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1 Introduction

Robotics is an interdisciplinary branch of computer science and engineering that in-

cludes designing, creating and programming robots. Robotics creates machines that can

replace and replicate human actions. Robots can be used in various situations, for ex-

ample, in dangerous environments for humans such as finding and deactivating explo-

sive devices, going into space, working at high temperatures, working in polluted and

radioactive areas, etc. [1]. Although robots today are mostly used in extreme condi-

tions, such as mentioned above, many robots also perform tasks that humans find te-

dious, repetitive or boring. Robots can require human control or they can be completely

autonomous, which is of particular interest because it requires almost no human fore-

knowledge, while a robot does everything that is required of it by itself.

A mobile robot is an automated machine that is capable of locomotion [2]. Mobile

robots have the capability to move around in their environment and are not fixed to one

physical location. Mobile robots can be autonomous, meaning they are capable of navi-

gating an uncontrolled environment without the need for physical or electro-mechanical

guidance devices [3]. By contrast, industrial robots are usually more-or-less stationary,

consisting of a jointed arm (multi-linked manipulator) and gripper assembly (or end

effector), attached to a fixed surface. Mobile robots have become more commonplace

in commercial and industrial settings. Hospitals have been using autonomous mobile

robots to move materials for many years. Warehouses have installed mobile robotic sys-

tems to efficientlymovematerials from stocking shelves to order fulfillment zones, while

robot cleaners and robot lawn mowers are becoming more and more popular. Mobile

robots are also found in industrial, military and security settings.

Transport of large cargo is a frequent task that needs to be done on working sites

to transport it from the warehouse to the place where that cargo is needed. Instead of
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people transporting the cargo manually with trucks or vans from one point to another, a

more efficient approachwould be to have robots transporting it, while people could focus

on creative tasks. Moreover, if there are multiple robots at disposal that can transport

cargo, but that cargo is too large or too heavy for a single robot, instead of purchasing

an additional robot that can carry alone all that weight and size, it would be more cost-

effective to use two less expensive and more available robots to transport it.

This thesis presents a solution to a problem where two robots have to carry a large

load on themselves, which is too big for a single robot, and with it find an optimal path

from the starting pose to the goal pose, bypassing obstacles and maneuvering through

narrow corridors. All developed methods are implemented using Robot Operating Sys-

tem and programming languages Python and C++. They are simulated and visualized

using Gazebo and RViz as well as tested in a real world environment.

The thesis is organized as follows. InChapter 2, the problem that is trying to be solved

is presented, as well as prior researchers’ work tackling similar problems. In Chapter 3,

technologies and tools used throughout the thesis are described. In Chapter 4, a detailed

explanation of the implemented algorithms and system architecture and workflow is

presented, aswell as the initial attempts and problems encounteredwith them. Results of

the experiments, both in simulation and real world environment, are shown in Chapter

5. In Chapter 6, we present the successful deployment of the implemented methods

and discuss differences between simulation and real world results, as well as potential

solutions to the mentioned problems.
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2 Problem description and prior

work

The problem we are trying to solve is having two independent robots and a large object

of arbitrary shape, mounted on top of them, that we want to transport. We want to find

a collision free path and calculate the velocities which guide the structure towards the

goal position without collisions with the environment. We want to model this structure

of two robots and a large object as a single entity, calculate the path and velocities for it,

and then transform those velocities to velocities for each robot that achieve the desired

motion of the whole structure and follow the calculated path.

The authors in [4] presented a method for multi-robot formation control in dynamic

environments that avoids collisions with static and moving obstacles. In [5], a method

that allows two wheeled mobile robots (leader and follower) to navigate through known

environments while cooperatively carrying an object, was presented. A motion plan-

ning method of multiple mobile robots for cooperative transportation of a large object

in a three-dimensional environment was presented in [6]. A distributed leader–helper

architecture for teams of two autonomous mobile robots that jointly transport large pay-

loads while avoiding collisions with obstacles (either static or dynamic) was introduced

in [7].

