
Heuristički algoritmi za problem trgovačkog putnika

Perušić, Filip

Undergraduate thesis / Završni rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet 
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:771260

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-29

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of 
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:771260
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:13236
https://repozitorij.unizg.hr/islandora/object/fer:13236
https://dabar.srce.hr/islandora/object/fer:13236


SVEUČILIŠTE U ZAGREBU

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ZAVRŠNI RAD br. 8

HEURISTIČKI ALGORITMI ZA PROBLEM TRGOVAČKOG

PUTNIKA

Filip Perušić

Zagreb, lipanj 2024.

 



SVEUČILIŠTE U ZAGREBU

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ZAVRŠNI RAD br. 8

HEURISTIČKI ALGORITMI ZA PROBLEM TRGOVAČKOG

PUTNIKA

Filip Perušić

Zagreb, lipanj 2024.

 



SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 4. ožujka 2024.

ZAVRŠNI ZADATAK br. 8

Pristupnik: Filip Perušić (0112082895)

Studij: Computing

Modul: Computing

Mentorica: izv. prof. dr. sc. Anamari Nakić

Zadatak: Heuristički algoritmi za problem trgovačkog putnika

Opis zadatka:

Problem trgovačkog putnika, vezan za područja računalnih znanosti i operacijskih istraživanja, odnosi se na
problem određivanja najkraće rute kroz sve gradove na ruti, pri čemu se svaki grad posjećuje točno jednom
prije povratka na početak. Ovaj poznati problem se u matematici proučava u okviru diskretne matematike i
modelira se s pomoću grafova. U ovoj terminologiji problem se svodi na pronalaženje najkraćeg Hamiltonovog
ciklusa u potpunom težinskom grafu. Za ovaj zanimljiv, ali računalno zahtjevan problem, jedini poznati egzaktni
algoritmi su oni eksponencijalne složenosti. Za grafove s velikim brojem vrhova takvi su algoritmi neupotrebljivi,
stoga se u primjenama često zamjenjuju aproksimacijskim i heurističkim algoritmima koji daju dobre približne
rezultate. U ovom će se radu detaljno predstaviti problem trgovačkog putnika. Implementirat će se tri heuristička
algoritma: najbliži susjed, pohlepni heuristički i genetski algoritam. Izradit će se testni primjeri na kojima će se
uspoređivati učinkovitost implementiranih programa. Dobiveni rezultati također će se usporediti s rezultatima
egzaktnog algoritma. Izradit će se interaktivna aplikacija s grafičkim sučeljem koja će korisnicima ponuditi
sveobuhvatnu analizu rješenja, balansirajući učinkovitost i točnost.

Rok za predaju rada: 14. lipnja 2024.



 

 

  



 iv 

Table of contents 

INTRODUCTION ....................................................................................................................... 1 

1. MOTIVATION .................................................................................................................... 3 

1.1. BACKGROUND ................................................................................................................... 3 

1.2. REAL-WORLD APPLICATIONS ................................................................................................. 4 

2. METHODOLOGY ............................................................................................................... 5 

2.1. GRAPH THEORY .................................................................................................................. 5 

2.2. PROBLEM FORMULATION ...................................................................................................... 8 

2.3. ALGORITHM IMPLEMENTATION .............................................................................................. 10 

3. TSP EXPLORER ................................................................................................................ 16 

3.1. USER INTERFACE DESIGN AND FEATURES ................................................................................ 16 

3.2. TECHNICAL STACK ............................................................................................................ 18 

3.3. PERFORMANCE METRICS AND RESULTS ................................................................................... 19 

4. EXPERIMENTAL ANALYSIS ............................................................................................... 21 

4.1. TESTING INSTANCES .......................................................................................................... 21 

4.2. RESULTS AND DISCUSSION .................................................................................................. 21 

CONCLUSION ......................................................................................................................... 28 

SUMMARY .............................................................................................................................. 29 

LITERATURE ............................................................................................................................ 30 

 

 

 

 

 

 

 

  



1 

Introduction 

The Traveling Salesman Problem (TSP) is a classic problem in the fields of computer 

science, discrete mathematics and operations research, and it has taken the interest of 

researchers and practitioners for decades. The essence of TSP lies in finding the shortest 

possible route that visits a set of cities exactly once and returns to the starting city. Despite 

its clear formulation at first, TSP is known for its computational complexity. It is an NP-

hard problem, meaning that no known algorithm can solve all combinations of instances of 

TSP in polynomial time. [5] As a result, exact algorithms, which guarantee finding the 

optimal solution, often become impractical for large instances due to their time complexity. 

