
Autoenkoderi za kompresiju slike

Kada, Karlo

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:107786

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-13

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:107786
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:12391
https://repozitorij.unizg.hr/islandora/object/fer:12391
https://dabar.srce.hr/islandora/object/fer:12391

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 454

AUTOENCODERS FOR IMAGE COMPRESSION

Karlo Kada

Zagreb, June 2024

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 454

AUTOENCODERS FOR IMAGE COMPRESSION

Karlo Kada

Zagreb, June 2024

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 04 March 2024

MASTER THESIS ASSIGNMENT No. 454

Student: Karlo Kada (1191244222)

Study: Computing

Profile: Data Science

Mentor: assoc. prof. Tomislav Petković

Title: Autoencoders for image compression

Description:

Autoencoders are used for learning efficient representations of any data, including images. In image
compression, autoencoders compress the image by transforming it into a lower-dimensional latent space
through their encoder part. Some of the open problems in using autoencoders for image compression are: (i)
during learning SNR is used as a quality measure instead of perceptual measures such as SSIM; (ii) the latent
space is not structured in a way that allows for easy determination of compression quality as is possible with
JPEG compression; and (iii) when compressing large images autoencoders will process image in blocks
disregarding the boundary effects. In the thesis, an overview of autoencoders with a special emphasis on their
use in image compression shall be provided. Then, one of the existing autoencoder architectures which is
suitable for image compression shall be selected. Next, the selected autoencoder shall be extended to provide a
viable solution for at least one of the aforementioned three open problems. The improved autoencoder shall be
quantitatively compared with the original solution and with the baselines of JPEG compression and of
Karhunen-Loeve transform (principal component analysis).

Submission date: 28 June 2024

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 4. ožujka 2024.

DIPLOMSKI ZADATAK br. 454

Pristupnik: Karlo Kada (1191244222)

Studij: Računarstvo

Profil: Znanost o podacima

Mentor: izv. prof. dr. sc. Tomislav Petković

Zadatak: Autoenkoderi za kompresiju slike

Opis zadatka:

Autoenkoderi se koriste za učenje efikasne reprezentacije podataka kao što su slike. U kompresiji slike
autoenkoderi kroz svoj enkoderski dio sliku sažimaju iz ulaznog u niže-dimenzionalni latentni prostor. Neki
otvoreni problemi korištenja autoenkodera za kompresiju slike su: (i) učenje koristi SNR kao mjeru kvalitete
umjesto perceptualnih mjera kao što je SSIM; (ii) latentni prostor nije strukturiran na način da omogućava
jednostavno određivanje kvalitete kompresije kao što je moguće kod JPEG kompresije; i (iii) za kompresiju
velikih slika autoenkoderi obrađuju blokove slike bez uzimanja u obzir što se događa na granicama blokova. U
diplomskom radu je potrebno dati pregled autoenkodera s posebnim osvrtom na korištenje autoenkodera u
kompresiji slike. Zatim je potrebno odabrati neko od postojećih rješenja autoenkodera za kompresiju slike te ga
je potrebno proširiti tako da se ponudi rješenje za barem jedan od prethodno navedena tri otvorena problema.
To poboljšanje rješenje je potrebno kvantitativno usporediti s polaznim rješenjem te s temeljnim rješenjima
JPEG kompresije i Karhunen-Loeveove transformacije (analiza glavnih komponenti).

Rok za predaju rada: 28. lipnja 2024.

I would like to express my deepest gratitude to my kind and motivated mentor, assoc. prof.

Tomislav Petković, for his understanding, patience, and feedback. Special thanks go to my

family for their great support during my studies.

Contents

1 Introduction . 3

2 Types of Autoencoders . 5

2.1 Undercomplete Autoencoders . 5

2.2 Sparse Autoencoders . 6

2.3 Contractive Autoencoders . 8

2.4 Slimmable Compressive Autoencoders . 9

2.5 Autoencoders for Image Compression . 12

3 Materials andMethods . 14

3.1 Encoder . 14

3.2 Decoder . 18

3.3 Training . 20

4 Results . 24

4.1 Used Metrics . 24

4.1.1 Mean Squared Error . 25

4.1.2 Peak Signal to Noise Ratio . 25

4.1.3 Multi-scale Structural Similarity Index Measure 26

4.2 Quantitative Results . 27

4.3 Qualitative Results . 27

5 Discussion . 37

6 Conclusion . 40

References . 41

1

Abstract . 45

Sažetak . 46

2

1 Introduction

Autoencoders are neural networks that are trained to map input 𝐱 to output 𝐫 (which

we call the reconstruction) using an internal representation or code 𝐡. Although con-

ceptually simple, they are very important in machine learning. The concept of autoen-

coders was first mentioned in the 1980s [1] as a response to the problem of “backprop-

agation without a teacher”, where only input data was used for learning. Traditionally,

autoencoders have been used for dimensionality reduction or feature learning, and to-

day they are considered one of the fundamental methods of unsupervised learning [2].

Autoencoders can be considered a special case of feedforward neural networks and can

be trained using all the same techniques, usually gradient descent with mini-batches

following gradients calculated by backpropagation. Unlike general feedforward neural

networks, autoencoders can also be trained using recirculation [3], a learning algorithm

based on comparing the activations of the network on the encoder with the activations

on the decoder. An autoencoder consists of two components: an encoder𝑓 thatmaps the

input 𝐱 to the code 𝐡, and a decoder 𝑔 that maps the code 𝐡 to the output 𝐫. The afore-

mentioned structure is represented in the figure 1.1. If an autoencoder merely learns

to set 𝑔(𝑓(𝐱)) = 𝐱 universally, it is not particularly valuable. Instead, autoencoders are

intentionally designed to avoid perfect copying. They are typically constrained so they

can only copy approximately and only for inputs similar to the training data. By forcing

the model to prioritize certain aspects of the input for copying, it often discovers useful

features of the data [4].

In this thesis, an overview of autoencoders with a special emphasis on their use in

image compression is provided. Image compression is the application of data compres-

sion on digital images. In effect, the objective is to reduce redundancy of the image data

in order to be able to store or transmit data in an efficient form [5]. During this pro-

3

Figure 1.1: The general structure of an autoencoder (reproduced from [4]), mapping an input 𝐱
to an output (called reconstruction) 𝐫 through an internal representation or code 𝐡. The autoen-
coder has two components: the encoder 𝑓 (mapping 𝐱 to 𝐡) and the decoder 𝑔 (mapping 𝐡 to 𝐫).

cess, a slimmable compressive autoencoder [6] was used. We wanted to see how will the

autoencoder perform when it is trained using a metric which approximates the level of

perceptual image quality, such as multi-scale structural similarity index measure (MS-

SSIM) [7], instead ofmore traditionalmetrics that don’t take the perceptual image quality

into consideration, like themean squared error (MSE). The quantitative results obtained

using this method were then evaluated using metrics such as MS-SSIM, MSE and peak

signal to noise ratio (PSNR). Qualitative results were also presented in the form of orig-

inal and reconstructed images, shown side-by-side. The quantitative and qualitative re-

sults indicate that the MS-SSIM is a suitable metric for training slimmable compressive

autoencoders and that the image reconstructions were of good quality.

4

2 Types of Autoencoders

In modern literature, various types of autoencoders can be found, each designed to solve

a different problem. This chapter explains some of the types of autoencoders in more

detail, presenting their architectures and modes of operation. Sections 2.1, 2.2 and 2.3

were in large part reproduced from [4].

2.1 Undercomplete Autoencoders

Reconstructing the input to the output may sound trivial, but we are typically not inter-

ested in the output of the decoder. Instead, we hope that training the autoencoder to

perform the input copying task will result in 𝐡 taking on useful properties. One way to

obtain useful features from the autoencoder is to constrain 𝐡 to have a smaller dimen-

sion than 𝐱. An autoencoder whose code dimension is less than the input dimension

is called undercomplete. Learning an undercomplete representation forces the autoen-

coder to capture the most salient features of the training data. The learning process is

described simply as minimizing a loss function

minℒ[𝐱, 𝑔(𝑓(𝐱))], (2.1)

where ℒ is a loss function penalizing 𝑔(𝑓(𝐱)) for being dissimilar from 𝐱, such as the

mean squared error. When the encoder and the decoder are linear and ℒ is the mean

squared error, an undercomplete autoencoder learns to span the same subspace as PCA

(Principal Component Analysis) [8]. In this case, an autoencoder trained to perform the

reconstructing task has learned the principal subspace of the training data as a side ef-

fect. Autoencoders with nonlinear encoder functions 𝑓 and nonlinear decoder functions

𝑔 can thus learn a more powerful nonlinear generalization of PCA. Unfortunately, if the

encoder and decoder are allowed too much capacity, the autoencoder can learn to per-

5

Figure 2.1: The general structure of an undercomplete autoencoder (reproduced from [9]). 𝐗
represents the input, function 𝑓 is the encoder, 𝐡 represents the internal representation or code,
function 𝑔 is the decoder, and �̂� the output.

form the copying taskwithout extracting useful information about the distribution of the

data. In the figure 2.1 which represents the structure of an undercomplete autoencoder

we can clearly see that the dimension of the internal representation 𝐡 is smaller than the

dimension of the input 𝐱.

