
Analiza praćenja pogleda u kolaborativnim i
kompetitivnim VR igrama

Haramina, Emilia

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:698126

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-20

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:698126
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:12319
https://repozitorij.unizg.hr/islandora/object/fer:12319
https://dabar.srce.hr/islandora/object/fer:12319

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 483

ANALYSIS OF GAZE TRACKING IN COLLABORATIVE AND

COMPETITIVE VIRTUAL REALITY GAMES

Emilia Haramina

Zagreb, June 2024

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 483

ANALYSIS OF GAZE TRACKING IN COLLABORATIVE AND

COMPETITIVE VIRTUAL REALITY GAMES

Emilia Haramina

Zagreb, June 2024

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 04 March 2024

MASTER THESIS ASSIGNMENT No. 483

Student: Emilia Haramina (0036526081)

Study: Computing

Profile: Network Science

Mentor: prof. Lea Skorin-Kapov

Title: Analysis of Gaze Tracking in Collaborative and Competitive Virtual Reality Games

Description:

Gaze tracking in virtual reality (VR) involves monitoring and interpreting the direction of a user's gaze within a
VR environment. This technology typically utilizes specialized sensors, cameras, or infrared light to accurately
track eye movements and determine where the user is looking. In VR games, gaze tracking can provide insights
into players' behavior, preferences, strategies, reactions, and decision-making processes. This information can
be valuable for player profiling, optimizing user interfaces, content placement, and overall user experience
design. Additionally, gaze tracking can be used for features such as gaze-based aiming or interaction. Your task
is to develop two simple multiplayer VR games: one that is collaborative and the other competitive. The
objective is then to conduct a user study designed to analyze gaze patterns in both developed games. Collected
data should be analyzed to investigate how gaze patterns differ across various scenarios, such as in
competitive vs. collaborative games, and scenarios differing in implemented interactions.

Submission date: 28 June 2024

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 4. ožujka 2024.

DIPLOMSKI ZADATAK br. 483

Pristupnica: Emilia Haramina (0036526081)

Studij: Računarstvo

Profil: Znanost o mrežama

Mentorica: prof. dr. sc. Lea Skorin-Kapov

Zadatak: Analiza praćenja pogleda u kolaborativnim i kompetitivnim VR igrama

Opis zadatka:

Praćenje pogleda (engl. gaze tracking) u virtualnoj stvarnosti (engl. Virtual Reality, skr. VR) uključuje praćenje i
tumačenje smjera korisnikovog pogleda unutar VR okruženja. Ova tehnologija obično koristi specijalizirane
senzore, kamere ili infracrveno svjetlo kako bi točno pratila pokrete očiju i odredila gdje korisnik gleda. U VR
igrama, praćenje pogleda može pružiti uvid u ponašanje, preferencije, strategije, reakcije i procese donošenja
odluka igrača. Te informacije mogu biti korisne za profiliranje igrača, optimizaciju korisničkih sučelja,
postavljanje sadržaja i općenito dizajn korisničkog iskustva. Dodatno, praćenje pogleda može se koristiti za
ciljanje unutar VR okruženja ili interakcije na temelju pogleda. Vaš zadatak je razviti dvije jednostavne
višekorisničke VR igre: jednu koja je kolabortivna, a drugu koje je kompetitivna. Nadalje, cilj je provesti
korisničku studiju osmišljenu s ciljem analize uzoraka pogleda tijekom igranja obje razvijene igre. Potrebno je
analizirati prikupljene podatke i istražiti kako se uzorci pogleda razlikuju u različitim scenarijima, poput kod
kompetitivnih i kolaborativnih igara, te kod scenarija s različitim interakcijama.

Rok za predaju rada: 28. lipnja 2024.

I am sincerely grateful to my mentor, prof. dr. sc. Lea Skorin-Kapov, for her guidance

throughoutmost of my college years and for her unwavering support to pushme through ex-

ploring many interesting research topics. I would also like to express my gratitude to dr. sc.

Sara Vlahović and mag. ing. Mirta Moslavac for their invaluable assistance and unfalter-

ing enthusiasm in assisting me in any circumstance. Frommy heart, I express my sincerest

gratitude to my parents for instilling in me the qualities of perseverance in my life, curiosity

in my studies, and resilience in the face of any challenge.

Contents

1 Introduction . 3

2 Gaze Tracking in Virtual Reality . 6

3 Design of OVRseer . 11

3.1 Game Analysis . 11

3.2 Map Design . 12

3.3 Gameplay . 12

4 Development of OVRseer . 14

4.1 Used Technologies and Tools . 14

4.2 Implementation and Features of OVRseer 16

4.2.1 Meta XR All-in-One SDK Integration 16

4.2.2 Scene Design . 21

4.2.3 Gaze Tracking . 23

4.2.4 Multiplayer Implementation . 32

4.2.5 Map Exploration . 42

4.2.6 Picture Finding . 48

4.2.7 Player Points . 58

4.3 Limitations . 63

4.3.1 No Scene to Scene Sessions . 63

4.3.2 Missing Shaders Data . 63

4.3.3 Players Looking at Their Controllers 64

4.3.4 Slow Aggregated Gaze Data . 65

4.3.5 Slow Loading of Multiple Sessions 65

4.3.6 Meta Quest Pro Comfort . 66

1

4.3.7 Networked Hands . 66

5 User Study . 67

5.1 Methodology . 67

5.2 Results and Discussion . 69

5.2.1 Form Data . 70

5.2.2 Session Questions and Points Data 71

5.2.3 Gaze Tracking Data . 76

5.2.4 Practical Implication of Test Results 86

6 Conclusion . 87

References . 88

List of Figures . 93

List of Tables . 97

Abbreviations . 98

A: User Study Form . 99

B: Pictures Players Need to Find the Origin of 103

Abstract . 113

Sažetak . 114

2

1 Introduction

Gaze tracking refers tomeasuring and analyzingwhat a person is looking at by recording

their eye movements [1]. It is a technology commonly used in retail and advertising, but

also finds use for gaming and understanding the human brain [2]. The most common

way the gaze of a user is tracked is bymeasuring the difference in the location of the pupil

center and the reflection of the cornea provided by an infrared light [3]. This difference

changes with the user looking in different directions, and it allows the correct gaze of

the user’s eye to be calculated via computer vision algorithms.

Virtual reality (VR) allows users to be immersed into a completely virtual world

through the use of VR headsets. While it is still a relatively new technology, some VR

headsets are able to track a user’s gaze. However, inVR, the eyes do not always accurately

point to where the user is looking at. Because the VR display is so close to the user’s eyes,

the gaze of both eyes does not meet at the point of focus of the user like it does in the

real world [4]. However, the object a user is looking at can be found by tracing a virtual

line from the eye in the calculated direction into the virtual world a user is immersed

in. With this virtual line, the point a user is looking at can be found in an artificially

made, virtual world. There are VR games that possess mechanics that use gaze tracking

for controlling certain objects, or even the player. However, there are not many studies

that analyze the gaze tracking of VR users. There are even less studies that analyze the

difference of these data between collaborative and competitive game modes.

The analysis of gaze data can provide valuable insights into certain modifications or

additions that developers can implement in their multiplayer VR games to direct the

player’s attention towards specific areas of the environment. Furthermore, the results of

this analysis may differ between collaborative and competitive multiplayer VR games.

Therefore, in order to gain insight into the gaze tracking data in different game modes

3

of multiplayer games, an application calledOVRseerwas developed in the scope of this

thesis. OVRseer is a multiplayer VR application that provides two users with two maps

they have to explore and for which they have to remember the layout. While they are

playing both the collaborative and the competitive versions of the game, their gaze is

recorded. Afterward, a user study is conducted using a general question form users had

to fill out and the gaze data received from the recorded sessions is analyzed.

The analyzed gaze data consists of heatmaps of the player’s gaze, as well as statistics

for how many certain objects were looked at. Then, the similarities and differences be-

tween the two multiplayer game modes are investigated in detail. This analysis could

prove useful in making multiplayer VR games in the future, as it could show what parts

of the map players focus on in collaborative and competitive game modes, respectively.

It is expected that in competitive mode, players will split up and explore the map them-

selves to not give the other player an advantage. On the other hand, players playing

collaboratively could split up to cover more parts of the map or explore together to help

each other remember parts of themap better. Additionally, playersmay look at objects of

different colors or sizes when playing with or against the other player. To draw the play-

ers’ attention in these two game modes, the results of this user study could be utilized in

the future development of multiplayer VR games.

The main goals of this thesis are as follows:

1. list and review prior research regarding the use of gaze tracking in VR,

2. explain in detail the process of developing a multiplayer VR game that contains

both collaborative and competitive versionswhile recording the gaze of the players,

and

3. perform a user study to investigate the differences in gaze tracking between collab-

orative and competitive game modes in VR.

All of these goals are achieved in the five major chapters of this thesis. After the in-

troductory chapter, the following chapter explains definitions of the key concepts used

in this thesis, lists games that utilize gaze tracking technology, and provides an overview

of previous work analyzing gaze data in VR. The third chapter describes the design of

4

a multiplayer VR game in which players explore different maps in multiplayer, then try

to find certain places on each map in collaborative and competitive game modes. After-

ward, the fourth chapter delves into the process of developing this multiplayer VR game

that contains both collaborative and competitivemodeswhile collecting gaze tracking in-

formation. The next chapter analyzes the data gained from playing the aforementioned

game, as well as the recorded gaze data. Finally, the thesis presents a conclusion con-

taining a thorough summary and overview of the achieved results. Additionally, the list

of references, figures, tables, and abbreviations utilized in this thesis are also provided.

The form used in the user study and all pictures contained in the developed VR game are

also provided and can be found in the appendices.

5

2 Gaze Tracking in Virtual Reality

The Merriam-Webster dictionary defines VR as "an artificial environment that is experi-

enced through sensory stimuli (such as sights and sounds) provided by a computer and

in which one’s actions partially determine what happens in the environment" [5]. By

dissecting this definition, the main elements VR consists of can be further analyzed and

explained. Firstly, the definition describes VR as an "artificial environment", meaning

the space the user of VR sees is a completely artificial, three-dimensional (3D) environ-

ment simulated using a computer [6]. Following that, the definition says VR is "expe-

rienced through sensory stimuli (such as sights and sounds) provided by a computer",

which is achieved by the use of various VR devices, such as headsets, earphones, con-

trollers, gloves, bodysuits, and many others [7]. These VR devices allow the user to feel

immersed in the artificial environment by simulating stimuli from the real world. Fi-

nally, according to the definition, the virtual environment is one "in which one’s actions

partially determine what happens in the environment". Using various VR devices, the

computer can recognize the user’s input and alter the virtual environment, which allows

the user to interact with the artificial VR world and the objects inside it [8].

The application of VR has already made its way into many real-world scenarios, for

example inmedicine, media, education, entertainment, andmanymore [9]. VR technol-

ogy is utilized in many industries because of the versatility of its content. In healthcare,

VR has been used as pain relief for burn injuries, operation preparation, and treatment

for mental health issues [10]. Trying on different clothes in a virtual world is a time-

effective experience for shoppers. VR can also help architects by making it possible not

only to see what a building or space will look like, but also how it will feel. VR has been

found to also significantly increase learning retention levels, allowing students to use

this technology to learn more effectively [11]. Additionally, VR makes for a more im-

6

mersive gaming experience, with users being able to see the gaming environment from

the character’s point of view.

Eye gaze tracking refers to the procedure of measuring and analyzing a person’s eye

movements to determine where they are looking [1]. This technology is widely used in

retail and advertising, where a customer’s attention can be analyzed to optimize sales

approaches and customer experience [2]. Gaze tracking can also be used in gaming, al-

lowing players to interact with a game using their eyes [1]. Neuroscience and psychology

canuse this technology to further understandhow the brain processes visual information

and how people react to different stimuli surrounding them.

The typical way eye gaze tracking is implemented is by continuously measuring the

relative difference in the location of the pupil center and the reflection of the cornea pro-

vided by an infrared light invisible to the human eye [3]. The data changes depending on

where the user is looking, allowing for the gaze of the eye to be calculated with computer

vision algorithms. However, in VR, the eyes do not always point exactly where the user

is looking. This is due to the VR display being so close in front of the eyes that the gaze

of both eyes does not meet at an object at the center point, as is the case in the real world

[4]. This incomplete information can be filled by looking at the virtual environment that

users are in. By tracing a virtual line from the direction of the user’s eye gaze into the

virtual world, an object at a central point of the eye gaze can be deduced, and the data

about the user’s gaze can be collected. A visual of this process can be seen in Figure 2.1.

On the left part of the Figure, gaze direction in the real world is shown, where the object

a user is looking at is the central point of their eye gaze. On the right, whenwearing a VR

headset, the user is actually looking at a VR display in front of their eyes. In the virtual

world, the user’s eyes are placed in their environment according to their head tracking.

Due to this, the gaze direction can be calculated by tracing a virtual line from the user’s

eye representation in the direction of their eye gaze. Some VR headsets that utilize gaze

tracking technology include Meta Quest Pro, PlayStation VR2, and HTC Vive Pro Eye.

