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1 Introduction

Race trajectory optimization is an essential part of any racing team whether they use an

autonomous system or not. Creativity and innovation enable teams to gain an edge over

opponents, and trajectory optimization has the advantage of being extremely flexible

with a wide number of different approaches that will be discussed.

Nevertheless, a well-optimized trajectory has to undergo a number of vehicle and

track constraints to keep the vehicle within the feasible state space. It is done using the

engine and tire parameters, proportions of the vehicle, iterative sensor, mass and other

constants calculated through simulation.

The goal of this thesis is to develop a trajectory optimization prototype that processes

artificial track inputs from SLAM (Simultaneous Localization and Mapping) and gener-

ates an optimized path and velocity profile for use in the autonomous vehicle’s control

algorithms.

In addition, prototype has a purpose to prove the chosen approach while keeping the

development curve sharp. Latter development heading is to optimize the computational

load and integrate it inside the current autonomous pipeline.

1.1 Formula Student competition

Formula Student competition is an engineering competition where teams present con-

cepts, structural solutions and build one-seater cars in accordance with Formula Stu-

dent rulebook. Competitions have three categories: CV (internal combustion engine),

EV (electric vehicle) and DV (Driverless), which includes autonomous cars regardless of

the type of propulsion.
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Each discipline consists of two types of event categories: static and dynamic. In this

work the focus will be on the dynamic events of DV category that test the vehicle and

autonomous system capabilities, performance, robustness and security. Dynamic events

are listed:

• Acceleration in which the car from a stationary state must travel a distance of 75

meters and thus his goal is to test the time needed for acceleration.

• Skidpad which serves to check the maneuverability, and the track is in the shape

of number eight where it is necessary to make two left and two right circles.

• Autocross which serves to test the effectiveness and computational performance

of autonomous software over two sets of one lap as well as mechanical capabilities

of a car.

• Trackdrive is the the most complex discipline that tests the performance and en-

durance of the autonomous vehicle. It consists of one run with 10 laps. Because of

its complexity it is rewarded with the most points.

Trajectory optimization ensures vehicle will not exceed track limits in any of the

given events and tries to produce the fastest trajectorywhilemaking sure the vehicle con-

straints are met. Besides that, algorithm shall converge and adapt the trajectory when

the track input changes in reasonable time so the vehicle can actually use its benefits

throughout majority of the event.

1.2 Motivation and context

Motorsport is a leading inovator in the automotive industry, frommechanical and control

achievements such as all-wheel drive or active suspension to fuel and battery efficiency

[1]. Recently, autonomous driving competitions such is Formula Student Driverless are

also creating, using and testing newest technologies that are yet to be used in the future

of automotive industry.

Furthermore, the nature of track is simplified to be a series of blue and yellow closed-

loop cones. Yellow cones are right edge of the circuit while blue cones are left edge of the

circuit. Rules and regulations are simple: get as best time as possiblewhile hitting as little
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cones possible. In this simplified environment there is a huge space to test incredibely

complex mapping, sensor fusion, control, perception and other systems and algorithms.

That enables transfer and adoption of new innovations into a real, complex environment

such is traffic on the road.

Thesis is based upon the configuring the team’s EV car - Vulpes to be a prototype ver-

sion of autonomous vehicle. It’s purpose is to be the proof of concept for latter integration

of EV and DV car into one to compete on future competitions.

Currently, optimization is done using the minimum time optimization implementa-

tion [2] which is proven to be computationally inefficient with average execution time

of 15𝑠 for basic Formula Student Driverless track. Although the actual execution time

is low for the direct optimization, vehicle model is on the simpler side. Goal is to find

computationaly less expensive method and using all vehicle and tire parameters avail-

able while sacrificing some performance. Heuristic optimization methods are proposed

as the potential solution.

Figure 1.1: FSB Racing Team’s first EV car adjusted for Driverless category - VulpesD.

1.3 Autonomous system pipeline

The Autonomous system pipeline consists of three major components based of the work

of multiple Driverless Cup winners AMZ Driverless Team [3]:

• Perception Its goal is to perceive cones and estimate their color and position as

well as the associated uncertainties.
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• Motion estimation andMapping Its goal is to map the track, detect the bound-

aries and estimate the physical state of the car.

• Control Its goal is to safely operate the car within the limits of handling while

minimizing lap time. Taking the track boundaries and the state estimates as inputs,

the control actions (steering, throttle and brake) are computed.

Inside the FSB Racing Team, the pipeline is adjusted and divided into more sections.

Parts of pipeline are specific to team’s hardware and optimal approach based on budget,

experience, development time and knowledge:

• Odometry - Fusing multiple sensors such as vehicle encoders, GPS, IMU (Inertial

Measurement Unit) including a magnetometer, accelerometer and gyroscope, to

define vehicle odometry model.

• Perception - Same use case as mentioned above consisting of two perception sen-

sors: LiDAR and stereo camera detecting and extracting landmarks (blue and yel-

low cones) from its measurements.

• Localization andmapping - Integration of odometry outputwith perception out-

put to iteratively update the current vehicle location and the landmarkmap, imple-

mented through FASTSLAM 2.0 [4] algorithm which is based on Extended Kall-

man filter and particle filter.

• Path planning and Trajectory optimization - Finding the central path of the

track based on SLAM track map. After that, optimizing the trajectory while keep-

ing the velocity profile in bounds of vehicle and track constraints.

• Control - Control of throttle, braking and steering to follow given trajectory im-

plemented through MPC (Model Predictive Control) described in following thesis

[5] [6].
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2 Theoretical background

This chapter discusses different approaches to path planning and trajectory optimization

in racing domain. In addition, it will describe mathematical optimizer, track and geom-

etry approaches to formulate the objective function and constraints for minimization

problem. Furthermore, vehicle models are discussed regarding the available data.

2.1 Path planning and trajectory optimization

This section will take a look into most used approaches for optimizing the race trajec-

tory. This is the central point for picking the suitable algorithm for the given problem

construct.

2.1.1 Graph based

Based on generating a search space (directed graph) that satisfies the differential con-

straints of the graph creation. Graph resembles state lattices that are connected based

on a certain heuristic i. e. minimal path and constraints. Constraints could be obstacles

(cones) or vehicle limits. Graph creation is performed offline, taking approximately 4.5

seconds, with a parallelized search requiring around 20 milliseconds. The approach is

best suited for vehicles with limited turning capabilities, such as truck with trailers in

narrow environments. [7]

2.1.2 Sample based

Sample based algorithms revolve around generating randomor heuristic trajectoires that

are then evaluated based on the cost function. Typical implementations would be Ant-

Colony algorithm, Evolutionary algorithms or RRT (Rapidly-exploring Random Trees).