2.2 Sparse Autoencoders

A sparse autoencoder is simply an autoencoder whose training criterion involves a spar-

sity penalty Ω(𝐡) on the code layer 𝐡, in addition to the reconstruction error:

ℒ[𝐱, 𝑔(𝑓(𝐱))] + Ω(𝐡), (2.2)

where 𝐡 = 𝑓(𝐱) is the encoder output and 𝑔(𝐡) is the decoder output. Sparse autoen-

coders are typically used to learn features for another task, such as classification. An

autoencoder that has been regularized to be sparse must respond to unique statistical

features of the dataset it has been trained on, rather than simply acting as an identity

function. In this way, training to perform the copying task with a sparsity penalty can

yield amodel that has learned useful features as a byproduct. We can think of the penalty

Ω(𝐡) simply as a regularizer term added to a feedforward network whose primary task is

to copy the input to the output (unsupervised learning objective). Rather than thinking

of the sparsity penalty Ω(𝐡) as a regularizer for the copying task, we can think of the

entire sparse autoencoder framework as approximating maximum likelihood training

of a generative model that has latent variables. Suppose we have a model with visible

6

variables 𝐱 and latent variables 𝐡, with an explicit joint distribution

𝑝model(𝐡, 𝐱) = 𝑝model(𝐡)𝑝model(𝐱 ∣ 𝐡). (2.3)

We refer to 𝑝model(𝐡) as themodel’s prior distribution over the latent variables, represent-

ing the model’s beliefs prior to observing 𝐱. The log-likelihood can now be decomposed

as

log𝑝model(𝐱) = log
∑
𝐡

𝑝model(𝐡, 𝐱). (2.4)

We can think of the autoencoder as approximating this sum with a point estimate for

just one highly likely value for 𝐡. From this point of view, with this chosen 𝐡, we are

maximizing

log𝑝model(𝐡, 𝐱) = log𝑝model(𝐡) + log𝑝model(𝐱 ∣ 𝐡). (2.5)

The log𝑝model(𝐡) term can be sparsity inducing. For example, the Laplace prior,

𝑝model (ℎ𝑖) =
𝜆

2
𝑒−𝜆|ℎ𝑖|, (2.6)

corresponds to an absolute value sparsity penalty. Expressing the log-prior as an absolute

value penalty, we obtain

Ω(𝒉) = 𝜆
∑
𝑖

|||ℎ𝑖||| , (2.7)

− log𝑝model (𝒉) =
∑
𝑖

(𝜆 |||ℎ𝑖||| − log
𝜆

2
) = Ω(𝒉) + const , (2.8)

where the constant term depends only on 𝜆 and not 𝐡. We typically treat 𝜆 as a hyper-

parameter and discard the constant term since it does not affect the parameter learning.

Other priors, such as the Student 𝑡 prior, can also induce sparsity. From this point of

view of sparsity as resulting from the effect of log𝑝model(𝐡) on approximate maximum

likelihood learning, the sparsity penalty is not a regularization term at all. It is just a

consequence of the model’s distribution over its latent variables. This view provides a

different motivation for training an autoencoder: it is a way of approximately training a

generative model. It also provides a different reason for why the features learned by the

autoencoder are useful: they describe the latent variables that explain the input.

7

2.3 Contractive Autoencoders

The contractive autoencoder [10] introduces an explicit regularizer on the code𝐡 = 𝑓(𝐱),

encouraging the derivatives of 𝑓 to be as small as possible:

Ω(𝐡) =
‖‖‖‖‖‖‖𝜕𝑓(𝐱)𝜕𝐱

‖‖‖‖‖‖‖
2

𝐹

. (2.9)

The penalty Ω(𝐡) is the squared Frobenius norm (sum of squared elements) of the Ja-

cobian matrix of partial derivatives associated with the encoder function. There is a

connection between the denoising autoencoder and the contractive autoencoder [11]:

research showed that in the limit of small Gaussian input noise, the denoising recon-

struction error is equivalent to a contractive penalty on the reconstruction function that

maps 𝐱 to 𝐫 = 𝑔(𝑓(𝐱)). In other words, denoising autoencoders make the reconstruc-

tion function resist small but finite-sized perturbations of the input, while contractive

autoencoders make the feature extraction function resist infinitesimal perturbations of

the input. When using the Jacobian-based contractive penalty to pretrain features 𝑓(𝐱)

for use with a classifier, the best classification accuracy usually results from applying the

contractive penalty to 𝑓(𝐱) rather than to 𝑔(𝑓(𝐱)). The name contractive arises from the

way that the contractive autoencoder warps space. Specifically, because the contractive

autoencoder is trained to resist perturbations of its input, it is encouraged tomap a neigh-

borhood of input points to a smaller neighborhood of output points. We can think of this

as contracting the input neighborhood to a smaller output neighborhood. To clarify, this

type of autoencoder is contractive only locally, all perturbations of a training point 𝐱 are

mapped near to 𝑓(𝐱). Globally, two different points 𝐱 and �̃�may be mapped to 𝑓(𝐱) and

𝑓(�̃�) points that are farther apart than the original points. It is plausible that 𝑓 could be

expanding in-between or far from the data manifolds. When theΩ(𝐡) penalty is applied

to sigmoidal units, one easy way to shrink the Jacobian is to make the sigmoid units sat-

urate to 0 or 1. This encourages the autoencoder to encode input points with extreme

values of the sigmoid, whichmay be interpreted as a binary code. It also ensures that the

contractive autoencoder will spread its code values throughout most of the hypercube

that its sigmoidal hidden units can span.

8

2.4 Slimmable Compressive Autoencoders

For the content presented in this section, I have predominantly relied on the materials

from Yang et al. [6] as the primary source. General autoencoder structure includes an

encoder 𝑓 with parameters 𝜃 which maps input 𝐱 ∈ ℝ𝑁 to code 𝐡 ∈ ℝ𝐷 and a de-

coder 𝑔 with parameters 𝜙 which maps the code to the output 𝐫 ∈ ℝ𝑁. The name of

the slimmable autoencoders originates from their slimmable layers [12], which allow

for dynamic control over memory and computational costs. A slimmable layer enables

part of the layer’s parameters to be discarded (often by setting them to zero) while still

performing valid operations. This trade-off reduces memory and computational costs

at the expense of expressiveness. We consider slimmable autoencoders that contain 𝐾

subautoencoders, where each of the subautoencoders is parametrized by a pair 𝜓(𝑘) =

(𝜃(𝑘), 𝜙(𝑘)) ∈ Ψ = ı(𝜃(1), 𝜙(1)),… , (𝜃(𝐾), 𝜙(𝐾))#, with assuming that the following conditions

are met in every layer: 𝜃(1) ⊂⋯ ⊂ 𝜃(𝐾) = 𝜃 and 𝜙(1) ⊂⋯ ⊂ 𝜙(𝐾) = 𝜙. We also define the

loss for the subautoencoder 𝑘, (1 ≤ 𝑘 ≤ 𝐾) as ℒ(𝑘)(𝜃(𝑘), 𝜙(𝑘);𝒳) and train the slimmable

autoencoder with the joint loss or a weighted average ℒ(Ψ;𝒳) = Σ𝑘 ℒ
(𝑘)(𝜃(𝑘), 𝜙(𝑘);𝒳).

A compressive autoencoder is a type of autoencoder where the encoder’s output is

a binary stream (bitstream), which is usually stored or sent through a communications

channel. The goal is to achieve the highest possible quality of the reconstructed im-

age (minimize distortion) while reducing the number of bits transmitted (minimize the

rate). If we look at the structure of a compressive autoencoder, the encoder is followed

by a quantizer 𝐪 = 𝑄(𝐡), with 𝐪 ∈ ℤ𝐷 being a discrete-valued symbol vector. This vector

is then processed by a lossless entropy encoder, which converts it into a bitstream 𝐛, uti-

lizing its statistical redundancy to produce code lengths close to its entropy. The decoder

reverses these operations to reconstruct the original image. Compressive autoencoders

are trained by solving a rate-distortion optimization (RDO) problem with loss defined as

ℒ(𝜃, 𝜓;𝒳, 𝜆) = 𝐷(𝜃, 𝜓;𝒳) + 𝜆𝑅(𝜃;𝒳), (2.10)

with 𝒳 being the training dataset and 𝜆 the fixed tradeoff between rate and distortion.

To enable end-to-end optimization with backpropagation, non-differentiable operations

like quantization and entropy coding are replaced by differentiable substitutes during

9

training, such as additive noise and entropy estimation. The compressive autoencoder

framework proposed by Balle et al. [13] integrates convolutional layers, generalized di-

visive normalization (GDN) and inverse GDN (IGDN) layers, scalar quantization to the

nearest neighbor (𝐪 = ⌊𝐡⌋), and arithmetic coding. During training, quantization is

substituted with additive uniform noise (denoted as �̃� = 𝐡+∆𝐡 ; ∆𝐡 = 𝒰
(
−1

2
,
1

2

)
). Sim-

ilarly, arithmetic coding is bypassed, and the rate is approximated by the entropy of the

quantized symbol vector 𝑅(𝐛) ≈ 𝐻[𝑃𝐪] ≈ 𝐻[𝑝ℎ̃(ℎ̃; 𝜈)], with 𝜈 representing the param-

eters of the entropy model used in [13]. Distortion is measured by the reconstruction

mean square error ‖𝐱 − 𝐫‖2. Therefore, the compressive autoencoder is parameterized
by 𝜓 = (𝜃, 𝜙, 𝜈).