Gaze tracking was first utilized by having users wear specific contact lenses with

a pointer attached to them, with their gaze being shown by the pointer [12]. Since

then, gaze tracking technology has gone through many iterations, with it now being

lightweight and able to be utilized within a VR headset. When used with VR technol-

7

ogy, gaze tracking can be paired with the simulated virtual environment to easily observe

where the user is looking. In a virtual world, multiple objects can be combined into re-

gions of interest, and in VR, it is easy to determine what regions a user looked at during

a session [13].

Figure 2.1: Gaze tracking in the real world (left) and in VR (right), adapted from [3]

Some games have alreadymade their mechanics rely solely or partly on gaze tracking

or, more commonly, blinking or movements of the user’s eyes. For example, the game

Blink changes the game environment when a player blinks, allowing for unique puzzles

in the game [14]. Before Your Eyes is another game that utilizes an eye tracking me-

chanic in which blinking controls the game’s story and affects its outcomes [15]. In VR,

there are only a handful of games that take advantage of the relatively new gaze track-

ing technology. One of those games is Synapse, in which players can use telekinesis to

move different objects or enemies around. However, their gaze dictates which objects or

enemies this impacts, with the object or enemy becoming highlighted before the player

activates the telekinesis ability [16]. Another VR game that uses eye tracking mechan-

ics is Switchback VR, which contains an area of the game in which blinking causes

enemies to change positions and eventually attack the player [17].

8

Some studies utilize user gaze tracking in VR for the sake of performing an analysis

of the gathered data. One of those is a study by Duchowski et al., containing a VR appli-

cation with the environment of an aircraft [12]. In this study, the application was devel-

oped to analyze the aircraft inspection training of users. The gaze of the users using the

application was tracked to analyze the difference in performance between novices and

experts. Another study by Mutasim, Batmaz, and Stuerzlinger analyzed eye-hand co-

ordination training systems using gaze tracking [18]. The collected data presented how

much additional time users needed to visually find a target and how much more time

had passed before they selected the target.

A study by Hu places users in static and dynamic scenes, tracking their gaze while

they look around the scenes [19]. The study found that the users’ gaze is correlated to

their head rotation velocities. Additionally, in dynamic scenes, the users’ gaze was found

to have strong correlations to the position of dynamic objects. Burova et al. investigated

the usefulness of augmented reality (AR) simulation inVR [20]. They conducted a survey

that utilized gaze data from the evaluation. Their results showcase the potential of AR

simulations in VR when combined with gaze tracking.

While there are quite a lot of studies covering the overview, setup or implementation

of gaze tracking in VR headsets and VR applications ([21], [22], [23], [24], [25], [26]),

there are fewer studies that analyze gaze tracking of VR users ([12], [18], [19], [20]). Fur-

thermore, no studies analyzed in the scope of this thesis analyzed the difference in gaze

tracking data between collaborative and competitive games. One study that analyzed

gaze tracking data in VR is a user study by Clay, König, and König, which presented

users with a virtual city they had to explore [13]. While exploring the city, the gaze track-

ing information of participants was collected. Mainly, the time houses were looked at,

which allowed a heatmap of the city to be made. The heatmap showed what parts of

the city participants looked at most and how far away they were when looking at them.

Afterward, participants were shown a series of pictures containing buildings in the vir-

tual city, then had to answer howwell they remembered the building in the pictures and

whether they could find their way back to the building. The key results of this study

include that most of the virtual city was visited during the given time of exploration and

that most houses were seen by more than half of the participants. In addition, bigger

9

house complexes and more unique houses were gazed at longer than those placed in a

row along the street. The study also concluded that the longer a house was looked at, the

higher the subjective familiarity rating of a housewas, but the correlationwas lower than

expected. Finally, there was no strong relation found between familiarity and viewing

distance of a house. This user study served as a motivation for this Master’s thesis.

10

3 Design of OVRseer

The design of the application necessary to conduct the user study is described in this

chapter. OVRseer is a multiplayer game played in VR. Players explore two maps in two

different game modes while trying to remember as many parts of the maps as possible.

During exploration, their gaze is monitored to gather information regarding the objects

and parts of the map the players are looking at. Afterward, they are given pictures taken

on themap andmust answer questions regarding familiaritywith those pictures. Finally,

for each picture, players have to return to the place where the picture was taken, gain-

ing points depending on how fast they find it. The data obtained from their responses

and the duration required to locate where a picture was taken are also preserved. These

data can be combined with the previously mentioned gaze data to determine whether

the location of a player’s gaze has an impact on their familiarity with specific areas of the

map. Furthermore, it could suggest a connection between players’ gaze and their level

of confidence in returning to certain places on the map. The two different game modes

are collaborative, in which players work together, and competitive, in which they play

against each other. In these two different game modes, the players’ gaze may differ, and

it would be helpful to know what parts of the map players focus on in each respective

version. Using these data, it is possible to incorporate features in future multiplayer VR

games that aim to direct players’ attention towards specific areas of the virtual environ-

ment.

3.1 Game Analysis

OVRseer could be considered a puzzle game, with players having to remember parts of

the maps so they could later recall them. The main elements of the game include explo-

ration of the map, answering questions about a certain place on the map, and finding

11

their way back to where the picture of that place was taken. The theme of one map is

modern, boasting an amusement park, while the theme of the other is fantasy, including

a medieval village. The art style of both maps is low poly. The game is multiplayer, with

two people able to play at the same time. Since the game is primarily developed with the

aim of collecting and analyzing user eye gaze data and the gameplay is not long, there

is no story players have to follow. OVRseer is a 3D game in VR that players play from

a first-person perspective. It can be played on standalone VR devices, or on VR devices

with a computer connection.

3.2 Map Design

OVRseer is set in two open maps left for players to explore. The first is an amusement

park, with various attractions boasting vivid colors spread through themap. In this map,

the players are able to walk on structured walkways, not being able to move on the grass.

The other map includes a medieval village set in a fantasy-inspired world. The village is

full of houses, with some being open for the players to explore inside. On this map, the

player can move on any ground surface, but is restricted from moving too far away from

the village.

Both the amusement park map and the medieval village map can prove useful when

analyzing the player’s gaze when exploring them. The vivid and differing colors of the

attractions on the amusement parkmap can provide valuable insights into the colors that

players tend to focus on. On themedieval villagemap, there is a central part of the village

and some buildings scattered on the outskirts of the village. It would be helpful to deter-

mine whether players are primarily focused on the central area of themap, or if they also

explore other parts of the map. Additionally, it should be noted that the data collected

on these maps may exhibit variances when playing collaboratively or competitively.

3.3 Gameplay

Both maps contain the same gameplay, with the players starting in an area they can’t

move from. They are presented with menus, with one of the players able to change the

multiplayer game mode and start the game. For players to be able to move using a VR

12

headset, VR controls are needed. The player can look around by moving their head, and

move using their controllers. Players have an avatar which represents them and which

can be seen by the other player. Players’ avatar design consists of a head tracking their ac-

tual head movement. After one player starts the game, players have a certain amount of

time to explore the map, instructed to remember as much as possible. Additionally, they

have a menu on their left hand, visible when they turn their hand towards themselves.

This hand menu shows the time they have left to explore the map.

After the exploration time has passed, players are presented with a set of pictures on

their menus, one by one. For each picture, players have to individually answer ques-

tions regarding their familiarity of the place in the picture. Then, they have to find the

place where the picture was taken. On the hand menu, the current picture and time left

for finding where it was taken is shown. Once players find where the picture originated

from, they aremoved back to their starting area and given points depending on their per-

formance. The faster they find where the picture was taken, the more points they gain.

In collaborative mode, players gain points together. On the other hand, in competitive

mode, players collect points individually, with the one with more points being the win-

ner. Through the game, the gaze of players for objects of interest and the map as a whole

is recorded for analysis.

13

4 Development of OVRseer

The application developed as a part of this thesis,OVRseer, is an immersivemultiplayer

VR game designed for the analysis of the difference in a player’s gaze data between dif-

ferent versions of multiplayer games. The amount of time and total time the players

looked at objects around the map, as well as the presence of the other player, is recorded.

Additionally, their movement across the map and parts of the map their eyes focused

on are also recorded for analysis. The application uses VR technology to create an im-

mersive environment for players to explore. The game can only be played in pairs, with

each player using their own VR headset. Two players can play this game on different

networks, but for this thesis, both players were connected to the same one. It should be

noted that, while any VR headset could be used to play the game, for the user study, at

least one player should wear a gaze tracking VR headset. As a part of this thesis, one

player used the Meta Quest 2, while the other wore the Meta Quest Pro, with the latter

being capable of tracking a player’s gaze.

4.1 Used Technologies and Tools

Unity is a game engine developed by Unity Technologies. Numerous platforms, includ-

ing desktop, mobile, console, and VR, are compatible with the engine. It can be used to

produce two-dimensional or 3D games, interactive simulations, and other kinds of ex-

periences. Industries other than video gaming, including film, automotive, architecture,

engineering, construction, and the military, have also adopted the game engine due to

the versatility of content that can be produced using it [27]. The version of Unity used

for the development of OVRseer is 2023.2.17f.

14

C# is a versatile, general-purpose, andmulti-paradigm programming language. It in-

cludes static typing, strong typing, lexically scoped, imperative, declarative, functional,

generic, object-oriented, and component-oriented programming disciplines. It was de-

signed by Microsoft and debuted with Visual Code and the .NET Framework [28]. The

version of C# used for the development of OVRseer is 9.0.

The Meta XR All-in-One SDK bundles several Meta SDKs together. It includes

many features like advanced rendering, social, and community building, and provides

capabilities to build immersive experiences in both VR andmixed reality [29]. OVRseer

was developed with version 64.0.0.0 of this SDK.

Photon Unity Networking 2 is a networking solution developed by Exit Games. It

simplifies the development of multiplayer games in Unity. A globally distributed Pho-

ton Cloud hosts Photon Pun 2 games to reduce latency and offer the shortest round-trip

timings. The client-server architecture is used [30]. The version of Photon PUN 2 used

for the development of OVRseer is 2.46.

Cognitive3D is a 3D analytics platform that tracks human behavior in VR/AR sim-

ulations and provides useful insight into the data [31]. With a simple integration of their

package into Unity and exporting a scene, the player sessions can be replayed with their

gaze data shown. A gaze heatmap can be analyzed for sessions, gaze data for specific

objects is measured, the data can be aggregated from multiple sessions, and other data

from VR sessions can be looked at. The version of the Cognitive3D SDK used in the de-

velopment of OVRseer is 1.4.7. The Pro plan is used for analyzing the data. Some of the

gaze data is available in the free version as well, but most of it requires the Pro plan to be

viewed.

Microsoft Visual Studio 2022 is an integrated development environment fromMi-

crosoft [32]. Along with supporting numerous programming languages, andmanymore

available through plugins, it contains an integrated debugger. Unity is set up to operate

in this environment. OVRseerwas developed withMicrosoft Visual Studio 2022 version

17.7.4.

TheUnity Asset Store is a marketplace of assets that can be used in a Unity project

[33]. TheMeta XR All-in-One SDK is used to simplify a user’s interactions with a virtual

15

world through VR [34]. Tomake the development of themultiplayer version easier, PUN

2 - FREE is employed [35]. Two maps in OVRseer from the Unity Asset Store were

also used. One of those maps is Amusement park 11, which contains attractions set in a

cartoon-like amusement park setting [36]. The othermap isDreamscapeVillage - Stylized

Fantasy Open World2, a large medieval fantasy village [37].

4.2 Implementation and Features of OVRseer

In this section, the implementation of OVRseerwill be discussed. Game features will be

described, as well as their implementation using the aforementioned technologies and

tools. Firstly, the integration of the Meta XR All-in-One SDKwill be explained, allowing

players to use VR headsets to interact with the virtual environment. Secondly, the multi-

player implementation will be discussed, which makes it possible for two players to play

OVRseer together over the Internet. Next, the design of two scenes will be analyzed.

Following that, the thesis will explain how gaze tracking was implemented using Cog-

nitive3D. Afterward, the necessary steps to implement the exploration of both maps will

be explained. Then, the finding of places where pictures of the map were taken will be

discussed in detail. Finally, the thesis will go over how players get points when playing.

4.2.1 Meta XR All-in-One SDK Integration

To allow players to explore the virtual world, their head and hands or controller move-

ment need to be tracked in the virtual space. Players need to see their hands or con-

trollers, interact with the game menus present in the game, and be able to move and

turn. To achieve this, the Meta XR All-in-One SDK was used.

VR Player Representation

The OVRCameraRigInteraction prefab, seen in Figure 4.1, from the Meta XR All-in-One

SDK package was dragged into the Unity hierarchy. This prefab contains objects that

have positions and rotations corresponding to the real-life location of the player’s head

and hands. In addition, the prefab activates and deactivates objects should the player

1https://assetstore.unity.com/packages/3d/environments/landscapes/amusement-park-1-235574
2https://assetstore.unity.com/packages/3d/environments/fantasy/dreamscape-village-stylized-

fantasy-open-world-244797

16

switch from using their hands to using the headset’s controllers and the opposite. With

the Meta Quest Pro, however, a player can use one hand and one controller simultane-

ously, allowing for more freedom of interaction.

Figure 4.1: The OVRCameraRigInteraction prefab from the Meta XR All-in-One SDK

The hands appear as transparent, gray hands with the same joints a human hand has.