 

In the field of discrete mathematics, TSP is modeled using graphs. Specifically, the problem 

can be described as finding the shortest Hamiltonian cycle in a complete weighted graph. [7] 

In this thesis, the vertices represent the cities, and the edges represent the paths between 

them, weighted by the distances associated with traveling those paths. The challenge is to 

identify a cycle that visits each city exactly once and returns to the starting city, with the 

minimum possible total distance. 

 

Given the computational problematic of exact algorithms for large instances, approximation 

and heuristic algorithms have become important tools for tackling TSP in practice. These 

algorithms do not guarantee an optimal solution but aim to provide good approximate 

solutions within a reasonable time frame. This thesis focuses on three heuristic algorithms: 

the Nearest Neighbor Algorithm, the Greedy Heuristic Algorithm, and the Genetic 

Algorithm. 

 

To evaluate and compare the performance of these heuristic algorithms, this thesis will 

include a series of test examples. These examples will vary in size and complexity, providing 

an insight of how each algorithm performs under different conditions. The results obtained 

from these heuristic methods will be compared against those from an exact algorithm where 

applicable, to evaluate their accuracy and efficiency. The exact algorithm, while limited to 
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smaller instances due to its computational demands, will serve as a benchmark to show the 

trade-offs between the quality of solutions for those smaller instances. 

 

In addition to the theoretical analysis, an interactive application called TSP Explorer with a 

graphical user interface (GUI) will be developed. This application aims to offer users a 

simple and engaging way to explore TSP solutions. Users will be able to input their own sets 

of cities, visualize the resulting tours, and compare the performance of different algorithms. 

This tool will not only serve as an educational resource but also as a practical demonstration 

of the concepts discussed in the thesis. 
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1. Motivation  

1.1. Background 

Travelling salesman problem has been around since the 19th century. The first mention of 

this problem goes back to the year 1832 where it first appeared in the German handbook 

“Der Handlungsreisende - Von einem alten Commis – Voyageur” for salesman traveling 

through Germany and Switzerland. [6] The problem stared being formally studied around 

the 1930s and 1940s by the Irish mathematician Wiliam Rowan Hamilton and by the British 

mathematician Thomas Kirkman.  

In the early 20th century, the formal mathematical treatment of the problem started to take 

shape. A significant milestone was achieved in the 1950s when the first exact algorithms 

designed to solve the TSP were founded. [3] One of the first methods introduced was the 

cutting-plane method, which demonstrated the potential of linear programming techniques 

in addressing combinatorial optimization problems. 

The theoretical significance of TSP was further shown by Richard Karp in the 1972. Richard 

Karp classified TSP as an NP-hard problem, a class of problems for which there does not 

exist an algorithm which can solve it in a polynomial-time frame. [5] 

Later, as the limitations of exact algorithms became clearer, scientists turned to heuristic and 

approximation algorithms. In the 1970s and 1980s various methods, such as Nearest 

Neighbour, Greedy Heuristic, and Genetic algorithms were developed to provide better 

approximate solutions within a reasonable time frame. [1] 

In the past few decades, advancements in computational power have helped researchers to 

solve much larger instances of TSP. Modern applications extend to various areas such as 

autonomous vehicle routing, drone delivery systems, mapping routes and much more, where 

TSP algorithms have made a significant impact. These advancements continue to push the 

boundaries, making TSP still an evolving and relevant problem in both theoretical and 

practical fields. 
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1.2. Real-World applications 

TSP is widely used in various practical applications across numerous different fields.  

Some of the real-world applications: 

• Warehouse picking: TSP provides help in finding the shortest path for picking items 

from different locations, reducing effort and time. 

• Robotics: industrial robots need to visit multiple points to perform tasks like assembly, 

painting etc. TSP helps in planning the path of the robot to reduce energy consuption.  

