
Unapređenje sustava za kontrolu pristupa
zasnovanog na tehnologiji Interneta stvari

Janić, Mihael

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:842304

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-14

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:842304
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:12364
https://repozitorij.unizg.hr/islandora/object/fer:12364
https://dabar.srce.hr/islandora/object/fer:12364

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 332

IMPROVEMENTS OF INTERNET OF THINGS-BASED

ACCESS CONTROL SYSTEM

Mihael Janić

Zagreb, June 2024

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 332

IMPROVEMENTS OF INTERNET OF THINGS-BASED

ACCESS CONTROL SYSTEM

Mihael Janić

Zagreb, June 2024

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 04 March 2024

MASTER THESIS ASSIGNMENT No. 332

Student: Mihael Janić (0036510950)

Study: Computing

Profile: Software Engineering and Information Systems

Mentor: prof. Josip Knezović

Title: Improvements of Internet of Things-based access control system

Description:

Improve the Houseleek system developed at the Faculty of Electrical Engineering and Computing as a prototype
utilizing web technology and the Internet of Things for access control in offices, classrooms, and laboratories.
Improve the administration and configuration interface for embedded system modules to enable remote
configuration of access control parameters such as free access time (allowing access to specific rooms during
office hours upon motion detection in front of the module), finer granularity of roles and authorization rights per
organizational units (departments, laboratories, research groups), and the required method (level) of user
authentication during periods when free access is not permitted. Upgrade the software support of embedded
modules to enable dynamic refreshment and addition of new functionalities (OTA, Over The Air). Enhance and
adapt the existing client application for Android-based mobile devices.

Submission date: 28 June 2024

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 4. ožujka 2024.

DIPLOMSKI ZADATAK br. 332

Pristupnik: Mihael Janić (0036510950)

Studij: Računarstvo

Profil: Programsko inženjerstvo i informacijski sustavi

Mentor: prof. dr. sc. Josip Knezović

Zadatak: Unapređenje sustava za kontrolu pristupa zasnovanog na tehnologiji Interneta
stvari

Opis zadatka:

Unaprijediti sustav Houseleek koji je razvijen u Fakultetu elektrotehnike i računarstva kao prototip korištenja
web-tehnologije i Interneta stvari za kontrolu pristupa u urede, učionice i laboratorije. Unaprijediti sučelje za
administraciju i konfiguraciju sustava ugradbenih modula koji će omogućiti udaljeno konfiguriranje parametara
kontrole pristupa kao što su vrijeme slobodnog pristupa (dozvoljen pristup pojedinim prostorijama u uredovnom
vremenu pri detekciji pokreta ispred modula), veću granulaciju uloga i prava autorizacije po ustrojbenim
jedinicama (zavodi, laboratoriji, istraživačke grupe) te zahtijevani način (razinu) autentifikacije korisnika u
vremenskim periodima kada slobodan pristup nije dozvoljen. Unaprijediti programsku podršku ugradbenih
modula s ciljem dinamičkog osvježavanja i dodavanja nove funkcionalnosti (OTA, od eng. Over The Air).
Unaprijediti i prilagoditi postojeću klijentsku aplikaciju za mobilne uređaje zasnovane na operacijskom sustavu
Android.

Rok za predaju rada: 28. lipnja 2024.

I would like to thank my

family and relatives who gave me enormous support during my studies, my colleagues

who always helped me selĆessly, and my mentor Prof. Josip Knezović, Ph.D., for his

support during the preparation of my thesis.

IV

Contents

1. Introduction 1

1.1. Motivation . 1

2. Project Houseleek 3

2.1. Software . 4

2.1.1. Laravel . 5

2.1.2. Docker . 5

2.1.3. Laradock . 6

2.1.4. Android . 7

2.1.5. Git on GitLab . 7

2.2. Hardware . 8

2.2.1. ESP32 . 9

2.2.2. NFC . 11

3. System Improvements 13

3.1. The Houseleek Server . 14

3.1.1. Docker Setup . 14

3.1.2. Repository Structure . 16

3.1.3. Environment Files . 17

3.1.4. Environment Variables . 17

3.1.5. Server Backend Stability . 20

3.1.6. Android Application Testing . 20

3.1.7. Local Server . 21

3.2. Remote . 24

3.2.1. Remote server . 25

3.2.2. CertiĄcate Management and Auto Renewal Setup 28

3.3. Android Client . 30

3.4. Building and Deploying APK for Android 34

3.4.1. Building the APK . 34

V

3.4.2. Deploying the APK to the Server 35

3.4.3. Important Notes . 35

4. Conclusion 40

Bibliography 41

A. Setup Guides 43

VI

List of Figures

2.1. Houseleek project logo . 3

2.2. Houseleek system scheme [14] . 4

2.3. ESP32 development board . 10

2.4. NFC module PN532 [2] . 12

3.1. Docker containers used by the server 14

3.2. Laradock structure . 37

3.3. Server Ąle structure . 38

3.4. Error due to missing permissions for the logs folder 39

3.5. Build File Basics . 39

VII

1. Introduction

The Internet of Things (IoT) is a global infrastructure for the information society

enabling advanced services by interconnecting (physical and virtual) things based on

existing and evolving, interoperable information and communication technologies [13].

In recent years, the integration of Internet of Things (IoT) technologies into access

control systems has signiĄcantly changed the way physical security is managed. This in-

tegration has enabled the development of more Ćexible, scalable, and efficient solutions

tailored to the needs of modern organizations. This thesis aims to enhance the capabili-

ties of the Houseleek system, which was originally developed at the Faculty of Electrical

Engineering and Computing, by transforming it into a comprehensive IoT-based access

control framework. The goal is to utilize web technologies and advancements in IoT

to improve access management in offices, classrooms, and laboratories.

Currently, the Houseleek system functions as a prototype for access control, utilizing

embedded system modules for local management. However, to meet current demands

for enhanced security and operational Ćexibility, several improvements are necessary.

These enhancements include increasing system stability, conducting extensive testing,

improving documentation, and implementing minor Ąxes and adjustments.

Through these advancements, the Houseleek system aims to set a new standard in

IoT-based access control, providing a scalable and adaptable solution that addresses

the diverse security needs of both academic and professional environments. This the-

sis explores the technical implementations, challenges encountered, and the potential

impact of these enhancements on improving the current state of access management

systems.

1.1. Motivation

This thesis is motivated by the evolving requirements of access control systems and

the increasing need for sophisticated yet Ćexible solutions in academic and professional

settings. Traditional access control mechanisms, while effective, often lack the agility

and scalability required to address modern security challenges. The integration of IoT

1

technologies presents an opportunity to revolutionize access management by leveraging

interconnected devices and advanced software capabilities.

The Houseleek system provides a foundational basis for further reĄnement. How-

ever, the existing system revealed several areas requiring improvement, including stabil-

ity, testing, documentation, and minor functional enhancements. These shortcomings

necessitated a focused effort to stabilize the system, ensure robust functionality, and

prepare it for future enhancements leveraging web technology and IoT principles.

The decision to enhance the Houseleek system with web technology and IoT prin-

ciples was motivated by practical considerations rather than initial capabilities. The

primary objectives include:

Ű Foundational Stability and Reliability: Initially, the focus was on stabi-

lizing the system by addressing existing issues and establishing a robust foun-

dation. This involved rectifying initial Ćaws to ensure the Houseleek system

operates reliably in controlled environments.

Ű Preparation for Incremental Improvements: Future phases include in-

cremental functional enhancements such as enhancing remote conĄgurability,

reĄning role granularity to better manage user access, and enabling basic dy-

namic updates. These improvements aim to gradually enhance the systemŠs

capabilities and adaptability.

Ű Exploration of IoT Principles: Integrating fundamental IoT-based access

control principles aims to explore real-time monitoring capabilities and basic

adaptive access permissions. This exploration seeks to lay the groundwork for

potential future developments in security and operational efficiency.

Ű Potential for Adaptability: Looking forward, the adoption of IoT technolo-

gies in the Houseleek system presents opportunities for scalability and adapta-

tion to future growth and organizational changes. This scalability aims to align

the system with emerging security demands and technological advancements.

2

2. Project Houseleek

Project Houseleek is an access control system designed to manage entry into rooms

within organizational environments, leveraging a hierarchical structure of user roles

for precise authorization. The name "Houseleek" originates from the Croatian word

čuvarkuća, reĆecting the systemŠs primary purpose. The logo of the system is shown

in Figure 2.1.

The system scheme is shown in Figure 2.2 and consists of several integral compo-

nents designed to enhance security and operational efficiency:

Centralized Server

At its core, Houseleek operates through a centralized server infrastructure. This server

manages authentication, authorization, and access control policies across all connected

devices and modules, ensuring a cohesive and synchronized approach to security man-

agement.

Houseleek Remote Module

The system includes specialized modules deployed at entry points. These modules facil-

itate real-time monitoring of access attempts, enforce access rules based on conĄgured

parameters (such as office hours and motion detection), and communicate securely with

the centralized server to verify credentials and grant access accordingly.

Web Application

Houseleek features a web-based administration interface that enables remote manage-

Figure 2.1: Houseleek project logo

3

Figure 2.2: Houseleek system scheme [14]

ment and conĄguration of access control parameters. Administrators can deĄne access

policies, manage user roles, monitor access logs, and perform system diagnostics from

any web-enabled device, enhancing administrative Ćexibility and efficiency.

Android Application

Houseleek also provides an Android-based mobile application speciĄcally designed for

user veriĄcation and access control. Users can authenticate themselves through the

application or via NFC on their smartphones if supported. This application enhances

the user experience by enabling convenient, on-the-go access management, ensuring

seamless integration with the Houseleek systemŠs functionalities and maintaining op-

erational continuity.

2.1. Software

The software component of Project Houseleek encompasses a robust infrastructure

designed to ensure seamless integration, efficient management, and reliable operation

of its access control system. Built upon modern technologies and frameworks, the

software architecture incorporates several key elements.

Ű Laravel: Powers the web-based administration interface for centralized access

control management.

Ű Laradock: Docker-based PHP development environment simplifying setup and

4

conĄguration.

Ű Android Application: Developed in Android Studio for mobile access control.

Ű Git on GitLab: Version control system for collaborative development and code

integrity.

