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1 Introduction

Autonomous vehicles are nowadays becoming more relevant in automotive and tech-

nology industries, with applications ranging from everyday transportation to high-speed

racing. These autonomous systems, including self-driving cars, drones, robotic automa-

tion, and other intelligent systems, require precision and efficiency to operate without

human intervention. They rely on advanced sensors, machine learning algorithms, and

sophisticated control strategies for safe navigation and task execution. In particular,

self-driving cars could potentially introduce a lot of benefits: reducing traffic accidents

caused by human error, optimizing traffic flow, providing mobility solutions for those

unable to drive, and transforming goods transportation. Among them, autonomous rac-

ing presents a demanding challenge, because it requires the vehicle to make split-second

decisions, while maintaining optimal trajectories. This introduces the need to use so-

phisticated control algorithms.

Model Predictive Control (MPC) is a popular control strategy in autonomous racing

due to its ability to predict future vehicle states and optimize control inputs. Optimiza-

tion plays a crucial role in the effectiveness of autonomous systems, especially in the

context of MPCs. The goal is to identify the parameters that yield the best solution from

many possibilities. In autonomous racing, the goal is to minimize lap times while ensur-

ing the vehicle remains stable and on track, requiring careful management of speed and

control. This is where hyperparameter tuning comes in.

This thesis aims to make the tuning of MPC hyperparameters easier and more effi-

cient by using stochastic optimizationmethods implemented inMATLAB and Simulink.

Stochastic optimization involves techniques that can explore complex hyperparameter

spaces to automatically find the optimal ones.
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2 Problem Description

Predictive and control models are often used in various fields such as healthcare, fi-

nance and facility management. For example, Morovat et al. [1] explored model-based

control methods to optimize the timing of preheating in school buildings. Youssef et

al. [2] proposed an MPC strategy for optimizing variable speed wind energy conversion

systems, demonstrating strong performance under varying wind speeds. In [3], Schwab

et al. used predictive models to anticipate which patients might test positive for SARS-

CoV-2 or require hospital care.

The efficacy of these models and control systems depends on their design choices –

the parameters andhyperparameters. Model parameters, such as neural networkweights,

are learned during training. On the contrary, hyperparameters (e.g., number of layers,

learning rates, activation functions) must be set before training begins. These hyperpa-

rameters significantly influence both the learning process and the final performance of

the model.

However, tuning hyperparameters is a complex and time-consuming task, often re-

quiring lots of expertise. The sheer number of potential combinations makes manual

search for the optimal set impractical. Basic automated hyperparameter search tech-

niques include grid and random search, but these have limited performance. Grid search

evaluates each combination within a predefined grid of hyperparameter values, while

random search samples combinations randomly (Fig. 2.1). Both methods require signif-

icant computational resources and time and they do not use previous experiment results

as prior knowledge. Therefore, they become computationally infeasible as the number

of hyperparameters increases and they may not guarantee identification of the best hy-

perparameter set.

3



(a) Grid Search (b) Random Search

Figure 2.1: Traditional automated hyperparameter search methods, source from [4]

Similarly, in MPC systems, hyperparameters, such as prediction and control hori-

zons, state weights, and input rate constraints, need to be tuned beforehand. Traditional

approaches like trial-and-error or heuristics require numerous closed-loop simulations

and the dependencies between the hyperparameters are non-intuitive.

2.1 Model Predictive Control

MPC is amethodwhich uses amathematicalmodel of the process to predict future sys-

tem behaviour and optimize control inputs. A predictionmodel describes the dynamical

relationship between the system’s (plant) variables, including constraints such as input

limits and state/output ranges. An optimization problem is formulated based on these

constraints and an objective (cost) function. At each sampling interval, the optimization

problem is solved with the current state serving as the initial condition, and with respect

to reference variables for tracking a desired output trajectory. The optimal control prob-

lem is formulated over a time interval starting from the current time and extending for

a defined duration into the future. The outcome of this optimization is a sequence of

future control actions. This iterative process is repeated at each subsequent time step. A

general MPC structure is shown in Fig. 2.2.
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Figure 2.2: A general MPC structure, source from [5]

Model representation

MPC is usually based on a linear discrete-time prediction model that describes the sys-

tem’s dynamics, typically expressed as:

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), (2.1)

where 𝑥(𝑡) ∈ ℝ𝑛 is the state vector at time 𝑡, 𝑢(𝑡) ∈ ℝ𝑚 is the control input vector,

and matrices 𝐴 and 𝐵 define the system dynamics. Although simple and efficient, lin-

ear MPCs (LMPCs) can only approximate the behaviour of nonlinear systems accurately

around a specific operating point. Also, LMPCs are not robust and perform poorly if

there are disturbances or dynamic changes in the system. For example, in autonomous

racing, LMPC might perform well when the car is driving on a straight path. However,

its performance can degrade significantly when the car takes sharp turns or encounters

track conditions such as changes in elevation or friction changes due to weather condi-

tions. Therefore, other variants of MPCs are used instead:

• Nonlinear MPC (NMPC) – directly incorporates nonlinear dynamics by using a

nonlinear model of the system. This offers better accuracy and performance com-

pared to LMPC [6]. However, NMPC is computationally more demanding than

LMPC due to the complexity of solving nonlinear optimization problems.

• HybridMPC –manages systems that have both continuous dynamics (like speeds

and temperatures) and discrete events (like switches turning on and off) [7]. It han-
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dles situations where the system can switch between different modes of operation.

For example, in an automotive system, hybrid MPC can manage both the contin-

uous speed of the car and the discrete gear shifts. The drawback of hybrid MPC is

its complex implementation.

• AdaptiveMPC – adjusts parameters in real-time to handle changes in the system.

Unlike LMPC, adaptive MPC updates the state-space matrices over time. This al-

lows flexibility under varying conditions [8], but it may be slower because of the

continuous need to update the model. Consequently, if these changes happen too

fast, adaptive MPC may not keep up.

Formulation of the Optimization Problem

The optimization problem at each sampling interval tries to find control inputs that min-

imize a cost function over a prediction horizon 𝑁. The cost function is expressed as:

min
𝑈

𝐽 = 𝑥𝑇𝑁𝑃𝑥𝑁 +
𝑁−1∑
𝑘=0

(
𝑥𝑇
𝑘
𝑄𝑥𝑘 + 𝑢𝑇

𝑘
𝑅𝑢𝑘

)
s.t. 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘, 𝑘 = 0,… , 𝑁 − 1,

𝑥0 = 𝑥(𝑡),

𝑢min ≤ 𝑢𝑘 ≤ 𝑢max, 𝑘 = 0,… , 𝑁 − 1,

𝑦min ≤ 𝐶𝑥𝑘 ≤ 𝑦max, 𝑘 = 1,… , 𝑁.

(2.2)

where 𝑥𝑘 and 𝑢𝑘 are the state and control input at step 𝑘 of the prediction horizon. The

terminal matrix 𝑃 is used to penalize the state at the final time step 𝑁 of the prediction

horizon, and it is often chosen as the solution of the Riccati equation for infinite 𝑁 [9].

The cost function also includes two key components: 𝑄 and 𝑅.