This approach is not suitable when fast computation is required such is the nature of
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Formula Student dynamic events. However, it is proven that small enhancements and

disregard of unfavorable nodes, while dividing the problem for each corner and later

connecting, can improve computation time significantly. [8]

2.1.3 Optimization based

The optimization methods revolve around minimizing or maximizing the cost function

within given parameter bounds. Widely spread solution is MPC (Model Predictive Con-

trol) which integrates optimization with control outputs because of integrated constraint

values of the vehicle within. Besides that, there are solutions such asminimizing the cur-

vature, minimizing the path length, maximizing corner exit velocity or the directmethod

- lap time based optimization. Minimizing curvature andmaximizing the corner exit ve-

locity [9] are approaches that use general meta heuristics that vehicle and track layouts

have - velocity is proportional to square root of a corner radius or corner exit velocity

gives the highest average velocity through following straight. Here are the examples of

some cost functions, firstly for minimizing the lap time:

𝐽 = 𝑡𝑓

and secondly for maximizing the out of the corner velocity:

𝐽 =
√
𝑥̇𝑓 + 𝑦̇𝑓

where 𝑓 denotes the timestamp of interest. In the first denoting the last timestamp of

the track and in the second the timestamp of the each corner exit.

2.1.4 Receding horizons

As defined in the article [10] , the optimal motion planning problem is in general hard

to solve by directly applying optimal control techniques, since the problem in general is

nonconvex due to obstacle-imposed constraints and nonlinear system dynamics. There-

fore, approximate methods are proposed combining the trade-off between time duration

and other measures such as smoothness of a motion. To solve the complexity of global

planning and optimal control of the vehicle, iterative sliding time window is used to fu-

ture trajectory states and optimal control of it reducing the problem space.
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2.2 Path geometry

Firstly, common approach is to use arcs and clothoids where turns are defined as two

concentric circle arcs and clothoids on the start and exit of a corner with straights de-

fined as two parallel lines. On the other hand, spline generation from control points is a

better alternative. Between the two, the approach of spline generation is more suitable

for Formula Student tracks because of arcs and clothoids approach inability to describe

well corners of variable radius that tracks have a plenty of.

2.2.1 Spline generation

The problem formulation begins with the interpolation of track edges. After that, con-

nected interpolated points represent themid path. To escape the sharp edges and discon-

tinuities in curvature, forming cubic splines is proposed. When the cubic spline along

the path is formed, path is discretized to the desired interval. [11]

Formally, discretization interval is inversely proportional to the number of parame-

ters that will be optimized, meaning that denser discretization will producemore precise

trajectory estimation with the cost of higher computing complexity.

Furthermore, convenient way to store the given path is in this form: left and right

track edges -𝐴 and 𝐵 coordinates (𝑥, 𝑦)with 𝛼 value that is in range [0−1]. Parameter 𝛼

represents the ratio where the midpoint lays on the ⃖⃖⃗𝐴𝐵 vector. Next step is optimization

function that will optimize those alpha values bounded by [0 − 1] interval. Now, 𝑤𝑖𝑛 is

the ratio from mid to left part of the circuit and 𝑤𝑜𝑢𝑡 ratio from mid to right part of the

circuit.

9



Figure 2.1: Midline representation with smooth curvature from spline generation. [11]

2.3 Optimization method

Calculating the solution in closed form is computationally infeasible, so some other ap-

proaches are necessary. The choice of the appropriate optimization method depends on

the specific problem and its formulation. Problem formulation starts with the spline

generation method. It generates cubic splines that are third-order functions [12]:

𝑔𝑖(𝑥) = 𝑎𝑖(𝑥 − 𝑥𝑖)
3 + 𝑏𝑖(𝑥 − 𝑥𝑖)

2 + 𝑐𝑖(𝑥 − 𝑥𝑖) + 𝑑𝑖, 𝑖 = 0, 1,… , 𝑛 − 1 (2.1)

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 denote the polynomial coefficients.
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Figure 2.2: Cubic splines with 4 points.

To achieve a smooth interpolationwe impose that g(x) and its first and second deriva-

tives are continuous. The number of unknown parameters is 4𝑛, resulting in need for

twelve conditions. The First 6 equations are gotten from spline continuity condition:

𝑔𝑖(𝑥𝑖) = 𝑦𝑖, 𝑖 = 0, 1,… , 𝑛 − 1 (2.2)

𝑔𝑖(𝑥𝑖+1) = 𝑦𝑖+1, 𝑖 = 0, 1,… , 𝑛 − 1 (2.3)

We are equalizing the polynomial function at each point to be the same as the 𝑦 value

of the point. Four more conditions are retrieved with the assumption that interior points

the first- and second-order derivatives of a spline need to match. Now, the first- and the

second-order derivatives of a spline in the 𝑖 and 𝑖 + 1 function need to match. It ends up

with these two conditions also being met:

𝑔′𝑖 (𝑥𝑖+1) = 𝑔′𝑖+1(𝑥𝑖+1), 𝑖 = 0, 1,… , 𝑛 − 2 (2.4)

𝑔′′𝑖 (𝑥𝑖+1) = 𝑔′′𝑖+1(𝑥𝑖+1), 𝑖 = 0, 1,… , 𝑛 − 2 (2.5)
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This ensures that curvature is continuous - path does not have any sharp edges. Two

more conditions are missing to solve this linear equation problem and they are named

clamped curvature conditions:

𝑔′0(𝑥0) = 𝛼 (2.6)

𝑔′𝑛−1(𝑥𝑛) = 𝛽 (2.7)

These constraints determine that the first and the last value first-order derivatives

should be known beforehand. Values are calculated by iterating this generation process

on all control points of the spline.

From this equation excerpt it is evident that concatenated cubic splines are not pro-

ducing exclusively convex functions throughout its length leading to a conclusion that

standard gradient descent method will probably not lead to a global minimum.

Candidate optimization functions are derivatives of Newton’s method which is based

on approximating the current point of objective function with quadratic one using the

second-order Taylor’s approximation:

𝑔(𝑥) =
1

2
(𝑥 − 𝑞)𝑇𝐴(𝑥 − 𝑞) + (𝑥 − 𝑞)𝑇∇𝑓(𝑞) + 𝑓(𝑞), (2.8)

where 𝐴 stands for Hessian matrix. Hessian matrix is consisted of the second-order

derivatives. Thematrix’s order depends on the input size parameters which, in this case,

are control points directly dependent on the number of landmark pairs (cones). Directly

computing the Hessian matrix in each optimization step is a computationally expen-

sive task. Besides that, Hessian might not be positive semidefinite matrix, meaning the

quadratic approximation might not have a minimum value leading the algorithm to fail.