• Tourism: travel agencies use the TSP to find the optimal route of travel which would 

encompass visiting many locations and reducing fuel usage.  

• Vehicle routing: TSP is used to optimize the routes of delivery vehicles to reduce the 

travel time and fuel costs. 

• Agriculture: farmers use the concept of TSP to plan the routes of the machines, 

ensuring efficient coverage of fields. 

• Satellite Coverage: TSP helps in determining the optimal paths for satellites to ensure 

coverage of the Earth's surface for imaging and communication purposes. 

 

Above are some of the listed applications, but there are still many more, highlighting the 

importance of finding solutions for the TSP. 
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2. Methodology 

2.1. Graph theory 

Graph theory is one of the fundamental areas of mathematics and computer science that 

studies graphs, which are structures that model relationships between objects. A graph 

structure is defined with vertices (nodes) and edges (also called arcs) that connect pairs of 

vertices. Graph theory is widely used in numerous fields of computer science.  

Some of the basic concepts of graph theory: 

Graph  G is defined as a pair G = (V, E) where 𝑉 is a set of vertices and	𝐸 is a set of edges 

that connects the pair of vertices. 

Different types of graphs:  

• Undirected Graph: edges have no direction, edge (𝑢, 𝑣) = (𝑣, 𝑢) 

 

Figure 1: Undirected graph. 

• Directed Graph (Digraph): edges have a direction (𝑢, 𝑣) ≠ (𝑣, 𝑢) 
 

 

 

Figure 2: Directed graph. 
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• Weighted Graph: each edge has a weight which can represent distance, cost or other 

metrics.  

 

 

Figure 3: Weighted graph.  

• Complete Graph: graph in which each vertex is connected to every other vertex, in 

other words an undirected graph where every pair of distinct vertices is connected by a 

unique edge. 

 

Figure 4: Complete graph K7.  

• Path: A sequence of edges that connects to a sequence of vertices.  

• Cycle: A path that start and ends at the same vertex with no other repetitions of 

vertices and edges. 

• Hamiltonian Graph: Cycle which passes through all vertices of the given graph is a 

Hamiltonian cycle. A graph which has a Hamiltonian cycle is called a Hamiltonian 

Graph. 
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Figure 5: Three Hamiltonian graphs along with their Hamiltonian cycles.  

 

Theorem – Ore, 1960. [13] 

If G is a simple graph with 𝑛 vertices, where 𝑛	 ≥ 3, and if the condition: 

deg(𝑣) + deg(𝑤) ≥ 𝑛 

holds for every pair of non-adjacent vertices 𝑣 and 𝑤 of graph G, then G is Hamiltonian 

Graph. 

Proof:  

Suppose the contrary, i.e., let G be a non-Hamiltonian graph with 𝑛 vertices that satisfies 

the given degree condition. By adding edges to the given graph G edge by edge, we can 

achieve that the graph becomes Hamiltonian. Let us stop at the step of adding edges just 

before the graph becomes Hamiltonian, meaning we obtain a graph by adding just one 

more edge that would become Hamiltonian. Note that by adding edges we do not disrupt 

the degree condition, indeed, the vertex degrees can only increase. Since we are now one 

step away from Hamiltonicity, this means we can find a (not necessarily closed) path 𝑣! 	→
𝑣" 	→	∙	∙	∙	→ 𝑣#	that traverses every vertex. Now, since G is non-Hamiltonian, the vertices 

𝑣!	and 𝑣# are not adjacent, so for them it holds that deg(𝑣!) + deg(𝑣#) ≥ 𝑛. 

