
Unaprjeđenje performansi robotskih usisavača putem
poboljšane izgradnje karata

Krapinec, Leon

Master's thesis / Diplomski rad

2025

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:101738

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-29

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:101738
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:13281
https://repozitorij.unizg.hr/islandora/object/fer:13281
https://dabar.srce.hr/islandora/object/fer:13281

SVEUČILIŠTE U ZAGREBU

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

DIPLOMSKI RAD br. 715

UNAPRJEĐENJE PERFORMANSI ROBOTSKIH USISAVAČA

PUTEM POBOLJŠANE IZGRADNJE KARATA

Leon Krapinec

Zagreb, veljača 2025.

SVEUČILIŠTE U ZAGREBU

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

DIPLOMSKI RAD br. 715

UNAPRJEĐENJE PERFORMANSI ROBOTSKIH USISAVAČA

PUTEM POBOLJŠANE IZGRADNJE KARATA

Leon Krapinec

Zagreb, veljača 2025.

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 30. rujna 2024.

DIPLOMSKI ZADATAK br. 715

Pristupnik: Leon Krapinec (0036527325)

Studij: Računarstvo

Profil: Programsko inženjerstvo i informacijski sustavi

Mentorica: prof. dr. sc. Marija Seder

Zadatak: Unaprjeđenje performansi robotskih usisavača putem poboljšane izgradnje
karata

Opis zadatka:

Cilj ovog diplomskog rada je unaprijediti performanse starijih modela robotskih usisavača poboljšanjem
procedure izrade karata prostora uz ograničene senzorske sposobnosti i strategije istraživanja prostora. Rad se
primarno fokusira na razvoj metode stvaranja karata njihove okoline unatoč ograničenim senzorskim podacima.
Cilj je osmisliti strategiju istraživanja prostora prikladnu za računalne i senzorske mogućnosti starijih robotskih
usisavača. Korištenjem fuzije senzora, predložena metodologija nastoji prevladati senzorska ograničenja, što
rezultira poboljšanom točnošću karata uz maksimizaciju pokrivenosti. Implementacija ovog pristupa provest će
se unutar okruženja Robot Operating System (ROS), a potom će biti validirana putem simulacija.

Rok za predaju rada: 14. veljače 2025.

ii

Content table

Introduction ... 1

1. Sensors ... 2

1.1. Sensor Fusion .. 2

1.2. Sensor Noise and Errors .. 2

2. Hardware Used in Research .. 3

2.1. Anatomy of a Roomba ... 4

2.2. Roomba Open Interface ... 5

3. Fundamentals of Robotic Mapping ... 6

3.1. Mapping in Robotics ... 6

3.2. Types of Maps ... 7

3.3. Mapping Algorithms .. 8

3.3.1. Occupancy Grid ... 8

3.3.2. Mapping Using Waypoints .. 8

3.3.3. Mapping Using Landmarks ... 9

3.3.4. Simultaneous Localization and Mapping .. 9

3.3.5. Topological Mapping .. 9

3.3.6. Line Segment Based Mapping ... 10

3.4. Optimal Mapping Algorithm for Cleaning Robot ... 10

4. Fundamentals of Robot Localization ... 11

4.1. Pose .. 11

4.2. Odometry Based Localization ... 12

4.3. Localization Problem ... 13

5. ROS 2 Dundamentals .. 15

5.1. ROS 2 Components ... 15

5.2. Unified Robot Description Format .. 17

5.3. Tools for Visualization and Simulation ... 17

6. Roomba Driver .. 18

6.1. Odometry Implementation ... 19

7. Exploration Strategy .. 21

7.1. Code Implementation .. 25

Conclusion ... 40

Literature ... 41

Summary .. 42

Sažetak ... 43

1

Introduction

 The rapid advancement of robotics technology has revolutionized household

appliances, with robot vacuum cleaners emerging as one of the most prominent examples

of consumer robotics. Once viewed as novelties, these devices have evolved into

sophisticated systems capable of autonomously navigating and cleaning a variety of

environments. However, as user expectations increase and environments grow more

complex, there is a rising demand for improved performance, efficiency, and adaptability

in robot vacuum cleaners. This research aims to meet these demands by exploring the

integration of advanced robotics principles, sensor technologies, and software solutions to

enhance the functionality of robot vacuum cleaners.

 This study examines fundamental robotics terminology and the essential role of

sensors in facilitating autonomous navigation and environmental interaction. Sensors

function as the eyes and ears of robotic systems, providing crucial data for decision-

making and task execution. By analyzing the types and functions of sensors, this research

emphasizes their importance in augmenting the capabilities of robot vacuum cleaners,

enabling them to perceive and adapt to their surroundings effectively.

 The study further investigates the specific model of the robot vacuum cleaner used,

offering an in-depth analysis of its construction, components, and operational mechanics.

Understanding these devices' hardware architecture and design principles is vital for

identifying areas for improvement and implementing enhancements. This analysis lays the

groundwork for a deeper exploration of foundational robotics principles, particularly

mapping and localization, which are essential for autonomous navigation.

 Mapping and localization are critical to the functionality of robot vacuum cleaners,

allowing them to create representations of their environment and ascertain their position

within it. This research clarifies the utility of these concepts, the various mapping and

localization techniques available, and their application in enhancing robotic systems. By

utilizing these principles, robot vacuum cleaners can achieve greater accuracy, efficiency,

and adaptability when navigating complex environments.

 To translate theoretical concepts into practical solutions, this study assesses the

software tools and frameworks employed to implement these advancements. The

effectiveness and suitability of the chosen software are evaluated in terms of addressing the

identified challenges. Additionally, the research examines external libraries that facilitate

implementation, highlighting their advantages and contributions to the development

process.

 Ultimately, the study engages with the principal algorithm that operationalizes the

theoretical framework, conducting a thorough review of the code to ensure its efficacy and

reliability. By merging theoretical insights with practical implementation, this research

aims to contribute to the ongoing evolution of robot vacuum cleaners, paving the way for

more intelligent, efficient, and user-friendly devices.

2

1. Sensors

 Sensors play a pivotal role in robotics. They serve as the interface between the

robot and its environment. Sensors are akin to human senses in the context that they are a

critical feedback system. They provide essential data about the surroundings that enable

the robot to perceive its environment. Without them, robots would be just static devices

lacking dynamic adaptability. The sensor can be put into two primary categories:

proprioceptive and exteroceptive sensors.

 Proprioceptive sensors provide information about the internal state of the robot.

Some examples are encoders that measure rotational or linear position and velocity, and

inertial measurement units (IMUs) that measure acceleration, angular velocity, and

orientation.

 The second type of sensor is the exteroceptive sensor. It provides a measure of

external stimuli or environmental conditions. Some examples of exteroceptive sensors are

a camera, lidar, bumper, and infrared sensor.

 Robot sensors have a multitude of functions, and with that, they manage to

transform a simple machine into a dynamic system. Sensors can be used in different

applications.

 Position and navigation are key functions if a robot can move. A common practice

for the machine is to move from one point in the environment to another while avoiding

obstacles. In this scenario, the camera and lidar are one of the useful sensors to make that

process smoother.

 Safety is another application where sensors can be used. With an infrared sensor,

the robot can detect living presence. With this knowledge, the machine can stop actions

that can harm humans and prevent accidents.

 The third use case is environment monitoring. If the environment needs special

conditions to function, the machine can constantly measure and take action if those

requirements are not satisfied. Temperature and humidity sensors are one of the examples.

1.1. Sensor Fusion

 Sensor fusion is the ability to bring together data from different sensors to form a

single model of the environment around the vehicle. This results in a more accurate model

because it balances the strengths of the different sensors. Moreover, because of that

machine actions can be more complex. Each sensor type has its benefits and challenges.

For instance, cameras are excellent for recognizing objects, but they can be easily

disturbed by rain or dirt. Light sensor is a low-cost sensor that recognizes distance, but it

has a hard time with reflective surfaces. Sensor fusion enables the use of the benefits of

one sensor and replaces its disadvantages with a different type of sensor.

1.2. Sensor Noise and Errors

 Sensor noise refers to disturbance in the signal produced by sensors. This causes

deviation of the correct measurements, which results in bad perception and decision-

making. Sensor noise is a common challenge in robotics because it can degrade

performance.