Firstly, the problem of time-consuming direct calculation of Hessian matrix is solved

by approximating the Hessian matrix. Now, previous equation 2.8 switches to this one:

𝑔(𝑥) =
1

2
(𝑥 − 𝑞)𝑇𝐵(𝑥 − 𝑞) + (𝑥 − 𝑞)𝑇∇𝑓(𝑞) + 𝑓(𝑞), (2.9)

with 𝐵 being the approximation matrix.

12



Secondly, the problem of that matrix not being semidefinite is solved using the BFGS

(Broyden–Fletcher–Goldfarb–Shanno) algorithm [13] where 𝐵 meets three constraints

making it semidefinite. Explanation of those constraints is out of the scope of this thesis.

To conclude, L-BFGS-B version of algorithm will be used to solve the minimization

problem which is just the memory friendly version. It erases old 𝐵 matrices from the

memory that were used many iterations before the current step.

Still, it should be noted that this is a gradient descent method used on a nonconvex

and it might not converge to a global minimum but a local one. This optimization algo-

rithm ensures that in the each step gradients are descending.

2.4 Velocity profiles

After defining the path geometry and optimizationmethods of this problem, velocity pro-

files can be discussed. Velocity profiling is determining maximum speed the vehicle can

have in a path segment. It should be clear that separating the path optimization formula-

tion from velocity profiling an old, time andmemory optimization tool is used under the

hood: "Divide et impera". Giving intuitive cost functions to optimization problem that

are already proven approaches in the real world motorsport solves the huge complexity

problem. Unlike this approach, lap time-based optimization directly uses time as mini-

mization factor which leads to longer computation time because of two interdependent

optimization problems.

In 2008, for the first time is proposed the three-pass process for generating velocity

profiles. [14]

• First pass - Determinemaximumvelocity based solely on corner radius 𝑟, theroret-

ical maximum vehicle velocity 𝑣𝑚𝑎𝑥 and tire friction coefficient 𝜇𝑦.

• Forward integration - Determine the maximum acceleration limits at the given

moment.

• Backward integration - Determine the maximum deceleration limits.

The first-pass velocity output is forwarded to the second and the third filters and the
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final output is derived from this equation:

𝑣𝑜𝑢𝑡 = min(𝑣acclim, 𝑣declim) (2.10)

This method iterates through the starting point of the circuit to the last forming the

loop of connected velocities for each point of discretized interval. Each filter is based on

the vehicle model constraints.

2.5 Vehicle model

Lastly, vehicle model’s purpose is to describe the vehicle’s design and behavior. Models

can vary in complexity. How complex model will be depends on the available vehicle

parameters, vehicle’s state data, desired computing efficiency and problem’s need for

precision.

Roughly, models can be divided based on the DOF (Degree of freedom) position and

number in vehicle dynamics system, thereunto some parameters can be defined at equi-

librium state where the system is at rest. For instance, slip angle of the tire can be an

optimal one derived from simulations. That assumption will be used throughout fric-

tion coefficient data extraction for this vehicle model.

2.5.1 DoF in the CoG

The simplest way to describe the vehicle with as little data as possible is to center the

whole vehicle mass vehicle inside the CoG (Center of gravity). This way slip angle, tire

model, lateral and longitudinal load transfer are neglected. Modeling revolves solely

around vehicle mass 𝑚, longitudinal acceleration 𝑎𝑥, lateral acceleration 𝑎𝑦 and fixed

friction coefficient 𝜇.

2.5.2 Dynamic bicycle model

The bicycle model simplifies vehicle’s axles by combining two wheels into single mid-

point. Steering rotates the front axle of the model giving the steering angle 𝛿. When

steering angle and wheelbase 𝐿 is known the corner radius 𝑅 can be calculated:
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𝑅 = 𝐿∕𝑡𝑎𝑛(𝛿). (2.11)

The slip angle can be obtainedusing simple geometry. The angle between the𝑅 vector

and the vector from the rear axle to the center of rotation provides the same 𝑑𝑒𝑙𝑡𝑎, unless

the distance from the rear axle to the center of gravity 𝑙𝑟 is known. Angle between rear

axle to center of rotation vector and CoG to center of rotation vector is named slip angle

𝛽.

𝑡𝑎𝑛(𝛽) = 𝑙𝑟∕(𝐿∕𝑡𝑎𝑛(𝛿)) (2.12)

With input parameters being longitudinal velocity and steering angle, slip angle can

be obtained using just simple geometry of the simplified model.

Figure 2.3: Bicycle model geometry. [15]

2.5.3 Dynamic two-track model

The dynamic two-track model can most precisely describe the vehicle. It can obtain

vertical forces information, consequently calculating the load transfer with lateral and

longitudinal forces of the each wheel. Combining this model with a good tire model
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produces valid constraint estimate.

The model will be described in more detail in chapter 3.

2.6 Summary

This chapter looked into available solutions in each technical crossroad and arguedwhich

approach should be used to solve the thesis’ problem.

In summary, the problem is formulated around finding the heuristic approach to op-

timize trajectory instead of direct lap-time optimization. There was a quick overview of

common path planners where optimization-basedmethods were the most suitable ones.

After that, spline generation and storage are explained in detail. For the given spline con-

struct, adequate optimization is proposed: BFGS method. In spite of non-convex mini-

mization object function, method is able to find the global minimum. Next, the velocity

profiling is defined as the separate problem from path planning when direct method is

not used which reduces the time complexity significantly. Lastly, the dynamic two-track

model is proposed, which is the best description of the vehicle based on the available

data.
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3 Model formulation and resolu-

tion

This chapter will explain how each each part of the trajectory optimization process is

formulated, implemented and connected. Firstly, it will describe the vehicle model with

its constraints in depth. Next, the connection between vehicle model and velocity profile

will be explained. For the profile to have a basis for concatenation, the exact implemen-

tation of spline generation will be explained. After that, the optimization problem will

be formulated with candidate objective functions. Lastly, the solution to the high time

complexity of optimization will be proposed with offline parameter estimation.

Completemodel is implemented using the Python programming language with some

practical libraries such as numpy and scipy. It is used for quick prototyping and to con-

firm algorithm suitability and correctness. The idea is to later implement the whole

algorithm in C++ language and wrap it with ROS (Robot Operating System).

