
Implementacija funkcionalnosti analize i usporedbe
dokumenata

Zagajski, Klara

Undergraduate thesis / Završni rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:302520

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-20

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:302520
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:12846
https://repozitorij.unizg.hr/islandora/object/fer:12846
https://dabar.srce.hr/islandora/object/fer:12846

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

BACHELOR THESIS No. 1621

IMPLEMENTATION OF DOCUMENT ANALYSIS AND

COMPARISON FUNCTIONALITIES

Klara Zagajski

Zagreb, June 2024

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

BACHELOR THESIS No. 1621

IMPLEMENTATION OF DOCUMENT ANALYSIS AND

COMPARISON FUNCTIONALITIES

Klara Zagajski

Zagreb, June 2024

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 04 March 2024

BACHELOR THESIS ASSIGNMENT No. 1621

Student: Klara Zagajski (0036530600)

Study: Electrical Engineering and Information Technology and Computing

Module: Computing

Mentor: assoc. prof. Marina Bagić Babac

Title: Implementation of document analysis and comparison functionalities

Description:

This thesis explores the key features and functionalities of a system for document analysis and comparison. A
system that provides tools for text recognition, information extraction, and document classification will be
implemented. Text recognition enables automatic extraction of textual content from various document formats,
while information extraction enables data structuring. Documents can be classified based on different
properties. Additionally, the system will include a comparative analysis of documents to assess the
effectiveness and reliability of each implemented functionality.

Submission date: 14 June 2024

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 4. ožujka 2024.

ZAVRŠNI ZADATAK br. 1621

Pristupnica: Klara Zagajski (0036530600)

Studij: Elektrotehnika i informacijska tehnologija i Računarstvo

Modul: Računarstvo

Mentorica: izv. prof. dr. sc. Marina Bagić Babac

Zadatak: Implementacija funkcionalnosti analize i usporedbe dokumenata

Opis zadatka:

Ovaj rad istražuje ključne značajke i funkcionalnosti sustava za analizu i usporedbu dokumenata. Potrebno je
implementirati sustav koji pruža alate za prepoznavanje, ekstrakciju informacija i klasifikaciju dokumenata.
Prepoznavanje teksta omogućuje automatsko izdvajanje tekstualnog sadržaja iz različitih formata dokumenata,
dok ekstrakcija informacija omogućuje strukturiranje podataka. Dokumente je moguće klasificirati na temelju
različih svojstava. Osim toga, sustav će uključivati komparativnu analizu dokumenata kako bi se procijenila
učinkovitost i pouzdanost svake od implementiranih funkcionalnosti.

Rok za predaju rada: 14. lipnja 2024.

ii

Contents

Introduction .. 1

1. Relevant Technologies and Tools .. 3

2. Data Description ... 5

2.1. Overview ... 5

2.2. Dataset Cleaning ... 5

2.3. Topics and Word Frequency ... 6

3. Methodology .. 11

3.1. Data Preprocessing .. 11

3.1.1. Text Extraction .. 11

3.1.2. Text Preprocessing .. 11

3.2. Embeddings ... 12

3.3. Model Training and Evaluation ... 13

3.3.1. Machine Learning Models .. 13

3.3.2. Performance Metrics .. 16

3.4. Model Selection and Visualization ... 17

3.5. Document Similarity... 18

4. Implementation .. 19

4.1. Tools and Libraries Used ... 19

4.2. Document Analysis and Comparison ... 20

4.2.1. Document Analysis.. 20

4.2.2. Document Comparison .. 20

5. Results and Discussion .. 23

5.1. Performance Evaluation ... 23

5.2. Comparative Analysis Results .. 28

5.2.1. Comparison of Model Performance .. 28

5.2.2. Comparison of Embedding Techniques .. 28

5.2.3. Discussion .. 29

Conclusion ... 30

References .. 32

Summary ... 33

Sažetak .. 34

Appendices... 35

1

Introduction

In the contemporary digital landscape, the analysis and comparison of documents have

become indispensable in various sectors such as legal, academic, and corporate

environments. The capability to extract and process textual information from diverse

document formats is crucial for enhancing efficiency and accuracy in these fields and others.

Traditional manual methods for document analysis are not only time-consuming but also

prone to human error, highlighting the necessity for automated systems.

This thesis addresses the inefficiencies and errors inherent in manual document analysis

by developing an automated system for text recognition, information extraction, and

document classification. The system is designed to handle various document formats,

structure the extracted data, and classify documents based on specific properties.

Additionally, the use of various text embeddings in conjunction with machine learning

models will be explored to enhance the accuracy and reliability of document classification.

By systematically comparing these embeddings and models, the aim is to identify the most

effective combinations.

Manual document analysis is especially inefficient when dealing with extensive datasets

or complex documents. This thesis aims to overcome these limitations by developing an

automated system that leverages advanced machine learning techniques to efficiently extract

text from various document formats, preprocess the text to ensure consistency, structure the

extracted information accurately, and reliably classify and compare documents. The

integration of machine learning models enables the system to learn from the data and

improve its performance over time, making it a robust solution for document analysis tasks.

By systematically comparing different embeddings and models, it's possible to identify the

most effective combinations for accurate and reliable document classification. This

comparative analysis not only highlights the strengths and weaknesses of each approach but

also provides valuable insights into optimizing the use of machine learning for document

analysis.

