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1. Motivation

1.1. Blockchain Technology

Blockchain technology is a novel and unique field that introduces a fundamentally new ap-

proach to openness and decentralization. The possibilities and opportunities offered by this

ecosystem are vast and continually expanding.

To keep pace with technological advancements and prepare for a possible future where

blockchain becomes more widely used and integral to everyday systems, it is essential to

research how blockchain technology can be implemented to improve existing systems. This

involves exploring a variety of innovative ideas.

The core principles of blockchainÐopenness and decentralizationÐnot only inspire new

ideas and possibilities but also demand a shift in traditional system development, requiring

additional technical knowledge and specialized security measures.

1.2. FERcoin System

The FERcoin system will be developed to explore the idea of integrating blockchain technol-

ogy into an academic environment, with the purpose of incentivizing students for academic

development, as well as incentivizing students to take an interest in blockchain technology

and develop ideas that will help the FERcoin system itself to develop and grow.

The initial project scope is to develop a system that rewards and records students’ extra

efforts and achievements, thereby motivating them to acquire new knowledge and skills.

Additionally, it can serve as a foundation for further development and implementations of

blockchain-based innovations.

The first iteration of the project is based on the creation of a cryptocurrency, "FERcoin,"

which would be issued alongside the allocation of a certain amount of tangible value that

the cryptocurrency could be exchanged for. The cryptocurrency itself would not have in-

trinsic value but rather an indirect value derived from its exchangeability for the allocated

tangible assets. The distribution of FERcoin in the project’s initial iteration would be tied to

students’ additional work and achievements in specific courses at FER (Faculty of Electrical
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Engineering and Computing). Once the courses or skills to be incentivized with the FERcoin

system are selected, a predetermined amount of tangible value or goods would be allocated

for distribution to students meeting the established criteria. The FERcoin system would then

generate an appropriate amount of FERcoin, backed by the designated tangible assets and

goods. The distribution of the allocated FERcoin supply would be entrusted to the instructor

of the selected course or skill. The instructor would define the conditions students must meet

to be rewarded with FERcoin and determine the amount of FERcoin assigned to fulfilling

each condition.

The tangible goods to be used in the first real-world test of the FERcoin system will be

coffees in partnership with a selected cafe. For the initial test, a cafe near FER will be chosen,

and an agreement will be made where one FERcoin can be exchanged for one cup of coffee.

This exchangeability establishes the value of FERcoin itself. The coffees will be bought in

advance by the agreement with the cafe, in the same amount as the allocated FERcoin. The

already bought coffees can then be received by the students who have earned FERcoin.

The functionalities and uses of FERcoin can be further expanded in many ways, which

the technological implementation of the project must make simple and practical. The set of

tangible goods and values that FERcoin can be exchanged for can also be broadened. One

example of such an expansion would be an agreement with FER’s script repository (Cro.

"Ferova Skriptarnica"). Upon reaching an agreement, a designated portion of the reposi-

tory’s offerings would be allocated, and an appropriate amount of FERcoin would be created

for exchange with the specified products. It is crucial to select an appropriate exchange rate

between the amount of FERcoin and a given product to ensure that the exchange rates re-

main consistent relative to the actual products for which the FERcoin can be exchanged.

In addition to potential expansions of FERcoin’s functionality, other blockchain capabilities

can also be utilized to enhance the system’s features and applications. These do not neces-

sarily have to involve the use of cryptocurrency but can include other existing mechanisms

provided by blockchain technology, as well as those that may be developed in the future.
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2. Introduction to System Development

and Infrastructure

The first iteration of the system defines the basic division of FERcoin system users and imple-

ments their requirements and functionalities. The emphasis of this iteration is on developing

a system that is secure and easy to expand and upgrade while remaining practical and user-

friendly for participants and users. The system must be easily scalable, with components

designed to be portable and easy to maintain. Additionally, the system’s infrastructure is de-

signed to offload the web application and reduce the number of operations and transactions

the server must handle on the server side. Instead, most blockchain communication occurs

on the client-side, or frontend, following a Fat Client approach. The first iteration consists

of a smart contract on a blockchain network, a web application, and a simple database.

The system must be modular and follow the programming principles that make future

development and maintenance efficient and straightforward. Depending on the success of

the first test in a real-world environment, the system can be scaled further to accommodate

a larger user base, introduce new participants and user types, and expand existing function-

alities. Additionally the system can be migrated to alternative web application frameworks,

databases technologies, or even a different blockchain network for hosting the smart contract.

To support these possibilities, system components should be structured for easy expansion,

modification, reuse, and migration across different technologies and environments.

When using FERcoin, users retrieve information from the blockchain and submit blockchain

transactions signed with their blockchain wallets when interacting with the deployed smart

contract. During an exchange of FERcoin for a tangible good, multiple users participate

through their respective interfaces. For example, the person purchasing a tangible good

submits a blockchain transaction through their interface, while the person delivering the pur-

chased good verifies the blockchain transaction through their own interface. Since the FER-

coin system involves multiple interacting components, one of which is the deployed smart

contract, it is inherently more complex than a traditional system. To ensure practical usabil-

ity, all FERcoin users are provided with interfaces that enable simple and efficient usage of

their functionalities. Additionally, guides are provided to help users navigate their interfaces

3



and the FERcoin system.

The system’s complexity and the number of interacting components increase its potential

attack surface, necessitating stricter security measures than those found in conventional web

applications, such as systems integrating e-banking access. While systems with integrated

e-banking rely on well-established and tested mechanisms, the FERcoin system implements

its own security measures for using blockchain to execute transactions. Security is partic-

ularly significant due to the financial nature of the system. Beyond the usual risks of data

leaks or other vulnerabilities, users manage cryptocurrency with real monetary value. This

financial aspect can serve as additional motivation for attackers, amplifying the potential con-

sequences of a breach. The system’s infrastructure, as well as the definition of user roles and

functionalities, are motivated by ensuring the system’s security in both this and subsequent

iterations.

The system’s web application is implemented to offload the server and reduce the num-

ber of actions and transactions it must process. The set of blockchain interactions performed

server-side is minimal and limited to interactions involving a smaller group of users, only

the professors. The broader group of users, students, as well as cafe workers and administra-

tors, interact with the blockchain by reading from and writing to it via their interface that is

fully implemented on the client-side. The student’s public interface does not require login,

meaning the server is additionally offloaded and only needs to deliver the files needed for the

client side usage of the public interface.
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3. Selection of Blockchain Technology

In conventional systems using web applications integrated with e-banking, usually a specific

set of user data is created and stored for each user. However, FERcoin’s use of blockchain

technology significantly reduces the amount of stored user data. The largest group of FER-

coin system users, students, would typically need to create user accounts under the traditional

approach, with accompanying information stored in a database. Blockchain usage eliminates

this need by storing all information associated with students directly on the blockchain in a

pseudonymous form. Usernames and other details are replaced by blockchain wallet ad-

dresses, which cannot be easily correlated to real-world identities. Transactions that would

normally be stored in a database are recorded on the blockchain network, eliminating the

need for database storage of transactions.

Students use the web application only to access the public students interface which fa-

cilitates interaction with the FERcoin smart contract deployed on the blockchain network.

All data required for using the public interface is the blockchain wallet with its key pair, the

public key (used to derive the blockchain address) and the private key (for signing transac-

tions). Each student stores their blockchain wallet separate from the web application. The

recommended storage solution is MetaMask, a software wallet storage, that is used both for

storing the blockchain wallets and using them by connecting them to the web application

interfaces. Users with sufficient knowledge can review and manage their transactions inde-

pendently by directly communicating and reading from the blockchain, without relying on

the FERcoin web application interface. The student interface is designed to be used with

MetaMask and provides a simple and convenient way to interact with the system without

requiring additional technical expertise.

3.1. Advantages and Challenges of Blockchain Technology

One challenge of adopting blockchain technology is that every transaction or blockchain

data-writing operation has a cost in the native currency of the chosen blockchain network.

Thus, it is crucial to select a blockchain network with low transaction fees. Existing modern

blockchain networks meet this requirement, offering transaction costs where over a hun-
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dred transactions can be covered with the amount of native currency equivalent to one Euro.

Networks with such characteristics are ideal for the FERcoin system.

The advantage of using blockchain technology for executing and storing transactions is

the significant reduction in database storage requirements and backend operations. The web

application server is offloaded, as most interactions are performed between the client side

and the blockchain network.

The FERcoin system’s performance is inherently tied to the blockchain network hosting

its smart contract. While blockchain networks are generally secure and a likelihood of a

security incident like a breach is generally low, external factors can influence their usability.

One such factor is network congestion.

During periods of high congestion, when a large number of transactions are being pro-

cessed simultaneously, transaction fees (gas fees) can increase significantly. Although the

FERcoin system provides reimbursement for transaction costs with a built-in buffer to han-

dle fluctuations, extreme congestion could still result in fees exceeding the reimbursement

amount. In such cases, users would either have to wait until fees decrease or cover the

additional transaction costs themselves. This limitation could temporarily restrict FERcoin

transactions during peak congestion periods.

The FERcoin system allows users to maintain anonymity by keeping their blockchain

addresses private, preventing transactions from being directly linked to their identities. How-

ever, users who wish to disclose their identity could have the option to generate a proof of

ownership for their blockchain address. While this feature is not a primary focus in the initial

implementation of FERcoin, it could become more relevant in future iterations, particularly

with the addition of some functionalities discussed in Chapter 11.

3.2. Error Handling and Future Considerations

A limitation of using blockchain for transaction records is the inability to correct some user

errors, such as sending FERcoin to the wrong address. While this functionality could be

introduced through modifications to the FERcoin smart contract, it may create additional

complications. Future system iterations could address such scenarios, but careful consider-

ation must be given to the implications, responsibilities, and requirements this would place

on system administrators.
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4. Selection of Blockchain Platform

The smart contract will be developed using Solidity, a programming language designed for

smart contract development, introduced as part of the Ethereum project [12].

Solidity is the most widely used language for writing smart contracts, featuring the best

documentation and predefined standards suitable for implementing the functionalities re-

quired in this project. Although originally designed for the Ethereum blockchain, many

other blockchain platforms also support Solidity for the development and execution of smart

contracts.

On Ethereum, after the smart contract is compiled into bytecode, that bytecode is then

stored on the blockchain, which is referred to as deploying the smart contract. Each deployed

smart contract has its respective Application Binary Interface (ABI), which describes the

interface for the interaction with the smart contract. When a transaction wants to interact

with the smart contract, by calling a function, the bytecode stored on the blockchain is run

by the Ethereum Virtual Machine (EVM).

Blockchain platforms that support the deployment and execution of smart contracts using

the Ethereum Virtual Machine are referred to as EVM-compatible platforms. This means that

smart contracts developed in Solidity can generally be deployed and executed across these

platforms, taking into account platform-specific considerations.

The primary requirements for the blockchain platform on which the system’s smart con-

tract will be deployed are as follows:

± It must support smart contracts.

± It must be EVM-compatible.

± It must have low transaction costs.

± It must be a well-known platform with proven stability and security through signifi-

cant usage.

The potential blockchain platforms that meet these requirements include Binance Smart

Chain (BSC), Polygon (Matic), Avalanche (AVAX C-Chain), Fantom, Harmony (ONE),

Cronos (CRO), Arbitrum (ARB), Optimism (OP), EVM-compatible Layer 2 solutions on

Solana (SOL), and others.

Among these platforms, preference is given to those that:

7



± Are not developed as part of a centralized cryptocurrency exchange project.

± Feature a native token.

± Are EVM-compatible by default, rather than through additional functionality.

± Are either Layer 1 or Layer 2 platforms, depending on the project iteration.

4.1. Layer 1 vs. Layer 2 Platforms

Layer 1 platforms independently store, process, and validate transactions, offering high secu-

rity, decentralization, and proven stability through broad adoption. However, they are often

limited by scalability challenges and higher transaction costs. Layer 2 solutions, on the other

hand, provide faster and cheaper transactions with increased scalability, but rely on Layer 1

platforms for key functionalities. In practice, they are not as secure as Layer 1 platforms due

to potential additional vulnerabilities, though this difference is not significant for the needs

of this project. Although Layer 2 platforms have advantages, they may also face risks of

centralization and liquidity fragmentation, though the latter is not a concern for this project.

Given the initial project iteration requirements, a Layer 2 platform is preferred for its

superior scalability, speed, and lower transaction costs. However, in later iterations of the

system, a Layer 1 platform might become a more appropriate choice.

4.2. Chosen Blockchain Platform

The chosen platform for this system is Polygon PoS, which meets all the defined criteria.

Polygon offers extremely low transaction costs and high transaction speeds. While the av-

erage time between two blocks on Ethereum is about twelve seconds, it is only 2 seconds

on Polygon. The average transaction execution time is below one minute, with "fast transac-

tions" taking approximately 15 seconds, still with a considerably low cost.

Polygon features a native token, MATIC, and is a highly reputable blockchain platform

widely used in numerous successful projects. It is a Layer 2 platform that leverages Ethereum

as its Layer 1. Polygon uses a "Proof of Stake" (PoS) mechanism for transaction validation,

unlike most Layer 1 platforms that utilize "Proof of Work" (PoW). This contributes to Poly-

gons lower transaction costs and scalability.
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5. User Roles and System Interactions

The FERcoin system involves multiple user roles, each with specific functionalities and re-

quirements. The system is designed to facilitate seamless user interactions with the system

while maintaining security, scalability, and efficiency. This chapter defines the key user roles

and their interactions with the system.

5.1. Participants

Participants of the system include:

± Students

± Professors

± Cafeteria Staff (Cafe)

± Administrator (Admin)

Each of these users interacts with the system in distinct ways, performing specific actions

in regards to their use case in the FERcoin system. Their respective interfaces are developed

to provide a simple and convenient way of interacting with the system.

5.2. Functionalities

5.2.1. Students

Students interact with the system through a publicly accessible web interface that requires

MetaMask connection for usage and allows them to:

± View the current connected MetaMask account and network

± View the amount of FERcoin that they own.

± View the amount of native currency they own on that blockchain network

± View live network gas price and congestion estimates from blockchain data sources.

± Exchange FERcoin for coffee.
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± Send FERcoin to other students.

± View their transaction history of coffees bought with FERcoin in the last 10 hours.

Students do not need to log into the system to access their interface. The student interface

is publicly available and designed solely to facilitate the management and usage of FERcoin

to all the FERcoin holders. No personal data is stored on the server or within the application,

and all student actions are performed client-side. Additionally, a form must be provided for

selected students who have earned FERcoin through achievements. This form allows them

to anonymously submit their blockchain address to receive their earned FERcoin.

5.2.2. Professors

Professors need to log in to access the professor interface.

Upon login, professors will have the initial page showing all the wallets stored in the

system (wallets are created by the admin) associated with that user. After selecting the wallet,

another interface will be shown with the display of the amount of the FERcoin allowance that

the professor can distribute. On that interface, a form for initiating the action of distribution

of FERcoin to selected addresses is also present. This form consists of:

1. A list of student blockchain addresses.

2. The amount of FERcoin each recipient should receive.

3. The password for the selected wallet to decrypt its private key.

Thus, this interface enables the professors to distribute FERcoin to all the students who

have acquired the same amount of FERcoin in one action. For example, to distribute all the

FERcoin tokens to students who have earned 2 tokens, all of their addresses will be entered in

the form and the amount of FERcoin token sent to each participant is set to 2. The professor

does not need to do the action of distributing FERcoin for each address individually, but

instead, he needs to do the distribution the same number of times as the unique amounts of

FERcoin that have been earned by students. (e.g. some students acquired 1 FERcoin, other

students have acquired 2 FERcoin and the remaining students have acquired 3 FERcoin, in

this case, the professor will need to do only 3 actions of distribution).

To distribute the FERcoin, the professor needs to input the list of addresses that have

earned the same amount of FERcoin, set the amount of FERcoin that each participant in that

group has earned (e.g 2) and enter the password of the selected wallet for decrypting the

private key of the wallet. On the clientside, validation logic is present, which uses regex to

check that all the submitted addresses are valid Ethereum addresses and points the invalid

Ethereum addresses if there are such. The validation logic also checks if the amount of FER-

coin that is being sent is less than or equal to the allowance of FERcoin for the distribution.
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When all the data is validated and present, the professor can initialize the transaction.

After the action of distributing FERcoin is submitted by the professor, backend logic builds

the transactions with all the given addresses and their respective amount of token. Before the

transaction is sent, additional validation and a transaction test run is performed by the logic

to prevent errors such as insufficient balance, invalid addresses, or exceeding the allowance.

If the validation and the test run have passed successfully, the selected wallets’ private key is

decrypted temporarily with the password and used to sign the transaction which is then sent

to the blockchain using the provider in the system. The rest of the process of distribution is

handled by the smart contract logic.

The smart contract logic then does the following:

± Distribute FERcoin to the inputted addresses.

± Add a sufficient amount of native currency to cover future transaction costs of spend-

ing the FERcoin on buying a coffee or sending the FERcoin to another user for each

FERcoin received.

All the logic of processing the transaction and sending it to the blockchain is implemented

on the server side. This ensures that the professor does not need to use MetaMask or other

form of storing the wallet’s key pair associated with his account. Instead the professor only

needs to know the password of his account and the password for decrypting the wallet that

will be used to execute the transaction.

5.2.3. Administrator

The administrator must log in to access the administrator interface. The administrative inter-

faces provide tools for:

± Managing the smart contract deployed on the blockchain network.