2.1.1. Laravel

Laravel is a PHP-based web framework renowned for its elegant syntax and compre-

hensive feature set, designed to streamline web application development. It integrates

various characteristics from technologies such as ASP.NET MVC, CodeIgniter, Ruby

on Rails, and others, making it a versatile choice for developers. Developed by Taylor

Otwell in June 2011, Laravel follows the model-view-controller (MVC) architectural

pattern [26].

Key features of Laravel include:

Ű Routing and Controllers: Laravel simpliĄes route deĄnition and controller

handling, enhancing application structure and organization.

Ű ORM (Object Relational Mapper): LaravelŠs Eloquent ORM facilitates

database interaction through intuitive active record implementation.

Ű Blade Templating Engine: Laravel provides Blade, a powerful templating

engine enabling efficient PHP-based views with loops, conditional statements,

and layouts.

Ű Authentication and Authorization: Built-in authentication features include

user management, login, registration, password reset, and email veriĄcation.

Ű Artisan CLI: LaravelŠs command-line interface, Artisan, offers tools for au-

tomating repetitive tasks, database migrations, and application scaffolding.

Laravel emphasizes security and developer productivity, allowing developers to build

robust web applications efficiently. The latest stable release, Laravel 11.x, was launched

in March 2024 and is available for download on GitHub [16].

2.1.2. Docker

Docker is an open source engine that quickly wraps up any application and all its

peculiar dependencies in a lightweight, portable, self-sufficient container that can run

virtually anywhere on anybodyŠs infrastructure [3]. Docker container is a standard

unit of software that packages up code and all its dependencies so the application runs

quickly and reliably from one computing environment to another. A Docker container

5

image is a lightweight, standalone, executable package of software that includes every-

thing needed to run an application: code, runtime, system tools, system libraries and

settings [?]. To build the image, youŠll need to use a DockerĄle. A DockerĄle is simply

a text-based Ąle with no Ąle extension that contains a script of instructions. Docker

uses this script to build a container image [10].

2.1.3. Laradock

Laradock serves as the foundational PHP development environment for Project

Houseleek, leveraging Docker to provide a comprehensive suite of pre-conĄgured ser-

vices. Designed with Ćexibility and ease of use in mind, Laradock supports a wide

array of functionalities essential for PHP development [15]:

Ű Versatile PHP Version Management: Laradock allows effortless switching

between PHP versions (including PHP 8.1, 8.0, 7.4, 7.3, 7.2, 7.1, and 5.6),

enabling developers to match speciĄc project requirements seamlessly.

Ű Database Flexibility: Developers can choose from various database engines

such as MySQL, PostgreSQL, MariaDB, and more, ensuring compatibility with

diverse application needs.

Ű Modular Architecture: Each service runs independently in its Docker con-

tainer, facilitating easy customization and scalability without impacting other

components. Key containers include PHP-FPM, NGINX, MySQL, and Redis,

among others.

Ű Easy ConĄguration and Customization: Laradock simpliĄes the setup pro-

cess with Docker-compose Ąles and environment variables, allowing developers

to tailor containers to project speciĄcations effortlessly.

Ű Comprehensive Toolset: The workspace container within Laradock includes

essential tools like PHP CLI, Composer, Git, Node.js, and various development

utilities, ensuring a productive environment for PHP application development.

Ű Integration with Laravel: Built on the Laravel PHP framework, Laradock

seamlessly integrates with Laravel applications, enhancing development effi-

ciency and enabling rapid iteration.

By adopting Laradock, Project Houseleek beneĄts from a standardized development

environment that supports agile development practices, facilitates version control via

GitLab, and enhances deployment Ćexibility. LaradockŠs robust architecture and ex-

tensive feature set empower developers to build, test, and deploy PHP applications

efficiently within the Docker ecosystem.

6

2.1.4. Android

Android is a versatile mobile operating system based on a modiĄed Linux kernel

and other open-source software, primarily designed for touchscreen devices such as

smartphones and tablets. Developed by the Open Handset Alliance, with Google as

the main contributor, Android was Ąrst unveiled in 2007, and the HTC Dream became

the Ąrst commercial Android device in 2008.

The Android Open Source Project (AOSP) is the foundational, free, and open-

source version of Android, licensed under the Apache License. Most commercially

available devices run a proprietary version of Android developed by Google, which in-

cludes Google Mobile Services (GMS) with essential apps like Google Chrome, Google

Play, and Google Play Services. Firebase Cloud Messaging is used for push notiĄca-

tions.

Over 70 percent of AOSP-based smartphones are integrated into GoogleŠs ecosys-

tem, with some vendors adding custom interfaces, such as SamsungŠs One UI and HTC

Sense. Alternative ecosystems and AOSP forks include AmazonŠs Fire OS, OppoŠs

ColorOS, VivoŠs OriginOS, and HonorŠs MagicUI. Custom ROMs like LineageOS offer

further customization options [1].

AndroidŠs source code has also been adapted for various other devices, including

game consoles, digital cameras, and PCs. Notable derivatives include Android TV

and Wear OS, both developed by Google. Apps for Android are typically distributed

through proprietary stores like Google Play Store, Amazon Appstore, and Samsung

Galaxy Store, as well as open-source platforms like F-Droid.

Since 2011, Android has been the best-selling OS for smartphones globally and

has dominated the tablet market since 2013. As of May 2021, Android boasts over

three billion monthly active users, the largest installed base of any operating system

worldwide. The Google Play Store hosts over three million apps as of January 2021.

The latest version, Android 14, released on October 4, 2023, includes updates tailored

for foldable phones, tablets, and Chromebooks [1].

2.1.5. Git on GitLab

Git is a free and open source distributed version control system designed to handle

everything from small to very large projects with speed and efficiency [7]. GitLab, a

web-based DevOps lifecycle tool, provides a Git repository manager offering wiki, issue-

tracking, and CI/CD pipeline features using an open-source license. Project Houseleek

employs Git and GitLab for version control to ensure effective collaboration, seamless

integration, and robust management of the codebase [4].

7

Version Control:

Using Git, developers can manage changes to the source code over time. GitLabŠs

repository manager provides a web-based interface for Git repositories, making it easier

to visualize the development process, track progress, and collaborate on code.

Collaboration:

GitLab facilitates collaborative development by allowing multiple developers to work

on the same project simultaneously. Features like merge requests, code reviews, and

branch management streamline the collaboration process and ensure high-quality code.

CI/CD Integration:

GitLabŠs CI/CD pipelines automate the testing and deployment of code, enhancing

the development workĆow. This integration ensures that every change is automatically

tested and deployed, reducing the risk of bugs and accelerating the release process.

Issue Tracking and Wiki:

GitLab includes an issue-tracking system and a wiki, providing a centralized platform

for project documentation and task management. This integration supports project

planning, bug tracking, and knowledge sharing, contributing to the overall efficiency

of the development process.

By leveraging Git and GitLab, Project Houseleek adheres to best practices in soft-

ware development, promoting transparency, collaboration, and iterative improvement.

The robust version control system and comprehensive toolset provided by GitLab sup-

port the projectŠs agile development methodology, ensuring continuous delivery and

high-quality software.

2.2. Hardware

The hardware foundation of the Houseleek system is centered around a System-

on-a-Chip (SoC) microcontroller with integrated Wi-Fi capabilities. This specialized

hardware conĄguration is tailored for embedded applications, providing a compact and

efficient platform to manage access control in various environments. Key components

of the hardware include:

System-on-a-Chip (SoC) Microcontroller

The heart of the Houseleek system, the SoC microcontroller integrates essential com-

ponents such as a central processing unit (CPU), memory interfaces, input/output

devices, and Wi-Fi connectivity onto a single chip. This integration optimizes space,

8

power consumption, and performance, making it ideal for embedded applications where

compactness and efficiency are paramount.

Integrated Wi-Fi

The SoC microcontroller includes built-in Wi-Fi functionality, enabling seamless con-

nectivity to the network infrastructure. This feature allows the Houseleek system

to communicate with the centralized server and other networked devices without the

need for additional external modules, simplifying deployment and enhancing Ćexibility

in placement.

Memory and Storage Interfaces

The SoC microcontroller incorporates programmable memory such as NOR Ćash, OTP

ROM, or ferroelectric RAM for storing Ąrmware, conĄguration settings, and access logs.

This onboard memory facilitates rapid data access and retrieval, crucial for real-time

access control operations.

Peripherals and Interfaces

In addition to Wi-Fi, the microcontroller supports various input/output peripherals

essential for its function within the access control system. These may include GPIO

(General Purpose Input/Output) pins for sensor interfaces, UART (Universal Asyn-

chronous Receiver-Transmitter) for communication with external devices, and SPI (Se-

rial Peripheral Interface) for interfacing with additional peripherals.

Power Efficiency and Reliability

Designed for embedded applications, the SoC microcontroller prioritizes power effi-

ciency while ensuring reliable operation in diverse environmental conditions. This

reliability is essential for maintaining continuous access control operations without in-

terruptions or performance degradation.

2.2.1. ESP32

Within the hardware architecture of the Houseleek system, the ESP32 microcon-

troller stands as a cornerstone for efficient and robust IoT-based access control. Devel-

oped by Espressif Systems, the ESP32 combines powerful processing capabilities with

integrated Wi-Fi and Bluetooth functionalities, making it an ideal choice for embedded

applications requiring connectivity and computational efficiency.

9

Figure 2.3: ESP32 development board

Key Features of ESP32

Ű Microprocessor: Equipped with either a dual-core or single-core Xtensa LX6

microprocessor running at frequencies up to 240 MHz, capable of delivering up

to 600 DMIPS (Dhrystone Million Instructions Per Second). This architecture

ensures swift execution of access control algorithms and management tasks.

Ű Memory and Storage: Includes 520 KiB of RAM and 448 KiB of ROM, pro-

viding ample space for Ąrmware storage, conĄguration settings, and temporary

data storage essential for operational tasks.

Ű Wireless Connectivity: Supports 802.11 b/g/n Wi-Fi standards for seam-

less network integration and dual-mode Bluetooth (v4.2 BR/EDR and BLE),

facilitating communication with mobile devices and other Bluetooth-enabled

peripherals.

Ű Peripheral Interfaces: Features 34 programmable GPIOs for sensor inputs

and device control, a 12-bit SAR ADC supporting up to 18 channels for analog

signal acquisition, multiple UART, SPI, and I2C interfaces for peripheral com-

munication, and dedicated interfaces for SDIO, SPI, and Ethernet MAC with

DMA support.

