applications it is o�en very practical, if not necessary, to have a measure of
uncertainty of the tracked state. While the uncertainty of unimodal distributions is char-
acterized by their respective moments, for multimodal distributions the same is not that
straightforward.�erefore, for the latter case, entropy is usually utilized for uncertainty
calculation and as a practical feature in track management [21, 139].
Entropy of a mixture of von Mises-Fisher distributions, a probability distribution on a

sphere, can be found in [140]. However, reducing the dimension of the result in [140] in
order to derive an expression for entropy of a mixture of von Mises distributions is not a
straightforward task, and therefore we derive a closed-form solution in this section.
A measure of entropy can take many analytical forms. Shannon entropy of a mixture

of distributions cannot be expressed in closed-form, while Rényi entropies usually o�er a
more suitable framework for analytical calculations [141].�erefore, to calculate entropy of
the von Mises mixture, we used the Rényi entropy, which of order α is de�ned as follows
[142]:

Hα(θ) = 
 − α

log ∫ pα(θ)dθ , (3.46)
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Algorithm 3: Reduction of the von Mises mixture

Require: Components parameters P = {µi , κi ,wi}NM
i=

Ensure: Reduced component parametersQ = {µ∗j , κ∗j ,w∗
j }

N

j=

1: # Order set P ascending by weights
P ← {P ∶ wi ≤ w j, i < j, i , j ∈ {, , . . . , ∣P ∣}}

2: while ∣P ∣ > N do
3: for i =  ∶ ∣P ∣ do
4: d(i)← DsKL(wp,wipi)
5: end for
6: j ← argmin

i∈,,...,∣P ∣

d(i)

7: # Remove components 1 and j
P ← P ∖ {µi , κi ,wi}i=, j

8: µ∗ ← calculate via (3.43)
9: κ∗ ← calculate via (3.45)
10: w∗ ← w +w j

11: # Insert the merged component by weight
P ← P ∪ {µ∗, κ∗,w∗}

12: end while
13: Q← P

where  ≤ α <∞. In the limit α →  Rényi entropy becomes Shannon entropy.�e quadratic
Rényi entropy of a von Mises mixture has the following form (detailed derivation can be
found in Appendix A.4)

H(θ t) = − log
N

∑
i=

N

∑
j=

wi j
I(κi j)

πI(κi)I(κ j)
, (3.47)

where wi j = wiw j and κi j is given by (3.31). Note that we have lost explicit dependence on
θ t . But on closer inspection, we can see that the state is implicitly included in κi j through
the di�erence ∆µ = µi − µ j. We can also utilize the symmetry κi j = κ ji in order to reduce
the number of terms in the double sum in (3.47)

H(θ t) = − log

π

⎡⎢⎢⎢⎢⎢⎢⎣

N

∑
i=

I(κi)
I(κi)

+ 
N

∑
i , j=
i< j

I(κi j)
I(κi)I(κ j)

⎤⎥⎥⎥⎥⎥⎥⎦
. (3.48)

3.5.6 Experiments

In this section we investigate the application of the vonMisesmixture algorithm in a bearing-
only tracking scenario. Two experiments were conducted.�e �rst, synthetic experiment
analyzes two scenarios: a speaker making a full circle and a turn-take scenario. Furthermore,
the proposed algorithm is compared to the tracking method based on the PF. In the second,
real-world data experiment the mixture algorithm is tested also in a speaker making a full
circle and a turn-take scenario.
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ª synthetic data. We have simulated two trajectories of a maneuvering object in 2d,
where the dynamics of the system were described by a jump-state Markov model [143].�e
second trajectory had a rapid change in the bearing value to simulate a turn-taking scenario
in order to test the capability of the algorithms to keep up with the track in such situations.
For an example, this might occur when one speaker stops talking and the other continues,
or the currently talking speaker stops, moves around the robot and then continues talking
again. Note that the application of the described speaker localization algorithm is to detect
and track the currently active speaker, and not to to detect and track multiple concurrently
talking speakers and keep separate tracks for each one.
In order to make the simulation as realistic as possible (i) measurements were corrupted

with von Mises noise of κ =  to model measurement noise, (ii) outliers where added with
probability PO = ., i.e. close to 30 of measurements at random locations were corrupted
with von Mises noise of κ = , and (iii) detection probability was PD = ., i.e. close to 10
of measurements at random locations were discarded.
For the von Mises mixture estimator, we used 12 components with mean directions

uniformly spread over  to π, the processmodel was a single vonMises PDF (just the process
noise), while the likelihood consisted of 12 components.�e state was always represented
with 12 components but concentration parameters changed at each iteration.

�e PF was implemented as described in Section 3.4, where the likelihood also consisted
of 12 vonMises PDFs, the state was represented with 360 particles, and the process model was
a Langevin motion model [125]. Instead of resampling we used a variant of regularization
[144], where we placed a vonMises kernel on each particle instead of a Gaussian distribution
and drew new particles from such a multimodal distribution.

�e results of the bearing estimation of both trajectories with the mixture of von Mises
PDFs and with the PF along with corresponding entropies are shown in Fig. 3.13. For the
�rst trajectory, Fig. 3.13a, we can see that both estimators have similar performance—RMSE
was 2.7○ and 2.8○ for the von Mises mixture estimator and PF, respectively.�e second
trajectory, Fig. 3.13b, depicts the turn-taking scenario. We can see that again both show
similar performance, and were a bit reluctant at the beginning to switch to a new bearing
value. Concerning the entropies, at the beginning the entropy is largest since the distribution
is close to uniform. As the �lter is updated with measurements the entropy drops. We can
also see the result of the turn-take at 5–7 s in the second trajectory where the entropy
rose due to discrepancy between the believed state and measurements. Of course, both
could be tuned to respond faster to rapid changes by decreasing κ of the transition PDF
or by increasing κ of the measurement likelihood, but this would be at the cost of higher
sensitivity to outliers.�e former parameter tuning depends on the characteristics of the
sensor measurements—if we expect large percentage of outliers, then we should make the
estimator more inert, and vice-versa.

�e number of parameters required for the state representation was smaller in the case of
the mixture �lter. We used 12 kernels, i.e. 36 parameters including the means, concentration
parameters, andweights, while for the particle �lter we used 360 particles, i.e. 360 parameters
a�er regularization (due to equal particle weights).
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Figure 3.13: Bearing estimation for the two simulated trajectories. Gray dots represent sensor mea-
surements, while lines in green and red represent the PF and von Mises mixture �lter,
respectively.�e black line is the true trajectory while blue line is the entropy of the
mixture �lter.

ª real-world data. �e data was recorded with a microphone array consisting of
four omnidirectional microphones placed on a Pioneer 3dx robot as depicted in Fig 2.2.
�e recordings were made with sampling frequency Fs =  kHz and frame length L = 
samples in a classroomwhich has dimensions of 7m× 7m× 3.2m, parquet wooden �ooring,
and one side covered with windows. During the experiments, typical noise conditions were
present, like computer noise and air ventilation. Figure 3.14a shows the results of real-
world tracking of a single speaker making a full circle around the microphone array, while
Fig. 3.14b shows a turn-take scenario. Speakers were, at an approximate distance of 2m,
reading sentences from the IEEE sentence database [145].
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Figure 3.14: Real-world data tracking of speakers with the PF (green) and mixture �lter (red). We
can notice some outliers due to uniformity of the prior distribution at the initialization
and corrupted measurements caused by di�cult acoustic conditions (reverberation).

3.6 active speaker localization

In this section we present a solution to estimating both the bearing and the range by fusing
bearing-only measurement with the known motion of the robot. Although this problem
has been studied for few decades, it still receives attention due to emerging new �ltering
methods. In [20] three di�erent �lters were compared for the task, while in [21] various
methods for tracking and decentralized sensor fusion were studied, including bearing-only
scenarios. In [113], relative localization is performed from a pair of moving microphones,
based on a multiple-hypothesis square-root unscented Kalman �lter.�e �ltering scheme
uses time delays estimated from the sensed audio signals, together with information on
the sensor’s velocities to perform a consistent source localization. Results show that the
strategy, together with a suitable sensor motion, allows to break front-back ambiguity and
get accurate range information.
In this section, active speaker localization is performed with two microphones mounted

on a spherical head by particle �ltering [73].�e underlying state space equation describing
the evolution of the source position in the head frame is de�ned in both cartesian and
polar coordinates. A pseudo-likelihood function proposed in [100] of the source bearing
as the measurement model, which captures both the interaural phase di�erence (IPD) and
interaural level di�erence (ILD) between the binaural signals. Since the pseudo-likelihood
has no analytic expression and is only given for a discrete set of candidate bearings, the �tting
of circular distributions to the discrete pseudo-likelihood is discussed in order to enhance
its resolution for the purpose of estimation. Incidentally, this can give further ground for
possible analytical �ltering schemes. Two distributions are presented and compared for the
task: namely the VM distribution and the wrapped Cauchy (WC) distribution. Furthermore,
we compare two particle �ltering schemes on experimental data—one using the raw discrete
pseudo-likelihood, and the other based on the �tted circular distribution.As aforementioned,
both fuse the known head velocities with binaural data in order to infer the speaker location.
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Figure 3.15: Considered localization problem

3.6.1 Kinematics and state space equation

A pointwise sound emitter E and a binaural sensor lie on a common plane parallel to
the ground.�e two receivers equipping the sensor are denoted by R and R. A frame
FR ∶ (R, xR , yR , zR) is rigidly linked to the sensor, with R the midpoint of the line segment
[RR], yR the vector RR

∣RR ∣ and xR the downward vertical vector.�e frameFE ∶ (E , xO , yO , zO)
attached to the source is parallel to the world reference frame FO ∶ (O , xO , yO , zO), with
xO = xR (see Fig. 3.15).�e source is assumed motionless with respect to the world frame,
while the sensor is endowed with two translational and one rotational degrees-of-freedom
(velocities vRy , vRz of FR with respect to FO expressed along axes yR , zR; rotation velocity
ω of FR with respect to FO around xO = xR). Assuming vRy , vRz ,ω are known, the aim is
to localize the emitter (FE) with respect to the binaural sensor (FR) on the basis of the
sensed data at R, R.�e audio sensor location with respect to FO is not required and the
localization of the mobile base is not performed.�e relative attitude of FR with respect to
FE can be described, when vRy , vRz ,ω are zero-order held at the sampling period Ts, by the
discrete-time deterministic state space equation [101, 113]2

x t = Fx t− +Gu,t , with

F =
⎡⎢⎢⎢⎢⎢⎣

cos(ωt−Ts) sin(ωt−Ts) 
– sin(ωt−Ts) cos(ωt−Ts) 

  

⎤⎥⎥⎥⎥⎥⎦
,G = –

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin(ωt−Ts)
ωt−

 − cos(ωt−Ts)
ωt−



cos(ωt−Ts) − 
ωt−

sin(ωt−Ts)
ωt−



  Ts

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�erein, the state vector x = [ey , ez , λ]T gathers the entries ey and ez (the yR and zR
component of E in FR) and the orientation angle λ.�e sensor velocities constituting
u = [vRy , vRz ,ω]T are supposed known. When parameterizing the problem in terms of
polar coordinates rather than Cartesian, i.e. when using the variables θ = atan(ey , ez),

2 Since the object is assumed to be static the motion model does not entail object’s velocities like the Langevin
or the constant velocity model
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r =
√
ey + ez , the state space equation comes as

rt =
√
rt− + uTt GTGut + rt−[sinθ t−, cosθ t−]GTut (3.49)

θ t = atan (rt−sin(θ t− + ωt−Ts) + gut , rt−cos(θ t− + ωt−Ts) + gut)
λt = λt− − ωt−Ts , (3.50)

with u = [vRy , vRz]T, G the square matrix made up with the �rst two rows and columns
of G, g (resp. g) the �rst (resp. second) row of G. To model uncertainty in the relative
motion, a random white Gaussian noise of known statistics is added to (3.49).

3.6.2 Acoustic model, measurement vector, pseudo-likelihood

Consider �rst a static world where the sensor is motionless.We assume that the source lies in
the far�eld (i.e. the source range r = ∣RE∣ is su�ciently high compared to the microphones
interspace a so that the source wavefronts can be considered as planar in the vicinity of
the microphone pair). We model the signals y, y monitored at R, R in the presence of
additive noise as follows

{ y(τ) = s(τ) + n(τ)
y(τ) = (s ∗ hθ)(τ) + n(τ), (3.51)

where the signal s (i.e. the contribution of the emitter at R) and the noises n, n are
real, band-limited, individually and jointly stationary random processes, and ∗ denotes
convolution.�e deterministic impulse response hθ between R, R, is parameterized by
θ, and captures free-�eld propagation of the emitted signal as well as head scattering.
Hθ , the Fourier transform of hθ , is supposed known for every θ within a discrete set of
values (say, it has been learned from calibration, or is known theoretically).�e process
y(τ) = [y(τ), y(τ)]T is observed over N adjacent non-overlapping rectangular T/N-
width time windows. Denote yn the observation of y over the nth window. A data vector Z
is made up by stacking the values of [101]

Y n,k =
√

N
T ∫

R
yn(τ)e−iπk N

T τdτ, n = , ...,N (3.52)

at k = k, ..., kB, the B frequency indexes within the bandwidth of s. Z is hence de�ned as
Z = [YTk , ...,Y

T
kB]T, with Y k = [YT,k , ...,YTN ,k]T. Assume now that s, n, n are zero-mean

jointly Gaussian and that n, n are identically distributed, uncorrelated with each other and
with s.�en, under general mild conditions on the power spectra of s, n, n and on Hθ , the
maximum likelihood estimate of θ can be obtained, given a sample z of Z, by maximizing
the following criterion [100, 101], herea�er referred to as the pseudo log-likelihood function

J(z ∣ θ) = c − N
kB
∑
k=k

(ln∣Pθ ,kĈkPθ ,k + σ̂θ ,kP
⊥
θ ,k ∣) , (3.53)

with c = −NB(ln(π)+), Ĉk = 
N ∑n Y n,kY†n,k , Pθ ,k = V θ ,k(V †θ ,kV θ ,k)−V †θ ,k , P⊥θ ,k = I−Pθ ,k ,

V θ ,k = [,Hθ ,k]′, σ̂θ ,k = tr(P⊥θ ,kĈk).�erein, ( . )†,( . )⊥, ∣ . ∣, tr( . ) respectively stand for
Hermitian transpose, orthogonal complement, determinant and trace; yn,k denotes a sample
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of Y n,k , and the sample covariance matrix Ĉ is assumed full rank. For details regarding the
pseudo log-likelihood function please confer [100, 101].
Consider now a real world where the sensor moves and where the source signal and

environment noise are possibly nonstationary. All the fundamental hypotheses leading
to (3.51)–(3.52)–(3.53) are consequently violated. Nevertheless, the problem can still be
handled if, at each process time index t, the data vector z t is made up from audio data
collected over a time window matched to t, su�ciently short so that, along this window, the
sensor motion is negligible and the recorded signals can be regarded as �nite-time samples
of stationary processes. Hence, at each time index t, the pseudo likelihood of θ t with respect
to z t , denoted p(z t ∣ θ t), can be output and will henceforth be used in a Bayesian �ltering
scheme in Section 3.6.5. Importantly, p(z t ∣ θ t) has in the general case no analytic expression.
Its numerical values are just given for a discrete set of tested azimuths and are obtained as a
result of the maximization of (3.53).�is precludes the use of Bayesian �ltering schemes
requiring an analytic form of the pseudo likelihood, e.g. Gaussian mixture �lters, unless
an analytic function is �tted to the discrete values. Alternatively, with particle �lters, the
pseudo likelihood in its discrete form can be utilized as a sensor model. However, low
bearing resolution can a�ect the particle �lter performance and consistency, and it may
be useful to �t some distribution to the discrete pseudo likelihood. Section 3.6.3 is thus
dedicated to the �tting of von Mises and wrapped Cauchy mixtures models to the discrete
pseudo likelihood.

3.6.3 Fitting the circular distributions

In this section we present two solutions to �tting the pseudo likelihood function, namely
�tting with the VM distribution and with theWC distribution.�e fact that circular distri-
butions intrinsically take noneucledian properties of the angular data into account proves
useful in the �tting problem since a circular distribution with mean close to π continues
contributing signi�cantly to points larger than .�is will be of great importance of the
optimization step that will be presented shortly. Furthermore, here we do not require the
component weights to sum up to one, since the pseudo likelihood function itself is not a
valid probability distribution.
Since the VM distribution was introduced in Section 2.3.1, in this section we shall focus

on theWC distribution.�eWC distribution is a distribution that is wrapped on a circle.
Given a distribution on the line we can wrap it around the circumference of a circle with
unit radius. If a random variable θ is de�ned on a line, then the corresponding random
variable of the wrapped distribution is θw = θ(modπ). Furthermore, if θ has a PDF p, then
the corresponding wrapped pdf pw is de�ned as pw(θ) = ∑k=∞

k=−∞ p(θ + kπ) [46], from
which we can note practical issues when dealing with the in�nite number of terms in the
summation. However, it can be shown that the Cauchy distribution on the line

p(θ; µ, a) = 
π

a
a + (θ − µ) , (3.54)

where −∞ < µ <∞ and a >  has an interesting property that its wrapped counterpart, due
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to certain geometric series expansion property, reduces to [46]

p(θ; µ, ρ) = 
π

 − ρ

 + ρ − ρ cos(θ − µ) , (3.55)

where µ is the mean direction and ρ is called the mean resultant length. When ρ →  the
WC tends to uniform distribution, while if ρ →∞ the distributions becomes concentrated
at point µ.
Naturally, the pseudo likelihood function will su�er from front-back ambiguity since

we utilize a binaural setup. Hence, our sensor model will contain at least two distinct modes
on the interval  to π and for this reason we chose to model the likelihood as a mixture of
distributions. If we denote with X a set of distributions parameters, then an N component
mixture can be de�ned as p(θ;X ) = ∑N

i=wip(θ;Xi), where the set X consists of {µi , κi}Ni=
for the VM distribution and {µi , ρi}Ni= for theWC distribution.

3.6.4 Evaluation of the �tting performance

�e �tting of a mixture of distributions to the pseudo likelihood function, denoted as p̂(θ),
comes down to solving the following optimization problem

min
w ,X

N

∑
i=

(wip(θ;Xi) − p̂(θ))

with the constraints  ≤ wi ≤  and  ≤ Xi ≤ B for i = , . . . ,N , and where the upper bound
B depends on the parameter and the distribution. For both distributions the upper bound
of the mean directions µ is B = π, while for the VM distribution the upper bound was
B =  for the concentration parameter, and for theWC distribution B =  for the mean
resultant length.
Concerning the number of the mixture components, all the results were obtained with

N = . Initial conditions for the mean directions were determined by searching recursively
for N most dominant peaks in the vein of [26] where the authors searched for the number
of active speakers. Once the dominant peak is found, an area around it is removed and the
search continues until the predetermined number of modes is found. Since in the pseudo
likelihood function we expect two peaks to be dominant we set the initial conditions for
the �rst two dominant peaks to be κ =  or ρ = ., while for the rest we set κ =  or
ρ = ..�e weights are initially set to wi = .,∀i.
In Fig. 3.16 we can see the result of �tting3 for a single relatively di�cult frame when

the speaker was close to the end-�re position of the array and the two dominant modes
started overlapping. Empirically we noticed that this is the more di�cult case for theWC
distribution and that o�en the two distinct nodes tend to be �tted with a single component
in between them. Overall, the whole dataset consisted of four experiments with a talking
speaker as the source.�e average RMSE of �tting for the speaker scenario was . ⋅ − for
the VMmixture and . ⋅ − for theWCmixture, respectively. Given that, for the rest of
the section we have chosen to work with the VMmixture since it provided better �tting in
terms of the average RMSE.

3�e �tting was solved by non-linear least squares method implemented in Matlab
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Figure 3.16: Fitting the pseudo likelihood for a single frame with a VM and aWCmixture

3.6.5 Speaker localization in 2d

In this section we utilize the PF for estimating the location of the speaker. Note that here
the state of the speaker is di�erent compared to previous sections. Whereas θ t denoted
the speaker state—the bearing—in this section x t denotes the speaker state—the (ey , ez)
coordinates with respect to FR.
Recall that {x p,wp}Pp= depicts the random measure that characterizes the posterior

state PDF p(x t ∣ z∶t), where each particle in the set {x p}Pp= is associated to the respective
weight in {wp}Pp=.�e weights satisfy ∑pwp = , so that p(x t ∣ z∶t) can be approximated
as [73, 74]

p(x t ∣ z∶t) ≈
P

∑
p=

wp
t δ(x t − x p

t ), (3.56)

with δ(.) the Dirac delta measure. Since for any recursive particle �lter, the signi�cant
weights tend to concentrate on a limited set of particles a�er few iterations, a resampling
step is inserted, which consists in turning {x p

t ,w
p
t }Pp= into the equivalent evenly weighted

set {x∗pt , P}Pp= by independently sampling (with replacement) x
∗p
t according to P(x

∗p
t =

x p
t ) = wp

t . In the SIR scheme [73] the importance function matches the prior dynamics
p(x t ∣ x t−), i.e. each particle x p

t at time t is drawn from its predecessor x
p
t− at time t − 

according to the proposal density x p
t ∼ p(x t ∣ x p

t−).�en, its weight is updated by evaluating
its likelihood p(z t ∣ x p

t ) prior to setting

wp
t ∝ wp

t−p(z t ∣ x
p
t ), (3.57)

where p(z t ∣ x t) represents the sensor model, i.e. the �tted VMmixture:

p(z t ∣ x t) =
N

∑
i=

wi


πI(κi)
exp [κi cos(x t − z t,i)] . (3.58)

Once the random measure approximating the posterior PDF of the state is computed, the
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posterior mean and posterior covariance can be estimated via

x̂ t = E[x t ∣ z∶t] ≈
P

∑
p=

wp
t x

p
t

P̂t = E[(x t − E[x t ∣ z∶t])(x t − E[x t ∣ z∶t])T ∣ z∶t]

≈
P

∑
p=

wp
t (x

p
t − x̂ t)(x p

t − x̂ t)T.