± Managing the applications configurations.

± Managing user accounts for the web application, including professor and cafeteria

accounts, as well as other admin accounts.

± Generating and managing system stored blockchain wallets.

± Retrieving, viewing, and analyzing the transactions of the smart contract deployed

on the blockchain.

All of the functionalities associated with managing the deployed smart contract are on the

client side and require a connection with MetaMask to use the blockchain interfaces. It is the

administrator’s responsibility to securely store the key pair of the account that is the owner of

the deployed smart contract. This key pair is needed to access the owner-only functions of the

deployed smart contract. The administrator interfaces for managing the smart contract, are
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only meant to ease the usage of viewing the smart contract state and generating the necessary

transactions, but the administrator can use other tools and means of analyzing the blockchain

data and interacting with the smart contract, independent of the provided interfaces, as the

contracts owner accounts key pair is not stored in the system, but rather the administrator

stores is securely at his own accord, and can use it to manage the contract in whichever way

he finds most practical.

The owner-only function of the smart contract that the administrator has access to are

used for:

± Minting new FERcoin tokens which will be distributed to the students

± Approving the addresses that can distribute the FERcoin token( these are professor’s

wallets, that are generated in the application by the administrator and stored on the

server)

± Increasing or decreasing the allowances of the approved addresses

± Adding new Cafes on the blockchain, if a new Cafe joins the project and has the

option of purchasing a coffee with FERcoin

± Deleting Cafes from the blockchain

± Changing the amount of native currency that will be sent as reimbursement during

the distribution of FERcoin tokens to students

± Withdrawing the native currency from the deployed smart contract balance

± Shutting down the smart contract in the case of master key breach (see chapter Inci-

dent response)

Also, it is administrators responsibility to send the needed amount of native currency to

the deployed smart contracts balance, which will then be used to send reimbursements along

with each distributed FERcoin token, so that the students can cover the gas fees of purchasing

a coffee with the FERcoin or sending the FERcoin to another address.

The administrator also has to send the native currency needed to cover the gas fees of the

distribution of FERcoin tokens to the wallets that handle the distribution. These wallets are

the professor’s wallets, which are usually generated and stored on the server.

The rest of the administrators functionalities, revolving around managing the deployed

application are:

± Creating and deleting professors, cafes and other administrator accounts

± Generating, deleting, decrypting and re-encrypting the system stored wallets

± Managing the configuration of the blockchain connection and display of blockchain

related data on the interfaces, as well as blockchain providers API keys used for

blockchain data reading and sending signed transactions from the backend
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5.2.4. Cafeteria Staff

Cafeteria staff require a login form to access the cafeteria interface. The cafeteria interface

allows for viewing the coffee purchase transactions made with FERcoin. The interface shows

only the transactions completed in the last hour. Each transaction has a timestamp and a

unique bill identification (Cro. JIR - Jedinstveni identifikator računa) Cafeteria staff do not

perform any blockchain transactions; they only review completed transactions.

5.3. Permissions & Access Levels

Each user role has different authentication requirements, data access privileges, and blockchain

interaction capabilities, as shown in the Table 5.1 below.

Table 5.1: Access control matrix

Role Authentication Data Access Blockchain Write

Student None Ephemeral Client-side

Professor Credentials Institutional Server-side

Admin Credentials Full system Client-side

Cafeteria Credentials Read-only None

Data access explanation:

± Ephemeral Data Access: Student interactions are client-side only, and no data is

stored on the server.

± Institutional Data Access: Professor interacts only with relevant part of the backend

logic for distributing the FERcoin and do not have access to the rest of the system.

± Full System Access: Administrators manage the entire system and use the interfaces

for managing the smart contract if they have the smart contract owners accounts key

pair.

5.3.1. Each user’s security considerations

± Students: The only part of the system that the students can access is the public

interface for FERcoin holders. Since all the operations of this interface are client-

side, the students do not have any interaction with the backend logic, rather the server

only sends the .HTML file together with the client-side JavaScript, and the rest of the

student’s actions are done on the client-side, with no connection to backend. The

students store their wallet key pair used for holding and using FERcoin on their own

accord, independent of the FERcoin application. The recommended way of storing
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the wallet’s key pair and using it for the FERcoin functionalities is by using the

MetaMask, but they can store their wallet’s key pair differently and communicate

with the deployed FERcoin smart contract without using the FERcoin applications’

student’s interface.

± Professors: Each professor’s account has one or more associated wallets with it,

that are stored in the system and their private keys are encrypted. Private keys are

decrypted only temporarily on the server side for transaction signing and are never

stored in plaintext on the server. Professors do not even have access to the private key

in the encrypted form, upon which the malicious actor with the professor’s access

could try to brute force.

If the malicious attacker were to compromise the professor’s account, he first has to

compromise the account’s password. After that, he can view all the wallets associ-

ated with that account. Since the professor never has access to any wallet’s private

key in either encrypted or decrypted form, the wallets can only be used by entering

the correct password for decryption of the wallet’s private key on the server side.

This is another password that has to be compromised as well. If the malicious actor

had compromised both the account password and the password of all the associated

wallets, then the wallets can be used to send FERcoin to an arbitrary address only if

the administrator has already approved the wallet and given it an allowance of dis-

tributing the set amount of FERcoin and if that FERcoin is at that moment minted

and present in the balance of the master wallet.

± Cafeteria Staff: The Cafeteria Staff has an interface that is protected behind a log-

in, that only displays the otherwise public data of the blockchain transaction, in a

simplified format to ease the reading of the necessary transactions. All of their logic

is on the client side. The only sensitive data that the Cafeteria Staff interface has

access to is the URL used as a provider for fetching the data from blockchain. This

URL often contains an API key, except if some public provider is used instead. If

the malicious actor compromised the cafe interface and had access to the API key, he

could only use it to spend the limit of the available data traffic on that endpoint.

± Administrator: The administrator securely stores the key pair of the account that

owns the deployed FERcoin smart contract, ensuring it is independent of and never

stored within the FERcoin web application. This key pair is typically the same one

used for deploying the FERcoin smart contract, though ownership can be transferred

using the same credentials. The deployment of the FERcoin smart contract is a sepa-

rate process from the deployment of the web application and takes place beforehand.

This key pair will be referred to as the "master wallet" or "master key pair" throughout

14



this section.

The administrator has full access to system functionalities, including creating and

deleting users, generating, decrypting, re-encrypting, and deleting system-stored wal-

lets, modifying blockchain configurations, and managing the deployed smart contract

through its interface. However, despite having access to system-stored wallets and

professors’ wallets, the administrator cannot retrieve their private keys without the

decryption password. Additionally, all smart contract management interfaces require

a connection to the master wallet, which is never stored within the system. It remains

the administrator’s responsibility to keep it secure. Without this key pair, the inter-

faces become unusable, as no blockchain interaction initiated through them can be

signed.

This design ensures that even if an attacker gains access to the administrator’s ac-

count, they cannot control the deployed smart contract’s owner-only functions. Sim-

ilarly, the professor’s wallets stored on the system cannot be used without knowing

their respective decryption passwords. The administrator cannot access private keys

in their encrypted state, preventing any attempt to brute-force decryption. Even if

brute-forcing were attempted, the time required would be proportional to the pass-

word’s strength. If an incident is detected, the administrator can follow the incident

response protocol described in Chapter 10 to revoke the wallet’s allowance on the

blockchain using the master key, rendering the decrypted private key useless.

A decrypted private key from one of the system-stored wallets can only be misused

if the administrator has previously approved that wallet for transactions using their

key pair. In that case, any FERcoin allocated to the wallet and already minted in the

master wallet’s balance can be used. However, the administrator can mitigate this risk

by generating a new blockchain transaction with the master key to revoke all system-

stored wallet approvals as soon as an attack is detected, effectively neutralizing their

ability to perform transactions, as outlined in Chapter 10.
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6. Selection of Technologies for the

Implementation of the First System

Iteration

For the development of the web system, technologies were selected to ensure flexibility and

simplicity for future developments of the project. These technologies are designed to keep

the system scalable, portable, and maintainable.

6.1. Initial Considerations

The initial frameworks considered for web application development included:

± Node.js,

± Django,

± Flask,

Since both Python and JavaScript offer robust blockchain libraries (web3.py and web3.js),

frameworks in these languages were prioritized for better integration.

6.2. Python as the Backend Choice

Between Python and JavaScript for the server-side application, Python was chosen for its ex-

tensive libraries, flexibility, and suitability for developing additional functionalities. Python’s

broader scope and availability of well-documented libraries make it less restrictive for vari-

ous extensions and integrations with other systems.

6.3. Framework Choice: Django vs. Flask

The final choice was between two popular Python web application frameworks, Django and

Flask. Flask is simpler, more flexible, and better suited for smaller projects but lacks built-in
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solutions and security features that Django provides out of the box. Using Flask increases

the risk of errors, as developers need to manually implement essential features like CSRF

protection, which is included by default in Django. Django, on the other hand, is more

complex and imposes predefined decisions about system components. However, Flask was

chosen for its flexibility and openness, aligning with the system’s design principles for simple

expansions and potential technology changes. Moreover, implementing features in Flask,

which are present by default in Django, highlights their importance to future developers.

6.4. Frontend Technologies

Some frontend interfaces require more complex client-side functionalities, which are im-

plemented using JavaScript. To facilitate development and improve maintainability, the

Vue.js framework is used. Vue.js is integrated as a static script file for each interface,

providing better structure and organization to the JavaScript code while simplifying the de-

velopment process. Unlike the usual Vue.js approach, which is used for single-page applica-

tions and involves other components like Vue Router, Webpack, or Vite, this system uses Vue

only as a lightweight enhancement for specific interfaces. This approach ensures that each

interface remains modular, maintainable, and independent without introducing unnecessary

dependencies.

The more complex interfaces have all of their respective JavaScript code structured using

Vue.js as a static script file, each interface having its own Vue script file. The Vue framework

is not used in a traditional approach, for building single page applications and using Vue

router or Webpack or Vite or other dependencies, but rather as a static script for one interface

to ease code development and structuring of the code.

6.5. Blockchain Libraries

Blockchain libraries are used for implementing blockchain related functionalities. They sim-

plify complex processes like connecting to a blockchain node, querying data, signing trans-

actions, and deploying or interacting with smart contracts.

Used Blockchain Libraries:

± Client-Side (Frontend): The library used to implement the functionalities for com-

munication and interaction with the blockchain on the client side is web3.js. This

library is widely used, well-documented, and provides all the necessary features for

implementing user interactions with the system. It is particularly suitable for exe-

cution on the client side (frontend) as it is written in the JavaScript programming

language, which is straightforward to use and execute in web browsers.
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± Server-Side (Backend): The library used to implement the functionalities for com-

munication and interaction with the blockchain on the server side is web3.py. This

library is also well-documented, widely used, and compatible with the Python pro-

gramming language, which implements the server side of the web application. The

library used for handling server side generation, management and storage of wallets

is Python library eth_account.

6.6. Database Technology

The system is designed to minimize backend load by shifting most user functionalities and

data storage to the client-side (frontend) and the blockchain. This leverages the selected

technologies and simplifies web hosting. Given the simplicity of the system’s database needs

and the non-taxing nature of SQLite for storage and execution, it was selected. SQLite is

lightweight, does not require a dedicated database server, and is highly compatible with

Python, which further supports its use.

6.7. Containerization

Docker is used to containerize and isolate the application during runtime, enhancing:

± Security,

± Portability,

± Ease of deployment.

Docker ensures consistent performance across different environments, simplifies scaling,

and eliminates compatibility issues caused by software version mismatches.
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7. Development of the Smart Contract

7.1. Smart Contract Design

The FERcoin smart contract is designed to reliably, efficiently, and securely manage FER-

coin token usage, capabilities, and administration.

The smart contract is developed using the Solidity programming language.

The ERC20 (Ethereum Request for Comments) Ethereum standard [18] is used for the

core FERcoin token logic. This standard defines the logic for fungible tokens, their creation,

transferring and some aspects of their usage. Fungibility in this context means that each

token is completely equal to other tokens, all tokens have the same functionality, and they

are interchangeable.

ERC20 implementation is sourced from OpenZeppelin [15], a widely-used library for se-

cure smart contract development. Along with ERC20, additional libraries used from Open-

Zeppelin are:

± Ownable.sol ± Implements access control, contracts owner definition and allowing

only the contract owner to perform certain actions.

± Pausable.sol ± Used to implement the shut down function which the contract owner

can use in case of certain security breaches.

7.2. Users and Contract Functions

All the functions of the smart contract belong to one of the three groups by access:

± Public functions

± Owner only functions

± Approved addresses functions

Each of these groups is relevant to one of the defined FERcoin users.

The contract security and access control is described in the chapter 9.2.
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7.2.1. Public functions

The public functions are the publicly accessible functions for managing FERcoin tokens

by FERcoin token holders. These are the functions relevant to the students, which are the

intended token holders.

The available functions are buyCoffee, used for purchasing a coffee with a FERcoin

token and transfer function used for transferring a FERcoin token to another address.

7.2.2. Owner-Only Functions

The FERcoin smart contract has an owner, defined as a blockchain address that did the initial

deployment of the contract. Ownership can be transferred to another address if needed. The

FERcoin administrator is responsible for securely storing the contract owner’s key pair.

The FERcoin administrator will manage the FERcoin smart contract using the owner key

pair to access owner-only functionalities.

The owner-only functions for administrator management of the contract are used for:

± FERcoin token creation

± Approving addresses and defining setting allowances

± Managing native currency of the contract

± Creating and removing available cafes

± Setting the native currency reimbursement amounts

± Shutting down the deployed smart contract if necessary.

± Transferring ownership of the contract

7.2.3. Approved addresses functions

The contract owner can approve addresses and define their FERcoin allowances for using the

functions available only for the approved addresses. These functions are transferFrom

and batchTransferFrom, which are used for FERcoin distribution. The approved ad-

dresses are the addresses of the professors’ wallets since the professors handle the FERcoin

distribution. These wallets are usually stored on the FERcoin application server. The contract

owner defines the FERcoin allowance, which is the number of tokens that can be distributed

by a certain professor to the students who have earned the FERcoin.
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7.3. Token flow

When FERcoin is designated for use in a specific course and the required resource allocation

is determined, accompanying FERcoin tokens are created by the contract owner. These

tokens remain in the owner’s balance until they are distributed to the students. The contract

owner approves the professor’s wallet and sets an allowance, defining how many FERcoin

tokens can be distributed to eligible students. When the blockchain addresses of the students

who have earned the FERcoin are collected, the professor distributes the FERcoin tokens

from allowance to the student’s addresses. Each student receives FERcoin tokens along with

a native currency reimbursement to cover gas fees for the transaction of purchasing a coffee

or transferring tokens. When a student purchases a coffee with a FERcoin token, that token

is burned then, it can no longer be used for any action afterward. The described token flow

is shown in Figure 7.1 below.

Figure 7.1: FERcoin Token Flow

7.4. Reimbursements

Every blockchain transaction incurs gas fees, paid in native currency to miners so that the

miners would include the transaction in the new block which will be added to the blockchain.
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After the transaction is added to the blockchain it is considered successfully executed. To

cover the expenses and ease the usage of FERcoin tokens for students, native currency is

distributed alongside earned FERcoin tokens to cover transaction fees of using earned tokens.

Native currency used for reimbursements is held by the smart contract. The contract owner

funds the smart contract’s native currency balance and configures the parameters that are

used to calculate the amount of native currency that is used as a reimbursement for using the

FERcoin tokens.

The configuration of the reimbursement parameters depends on the blockchain network

that hosts the FERcoin smart contract and the gas price of that network during a longer recent

time period, which can be a three-month period. These parameters change as the gas price

of the network changes to adapt to the changes and remain optimal.

The amount of native currency used as a reimbursement needs to be balanced between

two requirements:

± Adequate redundancy of native currency for resistance against the fluctuations in

network gas price

± Reducing the amount of native currency given out as reimbursements, to cut the costs

and spending of the system

The goal is to use the minimum amount of native currency while ensuring that transaction

costs are covered by reimbursement, except during severe congestion.

7.4.1. Gas Price

The gas price is the amount of native currency paid per one gas unit. The network gas

price is determined from the gas price of the transactions that were successfully added to

the blockchain. The gas price is usually calculated in Gwei, which is one billionth of one

Ether. Ether here does not mean Ethereum token, as in the native currency of the Ethereum

network, but rather as a unit, meaning one whole token. This means that the network’s gas

price is usually calculated in billionths of the blockchain network’s native currency token.

The gas price of any blockchain network fluctuates over time and is determined by the

miners and network users. The goal of the miners is to earn as much as possible for mining

a block, so they are incentivized to include the transactions that offer to pay the most native

currency per gas unit for inclusion in the limited number of block’s transaction slots. Since

the pending transaction pool is usually larger than the number of transactions that can fit in

a single block, the transaction with the highest offered native currency per gas unit from the

pool will be chosen to be included in the mined block.

For a transaction to be successfully included in a new block by a miner, its offered gas

price must be competitive with other pending transactions in the transaction pool. If the
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transaction does not offer an adequate reward, it will remain in the pending transaction pool

for a longer time period, until all other transactions with higher offered rewards are mined,

or if it is low enough it may never be mined.

