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lade za znanost. Takod̄er, bio je istraživač na jednom EU FP7 projektu te na jednom projektu

financiranom iz Europskog fonda za regionalni razvoj. Član je Znanstvenog centra izvrsnosti
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Abstract

Antenna arrays used in modern communication systems are designed to satisfy several func-

tional and implementation requirements. The former arise from the desired radiation pattern,

requiring high beam efficiency, high directivity, low sidelobe level (SLL), etc. The latter are

determined by real-world parameters of the beamforming networks, such as mutual coupling,

dynamic range ratio (DRR) of excitation coefficients, etc. The best results are achieved if both

requirements are simultaneously included in the array design. Such a design can be easily for-

mulated as an optimization problem, with the positions and excitations of antenna elements

playing the role of optimization variables. In this context, the dissertation considers the design

of linear and planar pencil-beam antenna arrays with low dynamic range ratio of excitation

coefficients. Three new methods are proposed.

The first method is based on convex optimization. It is suitable for the design of linear

pencil beam arrays optimum in L1 sense. The obtained arrays exhibit maximum SLL of ap-

proximately −21 dB for all array sizes, with the lobes that monotonically decrease as the angle

increases. The DRR of excitation coefficients of these arrays increases linearly with the number

of elements and generally takes low values.

The second method extends the design of L1 pencil beams. The original convex optimization

problem is here equipped with the constraints set on maximum dynamic range ratio and on

maximum sidelobe level. Unfortunately, the obtained problem is not convex. For its solving, a

global optimization method is developed. It utilizes global search based on branch and bound

algorithm that employs convex optimization and feasibility test for tree pruning. The method

supports independent control of DRR and SLL.

The third method is developed for the design of uniformly-excited unequally-spaced antenna

arrays. The design of such arrays leads to nonlinear and nonconvex problems. For their solving,

general-purpose methods for nonlinear optimization have been utilized. The application of these

methods proved efficient in unconstrained and constrained design of linear and planar arrays

with maximum beam efficiency and with maximum directivity. The proposed approach ensures

fast convergence and enables very simple formulation of the design problems.

Keywords: antenna array, beam efficiency, branch and bound, convex optimization, directiv-

ity, dynamic range ratio, global optimization, L1-norm, nonlinear optimization, pencil beam,

unequally spaced array, uniform excitation.



Prošireni sažetak

Sinteza atenskih nizova s uskom glavnom laticom i malim

dinamičkim rasponom koeficijenata

Moderni bežični komunikacijski sustavi zahtijevaju antenske nizove koji daju optimalne di-

jagrame zračenja. Neki od zahtjeva koje antenski nizovi korišteni u 5G mobilnim komunika-

cijama i u satelitskim sustavima moraju ispuniti su visoka učinkovitost glavne latice, velika us-

mjerenost, niske razine bočnih latica i jednostavnost pobudne mreže. Željeni dijagrami zračenja

uobičajeno se ostvaruju korištenjem antenskih nizova s jednoliko razmaknutim i nejednoliko

pobud̄enim antenskim elementima. Med̄utim, nejednolika pobuda obično zahtijeva upotrebu

pojačala s velikim dinamičkim rasponom koja rade na visokim frekvencijama, što rezultira

skupim i složenim pobudnim mrežama. Stoga, kako bi se dobili željeni dijagrami zračenja

uz korištenje jednostavnih pobudnih mreža, potrebno je dizajnirati antenske nizove s malim

dinamičkim rasponom pobudnih koeficijenata. Jednostavnost pobudne mreže može se osigur-

ati i korištenjem jedinične pobude na svim antenskim elementima te odabirom odgovarajućih

pozicija elemenata. Na taj način dobivaju se željeni dijagrami zračenja uz najmanji mogući

dinamički raspon koeficijenata. Navedeni ciljevi mogu se ostvariti upotrebom numeričke op-

timizacije. U praksi se koriste razni oblici dijagrama zračenja, npr. dijagrami s uskom glavnom

laticom, sa širokom glavnom laticom, s više glavnih latica, itd. U ovoj disertaciji naglasak je

stavljen na antenske nizove s uskom glavnom laticom. Glavna latica je u svim razmatranim

slučajevima usmjerena okomito na os ili ravninu u kojoj se nalaze elementi niza. U takvim

nizovima pobudni koeficijenti su realni brojevi.

Imajući spomenute zahtjeve na umu, cilj istraživanja provedenog u sklopu ove disertacije

je unaprijediti postojeće te razviti nove metode za sintezu antenskih nizova s uskom glavnom

laticom i malim dinamičkim rasponom pobudnih koeficijenata. U tom kontekstu provedeno

istraživanje nudi sljedeći doprinos:

1. Sinteza linearnih antenskih nizova s uskom glavnom laticom i minimalnom L1-normom

temeljena na konveksnoj optimizaciji.

2. Metoda za globalnu optimizaciju linearnih antenskih nizova s uskom glavnom laticom,

ograničenim dinamičkim rasponom pobudnih koeficijenata i minimalnom L1-normom.

3. Metoda za dizajn antenskih polja s jednako pobud̄enim nejednoliko razmaknutim antenskim

elementima temeljena na optimizacijskim postupcima opće namjene.

Disertacija je podijeljena u sedam poglavlja. Prvo poglavlje je uvodno i opisuje strukturu

disertacije. Drugo poglavlje opisuje antenske nizove te daje definiciju dijagrama zračenja.



Opisane su značajke dijagrama zračenja te implementacijski aspekti koje je potrebno uzeti u

obzir prilikom dizajna nizova. U značajke dijagrama zračenja ubrajaju se bočne latice i njihove

razine, širina glavne latice, usmjerenost te učinkovitost glavne latice. Implementacijski aspekti

odnose se na dinamički raspon pobudnih koeficijenata te na prostorni razmještaj antena. Osim

utjecaja na kompleksnost pobudnih mreža, dinamički raspon koeficijenata utječe i na elektro-

magnetsku spregu antenskih elemenata, koja ima negativan utjecaj na oblik dijagrama zračenja.

Naime, poznato je da mali dinamički raspon koeficijenata smanjuje utjecaj elektromagnetske

sprege. Smanjenje sprege moguće je postići i postavljanjem antenskih elemenata na odgov-

arajuće pozicije, pritom osiguravajući dovoljno veliki razmak izmed̄u elemenata. Elementi u

nizu mogu biti postavljeni tako da budu jednoliko ili nejednoliko razmaknuti. Kod antens-

kih nizova s jednoliko razmaknutim elementima, najčešće odabrani razmak je λ/2. Takav

razmještaj omogućava upotrebu metoda za dizajn filtara s konačnim impulsnim odzivom (FIR)

za izračun pobudnih koeficijenata antenskih elemenata. Nadalje, u takvim nizovima ne dolazi

do pojave neželjenih bočnih latica. Kada su elementi u nizu nejednoliko razmaknuti, gubi se

periodičnost pozicija. Na taj se način smanjuju razine neželjenih bočnih latice te se smanjuje

utjecaj elektromagnetske sprege. Takod̄er, ako se pozicije uvedu u dizajn kao varijable, moguće

je dobiti željeni dijagram zračenja korištenjem jedinične pobude.

Drugo poglavlje takod̄er sadrži pregled literature iz područja istraživanja. Navedene su

dosad razvijene analitičke i optimizacijske metode za dizajn linearnih antenskih nizova s malim

dinamičkim rasponom koeficijenata. Analitičke metode su brze i pouzdane, ali rijetko daju

optimalne dijagrame zračenja u slučajevima kada je potrebno ograničiti dinamički raspon koe-

ficijenata. S druge strane, optimizacija omogućava bolju kontrolu specifikacija dizajna te je

zbog toga često upotrebljavana u dizajnu antenskih nizova. Optimizacijski problem koji sadrži

ograničenja dinamičkog raspona koeficijenata je nekonveksan. Zbog toga su razvijene mno-

gobrojne metode s ciljem približavanja globalnom rješenju. Neke metode rješavaju relaksirani

problem, npr. minimiziraju dinamički raspon podrazumijevajući da su svi koeficijenti isključivo

pozitivni. Druge pristupaju originalnom problemu tako da ga pretvaraju u niz problema koji se

rješavaju iterativno. Takod̄er, koriste se i evolucijski algoritmi, koji postaju sve popularniji

za rješavanje nekonveksnih problema. Navedene metode nažalost ne garantiraju globalnost

pronad̄enog rješenja. Jedina dosad razvijena metoda koja nudi globalno rješenje za problem

minimizacije razine bočnih latica uz ograničen dinamički raspon koeficijenata temelji se na

grananju i ograničavanju. Nadalje, u drugom poglavlju analizirane su i optimizacijske met-

ode za dizajn rijetkih nizova s ograničenim dinamičkim rasponom, metode za dizajn nizova

s nejednoliko razmaknutim elementima i malim dinamičkim rasponom koeficijenta te, kon-

ačno, metode za dizajn nizova s nejednoliko razmaknutim jednako pobud̄enim elementima.

Optimizacijski problemi koji sadrže pozicije elemenata kao varijable su izrazito nelinearni i

nekonveksni. Tijekom godina predložene su mnoge metode za rješavanje takvih problema.



Med̄utim, niti jedna od njih ne daje globalno rješenje. Najveći dio istraživanja posvećen je

pronalasku pozicija koje će dati minimalnu razinu bočnih latica, dok su ciljevi poput dobivanja

maksimalne učinkovitosti glavne latice i maksimalne usmjerenosti manje zastupljeni u literat-

uri. Kod rješavanja ovih problema često se susreće ideja primjene Taylorove aproksimacije,

što omogućava raspis originalnog problema u niz konveksnih problema koji se rješavaju iterat-

ivno. Osim toga, popularni su evolucijski algoritmi poput optimizacije rojem čestica, genetski

algoritmi, optimizacija po uzoru na ponašanje sivih vukova i sl.

Budući da su u disertaciji predložene metode za dizajn antenskih nizova koje se temelje

na optimizaciji, u trećem poglavlju dani su osnovni pojmovi vezani uz to područje te preg-

led odabranih optimizacijskih postupaka. Opisane su metode za konveksnu optimizaciju: lin-

earno programiranje, kvadratno programiranje te optimizacija konveksne funkcije nad prost-

orom omed̄enim stošcima drugog reda. Nadalje, opisane su dvije metode za nelinearnu optim-

izaciju. Prva metoda je kvazi-Newtonova metoda, koja se koristi za optimizaciju bez ogran-

ičenja, a druga je sekvencijalno kvadratno programiranje koje se može smatrati poopćenjem

kvazi-Newtonove metode za slučaj optimizacije s ograničenjima. Na kraju poglavlja opisano je

grananje i ograničavanje kao primjer metode za globalnu optimizaciju.

U četvrtom poglavlju predstavljena je sinteza linearnih antenskih nizova s uskom glavnom

laticom i minimalnom L1-normom temeljena na konveksnoj optimizaciji. Generalni optimiza-

cijski problem koji opisuje dizajn linearnog antenskog niza s uskom glavnom laticom može

se oblikovati kao minimizacija pogreške u području bočnih latica. Ta mjera pogreške često se

izražava u obliku Lp-norme. Odabiri p = 2 i p → ∞ često su zastupljeni u literaturi, a optim-

izacijski problemi koji koriste navedene vrijednosti su konveksni. Takod̄er, u tim slučajevima

optimum se može izračunati i pomoću analitičkih izraza. Druge norme, poput L1-norme, nisu

zastupljene u dizajnu antenskih nizova. Nasuprot tome, u teoriji FIR filtara poznat je dizajn

temeljen na L1-normi. U usporedbi s L2 optimalnim FIR filtrima, L1 filtri imaju manju valovitost

u području gušenja te nešto šire prijelazno područje. Uzimajući u obzir navedene značajke L1

optimalnih FIR filtara, u disertaciji je predložena metoda za dizajn antenskih nizova koja se

temelji na L1-normi. Ova metoda rezultira dijagramima zračenja koji su pogodni za mnoge

primjene.

Dizajn nizova s minimalnom L1-normom izražen je kao problem optimizacije nad prostorom

omed̄enim stošcima drugog reda. Predstavljeni problem je konveksan te stoga navedeni pos-

tupak daje globalno rješenje. U disertaciji je opisani postupak primijenjen na dizajn antenskih

nizova s raznim brojem elemenata. Nadalje, provedena je detaljna analiza dobivenih rezultata.

Prvo je razmatran dizajn nizova s elementima koji su med̄usobno razmaknuti za λ/2. Dobiveni

pobudni koeficijenti su pozitivni te imaju zvonoliku raspodjelu. Utvrd̄eno je kako se razina prve

bočne latice ne mijenja značajno s porastom broja elemenata niza te da ona iznosi približno −21

dB. Razine ostalih bočnih latica padaju monotono s porastom kuta. Posljedično tome, dobiveni



nizovi imaju visoku učinkovitost glavne latice koja je uvijek viša od 98 %. Nadalje, dinam-

ički raspon pobudnih koeficijenata linearno raste s porastom broja elemenata niza te generalno

poprima male vrijednosti. Konačni primjer u četvrtom poglavlju pokazuje uspješnu primjenu

predloženog L1 dizajna u sintezi antenskih nizova s elementima postavljenim na predefinirane i

nejednoliko razmaknute pozicije. U ovom slučaju, dobivaju se i negativne vrijednosti pobudnih

koeficijenata.

Iako dinamički raspon pobudnih koeficijenta u nizovima s minimalnom L1-normom gen-

eralno poprima male vrijednosti, u nekim aplikacijama one mogu biti veće od onih podržanih

dostupnim sklopovljem. Da bi se taj problem riješio, u polazni L1 dizajn potrebno je uključiti

ograničenja dinamičkog raspona koeficijenta. Peto poglavlje predstavlja ovakav dizajn. Do-

davanjem ograničenja na dinamički raspon koeficijenata optimizacijski problem postaje nekon-

veksan. Med̄utim, od ranije je poznato da je takav problem moguće globalno riješiti korištenjem

metode grananja i ograničavanja, uz uvjet da su predznaci svih koeficijenata unaprijed poznati.

Takav pristup primijenjen je u opisanom dizajnu. Dizajn je ilustriran primjerima, a dobiveni

antenski nizovi i pripadajući dijagrami zračenja su analizirani. Utvrd̄eno je da ograničavanje

dinamičkog raspona koeficijenata utječe na porast razine prve bočne latice. Takav porast može

biti značajan i uglavnom je nepoželjan.

Preveliki porast razine prve bočne latice može se spriječiti dodavanjem ograničenja na mak-

simalnu razinu bočnih latica. Takva ograničenja su konveksna. No, zbog ograničenja dinam-

ičkog raspona koeficijenata, i ovaj problem potrebno je riješiti upotrebom grananja i ogran-

ičavanja. Med̄utim, za pojedine kombinacije predznaka koeficijenata te za zadani dinamički

raspon koeficijenata, željena razina bočnih latica se ne može postići. Tada je optimizacijski

problem neizvediv. Ako se neizvedivi problem nad̄e u stablu za pretraživanje, ranije kor-

ištena metoda grananja i ograničavanja ne može uspješno obaviti pretraživanje i dati globalno

rješenje. Zbog toga je u nastavku petog poglavlja predložena metoda grananja i ograničavanja s

ugrad̄enim testom izvedivosti, koja globalno rješava problem optimizacije L1 linearnih antens-

kih nizova s ograničenim dinamičkim rasponom pobudnih koeficijenata i ograničenom maksim-

alnom razinom bočnih latica. Metoda je uspješno primijenjena te su dizajnirani antenski nizovi

s elementima razmaknutim za λ/2 i nizovi s nejednoliko razmaknutim, unaprijed zadanim,

pozicijama elemenata. U prvom slučaju uočeno je su dobiveni koeficijenti često isključivo poz-

itivni i simetrični. Negativni i asimetrični koeficijenti pojavljuju se prilikom dizajniranja većih

antenskih nizova s vrlo strogim zahtjevima postavljenim na dinamički raspon koeficijenata i

maksimalnu razinu bočnih latica.

U šestom poglavlju predstavljen je dizajn linearnih i planarnih antenskih nizova s jed-

nako pobud̄enim nejednoliko razmaknutim elementima. Takav pristup osigurava minimalan

dinamički raspon koeficijenata. Optimizacija pozicija provedena je s ciljem dobivanja mak-

simalne učinkovitosti glavne latice te maksimalne usmjerenosti. Budući da su takvi prob-



lemi nekonveksni i nelinearni, za njihovo rješavanje predloženi su optimizacijski postupci opće

namjene. Prvo je razmatrana optimizacija bez ograničenja. Za takvu optimizaciju odabrana

je kvazi-Newtonova metoda. Rezultati pokazuju da metoda brzo konvergira ka rješenju što

omogućava brzo eksperimentiranje s raznim kriterijima. Takod̄er, promatrani problemi vrlo se

lako prilagod̄avaju za rješavanje spomenutom metodom. U slučaju maksimizacije učinkovitosti

glavne latice, u rješenju se mogu pojaviti elementi s malim med̄usobnim razmakom. S druge

strane, kada je riječ o maksimizaciji usmjerenosti, svi elementi nalaze se na dovoljno velikim

razmacima, što rezultira poboljšanjem usmjerenosti u odnosu na nizove s jednoliko razmaknu-

tim elementima.

Sljedeći korak bio je dodavanje ograničenja u dizajn. Dodana su ograničenja na minimalni

razmak izmed̄u elemenata, na maksimalnu razinu bočnih latica i na maksimalnu veličinu niza.

Za rješavanje takvih problema predloženo je sekvencijalno kvadratno programiranje. Ova met-

oda jedna je od najučinkovitijih metoda za nelinearnu optimizaciju s ograničenjima. U primjer-

ima su pokazani razni nizovi, dobiveni optimizacijama s raznim kombinacijama navedenih

ograničenja. Utvrd̄eno je da odabrana metoda konvergira za sve analizirane primjere, čak i

u slučajevima kada je početna točka izvan izvedivog područja. Rezultati pokazuju da je s

predloženom metodom moguće postići poboljšanje usmjerenosti i učinkovitosti glavne latice

u usporedbi s postojećim metodama.

Sedmo, zaključno poglavlje ističe glavne rezultate provedenog istraživanja.

Ključni pojmovi: antenski niz, antenski niz s nejednoliko raspored̄enim elementima, dinam-

ički raspon pobudnih koeficijenata, globalna optimizacija, grananje i ograničavanje, jedinična

pobuda, konveksna optimizacija, L1-norma, nelinearna optimizacija, učinkovitost glavne latice,

uska glavna latica, usmjerenost.
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Chapter 1

Introduction

Continuously evolving wireless communication technologies and a growing number of wireless

devices used in everyday life require efficient antenna arrays that produce optimum radiation

patterns. In particular, high beam efficiency, high directivity, low sidelobe level, and simple

feeding networks are the ultimate features of antenna arrays that are used in 5G mobile commu-

nications as well as in satellite systems. Consequently, new and efficient antenna architectures

are constantly being developed. Desired radiation patterns can be achieved by using equally

spaced arrays with amplitude-weighted excitation coefficients. However, amplitude weighting

induces poor power efficiency and requires radio-frequency amplifiers with high dynamic range,

which results in expensive and complicated feeding networks. Therefore, to achieve both the

desired radiation pattern and simple feeding network a low excitations’ dynamic range ratio is

required.

Having the aforementioned requirements in mind, the objective of the research covered

within this dissertation is to upgrade existing and develop new methods for the synthesis of

pencil-beam antenna arrays with low dynamic range ratio of excitation coefficients. In this

context, the conducted research offers the following contribution:

1. Synthesis of pencil-beam linear antenna arrays with minimum L1-norm based on convex

optimization.

2. Method for global optimization of pencil-beam linear antenna arrays with constrained

dynamic range ratio of excitation coefficients and minimum L1-norm.

3. Method for the design of antenna arrays with uniformly excited unequally spaced antenna

elements based on general-purpose optimization methods.

The thesis is organized as follows. The second chapter introduces common concepts and

figures of merit of antenna arrays. Furthermore, it brings an overview of state-of-the-art antenna

array design methods, with an emphasis on pencil-beam design with low dynamic range ratio

of excitation coefficients. In that sense, methods that minimize or constrain the dynamic range

ratio are considered. In addition, the methods that utilize the unity dynamic range ratio and op-

1



1. Introduction

timize antennas’ positions are discussed. Since the design methods proposed in this dissertation

are based on optimization, the third chapter briefly discusses optimization techniques relevant

to the proposed research.

The fourth, fifth, and sixth chapters describe newly developed methods for the design of

pencil-beam antenna arrays. In the fourth chapter, a method for convex optimization for the

design of L1 linear pencil beams is presented. The design examples provide insight into behavior

of such pencil beams, for both the arrays with equally and unequally spaced elements.

In the fifth chapter, the design of L1 pencil beams is extended with the constraints set on

dynamic range ratio of excitation coefficients. Constraining the dynamic range ratio might

cause deterioration in array’s radiation pattern. To prevent this, the sidelobe level constraints

are included in the design. Since the optimization problems involving constraints on dynamic

range ratio are not convex, a global optimization method based on branch and bound is proposed

for their solving.

The sixth chapter considers the optimization of uniformly-excited unequally-spaced arrays.

The optimization problems that contain elements’ positions playing the role of design variables

are highly nonlinear and nonconvex. For their solving, the application of methods for nonlinear

optimization is investigated. In particular, the design of arrays with maximum beam efficiency

and the design of arrays with maximum directivity are considered. The optimization of linear

and planar arrays is performed and several examples are provided.

Finally, the seventh chapter concludes the dissertation.

2



Chapter 2

Antenna Arrays

Antenna arrays are used in applications that require radiation patterns that are not achievable by

single antenna element [1], [2], [3]. Such applications include radars [4], satellite comunica-

tions [5], [6], 5G communications [7], [8], microwave power transmission [9], [10], [11], radio

astronomy [12], [13], medical treatments [14], etc. The main purposes of antenna arrays are

spatial filtering and beamforming [15]. In both, the radiating field is appropriately shaped and

directed.