Ű Security Features: Implements robust security measures including secure

boot, Ćash encryption, and hardware-accelerated cryptographic algorithms (AES,

SHA-2, RSA, ECC). Supports standard Wi-Fi security protocols (WPA, WPA2,

WPA3) ensuring secure data transmission.

Ű Power Management: Optimized for low power consumption with features

10

like a low-dropout regulator, RTC power domain, and ultra-low deep sleep cur-

rent of 5 uA. Supports various wake-up sources including GPIO interrupts and

capacitive touch sensor interrupts, ensuring energy-efficient operation.

2.2.2. NFC

The NFC module used for the Houseleek system is the PN532. The PN532 is a

highly integrated transceiver module for contactless communication at 13.56 MHz, ideal

for the Houseleek project. It supports various operating modes, ensuring versatility:

Supported Modes:

Ű ISO/IEC 14443A/MIFARE Reader/Writer

Ű FeliCa Reader/Writer

Ű ISO/IEC 14443B Reader/Writer

Ű ISO/IEC 14443A/MIFARE Card Emulation (MIFARE Classic 1K or 4K)

Ű FeliCa Card Emulation

Ű ISO/IEC 18092, ECMA 340 Peer-to-Peer

Key Features

Ű Signal Handling and Speed:

• ISO/IEC 14443A/MIFARE Compatibility: The PN532 can demodulate

and decode signals from ISO/IEC 14443A/MIFARE compatible cards

and transponders, handling complete ISO/IEC 14443A framing and error

detection (Parity and CRC).

• High Transfer Speeds: Supports contactless communication with MI-

FARE and FeliCa at speeds up to 424 kbit/s in both directions.

Ű Card Emulation and Communication:

• Card Emulation Mode: The PN532 can respond to Reader/Writer com-

mands according to the ISO/IEC 14443A/MIFARE and FeliCa card in-

terface schemes, generating the necessary load modulation signals.

Ű NFCIP-1 Communication:

• Peer-to-Peer Communication: Compliant with ECMA 340 and ISO/IEC

18092 NFCIP-1 Passive and Active communication modes, allowing com-

munication with other NFCIP-1 compliant devices at speeds up to 424

kbit/s.

11

Ű Connectivity and Power Management:

• Host Interfaces:

∗ SPI

∗ I2C

∗ High-Speed UART (HSU)

• An embedded low-dropout voltage regulator allows the device to be con-

nected directly to a battery, with a power switch included to supply power

to a secure IC.

Figure 2.4: NFC module PN532 [2]

Application in Houseleek Project

In the Houseleek project, we utilize the PN532 in ISO/IEC 14443A Reader mode,

interfacing it via the SPI interface. This setup allows efficient and reliable contactless

communication for the system.

12

3. System Improvements

The main goal of this thesis was to make improvmeents to the existing Houseleek

implementation in order to enhance the functionality and manageability of the whole

system. These enhancements were designed to streamline development processes, en-

sure stability, update the components of the system, and improve user experience across

different components. HereŠs an overview of the key improvements:

Git Repository Refactoring

The initial step involved restructuring the projectŠs Git repository into distinct mod-

ules:

Ű Server Repository: This repository houses the backend server code responsi-

ble for managing access control policies, user authentication, and communication

protocols.

Ű Board Firmware Repository: Dedicated to the Ąrmware code running on

ESP32 microcontroller boards, which implements access control logic, sensor

interfacing, and communication with the server.

Ű Board Schematics Repository: Contains electronic schematics and PCB

designs for the ESP32-based hardware modules, facilitating clear documentation

and reproducibility in hardware development.

Ű Android Application Repository: Hosts the codebase for the Android ap-

plication used for mobile access control management, providing an intuitive

interface for administrators and users.

Updating the project documentation)

To facilitate developer onboarding, replication and deployment, comprehensive setup

instructions were documented in repositories referenced in Appendix A:

Ű Server Setup Guide: Detailed step-by-step instructions were provided for

setting up the server backend for both environment: local server setup for de-

velopment and remote server setup for testing and production. This included

13

prerequisites, installation of dependencies using Composer, database setup, con-

Ąguration of environment variables, and launching the server.

Ű Android Application Setup Guide: Clear guidelines were outlined for set-

ting up the Android application. This included installation steps, conĄguration

of API endpoints, handling permissions, and deploying on Android devices or

emulators.

By implementing these improvements, the Houseleek project will hopefully achieve

enhanced modularity, stability, and usability. The structured repository layout and

thorough documentation ensure that developers and users can replicate the setup pro-

cess effectively, fostering easier maintenance, scalability, and adoption of the system in

various academic and professional environments. The project will serve as the basis for

student introduction into the development of the comprehensive, modern system that

includes technologies such as web, embedded and IoT.

3.1. The Houseleek Server

Achieving stability for the local setup of the Houseleek system involved rigorous

testing and meticulous documentation.

3.1.1. Docker Setup

The server uses Docker to manage its containers.

Figure 3.1: Docker containers used by the server

Ű certbot: free, open source software tool for automatically using LetŠs Encrypt

certiĄcates on manually-administrated websites to enable HTTPS [6].

14

Ű nginx: free, open source HTTP and reverse proxy server [18].

Ű mysql: MySQL is free, open source relational database management system

[20].

Ű php-fpm: PHP FastCGI Process Manager. It is a primary PHP FastCGI imple-

mentation containing features mainly useful for heavy-loaded sites. These fea-

tures include advanced process management with graceful stop/start, pools that

allow starting workers with different uid/gid/chroot/environment, conĄgurable

logging, emergency restart capabilities, accelerated upload support, "slowlog"

functionality for logging slow-executing scripts with PHP backtraces, dynam-

ic/ondemand/static child spawning, and detailed status information with var-

ious formats like JSON, XML, and OpenMetrics supported [8]. FastCGI is

a protocol designed to improve the speed and efficiency of web servers when

handling requests for dynamic content, replacing the older Common Gateway

Interface (CGI) [25].

Ű php-worker: background processes on servers that run PHP code. They con-

struct pages and handle requests that require backend processing on your web-

site. This technology creates HTML pages to serve your site visitors. PHP

workers decide the number of uncached demands that your website can handle

at any time. Once a PHP worker has started, it remains diligent until processes

are completed, or certain conditions are met [17].

Ű phpmyadmin: free software tool written in PHP, intended to handle the admin-

istration of MySQL over the Web [21].

Ű portainer: lightweight service delivery platform for containerized applications

that can be used to manage Docker, Swarm, Kubernetes and ACI environments.

It is designed to be as simple to deploy as it is to use. The application allows

you to manage all your orchestrator resources (containers, images, volumes,

networks and more) through a ŚsmartŠ GUI and/or an extensive API [22].

Ű redis: fast in-memory database. It provides cloud and on-prem solutions for

caching, vector search, and NoSQL databases that seamlessly Ąt into any tech

stackŮmaking it simple for digital customers to build, scale, and deploy the

fast apps our world runs on [23].

Ű workspace: Runs cron jobs and other scripts, providing an environment with

access to other services. It is used to update dependencies, run migration scripts

or generate enrcyption keys.

15

3.1.2. Repository Structure

The project repository consists of two main directories: Laradock and Server.

Below is an explanation of the structure and key Ąles within these directories.

Laradock Directory

The Laradock directory contains all the Ąles required for the Laradock environment.

Important Ąles and directories within Laradock include:

Ű certbot: Contains the DockerĄle and run-certbot.sh, which runs certbot to

generate and copy certiĄcates to a shared volume with nginx.

Ű nginx: Contains the DockerĄle, logrotate folder (for rotating logs), sites

folder (with local.conf.example and remote.conf.example for different se-

tups), and an ssl folder with certiĄcates not directly used by our project.

Ű mysql: Contains the DockerĄle and my.cnf, which conĄgures SQL mode and

charset for MySQL [20].

Ű php-fpm: Contains the DockerĄle and various conĄguration Ąles.

Ű php-worker: Contains the DockerĄle, supervisord.d folder, and supervisord.conf

Ąle that is used to conĄgure supervisor. Supervisor is a client/server system that

allows its users to monitor and control a number of processes on UNIX-like op-

erating systems [5].

Ű phpmyadmin: Contains the DockerĄle for phpMyAdmin.

Ű portainer: Contains the DockerĄle for Portainer.

Ű redis: Contains the DockerĄle and redis.conf conĄguration Ąle for Redis.

Ű workspace: Contains the DockerĄle, crontab folder (for scheduled tasks), and

various conĄguration Ąles.

Ű docker-compose.yml: ConĄguration Ąle used to set up and manage all services.

It lists services, their conĄgurations, environment variables, volumes, networks,

and ports [11].

Ű env-example: Example environment Ąle containing environment variables used

by docker-compose.yml.

Server Directory

The Server directory contains the code and conĄguration Ąles for the Laravel

(PHP) server.

Important Ąles and directories within Server include:

16

Ű app, bootstrap, config, database, routes: Contain the PHP code for the

server.

Ű public, storage, resources: Contain non-code Ąles used by the server, such

as images and .apk Ąles for the Android application.

Ű composer.json and composer.lock: ConĄguration Ąles for Composer, a de-

pendency manager for PHP [19].

Ű env-example-local and env-example-server: Example environment Ąles for

local and remote setups.

3.1.3. Environment Files

The .env Ąles conĄgure environment variables for both local and remote deploy-

ments.

3.1.4. Environment Variables

The environment variables are conĄgured differently for local development and re-

mote production setups. Below are the details of these conĄgurations, including the

differences and the common variables shared between both environments.

Differences Between Local and Remote Environment ConĄgurations

Local Environment Variables

APP_NAME=Houseleek

APP_ENV=local

APP_KEY=base64:ajVYkfduHku5pfJ1diGPZ32HNEst2zHQQ3tOSdwtVyE=

APP_DEBUG=true

APP_URL=http://localhost

Remote Environment Variables

APP_NAME=Houseleek

APP_ENV=production

APP_KEY=base64:ajVYkfduHku5pfJ1diGPZ32HNEst2zHQQ3tOSdwtVyE=

APP_DEBUG=false

APP_URL=https://houseleek.rasip.fer.hr

17

Explanation of Key Variables

Ű APP_NAME: The name of the application.

Ű APP_ENV: SpeciĄes the environment the application is running in. It is set to

local for development and production for the live environment.