3

2. Hardware Used in Research

 The Roomba series 600 is an older line of robotic vacuum cleaners designed for

small to medium-sized indoor spaces. It employs a random cleaning pattern because it

lacks advanced sensors found in newer, higher-end models. Consequently, it does not offer

the ability to map the room. While there is no detailed documentation available for this

series, alternative resources can be utilized. The Roomba Create 2 is a robot specifically

designed for educational, hobbyist, and developmental purposes. It is based on the Roomba

series 600 but does not include a cleaning mechanism. However, it features comprehensive

documentation regarding its physical structure and components. This documentation

explains how the sensors operate, what data they collect, and the interface between the

robot and the computer. A special cable is required to connect the Roomba to the

computer. The cable used in this research is a mini-DIN 8-pin TTL serial port cable with

an FT232RL serial module chip.

 Image 2.1 Roomba series Image 2.2 600Mini-DIN 8-pin TTL serial port cable

4

2.1. Anatomy of a Roomba

Like most other models, the Roomba Series 600 features a circular design. It has a

width of 347mm, a height of 92mm, and weighs 3.6 kg. The track width between the two

motorized wheels measures 235mm.

Image 2.3 Roomba Anatomy

Wheel encoders are located on the robot's left and right sides, with a caster wheel

positioned at the center front. These encoders track wheel rotation to estimate the distance

traveled and assist in navigation. The second type of sensor detects physical obstacles,

consisting of bumper sensors that sense contact with obstacles and light sensors that

measure an obstacle's proximity to the robot. The position of the bumper sensor is at the

front of the robot, and it consists of two sections: the left and right sides. The light sensor is

positioned at the front of the robot and is centered between the bumper. These sensors

provide awareness within a two-dimensional space. Another type of sensor is the cliff

sensor, which uses infrared technology to detect drop-offs. This helps prevent the robot

from falling by detecting height changes. The robot features six cliff sensors located on its

underside, positioned around the edges. Two are placed at the front, and two are positioned

above the right and left wheels, with the last two situated beneath the two wheels. The

fourth type of sensor is specifically designed for cleaning functions. Dirt detectors identify

areas with higher concentrations of dirt, prompting the robot to focus on those spots.

5

2.2. Roomba Open Interface

The Roomba Open Interface (OI) is a software interface designed for controlling and

manipulating Roomba’s operational behavior. This interface allows users to modify

Roomba’s functionalities and access its sensor data through a comprehensive set of

commands. These commands include mode commands, actuator commands, song

commands, cleaning commands, and sensor commands, which are transmitted to

Roomba’s serial port via a personal computer or microcontroller connected to the mini-

DIN connector. Each command begins with a one-byte opcode, and some must be

followed by data bytes. In response to a Sensors command, Query List command, or

Stream command requesting a packet of sensor data bytes, Roomba sends back one of 58

different sensor data packets, depending on the value of the packet data byte. Some packets

contain groups of other packets, and some sensor data values are 16-bit values. The most

important packet will be explained.

The bumper state is included in a packet with ID 7. This packet consists of one

unsigned byte. The value of the left bumper is found on bit number one, while the value of

the right bumper is located on byte number zero. If the bumper state is zero, it indicates

that the bumper is not pressed. Conversely, if the bumper is pressed, its state will be one.

Image 2.4 Structure of the bumper packet

 A packet with ID 45 refers to the light sensor. It also consists of one unsigned byte.

This sensor has six positions where it can detect an obstacle. Like the bumper sensor, if an

obstacle is detected, that position returns a value of one; otherwise, it returns zero. To

obtain the strength of each signal, packets with IDs between 46 and 51 should be

requested. They are constructed of two unsigned data bytes. The strength is represented as

an unsigned 16-bit value with the high byte first. The value can range from 0 to 4095.

Image 2.5 Structure of the light sensor packet

The packet with ID 19 contains the distance the robot has traveled since the last

request was made. The value is sent as a signed 16-bit integer, with the high byte first. This

measurement is in millimeters. Distance represents the sum of the distances traveled by

both wheels divided by two. Positive values indicate forward travel; negative values

indicate reverse travel. If the value is not polled frequently enough, it is capped at its

minimum or maximum. The value range is between -32768 and 32767.

To obtain the angle in degrees that Roomba has turned, the packet with ID 20 must be

requested. The value represents the difference between the current angle and the last

requested angle, sent as a signed 16-bit integer, high byte first. The value range is between

-32768 and 32767.

6

3. Fundamentals of Robotic Mapping

 This chapter provides a fundamental knowledge of mapping in robotics. It explains

what mapping is and why it is important. It also explores the different types of maps and

the algorithms used to generate them. Finally, it concludes with an explanation of the

selected mapping approach implemented in practice and the rationale behind this choice.

3.1. Mapping in Robotics

In robotics, mapping refers to the process of creating a representation of the

environment that the robot can perceive through its sensors. This representation can be

two-dimensional or three-dimensional. The goal of mapping is to capture the spatial layout,

obstacles, and other significant features of the environment. It is a crucial aspect of robot

navigation and autonomous operation in space. Autonomous navigation necessitates

precise localization and mapping. The more accurate the generated map, the easier it is for

the robot to navigate. With a highly accurate map, the robot becomes fully aware of its

surroundings and can maneuver with ease. Conversely, uncertainty can complicate matters.

Uncertainties in low-accuracy maps stem from sensor noise, localization errors,

environmental factors, and limitations in algorithms. Additionally, decreased tracking and

mapping accuracy adversely affect control, planning, and overall performance.

7

3.2. Types of Maps

 A map depicts the environment in which the robot operates. There are two standard

models of indoor environments: the metric map and the topological map. A metric or grid-

based map consists of cells, each indicating occupied or empty space. In contrast, the

topological approach represents the environment as a graph, composed of nodes that

denote distinct obstacles, locations, or situations.

 A metric map can be easily generated and maintained in large environments.

Geometric data enables the robot to distinguish similar areas within the environment.

Sensor and odometry data progressively update the robot's position, making it ideal for

dynamic settings. Furthermore, it simplifies computing the shortest path.

 One limitation of the grid-based approach is its planning inefficiency. A higher grid

resolution increases the number of cells that path-planning algorithms must search,

resulting in greater computational costs. Additionally, this method heavily relies on

accurate odometry to ascertain the robot's position.

 One advantage of a topological map is its compact size. The complexity of the

space determines the map's resolution, allowing symbolic planners and problem solvers to

devise plans quickly and represent their work conveniently. Moreover, topological maps

can easily recover from drift and slippage since they do not require an exact geometric

location.

 The main disadvantages of the topological approach compared to the metric map

include difficulties in large-scale environments, challenges in recognizing places, and

issues with computing the shortest path. A topological map determines the robot's position

based on landmarks, making it challenging to differentiate between two similar locations.

If sensor information is unclear, it becomes difficult to construct and maintain a

comprehensive environment.

Image 3.1 Example of metric and topological map

8

3.3. Mapping Algorithms

 A mapping algorithm is a method used by robots to create a representation of their

environment using sensor data. There are various algorithms, each best tailored to a

specific application. The functionality, advantages, and limitations of the most widely used

algorithms will be analyzed and explained.

3.3.1. Occupancy Grid

Occupancy grid mapping is the most popular mapping method. It represents a map of

the environment as an evenly spaced grid of cells, with each cell value indicating the

presence of an obstacle at that location in space. The appropriate set of possible values is

chosen based on the task, the capabilities of the robot’s sensor system, and the specifics of

the environment. Each cell's initial state is set to unknown. When a sensor detects an

obstacle or free space, this information is recorded in the corresponding cell. The map is

completed when all cells have a definitive value.

Occupancy grids can be used for effective map planning because the distance between

the goal and each cell can be easily labeled. To perform path planning, a robot must select

the neighboring cell with the lowest label until it reaches the goal. Another advantage is

that a grid provides a discrete representation, allowing computation to be focused on only a

portion of the grid. Moreover, this algorithm is easy to understand and implement, and its

efficiency does not depend on the size of the environment. By adjusting the map

resolution, computation costs can be controlled.

One disadvantage of occupancy grids is that, due to fixed resolution, objects can only

be mapped if they are within the grid boundary. The more cells the robot successfully

marks, the more memory is consumed, leading to a challenging a priori estimation of the

required memory size. Additionally, since each cell must be marked, occupancy grids can

become memory-intensive in large, high-resolution maps. While occupancy grids can

manage dynamic environments, they require frequent updates, which can incur high

computation costs. Each cell provides only the likelihood of obstacle presence and lacks

semantic data. Another issue is the difficulty in representing complex shapes, as an

occupancy grid cannot have only part of a cell occupied.