The radiating field can be divided into three regions: reactive near-field, radiating near-

field, and far-field region [1]. In the reactive near-field nonradiating effects dominate, and as

the name suggests, it is encountered in the region immediately around the antenna. As the

distance from the antenna increases, radiating near-field region is entered. Therein, radiating

effects are encountered, however, angular field distribution is dependent on the distance from

the antenna. Finally, far-field region begins after reaching an appropriate distance from the

antenna, which usually equals several wavelengths. In this region, field distribution practically

does not depend on the distance from the antenna. All array design methods discussed in this

dissertation consider only radiation patterns in the far-field region.

Radiation pattern can have various shapes, forming wide beams, pencil beams, cosecant

square beams, multiple beams, etc. Main focus of this dissertation is set to pencil beams. Such

beams have the most of the energy concentrated in a narrow spatial angle.

When considering spatial layout of radiating elements, there are linear, planar, volumet-

ric arrays, etc. Further classification is based on interelement spacing, covering equally and

nonequally spaced arrays. All of the mentioned layouts, except volumetric arrays, are con-

sidered in this dissertation.

3



2. Introduction

2.1 Far-Field Radiation Pattern

Consider a single antenna element placed at the x-axis of a coordinate system, as shown in

Figure 2.1a. Its complex radiation pattern in the far-field region in the xz-plane, is given by [3]

F(θ) = G(θ)αe jβ e j 2π

λ
r̂· #»d (2.1)

where G(θ) is radiation pattern of the antenna element, θ is elevation angle, αe jβ is excitation

signal with magnitude α and phase β , λ is the wavelength of transmitted signal, r̂ is unit vector

in the direction #»r which points to the observation point R, and
#»d is vector which points to the

antenna element. Assuming

r̂ = x̂sinθ + ẑcosθ , (2.2)

and
#»d = xax̂, (2.3)

where x̂ and ẑ are unit vectors and xa is the abscissa of the antenna element, the far-field radiation

pattern of a single antenna takes the form

F(θ) = G(θ)αe jβ e j 2π

λ
xa sinθ . (2.4)

(a) (b)

Figure 2.1: Single antenna element (a) and linear antenna array (b).

Next, consider the case where N antenna elements are placed along the x-axis, as shown

in Figure 2.1b. Such configuration is called linear antenna array. The total radiated field of all

elements can be obtained by using superposition. Assuming all elements have the same element

pattern G(θ), far-field radiation pattern of a linear antenna array is given by

F(θ) = G(θ)
N

∑
n=1

αne jβne j 2π

λ
xn sinθ (2.5)
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2. Introduction

where xn, αn, and βn, n = 1,2, ...,N represent elements’ positions, magnitudes and phases. By

denoting an = αne jβn , x = [x1,x2, . . . ,xN ]
T, and a = [a1,a2, . . . ,aN ]

T, the expression in (2.5) can

be written in a form

F(a,x,θ) = G(θ)
N

∑
n=1

ane j 2π

λ
xn sinθ (2.6)

Finally, if the array is composed of N antenna elements that are placed in the xy-plane, as

illustrated in Figure 2.2, the configuration is called planar antenna array. In such a case, vector
#»d for each element is obtained as

#»d = xax̂+ yaŷ, (2.7)

where xa and ya are abscissa and ordinate of antenna elements. The vector r̂ now takes the form

r̂ = x̂sinθ cosϕ + ŷsinθ sinϕ + ẑcosθ . (2.8)

where θ is elevation and ϕ is azimuth angle. The far-field radiation pattern of the array is given

by

F(a,x,y,θ ,ϕ) = G(θ ,ϕ)
N

∑
n=1

ane j 2π

λ
(xn sinθ cosϕ+yn sinθ sinϕ) (2.9)

where x = [x1,x2, . . . ,xN ]
T, y = [y1,y2, . . . ,yN ]

T, a = [a1,a2, . . . ,aN ]
T, and G(θ ,ϕ) is the ele-

ments’ radiation pattern.

If all coefficients have zero phases, i.e. βn = 0, n = 1,2, . . . ,N, the main beam is directed

at the angle θ = 0, which is perpendicular to the axis/plane at which the array is placed. Such

arrays are called the broadside arrays. The phases, βn, can be used to steer the beam away from

the broadside. However, in this dissertation only broadside arrays are considered.

The summation terms in (2.6) and (2.9)

f (a,x,θ) =
N

∑
n=1

ane j 2π

λ
xn sinθ (2.10)

and

f (a,x,y,θ ,ϕ) =
N

∑
n=1

ane j 2π

λ
(xn sinθ cosϕ+yn sinθ sinϕ) (2.11)

are called the array factors. Clearly, if elements in the array are isotropic radiators, i.e.

G(θ ,ϕ) = 1, then the far-field radiation pattern is equivalent to the array factor. In this dis-

sertation only arrays with isotropic elements are considered.

Note that the expressions (2.6) and (2.9) are obtained assuming antenna elements are ideal.

In a real world, when multiple antennas are placed next to each other, element pattern of a single

antenna is influenced by the radiation of other elements [1]. Such influence is known as mutual

5
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coupling between antenna elements. In this dissertation only the array factors, i.e. the arrays

with ideal isotropic elements will be considered.

Figure 2.2: Planar antenna array.

2.2 Properties of Antenna Arrays

In antenna array design, attention should be paid on two sets of properties. First of them is

related to the far-field radiation pattern, describing array’s performances. The second describes

implementation aspects.

2.2.1 Radiation Pattern

2.2.1.1 Radiation Pattern Lobes

The far-field radiation pattern of a pencil-beam array contains radiation lobes, namely, one main

lobe and multiple side lobes.

Main lobe, or main beam, is the lobe with maximum radiated power. The width of the

main lobe is described with two parameters: half-power beamwidth (HPBW) and first-null

beamwidth (FNBW). HPBW is defined as a separation between angles at which the level of the

main lobe is equal to −3 dB. It is often used to describe resolution capabilities, i.e. the ability

to distinguish signals coming from two adjacent directions. FNBW is defined as an angular

separation between the first nulls on the opposite sides of the main lobe [1].

Side lobes, or minor lobes, represent radiation in undesired directions [1]. The ratio of the

power density in the largest side lobe and power density in the main lobe is called sidelobe level

(SLL) [1]. Minimization of the sidelobe level is a common requirement in antenna array design.

6
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2.2.1.2 Directivity

Directivity describes how effectively the antenna array directs energy in a specific direction [1].

It is defined as the ratio between the power density obtained in the observed direction and the

average power density [1]. The maximum directivity occurs in the direction of the main lobe.

If this direction is denoted as θMB, directivity of linear antenna array is given by

D =
| f (a,x,θMB)|2

Ptot/4π
. (2.12)

where Ptot is total radiated power. For planar array directivity is calculated by using array factor

from (2.11).

2.2.1.3 Beam Efficiency

Beam efficiency (BE) is defined as the ratio between the power radiated within a main beam

and the total radiated power [1], as in

BE =
P0

Ptot
. (2.13)

where P0 is the power of the main beam. In some applications, such as the microwave power

transmission, the term beam collection efficiency (BCE) is used rather than beam efficiency.

2.2.2 Implementation Aspects

2.2.2.1 Dynamic Range Ratio of Excitation Coefficients

The dynamic range ratio (DRR) of excitation coefficients is defined as the ratio of the coeffi-

cients’ maximum and minimum absolute value, as in

DRR =

max
1≤n≤N

{|an|}

min
1≤n≤N

{|an|}
. (2.14)

The excitations’ DRR has a direct impact on the complexity and the cost of the arrays’ feed-

ing networks. The main components of a feeding network are amplifiers and phase shifters,

which enable amplitude weighting and phase delay control at each antenna element [16]. Usu-

ally, the amplifiers that operate at high frequencies cover only a narrow dynamic range. There-

fore, the coefficients with a low DRR relax the requirements set on the amplifiers. Additional

benefit of a low DRR is better control of the mutual coupling between antenna elements [17].

Finally, a low DRR improves the power distribution between antenna elements [5], [9], which

is important in microwave power transmission and satellite communications. Unfortunately, the

7
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minimization of the sidelobe level requires a certain amount of coefficients’ dynamics, since the

uniformly excited arrays offer the sidelobe level of only −13.5 dB [1]. Therefore, a tradeoff

between low DRR and specified SLL is often made in antenna array design.

2.2.2.2 Spatial Layout of Antenna Arrays

Antenna elements can be equally or unequally spaced. The positions at which antenna elements

are placed greatly influence the array performance.

In equally spaced arrays, all neighboring antenna elements have the same interelement spa-

cing. For broadside arrays, in order to avoid grating lobes, the interelement spacing should be

less than λ . However, spacing should not be too small either, since mutual coupling effects in-

crease with a decrease in the distances [1], [16]. Typical interelement spacing of equally spaced

arrays is λ/2. Such spacing ensures the absence of aliasing and the obtained visible region

coincides with the Nyquist band in signal processing theory [3]. This enables the application of

methods for FIR-filter design in the design of antenna arrays.

In unequally spaced arrays the elements take arbitrary, usually nonequdistant, positions.

The lack of periodicity reduces pattern’s grating lobes, which allows increasing array’s size or

its sparsity [18], [19]. Moreover, non-uniform layout of antennas reduces the effects of mutual

coupling [5]. Finally, introducing elements’ positions as variables provides additional degrees

of freedom (DOF) in the design. This allows obtaining specified radiation patterns with low-

DRR or even uniform excitation coefficients [19], [20].

2.3 State-of-the-Art in Pencil-Beam Antenna Array Design

2.3.1 Linear Arrays with Low Dynamic Range Ratio

As elaborated in Section 2.2.2.1, the dynamic range ratio is often a bottleneck of arrays’ imple-

mentation. Consequently, great efforts were made by scientific community to develop methods

for the design of low-DRR antenna arrays. Design methods that incorporate DRR control can

be divided into two main groups: analytic methods and optimization-based methods.

2.3.1.1 Design Based on Analytic Methods

Analytic methods are fast and robust. In the context of beamforming, they are usually based on

windowing techniques and polynomial representations of either the array factor or the continu-

ous current distribution of the array’s aperture. There are several analytically obtained arrays

that implicitly ensure low DRR, such as Dolph-Chebyshev [21], Taylor-Kaiser, Legendre, and

Gaussian [22] arrays. However, there are not many analytic methods that explicitly take DRR

into account.

8
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Recently developed methods tackled this problem [23], [24], [25], [26], [27]. In [23] and

[27], the excitation coefficients are obtained directly, by discretizing the appropriately modeled

function that represents array’s continuous current distribution. On the other hand, in [24]

and [25], coefficients are obtained by applying inverese fast Fourier transform on the function

representing the array factor. Majority of these methods provide minimum DRR for a specified

sidelobe level [24], [25], [26]. Moreover, the method in [23] reduces the DRR by adjusting a

control parameter that influences the DRR, which provides only indirect control of the DRR.

Finally, in [27] the DRR is taken as an input parameter for the design. The arrays are designed

to achieve minimum sidelobe level for a given DRR.

2.3.1.2 Design Based on Optimization Methods

Although analytic methods are straightforward, they rarely provide optimum beampatterns, es-

pecially when a low DRR is required. On the other hand, optimization offers exact control over

design specifications and it has become a preferable choice in antenna array design.

The design of pencil beams can be considered as an optimization problem in which various

specifications can be added, among which is the dynamic range ratio. There are two common

approaches to controlling the DRR

• direct minimization of DRR

• incorporating DRR constraints into the design with some other objective function.

Either way, the optimization problem with DRR as a requirement is nonconvex. Therefore, it

is difficult to solve globally. Namely, if the upper bound D is imposed on the value of DRR

defined in (2.14), as in

max
1≤n≤N

{|an|}

min
1≤n≤N

{|an|}
≤ D (2.15)

then such constraint can be written as

|an| ≤ Dt, n = 1,2, . . . ,N (2.16)

|an| ≥ t, n = 1,2, . . . ,N (2.17)

t ≥ 0 (2.18)

where t is auxiliary variable. The constraint (2.17) is not convex. Consequently, numerous

methods have been developed to approach the global solution of DRR-constrained problems

as much as possible. These methods are either based on approximating the original problem

by introducing relaxations into the design [28], [29], [30], or by using methods that solve the

original problem approximately [17], [31], [32], [33], [34], [35].
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Two simplest relaxations used in antenna array synthesis with the control of DRR are

• turning off the array elements whose amplitude is close to zero, as proposed in [29] and

• manual setting the magnitude of the element violating the required DRR to an appropriate

value, as in [28].

Expectedly, such methods do not provide arrays with arbitrary DRR and may result in signific-

ant deterioration of the radiation patterns.

Another possible relaxation, proposed in [30], is to formulate the objective function as a

difference between the maximum and the minimum value of excitation, as in

minimize
a

max |a|−min |a| (2.19)

assuming that all excitation coefficients take positive values. The resulting optimization prob-

lem is given by [30]
minimize

a
max |a|−min |a|

subject to
N

∑
n=1

an = 1,

| f (a,θ)| ≤ δ (θ),

a ≥ 0

(2.20)

where δ (θ) is the upper bound of magnitude of array factor f (a,θ). The problem (2.20) is

convex and can be easily solved. In this way, the DRR is fully controlled. However, enforcing

exclusively positive excitations reduces design freedom and consequently does not provide the

best solution.

To solve the DRR minimization problem, approximate algorithms are often used. Such

algorithms usually transform original problem into a problem suitable for solving with iterative

methods, such as projection based algorithm [17], nonlinear optimization of penalty function

[32], alternating direction method of multipliers (ADMM) [33], primal-dual method [34], and

penalty dual decomposition [35]. All methods referred to reduce DRR while providing desired

radiation pattern. Even though some of the listed methods, such as ADMM have supreme

convergency properties [36], they cannot guarantee the globality of the solutions.

In addition to the aforementioned methods, which are deterministic, in [31] a genetic al-

gorithm was used to perform simultaneous minimization of the difference between desired and

obtained radiation pattern and the difference between desired and obtained DRR. The main ad-

vantage of genetic algorithms over deterministic algorithms is their ability to escape from local

optimum, thus increasing the chance of finding the global solution. However, globality of the

solution still cannot be guaranteed.

Recently, a method has been developed that globally solves the problems of minimization

of SLL [37] and maximization of beam efficiency [38] of the arrays with constrained DRR. The

10



2. Introduction

method referred to is based on branch and bound algorithm. It supports positive and negative

coefficients. In addition, it works with DRRs as low as one. This method will be described in

detail in Section 5.1.1 since the branch and bound algorithm is a base algorithm for the design

of L1 pencil beams with constrained DRR, which is presented in this dissertation.

2.3.2 Thinned Arrays with Low Dynamic Range Ratio

The term thinned arrays refers to the arrays obtained by eliminating certain elements from the

equally spaced arrays. Array thinning can lead to arrays with average interelement spacing

greater than λ/2. In such cases, as previously discussed in 2.2.2.2, thinned arrays can exhibit

lower mutual coupling. Moreover, array manufacturing costs can be reduced, as radiation pat-

tern specifications are met while utilizing fewer antenna elements. Finally, if such arrays also

exhibit low DRR, these advantages become more prominent. Sometimes, thinned arrays are

called sparse arrays.

There are many methods for the design of thinned arrays. However, very few of them

perform array thinning and simultaneously incorporate the control of DRR. Such methods can

be found in [39], [40], [41], [42].

In [39], [40] designs of planar arrays with arbitrary patterns are considered. The methods

referred to can be applied to pencil beams as well, by an appropriate adjustment of the power

pattern mask. Both methods are iterative and start with a fully populated array on a rectangular

grid. The method in [39] is based on alternating projections technique. At each iteration scaling

of the coefficients is performed according to the predefined bounds, and clipping of the coeffi-

cient whose magnitude is less than specified is performed. Furthermore, the method in [40] is

based on convex relaxations. At each iteration, elements with small excitations’ magnitudes are

eliminated, similar to the method in [29]. Even though the methods [39] are [40] are efficient,

they do not explicitly control the DRR. Design proposed in [42] utilizes convex optimization to-

gether with particle swarm optimization and genetic algorithm to synthesize sparse arrays with

phase and amplitude control. The DRR is minimized in one of the steps of the algorithm by

using formulation as in (2.19).

The method in [41] is an extension of the global optimization method from [37] for the case

of thinned linear arrays. The method provides global solution to the problem of minimization

of SLL with constrained DRR. Since the method allows zero excitations, additional reduction

of SLL can be achieved compared to the case when only nonzero coefficients are allowed. Such

behavior occurs because, in a DRR-constrained design, the coefficients that would naturally

have low values would be pushed to higher values to satisfy the DRR constraints, which inev-

itably deteriorates the array factor. When such coefficients are allowed to take zero value, the

deterioration is lower.

11
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2.3.3 Unequally Spaced Arrays with Low Dynamic Range Ratio

Methods that simultaneously optimize positions and DRR of pencil-beam arrays are found in

[43], [44]. In this way, number of degrees of freedom is increased since elements are allowed

to move from their positions on predefined grid.

The work in [43] presents an iterative hybrid algorithm based on particle swarm optimization

and second-order cone programming. This algorithm assumes all coefficients are positive. In

each iteration, excitation coefficients are calculated by using second-order cone programming.

Then, the element positions are updated by using particle swarm optimization.

The design proposed in [44] employs the density tapering method from [45] to find ele-

ments’ positions assuming their excitation coefficients are uniform. The positions are calculated

in a closed form. Then, excitations are evaluated by using the calculated positions and by taking

into account DRR constraints and mutual coupling between antenna elements. The excitations

are found by using alternating projection approach from [46]. The goal is to reduce the level of

the side lobes. Only linear arrays are considered.

2.3.4 Unequally Spaced Uniformly Excited Arrays

The designs considering unequally-spaced arrays can be expressed as optimization problems.

Unfortunately, problems containing elements’ positions as design variables are highly nonlinear

and nonconvex. Therefore, they are difficult to solve globally. Throughout the years such

problems have been solved with numerous optimization-based methods. Even though these

methods generally provide good results, the globality of the solutions cannot be guaranteed.

Therefore, this is still an open problem in antenna array design.

A significant part of the research is focused on the control of the sidelobe level [4], [6], [20],

[47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], whereas the objectives

such as maximization of beam efficiency [60], [61], [62], [63], [64], [65], [66], [67] or directiv-

ity [55], [65] [68] are less frequent. Moreover, many authors consider arrays with predefined

excitation coefficients and optimize only elements’ positions [4], [6], [20], [47], [48], [49], [50],

[51], [52], [53], [54], [55], [56], [60], [61], [62], [63], [64], [65]. In this scenario, the most pop-

ular choice is uniform excitation, which is interesting because it ensures the lowest possible

DRR. If the excitation coefficients are uniform, all amplifiers work under the same operating

conditions which improves system’s efficiency and enables the use of simple feeding networks.

On the other hand, designs that include positions and excitations as variables can lead to better

array performances. The examples of such designs can be found in [57], [58], [59], [66], [67].

However, the implementation of such arrays is more complex and expensive. Therefore, one of

the emphases of this dissertation is on designing uniformly-excited unequally-spaced arrays.

12
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The sidelobe level is one of the most important parameters of antenna arrays. Consequently,

its minimization via unequal element spacing has been extensively studied. A popular approach

in the minimization of SLL is to employ deterministic optimization based on convex optimiz-

ation. Since the original problem is nonconvex, it is approximated by using Taylor expansion

which leads to a sequence of convex problems that are solved iteratively. Such an approach was

presented in [48]. At the kth iteration, array factor from (2.11) is linearized around current sub-

optimal solution (xk−1, yk−1). The linearization is achieved by exploiting the first-order Taylor

approximation e jγ ≈ 1+ jγ , as in

f (a,∆∆∆x,∆∆∆y,θ ,ϕ) =
N

∑
n=1

ane j 2π

λ
(xk−1

n sinθ cosϕ+yk−1
n sinθ sinϕ)(1+ j sinθ cosϕ∆x+ j sinθ sinϕ∆y)

(2.21)

where ∆∆∆x and ∆∆∆y are displacement vectors. The approximation is valid if |sinθ cosϕ∆x| ≪ 1

and |sinθ sinϕ∆y| ≪ 1. In this case, at the kth iteration ∆∆∆x and ∆∆∆y can be found by solving the

problem
minimize

∆∆∆x,∆∆∆y
δ

subject to max | f (∆∆∆x,∆∆∆y,θs,ϕs)| ≤ δ , (θs,ϕs) ∈ S,

|∆∆∆x| ≤ ε,

|∆∆∆y| ≤ ε

(2.22)

where δ is sidelobe level, S is the sidelobe region, and ε is the upper bound on changes in

element locations. The problem (2.22) is convex and it can be solved by using second-order

cone programming. Finally, new solution is obtained as

xk = xk−1 +∆∆∆x, yk = yk−1 +∆∆∆y. (2.23)

Similar approach was used in [53] where authors utilized second-order Taylor approximation

and included constraints on minimum interelement spacing between the elements. Such con-

straints are crucial since they prevent elements from being too close to one another or from

overlapping. The method referred to provided lower SLL values than did the method in [48].

Another approximation that leads to a sequence of convex problems is Chebyshev approx-

imation used in [19]. Constraints on interelement spacing were also included in this design. For

planar arrays these constraints are nonlinear and nonconvex, as in

(xk
i j)

2 +(yk
i j)

2 ≥ d2
min, i ̸= j (2.24)

where k denotes iteration number, (xk
i j) and (yk

i j) are distances along x and y directions between

ith and jth element, and dmin is minimum interelement spacing. In [19], linearized model of
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these constraints is used, where linearization is performed around current suboptimal solution,

(xk−1
i j ), (yk−1

i j ). Assuming

xk
i j = xk−1

i j +∆xk
i j (2.25)

yk
i j = yk−1

i j +∆yk
i j (2.26)

expression (2.24) becomes

(xk−1
i j )2 +2xk−1

i j ∆xk
i j +(∆xk

i j)
2 +(yk−1

i j )2 +2yk−1
i j ∆yk

i j +(∆yk
i j)

2 ≥ d2
min, i ̸= j (2.27)

If ∆xk
i j ≪ 1 and ∆yk

i j ≪ 1, (∆xk
i j)

2 and (∆yk
i j)

2 can be neglected, resulting in

xk−1
i j ∆xk

i j + yk−1
i j ∆yk

i j ≥
d2

min − (xk−1
i j )2 − (yk−1

i j )2

2
, i ̸= j (2.28)

For

∆xk
i j = ∆xk

i −∆xk
j (2.29)

∆yk
i j = ∆yk

i −∆yk
j. (2.30)

the constraints in (2.28) are linear.