3.1 Vehicle parameters

Firstly, it is appropriate to list all parameters used in the vehicle model in one place.
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Symbol Description Value

𝑚 Vehicle mass without the driver 206 kg

𝜌 Air density 1.225 kg/m3

𝑔 Gravity constant 9.81 m/s2

𝐼𝑧𝑧 Moment inertia around z-axis 116.0175 kg/m2

𝑡𝑓, 𝑡𝑟 Front track width 1.29 m

𝑡𝑟 Rear track width 1.24 m

𝑤𝐵 Wheelbase 1.53 m

𝑙𝑓 Distance from front axle to center of gravity 0.842 m

𝑙𝑟 Distance from rear axle to center of gravity 0.689 m

ℎ𝑐𝑔 Center of gravity height 0.327 m

𝑟𝑤 Wheel radius 0.2286 m

𝑅 Transmission ratio between engine and wheels 8

𝑥 Friction utilization ratio 0.66

𝜇𝑥𝑟𝑜𝑙𝑙𝑖𝑛𝑔 Rolling friction coefficient 0.01

𝐶𝑑 Aero drag coefficient 1.39

𝐴 Frontal vehicle area 1.285 m2

Table 3.1: Vehicle parameters.

3.2 Vehicle model implementation

The vehicle model used is the dynamic two-track model already mentioned in section

2.5.3. This section will go into detail about how it is implemented.

3.2.1 Friction constraint

The model is based on lateral and longitudinal load transfer, where the vertical force is

estimated at each discretized point of the circuit based on the lateral and longitudinal

acceleration. Knowing the vertical force 𝐹𝑧 of each maximum theoretical longitudinal
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force 𝐹𝑦 can be calculated. To calculate it, the tire model must be included, Pacejka’s

magic formula:

𝐹 = 𝐷 sin [𝐶 arctan ı𝐵𝛼 − 𝐸 (𝐵𝛼 − arctan(𝐵𝛼))#] (3.1)

where B, C, D and E represent fitting constants and 𝐹 is a force or moment resulting

from a slip angle 𝛼. To make vehicle model simpler, there is an assumption made that

the vehicle is always driven on the optimal slip ratio for the given vertical force, giving

the vehicle maximum longitudinal force available from the tire. Given the steady state

condition of slip ratio the vehicle model is put into the equilibrium state for it.

Figure 3.1: Longitudinal force depending on slip ratio. Optimal slip values are maximum and
minimum points of the graph. [16]

Slip ratio is a value without a unit of measure:

𝜎𝑥 =
𝑟eff𝜔𝑤 − 𝑣𝑥

𝑣𝑥
, (3.2)

where 𝑟𝑒𝑓𝑓 denotes the effective radius of a wheel and 𝜔𝑤 its angular velocity. In this

specific case, it represents the measure of longitudinal slip. In lateral case, slip angle can

be derived from this equation:

𝛼 = arctan (𝑣𝑦
𝑣𝑥
) , (3.3)
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which denotes the angle between the orientation of the tire and the orientation of the

velocity vector of the wheel.

The simulations of the tire Hoosier 18” longitudinal and lateral friction coefficients

𝜇𝑥 and 𝜇𝑦) with respect to the vertical force on the tire are estimated with the optimal

slip assumption.

Figure 3.2: Friction coefficients 𝜇𝑦 and 𝜇𝑥 depending on vertical force.

Next, when lateral and longitudinal velocity are available, lateral and longitudinal

force transfer can be calculated:

𝐹𝑧,0 =
𝐹𝑧,𝑠𝑡𝑎𝑡𝑖𝑐
4

−
∆𝐹𝑧,𝑓𝑟𝑜𝑛𝑡_𝑙𝑎𝑡𝑒𝑟𝑎𝑙

2
−
∆𝐹𝑧,𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙

2
(Front left) (3.4)

𝐹𝑧,1 =
𝐹𝑧,𝑠𝑡𝑎𝑡𝑖𝑐
4

+
∆𝐹𝑧,𝑓𝑟𝑜𝑛𝑡_𝑙𝑎𝑡𝑒𝑟𝑎𝑙

2
−
∆𝐹𝑧,𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙

2
(Front right) (3.5)

𝐹𝑧,2 =
𝐹𝑧,𝑠𝑡𝑎𝑡𝑖𝑐
4

−
∆𝐹𝑧,𝑟𝑒𝑎𝑟_𝑙𝑎𝑡𝑒𝑟𝑎𝑙

2
+
∆𝐹𝑧,𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙

2
(Rear left) (3.6)
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𝐹𝑧,3 =
𝐹𝑧,𝑠𝑡𝑎𝑡𝑖𝑐
4

+
∆𝐹𝑧,𝑟𝑒𝑎𝑟_𝑙𝑎𝑡𝑒𝑟𝑎𝑙

2
+
∆𝐹𝑧,𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙

,
2 (Rear right) (3.7)

where lateral and longitudinal change of vertical force is:

∆𝐹𝑧,𝑓𝑟𝑜𝑛𝑡_𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =
𝑚 ⋅ 𝑎𝑦 ⋅ ℎ𝑐𝑔 ⋅ 𝑙𝑟

𝑤𝐵 ⋅ 𝑡𝑓
(3.8)

∆𝐹𝑧,𝑟𝑒𝑎𝑟_𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =
𝑚 ⋅ 𝑎𝑦 ⋅ ℎ𝑐𝑔 ⋅ 𝑙𝑓

𝑤𝐵 ⋅ 𝑡𝑟
(3.9)

∆𝐹𝑧,𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 =
𝑚 ⋅ 𝑎𝑥 ⋅ ℎ𝑐𝑔

𝑤𝐵
. (3.10)

Each tire has its different vertical forces depending on the state of the vehicle. Ver-

tical forces are calculated in each step to determine the maximum traction the vehicle

can produce at that control point. The maximum traction is divided in both lateral and

longitudinal orientation and presented as maximum lateral force and longitudinal force

of the tire (𝐹𝑦,max and 𝐹𝑥,max).

𝐹𝑥,max,𝑖 = 𝑚𝑢𝑥 ⋅ 𝑥 ⋅ 𝐹𝑧𝑖 (3.11)

𝐹𝑦,max,𝑖 = 𝑚𝑢𝑦 ⋅ 𝑥 ⋅ 𝐹𝑧𝑖 (3.12)

where 𝑖 denotes the wheel index and 𝑥 friction utilization ratio which is around
2

3
for

the dry asphalt surface. It is necessary to multiply the friction with the ratio because

simulations are done on the abrasive sandpaper. With that, first constraint is defined,

the tire friction constraint.