(3.59)

�is is needed since we will be analyzing the consistency of the �lter from multiple runs. To
avoid a loss of diversity in the particle cloud, the resampling step was applied only when
the number of e�ective weights Pe� = /∑p(wp) was less than a given threshold, e.g. 33
of the total number of particles P.
Consequently, particle �ltering can be implemented even if a closed-form measurement

model is not available, in that the particle likelihoods just need to be evaluated. In our case,
the sensor model comes as the pseudo likelihood digitized with a resolution of ○. However,
we assert that the �tting utilized constitutes a form of interpolation which yields better
resolution. So, we henceforth compare the performance of the PF which directly utilizes
the discrete pseudo likelihood against the PF utilizing the �tted VMmixture. Importantly,
�tting with a VMmixture would be a prerequisite if the tracking was performed in the vein
of [56].

3.6.6 Experiments

Experiments were conducted at the premises of the University of Pierre and Marie Curie
by Alban Portello, Sylvain Argentieri and Bruno Gas.�e room was acoustically prepared,
equipped with 3d pyramidal pattern studio foams placed on the roof and on the walls.
Two surface microphones were mounted at the antipodes of a 8.9 cm radius plastic rigid
sphere, itself place on a tripod.�e two microphones outputs were synchronously acquired

Figure 3.17: Experimental setup: plastic sphere and speaker tripods in the acoustic room. Infrared
cameras were measuring the ground-true positions.
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at 44.1 kHz.�e sphere tripod was moved manually with a wheeled cart while the source, a
loudspeaker placed at the same height as the microphones, was emitting voice recordings
from a French radio programme.�e true source and sensor positions were acquired at
200Hz with a motion capture system, providing a less than 1mm position error. For that
purpose, small infrared active markers were placed on the sphere and the loudspeaker, and
their signals were beamed to three infrared camera units placed at the corners of the room.
For the considered case of a rigid sphere, Hθ is shown to have the following analytic

expression [101, 146]

Hθ( f ) =
ψ π
 +θ( f )

ψ− π
 −θ( f )

, with (3.60)

ψα( f ) ≜


( π f a
c )



∞

∑
m=

(−i)m−(m + )Pm(cosα)
h′m ( π f a

c )
.

�erein, ψβ is the normalized head related transfer function to the microphone at angle β—
with respect to boresight—on the sphere, where α stands for the angle between the source
bearing and the direction to the considered microphone, Pm is the Legendre polynomial of
degree m, hm is the mth-order spherical Hankel function and h′m is its �rst derivative.�is
expression was thus used in the pseudo likelihood computation. In practice, the in�nite
sum in (3.60) is approximated by a �nite sum, the minimum order required to make the
approximation reasonable depending on the maximum frequency considered. To avoid
cumbersome computation during localization, Hθ was precomputed and stored o�ine for
a discrete set of bearings.
In order to assess the performance of the PFs, we ran 50Monte-Carlo runs on the sensed

binaural data using either the discrete pseudo likelihood or the VM �tted pseudo likelihood.
�e runs were performed on four scenarios with di�erent trajectories of the sensor, out of
which one scenario included an intermittent sound source. In Fig. 3.18 we can see the results
of range estimation for the four cases, while Fig. 3.19 shows the estimation of the bearing.
By analyzing the results we can see that on average the PF with the VM �tted likelihood gave
smaller error in terms of the range estimation although the performance in the bearing
was similar for both PFs.�e explanation lies in the fact that estimating the range from
bearing-only measurements bene�ted from having an analytical likelihood compared to
the ○ resolution of the discrete pseudo likelihood.

�en, for each entry of the posterior mean output by the �lter, a minimum-width
con�dence interval for a moment matched Gaussian distribution of the estimation error
was drawn (from the posterior particle set) which should approximately enclose the genuine
hidden state vector with 99 probability. By analyzing the obtained plots concerning
the range estimation error, we can see that the present implementation of the PF was
not consistent over all the runs, since the true range is outside of the �lter’s ±σ interval
calculated from the estimated covariance matrix and that bias is present, which would
indicate that the particle �lter diverged at several instances of Monte-Carlo (MC) runs.�is
problem could be alleviated by utilizing a higher number of particles and/or more elaborate
initialization and maneuvering strategies (cf. [147] for a deeper study of the problem).
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Figure 3.18: Mean value of range estimates (solid) and pertaining three standard deviations (dashed)
of 50 Monte-Carlo runs of the PF with pseudo likelihood (blue), VM �tted pseudo
likelihood (red) and true range (black) for four di�erent data sets
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Figure 3.19: Mean value of bearing estimates (solid) and pertaining three standard deviations
(dashed) of 50 Monte-Carlo runs of the PF with pseudo likelihood (blue), vM �tted
pseudo likelihood (red) and true bearing (black) for four di�erent data sets
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3.7 summary

In this chapter we have �rst presented a novel approach to speaker localization and micro-
phone array measurement modeling. Novelty of the proposed approach is in the method
based on a convex combination von Mises distributions the for direction of arrival analysis
and for derivation of an adequate bearing estimation method.�e algorithm solves the
front-back ambiguity, a unique bearing value is calculated from the posterior distribution,
and the PF is utilized for the tracking task. Moreover, a voice activity detector can easily
be integrated to the time di�erence of arrival estimation, and operation under adverse
noisy conditions is guaranteed up to the performance of the voice activity detector itself.
�e algorithm accuracy and precision was tested in real-time with a reliable ground truth
method based on leg-tracking with a laser range �nder.
Furthermore, two most common microphone array geometries were meticulously

analyzed and compared theoretically based on error sensitivity to time di�erence of arrival
estimation and the robustness to microphone occlusion.�e analysis and experiments
showed square array having several advantages over the Y array con�guration, but from a
practical point of view these two con�gurations have similar performances.
Ensuingly, we have proposed a method for speaker tracking that was based on vonMises

mixtures.�e method included calculating the convolution of two von Mises PDFs for the
prediction stage, the product of two von Mises PDFs for the update stage, the component
reduction of the mixture to prevent exponential growth of the component number, and
Rényi quadratic entropy for uncertainty tracking of such a multimodal state representation.
�e proposed approach was tested and compared to the PF in a speaker tracking scenario
on a synthetic data experiment and on real-world recordings.�e results supported the
proposed approach and showed similar performance to the particle �lter, with the bene�t
of smaller number of parameters for state representation and complete support on the state
space.
Although the algorithm was presented on the problem of speaker tracking with a

microphone array, the potential �eld of interest is by no means limited to this application.
�e proposed approach can be utilized in any tracking scenario which involves bearing-
only measurements. Furthermore, the chapter highlights the merits of using a von Mises
distribution for directional data, which does not receive thatmuch attention due to pervasive
use of the Gaussian distribution. One of the potential expected practical signi�cances lies in
systems where the communication bandwidth is limited, e.g. in decentralized architectures
when di�erent robots need to communicate the a posteriori distributions.
At the end of the chapter, a solution for the problem of active speaker localization with

a head mounted binaural microphone sensor was presented.�e solution was based on
calculating a discrete pseudo likelihood function in speaker bearing based on the geometri-
cal properties of the spherical head.�e resulting likelihood was �tted with a mixture of
circular distributions, namely the VM and WC distributions, whose comparison showed
better results for the case of the VM distribution. A PF was utilized with the direct and VM
�tted pseudo likelihood in order to estimate the location of the speaker. We performed an
experimental evaluation on four di�erent data sets with accurate ground-truth, due to an
active motion capture system, whose analysis showed that on average from 50 Monte Carlo
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runs both algorithms localized the speaker successfully, while the estimate with the VM
�tted likelihood showed better accuracy in range and equal or better accuracy in bearing.
However, a careful analysis revealed that at times the algorithms were inconsistent deviation-
wise and that robust variants of the PF could be utilized, but which were eschewed in the
experiments in order to guarantee the true posterior statistics.



4
Voice Activity Detection

T he chapter presents a novel approach for voice activity detection.�e main idea
behind the presented approach is to use, next to the likelihood ratio of a statistical

model-based voice activity detector, a set of informative distinct features in order to, via
a supervised learning algorithm, enhance the detection performance. Firstly, we present
three di�erent statistical model-based voice activity detection algorithms in an unifying
and consistent manner, by incorporating noise spectrum and the a priori signal-to-noise
ratio estimation to their respective frameworks. Furthermore, the likelihood ratio of the
best performing statistical model-based detector together with 70 other various features is
meticulously analyzed with an input variable selection algorithm based on partial mutual
information.�e resulting analysis produced a 13 element reduced input vector which
when compared to the full input vector did not undermine the detector performance.
�e evaluation is performed on a speech corpus consisting of recordings made by six
di�erent speakers, which were corrupted with three di�erent types of noises and noise
levels. In the end, three di�erent supervised learning algorithms are tested for the task,
namely, support vector machine, Boost, and arti�cial neural networks.�e experimental
analysis was performed by 10-fold cross-validation due to which threshold averaged receiver
operating characteristics curves were constructed. Also, the area under the curve score
and Matthew’s correlation coe�cient are calculated for both the three supervised learning
classi�ers and the statistical model-based voice activity detector.�e results show that the
classi�er with the reduced input vector signi�cantly outperformes the standalone detector
based on the likelihood ratio, and that among the three classi�ers, Boost showed the most
consistent performance.

4.1 introduction

Voice activity detection is a technique in speech processing by which presence of speech is
detected in a given signal frame.�is problem can be seen as a dual hypothesis problem,
where a signal frame is classi�ed as either containing speech or containing noise. In a voice
activity detector (VAD), the absence of speech usually presumes presence of noise only.
�is system is not only of great importance for many applications, like mobile telephony,
internet telephony, hearing aid devices, but also for robotics if speech oriented systems are
utilized like speaker localization, speech and speaker recognition. For most of the stated
research problems, it is indispensable to save on bandwidth resources by coding noise with

65
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signi�cantly less bits, while for others it is mandatory to completely ignore frames with
noise.
A VAD must provide a robust and reliable decision procedure in varying acoustical

conditions.�is task gets quite formidable with the varying level and type of background
noise. Approaches to voice activity detection mostly di�er in the type of the extracted
features and in the decision models used to reach a speech/non-speech decision based on
those features. A lot of attention was given to statistical model-based VADs, in which certain
probabilistic properties are assumed on the coe�cients of the DFT. For an example, in [148]
they are assumed to have Gaussian distribution and this approach was further developed in
[149–155]. Furthermore, special attention was given to derivation of various noise robust
features and decision rules in [156–158]. Concerning supervised learning approaches, they
have been utilized in various sound processing scenarios, e.g. music classi�cation [159],
general audio signal classi�cation (music, news, sports etc.) [160], speech inteligibility
quanti�cation [161] etc. Supervised learning based voice activity detection approaches have
so far beenmostly focused on applying support vector machine (SVM) by treating as features:
a priori SNR, a posteriori SNR and/or statistical model-based likelihood ratio [162, 163], mel
frequency cepstral coe�cients (MFCCs) [164], sub-band and long-term SNR [165, 166], or
features used in the standard G.729B [167, 168]. Furthermore, a recent work [169] presented
a novel unsupervised learning approach called support-vector-regression-based maximum
margin clustering which was also tested in a voice activity detection scenario and showed
comparable performance to supervised approach based on support vector machine method.
Methods presented in this chapter survey the statistical model-based VADs and super-

vised learning approaches toVAD and builds on upon the aforementioned related works with
the following main contributions.�ree statistical model-based VADs are compared, namely
detectors based on the Gaussian distribution (GD), generalized Gaussian distribution (GGD)
and Rayleigh and Rice distribution (RRD) (for which we derive the likelihood ratio (LR)).
Subsequently, a method for input variable analysis based on partial mutual information
algorithm in the context of voice activity detection is introduced.�is method systemati-
cally classi�es features on those that should be included and those that could be omitted
from the input set, which we �nd extremely important when extending input spaces of
supervised learning algorithms. Moreover, we extend the input space with distinct features
under the hypothesis (which is tested) that this will improve the performance of VADs.
While most of the features in the related works are variants on the SNR estimation (a priori,
a posteriori, predicted, sub-band and long-term), with two exceptions—one which used
only MFCC [164] and other which is based on features from G.729B [167], in the chapter we
extended this feature space by using information from the SNR estimation in the form of a
statistical-based LR by modeling the distribution of the spectral envelope, along with several
distinct features like magnitudes of some of the DFT coe�cients, spectral �ux, spectral
centroid and bandwidth, power-normalized cepstral coe�cients, MFCCs etc. Furthermore,
for the classi�cation task we present a systematic quantitative evaluation of the following
three supervised learning algorithms: Boost, arti�cial neural networks (ANNs) and SVM,
while all the related work papers on VAD utilize only SVM.�e algorithms were tested and
compared under varying noise conditions, namely three types of noises and three di�erent
SNRs, and showed similar performance with a slight advantage in the direction of the Boost
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classi�er. Some results and novelties in this chapter have been proposed and presented in
[170], where the RRD VAD is introduced and its comparison to GD and GGD based VADs
is performed, and in [171] where the partial mutual information input variable analysis is
performed and the supervised learning approaches are proposed and analyzed.
Although a detector can be considered as a binary classi�er, for clarity throughout the

thesis we use the term detector to denote the statistical model-based detector based on the
likelihood ratio, while the term classi�er or supervised learning based VAD denotes the
SVM, Boost and ANN classi�ers.

4.2 statistical model-based detectors

�ese VADs rely on statistical modeling of the DFT coe�cients. All the statistical model-
based VADs assume a two hypotheses scenario. Since speech is degraded with uncorrelated
additive noise, the two hypotheses are as follows

H ∶ speech absent⇒ X = N
H ∶ speech present⇒ X = N + S,

(4.1)

where the DFT coe�cients of a K-point DFT of the noisy speech, noise, and clean speech are
denoted as X = [X, X, . . . , XK−]T, N = [N,N, . . . ,NK−]T and S = [S, S, . . . , SK−]T,
respectively.

�e form of the PDF of X conditioned on the hypotheses, i.e. p(X ∣H) and p(X ∣H),
depends on the distribution used to model each DFT coe�cient. A�er the PDFs p(X ∣H)
and p(X ∣H) are determined, usually a likelihood ratio on all the DFT coe�cient indices k
is calculated

Λk =
p(Xk ∣H)
p(Xk ∣H)

, (4.2)

where Λk becomes a vector of length K.�is information is then used to calculate geometric
mean which is then compared to a certain threshold in order to reach a �nal decision in
favor of either the hypothesis H or H

logΛ = 
K

K

∑
k=
logΛk

H
≷
H

η. (4.3)

4.2.1 Gaussian distribution

�is VAD was �rst proposed by [148], where the DFT coe�cients are asymptotically inde-
pendent and zero-mean complex Gaussian random variables. Let us look at the DFT of the
clean speech signal. In the complex Gaussian speech model, both the real and the imaginary
parts of the DFT, Sk = SR,k + jSI,k, are independent zero-mean Gaussian random variables,
each with a variance of λs,k/.�e PDFs of the coe�cients are

p(SR,k) =
√

πλs,k
exp{−

SR,k
λs,k

} (4.4)

p(SI,k) =
√

πλs,k
exp{−

SI,k
λs,k

} . (4.5)
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Since real and imaginary coe�cients are independent, joint PDF can be written in the
following form

p(Sk) = p(SR,k)p(SI,k) =


πλs,k
exp(−

SR,k + SI,k
λs,k

)

= 
πλs,k

exp(− ∣Sk ∣

λs,k
) . (4.6)

Similar derivation can be done for the PDF of the noise coe�cients.
When both speech and noise are present, we have for each coe�cient a sum of indepen-

dent Gaussian variables, thus resulting with a PDF of variance λx ,k = λn,k + λs,k . Hence, the
conditional PDFs of Xk on hypotheses H and H are as follows:

p(Xk ∣H) =


πλn,k
exp{− ∣Xk ∣

λn,k
} (4.7)

p(Xk ∣H) =


π(λn,k + λs,k)
exp{− ∣Xk ∣

λn,k + λs,k
} . (4.8)

Under the Gaussian distribution model, the LR is simply calculated as ratio of (4.8) and
(4.7)

ΛGDk = p(Xk ∣H)
p(Xk ∣H)

= 
 + ξk

exp{ γkξk
 + ξk

} , (4.9)

where ξk = λs,k/λn,k is the a priori SNR, and γk = ∣Xk ∣/λn,k is the a posteriori SNR.�e
algorithms for estimation of these values are presented in Section 4.2.4.

4.2.2 Generalized Gaussian distribution

In [151] statistical model-based VAD was improved by incorporating a complex Laplacian
model.�e analysis in the latter paper showed that the Laplacian provides a better model of
the distribution of noisy speech spectra than the Gaussian model. Furthermore, VAD based
on GGD, which includes the Gaussian and Laplacian model as special cases, was proposed
in [152], where it was also experimentally veri�ed that VAD based on GGD outperforms the
VAD based on the Laplacian model. Following the same train of thought as in Section 4.2.1,
joint GGD of the DFT coe�cients for clean speech signal is given by

p(Sk) =
να(ν)

λs,kΓ(/ν) ⋅ exp
⎧⎪⎪⎨⎪⎪⎩
−αν(ν)

⎡⎢⎢⎢⎢⎣

RRRRRRRRRRR

SR,k√
λs,k

RRRRRRRRRRR

ν

+
RRRRRRRRRRR

SI,k√
λs,k

RRRRRRRRRRR

ν⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
, (4.10)

with

α(ν) =
¿
ÁÁÀΓ(/ν)
Γ(/ν) , (4.11)

where Γ(⋅) denotes the Gamma function, and ν denotes parameter controlling the distri-
bution shape. For ν =  and ν =  the GGD becomes the Laplacian and Gaussian density,
respectively.
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�e shape parameter ν needs to be continuously estimated. By letting m and m be the
�rst and the second moment of ∣Xk ∣ (cf. [152]), ν can be estimated by solving the following
equation

ν̂ = F− (m
m

) , (4.12)

where
F(x) = Γ(/x)√

Γ(/x)Γ(/x)
. (4.13)

�e (4.12) is the inverse of (4.13) and can be solved by precomputing a lookup table.
From the previous discussion we can write the distribution of Xk conditioned on the

hypotheses H and H as follows

p(Xk ∣H) =
νn,kα(νn,k)
λn,kΓ(/νn,k)

exp
⎧⎪⎪⎨⎪⎪⎩
− ανn ,k(νn,k) ⋅

⎡⎢⎢⎢⎢⎣

RRRRRRRRRRR

XR,k√
λn,k

RRRRRRRRRRR

νn ,k

+
RRRRRRRRRRR

XI,k√
λn,k

RRRRRRRRRRR

νn ,k⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
(4.14)

p(Xk ∣H) =
νs,kα(νs,k)

(λs,k + λn,k)Γ(/νs,k)
exp{ − ανn ,k(νn,k) (4.15)

⋅
⎡⎢⎢⎢⎢⎣

RRRRRRRRRRR

XR,k√
λs,k + λn,k

RRRRRRRRRRR

νn ,k

+
RRRRRRRRRRR

XI,k√
λs,k + λn,k

RRRRRRRRRRR

νn ,k⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
, (4.16)

where νn,k and νs,k are shape parameters related to H and H of noisy speech on frequency
bin k, respectively. In order to compute these parameters, the corresponding (mn

,k ,m
n
,k)

and (ms
,k ,m

s
,k) are calculated recursively from ∣Xk ∣ as proposed in [152].