1. Weight Matrix 𝑄 – penalizes deviations between the system’s state and the de-

sired state. For autonomous vehicles, 𝑄 can prioritize maintaining a smooth and

safe trajectory, minimizing errors in position, lateral and longitudinal speeds, and

other relevant variables.

2. Weight Matrix 𝑅 – penalizes control inputs. In the case of autonomous vehicles,

𝑅 ensures that the control actions (such as wheel torques) are neither too aggres-
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sive nor too conservative. This helps in reducing wear and tear on the vehicle or

conserving energy.

If 𝑄 is too high compared to 𝑅, the vehicle will prioritize following the exact path

but might make aggressive control actions, leading to uncomfortable or unsafe driving.

On the other hand, if 𝑅 is too high compared to 𝑄, the vehicle will prioritize smooth

control actions but might deviate more from the reference path. MPC can also include

penalties on the derivatives of control inputs to prevent rapid changes that could damage

the vehicle’s components.

Receding Horizon Control

MPC operates on a receding horizon principle. At each time step 𝑡, the current state 𝑥(𝑡)

is used to solve the optimization problem. The first control action 𝑢(𝑡) = 𝑢∗0 is applied to

the system, and the horizon is shifted forward by one step, repeating this process at each

time step. The strategy is illustrated in Fig. 2.3.

Figure 2.3: Illustration of MPC receding horizon strategy, source from [10]

A longer prediction horizon improves the accuracy of future behaviour predictions

but also increases computational complexity, making real-time response more challeng-

ing. This is critical forMPCs that need to operate online and adapt dynamically to chang-

ing conditions.
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2.2 MPC in Autonomous Racing

For this master’s thesis, an existingMPC control system developed by [11] in Simulink

was utilized for testing purposes. The MPC Toolbox in MATLAB was used to construct

the controller [12]. The graphical user interface (GUI) allows designing, simulating,

and tuning of MPC controllers, which can then be exported to MATLAB as MPC ob-

jects. These objects can afterwards be easily integrated into Simulink models using the

Simulink library. The whole test setup in Simulink is shown in Fig. 2.4 and it consists of

the following blocks:

Figure 2.4: Experimental MPC setup in Simulink, source from [11]
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Controller

An adaptive MPC is implemented for use as a controller. The controller utilizes a Lin-

ear Time-Invariant (LTI) discrete model obtained through linearization, along with the

current system state vector, reference values for the objective function, andmeasured dis-

turbances (track curvature). Its output is a vector of control variables. At the beginning

of each control interval, a bus signal initiates an update of the plantmodel prediction and

the nominal operating point. The adaptive mechanism enables the controller to dynam-

ically adjust to changes in the nonlinear system’s behaviour over time [13]. The adaptive

MPC block uses an MPC object created beforehand. The state models of the MPC object

are chosen as:

• 𝑠 [m]: Distance traveled along the track from the starting point.

• 𝑛 [m]: Lateral displacement from the track centerline at position 𝑠.

• 𝜇 [rad]: Vehicle’s angular deviation from the track centerline at position 𝑠.

• 𝑣𝑥 [m/s]: Longitudinal speed of the vehicle in its local coordinate system.

• 𝑣𝑦 [m/s]: Lateral speed of the vehicle in its local coordinate system.

• 𝜓′ [rad/s]: Yaw rate, indicating the rate of change of the vehicle’s orientation around

the vertical axis.

The input models are:

• 𝑀 [Nm]: Torque applied to a specific wheel.

• 𝛿 [rad]: The steering angle of the front wheels.

Reference generator

The MPC reference trajectory is generated from a pre-existing offline time-optimized

path. The current position along the curved path system is determined based on the

current 𝑠 and 𝑣𝑥. Then, the next 𝑁 references are generated for the prediction horizon

from this current position.
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LPV System

To obtain a linear model represented by matrices 𝐴, 𝐵, 𝐶, 𝐷 as the input for the MPC

controller, the nonlinear plant model must first be linearized. This was achieved using

the Linear Parameter Varying System (LPV) block in MATLAB [14]. The LPV block

takes the current system state as an operational input point. An LPV model consists

of an interpolated array of linear state-space models. A set of points in the operational

space are chosen, forming a regular grid. For each point, an LTI system is constructed,

representing the local dynamics at that exact condition.

When the system operates between these predefined grid points, interpolation tech-

niques are applied instead of creating a newmodel from scratch. This involves estimating

the system’s behaviour by interpolating between LTI systems at neighboring grid points.

Before using the LPV block, an LPV object had to be created, and the ranges of oper-

ational points for the states had to be defined. Linearization was performed prior to

running the simulation, so that in real-time only interpolation and retrieval of the LTI

system matrices are performed.

To further illustrate the versatility of LPV modelling, [15] demonstrates its applica-

tion in diverse systems such as diesel engines, wind turbine control, and aircraft mod-

elling and control. This showcases LPV’s capability to handle complex nonlinear systems

with varying operating conditions.

Nonlinear Plant Model

Control actions generated by the MPC controller are directly applied to the plant model,

which simulates a four-wheeled car. The model incorporates factors like aerodynamic

forces, tire dynamics, and rolling resistance to provide a realistic representation of the

vehicle’s behaviour. The output of the plant model is the vehicle state at the next time

step. The simulation runs in discrete steps of ∆𝑡 = 0.025 seconds and ends when the

vehicle reaches the end of the path, that is, when the total path length is surpasses 220

meters (𝑠 ≥ 220m).
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3 Stochastic Optimization Meth-

ods

Traditional optimization methods for decision-making typically assume perfect infor-

mation, where relevant systemparameters are accurately known and stochastic variables

followwell-defined probability distributions, such asGaussian distributionswith known

means and variances. However, such precision is rarely achievable in real-world scenar-

ios, where decision-makers often rely on noisy historical data. Stochastic optimization

methods address this uncertainty by integrating random variables directly into the op-

timization process. In stochastic optimization, randomness is an inherent part of the

problem formulation, either within the objective function or constraints.

There are numerous advantages and applications of stochastic optimization, espe-

cially in situations where experimental measurements are subject to random errors. In

scenarios where noise affects the data, it is practical to employ algorithms that use statis-

tical methods for estimating the true values or objectives. This way, statistically optimal

decisions are created for the next stages in the optimization process. Additionally, incor-

porating randomness into the search process can speed up the progress [16]. Further-

more, the model can becomemore robust to inadvertently formulated errors and reduce

the risk of getting trapped in local optima, instead potentially guiding the search towards

discovering the global optimum. The stochastic problem can be formulated as:

min
𝑥∈𝑋

Exp𝑝ı𝑓(𝑥, 𝜉)#. (3.1)

The goal is to minimize the expected value of the objective function 𝑓(𝑥, 𝜉) with respect

to the decision variable 𝑥, where 𝑥 belongs to the set 𝑋, and 𝜉 represents uncertain pa-

rameters. Theminimization of the expectation is necessary because the exact probabilis-

tic distribution of 𝜉 is often unknown to accurately estimate in real-world scenarios. By
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minimizing the expectation, the optimization process aims to find a solution that per-

forms well on average across potential scenarios.

Stochastic vs Deterministic Optimization

Apart from a stochastic approach, optimization can also be done deterministically, each

approach offering distinct advantages suited to different types of problems.