3.3.2. Mapping Using Waypoints

 Waypoint refers to a set of predefined coordinates. Waypoints are interconnected,

allowing the robot to navigate toward its goal. While navigating through waypoints, the

robot follows initial instructions regarding the actions to take when reaching a specific

waypoint.

This mapping approach is similar to mapping with landmarks. The distinction is that the

reference point of a waypoint is represented as a coordinate. This method relies more on

GPS and landmarks, whereas waypoints are detected through sensors.

9

3.3.3. Mapping Using Landmarks

 Landmarks are objects found in the environment, such as furniture, signposts, speed

signs, and trees. A special type of landmark called a beacon, can transmit a signal that a

machine can receive. Landmarks serve as reference points for localization. Mapping with

landmarks involves recording their positions relative to each other. A robot needs to follow

a few landmarks to reach its goal. At any point in the environment, the robot must be able

to detect multiple landmarks. Moreover, landmarks should not be too close to the robot, as

localization is calculated by estimating the distance to all landmarks within the sensor's

range.

 Landmarks can be used to determine the robot's position and orientation. This

method generates a map that contains only landmarks, not the entire environment, which

consumes much less memory and computational power than grid-based maps. Mapping

using landmarks is particularly robust in dynamic environments because landmarks are

mostly static and stable points. The finished map is easy for humans to interpret.

 One of the biggest flaws of this approach is that the generated map lacks details

about the environment. Obstacles not identified as landmarks or free space are not

represented. If the environment has only a few distinct features, the algorithm struggles to

detect landmarks, which can lead to significant localization drift.

3.3.4. Simultaneous Localization and Mapping

 Simultaneous localization and mapping, or SLAM for short, attempts to map the

unknown space with the robot while defining its position in that environment. The

resolution of the generated map heavily depends on the precision of robot sensors and the

algorithm that integrates mapping and localization. SLAM can be thought of as a chicken

and egg problem. Mapping an environment requires an estimate of the robot's localization,

while localization needs an estimate of the map.

One of the main advantages of using SLAM for navigation is that it enables the robot

to operate in unknown or changing environments without relying on external localization

systems or predefined maps. The map generated by SLAM is in high definition.

A disadvantage of SLAM is that it requires high computation power and memory.

Moreover, it requires sensors with the ability to accurately measure range. Also, the

implementation process is complicated and requires a deep understanding of probability

theory, statistics, recursion, and system dynamics.

3.3.5. Topological Mapping

 A topological map is a graph made up of nodes and edges. A node signifies a

distinct location or landmark and may include semantic labels or features. An edge

represents a connection between nodes and can convey information about distance,

direction, or the difficulty of traversing the path. If two nodes are connected by an edge, it

indicates that the path between them is traversable and free of obstacles. The nodes do not

represent areas on the map, and the edges do not indicate the distances between nodes. The

primary motivation behind the topological approach is that the environment may include

vital features that lack geometric relevance but are essential for localization.

 Topological maps are memory-efficient as they do not encompass every detail of

the environment, making them suitable for larger areas. Additionally, multiple maps can be

10

combined into a larger one. Path planning is simplified due to the ease of employing graph

traversal algorithms.

 This algorithm's limitation is that it lacks detailed information about the

environment and does not provide accurate metric data. Topological mapping can struggle

in dynamic environments because edges are designed to always be obstacle-free.

3.3.6. Line Segment Based Mapping

 Line segment based mapping is a technique used in robotics and computer vision to

represent an environment by extracting and mapping line segments from sensor data. A

line segment typically represents an object's edge or boundary. Two sequential scans are

selected from the obtained set, and scan matching is performed. Scan matching is the

process of finding the rotation angle and translating it so that at least one angle in one scan

superimposes an equal angle in another scan.

 The advantage of this approach is that odometry is not needed to build the complete

map. Therefore, odometry errors, control mechanisms, or computation do not affect line

segment-based mapping. Line segments are more memory-efficient than grid maps. The

algorithm is not dependent on the time segment, allowing different robots to generate the

map in multiple sessions.

 One of the flaws of this algorithm is that a maximum of two scans can be matched

at any given time. Another limitation is that a curved or irregular surface cannot be

accurately represented due to the nature of a line segment. The scans must be ordered

clockwise or counterclockwise to be suitable for scan-matching, which restricts the robot's

movement while exploring the environment.

3.4. Optimal Mapping Algorithm for Cleaning Robot

 Cleaning robots are primarily utilized in relatively confined indoor settings.

Consequently, employing waypoint mapping algorithms is not advisable. The primary

function of these robots is to navigate the entire environment while performing cleaning

tasks. In the event that the robot becomes immobilized, knowledge of its exact location is

critical. Mapping methodologies based on landmarks and topological mapping are

inadequate in this context, as they lack detailed environmental information. A cleaning

robot must maintain functionality in the presence of both humans and pets. This

necessitates the implementation of algorithms designed for dynamic environments, further

reinforcing the unsuitability of several previously mentioned approaches. Our robot is

equipped with basic sensors capable only of detecting obstacles within proximity. This

limitation excludes the use of the SLAM algorithm and line segment-based mapping

techniques. Only the occupancy grid approach meets all specified criteria. This presents an

optimal use case for a cleaning robot. Upon detecting a soiled area, the robot is capable of

marking it on the map; should the robot halt for any reason, it can be easily located.

Furthermore, it can display the sections of the map it has cleaned and the remaining areas

requiring attention. All of this can be easily labeled on the metric map.

11

4. Fundamentals of Robot Localization

When the map is successfully generated, a new obstacle arises: how to determine

where the robot is located relative to the map environment. The solution to this problem is

called localization. Without localization, the robot cannot make autonomous decisions.

4.1. Pose

 Pose represents the position and orientation of the object. The position is

represented with Euclidean coordinates. Orientation represents the direction the object is

facing, often represented as an angle relative to the reference axis in 2D space, the robot

moves within a single plane. Robot pose is notated as 𝑥.

Image 4.1 An example of a pose

Current pose (𝑥⃗) of the robot can be described as #𝑥𝑦𝜃 &. To update the pose, the

transformed change is added to the previous pose where 𝜑 =	∆𝜃.

𝑥

𝑦

y

x

𝜃

12

+𝑥𝑦𝜃, = 	#
𝑥𝑦𝜃 &	+	#

∆𝑥∆𝑦𝜑 &

4.2. Odometry Based Localization

 Odometry uses sensor data to estimate the robot's pose over time. It enables

computing small relative displacements that are integrated over time to yield the final pose

in space.

 To determine the current pose of the robot, the change from the previous pose

needs to be calculated. The prerequisite for that is data from the encoder sensors.

Oftentimes, there are two sensors placed parallel to the robot's body in the x-direction. The

displacement of the left sensor is ∆𝑥 , and ∆𝑥 is the displacement of the right sensor. The

lateral distance between these two sensors is called track width, notated as 𝐿. This is very

important for determining the angle for turning approximations. This value will need to be

tuned, which means tested repeatedly and then brought to some converging value that is

close to the actual measurement.