Finally, we can write the LR for the GGDmodel

ΛGGDk = 
 + ξk

⋅
νs,kα(νs,k)Γ(/νn,k)
νn,kα(νn,k)Γ(/νs,k)

exp{ − ανs ,k(νs,k)
⎡⎢⎢⎢⎢⎢⎣

∣XR,k ∣νs ,k + ∣XI,k ∣νs ,k

(
√

λn,k( + ξk))
νs ,k

⎤⎥⎥⎥⎥⎥⎦

+ανn ,k(νn,k)
⎡⎢⎢⎢⎢⎢⎣

∣XR,k ∣νn ,k + ∣XI,k ∣νn ,k

(
√

λn,k)
νn ,k

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(4.17)

4.2.3 Rayleigh and Rice distribution

In the approach proposed by [172], derived from [173], the DFT coe�cients are still mod-
elled as having a Gaussian distribution, but instead of using their joint distribution, the
distribution of the signal envelope is used.�e envelope of a signal, ∣Xk ∣ =

√
XR,k + XI,k,

is actually the euclidean norm of the real and imaginary coe�cients.�erefore, instead
of looking at the distribution of the coe�cients, the distribution of the signal envelope is
analysed.
Under hypothesis H the signal is only noise, which means that the DFT coe�cients are

both independent, zero-mean Gaussian variables with variance λn,k/ = E[∣Nk ∣]. Under
that assumption, the PDF of the euclidean distance of such DFT coe�cients is a Rayleigh
distribution

p(Xk ∣H) =
∣Xk ∣
λn,k

exp{− ∣Xk ∣
λn,k

} . (4.18)
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Under hypothesis H, the envelope is the euclidean norm of two independent, non-zero-
mean Gaussian variables. Such PDF is a Rician

p(Xk ∣H) =
∣Xk ∣
λn,k

exp{− 
λn,k

(∣Xk ∣ + ∣Ak ∣)} ⋅ I {
∣Ak ∣∣Xk ∣

λn,k
}

=∣Xk ∣
λn,k

exp{− ∣Xk ∣
λn,k

− ξk} ⋅ I
⎧⎪⎪⎨⎪⎪⎩

√

ξk
∣Xk ∣
λn,k

⎫⎪⎪⎬⎪⎪⎭
,

(4.19)

where Ak is the amplitude of the clean speech spectrum, ξk = ∣Ak ∣/λn,k is the a priori SNR
and I(⋅) is the modi�ed Bessel function of the �rst kind and order zero. In [172] this VAD
was implemented by calculating the a posteriori probability p(H ∣Xk) of voice activity
from (4.18) and (4.19) via the Bayes formula. Since in this thesis the a priori SNR estimation,
presented in Section 4.2.4, for all frequency bins is implemented, we are proposing the LR
instead of the a posteriori probability p(H∣Xk).
Finally, we derive the LR for RRDmodel

ΛRRDk = exp{−ξk} I {
√

ξkγk} . (4.20)

4.2.4 Noise spectrum estimation

We can see from previous sections that all VADs require estimation of the noise spectrum
λn,k and the a priori SNR ξk. First we shall address the estimation of λn,k and then the
estimation of ξk.
In most VADs the noise spectrum estimation is done in a way to assume that in the �rst

several frames only noise is present and for that time λn,k is estimated by time averaging the
spectrum of the recorded signal.�en, the VAD itself is used to discriminate between frames
where speech is present and where only noise is present. When only noise is detected, λn,k

is again estimated in a time-averaging fashion. In this thesis the MCRA algorithm, proposed
by [129] and [130], is used since it performs well in varying noise situations and it allows
estimation from all frames, and not just the ones where no speech is detected.

ª minima-controlled recursive averaging. As stated earlier, a common
technique for noise spectrum estimation is to apply temporal recursive smoothing during
the frames when only noise is present. Now, we have the following hypotheses

H ∶ λn,k(l + ) = anλn,k(l) + ( − an)∣Xk(l)∣

H ∶ λn,k(l + ) = λn,k(l),
(4.21)

where  < an <  is a smoothing parameter.
Let ps,k(l) = p(H ∣Xk(l)) denote the conditional speech presence probability at time

frame l . Hence, we can write (4.21) as follows

λn,k(l + ) = λn,k(l)ps,k(l) + [anλn,k(l) + ( − an)∣Xk(l)∣] ( − ps,k(l))
= ãn,k(l)λn,k(l) + ( − ãn,k(l))∣Xk(l)∣,

(4.22)

where
ãn,k(l) = an + ( − an)ps,k(l) (4.23)
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is a time-varying smoothing parameter. We can see that the noise spectrum is estimated
by averaging past power spectral values, using a smoothing parameter that is adjusted by
the speech presence probability ps,k(l). In order to determine ps,k(l), speech absence is
calculated by looking at the ratio of the local energy of the noisy signal and its minimum
within a certain time frame.
Firstly, the squared magnitude of the spectrum is de�ned

S f ,k(l) = ∣Xk(l)∣, (4.24)

which could be smoothed in the frequency domain, but we have omitted this step due to
the increase it brings to computational complexity. However, we do smooth the spectrum
in the time domain

Sk(l) = αsSk(l − ) + ( − αs)S f ,k(l), (4.25)

where  < αs <  is a smoothing parameter.�e minimum of the local energy of the
noisy signal is calculated by �rst initializing the minimum and temporary local variable:
Smin,k() = Sk() and Stmp,k() = Sk(), respectively.�en, the minimum value of the
squared amplitude spectrum is tracked in time

Smin,k(l) =min{Smin,k(l − ), Sk(l)} (4.26)
Stmp,k(l) =min{Stmp,k(l − ), Sk(l)}. (4.27)

Whenever the number of frames reaches an arbitrarily chosenM, the temporary variable is
initialized by:

Smin,k(l) =min{Stmp,k(l − ), Sk(l)} (4.28)
Stmp,k(l) = Sk(l). (4.29)

We can see that the parameterM determines the scope of the local minima search, and that
the temporary variable insures that the minimum will be adapted to a change in the noise
level.
For calculating the conditional speech presence probability ps,k(l) a decision rule based

on the ratio of the local energy of the noisy signal and itsminimum, Sr,k(l) = Sk(l)/Smin,k(l),
is needed

Sr,k(l)
H
≷
H

δ. (4.30)

In [129] the following estimator for ps,k(l) was proposed

ps,k(l) = αpps,k(l − ) + ( − αp)Ik(l), (4.31)

where  < αp <  is a smoothing parameter, and Ik(l) is an indicator function for the result
in (4.30), i.e. Ik(l) = ,∀k if Sr,k(l) > δ and Ik(l) = ,∀k if Sr,k(l) < δ. At this point, we
have calculated all the variables needed for the estimation of the noise spectrum via (4.22).
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ª decision-directed a priori snr estimation. �e DD estimation approach
for the estimation of ξk , the a priori SNR, was proposed in [128]. Firstly, the Wiener gain is
introduced as the following ratio

ζk =
ξk

ξk + 
. (4.32)

Now, we can de�ne the estimator for ξk

ξk(l) = αaζk(l − )γk(l − ) + ( − αa)max{γk(l) − , }, (4.33)

where  < αa <  is a smoothing parameter.
�e noise spectrum λn,k and the a priori SNR ξk are continuously updated via the MCRA

and DDmethods, respectively, and are a�erwards used in the statistical model-based VAD
algorithms.

4.2.5 Speech corpus and metrics for voice activity detection evaluation

In order to analyze the supervised learning based VAD algorithms and performance thereof,
we used the noizeus speech corpus by [174]. Although the corpus was originally created
for testing speech enhancement algorithms, we used it for the following reasons: (i) the
recordings are of high quality and were made in a sound-proof booth, (ii) it o�ers eight dif-
ferent types of noises from aurora database by [175] which corrupt the original recordings
at four di�erent SNR levels, (iii) the recordings were made by six di�erent speakers—three
male and three female, (iv) it uses the ieee sentence database which contains phonetically-
balanced sentences with relatively low word-context predictability, and (v) the corpus is
available to researchers free of charge.�e percentage of the speech segments amounted to
61.28, which is as twice as high as compared to [148], and [151], but less than 5 higher
than in the cases of [152] and [155].�e recordings were sampled at the rate of 25 kHz and
were later downsampled to 8 kHz.�e total length of all the recordings was 80.04 s, which
o�ered, with 50 overlap and frame length of L = , in total 5000 frames for detection.
However, in order to test the performance and train the classi�er for di�erent types of noises
and noise levels, we have added to the clean speech also versions corrupted with babble
(SNR 15 dB, 10 dB, 5 dB), car (SNR 15 dB, 10 dB, 5 dB) and white Gaussian noise (SNR 20 dB,
15 dB, 10 dB). In total, this gave us 50000 frames for evaluation.
Usually, in order to test and train the algorithms, the speech segments are hand-labeled.

However, in the present chapter we used signal energy calculated via Parseval’s theorem
as the indicator of speech presence, which enabled automatic frame labeling. We �nd this
approach justi�able in the case of the noizeus corpus, since the clean recordings were
made in a sound-proof booth resulting with the speech-absent frames having energy a
thousand times lower than the weakest speech frame.

�e evaluation metrics we used are based on the standard elements of the confusion
matrix: true positive (TP)—voice classi�ed as voice, true negative (TN)—silence classi�ed as
silence, false positive (FP)—silence classi�ed as voice, false negative (FN)—voice classi�ed
as silence. We also used speech detection rate (SDR)—percentage of speech frames classi�ed
as speech, and false alarm rate (FAR)—percentage of noise frames classi�ed as speech.�e
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former and latter are calculated as follows

SDR = TP
TP + FN, FAR = FP

FP + TN. (4.34)

�ese two rates are actually used in order to draw a receiver operating characteristics (ROC)
curve. An ROC curve is a two-dimensional depiction of classi�er performance. Usually, the
curves are produced by graphing pairs of SDR and FAR values as a function of changes in the
threshold value. To compare di�erent classi�ers it is practical to reduce the information in
the ROC curve to a single scalar value. A common method is to evaluate the area under the
receiver operating characteristics curve (AUC). For an example, since both the SDR and FAR
take values in the range of [, . . . , ], for a perfect classi�er the AUC value would be 1, since
it is able to make a perfect SDR without any false alarms. A completely random classi�er
would have AUC value of 0.5, since the ROC curve would be a diagonal line in the SDR–FAR
space.�is would be equivalent to predicting based on fair coin tosses. More on the ROC
curves and metrics for evaluation of classi�ers can be found in [176, 177].
Another balanced measure of classi�cation performance with respect to all elements

is the Matthew’s correlation coe�cient (MCC) which we chose as additional metric for
performance comparison. It is calculated as follows [176]

MCC = TP × TN − FP × FN√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

. (4.35)

�eMCC is always between − and +, where − indicates total disagreement and + indicates
total agreement.�e MCC is zero for completely random predictions. If two variables are
independent, then their MCC is zero.�e converse in general is not true.

4.2.6 Experimental comparison of statistical model-based VADs

�e results of statistical model-based VADs are shown in Fig. 4.1. By analyzing Figures 4.1a
to 4.1b we can see that in the lower SNR scenarios the GGD and RRD mostly outperform
the GD VAD. On the contrary, in Fig. 4.1d under very low SNR, the GD and RRD VAD show
similar performance, and basically better results than the GGD VAD. We can see that with the
changing SNR and noise type, the performance of the VADs relative to each other changes.
But still, from Fig. 4.1, we can conclude that the RRD VAD shows equal or better performance
than the other VADs in all four scenarios, and that preliminarily it seems as the best choice.
As suggested in [177], we generate results from several test subsets and average these

results in order to obtain a measure of variance.�e ROC curves can be either averaged
vertically—by �xing FAR and averaging over SDR, or by the threshold—for each threshold
value an SDR–FAR pair is found and their values are averaged thus yielding both vertical and
horizontal variance.�e test set for this experiment was constructed by concatenating the
clean signal with its corrupted versions thus, with frame length of L =  samples, yielding
50000 examples for evaluation. In the present experiments we used 10-fold cross-validation
procedure and threshold averaging. In Fig. 4.2 we can see the results of the experiment. Each
point in the ROC curve also depicts a horizontal and vertical error bars which correspond
to a value of three standard deviations. Moreover, in the legend we can also see the AUC
score along with one standard deviation. By analyzing Fig. 4.2 we can assert that none of
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(b) white noise with SNR of 15 dB
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(d) babble noise with SNR of 5 dB

Figure 4.1: ROC curves for the three voice activity detectors. Each �gure represents a di�erent type
of noise and a di�erent SNR level.

the detectors exhibited large deviations and thus they all performed consistently on all the
subsets, and that the RRD VAD, on average, had the best performance.
Another important parameter that should be analyzed is the computational demand,

since we can see that (4.9), (4.17), and (4.20) di�er in complexity.�e execution times of
all the VADs (without the MCRA and the DD SNR estimation), was measured for Matlab
implementations on an Intel Core2Quad processor with 2.33GHz frequency (only one
core was used).�e results were as follows: the GGD, RRD, and GD VAD had the execution
times of 9.70ms, 0.37ms, and 0.21ms, respectively.�e reason behind the much higher
computational complexity of the GGD VAD lies in the need to evaluate (4.12). Without this
step, the GGD VAD takes on average 0.90ms, which is still twice as much as the RRD VAD.
However, a faster time varying estimate of the shape parameter ν could be utilized (cf. [178])
to lower the computational complexity.

�e reader should note at this point, that in the thesis we have implemented the VADs
somewhat di�erently than when they were �rst proposed in [148, 152, 172]. Mostly, the
di�erence is in the noise spectrum and the a priori SNR estimation, and in the case of the
RRD VAD, in the introduction of the LR for that model. Furthermore, the algorithms did
exhibit some variance in performance with respect to changes in some of the smoothing
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Figure 4.2:�reshold averaged ROC curves with AUC scores

parameters, but however this did not cause a change in relative performance of the detectors.

4.3 supervised learning based voice activity detection

Before we start with classi�cation, we need to choose input variables, i.e. features, upon
which the classi�ers will make decision and which, in e�ect, will be combined to form a
strong classi�er. We already mentioned that LR is one of the features, but we hypothesize
that by adding other features we could improve the clasi�cation results.

4.3.1 Input variable selection via partial mutual information

�e partial mutual information (PMI) based input variable selection (IVS) algorithm used in
[179, 180] overcomes two main issues that limit the applicability of many IVS techniques.
�ose are the underlying assumption of linearity and redundancy within the available data.
�e way that PMI IVS works is that it �rst selects the most informative input variable, then
it searches for the next most informative variable but by taking into account information
already received from the previously selected variable.�is process continues until an intro-
duction of an additional input variable increases the mean squared error of the prediction,
i.e. the square of the expected value minus the label, or PMI drops below a certain threshold.
Herea�er, we present the mathematical background of the PMI IVS.
Assuming y is a classi�cation outcome, i.e. signal frame label, x is a currently consid-

ered input variable (feature), and z is a set of previously selected variables, partial mutual
information in x about y given z is formulated as follows

PMI = ∫∫ pu,v(u, v) log
pu,v(u, v)
pu(u)pv(v)

dudv , (4.36)

where u = y − E[y ∣ z], v = x − E[x ∣ z], and E[ . ] is the expectation operator.
In order to obtain probability density functions for PMI from the data, we used kernel
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density estimators (KDEs). Hence, in order to calculate E[x ∣ z] we used the following KDE

p̂(x , z) = 
n



(
√
πh)d

√
∣Σ∣

n

∑
i=
exp−∥[x z]T − [xi zi]T∥Σ

h
, (4.37)

where ∥[x z]T − [xi zi]T∥Σ = ([x z] − [xi zi])Σ− ([x z]T − [xi zi]T) is the Mahalanobis
distance, and h is the kernel bandwidth, for whichwe used theGaussian reference bandwidth
throughout this chapter

h = ( 
d + )


d+

n−


d+ , (4.38)

where d is the dimension of the multivariate variable set, and n is the sample size.
Note that for E[x ∣ z] we need p̂(x ∣ z). If we take

Σ = [Σxx Σxz

Σzx Σzz
] , (4.39)

we get

p̂(x ∣ z) = 
n



(
√
πh)d

√
∣Σ̄∣

n

∑
i=
exp−∥xT − x̄i T∥Σ̄

h
, (4.40)

where Σ̄ = Σxx − ΣxzΣ−zzΣzx and x̄i = xi + ΣxzΣ−zz(z − zi). Finally,

E[x ∣ z] =
n

∑
i=

wi [xi + ΣxzΣ−zz(z − zi)] , (4.41)

where each sample is weighted by its weighting factor introduced in [179]

wi =
exp(−∥zT − zTi ∥Σzz

h
)

n

∑
j=
exp

⎛
⎝
−
∥zT − zTj ∥Σzz
h

⎞
⎠

. (4.42)

�e pseudocode of IVS based on PMI utilized in this thesis is given in Algorithm 4.

4.3.2 Feature space

In the ensuing paragraphs we present features that form the potential input variable set.
Each of them was analyzed as a standalone detector and as a candidate for the reduced
input vector by the PMI IVS.

Magnitude of the DFT coe�cients.AK-point transformwas used to analyze the spectrum
of the recorded frames.�e magnitude of the �rst 32 coe�cients of the transform were used
as a feature for the classi�er.

Zero-crossing rate.�e zero-crossing rate (ZCR) of a signal is the rate of sign changes
along the signal. It is de�ned as follows

fZCR =
L

∑
i=

Zi ,

where Zi = { , if sign{x(i)} − sign{x(i − )} ≠ 
, otherwise.

(4.43)
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Algorithm 4: Input variable selection based on partial mutual information.
Require: Sets of considered variables X = {x, x, . . . } and labels Y = {y, y, . . . }
Ensure: Set of chosen input variables Z = {z, z, . . . }

1: #Write functionmse( . ) that calculates mean-squared error
2: Initialize Z ← ∅
3: Initialize uMSE ←∞
4: while X ≠ ∅ do
5: Construct an estimator E[y ∣ z]
6: Calculate u ← y − E[y ∣ z]
7: if uMSE <mse(u) then
8: # Remove previously added x from Z

Z ← Z ∖ xlast
9: exit
10: end if
11: uMSE ←mse(u)
12: for all x ∈ X do
13: Construct an estimator E[x ∣ z]
14: Calculate v ← x − E[x ∣ z]
15: Determine the PMI I(v , u)
16: end for
17: # Determine x, i.e. v, which maximizes I(v , u)

xs = argmax
x

I(v , u)
18: if I(v , u) < Imin then
19: exit
20: end if
21: Z ← Z ∪ xs
22: end while

Human voice consists of voiced and unvoiced sounds. Voiced sounds have higher ZCR
value than the unvoiced sounds do.�erefore, it is a reasonable assumption that ZCR of
either voiced or unvoiced parts of speech will be di�erent than the ZCR of noise in the silent
periods.

Spectral �ux.�e spectral �ux (SF) measures how quickly the spectrum of the signal is
changing. It is calculated by comparing the power spectrum of the current frame with the
power spectrum of the previous frame

fSF = ∣
K

∑
k=

(∣Xk(l)∣ − ∣Xk(l − )∣)∣ . (4.44)

Speech changes quickly between voiced and unvoiced parts, thus resulting with high SF
values.

Spectral rollo�.�e spectral rollo� (SR) is de�ned as the a-quantile of the total energy in
∣Xk ∣. It is a frequency under which a fraction of the total energy is found. If K is the length
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of the signal DFT, then SR can be de�ned as

fSR =maxy {y ∶ a > ∑
y
k= ∣Xk ∣

∑K
k= ¡∣Xk ∣

} . (4.45)

Spectral rollo� was calculated at six quantiles equally spaced in [, ].
Mel-frequency cepstral coe�cients.Mel-frequency analysis is a technique inspired by

human sound perception.�e human ear acts as a �lter and concentrates only on speci�c
spectral components.�e �lters are non-uniformly spaced on a frequency scale, and their
density is higher in the low frequency regions.�e MFCCs are calculated in several steps: (i)
the magnitude spectrum ∣Xk ∣ is �ltered with a bank of non-uniformly spaced overlapping
triangular �lters, (ii) the logarithm is taken, and (iii) the MFCC are obtained by computing
the discrete cosine transform of the result. In [181] where authors consider a voice conversion
system, MFCC feature is identi�ed as a feature that does not consider any particular speech
model, i.e. feature that is useful for general voice activity detection, without considering
any speaker in particular.

Power-normalized cepstral coe�cients. In [182, 183] a feature extraction algorithm called
power normalized cepstral coe�cients (PMCCs) was proposed, which instead of log nonlin-
earity like MFCC uses power-law nonlinearity and a gammatone �lterbank. In [182] it was
shown to outperform MFCC, among others, in speech recognition accuracy. A�er adapting
the algorithm proposed in [182] to our scenario, we have used the �rst thirteen PMCCswhich
were the result of a 20 element gammatone pre�ltering.

Spectral centroid.�e spectral centroid (SC) is a statistic that measures where most of
the power of a speech segment is spectrally located. It is de�ned as follows

fSC =
∑K

k= k∣Xk ∣

∑K
k= ∣Xk ∣

. (4.46)

Spectral bandwidth.�e spectral bandwidth (SBW) describes spreading of the spectral
components with respect to the spectral centroid

fSBW =
¿
ÁÁÀ∑K

k=(k − fSC)∣Xk ∣

∑K
k= ∣Xk ∣

. (4.47)

Feature aggregation. In total the following features were aggregated: 1 LR, 32 DFTmagni-
tude coe�cients, 1 ZCR, 1 SF, 6 SR quantiles, 15 mel-frequency cepstral coe�cients, 13 power
normalized cepstral coe�cients, 1 SC and 1 SBW.�us, we had a feature vector of 71 for input
variable analysis. Similar approach was used in [159, 184] for music classi�cation.

