
Detekcija orijentiranih objekata u termovizijskim
zračnim slikama s dronova temeljena na sintetičkim
podacima i neuronskim mrežama

Jurasović, Andreja

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet 
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:697473

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-26

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of 
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:697473
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:12379
https://repozitorij.unizg.hr/islandora/object/fer:12379
https://dabar.srce.hr/islandora/object/fer:12379


UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 79

ORIENTED OBJECT DETECTION IN THERMAL AERIAL

IMAGES FROM DRONES BASED ON SYNTHETIC DATA AND

NEURAL NETWORKS

Andreja Jurasović

Zagreb, June 2024

 



UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 79

ORIENTED OBJECT DETECTION IN THERMAL AERIAL

IMAGES FROM DRONES BASED ON SYNTHETIC DATA AND

NEURAL NETWORKS

Andreja Jurasović

Zagreb, June 2024

 



UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 04 March 2024

MASTER THESIS ASSIGNMENT No. 79

Student: Andreja Jurasović (0036525063)

Study: Information and Communication Technology

Profile: Control Systems and Robotics

Mentor: prof. Stjepan Bogdan

Title: Oriented Object Detection in Thermal Aerial Images from Drones Based On
Synthetic Data and Neural Networks

Description:

The first phase of work on the thesis is dedicated to review of the literature on thermal imaging data sets from
an aerial perspective and, the literature on neural networks for oriented objects. After that, the 3D thermal
model of the multirotor unmanned aerial vehicle should be devised. This model should be used for generation of
a diverse set of data using existing automated procedures, which should be combined with the thermal
backgrounds recorded from the aerial vehicle using a thermal camera. In the next step, it is necessary to
generate annotations in the form of an oriented bounding rectangle and to combine synthetic annotations with
background image annotations. The newly created data set should be used for training of neural networks for
the detection of oriented objects, followed by an investigation on the ratio of accuracy and performance speed
of neural networks. In the last phase of work on the thesis, it is necessary to collect a smaller set of real data,
which contains all the classes included in this work, and to validate neural networks on that set.

Submission date: 28 June 2024

 



SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 4. ožujka 2024.

DIPLOMSKI ZADATAK br. 79

Pristupnica: Andreja Jurasović (0036525063)

Studij: Informacijska i komunikacijska tehnologija

Profil: Automatika i robotika

Mentor: prof. dr. sc. Stjepan Bogdan

Zadatak: Detekcija orijentiranih objekata u termovizijskim zračnim slikama s dronova
temeljena na sintetičkim podacima i neuronskim mrežama

Opis zadatka:

U prvoj fazi rada na zadatku potrebno je napraviti pregled literature o termovizijskim skupovima podatka iz
zračne perspektive i neuronskim mrežama za orijentirane objekte. Nakon toga je potrebno u 3D alatu za
računalnu grafiku modelirati termalni model multirotorske bespilotne letjelice te koristeći postojeće
automatizirane postupke, generirati raznovrsan skup podataka, koji se treba spojiti s termalnim pozadinama
snimljenim s letjelice pomoću termalne kamere. U sljedećem koraku potrebno je generirati anotacije u obliku
orijentiranog omeđujućeg pravokutnika te spojiti sintetičke anotacije s anotacijama pozadinskih slika. Na
novonastalom skupu podataka trenirati neuronske mreže za detekciju orijentiranih objekata te istražiti omjer
točnosti i brzine izvođenja neuronskih mreža. U zadnjoj fazi rada na zadatku potrebno je prikupiti manji skup
realnih podataka, koji sadrži sve klase obuhvaćene ovim radom te validirati neuronske mreže na tom skupu.

Rok za predaju rada: 28. lipnja 2024.



UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 79

ORIENTED OBJECT DETECTION IN THERMAL
AERIAL IMAGES FROM DRONES BASED ON
SYNTHETIC DATA AND NEURAL NETWORKS

Andreja Jurasović

Zagreb, July, 2024



SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

DIPLOMSKI RAD br. 79

ORIJENTIRANA DETEKCIJA OBJEKATA NA
TERMALNIM SLIKAMA IZ BESPILOTNIH
LETJELICA NA TEMELJU SINTETIČKIH
PODATAKA I NEURONSKIH MREŽA

Andreja Jurasović

Zagreb, srpanj, 2024.



UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 04 March 2024

MASTER THESIS ASSIGNMENT No. 79

Student: Andreja Jurasović (0036525063)

Study: Information and Communication Technology

Profile: Control Systems and Robotics

Mentor: prof. Stjepan Bogdan

Title: Oriented Object Detection in Thermal Aerial Images from Drones Based On
Synthetic Data and Neural Networks

Description:

The first phase of work on the thesis is dedicated to review of the literature on thermal imaging data sets from
an aerial perspective and, the literature on neural networks for oriented objects. After that, the 3D thermal
model of the multirotor unmanned aerial vehicle should be devised. This model should be used for generation of
a diverse set of data using existing automated procedures, which should be combined with the thermal
backgrounds recorded from the aerial vehicle using a thermal camera. In the next step, it is necessary to
generate annotations in the form of an oriented bounding rectangle and to combine synthetic annotations with
background image annotations. The newly created data set should be used for training of neural networks for
the detection of oriented objects, followed by an investigation on the ratio of accuracy and performance speed
of neural networks. In the last phase of work on the thesis, it is necessary to collect a smaller set of real data,
which contains all the classes included in this work, and to validate neural networks on that set.

Submission date: 28 June 2024

 



SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 4. ožujka 2024.

DIPLOMSKI ZADATAK br. 79

Pristupnica: Andreja Jurasović (0036525063)

Studij: Informacijska i komunikacijska tehnologija

Profil: Automatika i robotika

Mentor: prof. dr. sc. Stjepan Bogdan

Zadatak: Detekcija orijentiranih objekata u termovizijskim zračnim slikama s dronova
temeljena na sintetičkim podacima i neuronskim mrežama

Opis zadatka:

U prvoj fazi rada na zadatku potrebno je napraviti pregled literature o termovizijskim skupovima podatka iz
zračne perspektive i neuronskim mrežama za orijentirane objekte. Nakon toga je potrebno u 3D alatu za
računalnu grafiku modelirati termalni model multirotorske bespilotne letjelice te koristeći postojeće
automatizirane postupke, generirati raznovrsan skup podataka, koji se treba spojiti s termalnim pozadinama
snimljenim s letjelice pomoću termalne kamere. U sljedećem koraku potrebno je generirati anotacije u obliku
orijentiranog omeđujućeg pravokutnika te spojiti sintetičke anotacije s anotacijama pozadinskih slika. Na
novonastalom skupu podataka trenirati neuronske mreže za detekciju orijentiranih objekata te istražiti omjer
točnosti i brzine izvođenja neuronskih mreža. U zadnjoj fazi rada na zadatku potrebno je prikupiti manji skup
realnih podataka, koji sadrži sve klase obuhvaćene ovim radom te validirati neuronske mreže na tom skupu.

Rok za predaju rada: 28. lipnja 2024.



I would like to thank my family and friends who supported me during my master studies,

especially Josip and Nika for their greatest support. Thanks to the mentor, prof. Ph.D.