This means that 𝑣! has at least one other neighbor besides 𝑣", just as 𝑣# has at least one 

other neighbor besides 𝑣#$!. We define the sets: 

𝐴 = {	𝑖	|	2	 ≤ 𝑖	 ≤ 𝑛, 𝑣% 	𝑖𝑠	𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡	𝑡𝑜	𝑣!} 
𝐴 = {	𝑖	|	2	 ≤ 𝑖	 ≤ 𝑛, 𝑣%$!	𝑖𝑠	𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡	𝑡𝑜	𝑣#} 

Then, |𝐴| = deg(𝑣) and |𝐵| = deg(𝑣#), and it holds that |𝐴| + |𝐵| ≥ 𝑛. It follows that the 

intersection 𝐴	⋂𝐵 is non-empty. Therefore, there necessarily exists some 𝑣% adjacent to 𝑣! 

such that 𝑣%$! is adjacent to 𝑣#.  
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Now the path 

𝑣! 	→ 	 𝑣" 	→	∙	∙	∙	→ 	 𝑣%$! 	→ 𝑣# 	→ 	 𝑣#$! →	∙	∙	∙	→ 	 𝑣% 	→ 	 𝑣! 

is a Hamiltonian cycle, contrary to the assumption that such does not exist.  

The famous Dirac's theorem, with a slightly stronger condition on the degrees of the 

vertices, is now a direct consequence of the just-proven Ore's theorem. 

Theorem – Dirac, 1952. [13] 

If G is a simple graph with 𝑛 vertices (𝑛	 ≥ 3) and if deg(𝑣) ≥ 	 #
"
 for every vertex 𝑣 in 𝐺, 

then 𝐺 is Hamiltonian Graph. 

Proof: 

We can directly apply Ore’s theorem, considering that the inequality from Ore’s theorem is 

certainly satisfied: deg(𝑣) + deg(𝑤) 	≥ 	 #
"
+	#

"
= 𝑛. 

 

2.2. Problem formulation 

Given the theory introduction, the Traveling salesman problem can be reduced to finding a 

shortest Hamiltonian cycle in the complete weighted graph.  

Formal definition: [14] 

1. Set of nodes (cities):	𝑁 = {1, 2, … , 𝑛} – a set of cities that need to be visited. 

2. Distance matrix: 𝐷 =	 [𝑑%&]#	(	#   – an n x n matrix,	where [𝑑%&] represents the distance 

between city 𝑖  and city 𝑗.  
3. Decision variables:	𝑥%& – binary values which equals to 1 if the path between cities 𝑖  

and 𝑗 is included in the final solution and 0 otherwise. 

The main objective for the TSP solution is to minimize the total distance travelled which can 

be represented as: 

𝑚𝑖𝑛SS𝑑%&𝑥%&
#

&)!

#

%)!

 

With additional constraints: 

• Each city is visited exactly once. 
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• The cycle must finish in the same city from which it started. 

• There are no routes that do not include all cities. 

TSP Explorer employs the following mathematical formulations to address the Traveling 

salesman problem: 

• Euclidian distance for measurements of distances between cities. 

• Distance matrices to represent the problem space. 

• Greedy and heuristic methods for approximations. 

• Genetic algorithm for evolutionary optimization. 

• Brute force for benchmarking. 

 

 

 

Figure 6: Example of a graph created inside the TSP Explorer application along with its optimal 

solution. 
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2.3. Algorithm implementation 

2.3.1. Brute Force Algorithm  

The Brute Force Algorithm also known as the Exhaustive Search Algorithm is a 

straightforward approach for solving the TSP. This algorithm guarantees finding the optimal 

solution because it evaluates every route. It enumerates all possible permutations of the cities 

and calculates the total distance travelled for each permutation to find the shortest route 

which makes it's time complexity factorial. In this thesis and inside the TSP explorer 

application this algorithm is used as a benchmark for all the other algorithms on several cities 

where the computation is feasible. The Figure 7 depicts factorial time complexity 𝑂(𝑛!) of 

the algorithm. [3] 

 

 

Figure 7: Maximum number of Hamiltonian cycles. [10] 

The table represents the maximum number of Hamiltonian cycles in a complete graph 𝐾#. 
The first column, labeled 𝑛 represents the number of vertices in the complete graph. 

The second column, labeled 
(#$!)

"
, represents the maximum number of Hamiltonian cycles 

in the complete graph 𝐾#. 
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Below is the pseudocode of the implemented algorithm inside the TSP explorer application. 

Initialize: List all possible permutations of cities 

Set best_route = None and min_distance = ∞ 

 

Iteration: 

1. For each permutation (route) of cities: 

   a. Calculate the total distance of the route 

   b. If the total distance < min_distance: 

      i. Set min_distance = total distance 

      ii. Set best_route = route 

 

Output: The best_route with the minimum total distance. 