4.3.3 Individual feature performance and IVS results

Each of the presented features can be considered as a detector in itself, whose performance
might indicate the suitability of being an element in the input vector. As an intuitive pre-
liminary analysis, we utilized the ROC curves, i.e. the related AUC score, of each feature
evaluated on the whole data set at once. Table 4.1 shows the AUC for all the features presented
in the current section. We can see that the LR has the highest score, followed by the �rst
PMCC, SF, the �rst MFCC coe�cient, while the third and ninth PMCC have the lowest score.
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Figure 4.3: ROC curves for the �ve features with the highest AUC score
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Figure 4.4: Feature values for a random segment of 200 frames corrupted with babble noise
(15 dB SNR)

Furthermore, ROC curves for �ve features with the highest AUC score are depicted in Fig. 4.3,
while the values of three features with the highest AUC score along with the label for 200
frames are depicted in Fig. 4.4.
Due to high memory requirements the analysis based on partial mutual information

was carried out on the set consisting of the clean signal, and its versions corrupted with
babble (SNR 10 dB), car (SNR 10 dB), and white Gaussian noise (SNR 15 dB) separately.�e
analysis on each set was stopped once the addition of another feature caused increase in
the mean squared error. Based on the results we kept those features that were chosen in at
least two sets: the LR, DFT indexes 7, 8, 9, 11, the 1st and 2nd SR, the 1st MFCC, SC, SBW, and 1st,
2nd and 3rd PMCC. It is interesting to note that the PMI algorithm chose the 3rd PMCC as a
good feature, although it has by far the lowest AUC score than many other features. However,
the PMI chooses features which bring additional information when all the information
from other features is taken into account, meaning that in certain scenarios the 3rd PMCC
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Table 4.1: AUC score of all the features

Feature AUC Feature AUC Feature AUC

1. LR 0.978 25. 31st DFT 0.708 49. 3rd DFT 0.632
2. 1st PMCC 0.936 26. 4thSR 0.708 50. 1stSR 0.624
3. SF 0.895 27. 22nd DFT 0.708 51. 12th MFCC 0.622
4. 1st MFCC 0.888 28. 32nd DFT 0.706 52. 4th DFT 0.619
5. 9th DFT 0.861 29. 23rd DFT 0.706 53. 4th MFCC 0.609
6. 15th DFT 0.815 30. 21st DFT 0.704 54. 14th MFCC 0.609
7. 8th DFT 0.810 31. 20th DFT 0.702 55. 4th PMCC 0.603
8. 6th MFCC 0.809 32. 19th DFT 0.702 56. 6th DFT 0.602
9. 16th DFT 0.805 33. 30th DFT 0.700 57. 9th MFCC 0.601
10. 14th DFT 0.793 34. 24th DFT 0.694 58. 7th PMCC 0.597
11. 10th DFT 0.786 35. 2nd MFCC 0.692 59. 3rd MFCC 0.586
12. 17th DFT 0.767 36. 5th MFCC 0.686 60. 8th MFCC 0.583
13. 13th DFT 0.765 37. 29th DFT 0.680 61. 13th MFCC 0.566
14. 12th DFT 0.751 38. 25th DFT 0.663 62. 10th PMCC 0.564
15. 11th DFT 0.747 39. 1st DFT 0.661 63. 11th PMCC 0.561
16. 7th MFCC 0.743 40. 28th DFT 0.660 64. 13th PMCC 0.554
17. 3rd SR 0.739 41. 2nd PMCC 0.658 65. 15th MFCC 0.548
18. ZCR 0.731 42. 6th PMCC 0.655 66. 5th PMCC 0.545
19. 18th DFT 0.726 43. 2nd DFT 0.655 67. 10th MFCC 0.541
20. 2nd SR 0.725 44. 7th DFT 0.652 68. 8th PMCC 0.519
21. SBW 0.722 45. 27th DFT 0.648 69. 12th PMCC 0.518
22. 5thSR 0.720 46. 11th MFCC 0.647 70. 3rd PMCC 0.511
23. 6thSR 0.719 47. 26th DFT 0.644 71. 9th PMCC 0.505
24. SC 0.713 48. 5th DFT 0.637

contributed to correct classi�cation. In total this amounts to 13 features forming a reduced
vector of input variables, which is an 82 decrease in the size of the feature vector.
Although from Fig. 4.3 we can see that the LR as a standalone detector outperforms

other features, we conjecture and shall test (i) that a trained classi�er based on LR and other
features should outperform a statistical model-based detector based on LR, and (ii) that a
detector with carefully chosen reduced input vector should not signi�cantly underperform
the detector based on a full feature vector. We shall test these hypotheses on 50000 learning
examples and by meticulous analysis with ROC curves and the AUCmetric.

4.3.4 Evaluation of the supervised learning VAD algorithms

In this chapter we utilized and compared three supervised learning algorithms: SVM, Boost,
and ANN, which were to classify if a signal frame contains speech or not based on the full
and the reduced feature set generated by the algorithm in Section 4.3.1.�e three have
di�erent approaches to learning and all have their advantages, and we shall brie�y introduce
each in the following paragraphs. But it is important to notice at this point that the goal of
this section is not to provide a detailed tutorial in either of the classi�ers, but to analyze and
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compare the performance of the three for the speci�c purpose of voice activity detection
based on various features and not in general. For training and testing the three learning
algorithms we used the OpenCV library [185].
Essentially, SVM [186, 187] is a learning algorithm that constructs a hyperplane or a set of

hyperplanes which de�ne boundaries for the data to be discriminated.�e data, most o�en,
are not linearly separable and this problem is addressed by SVM in a way that non-linearly
maps the input vector with a kernel function to a high-dimensional feature space.�e SVM
can also be used in regression tasks, but in this section we use them in the context of a
binary classi�er. An introduction to the theory behind SVM and some practical insights
can be found in [188]. In the thesis we used C-support vector classi�cation and radial basis
function (RBF) as the kernel function.

�e main idea behind boosting algorithms is to use many simple detectors which should
have performance a bit better than 50 at least (i.e. better than random guessing)—these
are called weak classi�ers—and combine them to obtain highly accurate classi�er—usually
called a strong classi�er. In its original form, Boost handles binary classi�cation problems
only, although there are extensions to handle multi-class and even multi-label classi�cation
problems [189]. In the thesis, a variant of the Boost algorithm proposed in [190] called Real
Boost is used [191].

�e ANNs are a product of the desire to imitate the workings of the biological brain.
�ey involve a network of simple processing elements (arti�cial neurons) which can exhibit
complex global behavior. One of the most important properties of ANNs is the ability to
approximate any continuous function up to a given precision.�ey have been extensively
used in both classi�cation and regression tasks and more on the ANNs can be found in
[192]. In the thesis we utilize a static multilayer perceptron network (MLP) with a sigmoid
activation function, a single hidden layer with 5 neurons, while the network parameters are
learned using the resilient propagation (RPROP) algorithm [193].
In the sequel we analyze the performance of the classi�ers.�e data was constructed by

concatenating the clean signal with its corrupted versions thus, with frame length of L = 
samples, yielding 50000 examples for evaluation. For the full input vector we had 71 features,
while the reduced input vector consisted of 13 features. Prior to the learning process, all the
features were scaled in a way to have a zero mean value and standard deviation of one.

�e evaluationwas performed byK-fold cross-validation. Essentially, the original dataset
was partitioned randomly into K subsets of equal size. Of the K subsets, one was retained
for testing the classi�er while the other K −  subsets were used for training.�e cross-
validation process was repeated K times thus yielding K results which were used for drawing
the average ROC curves. As discussed in [177], by drawing just an ROC curve of di�erent
classi�ers and seeing which one dominates to assess the performance might be misleading,
since we do not have a measure of variance.�erefore, it is suggested to generate results
from several test subsets, by a cross-validation or bootstrap method, and average these
results in order to obtain a measure of variance.�e ROC curves can be either averaged
vertically by �xing FAR and averaging over SDR, or by the threshold, where for each threshold
value an SDR–FAR pair is found and their values are averaged thus yielding both vertical
and horizontal variance. In this section we used 10-fold cross-validation and threshold
averaging for evaluation of the VAD algorithms.
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full (AUC = 0.995± 0.005)
reduced (AUC = 0.989±0.012)

Figure 4.5: Averaged ROC curves for the SVM classi�er with the full and reduced input vector

Firstly, we compared intra-classi�er performance, i.e. performance of each classi�er
working with either the full or the reduced input vector. Henceforth, all the �gures depicting
ROC curves have for each point a con�dence interval of three standard deviations included,
along with the AUC score and three standard deviations thereof.�ese deviations indicate
just how consistent the classi�er performance was with respect to di�erent cross-validation
sets. Figure 4.5 shows the averaged ROC curves and their AUC score for the SVM, from which
we can see that the classi�er with the reduced feature set did not signi�cantly underperform
compared to the classi�er trained on the full feature set. In Fig. 4.6 we can see a bit di�erent
result for the Boost classi�er. In this case the classi�er showed practically equal performance
both in the mean and standard deviation when being trained on the full and the reduced
input set. Finally, Fig. 4.7 shows the averaged ROC curves and their AUC score for the ANN.
It performed slightly better in the mean and standard deviation of the AUC score with the
full input vector, but overall exhibited larger deviations than any of the other two classi�ers.
�is means that it did not perform as consistently over all the subsets.
To conclude the intra-classi�er analysis, we can assert that the results supported our

second hypothesis from the Section 4.3.1: neither of the classi�ers signi�cantly underper-
formed when being trained on the reduced input vector formed by a careful IVS. Henceforth,
we shall only include in the analysis the classi�ers trained on the reduced input vector.
For the inter-classi�er performance we also included the statistical model-based detector

presented in Section 4.2.3 which too was evaluated by K-fold cross-validation. Since it does
not require training it was simply tested on the same K subsets and these results were
averaged. Figure 4.8 shows ROC curves for the three supervised learning classi�ers and the
RRD detector based on LR, from which we can see that the supervised learning approach
with several additional features can signi�cantly increase the performance of a detector.
Moreover, judging from the AUC scores shown in Fig. 4.8 we can assert that the Boost
classi�er slightly outperforms the other classi�ers, since it has the largest AUCmean value
and the smallest AUC standard deviation. Furthermore, by inspecting Figures 4.5, 4.6, and
4.7 we can also see that Boost overall exhibited smaller deviations in the ROC curves, which
further tips the balance in Boost’s favor.
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full (AUC = 0.987± 0.0011)
reduced (AUC = 0.985± 0.0014)

Figure 4.6: Averaged ROC curves for the Boost classi�er with the full and reduced input vector
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reduced (AUC = 0.983±0.0019)

Figure 4.7: Averaged ROC curves for the ANN classi�er with the full and reduced input vector

Table 4.2: Averaged statistical scores of the trained classi�er performance

SDR [] FAR [] ERR [] MCC±σMCC

SVM
full 96.73 2.26 5.53 0.944±0.0141
red 94.47 3.71 9.24 0.906±0.0183

Boost full 95.79 3.35 7.56 0.923±0.0132
red 95.10 3.75 8.65 0.912±0.0150

ANN
full 95.23 3.90 8.67 0.912±0.0189
red 93.43 5.05 11.62 0.882±0.0309

During the K-fold cross-validation we also monitored the performance of the trained
classi�ers for each subset by calculating the SDR, FAR, and MCC presented in Section 4.2.5.
Since all the classi�ers were trained to output a value between −, for non-speech, and , for
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SVM (AUC = 0.980± 0.0015)
Boost (AUC = 0.985±0.0014)
ANN (AUC = 0.983± 0.0019)
LR (AUC = 0.952±0.0017)

Figure 4.8: Averaged ROC curves for all the classi�ers with the reduced input vector and the detector
based solely on the LR

speech frames, we set the threshold to zero, thus all the frames with score larger or equal
to zero were classi�ed as containing speech, while the other were classi�ed as non-speech
frames.�is essentially would correspond to only a single point in the ROC curve graph, but
it is very practical since it provides a tangible sense of performance for a single threshold
value.�e average of these statistical scores for the aforementioned 10 subsets is shown in
Table 4.2, where we also provide error rate (ERR), ERR = (100 - SDR) + FAR, since it is o�en
used in other works.
To conclude the inter-classi�er performance, from the above presented results we can

see that the classi�ers signi�cantly outperformed the statistical model-based detector, and
that due to having the highest AUC score with the smallest standard deviation, and exhibiting
no signi�cant deviations anywhere in the ROC curve, the Boost algorithm had the advantage
over the other algorithms for this speci�c application of speech activity detection based
on various features.�erefore, we can assert that the results supported our �rst hypothesis
from Section 4.3.1 that a trained classi�er based on LR and other features should outperform
a statistical model-based detector based on LR.

�ese experiments were designed so as to �nd a LR model that will show the best
results [170], which we would then extend with features meticulously analyzed with PMI
IVS and encompass it all in a supervised learning framework which showed the best and
most consistent performance. Furthermore, the corpus that we used is freely available to
all researchers [174] which will enable direct comparison of detection algorithms in the
future. Comparison of our results to works which utilized a supervised learning approach
[162–167] is not straightforward due to utilization of a di�erent speech corpus, graphical
result representation (no score presented) or non-direct metric (word accuracy rate in
speech recognition). However, some do provide ERR score for di�erent noise levels and
types which we will use for crude comparison with our results. For an example, in [162]
the best ERR was 5.38 and 13.47 for vehicle and o�ce noise, respectively, while [163]
reports 9.4 and 20.9 for vehicle and babble noise, respectively. In [167] authors report
ERR from 7.83 to 41.39 for di�erent test sequences.�e authors in [164] report a score
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named equal error rate for which equality 1-SDR=FAR holds. For three di�erent datasets they
report equal error rate of 8.0, 13.1, and 19.0 for an SVM trained on MFCC. Comparing
these results with Table 4.2 we can see that our results do not deviate and are in the rank
of their performance. However, since di�erent datasets were used in these papers, a direct
comparison is not possible.
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4.4 summary

In this chapter we have presented three di�erent statistical model-based voice activity
detection algorithms in an unifying and consistentmanner, by incorporating noise spectrum
and the a priori signal-to-noise ratio estimation to their respective frameworks. Furthermore,
we introduced the LR for the Rayleigh and Rice distribution based detector.�e decision
framework was based on a statistical hypothesis ratio measure, and its geometric mean over
all the DFT coe�cient indices.�e algorithms were tested on the noizeus speech corpus
which consisted of clean recordings, and its versions corrupted with three types of noises
and three di�erent SNRs.�e performance analysis was conducted using threshold averaged
ROC curves and AUC score. Based of the aforementioned parameters, and the computational
complexity, we concluded that the VAD based on Rayleigh and Rice distribution showed the
best performance on average and is the most suitable statistical model-based VAD among
the tested algorithms.
Furthermore, we have introduced in total 70 additional features which were combined

with the RRD based VAD to form an input vector for the supervised learning classi�ers.�e
input vector was extensively analyzed by a partial mutual information algorithm in order
to single out the most informative features and by AUC score analysis to test the capability
of each feature to serve as a VAD.�e results yielded a 13 element reduced input vector.
We have focused on SVM, Boost and ANN classi�ers, whose performances were mutually
compared both with the full and the reduced input vector.�e algorithms were also tested
on the noizeus speech corpus.�e performance evaluation was based on a 10-fold cross-
validation and compared on threshold averaged ROC curves, AUC score andMCC. Firstly, the
results showed that the performance was not undermined by utilizing the vector with the
reduced number of features. Secondly, although the statistical model-based VAD by itself is
a much better detector than any of the other utilized features, a combination of the latter
and the former in the form of a trained classi�er produced a VAD with signi�cantly better
performance. Finally, inter-classi�er analysis showed similar performance of the three, with
a slight advantage in the direction of the Boost classi�er, since it had the highest AUC score
and the smallest variability in the threshold averaged ROC curves, indicating a consistent
performance over all the test subsets.

�e presented approach consisting of aggregating various features, performing input
variable selection by a partial mutual information algorithm whereat a reduced input vector
is created, and training a classi�er for voice activity detection, is quite generic. It can be used
on any combination of features and, indeed, is not limited just to voice activity detection. In
order to further increase the VAD performance or tailor it to speci�c scenarios, a cascaded
classi�er architectures could be utilized.



5
Detection and tracking in omnidirectional images

Equipping mobile robots with an omnidirectional camera and consequently en-
dowing them with an entire view of the scene is very advantageous in numerous applica-

tions as all information about the surrounding scene is stored in a single image frame. In the
given context, this chapter is concerned with detection, tracking and following of a moving
object with an omnidirectional camera equipped mobile robot.�e camera calibration
and image formation is based on the spherical uni�ed projection model thus yielding a
representation of the omnidirectional image on the unit sphere.�e detection of the moving
object is performed by calculating a sparse optical �ow in the image and then li�ing the �ow
vectors on the unit sphere where they are discriminated as dynamic or static by analytically
calculating the distance of the terminal vector point to a great circle arc.�e �ow vectors
are then clustered and the center of gravity is calculated to form the sensor measurement.
Furthermore, the tracking is posed as a Bayesian estimation problem on the unit sphere
and the solution based on the von Mises-Fisher distribution is utilized. Visual servoing is
performed for the object following task where the control law calculation is based on the
projection of a point on the unit sphere. In conclusion, experimental results obtained by a
camera with a �sh-eye lens mounted on a di�erential drive mobile robot are presented and
discussed. Majority of the research presented in this chapter was conducted at the Lagadic
research group of INRIA Rennes-Bretagne Atlantique.

5.1 introduction

Omnidirectional cameras by their de�nition provide a 360○ view of the surrounding scene
and as such pose themselves as a powerful tool in robot’s vision system.�e enhanced �eld
of view can be obtained by using several synchronized panoramic cameras, a combination
of a camera and a mirror, or a camera with a wide-angle lens.�e amount of information
in such a single image reinforces robot’s abilities in interpreting and adequately acting and
reacting in the environment.�e sensor has been utilized in mobile robotics in a variety
of applications: visual odometry, navigation, structure-from-motion, visual servoing, and
moving object tracking to name but a few.�is chapter is concentrated on the moving object
detection, tracking and following with an omnidirectional camera equipped mobile robot.
Detection and tracking of moving objects with a camera mounted on a mobile robot

is a task inconvenienced by the simultaneous ego-motion of the robot and the motion of
the objects. With perspective cameras the problem is approached in [194] by calculating

87
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the optical �ow and optimizing the bilinear transformation to warp the image between the
consecutive frames, a�er which the images are di�erentiated and motion is detected.�en
the particle �lter is used to track the moving objects in the image and a laser range �nder is
used to infer about the location in 3d. In [195] the detection was based on monocular scene
reconstruction and a�ne transformation of a triangle mesh in order to perform the image
warping.�e tracking of the moving object and the scene reconstruction was performed
using the extended Kalman �lter. In [24] and [196] an omnidirectional image was �rst
unwrapped to a panoramic image using a cylindrical projection, where the optical �ow was
calculated. In the former a synthetic optical �ow is generated by estimating the position of
the focii of expansion and contraction and the calculated �ow is compared to the generated
one, while the latter estimates an a�ne transform on square subsegments to warp the image
and perform the di�erentiation. In [25] the omnidirectional image is segmented in a set of
perspective images and detection is done in the vein of [194], while the tracking is based on
the particle �lter. To perform the following a control law based on a minimization of an ad
hoc following error is calculated.
In this chapter, excepting the low-level image processing, we propose a method for

moving object detection, tracking and following entirely based on processing on the unit
sphere thus taking into account the speci�c geometry andmaking it as general as possible for
omnidirectional systems.�e moving object detection is based on analytically calculating
the distance of a point on the sphere to an arc on the sphere.�e tracking is performed in
an analytical Bayesian prediction-correction manner where the underlying distribution is
a spherical distribution, namely the von Mises-Fisher distribution. In the end, the object
following is based on visual servoing [197] where the control law is calculated from an
interaction matrix derived for a projection of a point on the unit sphere.�e experiments
were carried out at INRIA Rennes-Bretagne Atlantique in Rennes, France in the laboratory
of the Lagadic group on a Pioneer 3dx di�erential drive mobile platform that we equipped
with an omnidirectional camera composed out of a Point Grey Dragon�y2 camera and an
Omnitech Robotics �sh-eye lens.�e task of the robot was to detect a moving object in
the image, track it and use the visual servoing control law to keep the detected direction of
the object at a speci�c location in the image, thus e�ectively following the object. Some of
the novelties and results from this chapter were presented in [198] where the optical �ow
�eld segmentation is analyzed, in [22] where the detection is tacked for the �rst time by
iteratively back-projecting the detected features from di�erent heights in the world, and in
[61] where the approach based on processing on the unit sphere is proposed along with the
tracking based on the VMF distribution and following based on visual servoing.

5.2 unified projection model and camera calibration

�e uni�ed projection model describes the image formation in catadioptric systems with a
unique e�ective viewpoint, which includes the appropriate combinations of the mirror—
parabolic, hyperbolic, elliptic, planar—and the lens—orthographic or perspective. A theo-
retical derivation of complete single-lens single-mirror catadioptric sensors characterized
by a unique e�ective viewpoint was introduced in [199], while the uni�ed projection model
was introduced and studied in [43, 44].�ere exists several methods for calibrating such
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Figure 5.1: Illustration of the uni�ed image formation

camera systems and a recent comparison can be found in [200]. Although the model and
the calibration methods were developed for systems with a unique e�ective viewpoint, in
practice they have been shown to be valid for dioptric systems with a �sh-eye lens [45]. In
this thesis we have chosen to use the calibration method based on planar grids proposed in
[201] since it provides an analytical way of calculating the point on the sphere from pixel
coordinates. In the vein of [201] we restate the model here since we �nd it important for
understanding the methods proposed in this chapter.