Most of the methods use some kind of a leader-follower configuration for solving

the problem of multi-robot cargo carrying tasks, but none of them uses kinematic chain

to model the structure and its motion. The main contribution of this thesis would be

motion and path planning algorithms for anyshape kinematic chain that consists of two

robots and a large cargo that they are carrying. The robots would be independent of one

another, i.e. the motion commands for one robot would not depend on the motion of

the other, they would only depend on the poses that kinematic chain structure needs to
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achieve through the path so the motion from start to the goal would be collision free. In

that way, each robot node would have fewer parameters to calculate so the computations

would be faster and they can work independently of one another, without knowing that

the other robot exists.
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3 Technologies and tools used

In this chapter, technologies and tools that were used in the creation of this thesis will

be described.

3.1 Robot Operating System (ROS)

Robot Operating System (abbreviated ROS) is a collection of open source middlewares

that serve for developing software for controlling robots [8]. Although it has an operating

system in its name because of the functionality it provides, such as: hardware abstrac-

tion, control devices at a low level, implementation of common functionalities, trans-

mission of messages between processes and package management etc., it is not really

a stand-alone operating system, but must be installed on an operating system such as

GNU/Linux.

Computation graph model

ROS processes are represented as nodes in a graph structure, connected by edges called

topics [9]. ROS nodes can pass messages to one another through topics, make service

calls to other nodes, provide a service for other nodes, set/retrieve shared data from a

communal database called the parameter server. A process called the ROS Master [9]

makes all of this possible by registering nodes to itself, setting up node-to-node commu-

nication for topics, and controlling parameter server updates.

Example of ROS computational graph is shown in the figure 3.1. .
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Figure 3.1: ROS computational graph example

Nodes

Anode represents one process running theROS graph [9]. Every node has a name, which

it registers with the ROS master before it can take any other actions. Multiple nodes

with different names can exist under different namespaces, or a node can be defined as

anonymous, in which case it will randomly generate an additional identifier to add to its

given name.

In practice, a robotic system consists of several nodes, each of which performs its

own task. For example, one node sends velocity commands to wheels, the other serves

for calculating odometry, the third visualizes the trajectory etc.

Messages

Nodes communicate with each other by passing messages [10]. Message is a data struc-

ture that can be simple, for example an integer, but it can also be complex so that it

contains arrays, instances of other messages etc.

Topics

Topics are named buses over which nodes send and receive messages [11]. Topic names

must be uniquewithin their namespace aswell. To sendmessages to a topic, a nodemust

publish to said topic, while to receive messages it must subscribe. The publish/subscribe

model is anonymous: no node knows which nodes are sending or receiving on a topic,

only that it is sending/receiving on that topic. The types of messages passed on a topic

vary widely and can be user-defined. The content of these messages can be sensor data,

motor control commands, state information, actuator commands, or anything else. Un-

like services, publishing and subscribing to the topic can be aborted.
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Services

Service consists of a server that waits for a request and a client that sends a request to

the server [12]. Service is mainly a short, simple action that is done quickly and is not

repetitive and happens rarely. A service request cannot be aborted, unlike to topics and

actions.

Actions

Action is a combination of topics and services and is used for works that require a longer

time to complete, for example - mobile robot path following. The client and server com-

municate with three kinds of messages: goal, feedback and result [13]. Action starts with

the client making a request and sending goal message to the action server, action server

accepts it, and until the action is finished, sends to the client information about the ex-

ecution as feedback messages. When action completes the goal objective, server sends

result information via result message to the client.

3.2 Gazebo simulator

Gazebo is an open source 2D/3D simulator for simulating robots and their environment.

It has an integrated ODE system for simulating physics over objects, OpenGL for render-

ing and support for simulating various sensors and actuators [14]. It is a very popular

simulator because of its high performance and because of the graphical interface through

which you can easily model the world with various obstacles and you can easily model

robots with various configurations and sensors that will be used.

3.3 RViz

ROS visualization or abbreviated RViz is a 3D graphical interface that serves to visualize

various data that occur within the ROS system [15]. With the help of various plugins,

various information can be displayed, such as amap, transformations, information about

the robot model, sensor information, markers, etc.
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3.4 Husky robot

For simulation and real world testing, Husky robot created by Clearpath Robotics [16]

was used. At first Pioneer 3-DX, created by Adept [17] was chosen, but problems oc-

curred using ROS navigation stack with it, specificallymove_base package. Husky robot

was chosen because other students worked with it and everything worked fine, also be-

cause we have it in our laboratory so the real experiments could be tried with it. Husky

robot can be seen in the following figure (Figure 3.2):

Figure 3.2: Clearpath Husky robot

.