 𝜑 = ∆𝑥 − ∆𝑥𝐿

To understand the robot's true displacement, the center of the robot's motion needs to be

calculated. This is calculated by taking an average of two displacements:

 ∆𝑥 = ∆𝑥 + ∆𝑥2

To calculate the rotation of the robot's body, the rotation matrix is used:

𝑅 (𝜃) = #cos 𝜃 − sin 𝜃 0sin 𝜃 cos 𝜃 00 0 1&

Simplified calculation of relative deltas can be achieved by transforming robot's relative

delta via a rotation matrix where the relative pose difference is rotated by the original

heading:

#∆𝑥∆𝑦𝜑 & = 	𝑅 (𝜃) ∗ 	#∆𝑥∆𝑥𝜑 &

This method assumes that the robot follows the straight path between updates. In reality,

the robot can travel around curves, and with this approach, the inaccurate approximation

13

appears. To overcome that, the robot's motion should be modeled as following a circular

arc. The turn radius R is calculated as: 	 𝑅 = ∆𝑥𝜑 		

The updated formula now looks like this:

#∆𝑥∆𝑦𝜑 & = 	𝑅 (𝜃) ∗ 	# 𝑅 ∗ sin𝜑−𝑅 ∗ (1 − cos𝜑)𝜑 &

If there was no rotation (𝜑 = 	0), then the formula can be simplified to:

#∆𝑥∆𝑦𝜑 & = 	 (∆𝑥 ∆𝑥 1ß) ∗ 	#cos 𝜃sin 𝜃𝜑 &

4.3. Localization Problem

 The robot can continuously be localized precisely if perfect sensory data about the

environment is acquired. However, other sensors are often inaccurate and deficient in

certain aspects. Sensors cannot be fully trusted and frequently yield incorrect

measurements. Additionally, real-world conditions that are not typically modeled

contribute to these challenges. The robot may deviate from its intended path for various

reasons, such as collisions, slippery floors, or people picking it up and moving it. These

situations must be addressed effectively to restore the robot’s location, as they can be

difficult or impossible to predict. Furthermore, maps often represent the environment as a

collection of static objects, which poses a problem since the environment may contain

additional barriers. These could be static or dynamic obstacles. Localization techniques

must appropriately tackle these issues. Localization problems are generally very difficult or

impossible to resolve without adequate sensors.

 The robot localization problem can be categorized into position tracking, global

positioning, and the kidnapped robot problem. Position tracking is a scenario in which the

robot's starting position is known, and the aim is to ascertain its location at every moment

in time. To resolve this, the previous position must be recorded. Initially, the starting

position is established. Before the first movement, the initial position is documented, and

the current position is calculated using odometry and sensor data. An internal map is

maintained, and every movement is tracked within it. Global localization refers to the

process of determining the robot's location when there is no information about its starting

position or orientation. This poses a significant challenge if the robot relies solely on a

bumper and light sensor. If the robot has a docking station and its position is indicated on a

14

map, it must employ simple heuristics to navigate to the dock and reset its position. If the

docking station is unavailable, this issue remains unsolvable. The kidnapped robot

problem, particularly for a robot vacuum cleaner, arises when the robot is picked up and

transported to a different location. This dilemma can be resolved similarly to the global

localization problem by utilizing only odometry, light, and bumper sensor data.

15

5. ROS 2 Dundamentals

 The iRobot Roomba Open Interface operates by transmitting and receiving data

packets. However, this functionality alone is insufficient for implementing complex logic.

Therefore, it is imperative to develop a suitable framework to address this limitation.

Fortunately, there exists software specifically engineered for such situations, namely the

Robot Operating System (ROS). ROS comprises a suite of software libraries and tools

designed to facilitate the development of robotic applications. It is characterized as an

open-source, flexible framework that optimizes the process of crafting intricate and robust

robotic behaviors across diverse platforms. Its offerings encompass hardware abstraction,

low-level device control, interprocess message passing, and package management, thereby

simplifying the development and integration of software for robotic applications. There are

two iterations of ROS: ROS 1, which is the earlier and more restricted version, and ROS 2,

which has garnered wider adoption. The emphasis of this discussion will be on ROS 2,

with a detailed examination of its key components to follow subchapters.

5.1. ROS 2 Components

A node is a fundamental executable unit that performs a specific task or

computation. Each node in ROS should be responsible for a single, modular purpose, e.g.,

controlling the wheel motors or publishing the sensor data from a laser range-finder. Each

node can send and receive data from other nodes via topics, services, actions, or

parameters. A full robotic system is comprised of many nodes working in concert. In ROS

2, a single executable (C++ program, Python program, etc.) can contain one or more nodes.

This modular architecture allows developers to build complex robotic applications by

combining multiple nodes, each contributing to the overall system's functionality.

Topics are a vital element of the ROS graph that acts as a bus for nodes to

exchange messages. A topic is a named communication channel used for exchanging data

between nodes in a publish-subscribe model. A node may publish data to any number of

topics and simultaneously have subscriptions to any number of topics. This decoupled

communication mechanism allows for flexible and scalable system design, as nodes do not

need to be aware of each other's existence. Topics are one of the main ways in which data

is moved between nodes and, therefore, between different parts of the system. Services are

based on a call-and-response model. They allow nodes to subscribe to data streams and get

continual updates. Each topic is associated with a specific message type, which defines the

structure and content of the data being transmitted.

Launch files allow you to start up and configure several executables containing ROS 2

nodes simultaneously. A launch file is a configuration file that automates the process of

starting multiple nodes, setting parameters, and configuring the runtime environment for a

robotic application. The launch system in ROS 2 is responsible for helping the user

describe the configuration of their system and then execute it as described. The

configuration of the system includes what programs to run, where to run them, what

arguments to pass them, and ROS-specific conventions, which make it easy to reuse

components throughout the system by giving them each a different configuration. It is also

responsible for monitoring the state of the processes launched and reporting and/or reacting

to changes in the state of those processes. Launch files written in Python, XML, or YAML

can start and stop different nodes as well as trigger and act on various events. The package

16

providing this framework is launch_ros, which uses the non-ROS-specific launch

framework underneath. Running a single launch file with the ros2 launch command will

start up your entire system, all nodes and their configurations at once. Launch files are

essential for streamlining development, testing, and deployment workflows in robotics

applications.

A workspace is a directory containing ROS 2 packages. It serves as the central

environment for creating, modifying, and compiling code, as well as managing

dependencies and resources. Commonly, there is a src subdirectory, which is where the

source code of ROS packages is located. Colcon is used to build source code. It is a

command-line utility designed to simplify the process of compiling, testing, and managing

ROS 2 packages within a workspace. By default, it will create the following directories as

peers of the src directory. The build directory will be where intermediate files are stored.

For each package, a subfolder will be created where build tools, such as CMake, are

invoked. The install directory is where each package will be installed. By default, each

package will be installed into a separate subdirectory. The log directory contains various

logging information about each colon invocation. A package is the fundamental unit of

software organization, containing all the necessary files, code, and resources required to

implement a specific functionality or module. With packages, you can release your ROS 2

work and allow others to build and use it easily. Package creation in ROS 2 uses Ament as

its build system and Colcon as its build tool. A package typically includes source code,

configuration files, dependencies, build system files, documentation, and tests. You can

create a package using either CMake or Python, which are officially supported, though

other build types do exist.

Image 5.1 ROS 2 components

17

5.2. Unified Robot Description Format

Unified Robot Description Format (URDF) is a file format for specifying the geometry

and organization of robots in ROS. It describes a robot's structure, including its links,

joints, and their geometric, inertial, and visual properties. Key components include links,

joints, transforms, sensors, and actuators. Links are fixed parts of the robot. Some

examples are limbs, wheels, or sensors. Links define the mass, inertia, and visual

appearance of each part. On the other hand, joints specify the connections between links,

including the type of joint and its range of motion, axis of rotation, or translation.

Transform is the spatial relationship between links and joints. They enable the calculation

of forward and inverse kinematics. Sensors and Actuators describe the placement and

properties of sensors and actuators within the robot's structure. URDF files are used by

RViz for 3D visualization Gazebo for simulation.

5.3. Tools for Visualization and Simulation

There are two important tools used for robot visualization and simulation. RViz2 is a

powerful 3D visualization tool used in ROS 2 to visualize and debug robotic systems. It

allows users to display and visualize robot data. It can display sensor data, robot geometry,

and movement. Gazebo is a high-fidelity, open-source robotics simulator used to model,

test, and validate robotic systems in realistic virtual environments. It has a physics and

rendering engine. It can display and simulate sensor data to create complex scenarios. With

the help of this tool, there is no need for physical hardware.

18

6. Roomba Driver

 Before initiating the process of constructing the map, a connection between the

robot and the computer should be established. Along with that, software for the navigation

of the robot and the acquisition of sensor data should be developed. This is no trivial task.

The initial phase involves establishing a connection with the robot. Subsequently, it is

necessary to manage the transmission and reception of data packets. Furthermore, it is

essential to determine the specific conditions under which various packets should be

requested. The implementation of odometry is also required to determine the robot's pose.

Additionally, transformations between the robot and the world frame must be executed.

Furthermore, the creation of a URDF document is necessary to effectively display the

robot within a virtual environment. These constitute only a portion of the prerequisites

required before commencing the map-building procedure. Fortunately, all of these

components are already available to us, allowing for their utilization without the concern of

custom implementation.