The hand tracking for the Meta XR All-in-One SDK is fairly accurate, being able to track

only the parts of the hands that are directly seen from the headset’s point of view. Of

course, if a part of the hand is obscured by real-life objects or the other hand, the model

in the virtual world will not appear correctly, since the camera cannot track it correctly

without being able to see it. Controllers appear the same as the controllers used by the

player, with different types of controllers available and automatically changing to the

correct model depending on what VR device the player is using. When the player pushes

a button or moves the thumbstick of a controller, the same input appears to happen on

the virtual controller, as it mimics the real-life controller.

The objects under the parent object TrackingSpace correspond to their real-life coun-

terparts, tracking theirmovement. For example, theCenterEyeAnchor object corresponds

to the head of the player, while the RightHandAnchor object tracks the movement of the

player’s right hand, whether it is holding a controller or not. Additionally, because the

17

prefab uses a camera on the CenterEyeAnchor object that tracks the player’s head po-

sition and rotation, the Main Camera that is present in the scene by default should be

deleted.

VR UI Interaction

The OVRCameraRigInteraction prefab also contains interactors that are required for the

player to interact with the virtual world. Both the hands and the controllers contain

poke, grab, ray, locomotion, and distance grab interactors, while the hands also contain

the touch hand grab and hand grab use interactors. However, only the poke, ray, and

locomotion interactors are used in the exploration of OVRseer, so the way those inter-

actors work will be explained. The poke and ray interactor both allow players to interact

with any User Interface (UI) present in the virtual world. The difference is that the poke

interactor requires players to directly poke the UI with either their fingers or controllers,

while the ray interactor requires players to only point at the UI from a distance with their

hands or controllers. To select a UI element from afar, one option is for players to pinch

their thumb and index finger while pointing at the UI if they are using their hands. On

the other hand, if they are using controllers, they can press the trigger button, which

their index finger is laying over. A poke interaction example with UI using hands is seen

in Figure 4.2, while ray interaction using controllers can be viewed in Figure 4.3.

Figure 4.2: Poke interaction with the UI using a hand

18

Figure 4.3: Ray interaction with the UI using a controller

For the player to be able to interact with the UI, it has to be modified to work with

VR. To do this, the Canvas Render Mode property must be set to World Space, and the

Pointable Canvas, Ray Interactable, and Poke Interactable components from theMeta XR

All-in-One SDK packagemust be added to the canvas object. TheCanvas property of the

Pointable Canvas has to reference the Canvas component of the same game object. Also,

the Pointable Element property of both the Ray Interactable and Poke Interactable com-

ponents has to be set to the Pointable Canvas component. Next, a surface has to be made

that allows players to interact with the UI elements contained in it. This surface must be

referenced as the Ray Interactable’s Surface component and the Poke Interactable’s Sur-

face Patch component. A new, empty game object has to be made, with the components

Plane Surface, Clipped Plane Surface and Bounds Clipper attached to it. The Plane Sur-

face property of the Clipped Plane Surfacemust reference the Plane Surface component

on the object, while the Bounds Clipper has to be added to the Clippers list property. Fi-

nally, the Bounds Clipper has to be edited using the Show Surface Visuals button, and set

to the size of the UI used. With these steps done, players can interact with the UI using

their hands or controllers.

VR Locomotion

The locomotion interactor has two uses: movement and turning. For moving around,

players have to clench a fist with their palm facing up or down and stretch out their

thumb and index finger, point to where they want to teleport, and then pinch those two

19

fingers together. If they are using controllers, players have to move the thumbstick for-

ward, also point to where theywant tomove, then let go of the thumbstick. In both cases,

the player will be teleported to the wanted location. An example of teleportation with

the controllers is visible in Figure 4.4.

Figure 4.4: Teleport interaction using a controller

If the VR headsets are connected to a computer via a cable, the turning capabilities

of the players are restricted, so they are also able to turn using their hands or controllers.

To turn with their hands, players have to make a similar shape with their hands to the

one required for teleporting, but their palm has to be turned inward and their thumb and

index finger have to be slightly bent. When players do this, arrows pointing to the left or

right appear above their hand. By holding their hand in the same position, but moving it

to the left or the right, then pinching their thumb and index finger together, players turn

45 degrees in the direction symbolized by the picked arrow. With controllers, players

turn by simply pushing either thumbstick to the left or the right, turning 45 degrees in

the desired direction. An example of turning with a hand can be seen in Figure 4.5.

Additionally, to allow players to be able to teleport on walkable surfaces and restrict

them from teleporting on other objects, all asset prefabs had to be modified. The compo-

nents Teleport Interactable, Collider Surface, and Reticle Data Teleport were added to all

used assets. For the Collider property of the Collider Surface component, the collider of

the object in question was referenced. Then, the Collider Surface component was used

for the Surface property of the Teleport Interactable component. For assets that could be

20

walked on, the Allow Teleport property of the Teleport Interactable component was set

to true and the Reticle Mode property of the Reticle Data Teleport component was set to

Valid Target. On the other hand, assets that could not be walked on had these properties

set to false and Invalid Target respectively.

Figure 4.5: Turn interaction using a hand

4.2.2 Scene Design

As previously stated in section 4.1, two maps were used in OVRseer to make develop-

ment easier, Amusement park 1 and Dreamscape Village - Stylized Fantasy Open World,

both of which are available in the Unity Asset Store. These maps were chosen because of

their similar and large enough size, as well as their diverse assets and attention to detail.

Each map makes up a scene, so there are two scenes used in the game. The first scene

is called Map_Amusement_Park, featuring the amusement park map, while the other,

which contains the medieval village map, is calledMap_Dreamscape_Village.

The first map features a virtual amusement park, which can be seen in Figure 4.6.

The most important parts of the map are the many attractions scattered across the map,

a castle, a stage, a fountain, a ship, and a tunnel. Players started in the bottom right

corner of the map, on the side of the bridge opposite the amusement park. On this map,

players can teleport on the roads and the platforms of some attractions, but not on the

grass.

21

Figure 4.6: The amusement park map

The second map represents a medieval village, seen in Figure 4.7. This map’s most

prominent features are the houses, a statue, a watermill, a dock, an inn, long stairs, a

church, and a central big tree. The windmill on the map also looks important, but it is

out of the player’s reach, so it is not noted as one of the prominent features. It should

be noted that due to the distance between the camera and the map when taking a photo

of the whole map, many assets in the Figure have low level of detail, while some are

not even visible. Up close and from a VR perspective, the medieval village has many

details and the assets look much more detailed. On this map, players can teleport on

grass and most wooden surfaces, but there are invisible walls players can not teleport

through around the village that prevent them from going too far outside the village.

Figure 4.7: The medieval village map

22

4.2.3 Gaze Tracking

Cognitive3D is used to track a player’s gaze while they are playing the game. Implemen-

tation of gaze tracking in OVRseer is covered in this subsection. Additionally, features

of Cognitive3D, as well as all data available when using the software, is also explored.

Cognitive3D Setup in Unity

After importing the Cognitive3D package into the project and making an account on

their website3 users are granted a Developer Key. This key is used to connect the devel-

oped game to a Cognitive3D Dashboard. To set up Cognitive3D in the Unity project,

the Project Setup has to be opened through the Cognitive3D tab at the top of the Unity

project. The window that pops up can be seen in Figure 4.8 and the Developer Key from

the Cognitive3D Dashboard should be copied into the Developer Key field. It should be

noted that the change in this value is not tracked in some version control systems, such

as Git, so developers have to enter the Developer Key if they pulled the project from a Git

repository.

Figure 4.8: Cognitive3D’s Project Setup window in the Unity Editor

3https://cognitive3d.com

23

After validating the Developer Key, VR SDK choices are presented. For this project,

the Oculus Integration 53+ / Meta XR 64+ was chosen, since the Meta All-in-One SDK

was used. After that, the Photon PUN 2 checkbox is ticked, since the game uses Pho-

ton PUN 2 for enabling multiplayer. Following that, the Project Setup window is closed.

Afterward, both scenes, Map_Amusement_Park andMap_Dreamscape_Village, need to

be set up through the Scene Setup window accessed through the Cognitive3D tab at the

top of the Unity project while the scene is open. After going to the next page, the de-

veloper is presented with VR components that have to be tracked for gaze tracking to

work properly. TheHMD property should be linked with the OVRCameraRigInteraction

-> OVRCameraRig -> TrackingSpace -> CenterEyeAnchor object. Similarly, the Track-

ing Space property should reference the OVRCameraRigInteraction -> OVRCameraRig

-> TrackingSpace object. Finally, the Left Controller and Right Controller fields should

be set up to follow the OVRCameraRigInteraction -> OVRCameraRig -> TrackingSpace

-> LeftHandAnchor or RightHandAnchor object, depending on the controller side. After

all properties are correctly referenced, the developer has to Setup the GameObjects.

Afterward, the Quest Pro Eyetracking and Quest Hand Tracking checkboxes must be

ticked. Then, the current scene geometry needs to be exported. When that is done, the

final window allows developers to upload the scene geometry, upload the scene thumb-

nail and upload dynamic meshes, which will be discussed shortly. It should be noted

that uploading a new scene geometry makes a new version of the scene on the Cogni-

tive3D web-application. Once everything is uploaded, the scene can be viewed on the

Cognitive3D web-application, and gaze data from played sessions can be analyzed.

Additionally, to obtain even more data, objects of interest are made dynamic objects

by adding theDynamicObject component. This component gives each object a unique id,

which enables them to be tracked on the Cognitive3Dweb-application. With that set up,

gaze data through multiple sessions specifically for each of those objects can be viewed.

To upload dynamic objects, developers have to navigate to the Dynamic Objects window

through the Cognitive3D tab at the top of the Unity project. This window contains the

names of all dynamic objects in the scene. One can then either select the Upload All

Meshes button or select wanted dynamic objects in the object hierarchy and upload the

selected meshes. Once they are uploaded, they can be seen on the Cognitive3D web-

24

application for that particular scene. It should be noted that dynamic objects can be

uploaded and removed from a scene at any time, and do not change the version of the

scene in Cognitive3D.

Cognitive3D Dashboards

For the Dashboards tab in the Cognitive3D web-application, sessions and their data that

are analyzed can be filtered by tags, which will be explained later, by scenes, and by the

time they are recorded. The Project Overview tab, part of which is seen in Figure 4.9,

contains scores from 0 to 100 that measure the participants’ comfort and immersion in

the application, as well as an aggregate performance of the application. In addition, it

counts the total number of unique sessions recorded, the average session duration, and

the total session duration in a selected time period. The number of sessions can also

be viewed split by the version of an uploaded scene, while the total and average session

duration can be seen across all selected scenes.

Figure 4.9: Part of Cognitive3D’s Project Overview window on the web-application

In the App Performance tab from the Dashboards tab, part of which can be viewed in

Figure 4.10, the aggregate performance of the application is visible once again, but the

percentage of session time above 60 and 72 Hz can also be seen. The average frame rate

for the application can also be analyzed in total and by a version of the scene. Battery

efficiency data is also available, but no relevant data for it has been shown in any of the

sessions recorded for this thesis. Finally, this window generates a top-down view of a

25

particular scene and shows on which parts of the map the refresh rate most frequently

dropped below a selected refresh rate. In Figure 4.10, an example with the medieval

villagemap and 72 Hz is shown. Themore red an area of themap is, themore frequently

the refresh rate dropped below the 72 Hz mark.

Figure 4.10: Part of Cognitive3D’s App Performance window on the web-application

Other available Dashboards tab data, which is not relevant for the user study of this

thesis, includes analyzingmonthly, weekly, and daily active devices, new devices, device

retention, and average session times for the application in the Live Operations tab. The

Demographics tab shows the average playable space, the highest traffic countries, and ses-

sions by geography. In the Spatial Optimization tab, developers can find detailed insights

into the comfort and presence of the application. It also includes data on whether the

users playing were sitting or standing, the orientation of their headset while they were

playing, controller ergonomics, and a top-down map view of where users were exiting

the experience in a selected scene.

Cognitive3D Scenes

On the Scenes tab, one can pick a scene they have uploaded from the Unity Editor. All

data here will be displayed on the amusement park scene. For each scene, sessions and

their data can be filtered by tags, the time they were recorded, and the version of the

uploaded scene. The Scene Summary window also displays the dates the selected scene

was created and updated on, as well as the latest version of the scene. It also shows how

much time has passed since the last session was recorded, the total session duration, the

26

average scene session duration, and the total number of scene sessions, as seen in Figure

4.11. Additionally, all recorded sessions can be seen in this window, as can be viewed

in Figure 4.12. Each session is given a name consisting of an adjective, a color, and an

animal name, as well as the city it was recorded in, to more easily remember any session

if needed. The session length and the date of the session can also be viewed.

Figure 4.11: Cognitive3D’s Scene Summary window in the Scene Viewer on the web-application

Figure 4.12: Examples of recorded sessions in Cognitive3D

Tags can be edited for sessions, and for this thesis, the tags pro, quest2, collaborativ

(shortened from the word collaborative because of character limit), competitive, procoll,

procom, and study were added. The pro and quest2 tags were added for sessions played

on the Meta Quest Pro and Meta Quest 2, respectively. The collaborativ and competitive

tags were added to sessions that were played in collaborative or competitive gamemodes,

also respectively. Additionally, the study tag was added to all sessions that were recorded

as part of the user study, to differentiate them from sessions that were recorded while

testing the game. Finally, the procoll tag was added for all sessions that were played

collaboratively on the Quest Meta Pro, while the procom tag was added to those that

were played competitively on the device. Finally, the scene session report and individual

session data can be downloaded and a session can be replayed on the Scene Explorer,

which will be explained later on.