The network gas price is defined as the amount of native currency offered per one gas

unit, which would result in the transaction being included in a new mined block within a

reasonable timeframe. The offered reward can be higher, to increase the transaction priority

and secure a sooner inclusion of the transaction in a block, or lower if including the trans-

action in the new block as soon as possible is not as important. Transactions are typically

confirmed within minutes, though this can be longer during high network congestion.

To predict the future gas price of the blockchain platform hosting the FERcoin smart

contract, the gas price during the recent timeframe period needs to be analyzed.

The blockchain network hosting the deployed FERcoin smart contract in the first iteration

is the Polygon network with the MATIC native token.

The chosen reimbursement parameters that define the amount of MATIC token given,

which is meant to redundantly cover the transaction costs of using FERcoin tokens is two

hundred Gwei. This parameter ensures that the students will be able to use the reimbursement

to cover the transaction fee cost of using FERcoin tokens always, except during the most

significant network congestion periods.

The figure 7.2 below demonstrates the resistance of using two hundred Gwei per gas unit

as reimbursement against the network gas fee fluctuations.

Figure 7.2: Polygon Gas Price Fluctuation

The graph shows gas price fluctuations over one month period of January 2025. The

Y-axis represents gas price in Gwei, while the X-axis represents time. The red line at two

hundred Gwei per gas represents the reimbursement threshold. Periods below the red line

show when the reimbursement would fully cover transaction fees, while periods above the

line are the periods of the significant network congestion, during which the reimbursement

could not successfully cover the necessary cost of executing the transaction at that moment.
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7.4.2. Gas Fee

Transaction gas fee is calculated by multiplying the number of gas units used in the transac-

tion with the gas price of one gas unit:

Gas Fee = Gas Units × Gas Price (7.1)

Each executed transaction uses a specific number of gas units determined by the trans-

action logic. Each transaction’s logic consists of opcodes run inside the Ethereum Virtual

Machine (EVM). Each opcode has a predefined number of gas units depending on the com-

plexity of the operation. The more opcodes a transaction uses, and the more complex they

are, the bigger will the number of used gas units be. Bigger and more complex transactions

require more gas units. Each gas unit must be paid to miners for executing the transaction.

Thus, the gas fee of the transaction depends on the transaction complexity and the network

gas price at that time.

When a transaction interacts with a smart contract, the number of gas units depends on

the complexity of the executed function. More complex functions consume more gas.

To minimize gas costs, the FERcoin smart contract optimizes frequently used and com-

putationally intensive functions to reduce the number of gas units used.

The optimization of the most complex smart contract function batchTransferFrom

is discussed in the section 7.5.3.

The student’s reimbursement per FERcoin token is calculated with the number of gas

units required to complete a coffee purchase using the buyCoffee function.

Testing the buyCoffee function execution determined that, with an added redundancy

factor, the reimbursement for this function can be calculated with 45,000 gas units.

Together with the chosen native currency per gas for reimbursement which is 200 Gwei,

the reimbursement is determined as:

Reimbursement = 45000 Gas Units × 200 Gwei per Gas Unit × 1 MATIC (7.2)

Since MATIC is the native currency of the Polygon network on which the FERcoin smart

contract is deployed, reimbursement is:

Reimbursement = 9, 000, 000 MATIC Gwei = 0.009 MATIC (7.3)

With the average MATIC price during the year 2024 of 0.61 Euro, the Reimbursement

cost given for each FERcoin token in Euros is calculated as:

0.009 MATIC × 0.61 EUR per MATIC = 0.00549 EUR ≈ half a Eurocent (7.4)
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This means that one Euro would be enough to cover the given reimbursements for 200

FERcoin tokens.

An increase in MATIC’s price does not necessarily lead to a proportional increase in

reimbursement costs. Often, gas prices (in Gwei) decrease slightly when the native token’s

value rises, as network participants adjust their transaction fee bidding behavior. This means

that the fiat-denominated cost of gas does not always scale directly with MATIC’s price.

In such cases, reimbursement parameters can be adjusted to maintain cost-effectiveness in

response to changes in network condition.

7.5. Smart Contract Implementation

The implementation and code of the smart contract won’t be discussed in detail, rather only

the chosen parts, the most important and complex ones, will be discussed. The full contract

code with NatSpec comments documentation is available if needed.

7.5.1. Cafe Management

Each cafe offering coffee purchases with FERcoin is defined in the smart contract by a unique

ID and a name.

The contract owner manages the cafes, creating new cafes or removing them.

The buyCoffee function takes the unique cafe ID as an argument and stores the infor-

mation at which cafe was the coffee purchased.

Cafe objects are defined with two variables in the contract, a mapping and an array:

1 /// @dev Mapping of cafe IDs to their names

2 mapping(uint256 => string) public cafes;

3

4 /// @dev Array of registered cafe IDs for enumeration, needed for

getAllCafes function

5 uint256[] private cafeIds;

The mapping defines the mapping of uint256 ID of the cafe to the string name of

the cafe.

The uint256 array contains the IDs of all available cafes. Since Solidity mappings do

not support key enumeration [13], a separate array stores the existing cafe IDs which are

used as mapping keys, for efficient retrieval [6].

This way, when some client-side interface must fetch all the available defined cafes, it

can first read the array of all defined cafe IDs, and then use the mapping to retrieve the cafe

name for each ID, which is the mapping key.

This is implemented in the getAllCafes function:
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1 /**

2 * @notice Get list of all registered cafes

3 * @return ids Array of cafe IDs

4 * @return names Array of cafe names

5 */

6 function getAllCafes() external view returns (uint[] memory ids, string[]

memory names) {

7 uint256 cafeCount = cafeIds.length;

8 string[] memory cafeNames = new string[](cafeCount);

9

10 for (uint256 i = 0; i < cafeCount; i++) {

11 cafeNames[i] = cafes[cafeIds[i]];

12 }

13

14 return (cafeIds, cafeNames);

15 }

The contract owner manages the defined cafes with the addCafe and removeCafe

functions.

To add a new cafe, the owner specifies an ID and name. The ID is stored in the array and

an ID to cafe name mapping pair is then defined in the mapping.

When removing a cafe, the owner provides its ID, which is then removed from the array,

and the mapping pair is unset, which reduces the used memory expenditure. The function

optimizes gas costs by swapping the removed cafe ID with the last element before popping

it, ensuring minimal restructuring overhead.

These two functions are as shown:

1 /**

2 * @notice Add new cafe location (owner only)

3 * @param spendLocationId Unique identifier for the cafe

4 * @param spendLocationName Display name of the cafe

5 */

6 function addCafe(uint256 spendLocationId, string memory spendLocationName

)

7 external onlyOwner whenNotPaused {

8 require(bytes(spendLocationName).length > 0, "Spend location name

must not be empty");

9 require(bytes(cafes[spendLocationId]).length == 0, "Cafe ID already

exists");

10

11 _addCafe(spendLocationId, spendLocationName);

12 }

13

14 /// @dev Internal implementation of cafe addition
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15 function _addCafe(uint256 cafeId, string memory cafeName) private {

16 cafes[cafeId] = cafeName;

17 cafeIds.push(cafeId);

18 }

19

20 /**

21 * @notice Remove cafe location (owner only)

22 * @param spendLocationId ID of cafe to remove

23 */

24 function removeCafe(uint256 spendLocationId) external onlyOwner

whenNotPaused {

25 require(bytes(cafes[spendLocationId]).length > 0, "Cafe does not

exist");

26

27 // Swap cafe ID being deleted with the last array element and pop

last element from array for deletion

28 for (uint256 i = 0; i < cafeIds.length; i++) {

29 if (cafeIds[i] == spendLocationId) {

30 cafeIds[i] = cafeIds[cafeIds.length - 1];

31 cafeIds.pop();

32 break;

33 }

34 }

35

36 delete cafes[spendLocationId];

37 }

7.5.2. Gas Reimbursement Configuration

Previously discussed gas reimbursement configuration is defined in the smart contract using

two variables:

1 /// @notice Base gas units estimated for buyCoffee transaction

2 uint256 public buyCoffeeGasUnits = 45000; // Base transaction gas + logic

+ buffer

3

4 /// @notice Gas price in gwei used for reimbursement calculations

5 uint256 public gasPriceInGweiForReimbursement = 200;

the buyCoffeeGasUnits variable defines the gas units for buyCoffee function

used in the reimbursement calculation and the gasPriceInGweiForReimbursement

defines the Gwei per gas given in reimbursement, as discussed in the section 7.4.

The gas units used in the calculation remain constant, provided the buyCoffee func-

tion logic remains unchanged. The gasPriceInGweiForReimbursement variable is
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adjusted by the contract owner based on the network gas prices fluctuations to ensure optimal

reimbursement configuration.

The contract owner uses the following function to change the value of Gwei par gas in

reimbursement:

1 /**

2 * @notice Update gas price for reimbursements (owner only)

3 * @param newGasPriceInGweiForReimbursement New gas price in gwei

4 */

5 function setGasPriceInGweiForReimbursement(uint256

newGasPriceInGweiForReimbursement)

6 external onlyOwner whenNotPaused {

7 require(newGasPriceInGweiForReimbursement > 0, "Gas price must be

greater than zero");

8 gasPriceInGweiForReimbursement = newGasPriceInGweiForReimbursement;

9 }

The following public view function retrieves the total reimbursement in Gwei:

1 /**

2 * @notice Calculate gas reimbursement cost in gwei sent together with

each FERcoin

3 * @return Reimbursement cost in gwei

4 */

5 function gasReimbursementCostBuyCoffeeGWei() public view returns (

uint256) {

6 return buyCoffeeGasUnits * gasPriceInGweiForReimbursement;

7 }

Application interfaces and backend logic can use this function to perform various calcu-

lations and analysis.

7.5.3. Key functions Implementation

This section focuses on two key functions: buyCoffee and batchTransferFrom.

These functions implement custom logic specific to the FERcoin smart contract, differing

from modified ERC20 standard functions.

Buy Coffee Function

This function implements the logic of exchanging a FERcoin token for a coffee.

It accepts two arguments:

± The ID of the cafe where the coffee is purchased

± The unique bill number (Cro. JIR - Jedinstveni identifikator računa)

28



Before executing the transaction, the function performs a series of checks, that revert the

transaction upon fail, to ensure data integrity and prevent invalid transactions:

± Bill number validation - avoids empty records

± Cafe check - prevents purchases at non-existent locations

± Balance check - Implicitly handled by the internal _burn function, ensuring that the

caller possesses sufficient FERcoin for the transaction

If all checks pass, the function burns the spent FERcoin token, permanently removing it

from circulation and emits an event containing the following transaction details:

± the blockchain address of the wallet that has purchased the coffee

± ID of the cafe where coffee was purchased at

± Unique bill number of the bill issued by the cafe

The transaction event timestamp can be retrieved from the blockchain by converting the

transaction’s block number into a timestamp.

The function code is shown below:

1 /**

2 * @notice Purchase coffee using FERcoin

3 * @dev Burns COFFEE_PRICE tokens and emits purchase event

4 * @param spendLocationId ID of the cafe where coffee is purchased

5 * @param billNumber Unique bill identifier from POS system (JIR on

Croatian)

6 */

7 function buyCoffee(uint256 spendLocationId, string calldata billNumber)

8 external whenNotPaused returns (bool) {

9

10 require(bytes(billNumber).length > 0, "Bill number must not be empty"

);

11

12 string memory spendLocation = cafes[spendLocationId];

13 require(bytes(spendLocation).length > 0, "Invalid spend location");

14

15 // internal burn function implements the balance check require

16 _burn(msg.sender, COFFEE_PRICE);

17 emit CoffeeBought(msg.sender, spendLocation, billNumber);

18

19 return true;

20 }
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Batch Transfer FERcoin Distribution

batchTransferFrom is the most complex smart contract function. It is used to handle

the distribution of multiple FERcoin tokens and native currency reimbursements to students

in a single transaction, reducing transaction costs and improving efficiency.

Batch Limit

The function has a strict upper limit of 200 recipients per transaction, defined in the

following constant:

1 /// @notice Maximum number of recipients in a single batch transfer

2 uint256 public constant MAX_BATCH_SIZE = 200;

The Ethereum network enforces the maximum gas limit per block of 30 million units,

while the target block size is 15 million units [20, 21].

While a single block can include transactions up to the 30 million gas units, the network

aims to keep block sizes around the 15 million gas target. If blocks regularly exceed this tar-

get, the base fee increases, making transactions more expensive and discouraging excessive

gas usage.

When processing the maximum batch size of 200 addresses, the batchTransferFrom

function consumes just under 9 million gas units.

By keeping gas consumption below the block target, the transaction is more likely to

be prioritized by miners, as it allows them to efficiently structure blocks and maximize fee

earnings.

If the transaction were closer to the 15 million gas target or beyond, miners might hesitate

to include it in a block, preferring to construct blocks with multiple smaller transactions.

Keeping the function’s gas usage below the block target increases the likelihood of timely

inclusion in a block while maintaining network efficiency.

Gas Optimization

Since this is the most complex function in the smart contract as it handles the distribu-

tion of both FERcoin tokens and native currency for up to two hundred students in a single

transaction, it is the most costly function of the smart contract.

The distribution of FERcoin tokens and reimbursements could be performed without this

function completely, which would consist of one transaction of sending FERcoin tokens

and one transaction of sending reimbursement for each student, which would in the case of

200 students be 400 transactions. These 400 transactions would have a significant cost of

execution because all the transaction gas fees would accumulate.
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Instead, the batchTransferFrom function is used, which handles both the FERcoin

and reimbursement distribution to multiple students in a single transaction to optimize gas

consumption and reduce costs. Batch transfers are a well-established gas optimization tech-

nique used in various smart contracts [17].

When multiple transfers are performed with one transaction in a single function, there

is only one transaction overhead, instead of multiple overheads of all separate transactions

which accumulates savings.

Along with this technique for gas-saving optimizations, the following techniques are used

as well:

± All the addresses to which the FERcoin is being distributed are used as calldata,

meaning they are not saved to memory which leads to gas savings

± External variables are assigned to local variables to minimize redundant storage reads

± The total transaction predicted spendings and allowance check is performed only

once outside the loop, instead of separately in each iteration

± All calculations are performed outside the loop, ensuring the loop operates with pre-

computed values.

± No helper functions used inside the loop, to omit the function call overhead

± Rather than using transferFrom inside the loopÐwhich would perform the to-

kens transfer with _transfer and allowance update with _spendAllowance

in each iterationÐonly the token transfer is executed inside the loop with internal

_transfer function, while the allowance is updated only once after exiting the

loop, based on the total successfully transferred token amount.

Require checks are not used inside the loop, as a require failure would revert the entire

batch transaction, still wasting gas without successful completion of any transfers.

On a failed batch transfer with a particularly large number of distribution addresses, this

would be costly.

Instead of using require statements that revert the transaction, a pre-check is performed

to identify potential failures. If a failure is detected, the affected logic segment is skipped,

and an event is emitted detailing the omitted logic that would otherwise revert the whole

transaction.

The administrator can later review all the emitted events, and manually perform the nec-

essary actions to address any skipped transfers.

This approach handles the errors with significantly less gas usage, as a single iteration

that would fail can not revert the whole transactions in which a large number of other iter-

ations were successful, and the FERcoin administrator can manually address all the errors

that might have occurred.
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The loop logic and consequent allowance update of the batchTransferFrom func-

tion is as follows:

1 /**

2 * @dev Loop logic

3 * require inside the loop would revert the whole transaction

4 * which would be costly if it were to happen later on in the loop

5 * with 100+ recipients

6 * instead the part of the transaction that would fail is omitted

7 * and an event signaling the fail is emitted, so the owner can later

analyze

8 * the incident and take the necessary actions

9 *

10 * either the part of the transaction of transfering FERcoin can be

omitted with an event

11 * or the part of the transaction of transfering the native currency

for reimbursement can be omitted

12 */

13 for (uint256 i = 0; i < recipients.length; i++) {

14

15 if (recipients[i] == address(0) || !isEOA(recipients[i])) {

16 emit TransferFailed(recipients[i], "Invalid recipient address -

is either 0 or not EOA");

17 continue;

18 }

19

20 _transfer(owner, recipients[i], amount);

21

22 (bool success, ) = recipients[i].call{value: reimbursementWei, gas:

EOA_TRANSFER_GAS_LIMIT }("");

23

24 if (!success) {

25 emit ReimbursementFailed(recipients[i], "Reimbursement failed -

recipient is an EOA and contract balance was not the issue");

26 continue;

27 }

28

29 emit FERcoinReceived(recipients[i], amount);

30 }

31

32

33 uint256 totalTransferred = initialOwnerBalance - balanceOf(owner);

34 _spendAllowance(owner, msgSender, totalTransferred);

Analysis was performed to determine the gas unit savings by using the single transaction

batchTransferFrom function instead of two transactions per student: one FERccoin
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token transfer and one reimbursement transfer transaction. The gas units used in the transac-

tions were obtained by running the transactions in the EVM and noting the used gas units.

The results for 1, 10, 50, 100 and 200 distributions are shown in Figure 7.3 below.

Figure 7.3: Gas Units Usage: Separate Transfers vs Batch transfer

The following Figure 7.4 shows the gas unit savings of using optimized batch transfer,

while Table 7.1 below shows the savings in percentages.

Figure 7.4: Gas Units Savings: Separate Transfers vs Batch transfer
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Table 7.1: Gas Units Savings in Percentages

Number of Distribution Addresses Gas Units Savings (%)

1 -12.64

10 41.24

50 46.02

100 46.62

200 46.85

The average Polygon gas price during the year 2024 was 120 Gwei per gas, as calculated

with Dune’s DuneSQL tool for blockchain analytics.