Deterministic methods excel in situations where the goal is to find the globally opti-

mal solution with theoretical guarantees. They are effective when the problem is well-

defined, and the objective function is known or easily accessible. Examples include Inte-

ger Programming (IP), Non-convexNonlinear Programming (NNLP), andMixed-Integer

Nonlinear Programming (MINLP). However, they may struggle when tackling black-

box problems where the function behaviour is not well-understood or lacks smoothness,

making it challenging to converge to an optimal solution. They can face challenges with

complex large-scale problems, as the sheer number of variables and constraints can lead

to a combinatorial explosion.

In contrast, stochastic methods do not provide guarantees for finding the global op-

timum but offer probabilistic completeness. This means the probability of finding the

globally optimal solution increases with computational time and approaches 100% in in-

finite time. Thismakes stochastic optimizationmore suitable for situationswhere reach-

ing a satisfactory solutionwithin a feasible time frame ismore important thanfinding the

best solution. Stochastic methods are often more computationally efficient and adapt-

able, making better use of CPUpower. That is because they can easily be parallelized and

often utilize sample-based algorithms to explore high-dimensional or large-scale search

spaces.

In summary, deterministic optimization is preferred when the primary goal is to ob-

tain the globally optimal solution, while stochastic optimization is useful for scenarios

where simply finding a good enough solution within a given time frame is sufficient.

Table 3.1 shows the difference between these two approaches, highlighting their charac-

teristics and uses.
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Table 3.1: Stochastic and deterministic optimization comparison, source from [17]

Deterministic
Optimization

Stochastic
Optimization

Globally Optimal
Result

Guaranteed Guaranteed only with
infinite execution time

Execution Time May be long for big scale
problems

Execution time is
controllable depending
on user’s necessities

ProblemModels LP, NP, NMLP, NLP,
MINLP

Any

Algorithm Examples Primal-Dual
Decomposition, Reverse
Convex, Cutting Plane

Genetic algorithms,
stochastic gradient

descent, particle swarm
optimization

3.1 Cross-Entropy Method

The cross-entropy (CE) method is a Monte Carlo approach used for importance sam-

pling and optimization. It relies on two iterative phases: sampling from a probability

distribution andminimizing the cross-entropy between the true distribution 𝑓 and a tar-

get distribution 𝑝 parameterized by 𝜃. The CEmethod aims to minimize the expression:

−∫
𝒳
𝑓(𝑥) log𝑝(𝑥 ∣ 𝜃)𝑑𝑥. (3.2)

The goal is to find events where the objective function 𝑆 exceeds a threshold 𝛾. The

probability of this event can be expressed as the expectation:

𝓁 = 𝔼𝜃[𝟙𝑆(𝑥)≥𝛾]. (3.3)

For rare events, this estimation can be difficult. Importance sampling addresses this

challenge by using a different sampling distribution to sample more efficiently from the

regions where the rare event occurs, improving the estimation process. The optimal

importance sampling density is:

𝑓∗(𝑥) =
𝟙𝑆(𝑥)≥𝛾𝑝(𝑥 ∣ 𝜃)

𝓁
(3.4)

The indicator function 𝟙𝑆(𝑥)≥𝛾 ensures only the regions where 𝑆(𝑥) ≥ 𝛾 are considered,

and 𝓁 normalizes this density. Substituting 𝑓∗(𝑥) in Eq. 3.2 leads to the following opti-
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mization problem:

𝜃∗𝑝 = argmin
𝜃𝑝

(−∫
𝑥∈𝑋

𝟙𝑆(𝑥)≥𝛾𝑝(𝑥 ∣ 𝜃) log𝑝(𝑥 ∣ 𝜃𝑝)𝑑𝑥)
= argmin

𝜃𝑝

(
−𝔼𝜃

[
𝟙𝑆(𝑥)≥𝛾 log𝑝(𝑥 ∣ 𝜃𝑝)

])
.

(3.5)

In [18], different variants of CEM optimization were discussed. This thesis implements

the following approaches in MATLAB: CEM with multivariate Gaussian and Gaussian

mixtures as target distributions, and CEM with surrogate models for prediction of rare

events.

3.1.1 Multivariate Gaussian Distribution Model

If the distribution 𝑝(𝐱 ∣ 𝜽𝑝) is normal, then calculating the optimal parameters for 𝜽𝑝

involves finding the mean (𝝁) and the covariance matrix (𝚺). To do this, the Maximum

Likelihood Estimation (MLE) method is used. For a multivariate Gaussian distribution,

the probability density function is given by:

𝑝(𝐱 ∣ 𝜽𝑝) =
1

(2𝜋)𝑛∕2|𝚺|1∕2 exp {−12(𝐱 − 𝝁)𝑇𝚺−1(𝐱 − 𝝁)} . (3.6)

Minimizing the likelihood function (MLE)with respect to these parameters is equivalent

to minimizing the negative log-likelihood function. The likelihood is expressed as:

𝐿(𝝁,𝚺) =
𝑚elite∏
𝑖=1

𝑝(𝐱𝑖 ∣ 𝜽𝑝), (3.7)

and the negative log-likelihood evaluates to:

log𝐿(𝝁,𝚺) = −
𝑚elite ⋅ 𝑛

2
log(2𝜋) −

𝑚elite

2
log |𝚺| − 1

2

𝑚elite∑
𝑖=1

(𝐱𝑖 − 𝝁)𝑇𝚺−1(𝐱𝑖 − 𝝁). (3.8)

The partial derivatives of this function with respect to 𝝁 and 𝚺 are calculated and set to

zero to obtain the optimal parameters 𝝁 and 𝚺:

𝜕

𝜕𝝁
log𝐿(𝝁,𝚺) = 0 → �̂�ML =

1

𝑚elite

𝑚elite∑
𝑖=1

𝐱𝑖 (3.9)
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𝜕

𝜕𝚺
log𝐿(𝝁,𝚺) = 0 → �̂�ML =

1

𝑚elite

𝑚elite∑
𝑖=1

(𝐱𝑖 − �̂�ML)(𝐱𝑖 − �̂�ML)
𝑇 (3.10)

Algorithm 1 outlines the pseudocode of this method. The class is initialized with val-

ues for the means (𝝁init) and covariances (𝚺init). These values are arbitrarily chosen but

should provide a good initial guess about the solution, so the final solution does not end

up in a local optimum. The algorithm runs for 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 iterations.

In each iteration 𝑛𝑠 instances (denoted as 𝐗) are sampled from a normal distribution

defined with the current 𝝁 and 𝚺. In MATLAB, mvnrnd function is used for this purpose.

A parallel for loop is used to process each sample in 𝐗. For each sample, a simulation of

the system (sys) is applied to obtain the data, and an objective function is evaluated on

the resulting data. The objective function could, for example, be the sum of the param-

eters in the data. The results are stored in 𝐘. After evaluating all samples, 𝐘 is sorted

based on the chosen order (either ascending or descending). The top 𝑛𝑒 samples from

𝐗, based on the sorted 𝐘, are selected and stored in 𝑒. At the end of each iteration, new

values for𝝁 and𝚺 are calculated from 𝑒 usingMaximumLikelihood (ML) estimates from

Eq. 3.9 and Eq. 3.10.