27

Cognitive3D Scene Viewer

In the Scene Viewer, the selected scene can be viewed in both 3D and top-down view. For

the selected scene, queries can be run for gaze, eye fixations, user positions, and events

across the selected sessions. The results of these queries appear as transparent colored

squares in the places the selected data appears. In the top left of the Scene Viewer, the

color of the squares is explained, with a higher number meaning more of the selected

data was found at that position. Examples of these queries can be seen in Figure 4.13,

where a query for gaze is run, and in Figure 4.14, in which a user position query results

are shown.

Figure 4.13: Gaze query on Cognitive3D’s Scene Viewer

Figure 4.14: User position query on Cognitive3D’s Scene Viewer

28

Cognitive3D Object Explorer

In the Object Explorer, a list of all dynamic objects can be found. By clicking on one of

them, a 3D view of the object appears. Gaze and eye fixation queries can be run on these

objects, with visualization available both in the form of a heatmap and in the form of

cube aggregation. An example of a gaze heatmap on a dynamic object can be viewed in

Figure 4.15, which features the ship from the amusement park map. Additionally, gaze

or eye fixation metrics can be analyzed for each dynamic object. Firstly, the rank of the

dynamic object as opposed to other dynamic objects in terms of gaze or eye fixations is

stated. The metrics also show the average gaze or eye fixation data per session, and the

number of total sessions the dynamic object appears in. Then, more detailedmetrics can

be analyzed for each dynamic object. These metrics include the average gaze instance

duration, count, and time, as well as the total gaze count and time. It also states the

number of sessions that include any gaze on that object and the ratio of sessions that

contain gaze on that object. More available data includes the average time to first gaze

at the object, and the average gaze sequence for that object.

Figure 4.15: Dynamic object gaze heatmap in the Object Explorer

Cognitive3D Scene Explorer

Finally, in the Scene Explorer, one can explore the scene in 3D, similarly to the Scene

Viewer. However, recorded sessions can also be replayed in the Scene Viewer, and an

example of this can be seen in Figure 4.16, where the session Direct Sepia Pheasant from

Zagreb is replayed. The session replay shows the player moving on the map, and the

recording time can be manipulated at the bottom of the Figure. On the left of the Figure,

29

the player is seen. The robotic head moves along with the Cognitive3D player head,

which is inside the robotic head on the Figure, because it was given the Dynamic Object

component. The robotic head has some lag when moving, so the Cognitive3D player

head is sometimes seen, with the robotic head following behind, especially if the player

is teleporting very fast. In the top left of the Figure, a view of the player’s controllers can

be seen, and all their button presses during the session recording can be viewed. The

controllers also follow the movements of the player during the recording.

Figure 4.16: One session viewed in the Scene Explorer

The gaze vector coming from the player’s head can be turned off or changed to a line

instead of a cone through the Gaze tab at the top of the Scene Explorer. Additionally,

a gaze heatmap can be seen in the Figure, but it is currently set to an animated display,

whichmeans the data appearswhen the player looks at it in the recording, but disappears

shortly after. In the Gaze tab, the heatmap size and intensity can be changed. The gaze

heatmap can also be set to an aggregated view, also through theGaze tab, and an example

of the results for a session can be seen in Figure 4.17. Parts of the map that the players’

gaze fixated on can also be viewed by choosingEye Fixation instead ofGaze visualization.

An example of this can be seen in Figure 4.18, where the eye fixation visualization are

seen as purple circles, with their size being larger if players fixated on them more. Eye

fixations can also be connected to dynamic objects. The path the player took can be

viewedwith thePath tab, being able to switch between tracking the floor and tracking the

head. A players’ recorded path following their head can be seen in Figure 4.19. Dynamic

30

objects can be clicked in the 3Dmap and their average gaze and eye fixation data and data

for the selected session can be viewed in the Scene Explorer. An example of dynamic

object data in the Scene Explorer can be viewed in Figure 4.20. In addition, multiple

sessions can be viewed at once in the Scene Explorer by selecting them at the top of the

window, and their aggregated data can then be viewed.

Figure 4.17: Aggregated gaze heatmap for one session in the Scene Explorer

Figure 4.18: Eye fixations for one session in the Scene Explorer

31

Figure 4.19: Path for one session in the Scene Explorer

Figure 4.20: Dynamic object data for one session in the Scene Explorer

4.2.4 Multiplayer Implementation

To make the developed game collaborative and competitive, multiple players need to be

able to play the game together, at the same time. To make this possible, Photon PUN 2

was used, enabling the game to be multiplayer.

Photon Server Setup

Firstly, a new app was made on the Photon web-application4. The application type was

set to Multiplayer Game, while the Photon SDK was set to Pun. The application name

was simply set to Gaze Tracking. An example of a correctly set up Photon app can be

4https://dashboard.photonengine.com

32

seen in Figure 4.21. The App ID is a unique key, so it was removed from the Figure, and

it is needed to connect the Unity project to the Photon app.

Figure 4.21: Example of a Photon application

Next, to connect the Photon application to the Unity project, the PhotonServerSet-

tings.asset had to be modified. The asset can be found at Assets -> Photon -> PhotonUni-

tyNetworking ->Resources after importing Photon PUN2 into theUnity project. All prop-

erties of the asset can be viewed in Figure 4.22. Firstly, theApp Id PUN property must be

set to the sameApp ID that is given for the created application on the PhotonDashboard.

Doing this connects the Unity project to that application and the server given for that ap-

plication. Additionally, the Fixed Region property was set to the best region found while

testing. In this case, it was the eu region, but this field varies depending on the location

of the developer. Sometimes, this field does not need to be set, as Unity always picks the

region with the lowest ping. However, when developing the application for this thesis,

the location seemed to be right in between two regions. This caused a problem when

testing the game, as one instance would be in one region, while the other would be in

another, so they were unable to join the same server.

Player Presence

For players to be able to see each other on the same server, a player’s presence had to be

developed. The prefab for a networked player can be seen in Figure 4.23 and needs to be

placed in a folder named Resources in the Assets folder. In this project, the Player prefab

was placed in the Resources ->NetworkedPrefabs folder. It contains a robotic head repre-

senting the player’s head in an easily viewable and gender-neutral way. The robotic head

was made bigger in the virtual environment than the size of a real-life head, so players

33

could identify each other easier and from a greater distance. A Photon View component

was added to the Player object, which synchronizes the object across the network, allow-

ing other players to see a specific player’smovement. Because the player’s head canmove

and rotate, the Head object was given a Photon Transform View component, with posi-

tion and rotation synchronization checked. The scale of the robotic head never changed,

so scale synchronization was not checked in the Photon Transform View component.

Figure 4.22: Properties of the PhotonServerSettings asset

To make the robotic head follow the movements of the player’s actual head, a VR-

Tracker script was created and added onto the Player object. The code responsible for

setting the player’s robotic head and finding their real-life head position and rotation

can be seen in Figure 4.24. The head variable is set to the Head object of the Player pre-

fab inside theUnity Editor. The photonView variable is set to the PhotonView component

on the current object inside the Start function. However, the headRig variable has to be

found in the scene, since it is not a part of thePlayer prefab, but of theOVRCameraRig ob-

ject. The functionFindAnyObjectByTypefinds objects on the scene by a given type, in this

34

case OVRCameraRig. After the OVRCameraRig object is found, the Find function goes

through its children, specifically the TrackingSpace object of the OVRCameraRig, until

it arrives at the CenterEyeAnchor object, which tracks the player’s head movements.

Figure 4.23: The Player prefab, representing a networked player’s presence

1 public Transform head;

2 private PhotonView photonView;

3 private Transform headRig;

4 void Start()

5 {

6 photonView = GetComponent<PhotonView>();

7 OVRCameraRig rig = FindAnyObjectByType<OVRCameraRig>();

8 headRig = rig.transform.Find("TrackingSpace/CenterEyeAnchor");

9 if (photonView.IsMine)

10 {

11 foreach (var item in GetComponentsInChildren<Renderer>())

12 item.enabled = false;

13 foreach (var item in GetComponentsInChildren<Canvas>())

14 item.enabled = false;

15 }

16 }

Figure 4.24: The variables and the Start function in the VRTracker script

35

It should be noted that the player would be able to see their own head this way, which

would interferewith their vision of the virtual environment. To avoid this, if the owner of

the Photon View component on the Player object is the player for whom the game is cur-

rently running this script, their head is made transparent. This is achieved by disabling

the Renderer and Canvas components on all children of the Head object. The Renderer

component is responsible for rendering the robot head, while the Canvas component

allows the facial expression of the robot to be visible.

Tomove the robotic head according to the player’s movement, the code in Figure 4.25

is utilized. The head is only moved if the player is the actual owner of the player pres-

ence, or, in other words, if this player prefab is tracking their movement, and not of the

other player. The head movement is mapped through theMapPosition function, which

copies the position and rotation of theCenterEyeAnchor, tracking the player’s head, onto

theHead object of the Player prefab. With this code, the player’s head movement is syn-

chronized across the network, and the other player sees their head moving in real-time

in their own game.

1 void Update()

2 {

3 if (photonView.IsMine)

4 MapPosition(head, headRig);

5 }

6 void MapPosition(Transform target, Transform rigTransform)

7 {

8 target.position = rigTransform.position;

9 target.rotation = rigTransform.rotation;

10 }

Figure 4.25: The Update andMapPosition functions in the VRTracker script

36

Photon Room Joining

To join the same room, players first need to connect to the same server, and then to a

lobby. Connecting to the server is done through the NetworkManager script in an empty

game object. This script inherits the MonoBehaviourPunCallbacks script from Photon

PUN2, allowing it to override callback functions that are calledwhen the player connects

to, for example, the server. TheNetworkManager script contains many game objects that

are parents of UI elements. TheseUI elements are activated and deactivated as the player

goes through different connection phases. These UI elements change the text the player

sees, as can be viewed in Figure 4.26.

Figure 4.26: The different UI elements a player sees while going through all phases of
connecting with another player

Firstly, in the Start function, the player connects to the server through the PhotonNet-

work.ConnectUsingSettings function. TheOnConnectedToMaster function is calledwhen

a player successfully joins a server. This function is overridden to add two lines. The first

is setting the AutomaticallySyncScene property of PhotonNetwork to true. This synchro-

nizes all player’s games to match the active scene to the one active for the Photon room

owner. In other words, when the room owner loads a scene, that same scene will load

for all other players as well, if they set the property to true. The other line, PhotonNet-

work.JoinLobby, makes the player join a Photon lobby. This code can be seen in Figure

4.27.

37

1 void Start()

2 {

3 foreach (var connectingToServerText in connectingToServerTexts)

4 connectingToServerText.SetActive(true);

5 PhotonNetwork.ConnectUsingSettings();

6 }

7 public override void OnConnectedToMaster()

8 {

9 foreach (var connectingToServerText in connectingToServerTexts)

10 connectingToServerText.SetActive(false);

11 PhotonNetwork.AutomaticallySyncScene = true;

12 foreach (var connectingToLobbyText in connectingToLobbyTexts)

13 connectingToLobbyText.SetActive(true);

14 PhotonNetwork.JoinLobby();

15 }

Figure 4.27: The Start and OnConnectedToMaster functions in the NetworkManager script

Afterward, in the overriddenOnJoinedLobby function that gets called once the player

successfully joins a lobby, the player joins or creates a roomwithPhotonNetwork’s JoinOr-

CreateRoom function. Usually, this function gets called when players create lobbies, al-

lowing others to join them. However, because OVRseer is developed exclusively for

analyzing data and will only be played in a laboratory setting in a pair, only one room

was made to ever exist in the game and players join it automatically. To avoid compli-

cations, the room is simply called Room, and the maximum amount of players that can

join it is 2, as can be viewed in Figure 4.28.

1 public override void OnJoinedLobby()

2 {

3 foreach (var connectingToLobbyText in connectingToLobbyTexts)

4 connectingToLobbyText.SetActive(false);

5 foreach (var connectingToRoomText in connectingToRoomTexts)

6 connectingToRoomText.SetActive(true);

38

7 PhotonNetwork.JoinOrCreateRoom("Room", new RoomOptions() { MaxPlayers = 2

}, null);

8 }

Figure 4.28: The OnJoinedLobby function in the NetworkManager script

Player Instantiation

Once a player joins the room, the overridden OnJoinedRoom function gets called, seen

in Figure 4.29. In it, the Player prefab for the player running the scripts gets instantiated

across all instances of players who are in the same room. This is done with the Pho-

tonNetwork.Instantiate function. Additionally, if there is only one player in the room,

meaning this is the first player to join the room, a text appears saying they have to wait

for the other player to join. However, if there are two players in the room, the gamemenu

is shown. This also happens if the player is the first one to join and another player joins

the room, calling the overridden OnPlayerEnteredRoom function.