The gas fee for a maximum batch transfer to 200 recipients is calculated as follows:

Max Distribution Gas Fee = 8, 882, 632 Gas Units∗120 Gwei per Gas Unit = 1, 066 MATIC token

(7.5)

One MATIC token should be enough to cover the gas fee for distributing FERcoin and

reimbursements to 200 students in a single batch transaction.
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8. Web application development

This chapter discusses key aspects of the FERcoin web application implementation. For

more detailed information, the server-side code is documented using PyDoc, generated from

docstrings, and is available alongside the source code. Similarly, client-side JavaScript inter-

face components are documented using JavaScript docstrings.

8.1. Modules and Versions

The server-side logic is implemented in Python using Flask 3.0.3. The Python version used

for the project is 3.10, as specified in the Dockerfile:

# Lightweight Python image with latest security patches

FROM python:3.10-slim-bullseye

All additional modules and their versions are listed in Table 8.1.
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Table 8.1: Modules and Versions

Module Version

Flask 3.0.3

flask-session 0.8.0

Flask-Limiter 3.9.2

flask-talisman 1.1.0

Flask-WTF 1.2.2

Werkzeug 3.0.3

SQLAlchemy 2.0.36

Web3 7.4.0

eth-account 0.13.4

pycryptodome 3.21.0

cryptography 39.0.1

Gunicorn 23.0.0

SQLite3 Standard Python 3.10 Package

Secrets Standard Python 3.10 Package

8.2. Configurations

The application follows a centralized configuration approach, ensuring that all settings re-

lated to security, blockchain, session management, and database access are defined in a single

place.

Configurations are categorized into different classes, each handling a specific aspect of

the application, such as Flask settings, security policies, blockchain interaction, wallet stor-

age, and database management.

These settings are loaded from environment variables, as well as JSON configuration

files.

Key configuration components are described in table 8.2:
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Table 8.2: Overview of Application Configurations

Configuration Description

AppConfig Manages core application settings such as debug mode, ses-

sion lifetime, and base directory paths.

SecurityConfig Defines security policies, including Content Security Policy

(CSP), rate limiting, and endpoint access control.

DatabaseConfig Specifies the database storage path and manages SQLite

configurations.

BlockchainConfig Handles blockchain network configuration, Web3 provider

setup, contract interaction, and gas management.

WalletsConfig Manages encrypted wallet storage.

8.3. Users Database

The database requirements for the application are minimal due to the adoption of a fat-

client architecture. This approach shifts most of the computational logic to the client-side

while leveraging blockchain capabilities to offload server-side processing and storage. Con-

sequently, the only requirement for the database is to store authenticated application users,

specifically professors, cafes, and administrators.

For this purpose, an SQLite database is sufficient. However, as the project scales and

evolves, a more robust database system may be adopted.

8.3.1. Table Definition

The users’ data is stored in a SQLite database, initialized using a dedicated script. The

schema ensures data integrity and security, with constraints on unique identifiers, secure

password storage, and strict role validation.

The table schema is shown in Table 8.3.
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Table 8.3: Schema for the Users Table

Column Type Explanation

id INTEGER Randomly generated 9-digit user ID (Primary

Key, Unique). Collision check is implemented.

username TEXT Unique username for user authentication.

password TEXT Password hashed using bcrypt (uses salt) for se-

cure storage.

role TEXT User role; must be one of ADMIN, PROFES-

SOR, or CAFE.

To ensure proper system setup, an initial administrator account is automatically created

during database initialization using environment variables set at container startup. This initial

administrator user is intended for bootstrapping access and is expected to create a permanent

administrator account before being removed.

8.3.2. SQLAlchemy ORM

The application utilizes SQLAlchemy as an Object Relational Mapper (ORM) to simplify

interaction with the SQLite database. SQLAlchemy provides structured table definitions and

efficient query execution while ensuring that ORM-level constraints align with database-

level constraints.

The primary database model is the User model, which represents users in the system.

This model enforces unique usernames, hashed password storage, and strict role valida-

tion at the ORM level, in alignment with the database constraints.

The database interfacesÐresponsible for authentication, user retrieval, and user manage-

mentÐutilize this ORM-based User model as an interface for interacting with the database.

8.3.3. Database Interfaces

To facilitate interaction with the database, three primary interfaces are implemented:
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Table 8.4: Overview of Database Interfaces

Interface Description Used By

AuthInterfaceDbUsers Handles authentication logic,

verifying user credentials.

Authentication logic (login)

DbUsersViewInterface Provides read access to user

data, such as retrieving all

users or specific users by ID

or role.

Authentication logic (access con-

trol), Admin panel, Wallet manage-

ment logic

DbUsersWriteInterface Manages user creation and

deletion in the database.

Admin panel

Database View Interface

The DbUsersViewInterface allows retrieval of user data through multiple query meth-

ods:

Table 8.5: DbUsersViewInterface Methods

Method Description

get_all_users() Retrieves all users from the database.

get_all_users_by_role(role) Retrieves all users that have a specific role.

get_user_by_id(user_id) Retrieves a user by their unique ID.

Database Write Interface

The DbUsersWriteInterface provides methods to create and delete users:

Table 8.6: DbUsersWriteInterface Methods

Method Description

create_user

(username,

password,

role)

Creates a new user with a randomly generated 9-digit ID,

ensuring uniqueness.

delete_user

(user_id)

Deletes a user from the database by their ID.
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Authentication Interface

The AuthInterfaceDbUsers is responsible for user authentication:

Table 8.7: AuthInterfaceDbUsers Methods

Method Description

authenticate_user

(username,

password)

Validates user credentials by checking username and pass-

word hash.

These database interfaces enable structured and efficient interaction with the database,

ensuring clear separation of concerns for authentication, data retrieval, and user management.

8.4. Server Stored Wallets management

In the FERcoin system, wallets are securely stored on the server as JSON files. Each wallet

file contains the wallet’s Ethereum address, the encrypted private key, the associated user ID,

and the user’s username. Importantly, the private key remains encrypted until a transaction

requires signing, at which point it is decrypted temporarily. This approach ensures that

sensitive key material is protected at rest. The decryption password is not stored on the

server; rather, the users store it separately.

To manage these wallets, the system provides interfaces described in Table 8.8.
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Table 8.8: Wallet Interfaces

Interface Name Description

WalletViewInterface Enables listing and viewing wallet data without de-

crypting private keys. Private key is never viewed or

listed on any users interface in either encrypted or de-

crypted format.

WalletDecryptInterface Allows authorized users to load a wallet and decrypt

its private key temporarily on the server side for trans-

action signing.

WalletWriteInterface Manages the generation, re-encryption, and deletion

of wallet files. Used by the administrator.

WalletFetchDataInterface Supports interactions with wallet data from

blockchain, like fetching allowances.

WalletTransactionsInterface Enables execution of transactions which are signed

by the server stored wallets. Currently only used for

FERcoin token distribution to students by the profes-

sors.

All of these interfaces are used for the server side management and usage of wallets.

WalletViewInterface

Table 8.9: WalletViewInterface Functions

Function Description

list_all_wallets() Retrieves a list of all wallets stored on the server, including

Ethereum addresses, usernames, and user IDs.

list_all_wallets_for_user

(user_id)

Retrieves a list of wallets for a specific user based on their

user ID.

load_wallet_undecrypted

(wallet_address)

Loads wallet data from storage without decrypting the wal-

let or loading the encrypted private key.

WalletDecryptInterface
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Table 8.10: WalletDecryptInterface Functions

Function Description

load_wallet_for_user

(address, password)

Loads a wallet and decrypts its private key on the server

side for authorized users (wallet owner or admin) for further

usage.

WalletWriteInterface

Table 8.11: WalletWriteInterface Functions

Function Description

generate_wallet_for_user

(user_id, username,

password)

Generates a new Ethereum wallet, encrypts its private key,

and stores it securely.

reencrypt_wallet

(wallet_address,

old_password,

new_password)

Re-encrypts a wallet’s private key with a new password

while maintaining access control.

delete_wallet_storage

(address)

Deletes a stored wallet file from the server (admin-only op-

eration).

WalletFetchDataInterface

Table 8.12: WalletFetchDataInterface Functions

Function Description

get_wallet_allowance

(wallet_address)

Fetches the allowance for a given wallet address from the

blockchain.

WalletTransactionsInterface

The WalletTransactionsInterface includes two different functions for trans-

ferring FERcoin tokens:
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Table 8.13: WalletTransactionsInterface Functions

Function Description

batch_send_tokens_from

_allowance

(transaction_initiator

_account,

recipient_list,

token_amount)

Sends FERcoin tokens in a batch to multiple recipients,

signing the transaction with the initiator’s private key. This

function is optimized for bulk transfers to minimize gas

costs.

single_send_token_from

_allowance

(transaction_initiator

_account, recipient,

token_amount)

Sends FERcoin tokens to a single recipient, signing the

transaction with the initiator’s private key. This function

is optimized for individual transfers, ensuring lower gas us-

age compared to batch transfers when sending to a single

recipient.

The single_send_token_from_allowance function is used when transferring

tokens to a single recipient. This function uses a direct transferFrom call, ensuring

minimal gas usage when only one transaction is required

The batch_send_tokens_from_allowance function is used when transferring

tokens to multiple recipients. This function calls the optimized smart contract’s batchTransferFrom

function, which consumes significantly less gas compared to executing multiple individual

transferFrom calls.

8.5. Interface Controllers

Interface controllers are responsible for generating the user interfaces via Flask’s Jinja2 tem-

plating engine. Their key roles include:

± Rendering dynamic templates with data supplied from the server side.

± Bridging the connection between backend logic and the user interfaces.

± Implementing access controls to ensure that only authenticated users with the proper

roles can access each interface.

Table 8.14 summarizes the various interfaces along with their controllers, descriptions,

and the types of data and connections they use.
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Table 8.14: Interface Controllers and Their Associated Data

Interface Description Data Included

Student

Controller

Public interface for student interactions

with the deployed FERcoin smart con-

tract. All actions are performed on the

client side. There is no interaction with

the server.

Blockchain configuration

data (e.g., contract address,

network details, gas manage-

ment parameters).

Cafe Controller Authenticated interface for cafe users. It

retrieves deployed smart contract trans-

actions, with all of the logic handled on

the client side. Interface does not interact

with the server.

Contract address and the

URL of the web3 provider

(including the API keys used

for transaction retrieval).

Professor

Controller

Authenticated interface designed for pro-

fessors to distribute FERcoin tokens to

students. Backend logic manages token

distribution, while the interface displays

users’ wallet public keys and blockchain-

related wallet information.

Associated users’ wal-

lets’ public keys from the

server-side wallet storage;

submission of data for token

distribution is handled via

backend logic that generates

and sends the blockchain

transaction.

Admin

Controller

Authenticated interface for administrators

with multiple components for managing

both the application and the deployed

smart contracts.

Access to the users database,

wallet storage, and applica-

tion configuration. Also in-

cludes smart contract man-

agement interfaces that re-

quire an owner key pair

(which is stored securely and

separately from the server).
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Figure 8.1 visually represents the interaction between different user interfaces and other

system components; the deployed smart contract and the web application server. While the

diagram focuses on the interfaces themselves, each of these interfaces is managed by its

corresponding controller, as detailed in Table 8.14.

Figure 8.1: Interfaces And System Components Integration

Security implementations and access control of the interface controllers are discussed in

Chapter 9.

8.5.1. Forms

All interfaces that interact with the backend logic use provided interface forms submitted

to server with POST requests. These forms are validated on the server side and include

Cross-Site Request Forgery (CSRF) protection to ensure secure data submissions.

The WT-Forms module is used to implement data validation [10]. CSRF protection is

discussed in greater detail in Chapter 9.1.3. For each form that communicates with the

backend, a corresponding FlaskForm class is defined. This class specifies the required

fields, data types, and available choices.

For example, the administrator form for creating a new user is defined as follows:

1 class UserCreationForm(FlaskForm):

2 username = StringField(’Username’, validators=[DataRequired(), Length

(min=8)])

3 password = PasswordField(’Password’, validators=[DataRequired(),

Length(min=8)])

4 role = SelectField(
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5 ’Role’,

6 choices=[(Role.ADMIN.value, ’Admin’), (Role.PROFESSOR.value, ’

Professor’), (Role.CAFE.value, ’Cafe’)],

7 validators=[DataRequired()]

8 )

9 submit = SubmitField(’Add User’)

In this form:

± username and password must be at least 8 characters long.

± The role chosen must be one from the fixed list of roles.

For forms that require dynamically determined options, different approach is used. The

following example for selecting a web3 provider in the BlockchainConnectionForm

illustratares the implemented logic:

1 class BlockchainConnectionForm(FlaskForm):

2 provider = SelectField(’Provider’, choices=[], validators=[

DataRequired()])

3 contract_address = StringField(’Contract Address’, validators=[

DataRequired()])

In this case, the list of available providers is initially empty. The actual choices are

assigned dynamically in the administrator controller when handling the POST request sub-

mitting the form:

1 form = BlockchainConnectionForm()

2 form.provider.choices = [(name, name) for name in BlockchainConfig.

PROVIDERS.keys()]

The existing defined providers are displayed on the interface using a separate logic, then

the logic for submitted form validation. The choices are determined at the time the form is

submitted, ensuring that the chosen provider is one of the existing defined providers on the

server. This approach ensures that the data validation is not only implemented on the client

side but on the server side as well.

8.5.2. Administrator Interface Controller

The administrator controller is the most complex controller, as it manages six different inter-

faces that manage both the application and the deployed smart contract.

Table 8.15 describes all the administrator interfaces and their interactions.
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Table 8.15: Administrator Interfaces: Description and Components & Interactions

Interface Description Components & Inter-

actions

Blockchain

Configuration

Interface for viewing and updating blockchain

connection parameters (provider, contract ad-

dress, chain ID, gas multipliers, ABI uploads).

Displays and updates

the blockchain configu-

ration.

Users Management Interface for creating, deleting, and listing user

accounts with input validation.

Retrieves and man-

ages users from user

database using database

interfaces.

Wallet Management Interface for handling wallet operations such as

creation, deletion, download (with decryption),

and password changes.

Displays and manages

wallets from wallet

storage using wallet

management interfaces.

Smart Contracts

Events Analysis

Interface for displaying blockchain transactions

and events; requires MetaMask for a Web3 con-

nection.

Fetches deployed smart

contracts transac-

tions and events data

and details from the

blockchain.

FERcoin Token

Management

Interface for managing deployed smart con-

tract’s FERcoin tokens via smart contract owner

functions; requires MetaMask with the owner

key pair connection.

Displays FERcoin

token-related data

from the blockchain

and sends owner-level

transactions to the de-

ployed smart contract.

Native Currency

Management

Interface for managing contract’s native cur-

rency balance and reimbursement configuration

via smart contract owner functions; requires

MetaMask with the owner key pair connection.

Displays contracts

native currency data

from the blockchain

and sends owner-level

transactions to the de-

ployed smart contract.
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The following Figure 8.2 illustrates all the administrator interfaces and their interactions

with other system components.

Figure 8.2: Administrator Interfaces and Interactions

8.6. Interfaces

The following section describes each user’s interfaces for interacting with the system.

8.6.1. Student Interface

The student interface does not require authentication to access, it is completely public and

accessible by anyone. The logic of the interface is completely implemented on the client side.

Once the interface is loaded in the browser, it operates without further server interaction.

The interface has the following functionalities:

± Smart contract address and network display

± Connected wallet and network display

± FERcoin and native currency balance display

± Current network state

± Purchase of coffee with FERcoin token

± Sending FERcoin to another address

± Transaction history overview

The interface is shown in Figure 8.3
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Figure 8.3: Student Interface

Network State

The network state is calculated to display to students the likelihood and the price of the

successful transaction at that moment. To calculate the network state score, three parameters

are determined in real time from the gas price API and latest mined block data. These

parameters are then normalized, weighted and added together into a single 0-1 value, referred

to as the network state score.

The network state is determined by calculating network congestion using three key pa-

rameters:

± Gas Price: The priority fee for fast transactions relative to a benchmark (130 Gwei).

± Block Utilization: The ratio of used gas in the latest block to the block’s gas limit.

± Gas Tier Ratio: The ratio between fast and standard gas prices, indicating urgency

premiums.

Each metric is normalized to a 0-1 scale and assigned a weight to compute an overall

congestion score.
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Table 8.16: Network Congestion Calculation Parameters

Parameter Description Normalization Formula

Gas Price Priority fee for fast transactions,

relative to a 130 Gwei reference.

Gas Price (fast)

130

Block

Utilization

Ratio of used gas to block gas limit

in the latest block.

Gas Used
Gas Limit

Gas Tier Ratio Ratio of fast to standard gas priority

fees, capped at 2.5.

min

(

Gas Price (fast)

Gas Price (standard)
, 2.5

)

The overall congestion score is computed using weighted metrics:

S = 0.6× Gas Price + 0.3× Block Utilization + 0.1× Gas Tier Ratio (8.1)

Table 8.17: Network Congestion Score Calculation

Metric Weight Final Contribution

Gas Price 0.6 0.6×
(

Gas Price (fast)

130

)

Block Utilization 0.3 0.3×
(

Gas Used
Gas Limit

)

Gas Tier Ratio 0.1 0.1 ×
(

min

(

Gas Price (fast)

Gas Price (standard)
, 2.5

))

The congestion score S determines the network state, mapped into four categories:

Table 8.18: Network Congestion Status Levels

Congestion Level Score Range Message

Good S < 0.4 Fast, Good Gas Price

Busy 0.4 ≤ S < 0.6 Moderately Busy

Unstable 0.6 ≤ S < 0.8 High Congestion

Congested S ≥ 0.8 Extremely Congested

The network state dynamically updates based on real-time gas data and latest block statistics,

ensuring an accurate representation of congestion.