Stjepan Bogdan and assistant Antonella Barišić Kulaš, without whom this work would

not have been possible.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Thermal imaging datasets from an aerial perspective . . . . . . . . . . . . 3

1.2 Neural networks for object detection . . . . . . . . . . . . . . . . . . . . . 4

2 The Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Background images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Synthetic Dataset of Urban Environment . . . . . . . . . . . . . . 7

2.1.2 Synthetic Dataset of Rural Environment . . . . . . . . . . . . . . . 8

2.2 Thermal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Thermal Drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Thermal Deer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Rendered Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Mesh Detection and Bounding Box . . . . . . . . . . . . . . . . . . . . . . 24

4 Neural Networks Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Training HIT-UAV10 dataset on axis-aligned bounding boxes . . . . . . . 37

5.2 Training HIT-UAV10 dataset on oriented bounding boxes . . . . . . . . . 46

5.3 Training MONET dataset on oriented bounding boxes . . . . . . . . . . . 56

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Sažetak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2



1 Introduction

1.1 Thermal imaging datasets from an aerial perspec-

tive

Thermal images, also known as thermograms, are visual displays of the amount of in-

frared energy emitted, transmitted, and reflected by objects. The human eye and conven-

tional cameras capture only visible light, while infrared energy is part of the electromag-

netic spectrum. It is characterized by wavelengths longer than visible light but shorter

thanmicrowave radiation. Thermal cameras detect this energy and convert it to an image

that displays the temperature distribution of a scene, assigning different temperatures to

various color codes. These are typically seen as grayscale or color maps. Thermal im-

ages are visualization of scenes invisible to the naked eye, which is particularly useful

in low-light or obscured conditions. In scenarios where visibility is diminished, such as

during nighttime or through smoke and fog, capturing images using only visible light is

problematic. This is exactly where thermal imaging gives remarkable results. Thermal

imaging is based on the principle that all objects above absolute zero emit thermal in-

frared radiation as a function of their temperature. This principle is based onPlanck’s law

of blackbody radiation, which describes the spectral density of electromagnetic radiation

emitted by a black body in thermal equilibrium at a given temperature. Thermal cam-

eras are equipped with sensors that detect this radiation and translate it into an electrical

signal, which is then processed to form a digital image. Each pixel of a thermal image

corresponds to the infrared radiation from a specific part of the imaged area which trans-

lates into a temperature value. This makes thermal images particularly useful for detect-

ing variations in temperature across a scene. Aerial surveillance technologies specifi-

cally may give vital information frequently unavailable through traditional means and

so they have become essential to modern security, search and rescue, environmental
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monitoring and military activities. Unmanned aerial vehicles (UAVs) offer a versatile

and dynamic approach for capturing data — they excel in covering large areas rapidly,

accessing hard-to-reach locations, reducing human risk in dangerous environments and

delivering real-time data for quick decision-making. Integration of thermal imaging into

drones amplifies their effectiveness, enabling the detection of heat signatures from above

with precision and reliability. By giving law enforcement and emergency response teams

a tool that can function around-the-clock in a variety of environments, this combination

enhances situational awareness and also broadens their operational capabilities as well.

Figure 1.1: Example of thermal image

Figure 1.2: Example of thermal image

1.2 Neural networks for object detection

Neural networks atre a subset of machine learning models. They have already shown an

outstanding performance on image classification tasks so it was logical to take further

step and use them for object detection. This extends not only to classifying, but also

localizing different class objects.

In context of object detection, neural networks can be categorized into two main

types: one-stage detectors and two-stage detectors. One-stage detectors simplify the pro-
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cess of object detection by directly predicting the bounding boxes and class probabilities

in one evaluation from full images. This is how they optimize the speed and efficiency of

the detection. SSD (Single ShotMultibox Detector) is a one-staged detector that achieves

a good balance between speed and accuracy. To predict the object at multiple scales and

aspect ratios, it uses a series of convolutional layers at different scales. DETR (Detec-

tion Transformer) treats object detection as a direct set prediction problem. The trans-

former that model uses is for doing global reasoning across the entire image and outputs

a fixed number of predictions, where each prediction directly corresponds to a final de-

tected object. DETR eliminates the need for many hand-designed components, which

are common in other detectors. It is used for its simplicity and effectiveness, especially

in handling complex scenes with a clear global view. On the other side, two-stage de-

tectors process the detection in two phases. The first one is region proposal, where a set

of candidates for object’s bounding boxes is generated. Those candidates are called ’re-

gion proposals’ because they indicate areas of the image where there is a high likelihood

of containing an object. The second phase is classification and bounding box regres-

sion, where each proposed region is analyzed to find out the class of the object contained

within it and to refine the bounding box coordinates for a precise fit. The example of a

two-stage detector is a faster R-CNN with its high accuracy. It builds on earlier models

like R-CNN and Fast R-CNN with the RPN (Region Proposal Network) which is a fully

convolutional network that predicts object bounds and object’s scores at each position. It

is trained end-to-end to generate high-quality region proposals, which are then used by a

Fast R-CNNdetector for the final classification and bounding box regression. Thismodel

can be slower than one-stage detectors because of the two-steps processing. However, it

is highly accurate and robust, especially in dealing with complex images where precise

detection is crucial, for example in inspection systems or medical imaging. On the other

hand, one-stage detectors are faster, which makes suitable them for applications requir-

ing real-time performance like autonomous driving or video surveillance. DETR offers

a more unified approach with potentially lower engineering complexity and better scal-

ability for different tasks.

Over the years, this area has seen significant advancements, driven by improvements

in neural network architectures, training methodologies, and the availability of large-

scale annotated datasets. YOLO (You Only Look Once) framework further revolution-
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ized object detection by framing it as a single regression problem, straight from image pix-

els to bounding box coordinates and class probabilities. Its iterations, especially YOLOv3

and YOLOv4, have focused on improving accuracy, speed, and the ability to detect small

objects. Great strides in this field were achieved through architectural tweaks and ad-

vanced training techniques. With the challenge of obtaining large, annotated datasets,

several studies have explored the use of synthetic data generation and data augmenta-

tion techniques to expand training datasets artificially. This enhances the diversity of

training samples and, even more vital, helps in training more robust models capable of

generalizing well across different real-world scenarios.
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2 The Datasets

2.1 Background images

2.1.1 Synthetic Dataset of Urban Environment

TheHIT-UAV10dataset represents a development in thefield of unmanned aerial vehicle

(UAV)-based object detection, focusing on high-altitude infrared thermal imaging. This

dataset comprises 2,898 carefully collected infrared thermal images, which have been

extracted from a larger pool of 43,470 frames spanning hundreds of videos. These im-

ages have been captured across a wide variety of urban and semi-urban environments:

schools, parking lots, roads and playgrounds, ensuring a broad representation of real-

world scenarios. The HIT-UAV10 dataset is designed to enhance research in UAV-based

object detection and so it records crucial flight information for each captured image.

This information includes the UAV’s flight altitude, camera perspective, the intensity of

daylight at the time of capture, and the exact date of the image shoot. Such compre-

hensive metadata is important for exploring the impact of varying flight conditions on

the accuracy of object detection algorithms. That is why this dataset covers flight alti-

tudes ranging from 60 to 130 meters and camera angles from 30 to 90 degrees, allowing

researchers to identify the influence of these factors on the detection efficacy. Oriented

bounding boxes more tightly encloses object so that less backgrund is contained in the

bounding box, therefore location is more precise and gives another information about

the object orientation in the two dimensions. Oriented bounding boxes are particularly

useful for precise object localization in complex aerial views. In these cases, objects may

not only overlap but also appear at various angles, making standard bounding boxes less

effective. The objects annotated in this dataset include high-frequency urban elements

such as persons, cars, bicycles and other vehicles. These are chosen for their relevance

to typical UAV operational tasks such as traffic monitoring, urban planning and emer-
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gency response. Annotations have been applied to ensure high reliability in object iden-

tification, crucial for training robust neural networks. Moreover, the data was captured

across various times of day and under varying light conditions, providing the dataset a

robust foundation for developing object detection systems effective under a wide range

of operational scenarios and diverse conditions. This provides a particular advantage to

applications that require nighttime operation, where infrared thermal imaging is indis-

pensable. The HIT-UAV10 dataset enables the development and refinement of advanced

object detection algorithms by providing a rich source of high-quality, annotated thermal

images.