1 public override void OnJoinedRoom()

2 {

3 foreach (var connectingToRoomText in connectingToRoomTexts)

4 connectingToRoomText.SetActive(false);

5 player = PhotonNetwork.Instantiate("NetworkedPrefabs/Player", new

Vector3(0, 0, 0), Quaternion.identity, 0);

6 if (PhotonNetwork.CurrentRoom.PlayerCount == 1)

7 foreach (var waitingForPlayerText in waitingForPlayerTexts)

8 waitingForPlayerText.SetActive(true);

9 else

10 ShowGameMenu();

11 }

12 public override void OnPlayerEnteredRoom(Player newPlayer)

13 {

14 foreach (var waitingForPlayerText in waitingForPlayerTexts)

15 {

16 waitingForPlayerText.SetActive(false);

39

17 }

18 ShowGameMenu();

19 }

Figure 4.29: The OnJoinedRoom and OnPlayerEnteredRoom functions in the NetworkManager
script

Multiplayer Menus

The ShowGameMenu function in Figure 4.29 displays all elements of the game menu

visible to the player before starting a game. There are two menus in one game, one for

each player. The owner of the room has a dropdown menu which allows them to pick

whether they will be playing the collaborative or competitive version of the game, and

to start the game using a button. The other player only sees text saying the owner is

starting the game. These two player menus can be seen in Figure 4.30. For the other

player to not be able to change the game mode and start the game, the ShowGameMenu

function disables the gamemode dropdownmenu. The function also sets the start button

interactive field to false if the player is not the owner of the room, as can be seen in Figure

4.31. This removes the dropdown menu and grays out the start button for that player.

Figure 4.30: The game menus for the owner of the room (left) and the other player (right)

1 public void ShowGameMenu()

2 {

3 ownerStartingText.SetActive(true);

4 gamemodePicker.SetActive(true);

5 startButton.SetActive(true);

6 if (!PhotonNetwork.IsMasterClient)

7 {

40

8 gamemodePicker.SetActive(false);

9 startButton.GetComponent<Button>().interactable = false;

10 }

11 }

Figure 4.31: The ShowGameMenu function in the NetworkManager script

The NetworkManager script also has another function, RemoveNetworkText, seen in

Figure 4.32, that removes all game menu text. This function gets called later on, when

the owner of the room starts the game, which will be discussed in the subsection 4.2.5.

The handMenuNetworkText variable references text that is written as a placeholder on a

hand menu until the game starts, pointing out that a timer and pictures will be shown

to the player later on. This hand menu will be covered in detail in subsections 4.2.5 and

4.2.6.

1 public void RemoveNetworkText()

2 {

3 ownerStartingText.SetActive(false);

4 gamemodePicker.SetActive(false);

5 startButton.SetActive(false);

6 handMenuNetworkText.SetActive(false);

7 }

Figure 4.32: The RemoveNetworkText function in the NetworkManager script

RPC Functions

Additionally, using Photon PUN 2, some functions used in other scripts were marked

with [PunRPC]. These functions are called through RPC calls, which calls them across

all instances of the game. With this, synchronization of functions for all players can be

achieved. When an RPC function is analyzed in subsections 4.2.5, 4.2.6, and 4.2.7, it will

specifically be emphasized it is marked with [PunRPC].

41

4.2.5 Map Exploration

To restrict players from exploring the map before the other player joins and before start-

ing the game, an empty game object called StartAreaColliders was created. Its children

contain the BoxCollider component, and their colliders were placed in such a way that

they surround the area where players first spawn in. Additionally, the children were

made unable to teleport through or no, which restricts players from leaving their spawn

area. An empty game object namedGameManagerwas created in the scene, and aGame-

Manager was created and added as a component to that game object. Once both players

started the game and joined the room through the network, the owner of the room can

pick what game mode they will be playing on the game menu. The choices they can

choose are collaborative and competitive on the game menu seen in Figure 4.30. The

chosen game mode, and future game data, are written in a file that can be read after the

game is over. The file is given the nameGazeTracking_, followed by the current date and

time, and it is saved in the Unity project’s persistent data path (Users/current user/App-

Data/LocalLow/DefaultCompany/Project name).

Afterward, the owner of the room starts the game by pressing the Start Game button,

which is also on the game menu. Clicking this button calls the function StartGame of

the GameManager component, which can be viewed in Figure 4.33. This function first

checks whether the player who called it is the owner of the room, and if they are, calls

four RPC functions that will run for both players. The first is the RemoveNetworkText

function in the GameManager, which simply calls the function of the same name in the

NetworkManager script, whichwas already seen in Figure 4.32 and explained before. The

second one is DeactivateStartAreaColliders, which deactivates the colliders restricting

players from moving outside their spawn area.

1 public void StartGame()

2 {

3 if (PhotonNetwork.IsMasterClient)

4 {

5 _photonView.RPC("RemoveNetworkText", RpcTarget.All);

6 _photonView.RPC("DeactivateStartAreaColliders", RpcTarget.All);

7 _photonView.RPC("StartExplorationTimer", RpcTarget.All);

42

8 _photonView.RPC("SetGamemode", RpcTarget.All, (Gamemode)

gamemodePicker.value);

9 }

10 }

Figure 4.33: The StartGame function in the GameManager script

The next function that is called is StartExplorationTimer, which utilizes the Timer

component that was added to an empty game object named Timer by calling its function

of the same name that can be seen in Figure 4.34. This function first goes through all

game objects that contain text that should be shown during the time players are explor-

ing the map. This includes text on the game menu, visible in Figure 4.35 and text on the

players’ handmenu, which will be covered shortly. Then, it sets necessary bool variables

that enabled the timer to start counting down the exploration time, which is set to 600

seconds, which equates to 10minutes, in the Unity editor. The last function, SetGamem-

ode, sets the gamemode variable of the GameManager script to either collaborative or

competitive, depending on which was chosen in the game menu.

1 public void StartExplorationTimer()

2 {

3 foreach (var timerText in explorationTimerTexts)

4 timerText.SetActive(true);

5 started = true;

6 finished = false;

7 exploration = true;

8 }

Figure 4.34: The StartExplorationTimer function in the Timer script

In the Update function of the Timer script, time counts down from the set amount

until it reaches zero, as can be seen in Figure 4.36. This function firstly checks whether

the timer is started, and if it is, updates theUIwhich shows the timer countdown through

the ShowOnGUI function, which can be seen in Figure 4.37. To update theUI, it converts

the time left to a formatted string showing minutes and seconds left, then sets the text of

43

all timer countdown game objects to that time. Additionally, if the timer has started, it

is checked whether it finished. If the timer did not finish, the time between two Update

function calls is subtracted from the timer variable containing the time left for the timer.

Once this variable becomes lower than zero, it means the set amount of time passed, and

the timer is set to 0 seconds to avoid it appearing negative on the UI text.

Figure 4.35: The text that appears on the game menus while players are exploring the map,
along with the timer counting down the time they have left

1 void Update()

2 {

3 if (started)

4 {

5 if (!finished)

6 {

7 timer -= Time.deltaTime;

8 if (timer <= 0.0f)

9 {

10 timer = 0.0f;

11 if (exploration && PhotonNetwork.IsMasterClient)

12 _photonView.RPC("ExplorationEnded", RpcTarget.All);

13 else if (!exploration && !gameManager.pictureFound)

14 PictureNotFound();

15 }

16 }

17 ShowOnGUI();

44

18 }

19 }

Figure 4.36: The Update function in the Timer script

1 void ShowOnGUI()

2 {

3 int minutes = Mathf.FloorToInt(timer / 60f);

4 int seconds = Mathf.FloorToInt(timer - minutes * 60);

5 string timerText = string.Format("{0:00}:{1:00}", minutes, seconds);

6 foreach (var timeTextField in timeTextFields)

7 timeTextField.text = timerText;

8 }

Figure 4.37: The ShowOnGUI function in the Timer script

If players are currently in the first part of the game, exploring themap and the players

calling this function is the room owner, the function ExplorationEnded is called for both

players through an RPC call. Whether players are exploring the map is decided through

the exploration variable. This function, shown in Figure 4.38, stops the timer, ends the

exploration period, and calls the StartQuestions function of the GameManager script,

which will be covered in subsection4.2.6.

1 [PunRPC]

2 public void ExplorationEnded()

3 {

4 finished = true;

5 timer = 0.0f;

6 exploration = false;

7 gameManager.StartQuestions();

8 }

Figure 4.38: The RPC function ExplorationEnded in the Timer script

45

For players to be able to see how much time they have left without having to return

to their starting area, a hand menu on the left hand is implemented. Before players start

the game, the hand menu only contains placeholder text. In the exploration period, the

hand menu displays the time left for players to explore the map, shown in Figure 4.39.

Figure 4.39: The player hand menu displaying the amount of time left to explore the map

The hand menu was implemented using the HandMenuController script, which can

be seen in Figure 4.40. The handPoint and controllerPoint variables reference empty

game objects with a RectTransform component attached to them. These game objects

were moved to a position in which the menu can easily be seen from a player’s point of

viewwhen they are using their hands or using controllers, respectively. The gazeInterac-

torHandPoint and gazeInteractorControllerPoint variables also reference empty objects,

but with a Transform component, and that are positioned in the way that the menu ap-

pears only when a player turns their hand or controller inward towards themselves. The

handMenu variable references the canvas of the handmenu. The gazeInteractor variable

is set to reference an XRGazeInteractor component of a newly created gaze object.

1 public RectTransform handPoint;

2 public RectTransform controllerPoint;

3 public Transform gazeInteractorHandPoint;

4 public Transform gazeInteractorControllerPoint;

5 public RectTransform handMenu;

6 public Transform gazeInteractor;

46

7 private SkinnedMeshRenderer leftHand;

8 private SkinnedMeshRenderer rightHand;

9 void Start()

10 {

11 OVRCameraRig rig = FindAnyObjectByType<OVRCameraRig>();

12 leftHand = rig.transform

13 .Find("OVRInteractionComprehensive/.../l_handMeshNode")

14 .GetComponent<SkinnedMeshRenderer>();

15 rightHand = rig.transform

16 .Find("OVRInteractionComprehensive/.../r_handMeshNode")

17 .GetComponent<SkinnedMeshRenderer>();

18 }

19 void Update()

20 {

21 if (leftHand.enabled || rightHand.enabled)

22 {

23 handMenu.position = handPoint.position;

24 handMenu.rotation = handPoint.rotation;

25 gazeInteractor.position = gazeInteractorHandPoint.position;

26 gazeInteractor.rotation = gazeInteractorHandPoint.rotation;

27 }

28 else

29 {

30 handMenu.position = controllerPoint.position;

31 handMenu.rotation = controllerPoint.rotation;

32 gazeInteractor.position = gazeInteractorControllerPoint.position;

33 gazeInteractor.rotation = gazeInteractorControllerPoint.rotation;

34 }

35 }

Figure 4.40: The Start and Update functions in the HandMenuController script

47

The script first sets the leftHand and rightHand variables to the SkinnedMeshRenderer

components of the Meta XR All-in-One SDK hands in the Start function. This is so the

script is able to check whether these components are turned on, signifying whether the

user is using their hands instead of controllers. Then, the Update function periodically

checkswhether there is one hand present using these components, meaning the player is

using their hands, or not, meaning the player is using controllers. Depending onwhether

the player is using hands or controllers, the handMenu position and rotation, as well as

the gazeInteractor position and rotation are changed to their hand or controller versions,

respectively.

To make the hand menu appear and disappear when turned towards and away from

the player, as well as fade in and out smoothly, the hand menu canvas was given the

CanvasGroup component. An empty object named Spherewas put as a child of the Cen-

terEyeAnchor game object of the OVRCameraRig and given the XRSimpleInteractable

component, for which the Allow Gaze Interaction property was set to true. Then, the

XRInteractableAffordanceStateProvider component was added as well, with the Inter-

actable Source property set to the game object’s XRSimpleInteractable. A new Float Af-

fordance Theme asset was created and called HandMenuAffordance. Next, a Float Af-

fordance Receiver component was added to the Sphere game object. Its Affordance State

Provider property was set to the before added component, while the Affordance Theme

Datumwas set to the newly created asset. Finally, theCanvasGroup.alpha from the hand

menu canvas was set on the Value Updated event.

4.2.6 Picture Finding

Once the exploration period of the game is over, the StartQuestion function in theGame-

Manager script is called, as seen in Figure 4.38. This function disables all exploration

timer texts, activates all picture related menus, and calls the function NextPictureNum-

ber, as can be seen in Figure 4.41. The picture related menus appear on both the players’

game menus, like the example in Figure 4.39, featuring a picture taken somewhere on

the map. A picture related menu also appears on the hand menu, seen in Figure 4.42,

with the same picture as the ones on the game menus. All available pictures can be seen

in Appendix B.

48

1 public void StartQuestions()

2 {

3 foreach (var timerText in exploreTimerTexts)

4 timerText.SetActive(false);

5 foreach (var pictureMenu in pictureMenus)

6 pictureMenu.SetActive(true);

7 handMenuPictureText.SetActive(true);

8 NextPictureNumber();

9 }

Figure 4.41: The StartQuestions function in the GameManager script

Figure 4.42: The player hand menu displaying a picture taken on the map

The NextPictureNumber function that can be viewed in Figure 4.43 first pauses the

timer by calling the Timer script’s PauseTimer function. This simply sets the started vari-

able to false, making the timer unable to count down in the Update function. Then, it

disables the text that shows a player has to wait for the other player to finish finding the

picture. This is useful when this function is called after the other player finds a picture

the current player has already found. Finally, if the player currently running this script

is the owner of the room, the number of pictures that were not yet chosen is saved in

the pictureNumber variable. Then, a random number is generated from 0 to the num-

ber of pictures not yet picked, excluding that number. The RPC function NextPicture is

49

then called for all players, with the generated random number sent as a parameter of the

function.