The contributions of this thesis include the implementation of a system capable of

extracting text from multiple document formats, implementation of preprocessing techniques

2

to normalize and prepare text data for further analysis, and the application of sophisticated

machine learning models for effective document classification. Furthermore, this thesis

establishes a robust evaluation framework for assessing the reliability and effectiveness of

these machine learning models in text recognition, information extraction, and document

classification tasks. This approach not only enhances the accuracy and efficiency of the

document analysis process but also contributes valuable insights into the best practices for

implementing machine learning in document analysis systems.

3

1. Relevant Technologies and Tools

Document analysis has been extensively researched, resulting in a variety of methods

and technologies aimed at improving text processing tasks. Automated approaches have been

developed, leveraging advancements in natural language processing (NLP) and machine

learning. This section outlines the key technologies and tools utilized in this thesis, focusing

on their relevance and application in text recognition, information extraction, and document

classification.

Natural Language Processing (NLP): NLP is a field of artificial intelligence that

focuses on the interaction between computers and human language. It involves the

development of algorithms and models to process and analyze large amounts of natural

language data. NLP techniques are essential for processing and analyzing textual data.

Libraries such as NLTK (Natural Language Toolkit), SpaCy, and Stanford NLP provide

robust tools for tasks such as tokenization. These tools facilitate the extraction of structured

information from unstructured text, enabling more accurate analysis and classification.

Machine Learning: Machine learning is a branch of artificial intelligence that involves

training algorithms to learn from and make predictions or decisions based on data. In the

context of document analysis, machine learning models, including unsupervised and

supervised learning algorithms, have been widely adopted for document classification tasks.

Unsupervised learning approaches, such as clustering algorithms, are used to group similar

documents without prior knowledge of the categories. Supervised learning models such as

Support Vector Machines (SVM), Decision Trees, and Naive Bayes classifiers are trained

on labeled datasets to categorize documents into predefined classes. These classifiers are

evaluated in this thesis. SVM is effective for high-dimensional spaces and is widely used for

text classification. KNN is a simple, instance-based learning algorithm that classifies

documents based on the majority class among the nearest neighbors. Naive Bayes is a

probabilistic classifier that applies Bayes' theorem with strong independence assumptions

between features.

Text Embeddings: Embedding methods transform text into numerical vectors that can

be used as input for machine learning models. This thesis explores several embedding

techniques; GloVe, Word2Vec, TF-IDF, and Doc2Vec. GloVe (Global Vectors for Word

4

Representation) and Word2Vec generate dense vector representations based on word co-

occurrence in large corpora, capturing semantic relationships between words. TF-IDF (Term

Frequency-Inverse Document Frequency) is a statistical measure that evaluates the

importance of a word in a document relative to a corpus, while Doc2Vec extends Word2Vec

to generate vector representations for entire documents.

Evaluation Metrics: Evaluating the performance of the document analysis system

requires robust metrics. Common metrics include accuracy, precision, recall, and F1-score.

These metrics provide insights into the effectiveness of the text recognition, information

extraction, and classification functionalities, enabling a comprehensive assessment of the

system's performance.

By integrating these technologies and tools, this thesis aims to develop a robust and

efficient system for automated document analysis, capable of handling diverse document

formats and delivering high accuracy in text recognition, information extraction, and

classification tasks.

5

2. Data Description

2.1. Overview

The dataset utilized for this thesis is sourced from Kaggle and consists of resumes

labeled as job categories [1]. The individual resume examples were obtained from

livecareer.com website. It comprises of an archive file organized into folders, each named

according to 24 distinct professional classes, such as Engineering, Finance, and Healthcare.

Each folder contains multiple PDF files of resumes. In total, the dataset includes 2,485

documents, providing a diverse and substantial collection of documents for analysis.

The dataset is fundamental for implementing and testing the system's functionalities,

including text recognition, information extraction, and document classification. Each

document undergoes a preprocessing phase where text is extracted using specialized

functions for PDF files and normalized to ensure consistency. This preprocessing includes

steps such as converting text to lowercase, removing special characters, tokenizing,

removing stop words, and lemmatizing.

2.2. Dataset Cleaning

To ensure the quality and consistency of the dataset, a cleaning process was

undertaken. Due to the minimal file counts in the AUTOMOBILE (36 files) and BPO (22

files) classes, these categories were excluded as significant outliers. Including these outliers

could have introduced bias and reducde the generalization ability of the trained machine

learning models. To prevent bias and ensure robust model training, 22 classes were retained

for analysis.

Outlier classes with significantly fewer instances can skew the performance of

machine learning models, making them overly sensitive to those particular classes and

potentially reducing the model's ability to generalize to more balanced datasets. By

excluding these outliers, the model can focus on learning from a more representative

distribution of classes, leading to improved overall performance.

The preprocessed dataset is then used to train and evaluate various machine learning

models. A bar graph illustrating the distribution of classes in the dataset (Figure 1) is

6

included to provide a clear visual representation of the dataset's composition and ensure a

balanced approach to model training and evaluation.