8.6.2. Cafe Interface

The cafe interface does require authentication to access, as it contains the URL with API

key used to retrieve the transaction records from the blockchain. The logic of the interface

is completely implemented on the client side, without any connection to the server, after the
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interface is loaded in the browser. The only function of the interface is fetching the records

of the bought coffee transactions. It fetches blockchain transactions using the provided URL

with an API key as the web3 provider, without the need to use MetaMask or similar software.

Cafe staff use this interface to verify coffee purchases by verifying the unique bill number in

the fetched transactions.

The interface is displayed in Figure 8.4.

Figure 8.4: Cafe Interface

8.6.3. Professors interface

The professor interface is made up of two parts, the initial interface for choosing one of the

associated user’s wallet, and the second interface for using the chosen wallet for FERcoin

token distribution.

The initial interface for viewing and choosing the wallet is shown in Figure 8.5

Figure 8.5: Initial Professor Interface

Once a wallet is selected, the interface for token distribution is displayed, as shown in

Figure Figure 8.6
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Figure 8.6: Professor Distribution Interface

This interface has the following functionalities:

± Display of the wallet address and current user data

± Display of the FERcoin allowance available for token distribution

± A distribution form with input fields for the list of student addresses receiving FER-

coin tokens, token amount, and wallet decryption password

Additionally, client-side validation is implemented on this interface to prevent invalid

data inputs. The client side ensures that the number of FERcoin tokens and addresses entered

does not exceed the available allowance. The error message display of this logic is shown in

Figure 8.7

Figure 8.7: Distribution Input Allowance Validation

The other validation confirms that all the addresses entered in the student address list are

in the valid Ethereum address format. The error message display of this validation is shown

in Figure 8.8.
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Figure 8.8: Distribution Address Validation

Further and more robust validation is present on the server-side as well to ensure correct

execution.

Token Distribution Process Integration

Figure 8.9 illustrates how the FERcoin distribution process is handled and executed within

the broader system architecture.

Figure 8.9: FERcoin Distribution Workflow and System Interaction

After the professor submits the student blockchain addresses, the token amount and

the wallet decryption password, the professors interface sends the data to the server side.

The backend logic validates the data, generates the transaction and performs the test run

of the transaction. If all validations pass, the professor’s stored wallet is temporarily de-

crypted using the provided decryption password and used to sign the generated and vali-

dated transaction. If FERcoin tokens are distributed to multiple addresses, gas optimized

batchTransferFrom smart contract function is used, otherwise, if only one address is

receiving FERcoin, the transferFrom smart contract function is used instead, which uses
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less gas for single transfers. The transaction is sent by the server to the deployed smart con-

tract, which handles the remaining logic of FERcoin token distribution.

8.6.4. Administrator’s Interfaces

The administrator manages the FERcoin system through six different interfaces, three for

managing the application and other three for viewing and managing the deployed smart

contract. Upon login, the administrator is presented with the initial page (Figure 8.10) to

choose one of the six interfaces.

Figure 8.10: Initial Administrator Interface

Blockchain connection and display configuration

The administrator can configure the application’s blockchain settings using the interface

shown in Figure 8.11.
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Figure 8.11: Administrator Blockchain Configuration Interface
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This interface has the following functionalities:

± Configuring the Web3 provider URL

± Management of the contract address

± Setting the deployed contracts network chain id and native currency symbol

± Management of the contract’s blockchain network’s block explorer URL prefix

± Adjusting the transactions gas limit and gas price multipliers

± Adding new Web3 provider URLs

± Management of the server stored contract ABI

User Management

The administrator can manage the application users which require authentication to use the

system. This interface is shown in Figure 8.12.

Figure 8.12: Administrator User Management Interface

This interface has the following functionalities:

± View of all the system users

± Creating a new user by specifying a username, password and role. The username and

password must each be at least 8 characters long.

± Deletion of system users
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System Stored Wallets Management

The administrator manages the server stored wallets with the wallet management interface

shown in Figure 8.13.

Figure 8.13: Administrator Wallet Management Interface

This interface has the following functionalities:

± Creation of a new wallet for a professor user, with a password for encrypting and

decrypting the wallet’s private key

± View of all the stored wallets

± Deletion of stored wallets

± Decryption and download of chosen wallet

± Changing the encryption password of a selected wallet
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Smart Contract Management Interface for FERcoin Tokens

The administrator manages the deployed smart contracts FERcoin tokens using the interface

shown in Figures 8.14 and 8.15.

Figure 8.14: Administrator Smart Contract FERcoin Token Management Interface
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Figure 8.15: Administrator Smart Contract FERcoin Token Management Interface

This interface has the following functionalities:

± View of the contract address, network and owner

± View of the connected wallet, network and whether is the connected wallet the con-

tract owner

± View the total FERcoin token supply and the connected wallet’s FERcoin balance

± Minting new FERcoin tokens to a specified address (typically the contract owner’s

address)

± Viewing the contract’s defined cafes, creating new ones or deleting existing ones

± Checking and managing the FERcoin token allowances of other wallets

This interface can only be used with the contract owner’s wallet, as all its functionalities

correspond to owner-only functions of the contract. If a transaction is not signed with the

contract owner’s key pair, the smart contract will reject the execution of any owner-only

function.
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Smart Contract Management Interface for Native Currency

The administrator manages the native currency balance of the deployed contract using the

interface shown in Figure 8.16.

Figure 8.16: Administrator Smart Contract Native Currency Management Interface

This interface has the following functionalities:

± View of the connected wallet’s address, network, native currency balance, and whether

the connected wallet is the contract owner

± View of the contract’s native currency balance

± View of the current network gas price and reimbursement configuration

± Modifying the reimbursement configuration

± Sending and withdrawing native currency from the contract’s native currency balance

This interface can only be used with the contract owner’s wallet, as all its functionalities

correspond to owner-only functions of the contract. If a transaction is not signed with the

contract owner’s key pair, the smart contract will reject the execution of any owner-only

function.
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Deployed Contracts Transactions and Events View

The administrator can view events generated by the smart contract and executed transactions

to analyze blockchain activity and detect errors. This interface displays executed transactions

and events, as shown with example data in Figure 8.17.

Figure 8.17: Administrator Smart Contract Transactions and Events View

On the Polygon network, blocks are mined approximately every two seconds. This infor-

mation is displayed on the interface to help the administrator select the appropriate number

of recent blocks, determining the time frame for analysis.

Administrator Process for Professor Onboarding

This section outlines the required steps for administrators to onboard a new professor and

authorize them to distribute FERcoin tokens.

The workflow of this process is as following:

± Creating a new professor account using the user management interface

± Generating a system-stored wallet for the professor using the wallet management

interface
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± Transferring native currency to cover FERcoin distribution transaction fees, typically

using MetaMask

± Configuring the FERcoin token allowance for the professor’s wallet through the

smart contract FERcoin token management interface

± Transferring native currency to the deployed smart contract’s balance for reimburse-

ment, which will be distributed along with FERcoin to students. This is done using

the smart contract native currency management interface

± roviding the professor with the wallet decryption password and minting new FER-

coin tokens for distribution via the smart contract FERcoin token management

interface

Administrators interaction with system components during this process is illustrated in

Figure 8.18.

Figure 8.18: Administrator Interactions for Professor Onboarding, Wallet Creation and Authorization

8.6.5. Web3Utils Module

A lot of the interfaces use the same blockchain related logic. To avoid code duplication and

to standardize blockchain operations across various interfaces, common functionalities are

encapsulated into exported functions and implemented in web3Utils.js module. Client

interfaces import and use these utility functions.
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Table 8.19 provides a summary of the exported functions and constants in this module.
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Table 8.19: Summary of Web3Utils Functions and Constants

Function / Constant Description Notes

ETH_ADDRESS_REGEX Regular expression for basic

Ethereum address validation.

Constant.

isValidEthereum

Address(address)

Validates Ethereum address for-

mat using regex and Web3’s utility

functions.

Returns a boolean.

isValidChecksum

Address(address)

Validates Ethereum address in

checksum format using regex and

Web3’s utility functions.

Returns a boolean.

getNetworkName

(chainId)

Returns a human-readable network

name based on the provided chain

ID.

Examples: ’Ethereum

Mainnet’, ’Polygon’.

initContract

(web3Provider,

contractAddress)

Initializes a smart contract instance

using the ABI fetched from the

server.

Asynchronous; returns

the contract instance.

fetchCafes(contract) Retrieves and formats defined cafes

from the deployed smart contract.

Returns an array of

objects with id and

name.

fetchBalance

(web3Provider,

walletAddress)

Fetches the native cryptocurrency

balance for given address in ether

units.

Returns a decimal num-

ber in string format.

fetchBalanceWei

(web3Provider,

walletAddress)

Fetches the native cryptocurrency

balance for given address in wei

units.

Returns a unsigned in-

teger number in string

format.

fetchTokenBalance

(contract,

walletAddress)

Retrieves the ERC20 token balance

(e.g., FERcoin) for a given wallet

address and ERC20 contracts ad-

dress.

Returns the token bal-

ance as a string.

fetchRecent

CoffeeBoughtEvents

(web3Provider,

contract,

numberOfPreviousBlocks)

Fetches recent CoffeeBought

events from the blockchain.

Returns an array of

event objects.

formatBlock

Timestamp

(blockTimestamp)

Formats a block timestamp into a

human-readable date string.

Returns a formatted

date string.

NumberOfBlocksToHour

TimeframePolygon

(numberOfBlocks)

Converts a number of blocks into

an approximate timeframe in hours

(specific to Polygon).

Returns a numerical

value in hours.
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8.7. Containerization and Initialization

The application is containerized using Docker. The Dockerfile sets up a lightweight Python

environment with latest Python security patches, installs the required packages, creates a

dedicated application user, and configures various environment variables and build-time ar-

guments. The container includes an entrypoint.sh script used as the container entry-

point that performs dynamic initialization tasks such as generating a secret key, initializing

the users database (if needed), and starting the Gunicorn server.

The Dockerfile and the entrypoint.sh define several environment variables and op-

tions. Table 8.20 summarizes these key settings.
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Table 8.20: Environment Variables and Configuration Options

Variable / Option Description Default / Note

SESSION_TYPE Determines session stor-

age method. Options are

securecookie (client-

side encrypted sessions) or

filesystem (server-side

storage).

securecookie (set via

SESSION_TYPE_ARG)

PERMANENT_SESSION

_LIFETIME_MINUTES

Duration (in minutes) for

which a session remains ac-

tive.

480

DEBUG Enables or disables debug

mode for the application.

False

PORT Port on which the application

listens for incoming connec-

tions.

3000

CONFIG_PATH_WEB3 Path to the blockchain config-

uration file.

./configs/

PolygonConfig.json

ABI_PATH Path to the smart contract

ABI file.

./blockchain/

contractABI.json

USERS_DATABASE_PATH Path to the SQLite database

file used for storing user in-

formation.

./databases/

sqlite/users.db

PYTHONPATH Configures the Python mod-

ule resolution path.

/application/..

SECRET_KEY Secret key for cryptographic

operations (session cookies,

CSRF tokens etc.). If not pro-

vided, it is dynamically gen-

erated at runtime.

Randomly auto-generated if

not provided (should be pro-

vided if multiple workers are

used)

INITIAL_ADMIN

_USERNAME

Initial administrator user-

name for the system.

Must be set at first-time ini-

tialization

INITIAL_ADMIN

_PASSWORD

Initial administrator pass-

word for login.

Must be set at first-time ini-

tialization
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The application user inside the container runs as application_user with the appropri-

ate permissions to manage the application. Sensitive variables such as INITIAL_ADMIN_USERNAME

and INITIAL_ADMIN_PASSWORD are unset after database initialization to prevent expo-

sure.

The entrypoint.sh script is used as the container entrypoint and launches Guni-

corn with a single worker. Since some application components rely on in-memory context,

multiple workers are not yet supported without additional architectural changes.

8.7.1. Makefile

The Makefile simplifies common Docker operations by defining several targets that manage

the lifecycle of the Docker container.

The Makefile defines the following variables:

± IMAGE_NAME: Name of the Docker image (default: fercoin-flask).

± OUTER_PORT: Port on the host machine, 3000 by default.

± INNER_PORT: Port inside the container, 3000 by default.

± DOCKERFILE_PATH: Path to the Dockerfile.

The following Table 8.21 lists the key make targets along with a brief description of each:

Table 8.21: Makefile Targets and Their Descriptions

Target Description

all Default target that builds the Docker image and runs the

container in interactive mode.

build Builds the Docker image using the specified Dockerfile.

run-interactive Runs the Docker container interactively (prompts for initial

admin credentials).

run-detached Runs the Docker container in detached mode (useful when

admin credentials are preset).

stop Stops any running container created from the image.

clean Removes the FERcoin Docker image.

Typically, the application is started by running make (which triggers the default tar-

get), building and running the container in interactive mode. For production environments

where the initial admin credentials are preconfigured, make run-detached can be used

instead, with defining initial administrator username and password environment variables

upon running the container.
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To stop running containers, make stop is used, and to remove the Docker image, make

clean.
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9. Security Solutions and

Implementations

FERcoin tokens can be exchanged for real-world goods, giving them an indirect monetary

value. The blockchain wallets of users interacting with the FERcoin system can hold various

currencies, although this is strongly discouraged, as stated in the user guide. This makes

security a critical concern. Malicious actors have an incentive to illegally acquire FER-

coin tokens or compromise the FERcoin system in multiple ways using a variety of mali-

cious techniques. Certain attack scenarios could also compromise the currencies held in the

blockchain wallets of the FERcoin system users, specifically, students. The following sec-

tions discuss various security solutions and system-hardening techniques that are used and

implemented in the FERcoin system.

9.1. Application security solutions and implementations

The application security solutions and implementations section discusses the solutions and

techniques used in the FERcoin systems’ application component, both the server-side and

the client-side implementations. Web applications and interfaces that communicate and work

with developed contracts, in most cases, implement their blockchain-related functionalities

for users on the client-side.

That’s why the attacks that target the users of this project most commonly focus on the

client-side, specifically on the front-end components that users rely on for building and exe-

cuting transactions. High-profile cases, such as those affecting BadgerDAO, Curve Finance,

Radiant Capital and Solana web3.js packet Supply Chain Attack [5], illustrate the risks and

ramifications of these exploits. These types of attacks usually involve compromising the

CDN, DNS, or some other projects component which enables the attackers to manipulate the

content served to all the project users and target the projects users and their crypto wallets.

That is why client-side security is a crucial aspect of developing interfaces that imple-

ment web3 blockchain-related capabilities, such as generating transactions for communica-

tion with deployed smart contracts and connecting software wallets with interfaces, which
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store cryptocurrency wallet keys. All the server-side components managing front-end in-

terfaces and other client-side functionalities must also be secured. An example of such a

component is the blockchain configuration panel available on the administrator interface,

where the address and blockchain network of the deployed FERcoin contract are stored and

can be changed. These values are forwarded to the users’ interfaces and if compromised,

could alter the address of the deployed FERcoin smart contract to a malicious one and target

the users this way. If such server-side components were compromised, the malicious actor

could manipulate the front-end components that the application delivers to users.

9.1.1. Subresource Integrity and Version Lock

Three primary CDN (Content Delivery Network) resources are used to support the front-end

user interfaces and all client-side functionalities. The resources used are Web3.js, Vue.js

and Bulma css. These resources are retrieved from cdn.jsdelivr.net CDN and used in the

interfaces they are required.

An attack on the client-side component by compromising the CDN-fetched packets could

involve direct compromise of the CDN itself, where malicious actors alter the hosted re-

sources. Additionally, attackers might exploit cache poisoning by injecting malicious pay-

loads into intermediary caches (e.g., browsers, proxies, or ISP caches), DNS spoofing/poi-

soning to redirect users to rogue servers hosting tampered resources as well as a few other

attack techniques. If HTTPS is not enforced, attackers could perform Man-in-the-Middle

(MITM) attacks, intercepting and modifying scripts before they reach the client. A large-

scale example of a CDN compromise has already occurred when a foreign entity took over

the JavaScript Polyfill project, embedding malware in its CDN-hosted assets [19].

In such scenarios, malicious actors could alter the contents of the received packets used

by this project, injecting malicious code into them.

The most critical resource in terms of security is Web3.js library, such libraries have pre-

viously suffered security breaches, an example of this is Solana web3 JavaScript blockchain

SDK "@solana/web3.js" [1]. If compromised, malicous code injected in the library packet

could steal users cryptocurrency wallet keys or manipulate how the interface builds the trans-

actions. Usually, after the transaction is built, the interface requests from students’ Meta-

Masks’ connected account to either sign the transaction and send it to the blockchain network

or refuse the signing of the transaction. The compromised CDN packet could manipulate the

generated transaction. Instead of executing the expected exchange of FERcoin for coffee

on the FERcoin smart contract, the compromised script could "drain" the cryptocurrency

holdings of the user’s wallet.