�e model consists of two consecutive projections: the spherical and the perspective.
Consider a point in space P and the frame Fo ∶ (xo , yo , zo) attached to the origin of the unit
sphere as shown in Fig. 5.1. First, P is projected to the surface of the sphere, which amounts
to normalizing the points coordinates.�en, the normalized point Pn is perspectively
projected from the coordinate system Fm ∶ (xm , ym , zm) to the pointm on the normalized
plane.

�e model considers two main sources of distortion: imperfection of the lens shape
that are modeled by radial distortion and improper lens and camera assembly that generate
both the radial and tangential errors. Five parameters are used to model the distortion

f (ρ) =  + kρ + kρ + kρ, (5.1)

where ρ =
√
x + y with (x , y) being coordinates of the pointm in the normalized plane.

To model the tangential distortion the following expression is used

dx = [kxy + k(ρ + x)
k(ρ + y) + kxy

] . (5.2)

A�er the distortionmodeling the point in the image p is obtained by calculating p = Km,
where K is a  ×  matrix containing the camera intrinsic parameters.�e matrix K , the
distortion parameters, and ξ are obtained by the calibration procedure [201]. In this thesis
we used a standard perspective camera with a �sh-eye lens, and the best calibration results
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were obtained by utilizing just the K and ξ, i.e. without distortion modeling. In the sequel
we assume that our omnidirectional camera is calibrated, which consequently enables us to
apply the inverse projection (li�ing) of the point in the image to a point on the unit sphere
[201]

m = K−p, Pn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ+
√
+(−ξ)(x+y)
x+y+ x

ξ+
√
+(−ξ)(x+y)
x+y+ y

ξ+
√
+(−ξ)(x+y)
x+y+ − ξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.3)

where, as before, the x and y are coordinates in the normalized plane of the pointm.

5.3 detecting moving objects

�e main goal of our vision system is to detect moving objects in the omnidirectional image
while the robot itself moves. However, this proves to be a daunting task since we have
motion in the image induced both by the moving objects and the ego-motion of the robot.
We have approached this problem in one of our previous works [22] by estimating the sparse
optical �ow in the image and by using the robot’s odometry to discriminate between the
�ow vectors induced by the ego-motion (static features) from those induced by the moving
objects (dynamic features).�e detection part in this chapter continues in the similar vein,
but with several important distinctions—a�er the optical �ow is calculated in the image,
the higher-level processing is done on the sphere and vector discrimination is performed
analytically as opposed to by iteratively projecting points from di�erent heights.
More concretely, we calculate the optical �ow in the image using the sparse iterative

version of the Lucas-Kanade algorithm in pyramids [202] implemented in the OpenCV
library [185]. Furthermore, both the initial point (feature position in the previous frame)
and the terminal point (feature position in the current frame) of the optical �ow vector are
li�ed to the unit sphere for further processing. An extension and improvement would be to
calculate also the optical �ow and the low-level image processing on the unit sphere since it
has been shown in [203, 204] to yield better results than operators derived for perspective
images.

5.3.1 Unit sphere-based motion detection

With the optical �ow calculated, we need to devise a procedure for �nding the optical
�ow vectors caused by the moving objects. Consider Fig. 5.2 where we have depicted a
sphere with Fp ∶ (xp, yp, zp) coordinate system in the origin—representing the image in
the previous frame, henceforth referred to as the previous sphere—and a second sphere
with Fc ∶ (xc , yc , zc) coordinate system in the origin—representing the image in the current
frame, henceforth referred to as the current sphere. We assume that the displacement
between the previous and the current sphere, i.e.Fp andFc , is known (in practice calculated
from odometry measurements) and described by cRp and c t p accounting for the rotation
and the translation, respectively. Furthermore, the point pP in Fp represents a li�ed point
detected in the previous image whose matched point in the current image, the li�ed point
cPm in Fc, has been determined by the optical �ow algorithm. To determine whether this
optical �ow vector was induced by the moving object or the ego-motion, we will �rst
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Figure 5.2: Hypothetical location on the sphere in the current frame of the feature on the sphere in
the previous frame

hypothesize that the �ow was due to ego-motion, and then if the condition is not met we
will classify it as being caused by the moving object.
In order to achieve this task, we need to know where to expect a static feature from the

previous sphere, like pP, on the current sphere (of course without any information about
the depth of the feature). By looking at Fig. 5.2 we can assert that the point pP is projection
of a feature in the environment somewhere along the optical ray de�ned by the previous
sphere’s origin of Fp and the point pP. Furthermore, projection of the point pP onto the
current sphere is the point cP, and if we continued along the ray in Fp we can see in Fig. 5.2
where the points would project to on the current sphere.�e point on the ray in the in�nity
projects to cP∞ = cRp

pP, i.e. as if the point pP did not move at all except for the rotation.
Given the previous analysis we can conclude that a projection of a point like pP, representing
a static feature on the previous sphere, should theoretically lie somewhere along the arc
cA of the great circle cC 1 de�ned by points cP and cP∞. To conclude, we will classify an
optical �ow vector as induced by ego-motion if its matched point on the current sphere cPm

lies close to the aforementioned great circle arc cA. Naturally, this approach cannot detect
objects moving along the optical ray, but this is an unlikely event since it is not possible to
ensure such a scenario for all points belonging to a rigid object.
In spherical geometry the closest distance between two points on the sphere is the

so-called great circle distance and for unit spheres it can be directly calculated as

d(cP,cP∞) = arccos (cP ⋅cP∞), (5.4)

where ( ⋅ ) represents the scalar product. Equation (5.4) is simply the angle between the two
unit vectors and incidentally the length of the arc cA in Fig. 5.2. In order to calculate the
distance of cPm to cA, we �rst need to determine a point cQm on the great circle cC which is
closest to cPm [205]. We solve this by projecting cPm to the plane de�ned by cP and cP∞

1 Intersection of the sphere and a plane which passes through the center point of the sphere
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Figure 5.3: Projection of points cPm and cP′m to the great circle cC and checking if they lie in the lune
of the great arc cA

and then normalizing it to obtain a unit vector

P′ = cPm − (cPm ⋅ n)n
cQm = P′

∣P′∣ ,

where n = cP ×cP∞. At this stage we have two possible positions of the point cQm: it either
lies on cA, or outside of it but on cC (points cQm and cQ′

m, respectively, in Fig 5.3).�e
former case is true if the point cPm lies in the lune2 of cA which we verify by testing the
following condition [205]

(cP ×cQm) ⋅ (cQm ×cP∞) >  and
(cP ×cQm) ⋅ (cP ×cP∞) > ,

(5.5)

where (× ) represents the vector product.�us if cQm lies on cA the distance of the point
cPm to the arc cA is calculated as d(cPm ,cQm), otherwise as min{d(cPm ,cP), d(cPm ,cP∞)}.
If the robot does not move or just rotates then condition (5.5) is evaluated as false and
d(cP,cPm) is calculated.

�e detection performance depends strongly on the measured displacement between
two consecutive images. In the thesis we have utilized wheels’ odometry for the task, but this
can be further re�ned by fusion with other sensors, like inertial measurement unit, or by
using the laser range �nder and estimating the displacement by scan matching, localization,
or relying purely on the image and use visual odometry.
Once we have selected optical �ow vectors that we consider to be caused by moving

objects, we still need to make sense of that particular set.�ere still may exist vectors that
are segmented out due to errors in the optical �ow calculation or erroneous discrimination
caused by odometry based displacement calculation. For example, if we have a single vector
classi�ed as static, while most of its neighbors are classi�ed as caused by a moving object,
we can safely assume that it is an error.�e other extreme case is a vector coming from a
moving object while its neighbors are classi�ed as static—in this case more o�en than not

2 Area on a sphere bounded by two half great circles. In Fig. 5.3 the two great circle passing through cP and
cP∞.
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Figure 5.4: Snapshots of the detection experiment—two objects circling around the static robot.
Upper le� image is the earliest in time, while the lower right is the latest in time. Blue
dots represent detected features while the green lines represent the optical �ow from
ego-motion and red lines represent the optical �ow caused by moving objects.

the vectors have a signi�cantly larger modulo than its neighbors, thus most likely being a
bad optical �ow calculation.
A�er the aforementioned �ltering stage, the vectors are partitioned in equivalence

classes using disjoint set data structure and union �nd algorithm. To partition the vectors
we need a predicate to tell us if the two vectors are in the same group or not.We state that two
vectors belong to the same group if they have similar modulo, elevation and azimuth (note
that the vectors are compared a�er being li�ed to the sphere). A�erwards, by examining the
sets, all of them having number of vectors less or equal to 10 are considered insigni�cant
and are removed from further consideration.�e remaining groups of vectors are treated as
representing moving objects in the scene and their center of gravity is calculated.�is center
is then a vector on the unit sphere which we henceforth treat as our sensor measurement.
Several snapshots of the detection experiments can be seen in Fig. 5.4 and Fig. 5.5. Camera’s
coordinate system rotated for π/ from the robot’s system is depicted by red, green and blue
points which represent the projections of the tips of the coordinate axes in the sphere.�e
yellow point represents the center of gravity of the clustered �ow vectors.�e next question
that we address in the subsequent section is how to track, i.e. �lter, moving objects on a
unit sphere?
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Figure 5.5: Snapshots of the detection experiment—three objects circling around the moving robot.
Upper le� image is the earliest in time, while the lower right is the latest in time. We
can see an outlier in the third image in time where a group of �ow vectors was wrongly
classi�ed as dynamic and a fourth cluster was created.

5.4 tracking on the unit sphere

At this stage we are working with vectors on the unit sphere which represent the direction of
the detectedmoving objects.We propose at this point to advance by statisticallymodeling the
measured direction, i.e. to pose a probabilistic model of the sensor measurement, by using
the VMF distribution presented in Section 2.3.2. Here we restate the PDF for completeness

p(x; µ, κ) = κ
π sinh κ

exp (κµTx) , (5.6)

where µ is the mean direction and κ is the concentration parameter.
Furthermore, by having probabilistically modeled the measurement, we proceed further

by posing the problem as an estimation on a sphere thus devising a Bayesian state estimator
(tracker) based solely on the VMF distribution [206]. A Bayesian estimation procedure of the
a posteriori PDF consists of two steps: prediction and update [72], which in this case entails
representing the state to be estimated x t at time t as the VMF distribution and successively
predicting and updating this distribution. As presented in Section 2.4 the prediction step
involves calculating the PDF via the total probability theorem (2.30). In this case we do
not have a strict state evolution model, but we choose to add process noise governed by a
centered VMF in the prediction stage which amounts to convolving our posterior at time
t −  with the VMF distribution representing the process noise. Given two VMF distributions,
p(x; µ, κi) and p(x; µ, κ j), the result of the convolution does not produce another VMF
distribution. However, the result of this operation can be well approximated by a VMF with
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a suitably chosen value of the resulting κ [46]

κi j = A−(A(κi)A(κ j)), A(κ) = 
tanh κ

− 
κ
. (5.7)

Consequently, a�er the prediction step our state represented by a single VMF will have
unchanged mean direction but newly calculated concentration parameter via (5.7).
In the update step, the posterior at time t is calculated via the Bayes theorem (2.28). In our

case the sensormodel p(z t ∣ x t)will be represented by a VMF as discussed at the beginning of
the current section, while the predicted state p(x t ∣ z∶t−) will be the result of the previously
discussed convolution. Given two VMF distributions, p(x; µ i , κi) and p(x; µ j, κ j), the result
of the update step is a VMF with the following parameters (see Appendix A.5) [206]

κi j =
√

κi + κj + κiκ j(µ i ⋅ µ j)

µ i j =
κiµ i + κ jµ j

κi j
.

(5.8)

�ese two steps, governed by (5.7) and (5.8), will cyclically produce the estimate of the direc-
tion of the moving object. Methods for practical calculation of some of the aforementioned
equations can be found in [66].
In this chapter we focus on tracking a single object and if there are multiple moving

objects detected, then only the closest measurement is considered in the update step. Fig. 5.6
depicts the measured and estimated direction azimuth and elevation of the moving object
from an experiment in which an object circled around the mobile robot. From the �gure we
can see that the elevation measurements are more noisy than the azimuth measurements,
and that, nevertheless, the �lter manages to smoothly track the moving object.�is is
important since we need smooth estimates for the control task. Future research will aim at
exploring tracking of all the detected moving objects which would involve solving the data
association and the track management problem [76].

5.5 following via visual servoing

Having solutions for moving object detection and tracking, we can now advance to solving
the problem of object following.�e idea is to keep the tracked moving object at the speci�c
(user-de�ned) location in the omnidirectional image. In this thesis we have utilized a
di�erential drive mobile robot where the linear and the angular velocity are controlled,
hence our task at hand is to calculate the control law that will drive the error between the
desired and the estimated direction to zero. To solve this problem we propose to utilize a
visual servoing technique based on projection of a point on the unit sphere.
Visual servoing refers to the use of computer vision data to control the motion of a

robot [197].�e vision data may be acquired from a camera that is mounted directly on a
robot manipulator or on a mobile robot, in which case motion of the robot induces camera
motion.�e goal of vision-based control systems is to minimize an error e(t) de�ned as

e(t) = s − s∗ (5.9)

where s represent a set of k measured visual features and s∗ are the desired value of the
features. Usually, in visual servoing the control law is designed as a velocity controller
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Figure 5.6: Measured and estimated azimuth and elevation of the moving object direction

(we assume motion control with six degrees of freedom) which necessitates a relationship
between time variation of s and the camera velocity. If we denote the camera velocity as
v = (v ,ω), where v is the linear velocity and ω is the angular velocity of the camera frame,
then the sought relationship is given by

ṡ = Lsv , (5.10)

where Ls ∈ Rk× is called the interaction matrix. If we consider v as an input to the robot
controller, our control law can then be calculated as follows [197]

v = −λL†s e , (5.11)

where L†s ∈ R×k is the Moore-Penrose inverse of the matrix Ls and λ is a positive gain. In
practice the interaction matrix or its inverse are o�en approximated or estimated, thus the
control law becomes in fact

v = −λL̂
†
s e = −λL̂

†
s (s − s∗). (5.12)

�e feature s can be designed in numerousways [197], but in this thesis we utilize a projection
of a world point to the omnidirectional image, thus making this an image-based visual
servo problem.
To represent the visual feature s we use a cylindrical coordinate system in the spherical

image to represent the projection of the estimated direction of the moving object

ρ =
√
sx + sy , θ = arctan

sy
sx
. (5.13)
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For this case the relationship between ṡ and v, i.e. the interaction matrix, is given by [207]

Ls =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− cos θ
Pz

− sin θ
Pz

ρ
Pz

( + ρ) sin θ −( + ρ) cos θ 
sin θ
ρPz

− cos θ
ρPz


cos θ

ρ
sin θ

ρ
−

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (5.14)

where Pz is the z coordinate of the moving object (not on the sphere but in the environment).
For di�erential drive robots the convention is to set the robot’s coordinate system such

that the linear velocity v is in the positive direction of the x axis, while the angular velocity
ω is de�ned positive counter-clockwise with respect to the z axis.�us for this case we need
to choose the appropriate column of (5.14) which yields interaction matrix of the following
form

Ls =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− cos θ
Pz


sin θ
ρPz

−

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (5.15)

�en, the calculation of the control law proceeds as follows [197]

[v
ω
] = −λL̂

†
s [

ρ − ρ∗
θ − θ∗

] , (5.16)

where ρ∗ and θ∗ are the desired values and L̂
†
s is the pseudoinverse of the estimated interac-

tion matrix—the coordinate Pz is not known and in this chapter we set it to an arbitrary
value.�e gain λ is adaptively calculated according to the following law

λ(e(t)) = a exp(−be(t)) + c, (5.17)

where e(t) is the error of the control task (calculated as the great circle distance between
the estimated and the desired position), a = λ() − λ(∞), b = λ′()/a, c = λ(∞) with
λ() = ., λ(∞) = ., λ′() = ..
In [208] a visual servoing control law in spherical coordinates for omnidirectional

images was presented. We have noticed that for our speci�c task with the di�erential drive
robot it exhibits an additional singularity in the control law. Namely, in the cylindrical
coordinate system as in [207] the control law has a singularity in ρ = —estimated direction
in the middle of the image where bearing is unde�ned (in our case practically unlikely)—
and θ = ±π/—the values of the bearing (possible in our case if the estimated direction gets
too far away from the desired one; in that case we saturate the control signal to a reasonable
maximal value). However, the control law in spherical coordinates as in [208] has additional
singularity when the elevation of the estimated direction is equal to ±π/—the vector lies
on the sphere’s equator (fairly o�en in our case).�is was the reasoning due to which we
chose to work in the cylindrical coordinate system.

5.5.1 Experiments

A snapshot of the experiment is shown in Fig. 5.7.�e violet point is the desired direction
of the moving object, while the magenta point represents the estimated direction of the
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Figure 5.7: Snapshots of the experiment—an object moving away from the desired direction. Upper
le� image is the earliest in time, while the lower right is the latest in time.

     

−.


.

t [s]

     







t [s]
      







t [s]

      

−.


.

t [s]

Figure 5.8: Command velocities and error (great circle distance from the desired to the estimated
direction)

moving object.�e green points surrounding the estimated direction are samples from the
a posteriori VMF representing the current state of the object.
In Fig. 5.8 we have depicted for two experiments the linear and angular velocity com-

mands along with the visual servoing task error, which was calculated as the great circle
distance between the desired and the estimated direction of the object via (5.4).�e object
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was moving in such way as to �rst distance itself from the desired position and then waited
until the robot closed the distance by reducing the servoing task error to zero.�is motion
pattern was repeated several times during the experiments and the result can be clearly
seen in the errors depicted in Fig. 5.8. If there were other moving objects in the scene,
their measurements were regarded as false alarms and only the closest measurement to
the estimated direction was taken into account. Concerning the control velocities we can
see that the angular velocity followed closely the behavior of the error—when the error is
greatest so is the velocity command, sometimes changing the sign of the command (when
the robot would correct for the error the object would move away in the direction from
which the robot came) and sometimes keeping the same sign (when the robot would correct
the error coming from one direction the object wouldmove away in the opposite).�e linear
velocity command appears to be more noisy than its angular counterpart.�is is due to the
fact that our visual servo control law corrects the error based on the projection of a single
point—the center of gravity of the clustered optical �ow vector. We have no information
about the shape nor the height of the object which makes it di�cult to guarantee that the
robot would position itself relative to the object at a speci�c distance. However, in practice
during the experiments we have noticed that most o�en the tracked center of gravity of
the segmented cluster would not deviate much thus making it possible to de�ne a point in
the image for which the robot would reasonably close the distance to the object. Naturally,
none of the aforementioned problems were experienced with the orientation.
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5.6 summary

In this chapter we have presented a method based on processing on the unit sphere for
moving object detection, tracking and following with an omnidirectional camera mounted
on a mobile robot.�e spherical projection model coupled with displacement information
from motor encoders was used to segment out vectors that do not belong to the static
scene around the mobile robot.�is was achieved by calculating the great circle distance
of the terminal point of the optical �ow vector on the sphere to an arc representing the
hypothetical locations of the projection of the initial point of the optical �ow vector. With
movement segmented in the image, clusters of similar optical �ow vectors were created
based on their similarity in the magnitude, azimuth and elevation angles. With the moving
object segmented out on the sphere, its center of gravity was probabilistically structured
in order to be included in the tracking framework based on the Bayesian estimation on
the sphere with the von Mises-Fisher distribution.�is procedure entailed calculating
the convolution and product of two von Mises-Fisher distributions where the resulting
mean direction was considered as the estimated direction of the moving object. Given the
estimated position a visual servo control law based on a projection of a world point to the
sphere was calculated which in turn made the robot follow the moving object. Experimental
results obtained with a camera and �sh-eye lens mounted on a di�erential drive platform
were presented and discussed.



6
Sensor fusion for object tracking

T he problem of Bayesian sensor fusion for moving object tracking is studied in this
chapter.�e prospects of utilizing measurements from several sensors to infer about a

system state are manyfold, from increased estimate accuracy to more reliable and robust
estimates due to several sensors measurements of the same phenomenon, possibly, based
on di�erent features. Sensor measurements may be combined, or fused, at a variety of levels;
from the raw data level to the state vector level, or at the decision level. In this chapter we
mainly focus on the Bayesian fusion at the likelihood and state vector level. Firstly, we analyze
two groups of data fusion methods: centralized independent likelihood fusion, where the
sensors report only their measurements to the fusion center, and hierarchical fusion, where
each sensor runs its own local estimate which is then communicated to the fusion center
along with the corresponding uncertainty.�e analysis is performed for a single moving
object scenario and we compare the prospects of utilizing both approaches, and present
explicit solutions in the forms of extended information �lter, unscented information �lter
and particle �lter. Furthermore, we also propose a solution for fusion of arbitrary �lters
and test it on a hierarchical fusion example of the extended information and the particle
�lter.�e methods are tested on a synthetic data experiment of tracking a dynamic object
with several sensors of di�erent accuracies by analyzing the quadratic Rényi entropy and
root-mean-square error.
Secondly, we study the problem of tracking an arbitrary number of people with multiple

heterogeneous sensors from a mobile robot. To solve the data association problem, instead
of using the optimal multiple-hypothesis tracking with complex hypothesis branching,
we choose the computationally simpler joint probabilistic data association �lter since we
are interested only in local observations by a mobile robot for people detection, tracking,
and avoidance. However, the joint probabilistic data association �lter assumes a constant
and known number of objects in the scene, and therefore, we use an entropy based track
management scheme.�e bene�ts of the approach are that all the required data come from a
running �lter, and that it can be readily utilized for an arbitrary type of �lter, as long as such
a strong mathematical principle like entropy is tractable for the underlying distribution.
�e algorithm is implemented for the case of the Kalman �lter, and the performance is
veri�ed in experiments where we used a laser range sensor, a microphone array and an
rgb-d camera.