The create_robot package from AutonomyLab operates as the ROS driver for the

iRobot Create 1 and Create 2 models. Given that the Roomba series 600 is constructed on

the same platform as the Create 2, the drivers are compatible with this series. This package

encapsulates the libcreate C++ library, which conforms to the Open Interface

Specification. The primary features include odometry, drive control, bumper, and light

sensor display. Although this library encompasses a wide array of functionalities, but most

of them are not relevant to this research. Only relevant nodes will be mentioned.

There are two publishers that are required for map building. The first one is published

on the bumper topic. The purpose of this node is to fetch bumper and light sensor data

from the robot and publish. It publishes a custom message, Bumper.msg. This message

contains two boolean values for the left and right bumper sensors. The light sensor is

displayed with six boolean values that are used to tell if an obstacle is detected and six

unsigned integer values that tell how far away the obstacle is. This is aligned with the

Open Interface specification packets. The second publisher is required to determine the

robot's pose. It publishes to the topic odom. With the help of wheel encoders, it calculates

the odometry of the robot.

Concerning subscribers, only one is relevant for this research. There is a node to move

and navigate the robot. The Twist message can be published on the cmd_vel topic, which

will order the robot to move. The subscriber listens to this topic and creates the packet to

move the robot.

19

6.1. Odometry Implementation

 The create_robot library provides odometry calculations out of the box. The robot

used in this project uses protocol version 2. This means that the distance and angle fields

are used to calculate odometry. Roomba has the implementation of distance ∆𝑥 . This

value is found in the packet with ID 19. The same case is for angle 𝜑. Packet with ID 20

represents this value. The result of distance is in millimeters and angle in degrees. Library

libcreate contains file create.cpp which has odometry implementation. Relevant code can

be found in the provided code snippet:

...

// This is a standards compliant way of doing unsigned to signed conversion

uint16_t distanceRaw = GET_DATA(ID_DISTANCE);

int16_t distance;

std::memcpy(&distance, &distanceRaw, sizeof(distance));

deltaDist = distance / 1000.0; // mm -> m

// Angle is processed differently in versions 1 and 2

uint16_t angleRaw = GET_DATA(ID_ANGLE);

std::memcpy(&angleField, &angleRaw, sizeof(angleField));

...

wheelDistDiff = model.getAxleLength() * deltaYaw;

deltaYaw = angleField * (util::PI / 180.0); // D2R

leftWheelDist = deltaDist - (wheelDistDiff / 2.0);

rightWheelDist = deltaDist + (wheelDistDiff / 2.0);

...

if (fabs(wheelDistDiff) < util::EPS) {

 deltaX = deltaDist * cos(pose.yaw);

 deltaY = deltaDist * sin(pose.yaw);

} else {

 float turnRadius = (model.getAxleLength() / 2.0) * (leftWheelDist +

rightWheelDist) / wheelDistDiff;

 deltaX = turnRadius * (sin(pose.yaw + deltaYaw) - sin(pose.yaw));

 deltaY = -turnRadius * (cos(pose.yaw + deltaYaw) - cos(pose.yaw));

}

...

// Update pose

pose.x += deltaX;

pose.y += deltaY;

pose.yaw = util::normalizeAngle(pose.yaw + deltaYaw);

...

Code 6.1 – Program for odometry

20

Some steps in this code snippet differ from formulas in the Odometry chapter. Formula

below is proof that odometry result is identical:

 ∆𝑥 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	[𝑚𝑚] = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒1000 	[𝑚]
 𝜑 = ∆𝑥 − ∆𝑥𝐿 	→ 𝑤ℎ𝑒𝑒𝑙	𝑑𝑖𝑠𝑡. 𝑑𝑖𝑓𝑓. = 	∆𝑥 − ∆𝑥 	= 	𝐿 ∗ 𝜑

N∆𝑥 = ∆𝑥 + ∆𝑥2𝜑 = ∆𝑥 − ∆𝑥𝐿 →∆𝑥 = ∆𝑥 − ∆𝑥 − ∆𝑥2 , ∆𝑥 = ∆𝑥 − ∆𝑥 − ∆𝑥2

 𝑅 = ∆𝑥𝜑 = ∆𝑥 + ∆𝑥2 ÷ ∆𝑥 − ∆𝑥𝐿 = ∆𝑥 + ∆𝑥2 ∗ 𝐿∆𝑥 − ∆𝑥 = 𝐿2 ∗ ∆𝑥 + ∆𝑥∆𝑥 − ∆𝑥 	

Left and right wheel distance are calculated because they are needed in other parts of code,

but the way of calculating turn radius is not clearly explained.

21

7. Exploration Strategy

 The primary focus of this research is the implementation of an exploration strategy.

The concept was developed and refined through multiple phases, each becoming

increasingly complex and efficient.

 The initial phase represents the most basic form of the strategy. The robotic

movement involves two options: proceeding forward or rotating. The distance of the

forward movement is fixed, while the rotation angle is predetermined. The selection

between these two options occurs randomly, and the newly chosen option cannot be

executed until the previously selected option has been completed. Upon completing the

selected option, the robot processes sensor data and records this information on a map.

Subsequently, the process of selecting one of the two options recommences. This iterative

process continues until a comprehensive map of the environment is generated. The

efficiency of generating an algorithm in this manner can be likened to the process of

sorting an array using a bogsort algorithm. While the mapping can be completed in a finite

duration, the speed of creation is influenced by chance due to the method of movement

selection. A challenge arises when the robot attempts to move forward in the presence of

an obstacle; localization will inaccurately assume that the robot has successfully moved the

predetermined distance.

 The second phase of the algorithm involves bifurcating the rotation to the left and

the right, while the rotation angle remains unchanged. Thus, the algorithm now has three

options to choose from. This additional option allows the robot to generate a more precise

map, although this remains contingent upon a random factor.

 In the subsequent phase, sensor data is incorporated to mitigate the localization

issue. The robot now reads and processes data before moving forward. If an obstacle is

detected directly ahead, the robot refrains from advancing and selects one of the three

options. This enhancement improves localization, albeit with a minimal gain in overall

efficiency.

 To further enhance efficiency, algorithms are designed to process data after

selecting any option. If an obstacle is detected solely in the direction of rotation, the robot

will not execute a rotation. Conversely, if obstacles are detected on both sides, the robot

will continue to rotate in the selected direction, thereby preventing movement into an

obstruction.

 The selection process must undergo a significant transformation to refine the

algorithm further. The robot's movement will now be entirely contingent on sensor

readings. The robot will advance until an obstacle is detected in its path. Upon detection,

the robot will rotate in one direction and continue rotating until no obstacle is identified in

front of it.

22

Image 7.1Example of closed loop

This revised approach introduces a new issue; when navigating an environment as depicted

in the illustration above, the robot may enter a perpetual loop, preventing the completion of

the entire mapping process. To circumvent this, an edge-following algorithm will be

employed. The implementation of this algorithm is as follows: when an obstacle is

detected, the robot will rotate 90 degrees in relation to the edge of the obstacle, utilizing

sensor data to guide this action. Thereafter, the robot will move forward. Following each

movement, it will verify whether a 90-degree alignment remains between itself and the

obstacle's edge. If this alignment is not maintained, corrective action will be taken.

When the robot encounters a corner, it will detect an obstacle both in its front and side. In

such circumstances, the robot will rotate in the opposite direction to the obstacle until

achieving a 90-degree angle relative to the obstacle detected in front of it. It will then

proceed to move forward. A further scenario may involve the robot reaching the terminus

of an edge. In this case, the robot must execute several steps to continue following the edge

of the object. Initially, it needs to cover a forward distance equal to its length plus a small

constant.

23

Image 7.2 Example of too narrow space

If an obstacle is encountered ahead of time during this distance, the robot will initiate the

edge-following process. This precaution is warranted because the space is potentially

insufficient for the robot to navigate through. If the robot identifies no obstacle ahead, it

will rotate 90 degrees towards the detected obstacle and subsequently repeat the process of

covering the forward distance.

Image 7.3 Example of narrow passage

If an obstacle is encountered in front of or directly opposite the obstacle, the robot will

rotate until it achieves a 90-degree alignment with the edge of the opposing obstacle and

continue to follow that edge. If this alignment does not occur, the robot will check for

24

detecting the obstacle's edge. If it remains undetected, the robot will move in a zig-zag

pattern until the sensor successfully detects the edge.