The way this security issue is secured is by first "locking" the packet version to the static

version that was used in the final build of the project instead of the latest version and then
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storing the hash of the packet, which will be used in the future for validating the integrity of

the CDN fetched packet. This also helps with preventing errors and mismatches between the

usage of the functions at the time of development and in the newest packet versions.

After the packet is locked, the SRI (Subresource Integrity) [14] security feature of the

browsers is used to generate the SHA-384 hash of the used packet version, which is supposed

to stay static, and then store the hash together with the script element that retrieves the packet

from the embedded URL. The simple tool used for this is the online SRI Hash Generator [2].

When the client-side loads the interface and fetches the needed scripts from the CDN,

the browser generates the SHA-384 hash of the fetched library and compares it to the previ-

ously computed hash stored on the server and embedded in the script element. This ensures

that the retrieved resource is the same as it was at the time the hash was generated. If there

is a mismatch between the hashes, the fetched resource is dropped with an error. This pre-

vents the ramifications of compromises of the packets fetched from the CDN because if any

malicious code is injected, the hashes won’t be identical anymore and the resource will be

dropped.

The following code excerpt demonstrates the implementation of the SRI feature.

1 <script

2 nonce="{{ csp_nonce() }}"

3 src="https://cdn.jsdelivr.net/npm/web3@4.16.0/dist/web3.min.js"

4 integrity="sha384-Ptk2PWqkZWMoP7ivsQOoijqfM5hQC4AgIEmQ+

WUgk2OY5eNAmVLXunFrfpnZhmkb"

5 crossorigin="anonymous">

6 </script>

In the src attribute, it can be noticed that the web3 packet is locked to the version 4.16.0

and under the integrity attribute, the hash algorithm used for generating the hash is defined,

as well as the generated hash itself, which is used for comparison.

9.1.2. Content Security Policy and Script Nonce

The application employs a Content Security Policy (CSP) to mitigate security risks such

as Cross-Site Scripting (XSS), clickjacking, and data exfiltration. CSP enforces strict

control over script execution, resource loading, and data transmission, ensuring that only

trusted sources are permitted.

CSP Directives and Their Purpose

CSP configuration is shown in the code excerpt below.

1 csp = {

2 ’default-src’: "’self’",
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3 ’script-src’: [

4 "’self’",

5 "https://cdn.jsdelivr.net", # Allow Web3.js, Vue.js, Bulma CDN

6 "https://cdnjs.cloudflare.com",

7 "’unsafe-eval’", # Required for Vue/Web3

8 ],

9 ’style-src’: [

10 "’self’",

11 "https://cdn.jsdelivr.net",

12 "https://cdnjs.cloudflare.com",

13 "’unsafe-inline’" # Needed for Bulma

14 ],

15 ’connect-src’: "’self’ *",

16 ’frame-src’: "’none’",

17 ’frame-ancestors’: "’none’",

18 ’base-uri’: "’self’",

19 ’form-action’: "’self’"

20 }

21

22 FRAME_OPTIONS = ’DENY’

23 FORCE_HTTPS = False # Set to True in production if using HTTPS

The explanation of each directive in the CSP configuration is as follows.

± script-src: Restricts scripts to trusted sources, including the application server and

the trusted CDNs. Inline scripts require a dynamically generated nonce to execute,

ensuring that only authorized scripts run. The directive allows unsafe-eval (nec-

essary for Vue/Web3 functionality) but the Subresource Integrity (SRI) is enforced,

as described in the previous section, to block subsequently modified scripts from

CDNs.

± style-src: Limits stylesheets to approved domains while permitting inline styles

(unsafe-inline), required for the Bulma CSS framework.

± connect-src: Allows the application to connect to various external APIs. The wild-

card (*) is necessary because client-side interfaces need to dynamically fetch data,

such as current network gas prices, from different API endpoints that may change

over the application’s lifetime. Additionally, further security measures can be im-

plemented by explicitly defining a set of allowed endpoints. However, since these

endpoints may change during the application’s lifetime (e.g., when an admin updates

the API settings), the system must properly handle such changes and dynamically

update the directive to include newly authorized endpoints.

± frame-src & frame-ancestors & FRAME_OPTIONS: All three directives are set to

restrictive values to mitigate clickjacking attacks. frame-src and frame-ancestors
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are both set to ’none’, ensuring that this application cannot embed external content

within iframes, preventing clickjacking attacks initiated from this site toward other

sites. Additionally, FRAME_OPTIONS is set to ’DENY’, blocking any attempts

by external websites to embed this application within an iframe, protecting against

external clickjacking attacks targeting this site.

± base-uri: Restricts the base URL of the application to ’self’, preventing malicious

base tag modifications.

± form-action: Ensures that form submissions are confined to the application’s domain

only, preventing data exfiltration to external sites.

Ensuring Secure HTTPS Connections in Production

The configuration includes the FORCE_HTTPS flag, which is currently set to False for

development but must be enabled ( set to True) in production when HTTPS is config-

ured. Enforcing HTTPS ensures that all traffic is encrypted, preventing man-in-the-middle

(MITM) attacks and data interception.

CSP Implementation in Flask

The CSP is implemented using Flask-Talisman, a security middleware for Flask applica-

tions. The flask-talisman initialization function is available in the code excerpt below.

1 def initialize_talisman_csp(app, csp, FRAME_OPTIONS, FORCE_HTTPS):

2 """

3 Initialize Flask-Talisman with security headers and CSP

4

5 Args:

6 app (Flask): Flask application instance

7 csp (dict): Content Security Policy configuration

8 frame_options (str): X-Frame-Options header value

9 force_https (bool): Enforce HTTPS redirection

10

11 Returns:

12 Talisman: Configured security middleware instance

13 """

14 talisman = Talisman(

15 app,

16 content_security_policy=csp,

17 content_security_policy_nonce_in=[’script-src’, ’style-src’], #

Enable nonce generation

18 frame_options=FRAME_OPTIONS,

19 force_https=FORCE_HTTPS
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20 )

21

22 return talisman

The Flask-Talisman initialization function defines how a nonce is applied to client-side

scripts and styles for permission control. The nonce is generated on the server side and

embedded in the corresponding HTML elements before delivering the requested resource

to the user. The following code excerpt, previously discussed in the section on SRI imple-

mentation, is shown again hereÐthough this time to illustrate nonce embedding rather than

integrity verification.

1 <script

2 nonce="{{ csp_nonce() }}"

3 src="https://cdn.jsdelivr.net/npm/web3@4.16.0/dist/web3.min.js"

4 integrity="sha384-Ptk2PWqkZWMoP7ivsQOoijqfM5hQC4AgIEmQ+

WUgk2OY5eNAmVLXunFrfpnZhmkb"

5 crossorigin="anonymous">

6 </script>

9.1.3. CSRF Protection

Cross-Site Request Forgery (CSRF) protection in the Flask application is implemented using

the CSRFProtect class from the flask_wtf.csrf module [9].

The flask_wtf module extends Flask’s capabilities by integrating WTForms (Web

Forms Toolkit) [10], a form-handling library, with additional security features such as

CSRF protection.

In addition to CSRF protection, flask_wtf leverages wtforms to simplify form val-

idation and processing by providing a structured way to define form fields and enforce val-

idation rules. These validation mechanisms apply to all forms that communicate with the

backend, ensuring data integrity and security.

CSRF protection requires a secret key to securely sign the token. By default, this uses

the Flask app’s SECRET_KEY, unless specified otherwise. This SECRET_KEY is the same

key used for both CSRF token generation and session encryption. It will be discussed further

in the next section: Secret key.

The function initialize_csrf(app) sets up CSRF protection for all form submis-

sions that interact with backend logic. The import of the requied class and the initialization

function is shown in the code excerpt below.

1 from flask_wtf.csrf import CSRFProtect

2

3 def initialize_csrf(app):

4 """
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5 Set up CSRF protection for form submissions

6

7 Args:

8 app: Flask application instance

9

10 Returns:

11 CSRFProtect: Initialized CSRF protection handler

12 """

13 csrf = CSRFProtect(app)

14 return csrf

CSRF protection ensures that malicious requests from unauthorized sources cannot be

executed on behalf of an authenticated user. A hidden input field, csrf_token, is included

in each form to verify the legitimacy of a request, as shown in the excerpt below.

1 <input type="hidden" name="csrf_token" value="{{ csrf_token() }}">

When the form is sent from the client-side and reaches the server-side, the CSRF token

from the form is validated. This ensures that the request originates from the application

interface itself, preventing malicious actors from tricking users into submitting unintended

requests by embedding malicious forms on external sites. The CSRF token validation is

handled automatically by the flask_wtf module.

9.1.4. Secret Key

The secret key can either be explicitly set when running the container or, if not set, it will be

generated randomly.

If a secret key is not explicitly set, it is randomly generated using the token_urlsafe

function from Python secrets module. The length of the key is 64 bytes and is converted

into a URL-safe base64-encoded string to avoid errors that may arise with certain generated

byte sequences.

The following entrypoint script excerpt checks whether the secret key is defined as an

environment variable. If not, it generates a new one as described above:

1 # Generate SECRET_KEY if not provided

2 if [ -z "$SECRET_KEY" ]; then

3 export SECRET_KEY=$(python -c "import secrets; print(secrets.

token_urlsafe(64))")

4 echo "Generated SECRET_KEY: $SECRET_KEY"

5 fi

The secret key is generated in the entrypoint script rather than in the Dockerfile to prevent

it from being embedded in the built image during the build phase. If someone had access

to the image, they could read and extract the secret key. To mitigate this risk, secret key
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generation is performed during container initialization rather than the build phase, ensuring

that it is absent from the image and not at risk of compromise. It is later on read by flask

application from the environment when the container starts running.

This does mean that each time the container is restarted, a new random secret key would

be generated, because all the environment variables set via export in the entrypoint script do

not persist between container runs. This would invalidate all the existing session cookies.

This is not a major concern, as the number of authenticated users is relatively small

(limited to professors, administrators, and cafe workers). These users access the application

infrequently, and Docker container restarts are uncommon. The only impact of a restart is

that users must log in again, which they usually have to do anyway, as the session lifetime is

8 hours.

When running the container in production, it is recommended that the secret key should

be explicitly set as follows:

docker run -e SECRET_KEY=<secret key> ...

This way the explicitly set secret key will persist between restarts of the container, and

will not be embedded in the image itself.

9.1.5. Session Management, Validation and Cookie Forgery Protection

The system provides two session management methods: using the filesystem storage or en-

crypted session cookies. Encrypted session cookies are the default and recommended ap-

proach unless explicitly set to filesystem storage in the Dockerfile. The remainder of this

section focuses on encrypted session cookies.

Upon login, the session is initialized and defined with the user’s username, ID, and role,

as shown below:

1 # Session initialization

2 session.update({

3 ’username’: user.username,

4 ’id’: user.id,

5 ’role’: Role.from_str(user.role).value

6 })

The session object is then encrypted with Flask’s secret key and sent to the user as an

encrypted session cookie.

All authenticated users (those who log in to access protected system functionalities) use

sessions. All endpoints requiring authentication validate the session and check user roles

before granting access. All authentication-protected endpoints validate the session and check

user roles before granting access. These endpoints are defined in each authenticated user’s

Flask blueprint.

76



All Flask blueprints for authenticated users implement a role check (which also performs

session validation) before every request, as shown in the administrator blueprint example:

1 @admin_bp.before_request

2 def verify_admin_access():

3 """

4 Validate admin role for all blueprint routes before processing

requests.

5 """

6 access_check = check_role(Role.ADMIN.value)

7 if access_check is not True:

8 return access_check

The role_check function is responsible for session validation and role verification, as

shown below:

1 def check_role(required_role: str):

2 """

3 ...

4 """

5

6 if ’id’ in session:

7

8 user_id = session[’id’]

9

10 # Verify against database

11 user = DbUsersViewInterface.get_user_by_id(user_id)

12

13 if not user:

14 # No user with the session ID

15 # Clear compromised session and redirect

16 session.clear()

17 return redirect(url_for(’auth.login’))

18

19 if user.role != session[’role’]:

20 # Db user role and session role mismatch

21 # Clear compromised session and redirect

22 session.clear()

23 return redirect(url_for(’auth.login’))

24

25 user_role = user.role

26

27 # Check if the current session role matches the required role

28 if user_role == required_role:

29

30 # Role is correct, request processing can continue
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31 return True

32

33 else:

34 # Role is not correct, redirect user to his dashboard

35 return redirect_role(user_role)

36

37 else:

38 # If no role is found, redirect to login page

39 return redirect(url_for(’auth.login’))

The session validation and role verification process follows these steps:

± Verify that a session exists

± Confirm that the session ID corresponds to a valid user in the database

± Ensure that the session role matches the user’s role stored in the database

± Ensure that the user’s role matches the required role (required role is set as an argu-

ment to the function)

± If any check fails, return the redirect for login page

This implementation makes it significantly more difficult for malicious actors to forge

cookies, even if they obtain the secret key used for session cookies encryption. To forge a

valid cookie using a compromised secret key, an attacker would also need to obtain the user’s

random 9-digit ID and their role as stored in the database, to successfully forge that user’s

cookie.

An additional security benefit of this implementation is that when an administrator deletes

a user from the database, their session cookie becomes invalid immediately, rather than

allowing the user to continue using their session cookie until expiration, if there was no

Database-backed role verification.

9.1.6. Restricting Access to Protected Client-Side Resources Based on

User Roles

Certain authenticated user interfaces rely on client-side JavaScript for functionality. In con-

ventional setups, static frontend assets (JavaScript, CSS files and similar) are stored in a

publicly accessible static directory.

However, this would allow unauthenticated users to retrieve JavaScript files and other

frontend components intended for authenticated users interfaces.

These scripts do not contain sensitive data on their own without the appropriate authenti-

cated users controller injecting specific values into them through the template that uses these

scripts. The sensitive data injected mostly consists of API endpoints with API keys. How-

ever, their exposure could help attackers to gather information about the authenticated users’
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interfaces and infer some system functionalities. This would allow them to plan further at-

tacks, like social engineering and XSS attempts.

To prevent unauthorized access, the system separates frontend assets into two directo-

ries:

± static - publicly accessible frontend components and assets

± static_auth - protected frontend components and assets requiring authentication

Within static_auth, role-based subdirectories (admin/, cafe/, professor/)

correspond to the possible user roles and ensure that authenticated users can only access as-

sets relevant to their role. Unlike public resources, access to these protected files is managed

by separate authentication logic instead of direct filesystem access.

The authentication logic is implemented in the authentication controller, where the han-

dler for fetching the protected resources requires a session cookie to be present in the re-

quest. The validity of the cookie as well as the role required for accessing the requested

component is checked by the check_role function (previously described in Session

Management, Validation and Cookie Forgery Protection).

The handler mentioned is implemented as follows:

1 @auth_bp.route(’/static_auth/<role>/<path:filename>’, methods=[’GET’])

2 def serve_static_auth(role, filename):

3 """

4 Securely serve role-specific frontend assets from protected

directories.

5

6 Parameters:

7 role (str): Directory name that must match user’s role

8 (e.g., ’admin’ for files in static_auth/admin/)

9 filename (str): Relative path to asset within role directory

10

11 Security:

12 - Validates user’s role matches requested directory

13 - Returns login redirect for unauthorized access

14 - Returns login redirect for missing files

15 - Prevents enumeration

16 Returns:

17 file: Requested asset or redirect if unauthorized

18 """

19

20 # Role validation, comparing the role in session

21 # and the role needed for the file requested

22 redirect_result = check_role(role)

23 if redirect_result != True:

24 return redirect_result
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25

26 # Check if the requested file exists in the role-specific directory

27 role_dir = os.path.join(STATIC_AUTH_DIR, role.lower())

28 if not os.path.exists(os.path.join(role_dir, filename)):

29 return redirect(url_for(’auth.login’))

30

31 # Serve the file

32 return send_from_directory(role_dir, filename)

The path for requesting a protected component is in the format as follows:

/static_auth/<role>/<path:filename>

In each request’s path, the role corresponding to both the subdirectory in static_auth

directory and the user role required for accessing the protected component must be present,

as well as the filename of the protected component.

Then that role in the path is used first to verify that the user’s session is valid and contains

the required role for accessing the component, by calling the check_role function with

the role from the path as an argument. That same role from the request together with the path

requested is then used to construct the path to the requested file from the static_auth

directory.

If either session validation or role verification fails, the request is redirected to the login

page instead of returning a "403 Forbidden" or "404 Not Found" response. This prevents

attackers from systematically probing and enumerating the system to discover the existence

and paths of the protected resources.

This implementation enforces strict role-based access control for protected frontend re-

sources. It prevents unauthorized users from accessing protected assets while ensuring that

authenticated users can only retrieve resources relevant to their role.

9.1.7. Enumeration Protection

Enumeration protection prevents unauthorized users from discovering non-public endpoints.

It also restricts authenticated users from detecting endpoints that belong to other users.

This is achieved by explicitly defining which paths and path prefixes are publicly acces-

sible, allowing them to be reached without a session cookie.

The following paths are publicly accessible without authentication:

± All resources in the static directory

± The student interface at base path / and the student guide at /guide

± All paths beginning with the /auth/ prefix.

± The deployed smart contract ABI JSON file at /contract-abi
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The list of public resources from the static directory is dynamically generated by

reading the contents of the directory, while other public paths are explicitly hardcoded.