Figure 1: Class Distribution

2.3. Topics and Word Frequency

To gain deeper insights into the content and patterns within the documents, topic

modeling and word frequency analysis were performed [14]. This section discusses some of

the average topic distributions and the most frequent words across different professional

classes in the dataset. The topics are determined by a topic modeling algorithm (LDA -

Latent Dirichlet Allocation) and are labeled based on the three most frequent words that best

describe the underlying theme. The following graphs depict the average topic distributions

for selected classes.

7

Figure 2 Average Topic Distribution for Class ARTS

Figure 3 Average Topic Distribution for Class PUBLIC-RELATIONS

In the topic distributions for the ARTS and PUBLIC-RELATIONS classes (Figure 2

and Figure 3 respectively), one topic is visibly prevalent, with probabilities of 84% and 70%.

This indicates a strong thematic focus within these classes, suggesting that certain key topics

dominate the content in these professional fields. For the ARTS class, the prevalence of the

8

topic labeled "state, student, art" makes sense as it captures the emphasis on artistic activities

and education, which are central to this field. This stands in contrast to less frequent topics

like "dance, art, purpose," which are also relevant but not as central to the overall theme.

Similarly, in the PUBLIC-RELATIONS class, the dominant topic labeled "company,

medium, marketing" aligns well with the primary activities in PR, focusing on corporate

communication and marketing strategies.

Figure 4 Average Topic Distribution for Class ENGINEERING

9

Figure 5 Average Topic Distribution for Class INFORMATION-TECHNOLOGY

In the ENGINEERING class (Figure 4) and INFORMATION-TECHNOLOGY class

(Figure 5), the topic distribution is more evenly spread, with multiple topics having

significant probabilities. For the ENGINEERING class, topics such as "project, engineering,

process" and "system, team, software" reflect the diverse nature of engineering roles, which

involve various aspects of project management, technical processes, and system design. This

spread of topics indicates that engineering documents cover a broad range of activities and

specializations. Similarly, in the INFORMATION-TECHNOLOGY class, topics like

"system, technology, information" and "system, information, management" highlight the

core responsibilities in IT roles, including system management and technological

implementation. These topics emphasize the technical and operational focus inherent in IT

professions.

The following heatmap shows the frequency of the top 10 words across all document

classes in the dataset. It provides insights into common terms used in different professions.

For instance, "customer" and "management" are highly frequent in sales and business

development roles, while "project" and "engineering" are predominant in engineering roles.

It is also evident that the words "state," "company," "city," and "name" are present in nearly

all classes, which is logical given that the dataset consists of resumes, where such

information is commonly included.

10

Figure 6 Words Frequency across Classes

11

3. Methodology

The proposed system for document analysis and comparison consists of several key

components: text extraction, preprocessing, embedding generation, model training and

evaluation, and document analysis. Each component is responsible for a specific function,

and together they form a comprehensive workflow for analyzing and classifying documents.

3.1. Data Preprocessing

Data preprocessing is essential for any data-driven analysis. Effective preprocessing

transforms raw data into a clean and usable format. The preprocessing steps are as follows:

3.1.1. Text Extraction

Text extraction is a critical initial step in the preprocessing phase, involving the

conversion of textual content from various document formats into machine-readable text.

This system specifically handles PDF and DOCX files, using tailored functions to accurately

extract the embedded text. The specialized functions ensure that text is accurately extracted

from each document format, providing a reliable foundation for subsequent preprocessing

steps. The extracted text can then be used for further preprocessing, ensuring consistency

and accuracy across the dataset.

3.1.2. Text Preprocessing

The extracted text undergoes several preprocessing steps to normalize and prepare it

for analysis. These steps are implemented using a custom preprocessing script and include

the following processes:

Lowercasing: All characters in the text are converted to lowercase to ensure

uniformity and reduce the complexity of text analysis.

Removing Special Characters: Punctuation, symbols, and other non-alphanumeric

characters are eliminated to clean the text and focus on the meaningful content.

Tokenizing: The text is split into individual words or tokens, which serve as the basic

units for further processing and analysis.

12

Removing Stop Words: Commonly used words such as "and," "the," and "is" are

removed, as they do not contribute significantly to the semantic meaning of the text.

Additionally, two specific tokens ("ï¼" and "â") were included in the stop word list due to

their frequent occurrence in the dataset, where they were used to anonymize private

information in the original CVs.

Lemmatizing: Words are reduced to their base or root form to standardize different

morphological variations, ensuring that words with similar meanings are treated as a single

term.

The purpose of these preprocessing steps is enhancing the quality and consistency of

the text data. By transforming the raw text into a cleaner and more structured format, the

subsequent stages of text analysis and machine learning are made more efficient and

accurate.

3.2. Embeddings

Text embeddings are crucial for transforming textual data into numerical vectors that

machine learning models can process. This thesis explores several embedding techniques to

capture the semantic relationships between words and documents.

GloVe (Global Vectors for Word Representation) generates dense vector

representations based on the co-occurrence of words in large corpora. By analyzing the

global word-word co-occurrence matrix, GloVe captures the semantic relationships between

words, allowing for meaningful vector representations.

Word2Vec produces word embeddings using either the Continuous Bag of Words

(CBOW) or Skip-Gram model. Both models are trained on word co-occurrence data but

differ in their approach: CBOW predicts a target word from its context, while Skip-Gram

predicts context words from a target word. These embeddings capture semantic relationships

and similarities between words.