 

 

Figure 8: Brute Force Algorithm performed on a generated city map with 10 cities and the optimal 

solution found. 
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2.3.2. Nearest Neighbour Algorithm 

Nearest neighbour algorithm constructs a tour starting from arbitrary city and continuously 

visiting the nearest city until all the cities have been visited. Once all the cities are visited 

and inside the tour, the algorithm returns to the starting city to close the cycle. 

This algorithm is one of the most straightforward approaches and provides a quick solution 

that is often not optimal. Although it lacks optimality it is very fast and simple making it 

suitable for obtaining a fast approximation of the solution. It is important to note that due to 

its greedy nature it can get trapped in local optima and may not produce the shortest possible 

routes often. Time complexity of the algorithm is 𝑂(𝑛"). 
Below is the pseudocode used for the implementation of the Nearest Neighbour algorithm 

inside the TSP explorer implementation, which provides a high-level overview. 

 

Initialize: Pick a starting city v0 

Form a path P = {v0} and mark v0 as visited. 

 

Iteration: 

1. Choose vi ∈ V(G) \ T such that it is the minimum distance from vr. 

2. Put vr+1 = vi and let P = {vr → vi} 

3. Put r = r + 1 and repeat until T = V(G) 

 

Output: A Hamiltonian Cycle -> the path with the last vertex of P made 

adjacent to the first. 
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Figure 9: Nearest Neighbour algorithm performed on a generated city map with 50 cities and the 

shortest path found. 

2.3.3. Greedy Heuristic Algorithm 

The Greedy Heuristic algorithm is another simple and intuitive approach for solving the TSP. 

This algorithm builds a route by iteratively selecting the shortest available edge that connects 

the current city to an unvisited city. This algorithm also ensures that each city is visited 

exactly once. Algorithm returns to the staring city once all cities are included in the tour and 

completes the cycle. 

This algorithm is operating in a way that it is making a locally optimal choice at each step. 

While this approach can provide quick solution it is often suboptimal because it does not 

consider the whole structure of the problem. In this way it is also quite like the Nearest 

Neighbour algorithm and the time complexity is 𝑂(𝑛") in average, but in some cases the 

worst-case scenario is 𝑂(𝑛,). 
Below is the high-level overview of the pseudocode for the algorithm implementation. 

Initialize: Pick a starting city v0 

Form a path P = {v0} and mark v0 as visited. 

Iteration: 

1. Choose the next city vi ∈ V(G) \ T that has the minimum distance from 

any city in the current path P. 

2. Add vi to the path P and mark vi as visited. 

3. Repeat until all cities are visited. 

 

Output: A Hamiltonian Cycle -> the path with the last vertex of P made 

adjacent to the first. 
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Figure 10: Greedy Heuristic algorithm performed on a generated city map with 50 cities and the 

shortest path found. 

 

2.3.4. Genetic Algorithm 

Genetic Algorithm (GA) is inspired by the principles of natural selection and genetics, which 

makes it suitable for solving the TSP with its optimization and search heuristic. GA operates 

by evolving a population of candidate solutions over multiple generations, using different 

operators like selection, crossover and mutation. GA offers ways to explore the search space 

and improve the quality of the solutions. [9] 

GA is a powerful tool for tackling NP-hard problems like the TSP. It uses the concept of 

survival of the fittest and genetic inheritance to iteratively improve the population of 

solutions. Which makes it useful for solving complex optimization problems where the 

search space is large and other methods are computationally infeasible.  

Total complexity of the implemented algorithm is 𝑂(𝐺	𝑥	𝑃	𝑥	𝑛). Where 𝐺 stands for number 

of generations, larger instances increase a chance of finding a better solution but also 

increase the computational cost. 𝑃 represents the population size, where the same rules apply 

as with the number of generations. The 𝑛 stands for the number of cities in each TSP 

instance. Genetic algorithm implementation inside the TSP Explorer is well-fitted for 

smaller instances, which means the execution time is close to the greedy algorithms. In case 

of larger instances due to the time complexity, the implementation may not be efficient 

enough which will be studied and analysed in the next chapter. 