If new public endpoints are introduced, they must be manually added to the lists in the

SecurityConfig

The middleware enforcing these restrictions is implemented as follows:

1 @app.before_request

2 def enforce_auth():

3 """

4 Authentication gatekeeper middleware

5

6 Allows:

7 - Authenticated users (session contains role)

8 - Public resources (allowed paths/prefixes)

9 """

10

11 # Skip for authenticated users

12 if ’role’ in session:

13 return

14

15 # Allow public endpoints

16 if request.path in SecurityConfig.ALLOWED_PATHS:

17 return

18

19 # Allow static assets

20 if any(request.path.startswith(prefix) for prefix in SecurityConfig.

ALLOWED_PREFIXES):

21 return

22

23 # Redirect unauthenticated access attempts

24 if not session.get(’authenticated’):

25 return redirect(url_for(’auth.redirect_user’))

This middleware runs before every request and follows this logic:

± If a valid session exists, continue processing the request

± If the requested path is in the list of publicly accessible paths or matches a public

prefix, continue processing

± Otherwise, redirect unauthenticated users to the login page or authenticated users to

their role-based interface

By enforcing these rules, the system ensures that unauthenticated users receive the exact

response for both non-existent endpoints and protected endpoints, effectively preventing both

the standard and response-time-based enumeration techniques.
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Preventing Enumeration of Other Authenticated Users’ Endpoints

The prevention of enumeration of other users’ authenticated endpoints by an already authen-

ticated user is handled by the check_role function (previously described in Session

Management, Validation and Cookie Forgery Protection).

check_role is applied as a middleware to all authenticated user endpoints before pro-

cessing requests, as defined in each user’s blueprint.

The function returns the same redirect, which for authenticated users redirects to their

interface, if the role of the user requesting the access to the endpoint is not the defined role

required by the endpoint.

If an authenticated user requests a non-existent endpoint, the following logic is applied:

1 @app.errorhandler(404)

2 def page_not_found(e):

3 """

4 On 404, redirect

5 Used for further enumeration protection

6

7 (404 occurrence can still be detected, but only possible

8 on publicly available prefixes for unauthenticated actors)

9 """

10 return redirect(url_for(’auth.redirect_user’))

Although this logic returns the same redirect as for unauthorized requests, differences in

responses can still be detected.

This makes it possible for authenticated users to enumerate the base prefix of other users’

endpoints. However, for any requested endpoint that begins with a valid prefix, the redirect

response is exactly the same, regardless of whether the full path corresponds to a valid or

non-existent endpoint.

This way, they can not enumerate the remainder of any unauthorized endpoint, especially

any endpoints that deal with POST requests. They can only discover the existence of the

prefix, that is on its own used only to return the initial users frontend interface, working as a

pure GET request functioning endpoint.

This prevents a malicious actor that has gained access for one user to successfully enu-

merate other users endpoints.

9.1.8. Bruteforce Protection

To prevent brute-force attacks, especially on the login page, the Flask application uses the

Flask-Limiter module [8], which provides rate limiting capabilities. This extension

is configured to limit the number of requests per IP address in the request on protected
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resources.

The limiter is applied to the entire authentication blueprint, to limit both the login at-

tempts and all the unauthorized requests or requests to non-existent endpoints. Since unau-

thorized or non-existent endpoint requests trigger redirect function from the authentication

blueprint, they also get rate-limited, further reducing enumeration capabilities.

The rate limit is set to 10 requests per minute and defined in the SecurityConfig.

The following code shows the necessary imports and the limiter initialization function:

1 from flask_limiter import Limiter

2 from flask_limiter.util import get_remote_address

3

4 def initialize_limiter(app):

5 """

6 Create rate limiter instance for brute-force protection

7

8 Args:

9 app: Flask application instance

10

11 Returns:

12 Limiter: Configured rate limiting instance

13 """

14 limiter = Limiter(get_remote_address, app=app)

15 return limiter

This function is used to initialize the limiter and apply it over authentication blueprint

during the application initialization as follows:

1 # Register blueprints

2 ...

3 app.register_blueprint(auth_bp, url_prefix=’/auth’)

4 ...

5

6 # Set rate limit on authentication blueprint

7 rate_limiter.limit(SecurityConfig.RATE_LIMIT_AUTH_BP,

8 error_message="Too many requests. Please try again later.")(auth_bp)

Currently, the limiter uses its default in-memory storage for tracking request counts.

While this approach remains viable even in production, using a persistent storage backend

should be considered, especially when scaling the application across multiple workers or

instances. Flask-Limiter supports various storage backends, including Redis, Mem-

cached, and MongoDB.

Additionally, if the application is hosted behind a reverse proxy in production, the get_remote_address

function could return the proxy’s IP address instead of the requester’s IP. In such cases, the

limiter should be configured accordingly, following the guidelines in the Flask-Limiter
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documentation.

9.1.9. Separation of the Master Wallet from the Application and En-

cryption of Server-Side Stored Wallets

The most critical component of the system is the deployed smart contract. It faces two pri-

mary risks: one, a bug or vulnerability in the smart contract code; and two, the compromise

of the master keyÐthe key pair of the account that owns the contract. If the master key were

compromised, a malicious actor could invoke all functions restricted to the contract owner,

such as minting new FERcoin, shutting down the contract, or withdrawing native currency

from the contract’s balance.

For this reason, the master key is kept entirely separate from the application. It is the

administrator’s responsibility to securely store the master key using appropriate methods.

The application only provides an interface for contract owner’s functions by building trans-

actions. However, the transactions must still be signed by the master key, which remains

separate from the application. These interfaces are only usable if the administrator uses

MetaMask, but the administrator is free to manage the deployed contract on the blockchain

network any way they choose, even completely omitting the application’s contract manage-

ment interfaces. Thus, even if an administrator’s account is compromised, the deployed

smart contract remains secure, and no native currency or FERcoin will be lost or misused as

long as the master key is secure.

As noted, if the deployed smart contract were compromised, recovery would be signifi-

cantly more difficult and the potential ramifications far greater than those associated with an

application breach. Essentially, the application only provides a set of interfaces for reading

data and communicating with the deployed smart contract for different usersÐexcept for one

user group, the professors. For professors, the system provides server-side wallet generation,

storage, and usage to simplify their interactions with the FERcoin system and eliminate the

need for additional software like MetaMask.

System-generated and stored wallets are managed by administrators, for use by profes-

sors. These wallets are always stored with their private keys encrypted and are decrypted

only temporarily at the time they need to be used to sign a transaction. The passwords used

for decryption are not stored on the server; users must store them separately from the appli-

cation.

Wallets are stored as JSON files on the server and contain the following values:

± Wallet address (derived from public key)

± Encrypted private key (secured using AES encryption with salting, following the

Web3 Secret Storage Definition)
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± ID of the user associated with the wallet

± Username of the user associated with the wallet

These wallets are always stored with their private keys encrypted and are only temporar-

ily decrypted on the server side when needed to sign a transaction. The decryption passwords

are not stored on the server; instead, each user must keep their password separately from the

application.

Administrators have access to all wallets stored on the server, although in the encrypted

state. They can only decrypt the wallets if they know the password for decryption.

For the management of the server stored wallets, three interfaces are implemented:

± WalletViewInterface used only for viewing the wallets present on the server

in the encrypted state

± WalletDecryptInterface used for decrypting wallets with the decryption pass-

word

± WalletWriteInterface used for generating new wallets, re-encrypting exist-

ing wallets with a new password (with the old password provided), and deleting

stored wallets from the server

Administrators use all of these interfaces.

Professors, on the other hand, use the WalletViewInterface to view all of the wal-

lets associated with them and load the data of the chosen wallet. Backend logic verifies that

the professor’s ID matches the ID stored in the wallet JSON file. This prevents any pro-

fessor from accessing another professor’s wallet and helps to prevent horizontal privilege

escalation. Even if an attacker compromises a professor’s account, they cannot access wal-

lets belonging to other users. Note that the private key is never loaded into any interface,

neither in its encrypted nor decrypted form, to avoid the possibility of brute-force attempts

on the encrypted private key. The only way a private key of a system stored wallet can leave

the server is if the administrator uses the functionality of decrypting the wallet with its pass-

word and downloading the wallets JSON file in the decrypted format. An administrator may

use this function if actions outside the intended scope of system-stored walletsÐlimited to

FERcoin distributionÐare required.

When the professors initiate the action of distributing FERcoin to selected students, the

WalletDecryptInterface is used on the server side to temporarily decrypt the chosen

wallet with the provided password. The decrypted wallet is then used to sign the transaction

of FERcoin distribution, which the backend validates before sending it to the blockchain

network.

The only wallets stored on the server are those assigned to professors, and they are de-

crypted only temporarily for transaction signing. These wallets have limited contract man-
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agement capabilities, which are defined in the deployed smart contract and cannot be mod-

ified without the master wallet. Professors’ wallets can only spend the FERcoin allowance

allocated to them. These allowances are only usable if sufficient FERcoin tokens have been

minted and are available in the master wallet’s balance. Both actions, minting and setting

allowances, are limited only to the contracts owner, requiring the master wallet.

The only way these wallets could be compromised is if a malicious actor gains access to

the server. An attacker could either retrieve the encrypted private keys, in which case they

would need to brute-force the encrypted wallet’s private keys encryption password or read

the server’s memory at the moment when a wallet is decrypted for signing a transaction. If

successful, the attacker could use the compromised wallet, but only within the constraints of

its set allowance and the smart contract’s state at that time. Appropriate countermeasures for

such attacks are discussed in the next chapter, chapter 10.

9.2. Smart Contract Security

FERcoin’s smart contract security primarily focuses on protecting the contract from the most

common vulnerabilities. The vulnerabilities considered are based on the OWASP Smart

Contract Top 10 [16] and the Solidity Security Considerations Documentation [7].

This section discusses several implementations designed to mitigate these vulnerabilities.

In addition to inheriting ERC20, the FERcoin contract also inherits Ownable and Paus-

able from OpenZeppelin, a library for secure smart contract development that implements

well-known and used standards. These inheritances ensure that the FERcoin contract func-

tionalities and access control are implemented following the best approaches and standards.

9.2.1. Access Control

Access control is achieved by using the Ownable inheritance and using the ERC20 token

approval logic. All the functions that change the state of the smart contract fall into one of

the three categories:

± Public functions - available to everyone

± Owner-only functions - available to only the contract owner

± Approved-wallet functions - available only to addresses explicitly approved by the

contract owner, allowing them to distribute their assigned allowances

All the functions that manage sensitive logic and should only be modified by an ad-

ministrator use the onlyOwner modifier from the Ownable inheritance. This ensures they

are callable only by the contract’s owner. The contract owner is typically the address that

deployed the smart contract, and its key pair is securely stored by the FERcoin administrator.
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Functions available only to approved addresses are used for distributing FERcoin. These

functions, transferFrom and batchTransferFrom, allow professors to distribute

FERcoin to students. The way the access control enforcement is implemented for these

functions is not by using a function modifier, like for owner’s functions, but by implementing

a require statement that checks if the caller address has the necessary allowance approved

by the contract owner to execute the function.

Only the contract owner can approve addresses and set allowances, and he can only set an

allowance which gives the right to approved addresses to spend FERcoin from the owner’s

balance.

Since only addresses approved by the contract owner have a nonzero allowanceÐand

because the distribution functions cannot be called with a zero amountÐany calls from un-

approved addresses will fail due to require checks, as shown:

1 function transferFrom(address spender, address recipient, uint256 amount)

2 public override whenNotPaused returns (bool) {

3

4 require(amount > 0, "Transfer amount must be greater than zero");

5

6 require(spender == owner(), "Tokens can be transferred only from the

owners account balance");

7

8

9 require(isEOA(recipient), "Recipient must be an EOA");

10

11 require(allowance(spender, _msgSender()) >= amount, "Transfer amount

exceeds allowance or the caller is not allowed to transfer from

this account");

12 ...

The last set of functions that are publicly available and change the state of the contract are

the transfer and buyCoffee functions, both of which are used exclusively to manage

the caller’s FERcoin balance.

9.2.2. Reentrancy Attack Protection

Reentrancy attacks are a serious security threat unique to blockchain smart contracts. Several

high-profile reentrancy exploits have been documented [4]. Reentrancy attacks can have

severe consequences, often leading to the complete loss of all funds within the targeted

smart contract. These attacks involve deploying a malicious smart contract that exploits a

vulnerability in another contract.

A contract is vulnerable to this type of attack if it has a function, callable by another

smart contract, that has a particular unsafe order of actions as well as the ability to trigger
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the execution of another contract. Specifically, if a function modifies the contract state (e.g.,

transferring tokens), before updating that state, where in between those two actions, the

logic from another smart contract can be triggered. The state change itself could be the

part of the code that triggers the execution of the malicious smart contract, if, for example,

the state change is transferring native currency. If the native currency is transferred to an

address of another smart contract, this can trigger receive() or fallback() functions

of the malicious smart contract upon native currency receival. The triggered function of the

malicious smart contract would then call the same vulnerable function again. This would in

turn form a loop of the actions that change the contract state, like transferring tokens, where

these actions would be performed multiple times, and the update of the state change would

be performed only once, when the loop is exited. This can result in the loss of all the tokens

or native currency from the vulnerable smart contract’s balance.

In the FERcoin smart contract, the only two functions that could trigger the execution of

logic within another smart contract, are the FERcoin distribution functions that also transfer

native currency: transferFrom and batchTransferFrom.

The functions that manage FERcoin tokens, such as the ERC20-inherited transfer

function, cannot trigger the execution of another smart contract. Even if the custom ERC20

token is sent to another smart contract’s address, the transfer of custom ERC20 token does

not do anything outside of the scope of changing the original contract state by updating the

balances in regards to transfer.

FERcoin distribution functions, on the other hand, not only distribute FERcoin tokens

but also send a reimbursement of native currency. This reimbursement is intended to cover

the gas fees when spending or transferring the received FERcoin tokens. If the recipient ad-

dress belongs to another smart contract, this could trigger its receive() or fallback()

function upon the receipt of reimbursement.

Even though FERcoin distribution functions can only be called by approved addresses

with an allowance set by the contract owner, a student could still submit a smart contract’s

address instead of their personal wallet address to receive FERcoin. In such a case, the

FERcoin tokens and native currency reimbursement would be sent to the smart contract.

However, a smart contract receiving the FERcoin and reimbursement would not be able to

call the distribution function again, as its address would not be pre-approved by the contract

owner.

The following code sends the reimbursement to the recipient address:

1 (bool success, ) = recipient.call{value: reimbursementWei, gas:

EOA_TRANSFER_GAS_LIMIT }("");

The gas limit for this transaction is defined by the constant EOA_TRANSFER_GAS_LIMIT,

which is set as follows:
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1 /// @notice Gas limit for reimbursement transfers to EOA addresses

2 uint256 public constant EOA_TRANSFER_GAS_LIMIT = 2300;

This constant is set to 2300, which is a sufficient gas limit for sending native currency to

an externally owned account (EOA), but the transaction would fail if the address receiving

the currency was that of another smart contract [11, 3]. This is because the gas limit defined

is insufficient to execute a receive() or fallback() function of the smart contract that

is receiving the native currency.

To further enhance security, the smart contract also implements a function to determine

whether an address belongs to an EOA or a smart contract:

1 /**

2 * @notice Checks if an address is an Externally Owned Account (EOA)

3 * @dev Uses EXTCODESIZE to detect contract deployment. Note: Contracts

under

4 * construction (in constructor) will return false negative (size=0)

5 * @param account Address to check

6 * @return isEOA Boolean indicating EOA status (true = EOA, false =

contract)

7 */

8 function isEOA(address account) public view returns (bool) {

9 uint256 size;

10 assembly {

11 size := extcodesize(account)

12 }

13 return size == 0;

14 }

This function uses extcodesize, which returns the size (in bytes) of the code stored

at a given address. Since EOAs do not have stored code, the function returns zero for EOAs

and a value greater than zero for deployed smart contracts.

There are two edge cases where this function could return zero incorrectly: If given the

address of a smart contract that is being deployed at that moment, during the time that its

constructor is executing. In that period, smart contracts code that is being deployed is not

yet stored on chain, but its address is known. The other case is a smart contract that has

called selfdestruct, removing its code. extcodesize function would return zero as

codesize because all the code is removed. However, in this case, no contract logic remains

that could be used for an exploit.

For this reason, this function is not used as the sole security check. Instead, it is combined

with access control and the EOA gas limit.

This function is used inside require statements in all functions that need to confirm

that the address given in the argument is an EOA address. The require statement is as follows:

89



1 require(isEOA(recipient), "Recipient must be an EOA");

Due to these multiple security measures, reentrancy attacks in the FERcoin smart contract

are effectively prevented.

9.2.3. Input Validation

The most critical functions for input validation are public functions that modify the contract’s

state.

These functions are the transfer and buyCoffee function. Transfer function only

implements the inherited virtual transfer function from ERC20 with added whenNotPaused

modifier to disable the function if the contract is shut down, making it secure, as its logic is

implemented by a known ERC20 standard.

The buyCoffee function implements custom logic. It takes two arguments: first is the

ID of the cafe that the coffee is being purchased from; second is the unique bill number of

the cafe bill for the bought coffee.