TF-IDF (Term Frequency-Inverse Document Frequency) is a statistical measure that

evaluates the importance of a word in a document relative to a corpus. It generates sparse

vector representations by multiplying the term frequency (how often a word appears in a

document) by the inverse document frequency (how common or rare the word is across all

13

documents). This method highlights important terms and reduces the impact of frequently

occurring but less informative words.

Doc2Vec extends the Word2Vec model to generate vector representations for entire

documents. It captures the context of the document as a whole, providing a more

comprehensive representation of the document's content. This method is particularly useful

for tasks that require understanding the broader context and structure of the text.

These embedding techniques are evaluated to determine the most effective method

for representing text data in the context of document classification. By transforming textual

information into numerical vectors, embeddings facilitate the application of machine

learning models, enhancing the system's ability to analyze and classify documents

accurately.

3.3. Model Training and Evaluation

3.3.1. Machine Learning Models

Several machine learning models are trained and evaluated to determine their

effectiveness in document classification. The following models are employed in this thesis:

Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Naive Bayes.

Support Vector Machines (SVM) is a supervised learning model that is effective for

high-dimensional spaces, making it particularly useful for text classification due to its

robustness and ability to handle a large number of features. It works by finding the

hyperplane that best separates the data into different classes. The objective function for a

linear SVM can be represented as:

 min𝒘,𝑏 12 ‖𝐰‖2 (1)

subject to:

 𝑦𝑖(𝐰 ∙ 𝐱𝑖 + 𝑏) ≥ 1 ∀𝑖 (2)

where 𝒘 is the weight vector, 𝑏 is the bias term, 𝑦𝑖 is the class label for the 𝑖-th sample and 𝐱𝑖 is the feature vector for the i-th sample. This constrained optimization problem can be

solved using quadratic programming methods. An illustration (Figure 7) showing the

14

hyperplane separating two classes, with support vectors lying on the margin boundaries,

helps visualize how SVMs find the optimal separating hyperplane.

Figure 7: Maximum-Margin Hyperplane and Margins for an SVM Trained with Samples from Two

Classes [11]

K-Nearest Neighbors (KNN) is an instance-based learning algorithm that classifies

documents based on the majority class among the nearest neighbors in the feature space. It

typically uses the Euclidean distance to measure the similarity between instances. The

Euclidean distance between two points 𝐱𝑖 and 𝐱𝑗 is given by:

 𝑑(𝑥𝒊, 𝑥𝑗) = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2𝑛
𝑘=1 (3)

where 𝑥𝑖𝑘 and 𝑥𝑗𝑘 are the 𝑘-th features of 𝐱𝑖 and 𝐱𝑗, respectively, and 𝑛 is the number of

features. The boundary created by KNN for different values of 𝑘 boundary becomes

smoother or more complex as 𝑘 changes, as shown in (Figure 8).

15

Figure 8: Example of k-NN Classification [12]

The provided figure illustrates the K-Nearest Neighbors (KNN) algorithm. Blue squares and

red triangles represent two different classes of data points, while the green circle represents

a new data point to be classified. The figure shows the green circle's k nearest neighbors,

comprising two red triangles and one blue square. The majority class among these neighbors

determines the class of the green circle, highlighting the voting mechanism of KNN. This

figure highlights how the parameter k affects the decision boundary, with smaller k values

creating more complex boundaries and larger k values smoothing the boundaries, enhancing

generalization but risking oversimplification.

Naive Bayes is a probabilistic classifier based on Bayes' theorem. It assumes strong

independence between features, making it computationally efficient. The probability of a

class 𝐶𝑘 given a feature vector 𝐱 is calculated as:

 𝑃(𝐶𝑘|𝐱) = 𝑃(𝐶𝑘)𝑃(𝐱|𝐶𝑘)𝑃(𝐱) (4)

Since 𝑃(𝐱) is constant for all classes, the classification rule can be simplified to:

 𝑃(𝐶𝑘|𝐱) ∝ 𝑃(𝐶𝑘)∏𝑃(𝑥𝑖|𝐶𝑘)𝑛
𝑖=1 (5)

where 𝑃(𝐶𝑘) is the prior probability of class 𝐶𝑘 and 𝑃(𝑥𝑖|𝐶𝑘) is the likelyhood of feature 𝑥𝑖
given class 𝐶𝑘. For Multinomial Naive Bayes, the likelihood 𝑃(𝑥𝑖|𝐶𝑘) is calculated using:

16

 𝑃(𝑥𝑖|𝐶𝑘) = 𝑁𝑖𝑘 + 𝛼𝑁𝑘 + 𝛼𝑛 (6)

where 𝑁𝑖𝑘 is the count of feature 𝑥𝑖 in class 𝐶𝑘, 𝑁𝑘 is the total count of all features in class 𝐶𝑘, 𝛼 is the smoothing parameter (Laplace smoothing), and 𝑛 is the number of unique

features. Multinomial Naive Bayes offers several advantages, however, the assumption of

conditional independence between features is often unrealistic, which can affect the

classifier's performance. Furthermore, Multinomial Naive Bayes can assign zero probability

to unseen words in the training data, though this issue can be mitigated using techniques

such as Laplace smoothing.