Figure 2.1: Background image at 30 degrees

Figure 2.2: Background image at 70 degrees

2.1.2 Synthetic Dataset of Rural Environment

TheMONET dataset is a multimodal drone thermal dataset designed for studying object

localization and behavior in rural environments. This dataset consists of approximately

53,000 frames enriched with 162,000 manually annotated bounding boxes, highlighting

human and vehicle activities captured through a thermal camera mounted on a drone.

The recordings encapsulate two distinct rural settings, eachwith unique scene structures
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and cluttered backgrounds providing a challenging diversity for object detectionmodels.

Two distinct rural settings are two groups of images. One group contains images taken

in environment close to the rural road and other group contains images taken in envi-

ronment close to the runway. One idea of the thesis is to easily compare two generated

datasets, so not all thermal images from the MONET dataset were used. Thermal im-

ages that were used were the ones taken under the camera angles from 30 to 90 degrees,

matching the camera angles from the HIT-UAV10 dataset. This makes a total of 2716

images that were used as backgrounds for rendered images. Each image in the MONET

dataset is timestamp-aligned with extensive drone metadata. This includes attitudes,

speed, altitude and GPS coordinates, crucial for detailed environmental and analytical

studies. MONET’s detailed annotations encompass three primary categories: persons,

vehicles and a region marked as ’ignore’ to avoid algorithmic bias towards non-target

areas. The main advantage of MONET dataset is its focus on providing a richly anno-

tated dataset that supports object detection, as well as nuanced understanding of object

behaviors from different and moving viewpoints. This makes MONET highly suitable

for advancing research in drone-based surveillance, agricultural monitoring, and rural

security applications, where understanding and reacting to dynamic object interactions

is crucial.

Figure 2.3: Background image at 50 degrees

2.2 Thermal Models

The creation of thermal models using Blender, a comprehensive open-source 3Dmodel-

ing software, is the next logical step in context of advanced visualization and simulation

for thermal imaging applications. This process involves the design and refinement of
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Figure 2.4: Background image at 70 degrees

3D models that simulate the thermal properties and behaviors of real-world objects and

environments under various conditions. Blender is a facility for real-world simulation of

thermal characteristics by allowing for the integration of material properties that emu-

late thermal emissivity and reflectivity, both essential for creating realistic thermal im-

agery. As mentioned, this is particularly useful in scenarios where actual thermal data

is difficult to obtain or when researchers wish to study the thermal behavior of objects

in controlled, hypothetical or extreme conditions not easily replicable in the real world.

Figure 2.5: Thermo model of the UAV
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Figure 2.6: Thermo model of a deer

2.2.1 Thermal Drone

UAV 3D thermal model was modified in the Shading part of the Blender to achieve its

thermal image. Thermal coloring is managed with different nodes. First, there is a main

group of nodes to get the infrared effect containing these nodes: RGB, Diffuse BSDF,

Glossy BSDF, Mix Shader, subgroup Infreredeffct and final one, Material Output. This

is how they work together:

1. Diffuse BSDF Node

This node is essential to simulate the way surfaces scatter light. It provides a

non-reflective, matte surface which reflects light uniformly in all directions.

In this setup, the color input is driven by an RGB node, allowing for precise

color specification, which affects how the material absorbs and scatters light.

2. Glossy BSDF Node

In contrast to the diffuse shader, simulates the reflection of light in a more

concentrated manner, like shiny or metallic surfaces do. This node’s param-

eters roughness and the Beckmann distribution model control the sharpness

and spread of the specular highlights on the surface.

3. Mix Shader Node
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This node blends the outputs of the Diffuse and Glossy BSDF shaders. The

factor controlling themix is set to 0.500, indicating an equal contribution from

both shaders. The result is a surface with both characteristics: matte from the

diffuse component and shiny from the glossy component, which represent

materials like semi-gloss plastics.

4. Custom Node Group (InfraredEffect)

This node group represents a custom shader tomodify the surface appearance

and simulate an infrared view. It adjusts thematerial properties based on how

they emit, absorb, or reflect infrared radiation.

This is how the subgroup is structured:

(a) Texture Coordinate andMapping Nodes

These nodes are used to control the placement and orientation of textures

on the object. The Texture Coordinate node provides diverse options for

how textures are mapped to the object, such as using object coordinates,

UV maps, or generated coordinates. The Mapping node can adjust these

textures by scaling, rotating, or translating them. The result is precise

control over how the texture appears on the object.

(b) Image Texture Nodes

These nodes are linked to image textures that represent different mate-

rial properties under thermal imaging. Each Image Texture node is con-

nected to a different component, influencing various aspects of the ma-

terial, such as color, emissivity or reflectivity in the thermal spectrum.

(c) Mix Shader Nodes

These nodes blend multiple shaders together based on a specified fac-

tor. They combine different effects from the image textures, allowing for

complex material appearances.

(d) Diffuse BSDF and Emission Nodes
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The Diffuse BSDF node simulates a basic Lambertian surface, which is

typically not very shiny and reflects light uniformly in all directions. The

Emission node is crucial in a thermal material setup as it simulates the

material emitting light (or in this case, heat), which is what thermal cam-

eras capture. Different strengths of emission simulates different temper-

atures of the material.

(e) Shader to RGB Node

This node is particularly useful in non-photorealistic applications as it

converts shader outputs into RGB colors. This can be helpful for creating

stylized effects or for specific technical applications where shader data

needs to be repurposed for diverse types of visual outputs.

(f) ColorRamp Node

This node remaps the colors of a shader’s output to a specific gradient,

typically used to visually denote different temperatures in thermal imag-

ing. For example, cooler temperatures are mapped to darker colors and

hotter areas to brighter, more intense colors.

(g) Material Output Node

This is the final node in the setup, like mentioned before.

5. Material Output Node

This node is the final stage where the combined shader effects are output to

render the material on the 3D model. It ensures that all the shader effects

are compiled and represented in the final visual output in the 3D viewport or

render.
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Figure 2.7: Blender nodes for thermal effect

Figure 2.8: Subgroup of Blender nodes for thermal effect

2.2.2 Thermal Deer

Thermal shading of a deer is done based on the drone model with few adjustments be-

cause of the deer’s materials, body hair, and antlers. The logic of the shading is the same

as the one drone is using – a well-structured map of nodes creating the final thermal

effect. This is how the main group is set:

1. CarbonWave Node

This custom node is named for its texture or pattern output that simulates a

carbon fiber weave. It is a base for the thermal texture. It outputs a pattern

used to influence other properties in the material, such as color or emission

strength, and is representative of varyingmaterial properties across the deer’s

body.