In [19], [48], [53] elements’ positions were optimized only for the broadside arrays. Con-

sequently, such optimizations cannot provide optimum SLL when main beam is steered away

from the broadside direction. The optimization of SLL for steered beams was considered in

[54] and [4]. In [54], iterative convex optimization was performed, based on the approxima-

tions similar to those in [48], [19]. In [4], the method of moving asymptotes was used, which

is a gradient-based method for nonlinear optimization. In addition to the aforementioned meth-

ods, popular choices for minimization of SLL are evolutionary methods such as differential

evolution [47], [49], particle swarm optimization [51], and grey wolf optimization [56]. De-

terministic techniques tailored for particular design problems were also considered [20], [6],

[52], [55].

In some applications, as for example in microwave power transmission (MPT), the objective

is to maximize beam collection efficiency of antenna array, whereas the SLL constraints serve

as an additional protection requirement. The MPT systems are currently under consideration

as one of the possible clean energy sources of the future. Popular methods for synthesis of

maximum BCE arrays with predefined excitations are evolutionary algorithms such as particle

swarm optimization [60], [62] and brain storm optimization [63]. The papers [60] and [62]

considered the design of planar arrays, whereas in [63] only linear arrays were optimized. All

of them had included constraints on maximum SLL, minimum interelement spacing, and max-
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imum array size. Moreover, in [61] a simple deterministic method based on first-order Taylor

approximation of objective function was presented for the optimization of linear arrays. How-

ever, this method had not include any constraints.

Chapter 6 of this dissertation considers maximization of beam (collection) efficiency. Con-

strained and unconstrained optimizations are presented that are based on nonlinear optimization

[64], [65]. Examples that are provided therein show effectiveness of the proposed approach.

The arrays with high directivity are important in radar and satellite applications. In this

context, arrays having minimum SLL and maximum directivity were synthesized in [55]. In the

examples provided therein, arrays with large number of elements were considered that can be

placed in geostationary orbit. Beam steering was also considered. Furthermore, directivity was

maximized in [68] by using genetic algorithm.

In contrast to the customized method presented in [55], Chapter 6 considers constrained

maximization of directivity by employing nonlinear optimization. The presented design in-

cludes constraints on the array size, interelement spacing, and sidelobe level.
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Chapter 3

Optimization Methods

Optimization is the collection of techniques, methods, and algorithms that are used to find the

optimal solution of a mathematically described problem [69]. It is often called programming,

which originates from the 1940s when the term programming was used in the context of problem

formulation and algorithm design [70].

A general optimization problem is formulated as finding the optimum vector x∗ which yields

the minimum value of objective function f0 : RN → R, as in

minimizex f0(x)

subject to fi(x)≤ 0, i = 1,2, . . . , I,

f j(x) = 0, j = 1,2, . . . , J,

(3.1)

where x= [x1,x2, . . . ,xN ]
T is the vector of optimization variables, and functions fi, f j :RN →R,

represent I inequality and J equality constraints. If the goal is to find the maximum value, the

function − f0 is minimized. All optimization problems considered in this dissertation will be

formulated as minimization problems. If the problem does not impose any restrictions on x, the

constraints in (3.1) are omitted. Such a problem is known as unconstrained problem.

Various methods can be applied to solve the problem in (3.1), depending on the structure

and properties of the objective function and constraints. These methods are categorized into

several classes, covering convex optimization, nonlinear optimization, global optimization, etc.

Convex optimization is a class of optimization in which the objective function is convex

and constraints define a convex set. A function is convex if (i) its domain is convex and (ii)

the line segment connecting any two points of the corresponding function graph lies above the

graph. Function domain, Ω, is convex if the line segment connecting any two points in Ω is

completely contained in Ω. In a convex optimization problem, all local solutions are also global

solutions [70]. Generally, if the problem at hand is recognized as a convex problem, it can be

easily solved [71]. However, recognizing and formulating the problem in a convex form is not

always an easy task.
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3. Optimization Methods

If the problem contains nonlinear objective function or at least one nonlinear constraint,

it can be solved by a method for nonlinear optimization. Such methods usually provide a

local solution, whose globality can rarely be proved [70]. However, nonlinear optimization

is a powerful tool that offers acceptable solution in many cases.

Many nonlinear optimization problems are multimodal, which means that they contain more

than one local optimum. In such problems, the global solutions are found by using the meth-

ods for global optimization. Unfortunately, these methods often have a high computational

complexity which can grow exponentially with the problem size. The class of global optimiza-

tion includes deterministic methods such as exhaustive search and branch and bound, stochastic

methods such as Monte Carlo method, and heuristic optimization, such as evolutionary methods

(e.g. particle swarm optimization).

In the following sections, the methods that are used in this dissertation are briefly described.

3.1 Linear Programming

Problems where the objective function and the constraint functions are affine are called linear

programs [71]. Linear programs are expressed as

minimizex wTx+d (3.2a)

subject to Gx ≤ h, (3.2b)

Ax = b (3.2c)

where w ∈ RN , G ∈ RM×N , A ∈ RP×N , h ∈ RM, b ∈ RP, and d ∈ R.

The intersections of halfspaces and hyperplanes defined by constraints (3.2b) and (3.2c)

form a convex polytope. An example of such polytope is shown in Figure 3.1. Since the

objective function is linear, the optimum solution of the program in (3.2) lies on a vertex of

such polytope. Based on this property, the optimum can be found by using Dantzig’s simplex

method [71]. The simplex method starts the search for optimum at a vertex of the polytope

and moves along its edges until the vertex with the optimum solution is found. It is clear that

the more vertices the polytope contains, the more time-consuming the search becomes. This

problem can be solved by using an interior point method [71]. Such method starts at a feasible

point and follows a path inside the feasible region to reach the optimum. Therefore, interior

point methods are more efficient in solving high-dimensional problems [69].
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Figure 3.1: An example of convex polytope.

3.2 Quadratic Programming

Optimization problem that contains quadratic objective function and affine constraint functions

is called quadratic programming (QP) problem [71]. Its form is given by

minimizex
1
2

xTWx+qTx+ r

subject to Gx ≤ h,

Ax = b

(3.3)

where W ∈ RN×N is positive semidefinite matrix, q ∈ RN , r ∈ R, G ∈ RM×N , A ∈ RP×N ,

h ∈ RM, and b ∈ RP. The quadratic program is convex. Therefore, it is often used as a base for

solving general nonlinear optimization problems [69].

3.3 Second-Order Cone Programming

A second-order cone program (SOCP) is formulated as [72]

minimizex wTx (3.4a)

subject to ∥Aix+bi∥ ≤ cT
i x+di, i = 1,2, . . . ,M, (3.4b)

where w ∈ RN , Ai ∈ R(Pi−1)×N , bi ∈ R(Pi−1), ci ∈ RN , di ∈ R, M is the number of constraints,

and ∥ · ∥ denotes the Euclidian norm. The constraints in (3.4b) are called second-order cone

constraints. They are equivalent to [︄
Ai

cT
i

]︄
x +

[︄
bi

di

]︄
∈ Ci (3.5)
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where Ci represents a second-order cone (Lorentz or ice cream cone) of dimensions Pi. An

example of second-order cone for Pi = 3 is shown in Figure 3.2. The second-order cone program

is convex.

All addressed convex problems, LP, QP and SOPC, can be solved by using known convex

optimization tools such as SeDuMi [73], MOSEK [74], CVX [75], YALMIP [76], etc.

Figure 3.2: An example of second-order cone for Pi = 3.

3.4 Quasi-Newton Method

Quasi-Newton is a variant of the Newton method, which is one of basic optimization techniques

used for unconstrained optimization. The Newton method uses first- and second-order partial

derivatives of the objective function f (x). The first-order derivative (gradient) provides inform-

ation about the direction of the steepest ascent, whereas the second-order derivative (Hessian)

provides information about the function’s curvature. Therefore, in the Newton method, an ob-

jective function is modeled as the quadratic approximation of the Taylor series calculated at the

point (x,δδδ), where δδδ= [δ1,δ2, . . . ,δN ]
T is the change of x, as in

f (x,δδδ)≈ f (x) + δδδTg(x)+
1
2
δδδTH(x)δδδ (3.6)

where the gradient, g(x), and the Hessian matrix, H(x), are given by

g(x) = ∇ f (x) =
[︃

∂ f
∂x1

∂ f
∂x2

· · · ∂ f
∂xN

]︃T

, (3.7)
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H(x) = ∇
2 f (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ 2 f
∂x1∂x1

∂ 2 f
∂x1∂x2

· · · ∂ 2 f
∂x1∂xN

∂ 2 f
∂x2∂x1

∂ 2 f
∂x2∂x2

· · · ∂ 2 f
∂x2∂xN

... . . . ...

∂ 2 f
∂xN∂x1

∂ 2 f
∂xN∂x2

· · · ∂ 2 f
∂xN∂xN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.8)

The objective function is minimized iteratively. At the kth iteration, the value of δδδk that

minimizes f (x,δδδ) is found by solving the equation

∇ f (xk,δδδk) = g(xk)+H(xk)δδδk = 0, (3.9)

resulting in
δδδk =−H−1(xk)g(xk). (3.10)

To find a point which minimizes the objective function in the direction of δδδk, a line search is

applied in the form

αk = argmin
α

f (xk +αδδδk), (3.11)

where αk determines the step length. New point, xk+1, is obtained as

xk+1 = xk +αkδδδk (3.12)

and the objective function is updated as

fk+1 = f (xk+1). (3.13)

Iterative procedure described in (3.10), (3.11), (3.12), (3.13) is repeated until the step length or
the gradient magnitude reaches specified tolerances ε1, ε2, as in

∥αkδδδk∥ ≤ ε1 (3.14)

and

∥gk∥ ≤ ε2. (3.15)

The above procedure utilizes gradient and Hessian of the objective function. However, their

analytic expressions are often unavailable. In such situations, they are estimated by using finite

difference computation of partial derivatives, as in

∂ f
∂xn

≈ f (x+dn)− f (x)
d

= f ′n(x), n = 1,2, . . . ,N, (3.16)
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∂ 2 f
∂xn∂xm

≈ f ′n(x+dm)− f ′n(x)
d

, n = 1,2, . . . ,N, m = 1,2, . . . ,N, (3.17)

where d is difference step size, and vectors

dq = [0, . . . ,0,d,0, . . . ,0]T, q = m,n (3.18)

contain the value d as the qth element.

The finite difference computation of Hessian matrix requires a large number of function

evaluations, which increases the algorithm’s complexity. To reduce this complexity the quasi-

Newton methods have been developed. Instead of Hessian matrix, these methods utilize its ap-

proximations. Several formulas for this approximation have been developed, such as Davidon-

Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [77]. The lat-

ter is very efficient and widely used.

In BFGS method, search direction in (3.10) is obtained as

δδδk =−B−1
k (xk)g(xk). (3.19)

At the beginning, B = I is set. In the subsequent iterations, B is updated based on function

values and gradient obtained in current and previous iterations, as in

Bk+1 = Bk +
γγγγγγT

γγγTs
− BkssTBk

sTBks
, (3.20)

where

γγγ= gk+1 −gk, (3.21)

and

s = xk+1 −xk. (3.22)

3.5 Sequential Quadratic Programming

Sequential quadratic programming (SQP) is a class of methods for solving nonlinear optimiza-

tion problems. They are considered to be the most effective methods for constrained nonlinear

optimization [70]. As the name suggests, SQPs are iterative and they can be considered as a

generalization of the quasi-Newton method adapted for constrained optimization. Detailed ana-

lysis of the SQP algorithms is given in [69]. Nevertheless, the most important parts are provided

hereafter.
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Consider the following constrained optimization problem

minimizex f (x)

subject to ai(x) = 0, i = 1, 2, . . . , I,

c j(x)≥ 0, j = 1, 2, . . . , J

(3.23)

where I and J are the numbers of equality and inequality constraints. The objective and con-

straint functions in (3.23) are nonlinear.

The Lagrangian of the problem in (3.23) is given by

L(x,λλλ,µµµ) = f (x)−aT(x)λλλ− cT(x)µµµ (3.24)

where

λλλ= [λ1,λ2, . . . ,λI]
T, (3.25)

µµµ= [µ1,µ2, . . . ,µJ]
T, (3.26)

are Lagrange multipliers, and

a(x) = [a1(x),a2(x), . . . ,aI(x)]T, (3.27)

c(x) = [c1(x),c2(x), . . . ,cJ(x)]T. (3.28)

The SQP solves the problem in (3.23) by forming a sequence of quadratic problems. At the

kth iteration, the Lagrangian is modeled by using quadratic approximation, as in

L(uk+1) = L(uk)+∇L(uk)δδδk +
1
2
δδδT

k ∇
2L(uk)δδδk (3.29)

where

u =

⎡⎣x
λλλ

µµµ

⎤⎦ , δδδ=

⎡⎣δδδx
δδδλλλ
δδδµµµ

⎤⎦ .
The increment δδδk is found by solving the problem

L(uk)+∇L(uk)δδδk +
1
2
δδδT

k ∇
2L(uk)δδδk = 0 (3.30)

If uk+1 is considered a local minimizer of (3.29) and consequently of (3.23), then the nec-

cessary optimality conditions, also known as the Karush-Kuhn-Tucker (KKT) conditions, must

be satisfied. They are given by

∇xL(uk+1) = 0 (3.31)
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ai(xk+1) = 0 i = 1, 2, . . . , I (3.32)

c j(xk+1)≥ 0 j = 1, 2, . . . , J (3.33)

µµµk+1 ≥ 0 (3.34)

µ j,k+1c j(xk+1) = 0 j = 1, 2, . . . , J (3.35)

For the considered problem, these conditions can be expressed as

Zkδδδxk +gk −AT
kλλλk+1 −CT

kµµµk+1 = 0 (3.36)

Akδδδxk =−ak(xk) (3.37)

Ckδδδxk ≥−ck(xk) (3.38)

µµµk+1 ≥ 0 (3.39)

(c j(xk)+C j,kδδδxk)µ j,k+1 = 0 j = 1, 2, . . . , J (3.40)

where

Zk = ∇
2
xx f (xk)−∇

2
xxaT(xk)λλλk −∇

2
xxcTµµµk (3.41)

gk = ∇x f (xk) (3.42)

Ak =

⎡⎢⎢⎢⎢⎢⎢⎣
∇T

x a1(xk)

∇T
x a2(xk)

...

∇T
x aI(xk)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.43)

Ck =

⎡⎢⎢⎢⎢⎢⎢⎣
∇T

x c1(xk)

∇T
x c2(xk)

...

∇T
x cJ(xk)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.44)

∇x =

[︃
∂

∂x1

∂

∂x2
· · · ∂

∂xN

]︃T

(3.45)

The expressions in (3.36)-(3.40) can be recognized as the KKT conditions of the problem

minimize
sk

1
2

sT
k Zksk + sT

k gk (3.46a)

subject to ∇xai(xk)sk =−ai(xk), i = 1,2, . . . , I, (3.46b)

∇xc j(xk)sk ≥−c j(xk), j = 1,2, . . . ,J (3.46c)
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3. Optimization Methods

where sk = δδδxk. The Lagrangian multipliers of this problem are equal to λλλk+1 and µµµk+1 of

the original problem. Clearly, the problem in (3.46) is convex and can be easily solved. The

solution sk is used to form a new iterate

xk+1 = xk +αksk. (3.47)

where αk determines the step length. It is obtained by using a line search method similar to the

line search used in quasi-Newton algorithm. The iterative procedure is repeated until the step

length or the gradient magnitude reaches specified tolerances ε1 and ε2, as in

∥αkδδδxk∥ ≤ ε1 (3.48)

∥gk∥ ≤ ε2. (3.49)

To reduce the computational complexity of the SQP algorithm, the Hessian is usually ap-

proximated by using the BFGS formula [69].

3.6 Branch and Bound

Branch and bound (B&B) is a family of algorithms used for global solving of NP-hard problems

[78]. NP-hard problems are nonconvex problems for which no deterministic polynomial-time

algorithm can be found. Such problems can be solved in an acceptable time only for small

number of variables [71].

Combinatorial problems are NP-hard. These problems can be solved by performing an

exhaustive search over the whole solution space, which is computationally expensive. Instead

of the exhaustive search, "smarter" strategies can be incorporated into the search procedure.

One way is to employ B&B framework.

Outline of the generic B&B is given in Algorithm 1 [78]. Let f (x) denote the objective

function, X denote the whole search space, x ∈ X , and x∗ denote current (or predefined) op-

timum. The B&B framework is based on an iterative division of X into smaller search spaces

Sn ⊆ X , n = 1,2, . . . ,N. Such iterative division results in a tree structure, where each subprob-

lem is stored in one node of the tree. The tree is explored in the following manner. First, a

list T containing all subproblems to be explored is formed, i.e. T = X . At each node, a par-

tial solution x̂, and a lower bound of the objective function value, LB( f (x̂)), over a particular

local search space are obtained. If obtained LB( f (x̂)) is suboptimal compared to the current

optimum lower bound, LB( f (x̂))> LB( f (x∗)), or if a solution is infeasible, that node and all of

its children nodes can be pruned, i.e. eliminated from further examination, that is T = T \ Sn.

In this way, B&B eliminates the regions of search space that cannot lead to a better solution.
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3. Optimization Methods

If LB( f (x̂))≤ LB( f (x∗)), current optimum is updated, x∗ = x̂. The search is finished when all

subproblems are explored and the best solution xopt = x∗ is returned.

Algorithm 1 Generic branch and bound algorithm [78]
1: Initialize T = X and x∗

2: while {T ̸= /0} do

3: Choose a subproblem Sn from T

4: if a solution x̂ ∈ Sn is found such that LB( f (x̂))≤ LB( f (x∗)) then

5: x∗ = x̂

6: end if

7: if Sn cannot be pruned then

8: Partition Sn into S1,S2, ...,Sr {r can be different at each iteration}

9: Insert S1,S2, ...,Sr into T

10: end if

11: Remove Sn from T

12: end while

13: Return optimum xopt = x∗

There are several search strategies regarding the order of the tree exploration: depth-first,

breadth-first, best-fit, and cyclic best-fit search [78]. These strategies are illustrated in Figure

3.3. Depth-first algorithm starts from the root and propagates through the tree by examing the

first unexplored child node at each branching, i.e. in every iteration the algorithm goes deeper

into the tree. In breadth-first search, the nodes that share the same "depth level" are examined

first, before going into next tree level. Best-fit search does not explore specific branches ex-

clusively in a depth of breadth first manner. As an addition to the objective function being

minimized, it uses a heuristic merit function whose value indicates which problem to explore

next. This enables the algorithm to converge to the optimum solution much faster. However,

for best-fit search the whole unexplored tree must be stored beforehand, which can be memory

consuming. Finally, cyclic best-fit search is a strategy which combines the best-fit and the

depth-first search. The tree is divided into so called contours according to predifined rules.

Then, it is explored by iteratively solving the best subproblem of the each contuor. The best

subproblem is determined by the merit function introduced in best-fit search.

The choice of the search strategy depends on the problem at hand and it greatly influences

the algorithm’s efficiency, in terms of number of pruning performed, memory usage and overall

computation time.
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3. Optimization Methods

(a) Depth-first search. (b) Breadth-first search.

(c) Best-fit search. (d) Cyclic best-fit search.

Figure 3.3: Examples of different tree-searching strategies for branch and bound. Blue numbers de-
termine the node-searching order, whereas red numbers indicate the value of lower bound
of objective function at a particular node. The optimum node is colored in green. In this
example, the value of the merit functions in best-fit and cyclic best-fit search is shown equal
to the value of lower bound of objective function. Furthermore, in cyclic best-fit strategy,
the nodes with the same depth level are grouped into the same contours. Adapted from [78].
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Chapter 4

L1 Pencil Beams

In this chapter, sythesis of pencil-beam linear antenna arrays with minimum L1-norm is presen-

ted. The proposed method is based on convex optimization [79]. The properties of the proposed

L1 pencil beams are analyzed and several design examples are provided.

4.1 Motivation

A general optimization problem describing the design of linear array forming pencil-beam is

given by

minimize
a

ε(a,θs)

subject to
N

∑
n=1

an = 1
(4.1)

where ε is a measure of the sidelobe error, a = [a1, a2, . . . , aN ]
T is the vector of excitation

coefficients, and θs is the beginning of the sidelobe region in which the error is minimized. The

measure of the sidelobe error ε is often expressed via Lp-norm

εp(a,θs) = 4π

⎛⎜⎝
π

2∫︂
θs

| f (a,θ)|p cosθ dθ

⎞⎟⎠
1
p

(4.2)

where f (a,θ) is the array factor of linear antenna array with elements placed at the x-axis of

a coordinate system. Common choices for p are p = 2 and p → ∞, for which the problem in

(4.1) can be expressed in a convex form and readily solved. Moreover, for these values of p,

optimum solutions of (4.1) can be obtained via analytic methods. However, the optimization

approach offers more flexibility as it supports incorporating additional design requirements into

the general problem (4.1).
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4. L1 Pencil Beams

Linear arrays with minimum L2-norm are obtained analytically via discrete prolate spher-

oidal sequences (DPSS) [80]. These arrays radiate minimum energy in the sidelobe region,

which is a consequence of monotonically decreasing side lobes. On the other hand, L∞ ar-

rays exhibit equiripple power density within the sidelobe region. These arrays are known as

Dolph-Chebyshev arrays [21]. Convex optimization of such arrays is also considered [72]. An

important property of such arrays is that they achieve the narrowest main lobe for specified

sidelobe level. Dolph-Chebyshev arrays are a representative choice when the design of pencil

beams is considered, since they offer a good tradeoff between the level of the side lobes and the

width of the main lobe [1].

The L2- and L∞-based designs are also well known in FIR filter theory. The frequency

responses of such filters have similar shapes as the array factors of the λ/2-spaced L2 and

L∞ antenna arrays. Other norms have been rarely considered. In [81], the design of L1 FIR

filters was presented. In the paper referred to, it was shown that L1 FIR filters exhibit higher

stopband flatness than do the L2 filters, which is paid with wider transition bands. It is expected

that utilization of L1-norm in the context of pencil-beam design will provide similar behavior,

resulting in array factors suitable for many applications.