Ű APP_KEY: The encryption key used by Laravel. It is crucial for securing user

sessions and other encrypted data.

Ű APP_DEBUG: Enables or disables debug mode. Set to true for local development

to display detailed error messages, and false for production to avoid exposing

sensitive information.

Ű APP_URL: The base URL of the application. http://localhost for local devel-

opment and the live URL https://houseleek.rasip.fer.hr for production.

Common Environment Variables

The following variables are shared between both local and remote conĄgurations,

ensuring consistency in logging, database connections, caching, session management,

and email conĄgurations.

Log ConĄguration

LOG_CHANNEL=stack

LOG_CHANNEL: SpeciĄes the log channel. stack means it uses a stack of multiple

channels.

ArcaneDev LogViewer Middleware

ARCANEDEV_LOGVIEWER_MIDDLEWARE=web,auth,systemAdministrator,verified

ARCANEDEV_LOGVIEWER_MIDDLEWARE: Middleware settings for the ArcaneDev LogViewer

package, listing middleware that should be applied.

Laravel Logger Routes

LARAVEL_LOGGER_DISABLE_ROUTES=true

LARAVEL_LOGGER_DISABLE_ROUTES: Disables the routes for Laravel Logger when

set to true.

18

Database ConĄguration

DB_CONNECTION=mysql

DB_HOST=mysql

DB_PORT=3306

DB_DATABASE=houseleek

DB_USERNAME=houseleek

DB_PASSWORD=8dYUrFRXHFfpzRAG

DB_CONNECTION, DB_HOST, DB_PORT, DB_DATABASE, DB_USERNAME, DB_PASSWORD: These

variables specify the MySQL database connection details, including host, port, database

name, username, and password.

Cache, Session, and Queue ConĄguration

CACHE_DRIVER=redis

SESSION_DRIVER=redis

QUEUE_DRIVER=redis

BROADCAST_DRIVER=log

QUEUE_CONNECTION=redis

SESSION_LIFETIME=120

CACHE_DRIVER, SESSION_DRIVER, QUEUE_DRIVER, BROADCAST_DRIVER, QUEUE_CONNECTION,

SESSION_LIFETIME: These variables use Redis for caching, session handling, and queue

management. Broadcasting is set to log, and session lifetime is set to 120 minutes.

Redis ConĄguration

REDIS_HOST=redis

REDIS_PASSWORD=null

REDIS_PORT=6379

REDIS_HOST, REDIS_PASSWORD, REDIS_PORT: SpeciĄes Redis server details, includ-

ing host, password (null for no password), and port.

Mail ConĄguration

MAIL_DRIVER=smtp

MAIL_HOST=smtp-mail.outlook.com

MAIL_PORT=587

MAIL_USERNAME=houseleek.project@outlook.com

19

MAIL_PASSWORD=HSvD4LoS!HSvD4LoS!

MAIL_ENCRYPTION=TLS

MAIL_FROM_ADDRESS=houseleek.project@outlook.com

MAIL_FROM_NAME="Project Houseleek"

MAIL_DRIVER, MAIL_HOST, MAIL_PORT, MAIL_USERNAME, MAIL_PASSWORD, MAIL_ENCRYPTION,

MAIL_FROM_ADDRESS, MAIL_FROM_NAME: These variables conĄgure the mail settings,

specifying the mail driver (SMTP), server host, port, username, password, encryption

protocol (TLS), and the senderŠs email address and name.

Ű MAIL_DRIVER: SpeciĄes the mail driver, smtp in this case.

Ű MAIL_HOST: The SMTP server host.

Ű MAIL_PORT: The SMTP server port, 587.

Ű MAIL_USERNAME: The username for the SMTP server, which is the email address

used for authentication.

Ű MAIL_PASSWORD: The password for the SMTP server.

Ű MAIL_ENCRYPTION: The encryption protocol, TLS.

Ű MAIL_FROM_ADDRESS: The email address that will appear in the ŠfromŠ Ąeld of

outgoing emails.

Ű MAIL_FROM_NAME: The name that will appear in the ŠfromŠ Ąeld of outgoing

emails.

3.1.5. Server Backend Stability

Testing focused on ensuring the server operated reliably after setup. This included

conĄguring access control parameters and testing scenarios to validate performance

and reliability.

3.1.6. Android Application Testing

Extensive testing ensured seamless integration between the Android application

and the server. The key functionalities tested included remote door unlocking and

NFC-based access control. These tests veriĄed the robustness and responsiveness of

the application in providing users with reliable access management capabilities. The

Android application conĄguration was updated from its older version to align with

modern requirements and compatibility standards.

By conducting these tests and documenting the process, I ensured that both the

server backend and Android application were stable and performed as intended in

20

the local environment. This laid the foundation for reliable deployment and further

development of the Houseleek access control system.

3.1.7. Local Server

The local server setup for the Houseleek was primarily conĄgured for development,

onboarding, and testing of features. To ensure the local server functions correctly,

several adjustments were made in conĄguration Ąles and DockerĄles. These changes

were essential to create a stable and replicable development environment, enabling

developers to test new features, and debug issues.

Environment File Adjustment

In the Laradock .env Ąle, the Node.js version, used by workspace container, was up-

dated to ensure compatibility with dependencies:

1 WORKSPACE_NODE_VERSION =16.20.2

DockerĄle Adjustments

The DockerĄle for PHP-FPM (Laradock/php-fpm/DockerĄle) was updated to use the

original Laradock image. The line was changed from:

1 FROM letsdockerize /laradock -php -fpm :2.4 -${

LARADOCK_PHP_VERSION }

to:

1 FROM laradock /php -fpm :2.2 -${ LARADOCK_PHP_VERSION }

This change was necessary because the project could not be built with the old

line. The letsdockerize/laradock-php-fpm image was a temporary replacement for the

original Laradock PHP-FPM image.

The FROM line in a DockerĄle speciĄes the base image to be used for the build

process. In this case, the base image is laradock/php-fpm:2.2-x, which ensures com-

patibility with the Laradock environment and leverages the necessary PHP-FPM con-

Ąguration for the project.

DockerĄle was also updated to use speciĄc version of Swoole extension. Install

section was changed from:

1 RUN if [${ INSTALL_SWOOLE } = true]; then \

2 # Install Php Swoole Extension

3 if [$(php -r "echo PHP_MAJOR_VERSION ;") = "5"];

then \

21

4 pecl install swoole -2.0.10; \

5 else \

6 if [$(php -r "echo PHP_MINOR_VERSION ;") = "0"];

then \

7 pecl install swoole -2.2.0; \

8 else \

9 pecl install swoole ; \

10 fi \

11 fi && \

12 docker -php -ext - enable swoole \

13 && php -m | grep -q ’swoole ’ \

14 ;fi

to:

1 RUN if [${ INSTALL_SWOOLE } = true]; then \

2 # Install Php Swoole Extension

3 pecl install swoole -2.2.0; \

4 docker -php -ext - enable swoole \

5 && php -m | grep -q ’swoole ’ \

6 ;fi

A similar change was also made in DockerĄle for php-woker (Laradock/php-worker/DockerĄle)

and DockerĄle for workspace (Laradock/workspace/DockerĄle), as both used condi-

tional Swoole extension install selection.

Swoole is a high-performance networking framework that uses an event-driven,

asynchronous, non-blocking I/O model. It can be used to develop high-performance,

scalable, concurrent TCP, UDP, Unix socket, HTTP, and WebSocket services [9].

Initially, the DockerĄles had conditional Swoole extension install selection based on

the PHP version because it was set up that way by Laradock developers. For example,

if the PHP version was 7.2, it executed pecl install swoole, which installs the latest

version of the Swoole extension.

However, the project couldnŠt be built with the latest version of Swoole, and even

if it could, the version changes could lead to compatibility problems in the future.

Therefore, the DockerĄles were modiĄed to install a speciĄc version (swoole-2.2.0) to

ensure consistent and reliable builds.

Server Environment File Adjustment

In sever .env adjusted the APP_URL to point to the local development environment:

1 APP_URL = https :// localhost

22

This change facilitates testing and debugging without relying on external URLs, sim-

plifying local development.

Fixing SMTP ConĄguration

The SMTP settings in the server .env Ąle were updated to ensure reliable email func-

tionality during development. The server environment was changed from:

1 MAIL_DRIVER =smtp

2 MAIL_HOST =smtp. office365 .com

3 MAIL_PORT =587

4 MAIL_USERNAME = houseleek . project@outlook .com

5 MAIL_PASSWORD = MAIL_PASSWORD

6 MAIL_ENCRYPTION =TLS

7 MAIL_FROM_ADDRESS = houseleek . project@outlook .com

8 MAIL_FROM_NAME =" Project Houseleek "

to:

1 MAIL_DRIVER =smtp

2 MAIL_HOST =smtp -mail. outlook .com

3 MAIL_PORT =587

4 MAIL_USERNAME = houseleek . project@outlook .com

5 MAIL_PASSWORD = MAIL_PASSWORD

6 MAIL_ENCRYPTION =TLS

7 MAIL_FROM_ADDRESS = houseleek . project@outlook .com

8 MAIL_FROM_NAME =" Project Houseleek "

The mail host was updated because the old host (smtp.office365.com) was out-

dated. The updated settings use smtp-mail.outlook.com to ensure the system can send

veriĄcation links when registering new users, which is crucial for user onboarding and

veriĄcation processes.

Fixing Email Domain Validation

The existing version of the system allowed user registration only from the @fer.hr do-

main. As part of my work, I wanted to add the functionality of registering external users

by accepting all valid email domains. This change enhances the Ćexibility and usability

of the Houseleek system, allowing a broader range of users to register and participate

in the system. Inside Server/app/Http/Controllers/AdminRegistrationController.php

I changed methods for registration from:

1 public function adminRegisterUser (Request $request)

2 {

23

3 $messages = [

4 ’regex ’ => ’Only emails from @fer.hr domain are

allowed ’,

5];

6 $validator = Validator :: make($request ->all () , [

7 ’name ’ => [’required ’, ’string ’, ’max :255 ’],

8 ’username ’ => [’required ’, ’alpha_dash ’, ’max :25 ’

, ’unique : users ’],

9 ’email ’ => [’required ’, ’string ’, ’email ’, ’max

:255 ’, ’unique : users ’, ’regex :/(.*) @fer \. hr$/i’],

10 ...