3.3.2. Performance Metrics

The evaluation of machine learning models involves splitting the dataset into training

and test sets to ensure a fair assessment of the model's generalization ability. Several

performance metrics are used to evaluate the models.

Accuracy is the proportion of correctly classified documents out of the total number

of documents and is calculated as:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (7)

where 𝑇𝑃 is True Positives, 𝑇𝑁 is True Negatives, 𝐹𝑃 is False Positives, and 𝐹𝑁 is False

Negatives.

Precision is the proportion of true positive predictions out of all positive predictions

made by the model and is calculated as:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (8)

Recall is the proportion of true positive predictions out of all actual positive instances

in the dataset and is calculated as:

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (9)

17

F1-Score is the harmonic mean of precision and recall, providing a single metric that

balances both aspects, and is calculated as:

 𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (10)

These metrics provide a comprehensive evaluation of the model's performance,

highlighting their strengths and weaknesses in different scenarios. The goal is to identify the

model that offers the best balance of accuracy, precision, recall, and F1-score for document

classification tasks.

3.4. Model Selection and Visualization

The process of selecting the best model involves processing documents, extracting

text, and preprocessing it. Various text embeddings, TF-IDF, Word2Vec, Doc2Vec, and

GloVe, are applied to transform the text data. The text data is then split into training and test

sets. Multiple machine learning models, such as Support Vector Machines (SVM), K-

Nearest Neighbors (KNN), and Multinomial Naive Bayes, are trained and evaluated using

those embeddings. This section outlines the steps taken to select the best-performing

combination of text embedding and model, the evaluation criteria used, and the

visualizations generated to present the results.

Several performance metrics are used to evaluate the models, including accuracy,

precision, recall, and F1-score. The F1-score is a single metric that balances both aspects of

precision and recall.

Visualizing the performance of the models is crucial for understanding their strengths

and weaknesses. Bar graphs are used to compare the performance metrics (accuracy,

precision, recall, and F1-score) of each text embedding-model combination, providing a

clear visual representation of how each combination performs across different metrics. This

comprehensive evaluation ensures that the chosen model is not only accurate but also robust

and reliable for document classification tasks.

18

3.5. Document Similarity

Document similarity measures provide a mathematical means to express the degree of

similarity between two documents [13]. Two common methods for calculating text similarity

between documents are cosine similarity and Jaccard similarity.

Cosine similarity measures the cosine of the angle between two non-zero vectors in a

multidimensional space. In the context of text analysis, the vectors represent the term

frequencies of words in the documents. Cosine similarity is calculated as follows:

 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = �⃗⃗� ⋅ �⃗⃗� ∥ �⃗⃗� ∥∥ �⃗⃗� ∥ (11)

where �⃗⃗� and �⃗⃗� are the term frequency vectors of the two documents. The cosine similarity

value ranges from 0 to 1, where 0 indicates no similarity and 1 indicates complete similarity.

 Jaccard similarity measures the similarity between two sets by dividing the size of

the intersection by the size of the union of the sets. For text analysis, the sets are the unique

words in each document. Jaccard similarity is calculated as:

 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∣ 𝑨 ∩ 𝑩 ∣∣ 𝐀 ∪ 𝐁 ∣ (12)

where 𝑨 and 𝑩 are the sets of unique words in the two documents. The Jaccard similarity

value ranges from 0 to 1, where 0 indicates no similarity and 1 indicates complete similarity.

 Both methods provide a numerical value indicating the level of similarity between

two documents, which can be used for various applications such as document clustering,

duplicate detection, and information retrieval.

19

4. Implementation

4.1. Tools and Libraries Used

This section lists the tools and libraries employed in the implementation of the document

analysis and comparison system. Each tool and library was chosen based on its relevance

and effectiveness in handling specific tasks within the system.

• Python: The primary programming language used for its simplicity and extensive

libraries.

• scikit-learn: Used for implementing machine learning models, providing tools for model

training, evaluation, and selection.

• NLTK (Natural Language Toolkit): Utilized for text preprocessing tasks, such as

tokenization, stop word removal, and lemmatization.

• spaCy: Employed for advanced text preprocessing and NLP tasks.

• PyMuPDF (fitz): Used for extracting text from PDF documents due to its efficient and

reliable parsing capabilities.

• python-docx: Utilized for extracting text from DOCX files, facilitating the handling of

this specific document format.

• joblib: Used for saving and loading machine learning models and vectorizers, enabling

efficient model deployment and reuse.

• Matplotlib: Employed for generating visualizations, such as bar graphs, to compare

model performance metrics.

• NumPy: Used for numerical operations, especially for handling arrays and matrices

which are crucial in machine learning and data processing tasks.

• Pandas: Utilized for data manipulation and analysis, providing data structures and

functions needed to work with structured data seamlessly.

• SciPy: Used for scientific and technical computing, particularly in tasks involving

optimization and integration which may support machine learning algorithms.

• Gensim: Employed for text embedding, specifically for implementing Word2Vec and

Doc2Vec.

• sklearn-pandas: Simplifies the integration of pandas with scikit-learn, allowing for

seamless data preparation and model training.