1 public void NextPictureNumber()

2 {

3 timer.PauseTimer();

4 foreach (var otherPlayerWaitingText in otherPlayerWaitingTexts)

5 otherPlayerWaitingText.SetActive(false);

6 if (PhotonNetwork.IsMasterClient)

7 {

8 int pictureNumber = pictures.Count;

9 int randomNumber = Random.Range(0, pictureNumber - 1);

10 _photonView.RPC("NextPicture", RpcTarget.All, randomNumber);

11 }

12 }

Figure 4.43: The NextPictureNumber function in the GameManager script

In the RPC function NextPicture, seen in Figure 4.44, all UI containing text is first

disabled. Then, variables answersSubmitted, pictureCollidersFound, and pictureFound

are set to their default values before players answer questions about a picture and try to

find where it was taken. Next, depending on whether the player running the script is the

owner of the room or not, the player’s game menu shows questions about the pictures

that they have to answer. The other gamemenu only shows the other player is answering

their questions. The questions players are asked are whether they remember the place

on the picture very well and whether they could find their way back to the place on the

picture, with an example visible in Figure 4.45. The answers are in the form of dropdown

menus, with answers available from 1 (Don’t agree at all) to 5 (Strongly agree). The start

area colliders are activated again, restricting the players from leaving the starting area

until they answer questions about the given picture, and the player is teleported back to

their spawn point. Finally, all answers are then set to their default value, 1 (Don’t agree

at all).

50

1 [PunRPC]

2 public void NextPicture(int randomNumber)

3 {

4 foreach (var pictureTimerText in pictureTimerTexts)

5 pictureTimerText.SetActive(false);

6 answersSubmitted = 0;

7 pictureCollidersFound = 0;

8 pictureFound = false;

9 if (PhotonNetwork.IsMasterClient)

10 {

11 questions[0].SetActive(true);

12 otherPlayerAnswers[0].SetActive(false);

13 otherPlayerAnswers[1].SetActive(true);

14 }

15 else

16 {

17 questions[1].SetActive(true);

18 otherPlayerAnswers[1].SetActive(false);

19 otherPlayerAnswers[0].SetActive(true);

20 }

21 startAreaColliders.SetActive(true);

22 OVRCameraRig.transform.position = spawnPoint.position;

23 foreach (var answer in answers1)

24 answer.value = 0;

25 foreach (var answer in answers2)

26 answer.value = 0;

27 RawImage picture = pictures[randomNumber];

28 pictures.Remove(picture);

29 GameObject pictureCollider = pictureColliders[randomNumber];

30 pictureColliders.Remove(pictureCollider);

31 lastPictureCollider = pictureCollider.gameObject;

32 handMenuPicture.texture = picture.texture;

33 foreach (var menuPicture in menuPictures)

34 menuPicture.texture = picture.texture;

51

35 pictureCollider.GetComponent<MeshRenderer>().enabled = true;

36 pictureCollider.GetComponent<BoxCollider>().enabled = true;

37 sr.WriteLine();

38 sr.WriteLine("Picture " + (picturesCopy.IndexOf(picture) + 1) + ":");

39 }

Figure 4.44: The RPC functionNextPicture in the GameManager script

Figure 4.45: The game menu displaying a picture and questions related to the picture

In every scene, there are ten pictures, and for each picture, there is a cube game object

in the place where the picture was taken, like the one shown in Figure 4.46. The cube

has a BoxCollider component and a transparent, green material. The material was made

opaque enough to be seen when players knew where it was located. It was also trans-

parent enough so it could not be easily seen from far away, and players actually had to

remember where the place in the picture was located. In the RPC function NextPicture,

seen in Figure 4.44, the picture symbolizing the given random number parameter and

the picture’s corresponding cube were saved and removed from their lists so they would

not be picked again. The picked cube was also saved, so it could be deactivated once the

picture finding time is up. The hand menu and game menu pictures were changed to

show the picked picture, and the cube was made visible. Finally, the picture’s index was

saved in the session’s file, so the data could be analyzed later on.

52

Figure 4.46: The transparent, green cube in the place a picture was taken

The players now had to answer the two questions presented to them, visible in Figure

4.45. Once players click the Submit button, the SubmitAnswers function in the Game-

Manager script is called. In this function, the player’s answers are also stored in the

session’s file and the questions are disabled. A new text also appears instead of the ques-

tions, saying the other player is answering their questions, as can be seen in Figure 4.47.

Additionally, this function calls the RPC function AnswerSubmitted for both players.

1 public void SubmitAnswers()

2 {

3 sr.WriteLine("I can remember the place on the picture very well: ");

4 if (PhotonNetwork.IsMasterClient)

5 sr.WriteLine(answers1[0].value + 1);

6 else

7 sr.WriteLine(answers1[1].value + 1);

8 sr.WriteLine("I could find my way back to the place on the picture: ");

9 if (PhotonNetwork.IsMasterClient)

10 sr.WriteLine(answers2[0].value + 1);

11 else

12 sr.WriteLine(answers2[1].value + 1);

13 if (PhotonNetwork.IsMasterClient)

14 {

15 questions[0].SetActive(false);

53

16 otherPlayerAnswers[0].SetActive(true);

17 }

18 else

19 {

20 questions[1].SetActive(false);

21 otherPlayerAnswers[1].SetActive(true);

22 }

23 _photonView.RPC("AnswerSubmitted", RpcTarget.All);

24 }

Figure 4.47: The SubmitAnswers function in the GameManager script

TheRPC functionAnswerSubmitted, seen inFigure 4.48, simply raises theanswersSub-

mitted variable by one. Additionally, once the variable reaches two,meaning both players

had submitted their answers, the FindPictureCollider is called.

1 [PunRPC]

2 public void AnswerSubmitted()

3 {

4 answersSubmitted++;

5 if (answersSubmitted == 2)

6 FindPictureCollider();

7 }

Figure 4.48: The AnswerSubmitted function in the GameManager script

Then, the FindPictureCollider function disables the current game menu text for both

players and shows the timer, as seen in Figure 4.49. The colliders around the player’s

spawn point are also disabled, so they can move freely. Finally, the timer is started again

through the Timer script’s StartPictureTimer function, but only for the length of finding

the picture, which is set to 60 seconds or one minute. This function, seen in Figure 4.50,

sets the timer to the given time and enables all text that shows timers for the picture

finding period of the game. It also sets all variables needed for the timer to count down.

54

1 public void FindPictureCollider()

2 {

3 foreach (var otherPlayerAnswer in otherPlayerAnswers)

4 otherPlayerAnswer.SetActive(false);

5 startAreaColliders.SetActive(false);

6 foreach (var pictureTimerText in pictureTimerTexts)

7 pictureTimerText.SetActive(true);

8 timer.StartPictureTimer(timeToFindPicture);

9 }

Figure 4.49: The FindPictureCollider function in the GameManager script

1 public void StartPictureTimer(float time)

2 {

3 timer = time;

4 foreach (var timerText in pictureTimerTexts)

5 timerText.SetActive(true);

6 started = true;

7 finished = false;

8 }

Figure 4.50: The StartPictureTimer function in the Timer script

At this point, two outcomes are possible for each player. One is that the player finds

the cube corresponding to the given pictures, and the second one is that one minute

passes without the player finding the cube. To cover the first outcome, each picture’s

cube is given the PictureCollider script, which checks for collisions and makes the cube

transparent and removes its collider at the start of the game, during exploration time.

In Figure 4.51 the OnCollisionEnter function can be seen, which checks whether the

collision was done with an object on layer 8, which is theHand layer given to the player’s

left hand. If it was, the GameManager script’s PlayerFoundPictureCollider function is

called, and the cube is disabled and made invisible.

55

1 private void OnCollisionEnter(Collision collision)

2 {

3 if (collision.gameObject.layer == 8)

4 {

5 gameManager.PlayerFoundPictureCollider();

6 gameObject.SetActive(false);

7 GetComponent<MeshRenderer>().enabled = false;

8 GetComponent<BoxCollider>().enabled = false;

9 }

10 }

Figure 4.51: The OnCollisionEnter function in the PictureCollider script

The PlayerFoundPictureCollider function, part of which is seen in Figure 4.52, acti-

vates the start area colliders, so the player can not leave the spawn area anymore and

teleports the player to their spawn point. It also removes the timer text from the game

menus and shows new text on the game menus which says they have to wait for the

other player to find the picture. Additionally, the pictureFound variable is set to false,

rendering the Timer variable unable to finish counting down. However, the timer keeps

going and is visible on the hand menu, so players can still see how much time the other

player has left to find the picture’s cube. Finally, the RPC function PictureColliderFound

is called for both players.

1 public void PlayerFoundPictureCollider()

2 {

3 startAreaColliders.SetActive(true);

4 OVRCameraRig.transform.position = spawnPoint.position;

5 foreach (var pictureTimerText in pictureTimerTexts)

6 pictureTimerText.SetActive(false);

7 foreach (var otherPlayerWaitingText in otherPlayerWaitingTexts)

8 otherPlayerWaitingText.SetActive(true);

9 pictureFound = true;

10 ...

56

11 _photonView.RPC("PictureColliderFound", RpcTarget.All, pointsAwarded,

PhotonNetwork.IsMasterClient);

12 ...

13 }

Figure 4.52: The gameplay part of the PlayerFoundPictureCollider function in the
GameManager script

Otherwise, if the timer runs out, the PictureNotFound function of the Timer script

is called, as can be seen in Figure 4.36 in line 14. It is called because it is not currently

the exploration period and the picture has not yet been found. The PictureNotFound

function, seen in Figure 4.53, stops the timer and sets it to 0 seconds, so negative time

would not be shown. It also calls the PictureNotFound function of the GameManager

script. In theGameManager script’s PictureNotFound function, which is visible in Figure

4.54, the current active cube is deactivated. Additionally, the gamemenu texts displaying

the timers are deactivated and the RPC function PictureColliderFound is called for both

players.

1 void PictureNotFound()

2 {

3 finished = true;

4 timer = 0.0f;

5 gameManager.PictureNotFound();

6 }

Figure 4.53: The PictureNotFound function in the Timer script

1 public void PictureNotFound()

2 {

3 lastPictureCollider.SetActive(false);

4 foreach (var pictureTimerText in pictureTimerTexts)

5 pictureTimerText.SetActive(false);

6 ...

57

7 _photonView.RPC("PictureColliderFound", RpcTarget.All, 0,

PhotonNetwork.IsMasterClient);

8 }

Figure 4.54: The gameplay part of the PictureNotFound function in the GameManager script

The RPC function PictureColliderFound will be covered in detail in subsection 4.2.7,

but it is important to note that this function calls the function NextPictureNumber from

the GameManager script, seen in Figure 4.43, if there are still pictures players have not

gone through, which resets the cube finding process. If players have gone through all

the pictures, the function ends the game by calling the function EndGame, also in the

GameManager script. The EndGame function pauses the timer and teleports the player

to their spawn point, then shows their final point standing.

4.2.7 Player Points

Players get points for each picture depending on the time left when they find the place

a picture was taken. The faster they find it, the more points they get. If one minute

runs out before they find that place, they get no points for that picture. The points for

each picture start at 1000, and linearly decrease as time passes, down to 0. When playing

collaborativemode, the points each player receives are divided by two, but players collect

points together. In competitive mode, players earn points individually, and the one with

more points performed better in finding the places where the pictures were taken. For

bothmodes, both players need to find the place where the picture was taken, or the timer

needs to count down to zero before moving on to the next picture.

To start, the previously described functions PlayerFoundPictureCollider, in Figure

4.52, and PictureNotFound, in Figure 4.54, both contain parts of the code that deal with

the player’s points, but were not shown in those figures. This part of the code for the

PlayerFoundPictureCollider function in the GameManager script can be seen in Figure

4.55. In the code, points are awarded according to how fast the player finds the picture

origin, with the points starting at 1000 and lowering as more time passes. If the players

are playing collaboratively, the points are halved.

58

1 public void PlayerFoundPictureCollider()

2 {

3 ...

4 int pointsAwarded = (int) (timer.timer / timeToFindPicture * 1000);

5 if (gamemode == Gamemode.COLLABORATIVE)

6 pointsAwarded /= 2;

7 _photonView.RPC("PictureColliderFound", RpcTarget.All, pointsAwarded,

PhotonNetwork.IsMasterClient);

8 sr.WriteLine("Time: " + (timeToFindPicture - timer.timer));

9 sr.WriteLine("Points: " + pointsAwarded);

10 }

Figure 4.55: The player points part of the PlayerFoundPictureCollider function in the
GameManager script

Then, the RPC function PictureColliderFound, which will be explained shortly, is

called for both players, with the number of points awarded and whether the current

player is the room owner as parameters. Finally, the time spent looking for where the

picture was taken, as well as the points gained, are written in the current session’s file.