11 }

to:

1 public function adminRegisterUser (Request $request)

2 {

3 $messages = [

4 ’email ’ => ’The : attribute must be a valid email

address .’,

5];

6 $validator = Validator :: make($request ->all () , [

7 ’name ’ => [’required ’, ’string ’, ’max :255 ’],

8 ’username ’ => [’required ’, ’alpha_dash ’, ’max :25 ’

, ’unique : users ’],

9 ’email ’ => [’required ’, ’string ’, ’email ’, ’max

:255 ’, ’unique : users ’],

10 ...

11 }

Similar changes were made to other controllers to ensure comprehensive validation:

Ű Server/app/Http/Controllers/Auth/RegisterController.php

Ű Server/app/Http/Controllers/TemporaryAccessController.php

Ű Server/app/Http/Controllers/UserController.php

3.2. Remote

Ensuring the Houseleek systemŠs remote server stability and enabling the Android

application to connect seamlessly to the remote server involved several critical steps:

24

Environment Variable ConĄguration

Updating .env File: ModiĄed the environment variables in the serverŠs .env Ąle to

point to the remote server (houseleek.rasip.fer.hr). This step was crucial for

ensuring that all services and dependencies were correctly referenced to the remote

server.

Initial Setup Attempts

Following Local Setup Steps: Initially followed the steps used for the local setup, an-

ticipating that the same procedures would work for the remote server. This included

setting up the server environment, conĄguring access control parameters, and attempt-

ing to run the server and connect the Android application.

Troubleshooting and Fixing Issues

Identifying and Resolving Problems: Upon discovering that the initial setup did not

work as intended, I identiĄed and resolved several issues speciĄc to the remote environ-

ment. This process involved debugging conĄguration errors, addressing connectivity

problems, and ensuring compatibility between the server and Android application.

Creating New Documentation

Remote Setup Instructions: Developed comprehensive documentation detailing the re-

mote server setup process. This included speciĄc steps to conĄgure the environment

variables, resolve issues encountered during the initial setup, and ensure stable opera-

tion of both the server and the Android application.

3.2.1. Remote server

To ensure the stability and secure functionality of the remote server for the House-

leek system, several critical issues were identiĄed and resolved through speciĄc trou-

bleshooting and conĄguration adjustments.

Fixing Permissions for Logs Folder

To address issues related to permissions for the logs folder which is visible on Ągure

3.4 , the following command was executed on the remote server:

1 chmod 777 -R /var/www/ storage /logs

This command ensured that the server had the necessary read, write, and execute

permissions to manage logs effectively, thus maintaining proper server operations.

25

Enabling HTTPS

To secure the connection to the remote server, HTTPS was implemented using LetŠs

Encrypt certiĄcates. The following steps were undertaken [24]:

1. Setup LetŠs Encrypt with Laradock:

In the docker-compose.yml Ąle, conĄgure Certbot for obtaining SSL certiĄcates:

1 certbot :

2 build :

3 context : ./ certbot

4 volumes :

5 - ./ data/ certbot / certs /:/ var/certs

6 - ./ certbot / letsencrypt /:/ var/www/ letsencrypt

7 environment :

8 - CN= houseleek . rasip .fer.hr

9 - EMAIL = houseleek . project@outlook .com

10 networks :

11 - frontend

12

Add volumes used by Certbot to the NGINX service in docker-compose.yml:

1 nginx :

2 volumes :

3 - ./ data/ certbot / certs /:/ var/certs

4 - ./ certbot / letsencrypt /:/ var/www/ letsencrypt

5

Disable port 443 in LaradockŠs NGINX conĄguration

(laradock/nginx/sites/default.conf) temporarily:

1 # For https

2 # listen 443 ssl;

3 # listen [::]:443 ssl ipv6only =on;

4 # ssl_certificate /etc/ nginx /ssl/ default .crt;

5 # ssl_certificate_key /etc/ nginx /ssl/ default .

key;

6

Stop the NGINX container:

1 docker - compose stop nginx

2

26

Rebuild NGINX with the –no-cache option:

1 docker - compose build --no - cache nginx

2

Build the Certbot container:

1 docker - compose build --no - cache certbot

2

Start NGINX:

1 docker - compose up -d nginx

2

Use Certbot to install certiĄcates:

1 docker - compose up -d certbot

2

Reactivate port 443 and set the correct certiĄcate paths in

laradock/nginx/sites/default.conf:

1 # For https

2 listen 443 ssl;

3 listen [::]:443 ssl ipv6only =on;

4 ssl_certificate /var/ certs / fullchain1 .pem;

5 ssl_certificate_key /var/ certs / houseleek .

rasip .fer.hr - privkey1 .pem;

6

Ensure the SSL directory is set correctly in the NGINX volume settings of

docker-compose.yml.

Finally, stop and rebuild NGINX with –no-cache:

1 docker - compose stop nginx

2 docker - compose build --no - cache nginx

3 docker - compose up -d nginx

4

27

3.2.2. CertiĄcate Management and Auto Renewal Setup

Installing Fresh CertiĄcates

To install new certiĄcates, you need to start the Certbot container. Each time the

container starts, new certiĄcates will be generated. To check if Certbot is running,

execute the following command:

sudo docker-compose ps

If Certbot isnŠt running, start the Certbot container by running the following com-

mand inside the Laradock directory:

sudo docker-compose up -d certbot

Be cautious, as there is a limit on the number of certiĄcates that can be issued per

week (currently 5). This limit resets every Monday. Unnecessary restarts of the Certbot

container can quickly exhaust this limit, so ensure Docker operations are intentional.

Setting Up Auto Renewal

To automate the renewal of certiĄcates, set up a cron job on the host server (the

server running Docker, not inside the Docker container). If this project is moved (to

a different directory or server) or if the server is wiped clean, you will need to repeat

these steps.

Editing Cron Jobs

To edit cron jobs on the server, use the command:

sudo crontab -e

This will open the cron job editor in the terminal. Add the following lines at the

end of the Ąle to set up auto renewal:

0 12 * * * /usr/local/bin/docker-compose -f /home/mjanic/server/Laradock/docker-compose.yml

0 0 * * * /usr/local/bin/docker-compose -f /home/mjanic/server/Laradock/docker-compose.yml

Explanation of Cron Job Syntax

The format for cron jobs is as follows:

28

|------------------------------- Minute (0-59)

| |------------------------- Hour (0-23)

| | |------------------- Day of the month (1-31)

| | | |------------- Month (1-12; or JAN to DEC)

| | | | |------- Day of the week (1-7; or MON to SUN)

| | | | |

0 12 * * * runs the job at 12:00 PM (midday) every day.

0 0 * * * runs the job at 12:00 AM (midnight) every day.

Explanation of Commands

Docker Compose Path

/usr/local/bin/docker-compose speciĄes the full path to the docker-compose binary.

This is necessary to avoid potential issues with the PATH environment variable, ensuring

the cron job can Ąnd and execute Docker Compose correctly.

Docker Compose File Location

-f /home/mjanic/server/Laradock/docker-compose.yml points to the location of

the docker-compose.yml Ąle, which contains information about the Docker containers.

This path needs to be updated if the project is moved or the server setup changes.

Executing Commands in Containers

exec certbot and exec nginx refer to executing commands within the certbot and

nginx Docker containers, respectively.

Certbot and Nginx Commands

Ű /root/certbot/run-certbot.sh runs a script inside the Certbot container that

renews the certiĄcates.

Ű nginx -s reload sends a signal to the Nginx server inside the Docker container

to reload its conĄguration and certiĄcates without stopping the server.

Fixing MySQL Execution Issues

The MySQL service encountered issues where it would not execute commands, even

under the root user. As a last resort, the –-skip-grant-tables option was added to

the MySQL command in docker-compose.yml. This option bypasses the permission

29

checks for MySQL, allowing administrative access to Ąx user account issues and reset

passwords.

These conĄgurations and adjustments ensured that the remote server for the House-

leek system was secure, stable, and operational, meeting the projectŠs requirements for

reliability and functionality in a remote environment.

3.3. Android Client

To build android client application I used Gradle Build Tool. Gradle Build Tool is

a fast, dependable, and adaptable open-source build automation tool with an elegant

and extensible declarative build language [12]. In this case it uses build script to build

Houseleek android application.

Gradle Build Files

Generally, a build script details build conĄguration, tasks, and plugins. Every

Gradle build comprises at least one build script.

In the build Ąle, two types of dependencies can be added:

1. The libraries and/or plugins on which Gradle and the build script depend.

2. The libraries on which the project sources (i.e., source code) depend.

Build scripts can be either a build.gradle Ąle written in Groovy or a build.gradle.kts

Ąle in Kotlin. The Groovy DSL (Domain-SpeciĄc Language) and the Kotlin DSL are

the only accepted languages for Gradle scripts.

Project Structure

The structure of the Houseleek Android app repository is as follows:

HouseleekApp/

|-- app/

|-- gradle/wrapper/

|-- build.gradle

|-- gradle.properties

|-- gradlew

|-- gradlew.bat

|-- settings.gradle

30

Explanation of Key Files

build.gradle: This top-level build Ąle is where you can add conĄguration options

common to all sub-projects/modules.

1 b u i l d s c r i p t {

2 r e p o s i t o r i e s {

3 goog l e ()

4 j c e n t e r ()

5 }

6 dependenc ies {

7 c l a s spa th ’com . android . t o o l s . bu i ld : g rad l e : 8 . 3 . 0 ’

8 }

9 }

10

11 a l l p r o j e c t s {

12 r e p o s i t o r i e s {

13 goog l e ()

14 j c e n t e r ()

15 }

16 }

17

18 task c l ean (type : De lete) {

19 d e l e t e r oo tPro j e c t . bu i ldDi r

20 }

Listing 3.1: Top-level build.gradle

gradle.properties: Project-wide Gradle settings. IDE (e.g., Android Studio)

users should note that Gradle settings conĄgured through the IDE will override any

settings speciĄed in this Ąle.

1 # Project −wide Gradle s e t t i n g s .