Image 7.3 Example of successfully traversed corner

The final algorithm is implemented in the method move_to_empty_space ().

25

7.1. Code Implementation

In this section, there will be code snippets and explanation. First part will be helper classes,

and the second part explains the algorithm implementation.

...

class PositionEnum(Enum):

 LEFT = -1

 NONE = 0

 RIGHT = 1

...

 This enum contains possible positions of the object relative to the robot. It is also

used to determine in which direction the robot should rotate.

...

class CellStatus(Enum):

 UNKNOWN = 0

 EMPTY = 127

 OCCUPIED = 100

...

 This enum contains possible statuses of each cell of the grid.

...

class Position():

 def __init__(self):

 self.position = PositionEnum.NONE

 def is_left(self):

 return self.position == PositionEnum.LEFT

 def is_right(self):

 return self.position == PositionEnum.RIGHT

 def is_none(self):

 return self.position == PositionEnum.NONE

 def set_position(self, value: PositionEnum):

 if not isinstance(value, PositionEnum):

 raise TypeError(

 f"value must be of type 'PositionEnum', not '{type(value).__name__}'")

 self.position = value

 def switch(self):

 if self.position == PositionEnum.NONE:

 return

 if self.position == PositionEnum.LEFT:

 self.position = PositionEnum.RIGHT

26

 elif self.position == PositionEnum.RIGHT:

 self.position = PositionEnum.LEFT

...

 Purpose of the helper class Position is to maintain where the obstacle is located

relative to the robot. It contains three methods is_*() to determine if an obstacle is located

at a different position. The obstacle can be located on only one of three positions at any

time. Method switch() enables moving the obstacle position from one side to another. This

is useful when the robot is located in the corner.

...

class Rotation(Position):

 def __init__(self):

 super().__init__()

 self.rotation = 0

 def increase_counter(self):

 self.rotation += 1

 def reset_counter(self):

 self.rotation = 0

 def get_counter(self):

 return self.rotation

 def set_position(self, value):

 super().set_position(value)

 self.reset_counter()

 def switch(self):

 super().switch(self)

 self.reset_counter()

...

 Class Rotation memorizes in which direction the robot needs to rotate. The robot

can't continuously rotate for a large angle because of security reasons. With the help of

this class, that problem is overcome. It has a private variable that counts how much time

the rotation command was sent to the robot. This is used to reset the robot's status if it gets

stuck in infinite rotation.

...

class CreateMap(Node):

...

Next snippets of code will be part of the main class CreateMap that contains all logic for

exploration strategy.

27

...

 def __init__(self):

 super().__init__('create_map')

 self.map_pub = self.create_publisher(

 OccupancyGrid,

 'map',

 10

)

 self.cmd_vel_publisher = self.create_publisher(

 Twist,

 'cmd_vel',

 10

)

 self.subscription = self.create_subscription(

 Bumper,

 'bumper',

 self.bump_callback,

 10

)

 self.create_subscription(

 Odometry,

 '/odom',

 self.odom_callback,

 10

)

...

 First part of the initialization method consists of creating publishers and

subscribers. First publisher is map_pub. Its purpose is to maintain the occupancy grid map.

Publisher cmd_vel_publisher takes care of commanding the robot's movement. Method

bump_callback() is part of the bumper subscription and method odom_callback() is a part

of the odom subscription.

...

 def __init__(self):

 # Robot pose

 self.robot = Pose()

 self.robot_offset = {

 (0, 0),

 (0, -1),

 (-1, 0),

 (-1, -1)

 }

 # Grid parameters

 self.grid_size = 100

28

 self.resolution = 0.1

 self.grid = [CellStatus.UNKNOWN.value] * \

 (self.grid_size * self.grid_size)

 self.origin = Pose()

 self.origin.position.x = -self.grid_size * self.resolution / 2.0

 self.origin.position.y = -self.grid_size * self.resolution / 2.0

 self.light_offsets = {

 "is_light_left": (0, 1),

 "is_light_front_left": (1, 1),

 "is_light_center_left": (1, 0),

 "is_light_center_right": (1, -1),

 "is_light_front_right": (1, -2),

 "is_light_right": (0, -2),

 }

 self.bumper = Bumper()

 self.obstacle = Position()

 self.rotation = Rotation()

 self.edge_detected = 0

 self.forward_counter = 0

 self.random_number = -1

 timer_period = 0.1

 self.timer = self.create_timer(timer_period, self.check_status)

 self.get_logger().info("Create Map Initialized")

...

 The robot occupies four cells at any time. This is defined with the robot_offset

variable. Occupancy grid is defined as a 100x100 grid with the starting cell's value as

unknown. This is represented as a list with 1000 elements. Starting position of the robot is

in the middle of the map. Light sensors detect an obstacle in one cell in front, the middle,

and the sides of the robot position. This is defined with self.light_offsets. Variable bumper

stores current sensor readings, variables obstacle, rotation, and instances of the Position

and Rotation classes. Variable edge_detected is used as a flag to determine if the robot

encountered the obstacle's edge. Variable forward_counter counts how much the robot

moved forward. Variable random_number is used to break infinite rotation if the robot gets

stuck. Timer_period is used in the timer, which every 0.1 seconds invokes the

check_status() method.

29

...

 def odom_callback(self, msg):

 current_pose = msg.pose.pose

 self.robot.position.x = (current_pose.position.x -

 self.origin.position.x) / self.resolution

 self.robot.position.y = (current_pose.position.y -

 self.origin.position.y) / self.resolution

 self.robot.orientation.z = current_pose.orientation.z

...

Method odom_callback updates robot's current position with odometry results.

...

 def bump_callback(self, msg):

 self.bumper = msg

 self.process_light_sensors(msg)

 self.publish_map()

...

Method bump_callback updates bumper values with sensor data, processes that data, and

updates the map.

...

 def process_light_sensors(self, msg):

 for sensor, offset in self.light_offsets.items():

 if getattr(msg, sensor):

 self.mark_obstacle(offset)

 def mark_obstacle(self, offset):

 self.mark_on_map(offset, CellStatus.OCCUPIED)

...

If any light sensor detects an obstacle, it will mark that spot as occupied.

...

 def mark_on_map(self, offset, cellStatus: CellStatus):

 dx, dy = offset

 position_x = self.robot.position.x + dx

 position_y = self.robot.position.y + dy

 center_x = self.robot.position.x - 0.5

 center_y = self.robot.position.y - 0.5

 if (-0.2 >= self.robot.orientation.z and self.robot.orientation.z >= -0.8):

 temp_x = position_x - center_x

 temp_y = position_y - center_y

 temp_x_2 = -temp_y

 temp_y_2 = temp_x

30

 position_x = temp_x_2 + center_x

 position_y = temp_y_2 + center_y

 if (0.8 >= self.robot.orientation.z and self.robot.orientation.z >= 0.2):

 temp_x = position_x - center_x

 temp_y = position_y - center_y

 temp_x_2 = temp_y

 temp_y_2 = -temp_x

 position_x = temp_x_2 + center_x

 position_y = temp_y_2 + center_y

 if (-0.8 > self.robot.orientation.z or self.robot.orientation.z > 0.2):

 temp_x = position_x - center_x

 temp_y = position_y - center_y

 temp_x_2 = -temp_x

 temp_y_2 = -temp_y

 position_x = temp_x_2 + center_x

 position_y = temp_y_2 + center_y

 index = self.grid_index(position_x, position_y)

 if 0 <= index < len(self.grid) and self.grid[index] != cellStatus.value:

 self.grid[index] = cellStatus.value

...

Method mark_on_map() finds appropriate cells and marks them. Position of the

cell is calculated with the robot's current position and required offset. If the robot's

orientation is 0.5, that means that the robot is rotated for 90 degrees clockwise, and

if the value is -0.5, then the robot is rotated for 90 degrees counter-clockwise.

Value of 1 represents a rotation of 180 degrees. If the rotation value is between 0.2

and 0.8, then it is assumed that the robot is rotated for 90 degrees clockwise. The

value between -0.8 and -0.2 assumes that the robot is rotated for 90 degrees

counter-clockwise. This is not the real rotation, but this assumption makes easier

calculation. Rotation matrix is used to determine the correct cell. The middle of the

robot is used as the center of rotation. The cell is updated if the index is in range

and the new value differs from the old one.