To create a slimmable compressive autoencoder (SlimCAE), all operations within the

CAE must be non-parametric, slimmable, or efficiently switchable. In this implementa-

tion, quantization is non-parametric, and the convolutional layers are implemented as

slimmable [12]. For the GDN/IGDN layers, several variants can be used. Additionally,

we use switchable entropy models, where each subautoencoder 𝑘 has its own parame-

ters 𝜈(𝑘) that can easily be switched because their size is insignificant in comparison to

the other parameters 𝜃(𝑘) or 𝜙(𝑘) [6].

While GDN [14] was proposed to Gaussianize the local joint statistics of natural im-

ages, Balle et al. [13] proposed an approximate inverse operation (IGDN), and showed

that GDN/IGDN layer pairs are highly beneficial in learned image compression, and

since thenhave been adopted bymany compressive autoencoder frameworks. BothGDN

and IGDN are parametrized by 𝛾 ∈ ℝ𝑤×𝑤 and 𝛽 ∈ ℝ𝑤, where 𝑤 is the number of input

(and output) channels.

In the case of a SlimCAE with 𝐾 subCAEs, the input to the GDN layer has the fol-

lowing possible channel dimensions 𝑤(1),… , 𝑤(𝐾). We consider three possible variants:

1. Switchable GDNs. We use independent sets of parameters 𝛾(𝑘) ∈ ℝ𝑤(𝑘)×𝑤(𝑘)
and

𝛽(𝑘) ∈ ℝ𝑤(𝑘)
for every subGDN 𝑘. The normalized representation for an input 𝛾(𝑘) ∈

ℝ𝑤(𝑘)
is then

�̃�
(𝑘)
𝑖 =

𝑦
(𝑘)
𝑖

(𝛽(𝑘)𝑖 +
∑

𝑗
𝛾
(𝑘)
𝑖𝑗

|||||𝑦(𝑘)𝑗

|||||2)
1

2

. (2.11)

10

Figure 2.2: The general structure of a switchable GDN (reproduced from [6]).

Figure 2.3: The general structure of a slimmable GDN (reproduced from [6]).

While flexible, the total number of parameters is relatively high
∑𝐾

𝑘=1

(
𝑤(𝑘) + 1

)
𝑤(𝑘),

and switching may be not very efficient. An illustration of this GDN variant can

be seen in the figure 2.2 [6].

2. Slimmable GDN (SlimGDN). A more compact option is to reuse parameters

from smaller subGDNs by imposing 𝛾(1) ⊂⋯ ⊂ 𝛾(𝐾) and 𝛽(1) ⊂⋯ ⊂ 𝛽(𝐾). Now the

total number of parameters in a SlimGDN layer is
(
𝑀(𝐾) + 1

)
𝑤(𝐾). An illustration

of a slimmable GDN can be seen in the figure 2.3 [6].

3. Slimmable GDNwith switchable parametermodulation. SlimGDNs usually

performs worse than switchable GDNs, since they are less flexible to adapt to the

statistics of the different 𝐲(𝑘). We propose a variant using switchable parameter

modulation, where a global scale and bias are learned separately for every subGDN

(i.e. switchable), i.e. 𝛾(𝑘)𝑖𝑗 = 𝑠
(𝑘)
𝛾 𝛾′

(𝑘)
𝑖𝑗 + 𝑏

(𝑘)
𝛾 and 𝛽(𝑘)𝑖 = 𝑠

(𝑘)

𝛽
𝛽
′(𝑘)
𝑖 + 𝑏

(𝑘)

𝛽
, where 𝛾′(𝑘)

and 𝛽′(𝑘) are shared and slimmable and 𝑠(𝑘)𝛾 , 𝑏
(𝑘)
𝛾 , 𝑠

(𝑘)

𝛽
and 𝑏(𝑘)

𝛽
are switchable scalars

specific for the subGDN 𝑘. This variant requires only 4 additional parameters per

subGDN, for a total number of parameters
(
𝑤(𝐾) + 1

)
𝑤(𝐾)+4𝐾. The illustration of

a slimmable GDNwith switchable parameter modulation can be seen in the figure

2.4 [6].

11

Figure 2.4: The general structure of a slimmable GDN with switchable parameter modulation
(reproduced from [6]).

2.5 Autoencoders for Image Compression

Uncompressed multimedia, such as graphics, audio, and video, requires significant stor-

age space and bandwidth. Despite advances in mass-storage density, processor speeds,

and digital communication systems, the demand for data storage and transmission can

exceed the capabilities of current technologies. The surge in data-heavymultimedia web

applications has not only underscored the necessity for efficient encoding methods for

signals and images but has also made compression a crucial aspect of storage and com-

munication technology [5].

Image compression can be categorized into two main types: lossless and lossy. Loss-

less compression reduces the file size by encoding all the original image information,

ensuring that the decompressed image is identical to the original. Examples of lossless

compression formats include PNGandGIF [15]. In contrast, lossy compression results in

some loss of information. The compressed image resembles the original but is not an ex-

act replica, as certain details are discarded during compression. This method is typically

suited to images, with JPEG being the most well-known example of lossy compression

[16]. Autoencoders can be used for both lossless and lossy compression, depending on

the dimension of the internal representation 𝐡. Lossless compression can be achieved

by setting the dimension of the code to be equal to the dimension of the input, and lossy

compression can be achieved by limiting the code dimension to be smaller than the in-

put.

We can compress an image using methods such as Principal Component Analysis

(PCA), where we form a hyperplane of a lower dimension than the original while retain-

12

ing the variance among the data. However, PCA can only model linear relationships.

Undercomplete autoencoders, on the other hand, can learn nonlinear relationships and

thus perform dimensionality reduction better. This type of dimensionality reduction is

also known as manifold learning. If we were to remove all nonlinear activations from

an undercomplete autoencoder and use only linear layers, we would obtain a reduced

undercomplete autoencoder that works in the same way as PCA [17].

The existing methods of using autoencoders for image compression include convo-

lutional autoencoders [18], variational autoencoders [19], conditional autoencoders [20]

and compressive autoencoders [21].

13

3 Materials and Methods

This masters thesis follows the work of Yang et al. [6]. One of the open problems in

using autoencoders for image compression is that during learning, SNR is often used as

a quality measure instead of perceptual measures such as MS-SSIM.

The changes made to the code [22] were to the training function of the slimmable

compressive autoencoder. Precisely, the mean squared error (MSE) metric wasn’t used

to train the autoencoder. Instead, the used metric was the multi-scale structural sim-

ilarity index measure (MS-SSIM) [7]. This was done because MS-SSIM is perceptual

image quality metric, which means it aligns more closely with human visual perception.

It considers structural similarity, luminance, and contrast at multiple scales, leading to

reconstructions that are more visually pleasing and perceptually accurate. MSE, on the

other hand, minimizes the pixel-wise squared difference, which does not necessarily cor-

relate well with perceptual image quality. It treats all errors equally, which can lead to

ringing artifacts and loss of important structural details in the image reconstructions.

To better understand the architecture of the slimmable compressive autoencoder, we

will go through the Python code, which was run on the Python 2.7.12 version. In the

following sections, we will describe the used functions, starting with the encoder.

3.1 Encoder

In the encoder architecture, compression is achievedusing strided convolutions. Con-

ventional convolution uses a step size (or stride) of 1meaning that the sliding filtermoves

1 pixel at a time. On the contrary, strided convolution introduces a stride variable that

controls the step of the folder as it moves over the input. So, for example, when the stride

is equal to 2, the filter skips one pixel every time it slides over the input sample, resulting

14

1 def slimmable_analysis_transform(tensor_in , switch_list ,

total_filters_num):

2 with tf.variable_scope("analysis"):

3 tensor_encoder = list()

4 for i, _switch in enumerate(switch_list):

5 with tf.variable_scope("layer_0",reuse=(i>0)):

6 layer = SignalConv2D_slim(

7 total_filters_num , (9, 9), corr=True ,

8 strides_down =4, padding="same_zeros",

9 use_bias=True , activation=None)

10 tensor = layer(tensor_in , 3, _switch)

11 with tf.variable_scope("gdn_an_0_ {:1d}".format(i)):

12 tensor_gdn_0 = tfc.GDN()(tensor)

13 tensor_gdn_0 = tf.pad(tensor_gdn_0 , [[0,0], [0,0], [0,0],

14 [0,(total_filters_num - _switch)]], "CONSTANT")

15 with tf.variable_scope("layer_1",reuse=(i>0)):

16 layer = SignalConv2D_slim(

17 total_filters_num , (5, 5), corr=True ,

18 strides_down =2, padding="same_zeros",

19 use_bias=True , activation=None)

20 tensor = layer(tensor_gdn_0 , _switch , _switch)

21 with tf.variable_scope("gdn_an_1_ {:1d}".format(i)):

22 tensor_gdn_1 = tfc.GDN()(tensor)

23 tensor_gdn_1 = tf.pad(tensor_gdn_1 , [[0,0], [0,0], [0,0],

24 [0,(total_filters_num - _switch)]], "CONSTANT")

25 with tf.variable_scope("layer_2",reuse=(i>0)):

26 layer = SignalConv2D_slim(

27 total_filters_num , (5, 5), corr=True ,

28 strides_down =2, padding="same_zeros",

29 use_bias=False , activation=None)

30 tensor = layer(tensor_gdn_1 , _switch , _switch)

31 with tf.variable_scope("gdn_an_2_ {:1d}".format(i)):

32 tensor_gdn_2 = tfc.GDN()(tensor)

33 tensor_encoder.append(tensor_gdn_2)

34 return tensor_encoder

Code 3.1: Encoder function.