3.2.2 Engine constraint

Besides friction constraint, engine configuration and capability need to bemodeled. The

longitudinal acceleration is limited by the engine torque. It can be derived from the

torque curve. It is a graph of engine torque with respect to engine speed.
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Figure 3.3: Engine torque curve.

To calculate maximum power engine can output for the target velocity, firstly, wheel

velocity needs to be calculated:

𝑣𝑤ℎ𝑒𝑒𝑙 =
(𝑣𝑡𝑎𝑟𝑔𝑒𝑡 ⋅ 60)

2 ⋅Π ⋅ 𝑟𝑤ℎ𝑒𝑒𝑙
(3.13)

The measurement unit used is rounds per minute. After that, the wheel velocity is used

to estimate the engine velocity 𝑣𝑒𝑛𝑔𝑖𝑛𝑒 based on the transmission ratio between its speed

and wheel velocity.

𝑣𝑒𝑛𝑔𝑖𝑛𝑒 = 𝑅 ⋅ 𝑣𝑤ℎ𝑒𝑒𝑙 (3.14)

Now, the longitudinal force can be derived without resistances. Corresponding engine

torque is interpolated from the engine torque curve with respect to engine speed which

leads to the equation:

𝐹𝑥,𝑒 =
𝑇𝑒 ⋅ 𝑅

𝑟𝑤ℎ𝑒𝑒𝑙
(3.15)
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Finally, to achieve the closest estimation of the longitudinal force vehicle can transfer to

the ground resistances are included. Air resistance and rolling resistance are the major

ones, besides them there are numerous other that are neglected in this case.

𝐹𝑎𝑒𝑟𝑜 =
1

2
⋅ 𝐶𝑑 ⋅ 𝜌 ⋅ 𝐴 ⋅ 𝑣2𝑡𝑎𝑟𝑔𝑒𝑡 (3.16)

𝑅𝑥 = 𝜇𝑥𝑟𝑜𝑙𝑙𝑖𝑛𝑔 ⋅𝑚 ⋅ 𝑔 (3.17)

Resistances are subtracted from the 3.15 to calculate the final longitudinal force vehicle

can achieve at the given control point.

3.3 Velocity profile

Velocity concatenation to the given path is done using the three-pass filter. To success-

fully use the filter, the theoretical maximum velocity of the vehicle must first be esti-

mated. That velocity will serve as the upper bound for local velocity calculations, which

will be explained in the first pass.

The theoretical maximum velocity is calculated using the engine speed (rpm) at the

maximum torque value from the torque-engine speed curve. Final equations are:

𝑣𝑤 =
𝑣𝑒𝑚𝑎𝑥
𝑅

(3.18)

𝑣𝑥𝑚𝑎𝑥 =
𝑣𝑤 ⋅ 2 ⋅ 𝜋 ⋅ 𝑟𝑤

60
(3.19)

The maximum theoretical longitudinal velocity is then fed into the first-pass filter.

3.3.1 First-pass

First-pass filter focuses on the lateral tire limit based on the curve radius. For each dis-

cretized path segment, there is also a curve’s radius. Assuming that lateral force is equal

to the friction force:

𝐹𝑙𝑎𝑡 = 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 →
𝑚𝑣2

𝑟
= 𝜇𝑦𝑛𝑔 → 𝑣 =

√
𝑟𝜇𝑦𝑔, (3.20)
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local velocity can be derived and it depends solely on the lateral friction coefficient and

radius. To find the adequate 𝜇𝑦 the minimum one is used from the load transfer already

explained in section 3.2.1.

Figure 3.4: Local velocity profile for FSG track.

3.3.2 Forward integration

Forward integration goes through the local velocities and updates the velocities where

there is positive acceleration between the two. Longitudinal acceleration, path’s segment

velocity and corner radius are fed into the engine and traction constraints.

The remaining lateral traction is equal to the:

𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐹𝑦𝑚𝑎𝑥 −
𝑣2𝑥 ⋅𝑚

𝑟
, (3.21)

where𝐹𝑦𝑚𝑎𝑥 is the sum of all lateral forces available from the tires based on the load trans-

fer, local longitudinal acceleration and the corner radius. The remaining longitudinal

traction is similarly calculated as the lateral:

𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐹𝑥𝑚𝑎𝑥 − 𝑎𝑥 ⋅𝑚. (3.22)
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Lastly, the only remaining constraint is the engine limit, which is the maximum 𝐹𝑥 the

vehicle’s engine can produce at the given local velocity, minus the resistance forces.

The minimum of these forces is taken into account to compute the filter’s velocity:

𝑎𝑥 =
𝐹𝑚𝑖𝑛
𝑚

(3.23)

𝑣𝑎𝑐𝑐𝑙𝑖𝑚 = 𝑚𝑖𝑛(𝑣𝑙𝑜𝑐𝑎𝑙,
√
𝑣20 + 2 ⋅ 𝑎𝑥∆𝑠), (3.24)

where 𝑣0 is the velocity from the previous path segment.

3.3.3 Backward integration

The opposite of the forward integration, backward is updating the velocities where there

is negative acceleration between the path’s steps. Here, only longitudinal friction is con-

sidered, as braking depends solely on the longitudinal vehicle dynamics. The maximum

𝐹𝑥 is the sum of all longitudinal forces again depended on the load transfer. That depen-

dence is important because it provides the model with the different friction coefficients

based on vertical forces. The equation is same as above 3.22. The minimum velocity is

taken again:

𝑣𝑑𝑒𝑐𝑙𝑖𝑚 = 𝑚𝑖𝑛(𝑣𝑙𝑜𝑐𝑎𝑙,
√
𝑣20 + 2 ⋅ 𝑎𝑥∆𝑠). (3.25)

The final velocity profile is the minimum value of the output velocities 𝑣𝑎𝑐𝑐𝑙𝑖𝑚 and

𝑣𝑑𝑒𝑐𝑙𝑖𝑚 from forward and backward integration.
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Figure 3.5: Velocity profile with all filters and final velocity.

3.4 Path representation

The spline path geometry used in implementation is described in section 2.2. The left

and right constraints of the circuits are blue and yellow cones. The cones do not have to

come in a pair, it depends on the circuit layout. For instance, if a part of the track is a

hairpin, inner part of the turn will have less cones because of the track layout rule that

cones should be at the minimum five meters apart. To solve this problem, line is created

that connects the one cone to the closest cone of the contrary color.
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Figure 3.6: FSD track layout with midline.