...

 def grid_index(self, x, y):

 return int(y) * self.grid_size + int(x)

...

Method grid_index() transfers 2D coordinates to one-dimensional space.

31

...

 def mark_robot(self):

 for offset in self.robot_offset:

 self.mark_on_map(offset, CellStatus.EMPTY)

...

Method mark_robot() marks robot position in the grid as empty.

...

 def check_status(self):

 self.move_to_empty_space()

 self.publish_map()

...

 Method check_status() implements exploration strategy and publishes updated map.

...

 def publish_map(self):

 map_msg = OccupancyGrid()

 map_msg.header.frame_id = "map"

 map_msg.info.resolution = self.resolution

 map_msg.info.width = self.grid_size

 map_msg.info.height = self.grid_size

 map_msg.info.origin = self.origin

 map_msg.header.stamp = self.get_clock().now().to_msg()

 map_msg.data = self.grid

 self.map_pub.publish(map_msg)

...

Method publish_map() publishes the current grid with timestamp.

...

 def reset_status(self):

 self.get_logger().info("Resetting status")

 self.rotation.set_position(PositionEnum.NONE)

 self.forward_counter = 0

 self.edge_detected = 0

...

Method reset_status() resets all variables relevant for edge detection.

32

...

 def move_to_empty_space(self):

 # rotate for random amount and reset status

 if self.rotation.get_counter() == self.random_number:

 self.reset_status()

 self.obstacle.set_position(PositionEnum.NONE)

 return

 # robot rotated for full circle

 # start reset proccess

 if self.rotation.get_counter() >= 100:

 if self.rotation.get_counter() == 100:

 self.random_number = random.randint(100, 200)

 self.rotation.increase_counter()

 return

 if self.rotation.get_counter() == self.random_number:

 self.reset_status()

 self.obstacle.set_position(PositionEnum.NONE)

 self.move_forward

 return

...

If the robot gets stuck and is not able to move forward after rotating for a full circle, then a

random value that can be approximately between 0 and 360 degrees is chosen. When that

value is reached, the robot's status is reset and it stops following the obstacle edge. It will

start moving forward until it finds new obstacle.

...

 def move_to_empty_space(self):

 ...

 # robot came to end of object edge

 # start the process of moving around the edge in L direction

 if self.edge_detected == 1 and self.rotation.get_counter() > 1:

 # narrow corner, go back

 if self.obstacle.is_right() and self.bumper.is_left_pressed or

self.obstacle.is_left() and self.bumper.is_right_pressed:

 self.obstacle.switch()

 self.reset_status()

 return

 # object edge is detected again

 # exit detection of object edge

 if self.obstacle.is_right() and (self.any_right_lights_pressed()) or

self.obstacle.is_left() and (self.any_left_lights_pressed()):

 self.reset_status()

 return

 if self.obstacle.is_right() and self.bumper.is_right_pressed:

 self.turn_left()

 return

33

 if self.obstacle.is_left() and self.bumper.is_left_pressed:

 self.turn_right()

 return

 # move forward 9 times

 if self.forward_counter < 10:

 self.move_forward()

 self.forward_counter += 1

 return

 # go to next step

 self.rotation.reset_counter()

 self.forward_counter = 0

 self.edge_detected = 2

 return

...

When a robot detects an edge, it needs to take three different steps to move past it. Before

the first step, it rotates into the obstacle direction and tries to find an obstacle with the light

sensor. If that fails, then the first step begins. It moves forward 9 times. If at any point it

encounters an obstacle with its bumper sensor on the same side, it needs to move away

from it before continuing to move forward. If it encounters an obstacle on the opposite

side, then that means that it cannot enter the other side of the edge. It stops following the

current obstacle's edge and starts following the new encountered edge.

...

 def move_to_empty_space(self):

 ...

 if self.edge_detected == 2 and self.rotation.get_counter() > 14:

 # narrow corner, go back

 if self.obstacle.is_right() and self.bumper.is_left_pressed or

self.obstacle.is_left() and self.bumper.is_right_pressed:

 self.obstacle.switch()

 self.reset_status()

 return

 # object edge is detected again

 # exit detection of object edge

 if self.obstacle.is_right() and (self.any_right_lights_pressed() or

self.bumper.is_right_pressed) or self.obstacle.is_left() and

(self.any_left_lights_pressed() or self.bumper.is_left_pressed):

 self.reset_status()

 return

 self.edge_detected = 3

 self.rotation.reset_counter()

 self.forward_counter = 0

 return

...

34

The second step is to rotate 15 times. If it manages to encounter an obstacle from the

opposite side, then the whole process stops and steps from previous step are implemented.

...

 def move_to_empty_space(self):

 ...

 # start moving in zig-zag pattern towards objects edge

 # rotate three two times, then move forward

 if self.edge_detected == 3:

 # narrow corner, go back

 if self.obstacle.is_right() and self.bumper.is_left_pressed or

self.obstacle.is_left() and self.bumper.is_right_pressed:

 self.obstacle.switch()

 self.reset_status()

 return

 # object edge is detected again

 # exit detection of object edge

 if self.obstacle.is_right() and (self.bumper.is_light_right or

self.bumper.is_light_center_right or self.bumper.is_right_pressed) or

self.obstacle.is_left() and (self.bumper.is_light_left or

self.bumper.is_light_center_left or self.bumper.is_left_pressed):

 self.reset_status()

 return

 self.rotation.increase_counter()

 if self.rotation.get_counter() % 3 != 0:

 self.move_forward()

 return

 self.turn_right()

 return

...

Third step is for every three movements forward, the robot needs to rotate itself until it

reaches the obstacle's edge. If it encounters the obstacle on the opposite side, then this

process is stopped and it implements the case from the first two steps.

35

...

def move_to_empty_space(self):

...

 # rotate robot right until obstacle is only on the left side

 if (self.rotation.is_right()):

 if self.obstacle.is_left() and self.only_left_light_pressed() or

self.obstacle.is_right() and self.only_right_light_pressed():

 self.reset_status()

 self.move_forward()

 return

 self.turn_right()

 self.rotation.increase_counter()

 return

 # rotate robot left until obstacle is only on the right side

 if (self.rotation.is_left()):

 if self.obstacle.is_left() and self.only_left_light_pressed() or

self.obstacle.is_right() and self.only_right_light_pressed():

 self.reset_status()

 self.move_forward()

 return

 self.turn_left()

 self.rotation.increase_counter()

 return

...

When the robot has rotation set in one direction, it will rotate in this direction until

only the side light sensor closest to the obstacle is detecting it.

...

def move_to_empty_space(self):

 ...

 if self.bumper.is_left_pressed and self.bumper.is_right_pressed:

 # obstacle is not detect then find where it is and rotate robot until only its

edge sees it

 if self.obstacle.is_none():

 # obstacle on the right

 if self.bumper.is_light_front_right:

 self.get_logger().warn("Obstacle detected on the right")

 self.rotation.set_position(PositionEnum.LEFT)

 self.obstacle.set_position(PositionEnum.RIGHT)

 return

 # obstacle on the left

 if self.bumper.is_light_front_left:

 self.get_logger().warn("Obstacle detected on the left")

 self.rotation.set_position(PositionEnum.RIGHT)

36

 self.obstacle.set_position(PositionEnum.LEFT)

 return

 # obstacle already detected and both bumpers are pressed

 # robot approached the corner of obstacle

 # rotate itself in opposite direction to continue following objects edge

 if self.obstacle.is_left():

 self.get_logger().warn("obstacle already detected and both bumpers are

pressed")

 self.rotation.set_position(PositionEnum.RIGHT)

 return

 if self.obstacle.is_right():

 self.get_logger().warn("obstacle already detected and both bumpers are

pressed")

 self.rotation.set_position(PositionEnum.LEFT)

 return

 self.get_logger().info("Both bumpers are pressed, but obstacle is not

detected")

 exit()

 return

...

When both bumper sensors are pressed, the robot has a couple of choices. If it did not

detect the obstacle until now or it forgot about it, then it checks which side is closest to the

obstacle and sets it to that side. It needs to rotate itself in the opposite direction. If an

obstacle was already detected, that means that it got too close to its edge. It needs to rotate

in the opposite direction to move away from it.