In this work, pencil-beam linear antenna arrays with minimum L1-norm are proposed. A

convex optimization method for their design is presented. In addition, a detailed analysis of the

properties of such arrays is presented.

4.2 Convex Optimization of L1 Pencil Beams

Using the general optimization problem given by (4.1) and assuming p = 1, the synthesis of

linear pencil-beam antenna arrays with minimum L1-norm is given by

minimize
a

ε1(a,θs)

subject to
N

∑
n=1

an = 1
(4.3)

where

ε1(a,θs) = 4π

π

2∫︂
θs

| f (a,θ)|cosθ dθ (4.4)

To solve the above optimization problem, error ε1(a,θs) can be rearranged in the following

manner. First, the array factor from (2.10) is introduced into (4.4), resulting in

ε1(a,θs) = 4π

π

2∫︂
θs

⃓⃓⃓⃓
⃓ N

∑
n=1

ane j 2π

λ
xn sinθ

⃓⃓⃓⃓
⃓cosθ dθ (4.5)
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4. L1 Pencil Beams

Then, by introducing ω = sin(θ), the error function takes the form

ε1(a,ω) = 4π

1∫︂
ωs

⃓⃓⃓⃓
⃓ N

∑
n=1

ane j 2π

λ
xnω

⃓⃓⃓⃓
⃓ dω = 4π

1∫︂
ωs

| f (a,ω)| dω (4.6)

where ωs = sin(θs). The integration in (4.6) can be performed numerically. To prepare the

problem for numerical integration, the integrand in (4.6) should be evaluated in a finite num-

ber of points. Here, it is evaluated in Q equidistant points, ωq ∈ [ωs,1], q = 1,2, . . . ,Q. The

integrand values at these points can be obtained in a matrix form, as in

tq = | f (a,ωq)|= ∥Aqa∥, q = 1,2, ...,Q (4.7)

where ∥ · ∥ denotes the L2-norm and Aq is given by

Aq =

⎡⎢⎢⎣cos(2π

λ
ωqx1) cos(2π

λ
ωqx2) · · · cos(2π

λ
ωqxN)

sin(2π

λ
ωqx1) sin(2π

λ
ωqx2) · · · sin(2π

λ
ωqxN)

⎤⎥⎥⎦ (4.8)

Integral in (4.6) can be approximated via several methods, for example by utilizing rectangular

rule, trapezoidal rule, or Simpson’s rule. Here, it is approximated via Simspon’s 1/3 rule in an

odd number of points Q, resulting in

εa(t,ωs) = 4π
1−ωs

3(Q−1)

(︄
t1 + 4

(Q−1)/2

∑
m=1

t2m + 2
(Q−3)/2

∑
m=1

t2m+1 + tQ

)︄
(4.9)

where t = [t1, t2, . . . , tQ]T. Finally, coefficients of pencil-beam antenna array with minimum

L1-norm are obtained by solving the optimization problem

minimize
a, t

εa(t,ωs)

subject to ∥Aq ·a∥ ≤ tq, q = 1,2, . . . ,Q,

N

∑
n=1

an = 1

(4.10)

The problem in (4.10) is convex. Moreover, it is recognized as a second-order cone pro-

gram with Q second-order cone constraints and one equality constraint. Therefore, it can be

solved by using available solvers for convex optimization. Here, it is solved by using MOSEK

optimization toolbox [74] running under Matlab environment.
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4. L1 Pencil Beams

4.3 Analysis of L1 Pencil Beams

4.3.1 Practical Design Considerations

The starting angle of the sidelobe region, ωs = sinθs, should be carefully chosen. In experi-

ments, designer might choose any angle. However, pencil-beam arrays radiate power only in a

single direction, possibly with the narrowest main lobe. To achieve such behavior, the L1 error

is minimized throughout the region θ ∈ [0,π/2], that is, for ω ∈ [0,1]. It leads to θs = 0 and,

consequently, ωs = 0.

In practice, error (4.9) should be approximated in a sufficiently large number of points, Q.

Throughout this chapter, Q = 2001 is used.

The following sections bring the analysis of the proposed L1 pencil beams, as well as two

design examples.

4.3.2 Features of L1 Pencil Beams

To illustrate features of the proposed L1 pencil beams, arrays having 10, 20, and 40 elements,

with equal interelement spacing of 0.5λ are optimized. Figure 4.1 shows the obtained array

factors and Figure 4.2 shows the corresponding excitation coefficients. As expected, array

factors have monotonically decreasing side lobes. The optimum excitation coefficients are all

positive, exhibit a bell-shaped magnitudes, and are symmetric around the array’s center.

Figure 4.3 illustrates the properties of L1 pencil beams with various numbers of antenna

elements, N. As shown in Figure 4.3a, the mainlobe width decreases with an increase in N. The

levels of the first, second, and third side lobe for the arrays with various number of elements

are shown in Figure 4.3b. Clearly, the level of the first side lobe does not change significantly,

remaining approximately at −21 dB for all N. Such property is very attractive since sidelobe

level lower than −20 dB is rarely required [1].

As a consequence of the decreasing sidelobes, high beam efficiency is achieved. The ob-

tained beam efficiency is greater than 98 % for all arrays, as illustrated in Figure 4.3c. The

dynamic range ratio of excitation coefficients obtained for various N is shown in Figure 4.3d. It

is clear that the DRR increases linearly with an increase in N. From the obtained data, the value

of DRR can be estimated as

DRR = 0.26N +0.49 (4.11)
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4. L1 Pencil Beams

Figure 4.1: Array factors of L1 pencil beams with 10, 20, and 40 array elements.

(a) (b)

(c)

Figure 4.2: Coefficients of L1 pencil beams with 10, 20, and 40 array elements.
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(a) (b)

(c) (d)

Figure 4.3: First-null beamwidth (a), sidelobe level (b), beam efficiency (c), and dynamic range ratio (d)
of L1 pencil beams with various number of elements.

4.3.3 Comparison with Other Pencil Beams

In this section, a comparison with other design methods is provided. First, L1 pencil-beam

arrays with 10 to 40 elements, equal interelement spacing of 0.5λ , and θs = 0 are designed.

Then, the Gaussian [22], Gegenbauer [24], and Kaiser-Hamming [27] arrays with the same

number of elements are designed to achieve approximately the same sidelobe level as the L1

arrays. Note that Gegenbauer arrays can be designed to exhibit either − the minimum sidelobe

power or minimum DRR for a specified SLL. Here, the arrays with minimum sidelobe power

are used for comparison. In the case of Kaiser-Hamming and Gaussian arrays, minor differences

in the obtained and the required SLL are expected, since SLL is not an input parameter of such

designs.
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4. L1 Pencil Beams

Figure 4.4 shows the first-null beamwidth, directivity, beam efficiency, and dynamic range

ratio of the obtained array factors for various numbers of antenna elements. Clearly, the Kaiser-

Hamming and Gaussian arrays have the narrowest main lobes. They are followed by the L1 and

Gegenbauer arrays. As expected, the directivities exhibit the opposite behavior. However, due

to decreasing sidelobes, the beam efficiency of the L1 arrays is higher than the efficiency of the

corresponding Gaussian and Kaiser-Hamming arrays. The L1 arrays have only slightly lower

efficiency than do the Gegenbauer arrays. However, they exhibit significantly lower DRR.

(a) (b)

(c) (d)

Figure 4.4: First-null beamwidth (a), directivity (b), beam efficiency (c), and dynamic range ratio (d)
of L1 pencil beams compared to Gaussian [22], Gegenbauer [24] and Kaiser-Hamming [27]
pencil beams having 10 to 40 elements.
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Array factors of the arrays with 16 elements are shown in Figure 4.5, for convenience. Their

comparison in a numeric form is provided in Table 4.1.

To conclude, L1 pencil beams simultaneously offer a high beam efficiency and a low dy-

namic range ratio of excitation coefficients. In addition, they exhibit a convenient level of the

first side lobe of −21 dB. The coefficients of L1 arrays are obtained in a convex form, which

offers design time and robustness similar to those obtained by analytic expressions.

Figure 4.5: Array factors of L1, Gaussian [22], Gegenbauer [24], and Kaiser-Hamming [27] arrays with
16 elements.

Table 4.1: Sidelobe level, SLL, first-null beamwidth, FNBW, 3dB-beamwidth, BW3, beam efficiency,
BE, directivity, DIR, and dynamic range ratio, DRR, of proposed L1, Gaussian, Gegenbauer
and Kaiser-Hamming arrays with 16 elements.

Array type SLL, dB FNBW, deg BW3, deg BE, % DIR, dB DRR

Proposed L1 −21.1 19.5 7.87 99.15 11.5 4.63

Gaussian −21.1 18.2 7.40 98.49 11.7 2.53

Gegenbauer −21.1 21.6 8.63 99.27 11.1 12.4

Kaiser-Hamming −21.1 17.5 7.10 96.98 11.8 1.75

4.3.4 Design of Unequally Spaced L1 Pencil Beams

Previous example considered arrays with equally spaced elements. In this example, L1 pencil

beams are designed for the arrays with unequally spaced elements. Clearly, optimum position-

ing of the antenna elements is a difficult task, which is not supported by the method described

in this chapter. However, nonequally spaced design often utilizes fixed positions obtained by
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other design methods. This approach is used in the following examples. The optimization of

element positions is considered in Chapter 6.

Two arrays that consist of 35 elements are designed. Their positions are obtained by em-

ploying the method in [61]. The method referred to starts from the equidistant array with in-

terelement spacing of 0.5λ . Positions of the first array are obtained by using 400 iterations and

target main lobe width ϑ = 5◦. Positions of the second array are obtained also by using 400

iterations but with ϑ = 6◦. These positions are listed in Tables 4.2 and 4.3, respectively, and are

shown in Figure 4.6, for convenience. The method in [61] assumes uniform element excitations.

Table 4.2: Positions of antenna elements obtained with the method from [61], for target main lobe width
of ϑ = 5◦.

n xn, λ n xn, λ n xn, λ

1, 35 ±10.5757 7, 29 ±5.7750 13, 23 ±2.4251

2, 34 ±9.7693 8, 28 ±5.1497 14, 22 ±1.9326

3, 33 ±8.8973 9, 27 ±4.5548 15, 21 ±1.4391

4, 32 ±8.0264 10, 26 ±4.0004 16, 20 ±0.9588

5, 31 ±7.1855 11, 25 ±3.4544 17, 19 ±0.4771

6, 30 ±6.4265 12, 24 ±2.9388 18 0.0000

Table 4.3: Positions of antenna elements obtained with the method from [61], for target main lobe width
of ϑ = 6◦.

n xn, λ n xn, λ n xn, λ

1, 35 ±9.4456 7, 29 ±4.9670 13, 23 ±2.0170

2, 34 ±8.6329 8, 28 ±4.4581 14, 22 ±1.7509

3, 33 ±7.7575 9, 27 ±3.9106 15, 21 ±1.1663

4, 32 ±6.9050 10, 26 ±3.4844 16, 20 ±0.8926

5, 31 ±6.1714 11, 25 ±2.9360 17, 19 ±0.3814

6, 30 ±5.5650 12, 24 ±2.5963 18 0.0000
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4. L1 Pencil Beams

Figure 4.6: Positions of antenna elements from Table 4.2 (top) and Table 4.3 (bottom).

After the positions are found, coefficients of L1 pencil beams are found by solving the

problem (4.10). Coefficients of the obtained L1 pencil beams are shown in Figures 4.7a and

4.7b, whereas their numerical values are given in Tables 4.4 and 4.5. Note that the array with

positions from Table 4.2 contains only positive coefficients, whereas the array with positions

from Table 4.3 contains coefficients that take both, positive and negative values. Both arrays

have coefficients that exhibit even symmetry around arrays’ center. The corresponding array

factors are shown in Figures 4.8b and 4.8b, from which it is clear that the sidelobes no longer

exhibit monotonically decreasing behaviour.

(a) (b)

Figure 4.7: Coefficients of L1 pencil beams with 35 unequally spaced elements with positions from
Table 4.2 (a) and Table 4.3 (b).
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Table 4.4: Optimum coefficients of proposed L1 pencil beam with 35 unequally spaced elements placed
at positions listed in Table 4.2.

n an n an n an

1, 35 0.0066 7, 29 0.0301 13, 23 0.0332

2, 34 0.0139 8, 28 0.0325 14, 22 0.0326

3, 33 0.0197 9, 27 0.0318 15, 21 0.0334

4, 32 0.0252 10, 26 0.0327 16, 20 0.0326

5, 31 0.0296 11, 25 0.0327 17, 19 0.0336

6, 30 0.0307 12, 24 0.0327 18 0.0326

Table 4.5: Optimum coefficients of proposed L1 pencil beam with 35 unequally spaced elements placed
at positions listed in Table 4.3.

n an n an n an

1, 35 0.0081 7, 29 0.0328 13, 23 0.0855

2, 34 0.0157 8, 28 0.0280 14, 22 −0.0325

3, 33 0.0216 9, 27 0.0383 15, 21 0.1199

4, 32 0.0291 10, 26 0.0218 16, 20 −0.0704

5, 31 0.0305 11, 25 0.0522 17, 19 0.1254

6, 30 0.0290 12, 24 0.0043 18 −0.0783

(a) (b)

Figure 4.8: Array factors of L1 pencil beams with 35 unequally spaced elements with positions from
Table 4.2 (a) and Table 4.3 (b).
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The beam parameters of unequally spaced L1 arrays are given in Table 4.6 together with the

parameters of the array with equal element spacing of 0.5λ . Clearly, in this case, unequally

spaced arrays offered a lower sidelobe level, narrower main beam as well as a higher beam

efficiency and directivity. In addition, a lower DRR is obtained for the first array. The results

obtained in these examples suggest that the proposed method can be applied to arrays with

nonequally spaced geometry as well, which is an advantage over some analytical methods. The

result can be obtained in a few seconds, which enables fast experimenting.

Table 4.6: Sidelobe level, SLL, first-null beamwidth, FNBW, 3dB-beamwidth, BW3, beam efficiency,
BE, directivity, DIR, and dynamic range ratio, DRR, of proposed L1 pencil beams with 35
unequally and equally spaced elements.

Spacing SLL, dB FNBW, deg BW3, deg BE, % DIR, dB DRR

Unequal, Table 4.2 −23.50 7.63 3.00 99.32 15.65 5.07

Unequal, Table 4.3 −23.22 8.54 3.37 99.46 15.15 29.44

Equal, λ/2 −21.44 9.18 3.70 99.23 14.75 9.51
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Chapter 5

Global Optimization of L1 Pencil Beams
with Multiple Constraints

In previous chapter, unconstrained optimization of L1 pencil beams was introduced and the

obtained arrays were analyzed. It was shown that their excitation dynamic range ratio was

relatively low. However, an application at hand might require even lower DRR. The simplest

way to accomplish this is incorporating additional DRR constraints in the design. Unfortunately,

DRR constraints are not convex and the corresponding problem is hard to solve globally.

In this chapter, a method for global optimization of pencil-beam linear antenna arrays op-

timum in L1 sense is presented. The proposed optimization is based on branch and bound

search, which can globally solve the design problem containing constraints for the dynamic

rage ratio of excitation coefficients and the maximum sidelobe level [82]. Design examples are

provided to illustrate the features of the proposed approach.

5.1 L1 Pencil Beams with Constrained DRR

The convex optimization of L1 linear pencil-beam antenna arrays is described by problem

(4.10). Here, this problem is equipped with the constraints that bound the dynamic range ratio

of excitation coefficients to a value D. The DRR constraints are given by

max{|an|}
min{|an|}

≤ D, n = 1,2, . . . ,N (5.1)

where N is the number of array elements and an, n = 1,2, . . . ,N, are the excitations. When

these constraints are added to (4.10), the optimization problem becomes
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minimize
a, t,w

εa(t,ωs)

subject to
N

∑
n=1

an = 1,

∥Aq ·a∥ ≤ tq, q = 1,2, . . . ,Q,

|an| ≤ Dw, n = 1,2, . . . ,N,

|an| ≥ w, n = 1,2, . . . ,N,

w ≥ 0

(5.2)

where the error εa(t,ωs) is defined in (4.9) and w is an auxiliary variable. The constraints

|an| ≥ w, n = 1,2, . . . ,N, are not convex, which makes the problem difficult to solve globally.

Here, it is solved by adapting the branch and bound method from [37], [38]. The method re-

ferred to is based on the observation that if the coefficient signs are known in advance, the

optimization problem becomes convex. However, specifying the coefficient signs requires solv-

ing a large number of optimization problems. Apparently global solution can be obtained by

the exhaustive search of the whole sign space. Nevertheless, to reduce the computational com-

plexity, a branch and bound is utilized to cut out the combinations of signs that cannot improve

the result [38].

5.1.1 Global Solving of Optimization Problem

Here, the optimization of L1 pencil beams with constrained DRR in (5.2) is solved with the

branch and bound algorithm from [37], which is briefly explained hereafter. Assuming the

signs of coefficients are known, the problem (5.2) is reformulated as

minimize
a, t,w

εa(t,ωs)

subject to
N

∑
n=1

an = 1,

∥Aq ·a∥ ≤ tq, q = 1,2, . . . ,Q,

an ≤ Dw, n ∈ S+,

an ≥ w, n ∈ S+,

−an ≤ Dw, n ∈ S−,

−an ≥ w, n ∈ S−,

w ≥ 0

(5.3)

where S+ ⊆ {1,2, . . . ,N} and S− ⊆ {1,2, . . . ,N} are the sets of indexes for which the coeffi-

cients are positive and negative, respectively.
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To find the optimum solution of (5.2), the tree [37] containing all combinations of signs is

formed. At the root, all coefficients have positive values. The first branching is implemented

by assigning negative values to each coefficient as, s = 1,2, . . . ,N. In all further branching,

negative values are assigned to the subsequent coefficients as, s = p+ 1, p+ 2, . . . ,N, where

p is the position of the previously assigned negative value. At the root, p = 0 is assumed.

The corresponding tree for the antenna array having four elements is shown in Figure 5.1.

The algorithm utilizes a depth-first search strategy. At each node of the tree, the optimization

problem (5.3) is solved. Depending on its result, the pruning or further branching is performed.

The details about pruning can be found in [37].

Figure 5.1: The tree containing all combinations of coefficient signs. Signs that are marked in red are
specified in the corresponding node of the tree. Figure is taken from [37].

5.1.2 Properties of L1 Pencil Beams with Constrained DRR

This section considers the influence of constraining the DRR on array factors of pencil beams

optimum in L1 sense. In that context, pencil-beam arrays with 20 elements and DRR constrained

to D = 2, 3 and 4 are compared with DRR unconstrained arrays. The array elements are placed

at the x-axis with equal interelement spacing of 0.5λ . Parameters Q = 1001 and θs = 0 are

used.

The obtained array factors are shown in Figure 5.2. In addition, the parameters of the

obtained arrays are given in Table 5.1. It is clear that for smaller values of D obtained main

lobes become narrower. However, constraining the DRR deteriorates the array factor in the

sidelobe region. Although the relative deterioration increases with an increase of the elevation
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angle, the first side lobe dominates. In particular, the level of −20 dB is exceeded for D < 3.8.

The fact that the adjacent side lobes are significantly lower than the first side lobe suggests

that there is still freedom for further improvement. Such an improvement may be achieved by

constraining the SLL, which is considered in Section 5.2.

Optimum coefficients of the arrays with DRR constrained to D = 2, 3 and 4, as well of the

arrays with unconstrained DRR are shown in Figure 5.3. Interestingly, all optimum coefficients

are positive and symmetric.

Figure 5.2: Array factors of L1 pencil-beam arrays having 20 elements, with DRR constrained to
D = 2, 3 and 4, as well as with unconstrained DRR.

Table 5.1: Dynamic range ratio, DRR, sidelobe level, SLL, first-null beamwidth, FNBW, 3dB-
beamwidth, BW3, beam efficiency, BE, and directivity, DIR, of proposed pencil beams having
20 elements, with DRR constrained to D = 2, 3 and 4, as well as with unconstrained DRR.

D DRR SLL, dB FNBW, deg BW3, deg BE, % DIR, dB

2 2.00 −16.21 13.21 5.64 96.61 12.38

3 3.00 −18.30 14.25 5.94 98.15 12.66

4 4.00 −19.96 15.01 6.14 98.81 12.53

Unconstrained 5.63 −21.23 15.75 6.35 99.17 12.40
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(a) (b)

(c) (d)

Figure 5.3: Coefficients of L1 pencil beams having 20 elements, with DRR constrained to D = 2 (a),
D = 3 (b), D = 4 (c), as well as with unconstrained DRR (d).

5.1.3 Unequally Spaced L1 Pencil Beams with Constrained DRR

This section considers the design of L1 pencil-beam arrays with unequally spaced elements and

with constrained dynamic range ratio. In section 4.3.4 the design of two 35-element arrays were

presented. It was shown that for the same number of elements with different positioning, the

value of excitations’ DRR can vary significantly. Here, the DRR constraints are incorporated

into the design and their influence on the array factor of unequally spaced arrays is investigated.

The arrays with element positions from Table 4.3 are considered. The excitations’ DRR is

constrained to D = 2, 7, 8 and 10. Parameters Q = 1001 and θs = 0 are used. The designed

arrays are compared to the L1 array with unconstrained DRR. Figure 5.4 shows the obtained

elements’ coefficients. It is clear that in all cases, obtained coefficients exhibit even symmetry.

The corresponding array factors are shown in Figure 5.5 together with the array factor of DRR-
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unconstrained design. The influence of DRR constraint on unequally spaced arrays is different

than the influence on equally spaced arrays. In equally spaced arrays, the deterioration has

regular behaviour along the sidelobe region, i.e. the lower the value of DRR, the detorioration

is higher. Here, there is no such consistency. The first side lobe does not increase significantly,

whereas the last side lobe arises with a significant level. However, for D being considered, the

side lobes do not exceed the level of −20dB.

Parameters of the proposed beams with both − constrained and unconstrained DRR − are

given in Table 5.2. It is clear that constraining the DRR of excitation coefficients pays off

because it improves the DRR significantly and causes relatively low degradation of other para-

meters.