15

in a smaller output feature map. During strided convolution, the filter skips some pixels

as it moves over the given input, performing a downsampling on the input data. This

inherent downsampling comes with several advantages in the learning process. Impor-

tantly, downsampling pushes the network to focus on the most discriminative features,

ignoring redundant information [23]. This encoder utilizes three convolutional layers.

The first one uses a stride of 4, and the second and third use a stride of 2. This implies

that if a image of height𝐻, width𝑊 and color channels 𝐶 is provided as the input of the

encoder and if 𝑛𝑓 is the number of filters used, the output of the first convolutional layer

will be a tensor of size ⌈𝐻
4

⌉
×
⌈𝑊
4

⌉
× 𝑛𝑓, (3.1)

the output of the second convolutional layer will be a tensor of size

⎡⎢⎢⎢⎢

⌈𝐻
4

⌉
2

⎤⎥⎥⎥⎥
×

⎡⎢⎢⎢⎢

⌈𝑊
4

⌉
2

⎤⎥⎥⎥⎥
× 𝑛𝑓 (3.2)

and the output of the third convolutional layer will be a tensor of size

⎡⎢⎢⎢⎢⎢⎢⎢⎢

⎡⎢⎢⎢
⌈
𝐻

4

⌉
2

⎤⎥⎥⎥
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢

⎡⎢⎢⎢
⌈
𝑊

4

⌉
2

⎤⎥⎥⎥
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥
× 𝑛𝑓. (3.3)

If we apply this procedure to an image of size 512 × 512 × 3 and use 192 filters, input

size will be equal to 512× 512× 3 = 786432 bytes or 768 kibibytes. For a neural network

implemented in TensorFlow, the latent space tensor elements are of type float32, which

means each element takes up 4 bytes (since float32 is a 32-bit floating point number).

This implies that if we use 192 filters per layer, the size of the latent space will be equal

to 32 × 32 × 192 × 4 = 786432 bytes or 768 kibibytes. We can see that the size of the

latent space is equal to the original image. However, if we use 48 filters per layer, the

size of the latent space will be equal to 32 × 32 × 48 × 4 = 196608 bytes or 192 kibibytes,

which is 4 times smaller than when using 192 filters. The reverse process is present in

the decoder function, where we apply upsampling by using strides of 2, 2 and 4 in each

of the deconvolutional layers, respectively.

16

Code of the encoder function can be seen in the code listing 3.1. The input of the en-

coder is a tensor of size𝐻 ×𝑊 ×3×4 bytes, where𝐻 is the height of the image,𝑊 is the

width, 3 is the number of color channels and 4 is the number of bytes required to store a

float32 number. The output is a tensor of size
⌈
𝐻

16

⌉
×
⌈
𝑊

16

⌉
× 𝑛𝑓 × 4 bytes, where 𝑛𝑓 is the

number of filters per layer. The slimmable_analysis_transform function builds the

encoder part of the slimmable autoencoder [22]. It processes an input tensor through

a series of convolutional layers and generalized divisive normalization (GDN) layers,

adapting the number of filters per layer dynamically based on the switch_list variable.

In this thesis, the used switch_list variable was an array [192, 144, 96, 72, 48],

and the total number of filters was set to 192. Function parameters include:

1. tensor_in - input tensor, which represents a batch of images,

2. switch_list - list of integers specifying the number of filters per layer to use at

each step, and

3. total_filters_num - total number of filters used in the layers before switching.

First, we initialize the tensor_encoder list in the line 3, in which the output tensors

are stored in. We then enter a for loop which iterates over all number of filters per layer.

Then we define layer_0 - the first convolutional layer with the SignalConv2D_slim

function (line 6). The first convolutional layer was initialized with 192 total filters used,

a kernel size of 9×9, downsampling was defined by a factor of 4 and the padding param-

eter was set to same_zeros, which ensures the output size matches the input size after

convolution. In the line 10, the aforementioned layer then processes the input tensor

with 3 input channels and _switch output channels - number of filters per layer previ-

ously specified in the switch_list array. We then apply a generalized divisive normal-

ization (GDN) layer (line 12), which helps with reducing redundancy in the activation

maps, and finish by padding the given tensor to maintain a consistent number of filters

across different stages. In the lines 16 − 19, the second convolutional layer is built. The

differences between it and the first layer are that it uses a smaller kernel size of 5 × 5,

downsamples by a factor of 2, and uses the _switch variable for both input and output

channels. The GDN and padding stay identical. The third convolutional layer (lines

26 − 29) is the same as the second one, but without a bias term. We then append the

17

output variable of the third convolutional layer tensor_gdn_2 to the tensor_encoder

list (line 33), by which we are storing the bottleneck features for each filter width. After

repeating this process for all the number of filters per layer specified, in the line 34 we

return the tensor_encoder list.

3.2 Decoder

The code of the decoder function can be seen in the code listing 3.2. The input of the

decoder is a tensor of size
⌈
𝐻

16

⌉
×
⌈
𝑊

16

⌉
× 𝑛𝑓 × 4 bytes, where nf is the number of filters

per layer and 4 is the number of bytes required to store a float32 number. The decoder

output is an tensor of size𝐻 ×𝑊 × 3 × 4 bytes. The slimmable_synthesis_transform

function builds the decoder part of a slimmable autoencoder [22]. It transforms the en-

coded tensors back into their original form, processing them through a series of trans-

posed convolutional (deconvolutional) layers and inverse generalized divisive normal-

ization (IGDN) layers, while dynamically adjusting the number of filters based on the

switch_list given. Function parameters include:

1. tensor_encoder - list of encoded tensors from the encoder, each corresponding to

different widths,

2. switch_list - list of integers specifying the number of filters per layer to use at

each step, and

3. total_filters_num - total number of filters used in the layers before switching.

The switch_list and total_filters_numwere identical to the ones used in the en-

coder function, i. e. the switch_list variable was an array [192, 144, 96, 72, 48],

and the total number of filters was set to 192. First, we initialize the tensor_decoder list

in the line 3, in which the output tensors are stored in. We then enter a for loop which

iterates over all number of filters per layer. Then we define the first inverse GDN layer

(lines 6−7) with the tensorflow_compression.GDN function (inverse parameter is set to

True). The aforementioned layer is applied to the element at the position 𝑖 of the encoded

tensor. We then pad the output tensor in the lines 8−9 to maintain a consistent number

of filters across different stages. After doing so, we define the first deconvolutional layer

using the SignalConv2D_slim function (lines 11 − 14). The first deconvolutional layer

18

1 def slimmable_synthesis_transform(tensor_encoder , switch_list ,

total_filters_num):

2 with tf.variable_scope("synthesis"):

3 tensor_decoder = list()

4 for i, _switch in enumerate(switch_list):

5 with tf.variable_scope("gdn_sy_0_ {:1d}".format(i)):

6 tensor_igdn_0 = tfc.GDN(inverse=True)

7 (tensor_encoder[i])

8 tensor_igdn_0 = tf.pad(tensor_igdn_0 , [[0,0], [0,0],

9 [0,0], [0,(total_filters_num - _switch)]], "CONSTANT")

10 with tf.variable_scope("layer_0",reuse=(i>0)):

11 layer = SignalConv2D_slim(

12 total_filters_num , (5, 5), corr=False ,

13 strides_up =2, padding="same_zeros",

14 use_bias=True , activation=None)

15 tensor = layer(tensor_igdn_0 , _switch , _switch)

16 with tf.variable_scope("gdn_sy_1_ {:1d}".format(i)):

17 tensor_igdn_1 = tfc.GDN(inverse=True)(tensor)

18 tensor_igdn_1 = tf.pad(tensor_igdn_1 , [[0,0], [0,0],

19 [0,0], [0,(total_filters_num - _switch)]], "CONSTANT")

20 with tf.variable_scope("layer_1",reuse=(i>0)):

21 layer = SignalConv2D_slim(

22 total_filters_num , (5, 5), corr=False ,

23 strides_up =2, padding="same_zeros",

24 use_bias=True , activation=None)

25 tensor = layer(tensor_igdn_1 , _switch , _switch)

26 with tf.variable_scope("gdn_sy_2_ {:1d}".format(i)):

27 tensor_igdn_2 = tfc.GDN(inverse=True)(tensor)

28 tensor_igdn_2 = tf.pad(tensor_igdn_2 , [[0,0], [0,0],

29 [0,0], [0,(total_filters_num - _switch)]], "CONSTANT")

30 with tf.variable_scope("layer_2",reuse=(i>0)):

31 layer = SignalConv2D_slim(

32 3, (9, 9), corr=False ,

33 strides_up =4, padding="same_zeros",

34 use_bias=True , activation=None)

35 tensor = layer(tensor_igdn_2 , _switch , 3)

36 tensor_decoder.append(tensor)

37 return tensor_decoder

Code 3.2: Decoder function.