3.5 Intel RealSense Depth Camera D435i

For real world testing, instead of laser scanner, we opted for camera [18] because of its

easy usage. Everything that needs to be done is connect it to the laptop and install drivers

for it and then it is plug-and-play. Since nodes for localization, SLAM and obstacle de-
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tection use laser information, pointcloud received from the camera first needs to be con-

verted to the laser scan. Camera used in real world testing is shown in the following

figure (Figure 3.3):

Figure 3.3: RealSense Depth Camera D435i

3.6 Docker

Docker is a set of platform as a service products that use operating system virtualization

to deliver software in packages called containers [19]. Docker is like a lightweight virtual

machine with less graphical interface.

For experimentingwith two real robots, two laptops are needed. The other laptop that

weusedhadUbuntu 22.04 installed, sinceROSnoetic runs only onUbuntu 20.04, instead

of installing another operating system, we opted for using Docker because it required

much less time to set up.

3.7 NetworkX

NetworkX is a Python package used for creating graphs, searching through them, ma-

nipulating them, etc. [20]. Package was used in our implementation of a global planner

for creating and searching through graph data structure.

11



4 The proposed method

In this chapter, the global path planning method of the arbitrary shape structure will be

presented. The motion planning method used for the purposes of this work will also be

described. Finally, it will be briefly described how the system works in its entirety.

4.1 Global path planning

In robotics, many path planning and motion execution algorithms, for the sake of ef-

ficiency, approximate the robot footprint with a circle [21]. Using that approximation,

obstacles can be inflated by the robot’s radius and then robot can be displayed as single

dot for which path planning is a simple graph search. This assumption potentially limits

the mobility of non-circular robots especially in confined environments such as corri-

dors, narrow passages or even in dynamic environments. In our setup, with two robots

and long cargo, approximating the structure with circle would make a footprint unnec-

essarily big which would result in the inability to find a path in the environment where

the structure could pass through with little bit of maneuvering.

The global path planner’s task is to quickly generate a path from the current robot’s

pose to the goal pose for a known map. It also serves as proof if the robot can even

reach that pose, if the global path is empty - it means that robot cannot arrive to that

goal pose, e.g. because it cannot bypass static obstacles, it would be in collision with

obstacles at that pose, that pose is already occupied etc. After calculating global path,

it is forwarded to the local planner who follows it and, if necessary, with the help of

sensors, detects obstacles that are not known in advance in the static map and bypasses

them. ROS global planners take robot’s footprint and then approximate it with a circle

[22], which is, as stated before, inadequate for this problem. Therefore, in this thesis

we present our implementation of global path planning algorithm for arbitrary shape
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differential drive robot based on the paper [23].

Global plannerworks as follows: planner receives staticmap from themap server and

robot’s footprint from the costmap. Map is divided into cells of CELL_SIZE xCELL_SIZE

dimensions, where CELL_SIZE is a parameter given to the node which depends on the

map size, the smaller the map the smaller the CELL_SIZE needs to be so the planner

wouldn’t give false negatives for the path that actually exists. First, admissible orienta-

tions need to be calculated for every cell. Admissible orientations are orientations with

which robot isn’t in collisionwith any obstacle while positioned in themiddle of that cell.

Algorithm loops through every cell, if the cell by itself is occupied, then there isn’t any

admissible orientation for that cell and algorithmmoves forward, if it isn’t occupied by it-

self, algorithm loops through predefined list of orientations that a structure can achieve,

and for every orientation - it checks if the footprint is in collision with any obstacle, if it

isn’t - then that orientation is added to the list of admissible orientations for that cell.

Collision checking part of the algorithm is visualized in a figure 4.1. Gray lines repre-

sent cells. Structure’s footprint is placed in a center of a cell and rotated by orientation 𝜃.