20

These tools and libraries were chosen for their robustness, ease of use, and ability to

efficiently handle the specific requirements of the document analysis and comparison tasks.

4.2. Document Analysis and Comparison

The document analysis and comparison process involves utilizing a pre-trained

machine learning model and custom scripts to classify and compare new documents. This

section outlines the methodology employed to load and use the pre-trained model for

analyzing and comparing new documents, detailing the steps taken to ensure accurate

predictions and comprehensive comparison capabilities.

4.2.1. Document Analysis

The initial step in the document analysis process is to load the pre-trained machine

learning model and the corresponding vectorizer. These components are essential for

transforming the text data from new documents into a format that the model can process.

Text is extracted from new documents using specialized functions tailored to

different file formats, specifically DOCX and PDF files. This ensures that the textual content

from various document formats is accurately extracted and prepared for further analysis. At

this step, the document is also analyzed to determine the page count, word count, character

count, and paragraph count, while tables and images are extracted as well.

Once the text is extracted, it undergoes preprocessing to ensure consistency and

compatibility with the trained model. This preprocessing includes converting text to

lowercase, removing special characters, tokenizing, removing stop words, and lemmatizing.

The preprocessed text is then transformed using the loaded vectorizer and fed into

the trained model to make predictions. The model outputs the predicted class label for the

document, indicating its category.

4.2.2. Document Comparison

In addition to classifying individual documents, the system can compare two

documents to identify similarities and differences. This comparison involves analyzing

various aspects of the documents to provide a comprehensive comparison.

21

Text is extracted from both documents using the same methods mentioned above and

preprocessed to ensure consistency. The comparison process includes analyzing and

comparing page count, word count, character count, and paragraph count. Additionally,

tables and images from the documents are extracted. The preprocessed text from both

documents is transformed into vectors using the loaded vectorizer. Both documents are

classified using the loaded model. The system identifies and compares the top 10 repeating

words in each document, providing insights into the content and focus of each document.

Document similarity is also calculated using cosine similarity and Jaccard similarity.

The output of the document comparison script includes the detailed analysis of both

documents and their similarity score. Below is an example of an output.

22

File 1 (11797122.pdf):

Page Count: 2

Word Count: 614

Character Count: 4113

Paragraph Count: 77

File 2 (13964744.pdf):

Page Count: 2

Word Count: 702

Character Count (excluding spaces): 4547

Paragraph Count: 73

Top 10 common words in file 1 (11797122.pdf) and file 2 (13964744.pdf):

Word Count

project 25

business 19

management 19

process 16

customer 16

team 14

requirement 13

company 12

skill 11

city 10

Classification of file 1 (11797122.pdf): ['AVIATION']

Classification of file 2 (13964744.pdf): ['INFORMATION-TECHNOLOGY']

Cosine Similarity of files 1 and 2: 0.09108626689613666

Jaccard similarity of files 1 and 2: 0.10401188707280833

Code 1: Example of Document Comparison Output

23

5. Results and Discussion

5.1. Performance Evaluation

In this section, the evaluation results of various model-embedding combinations used

for document classification are presented. The performance metrics considered include

accuracy (Figure 9), precision (Figure 10), recall (Figure 11), and F1-score (Figure 12).

These metrics provide a comprehensive assessment of each model's effectiveness in

classifying documents. The models and embeddings evaluated are Support Vector Machines

(SVM), K-Nearest Neighbors (KNN), and Multinomial Naive Bayes as the models. The

embeddings utilized were TF-IDF, Word2Vec, Doc2Vec, and GloVe.

Figure 9: Accuracy Score Values of Model – Embedding Pairs

24

Figure 10: Macro Precision Values of Model – Embedding Pairs

Figure 11: Macro Recall Values of Model – Embedding Pairs

25

Figure 12: Macro F1-Score Values of Model – Embedding Pairs

In addition to the visual representation, the table below provides the exact numerical

values for each performance metric, allowing for detailed reference and analysis.

Model Embedding Accuracy Precision Recall F1-Score

Linear SVM TF-IDF 0.635802 0.647919 0.641813 0.63165

Linear SVM Word2Vec 0.54321 0.542795 0.557268 0.538864

Linear SVM Doc2Vec 0.423868 0.414886 0.431807 0.408888

Linear SVM GloVe 0.545267 0.567632 0.551279 0.531971

KNN (k=5) TF-IDF 0.520576 0.547476 0.527511 0.516946

KNN (k=5) Word2Vec 0.430041 0.456592 0.44647 0.430842

KNN (k=5) Doc2Vec 0.390947 0.394836 0.401276 0.385853

KNN (k=5) GloVe 0.438272 0.473993 0.455036 0.444058

Multinomial

Naive Bayes

TF-IDF 0.514403 0.597739 0.521421 0.484213

26

Multinomial

Naive Bayes

Word2Vec 0.298354 0.428828 0.316919 0.255162

Multinomial

Naive Bayes

Doc2Vec 0.372428 0.381196 0.389138 0.324203

Multinomial

Naive Bayes

GloVe 0.168724 0.167814 0.175714 0.125685

Table 1: Performance Metrics

The performance of the best-performing model-embedding combination (SVM with TF-

IDF) was evaluated across various metrics. The class-wise F1 scores, precision, and recall

for this combination are presented in the following figures.