(a) (b)

(c) (d)

Figure 5.4: Coefficients of L1 pencil beams having 35 unequally spaced elements with positions from
Table 4.3 and DRR constrained to D = 2 (a), D = 7 (b), D = 8 (c), and D = 10 (d).
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Figure 5.5: Array factors of L1 pencil beams having 35 unequally spaced elements with positions from
Table 4.3, with DRR constrained to D = 2, 7, 8, and 10, as well as with unconstrained DRR.

Table 5.2: Dynamic range ratio, DRR, sidelobe level, SLL, first-null beamwidth, FNBW, 3dB-
beamwidth, BW3, beam efficiency, BE, and directivity, DIR, of proposed pencil beams having
35 elements with positions from Table 4.3, with DRR constrained to D = 2, 7, 8, and 10, as
well as of pencil beam with unconstrained DRR.

D DRR SLL, dB FNBW, deg BW3, deg BE, % DIR, dB

2 2.00 −20.97 7.91 3.15 98.94 15.42

7 7.00 −20.48 8.37 3.31 99.21 15.21

8 8.00 −21.38 8.00 3.22 99.06 15.34

10 10.00 −22.91 8.37 3.32 99.34 15.22

Unconstrained 29.44 −23.22 8.54 3.37 99.46 15.15

5.2 L1 Pencil Beams with Constrained DRR and SLL

As shown in the previous section, constraining the DRR of L1 pencil-beam arrays results in de-

terioration of the array factor. In λ/2 spaced arrays, the rise of the first side lobe is significant.

Similar behavior is encountered in unequally spaced arrays with predefined element positions.

However, in the latter, excessive lobes may also occur at high elevation angles, which is depend-

ent on elements’ positions. To prevent an excessive rise in the sidelobe region, the maximum

sidelobe level should be constrained to some specified value δ . This constraint can be easily

added to the problem in (5.2).
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The design of L1 pencil beams with constrained DRR and SLL is given by the problem

minimize
a, t,w

εa(t,ωs)

subject to
N

∑
n=1

an = 1,

| f (a,θ)| ≤ δ θ ∈
[︂
θsl,

π

2

]︂
,

∥Aq ·a∥ ≤ tq, q = 1,2, . . . ,Q,

|an| ≤ Dw, n = 1,2, . . . ,N,

|an| ≥ w, n = 1,2, . . . ,N,

w ≥ 0

(5.4)

where f (a,θ) is array factor defined in (2.10) and θsl is the beginning of the region in which

excessive side lobes are expected. A good choice of θsl is the position of the first null in the

array factor obtained by the SLL-unconstrained design.

The SLL constraint in (5.4) is approximated by using finite grid ωr ∈ [sinθsl,1], r = 1,2, . . . ,R,

as in

∥Ara∥ ≤ δ , r = 1,2, ...,R (5.5)

where

Ar =

⎡⎢⎢⎣cos(2π

λ
ωrx1) cos(2π

λ
ωrx2) · · · cos(2π

λ
ωrxN)

sin(2π

λ
ωrx1) sin(2π

λ
ωrx2) · · · sin(2π

λ
ωrxN)

⎤⎥⎥⎦ (5.6)

By incorporating (5.5) into (5.4), the problem takes the form

minimize
a, t,w

εa(t,ωs)

subject to
N

∑
n=1

an = 1,

∥Ar ·a∥ ≤ δ , r = 1,2, . . . ,R,

∥Aq ·a∥ ≤ tq, q = 1,2, . . . ,Q,

|an| ≤ Dw, n = 1,2, . . . ,N,

|an| ≥ w, n = 1,2, . . . ,N,

w ≥ 0

(5.7)

The objective function and all constraints in (5.7) are convex, except the constraints

|an| ≥ w, n = 1,2, . . . ,N. However, as used in Section 5.1.1, these constraints become convex

provided the signs of coefficients are known. For known coefficients’ signs, the optimization

problem takes the form
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minimize
a, t,w

εa(t,ωs)

subject to
N

∑
n=1

an = 1,

∥Ar ·a∥ ≤ δ , r = 1,2, . . . ,R,

∥Aq ·a∥ ≤ tq, q = 1,2, . . . ,Q,

an ≤ Dw, n ∈ S+,

an ≥ w, n ∈ S+,

−an ≤ Dw, n ∈ S−,

−an ≥ w, n ∈ S−,

w ≥ 0

(5.8)

The branch and bound method presented in [37], which was used to solve the problem (5.3),

cannot be applied to solve the problem in (5.8) because for certain combinations of signs some

of the constraints ∥Ara∥ ≤ δ , r = 1,2, . . . ,R, might be infeasible. In order to intercept such

cases and to solve the problem globally, a branch and bound method is used that implements

pruning based on feasibility test. The feasibility test was successfully applied in the design of

sparse FIR filters [83]. Here, it is developed for examining the feasibility of DRR-constrained

problems.

5.2.1 Branch and Bound Based on Feasibility Test

To solve the problem in (5.8), a tree that contains all combinations of coefficients’ signs is

formed. The tree for antenna array having four elements is shown in Figure 5.6. The level of

branching is denoted by p. At the root, p = 0 and all signs are unspecified and marked with

‘X’. At the pth level, the signs of the first p coefficients are specified (+ and −), whereas the

remaining N− p coefficients can take arbitrary signs. At the leaves, p=N and, consequently, all

signs are specified. Since the equality constraint in (5.8) forces a positive sum of the coefficients,

it is expected that the majority of optimum coefficients will have positive values. Therefore, the

branching should start with positive rather than with negative signs. In this way, optimization

time can be greatly reduced since this type of branching ensures reaching the leaves at the early

stages of the optimization procedure. Reaching the leaves at early stages is beneficial because

at each leaf the problem (5.8) is solved to update upper bound of the objective function.
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Figure 5.6: The tree containing all combinations of coefficient signs. At the pth level, exactly p coeffi-
cient signs are specified and they are marked in red. Unspecified signs are marked with ‘X’.
Figure is taken from [82].

Let εopt denote the value of the objective function at the optimum. Assuming p coefficient

signs are specified and N− p signs are arbitrary, εopt can be reached if and only if the constraints

εa(t)≤ εopt

N

∑
n=1

an = 1

∥Ar ·a∥ ≤ δ , r = 1,2, . . . ,R

∥Aq ·a∥ ≤ tq, q = 1,2, . . . ,Q

an ≤ Dw, n ∈ S+, n ≤ p

an ≥ w, n ∈ S+, n ≤ p

−an ≤ Dw, n ∈ S−, n ≤ p

−an ≥ w, n ∈ S−, n ≤ p

an ≤ Dw, n > p

−an ≤ Dw, n > p

w ≥ 0

(5.9)

form a nonempty set. If the set is empty, this particular node and all its children do not contain

combinations of signs that satisfy the constraints. Therefore, the entire subtree coming from

this node can be pruned.
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The set of constraints in (5.9) is examined by solving the problem

minimize
a, t,w,σ

σ (5.10a)

subject to εa(t)≤ εopt +σ , (5.10b)
N

∑
n=1

an = 1, (5.10c)

∥Ar ·a∥ ≤ δ +σ , r = 1,2, . . . ,R, (5.10d)

∥Aq ·a∥ ≤ tq +σ , q = 1,2, . . . ,Q, (5.10e)

an −Dw ≤ σ , n ∈ S+, n ≤ p, (5.10f)

−an +w ≤ σ , n ∈ S+, n ≤ p, (5.10g)

−an −Dw ≤ σ , n ∈ S−, n ≤ p, (5.10h)

an +w ≤ σ , n ∈ S−, n ≤ p, (5.10i)

an −Dw ≤ σ , n > p, (5.10j)

−an −Dw ≤ σ , n > p, (5.10k)

−w ≤ σ (5.10l)

The variable σ relaxes the constraints in (5.9) and ensures that the problem in (5.10) is always

feasible [72]. If the optimum σopt > 0 is obtained, the set (5.9) is empty, whereas σopt ≤ 0

indicates the set is not empty.

The above technique is often utilized in the first phase of interior point methods for convex

optimization [72], where it is used for the search for a feasible point. Here, it is used only

for the feasibility test. It is important to note that σ is incorporated only into the inequality

constraints. Therefore, the problem in (5.10) is valid only for D > 1. Namely, for D = 1, the

inequality constraint pairs (5.10f) and (5.10g), as well as (5.10h) and (5.10i) represent equality

constraints.

At the root, εopt is assigned a large positive value, for example, εopt = 4π , which is a loose

upper bound of the L1 error function in (4.9). The tree is then explored by using depth-first

algorithm. At each node, fesibility test is performed by solving the optimization problem in

(5.10). If the problem is feasible, the search goes deeper into the tree, otherwise the branch is

pruned. If a leaf is reached, the problem in (5.8) is solved as well. If the optimum ε∗ < εopt is

obtained in (5.8), an update is made εopt = ε∗.

5.2.2 Influence of DRR and SLL Constraints

In this example, the influence of DRR and SLL constraints on the array factors is investigated.

Arrays having 20 elements with interelement spacing of 0.5λ are optimized. The optimizations
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are run for δ = 0.1 (SLL ≤ −20 dB) and for D in the range [1.6,5.6] in steps of 0.1. The

value of D = 5.6 corresponds to the DRR of the unconstrained L1 beam pattern. The values

of D less than 1.6 are not considered because, for these values, an SLL lower than −20 dB

cannot be achieved. The constraints on SLL are applied in the region θ ∈ [7.87◦,90◦]. The

value of θ = 7.87◦ matches the angle of the first null in L1 pencil beam obtained by solving the

unconstrained optimization problem in (4.10) for ωs = 0. Parameters Q = 1001 and R = 10N

are used.

The obtained array factors for all values of D are shown in Figure 5.7. In addition, Table 5.3

brings the parameters of the obtained beams for selected values of D. Similarly to the example

analyzed in 5.1.2, the decrease of D causes the rise of the sidelobes. For D > 4.3, the SLL

is lower than −20 dB, which indicates that the SLL constraints are not active, as in the array

factors marked in orange. D ≤ 4.3 activates the SLL constraints and keeps the maximum value

of SLL exactly at −20 dB, as in the array factors marked in blue. In the sidelobe region, a

monotonic decrease of the side lobes is maintained if D ≥ 2.46.

Figure 5.7: Array factors of L1 pencil beams with 20 elements, SLL constrained to −20 dB, and DRR
constrained to various values between D = 1.6 and D = 5.6. Blue and orange colors indicate
patterns in which SLL constraints are active and inactive, respectively.
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Table 5.3: Sidelobe level, SLL, first-null beamwidth, FNBW, 3dB-beamwidth, BW3, beam efficiency,
BE, and directivity, DIR of proposed pencil beams with 20 elements and DRR constrained to
value D.

D SLL, dB FNBW, deg BW3, deg BE, % DIR, dB Coefficients
1.6 −20.0 13.6 5.60 96.48 12.8 positive
2.0 −20.0 14.1 5.78 97.81 12.8 positive
2.5 −20.0 14.4 5.90 98.34 12.7 positive
3.0 −20.0 14.6 6.00 98.59 12.6 positive
3.5 −20.0 14.8 6.08 98.73 12.6 positive
4.0 −20.0 15.0 6.15 98.82 12.5 positive
4.5 −20.5 15.3 6.22 98.97 12.5 positive
5.0 −20.9 15.5 6.29 99.08 12.4 positive
5.5 −21.3 15.7 6.35 99.18 12.4 positive

5.2.3 Array Factors with Very Low DRR and Constrained SLL

The proposed method supports coefficients with positive and negative signs. However, in the

previous example, all arrays were obtained with positive coefficients. Generally, such behavior

has been encountered in arrays with DRRs constrained to medium or high values. However,

constraining the DRR to low values, especially when the number of elements is large, might

cause the appearence of negative coefficients. Generally, the arrays with low SLL require some

coefficients to take low values. On the other hand, the DRR constraints push the coefficients to

higher values. Therefore if both of these requirements are strong, a small number of negative

coefficients could appear in the optimum solution, trying to compensate large poisitve coeffi-

cients in their neighbourhoods. Apparently, negative coefficients offer more degrees of freedom

during the optimization process, thus providing better results.

Here, the arrays having 41 elements with the spacing of 0.5λ are considered. DRR is

constrained to D = 1.3, 1.4, and 1.5, and SLL is constrained to δ = 0.1. The values D < 1.3

are not considered because DRR < 1.3 cannot be obtained for SLL ≤−20 dB. For D > 1.5, all

coefficients take positive values and they are omitted from this analysis. The constraint on SLL

is applied in the region θ ∈ [3.96◦,90◦]. The value of θ = 3.96◦ matches the angle of the first

null in L1 pencil beam obtained by solving the unconstrained optimization problem in (4.10)

for ωs = 0. Parameters Q = 1001 and R = 10N are used.

The obtained array factors are given in Figure 5.8. It is clear that the proposed arrays

no longer exhibit monotonic decrease of the sidelobes. Figure 5.9 shows the corresponding

excitation coefficients. The coefficients are not symmetric and 1 or 2 negative coefficients

appear at the optimum. Numerical values of the coefficients obtained for D = 1.3 are given

in Table 5.4, for convenience. In addition, the parameters of the proposed beams are listed in

Table 5.5.
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Figure 5.8: Array factors of L1 pencil-beam arrays with 41 elements, DRR constrained to D = 1.3,1.4,
and 1.5, and SLL constrained to −20 dB.

(a) (b)

(c)

Figure 5.9: Coefficients of L1 pencil beams with 41 elements, DRR constrained to D = 1.3 (a), D = 1.4
(b), and D = 1.5 (c), and SLL constrained to −20 dB.
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Table 5.4: Optimum coefficients of proposed array with 41 elements, DRR constrained to D = 1.3, and
SLL constrained to −20 dB.

n an n an n an n an

1 0.0229 12 0.0298 22 0.0298 32 0.0229

2 0.0229 13 0.0298 23 0.0298 33 0.0231

3 0.0229 14 0.0298 24 0.0298 34 0.0233

4 0.0243 15 0.0298 25 0.0298 35 −0.0229

5 0.0229 16 0.0298 26 0.0298 36 0.0229

6 0.0250 17 0.0298 27 0.0298 37 0.0229

7 0.0249 18 0.0298 28 0.0289 38 −0.0229

8 0.0249 19 0.0298 29 0.0279 39 0.0229

9 0.0275 20 0.0298 30 0.0243 40 0.0229

10 0.0298 21 0.0298 31 0.0258 41 0.0229

11 0.0298

Table 5.5: Dynamic range ratio, DRR, sidelobe level, SLL, first-null beamwidth, FNBW, 3dB-
beamwidth, BW3, beam efficiency, BE, and directivity, DIR of proposed L1 pencil beams
having 41 elements with DRR constrained to D = 1.3,1.4, and 1.5, and SLL constrained to
−20 dB, as well as of pencil beam with unconstrained DRR and SLL.

D DRR SLL, dB FNBW, deg BW3, deg BE, % DIR, dB

1.3 1.30 −20.00 6.88 2.78 84.87 15.31

1.4 1.40 −20.00 6.65 2.73 90.40 15.66

1.5 1.50 −20.00 6.85 2.83 92.50 15.62

Unconstrained 10.54 −20.78 7.74 3.14 99.11 15.45

5.2.4 Unequally Spaced L1 Pencil Beams with Constrained DRR and SLL

Previous examples brought the designs of the arrays with equally spaced antenna elements.

However, the method supports placing the elements at arbitrary positions. In this example, L1

pencil beams with constrained DRR and SLL are designed assuming the elements are spaced

unequally.

In [59], the pencil beam arrays having 24 elements have been obtained by optimizing ele-

ments’ coefficients as well as their positions. Here, the positions from [59] are utilized. These

positions are given in Table 5.6, for convenience. In the proposed arrays, sidelobe level is con-

strained to SLL = −28.8, which corresponds to the value in [59]. The SLL constraints are
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applied in the region θ ∈ [4.12◦, 90◦], where θ = 4.12◦ matches the angle of the first null in

L1 pencil beam obtained by solving the unconstrained optimization problem in (4.10) for given

element positions and ωs = 0. Regarding the bounds for DRR used in this design, two values

are chosen: the original DRR obtained in [59] which corresponds to D = 4.69, and somewhat

lower value of D = 3.69. Parameters Q = 1001 and R = 10N are used.

The array factors obtained with the proposed method are shown in Figure 5.10, together with

the array factor of the array from [59]. The corresponding coefficients are given in Figure 5.11.

Clearly, all coefficients take positive values. The proposed method can provide arrays with the

same or lower DRR than the array from [59], while maintaining similar overall performances.

This is illustrated in Table 5.7, which brings the parameters of the examined arrays. Optimum

coefficients of the proposed array having 24 elements, DRR constrained to D = 3.69, and SLL

constrained to −28.8 dB are provided in Table 5.8, for convenience.

Table 5.6: Positions of antenna elements taken from [59].

n xn,λ n xn,λ n xn,λ

1, 24 ±9.500 5, 20 ±6.195 9, 16 ±2.893
2, 23 ±8.723 6, 19 ±5.361 10, 15 ±2.070
3, 22 ±7.884 7, 18 ±4.535 11, 14 ±1.244
4, 21 ±7.037 8, 17 ±3.713 12, 13 ±0.415

Figure 5.10: Array factors of L1 pencil-beam arrays having 24 elements with positions from Table 5.6,
DRR constrained to D = 4.69 and 3.69, and SLL constrained to −28.8 dB, together with
array factor of array from [59].
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Figure 5.11: Coefficients of L1 pencil beams having 24 elements with positions from Table 5.6, DRR
constrained to D = 3.69 and 4.69, and SLL constrained to −28.8 dB.

Table 5.7: Sidelobe level, SLL, first-null beamwidth, FNBW, 3dB-beamwidth, BW3, beam efficiency,
BE, and directivity, DIR, of proposed pencil beams having 24 elements with positions from
Table 5.6, DRR constrained to D = 4.69 and 3.69, and SLL constrained to −28.8 dB, as well
as of pencil beam from [59].

Method DRR SLL, dB FNBW, deg BW3, deg BE, % DIR, dB

Proposed, D = 3.69 3.69 −28.8 8.43 3.19 99.21 15.37

Proposed, D = 4.69 4.69 −28.8 8.56 3.24 99.46 15.32

[59] 4.69 −28.8 8.62 3.25 99.49 15.37

Table 5.8: Optimum coefficients of proposed array having 24 elements with positions from Table 5.6,
DRR constrained to D = 3.69, and SLL constrained to −28.8 dB.

n an n an n an n an

1 0.0170 7 0.0454 13 0.0627 19 0.0400

2 0.0196 8 0.0506 14 0.0627 20 0.0344

3 0.0236 9 0.0555 15 0.0599 21 0.0286

4 0.0286 10 0.0599 16 0.0555 22 0.0236

5 0.0344 11 0.0627 17 0.0506 23 0.0196

6 0.0400 12 0.0627 18 0.0454 24 0.0170
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Chapter 6

Design of Unequally Spaced Arrays by
Using General-Purpose Optimization
Methods

In this chapter, the design of unequally spaced linear and planar antenna arrays with uniformly

excited elements is considered. Optimization of the positions of antenna elements generally

leads to nonlinear and nonconvex problems. For solving these problems, the application of

general-purpose methods for nonlinear optimization is proposed. Both − unconstrained and

constrained − optimization is utilized. In particular, the quasi-Newton method is used for solv-

ing unconstrained optimization problems [64], whereas the constraints are handled by using

sequential quadratic programming [65]. Arrays are optimized to achieve either, the maximum

directivity or maximum beam efficiency.

6.1 Preliminaries

6.1.1 Problem Formulation

The optimization of unequally spaced arrays with arbitrary element positions and uniform ex-

citation is given by the problem
minimizew ε(w) (6.1)

where ε(w) is error function describing design specifications and w is row vector containing ele-

ment positions, i.e., w = [x1, x2, ...,xN ] for linear arrays and w = [x1, x2, ..., xN , y1, y2, ..., yN ]

for planar arrays. Special case of the problem in (6.1) occurs when the array is symmetric about

x and y axes. In that case, the positions of all antenna elements can be obtained as

x = [x0,−x1,x1,02,02,x3,−x3,−x3,x3] (6.2)

y = [y0,01,01,−y2,y2,y3,y3,−y3,−y3] (6.3)
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where xi, yi, i = 0,1,2,3 are row vectors that contain coordinates of N0 elements at the origin,

N1 elements at the positive x-axis, N2 elements at the positive y-axis, and N3 elements in the

interior of the first quadrant. The vectors 01 and 02 contain N1 and N2 zeros, respectively. Such

a geometry is illustrated in Figure 6.1 for planar arrays. Apparently, the optimization problem

in (6.1) for the symmetric array can be expressed as

minimizews
ε(w) (6.4)

where ws = x1 for linear and ws = [x1,x3,y2,y3] for planar arrays.

The problems (6.1) and (6.4) are unconstrained optimization problems. However, the con-

straints can also be added to (6.1) and (6.4) to include specific requirements. In further text,

these problems will be tailored separately for unconstrained and for constrained optimizations

assuming various objective functions. Since the problems include powers radiated in certain

spatial regions, the relationship between the radiated power and the vectors of variables and

coefficients is considered first.

Figure 6.1: Geometry of symmetric planar array with one element placed at the origin (N0 = 1), two
elements at the positive x-axis (N1 = 2), one element at the positive y-axis (N2 = 1), and six
elements in the interior of the first quadrant (N3 = 6).
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6.1.2 Radiated Power in Linear Antenna Arrays

If antenna elements are placed at the x-axis of a coordinate system, the power radiated in the

mainlobe region Ψ = {(θ : θ ∈ [−θs,θs]} is given by

P(a,w,Ψ) = 2π

θs∫︂
−θs

| f (a,w,θ)|2 cos(θ)dθ (6.5)

where θs is the start of the sidelobe region, w is the vector of elements positions, and a is the

vector of excitation coefficients. The integral in (6.5) can be obtained in analytic form, as in

P(a,w,Ψ) = aTALa, (6.6)

where entries of matrix AL are obtained as

(AL)pq = 4π sin(θs)sinc
[︃

2π

λ
(xp − xq)sin(θs)

]︃
(6.7)

where p = 1,2, ...,N, q = 1,2, ...,N, and sinc(·) denotes the unnormalized sinc function.