Ray is traced from every point of a footprint to the center of a cell, if ray passes through

an occupied area for any point - function returns that structure is in collision with that

orientation and that orientation isn’t added to the admissible ones. If ray for every point

of footprint doesn’t pass through the occupied area, function returns that structure is

not in collision for that orientation. In the figure, footprint on the left is in collision for

𝜃 = 135°, while footprint on the right isn’t.

After admissible cell orientations are calculated for every cell, graph needs to be cre-

ated so the graph search algorithm can be run through it. Every cell is a node in a graph,

for every node, algorithm takes into account its eight neighbours. Since structure has

differential drive, it cannot move laterally, therefore two nodes will be connected, i.e.

have edge between them, only if current and neighbouring node both have in their ad-

missible orientations orientation that is needed for robot in current cell to traverse to that

neighbouring cell. Visualization and further explanation are shown in figure 4.2.

For searching the graph, Dijkstra algorithm [24] is used where edge weight is calcu-
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Figure 4.1: Collision checking visualization

lated by following formula which is similar to one used in a paper [23]:

𝑤 = 𝑀 − |Θ𝑐 ∩ Θ𝑛| + 100 ⋅ [[𝜃𝑑 ∈ Θ𝑑𝑖𝑎𝑔]]

where: M is a number of all orientations that robot can potentially achieve, Θ𝑐 is set

of admissible orientations of the current cell, Θ𝑛 is set of admissible orientations of the

neighbouring cell, 𝜃𝑑 is needed orientation that robot in current cell needs to have so it

could traverse to the neighbouring cell, Θ𝑑𝑖𝑎𝑔 are orientations with which robot moves

diagonally (e.g. 45 deg, 135 deg, etc.).

Using this weight function, algorithm will choose a path with cells that have more

orientations in common, also it will rather choose non diagonal movement which en-

sures smoother path, therefore smoother movement.

Example of a global path with the footprint and its orientation shown for each cell of

a path can be seen in the figure 4.3.

.

14



(a) Example without obstacle

(b) Example with obstacle

Figure 4.2: Structure’s admissible orientations are shown for the cells one and two. For struc-
ture to move from cell one to cell two, which is its direct right neighbour, it needs to move by
having an orientation of 𝜃 = 0°. Algorithm checks if the cell one in its admissible orientations
has orientation of 0°, which means that structure, if needed, can rotate in place so that it aquires
desired orientation. If that’s true, algorithm checks if the cell two has 𝜃 = 0° in its admissible
orientations, which would mean that structure can arrive to that cell with that orientation with-
out colliding with obstacle. If that is also true, then edge exists between those two nodes (cells).
Contrary, in subfigure 4.2b, structure would be in collision with obstacle for orientation 𝜃 = 0°,
and in that case, it cannot move from cell one to cell two so those two nodes aren’t connected.
Note: for simplicity, easier readability and understanding, only a few of orientations are shown,
and cell size is much larger
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Figure 4.3: Global path example
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4.2 Motion planning

Based on the global path given by the previously described path planning algorithm,

velocity commands are calculated using dynamic window approach [25], [26]. The dy-

namic window approach is a velocity space based local reactive avoidance technique

where search for commands controlling the robot is carried out directly in the space of

velocities. Trajectory of a robot can be described by a sequence of circular and straight

line arcs [25]. The search space is reduced by kinematic and dynamic constraints of the

robot to the finite span of velocities around robot’s current velocity vector (𝑣𝑐, 𝜔𝑐) that

can be achieved within the next sampling interval ∆𝑡. Velocity tuple (𝑣, 𝜔) from the pos-

sible reachable velocities is considered safe if the robot is able to stop along the trajectory

generated by velocities (𝑣, 𝜔) before hitting any object that may be encountered along

the path. The velocity maximizing a certain objective function Γ(𝑣, 𝜔) is chosen from

the reduced set of velocities [25]. The objective function includes a measure of progress

towards a goal location, the forward velocity of the robot, and the distance to the next

obstacle on the trajectory. By combining these, the robot trades of its desire to move fast

towards the goal and its desire to ship around obstacles (which decrease the free space).

The combination of all objectives leads to a very robust and elegant collision avoidance

strategy.