101
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6.1 introduction

�e prospects of utilizing measurements from several sensors to infer about a system
state are manyfold. To begin with, the use of multiple sensors results in increased sensor
measurement accuracy, andmoreover, additional sensors will never reduce the performance
of the optimal estimator [209]. However, in order to ensure this performance, special care
must be taken when choosing the process model [210]. Furthermore, system reliability
increases with additional sensors, since the system itself becomes more resilient to sensor
failure [211].�erefore, by combining data from multiple sensors, and perhaps related
information from associated databases, we can achieve improved accuracies and more
speci�c inferences than using only a single sensor [212, 213].
Sensor measurements may be combined, or fused, at a variety of levels; from the raw

data level to a state vector level, or at the decision level [212]. Raw sensor data can be directly
combined if the sensor data are commensurate (i.e., if the sensors are measuring the same
physical phenomena), while if the sensor data are noncommensurate, then the sensor data,
i.e. sensor information, must be fused at a feature/state vector level or decision level.
Information from multiple sensors can be classi�ed as redundant or complementary

[211]. Redundant information is provided from multiple sensors (or a single sensor over
time) when each sensor perceives the same feature in the environment. On the other
hand, complementary information from multiple sensors enables the system to perceive
features impossible to perceive by using just a single sensor. But what is in common for
both classi�cations, is that all the sensors are used to somehow infer about a system state.
It is important to note that complementary sensors do not have to necessarily provide
information about the full system state. Some sensors, like omnidirectional cameras and
microphone arrays, measure angle and not the range of the detected objects, while laser
range scanners and depth cameras can give measurements in 2d or 3d. Moreover, some
sensors can provide measurements at higher rates than others, thus making sensor fusion
an even more challenging problem.
One way of approaching the problem of sensor fusion is at the likelihood level. Basically,

each sensor measurement is modeled as a Gaussian random variable and the resulting
fused distribution is also Gaussian with the new fused mean and covariance. In [214], the
fused moments are calculated by optimizing a weighted sum of Gaussian random variables
so as to minimize the volume of the fused uncertainty ellipsoid.�e resulting moments
are equal to as if they were obtained by calculating the product of Gaussian distributions.
Similar results were obtained in [215] where the fused moments are calculated by estimating
the moments of a product of Gaussians via maximum likelihood approach. Both of these
methods do not take any past measurements into account, and if tracking is needed then
di�erent approach needs to be utilized.
If the system is linear and the system state is modeled as Gaussian, then multisensor

fusion can be performed with the decentralised Kalman �lter (DKF) proposed in [216].
�e DKF enables us to fuse not only the measurements, but also the local independent
Kalman �lters.�e inverse covariance form is utilized, thus resulting in additive fusion
equations, which can further be elegantly translated to the information �lter form as shown
in [217]. For the case of non-linear systems the extended information �lter (EIF) or the
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unscented information �lter (UIF) [218] can be utilized. Another approach, proposed in
[219], is to de�ne for each sensor system, a separate and speci�c Gaussian probability
distribution and to fuse them using covariance intersection method [220]. If the underlying
distribution characterizing the system is not Gaussian and possibly non-linear, then usually
PF are utilized. In [143] a distributed particle �ltering algorithm is proposed where each
sensor maintains a particle �lter and the information is propagated in sensor network in
the form of partial likelihood functions.�e last sensor then back-propagates the �nal
importance distribution so that a new set of particles is generated at each sensor using
the �nal distribution.�e standard particle �lter algorithm was decentralized in [221] by
communicating and fusing only the most informative subsets of samples. It was applied
on mobile robots playing the game of laser tag. In [222] a speaker tracking system was
implemented by using a camera and a microphone array. Each sensor estimate was modeled
as a Gaussian distribution in order to obtain overall likelihood function.�e fusion was
performed by a global particle �lter which used the sum of the former Gaussians as the
proposal distribution and their product as the likelihood function for calculating the weights
of particles.
In order to perform fusion between decentralized tracking �lters, we have to take into

account the common information that the distributions might share.�is usually entails a
product and a division of particle sets and a solution for consistent fusion was proposed
in [223, 224]. An overview of decentralized fusion methods and non-Gaussian estimation
techniques can be found in [21, 225]. In [139] we implicitly used centralized independent
likelihood fusion via joint probabilistic data association �lter in the problem of multi-target
tracking with multiple sensors on a mobile robot and some of the results are presented also
in this chapter.

6.2 bayesian sensor fusion

�e goal of the sensor fusion is to estimate the system state x t at time t based on all previous
control inputs u∶t , and all previous sensor measurements from all the m available sensors
z∶m∶t . Note that the problem di�ers from previous discussions that we now have multiple
sensors indicated by the superscript ( . )∶m. In other words, from a probabilistic perspective,
we need to estimate the posterior distribution p(x t ∣u∶t , z∶t , z∶t , . . . , zm∶t) = p(x t ∣u∶t , z∶m∶t ).
By applying the Bayes theorem, we can reformulate the problem as follows (for convenience
we drop the condition on u∶t since in tracking this is usually not known) [225]

p(x t ∣ z∶m∶t ) = p(x t ∣ z∶mt , z∶m∶t−)

= p(z∶mt ∣ x t , z∶m∶t−)p(x t ∣ z∶m∶t−)
p(z∶mt ∣ z∶m∶t−)

.
(6.1)

Furthermore, we assume that (i) given the state x t the measurement at the ith sensor is
independent of the measurements obtained from other sensors, and (ii) that the current
state x t includes all the required information to evaluate the likelihood meaning that we
can drop the conditional dependency of the current measurement of the ith sensor z it on all
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the previous measurements of all the sensors z∶m∶t−

p(z∶mt ∣ x t , z∶m∶t−) =
m

∏
i=

p(z it ∣ x t , z∶m∶t−) =
m

∏
i=

p(z it ∣ x t). (6.2)

At this point, we can proceed further in three di�erent directions: (i) centralized inde-
pendent likelihood fusion, (ii) hierarchical fusion without feedback and (iii) hierarchical
fusion with feedback. If each sensor reports only its measurement modeled in a probabilis-
tic manner, i.e. likelihood or the sensor model, then this leads us to the �rst solution, in
which we have a global estimate of the system state updated by fusing only the likelihoods
communicated from each sensor

p(x t ∣ z∶m∶t )∝ p(x t ∣ z∶m∶t−)
m

∏
i=

p(z it ∣ x t), (6.3)

where p(z∶mt ∣ z∶m∶t−) is omitted since it only accounts for the normalization of the calculated
posterior.�is is an example of centralized independent likelihood fusion.
Now, the second solution amounts to each sensor modality estimating its own local

system state based only on its local observations.�ese local posterior estimates are then
fused on a global level. Since all sensors operate without having any knowledge of other
sensormeasurements, at each sensor i wehave p(x t ∣ z i∶t) as the local posterior. By inspecting
(6.3) we can see that we need to ‘extract’ the likelihood p(z it ∣ x t) from the local posterior. By
using a similar procedure as in (6.1) we can derive the expression for the needed likelihood

p(z it ∣ x t)∝
p(x t ∣ z i∶t)
p(x t ∣ z i∶t−)

. (6.4)

�is leads us to the following expression

p(x t ∣ z∶m∶t )∝ p(x t ∣ z∶m∶t−)
m

∏
i=

p(x t ∣ z i∶t)
p(x t ∣ z i∶t−)

. (6.5)

�is is an example of hierarchical fusion without feedback which suggests that if we want
to fuse a global prediction based on all the sensors p(x t ∣ z∶m∶t−) with local independent
sensor posteriors p(x t ∣ z i∶t), we need to �rst remove the local prediction p(x t ∣ z i∶t−), i.e.
the local prior knowledge, by a division.�is is logical since we already have all the prior
knowledge in the global prediction p(x t ∣ z∶m∶t−) and are only interested in acquiring new
knowledge arising from new measurements. If the local predictions p(x t ∣ z i∶t−) shared
common or very similar prior information which was not removed during the fusion, each
of them would implicitly count through p(x t ∣ z i∶t) with each multiplication, thus resulting
in a posterior being too con�dent, or swayed, by all the multiply-counted prior information.
For the third solution we have the global prediction based on all the measurements

communicated back to each sensor i to serve as a new local prior which will then be updated
only with the local measurement z it .�erefore, at each sensor i we have p(x t ∣ z∶m∶t−, z it)
as the local posterior from which we will need to ‘extract’ the likelihood p(z it ∣ x t). Again,
by following a similar procedure as in (6.1) we calculate the needed expression for the
likelihood

p(z it ∣ x t)∝
p(x t ∣ z∶m∶t−, z it)
p(x t ∣ z∶m∶t−)

, (6.6)
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which leads us to the following equation for the hierarchical fusion with feedback

p(x t ∣ z∶m∶t )∝ p(x t ∣ z∶m∶t−)
m

∏
i=

p(x t ∣ z∶m∶t−, z it)
p(x t ∣ z∶m∶t−)

. (6.7)

Each approach has its bene�ts.�e centralized independent likelihood fusion is quite
elegant since we only need to communicate the likelihoods to the fusion center, thus
requiring only that each likelihood represents each sensor measurements faithfully.�e
hierarchical approach without feedback requires each sensor to run its own local estimate
independent of other sensors, while the hierarchical fusion with feedback takes one step
further and communicates the global fused posterior back to each sensor to serve as the next
prior in the local estimation process. In this way each sensor bene�ts by having the same
global prior, even in situations when the sensor itself has no measurements.�is approach
is closely related to decentralized systems where we could have several independent agents
exchanging estimations in an unstructured or arbitrary network, but without central fusion
processor. Although decentralization has many advantages [216, 217], it requires dealing
with delayed and asequent observations, and �ltering of previously exchanged common
information which is amuch broader topic and shall not be studied in this thesis since we are
concerned with tracking from a single mobile platform.�erefore, we shall concentrate on
the centralized independent likelihood fusion and the hierarchical fusion without feedback,
since we want to explore the e�ects of fusion of sensor modalities which share no common
information.

6.2.1 Kinematics and state space equation of the tracked object

In this chapter we use a fairly general piecewise constant white accelerationmodel in order to
describe the system behavior [76].�e system state is de�ned as a vector x t = [xt , ẋt , yt , ẏt],
where (xt , yt) are the Cartesian coordinates, while ẋt and ẏt represent their respective
velocities in the x , y-plane.�e model itself is given by1

x t = Atx t− +Gv t

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

 ∆T  
   
   ∆T
   

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

x t− +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆T
 
∆T 
 ∆T


 ∆T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

v t ,
(6.8)

where ∆T is the sampling period, v t describes the uncertainty in the evolution of the system
state with the associated process noise covariance matrix Q t .
For the measurement model, we assume that the sensors measure both range and

bearing, thus yielding a non-linear measurement equation

z t = h (x t) + nt =
⎡⎢⎢⎢⎢⎢⎣

√
xt + yt

arctan( yt
xt

)

⎤⎥⎥⎥⎥⎥⎦
+ nt , (6.9)

1 In this section we are using the piecewise constant velocity model since it enables us to conveniently address
the problem of asynchronous data arrival and its e�ect on calculating the process noise in the prediction step
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where z t is the sensor measurement, nt describes the uncertainty in the measurement with
the associated measurement covariance matrix Rt . Naturally, both the process and measure-
ment noise are assumed to be normal, zero-mean, white and themselves uncorrelated as in
the Section 2.4.1.

6.3 centralized sensor fusion

6.3.1 Extended information �lter

With transition and observation equations de�ned with (6.8) and (6.9), respectively, for the
Kalman �lter the a priori predicted values of the system state and covariance are calculated
as follows

x t∣t− = Atx t−∣t− (6.10)
Pt∣t− = AtPt−∣t−AT

t +GQ tGT . (6.11)

Instead of continuing with the Kalman �lter update equations, we shall now revert to its
equivalent information �lter form, whose advantages in sensor fusion will become apparent
soon.

�e information matrix Y t∣t and the information vector yt∣t are de�ned as follows [72]

Y t∣t = P−t∣t , yt∣t = P−t∣tx t∣t . (6.12)

�e prediction equations for the information matrix and information vector are then

Y t∣t− = [AtY−
t−∣t−A

T
t +Q t]

−
(6.13)

yt∣t− = Y t∣t− [AtY−
t−∣t−yt−∣t− + But] . (6.14)

If we de�ne the information associated with the observation taken at time t as

i t = HTt R
−
t (υt +H tx t∣t−), I t = HTt R

−
t H t , (6.15)

where υt = z t − h(x t∣t−) is the innovation vector and H t is the observation matrix, we can
write the update stage of the information �lter as

yt∣t = yt∣t− + i t , Y t∣t = Y t∣t− + I t . (6.16)

From (6.16) we can see that the update stage of the information �lter is additive. In fact,
this very property of the information �lter is the main reason for its utility in multisensor
fusion.
If we have m sensors, then for each sensor i we can de�ne an observation equation

z it = H i
tx t + ni

t , i = , . . . ,m, (6.17)

with the corresponding observation matrix H i
t . Since the measurement model can be

linearized about the predicted state vector, the observation matrix may be introduced

H i
t =

∂h i (x)
∂x

∣
x=x t∣t−

. (6.18)
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For the measurement model (6.9) the observation matrix takes the following form

∂h (x)
∂x

=
⎡⎢⎢⎢⎢⎢⎢⎣

x√
x + y


y√

x + y


− y
x + y


x

x + y


⎤⎥⎥⎥⎥⎥⎥⎦
. (6.19)

In the standard Kalman �lter notation, contributions from multiple sensors cannot be
additively combined, since, although the sensor measurements given the system state are
themselves independent, the innovations are correlated through common information from
the prediction stage in (6.10). However, in the information form, the terms i it from each
sensor are uncorrelated, thus resulting with additive update stage with contributions from
each sensor [216, 217]

yt∣t = yt∣t− +
m

∑
i=

i it (6.20)

Y t∣t = Y t∣t− +
m

∑
i=

I it , (6.21)

where now yt∣t and Y t∣t represent the central fused information vector and information
matrix.�e central fused estimate of the system state may be found via x t∣t = Y−

t∣tyt∣t .
By inspecting (6.20) and (6.15), we can see that during fusion each sensor measurement

is weighted by its corresponding variance. In essence, this approach is similar to the product
of Gaussians, except that it does take past values into account through yt∣t−, which we can
see from (6.12) that it is just the predicted global system state weighted by the corresponding
global predicted variance.

�e previous approach to sensor fusion was derived in [216] following the work in [226],
and was termed DKF.�e main idea was to o�er a �exible method for decomposing the
linear Kalman �lter into autonomous local processors associated with each sensor modality.
However, so far we have presented only the means for fusing multiple sensor measurements.
If we want to fuse estimates form several running �lters each adjoined to a sensor (for which
the DKF was initially derived for), then we have to further extend the fusion approach.

6.3.2 Unscented information �lter

In this section the unscented version [227, 228] of the information �lter is utilized for
centralized sensor fusion. Unlike EIF which approximates the non-linear function by a
Taylor series expansions, the UIF deterministically generates sigma points and uses them to
estimate the mean and the covariance.�erefore, for an n dimensional system we need to
generate n +  sigma pointsX j,t− by

X ,t−∣t− = x t−∣t−

X j,t−∣t− = x t−∣t− + (
√

(n + λ)Pt−∣t−)
j

X j,t−∣t− = x t−∣t− − (
√

(n + λ)Pt−∣t−)
j
,

(6.22)



108 6. sensor fusion for object tracking

where λ = α(n + κ) − n is a scaling parameter with  ≤ α ≤  and κ usually chosen by the
heuristic n + κ = , and (

√
(n + λ)Pt−∣t−) j is the j

th column of the square root matrix of
the multiplied covariance matrix.

�e corresponding weights for recovering the mean and the covariance are calculated
as follows

w(l)
 = λ/(n + λ)

w(l)
j = / [(n + λ)]

w(c)
 = λ/(n + λ) + ( − α + β)

w(c)
j = / [(n + λ)] ,

(6.23)

where the parameter β is for encoding additional higher order e�ects. If the underlying
distribution is a Gaussian, then β =  is the optimal choice.

�e information prediction equations are

yt∣t− = Y t∣t−

n

∑
j=

w(l)
j X j,t∣t− (6.24)

Y t∣t− = P−t∣t−, (6.25)

where X j,t∣t− are predicted sigma points calculated by the process model (6.8), and the
predicted covariance matrix is computed by

Pt∣t− =
n

∑
j=

w(c)
j [X j,t∣t− − x t∣t−] [X j,t∣t− − x t∣t−]

T +GQ tGT . (6.26)

In order to present the UIF update equations, let us �rst de�ne a pseudo measurement
matrixHt as [218]

HT
t = P−t∣t−P

X ,Z
t∣t− , (6.27)

where the cross-covariance matrix is calculated by

PX ,Zt∣t− =
n

∑
j=

w(c)
j [X j,t∣t− − x t∣t−] [Z j,t∣t− − z t∣t−]

T
, (6.28)

whereZ j,t∣t− = h (X j,t∣t−) are observation sigma points, and the predicted measurement
vector is obtained by z t∣t− = ∑nj=w

(l)
j Z j,t∣t−.�en, in terms of pseudo-measurementmatrix,

information contribution for sensor i can be expressed as2

i it =HT
i ,tR

−
i ,t [z it − z t∣t− +Hi ,tx t∣t−] (6.29)

I it =HT
i ,tR

−
i ,tHi ,t . (6.30)

Now, the measurements are fused just as in the case of EIF, through (6.20) and (6.21).

2 Here we use index i in matricesHi ,t and R i ,t to denote the sensor i in the subscript instead of superscript in
order to more clearly denote the transpose and the inverse operators.
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6.3.3 Particle �lter

In the previous sections we have focused mainly on �lters which assume unimodal (Gaus-
sian) distribution over the system state. In many applications this assumption may not be
adequate and more versatile representations may be needed. In this section we present
methods for sensor fusion via particle �lters which due to their speci�c representation of
density need additional tools to calculate the update equations.
Let {x p,wp}Pp= denote a random measure that characterizes the posterior PDF p(x),

where {x p, p = , . . . , P} is a set of particles with associated weights {wp, p = , . . . , P}.
�e weights are normalised so that ∑pwp = .�en, the posterior density, as discussed
previously in Section 2.4.2, can be approximated as [73, 74]

p(x t) ≈
P

∑
p=

wp
t δ(x t − x p

t ), (6.31)

where P is the number of particles and δ(.) is the Dirac delta measure.
In the centralized solution all the sensormodalities report only their measurements (like-

lihoods), which corresponds to estimating the posterior via (6.3). A�er similar derivation
to the one in [73] we obtain the expression for weights calculation

w(x p
t )∝ w(x p

t−)
p(x p

t ∣ x
p
t−)

q(x p
t ∣ x

p
t−, z∶mt )

m

∏
i=

p(z it ∣ x
p
t ), (6.32)

where q( . ) denotes the proposal density. If we choose the prior as the proposal density,
q(x p

t ∣ x
p
t−, z∶mt ) = p(x p

t ∣ x
p
t−), then weights are calculated from the following expression

w(x t)∝ w(x p
t−)

m

∏
i=

p(z it ∣ x
p
t ). (6.33)

Once the weights are calculated we can estimate the state as follows

x̂ t∣t = E[x t ∣ z t] ≈

P

P

∑
p=

w(x p
t )x

p
t . (6.34)

�e resampling of the particles is done at each iteration via the SIR algorithm [73]. Con-
cerning the prediction stage of the �lter, we use the model (6.8) to predict the state of each
particle.

6.4 hierarchical sensor fusion

6.4.1 Information �lter

In this example each sensor runs its own local instance of the EIF—prediction through (6.10)
and (6.11), and update through (6.16). Furthermore, all sensor modalities utilise the same
process model (6.8).�e central processor, on the other hand, also runs its own instance of
EIF—prediction through (6.10) and (6.11) with the same process model (6.8) as the sensors
utilise, but the global update, i.e. fusion, should be performed in the following manner [217]

yt∣t = yt∣t− +
m

∑
i=

[y i ,t∣t − y i ,t∣t−] (6.35)

Y t∣t = Y t∣t− +
m

∑
i=

[Y i ,t∣t − Y i ,t∣t−] . (6.36)
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We can see that the sensor modalities only have to communicate the di�erence between
the updated, y i ,t∣t , and the predicted, y i ,t∣t−, information vector.�e same applies for the
update of the information matrix.�is ensures that only the new information is used for
fusion.
Hierarchical sensor fusion with UIF is performed in a similar manner as with EIF. Both

sensor modalities run their own local, independent, and autonomous UIF and report their
estimates to the central fusion processor.�e central processor runs a global UIF, and
performs the global update, i.e. fusion, through (6.35) and (6.36).