Figure 13: Class-wise F1 Scores of SVM with TF-IDF

27

Figure 14: Class-wise Precisions of SVM with TF-IDF

Figure 15: Class-wise Recall of SVM with TF-IDF

These graphs illustrate the model's performance across different document classes

(job categories), providing insights into its strengths and weaknesses in specific areas. For

instance, the model achieved the highest F1 scores in categories such as CONSTRUCTION,

DESIGNER, HR and INFORMATION-TECHNOLOGY, indicating robust performance.

28

However, in categories such as APPAREL, ARTS and CONSULTANT, the performance

was relatively lower, suggesting areas for further improvement.

5.2. Comparative Analysis Results

In this section, the performance of various models and embeddings is compared,

discussing why certain models performed better than others.

5.2.1. Comparison of Model Performance

The SVM models, particularly with the linear kernel, consistently outperformed other

models. This is likely due to the ability of SVM to handle high-dimensional data effectively.

It is indicated that linear decision boundaries are effective for this classification task.

KNN models, which classify documents based on the majority class among the

nearest neighbors, showed lower performance. This suggests that the local neighborhood

structure of the data is less informative for this classification task, possibly due to the high

dimensionality of the text embeddings.

Multinomial Naive Bayes, while generally effective for text classification, performed

lower than SVM models. This could be due to the independence assumptions made by Naive

Bayes, which may not hold true for the text data in this particular dataset.

5.2.2. Comparison of Embedding Techniques

TF-IDF consistently resulted in higher performance across all models. This is likely

because TF-IDF captures the importance of words in the documents relative to the corpus,

providing a good balance between term frequency and document frequency.

Word2Vec and GloVe, which generate dense vector representations capturing

semantic relationships between words, also performed well, particularly with SVM models.

These embeddings are effective in capturing the contextual meaning of words, which is

beneficial for document classification.

Doc2Vec, which extends Word2Vec to generate document-level embeddings,

showed slightly lower performance. This could be due to the complexity of capturing the

29

overall context of a document, which may require more training data or different

hyperparameters for optimal performance.

5.2.3. Discussion

The superior performance of SVM models, particularly with TF-IDF and linear

kernel, indicates that these models are well-suited for high-dimensional text classification

tasks. The ability of SVM to create effective decision boundaries likely contributes to its

effectiveness.

The lower performance of KNN models suggests that they may struggle with high-

dimensional data, where the notion of distance becomes less meaningful. This is a known

challenge with KNN in high-dimensional spaces.

Multinomial Naive Bayes' lower performance highlights the limitations of the

independence assumption in text data. While it is computationally efficient and works well

with large vocabularies, it may not capture the dependencies between words as effectively

as other models.

Overall, the comparative analysis demonstrates that the choice of model and

embedding technique significantly impacts the performance of document classification

systems. SVM models with TF-IDF and semantic embeddings (Doc2Vec, GloVe) provide a

robust solution for this task, balancing precision, recall, and overall accuracy.

30

Conclusion

This thesis has explored the implementation and evaluation of a comprehensive

system for document analysis and comparison. The primary findings of this research can be

summarized as follows: A robust system was developed to handle various document formats,

including PDF and DOCX, for text extraction, preprocessing, and analysis. The system

incorporated different text embedding techniques—TF-IDF, Word2Vec, Doc2Vec, and

GloVe—and machine learning models—Linear SVM, K-Nearest Neighbors (KNN), and

Multinomial Naive Bayes. Among the various model-embedding combinations evaluated,

the Linear SVM model with TF-IDF embedding achieved the highest performance metrics,

indicating its effectiveness for document classification tasks. The detailed evaluation metrics

were presented in terms of accuracy, precision, recall, and F1-score. The system also

provided functionalities for comparing documents based on various metrics such as word

count, page count, and identifying the top 10 repeating words. This feature demonstrated the

system's capability to handle practical document analysis scenarios.

This thesis contributes significantly to the field of document analysis by developing

a system that automates the extraction, preprocessing, and analysis of text from various

document formats, addressing the inefficiencies and inaccuracies associated with manual

document analysis. The systematic comparison of different text embedding techniques and

machine learning models provides valuable insights into their performance and applicability.

This analysis highlights the strengths and limitations of each approach, guiding future

research and application development in document classification. The versatility of the

developed system, capable of handling multiple document formats and providing robust

classification and comparison features, represents a significant advancement in document

analysis technology.

While this thesis has achieved its primary objectives, several areas for future research

and improvement have been identified. Future work could involve the optimization of

hyperparameters for the machine learning models to further improve classification accuracy

and performance. Exploring the use of advanced deep learning models, such as transformer-

based architectures (e.g., BERT, GPT), could enhance the system's ability to understand and

process complex textual data. Extending the system to support additional document formats,

such as HTML and scanned images, would broaden its applicability and usefulness.

31

Developing more sophisticated document comparison features, including semantic similarity

and content summarization, could provide deeper insights and more detailed analyses.

In conclusion, this thesis has laid a strong foundation for automated document

analysis and comparison. The findings and contributions presented herein offer valuable

insights and pave the way for future advancements in this critical field. The proposed areas

for future work suggest promising directions for further research and development, aimed at

enhancing the system's capabilities and expanding its application scope.