2 android . d e f a u l t s . b u i l d f e a t u r e s . b u i l d c o n f i g=true

3 android . e n a b l e J e t i f i e r=true

4 android . nonFinalResIds=f a l s e

5 android . nonTrans i t iveRClass=f a l s e

6 android . useAndroidX=true

7 org . g rad l e . jvmargs=−Xmx1536m

Listing 3.2: gradle.properties

gradlew and gradlew.bat: These scripts are used to execute Gradle commands

on UNIX-based and Windows systems, respectively. They help ensure that the correct

version of Gradle is used regardless of the version installed on the local machine.

settings.gradle: This Ąle includes the modules to be built. For the Houseleek

app, it includes the app module.

31

1 i n c lude ’ : app ’

Listing 3.3: settings.gradle

ConĄguring the Houseleek Android application for development involved several

key adjustments across different conĄguration Ąles:

HouseleekApp/app/build.gradle

Added namespace houseleek.rasip.fer.hr to the build.gradle Ąle:

1 namespace ’ house l eek . r a s i p . f e r . hr ’

This namespace declaration ensures that the applicationŠs resources are properly scoped

within the speciĄed namespace, facilitating organization and resource management. It

is used as the Java package name for its generated R and BuildConĄg classes.

HouseleekApp/app/src/main/AndroidManifest.xml

ModiĄed the package declaration: Removed the package declaration package="houseleek.rasip.fer.hr"

from the AndroidManifest.xml Ąle. This change allows the Android system to assign

the appropriate package name automatically based on the applicationŠs structure and

conĄgurations.

HouseleekApp/app/src/main/res/values/strings.xml

Updated strings related to API conĄguration: Changed from:

1 <!−− S t r i n g s r e l a t e d to api −−>

2

3 <s t r i n g name=" c l i e n t _ s e c r e t ">MSwvd9B3b7Jb4nqdW4jLy4ZIKC0Mt1oFhsvXA75v</

s t r i ng >

4 <s t r i n g name=" c l i e n t _ i d ">2</s t r i ng >

5 <!−−<s t r i n g name=" base_url ">http : // 192.168.1 .50/ </ s t r i ng >−−>

6

7 <s t r i n g name=" base_url ">https : // house l eek . r a s i p . f e r . hr/</ s t r i ng >

to:

1 <!−− S t r i n g s r e l a t e d to api −−>

2

3 <s t r i n g name=" c l i e n t _ s e c r e t ">bbPBt6RQRD6ZAxGFpU3qDMWlkdSEURpvkGwNhlZ8</

s t r i ng >

4 <s t r i n g name=" c l i e n t _ i d ">2</s t r i ng >

5 <!−−<s t r i n g name=" base_url ">http : // 192.168.1 .50/ </ s t r i ng >−−>

6

7 <s t r i n g name=" base_url ">https : // house l eek . r a s i p . f e r . hr/</ s t r i ng >

32

To connect to a local server, comment out <string name="base_url">https://houseleek.rasip.fer.hr/</string>

uncomment <string name="base_url">http://192.168.1.50/</string> and edit

it with the local IP address.

HouseleekApp/app/src/main/res/xml/network_security_conĄg.xml

Updated to allow cleartext traffic for local server usage: From:

1 <domain−c o n f i g c l e a r t e x t T r a f f i c P e r m i t t e d=" true ">

2 <domain includeSubdomains=" true " >161.53.67.82 </domain>

3 </domain−con f i g >

To:

1 <domain−c o n f i g c l e a r t e x t T r a f f i c P e r m i t t e d=" true ">

2 <domain includeSubdomains=" true " >192.168.1.50 </domain>

3 </domain−con f i g >

This change permits cleartext traffic for the local server at 192.168.1.50 to facilitate

development and testing scenarios.

HouseleekApp/build.gradle

Changed the Gradle plugin version in the build.gradle Ąle to:

1 com . android . t o o l s . bu i ld : g rad l e : 8 . 3 . 0

The Gradle plugin version has been updated from 4.1.3 to 8.3.0 to utilize the latest

features and improvements.

HouseleekApp/gradle.properties

Adjusted Gradle properties:

1 android . d e f a u l t s . b u i l d f e a t u r e s . b u i l d c o n f i g=true

2 android . e n a b l e J e t i f i e r=true

3 android . nonFinalResIds=f a l s e

4 android . nonTrans i t iveRClass=f a l s e

5 android . useAndroidX=true

6 org . g rad l e . jvmargs=−Xmx1536m

Added properties to control build features and optimize the build process (android.defaults.buildfeatures.buildconĄg,

android.nonFinalResIds, and android.nonTransitiveRClass).

HouseleekApp/gradle/wrapper/gradle-wrapper.properties

ModiĄed the distribution URL in gradle-wrapper.properties to:

1 https : // s e r v i c e s . g rad l e . org / d i s t r i b u t i o n s / gradle −8.4−bin . z ip

The Gradle distribution has been updated from 6.5 to 8.4 to ensure compatibility with

the latest Android Gradle plugin and to beneĄt from new features and improvements.

33

HouseleekApp/app/src/main/java/houseleek/rasip/fer/hr/LoginActivity.java

ModiĄed email validation logic:

1 pr i va t e boolean isUsernameOrEmailValid (S t r ing usernameOrEmail) {

2 i f (usernameOrEmail . conta in s ("@")) {

3 // I t must be an email , v a l i d a t e with regex

4 St r ing regexPattern = " ^ [a−zA−Z0−9_+& −]+(?:\.[a−zA−Z0−9_+&−]+)∗@

(? : [a−zA−Z0−9−]+\.)+[a−zA−Z]{2 ,7} $ " ;

5 re turn Pattern . compi le (regexPattern) . matcher (usernameOrEmail) .

matches () ;

6 } e l s e {

The email validation logic has been updated to use a regex pattern to check for a valid

email format, rather than just checking if it contains @fer.hr. This makes the email

validation allow users that registered as external users by accepting all valid email

domains using best practices [27].

Generating New Client ID and Secret To enhance security and functionality,

new client credentials (client ID and secret) were generated for the Android application:

This step is necessary when installing Houseleek server from scratch (when the database

is empty).

1. Generate Client Credentials: Run the following command on the server us-

ing Laravel Passport inside the workspace container (after docker-compose exec

workspace bash):

1 php artisan passport

2

This command generates new client credentials required for authentication be-

tween the Android application and the remote server.

2. Integrate Client Credentials: Update the Android application with the newly

generated client ID and secret by editing them in the Śstrings.xmlŚ Ąle.

3.4. Building and Deploying APK for Android

I wrote following steps to build an APK for Android in Android Studio and make

it available on the server:

3.4.1. Building the APK

1. Open Android Studio: Launch Android Studio and open your project.

34

2. Initiate the Build Process:

(a) Navigate to the top menu bar.

(b) Select Build -> Build Bundle(s) / APK(s) -> Build APK(s).

3. Wait for the Build to Finish: Allow the build process to complete. This

might take a few minutes.

4. Locate the Built APK:

(a) Once the build is Ąnished, a notiĄcation will appear in the bottom right

corner of Android Studio.

(b) Click Locate on the popup to open the folder containing the built APK.

5. Find the APK:

Ű Open the debug folder from the popup that appears in the bottom right

corner after the build is completed.

Ű Alternatively, navigate to HouseleekApp/app/build/outputs/apk/debug

in your project directory.

Ű Look for the Ąle named Houseleek-1.2.0-release.apk.

3.4.2. Deploying the APK to the Server

1. Copy the APK:

Ű Copy the Houseleek-1.2.0-release.apk Ąle from the debug folder.

2. Paste and Overwrite on Server:

Ű Navigate to the server Ąles directory Server/public/storage.

Ű Paste the copied APK Ąle into this directory.

Ű Make sure to overwrite the existing APK. This ensures the new version is

available for download and correctly named.

3.4.3. Important Notes

Ű Consistent Naming: Ensure the APK Ąle is named exactly

Houseleek-1.2.0-release.apk when pasting it into the server directory. If it

is named differently, it will not replace the existing APK, and the new version

will not be available for download.

Ű Backup: It is a good practice to back up the existing APK Ąle before overwrit-

ing it, in case you need to revert to the previous version.

35

By following these steps, you can successfully build the APK in Android Studio

and update the server with the latest version.

36

Figure 3.2: Laradock structure

37

Figure 3.3: Server file structure

38

Figure 3.4: Error due to missing permissions for the logs folder

Figure 3.5: Build File Basics

39

4. Conclusion

The improvements made to the Houseleek system have signiĄcantly enhanced its

functionality, stability, and user experience. By splitting the Git repository into sep-

arate components for the server, board Ąrmware, board schematics, and Android ap-

plication, we achieved a more modular and maintainable codebase. This restructuring

facilitated targeted improvements and streamlined development processes.

The local setup process involved meticulous testing and documentation to ensure

that both the server backend and Android application operated reliably. Through

detailed documentation, I provided clear instructions for setting up the server and

Android application, enabling others to replicate the working environment with ease.

Addressing the challenges of the remote server setup required troubleshooting per-

missions issues and enabling HTTPS for secure communication. Fixing these issues

ensured that the server was secure and operational, providing a stable foundation for

the Houseleek system.

The Android application was adapted to connect seamlessly with the remote server

by updating the base URL and generating new client credentials. These adjustments

ensured that the application maintained its functionality and security when interfacing

with the remote server.

The goal of this work was not only to improve technical aspects but also to en-

hance user involvement. By automating processes through Docker for portability and

Infrastructure as Code (IaC), we aimed to simplify onboarding for new students and

contributors. This approach made it easier for newcomers to get involved with the

project quickly, reducing setup time and ensuring consistency across different develop-

ment environments.

Overall, these improvements have strengthened the Houseleek systemŠs capability

to manage access control in departments and rooms. The enhanced administration

and conĄguration interface, along with the dynamic refreshment and addition of new

functionalities, have made the system more robust and adaptable.

40

Bibliography

[1] Android (operating system), 2024. URL https://en.wikipedia.org/wiki/

Android_(operating_system).

[2] Components 101. Pn532- nfc rĄd module, 2018. URL https://components101.

com/wireless/pn532-nfc-rfid-module.

[3] Inc. Amazon Web Services. What is docker? | aws, 2024. URL https://aws.

amazon.com/docker/.

[4] GitLab B.V. The most-comprehensive ai-powered devsecops platform | gitlab,

2024. URL https://about.gitlab.com/.

[5] Agendaless Consulting i Contributors. Supervisor: A process control system, 2024.

URL http://supervisord.org/.

[6] Electronic Frontier Foundation. About certbot, 2024. URL https://certbot.

eff.org/pages/about.