2. Layer Weight Node

This node calculates the Fresnel effect, which describes how light reflects off

surfaces at different angles. This is important in context of thermal imaging
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because it is used to simulate how infrared radiation varies with angle. At the

same time, it influences how various parts of the deer appear hotter or cooler

based on their orientation relative to the camera.

3. Mix Node (before Diffuse BSDF)

This node blends the CarbonWave texture with another unnamed input, us-

ing the Fresnel effect as the factor. This step adjusts the base color and emis-

sive properties of thematerial based on the surface angle. It results in enhanc-

ing the realism of the thermal effect by varying the appearance according to

the viewing perspective.

4. Diffuse BSDF and Sheen BSDF Nodes

These shaders define the basic color and reflective properties of the surface

under normal lighting conditions. The Diffuse BSDF provides a matte finish,

while the Sheen BSDF adds a soft, velvet-like reflection, which is particularly

useful for organic subjects like the deer itself to simulate the subtle glossiness

found in natural fur.

5. Mix Shader Nodes

These nodes combine the outputs of the previous shaders. ThefirstMix Shader

blends the Diffuse and Sheen shaders linked to material properties or texture

maps. The second Mix Shader then blends this result with the Glossy shader,

controlled by a factor of 0.500, balancing between matte and glossy finishes

to achieve a realistic surface under visible light.

6. InfraredEffect Node

This custom node group is again crucial for simulating the thermal imaging

effect. It adjusts the emissivity of the material, modifying how it emits in-

frared radiation.

The Infraredeffect subgroup is the same as the drone’s with just a few color ad-

justments to match the deer’s temperature that differs from the drone’s tem-

perature.
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7. Final Mix Shader andMaterial Output

The last Mix Shader blends the visible light material properties with the In-

fraredEffect output, using another Fresnel factor (calculated inside the In-

fraredEffect node) to ensure that thermal properties are visible primarily from

direct viewing angles. TheMaterial Output node then finalizes the shader for

rendering, displaying the combined effects of both visible and infrared prop-

erties on the model.

The deer’s antlers shading is done the same as its body, with just color adjustment to

match their temperature.

Figure 2.9: Blender nodes for thermal effect

Figure 2.10: Subgroup of Blender nodes for thermal effect

2.3 Rendered Images

The final images are rendered in Blender. They are combinations of background images

and thermal 3D Blender models. Two types of images are rendered – the first type is a

combination of the HIT-UAV10 dataset and the 3D thermal model of the Eagle drone,

and the second type is a combination of the MONET dataset and the 3D thermal model

of the deer. For each background image, two final images are rendered to get the random

position of the thermal object on the images and to randomize the final dataset.
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These are the rendering settings used for both drone and deer models:

1. Rendering Engine

The script specifies Blender’s Cycles engine for rendering because it is known

for its ability to produce photorealistic results due to its path-tracing algo-

rithm,which simulates the natural behavior of light. This is crucial for achiev-

ing realistic thermal effects and shadows in the dataset.

2. Compute Device Type

It is set to CUDA,which enables the use of NVIDIAGPU acceleration. CUDA

is particularly effective for speeding up rendering processes by leveraging the

parallel computing power of NVIDIA GPUs.

Device: the rendering device is set to GPU. This choice directs Cycles to use

the GPU for rendering rather than the CPU, which results in faster rendering

times.

3. Render Samples

The number of samples is set to 640. In cycles, each sample represents a cal-

culation for how light rays accumulate to form the final image. More samples

typically mean higher image quality, which leads to less noise and more ac-

curate light representation.

4. Image Resolution

Resolution X: Set to 640 pixels, representing the width of the rendered image.

Resolution Y: Set to 512 pixels, representing the height of the rendered image.

These resolution settings determine the size of the output image. A resolu-

tion of 640x512 strikes a balance between detail and computational efficiency,

making it suitable for datasets where many images need to be processed and

analyzed.

5. Render Output

The script dynamically sets the file path for each rendered image, organiz-
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ing them into directories based on various parameters such as the angle and

background settings.

Figure 2.11: First rendered image with this image background at 40 degrees

Figure 2.12: Second rendered image with this image background at 40 degrees

Figure 2.13: First rendered image with this image background at 60 degrees
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Figure 2.14: Second rendered image with this image background at 60 degrees

2.4 Labels

For each rendered image, there is one txt file containing label information on the axis-

aligned bounding box, and the other txt file containing label information on the oriented

bounding box for the detected model. The format for an axis-aligned bounding box con-

siders the first class number which represents the detected object, then the x-axis and y-

axis coordinates of the object’s bounding box, and lastly the calculated width and height

of the bounding box. However, the oriented bounding box label file begins the same

with the class number but then continues with the coordinates in the following order

𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, 𝑥4, 𝑦4to represent the point-based bounding box shown in the picture

below.

𝑥1, 𝑦1: this is the coordinate of the first vertex of the bounding box, starting from the

top-left corner and moving clockwise. This vertex serves as a starting point to define the

extent of the box.

𝑥2, 𝑦2: this coordinate is the second vertex of the bounding box, located in the top-right

corner. It defines the horizontal extent of the box from the first vertex.

𝑥3, 𝑦3: this is the third vertex, found in the bottom-right corner of the bounding box. It

indicates the vertical and horizontal limits of the object as defined from the top corners.

𝑥4, 𝑦4: the fourth and final vertex, located in the bottom-left corner, completes the bound-

ing box. It connects back to the first vertex, enclosing the object.

A point-based oriented bounding box directly uses the coordinates of the four corners

(𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, 𝑥4, 𝑦4) to define the bounding box without a specific orientation pa-

rameter.
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Figure 2.15: Formats for oriented bounding boxes [1]

The final label files ready for training are txt files that contain information about all

detected either axis-aligned or oriented bounding boxes. In the folder with axis-aligned

bounding boxes, labels are saved in the format of 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑖𝑑 x center, y center, width,

height. On the other side, in the folder with oriented bounding boxes, labels are saved

in format of 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑖𝑑, 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, 𝑥4, 𝑦4. The first line of the txt files is for

drone category and its coordinates, which are being calculated in the Scripting part of

Blender. Other data of detected bounding boxes is being fetched from the original anno-

tation JSON file with this structure:
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Figure 2.16: The structure of HIT-UAV10 labels for axis-aligned bounding boxes

Every image has its corresponded txt label files with all the detected bounding boxes

information for both axis-aligned and oriented bounding boxes. The image, its detected

axis-aligned bounding boxes txt file and its detected oriented bounding boxes all have the

same name with right extension.
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Figure 2.17: The structure of HIT-UAV10 labels for oriented bounding boxes
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Figure 2.18: The structure of MONET labels for axis-aligned bounding boxes
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3 Object Detection

3.1 Mesh Detection and Bounding Box

The logic behind object detection and finding its correct bounding box is executed in two

functions: generate_drone_yolo_label and generate_2d_yolo_label. The generate_2d_yolo_label

function encapsulates a method to calculate the bounding box of a mesh object within

the camera space of a scene rendered in Blender. This function is crucial for generating

labels, particularly for models like YOLO (You Only Look Once), which require pre-

cise annotations in terms of bounding boxes. The function is fundamentally designed to

transform geometric data from 3D space into 2D image space, accommodating various

camera settings and projection types.

This is an explanation of how this function operates and the principles behind it:

1. Transformation Matrix Calculation

Inverse Matrix - the function starts by computing the inverse transformation

matrix of the camera (cam_ob). Thismatrix is crucial as it is used to transform

coordinates from the world space into the camera space, reversing any trans-

formations applied to the camera (such as rotations or translations). After this

step, the object’s vertices can be accurately projected from world coordinates

to camera coordinates.