Below is the high-level overview of the pseudocode which represents the algorithm used in 

implementation inside the TSP application. 
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Initialize: Generate an initial population of routes 

Define population size, number of generations and mutation rate 

 

Iteration: 

1. Evaluate fitness of each route in the population (total route distance) 

2. Select parents from the population using tournament selection 

3. Create new population: 

   a. Perform ordered crossover between selected parents to generate 

children 

   b. Mutate children with a given mutation rate 

4. Replace the old population with the new population 

5. Repeat for the defined number of generations 

 

Output: The best route in the final population with the shortest total 

distance. 

 

 

Figure 11: Genetic algorithm performed on a generated city map with 50 cities and the shortest 

path found. 
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3. TSP Explorer 

3.1. User interface design and features 

The practical part of this thesis was constructing and designing an application which would 

encompass theoretical foundation of the TSP along with the user-friendly way of seeing the 

whole concept of the problem. The application is built with a modular architecture to 

separate concerns and improve maintainability. Each algorithm is designed in its own class, 

allowing easy addition of new algorithms for future purposes. 

One of the most important features of TSP Explorer is its ability to visualize the problem to 

the user and see how each of the algorithms perform. User can fully interact with the 

application by selecting the number of randomly generated cities along with the option to 

choose the algorithm which will perform the route finding. The cities are generated within 

the range of 1000km in the x-axis and the y-axis forming a square of 1000km2. The user can 

also try different algorithms on the same city map or reset the generated cities and try new 

configurations.  

 

 

Figure 12: TSP Explorer GUI view and city generation option. 
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After running the application the user is prompted with the following view, after clicking the 

generate cities option the user can choose an arbitrary number of cities to be randomly 

generated. 

 

After generating the cities, the user can see them represented as red dots on a city map. The 

user can now select from the dropdown menu which algorithm he wants to perform on the 

generated map.  

 

 

Figure 13: Plotted cities inside a city map and algorithm dropdown menu. 

 

 

After the algorithm selection, the user can run the chosen algorithm on the city map. The 

application also offers multiple runs on the same map with the reset paths button. The 

generation of a new map is offered after clicking on the reset button and clicking on the 

generate cities option after which the proccess is repeated as stated before. 



18 

 

Figure 14: Greedy Heuristic and Genetic algorithm performed on a generated map. 

 

We can notice that already some interasting solutions have been found, further analysis will 

be done in the next chapter. 

 

3.2. Technical stack 

Programming language used for creating TSP Explorer is Python chosen beacause of its 

extensive libraries and easy usage. 

Libraries and frameworks: 

• PyQt6: Used for building graphical user interface with its wide set of tools for creating 

a well formatted and clear interface.  

• PyQtGraph: Used for plotting and visualizing the cities and their created paths, known 

for its fast performance and easy integration with PyQt6. 

• NumPy: For numerical operations and efficient handling of matrices useful for 

calculating the distance matrix computations. 

• Itertools and random: standart python modules used for randomness of generated cities 

and generating permutations for brute force algorithms. 

• Pandas, seaborn and matplotlib: Used for creating visualizations of the results and 

creating plots. 
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3.3. Performance metrics and results 

Evaluating the performace of all implemented algorithms is crucial for better understanding 

of their nature. The purpose of formulating the metrics is to compare and evaluate efficiency 

and effectivness of each algorithm. In the TSP Explorer application, the following metrics 

are used:  

Total distance traveled is the sum of distances between all the visited cities inside the route 

including the return to the starting city. This metric shows the quality of the solution, the 

goal of the algorithms is to minimize the total distance, so if the total distance covered is 

shorter it indicates a better solution.  

Execution time is the time taken by an algorithm to find a solution, or in other words the 

shortest path from the starting city passing trough all the cities and returing back to the 

starting point. Just like the total distance travelled this metric indicates the efficiency of an 

algorithm and its implementation.  

Optimal distance is the shortest possible distance for a generated map, this metric is 

calculated using the Brute Force algorithm. This metric serves as a benchmark to compare 

the quailty of other solutions but due to the limitations of the algorithm this is applicable 

only to smaller instances.  

Results of the performed runs on different sets of cities are stored inside a JSON file.  