The total radiated power P(w,Ω) can be easily obtained by setting the region of interest to

Ω = {(θ : θ ∈ [−π/2,π/2]}, as in

P(a,w,Ω) = aTBLa, (6.8)

where elements of matrix BL are obtained as

(BL)pq = 4π sinc
[︃

2π

λ
(xq − xp)

]︃
. (6.9)

6.1.3 Radiated Power in Planar Antenna Arrays

Generally, the power radiated by an antenna array in the region Ψ = {(θ ,ϕ) : θ ∈ [θ1,θ2],

ϕ ∈ [ϕ1,ϕ2]} can be expressed as

P(a,w,Ψ) =

ϕ2∫︂
ϕ1

θ2∫︂
θ1

| f (a,w,θ ,ϕ)|2 sin(θ)dθ dϕ (6.10)

The integral in (6.10) can be evaluated numerically. However, for certain array geometries and

shapes of the region Ψ, it can be evaluated analytically. Such is the case in calculation of the

power radiated (or collected) in the rectangular region of interest, as well as in calculation of

the total radiated power.
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6.1.3.1 Power Radiated in Rectangular Region of Interest

Here, the power radiated by planar antenna array within a rectangular region of interest is con-

sidered. Such a case is illustrated in Figure 6.2. The region is defined as Ψ = {(u,v) : |u| ≤
u0, |v| ≤ v0}, where u = sin(θ)cos(ϕ) and v = sin(θ)sin(ϕ). The power is obtained as [84]

P(a,w,Ψ) = aTAPa (6.11)

where entries of matrix AP are obtained as

(AP)pq = 4 u0v0 sinc
[︃

2π

λ
u0(xq − xp)

]︃
sinc

[︃
2π

λ
v0(yq − yp)

]︃
, (6.12)

where p = 1,2, ...,N, and q = 1,2, ...,N.

Figure 6.2: Illustration of planar antenna array with mainlobe pointing at the broadside direction and
rectangular region of interest, colored in red, in which radiated power is calculated.

6.1.3.2 Power Radiated in Circular Region of Interest

As shown in the previous section, for planar arrays, the power radiated in a rectangular region

of interest can be obtained analytically. Unfortunately, such is not the case if the region is

circular. However, in that case the integral (6.10) must be evaluated numerically, which can be

a computationally expensive task. Therefore, to reduce the number of variables, only in this

case symmetric arrays will be considered, assuming the elements are not placed on the x- and

y-axis, that is N0 = 0, N1 = 0, N2 = 0. Circular region of interest and symmetric array are

illustrated in Figure 6.3. For such arrays, the array factors can be expressed by using only the

positions of elements in the first quadrant, ws = [x3,y3], as in

fsym(ws,u,v) = 4
N3

∑
n=1

1
N

cos(
2π

λ
(x3)n ·u)cos(

2π

λ
(y3)n · v) (6.13)
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The power radiated in region Ψ = {(u,v) : 0 ≤ u2 + v2 ≤ sin2(θs)} can be evaluated as [60]

P(a,ws,Ψ) =
∫︂
Ψ

[︄
4

N3

∑
n=1

1
N

cos(
2π

λ
(x3)n ·u)cos(

2π

λ
(y3)n · v)

]︄2

du dv (6.14)

The integral in (6.14) can be evaluated by using rectangle rule above a finite grid θd ∈ [0,θs],

d = 1,2, . . . ,D, and ϕ f ∈ [0,2π), f = 1,2, . . . ,F , as in

P(a,ws,Ψ)≈ θs

D−1
· 2π

F −1

D−1

∑
d=1

F−1

∑
f=1

[︁
fsym(ws,ud f ,vd f )

]︁2 sin(θd) (6.15)

where ud f = sin(θd)cos(ϕ f ) and vd f = sin(θd)sin(ϕ f ).

Figure 6.3: Illustration of symmetric planar antenna array with mainlobe pointing at the broadside dir-
ection and circular region of interest, colored in red, in which radiated power is calculated.

6.1.3.3 Total Radiated Power

For the case of planar arrays, P(Ω) usually denotes the total power radiated in the half-space

above the array, that is Ω = {(u,v) : u2 + v2 ≤ 1}. Its value can be obtained analytically as in

[84]

P(a,w,Ω) = aTBPa, (6.16)

where entries of matrix BP are calculated by using

(BP)pq = 2π sinc
[︃

2π

λ

√︂
(xq − xp)2 +(yq − yp)2

]︃
, (6.17)

where p = 1,2, ...,N, and q = 1,2, ...,N.
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The expressions provided in sections 6.1.2 and 6.1.3 are valid for arbitrary coefficient val-

ues. However, since in uniformly excited arrays the only optimization variables are element

positions, the excitation coefficients have predefined values. In all optimizations considered in

further text, the vector a takes the form

a = [1/N,1/N, ...,1/N]T (6.18)

Consequently, the expressions for array factor and radiated power take the forms f (w,θ),

f (w,θ ,ϕ), fsym(ws,u,v), P(w,Ψ), P(ws,Ψ), and P(w,Ω).

6.2 Design Based on Unconstrained Optimization

6.2.1 Maximization of Beam Efficiency

Maximizing the beam efficiency of antenna arrays is important in applications such as satellite

communications and microwave power transfer systems. The problem of maximization of beam

efficiency of linear and planar arrays is given by the optimization problem

minimizew − P(w,Ψ)

P(w,Ω)
(6.19)

for the arrays with arbitrary element positions and

minimizews
− P(w,Ψ)

P(w,Ω)
(6.20)

for symmetric arrays. Depending on the arrays’ geometry and shape of the region of interest,

the powers P(w,Ψ) and P(w,Ω) are calculated by using expressions (6.6)-(6.9) for linear arrays

and (6.11), (6.12), (6.16), and (6.17) for planar arrays.

6.2.2 Maximization of Directivity

The unconstrained optimization of unequally spaced planar arrays with maximum directivity is

given by the problem

minimizew − | f (w,θ0,ϕ0)|2

P(w,Ω)/4π
(6.21)

for the arrays with arbitrary element positions and

minimizews
− | f (w,θ0,ϕ0)|2

P(w,Ω)/4π
(6.22)

61



6. Design of Unequally Spaced Arrays by Using General-Purpose Optimization Methods

for symmetric arrays, where θ0 = 0 and ϕ0 = 0 assuming the directivity is maximized at the

broadside direction. The total radiated power in the half-space above the array, P(w,Ω), is

given in (6.16).

6.2.3 Solver for Unconstrained Optimization

The problems (6.19)-(6.22) are not convex. In this research, the quasi-Newton method is utilized

for their solving. The solver implementing this method is available in various optimization tools.

Here, function fminunc from Matlab Optimization Toolbox [85] is employed. This function

supports BFGS and DFP formula for Hessian matrix update. In the following examples, the

BFGS formula is utilized since it ensures faster convergence in most practical problems.

6.2.4 Design Examples

In this section, examples are provided which illustrate the performances of the proposed op-

timization approach. The examples are worked out in Matlab 2023a running on a personal

computer with Intel i9 processor operating at the clock of 3.6 GHz. Function fminunc is em-

ployed as the solver, with the options set according to Table 6.1. Clearly, these options select

quasi-Newton method which utilizes BFGS formula for Hessian matrix update. For algorithm’s

terminating criteria, StepTolerance and OptimalityTolerance, default values are used. Since the

algorithm must converge in all cases, the parameters MaxIterations and MaxFunctionEvalu-

ations are set to high values.

Table 6.1: Options for function fminunc.

Option Value
Algorithm quasi-newton
HessianApproximation bfgs
StepTolerance 10−6

OptimalityTolerance 10−6

MaxIterations 2000
MaxFunctionEvaluations 4000N

6.2.4.1 Linear Arrays with Maximum Beam Efficiency

In this example, the design of linear antenna arrays with 32 elements and maximum beam

efficiency is considered. One array with arbitrary as well as one array with symmetric element

positions are optimized by solving the problems in (6.19) and (6.20). In both cases, the start of

the sidelobe region is set to θs = 3◦. The optimizations start from the array obtained with the

method from [51], whose element positions are given in Table 6.2. The optima are reached in
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56 iterations for the array with arbitrary, and 57 iterations for the array with symmetric element

positions, requiring the computational time of 0.43 s and 0.64 s. Figure 6.4 shows convergence

rates for both cases.

Table 6.2: Positions of antenna elements from [51] that are used as optimizations’ starting point.

n xn,λ n xn,λ n xn,λ n xn,λ

1, 32 ±10.4200 5, 28 ±6.4900 9, 24 ±3.7500 13, 20 ±1.7500
2, 31 ±9.1100 6, 27 ±5.7900 10, 23 ±3.2500 14, 19 ±1.2500
3, 30 ±8.1900 7, 26 ±5.1100 11, 22 ±2.7500 15, 18 ±0.7500
4, 29 ±7.3100 8, 25 ±4.3700 12, 21 ±2.2500 16, 17 ±0.2500

Figure 6.4: Convergence rate of optimization of linear arrays with maximum beam efficiency for arbit-
rary and symmetric elements’ positions.

Both optimizations − the one with arbitrary and the other with symmetric elements positions

− finished at the same optimum, which is listed in Table 6.3 and shown in Figure 6.5. The

obtained array factor is shown in Figure 6.6, in comparison with the array factor from [61]. In

addition, Table 6.4 shows their parameters. Clearly, both methods are able to find positions that

ensure high beam efficiency, offering very similar arrays.

It is interesting to note that the optimum arrays contain no overlapping elements, nor the ele-

ments that are too close one to another. The minimum interelement spacing equals to 0.4510λ .

Table 6.3: Optimum positions of antenna elements obtained with proposed design.

n xn,λ n xn,λ n xn,λ n xn,λ

1, 32 ±9.9251 5, 28 ±6.4660 9, 24 ±3.7659 13, 20 ±1.6754

2, 31 ±9.1141 6, 27 ±5.6530 10, 23 ±3.2327 14, 19 ±1.2108

3, 30 ±8.2313 7, 26 ±4.9789 11, 22 ±2.6859 15, 18 ±0.7032

4, 29 ±7.3412 8, 25 ±4.3671 12, 21 ±2.1948 16, 17 ±0.2522
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Figure 6.5: Element positions of optimum array (red), together with element positions of initial array
from Table 6.2 (green).

Figure 6.6: Normalized array factors of uniformly excited arrays with 32 unequally spaced elements
obtained with proposed approach and with method from [61].

Table 6.4: Beam efficiency, BE, first-null beamwidth, FNBW, 3dB-beamwidth, BW3, sidelobe level,
SLL, and directivity, DIR, of proposed unequally spaced arrays with 32 elements, and of
array from [61].

Design method BE, % BW3, deg FNBW, deg SLL, dB DIR, dB

Proposed 95.80 2.75 6.87 −20.21 15.88

Array from [61] 95.78 2.73 6.75 −21.14 15.92

6.2.4.2 Planar Arrays with Maximum Beam Efficiency in Rectangular Region of Interest

The second example illustrates an application of quasi-Newton method in the design of planar

arrays that maximize beam efficiency within a specified rectangular region. An array with 100

antenna elements and square region of interest with u0 = v0 = 0.2 is considered.

Here, the optimization problem contains significantly larger number of design variables

than does the problem in Section 6.2.4.1. However, if a symmetry is utilized, the number of

variables decreases by a factor of four. Such a decrease also decreases the method’s sensitivity
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to optimization starting point, thus increasing the robustness and the probability of finding the

global solution. In Section 6.2.4.1 it was illustrated that the design of a linear array results in the

same symmetric array, regardless of whether the symmetry was forced or not. Such a behavior

was also encountered in unconstrained optimization presented in [61], where the obtained linear

arrays are symmetric even though the symmetry was not enforced. Expecting that planar arrays

generating pencil beams act similarly to linear arrays, the unconstrained optimization is here

performed assuming symmetrically placed elements.

The design is performed by solving the problem (6.20). As an optimization starting point,

equidistant array with λ/2 spacing is used. The optimum solution is reached in 198 iterations,

requiring the computational time of 2.91 s. Figure 6.7 shows optimization’s convergence rate.

Figure 6.7: Convergence rate of optimization of planar array with symmetric element positions and max-
imum beam efficiency.

Obtained element positions and corresponding array factor are shown in Figure 6.8. Nu-

merical values of elements’ positions are given in Table 6.5, for convenience. Parameters of

the proposed array are given in Table 6.6, together with parameters of the array obtained with

particle swarm optimization in [60]. It is clear that the proposed approach provides an array

with higher beam efficiency. However, the performed optimization resulted in several closely

spaced elements, with some of them even overlapping. These elements are located on the x-

and y-axes, or in their vicinity. On the other hand, the array in [60] is obtained by utilizing con-

strained optimization, which prevents overlapping. It gives the idea that introducing constraints

in the proposed method might also be beneficial. Such an approach is described in Section

6.3.4.2.
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Figure 6.8: Element positions of optimum symmetric array with 100 elements (left) and corresponding
normalized array factor (right). Region of interest is drawn in black.

Table 6.5: Element positions of symmetric array with maximum beam efficiency and 100 elements.
Only elements in first quadrant are listed.

n xn,λ yn,λ n xn,λ yn,λ n xn,λ yn,λ

1 0.2492 0.2492 10 0.6032 1.7480 19 1.5460 1.5460
2 0.0000 0.5713 11 0.9395 0.0000 20 1.4368 2.3206
3 0.0000 0.9395 12 0.7333 0.9856 21 2.3597 0.2235
4 0.0758 1.4901 13 0.8702 0.8702 22 1.7480 0.6032
5 0.2235 2.3597 14 1.1929 1.7128 23 2.5794 0.8164
6 0.5713 0.0000 15 0.8164 2.5794 24 2.3206 1.4369
7 0.8703 0.8703 16 1.4901 0.0757 25 2.1428 2.1428
8 0.9856 0.7333 17 1.7480 0.6032
9 0.6032 1.7480 18 1.7128 1.1929

Table 6.6: Beam efficiency, BE, first-null beamwidth, FNBW, 3dB-beamwidth, BW3, sidelobe level,
SLL, and directivity, DIR, of proposed symmetric array with 100 elements, as well as of
array from [60].

Design method BE, % BW3, deg FNBW, deg SLL, dB DIR, dB
Proposed 95.52 11.04 13.88 −17.17 24.92

Particle swarm [60] 91.06 11.60 27.60 −16.00 24.2
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6.2.4.3 Planar Arrays with Maximum Directivity

In this example, directivity maximization described by the problem in (6.22) is performed.

Directivity is maximized for the symmetric planar arrays with 9, 16, 25, 36, 49, 64, 81, and

100 elements. It is important to note that since the problem in (6.22) is unconstrained, the

optimization starting point is always feasible regardless of which element positions are chosen.

However, a good guess about the initial positions might significantly reduce the design time.

Before choosing the initial positions, it will be considered how interelement spacing influences

the directivity. The analysis of directivity in equally spaced arrays was performed in [86] and

[68]. The former paper referred to analyzes the square array with 25 elements, whereas the

latter considers several rectangular (nonsquare) geometries. Here, systematic analysis of various

equidistant arrays is carried out.

First, the directivities of planar square arrays with 9, 16, 25, 36, 49, 64, 81, and 100 elements

with different interelement spacings, starting from d = 0.40λ to d = 1.20λ in steps of 0.01λ

are calculated. The results are shown in Figure 6.9. Apparently, for each array, an interele-

ment spacing which provides maximum directivity can be encountered. Such array is a good

candidate for optimization starting point. Table 6.7 lists the values of maximum directivities,

corresponding interelement spacings, total arrays’ length along x and y axis, and the increase of

array size expressed relatively to the size of equally spaced array with interelement spacing of

0.5λ , calculated for the arrays with aforementioned number of elements. The parameter d from

this table is used to form equidistant array for optimization starting point for a given N.

Figure 6.9: Directivities of equally-spaced planar square arrays calculated for various interelement spa-
cings and various number of elements, N.
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Table 6.7: Maximum directivity, D, corresponding interelement spacing, d, total arrays’ length along x
and y axis, Lx and Ly, and increase of array size expressed relatively to size of equally spaced
array with interelement spacing of 0.5λ , ∆s, calculated for equally spaced planar square arrays
with various numbers of elements, N,

N D, dB d,λ Lx = Ly, λ ∆s, %
9 16.5 0.73 1.46 +46
16 19.6 0.79 2.37 +58
25 21.9 0.83 3.32 +66
36 23.7 0.85 4.25 +70
49 25.2 0.87 5.22 +74
64 26.4 0.89 6.23 +78
81 27.5 0.90 7.20 +80
100 28.4 0.91 8.19 +82

The optimization is carried out for symmetric arrays with 9, 16, 25, 36, 49, 64, 81, and

100 elements. The number of iterations required to obtain the optimum array together with the

computational time for each optimization run is given in Table 6.8. It is clear that in all cases

the method exhibits fast convergence.

Table 6.8: Number of iterations and computational time for unconstrained optimizations of arrays with
maximum directivity and various number of elements, N.

N Number of iterations Computational time, s
9 7 0.03
16 9 0.01
25 18 0.02
36 19 0.03
49 28 0.09
64 28 0.12
81 44 0.29

100 40 0.49

Figures 6.10 and 6.11 show the optimum positions of antenna elements and the corres-

ponding array factors. Interestingly, the distributions of the optimum antenna elements exhibit

similar shapes for all of the proposed arrays, i.e. the shapes change only the scale depending on

the number of array elements. The minimum distances between elements and the sizes of all

proposed arrays are given in Table 6.9. Clearly, the total array sizes are very close to those of

the initial arrays, which are shown in Table 6.7. In all arrays, the obtained interelement spacing

is larger than 0.5λ .
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Figure 6.10: Optimum element positions of antenna arrays with 9, 16, 25, and 36 (left) and correspond-
ing normalized array factors (right).
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Figure 6.11: Optimum element positions of antenna arrays with 49, 64, 81, and 100 elements (left) and
corresponding normalized array factors (right).
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Table 6.9: Minimum interelement spacing, dmin, and array sizes calculated along x and y axis, Lx, Ly, of
proposed arrays.

N dmin, λ Lx, λ Ly, λ

9 0.6966 1.5128 1.5128
16 0.7367 2.4208 2.4208
25 0.7470 3.3257 3.3257
36 0.7573 4.2857 4.2857
49 0.7637 5.2024 5.2024
64 0.7759 6.1414 6.1414
81 0.7802 7.1176 7.1176
100 0.7812 8.0587 8.0587

Table 6.10 shows the parameters of equally spaced arrays with interelement spacing of λ/2,

of equally spaced arrays with maximum directivity, and of optimum nonequally spaced arrays

with maximum directivity. Clearly, the proposed arrays provide higher directivities than do

both equally spaced arrays. The gain in directivity increases with an increase in number of

elements. The main beams of the proposed arrays are narrower than the beams of the arrays

with interelement spacing of λ/2 and similar to those obtained by equally spaced arrays with

maximum directivity. The maximum sidelobe level of the proposed arrays is slightly lower.

Numerical values of elements’ positions for the proposed arrays with 8, 49, and 100 ele-

ments are given in Tables 6.11, 6.12, and 6.13, for convenience.

Table 6.10: Directivity, D, 3 dB cutoff, θ3dB, position of first zero, θz, and sidelobe level, SLL, of equally
spaced arrays with spacing of λ/2, equally spaced arrays with maximum directivity, and of
proposed nonequally spaced arrays.

Equally spaced arrays with

spacing of λ/2

Equally spaced arrays with

maximum directivity

Nonequally spaced arrays

with maximum directivity

N D,

dB

θ3dB,

deg

θz,

deg

SLL,

dB

D,

dB

θ3dB,

deg

θz,

deg

SLL,

dB

D,

dB

θ3dB,

deg

θz,

deg

SLL,

dB

9 13.5 18.1 41.8 −9.5 16.5 12.3 27.2 −9.5 16.6 12.2 26.9 −9.7

16 16.5 13.2 30.0 −11.3 19.6 8.3 18.4 −11.3 19.8 8.3 18.4 −10.3

25 18.3 10.4 23.6 −12.0 21.9 6.2 13.9 −12.0 22.2 6.3 14.0 −10.9

36 20.2 8.6 19.5 −12.4 23.7 5.0 11.3 −12.4 24.1 5.1 11.3 −11.4

49 21.4 7.3 16.6 −12.7 25.2 4.2 9.5 −12.7 25.7 4.3 9.4 −11.6

64 22.7 6.4 14.5 −12.8 26.4 3.6 8.1 −12.8 27.1 3.7 8.1 −11.8

81 23.7 5.7 12.8 −12.9 27.5 3.2 7.1 −12.9 28.2 3.2 7.1 −12.0

100 24.7 5.1 11.5 −13.0 28.4 2.8 6.3 −13.0 29.3 2.8 6.4 −12.1
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Table 6.11: Element positions of symmetric array with maximum directivity and 9 elements. Only ele-
ments in first quadrant and on positive x and y axes are listed.

n xn,λ yn,λ

1 0.3976 0.3976

2 0.4344 1.1333

3 1.1333 0.4344

4 1.2104 1.2104

Table 6.12: Element positions of symmetric array with maximum directivity and 49 elements. Only
elements in first quadrant and on positive x and y axes are listed.

n xn,λ yn,λ n xn,λ yn,λ n xn,λ yn,λ

1 0.0000 0.0000 7 0.0000 2.5321 13 1.8012 2.5163

2 0.8945 0.0000 8 0.8712 0.8712 14 2.5175 0.9000

3 1.7684 0.0000 9 0.8827 1.7396 15 2.5163 1.8012

4 2.5321 0.0000 10 0.9000 2.5175 16 2.6012 2.6012

5 0.0000 0.8945 11 1.7396 0.8827

6 0.0000 1.7684 12 1.7399 1.7399

Table 6.13: Element positions of symmetric array with maximum directivity and 100 elements. Only
elements in first quadrant are listed.

n xn,λ yn,λ n xn,λ yn,λ n xn,λ yn,λ

1 0.4565 0.4565 10 1.3842 3.9387 19 3.1486 3.1486

2 0.4597 1.3692 11 2.2730 0.4506 20 3.2192 3.9402

3 0.4506 2.2730 12 2.2737 1.3516 21 3.9511 0.4611

4 0.4617 3.1619 13 2.2542 2.2542 22 3.9387 1.3842

5 0.4611 3.9511 14 2.2776 3.1453 23 3.9343 2.3035

6 1.3692 0.4597 15 2.3035 3.9343 24 3.9402 3.2192

7 1.3748 1.3748 16 3.1619 0.4617 25 4.0293 4.0293

8 1.3516 2.2737 17 3.1575 1.3779

9 1.3779 3.1575 18 3.1453 2.2776
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6.2.5 Concluding Remarks

The presented examples prove that the quasi-Newton method can be a valuable tool for the

optimization of equally-excited unequally-spaced arrays. In linear arrays, this method ensures

fast convergence, offering the results similar to those obtained by other gradient-based methods.