Algorithm 1 Cross Entropy Method with Normal Distribution

1: Class CEMnormal
2: Constructor: (𝝁init, 𝚺init, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥, 𝑛𝑠, 𝑛𝑒, 𝑓, 𝑜𝑟𝑑𝑒𝑟, 𝑠𝑦𝑠)
3: 𝝁← 𝝁init
4: 𝚺← 𝚺init
5:

6: Function Run()
7: for 𝑖 = 1 to 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 do
8: 𝐗← SampleFromNormalDistribution(𝝁,𝚺, 𝑛𝑠)
9: 𝐘← init(𝑛𝑠)
10: parfor 𝑛 = 1 to 𝑛𝑠 do
11: 𝑑𝑎𝑡𝑎 ← SimulateData(𝐗𝑛, sys)
12: 𝐘𝑛 ← EvaluateObjective(𝑓, 𝑑𝑎𝑡𝑎)
13: end parfor
14: 𝐘← Sort(order)
15: 𝑒 ← SelectTopSamples(𝐗,𝐘, 𝑛𝑒)
16: 𝝁,𝚺← FitNormalDistribution(𝑒)
17: end for
18: Return 𝝁,𝚺
19:

20: End Function
21: End Class
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3.1.2 Mixture of Gaussians Model

Mixture of Gaussians

A standard Gaussian distribution is unimodal and may struggle with capturing data

that exhibits multimodal behaviour. In contrast, a Gaussian Mixture Model (GMM) is a

weighted combination of component distributions, where the probability density func-

tion 𝑝(𝐱) is a linear combination of 𝐾 Gaussian probability density functions. Each ex-

ample is assigned to a group with probability ℎ(𝑖)
𝑘
, ranging between 0 and 1. The proba-

bility density function of a GMM can be expressed as:

𝑝(𝐱) =
𝐾∑
𝑘=1

𝑃(𝐱, 𝑦 = 𝑘) =
𝐾∑
𝑘=1

𝑃(𝑦 = 𝑘)𝑝(𝐱 ∣ 𝑦 = 𝑘) =
𝐾∑
𝑘=1

𝜋𝑘𝑝(𝐱 ∣ 𝜃𝑘)

=
𝐾∑
𝑘=1

𝜋𝑘𝒩(𝝁𝑘,𝚺𝑘),

(3.11)

where 𝜋𝑘 is the prior probability of a group, with the constraint
∑

𝑘
𝜋𝑘 = 1. The log-

likelihood of probability densities can be represented as:

ln𝐿(𝜽 ∣ 𝐷) = ln
𝑁∏
𝑖=1

𝑝
(
𝐱(𝑖)

)
= ln

𝑁∏
𝑖=1

𝐾∑
𝑘=1

𝜋𝑘𝑝
(
𝐱(𝑖) ∣ 𝜃𝑘

)

=
𝑁∑
𝑖=1

ln
𝐾∑
𝑘=1

𝜋𝑘𝑝
(
𝐱(𝑖) ∣ 𝜃𝑘

)
.

(3.12)

The parameters of the model that need to be estimated are thus 𝜽 = ı𝜋𝑘,𝝁𝑘,𝚺𝑘#
𝐾
𝑘=1

.

Expectation-Maximization algorithm

Maximizing the log-likelihood doesn’t have a closed-form solution since its derivatives

cannot be factoredwith respect to its components, which iswhy theExpectation-Maximization

(EM) algorithm is used. The concept of this algorithm is to introduce hidden variables

which enable calculating the expected log-likelihood with fixed values for parameters 𝜋𝑘

and 𝜽𝑘. Then, these parameters are updated tomaximize this expectation, with resulting
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expressions given in Eq. 3.13. This process repeats iteratively.

𝜇𝑘 =

∑
𝑖
ℎ
(𝑖)

𝑘
𝐱(𝑖)∑

𝑖
ℎ
(𝑖)

𝑘

,

Σ𝑘 =

∑
𝑖
ℎ
(𝑖)

𝑘
(𝐱(𝑖) − 𝜇𝑘)(𝐱

(𝑖) − 𝜇𝑘)
𝑇

∑
𝑖
ℎ
(𝑖)

𝑘

,

𝜋𝑘 =
1

𝑁

𝑁∑
𝑖=1

ℎ
(𝑖)

𝑘
.

(3.13)

The pseudocode of the method is shown in Algorithm 2. In the first step of the algo-

rithm (E-step), the probability a sample 𝐱(𝑖) ∈ 𝐷 belongs to a group 𝑘 ∈ 𝐾 is calculated.

ℎ𝑘 can be derived using Bayes’ Rule:

ℎ
(𝑖)

𝑘
= 𝑃

(
𝑦 = 𝑘 ∣ 𝐱(𝑖)

)
=
𝑃 (𝑦 = 𝑘)𝑝

(
𝐱(𝑖) ∣ 𝑦 = 𝑘

)
𝑝 (𝐱(𝑖))

=
𝑃 (𝑦 = 𝑘)𝑝

(
𝐱(𝑖) ∣ 𝑦 = 𝑘

)
∑

𝑗
𝑃 (𝑦 = 𝑗)𝑝 (𝐱(𝑖) ∣ 𝑦 = 𝑗)

=
𝜋𝑘𝑝

(
𝐱(𝑖) ∣ 𝜽𝑘

)
∑

𝑗
𝜋𝑗𝑝

(
𝐱(𝑖) ∣ 𝜽𝑗

) .

(3.14)

In the second step (M-step), new parameters for the groups are computed based on

the current assignment of examples to groups, following expressions 3.13. The algorithm

iterates until either the parameters stabilize or the log-likelihood converges.

Algorithm 2 Gaussian Mixture Model (GMM) Algorithm, source [19]

1: Initialization: 𝜽 = ı𝝅𝑘,𝝁𝑘,𝚺𝑘#
𝐾
𝑘=1

2: Repeat until convergence of 𝜽 or 𝐿(𝜽|𝐷):
3: E-step:

4: Calculate ℎ(𝑖)
𝑘
by Eq. (3.14)

5: M-step:
6: Calculate 𝝁𝑘,𝚺𝑘,𝝅𝑘 by Eq. (3.13)
7: Calculate 𝐿(𝜽|𝐷)
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Implementation

Using GMMs in optimization tasks offers several advantages over single Gaussian distri-

butions:

• Enhancingexploration-exploitation tradeoff : During optimization, some com-

ponents may explore new regions of the search space while others exploit promis-

ing areas. This approach helps GMMs avoid converging to local optima, as illus-

trated in Fig. 3.1.

• Flexibility: GMMs can be useful for identifying patterns or groups within the data

by breaking it down into separatemodes. This allows a better understanding of the

data structure and behaviour.

• Outlier robustness: Outliers can affect the parameters estimated by single Gaus-

sians, which leads to biased results. Due to GMMs’ capacity to distribute the data

among multiple components, the impact of outliers on the overall model is re-

duced.