1 /**

2 * @notice Purchase coffee using FERcoin

3 * @dev Burns COFFEE_PRICE tokens and emits purchase event

4 * @param spendLocationId ID of the cafe where coffee is purchased

5 * @param billNumber Unique bill identifier from POS system (JIR on

Croatian)

6 */

7 function buyCoffee(uint256 spendLocationId, string calldata billNumber)

8 external whenNotPaused returns (bool) {

9

10 require(bytes(billNumber).length > 0, "Bill number must not be empty"

);

11

12 string memory spendLocation = cafes[spendLocationId];

13 require(bytes(spendLocation).length > 0, "Invalid spend location");

14

15 _burn(msg.sender, COFFEE_PRICE);

16 emit CoffeeBought(msg.sender, spendLocation, billNumber);

17

18 return true;

19 }

The function then burns one FERcoin token from the balance of the function caller using

the internal _burn function from inherited ERC20.

The requires implemented in the function verify that the bill number is not undefined, to

not spend a FERcoin token on nothing and that the ID of the cafe given in the argument maps
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to an existing cafe that is defined in the system. The inherited internal burn function already

enforces that the caller has the needed FERcoin present in balance, that is being burned,

and reverts the function execution if that is not satisfied. This function cannot be misused

to harm the FERcoin system or other FERcoin holders. The only potential misuse is by the

caller themselves, who could accidentally burn their own token without generating a valid

transaction.

9.2.4. Shut Down Function

In cases where the contract owner’s key pair is compromised or an approved professor’s

wallet is breached, leading to an illegal contract state, the contract can be shut down by the

contract owner. Other similar severe incidents may also justify executing this function. The

appropriate response steps in such scenarios are described in chapter 10.

The shutdown function is as follows:

1 /**

2 * @notice Emergency shutdown mechanism for the contract

3 * @dev Withdraws all native currency to specified EOA, pauses all

pausable functions,

4 * and permanently renounces ownership. This action is irreversible.

5 * @param withdrawTo Address to receive remaining native currency (must be

EOA)

6 * @return success Boolean indicating whether shut down was successful

7 * Requirements:

8 * - Can only be called by contract owner

9 * - ‘withdrawTo‘ must be an Externally Owned Account (EOA)

10 *

11 * After execution:

12 * - All functions with whenNotPaused modifier will be disabled

13 * - Ownership is permanently renounced

14 * - Contract becomes immutable, read only

15 *

16 * Safety features:

17 * - Uses exactly 2300 gas for transfer to ensure compatibility with EOAs

18 * - Works even with zero balance in contract

19 * - Fails if recipient does not receive funds

20 */

21 function shutDown(address withdrawTo) external onlyOwner returns (bool) {

22

23 require(isEOA(withdrawTo), "withdrawTo must be EOA");

24

25 uint256 balance = address(this).balance;

26
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27 // Send all remaining native balance of the contract to an EOA

withdrawTo address

28 (bool sent, ) = withdrawTo.call{value: balance, gas:

EOA_TRANSFER_GAS_LIMIT}("");

29

30 require(sent, "Native currency transfer failed");

31

32 _pause(); // Disable all pausable functions

33 renounceOwnership(); // Make shutdown irreversible

34

35 emit ShutDown(withdrawTo, balance, sent);

36

37 return true;

38

39 }

The shutdown function follows a structured process:

± Transfer all remaining native currency to a specified Externally Owned Account

(EOA)

± Pause all state-changing contract functions (functions with whenNotPaused mod-

ifier)

± Renounces ownership permanently, making the contract immutable and read-only

Since only the contract owner can unpause the contract, renouncing ownership ensures

that it remains permanently paused and immutable. All state-changing functions are dis-

abled, making the contract effectively read-only. This is done so that, during the recovery,

the newly deployed contract can be returned to the same state of the compromised contract

as at the moment it was shut down.

Excluding Shutdown Function UI Mapping

The shutdown function is intentionally not accessible through the FERcoin administrator

interface. This design choice ensures that:

± Accidental execution (e.g., user error) is prevented

± Attacks targeting the admin UI (such as XSS exploits) cannot trigger the shutdown

process

± In the severe breach cases, the application is not relied on, which can also be com-

promised

Attackers have a strong incentive to target this function, because this function also with-

draws all the remaining native currency of the contract to the specified address.
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The administrator should only execute the shutdown function manually using a dedicated

script that does not store the owner’s key pair but takes it as an argument. Alternatively, they

can use on-demand contract interaction tools like Remix IDE to generate an interface and

execute the function securely using the owner key pair.
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10. Incident Response and Attack

Scenarios

This chapter discusses potential attack scenarios and the appropriate incident response mea-

sures to mitigate their impact.

10.1. Administrator Account or Server Breach

If an attack is detected that suggests a potential breach of the web application or server, either

through unauthorized access to the administrator account or direct shell access to the server,

the immediate priority is to revoke the allowances of all approved professor wallets on the

smart contract using the contract owner’s master key.

Once the allowances are revoked, the next step is to shut down the application to prevent

further exploitation. The primary sensitive data at risk includes system-stored wallets on

the server and the API keys of the integrated service providers. If the wallet allowances are

successfully removed in time, the risk of unauthorized transactions is mitigated.

Following the shutdown, all API keys associated with external providers must be deac-

tivated. Since these keys are only used to send signed transactions to the blockchain and

retrieve data, they cannot be exploited for unauthorized transactions but could still be mis-

used to exhaust the allocated request limits.

After securing the system, log analysis should be conducted to determine the methods

and vulnerabilities exploited by the attacker. Identifying the attack vector is essential for

preventing future breaches.

If no server-stored wallet with an active allowance was compromised before the admin-

istrator revoked permissions using the master key, no FERcoin or native currency from any

wallet would be at risk, and all blockchain data would remain intact.

Once the vulnerability is identified and resolved, the patched application can be rede-

ployed. New user accounts must be created with fresh passwords, and new professor wallets

must be generated and approved using the master key. Additionally, the application should

be reconfigured with new provider API keys. The newly deployed, patched web applica-

94



tion will then reconnect to the existing deployed smart contract, restoring the system to its

pre-incident state.

10.1.1. Breach of Server Stored Wallet

If a malicious actor gains access to a server-stored approved wallet, decrypts the private key,

and uses it before the administrator revokes its allowance with the master key, the attacker

can fully utilize the FERcoin allowance assigned to that compromised wallet. The extent of

potential damage depends on whether the FERcoin tokens were minted and available in the

master wallet’s balance at the time of the attack. Approved wallets can only spend FERcoin

from the master wallet’s balance if those tokens have been minted and exist at the moment

of transaction.

If the stolen FERcoin tokens were used and transferred to another address, the smart

contract should be shut down using the owner-only shutdown function described in Chapter

9.2.4. During the shutdown process, a designated address must be provided to receive all

remaining native currency from the smart contract.

After the shutdown, a new instance of the smart contract can be deployed, restoring the

system to the last recorded valid state before the breach. The recovery process involves

redistributing FERcoin tokens to all previous holders on the new contract, ensuring their

token balances match those before the shutdown.

As a result, the FERcoin transaction history will be divided into two distinct parts: the

valid transactions recorded on the compromised contract up until the moment of shutdown,

and the transactions executed on the newly deployed contract after the system’s restoration.

If any stolen FERcoin tokens related to the incident were used for the coffee purchase,

the result will be a monetary loss, as the coffees were purchased with stolen FERcoin tokens.

10.2. Master Key Breach

A breach of the master key represents the most severe security incident. The only way this

could occur is if the administrator responsible for securely storing the master key failed to

do so, allowing the attacker to obtain both the private and public keys of the master wallet.

In this scenario, the master key must be used immediately to transfer contract ownership

to a new address, provided that the attacker has not already done so. If unauthorized FERcoin

tokens were minted or stolen, the smart contract should be shut down. If the shutdown is

successful, the recovery process follows the same procedure outlined in Section 10.1.1.

By the time the breach is detected, the attacker has likely withdrawn all available native

currency from the deployed contract, as well as any funds from the compromised master
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wallet, transferring them to another address. These stolen funds cannot be recovered.

If it is not possible to change the contract owner or shut down the contract due to the

complete depletion of the master wallet’s native currency, any additional funds sent to the

wallet for recovery purposes risk being immediately stolen. In such a case, the best course

of action is to shut down the application entirely and notify all system participants to refrain

from using it until the recovery process is completed.

To restore the system, a new smart contract and application instance must be deployed.

The new application should connect to the newly deployed smart contract, and all previous

transactions and FERcoin token distributions must be replicated to reflect the last valid state

of the compromised contract.

10.3. Changing Smart Contract Address to a Malicious Smart

Contract

If a malicious actor gains access to the administrator account, they can modify the blockchain

connection settings to redirect the application to a malicious smart contract.

The goal of this attack is to deploy a fraudulent smart contract and alter the application’s

configuration to connect to it instead of the legitimate FERcoin contract. A malicious smart

contract could include functions that compromise the funds in students’ wallets when they

interact with the FERcoin system.

The extent of the attack depends on whether the attacker has full server access or only

access to the administrator account. With unrestricted server access, the attacker can mod-

ify the HTML and client-side JavaScript files served to students, making the attack more

effective. If the attacker only has administrator access, they can still alter the blockchain

configuration, changing the contract address used for FERcoin transactions such as purchas-

ing coffee or transferring tokens.

To execute this attack, the attacker must create a malicious smart contract that closely

resembles the FERcoin contract while maintaining the same ABI interface for transaction

functions. This ensures that the existing client-side logic continues generating transactions

as expected, without any visible discrepancies in the user interface. If the attacker has full

server access, disguising the fraudulent transaction becomes even easier.

In both cases, if the attack is successful, the malicious modifications will not be apparent

in the user interface. However, before submitting a transaction, the MetaMask extension will

display a confirmation dialog showing the transaction details. The attacker cannot modify

this step, meaning students will always have the opportunity to review the transaction before

signing. Although the attacker can try to make the fraudulent transaction appear legitimate,

they cannot conceal the contract address the transaction interacts with.
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Because of this, the best defense against such an attack is educating students on the proper

use of the FERcoin system, specifically how to verify transactions before signing them.

To mitigate the impact of such an attack, all students should be required to read a guide

on using the FERcoin system. This guide should emphasize several security measures:

± Students should use a dedicated blockchain wallet exclusively for FERcoin transac-

tions, separate from any other wallets they own.

± The FERcoin wallet should not hold other cryptocurrencies, except for a small amount

of native currency required for gas fees. This native currency will be provided as part

of the FERcoin distribution process.

± Before signing any transaction in MetaMask, students should always verify the con-

tract address the transaction interacts with. The official FERcoin contract address

should be publicly available and independent of the application to allow for easy

verification.

± The transaction details in the MetaMask pop-up should match the intended action.

Any request to approve permissions or transfer a significant amount of native cur-

rency should be treated with suspicion.

By following these security guidelines, students can better protect themselves from falling

victim to this type of attack.
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11. Further FERcoin System

Development

This chapter discusses some ideas, expansions and functionalities that could be used to ex-

pand and better the FERcoin system.

11.1. FERcoin Token Exchange Smart Contract Function

With the growth of the FERcoin system and expansion of goods available to be exchanged for

the FERcoin, the current smart contract function buyCoffee for exchanging one FERcoin

for one coffee, can be reimplemented to a more universal function instead, that will enable

the users to exchange their FERcoin for any of the available goods, and also the option to

do multiple exchanges in a single transaction can be added. This means the user can spend

multiple FERcoin tokens to exchange them for multiple items in a single transaction.

11.2. Student Interface Improvements

Given that students will primarily use FERcoin interface on their phones to exchange FER-

coin tokens for coffee, the user interface should be adapted for mobile use. This includes

implementing an additional mobile-friendly view, besides the current desktop one.

The transaction of buying a coffee requires the input of the unique bill number (Cro. JIR -

Jedinstveni identifikator računa). This number can currently only be manually entered. Since

this number is embedded in the QR code on invoice bills, a QR code scanning feature should

be implemented. When using the web application on a phone, users could scan the QR

code with their camera, while desktop users could upload an image of the bill for automatic

extraction of the unique bill number from the QR code. This would enhance user experience

by eliminating manual input errors.

Additionally, the student guide should include instructions on installing and using the

MetaMask software wallet on a mobile phone for connecting with the student’s interface.
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11.3. Hosting and Achieving Production Ready State

For real-world deployment, an appropriate hosting solution must be determined. While the

backend logic is mostly simple and uses Python, permanent stable storage is recommended,

which should be separated from the application itself. Currently, while in development,

both the application and permanent storage (SQLite and JSON configurations and wallets)

are contained within a single Docker container, with some of the application state stored in

memory.

When in production, a good approach would be to have a separate application and per-

manent server storage, like a database, where all users of the application, as well as the

configurations, wallets and all of the application state, can be stored. This approach allows

some security features, like Flask-limiter which currently uses application memory and ses-

sions implemented as client side encrypted cookies to also use that permanent storage.

This would allow the application to be more stable, preserving state in cases of restart

or some critical errors, while also making the scaling of the application much easier and

efficient, through the usage of multiple workers or multiple application instances that all use

the same separate permanent storage.

11.3.1. Expanding FERcoin System with Other Blockchain Capabili-

ties

Some other blockchain capabilities could be utilized to expand the uses and functionalities

of the FERcoin system. One such example are the NFTs. They currently hold some negative

connotations but can be used and implemented in a different way than the use-case they are

most known for.

Each student would have an academic blockchain identity, represented by a unique blockchain

address. This identity could be used to collect NFTs awarded for completing optional aca-

demic activities, such as skill courses, additional lectures, or other extracurricular achieve-

ments. These NFTs would serve as immutable proof of achievement rather than as tradable

assets.

Since all the student’s blockchain identities are pseudonymous, meaning their academic

blockchain address cannot be connected to their real-life identity in a simple way, there

would be an option for generating a "Proof of ownership". A student could generate proof

that they are the owner of their academic blockchain identity, which he would then disclose

as he wishes. That way the student could showcase all the additional achievements he has

accomplished as he acquired NFTs.

Since student blockchain identities remain pseudonymous by default, an optional ’Proof

of Ownership’ mechanism could allow students to verify their blockchain identity when
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needed. This would enable them to selectively disclose their academic blockchain identity,

making it possible to showcase their additional academic achievements to employers or in-

stitutions while maintaining privacy.

By building a blockchain-based academic portfolio, students would have a verifiable and

tamper-proof record of their extracurricular accomplishments, further incentivizing engage-

ment in skill development and additional activities beyond standard coursework.
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12. Conclusion

This thesis has presented the development of the FERcoin system, demonstrating the ap-

proach taken in structuring, integrating, and securing system components when working with

blockchain technology. It also highlights the key challenges encountered during development

and the security measures implemented to protect the system. In addition, the decision-

making process behind the selection of appropriate technologies and blockchain networks is

documented, providing a reference for future projects involving blockchain-based systems.

The system can be easily brought to a production-ready state once the appropriate hosting

environment is selected and the specifics of the use case are determined. Integrated into the

academic environment, it would provide a universal mechanism for incentivizing students to

pursue additional academic achievements in designated fields. Beyond its academic applica-

tion, the FERcoin system has the potential to be expanded or modified for similar use cases,

serving as a foundation for other blockchain-based initiatives. Whether as a guide for system

design or through the reuse of existing components, the system can contribute to further aca-

demic research and development in blockchain technology. Ultimately, FERcoin is designed

to foster innovation, encourage student engagement, and promote continued exploration in

the blockchain field.
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Application for encouraging engagement in the academic environment based on

blockchain technology and cryptocurrencies

Abstract

This paper explores the potential application of blockchain technology and cryptocur-

rencies in an academic environment through the development of the FERcoin system. The

goal of the system is to incentivize students for academic development and introduce them

to blockchain technology through a rewards-based system. FERcoin is designed as a digi-

tal currency that can be exchanged for tangible assets, such as coffee in a café, ensuring its

usability and practicality. The paper covers the selection of blockchain technology and plat-

form, smart contract development, web application implementation, and security solutions

required to protect users and the system. Further possibilities for system expansion and ad-

ditional functionalities are also considered. The proposed system examines the potential of

blockchain technology in an academic context and its applicability in real-world use cases.

Keywords: blockchain, Web3, smart contract, FERcoin, cryptocurrency, tokenization, stu-

dent incentives, system security, Flask, Docker

Aplikacija za poticanje sudionika u akademskom okruženju zasnovana na tehnologiji

ulančanih blokova i kriptovalutama

Sažetak

Ovaj rad istražuje moguÂcnost primjene blockchain tehnologije i kriptovaluta u akadem-

skom okruženju kroz razvoj FERcoin sustava. Cilj sustava je potaknuti studente na akadem-

ski razvoj i upoznavanje s blockchain tehnologijom putem sustava nagra Ådivanja. FERcoin

je dizajniran kao digitalna valuta koja se može zamijeniti za materijalne vrijednosti, poput

kave u kafiÂcu, čime se osigurava njegova upotrebljivost i praktičnost. Rad pokriva izbor

blockchain tehnologije i platforme, razvoj pametnog ugovora, implementaciju web aplikacije

te sigurnosna rješenja potrebna za zaštitu korisnika i sustava. Tako Åder se razmatraju daljnje

moguÂcnosti proširenja sustava i implementacije dodatnih funkcionalnosti. Predloženi sustav

ispituje potencijal blockchain tehnologije u akademskom kontekstu i njezinu primjenjivost u

stvarnim uvjetima.

Ključne riječi: blockchain, Web3, pametni ugovor, FERcoin, kriptovaluta, tokenizacija,

poticanje studenata, sigurnost sustava, Flask, Docker