Since currentmotion planning algorithm is designed for single differential drive robot,

it outputs velocity commands for it. Our structure consists of two robots and cargo on

top of them, where each robot is abstracted as the wheel of the structure, so velocity com-

mands that algorithm outputs need to be transformed to velocities that individual robot

needs to achieve so the whole structure would do desired motion. Velocities are trans-

formed by following the differential drive kinematic equations [27]. Linear and angular

velocities, 𝑉 and 𝜔 respectively, using differential drive kinematics are calculated as:

𝑉 =
𝑉𝐿 + 𝑉𝑅

2
(4.1)

𝜔 =
𝑉𝑅 − 𝑉𝐿

𝑏
(4.2)

where: 𝑉𝐿 and 𝑉𝑅 are linear velocities of left and right wheel respectively, in our
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configuration - linear velocities of left and right robot, 𝑏 is the distance between two

wheels (distance between two robots in our case),𝑉 and𝜔 are desired linear and angular

velocity of the whole structure. Solving a system of two linear equations (4.1, 4.2) by

unknowns 𝑉𝐿 and 𝑉𝑅 we get:

𝑉𝐿 = 𝑉 −
𝑏

2
⋅ 𝜔 (4.3)

𝑉𝑅 = 𝑉 +
𝑏

2
⋅ 𝜔 (4.4)

.

which are given to each robot respectively.

The only difference for the calculation of the velocities of real robots, compared to

the simulation, is that now the robots are not physically linked to the cargo, so they also

need to achieve angular velocities which are calculated as:

𝜔𝑙 = 𝜔𝑟 = 𝜔

where 𝜔𝑙 and 𝜔𝑟 are angular velocities of the left and right robot respectively. In the

simulation, due to physical linking, 𝜔𝑙 = 𝜔𝑟 = 0.

In code, local planner is implemented using ROS DWA planner C++ API [28]. The

task of the local planner node is to wait for the user to set the goal pose in RViz. When

it receives the goal pose, it sends service request to the global planner which calculates

global path from the current structure’s pose to the wanted goal pose. After receiving

the global path, it calculates the velocities (V, 𝜔) that the structure must achieve and

publishes them to the corresponding topic until the structure achieves goal pose.

4.3 System architecture and workflow

After all the nodes are successfully launched, admissible cell orientations are calculated

and graph is created, system is ready to be used. Using 2D Nav Goal option inside the

RViz, goal pose can be set. After setting goal pose, local planner receives it and sends

service request to the global planner node where global planner calculates global path

from the current structure’s position to the goal pose. If the path is found, global planner
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sends response as global path points through which structure needs to pass to reach the

goal. If it isn’t, then appropriate message is printed in the terminal. After local planner

receives global path, it starts calculating velocities which structure needs to achieve and

publishes them to appropriate topic. Since the structure itself doesn’t have a drive, but its

drive consists of two robots that have it, velocities are then transformed for each robot,

as stated in the section 4.2.

The abstracted system is depicted in the following figure (Fig. 4.4).

Figure 4.4: Abstracted system

4.4 Additional considerations

In this chapter, initial approaches taken and the problems encountered during these at-

tempts in writing this thesis will be described.

Pioneer 3-DX

The implementation of the thesis began by first creating aGazebo environment and plac-

ing a single Pioneer 3-DX robot in it. For robot’s path planning and motion control, ROS

move_base package [29] was used. move_base is a package that by giving it: robot’s sen-

sor, localization and velocity topics, environment information through occupancy map,
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and desired goal pose, provides global and local path planning and velocity commands

with which robot will reach the desired goal pose collision free.

Global planner was working great because the global path was calculated correctly,

localization and low level velocity regulators were also working correctly, but local plan-

ner was not, robot was behaving strangely, driving in circles without following global

path and reaching the goal. A lot of research was done, we tried many different param-

eters and different local planners but unfortunately, we could not fix the problem. As

stated before, we then chose Husky robot to work with.

move_base’s local planners

After switching from Pioneer 3-DX to Husky andmaking sure that individual Husky can

reach any goal, a structure consisting of two Husky robots and cargo was created where

cargo is represented as a long wall. Then we tried giving each Husky goal where they

would only have to go in a straight path without avoiding obstacles, but for unknown

reason local planner would say that it can’t find a path, while the path certainly exists.