2. Mesh Transformation

Mesh Evaluation - the mesh object (me_ob) is evaluated to account for any

deformations or modifiers that might affect its geometry at render time.

Coordinate Transformation - the vertices of the evaluatedmesh are then trans-

formedfirst by the object’s world transformationmatrix to bring them into the
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global coordinate system, and subsequently by the camera’s inverse matrix to

align them within the camera’s coordinate system.

3. Camera Frame Calculation

View Frame - the function retrieves the camera’s view frame, which repre-

sents the boundaries of the camera’s view in its local space. This frame is

then adjusted for the camera’s perspective.

Perspective check - if the camera is set to perspective mode, the function cal-

culates a projected frame by adjusting each vertex’s coordinates relative to

their depth (z value). If a vertex of a detected object is behind the camera,

where z is lower or equal to zero, making it invisible to us, it is ignored.

4. Projection to Image Space

Normalization - each vertex’s x and y coordinates are normalized to a [0,1]

range relative to the camera’s view, based on the minimum and maximum x

and y values of the camera frame.

Y Coordinate Adjustment - the y-coordinates are adjusted (1-y) to align with

image coordinate systems, where the origin is in the top left corner.

5. Bounding Box Calculation

Oriented Bounding Box (OBB) - if the obb flag is true, the function calculates

the oriented bounding box using amethod (calculateobb) that fits aminimum

area rectangle around the object. This is particularly useful for objects rotated

or irregularly shaped within the camera view.

Axis-Aligned Bounding Box (AABB) - if not calculating an OBB, the function

calculates the axis-aligned bounding box by determining the minimum and

maximum x and y coordinates from the list of projected points, providing the

top-left corner and dimensions of the bounding box.

6. Output

The function returns the calculated bounding box coordinates along with the

type of bounding box (OBB or AABB). When calculating an OBB, additional
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details such as vertices of the bounding box and points of the convex hull are

also returned.

The calculate_obb function computes the oriented bounding box (OBB) for a given

set of points. This function defines the minimum outline rectangle that can contain a

set of points with the least area, oriented along the principal axis of the data. The use of

Principal Component Analysis (PCA) and convex hull in this function ensures that the

OBB aligns with the data’s main orientation, providing an efficient and accurate strategy

for the bounding box.

Here is a description of the function’s operation:

1. Principal Component Analysis (PCA) Initialization

PCA Setup - the function begins by initializing a PCA object with two com-

ponents, corresponding to the two principal axes in the 2D space of the input

points. PCA is used here to identify the directions (principal components)

along which the variation in the data is maximized.

DataTransformation - the points are then transformedusingPCA.fittransform(),

which aligns them along these newly found principal axes. This step effec-

tively rotates the data to align with these axes, simplifying the process of find-

ing the minimum bounding rectangle.

2. Convex Hull Calculation

Hull Computation - by using the ConvexHull method from the scipy spatial

module, the function computes the convex hull of the transformed points.

The convex hull is the smallest shape that encloses all the given points.

Vertices Extraction extracts the vertices of the convex hull, which are the sub-

set of the transformed points that form this hull’s outer boundary.

3. Bounding Rectangle Calculation

Axis-AlignedBoundingBox inTransformedSpace - once the points are aligned

along the principal axes and the convex hull is determined, finding the mini-

mumbounding rectangle is straightforward. The function calculates themin-

imum and maximum x and y values among the vertices of the hull.
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Rectangle Corners - these minimum andmaximum values define the corners

of an axis-aligned rectangle in the PCA-transformed space.

4. Inverse Transformation

Byusing pca.inversetransform() the corners of the rectangle in the transformed

space are then mapped back to the original coordinate space. This step effec-

tively rotates the rectangle back to align with the original orientation of the

data.

Output Preparation - the resulting corners (obbcorners) represent the ori-

ented bounding box in the original coordinate system, and they are returned

flattened for ease of further processing.

5. Error Handling

Handling Colinear Points - the function includes an exception handler for

QhullError, which may occur if the input points are colinear (i.e., all points

lie perfectly on a line) or almost colinear, which can also affect the calculation

of the convex hull. In such cases, the function handles the error and returns

None for the code to continue to the next point.

6. Output

The function returns two outputs - the corners of the oriented bounding box

and the vertices used from the convex hull. The convex hull of a set of points

in a plane (or higher-dimensional space) is the smallest convex polygon (or

polyhedron in higher dimensions) that can enclose all the points. To simplify

it - it is analogous to stretching a rubber band around the outermost points in

a set; the shape that the rubber band takes is the convex hull. This concept

generally has various applications in different fields such as computer graph-

ics, pattern recognition, geographic information systems (GIS), and machine

learning. In context of the function calculate_obb, the convex hull is used

to determine the smallest area that encloses all vertices of an object after they

have been transformed through PCA and projected onto a plane. The convex

hull is the tightest fitting boundary around the points, which helps accurately
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compute theminimumbounding rectangle called theOriented Bounding Box

(OBB) without encapsulating any additional space. By computing the con-

vex hull, the function effectively simplifies the representation of the object’s

shape in 2D space. This is crucial when you want to minimize the complex-

ity of the shape for further calculations, such as finding the OBB or other

forms of bounding geometries. Using the convex hull reduces the number

of points that need to be considered for creating bounding boxes. Only the

points on the hull are needed for further calculations, rather than all points

in the dataset. This can significantly speed up the process of finding the min-

imum bounding rectangle, especially in cases where there are many points to

consider, without affecting the accuracy of the found bounding box. The con-

vex hull ensures that the bounding box encompasses all points of the object,

without unnecessary padding that might occur if the bounding box was cal-

culated from all individual points without considering their convex boundary.

This accuracy is mainly important in applications where precise object local-

ization and dimension measurement are critical, like in this case of training

data for object detection algorithms. The convex hull provides a robust basis

for mathematical operations like PCA transformations applied to determine

the OBB. It ensures that the transformations and subsequent operations (like

scaling or rotation) reflect the true outer boundaries of the point set.
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Figure 3.1: Convex Hull visualization

Figure 3.2: Convex Hull, vertices and each mesh’s OBB visualization

The function generate_drone_yolo_label is designed to create annotations for ob-

jects in a collectionwithin a Blender scene, formatted for training YOLO (YouOnly Look

Once) object detection models. The function comprehensively handles both Oriented

Bounding Boxes (OBB) and Axis-Aligned Bounding Boxes (AABB) depending on the in-
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put flag. The ability to handle both OBB and AABB allows for flexibility depending on

the object shapes and orientations in the images, which can significantly affect detection

performance in real-world applications.

Here is an analysis of how the function operates:

• Initialization and Preparations

Candidate Lists - lists for x and y coordinates are initialized to store bounding

box corners or extents, depending on the bounding box type.

Collection Retrieval - the function retrieves the specified collection of objects

to be labeled. If the collection does not exist, the function exists with an error

message.

• Bounding Box Calculation

Object Iteration - the function iterates over objects in the collection. It contin-

ues only with mesh-type objects suitable for generating bounding boxes from

which 3D models are made.

BoundingBoxGeneration - utilizes a helper function (generate_2d_yolo_label)

to compute the bounding box for each object. This function adjusts for camera

perspective, accounting for both perspective and orthographic projections,

and considers only objects in front of the camera.