Figure 3.1: GMM exploration and convergence with multiple clusters, source from [20]

The method was implemented similarly to CEM described in Subsection 3.1.1. The

class is initializedwith the same properties as there, but now themeans (𝝁) and variances

(𝚺) arematrices of size 𝑛cluster×𝑑. Each row of thesematrices represents a 𝑑-dimensional

cluster. Additionally, the prior probabilities of the components (𝜋) are initialized. The

difference from Algorithm 1 is in lines 8 and 16. Now, instances are sampled from a

Gaussian mixture distribution, defined by the current parameters 𝝁, 𝚺, and 𝜋. In line
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6 of Algorithm 3, the GMM is created as an object in MATLAB using gmdistribution,

and sampling is performed using the random function. In line 7, new parameter values

are calculated from the elite weights. After that, using MATLAB’s built-in fitgmdist

function, the GMM parameters are updated based on the EM algorithm.

Algorithm 3 Cross Entropy Method with Gaussian Mixture Model (GMM)

1: Class CEMgmm
2: Constructor: (..., 𝝅)
3:

4: Function Run()
5: ...
6: X← SampleFromGMM(𝝁,𝚺, 𝑛𝑠,𝝅)
7: 𝝁,𝚺,𝝅 ← FitGMM(𝑒)
8: ...

3.1.3 Surrogate Model

In optimization, surrogate models are used to approximate the true objective function,

enabling less expensive evaluations. This is useful for estimating rare events in systems

that require a lot of computational resources or take a long time to simulate. Fitting

a surrogate model involves training the model on data to accurately represent the true

objective function. This process includes selecting the appropriate model type, such as

linear or logistic regression. In this method, Gaussian processes are used.

Gaussian Processes

AGaussian process (GP) is a stochastic process where any finite number of random vari-

ables follows a multivariate normal distribution. Unlike models composed of a fixed

number of functions, a GP defines a distribution over all possible functions that fit the

random data (Fig. 3.2). A GP is defined by amean vector and a covariancematrix, which

are typically constructed using kernels. Kernels are preferred over classical covariance

functions because they can capture a wider range of correlations, including non-linear

relationships. This allows GPs to:

• Provide uncertainty estimates in predictions,

• Model non-linearity,

• Incorporate prior knowledge,
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• Be scalable to higher dimensions.

Examples of kernels include the Radial Basis Function (RBF) kernel, the periodic ker-

nel, and the linear kernel 𝑘(𝐱, 𝐱′) = 𝐱𝑇𝐱′, which corresponds to classical covariance

functions. Another advantage of Gaussian processes over traditional regression models

is that they are non-parametric. Thismeans they can adapt to the data without assuming

a fixed model structure.

Figure 3.2: Gaussian processes for regression, source from [21]

Consider a training set with observations ı(𝑥𝑖, 𝑦𝑖)#
𝑛
𝑖=1, where 𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖. Here 𝜖𝑖

represents an independent Gaussian noise with (𝜖𝑖 ∼ 𝒩(0, 𝜎2)). The input and output

vectors are denoted as 𝐗 = [𝑥1, 𝑥2,… , 𝑥𝑛]
𝑇 and 𝐘 = [𝑦1, 𝑦2,… , 𝑦𝑛]

𝑇.

GP can be used to predict a new test set (𝐗∗,𝐘∗). The joint distribution of the training

and test sets is also Gaussian. Assuming the mean vectors have a zero value, the joint

distribution derives to:

⎡⎢⎢⎣
𝑌

𝑌∗

⎤⎥⎥⎦
=
⎡⎢⎢⎣
𝑓(𝑋)

𝑓(𝑋∗)

⎤⎥⎥⎦
+
⎡⎢⎢⎣
𝜖

𝜖∗

⎤⎥⎥⎦
∼𝒩

⎛⎜⎜⎝
0,
⎡⎢⎢⎣
𝑘(𝑋,𝑋) 𝑘(𝑋∗, 𝑋)

𝑘(𝑋,𝑋∗) 𝑘(𝑋∗, 𝑋∗)

⎤⎥⎥⎦
⎞⎟⎟⎠
+𝒩

⎛⎜⎜⎝
0,
⎡⎢⎢⎣
𝜎2𝐼 0

0 𝜎2𝐼

⎤⎥⎥⎦
⎞⎟⎟⎠

=𝒩
⎛⎜⎜⎝
0,
⎡⎢⎢⎣
𝑘(𝑋,𝑋) + 𝜎2𝐼 𝑘(𝑋∗, 𝑋)

𝑘(𝑋,𝑋∗) 𝑘(𝑋∗, 𝑋∗) + 𝜎2𝐼

⎤⎥⎥⎦
⎞⎟⎟⎠
.

(3.15)

20



In estimation theory, the lemma concerning the conditional distribution of a mul-

tivariate normal distribution is often utilized when predicting a set of variables given

another set [22]. This theorem states that if the random variables 𝑦 and 𝑥 follow a joint

Gaussian distribution: ⎡⎢⎢⎣
𝑥

𝑦

⎤⎥⎥⎦
∼𝒩

⎛⎜⎜⎝
⎡⎢⎢⎣
�̄�

�̄�

⎤⎥⎥⎦
,
⎡⎢⎢⎣
𝐴 𝐶

𝐶𝑇 𝐵

⎤⎥⎥⎦
⎞⎟⎟⎠
. (3.16)

Then the conditional probability of 𝑦 given 𝑥 is:

𝑝 (𝑦|𝑥) =𝒩 (
�̄� + 𝐶𝐴−1 (𝑥 − �̄�) , 𝐵 − 𝐶𝑇𝐴−1𝐶

)
. (3.17)

Now, using this theorem and defining the conditional distribution:

𝑃 (𝑌∗ ∣ 𝑌) ∼𝒩 (𝜇,Σ) . (3.18)

The predictive mean and covariance evaluate to:

𝜇∗ = 𝑘 (𝑋∗, 𝑋)
(
𝑘 (𝑋,𝑋) + 𝜎2𝐼

)−1
𝑌,

Σ∗ = 𝑘 (𝑋∗, 𝑋∗) + 𝜎2𝐼 − 𝑘 (𝑋,𝑋∗)
(
𝑘 (𝑋,𝑋) + 𝜎2𝐼

)−1
𝑘 (𝑋∗, 𝑋) .

(3.19)

Implementation

The class for CEMwith SurrogateModels was implemented similarly to Algorithm 1, but

with a difference in the parameters’ update. In this implementation (line 7 in Algorithm

4), not only true-elite samples (𝑒) from simulations are used for updating the parameters,

but an elite set is modelled. This elite set (𝐸) includes samples 𝑒𝑚 and 𝑒𝑠𝑢𝑏, in addition to

the true-elites mentioned earlier.

Algorithm 4 Cross Entropy Method with Surrogate Model

1: Class CEMsurrogate
2: Constructor: (..., 𝑖𝑡𝑒𝑟𝐶𝐸𝑀)
3:

4: Function Run()
5: ...
6: 𝑒 ← SelectTopSamples(𝐗,𝐘, 𝑛𝑒)
7: 𝐸 ← ModelEliteSet(𝐗,𝐘, 𝑒,𝝁,𝚺)
8: 𝝁,𝚺← FitNormalDistrribution(𝐸)
9: ...
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The model-elites 𝑒𝑚 are estimated in Algorithm 5. Initially, the surrogate model �̂�

is constructed from the samples 𝐗 and true objective function values 𝐘, using Gaussian

Processes. In MATLAB, the function fitrgp is used for this purpose. Afterwards, 10 ⋅𝑛𝑠

new instances are sampled (�̂�) and evaluated using the surrogatemodel. The predictions

�̂� are then used to filter the top 10 ⋅ 𝑛𝑒 samples. These are used as the model-elites.