However, its significant advantage is found in the ability of very simple formulation of the

design problem.

In the case of planar arrays with maximum beam efficiency the method also exhibits fast

convergence and provides insightful results. The optimization problems can be formulated

easily enabling rapid experimenting with various design criteria. Unfortunately, the obtained

results might contain closely spaced or overlapping elements, which causes difficulties in ar-

rays’ implementations. However, in further sections, it will be shown that this problem can be

mitigated by using constrained optimization.

The optimization of the directivity of unequally spaced planar arrays yields higher directiv-

ity compared to their equally spaced counterparts. The gain in directivity increases with an

increase in number of elements. The appearance of closely spaced or overlapping elements has

not been encountered in this case.

6.3 Design Based on Constrained Optimization

In this section, the unconstrained optimization problems for the design of linear and planar

arrays, given in (6.19)−(6.22), are extended with the constraints for

• minimum interelement spacing, dmin,

• maximum sidelobe level, δmax, that is achieved outside the region of interest, and

• maximum array size, which is specified by the minimum and maximum positions of an-

tenna elements, xmin and xmax for linear and xmin, xmax, ymin, and ymax for planar arrays.

6.3.1 Maximization of Beam Efficiency

Constrained optimization problem for the design of linear arrays with maximum beam effi-

ciency can be expressed as

minimizew − P(w,Ψ)

P(w,Ω)
(6.23a)

subject to xk − xk−1 ≥ dmin, k = 2,3, ...,N, (6.23b)

max
θ

| f (w,θ)| ≤ δmax, θ ∈ [θs,π/2], (6.23c)

xmin ≤ xn ≤ xmax, n = 1,2, ...,N (6.23d)
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where θs is start of the sidelobe region. The powers P(w,Ψ) and P(w,Ω) are obtained by

using (6.6)−(6.9). In practical optimization, the constraint in (6.23c) can be approximated by

calculating the maximum value of | f (w,θ)| above a finite grid θg, g= 1,2, ...,G, where θg ≥ θs.

Constrained optimization problem for maximizing the beam efficiency of planar arrays

within a rectangular region of interest Ψ = {(u,v) : |u| ≤ u0, |v| ≤ v0} is given by

minimizew − P(w,Ψ)

P(w,Ω)
(6.24a)

subject to (xk − xl)
2 +(yk − yl)

2 ≥ d2
min, k = 1,2, ...,N, l = k+1, ...,N, (6.24b)

max
u,v

| f (w,u,v)| ≤ δmax, |u| ≥ u0, |v| ≥ v0, u2 + v2 ≤ 1, (6.24c)

xmin ≤ xn ≤ xmax, n = 1,2, ...,N, (6.24d)

ymin ≤ yn ≤ ymax, n = 1,2, ...,N (6.24e)

where the powers P(w,Ψ) and P(w,Ω) are obtained by using (6.11) and (6.16). Similarly to the

constraint (6.23c), the constraint (6.24c) can be approximated by calculating maximum value

of | f (w,u,v)| above a finite grid ug, g = 1,2, ...,G, and vh, h = 1,2, ...,H, where |ug| ≥ u0,

|vh| ≥ v0, and u2
g + v2

h ≤ 1.

The problems in (6.23) and (6.24) can be easily adapted for the design of symmetric arrays.

In such a case, the optimizations are performed with respect to vector ws, as elaborated in

Section 6.1.1. A problem similar to symmetric version of the problem (6.24) was considered in

[60] in the context of particle swarm optimization.

The problem in (6.24) can be reformulated for maximizing the beam efficiency within a

circular region of interest. For symmetric arrays with no elements placed on the x- and y-axis,

the problem takes the form

minimizews
− P(ws,Ψ)

P(w,Ω)
(6.25a)

subject to (xk − xl)
2 +(yk − yl)

2 ≥ d2
min, k = 1,2, ...,N, l = k+1, ...,N, (6.25b)

max
θ ,ϕ

| fsym(ws,θ ,ϕ)| ≤ δmax, θ ∈ [θs,π/2], ϕ ∈ [0,2π], (6.25c)

xmin ≤ xn ≤ xmax, n = 1,2, ...,N, (6.25d)

ymin ≤ yn ≤ ymax, n = 1,2, ...,N (6.25e)

where P(ws,Ψ) and P(w,Ω) are given by (6.15) and (6.16). The constraint (6.25c) can be

approximated by calculating the maximum value of | fsym(ws,θ ,ϕ)| above a finite grid θg,

g = 1,2, ...,G, and ϕh, h = 1,2, ...,H, where θs ≤ θg ≤ π/2 and 0 ≤ ϕh ≤ 2π .
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Problems (6.24) and (6.25) assume the array elements are placed within a rectangular area.

If a circular area is desired, then the constraints (6.24d) and (6.24e) as well as (6.25d) and

(6.25e) should be replaced with

x2
n + y2

n ≤ R2
a, n = 1,2, ...,N (6.26)

where Ra is the largest distance of an antenna element from the origin by using (6.26). The

optimization problems for the design of arrays whose elements are placed in circular areas take

the forms

minimizew − P(w,Ψ)

P(w,Ω)
(6.27a)

subject to (xk − xl)
2 +(yk − yl)

2 ≥ d2
min, k = 1,2, ...,N, l = k+1, ...,N, (6.27b)

max
u,v

| f (w,u,v)| ≤ δmax, |u| ≥ u0, |v| ≥ v0, u2 + v2 ≤ 1, (6.27c)

x2
n + y2

n ≤ R2
a, n = 1,2, ...,N (6.27d)

for rectangular region of interest and

minimizews
− P(ws,Ψ)

P(w,Ω)
(6.28a)

subject to (xk − xl)
2 +(yk − yl)

2 ≥ d2
min, k = 1,2, ...,N, l = k+1, ...,N, (6.28b)

max
θ ,ϕ

| fsym(ws,θ ,ϕ)| ≤ δmax, θ ∈ [θs,π/2], ϕ ∈ [0,2π], (6.28c)

x2
n + y2

n ≤ R2
a, n = 1,2, ...,N (6.28d)

for circular region of interest.

6.3.2 Maximization of Directivity

The optimization problem for the design of antenna arrays with maximum directivity can also

be equipped with the aforementioned constraints. The resulting problem takes the form

minimizew − | f (w,θ0,ϕ0)|2

P(w,Ω)/4π
(6.29a)

subject to (xk − xl)
2 +(yk − yl)

2 ≥ d2
min, k = 1,2, ...,N, l = k+1, ...,N, (6.29b)

max
θ ,ϕ

| f (w,θ ,ϕ)| ≤ δmax, θ ∈ [θs,π/2] , ϕ ∈ [0,2π] , (6.29c)

xmin ≤ xn ≤ xmax, n = 1,2, ...,N, (6.29d)

ymin ≤ yn ≤ ymax, n = 1,2, ...,N (6.29e)
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where P(w,Ω) is given by (6.16) and θ0 = 0 and ϕ0 = 0 are used for the directivity at the

broadside direction. The constraint (6.29c) can be evaluated by using the approximation which

has been applied in the evaluation of constraint (6.25c). In addition, by using the optimization

with respect to vector ws, the optimization problem (6.29) can be easily adapted for the design

of symmetric arrays.

6.3.3 Solver for Constrained Optimization

Solving the optimization problems in (6.23)−(6.29) requires solvers for nonlinear constrained

optimization. Such solvers can be found in many tools and software libraries, such as Matlab

[85] and SciPy [87]. In this research, function fmincon from Matlab Optimization Toolbox

[85] is used. This function implements several algorithms such as the interior point, sequential

quadratic programming, trust region reflective, and active set [70].

The implementation of trust region reflective algorithm in function fmincon supports only

bounds or linear equality constraints (but not both) and requires an analytically supplied gradi-

ent of the objective function. However, the problems being considered contain various linear

and nonlinear constraints. Furthermore, the gradient of the objective function was not used to

maintain problem formulation as simple as possible. For these reasons the trust region algorithm

is not considered.

The other three algorithms can be applied in solving the aforementioned problems. A set of

experiments was conducted where each of these algorithms was employed to solve the problems

(6.24) and (6.29), while selecting various combinations of their constraints. Results showed that

the application of the interior point algorithm failed to converge to an acceptable local minimum

in all problems with constrained interelement spacing. Consequently this algorithm was omitted

from further analysis.

The sequential quadratic programming and the active set are similar algorithms. Their main

differences lie in the procedures for handling infeasible iterations and in the procedures that are

used to solve quadratic programming subproblems. Furthermore, the active set can take steps

outside the problem’s bounds, whereas the SQP takes steps that are inside or at the bounds. In

addition, the active set can take larger steps. More details on this can be found in [88], [89].

The application of these algorithms in solving optimization problems (6.23), (6.24), and (6.25)

showed faster convergence of the active set algorithm. However, the SQP provided solutions

with somewhat lower values of the objective functions. Furthermore, in solving optimization

problem (6.29), the active set failed to converge within an acceptable number of iterations. Such

behavior can be attributed to its larger optimization steps. Namely, in a numerically challenging

design, large steps can cause unacceptable numerical error (and even oscillatory behavior) in

calculation of the first order optimality measure near the optimum. Apparently, smaller optim-

ization steps, such as those used in the SQP are preferable.
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Finally, the SQP showed supreme convergence properties, justifying its reputation as the

most effective method for constrained nonlinear optimization [70]. It always found solutions

with lower objective function values within a given maximum number of iterations and function

evaluations, even when started from remote starting points. Therefore, the SQP algorithm has

been chosen for solving the discussed problems.

6.3.4 Design Examples

In this section, the examples are provided to illustrate features of the proposed design. The ex-

amples are worked out in Matlab 2023a running on a personal computer with Intel i9 processor

operating at the clock of 3.6 GHz. Function fmincon is employed as solver, with the options set

according to Table 6.14.

Table 6.14: Options for function fmincon.

Option Value
Algorithm sqp
StepTolerance 10−6

OptimalityTolerance 10−6

ConstraintTolerance 10−6

MaxIterations 2000
MaxFunctionEvaluations 4000N

6.3.4.1 Linear Arrays with Maximum Beam Efficiency and Constrained Size and In-
terelement Spacing

This section illustrates the application of constrained optimization in the design of linear arrays

with maximum beam efficiency. The problem in (6.23) is solved by utilizing only the constraints

on minimum interelement spacing (6.23b), and maximum array size (6.23d). Such a problem

was considered in [63], in the context of brain storm optimization. In the paper referred to,

a symmetric array having 10 elements was designed, with interelement spacing constrained

to dmin = 0.4λ and the array size constrained to 4.5λ , The latter was implemented via the

minimum and maximum position of antenna elements placed in the first quadrant, xmin = 0.2λ

and xmax = 2.25λ . Region of interest was specified as θs = arcsin(0.2). Here, the array with the

same specifications is designed. Optimization starts from equidistant array with λ/2 spacing.

The obtained element positions are listed in Table 6.15, whereas the corresponding array

factor is shown in Figure 6.12. In addition, Table 6.16 gives the parameters of the proposed

array and of the array from [63]. It is clear from the table that these two arrays differ negli-

gibly. Apparently, both methods converge to the same optimum in this case. However, from
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design procedure point of view, the proposed approach has several benefits. First, the design

time is short. In this example optimum is reached within 10 iterations and in 0.1 s, which is

significantly faster than 30 s reported in [63]. This is especially important when there are more

design variables, and consequently, more constraints. In addition, the proposed method utilizes

a known and widely available solver, which allows simple and straightforward implementation

of the objective function and the constraints, as well as performing the optimization itself. On

the other hand, the brain storm optimization requires more designer interaction, especially in

forming an optimization strategy suitable for the problem at hand.

Table 6.15: Optimum positions of antenna elements obtained with proposed design.

n xn, λ

1,10 ±2.2445
2,9 ±1.5745
3,8 ±1.0445
4,7 ±0.6066
5,6 ±0.2066

Figure 6.12: Normalized array factor of array obtained with proposed approach.

Table 6.16: Beam efficiency, BE, first-null beamwidth, FNBW, 3dB-beamwidth, BW3, sidelobe level,
SLL, and directivity, DIR, of proposed unequally spaced arrays with 10 elements and of
array obtained with method from [63].

Design method BE, % BW3, deg FNBW, deg SLL, dB DIR, dB
Proposed 95.81 11.00 26.70 −18.42 9.89

Method from [63] 95.81 10.98 26.67 −18.53 9.90
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6.3.4.2 Planar Arrays with Maximum Beam Efficiency in Rectangular Region of Interest
and Various Constraints

This example considers the optimization of beam efficiency of planar arrays with constrained

minimum interelement spacing, maximum SLL, and maximum size. Such a design is given

by the problem in (6.24). Both array types − one with symmetric and the other with arbit-

rary elements’ positions − are considered. The arrays are designed with N = 100 elements,

square region of interest with u0 = v0 = 0.2, minimum interelement spacing of dmin = 0.4λ ,

array boundaries set to xmin = ymin = −2.25λ and xmax = ymax = 2.25λ , and SLL constrained

to δmax = −15 dB. The optimization of a symmetric array with the same specifications is per-

formed in [60] by using particle swarm optimization.

In this example, both optimizations start from the array obtained in [60] (see Figure 6

therein). Figures 6.13 and 6.14 show the convergence rates of the SQP algorithm for both cases.

Design with symmetric element positions contains four times less variables than the design with

arbitrary positions. Consequently, a significantly lower number of iterations is required for the

algorithm to converge in the former case, i.e. 101 iterations for symmetric array compared to

1917 iterations for the array with arbitrary element positions, requiring the computational time

of 27.94 s and 794.40 s. It is interesting to note that even though the algorithm starts from a

feasible point, before reaching the optimum, it passes through iterations containing infeasible

points, which are in Figures 6.13 and 6.14 marked in red. This can be beneficial if the problem

is highly nonlinear, which is the case in this example. Namely, staying exclusively inside the

feasible region can be computationally expensive [70]. Extending the search area outside the

feasible region improves the convergence.

Figure 6.13: Convergence rate of optimization performed by sequential quadratic programming for
planar array with symmetric elements’ positions. Red color indicates infeasible, whereas
cyan indicates feasible points.
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Figure 6.14: Convergence rate of optimization performed by sequential quadratic programming for
planar array with arbitrary elements’ positions. Red color indicates infeasible, whereas
cyan indicates feasible points.

Comparison of the proposed arrays and the array in [60] is given in Table 6.17. Clearly,

the proposed arrays provide higher beam efficiency, slightly higher directivity, and somewhat

wider main beam. The beam efficiency of the proposed array with symmetric elements are

2.67 % higher than that obtained in [60]. An improvement of 3.63 % is obtained if all elements

are allowed to take arbitrary positions. The sidelobe levels of all three arrays have been targeted

to −15.0 dB. However, the array from [60] achieved −16 dB. Clearly, the proposed method

is capable of exploiting more degrees of freedom, thus reaching a higher beam efficiency for

specified design requirements. Figures 6.15 and 6.16 show elements’ positions of the proposed

arrays together with the corresponding array factors. Numerical values of the positions are

provided in Tables 6.18 and 6.19, for convenience.

Table 6.17: Beam efficiency, BE, 3 dB cutoff, θ3dB, position of first zero, θz, sidelobe level, SLL, and
directivity, D, of proposed arrays with symmetric and arbitrary elements’ positions and of
array from [60].

Design method BE, % θ3dB, deg θz, deg SLL, dB D, dB

Proposed, symmetric positions 93.73 5.9 14.1 −15.0 24.3

Proposed, arbitrary positions 94.69 5.9 14.2 −15.0 24.3

Particle swarm [60] 91.06 5.8 13.8 −16.0 24.2
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Figure 6.15: Element positions of optimum symmetric array with 100 elements (left) and corresponding
normalized array factor (right). Region of interest is drawn in black.

Figure 6.16: Element positions of optimum array with 100 elements and no symmetry requirement (left)
and corresponding normalized array factor (right). Region of interest is drawn in black.

Table 6.18: Element positions of symmetric array with maximum beam efficiency and 100 elements.
Only elements in first quadrant are listed.

n xn,λ yn,λ n xn,λ yn,λ n xn,λ yn,λ

1 0.2000 0.2000 10 2.2500 0.4573 19 1.2197 1.5284

2 0.6000 0.2000 11 0.2000 1.0000 20 2.2500 1.2896

3 1.0000 0.2000 12 0.6226 0.9994 21 0.4350 2.2500

4 1.4120 0.2000 13 1.0226 0.9994 22 0.2777 1.7942

5 1.8668 0.3425 14 1.4621 0.9912 23 1.2860 2.2500

6 0.2000 0.6000 15 1.7917 1.2178 24 1.6090 1.7580

7 0.6000 0.6000 16 0.2000 1.4018 25 2.1427 2.1065

8 1.0000 0.6000 17 0.7393 1.3874

9 1.5459 0.6001 18 0.8185 1.7794
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Table 6.19: Element positions of array with maximum beam efficiency, 100 elements, and no symmetry
requirement.

n xn,λ yn,λ n xn,λ yn,λ n xn,λ yn,λ

1 0.1677 0.0666 35 −2.2500 0.6934 69 1.6036 −1.6052

2 0.5177 0.3511 36 0.0090 1.2830 70 2.2500 −1.2911

3 0.8796 0.1806 37 −0.3127 1.0282 71 0.7624 −2.2500

4 1.1461 0.4789 38 −1.0890 0.9774 72 0.6197 −1.7574

5 1.6525 0.1106 39 −1.5000 0.9930 73 1.5563 −2.2500

6 0.1239 0.4902 40 −1.7991 0.6377 74 1.6699 −1.2107

7 0.4345 0.7423 41 −0.1827 1.6442 75 2.2500 −2.0365

8 0.8343 0.7318 42 −0.7973 1.2512 76 −0.1609 −0.1616

9 1.1993 0.9262 43 −0.9678 1.6130 77 −0.4894 −0.3898

10 2.2500 0.7650 44 −1.4798 1.7312 78 −0.8513 −0.2193

11 0.0609 0.8852 45 −2.2500 1.5107 79 −1.2283 −0.6322

12 1.0021 1.6191 46 −0.6508 2.2500 80 −1.5967 0.0574

13 0.9222 1.2147 47 −0.5783 1.7038 81 −0.1275 −0.5602

14 1.6452 0.9023 48 −1.3748 2.2500 82 −0.4969 −0.9052

15 1.7060 0.5070 49 −1.7157 1.4082 83 −0.8321 −0.6869

16 0.5312 1.1304 50 −2.1365 2.2500 84 −1.0775 −1.0027

17 0.6118 1.7067 51 0.2010 −0.3320 85 −2.2500 −0.1172

18 0.6566 2.2500 52 0.5510 −0.0475 86 −0.1005 −0.9593

19 1.5374 1.7433 53 0.9129 −0.2180 87 −1.1887 −1.6997

20 2.2500 1.5250 54 1.2597 −0.0023 88 −0.7420 −1.2212

21 −0.0008 2.2500 55 1.6232 −0.2884 89 −1.6147 −0.7357

22 0.2173 1.6409 56 0.2316 −0.7364 90 −1.7974 −0.3127

23 1.3883 2.2500 57 0.5844 −0.4462 91 −0.2835 −1.7854

24 1.6810 1.3700 58 0.9373 −0.6345 92 −0.7249 −1.6209

25 2.1634 2.2500 59 1.7213 −0.6761 93 −0.9141 −2.2500

26 −0.1942 0.2370 60 2.2500 0.0677 94 −1.5683 −1.5736

27 −0.5227 0.0088 61 0.2586 −1.1355 95 −2.2500 −0.9730

28 −0.9491 0.1685 62 0.6483 −0.9860 96 −0.0668 −2.2500

29 −1.2393 −0.1222 63 1.0469 −1.0192 97 0.2083 −1.6502

30 −1.4561 0.4319 64 1.3252 −0.7319 98 −1.7286 −2.2500

31 −0.2497 0.6332 65 2.2500 −0.5625 99 −1.7155 −1.2017

32 −0.6205 0.3967 66 −0.1765 −1.3632 100 −2.2500 −1.7917

33 −0.6768 0.8547 67 0.7670 −1.3854

34 −0.9880 0.5666 68 1.2100 −1.6765
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6.3.4.3 Planar Arrays with Maximum Beam Efficiency in Circular Region of Interest
and Various Constraints

Example 6.3.4.2 considered planar arrays radiating energy into a rectangular region. Here, cir-

cular region of interest with radius r = sin(θs) = 0.2 is considered. Arrays with two geometries

are optimized − one in which elements are placed within a square area and the other in which

they are placed within a circular area. In both cases, symmetric element positions are used.

Array with Elements Placed Within Square Area

An array with 100 elements is designed with minimum interelement spacing dmin = 0.4λ ,

SLL constrained to δmax = −12 dB, and the elements placed within a square area given by

xmin = ymin = −2.25λ and xmax = ymax = 2.25λ . The optimization of a symmetric array with

the same specifications is performed in [60] by using particle swarm optimization.

The design is performed by solving the problem in (6.25). The optimization starts from

the array obtained in [60] (see Figure 3 therein). Optimization’s convergence rate is shown in

Figure 6.17. The algorithm converges in 98 iterations, all of which are placed inside the feasible

region. The required computational time equals 186.82 s.

Table 6.20 shows the comparison of the proposed array and the corresponding array from

[60]. It is clear that the proposed array provides 2.96 % higher beam efficiency, slightly lower

SLL, and wider main beam. Figure 6.18 shows elements’ positions of the proposed array to-

gether with the corresponding array factor. The positions’ numerical values are given in Table

6.21, for convenience.