For oriented bounding boxes, coordinates are stored continuously, as they

require different handling than AABB. However, for axis-aligned bounding

boxes, corner coordinates are directly used to determine the minimum and

maximum extents.

• Bounding Box Aggregation (for AABB)

If not using OBB, the function calculates a combined bounding box for all

objects in the collection by calculating the center of the bounding box and

its dimensions. It determines the center of the bounding box based on the

minimum and maximum x and y values, then the width and height of these

extremities.

• Oriented Bounding Box Calculation (for OBB)
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If OBB is enabled, after collecting all individual object points, an additional

OBB calculation is performed using calculate-obb, which involves PCA to de-

termine the minimum area rectangle encompassing all points.
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4 Neural Networks Training

In this paper, for real-time object detection, Ultralitics YOLOv8 was used as an image

detection model. YOLOv8 is the latest version of YOLO models (as of early 2023) by

Ultralitics that builds on the already achieved success of previous versions with new fea-

tures and improvements for better performance, flexibility, and efficiency. The models

represented a few big changes, such as anchor-free detection, the introduction of C3 con-

volutions, and mosaic augmentation. It is also so-called state-of-the-art model with an

outstanding performance. The name itself refers to the model’s ability to predict every

object present in an image with one forward pass. With YOLO models, the object de-

tection task was reframed as a regression problem which is predicting the bounding box

coordinates, not a classification problem as it was used to. YOLO models are pretrained

on a huge amount of datasets of different formats like COCO, ImageNet, PASCALVOC...

This is why they provide highly accurate predictions on classes that they have been pre-

trained on - that is their master ability. In addition, themodels can also learn new classes

comparatively easily - that is their student ability. Finally, that is why it is said that the

models have the coeval ability to be both the Master and the Student. Users are autho-

rized to share, modify and distribute the software for free.

There are two main differences in the new YOLOv8 modes and YOLOv5, its prede-

cessor - Anchor-Free Detection and Mosaic Augmentation. Anchor-Free Detection is

based on anchor boxes. Before them, an object is assigned to a grid cell containing the

given object’s midpoint. The problem with making bounding boxes and allocating them

would appear if two objects had the same center point.

In this situation, both objects have the same center point. Now is when the usage

of anchor boxes is very effective. They are something like cookie-cutter templates. Two

anchor boxes are created and then the one that has the highest overlap with the ground
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Figure 4.1: Objects with the same center point

truth bounding box and assign that box to the corresponded class. They are very practical

because they can be both horizontally and vertically elongated like detected figures. By

using Anchor Boxes, the training was improved as increasing MAP. Anchor Boxes were

then incorporated in previous YOLOmodels. However, there are two reasons why aren’t

they used in YOLOv8 model - lack of generalization and lack of proper anchor boxes in

irregularity. If there is any lack of generalization, it means that the final model is hard

to fit on a new data and is overtrained, which is not a good thing. With polygon anchor

boxes, irregularities can’t be mapped.

Figure 4.2: Objects’ anchor boxes
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Mosaic data augmentation is one of the augmentation that YOLOv8 model does to

training images. It is a simple techniquewhere four different images are stitched together

creating an input for the model to be feed with. The main reason is to enable the model

to learn the actual objects from different positions and in partial occlusion.

Figure 4.3: Mosaic data augmentation example
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The inference time is much faster than all the other YOLO models. YOLOv8 model

gives around 33(percent)moreMAP for n-sizemodels and greaterMAP across the board.

In general, the model size is linearly proportional to MAP and inversely proportional to

interference time. That is why smaller models have faster inference time but have a lot

lesser mAP. They are also more efficient if we have less space, meaning having less edge

scenarios. On the other side, bigger models are better if we have less data.

The HIT-UAV10 dataset underwent two distinct training phases—initially for axis-

aligned bounding boxes and subsequently for oriented bounding boxes. Identical pro-

cedures were employed during both training sessions. Both sets of labels were split into

train, validation and test folder at an 80-10-10 ratio. The only difference in training was

the loaded model. For training labels of axis-aligned bounding boxes the yolov8s.pt is

used, while for training labels of oriented bounding boxes the yolov8n-obb.pt was used.

These are the training parameters: the learning rate of the algorithm is set to 0.001. It

controls how much to change the model in response to the estimated error each time

the model weights are updated. It affects how quickly or slowly a neural network learns.

Current epochs are set to 3000meaning the learning algorithmworks through the entire

dataset 3000 times. In general, an epoch is one complete presentation of the dataset to

be learned to a learning machine. The current batch size is a number of training exam-

ples utilized in one iteration, and it is set to 64 meaning the 64 samples from the training

dataset will be used to estimate the error gradient before the model weights are updated.

It is somewhat a balance between the computational efficiency of larger batches on one

size and the robustness of smaller batches effects on the other. Finally, current image

size is set to 640 as this is the size to which all input images are resized before being fed

into the model.

The MONET dataset was trained for detecting only oriented bounding boxes on the

thermal model of deer in order to see the applicability of oriented detection to everyday

problems in agriculture and forestry. Since original labels don’t have information on the

angle of the object’s bounding box, the training was done only on the deer. Again, set

was split into train, validation and test set at a ratio 80-10-10. The model yolov8n-obb.pt

was used as well as all the other parameters as in the case of training HIT-UAV10 dataset

for oriented bounding boxes.
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After training, test data was tested in a way that the bounding boxes were visualized

on the test part of the images to see the succession of the model.
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5 The Results

5.1 Training HIT-UAV10 dataset on axis-aligned bound-

ing boxes

Looking at the normalized confusionmatrix, it is noticeable that there are both strengths

and weaknesses of a model. With classes like person, car, and bicycle, the model per-

forms very well. This is initiated by high numbers on themain diagonal for these classes,

showing that the model can reliably identify those objects. In addition, the model ef-

fectively identifies background with relatively few misclassifications compared to other

classes. This is indicating that the model is very well-tuned to distinguish object areas

from non-object areas in images. However, the model shows some confusion between

classes that are potentially similar in appearance or contextually close in the image. That

can be seen for classes car and other vehicle, as well as for the bicycle and other vehi-

cle. The drone shows perfect classification in this context, which is excellent. Themodel

overall shows strong performance across most classes, but could potentially benefit from

improvements in distinguishing similar objects and reducing misclassifications involv-

ing the background.
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Figure 5.1: Normalized confusion matrix

As shown, the box loss for both train and validation set show the loss associated with

bounding box prediction, meaning how off are the predicted bounding boxes from the

true ones. A lower value represents that the model is getting better at accurately predict-

ing the location of objects. The training loss decreases consistently, indicating learning,

while the validation loss shows some fluctuation, which is typical as the model tries to

generalize from training to unseen data. The cls loss graphs depict the classification loss

during training and validation. What the loss measures is how well the model is per-

forming in correctly classifying the objects within the predicted bounding boxes. The

visible downward trend in the training graph is good. However, there are some fluctu-

ations in the validation graph, suggesting variability in how well the model generalizes

its classification ability to new data. The final set of graphs dfl loss are related to how

well the model predicts certain attributes or orientations of the objects. Good learning

and adaptation are visible from both graphs, even though validation loss again shows

greater variability. Both precision and recall are critical for evaluating the effectiveness

of the mode. Precision measures the ratio of correct positive observations to total pre-
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dicted positives, while recall measures the ratio of correct positive observations to all

observations in actual class B. Both metrics are generally high, suggesting good model

performance. mAP50 calculates the average precision at 50 percent IoU threshold, while

mAP50-95 calculates averages over a range from 50 to 95 percent IoU. The metrics show

how well the model is detecting objects according to different criteria for overlap be-

tween the predicted bounding boxes and the true ones. High values across these metrics

indicate robust detection capabilities.