Algorithm 5Model EliteSet Function

1: FunctionModelEliteSet(𝐗, 𝐘, 𝑒, 𝝁, 𝚺)
2: �̂� ← FitGP(𝐗,𝐘)
3: �̂�← SampleFromNormalDistribution(𝝁,𝚺, 10 ⋅ 𝑛𝑠)
4: �̂�← Predict(�̂�, �̂�)
5: �̂�← Sort(𝑜𝑟𝑑𝑒𝑟)
6: 𝑒𝑚 ← SelectTopSamples(�̂�, �̂�, 10 ⋅ 𝑛𝑒)
7: 𝑒𝑠𝑢𝑏 ← ModelSubEliteSet(�̂�, 𝑒,𝝁,𝚺, 𝑖𝑡𝑒𝑟𝐶𝐸𝑀)
8: 𝐸 ← Concatenate(𝑒, 𝑒𝑚, 𝑒𝑠𝑢𝑏)
9: return 𝐸
10: End Function

The sub-elites 𝑒𝑠𝑢𝑏 are generated using the true-elites, with the goal to exploit their

information to focus on areas of the data that show the most potential. Each true elite

serves as a mean vector for sampling new instances (�̂�𝑠𝑢𝑏), with the inherited covariance

from Algorithm 4. These new samples are then assessed using the surrogate model in

a standard CEM method, where the parameters are updated for 𝑖𝑡𝑒𝑟𝐶𝐸𝑀 iterations. The

resulting top samples are used as 𝑒𝑠𝑢𝑏, as shown in Algorithm 6.

Algorithm 6Model SubEliteSet Function

1: FunctionModelSubEliteSet(�̂�, 𝑒, 𝚺, 𝑖𝑡𝑒𝑟𝐶𝐸𝑀)
2: 𝑒𝑠𝑢𝑏 ← ∅
3: for 𝑛 = 1 to 𝑛𝑒 do
4: 𝝁𝑛 ← 𝜇(𝑒𝑛)
5: �̂�sub ← SampleFromNormalDistribution(𝝁𝑛,𝚺, 𝑛𝑠)
6: 𝑒𝑛𝑠𝑢𝑏 ← CEMNormal(�̂�, �̂�sub, 𝑖𝑡𝑒𝑟𝐶𝐸𝑀)
7: 𝑒𝑠𝑢𝑏 ← 𝑒𝑠𝑢𝑏 ∪ ı𝑒𝑛𝑠𝑢𝑏#
8: end for
9: return 𝑒𝑠𝑢𝑏
10: End Function
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3.2 Bayesian Optimization

Bayesian Optimization is another method used for optimizing complex, expensive,

time-consuming functions. It builds a probability model of the objective function and

uses it to select hyperparameters to evaluate the actual function. The key parts of Bayesian

optimization are: the true objective function, a surrogate model and an acquisition func-

tion. A surrogate model approximates the objective and estimates its uncertainty using a

Bayesian machine learning technique (like Gaussian Processes), while acquisition func-

tions guide the search for the next point to evaluate. A tutorial on Bayesian optimization

with constraints was given in [23].

Acquisition functions

Acquisition functions decide points where to evaluate next in the search space. By uti-

lizing predictions from the surrogate model and considering the uncertainty from those

predictions, acquisition functions identify points that are likely to have high objective

function values or areas where there is considerable uncertainty, suggesting potential

for improvement. This way they can balance exploration and exploitation and intelli-

gently search the space. Additionally, acquisition functions are cheaper to evaluate than

the original objective function, making them more computationally feasible to use in

optimization. Common acquisition functions include:

• Expected Improvement (EI) – chooses points that are expected to improve over the

current best-known value. EI tends to explore more diverse regions early on but

becomes more exploitative as it gets closer to the optimal solution.

EI =
(
𝑦pred − best_y

)
⋅ cdf (𝑧) + 𝑦std ⋅ pdf (𝑧) (3.20)

where

𝑧 =
𝑦pred − best_y

𝑦std
.

• Probability of Improvement (PI) – picks points based on the chance that they will

surpass the current best-known value, but focuses solely on the probability of im-

provement. PI tends to prefer points where there is a high probability of improve-
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ment regardless of whether this improvement is small or large.

PI = cdf (𝑧) (3.21)

• Upper Confidence Bound (UCB) – selects points that balance between promising

high-value regions and unexplored or uncertain areas.

UCB = 𝑦pred + 𝛽 ⋅ 𝑦std (3.22)

Examples of acquisition functions over rounds are shown in Fig. 3.3. The first graph

depicts the surrogate model, followed vertically by EI in the second, UCB in the third,

and PI in the last.

(a) Iteration 1 (b) Iteration 3

Figure 3.3: Acquisition functions through iterations, source from [24]

Once the acquisition function selects the next hyperparameter, its performance is

measured using the objective function. This provides new data to update the surrogate

model and the cycle repeats until either the maximum time or the maximum number of

iterations is reached.
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Implementation

The algorithm for Bayesian optimization, shown in Algorithm 7, begins by initializing

means and covariances. Instances are then sampled from a normal distribution. Addi-

tionally, 𝑛UCB instances (𝐗UCB) are sampled to define the search space for the acquisition

function. The data is simulated and evaluated as before, in a parallel for loop. Following

this initialization, the algorithm enters a for loop where, in each iteration, a surrogate

model (here Gaussian Processes), is constructed or updated based on the samples 𝐗 and

true objective function values𝐘. Next, the acquisition function selects a newpoint (𝐗new)

to evaluate. This new point is then evaluated in the actual system simulation to obtain its

objective function value𝐘new . The set (𝐗new ,𝐘new) is added to the vectors𝐗 and𝐘, so that

the surrogate model can be updated by incorporating the latest information. The cycle is

repeated for 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 iterations, continually refining the surrogate model and identifying

optimal points in the search space.

Algorithm 7 Bayesian Optimization

1: Class BayesianOptimization
2: Constructor: BayesianOptimization(𝝁init, 𝚺init, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥, 𝑛𝑠, 𝑛UCB, 𝑓, 𝑠𝑦𝑠, 𝛽)
3: 𝝁← 𝝁init
4: 𝚺← 𝚺init
5:

6: Function Run()
7: 𝐗← SampleFromNormalDistribution(𝝁,𝚺, 𝑛𝑠)
8: 𝐗UCB ← SampleFromNormalDistribution(𝝁,𝚺, 𝑛UCB)
9: 𝐘← init(𝑛𝑠)
10: for 𝑛 = 1 to 𝑛𝑠 do
11: 𝑑𝑎𝑡𝑎 ← SimulateData(𝑋𝑛, sys)
12: 𝐘𝑛 ← EvaluateObjective(𝑓, 𝑑𝑎𝑡𝑎)
13: end for
14:

15: for 𝑖 = 1 to 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 do
16: �̂� ← FitGP(𝑋,𝑌)
17: 𝐗new ← UCB(𝐗UCB, �̂�, 𝛽)
18: 𝑑𝑎𝑡𝑎 ← SimulateData(𝐗new, sys)
19: 𝐘new ← EvaluateObjective(𝑓,𝐗new)
20: 𝐗← Add(𝐗new)
21: 𝐘← Add(𝐘new)
22: end for
23:

24: Return 𝝁,𝚺
25: End Function
26: End Class
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Algorithm 8 Upper Confidence Bound (UCB)

1: Function UCB(𝐗𝑈𝐶𝐵, �̂�, 𝛽)
2:

3: 𝐘𝑝𝑟𝑒𝑑,𝐘𝑠𝑡𝑑 ← Predict(𝐗𝑈𝐶𝐵, �̂�)
4: 𝑢𝑐𝑏 ← 𝐘𝑝𝑟𝑒𝑑 + 𝛽 ⋅ 𝐘𝑠𝑡𝑑

5: 𝐗𝑛𝑒𝑤 ← argmax(𝑢𝑐𝑏)
6:

7: return 𝐗𝑛𝑒𝑤

8: End Function

The chosen acquisition function is upper-confidence bound (UCB), and its algorithm

is shown in Algorithm 8. Initially, the surrogate model predicts the mean values 𝐘pred

and their uncertainties 𝐘std for each sampled point 𝐗UCB. Then, the UCB value is com-

puted for each sample using the formula fromEq. 3.22, where 𝛽 is a parameter balancing

exploration and exploitation. The next point is then selected as the maximum (or mini-

mum, depending on the optimization problem) of the UCB values.

26



4 A Simple Problem of Convex Op-

timization

To evaluate themethods, an experiment on a straightforward problemwas conducted.

A convex system was modeled given by 𝑓 = 𝑤2
1 + 𝑤2

2, where the convex nature implies

that through optimization, variables 𝑤1 and 𝑤2 should ultimately converge towards 0

when minimizing the objective. To ensure a fair comparison between methods, testing

was done using identical parameters. Initial means were set to 𝜇𝑤1 = 18, 𝜇𝑤2 = 23,

with variances 𝜎𝑤1,𝑤1 = 𝜎𝑤2,𝑤2 = 30, and the number of iterations was fixed at 50. For

CEMgmm, 3 components were utilized. The additional means for these two extra com-

ponents were set to 𝜇𝑤1 = 14, 35 and 𝜇𝑤2 = 50, 9, with variances 𝜎𝑤1,𝑤1 = 𝜎𝑤2,𝑤2 = 50

and 𝜎𝑤1,𝑤1 = 𝜎𝑤2,𝑤2 = 5 for the second and third components, respectively.

In Fig. 4.1, the depicted values illustrate the optimal objective function results 𝑓 for

each iteration. For CEM techniques, these values are computed as the averages of the

initial 𝑛elite values, while in Bayesian Optimization, each iteration represents a single

simulation yielding the best result directly. It is noticeable that Bayesian Optimization

and CEMnormal exhibit a persistent error, failing to converge towards zero. In contrast,

bothCEMgmmandCEMsurrogatemethods achieve zero error. However, CEMsurrogate

converged in fewer iterations, thanks to its superior exploitation of elite samples. While

CEMgmm and CEMnormal update their distributions using 10 elite samples, CEMsur-

rogate explores promising areas more extensively by generating 210 samples from them.

The runtime for each method is displayed in Table 4.1. The values represent the av-

erage results from five experiments each, along with their variances. It is evident that

the Bayesian method has the longest execution time. This is due to the use of acqui-

sition functions which causes the evaluation process to become more computationally

intensive as the number of samples in their search space increases. Among the CEM
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Figure 4.1: Best objective function values through iterations for each method

techniques, the Surrogate Model method exhibits the longest runtime due to its inher-

ent complexity.

Table 4.1: Comparison of execution times of the methods

CEMnormal CEMgmm CEMsurrogate Bayesian

Time (s) 39.17 ± 3.18 40.32 ± 1.68 45.22 ± 1.20 125.68 ± 1.96

The drawback to Bayesian optimization is it introduces twonewparameters that need

to be tuned manually, which contradicts its overall purpose. The impact of modifying

these parameters can be seen in Fig. 4.2. A larger 𝛽 leads to more exploration of the

search space which helps to avoid getting stuck in local optima, but also causes con-

vergence to occur later in the iterations, and it increases the granularity of the graph.

Conversely, increasing the number of samples used by the acquisition function reduces

the final deviation from zero. The downside to 𝑛𝑈𝐶𝐵 is runtime prolongation, making

the execution time of the variant with 100 000 UCB samples 1.62e+03s – 13 times longer

than the variant with 20 000 samples.

The surface plots of the objective function values and its parameters are illustrated

in Fig. 4.3, 4.4, 4.5 and 4.6. Bayesian Optimization in Fig. 4.6 appears less stochastic

compared to CEM, since it smooths out the optimization process over iterations, and

this happens because it balances exploration and exploitation based on uncertainty. In

contrast, CEM optimization relies more on direct sampling and iterative updates. CEM-
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Figure 4.2: Comparison of different parameter combinations in Bayesian Optimization

surrogate also shows less randomness compared to other methods within its class.

Figure 4.3: Surface plot of parameters and objective values for CEMnormal

For fitting testing, the progress of Gaussian Mixtures across multiple iterations was

visualized in Fig. 4.7. The blue dots represent the samples, and the red dots highlight

the elite samples. As the iterations proceed, it can be observed that the Gaussian compo-

nents becomemore alike and their centers gradually shift towards zero. This reflects the

iterative refinement and alignment of the mixture components, converging in the end

towards a consensus central point.
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Figure 4.4: Surface plot of parameters and objective values for CEMgmm

Figure 4.5: Surface plot of parameters and objective values for CEMsurrogate

30



Figure 4.6: Surface plot of parameters and objective values for Bayesian optimization

(a) Iteration 1 (b) Iteration 3

(c) Iteration 5 (d) Iteration 20

Figure 4.7: Sampled points and contour lines of GMM Components
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5 MPCHyperparameterOptimiza-

tion Results

The hyperparameters that were optimized for theMPC in [11] are the weights for state

models (later referred to as OV_weights: 𝑠, 𝑛, 𝜇 and 𝑣𝑥) and weights for input models

(later referred to as MV_weights: 𝑀 and 𝛿), as desribed in Section 2.2. This results in a

total of nine variables to be optimized, making it a high-dimensional optimization prob-

lem.

5.1 Average Longitudinal Velocity asObjective Function

In the first case, the objective function chosen was to maximize the average longitu-

dinal velocity on the track, represented by 𝑓 = 𝑣𝑥. Fig. 5.1, 5.2, 5.3, and 5.4 illustrate

the progress of 𝑣𝑥 over iterations across three sets of experiments for each method. More

experiments were shown since themethods are stochastic and they result in different be-

haviours each time, depending on their starting points. In this high-dimensional prob-

lem, CEMnormal and CEMgmm demonstrated to be the most reliable methods. For the

CEMgmmmethod, four componentswere utilized. Thismethod required the fewest iter-

ations to reach a steady state. Bayesian Optimization, while not always yielding optimal

results, generally secured the best possible outcomes given the range of samples of its

acquisition function. On the other hand, the CEM methods more occasionally became

trapped in local optima, as observed in experiment 2 of CEMsurrogate. For this reason,

it is recommended to repeat the optimization multiple times.