Similarly, in the PictureNotFound function in the GameManager script seen in Figure

4.56, the same RPC function is called. The time and points are written down in the ses-

sion’s file, but the time is set to 60 seconds, and the points awarded are zero.

1 public void PictureNotFound()

2 {

3 ...

4 sr.WriteLine("Time: " + timeToFindPicture + " (Not found)");

5 sr.WriteLine("Points: " + 0f);

6 _photonView.RPC("PictureColliderFound", RpcTarget.All, 0,

PhotonNetwork.IsMasterClient);

7 }

Figure 4.56: The player points part of the PictureNotFound function in the GameManager script

59

In the PictureColliderFound function in the GameManager script, which can be seen

in Figure 4.57, firstly the pictureCollidersFound variable is raised by 1. Then, the points

awarded are added either to one of the two players, depending onwhich player called the

RPC function, or added to a pool of points for both players. This differs based onwhether

the players are playing the competitive or collaborative version of the game. Then, the

UpdatePlayerPoints function is called, which simply updates both player’s points on the

game menu, as seen in Figure 4.58. These points are visible in the top left corner of

both player’s game menus, as can be seen in Figure 4.45. If both players found the pic-

ture’s cube or the time ran out, whichwouldmake the value of the pictureCollidersFound

variable equal to two, the text saying players have to wait for the other player deactivates.

Finally, if there aremore pictures left to go through, the next picture is chosen and shown

through the NextPictureNumber function. Otherwise, the game ends with the EndGame

function in the GameManager script.

1 [PunRPC]

2 public void PictureColliderFound(int pointsAwarded, bool isMasterClient)

3 {

4 pictureCollidersFound++;

5 if (gamemode == Gamemode.COMPETITIVE)

6 {

7 if (isMasterClient)

8 playerOnePoints += pointsAwarded;

9 else

10 playerTwoPoints += pointsAwarded;

11 }

12 else

13 {

14 togetherPlayerPoints += pointsAwarded;

15 playerOnePoints = togetherPlayerPoints;

16 playerTwoPoints = togetherPlayerPoints;

17 }

18 UpdatePlayerPoints();

19 if (pictureCollidersFound == 2)

20 {

60

21 foreach (var otherPlayerWaitingText in otherPlayerWaitingTexts)

22 otherPlayerWaitingText.SetActive(false);

23 if (pictures.Count > 0)

24 NextPictureNumber();

25 else

26 EndGame();

27 }

28 }

Figure 4.57: The PictureColliderFound function in the GameManager script

1 public void UpdatePlayerPoints()

2 {

3 points[0].text = playerOnePoints.ToString();

4 points[1].text = playerTwoPoints.ToString();

5 }

Figure 4.58: The UpdatePlayerPoints function in the GameManager script

The EndGame function, visible in Figure 4.59, pauses the timer and teleports the

player back to their spawnpoint. Then, the gamemenu is set to showonly the final scores

of each player, with themhaving the samenumber of points if they played collaboratively,

and different scores if they played competitively. An example of a player’s final score can

be seen in Figure 4.60. Finally, the total points of the player running the script arewritten

in the current session’s file.

1 void EndGame()

2 {

3 timer.PauseTimer();

4 OVRCameraRig.transform.position = spawnPoint.position;

5 foreach (var pictureMenu in pictureMenus)

6 pictureMenu.SetActive(false);

7 foreach (var gameEndMenu in gameEndMenus)

8 gameEndMenu.SetActive(true);

61

9 foreach (var otherPlayerWaitingText in otherPlayerWaitingTexts)

10 otherPlayerWaitingText.SetActive(false);

11 finalPoints[0].text = playerOnePoints.ToString();

12 finalPoints[1].text = playerTwoPoints.ToString();

13 if (PhotonNetwork.IsMasterClient)

14 {

15 sr.WriteLine();

16 sr.WriteLine("Total points: " + playerOnePoints);

17 }

18 else

19 {

20 sr.WriteLine();

21 sr.WriteLine("Total points: " + playerTwoPoints);

22 }

23 sr.Close();

24 }

Figure 4.59: The EndGame function in the GameManager script

Figure 4.60: A player’s final score shown at the end of the game

62

4.3 Limitations

Although OVRseer is a prototype, there are some limitations and possible future ad-

ditions which will be listed in this section. Most of them are bugs or limitations with

the gaze tracking data gained from Cognitive3D. Some are limitations with the headsets

used in the user study, or a possible addition to make the multiplayer experience more

immersive for players.

4.3.1 No Scene to Scene Sessions

The original idea for OVRseer was to have a main menu in which players could navi-

gate to one map or the other. Once players finished the game, they would return to the

main menu and be able to play again. However, the version of Cognitive3D used in this

implementation does not support recording multiple sessions for different scenes in one

go. For example, when players were in the beginning scene, the session for that scene

would be recorded. However, when they loaded the amusement park scene, the sessions

for that scene would not be recorded. Because of this, the amusement park scene and

the medieval village scene were made into two separate builds, and the builds were run

one by one.

4.3.2 Missing Shaders Data

TheDreamscapeVillage - StylizedFantasyOpenWorld asset contains non-standard shaders

for the terrain and the foliage, as well as a custom heightmap solution. Due to this, the

map’s terrain appears gray and flat in the Scene Explorer, which is visible in Figure 4.61.

When talking to the Cognitive3D team about this, they offered a solution in which the

custom shader support can be added, but many custom shaders were used, so this was

not added due to lack of time. Additionally, the Cognitive3D web-application contains a

guide for adding custom shader support, but, as of writing this thesis, it is outdated and

therefore cannot be used. However, because gaze is caught on colliders, the gaze data on

this map is still shown correctly, and the most important parts of the map, such as the

houses and the statue, are still shown clearly.

63

Figure 4.61: The medieval village map appears mostly gray and flat in Cognitive3D’s Scene
Explorer

4.3.3 Players Looking at Their Controllers

Unfortunately, most of the sessions ended up having players spend a significant portion

of their time dedicated to gazing at their controllers, at least according to Cognitive3D.

As can be seen in Figure 4.62, the left controller of the player appears red in the Scene

Explorer, meaning that the player looked at it often. When looking at participants of

these sessions while they were being recorded in real life, however, this does not appear

to be the case. This results in less gaze on objects present on the map, so less data to be

analyzed overall. There are a few reasons that may be the source of this problem. The

first could simply be that the Meta Quest Pro is not accurate enough at tracking a user’s

gaze, or players moved the headset after eye tracking calibration had already been done,

resulting in inaccurate readings. Another possible reason is that the Cognitive3D SDK

does not correctly show the user’s gaze within Unity. A potential fix is possible to bypass

at least a part of this issue, and that is to place the controllers and hands on a new layer

in Unity, then disable gaze from hitting objects in that layer. This can be done through

the Dynamic Object Layer Mask property in the Cognitive3D Preferences file, which can

be opened through the Cognitive3D tab at the top of the Unity editor.

64

Figure 4.62: A player’s left controller appears red in Cognitive3D’s Scene Explorer because it
was gazed at often

4.3.4 Slow Aggregated Gaze Data

When looking at animated gaze data in Cognitive3D’s Scene Explorer, the recording ap-

pears smooth. However, when the data is switched to an aggregated view, the camera

movement appears very slow, almost as if it is lagging. While the cause of this is un-

known, it may be that the aggregated gaze data is calculated every frame. However, a

solution for this could be to just calculate the aggregated gaze data once. After that, ei-

ther the materials could be colored with gaze data at once or the aggregated gaze data

could be sent directly again, without having to be calculated again.

4.3.5 Slow Loading of Multiple Sessions

The amusement park scene file size is about 20 MB, while the medieval village scene

file size is nearly 300 MB. Cognitive3D’s Scene Explorer loads both scenes fairly slowly,

with the medieval village scene loading slower because it is bigger. However, to view a

heatmap of the participant’s gaze data, multiple sessions needs to be chosen in the Scene

Explorer or the heatmap needs to be viewed through the Scene Viewer. The Scene Viewer

does not display a lot of data if there are only a few sessions, like it is the case with this

thesis. Unfortunately, loading multiple sessions in the Scene Explorer is extremely slow.

A few sessions were left to load for multiple hours, but ultimately did not load at all.

Because of this, it is not possible to view an aggregated heatmap of the player’s gaze data.

65

4.3.6 Meta Quest Pro Comfort

Seven out of eight participants wearing the Meta Quest Pro during the user study had

to take it off in the middle of the study or had headaches after wearing it because it felt

uncomfortable. These problems might have caused disturbances in the gaze data. All

participants completed the user study fully. Some participants took a short break, up

to 10 minutes, after one map to ease their headache, then completed the eye tracking

calibration once more. The main problem lies in the part of the headset which sits on

the forehead, as participants temporarily had very red marks and indents on that part of

their forehead. In the future, it would be a good idea to explore different headsets that

can track gaze or ease the comfort of use for the Meta Quest Pro.

4.3.7 Networked Hands

In the future, it would be useful to implement networked hands and controllers, so play-

ers could see each other’s hands movements instead of just the other player’s head. The

Player prefab’s component VRTracker contains code that places hands and controllers

in the right position and rotates them by tracking the player’s hand or controller move-

ments. Additionally, it switches between hands and controllers depending on which the

controller is using. However, animating hands over the network was not implemented,

so the aforementioned code is not used in the current version of the game. In the future,

this could be implemented to improve the user experience.

66

5 User Study

The goal of this thesis was to investigate the differences in gaze tracking data between

collaborative and competitive VR games. The prior described VR gameOVRseer, which

was examined in detail in chapter 4, is used as an example of a VR gamewith both collab-

orative and competitive gamemodes. The game contains elements that track the player’s

gaze data if they are using a VR headset that supports gaze tracking. Afterward, the ses-

sion recording is uploaded to Cognitive3D, where the data can be analyzed.

5.1 Methodology

This user study examines gaze data gathered from participants playing the multiplayer

VR gameOVRseer, responses to questions provided in the game, and general questions.

These data are then analyzed to gain insight into which parts of the map participants

focus on in the collaborative and competitive gamemodes. The resultsmay prove helpful

in the future implementation of multiplayer VR games by determining how to focus the

visual attention of participants on certain areas of the virtual environment.

Gaze tracking is utilized inOVRseer to obtain information about howmuch andhow

long a participant is looking at something in the virtual world. These data are analyzed

to determine which areas participants are most focused on. Throughout the course of

the game, participants are presented with two sentences for each picture displayed on

each map. These sentences represent the participant’s subjective assessment of their

familiarity with the depicted picture. Players must rate how true the sentences are for

them for each picture. The first is "I can remember the place on the picture verywell", while

the second is "I could find my way back to the picture". Each of these can be rated a score

from 1 to 5, with 1 being Don’t agree at all and 5 being Strongly agree. These ratings may

have a correlationwith how long participants have spent looking at the objects shown on

67

the picture. Additionally, participants must answer several general questions in a form.

The data gathered in this form, such as gaming experience and VR experience, may also

have an impact on a participant’s gaze pattern or performance in the game.

The study was done on pairs of participants. It was conducted in a designated labo-

ratory room, MUEXlab1. One participant wore a Meta Quest 2 headset, while the other

participant wore aMeta Quest Pro. Because of the nature of these headsets, only the gaze

of the latter participant was tracked, since the Meta Quest 2 does not support gaze track-

ing, but other data for both participants was recorded. Both headsets were connected to

computers with cables, so the session’s file detailing both participant’s points could be

accessed later on. Both participants were sitting down on chairs for the entire duration of

the study. Because the game is networked, the computers were connected to the Internet

via Ethernet.

Each study trial lasted around an hour, with a pair of participants being tested. After

the participants arrived, they were directed to their computers, where they were tasked

to fill out the first part of the form, which included questions about general information

such as age, gender, gaming experience, and VR experience. Afterward, the participants

put on their respective VR headsets andwere given instructions on how to play the game.

The participants who wore the Meta Quest Pro additionally had to calibrate their gaze,

so the gaze data would be as correct as possible. Their first map was then loaded, and

the participants were given movement instructions and a moment to interact with each

other in the game. The participants were also told they could ask any questions about

the gaze rules or interactions, as long as the answer would not provide them with an

unfair advantage in terms of points. After this, the participants played one map, then

the other, firstly in one game mode, then the other. It should be noted that the order of

the maps and the order of the game modes were randomized, so the maps or the game

modes have as little impact as possible on one another. After playing on both maps, the

participants left, and the test administrator filled out the second part of the form for both

participants. Both files of both sessions were also saved.

1https://muexlab.fer.hr

68

For the purpose of this user study, a simple form consisting of 10 questions was put

together. The questions consisted of short text questions (for typing age and points),

multiple-choice questions (both single and multiple answers, some with an open-ended

"other" optionwhich they couldfill themselves), and binary questions (Yes/No and choos-

ing one of the two maps). The entire form is given in Appendix A. The first part of the

form contains questions about the participant’s age, gender, weekly hours spent on video

games, weekly hours spend on virtual reality, and platforms that they used to play video

games on in the last year. These questions were answered by participants. The second

part of the form serves for the recording of objective metrics, such as the played map per

game mode, points, and which player won the game. These questions were filed out by

the test administrator after participants finished playing the game. They had to be filled

out for both the collaborative and the competitive game mode.