Planners that were tried are: Dynamic Window Approach [28], [25], Trajectory planner

[30], Timed Elastic Band [31], [32], but unfortunately problem persisted with each of

them. We decided to abandonmove_base and its planners and opted for implementation

that will be described in the following chapter.
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5 Experiments and results

In this chapter, the results of the methods in simulation and also in the real world will

be presented.

5.1 Simulation experiments

Experiments in simulation are visualized using Gazebo and RViz. Cargo is represented

as a long plank that sits on top of two huskies, huskies and cargo top view simulation

setup is shown in the following figure (Fig. 5.1). In simulation, huskies are equipped

with laser scanner which is needed for creating a map, localization and navigation.

Figure 5.1: Top view simulation setup

.

Cargo and huskies are spawned in custom environtment that can be seen in the figure

5.2.
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Figure 5.2: Simulation environment

In thefigure 5.3, simulation experiment is shownusing data published inRViz. Green

line represents a global path calculated by the global planner, red line represents also the

global path just published by the local planner, blue curve represents the trajectory that

structure is moving through with current calculated linear and angular velocities, green

rectangle represents structure’s footprint.

The following figure (Fig. 5.4) shows the path that the structure traversed through

from the beginning to the end of the map, proving that the algorithms work successfully.
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Figure 5.3: RViz simulation
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Figure 5.4: Structure successfully traversed from start of the map to the end
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5.2 Real world experiments

Real world experiments’ setup is shown in the figure 5.5. Since laptops need to be on top

of the huskies to control them, there isn’t much space to put cargo without getting in the

way of cameras’ field of view, that is why long metal bar is chosen to represent cargo. It

doesn’t take much space on huskies, but it enlarges structure’s footprint as the real cargo

was on top of them.

Figure 5.5: Lab experiment setup

Huskies are equipped with depth cameras which are needed for creating a map, lo-

calization and navigation.

Lab environment where experiments were conducted is shown in figure 5.6.

Following figure (Fig. 5.7) depicts huskies’ starting pose and environment. Green

dots represent left husky’s laser measurements while white dots represent right husky’s

laser measurements.

After setting a goal pose, algorithm calculates global path and local planner success-

fully drives structure to the goal pose without colliding with obstacles. Example of infor-

mation published in RViz after setting goal pose in real environment is shown in figure

5.8, while figure 5.9 depicts structure’s pose after reaching given goal pose.
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Figure 5.6: Lab environment

Figure 5.7: RViz environment information
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Figure 5.8: RViz information after structure arrived at the goal pose in real world experiment

Figure 5.9: Structure’s pose after reaching its given goal pose
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6 Discussion

As shown in the previous chapter (Chap. 5), the algorithms work successfully and if

there is a path from the current pose of the structure to the target pose, the global path

planner will successfully find the path, and the local planner will calculate the velocities

with which the structure will successfully drive to the target pose.

In the simulation, everything works perfectly. For ease of testing, the ground truth

pose of the robot and structure provided by Gazebo is used. Laser scanner is used for

localization and navigationwhich ismore precise than the camera. In real-world testing,

the AMCL package [33] is used for localization. In the real world, some problems occur

that are not present in the simulation. Since a laser scanner is not used to create themap,

but a depth camera whose pointcloud measurements are converted into laser scans -

there are deviations and imperfections of themeasurements, and because of this themap

is not created perfectly as in simulation. Also, for localization and navigation, camera

measurements converted into laser scans are usedwhich are less correct compared to the

real laser that was used in the simulation. Huskies can skid, so there are imperfections

in their odometry. Also, it is difficult to perfectly accurately determine the initial pose

of the structure in testing. For easier retesting, black rectangles are marked into which

robots are put for their staring pose, which can be seen in figure 5.5, but robots are never

put in the exact same pose from test to test because it is impossible without additional

sensors to position them perfectly so that they would be always in the same starting pose.