Table 5.1 summarizes the final best weights and their corresponding best average

longitudinal velocity from the displayed experiments, for each method.
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Figure 5.1: Best 𝑣𝑥 values through iterations for CEMnormal

Figure 5.2: Best 𝑣𝑥 values through iterations for CEMgmm
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Figure 5.3: Best 𝑣𝑥 values through iterations for CEMsurrogate

Figure 5.4: Best 𝑣𝑥 values through iterations for Bayesian Optimization
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Table 5.1: Final best weights and objective function values of each method

CEMnormal CEMgmm CEMsurrogate Bayesian

MV_weights

4.01 0.28 2.78 1.56
7.72 5.86 1.78 0.10
0.10 0.10 0.54 0.10
0.62 0.89 0.11 3.22
92.76 0.28 81.06 105.29

OV_weights

35.86 75.87 45.45 28.75
51.81 26.05 52.50 47.68
52.15 81.76 18.07 32.96
61.93 72.08 54.68 42.47

𝑣𝑥 (m/s) 44.00 41.56 43.01 38.75

5.2 A More Appropriate Objective Function

Using only the average longitudinal velocity on a trajectory as the objective function is

not an ideal choice, since the vehicle’s velocity might increase at the expense of greater

lateral displacement from the track centerline (𝑛) and larger angular deviations from the

track centerline (𝜇), or from the reference path. For instance, the vehicle in the simu-

lation could just end up accelerating on a straight path instead of following the desired

trajectory. Similarly, shortest simulation time duration is also not a good choice for the

objective function. Therefore, to address this issue, the optimization problem was eval-

uated using a new objective function defined as:

𝑓 =
||||𝑣𝑥|||| − ||||𝑛|||| − ||||𝜇|||| (5.1)

The aim is for the vehicle to achieve the highest possible velocity while minimizing

both 𝑛 and 𝜇. For this MPC simulation, it was not necessary to use absolute values for

𝑣𝑥 since the vehicle is configured to only move forward. The evaluation was conducted

using the CEMnormal method, with the same means and variances as in the previous

scenario. The final best weights and the corresponding average state values are presented

in Table 5.2. Now, the final best value for 𝑣𝑥 is lower than in the previous experiment,

but the deviations of 𝜇 and 𝑛 are kept low.

The progression of the objective function and the best average state values over each

iteration is illustrated in Fig. 5.5, 5.6, 5.7 and 5.8.
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Table 5.2: Final best weights and average state values using CEMnormal

Parameter Value

MV_weights 0.19, 0.18, 0.48, 0.40, 100.40

OV_weights 67.93, 65.99, 43.97, 39.01

𝑣𝑥 (m/s) 8.71

𝜇 (rad) 0.01

𝑛 (m) 0.14

Figure 5.5: Best 𝑓 values through iterations

Figure 5.6: Best 𝑣𝑥 values through iterations
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Figure 5.7: Best 𝜇 values through iterations

Figure 5.8: Best 𝑛 values through iterations
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6 Conclusion

Autonomous MPC hyperparameter optimization methods were successfully imple-

mented, with an initial focus on maximizing average longitudinal velocity of a racing

vehicle. The results demonstrated functionality and effectiveness of stochastic methods

in high-dimensional spaces, for both Cross-EntropyMethod and BayesianOptimization.

The CEMmethod with samples following a Gaussian Mixture distribution achieved op-

timal solutions with fewer iterations than the others. Bayesian optimization also showed

to be a reliable technique for finding satisfactory solutions, but it introduces two addi-

tional parameters that requiremanual tuning. Despite this, a common issue arose across

the methods due to occasional entrapment in local optima.

However, focusing solely on maximizing average velocity or minimizing simulation

time as the objective function appears impractical in real-world scenarios. To address

this, a more refined objective function was introduced, incorporating lateral displace-

ment and angular deviation alongside velocity. As a result, although the highest average

velocity achieved saw a decrease, there were significant improvements in reducing both

lateral and angular deviations, consequently improving the precision of trajectory fol-

lowing.

To conclude, this study simplified the time-consuming and challenging task of MPC

tuning, resulting in optimal outcomes and thereby enhancing overall vehicle perfor-

mance.
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Abstract

Stochastic Hyperparameter Optimization for Model Predictive

Control in Autonomous Racing

Gabriela Vitez

This master’s thesis explores automatic hyperparameter optimization techniques for

Model Predictive Control (MPC) in autonomous vehicle racing using stochastic opti-

mization. Autonomous vehicles in racing require precise controllers and techniques

to maintain optimal trajectories and stability. The high-dimensional parameter space

makesmanual tuning ofMPChyperparameters complex. Themethods are implemented

in MATLAB and Simulink. Application of Cross-Entropy Method is investigated with

various distributions, including multivariate Gaussian and Gaussian mixtures, along

with the use of surrogate models. Bayesian optimization is also studied as an alternative

approach for hyperparameter fine-tuning. Initially, the goal was to maximize average

longitudinal vehicle speed, and this demonstrated the effectiveness of all the methods.

Later, the objective function was adjusted to maximize speed while simultaneously min-

imizing lateral displacement and angular deviation from the track centerline. This im-

proved overall performance by maintaining high velocity and ensuring better trajectory

following.

Keywords: Model Predictive Control, stochastic optimization, MATLAB, Simulink,

Cross-Entropy Method, Bayesian Optimization, autonomous vehicles
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Sažetak

Stohastičko optimiranje hiperparametara za modelsko

prediktivno upravljanje u autonomnim utrkama

Gabriela Vitez

Ovaj diplomski rad istražuje automatske tehnike optimizacije hiperparametara mo-

delskog prediktivnog upravljanja (MPC) za autonomne utrke vozila koristeći stohastičko

optimiranje. Autonomna vozila u utrkama zahtijevaju precizne regulatore i tehnike za

održavanje optimalnih trajektorija i stabilnosti. Visokodimenzionalnost prostora para-

metara čini ručno podešavanje hiperparametara uMPC-ima složenim. Metode su imple-

mentirane u MATLAB-u i Simulinku. Ispituje se primjena metode unakrsne entropije s

različitim razdiobama, uključujući multivarijatnu Gaussovu i Gaussove mješavine, te uz

korištenje surogatnih modela. Također se proučava Bayesovska optimizacija kao alter-

nativni pristup za podešavanje hiperparametara. Početno je cilj bio maksimizirati pro-

sječnu longitudinalnu brzinu vozila, što je pokazalo učinkovitost svihmetoda. Kasnije je

kriterijska funkcija prilagođena tako damaksimizira brzinu uz istovremenominimizira-

nje lateralnog pomaka i kutnog odstupanja od središnje linije staze. To je rezultiralo po-

boljšanjem cjelokupnog ponašanja sustava održavajući visoku brzinu uz preciznije pra-

ćenje trajektorije.

Ključne riječi: modelsko prediktivnoupravljanje, stohastička optimizacija,MATLAB,

Simulink, metoda unakrsne entropije, Bayesova optimizacija, autonomna vozila
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