[7] git. git - scm, 2024. URL https://git-scm.com/.

[8] The PHP Documentation Group. Php: Fastcgi process manager (fpm) - manual,

2024. URL https://www.php.net/manual/en/install.fpm.php.

[9] The PHP Documentation Group. Php: Introduction - manual, 2024. URL https:

//www.php.net/manual/en/intro.swoole.php.

[10] Docker Inc. Containerize an application | docker docs, 2024. URL https://docs.

docker.com/guides/workshop/02_our_app/.

[11] Docker Inc. How compose works | docker docs, 2024. URL https://docs.docker.

com/compose/compose-application-model/.

[12] Gradle Inc. Gradle user manual, 2024. URL https://docs.gradle.org/

current/userguide/userguide.html.

41

[13] ITU-T. Internet of things (iot) [itu-t y.2060], 2012. URL https:

//www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-Y.2060-201206-I!

!PDF-E&type=items. ITU-T Recommendation Y.2060, 06/2012.

[14] Jure Knezović. Deep learning applications in iot environments for smart building

automation. Magistarski rad, Faculty of Electrical Engineering and Computing,

Zagreb, 2019.

[15] Laradock. Laradock - php development environment for docker, 2024. URL https:

//laradock.io.

[16] Laravel. Github - laravel, 2024. URL https://github.com/laravel/laravel.

[17] Cloudways Ltd. What are php workers and why do you need them?, 2024. URL

https://www.cloudways.com/blog/php-workers/#php-workers.

[18] nginx. nginx, 2024. URL https://nginx.org/en/.

[19] Jordi Boggiano Nils Adermann i many community contributions. Composer, 2024.

URL https://getcomposer.org/.

[20] Oracle. What is mysql?, 2024. URL https://www.oracle.com/mysql/

what-is-mysql/.

[21] phpMyAdmin contributors. phpmyadmin, 2024. URL https://www.phpmyadmin.

net/.

[22] portainer contributors. Github - portainer/portainer: Making docker and

kubernetes management easy., 2024. URL https://github.com/portainer/

portainer.

[23] Redis.

[24] rudy from Chill Bits. Setup letsencrypt with laradock Ű chill bits, 2021. URL

https://chillbits.com/2021/06/24/setup-letsencrypt-with-laradock/.

[25] Nord Security. Fastcgi deĄnition Ű glossary | nordvpn, 2024. URL https://

nordvpn.com/cybersecurity/glossary/fastcgi/.

[26] W3Schools. Laravel introduction, 2024. URL https://www.w3schools.in/

laravel/intro.

[27] Achim Weilin Zhong. Owasp validation regex repository | owasp foundation,

2024. URL https://owasp.org/www-community/OWASP_Validation_Regex_

Repository.

42

Appendix A

Setup Guides

43

README.md 2024-07-12

1 / 3

Houseleek Server Installation Guide
Welcome to the Houseleek server installation guide. This guide will walk you through the installation process
for setting up the Houseleek server on different environments.

Installation Guides
Local Server Installation Guide for Windows: This guide is for setting up the Houseleek server on a using
Windows.

Server Installation Guide For Linux: This guide is for installing the Houseleek server on a server using
Linux.

Starting Server After Restart
If server installation is completed and server needs to be restarted, repeat step 8 from installation guide in
Laradock directory.

Environment Configuration for Houseleek
This document explains the environment configuration variables used for the Houseleek project. The
configuration is divided into local and remote (production) setups, with explanations for each section.

Differences Between Local and Remote Environment Configurations
Local Environment Variables

APP_NAME=Houseleek
APP_ENV=local
APP_KEY=base64:ajVYkfduHku5pfJ1diGPZ32HNEst2zHQQ3tOSdwtVyE=
APP_DEBUG=true
APP_URL=http://localhost

Remote Environment Variables

APP_NAME=Houseleek
APP_ENV=production
APP_KEY=base64:ajVYkfduHku5pfJ1diGPZ32HNEst2zHQQ3tOSdwtVyE=
APP_DEBUG=false
APP_URL=https://houseleek.rasip.fer.hr

Explanation

APP_NAME: The name of the application.
APP_ENV: Specifies the environment the application is running in. It is set to local for development
and production for the live environment.

README.md 2024-07-12

2 / 3

APP_KEY: The encryption key used by Laravel. It is crucial for securing user sessions and other
encrypted data.
APP_DEBUG: Enables or disables debug mode. true for local development to display detailed error
messages, and false for production to avoid exposing sensitive information.
APP_URL: The base URL of the application. http://localhost for local development and the live URL
https://houseleek.rasip.fer.hr for production.

Common Environment Variables
The following variables are shared between both local and remote configurations.

Log Configuration

LOG_CHANNEL=stack

LOG_CHANNEL: Specifies the log channel. stack means it uses a stack of multiple channels.

ArcaneDev LogViewer Middleware

ARCANEDEV_LOGVIEWER_MIDDLEWARE=web,auth,systemAdministrator,verified

ARCANEDEV_LOGVIEWER_MIDDLEWARE: Middleware settings for the ArcaneDev LogViewer
package, listing middleware that should be applied.

Laravel Logger Routes

LARAVEL_LOGGER_DISABLE_ROUTES=true

LARAVEL_LOGGER_DISABLE_ROUTES: Disables the routes for Laravel Logger when set to true.

Database Configuration

DB_CONNECTION=mysql
DB_HOST=mysql
DB_PORT=3306
DB_DATABASE=houseleek
DB_USERNAME=houseleek
DB_PASSWORD=8dYUrFRXHFfpzRAG

Database Configuration: Specifies the MySQL database connection details including host, port,
database name, username, and password.

Cache, Session, and Queue Configuration

CACHE_DRIVER=redis
SESSION_DRIVER=redis
QUEUE_DRIVER=redis
BROADCAST_DRIVER=log
QUEUE_CONNECTION=redis
SESSION_LIFETIME=120

README.md 2024-07-12

3 / 3

Cache, Session, and Queue Configuration: Uses Redis for caching, session handling, and queue
management. Broadcasting is set to log and session lifetime is set to 120 minutes.

Redis Configuration

REDIS_HOST=redis
REDIS_PASSWORD=null
REDIS_PORT=6379

Redis Configuration: Specifies Redis server details including host, password (null for no password), and
port.

Mail Configuration

MAIL_DRIVER=smtp
MAIL_HOST=smtp-mail.outlook.com
MAIL_PORT=587
MAIL_USERNAME=houseleek.project@outlook.com
MAIL_PASSWORD=HSvD4LoS!HSvD4LoS!
MAIL_ENCRYPTION=TLS
MAIL_FROM_ADDRESS=houseleek.project@outlook.com
MAIL_FROM_NAME="Project Houseleek"

Mail Configuration:
MAIL_DRIVER: Specifies the mail driver, smtp in this case.
MAIL_HOST: The SMTP server host.
MAIL_PORT: The SMTP server port, 587.
MAIL_USERNAME: The username for the SMTP server, which is the email address used for
authentication.
MAIL_PASSWORD: The password for the SMTP server.
MAIL_ENCRYPTION: The encryption protocol, TLS.
MAIL_FROM_ADDRESS: The email address that will appear in the 'from' field of outgoing emails.
MAIL_FROM_NAME: The name that will appear in the 'from' field of outgoing emails.

README-local-windows.md 2024-07-12

1 / 3

Local Server Installation Guide for Windows
Prerequisites
Make sure you have git and Docker installed. If not, download and install git and Docker.

Installation Steps
1. Run Docker

If you haven't already, run Docker by clicking on Docker Desktop on your Windows start menu.

2. Download or clone project from git repository

Clone the project repository using the git clone command.

3. Navigate to Laradock Directory

Once the project is cloned, navigate to the Laradock directory using the following command:

cd Laradock

4. Copy Environment File

Copy the env-example file to .env by executing the following command:

cp env-example .env

5. Copy NGINX config File

Copy the local.conf.example file to default.conf by executing the following command:

cp nginx/sites/local.conf.example nginx/sites/default.conf

6. Configure Server Environment

Navigate to the Server directory and copy the env-example-local file to .env:

cd ..
cd Server
cp env-example-local .env

README-local-windows.md 2024-07-12

2 / 3

7. Return to Laradock directory

Before starting the Docker containers, return to the Laradock directory:

cd ..
cd Laradock

8. Start Docker Containers

Start the Docker containers by running the following command:

docker-compose up -d nginx phpmyadmin mysql redis portainer php-worker workspace

9. Access Workspace Container

After all containers are up and running run the following command:

docker-compose exec workspace bash

10. Update Dependencies

The command from step 9 will position you inside the bash of the container where Laravel PHP Server resides.
Inside the container, run the following command to update all necessary server files:

composer update

11. Run Database Migrations

Inside the container, execute the following command to create a fresh database with a default user:
houseleek@fer.hr, password:NekiBoljiPasvord456+

php artisan migrate:fresh

12. Access the Server

After completing all the above steps, the server should be accessible at port 80. Simply enter localhost in
your web browser.

13. Generating client ID and secret for Android application (optional)

README-local-windows.md 2024-07-12

3 / 3

While still inside the container, execute the following command to generate a client ID and secret. These
credentials are used by Android applications to securely communicate with the server. If you don't plan to
develop or use an Android application with this server, you can skip this step.

php artisan passport:install

Note
Make sure Docker is running throughout this process.

README-server-linux.md 2024-07-12

1 / 5

Server Installation Guide for Linux
Prerequisites
Make sure you have git, docker engine and docker-compose installed.

Installation Steps
1. Run Docker

If you haven't already, run Docker daemon service.

sudo systemctl start docker

2. Download or clone project from git repository

Clone the project repository using the git clone command.