Iterating the process, midline is created at the each center point of that line. The

midline path is now a list of sequential data saved as:

Value Description

Left cone position 𝑥 and 𝑦 local coordinates.

Differences 𝑥 and 𝑦 difference between left and right

cone.

Alpha value Distance ratio from the left cone inside the in-

terval [0 − 1], initial alpha value is 0.5.

Table 3.2: Control point data.

Now, when the 𝛼 value is zero or one, the optimized path could theoretically be di-

rectly on the edge of the track. Constraints to the left and right cone position value have

to be made so the vehicle would not go over the cones. Based on the orientation vector
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from the left cone to the right cone and vice versa left constraint and right constraint is

made. By adding the car’s width and cone’s width in the direction of that orientation

vector and normalized with the vector norm.

𝑥𝑛𝑒𝑤 = 𝑥 +
𝑤𝑐𝑎𝑟 + 𝑤𝑐𝑜𝑛𝑒

2
⋅

⃖⃗𝐿𝑅

‖ ⃖⃗𝐿𝑅‖ (3.26)

𝑦𝑛𝑒𝑤 = 𝑦 +
𝑤𝑐𝑎𝑟 + 𝑤𝑐𝑜𝑛𝑒

2
⋅

⃖⃗𝐿𝑅

‖ ⃖⃗𝐿𝑅‖ (3.27)

These equations give the updated position of the left cone - 𝛼 now starts from that

position.

Figure 3.7: Cone pair and midline with 𝛼 value.

After constraints are made, control points are prepared for spline generation follow-

ing the explanation in section 2.3. During optimization of the 𝛼 values, cubic spline is

generated at each step. After the optimal values are found, connected cubic splines are

discretized every meter in order to calculate the features of each point and to calculate

the maximum potential velocity at that point.

3.5 Objective functions

Lastly, the only remaining part of this implementation are candidate objective functions.

The objective function is prominently used to represent and solve optimization problems.

As mentioned in chapter 1, the objective functions will not be used directly to min-

imize time, but rather will be of a heuristic nature. As is commonly known inside mo-

torsport, the less the driver steers the vehicle, the more speed he will carry throughout

the corner making him spend less time. When this conclusion is applied to the whole
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circuit, the minimum-curvature objective function is an obvious choice. This objective

function ensures the least amount of steering. The global curvature can be described as

follows:

Γ2 =
𝑛𝑠∑
𝑖=1

𝜅𝑖(𝑠)
2 =

𝑛𝑠∑
𝑖=1

𝑥′′𝑖 (𝑠)
2 + 𝑦′′𝑖 (𝑠)

2 (3.28)

where index 𝑖 denotes the discretized track segments of the connected cubic splines.

As it is previously derived in the section 2.3, cubic splines have continuous second deriva-

tion (curvature) which enables the optimization problem to be defined:

Minimise Γ2(𝛼)

Subject to 0 ≤ 𝛼𝑗 ≤ 1 for 𝑗 = 1,… , 𝑛

where 𝑗 denotes the index of the control point.

However, through testing the minimise curvature objective function, in some cases

it is not the optimal way to pass some corners or a sequence of them. The most extreme

case scenario is a hairpin turn.

Figure 3.8: Famous hairpin turn in the Formula 1 Monaco GP.

From this example 3.9, it can be assumed that for the small cost of the higher cur-

vature, less time can be spent on the corner by just "hitting the apex" and significantly

reducing the traveled path.
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Figure 3.9: Hairpin turn example with minimum curvature.

Figure 3.10: Hairpin turn example with the apex hit.

A more optimal approach would be to hit the apex in that corner, which is visible in

the figure 3.10, which leads to a new objective function which is the global minimum

path:

Minimise 𝑆(𝛼) =
𝑛𝑠∑
𝑖=1

𝑠𝑖

Subject to 0 ≤ 𝛼𝑗 ≤ 1 for 𝑗 = 1,… , 𝑛

where index 𝑖 denotes discretized path segments and 𝑗 the control point index.

Finally, to achieve the desired heuristically optimal result, final solutionwill be to use
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the combination of them, as it is proposed in this work [17] to be the suitable approach.

Because of the obvious flaw minimum curvature has and the under-performance of the

minimumpath approach solely has, combining them together solves both function cons.

The parameter 𝜖 determines the ratio between usage ofminimumcurvature andminimal

path. Now, that parameter will be the center of optimization problem and subproblem

will be to determine the 𝛼 values mentioned above. Under the hood, 𝜖 parameter will be

optimized based on lap time. The lap time is calculated using the velocity profile based

on the vehicle model.

Minimise 𝐹(𝜀) = (1 − 𝜀) ⋅ Γ2 + 𝜀 ⋅ 𝑆

Subject to 𝑡(𝑠)

The minimization method implemented within the scipy library -minimize_scalar is

used. It minimizes the scalar value within the given bounds of input parameter.

It seems that again the direct optimizationmethod is being used but it can be avoided.

The solution to it is in the next section 3.6.

3.6 Escaping the direct optimization method

To reduce the computational time required to compute the optimal weight between the

minimum path and minimum curvature, an offline weight calculation is proposed. The

main idea is to find a metric with the best p-value for correlation with the weight 𝜖. The

p-value determineswhether there is ameaningful conclusion that the dataset correlation

coefficient differes from zero, based on the sample observations. It ranges from 0 to 1,

and correlation is consideredmeaningful (not random) if the p-value is less than 0.05. In

other words, if the p-value is less than 0.05 there is a high probability that the calculated

correlation is not random.

The metrics considered include the longest straight, number of turns, sharpest turn

curvature, track length, and percentage of turns in the track, etc. During the testing,

the best one turned out to be the mean curvature through turns metric with the lowest

p-value for a linear regression fitting. Linear regression was used to prevent overfitting,
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as the dataset was not large enough for more complex approaches.

Furthermore, the metric was estimated using the corner detection algorithm [18].

It consists of three inputs: minimum curvature threshold, proximity, and length. First,

midline path points of the spline are tested to determine if their curvature exceeds the

threshold. Then, the corner proximity parameter is applied to detect corners. That pa-

rameter checks if there are in proximitymore curvatures above the threshold andmerges

them. After that, the continuity in curvature has to be longer than the length parameter;

otherwise it is not classified as a corner. Figure 4.6 represents detected corners using:

𝜅𝑚𝑖𝑛 = 0.03,∆𝑠 = 7𝑚, 𝑙 = 5𝑚.

Figure 3.11: Detected corners for FSG track.

Based on the generated mask, the mean curvature through turns can be calculated.