32

References

[1] Bhawal, S. Resume Dataset. Kaggle. Available at:

https://www.kaggle.com/datasets/snehaanbhawal/resume-dataset. Accessed June 5th, 2024

[2] Jurafsky, D., Martin, J. H. Speech and Language Processing. 3rd ed. London: Pearson,
2019.

[3] Manning, C. D., Raghavan, P., Schütze, H. Introduction to Information Retrieval.
Cambridge: Cambridge University Press, 2008.

[4] Scikit-learn: Machine Learning in Python. Available at: https://scikit-learn.org/stable/

[5] Natural Language Toolkit (NLTK). Available at: https://www.nltk.org/

[6] SpaCy: Industrial-strength Natural Language Processing. Available at: https://spacy.io/

[7] Bird, S., Klein, E., Loper, E. Natural Language Processing with Python. Sebastopol:
O'Reilly Media, 2009.

[8] Honnibal, M., Montani, I. spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing, 2017. Available at:
https://spacy.io

[9] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... &
Duchesnay, É. Scikit-learn: Machine Learning in Python. Journal of Machine Learning

Research, 12 (2011), pp. 2825-2830.

[10] PyMuPDF Documentation. Available at: https://pymupdf.readthedocs.io/en/latest/

[11] Larhmam, Maximum-Margin Hyperplane and Margins for an SVM Trained with

Samples from Two Classes, CC BY-SA 4.0, Available at:

https://commons.wikimedia.org/w/index.php?curid=73710028

[12] Antti Ajanki AnAj, Example of k-NN Classification, CC BY-SA 3.0, Available at:

https://commons.wikimedia.org/w/index.php?curid=2170282

[13] Kocaman, A. How to Measure Text Similarity: A Comprehensive Guide. Medium,
(2020, August). Available at: https://medium.com/@ahmetmnirkocaman/how-to-measure-
text-similarity-a-comprehensive-guide-6c6f24fc01fe [Accessed June 2024].

[14] Topic Modeling with Gensim (Python). Machine Learning Plus, (2018, March).
Available at: https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/
[Accessed June 2024].

https://www.kaggle.com/datasets/snehaanbhawal/resume-dataset
https://scikit-learn.org/stable/
https://www.nltk.org/
https://spacy.io/
https://spacy.io/
https://pymupdf.readthedocs.io/en/latest/
https://commons.wikimedia.org/w/index.php?curid=73710028
https://commons.wikimedia.org/w/index.php?curid=2170282
https://medium.com/@ahmetmnirkocaman/how-to-measure-text-similarity-a-comprehensive-guide-6c6f24fc01fe
https://medium.com/@ahmetmnirkocaman/how-to-measure-text-similarity-a-comprehensive-guide-6c6f24fc01fe
https://www.machinelearningplus.com/nlp/topic-modeling-gensim-python/

33

Summary

Implementation of Document Analysis and Comparison Functionalities

This thesis develops an automated system for text recognition, information

extraction, document classification and document comparison. The system handles various

document formats and uses text embeddings (TF-IDF, Word2Vec, Doc2Vec, GloVe) and

machine learning models (Linear SVM, K-Nearest Neighbors, Multinomial Naive Bayes) to

enhance classification accuracy. Evaluated on a Kaggle-sourced resume dataset with 22

classes, the Linear SVM with TF-IDF achieved the best performance. This work offers

insights for future advancements in automated document analysis.

Keywords

Document Analysis, Text Recognition, Information Extraction, Document Classification,

Python, Text Embeddings, Machine Learning, TF-IDF, Word2Vec, Doc2Vec, GloVe,

Linear SVM, K-Nearest Neighbors, Multinomial Naive Bayes, Automated Document

Processing

34

Sažetak

Implementacija funkcionalnosti analize i usporedbe dokumenata

Ovaj rad bavi se razvojom automatiziranog sustava za prepoznavanje teksta,

ekstrakciju informacija, klasifikaciju i usporedbu dokumenata. Sustav obrađuje različite

formate dokumenata i koristi tekstualne ugradnje (TF-IDF, Word2Vec, Doc2Vec, GloVe) i

modele strojnog učenja (Linear SVM, K-Nearest Neighbors, Multinomial Naive Bayes) za

poboljšanje točnosti klasifikacije. Evaluiran na skupu podataka sačinjenog od životopisa s

Kaggle-a koji sadrži 22 klase, linearni SVM s TF-IDF-om postigao je najbolje rezultate.

Ovaj rad nudi uvid u buduća unapređenja automatizirane analize dokumenata.

Ključne riječi

analiza dokumenata, prepoznavanje teksta, ekstrakcija informacija, klasifikacija

dokumenata, tekstualne ugradnje, strojno učenje, TF-IDF, Word2Vec, Doc2Vec, GloVe,

linearni stroj s potpornim vektorima, K-najbliži susjedi, multinomijalni naivni Bajesov

klasifikator, automatizirana obrada dokumenata

35

Appendices

Appendix A: GitHub Repository

The code used for the implementation of the document analysis and comparison system
can be found in the following GitHub repository:

https://github.com/zagajski/DocumentAnalysis

Appendix B: Document Example

This is an example of a document from

https://github.com/zagajski/DocumentAnalysis

36