3. Navigate to Laradock Directory

Once the project is cloned, navigate to the Laradock directory using the following command:

cd Laradock

4. Copy Environment File

Copy the env-example file to .env by executing the following command:

cp env-example .env

5. Copy NGINX config File

Copy the remote.conf.example file to default.conf by executing the following command:

cp nginx/sites/remote.conf.example nginx/sites/default.conf

6. Configure Server Environment

Navigate to the Server directory and copy the env-example-server file to .env:

README-server-linux.md 2024-07-12

2 / 5

cd ..
cd Server
cp env-example-server .env

7. Return to Laradock directory

Before starting the Docker containers, return to the Laradock directory:

cd ..
cd Laradock

8. Start Docker Containers

Start the Docker containers by running the following command:

sudo docker-compose up -d nginx phpmyadmin mysql redis portainer php-worker
workspace certbot

9. Access Workspace Container

After all containers are up and running run the following command:

sudo docker-compose exec workspace bash

10. Update Dependencies

The command from step 9 will position you inside the bash of the container where Laravel PHP Server resides.
Inside the container, run the following command to update all necessary server files:

composer update

11. Run Database Migrations

Inside the container, execute the following command to create a fresh database with a default user:
houseleek@fer.hr, password:NekiBoljiPasvord456+

php artisan migrate:fresh

12. Access the Server

README-server-linux.md 2024-07-12

3 / 5

After completing all the above steps, the server should be accessible at port 80. Simply enter
houseleek.rasip.fer.hr in your web browser.

13. Generating client ID and secret for Android application (optional)

While still inside the container, execute the following command to generate a client ID and secret. These
credentials are used by Android applications to securely communicate with the server. If you don't plan to
develop or use an Android application with this server, you can skip this step.

php artisan passport:install

Note
Make sure Docker is running throughout this process.

Certificate Management and Auto Renewal Setup
Installing Fresh Certificates
To install new certificates, you need to start the Certbot container. Each time the container starts, new
certificates will be generated. Certbot is started in step 8. You can check if certbot is running by running:

sudo docker-compose ps

If Certbot isn't running you can start Certbot container run following command inside Laradock directory:

sudo docker-compose up -d certbot

Be cautious, as there is a limit on the number of certificates that can be issued per week (currently 5).
This limit resets every Monday. Unnecessary restarts of the Certbot container can quickly exhaust this limit, so
ensure Docker operations are intentional.

Setting Up Auto Renewal
To automate the renewal of certificates, you need to set up a cron job on the host server (the server running
Docker, not inside the Docker container). If this project is moved (to a different directory or server) or if the
server is wiped clean, you will need to repeat these steps.

Editing Cron Jobs

To edit cron jobs on the server, use the command:

README-server-linux.md 2024-07-12

4 / 5

sudo crontab -e

This will open the cron job editor in the terminal. Add the following lines at the end of the file to set up the
auto renewal:

0 12 * * * /usr/local/bin/docker-compose -f /home/mjanic/server/Laradock/docker-
compose.yml exec certbot /root/certbot/run-certbot.sh
0 0 * * * /usr/local/bin/docker-compose -f /home/mjanic/server/Laradock/docker-
compose.yml exec nginx nginx -s reload

Explanation of Cron Job Syntax

The format for cron jobs is as follows:

|------------------------------- Minute (0-59)
| |------------------------- Hour (0-23)
| | |------------------- Day of the month (1-31)
| | | |------------- Month (1-12; or JAN to DEC)
| | | | |------- Day of the week (1-7; or MON to SUN)
| | | | |
* * * * *

0 12 * * * runs the job at 12:00 PM (midday) every day.
0 0 * * * runs the job at 12:00 AM (midnight) every day.

Explanation of Commands

Docker Compose Path

/usr/local/bin/docker-compose specifies the full path to the docker-compose binary. This is necessary to
avoid potential issues with the PATH environment variable, ensuring the cron job can find and execute Docker
Compose correctly.

Docker Compose File Location

-f /home/mjanic/server/Laradock/docker-compose.yml points to the location of the docker-
compose.yml file, which contains information about the Docker containers. This path needs to be updated if
the project is moved or the server setup changes.

Executing Commands in Containers

exec certbot and exec nginx refer to executing commands within the certbot and nginx Docker
containers, respectively.

Certbot and Nginx Commands

README-server-linux.md 2024-07-12

5 / 5

/root/certbot/run-certbot.sh runs a script inside the Certbot container that renews the certificates.
nginx -s reload sends a signal to the Nginx server inside the Docker container to reload its configuration
and certificates without stopping the server.

README.md 2024-07-12

1 / 2

Local Android Application Installation Guide
Prerequisites
Before you begin, make sure you have Android Studio installed on your computer. If not, download and install
it from the provided link.

Installation Steps
1. Run Android Studio

If you haven't already, launch Android Studio.

2. Download or Clone Project from Git Repository

Clone the project repository using the git clone command.

3. Open Project in Android Studio

Navigate to Android Studio, go to File -> Open, and then locate the project directory. Inside it, select the
"HouseleekApp" directory.

4. Modify strings.xml

1. Locate the file strings.xml at res/values/strings.xml.
2. Double click to open it.

Inside this file, you'll find the following lines:

<!-- Strings related to API -->
<string name="client_secret">DvPz1GaqtI0lsvbZL50WlsshKDXsdkrXXGjlNZj8</string> <!-
- CHANGE SECRET-->
<string name="client_id">1</string> <!-- CHANGE ID-->
<string name="base_url">http://192.168.0.12/</string> <!-- CHANGE TO SERVER IP-->

Modify the values in the first two lines with the secret and ID generated in step 12 from the server README.

Change the value in the third line to your server IP (your local IP if connecting to local server). You can retrieve
this by running ipconfig on Windows OS or ip addr on Unix OS.

5. Run the Application

You can run the application either in an emulator or by connecting your smartphone to the PC via USB.
Application can be started by using green play button at upper right corner of Android studio IDE.

Building and Deploying APK for Android

README.md 2024-07-12

2 / 2

Follow these steps to build an APK for Android in Android Studio and make it available on the server:

Building the APK
1. Open Android Studio: Launch Android Studio and open your project.

2. Initiate the Build Process:

Navigate to the top menu bar.
Select Build -> Build Bundle(s) / APK(s) -> Build APK(s).

3. Wait for the Build to Finish: Allow the build process to complete. This might take a few minutes.

4. Locate the Built APK:

Once the build is finished, a notification will appear in the bottom right corner of Android Studio.
Click Locate on the popup to open the folder containing the built APK.

5. Find the APK:

You can open the debug folder from the popup that appears in the bottom right corner after the
build is completed.
Alternatively, navigate to HouseleekApp\app\build\outputs\apk\debug in your project
directory.
Look for the file named Houseleek-1.2.0-release.apk.

Deploying the APK to the Server
1. Copy the APK:

Copy the Houseleek-1.2.0-release.apk file from the debug folder.

2. Paste and Overwrite on Server:

Navigate to the server files directory Server\public\storage.
Paste the copied APK file into this directory.
Make sure to overwrite the existing APK. This ensures the new version is available for
download and correctly named.

Important Notes
Consistent Naming: Ensure the APK file is named exactly Houseleek-1.2.0-release.apk when
pasting it into the server directory. If it is named differently, it will not replace the existing APK, and the
new version will not be available for download.
Backup: It is a good practice to back up the existing APK file before overwriting it, in case you need to
revert to the previous version.

By following these steps, you can successfully build the APK in Android Studio and update the server with the
latest version.

Improvements of Internet of Things-based access control system

Abstract

This thesis focuses on enhancing the Houseleek system, an IoT-based access control

solution originally developed at the Faculty of Electrical Engineering and Computing.

The Houseleek system controls access to departments and rooms using a hierarchical

user role structure. Key improvements include the ability to remotely conĄgure access

parameters, deĄne speciĄc user roles, and update embedded modules dynamically.

The project involved reorganizing the Git repository into distinct modules for the

server, Ąrmware, schematics, and Android application to create a more modular and

maintainable codebase. Stability of the server and Android application was ensured

through thorough testing and detailed documentation. Setting up the remote server

required resolving permission issues and enabling secure communication via HTTPS.

The Android application was updated to connect seamlessly with the remote server by

modifying the base URL and generating new credentials.

These enhancements signiĄcantly improved the Houseleek systemŠs functionality,

stability, and user experience, resulting in a robust solution for IoT-based access control.

The thesis advances the Ąeld of IoT applications in access control and paves the way

for future developments in smart building technologies.

Keywords: Internet of Things, Laravel, Docker, Access Control

Unapređenje sustava za kontrolu pristupa zasnovanog na tehnologiji

Interneta stvari

57

Sažetak

Ovaj diplomski rad usmjeren je na unapređenje sustava Houseleek, rješenja za kon-

trolu pristupa temeljenog na IoT-u, izvorno razvijenog na Fakultetu elektrotehnike i

računarstva. Sustav Houseleek kontrolira pristup zavodima i sobama pomoću hijer-

arhijske strukture korisničkih uloga. Ključna poboljšanja uključuju mogućnost daljin-

skog konĄguriranja parametara pristupa, deĄniranja speciĄčnih korisničkih uloga i di-

namičkog ažuriranja ugrađenih modula.

Projekt je uključivao reorganizaciju Git repozitorija u različite module za poslužitelj,

Ąrmware, sheme i Android aplikaciju kako bi se stvorila modularnija baza koda koja

se može održavati. Stabilnost poslužitelja i Android aplikacije osigurana je temeljitim

testiranjem i detaljnom dokumentacijom. Postavljanje udaljenog poslužitelja zahtije-

valo je rješavanje problema s dozvolama i omogućavanje sigurne komunikacije putem

HTTPS-a. Android aplikacija ažurirana je za besprijekorno povezivanje s udaljenim

poslužiteljem modiĄciranjem osnovnog URL-a i generiranjem novih vjerodajnica.

Ova su poboljšanja značajno poboljšala funkcionalnost, stabilnost i korisničko iskustvo

sustava Houseleek, što je rezultiralo robusnim rješenjem za kontrolu pristupa temeljenu

na IoT-u. Diplomski rad unapređuje područje IoT aplikacija u kontroli pristupa i utire

put budućem razvoju tehnologija pametnih zgrada.

Ključne riječi: Internet stvari,Laravel,Docker,Kontrola pristupa

58

	Introduction
	Motivation

	Project Houseleek
	Software
	Laravel
	Docker
	Laradock
	Android
	Git on GitLab

	Hardware
	ESP32
	NFC

	System Improvements
	The Houseleek Server
	Docker Setup
	Repository Structure
	Environment Files
	Environment Variables
	Server Backend Stability
	Android Application Testing
	Local Server

	Remote
	Remote server
	Certificate Management and Auto Renewal Setup

	Android Client
	Building and Deploying APK for Android
	Building the APK
	Deploying the APK to the Server
	Important Notes

	Conclusion
	Bibliography
	Setup Guides