19

was initialized with 192 total filters used, a kernel size of 5 × 5, upsampling by a factor

of 2 and the padding parameter was set to same_zeros, which ensures the output size

matches the input size after convolution. The aforementioned layer then processes the

input tensor in the line 15with the same number of input and output channels - number

of filters per layer in the current iteration. The second inverse GDN layer (identical to

the first one) is then built (line 17) and the tensor is passed through it. The output tensor

is then padded as described above (lines 18− 19) and passed through a second deconvo-

lutional layer in the line 25, identical to the first one. Lastly, the tensor is processed by

the third inverse GDN layer (line 27), padded and then processed by the third deconvolu-

tional layer (lines 28−35). The only distinction to the first two processes is that the third

deconvolutional layer has a kernel size of 9 × 9 and features upsampling by a factor of 4.

It outputs the tensor with 3 channels, which represent the RGB channels of the image.

We then append the output tensor to the tensor_decoder list in the line 36, by whichwe

are storing the reconstructed features for each filter width. After repeating this process

for all the number of filters per layer specified, we return the tensor_decoder list.

3.3 Training

One of the main parts of this thesis was implementing the MS-SSIM as the training met-

ric. The train loss for each of the reconstructed images is defined as a rate-distortion

optimization (RDO) problem 𝜆𝑖 (1−𝑀𝑆-𝑆𝑆𝐼𝑀(𝐱𝑖, 𝐫 𝑖))+𝑏𝑝𝑝𝑖, where 𝜆𝑖 is one of the pre-

defined regularization constants for each iteration,MS-SSIM is themulti-scale structural

similarity index measure of the original image 𝐱 and the reconstruction 𝐫. 𝑏𝑝𝑝𝑖 repre-

sents the bitrate measured by total number of bits divided by number of pixels or simply

bits per pixel. Instead of multiplying the 𝜆𝑖 with the mean square error, it is multiplied

with the term (1−𝑀𝑆-𝑆𝑆𝐼𝑀(𝐱𝑖, 𝐫 𝑖)). The goal is to maximize the MS-SSIM, so subtract-

ing it from 1 and then minimizing this value effectively maximizes the MS-SSIM. The

number of iterations is defined by the number of filters per layer of the autoencoder.

To explain howmulti-scale SSIMworks, we must first describe the single-scale SSIM

method. The following part of this section was in large part reproduced from [7]. Let

𝐱 = ı𝑥𝑖 ∣ 𝑖 = 1, 2,⋯ , 𝑁# and 𝐲 = ı𝑦𝑖 ∣ 𝑖 = 1, 2,⋯ , 𝑁# be two discrete non-negative sig-

nals that have been aligned with each other (e.g., two image patches extracted from the

20

same spatial location from two images being compared, respectively), and let 𝜇𝑥, 𝜎
2
𝑥

and 𝜎𝑥𝑦 be the mean of 𝐱, the variance of 𝐱, and the covariance of 𝐱 and 𝐲, respectively.

Approximately, 𝜇𝑥 and 𝜎𝑥 can be viewed as estimates of the luminance and contrast of

𝐱, and 𝜎𝑥𝑦 measures the the tendency of 𝐱 and 𝐲 to vary together, thus an indication

of structural similarity. In [24], the luminance, contrast and structure comparison mea-

sures were given as follows:

𝑙(𝐱,𝐲) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇2𝑥 + 𝜇2𝑦 + 𝐶1
, (3.4)

𝑐(𝐱,𝐲) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎2𝑥 + 𝜎2𝑦 + 𝐶2
, (3.5)

𝑠(𝐱,𝐲) =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
, (3.6)

where 𝐶1, 𝐶2 and 𝐶3 are small constants given by

𝐶1 = (𝐾1 𝐿)
2
, 𝐶2 = (𝐾2 𝐿)

2
and 𝐶3 =

𝐶2
2
. (3.7)

𝐿 is the dynamic range of the pixel values (𝐿 = 255 for 8 bits/pixel gray scale images),

and 𝐾1 ≪ 1 and 𝐾2 ≪ 1 are two scalar constants. The general form of the structural

similarity (SSIM) index between signal 𝐱 and 𝐲 is defined as:

SSIM(𝐱,𝐲) = [𝑙(𝐱,𝐲)]𝛼 ⋅ [𝑐(𝐱,𝐲)]𝛽 ⋅ [𝑠(𝐱,𝐲)]𝛾, (3.8)

where 𝛼, 𝛽 and 𝛾 are parameters to define the relative importance of the three com-

ponents. Specifically, if we set 𝛼 = 𝛽 = 𝛾 = 1, the resulting SSIM index is given by

SSIM(𝐱,𝐲) =

(
2𝜇𝑥𝜇𝑦 + 𝐶1

) (
2𝜎𝑥𝑦 + 𝐶2

)(
𝜇2𝑥 + 𝜇2𝑦 + 𝐶1

) (
𝜎2𝑥 + 𝜎2𝑦 + 𝐶2

) , (3.9)

21

Figure 3.1: Multi-scale structural similarity measurement system (reproduced from [7]). L: low-
pass filtering; 2 ↓ : downsampling by 2.

which satisfies the following conditions:

1. symmetry: SSIM(𝐱,𝐲) = SSIM(𝐲, 𝐱);

2. boundedness: SSIM(𝐱,𝐲) ≤ 1;

3. unique maximum: SSIM(𝐱,𝐲) = 1 if and only if 𝐱 = 𝐲.

Nowwe are ready to explain the multi-scale SSIM index. While a single-scale may be

appropriate only for specific settings, multi-scale method is a convenient way to incor-

porate image details at different resolutions. In the figure 3.1 we can see an illustration

of the multi-scale SSIM index system diagram. Taking the reference and distorted image

signals as the input, the system iteratively applies a low-pass filter and downsamples the

filtered image by a factor of 2. We index the original image as Scale 1, and the highest

scale as Scale𝑀, which is obtained after𝑀 − 1 iterations. At the 𝑗-th scale, the contrast

comparison Eq. (3.5) and the structure comparison Eq. (3.6) are calculated and denoted

as 𝑐𝑗(𝐱,𝐲) and 𝑠𝑗(𝐱,𝐲), respectively. The luminance comparison Eq. (3.4) is computed

only at Scale 𝑀 and is denoted as 𝑙𝑀(𝐱,𝐲). The overall SSIM evaluation is obtained by

combining the measurement at different scales using

MS-SSIM(𝐱,𝐲) = [𝑙𝑀(𝐱,𝐲)]
𝛼𝑀 ⋅

𝑀∏
𝑗=1

[
𝑐𝑗(𝐱,𝐲)

]𝛽𝑗 [
𝑠𝑗(𝐱,𝐲)

]𝛾𝑗
(3.10)

Similar to Eq. (3.8), the exponents 𝛼𝑀, 𝛽𝑗 and 𝛾𝑗 are used to adjust the relative im-

portance of different components. This multi-scale SSIM index definition satisfies the

three conditions given in the last section. It also includes the single-scale method as a

special case. In particular, a single-scale implementation for Scale 𝑀 applies the itera-

22

tive filtering and downsampling procedure up to Scale𝑀 and only the exponents 𝛼𝑀, 𝛽𝑀

and 𝛾𝑀 are given nonzero values. To simplify parameter selection, we let 𝛼𝑗 = 𝛽𝑗 = 𝛾𝑗

for all 𝑗’s. In addition, we normalize the cross-scale settings such that
∑𝑀

𝑗=1
𝛾𝑗 = 1. This

makes different parameter settings (including all single-scale and multi-scale settings)

comparable.

When training the model, the batch size is set to 8, and the size of image patches is

set to 240 pixels. There are 5 different numbers of filters per layer used: 192, 144, 96, 72

and 48. The model’s training is limited by the training steps, which were set to 2000. In

the code, a training step refers to one update of the model’s parameters using a single

batch of training images. The number of training steps is determined by the batch size

and the total number of training images. On the other hand, an epoch is defined as one

complete pass through the entire training dataset. The number of epochs indicates how

many times the model will see each training image during training. The relationship

between training steps and epochs depends on the batch size and the total number of

training images. Specifically, if we define 𝑠𝑝𝑒 as the number of training steps in one

epoch, tnfi as total number of training images and 𝑏 as batch size, we can calculate the

number of training steps in one epoch as follows:

spe =
tnfi

𝑏
(3.11)

Then we can calculate the number of epochs by dividing the number of training steps by

the number of training steps in one epoch. In this case, the number of training steps in

one epoch was 22.125 and the number of training epochs was 90.