Meanwhile, the compromised optimizationmethod calculates the optimalweight 𝜖. Now,

pairs of mean curvature and optimal weight are stored. Linear fitting is performed using

the sklearn library and its linear module.
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Figure 3.12: Linear regression with r = 0.6020 and p-value = 0.00026732.

This regression gives a candidate function for precomputed weight 𝜖:

𝜖∗ = 0.62026 ⋅ 𝜅̄ − 0.03625 (3.29)

Now, the compromise weight will not be calculated for a specific track;instead, it will

depend solely on the mean curvature through turns.

Lastly, the dataset consists of three types of tracks: drawn tracks, randomly generated

tracks, and tracks directly estimated from the Trackdrive events. The dataset consists of

one FSG track used in most Formula Student simulators, 12 hand-drawn tracks [19], 10

randomly generated [20] and 9 tracks produced by SLAM of StarkStrom Augsburg team

[21]. Hand-drawn tracks are created using the drawing to FSD track layout software,

which creates cone boundaries while making sure the track layout rules are followed.

Randomly generated tracks are made by the python implementation of Formula Student

Team Delft using a bounded Voronoi diagram created from a uniformly sampled set of

points.
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4 Implementation analysis

In the analysis chapter, emphasis will be on the computational time of the objective func-

tions and the lap time. FSD track from simulator will be shown with estimated lap time,

computational time, weight, and trajectory visualization.

4.1 FSG track example

The performance of the each approach on the track will be listed. The lowest lap time

optimization method will serve as the reference point. Its lap time will be labeled as

100%, while other methods will be expressed as a percentage ratio - 𝑡𝑚𝑒𝑡ℎ𝑜𝑑∕𝑡𝑏𝑒𝑠𝑡.

This track will serve as the main example. Each method will have its corresponding

trajectory visualized. Subsequent tracks will serve only for computing the mean compu-

tational time and lap time.

For the record, the direct time-based optimization method (L-BFGS-B) is limited to

15,000 iterations, so the method might not converge within the given number of itera-

tions. Work [11] explains that for extremely nonlinear problems, such as the time-based

optimization, computational complexity increases exponentially.

Method Lap Time Run Time Lap Time vs. Best 𝝐

Min path 27.40 s 0.41 s 141.46% -
Min Γ2 19.43 s 2.49 s 100.31% -
Time based 21.68 s 1242.59 s 111.93% -
Compromise optimal 19.41 s 44.13 s 100.21% 0.037
Compromise offline 19.37 s 2.89 s 100.00% 0.019

Table 4.1: Lap and run times for each method on the FSG track.
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From the processed data, it is evident that the time-based optimization method did

not convergewithin the given iteration limit. Moreover, themethodwas unable to change

𝛼 values from the midline path.

Figure 4.1: Time-based optimization trajectory.

To reduce the long computational time Tufast Racing Team from Munich used the

curvilinear abscissa approach for track description, algorithmic differentiation using the

software framework CasADi, and smoothing the track input data by approximate spline

regression. An alternative approach would be warm-starting the optimization with a

heuristic optimization method. That solution would be fed into the time-based opti-

mization, giving it close to optimal starting point.

Furthermore, from Table 4.1 interesting conclusion can be made. The offline com-

promise method achieves a faster lap time than the so-called ’optimal’ method. The rea-

son lays in the optimization_scalar function from scipy library. The optimal solution got

stuck in the local minima leading to offline method’s weight 𝜖 perform better for the

given track. The function is using Brent’s method to find the local minima which is
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highly influenced on the starting optimization point of the algorithm and can easily end

up in the local minimum.

To solve this, before finding the optimal weight 𝜀∗, grid search is used to shrink the

upper and lower weight’s bounds. The potential global minimum is now in the close

neighborhood of the best performing 𝜀 from grid search. Now, optimization_scalar func-

tion is called with bounds expressed as 𝜖-neighborhood. This function is going to find a

local minimum which is close, or is the actual global minimum while reducing the time

complexity that global minimization method would have.

For visualization purposes, all trajectories will be shown below.

Figure 4.2: Minimum path trajectory.
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Figure 4.3: Minimum curvature trajectory.

Figure 4.4: Compromise with optimal weight.
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Figure 4.5: Compromise with offline estimated weight.

4.2 Output data for MPC

Vehicle control is implemented through MPC (Model Predictive Control). As defined in

[6], the control variables are longitudinal velocity 𝑣, slip angle 𝛽, and yaw rate 𝜔𝑧. In ad-

dition, there are also path variables MPC has to follow: distance from the reference path

𝑛 and difference between vehicle orientation and tangent line of the reference path. Ve-

locity and path segments have already been explained and defined as output variables

but slip angle and yaw rate must also be included as output variables to provide the con-

troller with all necessary execution data.

Yaw rate is calculated using the segment’s curve radius and the estimated longitudi-

nal velocity throughout the entire path. Yaw rate is the same as angular velocity around

the z-axis.

𝜔𝑧 =
𝑣𝑥
𝑟

(4.1)
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Figure 4.6: Absolute yaw rate values.

The slip angle cannot be obtained using the proposed vehicle model because it is

based on the static slip ratio assumption. The optimal slip angle estimated through tire

simulations is 12◦ and this constant will also be included in the output.

The final output consists of 𝑥 and 𝑦 path segment coordinates, maximum longitudi-

nal velocities 𝑣𝑥, yaw rates 𝜔𝑧, and constant slip angles 𝛽.
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5 Results

To present the data concisely and intuitively, the estimated performance of the compro-

mise weight will be shown relative to the optimal weight 𝜖∗ and the minimum curvature

method 𝜖 = 0. Different track datasets will be grouped together to showcase their poten-

tial influence on the optimization.

Track Lap Time vs. 𝜀 = 0 Lap Time vs. 𝜀∗

FSG 100.00% 100.32%

Hand-drawn 98.72% 100.22%

Random 99.91% 100.21%

FSD 98.63% 100.53%

Mean 99.10% 100.31%

Table 5.1: Mean lap times for curvature and optimal compromise method relative to offline com-
promise .

FromTable 5.1 it is clear that by adding a bitweight to theminimumpath, faster times

can be achieved. On average, the lap time for the optimal method is 1.21% lower than for

the minimum curvature method. It would seem that it is not that much of a difference,

but if it is put in the perspective of actual lap times, it is significant. The average lap time

taken for the vehicle to drive through these tracks is 30𝑠. The difference in output ratio

multiplied by 30𝑠 equals 0.363 faster lap times.