Figure 5.2: Results of the training

When discussing all classes combined case, the combined F1 score peaks around 0.96

at a confidence threshold of 0.619 indicating excellent overall performance. The model

generalizes well across multiple classes, maintaining high F1 scores, particularly for per-

son and car classes, which suggests strong feature learning and classification capabilities.
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Figure 5.3: F1 score curve

Overall PR curve is very close to the top-right corner, which indicates a better per-

forming model with high precision and high recall. The blue line represents an average

precision across all classes at a 50 percent IoU threshold. In general, a mAP of 0.965 is

exceptionally high. When looking at individual classes, the drone shows the highest pre-

cision across almost all recall levels, which indicates exceptional accuracy in predicting

this class.

Figure 5.4: Precision-recall curve
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The graph shows that precision increases across all classes as the confidence thresh-

old increases. This is also expected, since higher confidence inmost cases correlates with

more reliable predictions. Here again, drone exhibits nearly perfect precision across al-

most all confidence levels, particularly at higher thresholds. This means that when a

model predicts an instance as a drone, it is almost always correct.

Figure 5.5: Precision curve

As expected, recall decreases as the confidence threshold increases because setting a

higher threshold results in fewer positive predictions, making the model more conserva-

tive. Again, drone’s recall maintains high across a wide range of confidence thresholds,

meaning the model is highly effective at detecting almost all true drone instances, even

as the threshold increases.
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Figure 5.6: Recall curve

Validation Batch Labels images depict the ground truth labels for distinct batches

from the validation dataset, providing a clear picture of what the objects are and their

respective locations as per the dataset. Validation Batch Predictions visuals display the

predictions made by the YOLOv8 model for the respective batches. Comparing these

two to the label image, it is visible how well and highly effective the model detects and

classifies objects visually.

Figure 5.7: Validation batch labels 1

42



Figure 5.8

Validation batch predictions 1

Figure 5.9: Validation batch labels 2
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Figure 5.10: Validation batch predictions 2

The final step for axis-aligned labels set was to test the trained prediction on a test part

of the set. Here are the detected classes based on the trained model. It can be observed

that the detection is very well performed, making this model highly effective.

Figure 5.11: Image at 30 degrees with detected objects
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Figure 5.12: Image at 40 degrees with detected objects

Figure 5.13: Image at 50 degrees with detected objects

Figure 5.14: Image at 60 degrees with detected objects
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Figure 5.15: Image at 70 degrees with detected objects

Figure 5.16: Image at 80 degrees with detected objects

Figure 5.17: Image at 90 degrees with detected objects

5.2 Training HIT-UAV10 dataset on oriented bounding

boxes

Thehighmain diagonal values - Person (0.97), Car (0.99), Bicycle (0.96), andDrone (1.00)

indicate the high accuracy of the model’s classes prediction. There are precise recogni-
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tion capabilities for the drone category, since the diagonal value is 1. On the other hand,

when talking about misclassifications and observing non-diagonal values, there are in-

dicators that the model has some difficulties with the dontcare category.

Figure 5.18: Normalized confusion matrix

A decreasing trend, that is shown in both training and validation box losses, indi-

cates that the model is effectively learning to predict the bounding boxes around objects

in the images. The smoother line for training and relatively stable validation loss sug-

gest that the model is not overfitting significantly on the training data. Classification

loss decreases over time in training, just like box loss. This means improvement in the

model’s ability to correctly classify the objects within the detected boxes. The validation

loss has some fluctuation, as expected in validation phases, due to variability in unseen

data. Dfl loss has a consistent decrease in training loss, which is usual. However, there

are again some fluctuations in validation loss, but it is still a relatively stable validation

loss. The results of precision and recall metrics show high precision and recall at the

beginning, which could indicate a model performing well on more apparent features or

labels in the dataset. However, both metrics experience a decline as training progresses,
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potentially indicating the model’s struggle with more complex, varied, or less frequent

features as it seesmore data. ThemAP graphs show high initial scores that decrease over

time, particularly noticeable in the mAP50-95 graph. This might suggest that while the

model initially does well at detecting objects generally, its ability to precisely match the

ground truth bounding boxes with high IoU thresholds diminishes slightly, possibly due

to learning more complex data or beginning to overfit to less representative aspects of

the training data.

Figure 5.19: Results of the training

Formost classes, the F1 score starts high at lower confidence thresholds, whichmeans

that the model has good recall and good precision at these levels. As confidence thresh-

olds increase, there is a period where F1 score is at a high level, but then sharply drops

off. This can be interpreted in a way that the precision increases with confidence but at

the cost of recall. The line representing all classes says that the model achieves an F1

score of 0.94 at a confidence threshold of 0.633 for all classes combined. This shows that

the model is generally accurate and balances in predicting at this threshold across all

classes. Here, drone exhibits a stable high performance until a sharp drop, suggesting

good model performance for this class at lower to moderate confidence levels.
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Figure 5.20: F1 score curve

It can be observed that precision increases for all classes as the confidence threshold

is raised, as expected due to higher confidence thresholds excluding less certain predic-

tions which are more likely to be false positive. The all classes line represents that at a

confidence threshold of 0.928, the model achieves a precision of 1 for all classes com-

bined. This is an excellent indicator of the model’s overall precision capability at high

confidence levels. Drone shows high precision across a wide range of confidence thresh-

olds, meaning the model has a great ability to detect drones with high reliability.

Figure 5.21: Precision curve

The model’s overall performance across all classes is summarized, showing an aver-
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age precision of 0.960 at an IoU threshold of 0.5. This high score indicates excellent av-

erage performance but suggests there is some variation between classes. Again, drone’s

curve shows almost perfect precision across nearly all levels of recall. This suggests

that the model is extremely accurate and reliable in predicting the class of drone. Car

class also shows excellent precision, while other vehicle class shows the lowest precision

among the classes.

Figure 5.22: Precision-recall curve

Themodel achieves an overall recall of 0.97 at the lowest confidence threshold (0.00),

which indicates excellent initial sensitivity. This high value across all classes suggests

that the model is capable of detecting nearly all relevant instances when it is allowed

to make predictions freely (with minimal confidence restriction). Drone and car classes

maintain higher recall values even as the confidence threshold increases, meaning that

the model is very effective at detecting these objects. Dontcare class show the lowest

recall across all confidence thresholds, probably due to not precisely enough defined

what is considered as a dontcare object.
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Figure 5.23: Recall curve

When comparing visuals of validation batch predictions and images of validation

batch labels, it is immediately visible how the model is excellent at detecting objects and

classifying them correctly.

Figure 5.24: Validation batch labels 1
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Figure 5.25: Validation batch predictions 1

Figure 5.26: Validation batch labels 2
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Figure 5.27: Validation batch predictions 2
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After the training, the visualization was made on a test set to validate the trained

prediction. The detected classes match real classes and bounding boxes of all objects.

This shows the accuracy and success of the trained model.