23

4 Results

For the purposes of this thesis, a subset of images taken from a Kaggle “Human Faces”

image dataset [25] was used. The original dataset contained about 7200 images of PNG

and JPEG format. Being limited by available resources, the subset contained only 225

PNG images. The subset was divided into training and test parts. 177 images were used

for training of the autoencoder and the remaining 48 were used for testing the model.

To broaden the data diversity and test the robustness and versatility of the autoencoder,

another 4 hand drawn images of various artists ([26], [27], [28], [29]) were added to the

evaluation dataset, which meant that the number of test images was 52, and the total

number of images was 229. The autoencoder was trained using as NVIDIA TITAN Xp

graphics card, with 11.91 gibibytes of total memory. Machine learning libraries included

tensorflow (version 1.13) and tensorflow_compression (version 1.1). Asmentioned before,

there are 5 different numbers of filters per layer used: 192, 144, 96, 72 and 48. Respective

𝜆𝑖 are set to 2048, 1024, 512, 256 and 128. The higher the number of filters, the bigger the

regularization expression, to avoid overfitting of the autoencoder. Adam optimizer was

used for optimization of the training process, with the learning rate of 10−4.

4.1 Used Metrics

In the evaluation, the used metrics include mean squared error (MSE), peak signal-to-

noise ratio (PSNR), multi-scale structural similarity index measure (MS-SSIM) and in-

formation content in bits per pixel. Thesemetrics were calculated for every image recon-

struction. At the end of the evaluation process, we calculated the mean of these metrics

for each of the number of filters per layer used. As expected, we got the best results for

the highest number of filters. All of the used metrics will explained in more detail in

the following subsections of this chapter. Subsections 4.1.1 and 4.1.2 were in large part

24

reproduced from [30], and the subsection 4.1.3 from [7].

4.1.1 Mean Squared Error

Mean squared error (MSE) is a widely used metric for assessing image quality. As a full-

reference metric, lower MSE values indicate better image quality. MSE represents the

second moment of the error, encompassing both the estimator’s variance and bias. For

an unbiased estimator, MSE equals the variance. It shares the same units as the square of

the measured quantity, similar to variance. MSE also introduces the root-mean-square

error (RMSE) or root-mean-square deviation (RMSD), often referred to as the standard

deviation of the variance.

Additionally, MSE can be termed as mean squared deviation (MSD) of an estimator.

An estimator, in this context, is a method for measuring an unobserved image quantity.

MSEorMSDcalculates the average of the squared errors, where the error is the difference

between the estimator and the actual outcome. This metric considers the risk as the

expected value of the squared error loss, also known as quadratic loss.

Mean squared error (MSE) between two images such as 𝑔(𝑥, 𝑦) and �̂�(𝑥, 𝑦) is defined

as [31]

𝑀𝑆𝐸 =
1

𝑀𝑁

𝑀∑
𝑛=1

𝑁∑
𝑚=1

[�̂�(𝑛,𝑚) − 𝑔(𝑛,𝑚)]
2
, (4.1)

where 𝑔(𝑛,𝑚) represents the pixel value at position (𝑛,𝑚) in the first image and the

�̂�(𝑛,𝑚) represents the pixel value at position (𝑛,𝑚) in the second image. 𝑀 is the number

of rows (height) in the images and 𝑁 is the number of columns (width) in the images.

From the aforementioned Eq. 4.1, we can see that MSE is a representation of absolute

error.

4.1.2 Peak Signal to Noise Ratio

Peak signal to noise ratio (PSNR) measures the ratio between the maximum possible

signal power and the power of distorting noise affecting the signal quality. This ratio,

expressed in decibels (dB), is calculated to compare two images. PSNRuses a logarithmic

scale due to the wide dynamic range of signals, which varies between the smallest and

largest possible values based on their quality.

25

PSNR is a widely used technique for assessing the quality of reconstructed images in

lossy image compression codecs. In this context, the signal represents the original data,

and the noise signifies the error introduced by compression or distortion. The PSNR is

the approximate estimation to human perception of reconstruction quality compared to

the compression codecs.

For image and video compression, PSNR values typically range from 30 to 50 dB for

8-bit data and from 60 to 80 dB for 16-bit data. In wireless transmission, an accepted

quality loss range is around 20 to 25 dB [30].

Peak signal to noise ratio (PSNR) is defined by the formula

𝑃𝑆𝑁𝑅 = 10 log10 (𝑝𝑒𝑎𝑘𝑣𝑎𝑙2𝑀𝑆𝐸
) . (4.2)

Here, peakval (peak value) is themaximumpossible pixel value of the image in the image

data.

From Eq. 4.2, we can see that it is a representation of absolute error in dB.

4.1.3 Multi-scale Structural Similarity Index Measure

Structural Similarity IndexMeasure (SSIM) offers an alternative and complementary ap-

proach to image quality assessment by leveraging the human visual system’s adaptation

to structural information, and therefore a measure of structural similarity should be a

good approximation of perceptual image quality [32]. However, the SSIM index algo-

rithm introduced in [24] is a single-scale approach, which can be limiting because the

appropriate scale depends on viewing conditions, such as display resolution and view-

ing distance. To address this limitation, a multi-scale structural similarity (MS-SSIM)

method was introduced [7]. In MS-SSIM, parameters are calibrated to weigh the rela-

tive importance of different scales, providing a more robust assessment of image quality

across various viewing conditions. By considering multiple scales, MS-SSIM enhances

the accuracy and reliability of image quality measurements, making it a significant im-

provement over the single-scale SSIM method.

The MS-SSIM was calculated as it is specified in Eq. 3.10.

26

Number of filters per layer
192 144 96 72 48

MSE 188.2 215.1 432.4 476.8 684.3
PSNR 26.47 25.81 22.71 22.28 20.62

MS-SSIM 0.9639 0.9592 0.9412 0.9334 0.9136

Table 4.1: Quantitative results of the autoencoder on the train subset.

Number of filters per layer
192 144 96 72 48

MSE 215.5 243.2 521.6 574.4 773.0
PSNR 25.88 25.25 21.67 21.25 19.88

MS-SSIM 0.9582 0.9535 0.9276 0.9179 0.8976

Table 4.2: Quantitative results of the autoencoder on the test subset.

4.2 Quantitative Results

The quantitative output of the autoencoder is given in the form of three different previ-

ously described metrics - mean squared error (MSE), peak signal to noise ratio (PSNR)

andmulti-scale structural similarity indexmeasure (MS-SSIM). Themean value of afore-

mentioned metrics is calculated for every value of number of filters per layer used in the

autoencoder. In the table 4.1 we can see the results for the train subset and in the table

4.2 we can see the results for the test subset.

In the figures 4.1 and 4.2 we can see the distribution of the MS-SSIM metric on the

train and test subsets for each number of filters per layer used. The histograms of the

train subset are located on the left, while the histograms of the test subset are located on

the right of the figures.

4.3 Qualitative Results

A side-by-side overview of the original image and the reconstructed images is given,

along with the number of filters per layer used and the multi-scale structural similarity

index measure (MS-SSIM) metric, which is written beneath every reconstructed image.

The goal was to show how the autoencoder performs on images of people of diverse ages,

races and sexes. These results are presented in Figs. 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9.

27

Figure 4.1: Histograms of the MS-SSIM metric for train (left) and test (right) subsets

28

Figure 4.2: Histograms of the MS-SSIM metric for train (left) and test (right) subsets

29

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9636 MS-SSIM = 0.9629 MS-SSIM = 0.9559 MS-SSIM = 0.9476 MS-SSIM = 0.9219

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9616 MS-SSIM = 0.9584 MS-SSIM = 0.9380 MS-SSIM = 0.9263 MS-SSIM = 0.9043

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9783 MS-SSIM = 0.9736 MS-SSIM = 0.9616 MS-SSIM = 0.9561 MS-SSIM = 0.9457

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9363 MS-SSIM = 0.9305 MS-SSIM = 0.8959 MS-SSIM = 0.8858 MS-SSIM = 0.8702

Figure 4.3: Original and reconstructed images of various male faces.

30

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9561 MS-SSIM = 0.9512 MS-SSIM = 0.9271 MS-SSIM = 0.9192 MS-SSIM = 0.9067

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9260 MS-SSIM = 0.9130 MS-SSIM = 0.8679 MS-SSIM = 0.8462 MS-SSIM = 0.8089

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9520 MS-SSIM = 0.9464 MS-SSIM = 0.9035 MS-SSIM = 0.8939 MS-SSIM = 0.8650

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9714 MS-SSIM = 0.9681 MS-SSIM = 0.9527 MS-SSIM = 0.9447 MS-SSIM = 0.9271

Figure 4.4: Original and reconstructed images of various male faces.