Moreover, it can be seen that the biggest difference is in the FSD tracks that are gen-

erated using the collected data from actual competitions. The least difference is in the

randomly generated tracks, which is less than 0.5%. That leads to a conclusion, the main
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(a) Randomly generated track. (b) FSD track.

reason difference is not that significant on the randomly generated tracks is that the cur-

vature is consistent throughout the corner and there are little to no sharp or hairpin turns,

which have been shown to be affected the most by compromise optimization in Section

3.5. That is a direct consequence of the algorithm’s inability to recreate sharp turns and

inconsistent curvatures through corners. To support the conclusion, below are figures of

the one FSD track and the one randomly generated.

In addition, run times of the offline compromise method are on average, similar to

the minimum curvature method. The run time duration is 4s for both methods and

depends solely on the number of optimizable 𝛼 values. Themean run time if the optimal

compromise method is 80s and is disregarded as optimal optimization method for this

particular use case.
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6 Conclusion

6.1 Achievements

The developed trajectory optimization solution successfully accomplished the set goals.

The goals were to find a heuristic approach that would reduce time and computation

complexity while keeping the lap times close to the direct optimization method.

Candidate optimization functions were minimum curvature, minimal path and a

compromise between each. On average, the compromise method yielded the best re-

sults but with a high runtime cost. This led to the offline compromise weight estimation

using the simplest approach - linear regression.

To collect enough Trackdrive track data which is sparse, synthetic track generation

was used with various methods to prevent overfitting.

Finally, the formulated optimization problem was nonlinear and non-convex. It was

decided not to use global optimization methods due to the high computational cost but

instead to settle for nearly optimal results. The optimization method for objective func-

tions was L-BFGS-B, a quasi-Newton method which is suited for nonlinear convex prob-

lems. It is used because of its high convergence, robustness in gradient descent, and good

performance with a large number of parameters.

The choice of the right vehicle model regarding the complexity and available data

has proven to be a key factor in accurately describing the vehicle. In this way, the vehicle

model is closely matched with vehicle’s capabilities in the real-world scenario. Another

reason this is important is the performance of the control algorithm, if the vehicle is

poorly described, output trajectory will either underperform or exceed the capabilities

of a real vehicle. In that case, the control algorithm will struggle to follow the given
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trajectory and may either overshoot or undershoot it.

In conclusion, this solution combines the rather complex vehicle model with simple

heuristic objective functions and optimization methods.

6.2 Future work and improvements

This is only the prototype version written in python for the purpose of fast implementa-

tion and prototype presentation.

This concrete solution can be improved with better midline estimation and denser 𝛼

values of the spline. Currently, the corner’s inner boundaries are connected to the closest

matching opposite boundary which leaves less values than it can be derived.

In the future, trajectory optimization should be rewritten in C++ within the ROS

wrapper. That way, computational time will reduce significantly and make the imple-

mentation competitive.

The currently implemented version expects the correct track boundaries with no du-

plicate, missing cones or incorrect cone color classification. In that case, the algorithm

would not be able to find the midline path and consequently the optimal one. Midline

generation will be replaced with a more robust method because the SLAM map output

does not have the exactly correct boundary map.

Next, the reference yaw rate that is the input for the MPC controller should be up-

dated to receive positive and negative values instead of absolute. That would require to

change how curvature is stored in the memory. Positive derivations would represent the

right rotation and negative the left rotation. Currently, only the absolute Euclidean value

is stored.

The track dataset can be filled with actual recorded track data and additional syn-

thetic data for better weight parameter estimation.

Once the complete autonomous pipeline is set up, the next step would be practical

testing. Then the influences from other autonomous system parts will evaluate the ro-

bustness of the software. An important aspect to observe will be the interaction between
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the trajectory output and the control system’s behaviour.

To extract maximum potential from this trajectory optimization, it should be adapted

to work also on incomplete tracks. Currently, this method can only optimize complete

global trajectory because it needs the spline closure, later it can be easily updated, which

would slightly reduce the lap time of the first lap and have an instant complete optimal

trajectory for the second lap and laps onward.
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Abstract

Optimization of motion trajectories for autonomous racing

vehicles

Marko Jurić

Race trajectory optimization is an essential component for achieving the fastest pos-

sible lap. It is part of thewhole autonomous system pipeline of a Formula Student single-

seater. This work is implementing a heuristic approach to trajectory optimization with

objective functions such as minimal curvature, the shortest path, and the combination

of both. Using this approach, path planning is separated from trajectory optimization,

which significantly reduces the computation time. To further reduce the computation, a

compromise weight between minimal curvature and the shortest path estimation is cal-

culated offline. The dataset for offline weight estimation is based on synthetically gener-

ated tracks. The single-seater mentioned is described with a dynamic two-track vehicle

model using the torque with respect to the engine speed curve, the friction coefficient

with respect to the vertical force in both lateral and longitudinal directions, and basic

vehicle parameters. The generated trajectory compromises some lap time, in regards to

the direct optimization, to reduce time complexity.

Keywords: trajectory optimization; race car; Formula Student; minimum curvature;

heuristics; synthetic data; non-convex optimization; autonomous vehicle
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Sažetak

Optimizacija trajektorije gibanja autonomnog trkaćeg vozila

Marko Jurić

Optimizacija trkaće trajektorije ključan je dio za postizanje najbržeg mogućeg kruga.

Ovaj je rad dio cjevovoda autonomnog sustava Formula Student bolida. Korišten je he-

uristički pristup optimizacije trajektorije gdje su objektivne funkcije minimalna zakriv-

ljenost, najkraći put i njihova kombinacija. Koristeći taj pristup, planiranje putanje odvo-

jeno je od optimizacije trajektorije što uvelike smanjuje vrijeme izvođenja. Kako bi se još

ubrzalo izvođenje, težina koja određuje kompromis između estimacije korištenja mini-

malne zakrivljenosti i najkraćeg puta računa se unaprijed. Skup podataka za unapri-

jedno estimiranje težine temelji se na umjetno generiranim stazama. Već spomenuti

bolid opisan je pomoću dinamičkog dvotračnog modela vozila koristeći graf ovisnosti

okretnog momenta o brzini motora, graf ovisnosti bočnih i uzdužnih koeficijenata tre-

nja o vertikalnim silama i osnovnim parametrima vozila. Generirana trajektorija nešto

je sporija nego ona izravna, ali smanjuje vremensku složenost.

Ključne riječi: optimizacija putanje; trkaći automobil; Formula Student; minimalna

zakrivljenost; heuristika; sintetički podaci; nekonveksna optimizacija; autonomno vo-

zilo
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