Figure 6.17: Convergence rate of optimization of array with 100 elements placed within square area.
All iteration points are placed inside feasible region.
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Table 6.20: Beam efficiency, BE, 3 dB cutoff, θ3dB, position of first zero, θz, sidelobe level, SLL, and dir-
ectivity, D, of proposed array with elements placed within square area and of corresponding
array from [60].

Design method BE, % θ3dB, deg θz, deg SLL, dB D, dB

Proposed 92.92 5.92 14.28 −12.48 24.3

Particle swarm [60] 89.96 5.63 13.41 −12.30 24.3

Figure 6.18: Element positions of optimum symmetric array with 100 elements placed within square
area (left) and corresponding normalized array factor (right). Region of interest is drawn
in black.

Table 6.21: Element positions of symmetric array with maximum beam efficiency and 100 elements
placed within square area. Only elements in first quadrant are listed.

n xn,λ yn,λ n xn,λ yn,λ n xn,λ yn,λ

1 0.2000 0.2000 10 2.2500 0.3319 19 1.6627 1.2393

2 0.6000 0.2000 11 0.2000 1.0000 20 2.1301 1.7444

3 1.0000 0.2000 12 0.6000 1.0024 21 0.2986 2.2500

4 1.3998 0.2111 13 0.9898 1.0921 22 0.2000 1.7288

5 1.7923 0.2883 14 1.3102 0.8526 23 0.9130 2.2500

6 0.2000 0.6000 15 2.2500 1.0220 24 1.4518 1.5889

7 0.6000 0.6000 16 0.3650 1.3644 25 1.6513 2.2500

8 1.0000 0.6000 17 0.6803 1.6106

9 1.6849 0.7126 18 1.0690 1.7049
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Array with Elements Placed Within Circular Area

Taking into account that beam efficiency is maximized assuming circular region of interest,

it is more appropriate to place the elements within a circular area. Therefore, in this example,

such a design is considered. Array with 76 elements is optimized. Element positions are con-

strained to fit into a circle of radius Ra = 2.25λ . Moreover, interelement spacing is constrained

to dmin = 0.4λ and SLL is constrained to δmax = −15 dB. The design is performed by solving

the problem in (6.28).

The optimization starting point is obtained from equidistant square array with 100 elements

and the interelement spacing of λ/2. From this array, the elements that are distanced from

the origin more than 2.4λ are removed, thus resulting in 76 elements which are used as a

starting point. Clearly, such a starting point is infeasible. However, the used SQP solver handles

infeasible points well. It is illustrated in Figure 6.19, which shows the convergence rate of

the performed optimization. Clearly, a large number of iterations following the initial one are

infeasible. However, the algorithm converged to a feasible solution in 376 iterations, requiring

the computational time of 545.30 s.

Parameters of the proposed array are given in Table 6.22 together with the parameters of the

array presented in Table IV in [84]. These two arrays have the same number of elements and the

same radius of the region of interest. However, the array referred to is equidistant, with nonuni-

form coefficients. Clearly, these two arrays are not suitable for the comparison. Nevertheless,

their analysis illustrates gain that can be achieved with unequally-spaced uniformly-excited ar-

rays. Clearly, for the same beam efficiency, unequally spaced array can provide narrower beam

and lower sidelobe level.

Figure 6.20 shows elements’ positions of the proposed array together with the corresponding

array factor. The positions’ numerical values are given in Table 6.23, for convenience.

Figure 6.19: Convergence rate of optimization of array with 76 elements placed within circular area.
Red color indicates infeasible, whereas cyan indicates feasible points.
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Table 6.22: Beam efficiency, BE, position of first zero, θz, and sidelobe level, SLL, of proposed array
with elements placed within circular area and of corresponding array from [84].

Design method BE, % θz, deg SLL, dB
Proposed 81.94 13.95 −15.00

Method in [84] 81.54 24.65 −6.62

Figure 6.20: Element positions of optimum symmetric array with 76 elements placed in circular area
(left) and corresponding normalized array factor (right). Region of interest is drawn in
black.

Table 6.23: Element positions of symmetric array with maximum beam efficiency and 76 elements
placed within circular area. Only elements in first quadrant are listed.

n xn,λ yn,λ n xn,λ yn,λ n xn,λ yn,λ

1 0.3310 0.2879 8 0.7244 1.5466 15 1.7031 0.2731

2 0.2054 0.8023 9 1.1971 1.9051 16 1.4863 0.6802

3 0.3689 1.3061 10 0.7401 2.1248 17 1.9042 1.1985

4 0.2000 1.6687 11 1.3031 0.2699 18 2.2354 0.2560

5 0.2563 2.2354 12 0.8312 0.8080 19 2.1202 0.7532

6 0.7707 0.3064 13 1.3393 1.0522

7 0.9904 1.2479 14 1.5821 1.5998

6.3.4.4 Planar Arrays with Maximum Directivity and Constrained Sidelobe Level

In this example, directivity maximization of symmetric arrays with constrained sidelobe level

is illustrated. In [90], the maximization of directivity with constrained SLL was performed for

sparse arrays with predefined element positions, assuming the excitations are design variables.

In the paper referred to, authors considered arrays with 85 elements and SLL constrained to

δmax = −20dB. They found that applying the SLL constraints in various sidelobe regions of
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interest, θs = 14◦,15◦, ...,26◦, does not influence the obtained directivity (see Figure 6a in [90]).

Normalized array factor obtained by the method from [90] for θs = 14◦ is shown in Figure 6.21.

Figure 6.21: Normalized array factor obtained by method from [90] for θs = 14◦. Start of sidelobe
region is drawn in black.

Here, the excitations are uniform whereas the element positions are optimized. The op-

timum arrays are obtained by solving the constrained optimization problem in (6.29), in which

only the constraints set on SLL, (6.29c), are used. The optimizations are performed starting

from the array in [90]. In addition, the optimizations are repeated starting from various ran-

domly generated layouts. The layouts are obtained by changing the element positions of the

array in [90] randomly in the range of ±0.5λ .

The SLL constraints are defined with the aforementioned values of θs and δmax. However,

the proposed approach allows lowering θs down to 8◦. Consequently, a narrower main beam can

be obtained. In addition, the proposed arrays provide up to 5 dB higher directivity than do the

arrays in [90]. Finally, the directivity exhibits low dependency on θs, which is similar behavior

to that encountered in [90]. These observations are illustrated in Table 6.24, which shows the

comparison of the proposed arrays and the arrays from [90], obtained for θs = 8◦,14◦,26◦.

Table 6.24: Directivity, D, 3 dB cutoffs and positions of first zeros calculated along x and y axis, θ
(x)
3dB,

θ
(y)
3dB, θ

(x)
z , and θ

(y)
z , of proposed arrays and arrays in [90], obtained for various starts of

sidelobe region, θs.

Arrays in [90] Proposed arrays

θs,

deg

D,

dB

θ
(x)
3dB,

deg

θ
(y)
3dB,

deg

θ
(x)
z ,

deg

θ
(y)
z ,

deg

D,

dB

θ
(x)
3dB,

deg

θ
(y)
3dB,

deg

θ
(x)
z ,

deg

θ
(y)
z ,

deg
8 - - - - - 27.9 3.7 3.3 9.0 8.1
14 23.4 5.5 5.5 16.6 16.6 28.4 2.8 3.5 6.5 8.0
26 23.4 5.5 5.5 16.6 16.6 28.5 3.1 3.2 7.6 7.9
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In the proposed arrays, higher directivities and narrower main beams are the consequences

of increased arrays’ sizes. For example, size of the array obtained for θs = 8◦ equals 8.29λ ×
8.57λ , which is an increase of 71% compared to the array in [90]. However, it is important to

note that the proposed arrays consist of uniformly excited elements, which reduces the design

freedom that is here compensated with unequal spacing and by increasing the array size.

Changing the boundaries of the sidelobe region causes a redistribution of power in the power

pattern. This may cause rising of the sidelobes in the region where SLL is not constrained,

whereas directivity remains approximately the same. Therefore, in practice, it is best to employ

SLL constraints in the region starting from the lowest possible θs. This is illustrated in Figure

6.22, which shows the optimum array factors together with corresponding elements’ positions

obtained for θs = 8◦,14◦,26◦. Clearly, for θs = 14◦ and θs = 26◦, unwanted lobes are obtained

between the main lobe and the beginning of the sidelobe region.

Figure 6.22: Starting (blue) and optimum (red) element positions of antenna arrays with 85 elements
obtained for various starts of sidelobe region, θs = 8◦, θs = 14◦, and θs = 26◦ (left) and
corresponding normalized array factors (right). Starts of sidelobe regions are drawn in
black.
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Numerical values of optimum positions obtained with θs = 8◦ are given in Table 6.25, for

convenience.

Table 6.25: Element positions of symmetric array with maximum directivity, constrained sidelobe level,
and 85 elements, obtained for θs = 8◦. Only elements in first quadrant and on positive x and
y axes are listed.

n xn,λ yn,λ n xn,λ yn,λ n xn,λ yn,λ

1 0.0000 0.0000 10 0.4443 4.2864 19 0.6278 0.9101

2 2.6917 0.0000 11 0.9981 3.5547 20 0.6731 1.7688

3 0.6818 0.0000 12 2.6335 3.0353 21 1.9884 1.4576

4 1.1705 0.0000 13 2.4587 2.1706 22 3.4254 0.4805

5 4.1427 0.0000 14 0.7521 2.7315 23 1.8762 0.4059

6 0.0000 2.5019 15 1.9306 3.6192 24 1.3004 0.9572

7 0.0000 3.5111 16 3.2790 2.3927 25 2.5980 0.8893

8 0.0000 1.6137 17 1.3818 1.9821 26 1.7199 2.8171

9 0.0000 0.7386 18 3.0746 1.5196

6.3.4.5 Planar Arrays with Maximum Directivity and Various Constraints

In the example considered in Section 6.3.4.4, directivity was optimized without constraints on

array’s size and interelement spacing. It was shown that a significantly higher directivity can

be obtained at the expense of increased array size. Here, the example from Section 6.3.4.4 is

extended with constraints on the array size and interlement spacing. Such a design is performed

by solving the problem in (6.29).

Since in aforementioned example the array size was not constrained, the sidelobe region

could start already at θs = 8◦. Here, the array size is constrained to 5λ × 5λ , which corres-

ponds to the size of the array in [90], i.e. xmin = ymin = −2.5λ and xmax = ymax = 2.5λ . Note

that this is significantly smaller than the size of 8.29λ ×8.57λ obtained for θs = 8◦ in 6.3.4.4.

Consequently, with θs as low as 8◦, the proposed optimization cannot find a feasible solution.

Therefore, in this example, the SLL-constraint region starts at θs = 14◦ and SLL is constrained

to δmax =−20 dB. In addition, to prevent closely spaced elements, minimum interelement spa-

cing is constrained to dmin = 0.5λ . One symmetric array and one array with arbitrary positions

are considered. Optimizations start from the positions of elements in the array from [90].

Figure 6.23 shows the convergence rates of SQP algorithm for both − arbitrary and sym-

metric − array designs. The design with arbitrary positions contains 170, whereas the design

with symmetric positions contains 42 variables. Consequently, a significantly higher number

of iterations is required for the algorithm to converge in the former case, i.e. 943 iterations for
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the array with arbitrary element positions compared to 195 iterations for the symmetric array,

requiring the computational time of 320.35 s and 46.42 s. By utilizing arbitrary positions, some-

what lower objective function value is achieved, which results in only 0.1 dB higher directivity.

Table 6.26 shows the comparison of the proposed arrays and the array from [90]. Clearly,

the proposed arrays provide up to 2 dB higher directivity and narrower main beam than does

the array from [90]. Note that it was achieved by utilizing only one excitation level (and

nonequidistant elements), whereas the array from [90] has a significantly higher dynamic range

ratio of 11.8. Figures 6.24 and 6.25 show the positions of the proposed arrays together with the

corresponding array factors. Element positions of the proposed arrays are given in Tables 6.27

6.28, for convenience.

Figure 6.23: Convergence rates of optimizations performed for planar arrays with arbitrary (top) and
symmetric (bottom) elements’ positions. Red color indicates infeasible points, whereas
cyan indicates feasible points.
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Table 6.26: Directivity, D, 3dB cutoff, θ3dB, and position of first zero, θz, of proposed arrays with arbit-
rary and symmetric element positions, and of array from [90], obtained for start of sidelobe
region θs = 14◦.

Design method D, dB θ3dB, deg θz, deg

Proposed, arbitrary positions 25.4 5.0 12.0

Proposed, symmetric positions 25.3 5.0 12.0

Method from [90] 23.4 5.5 16.6

Figure 6.24: Element positions of optimum symmetric array with 85 elements (left) and corresponding
normalized array factor (right).

Figure 6.25: Element positions of optimum array with 85 elements and no symmetry requirement (left)
and corresponding normalized array factor (right).
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Table 6.27: Element positions of array with maximum directivity, 85 elements, and no symmetry re-
quirement.

n xn,λ yn,λ n xn,λ yn,λ n xn,λ yn,λ

1 −1.7226 2.5000 30 −2.5000 0.9462 59 −1.8656 −1.0073

2 −0.9549 2.5000 31 −1.7935 0.5773 60 −0.8709 −0.8240

3 −0.2806 2.5000 32 −1.2446 0.8492 61 −0.4174 −1.0348

4 0.2418 2.5000 33 −0.7484 0.9107 62 0.0268 −1.2642

5 0.6232 1.6546 34 −0.0257 0.5707 63 0.4493 −0.9967

6 0.9373 2.5000 35 0.2352 0.1442 64 1.8281 −1.0340

7 1.7409 2.5000 36 0.7553 0.0886 65 2.5000 −0.9623

8 1.7823 1.7623 37 1.8404 0.5554 66 −2.5000 −0.9379

9 2.5000 2.5000 38 1.8064 0.0333 67 −1.3519 −0.9605

10 −2.5000 2.5000 39 −1.7663 0.0780 68 −0.9293 −1.3206

11 −1.0211 1.8330 40 −1.2261 0.0935 69 0.0264 −1.7986

12 −0.5211 1.8275 41 −0.8481 0.4207 70 1.7482 −1.7449

13 1.0918 1.8288 42 −0.3094 0.1589 71 −2.5000 −1.7339

14 1.2692 1.1062 43 −0.0484 −0.2676 72 −1.7478 −1.7343

15 2.5000 1.7146 44 0.4500 −0.3074 73 −1.0382 −1.8371

16 −1.7462 1.7574 45 1.1006 −0.2731 74 0.5699 −1.8269

17 0.1594 1.9008 46 1.2412 0.2068 75 1.0644 −1.7530

18 −0.1363 1.4976 47 1.7960 −0.4666 76 2.5000 −1.7265

19 0.7696 1.0856 48 −2.5000 0.2816 77 −2.5000 −2.5000

20 2.5000 0.9338 49 −1.1318 −0.3975 78 −1.7443 −2.5000

21 −2.5000 1.7310 50 −0.7537 −0.0703 79 −0.9912 −2.5000

22 −1.8289 1.0760 51 −0.4928 −0.4968 80 −0.3326 −2.5000

23 −1.0497 1.3097 52 0.0065 −0.7646 81 −0.4736 −1.8044

24 −0.2590 1.0129 53 0.8598 −0.7113 82 0.1934 −2.5000

25 0.2400 1.0445 54 0.9018 −1.2095 83 0.8435 −2.5000

26 0.5376 0.6427 55 1.3123 −0.9240 84 1.5385 −2.5000

27 1.0372 0.6633 56 2.5000 −0.2700 85 2.3014 −2.5000

28 1.7982 1.0536 57 −2.5000 −0.2184

29 2.5000 0.2300 58 −1.8330 −0.4175
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Table 6.28: Element positions of symmetric array with maximum directivity and 85 elements. Only
elements in first quadrant and on positive x and y axes are listed.

n xn,λ yn,λ n xn,λ yn,λ n xn,λ yn,λ

1 0.0000 0.0000 10 0.4456 2.0116 19 0.6245 0.9843

2 0.5000 0.0000 11 0.9206 2.5000 20 0.9801 1.3357

3 1.0000 0.0000 12 1.6684 2.5000 21 1.2644 0.9244

4 1.5000 0.0000 13 2.5000 2.5000 22 2.5000 0.9017

5 2.0000 0.0000 14 0.9947 1.8355 23 0.5000 0.5000

6 0.0000 2.5000 15 1.7081 1.7326 24 1.0000 0.5000

7 0.0000 1.7823 16 2.5000 1.7097 25 1.7379 0.5312

8 0.0000 1.0000 17 0.3115 1.3911 26 2.5000 0.2629

9 0.0000 0.5000 18 1.8492 1.0186

6.3.5 Concluding Remarks

Extensive examples considering constrained optimization via SQP show that the proposed ap-

proach is suitable for designing linear and planar arrays with various requirements.

In the case of uniformly-excited unequally-spaced linear arrays with maximum beam ef-

ficiency, the same results are obtained as by the evolutionary methods. The application of the

proposed approach in optimization of planar arrays improves directivity and beam efficiency. In

optimization of beam efficiency, the improvement has been encountered in the design of square

arrays with square and circular regions of interest, as well as in the design of circular arrays

with circular region of interest. In optimization of directivity, the proposed method has been

successfully applied in the design of uniformly-excited unequally-spaced antenna arrays with

constrained minimum interelement spacing, maximum sidelobe level, and maximum array size.

The proposed method based on SQP is straightforward and it can be easily utilized in solv-

ing various optimization problems with different constraints. In addition, it exhibits fast con-

vergence, which makes it suitable for experimenting with various design criteria.
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Chapter 7

Conclusion

Three new methods for the design of pencil-beam antenna arrays with low dynamic range ratio

of excitation coefficients have been presented in this dissertation.

The first method is based on convex optimization of linear pencil-beam arrays with min-

imum L1-norm. Such optimization is performed for the arrays with predefined positions of

antenna elements. If the elements are placed at the spacing of λ/2, the resulting optimum

arrays exhibit maximum sidelobe level of approximately −21 dB for any number of antenna

elements, with the sidelobes that monotonically decrease as the angle increases. Therefore, the

L1 pencil beams radiate very small amount of power in the sidelobe region. The correspond-

ing antenna coefficients are bell-shaped with positive magnitudes. Their dynamic range ratio

increases linearly as the number of elements increases and generally takes low values.

Even though the DRR of L1 pencil beams is generally low, in some applications it could

still be too high to be realized with available beamforming networks. This problem has been

overcome by incorporating DRR constraints into the design. The second method proposed in

this dissertation performs the optimization of L1 pencil beams with constrained DRR and con-

strained maximum sidelobe level. The latter have been incorporated to prevent deterioration

in the array factor caused by the DRR constraints. Since the DRR constraints are not convex,

the proposed method utilizes global search based on branch and bound algorithm that employs

convex optimization and feasibility test for tree pruning. The method supports real-valued coef-

ficients with arbitrary signs as well as an independent control of DRR and SLL.

Finally, the design of uniformly-excited unequally-spaced arrays has been considered. The

design of such arrays leads to nonlinear and nonconvex problems. For their solving, general-

purpose methods for nonlinear optimization have been proposed. The application of these meth-

ods proved efficient in unconstrained and constrained design of linear and planar arrays with

maximum beam efficiency and with maximum directivity. The proposed approach ensures fast

convergence and enables very simple formulation of the design problems. Several examples

have been provided, showing that the proposed approach is suitable for improving the results

obtained by other methods.
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Foundation and led by Prof. Mladen Vučić, PhD. She has been involved in teaching activities

in the following courses: Embedded Systems, Embedded System Design and Tools for Digital

Design.

She is a member of IEEE Antennas and Propagation Society and IEEE Signal Processing

Society.

List of publications

Journal papers

1. Vodvarka, K., Jurisic Bellotti, M., Vucic, M., “Design of uniformly-excited unequally-

spaced antenna arrays by using nonlinear optimization”, IEEE Antennas and Wireless

Propagation Letters, Vol. 23, No. 5, May 2024, pp. 1463-1467.

Papers in conference proceedings

1. Vucic, M., Jurisic Bellotti, M., Vodvarka, K., “Synthesis of flat-top beampattern with

minimax sidelobes and constrained dynamic range ratio”, in Proceedings of 2023 IEEE

International Symposium on Antennas and Propagation and USNC-URSI Radio Science

Meeting (AP-S/URSI 2023), Portland, OR, USA, July 2023, pp. 385-386.

104



Biography

2. Vodvarka, K., Jurisic Bellotti, M., Vucic, M., “Design of unequally spaced antenna ar-

rays with minimum sidelobe power via quasi-Newton method”, in Proceedings of 17th

European Conference on Antennas and Propagation (EuCAP 2023), Florence, Italy, March

2023, pp. 1249-1253.

3. Vodvarka, K., Jurisic Bellotti, M., Vucic, M., “Synthesis of L1 pencil beams with con-

strained sidelobe level and dynamic range ratio”, in Proceedings of 16th European Con-

ference on Antennas and Propagation (EuCAP 2022), Madrid, Spain, March 2022, pp.

1-5.

4. Vodvarka, K., Vucic, M., Molnar G., “Synthesis of pencil beams optimum in L1-sense”,

in Proceedings of 2021 IEEE International Symposium on Antennas and Propagation and

USNC-URSI Radio Science Meeting (AP-S/URSI 2021), Singapore, Singapore, Decem-

ber 2021, pp. 307-308.

Abstracts in conference proceedings

1. Vodvarka, K., Jurisic Bellotti, M., Vucic, M., “Design of unequally spaced antenna arrays

via general-purpose optimization methods”, Abstract book of 8th International Workshop

on Data Science (IWDS 2023), Zagreb, Croatia, 25th October 2023, pp. 62-64.

2. Vodvarka, K., Jurisic Bellotti, M., Vucic, M., “Global design of L1 pencil beams with

multiple constraints”, Abstract book of 7th International Workshop on Data Science

(IWDS 2022), Zagreb, Croatia, 26th October 2022, pp. 15-17.

3. Vodvarka, K., Jurisic Bellotti, M., Vucic, M., “Global design of linear antenna arrays with

constrained dynamic range ratio”, Abstract book of 6th International Workshop on Data

Science (IWDS 2021), Zagreb, Croatia, 24th November 2021, pp. 14-16.

105



Životopis

Katarina Vodvarka rod̄ena je 1997. godine u Zagrebu, Republika Hrvatska. Diplomirala je
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