31

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9601 MS-SSIM = 0.9565 MS-SSIM = 0.9428 MS-SSIM = 0.9342 MS-SSIM = 0.9018

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9374 MS-SSIM = 0.9303 MS-SSIM = 0.8454 MS-SSIM = 0.8293 MS-SSIM = 0.8093

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9620 MS-SSIM = 0.9588 MS-SSIM = 0.9528 MS-SSIM = 0.9445 MS-SSIM = 0.9284

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9731 MS-SSIM = 0.9681 MS-SSIM = 0.9154 MS-SSIM = 0.9035 MS-SSIM = 0.8875

Figure 4.5: Original and reconstructed images of various male faces.

32

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9573 MS-SSIM = 0.9507 MS-SSIM = 0.9035 MS-SSIM = 0.8909 MS-SSIM = 0.8664

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9466 MS-SSIM = 0.9389 MS-SSIM = 0.9221 MS-SSIM = 0.9152 MS-SSIM = 0.9011

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9700 MS-SSIM = 0.9630 MS-SSIM = 0.9348 MS-SSIM = 0.9231 MS-SSIM = 0.8982

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9667 MS-SSIM = 0.9666 MS-SSIM = 0.9555 MS-SSIM = 0.9493 MS-SSIM = 0.9332

Figure 4.6: Original and reconstructed images of various female faces.

33

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9664 MS-SSIM = 0.9612 MS-SSIM = 0.9353 MS-SSIM = 0.9256 MS-SSIM = 0.9048

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9420 MS-SSIM = 0.9360 MS-SSIM = 0.9020 MS-SSIM = 0.8898 MS-SSIM = 0.8662

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9730 MS-SSIM = 0.9687 MS-SSIM = 0.9472 MS-SSIM = 0.9376 MS-SSIM = 0.9263

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9345 MS-SSIM = 0.9273 MS-SSIM = 0.8983 MS-SSIM = 0.8844 MS-SSIM = 0.8579

Figure 4.7: Original and reconstructed images of various female faces.

34

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9694 MS-SSIM = 0.9653 MS-SSIM = 0.9383 MS-SSIM = 0.9310 MS-SSIM = 0.9199

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9641 MS-SSIM = 0.9584 MS-SSIM = 0.9343 MS-SSIM = 0.9236 MS-SSIM = 0.9046

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9622 MS-SSIM = 0.9578 MS-SSIM = 0.9165 MS-SSIM = 0.9073 MS-SSIM = 0.8949

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9726 MS-SSIM = 0.9670 MS-SSIM = 0.9498 MS-SSIM = 0.9429 MS-SSIM = 0.9274

Figure 4.8: Original and reconstructed images of various female faces.

35

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9341 MS-SSIM = 0.9306 MS-SSIM = 0.9026 MS-SSIM = 0.8900 MS-SSIM = 0.8616

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9584 MS-SSIM = 0.9528 MS-SSIM = 0.9416 MS-SSIM = 0.9295 MS-SSIM = 0.9061

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9453 MS-SSIM = 0.9366 MS-SSIM = 0.9119 MS-SSIM = 0.8965 MS-SSIM = 0.8617

original image 192 filters 144 filters 96 filters 72 filters 48 filters

MS-SSIM = 0.9601 MS-SSIM = 0.9596 MS-SSIM = 0.9460 MS-SSIM = 0.9375 MS-SSIM = 0.9202

Figure 4.9: Original and reconstructed images of hand drawn male and female faces.

36

5 Discussion

The quantitative results presented in the tables 4.1 and 4.2 are in accordance with the

expectations. It can clear that the number of filters in each layer impacts the performance

of the autoencoder.

The MS-SSIM values, which measure the perceptual quality of the images, also de-

crease as the number of filters is reduced. For 192 filters, the MS-SSIM average value is

0.9639 on the training set and 0.9582 on the test set. With only 48 filters, these values

drop to 0.9136 on the training set and 0.8976 on the test set. The positive aspect is that the

difference in MS-SSIM mean values is not substantial and that they remain acceptable,

even for the model with 48 filters per layer. For most of the images across all number of

filters, theMS-SSIM values stay above 0.9, which correlates to good image reconstruction

quality. Only for 72 and 48 filters per layer can we see an increase in number of images

with MS-SSIM values below 0.9, which could be an indicator of poorer perceptual qual-

ity.

Overall, the trend across all metrics (MSE, PSNR, and MS-SSIM) clearly indicates

that using a higher number of filters (192) in the autoencoder leads to better image re-

construction quality. Conversely, reducing the number of filters to 48 compromises the

model’s ability to reconstruct the images accurately. This suggests that the model with

more filters has a greater capacity to capture and preserve the essential features of the

images during the compression process.

Asmentioned before, the difference in latent space sizewhenusing 48filters per layer

vs. using 192 filters was significant. For 48 filters per layer, the latent space was 4 times

smaller in size, which is a good indicator of achieved compression.

As for the qualitative results presented in the figures 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9,

37

it can be clearly seen that the quality of the image reconstruction diminishes with the

decrease in the number of filters per layer. The images reconstructed using 192 and 144

filters per layer are structurally similar to the original images in luminance, contrast and

structure. There are no significant changes in image blur across all number of filters.

Also, another positive aspect is that even when 48 filters per layer are used, we can ev-

idently recognize the structural similarity of the reconstructed and the original images.

In the autoencoder’s architecture, the number of filters per layer impacts the ability to

capture and reproduce the detailed features of the input images. The reconstructions

with 192 and 144 filters per layer preserve the color information, while those with 96, 72

and 48 filters lose this information, resulting in grayscale images. Possible explanations

of this could be the capacity of the model, size of the training dataset or missing of the

chrominance parameter in the MS-SSIM metric.

With a higher number of filters per layer, the autoencoder has a greater capacity to

learn and retain the complex patterns and features necessary to reconstruct the color

information in the images. The additional filters provide more parameters and a richer

representation of the input data. However, when the number of filters is reduced, the

model’s capacity to capture and retain detailed color information diminishes. Another

factor is the size of the training data. If the model was trained on bigger image datasets,

it could improve it’s ability to reconstruct images.

Further improvements in model’s ability to preserve the color information could be

made by incorporating a metric which measures chrominance in the training loss func-

tion. One such metric is the chroma difference derived from the CIELAB color space

[33]. The CIE has developed a uniform color space where the perceived color difference

can be estimated between any two colors (𝐿∗1 , 𝑎
∗
1 , 𝑏

∗
1) and (𝐿

∗
2 , 𝑎

∗
2 , 𝑏

∗
2). Chroma difference

is then calculated as

∆𝐶∗
𝑎𝑏
= 𝐶∗

𝑎𝑏,2
− 𝐶∗

𝑎𝑏,1
, (5.1)

where

𝐶∗
𝑎𝑏
=
√
(𝑎∗)2 + (𝑏∗)2. (5.2)

38

The training loss function could then be equal to

𝜆𝑖1 (1 −𝑀𝑆-𝑆𝑆𝐼𝑀(𝐱𝑖, 𝐫 𝑖)) + 𝑏𝑝𝑝𝑖 + 𝜆𝑖2 ∆𝐶
∗
𝑎𝑏
. (5.3)

39

6 Conclusion

In this thesis, we investigated the effectiveness of slimmable compressive autoencoders

for image compression, particularly focusing on their performance when trained using

the multi-scale structural similarity index measure. Our experiments utilized a subset of

human face images from a publicly available Kaggle “Human Faces” dataset [25], and

we assessed the autoencoders with different numbers of filters per layer. The results

indicate that the use of MS-SSIM as a training metric improves the perceptual quality of

the reconstructed images compared to traditional metrics like mean squared error.

We observed that higher filter counts per layer generally led to better image recon-

structions, both in terms of quantitative metrics and visual assessment. The use of 192,

144, 96, 72 and 48 filters per layer provided a comprehensive understanding of the trade-

offs between model complexity and reconstruction quality.

Possible improvements of the model include increasing the number of filters per

layer, training the model on a larger dataset and the inclusion of a metric which mea-

sures chrominance (e.g. chroma difference) in the training loss function.

Ourfindings suggest that slimmable compressive autoencoders hold substantial promise

for practical image compression applications, offering a flexible and effective approach

to balancing compression rate and image quality. Future work could explore the applica-

tion of these autoencoders to different types of images and further refine the architectures

to enhance performance.

40

References

[1] J. L. McClelland, D. E. Rumelhart, P. R. Group et al., Parallel distributed processing.

MIT press Cambridge, MA, 1986, vol. 2.

[2] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in Pro-

ceedings of ICMLworkshop onunsupervised and transfer learning. JMLRWorkshop

and Conference Proceedings, 2012, pp. 37–49.

[3] G. E. Hinton and J. McClelland, Learning representations by recirculation, 1987.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:

//www.deeplearningbook.org.

[5] S. Dhawan, “A review of image compression and comparison of its algorithms,”

International Journal of electronics & Communication technology, vol. 2, no. 1, pp.

22–26, 2011.

[6] F. Yang, L. Herranz, Y. Cheng, and M. G. Mozerov, “Slimmable compressive au-

toencoders for practical neural image compression,” inProceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, pp. 4998–5007.