 

Figure 15: Example of a JSON file for a performed run. 
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City code represents the instance of generated cities so that each instance can be 

differentiated. The JSON file also stores the information about the algorithm used, number 

of cities inside the map, execution time and an optimal distance in kilometres. 

TSP Explorer also offers the batch input option which is used for automating the process of 

generating different istances and running different algorithms.  

Example of a batch run:  

    def run_batch_tests(self): 

        city_sizes = [5,6,7,8,9] 

        num_runs = 5 

        algorithms = [ 

            ("Nearest neighbor algorithm", NearestNeighborAlgorithm), 

            ("Greedy heuristic algorithm", GreedyHeuristicAlgorithm), 

            ("Genetic algorithm", GeneticAlgorithm), 

        ] 

This implementation is very important for later analysis of solutions which the algorithms 

provided during the runs. Inside the city_sizes array, the number of cities generated is entered 

and the num_runs variable states the number of generations for those sizes.  
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4. Experimental analysis 

The experimental analysis of this thesis will be formulated by generating and creating 

numerous instances of cities and perfroming algorithm runs on them. The results will be 

analyzed to conclude the efficiency and various metrics of those solutions. The results of the 

mentioned analysis are only considered within the scope of the TSP Explorer application 

and do not describe the general performance of those algorithms.  

4.1. Testing instances 

First part of testing will be performed as a batch input. We will study the behaviour of the 

algorithms on a small instance of cities (5-10). The Brute Force Algorithm will serve as a 

benchmark to study the optimality of the algorithms. Each algorithm will be run 20 times on 

a given number of cities.  

The second part of testing will be performed only on the Greedy Heuristic, Nearest 

Neighbour and Genetic Algorithm on a much larger number of cities. 

4.2. Results and discussion 

The first test set consists of running a batch test input on 5, 6, 7, 8, 9 and 10 generated cities 

within the city map. Each number of cities is generated 20 times, and the algorithms are run 

on each created instance separately. 
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Figure 16: Optimal solution vs. Greedy Heuristic Algorithm. 

  

Figure 16 shows the performance of the Greedy Heuristic Algorithm on a given test set. We 

can notice that as the number of cities increases, the route that the algorithm finds tends to 

deviate more from the optimal solution. For this test set, the algorithm found the optimal 

route 22 times or to be exact 18.3% of the time. The algorithm finds a solution with a high 

speed due to its greedy nature, so for cases where speed is important these results are 

somewhat acceptable. 

 

Figure 17: Optimal solution vs. Nearest Neighbour Algorithm. 

Nearest Neighbour Algorithm performance is shown in Figure 17. We can see that algorithm 

has a similar behavior to the Greedy Heuristic. Due to their greedy nature, when the distances 
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and number of cities increase, they tend to sway further from the optimal solution. For this 

test set, the Nearest Neighbour Algorithm found the optimal solution 37 times out of 120, 

which is around 30%. What seems to be a small increase in terms of the Greedy Heuristic 

algorithm, so in the scope of this  analysis if the number of cities is small the better option 

would be the Nearest Neighbour algorithm. 

 

Figure 18: Optimal solution vs. Genetic Algorithm. 

 

In Figure 18, the performance of the Genetic Algorithm on the given test set is shown. The 

algorithm found the optimal solution 120 times, making its approximation correct 100% of 

the time. It is important to note that this is the case for smaller instances. The algorithm is 

well-tuned for smaller number of cities, which explains its high effectiveness. The time taken 

for Genetic Algorithm to find the optimal solution is higher than in greedy algorithms. The 

difference is not significant enough for the trade off to sway in the other way. So, for smaller 

instances the better choice would be using the Genetic algorithm for finding the shortest 

route which always results in the optimal solution. 
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Figure 19: All heuristic algorithms performed on a test set. 

 

In Figure 19, we can see a direct comparison of the given algorithms. On smaller instances, 

they all tend to be close, but as the distance increases along with the number of cities, the 

greedy algorithms do not perform as well as the Genetic Algorithm.  