Figure 5.28: Image at 30 degrees with detected objects

Figure 5.29: Image at 40 degrees with detected objects
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Figure 5.30: Image at 50 degrees with detected objects

Figure 5.31: Image at 60 degrees with detected objects

Figure 5.32: Image at 70 degrees with detected objects
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Figure 5.33: Image at 80 degrees with detected objects

Figure 5.34: Image at 90 degrees with detected objects

5.3 TrainingMONETdataset onorientedboundingboxes

It can be read from the matrix that the model predicts the deer correctly 93percent of the

time when it is actually a dear. It is quite effective in identifying that class. However,

there are some false negatives when the model misclassifies deer as background class,

which happens only 7percent of the time.
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Figure 5.35: Normalized confusion matrix

The graph of box loss shows a sharp decrease initially, which then stabilizes as train-

ing progresses, meaning themodel quickly learned the appropriate features for bounding

box prediction and continued to refine its ability gradually. There are some differences

between validation loss, but still the similarity is high and suggests that themodel is gen-

eralizing well to unseen data without overfitting. Classification loss also shows a step

decline, followed by stability. Then this is followed by validation classification. The val-

idation loss is slightly more inconstant, but that is typical in validation phases due to the

diversity of unseen data. The Direct Feature Labeling (DFL) loss is related to the accu-

racy of attribute prediction within the model. It decreases significantly, indicating good

learning dynamics. On the other side, the DFL validation loss curve is more variable due

to possible challenges in generalizing those attribute prediction to new data. This might

indicate areas where themodel could benefit from additional training or data augmenta-

tion. Precision remains high throughout the training, which indicates a low rate of false

positives. Recall shows a steep increase to peak levels and then stabilizes, which means

themodel is correctly identifying a high percentage of all positive samples in the dataset.

At an Intersection over Union (IoU) threshold of 0.5, mAP50 curve shows high levels of

Mean Average Precision. From that, it can be concluded that the model localizes and

identifies well. The mAP50-95 metric also shows high values in average scores across a

range of IoU thresholds from 0.5 to 0.95. This means that the model performs well not
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only at a basic level of IoU, but also on more strict criteria.

Figure 5.36: Results of training

The F1 score is extremely high (close to 1.0) for most confidence thresholds up to

about 0.617, at which it peaks with a score of 0.96. There is a sharp drop in the F1 score

as the confidence threshold increases beyond approximately 0.617. This suggests that

beyond this threshold, either precision or recall (or both) decreases significantly. The

optimal confidence threshold for deployment would be around 0.617, where the F1 score

is maximized, balancing precision and recall effectively.

Figure 5.37: F1 score curve
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The model is extremely precise when predicting the presence of a deer, with making

very few false positive errors, which can all be seen from the fact that the Precision curve

starts very high near 1.0 even at low confidence thresholds. At a confidence threshold

of 0.756, the model achieves perfect precision across all classes. This is an optimal point

where every prediction the model makes across all classes is correct, albeit potentially at

the cost of missing some true positives (lower recall).

Figure 5.38: Precision curve

The Recall curve also starts with a very high precision near 1.0 for low recall values

and maintains high precision as recall increases. Because of that, the model can identify

true positives while maintaining a low rate of false positives.
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Figure 5.39: Precision-recall curve

The behavior of having a sharp drop in precision as the recall approaches the value

of 1.0 is expected because in order to achieve nearly complete detection (high recall), the

model starts tomakemore false positive errors. The drop-off point suggests the threshold

beyond which the model begins to sacrifice precision to detect more positive samples.

Figure 5.40: Recall curve
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The final predictions made by the model are accurate and precise. The process of

training turned out both efficient and successful.

Figure 5.41: Validation batch labels 1

Figure 5.42: Validation batch predictions 1
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Figure 5.43: Validation batch labels 2

Figure 5.44: Validation batch predictions 2

Here are the results of testing the model on unseen data which is in the test folder.
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Figure 5.45: Image at 40 degrees with detected object

Figure 5.46: Image at 50 degrees with detected object

Figure 5.47: Image at 60 degrees with detected object
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Figure 5.48: Image at 70 degrees with detected object

Figure 5.49: Image at 80 degrees with detected object
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6 Conclusion

Synthetic data is an advantage in itself. The speed and simplicity of their collection,

which actually only involves precise manufacturing, is their first advantage. The second

advantage is definitely the results that can be achieved using them. When thermal image

is used as synthetic data, a set can be obtained that is extremely favorable for use and

processing. In the paper, two sets of synthetic data were created as an upgrade of the

already existing ones. Synthetic thermal object was added to the thermal images of the

datasets. The detection used on them is implemented in the formof a python script in the

Scripting element in Blender. The two types of detection are implemented - axis-aligned

and orienting. Using object-independent logic, the detection code is applicable to use on

any object placed in the scene. The algorithm for detection is focused on the meshes and

vertices of the imported object, which makes the algorithm useful to detection a wide

range of possible objects. The YOLOv8 model was used for training, where the synthetic

data gave enviable results for the datasets. The synthetic thermal element added to the

image shows better results than the already existing real objects, proving the accuracy

and success of the synthetic data. The detection results on the previously unseen test

data set depending on how the model was trained also show exceptional high accuracy

results.
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7 Future Work

Considering the great applicability of this solution, future work can have its impact in

many branches and industries. For detection on thermal synthetic images, the most po-

tential is seen in the detection of objects andmovements on the sea andwaters, especially

in night conditions and in general low light conditions. Also, the direction in which this

could be further developed is the safe and secure rescue of people in unsuitable places

such as: mountains, caves, abysses and the like. The use of the developed detection algo-

rithmwould facilitate the detection of people and speed up the search process in favor of

rescue. Also, this solution is applicable in smart agriculture as well, which was demon-

strated by supplementing the MONET dataset with a deer as an example of an animal

that potentially needs to be monitored and alerted, whether it is for or against it.
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Abstract

Oriented Object Detection in Thermal Aerial Images from

Drones Based On Synthetic Data and Neural Networks

Andreja Jurasović

The aim of this work is to prove the advantages of synthetic thermal images as a data

set on which a detection model can be trained. A synthetic thermal object - a drone and

a deer - was introduced into the already existing thermal images, and an algorithm for

their axis-aligned and oriented detection was created. This resulted in annotations of

new added elements on which, in addition to already existing annotations, the YOLOv8

modelwas trained. The success of the detection is high and is also shownby the detection

made on the test data set, which was previously unseen by the model.

Keywords: UAV; thermal imaginig; aerial imaging; neural networks; synthetic data;

datasets; object detection; axis-aligned bounding box; oriented boundning box; segmen-

tation
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Sažetak

Orijentirana detekcija objekata na termalnim slikama iz

bespilotnih letjelica na temelju sintetičkih podataka i

neuronskih mreža

Andreja Jurasović

Cilj ovog rada je dokazati prednosti sintetičkih termalnih slika kao skupa podataka

na kojima se može trenirati model detekcije. U već postojeće termalne slike uveden je

sintetički termalni objekt - UAV i jelen te je napravljen algoritam za njihovu osno usmje-

renu i orijentiranu detekciju. To je rezultiralo anotacijama novih dodanih elemenata na

kojima je, uz već postojeće anotacije, treniran YOLOv8 model. Uspješnost detekcije je

visoka što pokazuje i detekcija napravljena na testnom setu podataka koji prethodno nije

bio vidljiv na modelu.

Ključne riječi: UAV; termalne slike; slike s bespilotne letjelice; neuronske mreže;

sintetički podaci; baza podataka; odetekcija objekata; granični okvir poravant po osi;

orijentirani granilni okvir; segmentacija
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