6.4.2 Particle �lter

In this hierarchical solution with particle �lters each sensor modality runs its own local
independent particle �lter, which needs to be fused with the global particle �lter.�is
corresponds to estimating the posterior via (6.5).�erefore, the importance weights are
given by

w(x p
t )∝ w(x p

t−)
p(x p

t ∣x
p
t−)

q(x p
t ∣x

p
t−, z∶mt )

m

∏
i=

p(x p
t ∣z i∶t)

p(x p
t ∣z i∶t−)

. (6.37)

If we again choose the global prior as the proposal density, q(x p
t ∣x

p
t−, z∶mt ) = p(x p

t ∣x
p
t−),

then weights are calculated from the following expression

w(x p
t )∝ w(x p

t−)
m

∏
i=

p(x p
t ∣z i∶t)

p(x p
t ∣z i∶t−)

. (6.38)

If all the weights from all the m distributions were on the same support space, then
explicit multiplication of weights would be possible (locally at each �lter this might be the
case). But since most weights are assigned to an in�nitesimally small point mass, direct
multiplication is not applicable. To solve this problem we need a way to estimate the density
function from a particle set. One such method is the Parzen window method [229] which
involves placing a kernel function on top of each sample and then evaluating the density as
a sum of the kernels—a similar procedure to the one utilized in Section 4.3.1. We continue
this approach as proposed in [21, 144], and convert each sample to a kernel

Kh(x t) = hnK(x t), (6.39)

where K(.) is the particle set covariance, and h >  is the scaling parameter. For the kernel,
we choose:

h = ( 
n + )

e
P−e , (6.40)

where e = 
n+ , and P is the number of particles. At this point, the estimated density function

is described as a sum of Gaussian kernels

p̂ (x t ∣ z i∶t) =
P

∑
p=
N (x t ; x

p
t , Kh(x t ∣z i∶t)), (6.41)

and an illustration of the process is depicted in Fig. 6.1. In [223, 224] the authors propose
how to utilize this function estimation for particle set multiplication and division.
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Figure 6.1: An illustration of building up a kernel density estimate from a particle set

6.4.3 Fusion of arbitrary �lters

In the previous sections we have addressed centralized and hierarchical fusion of the EIFs,
UIF and PFs. But what if wee need to fuse a combination of these �lters? For an example, an
EIF and a PF? In this section we propose a solution to such a problem.
To answer the question, we �rst need to choose the global �lter which will actually keep

the global track and fuse the local �lters. In most cases we will utilize the �lter which has
better or higher modeling capabilities. For an example, if one of the �lters is a PF, then we
might choose also a PF for the global �lter, since it is capable of handling both non-linearities
and multimodal distributions.�is reasoning stems from the fact that if we are using a
more versatile �lter for local estimation, there must have been a good reason for such a
choice, and the global �lter should be equally versatile. However, this might not always
be the case and there may be situations in which a less versatile and computationally less
complex �lter could be applied for fusion.�erefore, in this section we shall analyze both
of the aforementioned situations, i.e. fusion of a local EIF and PF with a hierarchical EIF,
and the fusion of local EIF and PF with a hierarchical PF.
For the case of fusion with the hierarchical EIFwe have equations de�ned in Section 6.4.1,

from which we can see that we need to calculate the di�erence of the information vectors
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and matrices of the local updated and predicted states. For the case of the local EIF this is
straightforward, while for the case of the local PF we propose to calculate the covariance of
the particle set �rst

P̂t∣t = E[(x t − E[x t])(x t − E[x t])T∣z t]

≈ 
P

P

∑
p=

w(x p
t )(x

p
t∣t − x t∣t)(x p

t∣t − x t∣t)T,
(6.42)

which can then be used to calculate the information variables via (6.12). However, care
must be taken with this approach since we are summing up the information of the particle
set to a single unimodal distribution. Once having analogously calculated the information
variables for the prediction, we can readily fuse the local PF and EIF with the hierarchical
EIF via (6.35) and (6.36).
For the case of fusion with the hierarchical PF, we have presented fusion equations in

Section 6.4.2, fromwhich we can see that in order to calculate the weights of the hierarchical
PF we need to explicitly evaluate the prior and the posterior density of the local EIF and PF.
Since EIF assumes a Gaussian distribution, the updated density will have the following form

p(x t ∣z i∶t) =


π
√

∣Pt∣t ∣
⋅ exp{− 


[x t − x t∣t]

T
P−t∣t [x t − x t∣t]}. (6.43)

A similar expression can be obtained for the prediction x t∣t− and Pt∣t−. Furthermore, in
order to be able to divide the prior and the posterior density of the particle �lter we will
need to resort to the kernel density estimation method presented in Section 6.4.2. Hence,
the updated and the predicted densities will have the form de�ned in (6.41).
All this results with the following expression for the calculation of the weights w(xq

t ) of
the global PF which relies on the expressions derived for hierarchical sensor fusion (6.5)
and on the calculation of the hierarchical particle �lter weights (6.38)3

w(xq
t )∝ w(xq

t−) ⋅
∑P

p=N (xq
t ; x

p
t , Kh(x t ∣z i∶t))

∑P
p=N (xq

t ; x
p
t , Kh(x t ∣z i∶t−))

⋅
N (xq

t ; x t∣t , Pt∣t)
N (xq

t ; x t∣t−, Pt∣t−)
. (6.44)

6.4.4 Asynchronous fusion

In the analysis thus far, we have assumed that all the measurements/estimates arrive syn-
chronously to the fusion center. In most real world applications this might not be the case.
So, the question is, how should the fusion be calculated if the measurements/estimates
arrive asynchronously? Is there a di�erence for the centralized and hierarchical case?
Let us assume at this point that all the sensors send their measurements/estimates in

�xed, but di�erent time intervals. For an example, if we have three sensors, twomight report
each 25ms, while the third might report each 60ms. In such a case, only the fusion center
has to change in order to accommodate asynchronous arrivals, since from a local sensor’s
point of view, nothing has actually changed.

3 Note that the particular particle in the hierarchical PF is now denoted with q instead of p in order to leave
the p to denote the particles in the local PF
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By inspecting (6.3) and (6.5), we see that for the sheer aspect of fusion itself, we only need
to changem, the number of sensors that we are fusing at a certain point. But there is also one
more very subtle change that needs to be addressed. When we use (6.8) for state prediction
we assume that the object undergoes a constant acceleration during a given sampling period,
which makes it inappropriate for asynchronous fusion where the prediction and update
occurs in practically arbitrary time intervals [76].�is, in e�ect, changes the way we must
calculate the prediction of the state, and the solution is to switch to discretized continuous
white noise acceleration model.
Basically, the state prediction equation remains the same, only the process noise covari-

ance matrix needs to be evaluated di�erently [76]

Q̃ t = E [v tvTt ] = q̃ ∫
∆T



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆T − τ 
 
 ∆T − τ
 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅ [∆T − τ   
  ∆T − τ 

] dτ

= q̃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣


∆T


∆T  


∆T ∆T  
  

∆T

∆T

  
∆T ∆T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6.45)

where q̃ is the continuous-time process noise intensity assumed to be a constant. Recommen-
dations on how to choose q̃ can be found in [76].�is implicitly means that GQ tGTt ← Q̃ t

in (6.11).
�e result above suggests that regardless of the type of fusion, centralized or hierar-

chical, we only need to correctly calculate the process noise covariance if the measure-
ments/estimates arrive in asynchronous, but locally �xed, time intervals. If the measure-
ments arrive out-of-sequence then a di�erent approach must utilized, confer [230] for a
solution in a mulitple hypothesis tracker framework.

6.5 evaluation

In this section we test the sensor fusion methods on the problem of object tracking with
multiple sensors. For the purpose of simulating a moving object we used a nearly coordi-
nated turn rate model with large process noise [76] (see Appendix A.6).�is model di�ers
intentionally from the model used in prediction which is de�ned in Section 6.2.1 since it
is possible that true dynamics of the object are unknown (consider the problem of people
tracking).�e tracked object is observed at all time by two sensors, one being more precise
than the other.�e measurements of the �rst and the second sensor are both corrupted
with white Gaussian noise. Figure 6.2 shows the simulated trajectory and the measurements
of the sensors. Herea�er, we assume that only one object is being tracked and that all the
sensor measurements arrive synchronously. For monitoring tracker performance we utilize
entropy and RMSE.
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Figure 6.2: Simulated trajectory of a moving object and measurements of two sensors with di�erent
noise parameters

6.5.1 Entropy and RMSE

We utilize entropy H(x t) as a measure of the tracker performance. Entropy is a very useful
measure of informativeness, and therefore we use it to track ‘con�dence’ of the tracker in its
estimates.�is way we can analyze how sensor fusion a�ects the tracker’s informativeness.
Ideally, by including more sensors, even the less precise ones, we should experience an
increase in informativeness, i.e. a decrease in entropy.
A measure of entropy can take many analytical forms. Shannon entropy can be di�cult

to analytically work with, e.g. Shannon entropy of a mixture of distributions cannot be
expressed in closed-form, and therefore we chose to work with Rényi entropy which usually
o�ers a more suitable framework for analytical calculations [141]. Rényi quadratic entropy
was introduced in Section 3.5.5 and here we present its form for a random variable x t with a
Gaussian distribution

H(x t) =
n

log π + 


log ∣Pt ∣, (6.46)

where n is the state dimension and the entropy is proportional to the logarithm of the
determinant of the covariance Pt .
Entropy calculation of continuous random variables is based on the probability density

functions of these variables. In order to calculate entropy of a particle �lter, which rather
represents the density and not the function, we need a non-parametric method to estimate
the PDF. As in Section 6.4.2 we will utilize the Parzen windowmethod [229] which estimates
the density as a sum of Gaussian kernels for which an analytical solution for the quadratic
Rényi entropy exists [231]

H(x t) = − log

P

P

∑
i=

P

∑
j=
N (x i

t − x j
t ; , Kh(x t)). (6.47)
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Table 6.1: Evaluation results of the sensor fusion object tracking on synthetic data

RMSE position [m] (velocity [m/s])

EIF UIF PF

Centralized 0.69 (1.59) 0.46 (0.85) 0.10 (0.59)
Sensor 1 1.10 (2.13) 0.23 (0.70) 0.25 (0.98)
Sensor 2 0.77 (1.72) 0.22 (0.68) 0.10 (0.66)
Hierarchical 0.70 (1.61) 0.22 (0.69) 0.13 (0.54)

Arbitrary local EIF local PF fused EIF

0.10 (0.66) 0.11 (0.66) 0.09 (0.59)

local EIF local PF fused PF

0.10 (0.66) 0.11 (0.66) 0.11 (0.60)

�e RMSE is calculated both for the position and velocity as follows

epos =
¿
ÁÁÀ 

T

T

∑
k=

(x̂t − xt) + ( ŷt − yt)

evel =
¿
ÁÁÀ 

T

T

∑
k=

( ˆ̇xt − ẋt) + ( ˆ̇yt − ẏt),

(6.48)

where T is the simulation length, (x̂t , ŷt) are estimated coordinates and (xt , yt) are true
coordinates at time index k, while ( ˆ̇xt , ˆ̇yt) are the estimated velocities and (ẋt , ẏt) are true
velocities at time index k.

6.5.2 Comparative analysis

In this section we will present the entropy and the RMSE for the cases of centralized, hierar-
chical fusion and for the examples of fusing an EIF and a PF through a global EIF and PF.
Table 6.1 shows the results of the RMSE in the position and in the velocity. In centralized
fusion all the measurements from the sensors were communicated to the fusion node which
in turn ran an estimator and fused the measurements via (6.20) and (6.21), (6.29) and (6.30),
and (6.33) for the cases of EIF, UIF, and PF, respectively. In the case of hierarchical fusion
each sensor ran its own local estimator, which communicated its estimate to the fusion
node, which then via (6.35) and (6.36), and (6.38) fused the local estimates. Figs. 6.3, 6.4 and
6.5 show the entropy of sensor 1, sensor 2, and the fused EIF,UIF and PF, respectively. For all
the examples of hierarchical fusion we can notice a pattern in which the fused estimator
had similar RMSE as the more precise sensor, but smaller entropy than any of local sensor
estimators indicating a reduction in uncertainty as can be seen in Figs. 6.3, 6.4, and 6.5.
�is result showed that although we fused a very precise sensor with a less precise one, the
resulting estimator did in fact have a bene�t in form of a reduced uncertainty.
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Figure 6.3: Entropy of the EIF tracker with the �rst sensor, with the second sensor, and the entropy
of the fused hierarchical EIF tracker
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Figure 6.4: Entropy of the UIF with the �rst sensor, with the second sensor, and the entropy of the
fused hierarchical UIF

6.6 multiple object tracking and sensor fusion by a mobile robot

A large body of work exists on tracking moving objects with mobile robots. As discussed in
[232] twomajor approaches can be identi�ed, both de�ned by the sensors.�e �rst approach
stems form the �eld of computer vision and implies a camera as a major sensor, while the
second utilizes LRS whose measurements are similar to those of radars and sonars. Since the
�eld of tracking and surveillance (where radars and sonars are commonly used), was well
established before the mobile robotics, a lot of results [233, 234] from that �eld were applied
to the problem of people tracking with an LRS.�e LRS approach can be further subdivided
according to data association techniques into deterministic and probabilistic [135, 235–237]
approaches. Additionally, these two sensors can also be used conjointly. For example, in
[238], the nearest neighbour approach and unscented Kalman �lter are used for tracking
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Figure 6.5: Entropy of the PF with the �rst sensor, with the second sensor, and the entropy of the
fused hierarchical PF

people with a laser and a camera, while in [219] the authors used euclidean distance and
covariance intersection method for fusing laser, sonar and camera measurements.
When considering multitarget tracking, data association is the fundamental problem. A

detailed overview of probabilistic data association techniques is given in [239]. Our previous
work [135] was heavily in�uenced by [235, 236], where the authors use the joint probabilistic
data association �lter (JPDAF) to solve the data association problem. In [240] the JPDAF is
extended to handle multiple data sources (sensors). Such a rigorous approach is questioned
when looking at the JPDAF seminal paper [234], since the target-sensor geometry indicates
that three sonar sensors were used to obtain the measurements. Since in our case the data
acquisition happens asynchronously across sensors, we prefer the approach in [234].�e
idea is as follows. When the new sensory inputs arrive, predictions about track states are
made, and then the JPDAF is used to solve the data association problem. Finally, the track
states are updated according to the association probabilities, where the �nal steps use the
likelihood function of the reporting sensor, and that is the only thing required by the JPDAF
to handle the multisensor case.
Another approach to probabilistic data association is the multiple hypothesis tracker

(MHT) developed in the seminal paper [233]. It is an optimal solution to the data association
problem, unlike the JPDAF. As discussed in [233], the JPDAF is a special case of the MHT, in
which only one hypothesis remains a�er data processing. To be clear, the reference is made
to [241], which is the initial derivation of the JPDAF.
In [233] the multisensor problem for two di�erent generic types of sensors is solved. It is

accomplished by describing sensors with their detection and false-alarm statistics.�anks to
such approach, we can use any type of a sensor, providedwe have its probabilistic description.
�e downside of the MHT is in its high memory and processing requirements (which grow
exponentially with the number of tracks). However, an e�cient implementation of theMHT
is discussed in [239] and some recent applications are presented in [242, 243].
Instead of using the optimal MHT with complex hypothesis branching, we choose the

simpler, although not optimal, JPDAF as it is a very convenient solution for people tracking
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by a mobile robot for its local navigation [244]. However, the JPDAF assumes a constant
and known number of objects in the scene, and to solve this drawback an entropy based
track management algorithm is used.�e approach is tested for the case of multiple people
tracking with the Kalman �lter and heterogeneous sensors.

6.6.1 Kalman JPDAF

We consider initialized tracks at time t described by a set of continuous random variables
X t = {xt , xt , . . . , xTk

t }, where Tk denotes the number of tracks. At time t we receive a set
Zm

t = {zm,t , z
m,
t , . . . , z

m,Tj
t } of measurements from sensor m, where Tj denotes the number

of measurements. Note that a single sensors can give us multiple measurements at a single
time instant.
In this section we use the general constant velocity model for motion in 2d plane

(6.8) presented in Section 6.2.1. Prediction is calculated using the standard Kalman �lter
equations

xk
t∣t− = Axk

t− ,

Pk
t∣t− = APk

t−A
T +GQGT ,

(6.49)

where xk
t denotes estimated state at track k at time instant t. If our measurements arrive

asynchronously the process noise needs to be taken into account as presented in Section 6.4.4.
�e innovation vector is calculated via

υk, jt = zm, jt −Hmxk
t∣t−, (6.50)

and its covariance matrix is given by

Sk, j
t = HmPk

t∣t−H
mT + Rm . (6.51)

�e innovation vector and covariance matrix can be used for measurement gating. Since
υk, jt

T
Sk, j
t
−
υk, jt has χ distribution, by using tables we can select upper limit which includes

valid measurements with, e.g., 99 probability.
Update is done by using all the validated measurements, i.e. weighted innovation is used

for the state update

υkt =
Tj

∑
j=

βk, j
t υk, jt

xk
t∣t = xk

t∣t− + K tυkt .

(6.52)

Given βk
t =  − ∑Tj

j= β
k, j
t and Pυkt

= ∑Tj
j= β

k, j
t υk, jt υk, jt

T
− υkt υkt

T the covariance update is
calculated as in [245]

Pk
t∣t = βk

t P
k
t∣t− + ( − βk

t ) [I − K tHm]Pk
t∣t− + K tPυkt

KT
t . (6.53)

An important implementation note is that instead of the standard Kalman �lter covariance
update [I − K tHm]Pk

t∣t− we use Joseph’s stabilized form [I − K tHm]Pk
t∣t− [I − K tHm]T +

K tRmKT
t , since the standard form caused numerical problems. For details regarding the

calculation of posterior probabilities of association events β j
t , i.e. thatmeasurement j belongs

to object t, please confer [139, 234, 235].
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6.6.2 Track management

When tracking multiple targets, track management is practically as important as the associ-
ation itself. A solution for the Kalman �lter, described in [245], is based on a logarithmic
hypothesis ratio and innovation matrix. In [235] a Bayesian estimator of the number of
objects for an LRS is proposed.�is approach requires learning the probability of how
many features are observed under a presumed number of objects in the perceptual �eld
of the sensor, while the tracking performance is monitored by an average of the sum of
unnormalized sample weights of the particle �lter.
In this section we use entropy measure as a feature in track management. If such a

strong mathematical principle is tractable for the underlying probability distribution, then
it can be readily utilized for track management independently of the �ltering approach.
Furthermore, all the information required for the entropy calculation is already available in
the running �lter, for the Gaussian distribution confer (6.46), and as it will be presented,
threshold setting is quite convenient. Although Shannon entropy could have been utilized
also for the case of the Gaussian distribution, we have opted for the quadratic Rényi entropy
since it can also be evaluated in the case of the particle �lter when the posterior density is
estimated by kernel density estimation methods [21, 139, 144].

�e track management logic is as follows. When the tracks are initialized, they are
considered tentative and the initial entropy is stored. When the entropy of a tentative track
drops for 50—it is a con�rmed track. If and when the entropy gets 20 larger than the
initial entropy—the track is deleted.�is logic re�ect the fact that if the entropy is rising,
we are becoming less and less con�dent that the track is informative.

6.6.3 Experimental setup and results

�e experiments were conducted with a Pioneer 3dx robot.�e laser sensor was the Sick
lms 200 model, while the microphone array is of our design. Furthermore, we also used
the Kinect time-of-�ight camera with a face recognition algorithm based on [247] to yield a
set of measurements in 3d. In the experiment two people were walking in an intersecting
trajectory in front of the robot (a snapshot of the experiment is shown in Fig. 6.6).�e
results are shown in Fig. 6.7 from which we can see that the �rst person (blue line) started
at (−., .)m and �nished at (., .)m, while the second person (green line) started at
(., )m and �nished at (., )m.�e �rst person was in the FOV of all the three sensors
and was talking throughout the experiment, while the second person entered LRS FOV at a
later time, kept quiet and was facing the robot only in the second half of the trajectory. At
15 s the second object got occluded by the �rst, which caused an increase in entropy, while
at 30 s the second object occluded the �rst shortly before exiting the scene.�e false alarms
were caused by tiles on the wall and leg-like features in the room (chairs and tables). Tracks
were correctly initialized and maintained, despite the large number of false alarms.�e
second track was deleted short-a�er the second person le� the LRS FOV.
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Figure 6.6: A snapshot of the data acquisition and signal processing for the experiments.�e mea-
surements were classi�ed and collected based on our work in [55, 135, 246], with only the
signal processing stage done, i.e. no tracking was performed on the sensor level.