 

For the second part of the testing, I created a different test set. The test set consists of running 

a batch test input on 20, 40, 60, 80, and 100 generated cities within the city map. Each 

number of cities is generated 20 times, and the algorithms are run. Due to the factorial time 

complexity of the Brute Force Algorithm, I will not have the correct optimal path shown for 

this test set. This testing serves merely as a comparison of how the algorithms behave on 

larger instances. 
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Figure 20: Second testing set results. 
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Figure 20 shows the performance of algorithms on the given test set. The results show the 

number of times the algorithm found the shortest route are following: 

 

 20 40 60 80 100 

Genetic algorithm 18/20 15/20 2/20 0/20 0/20 

Greedy heuristic algorithm 0/20 1/20 0/20 0/20 0/20 

Nearest Neighbour algorithm 2/20 4/20 18/20 20/20 20/20 

Table 1: Second testing results. 

 

From these results, we can see that the Genetic Algorithm is outperforming the other two 

algorithms on the smaller instances with 20 and 40 cities. On the other hand, as the number 

of cities increase the Genetic Algorithm starts to lose its effectivness. For 60 or more cities 

the Nearest Neighbour algorithm gives the best performance. We can conclude that as the 

number of cities increases, this trend will likely remain the same. Given the nature of the 

Genetic Algorithm, there is still a possibility to increase its effectiveness by enhancing its 

structure and formulation, as it really depends on the specific implementation. 

The additional test depicts where is the bound where the Genetic Algorithm starts to be less 

effective than the Nearest Neighbour Algorithm.  

 

Figure 21: The metric of the additional batch input testing. 
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So, for each city size ranging from [40 – 54] the algorithms will perform 100 distinctive 

runs. 

Number of cities 40 42 44 46 48 50 52 54 

Genetic algorithm 76% 73% 66% 64% 55% 40% 36% 34% 

Nearest Neighbour algorithm 24% 27% 34% 34% 45% 60% 64% 66% 

Table 2: Genetic algorithm vs. Nearest Neighbour algorithm 

 

From the results, we can conclude that as the number of cities generated on the map 

increases, the Genetic Algorithm becomes proportionally less optimal. The turning point is 

around 50 cities, where the Nearest Neighbour Algorithm starts providing a better route. 

 

 

Figure 22: Total distance covered by Genetic Algorithm and Nearest Neighbour algorithm 
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Conclusion 

Traveling Salesman Problem remains a challenging problem in the fields of mathematics 

and computer science. This thesis provided a brief theory introduction and various 

approaches to solving the TSP. 

My analysis has shown that exact algorithms do provide optimal solutions but are infeasiable 

for larger instances. Heuristic algorithms on the other hand, offer practical solutions within 

a reasonable time span making them suitable for real-world implementations on larger 

instances.  

The Genetic Algorithm demonstrated better performance on smaller instances but in case 

when the number of cities increases the Nearest Neighbour algorithm performed more 

optimal. The reason for that is that the Genetic Algorithm is well-fitted for smaller number 

of cities.  

The development and use of the built TSP Explorer application provided an interactive and 

fun platform to visualize and compare these algorithms. This tool serves as an educational 

resource and a practical demonstration of TSP solutions.  

In conclusion, while no single algorithm provides a perfect solution for all instances of the 

TSP, the choice of the algorithm depends on the specific requirements of the problem at 

hand. Future work can focus on implementing more algorithms, and providing a hybrid 

method that will combine the strengths of multiple algorithms for further improvement on 

all instances of TSP.  
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Summary 

Keywords:  Traveling Salesman Problem, graph theory, heuristic algorithms, Genetic 

Algorithm, Nearest Neighbour Algorithm, Greedy Heuristic Algorithm, Brute Force 

Algorithm 

 

The Traveling Salesman Problem is a well-known optimization challenge in computer 

science, seeking the shortest route to visit a set of cities and returning to the starting city 

leaving no city unvisited. This thesis provided an implementation of three heuristic 

algorithms, Greedy Heuristic, Genetic Algorithm and Nearest Neighbour Algorithm inside 

a TSP Explorer application. The application provided the visualization and performance 

metrics used for analyzing the results of the implemented algorithms. Heuristic methods, 

especially the Genetic Algorithm, offer effective solutions for smaller instances, while the 

Nearest Neighbour Algorithm performs better on larger instances due to the implementation 

of the Genetic Algorithm.  
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