Due to the mentioned problems, there is a discrepancy in the pose of the structure in the

real world and in the pose in which the localization algorithms think the structure is

located, and because of this - sometimes the structure thinks it is further forward than it

really is and then starts to turn prematurely, which results to structure passing too close

to the obstacles.
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The mentioned problems could be solved by better localization, for example using

OptiTrack or some other sensor. However, despite the described problems, the path and

motion planning algorithms work well also in a real environment where the structure

successfully arrives without collisions from its start to the target pose, and with the so-

lution to the localization problem, the behavior and motion of the structure would be

even better and there would be almost no differences between the simulation and the

real world behavior.
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7 Conclusion

This thesis proposes solution to a problemwhere twomobile robots need to carry a large

load, that is too large for a single robot, from its starting pose to the goal pose while

bypassing obstacles and maneuvering through narrow passages. Algorithm for global

path planning of an arbitrary shape robot (structure) with differential drive, as well as

a motion control algorithm for controlling the structure, are presented. The methods

are implemented within Robot Operating System (ROS) and validated in a simulation

and real environment where the algorithms have been shown to work successfully. The

structure consists of two robots carrying a large load and together they form a kinematic

chain for which the optimal global path to the desired goal is calculated. After the global

path is calculated, the algorithm sends control signals to each robot separately and the

structure achieves a motion as if it had only one drive and not that it consists of two

robots each having its own drive.

In regards to prior researchers’ work which mainly use a leader-follower configura-

tion, main contribution of this method is that velocities of one robot are calculated in-

dependently of the other robot, so robots move independently of one another, they don’t

even know about the existence of another robot. This method makes setup of robots and

cargomuch easier, where everything that would be needed is to set robots’ starting poses

and define the footprint that structure occupies, after that all that is required is to set the

goal pose to which the structure will successfully arrive, if the path exists.

The proposed approach can bewidely applied in areas such as logistics and industrial

robotics, contributing to the optimization of the load transfer process and improving the

efficiency of autonomous robots in work environments.
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Abstract

Coordinated motion planning and control of mobile robots for

joint transportation of large objects

Borna Paro

In this thesis a method is presented for coordinated motion planning and control of

two autonomous mobile robots for the joint transport of cargo that is too large for one

robot. The method was implemented within the Robot Operating System (ROS) envi-

ronment and validated in simulation and real world scenarios. The method consists of

two robots having large cargo on top of them where they together form a new kinematic

chain. Then, the optimal path is planned for the entire differential drive kinematic chain

that ensures the transport of the cargo to the desired target location collision free. Af-

ter that, the implemented algorithm sends control commands to each robot separately,

which achieves the coordinated execution of the planned path. The proposed approach

can be widely applied in areas such as logistics and industrial robotics, contributing to

the optimization of the load transfer process and improving the efficiency of autonomous

robots in work environments.

Keywords: autonomous mobile robots; ROS; Python; C++; path planning; coordi-

nated motion planning; differential drive; kinematic chain
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Sažetak

Koordinirano planiranje gibanja i upravljanje mobilnim

robotima za zajednički prijevoz velikog tereta

Borna Paro

U ovom radu prikazana je metoda za koordinirano planiranje gibanja i upravljanje

dvoje autonomnih mobilnih robota za zajednički transport tereta koji je prevelik za jed-

nog robota. Metoda je implementirana unutar okruženja Robot Operating System (ROS)

i testirana u scenarijima simulacije i stvarnog svijeta. Metoda se sastoji od dva robota koji

imaju veliki teret na sebi gdje zajedno tvore novi kinematički lanac. Zatim, optimalni put

je izračunat za cijeli kinematički lanac diferencijalnog pogona koji osigurava prijevoz te-

reta do željenog cilja bez sudara s preprekama. Nakon toga, implementirani algoritam

šalje upravljačke naredbe svakom robotu zasebno, čime se postiže koordinirano izvođe-

nje planiranog puta. Predloženi pristup može biti primijenjen u područjima kao što su

logistika i industrijska robotika, pridonoseći optimizaciji procesa prijenosa tereta i po-

boljšanje učinkovitosti autonomnih robota u radnim okruženjima.

Ključne riječi: autonomni mobilni roboti; ROS; Python; C++; planiranje puta; koor-

dinirano planiranje gibanja; diferencijalni pogon; kinematički lanac
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