6.6. Multiple object tracking and sensor fusion by a mobile robot 121

− − − −    −












x [m]

y
[m

]

(a) People trajectories

        −
−
−
−






time [s]

en
tr
op

y

(b) KF entropies

Figure 6.7: Experimental results for the KF—estimated (solid) track states, and tentative but not
con�rmed tracks (red + marker)
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6.7 summary

In this chapter we have �rst presented Bayesian methods for sensor fusion which were
divided in two groups based on the information that each sensor modality reported: a
centralized independent likelihood fusion where each sensor only reported its measurement,
and hierarchical fusion where each sensor ran its �lter and reported its own estimate along
with the uncertainty.�e solution for sensor fusion in the former case was an elegant
multiplication of local sensor likelihoods and the central (global) prior, while the solution
for the latter case was a bit more involved and required a division of the local posterior
and prior in order to extract only the new information which was then multiplied with
the central (global) prior.�e aforementioned approaches were given concrete expressions
in the form of the EIF, UIF and PF.�e experiments were conducted on synthetic data
modeling a situation of dynamic object tracking with several sensor modalities.

�e bene�ts of proper sensor fusion was demonstrated by depicting entropy of the
trackers. We have shown that the fused estimates have lower entropy than the most precise
sensor, even when being fused with a more imprecise sensors. Furthermore, we also dis-
cussed the problem of arbitrary sensor fusion, i.e. situations in which one sensor tracks
the object with one type of a �lter, e.g. a EIF, while the other tracks the object with a PF.
We proposed a solution and demonstrated the approach by fusing local EIF and PF with
a global PF and a global EIF. All the previous results were based on the assumption that
the measurements/estimates arrive synchronously to the fusion center. Furthermore, we
also discussed a solution with necessary modi�cations in the case of asynchronous fusion,
which mostly pertained to the correct system prediction, i.e. calculation of the process noise
covariance matrix.
Ensuingly, we addressed the problem of tracking multiple objects with multiple het-

erogeneous sensors—speci�cally an LRS, a microphone array, and an rgb-d camera.�e
integration of multiple sensors is solved by asynchronously updating the tracking �lters as
new data arrives. We solved the data association problem by applying the JPDAF, which is a
suboptimal zero-scan derivation of the MHT, but which in e�ect assumes a known number
of objects. To circumvent this assumption, an entropy based track management scheme
was used, and demonstrated its performance for the Kalman �lter in an experiment where
two people were tracked by a mobile robot.�e results showed that the proposed algorithm
is capable of maintaining a viable number of �lters with correct association and accurate
tracking.
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Conclusions and outlook

N avigating among highly dynamic objects is a daily routine for humans, but
still presents a signi�cant challenge for autonomous mobile robots. Naturally, this

stems from the fact that humans are equipped with a combination of sophisticated sensors
and with processing capabilities still unmet by arti�cial systems. However, this does not
imply that mobile robots cannot be endowed with similar capabilities, albeit by a di�erent
approach.�erefore, the aim of the thesis was to set a building block that will help in solving
the aforementioned problem.�is building block, as the title implies, is the detection and
tracking of objects in motion by omnidirectional sensors of a mobile robot. As stated earlier,
this task is important for autonomous mobile robots, especially if they are to become a part
of our daily lives.

�e thesis started �rst with a general background which described the utilized sensors in
the thesis and the main mathematical tools.�e sensors were the microphone array and the
omnidirectional camera which, as it has been shown, yield direction-only measurements
thus making them perfect candidates for application of methods from the �eld of directional
statistics.�e microphone array, as it was used in the thesis, measures the location of the
speaker as a direction in 2d plane, i.e. a point on the unit circle. Due to the nature of
the measurement derivation our sensor model ended up being a multimodal mixture of
probability density functions. Since we were dealing with random angular variables, it was
only natural to model the measurements with a circular distribution, a distribution on the
unit circle—the von Mises distribution. However, this was only the �rst step in fully solving
the speaker localization problem. Since our measurement model, the likelihood, was non-
Gaussian and multimodal, we needed to resort to versatile Bayesian estimation methods
and the �rst applied solution was the particle �lter.�e solution proved to be e�ective and
was tested in a series of carefully designed experiments to validate the proposed approach.
But the next question was, could the �nite sample-based approach be circumvented in a
way? Can we stay in the domain of analytical solutions somehow? We found the solution
in the form of Bayesian mixture �lters which was derived for the case of the von Mises
distribution. As we could have seen this constituted calculation of the convolution and
the product of two von Mises distributions to solve the prediction and the update part
of Bayesian estimators. However, both the particle �lter and the von Mises mixture �lter
estimate only the bearing of the speaker, and not the range.�us our next research was
focused in the direction of active speaker localization, where the information about the
displacement of the mobile robot was fused with the bearing measurements in order to

123
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estimate both the bearing and the range of the speaker.
In order to ensure robust speaker localization we needed a method that would reliably

detect the presence of speech in the signal frames, thus prevent misguided measurements
of noise-only frames.�e problem of voice activity detection was approached �rstly via the
frameworks of statistical model-based detectors.�is constituted modeling the distribution
of the discrete Fourier transform coe�cients under two distinct hypotheses: (i) the signal
frame consists of noise and speech and (ii) the signal frame consists of noise only, and then
calculating the likelihood ratio thereof.�ree di�erent statisticalmodel-based detectorswere
compared for the task and the detector that modeled the distribution of the signal envelope
with the Rayleigh and Rice distribution, under the two previously mentioned hypotheses,
respectively, showed the best performance.�e voice activity detection algorithm was
further enhanced by combining the likelihood ratio of the Rayleigh and Rice distribution
with 70 other spectral and temporal features. It was conjecture that this would bring an
increase, via a supervised learning algorithm, in detection performance. But in order to
avoid blind aggregation of the input space and account for possible correlations among
the input variables, partial mutual information algorithm was employed for the task.�e
result was a reduced input vector consisting of 13 variables and therea�er three supervised
learning algorithms were tested and compared, namely the support vector machine, Boost
and arti�cial neural networks. Finally, the results showed that the proposed approach yielded
better results than the standalone statistical model-based detector and among the three
supervised learning algorithms the Boost proved to be most appropriate.

�e second omnidirectional sensor that was used in the thesis is the omnidirectional
camera—a rather general concept that can be achieved by several mirror-lens and camera
combinations. In the thesis a perspective camera with a �sh-eye lens was used to yield an
omnidirectional image.�e main reason that directional statistics proved utile in moving
object tracking in omnidirectional images was due to the spherical uni�ed projectionmodel.
�is model describes the formation of images in omnidirectional systems and as such
provides a way to represent the image on the unit sphere. Since our task at hand was to
detect motion and perform tracking in such images we proposedmethods that mostly relied
on the processing on the unit sphere. Hence, the detection was performed by calculating the
optical �ow in the image and li�ing the optical �ow vectors to the sphere, a�er which they
were classi�ed as either being induced by the ego-motion of the robot or by moving objects
in the surrounding scene. Once the moving object �ow clusters were detected they could
serve as a measurement on the unit sphere. Since we were dealing with random spherical
measurements it was only natural to model the measurements with a distribution on the
unit sphere—the von Mises-Fisher distribution. With such an approach the foundations
for Bayesian estimation on the sphere were set up and the moving object was tracked in
a similar manner as the speaker was tracked with the microphone array—prediction and
update were solved by calculating the convolution and the product of two von Mises-Fisher
distributions (except in this case we used a single density, and not a mixture).�erea�er, the
estimated position was used to represent a feature in image-based visual servoing in order
to devise a control law that would make the robot follow the moving object.�e control
law was calculated by utilizing an interaction matrix that connected the camera velocities
with the velocities of image features.�e algorithm was based on a projection of a point to
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the unit sphere and was calculated in cylindrical coordinates.
When working with several sensors on a mobile robot, the next question is how to

fuse multiple, possibly, heterogeneous sensors? In the thesis we have analyzed the sensor
fusion problem via the prism of moving object tracking. Firstly, we looked at two fusion
principles: centralized fusion in which sensors report only their probabilistically structured
measurements, and hierarchical fusion where each sensor runs its own local �lter and
reports the estimates instead of just the measurements. We have presented the solutions
to the two fusion principles in the form of the extended information �lter, the unscented
information �lter, and the particle �lter. Furthermore, we have analyzed the problem of
fusing arbitrary �lters like the extended information �lter and the particle �lter, Finally,
we presented a solution to multiple people tracking by mobile robot equipped with a laser
range sensor, microphone array and an rgb-d camera.�e solution was based on the join
probabilistic data association �lter and entropy-based track management.
Naturally, some of the presented methods in the thesis can still be further improved or

extended.�e speaker tracking method that was presented can be applied to any bearing-
only scenario and is not limited to just the presented problem. More elaborate methods can
be applied at the signal processing stage that would detect multiple talking speakers and
thus necessitate extension of the vonMises mixture tracking to handle multiple targets.�is
would entail solving the data association and trackmanagement problems.�e voice activity
detection could also be improved further by taking into account that we have multi-channel
recordings thanks to the microphone array as opposed to performing detection based on
a single channel signal. Concerning the omnidirectional camera, the detection stage is
highly dependent on the calculated mobile robot displacement between the images.�us,
further enhancement would comprise of fusing the robot odometry with other sensors,
like an inertial measurement unit, or with image-based methods like visual odometry or
even SLAM. Just like in the case of speaker tracking, the von Mises-Fisher based tracker was
developed for single target tracking and as such can be further developed to accommodate
multiple target scenarios.
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a .1 product of von mises distributions

In Section 3.5 in order to evaluate the update step we needed to calculate the product of
two von Mises distributions. Let us assume that the two multiplicands are p(x; µi , κi) and
p(x; µ j, κ j).�en their product yields

p(x; µi , κi)p(x; µ j, κ j) =


πI(κi)I(κ j)
exp{κi cos(x − µi) + κ j cos(x − µ j)}. (A.1)

Intuitively, next thing that we have to do is manipulate the argument in the exponential
function in order to produce a von Mises like expression. Given that, we use substitution
ξ = x − µi in the exponent argument and apply trigonometric equality of the cosine of a
sum of angles

κi cos(x − µi) + κ j cos(x − µ j) = κi cos ξ + κ j cos(ξ + µi − µ j)
= κi cos ξ + κ j cos(ξ + ∆µ)
= κi cos ξ + κ j(cos ξ cos ∆µ − sin ξ sin ∆µ)
= (κi + κ j cos ∆µ) cos ξ + (−κ j sin ∆µ) sin ξ,

(A.2)

where ∆µ = µi − µ j. By utilizing the following equality

α cos ξ + β sin ξ =
√

α + β cos(ξ − arctan α
β
) (A.3)

we obtain

κi cos(x − µi) + κ j cos(x − µ j) = cos
⎧⎪⎪⎨⎪⎪⎩
x −

⎡⎢⎢⎢⎢⎣
µi + arctan

⎛
⎝

− sin ∆µ
κ i
κ j
+ cos ∆µ

⎞
⎠

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
⋅
√

κi + κj + κiκ j cos ∆µ

(A.4)

By using the substitutions

µi j = µi + arctan
⎛
⎝

− sin ∆µ
κ i
κ j
+ cos ∆µ

⎞
⎠

κi j =
√

κi + κj + κiκ j cos ∆µ

(A.5)
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we �nally arrive to the expression for the product of two von Mises distributions

p(x; µi , κi)p(x; µ j, κ j) =


πI(κi)I(κ j)
exp{κi j cos(x − µi j)}

=
I(κi j)

πI(κi)I(κ j)


πI(κi j)
exp{κi j cos(x − µi j)},

(A.6)

from which we can see that product of two von Mises distributions is an unnormalized von
Mises distribution by the factor

I(κi j)
πI(κi)I(κ j)

. (A.7)

�e normalizing factor in the Bayes rule which integrates (A.6) would account for proper
normalization and we would obtain a correct von Mises density. By inspecting (A.7) we
can see that it is strikingly similar to the convolution of two von Mises densities from the
prediction part of the �lter (3.26). Indeed, by integrating (A.1) we are convolving the two
distributions in x. By taking into account that (3.26) can been approximated by (3.27) we
can apply the same logic to (A.7) which yields

I(κi j)
πI(κi)I(κ j)

≈ 
πI(κ̃) exp{κ̃ cos(µi − µ j)}, (A.8)

where κ̃ = A−(A(κi)A(κ j)).�us when we have a von Mises mixture for a prior and a
likelihood, each result of a product of pi = wip(x; µi , κi) and p j = w jp(x; µ j, κ j)would have
the weight wiw j scaled by (A.7). We can see that this would make the weight of the product
a function of the factor mean directions and concentration parameters through (A.7), which
when approximated by (A.8) can be interpreted as a sort of von Mises ‘innovation’. Similar
behavior is exhibited by the Gaussian distribution [137].

a .2 kullback-leibler distance between von mises densities

For component number reduction in von Mises mixtures in Section 3.5 we needed to derive
a distance measure that we would calculate in order to choose the closest components
in the mixture which we would then merge. We used the scaled symmetrized KL which
accounts for components not being valid densities, but their scaled versions. In essence this
distance requires calculation of the KL between true von Mises densities, p(x; µp, κp) and
q = p(x; µq , κq), and to calculate it we shall resort to the following formula

DKL(p, q) = BF(θq , θp), (A.9)

where θp and θq are natural parameters of p and q, respectively, and BF denotes Bregman
divergence generated by the convex log-normalizing function F [248]

BF(θ, θ) = F(θ) − F(θ) −∇F(θ) ⋅ (θ − θ). (A.10)

�e result in (A.10) is valuable in the sense that it translates the KL distance between exponen-
tial family densities to the Bregman divergence between the respective natural parameters,
but in reversed order.�is will facilitate the derivation of the KL distance between vonMises
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densities. Recall that for the von Mises distribution the natural parameter θ, the minimum
su�cient statistics T(x), and the log normalizer F(θ) are given by

θ = (θ, θ) = (κ cos µ, κ sin µ)
T(x) = (cos(x), sin(x))
F(θ) = log(πI(

√
θ + θ)) = log(πI(κ)).

(A.11)

Beforewe calculate theKL distancewe need to �rst evaluate the gradient of the log normalizer

∇F(θ) = ( ∂
∂θ

F(θ), ∂
∂θ

F(θ)) . (A.12)

By taking into account that ddκ I(κ) = I(κ) we shall evaluate only the gradient only for θ
since the problem is symmetrical for θ

∂
∂θ

F(θ) =
πI(

√
θ + θ)

πI(
√

θ + θ)



√
θ + θ

θ

= I(κ)
I(κ)

κ cos µ
κ

= A(κ) cos µ.

(A.13)

�us, we obtain the expression for the gradient of the log normalizer

∇F(θ) = A(κ)(cos µ, sin µ). (A.14)

Now we can return to calculating the KL distance via the Bregman divergence A.10

BF(θq , θp) = F(θq) − F(θp) −∇F(θp) ⋅ (θq − θp)

= log
I(κq)
I(κp)

− A(κp) (cos µp, sin µp)

⋅ (κq cos µq − κp cos µp, κq sin µq − κp sin µp)

= log
I(κq)
I(κp)

− A(κp)

⋅ (−κp cos µp − κp sin µp + κq cos µq cos µp + κq sin µq sin µp)

= log
I(κq)
I(κp)

− A(κp)(−κp + κq cos(µp − µq)).

(A.15)

Finally, the formula for the KL distance between two von Mises densities is given by

DKL(p, q) = log
I(κq)
I(κp)

+ A(κp)(κp − κq cos(µp − µq)). (A.16)

a .3 von mises component merging

Once we have selected components in the von Mises mixture that we would like to merge
in Section 3.5, the next question is how to actually calculate the components of the resulting
density p(x; µ∗, κ∗)?�e optimal procedure in the KL sense is to preserve the expected
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value of the su�cient statistics [127].�us if we would like to merge M components the
formula is as follows

w∗∇F(θ∗) =
M

∑
i=

wi∇F(θ i), (A.17)

where w∗ = ∑i wi . Since our problem in Section 3.5 is structured so that we always merge
two components, e.g. p(x; µi , κi) and p(x; µ j, κ j) by plugging the von Mises densities in
(A.17) we obtain the following

w∗A(κ∗)(cos µ∗, sin µ∗) = wiA(κi)(cos µi , sin µi) +w jA(κ j)(cos µ j, sin µ j) (A.18)

from which we can set a system of two equations

w∗A(κ∗) cos µ∗ = wiA(κi) cos µi +w jA(κ j) cos µ j (A.19)
w∗A(κ∗) sin µ∗ = wiA(κi) sin µi +w jA(κ j) sin µ j. (A.20)

By dividing (A.20) with (A.19) we obtain the expression for calculating the merged mean
direction

tan µ∗ =
wiA(κi) sin µi +w jA(κ j) sin µ j

wiA(κi) cos µi +w jA(κ j) cos µ j
. (A.21)

By squaring (A.20) and (A.19) and summing up the result we get the expression for calcu-
lating the merged concentration parameter

w∗A(κ∗) = wi A(κi) +wjA(κ j) + wiw jA(κi)A(κ j)(cos µi cos µ j + sin µi sin µ j)
= wi A(κi) +wjA(κ j) + wiw jA(κi)A(κ j) cos(µi − µ j).

(A.22)

Note that for determining κ∗ from (A.22) we need to resort to numerical methods or
approximations as suggested in Section 3.5.

a .4 von mises mixture quadratic rényi entropy calculation

Here we present detailed derivation of the quadratic Rényi entropy of a von Mises mixture.
It is utilized in Chapter 3 for tracking the uncertainty of speaker tracking with a von Mises
mixture. Rényi entropy of order  is calculated via [142]

H(θ) = − log ∫ p(θ)dθ . (A.23)

For a von Mises mixture it is derived as follows

H(θ t) = − log ∫
π


p(θ t ∣ z∶k)dθ t

= − log ∫
π


(

N

∑
i=

wi exp [κi cos(θ t − µi)]
πI(κ) )



dθ t

= − log ∫
π



N

∑
i=

N

∑
j=

wi exp [κi cos(θ t − µi)]
πI(κi)

⋅
w j exp [κ j cos(θ t − µ j)]

πI(κ j)
dθ t

= − log ∫
π



N

∑
i=

N

∑
j=

wi j exp [κi j cos(θ t − µi j)]
πI(κi)I(κ j)

dθ t ,

(A.24)
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where wi j = wiw j, and µi j and κi j are given by (3.30) and (3.31), respectively. By rearranging
the sums and the integral we arrive to the �nal expression for the quadratic Rényi entropy

H(θ t) = − log
N

∑
i=

N

∑
j=

wi j

πI(κi)I(κ j)
⋅ 
π ∫

π


exp [κi j cos(θ t − µi j)] dθ t

= − log
N

∑
i=

N

∑
j=

wi j
I(κi j)

πI(κi)I(κ j)
.

(A.25)

Note that in the last step we have lost explicit dependence on θ t . But on closer inspection,
we can see that the state is implicitly included in κi j through the di�erence ∆µ = µi − µ j.
We can also utilise the symmetry κi j = κ ji in order to reduce the number of terms in the
double sum in (A.25)

H(θ t) = − log

π

⎡⎢⎢⎢⎢⎢⎢⎣

N

∑
i=

I(κi)
I(κi)

+ 
N

∑
i , j=
i< j

I(κi j)
I(κi)I(κ j)

⎤⎥⎥⎥⎥⎥⎥⎦
. (A.26)

a .5 product of von mises-fisher distributions

In Section 5.4 we needed to calculate the product of von Mises-Fisher distributions in order
to evaluate the Bayesian update step in the estimation process on the unit sphere. Let us
assume that we have two VMF densities p(x; µ i , κi) and p(x; µ j, κ j), then their product is
proportional to

p(x; µ i , κi)p(x; µ j, κ j)∝ exp{κiµTi x + κ jµTj x}
= exp{(κiµ i + κ jµ j)Tx}.

(A.27)

In order to obtain a VMF-like argument in the exponent we will normalize the vector
(κiµ i + κ jµ j)

p(x; µ i , κi)p(x; µ j, κ j)∝ exp{∣∣κiµ i + κ jµ j∣∣
(κiµ i + κ jµ j)T

∣∣κiµ i + κ jµ j∣∣
x} = exp{κi jµTi jx}, (A.28)

where

κi j = ∣∣κiµ i + κ jµ j∣∣ =
√

κi + κj + κiκ j(µ i ⋅ µ j)

µ i j =
κiµ i + κ jµ j

∣∣κiµ i + κ jµ j∣∣
=

κiµ i + κ jµ j

κi j
.

(A.29)

�us, a�er the normalization which brings the Bayes rule, we obtain the �nal expression

p(x; µ i j, κi j) =
κi j

π sinh κi j
exp{κi jµTi jx}. (A.30)
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a .6 the nearly coordinated turn model

�e dynamics of the simulated moving object in Section 6.5 were governed by the nearly
coordinated turn model given by [76]

xk = Axk− +Gvk

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

 sinω∆T/ω  −( − cosω∆T)/ω 
 cosω∆T  − sinω∆T 
 ( − cosω∆T)/ω  sinω∆T/ω 
 sinω∆T  cosω∆T 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

xk− +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆T
  
∆T  
 ∆T

 
 ∆T 
  ∆T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vk ,

(A.31)

where the state vector from the Section 6.2.1 was augmented with the turn rate ω = . rad/s,
and the process noise was simulated with vk ∼ N×(, .).
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