...

def move_to_empty_space(self):

 ...

 if self.bumper.is_right_pressed and self.obstacle.is_none():

 self.get_logger().info("Obstacle detected on the right")

 self.rotation.set_position(PositionEnum.LEFT)

 self.obstacle.set_position(PositionEnum.RIGHT)

 return

 if self.bumper.is_left_pressed and self.obstacle.is_none():

 self.get_logger().info("Obstacle detected on the left")

 self.rotation.set_position(PositionEnum.RIGHT)

 self.obstacle.set_position(PositionEnum.LEFT)

 return

...

If the left or right bumper sensor is pressed and an obstacle was not detected until now,

then it needs to set and the rotation in the opposite directions begins.

37

...

def move_to_empty_space(self):

 ...

 if self.obstacle.is_left() and self.bumper.is_left_pressed:

 self.get_logger().info("Left bumper pressed, rotating right")

 self.turn_right()

 return

 if self.obstacle.is_right() and self.bumper.is_right_pressed:

 self.get_logger().info("Right bumper pressed, rotating left")

 self.turn_left()

 return

...

When one of the bumpers is pressed and the obstacle is already located on that side, robot

needs to move from its edge.

...

def move_to_empty_space(self):

 ...

 # it is possible that robot came to end of the edge

 # rotate to the opposite side up to two times and try to detect object

 if self.obstacle.is_left() and not self.any_left_lights_pressed():

 self.get_logger().info("it is possible that robot came to end of the edge")

 self.rotation.set_position(PositionEnum.LEFT)

 self.edge_detected = 1

 return

 # it is possible that robot came to end of the edge

 # rotate to the opposite side up to two times and try to detect object

 if self.obstacle.is_right() and not self.any_right_lights_pressed():

 self.get_logger().info("it is possible that robot came to end of the edge")

 self.rotation.set_position(PositionEnum.RIGHT)

 self.edge_detected = 1

 return

...

When a robot loses an obstacle, it assumes that it encounters the end of the edge. It starts

the process of edge detection.

...

def move_to_empty_space(self):

 ...

 if self.obstacle.is_left() and self.bumper.is_light_front_left and not

self.bumper.is_light_left:

 self.get_logger().info("Lost left light rotate left")

 self.rotation.set_position(PositionEnum.RIGHT)

 return

38

 if self.obstacle.is_right() and self.bumper.is_light_front_right and not

self.bumper.is_light_right:

 self.get_logger().info("Lost right light rotate right")

 self.rotation.set_position(PositionEnum.LEFT)

 return

def move_to_empty_space(self):

 ...

 # robot left side lost tract of objects edge

 if self.obstacle.is_left() and not self.bumper.is_light_left:

 self.get_logger().info("robot left side lost tract of objects edge")

 self.rotation.set_position(PositionEnum.LEFT)

 return

 # robot right side lost tract of objects edge

 if self.obstacle.is_right() and not self.bumper.is_light_right:

 self.get_logger().info("robot right side lost tract of objects edge")

 self.rotation.set_position(PositionEnum.RIGHT)

 return

...

In this case, the robot starts rotation to try to get back on the track.

...

def move_to_empty_space(self):

 ...

 self.move_forward()

...

By default, the robot should move forward.

...

 def only_left_light_pressed(self):

 return self.bumper.is_light_left and not self.bumper.is_light_front_left and not

self.bumper.is_light_center_left

 def only_right_light_pressed(self):

 return self.bumper.is_light_right and not self.bumper.is_light_front_right and

not self.bumper.is_light_center_right

 def any_left_lights_pressed(self):

 return self.bumper.is_light_left or self.bumper.is_light_front_left or

self.bumper.is_light_center_left

 def any_right_lights_pressed(self):

 return self.bumper.is_light_right or self.bumper.is_light_front_right or

self.bumper.is_light_center_right

...

This are the couple of helper methods.

39

...

 def turn_left(self):

 self.move_robot(z=0.5)

 self.get_logger().info('Rotating left.\n')

 def turn_right(self):

 self.move_robot(z=-0.5)

 self.get_logger().info('Rotating right.\n')

 def move_forward(self):

 self.mark_robot()

 self.move_robot(x=0.1)

 self.get_logger().info('Moving forward.\n')

...

Methods turn_left(), turn_right() and move_forward() use different positioning to move the

robot.

...

 def move_robot(self, x=0.0, z=0.0):

 move_msg = Twist()

 move_msg.linear.x = x

 move_msg.angular.z = z

 self.cmd_vel_publisher.publish(move_msg)

...

Method move_robot() publishes appropriate message to cmd_vel topic.

...

def main(args=None):

 rclpy.init(args=args)

 node = CreateMap()

 rclpy.spin(node)

 rclpy.shutdown()

if __name__ == '__main__':

 main()

...

This is the default startup of ROS2 node.

40

Conclusion

 This study successfully demonstrated the application of theoretical knowledge to

enhance and expand the functionality of older models of robotic vacuum cleaners. By

integrating advanced mapping capabilities, it has become possible to adapt features

typically found in newer, high-end models to older devices. Key improvements include

creating and utilizing environmental maps. It enables functionalities such as detecting and

marking soiled areas, locating the robot in case of interruptions, and displaying cleaned

and remaining sections of the space. These advancements extend the lifespan and utility of

older robotic vacuum cleaners and provide a cost-effective solution for users seeking to

upgrade their devices without purchasing new models. Implementing these features within

the Robot Operating System (ROS) framework underscores the feasibility and

effectiveness of the proposed methodology. By leveraging sensor fusion and optimized

exploration strategies, this research has overcome the inherent limitations of older

hardware, resulting in improved map accuracy and coverage. This work contributes to the

broader field of consumer robotics by bridging the gap between theoretical advancements

and practical applications, paving the way for future innovations in enhancing legacy

robotic systems. Ultimately, this study highlights the potential for integrating modern

robotics principles into older devices, offering a sustainable and efficient approach to

improving their performance and user experience.

41

Literature

[1] Computer Science Department and Robotics Institute, Carnegie Mellon University,

Pittsburgh, Learning metric-topological maps for indoor mobile robot navigation

[2] Huang S., Dissanayake G. Robot Localization: An Introduction

[3] Mahony R., Hamel T., Trumpf J. An homogeneous space geometry for

simultaneous localisation and mapping

[4] Thrun S., Learning metric-topological maps for indoor mobile robot navigation

[5] Balch T., Grid-based Navigation for Mobile Robots

[6] Diginsa Umar M., Shafie N., Review: Issues and Challenges of Simultaneous

Localization and Mapping (SLAM) Technology in Autonomous Robot

42

Summary

Enhancing Robotic Vacuum Cleaner Performance through Improved Map Building

 This thesis aims to enhance the performance of older models of robotic vacuum

cleaners by improving the space mapping procedure despite limited sensor capabilities and

exploration strategies. The work primarily focuses on developing a method for creating

maps of their environment despite limited sensor data. The aim is to design a space

exploration strategy suitable for older robotic vacuum cleaners' computational and sensor

capabilities. The proposed methodology uses sensor fusion to overcome sensor limitations,

resulting in improved map accuracy while maximizing coverage. The implementation of

this approach will be carried out within the Robot Operating System (ROS) environment.

keywords: mapping, localization, robot vacuum cleaner, ROS, mapping algorithms,

odometry, sensors

43

Sažetak

Unaprjeđenje performansi robotskih usisavača putem poboljšane izgradnje karata

 Cilj ovog diplomskog rada je unaprijediti performanse starijih modela robotskih

usisavača poboljšanjem procedure izrade karata prostora uz ograničene senzorske

sposobnosti i strategije istraživanja prostora. Rad se primarno fokusira na razvoj metode

stvaranja karata njihove okoline unatoč ograničenim senzorskim podacima. Cilj je

osmisliti strategiju istraživanja prostora prikladnu za računalne i senzorske mogućnosti

starijih robotskih usisavača. Korištenjem fuzije senzora, predložena metodologija nastoji

prevladati senzorska ograničenja, što rezultira poboljšanom točnošću karata uz

maksimizaciju pokrivenosti. Implementacija ovog pristupa provest će se unutar

okruženja Robot Operating System (ROS), a potom će biti validirana putem simulacija.

ključne riječi: izgradnja karata, lokalizacija, robotski usisavač, ROS, algoritmi izrade

karata, odometrija, senzori