[7] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for im-

age quality assessment,” in The Thrity-Seventh Asilomar Conference on Signals, Sys-

tems & Computers, 2003, vol. 2. Ieee, 2003, pp. 1398–1402.

[8] A. Maćkiewicz and W. Ratajczak, “Principal components analysis (pca),” Comput-

ers & Geosciences, vol. 19, no. 3, pp. 303–342, 1993.

41

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[9] G. N. Karagoz, A. Yazici, T. Dokeroglu, and A. Cosar, “Analysis of multiobjective

algorithms for the classification of multi-label video datasets,” IEEE Access, vol. 8,

pp. 163 937–163 952, 2020.

[10] S. Rifai, P. Vincent, X.Muller, X. Glorot, and Y. Bengio, “Contractive auto-encoders:

Explicit invariance during feature extraction,” in Proceedings of the 28th interna-

tional conference on international conference on machine learning, 2011, pp. 833–

840.

[11] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising auto-encoders

as generative models,” Advances in neural information processing systems, vol. 26,

2013.

[12] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural networks,” arXiv

preprint arXiv:1812.08928, 2018.

[13] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image compres-

sion,” arXiv preprint arXiv:1611.01704, 2016.

[14] ——, “Density modeling of images using a generalized normalization transforma-

tion,” arXiv preprint arXiv:1511.06281, 2015.

[15] R. H. Wiggins, H. C. Davidson, H. R. Harnsberger, J. R. Lauman, and P. A. Goede,

“Image file formats: past, present, and future,” Radiographics, vol. 21, no. 3, pp.

789–798, 2001.

[16] G. Vijayvargiya, S. Silakari, and R. Pandey, “A survey: various techniques of image

compression,” arXiv preprint arXiv:1311.6877, 2013.

[17] H. Bandyopadhyay, “Autoencoders in deep learning: Tutorial & use cases [2023],”

https://www.v7labs.com/blog/autoencoders-guide#:~:text=Undercomplete%

20Autoencoders,-An%20undercomplete%20autoencoder&text=The%20primary%

20use%20of%20autoencoders,of%20the%20network%20when%20needed., ac-

cessed: 2023-05-01.

[18] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Deep convolutional autoencoder-

based lossy image compression,” in 2018 Picture Coding Symposium (PCS). IEEE,

42

https://www.v7labs.com/blog/autoencoders-guide#:~:text=Undercomplete%20Autoencoders,-An%20undercomplete%20autoencoder&text=The%20primary%20use%20of%20autoencoders,of%20the%20network%20when%20needed.
https://www.v7labs.com/blog/autoencoders-guide#:~:text=Undercomplete%20Autoencoders,-An%20undercomplete%20autoencoder&text=The%20primary%20use%20of%20autoencoders,of%20the%20network%20when%20needed.
https://www.v7labs.com/blog/autoencoders-guide#:~:text=Undercomplete%20Autoencoders,-An%20undercomplete%20autoencoder&text=The%20primary%20use%20of%20autoencoders,of%20the%20network%20when%20needed.

2018, pp. 253–257.

[19] L. Zhou, C. Cai, Y. Gao, S. Su, and J. Wu, “Variational autoencoder for low bit-rate

image compression,” in Proceedings of the IEEEConference on Computer Vision and

Pattern Recognition Workshops, 2018, pp. 2617–2620.

[20] Y. Choi, M. El-Khamy, and J. Lee, “Variable rate deep image compression with a

conditional autoencoder,” in Proceedings of the IEEE/CVF International Conference

on Computer Vision, 2019, pp. 3146–3154.

[21] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compression with

compressive autoencoders,” in International conference on learning representations,

2022.

[22] F. Yang, L. Herranz, Y. Cheng, and M. G. Mozerov, “Slimmable compressive au-

toencoders for practical neural image compression,” https://github.com/FireFYF/

SlimCAE, 2021.

[23] P. Antoniadis, “Neural networks: Strided convolutions,” https://www.baeldung.

com/cs/neural-nets-strided-convolutions, accessed: 2024-05-16.

[24] Z.Wang, A. C. Bovik, H. R. Sheikh, andE. P. Simoncelli, “Image quality assessment:

from error visibility to structural similarity,” IEEE transactions on image processing,

vol. 13, no. 4, pp. 600–612, 2004.

[25] A. Gupta, “Human faces,” https://www.kaggle.com/datasets/ashwingupta3012/

human-faces/data, accessed: 2024-05-01.

[26] Dreameraddict, “Portrait of a woman,” https://in.pinterest.com/pin/

617978380117829646/, accessed: 2024-05-15.

[27] V. Rio, “Portrait of Georges Brassens,” https://www.pinterest.com/pin/

34480753390639484/, accessed: 2024-05-15.

[28] Unknown, “Portrait of a man,” https://www.pinterest.com/pin/

34480753390639471/, accessed: 2024-05-15.

43

https://github.com/FireFYF/SlimCAE
https://github.com/FireFYF/SlimCAE
https://www.baeldung.com/cs/neural-nets-strided-convolutions
https://www.baeldung.com/cs/neural-nets-strided-convolutions
https://www.kaggle.com/datasets/ashwingupta3012/human-faces/data
https://www.kaggle.com/datasets/ashwingupta3012/human-faces/data
https://in.pinterest.com/pin/617978380117829646/
https://in.pinterest.com/pin/617978380117829646/
https://www.pinterest.com/pin/34480753390639484/
https://www.pinterest.com/pin/34480753390639484/
https://www.pinterest.com/pin/34480753390639471/
https://www.pinterest.com/pin/34480753390639471/

[29] H. Le Fur, “Portrait of Serge Gainsbourg,” https://www.pinterest.com/pin/

34480753390639471/, accessed: 2024-05-15.

[30] U. Sara, M. Akter, and M. S. Uddin, “Image quality assessment through fsim, ssim,

mse and psnr—a comparative study,” Journal of Computer and Communications,

vol. 7, no. 3, pp. 8–18, 2019.

[31] J. Søgaard, L. Krasula, M. Shahid, D. Temel, K. Brunnström, andM. Razaak, “Appli-

cability of existing objectivemetrics of perceptual quality for adaptive video stream-

ing,” Electronic Imaging, vol. 28, pp. 1–7, 2016.

[32] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE signal processing

letters, vol. 9, no. 3, pp. 81–84, 2002.

[33] J. Penczek, P. A. Boynton, and J. D. Splett, “Color error in the digital camera image

capture process,” Journal of digital imaging, vol. 27, pp. 182–191, 2014.

44

https://www.pinterest.com/pin/34480753390639471/
https://www.pinterest.com/pin/34480753390639471/

Abstract

Autoencoders for Image Compression

Karlo Kada

This thesis explores the use of slimmable compressive autoencoders for the compres-

sion of human face images. The thesis investigates the performance of autoencoderswith

varying numbers of filters per layer, focusing on training using the multi-scale structural

similarity indexmeasure (MS-SSIM) instead of traditionalmetrics like themean squared

error (MSE). By utilizing a subset of the “Human Faces” dataset published onKaggle, the

autoencoder’s ability to produce high-quality image reconstructions is evaluated both

quantitatively and qualitatively, with a particular emphasis on perceptual image quality.

The findings demonstrate that MS-SSIM is an adequate metric for training autoencoders

for image compression. Possible enhancement of the model could be the inclusion of a

chrominance term in the training loss function to facilitate better color reproduction.

Keywords: autoencoders; image compression; convolutional neural networks

45

Sažetak

Autoenkoderi za kompresiju slike

Karlo Kada

Ovaj rad istražuje upotrebu stanjivajućih autoenkodera za kompresiju slika ljudskog

lica. Rad istražuje performanse autoenkodera s različitim brojevima filtera po sloju, fo-

kusirajući se na trening autoenkodera korištenjem više-razinskog indeksa strukturalne

sličnosti (MS-SSIM) umjesto tradicionalnih metoda poput srednje kvadratne pogreške

(MSE). Korištenjem testnog podskupa uzetog iz skupa “Human Faces” objavljenog na

Kaggleu, evaluira se sposobnost autoenkodera da proizvede rekonstrukcije slika visoke

kvalitete, s posebnim naglaskom na percipiranu kvalitetu slike. Rezultati pokazuju da

je MS-SSIM adekvatna metrika za treniranje autoenkodera za kompresiju slika. Jedno

od mogućih poboljšanja ovog modela je proširivanje funkcije gubitka za učenje modela

mjerom krominancije kako bi se pospješila reprodukcija boje.

Ključne riječi: autoenkoderi; kompresija slike; konvolucijske neuronske mreže

46

	Introduction
	Types of Autoencoders
	Undercomplete Autoencoders
	Sparse Autoencoders
	Contractive Autoencoders
	Slimmable Compressive Autoencoders
	Autoencoders for Image Compression

	Materials and Methods
	Encoder
	Decoder
	Training

	Results
	Used Metrics
	Mean Squared Error
	Peak Signal to Noise Ratio
	Multi-scale Structural Similarity Index Measure

	Quantitative Results
	Qualitative Results

	Discussion
	Conclusion
	References
	Abstract
	Sažetak