The user study involved 16 participants, with 9 of them identifying as a woman, and

7 of them identifying as a man. The age range of the participants spanned from 19 to

26, with the average age being 23. When asked about their weekly time spent on video

games, 2 participants reported not playing video games, 7 participants stated they spent

5 or fewer hours weekly. 3 participants reported spending 10 or fewer hours a week, 2

participants spend 20 or fewer hours weekly, and 2 participants reported to spending 40

or fewer hours weekly. When asked to report their weekly time spent on VR, 11 partici-

pants stated they do not use VR, while the other 5 participants reported to using VR for 5

or fewer hours weekly. Out of all the platform options available for playing video games,

when asked about the experience in the last year, 14 participants stated they played on

personal computers, and 12 participants reported playing on mobile platforms. Eight

participants stated they used consoles, eight participants reported they use VR, and four

participants stated they used handheld consoles.

5.2 Results and Discussion

In this section, the results of the gathered form data will be analyzed and discussed.

Then, the same will be done for data from the questions and points of each game ses-

sion. Afterward, the gaze tracking data will be analyzed, along with correlations to the

previous data. Finally, the key findings for the data will be presented.

69

5.2.1 Form Data

Because the participants in this study identified either as a woman or a man, only those

genders can be analyzed, but there was no significant difference in performance between

women and men. When analyzing the number of hours participants spent on video

games and VR weekly, there was also no conclusive evidence to show those who spent

more, or fewer hours performed better than others. For the two pairs in which one par-

ticipant spent manymore hours a week on video games, the participant withmore hours

spent accumulatedmore points. In three pairs where one participant spent slightlymore

hours on video games weekly, the participant with fewer hours spent won the game.

In other pairs, participants stated they spent the same amount of time on video games.

When looking at VR experience, only one pair noted a difference in the time they spend

on VR in a week, with both pairs still having little experience. The participant with less

VR experience gathered more points. Other than these pairs, in one more pair, a partic-

ipant noted they have played VR before, and lost, while the other participants had not

played VR before. This data could point to the game’s controls being different and worse

than other VR games. However, for all this data, more participants are required before

considering their implications in future development.

When considering the points gathered, the amount of points participants gathered

between collaborative and competitive gamemodes are roughly the same, with the aver-

age being 3193.75 (standard deviation (SD): 1129.58) for collaborative and 3250.44 (SD:

1469.76) for competitive. The collaborative mode has a slightly higher standard devi-

ation compared to the competitive mode. The total average points for both maps and

both game modes was 3222.09 (SD: 1289.76). However, the average points and their

standard deviations for the medieval village map were much higher than those for the

amusement parkmap. The average points earned for collaborative play was 2764.00 (SD:

1404.20) for the amusement parkmap, while it was 3623.50 (SD: 583.30) for themedieval

village map. For the competitive game mode, the average points participants earned on

the amusement park map was 2977.38 (SD: 1488.03), while it was 3523.50 (1498.10) for

the medieval village map.

70

The total average points gained for the amusement park map, including both the

collaborative and the competitive game mode, was 2870.69 (SD: 1402.00), while the me-

dieval village average was 3573.50 (SD: 1099.45). This difference was not expected, es-

pecially since almost all participants thought the medieval village map was going to be

more difficult. They said the amusement park map was easier to remember because of

the vibrant, differing colors around the whole map and the structural walkways, while

the medieval village map appeared much more monotone. The participants’ reasoning

for thinking the medieval village map was going to be harder is because a lot of assets

were repeated. Alongside that, the exploration allowed participantsmuchmore freedom

since it was more like an open-world game, so they thought they would not be able to

remember all parts of the map. Additionally, the standard deviation for the amusement

park map was higher than that of the medieval village map.

5.2.2 Session Questions and Points Data

The average score participants gave for how well they can remember the place in the

picture for the amusement park was 3.63 (SD: 0.48), while the medieval village score

was 3.48 (SD: 0.39), as seen in Table 5.1. Similarly, when asked could they find their way

back to the place in the picture, participants gave an average score of 3.39 (SD: 0.42) for

the amusement parkmap and a score of 3.37 (SD: 0.45) for themedieval villagemap. This

means participants were more confident about their map knowledge in the amusement

park map than in the medieval village map. However, participants earned more points,

or, in other words, found the origin of the picture faster, on the medieval village map

than on the amusement park map, with a difference of 4.36. This data is conflicting,

especially because participants commented how the amusement park map was easier to

remember because of the bright colors and structural walkways, as opposed to the more

dull colors and open-world elements of the medieval village map.

Additionally, as can be seen in Table 5.1, the average collaborative score participants

gave for remembering the place on the picture in the amusement park map was 3.95

(SD: 0.55), while it was lower, 3.31 (SD: 0.51), for the competitive game mode. The same

goes for finding their way back, with an average score of 3.86 (SD: 0.55) for collaborative,

and 2.93 (SD: 0.38) for competitive. On the amusement park map, participants were

more confident when playing collaboratively with another participant. However, the

71

difference in the time they found the picture origins, and the points they got, was very

slim, with participants finding them 1.30 seconds slower in the collaborative version. It

should be noted that the points for the collaborative version are halved, since participants

gain half the points for each find because they collect points together.

Table 5.1: Average participant scores and time to find picture origins for each map and game
mode

I can remember
the place on this
picture very well

I could find my
way back to the

place on the picture

Time to
find

(seconds)
Points

Amusement
park
both

3.63 3.39 42.73 217.97

Medieval
village
both

3.48 3.37 38.37 263.35

Amusement
park

collaborative
3.95 3.86 43.38 138.20

Medieval
village

collaborative
3.21 3.23 37.50 181.18

Amusement
park

competitive
3.31 2.93 42.08 297.74

Medieval
village

competitive
3.74 3.51 39.24 345.53

On the other hand, participants were more confident in their map knowledge in the

competitive version on the medieval village map, but were also slightly faster to find the

picture origins in the other game mode. They were 1.74 seconds slower in the compet-

itive version. Participants rated remembering the place on the picture a 3.21 (SD: 0.55)

for the collaborative version and 3.74 (SD: 0.56) for the competitive one. Similarly, for

finding their way back, participants gave a score of 3.23 (SD: 0.51) for the collaborative

game mode and 3.51 (SD: 0.49) for the competitive one. Participants ended up giving

higher scores on the amusement park map for the collaborative game mode, but lower

scores for the samemap on the competitive gamemode. However, they ended up finding

picture origins faster on the medieval village map overall than on the other map.

72

For the amusement park map, the pictures participants had the most trouble finding

can be seen inFigures B.3, B.4, B.6 andB.9. The cube for the first of these pictures appears

very transparent due to the surrounding colors, and it is on the stairs, so it is easy tomiss,

and 10 participants missed it. The second picture is close to the first one, and was also

not found by 10 participants, and they are both in a place on the map many participants

explored little. The third and fourth are both in places that are not on the main road, but

closer to the attractions themselves, however, attractions are visible in both pictures, so

participants should have been able to navigate using those. The third picture’s cube was

not found by 10 participants, while the fourth picture’s cubewasmissed by 9 participants.

The pictures which participants performed best at in the amusement park map were

the ones in Figures B.2 and B.8. The former was not found by only 1 participant, while

the latter was not found by 2 participants, but 7 participants found it within 20 seconds.

This is a bit surprising for the first picture, as itwas on the far edge of themap. The second

picture had a clear view of only one attraction, which perhaps helped participants by not

being overloaded with a lot of different objects and colors in one picture.

When looking only at the collaborative sessions, the pictures participants had most

trouble navigating are the ones in Figures B.3, B.4, and B.9, with the same reasons as

stated before. The first one was missed by 6 participants, while the second and third

ones could not be found by 5 participants. The ones participants found the fastest are

seen in Figures B.1 and B.8. The reason for the latter is stated before, and it was found

within 20 seconds by 1 participant and missed by only 1 participant. The former is near

the castle, a central point of themap, and participants commonly used it to navigate each

other. Because of this, it is likely participants knew this part of the map very well. This

picture’s cube was found by 3 participants within 20 seconds and only not found by 1.

In competitive sessions, the picture for which participants missed the cube the most

can be seen in Figures B.3, B.4, B.6, and B.9, the same ones as when looking at the overall

sessions. The first and last of these pictures’ origins were not found by 4 participants,

while 5 participants missed the other two. The ones participants found the easiest were

the ones in Figures B.8 and B.10. The reasoning for the former is explained above, while

the latter features the ship that can be seen at the starting area. Both picture’s origins

were found within 20 seconds by 4 participants and only missed by 1.

73

On the other hand, the worst performing pictures in the medieval village map were

the ones in Figures B.16, B.17, and B.20. The first two were both not found by 8 partic-

ipants, but are located in the middle point of the map, so it is not clear why they were

missed by so many participants. The last picture was very close to Figure B.19, which

was not found by only 2 participants, while 13 participants missed the last one. Both

places are on the far edge of the map, and the less frequently found one is located inside

a structure, which may have been overlooked by participants (i.e., there is a possibility

that participants failed to notice its entrance). However, the worse performing picture

was commonly mistaken to be in the inn in the middle of the map, which is not the case,

so participants would often waste time searching there.

The only picture origin found by all participants is for the picture in Figure B.18,

which is taken in the aforementioned inn in the middle of the map. The picture in Fig-

ure B.11 was not found by only 1 participant, but 13 participants found it within 20 sec-

onds. The reason for this could be because it is very close to the starting area, and the

windmill in the background of the picture was frequently used as help for navigation.

Additionally, the origin of the picture in Figure B.12 was missed by only 2 participants,

and found within 20 seconds by 6 participants. This is a bit contradicting because many

participants said they did not know where this was taken when first presented with the

picture. However, this picture was taken near the starting area, and participants perhaps

navigated using the parts of the picture that were familiar to them.

By filtering only by collaborative sessions, the worst performing pictures are the ones

seen in Figures B.17 and B.20, with the same reasoning as stated before. The first picture

wasmissed by 4 participants, while 6 participants could not find the second picture’s ori-

gin. Pictures in Figures B.11 and B.12 were both found by all participants. Both pictures

were found within 20 seconds by 6 and 3 participants, respectively. The reason these

pictures performed so well is explained before.

In only the competitive sessions, the pictures for which the origins were not found

most frequently can be seen in Figures B.16 and B.20. They are also among the worst

performing pictures in the overallmedieval village pictures for both versions. The former

was not found by 6 participants, while 7 participants did not find the latter. The picture

for which most participants found the origin is the one in Figure B.11. Again, this is

74

probably because of the closeness of the picture’s origin to the starting area. The picture’s

cube was only missed by 1 participant, while 7 participants found it within 20 seconds.

Key Findings

To summarize, participants were more confident in the knowledge of the amusement

park map. However, they performed better when playing on the medieval village map,

finding the origins of pictures faster, and therefore earning more points. On the amuse-

ment park map, participants were more confident in their map knowledge in collabora-

tive mode, but performed slightly better in competitive mode. On the medieval village

map, it was the opposite case, with participants being more confident in the competitive

game mode, but performing a bit better in the collaborative one.

In the amusement park map, players had the most trouble with the pictures seen in

Figures B.3, B.4, and B.9. The first has a cube that appears very transparent because of

the surrounding colors. The second and the first were both in an area of themap that was

not explored a lot by the participants. The third, however, has an attraction participants

could use to navigate. Even though some participants found the attraction itself, they

could not figure out where the picture origin was. The best performing pictures in the

amusement park map are the pictures in Figures B.2, B.8, and B.10. The first of these

is on the edge of the map, so it is a bit surprising most participants managed to find the

origin. The second has a clear view of only one attraction, which could have helped

participants by not overloading them with information. The last is a picture of the ship

that can be seen from the starting area, so it was hard to miss.

When looking at themedieval villagemap, theworst performing pictures are the ones

seen in Figures B.16, B.17, and B.20. Both the first and the second pictures were taken

at the middle point of the map, so it is unclear why so many participants had trouble

finding them. The third one is located on the far back end of the map, in an opened

structure. However, some participants may have missed the entrance of the structure,

causing them to not be able to find the origin of the picture. The pictures which most

players had an easy time finding are the ones in Figures B.11, B.12, and B.18. The first

and second picture area very close to the starting area. The last was taken in an inn in

the middle of the map, which all players had visited.

75

5.2.3 Gaze Tracking Data

Gaze tracking data will be analyzed through the Cognitive3D web-application. The gaze

tracking data will be analyzed only for participants who wore the Meta Quest Pro head-

set, as the headset worn by the other participant, the Meta Quest 2, does not support

gaze tracking. The gaze tracking from the latter headset comes from a line coming out

directly from the head of the participant in Cognitive3D, which is not equal to where the

participants are actually looking. It should be noted that gaze data in the Scene Viewer

is not that visible, and only a few cubes are visible, as seen in Figure 5.1. The reason for

this could be that it requires more sessions in order to show gaze well, so gaze tracking

data will only be analyzed through the Object Explorer and the Scene Explorer. In the

Object Explorer, something similar occurs, but the gaze heatmap is still visible on some

dynamic objects. This includes dynamic objects which have had participants looking at

them for longer times than other dynamic objects when looking at all sessions with the

Meta Quest Pro. However, when looking at, for example, only the collaborative sessions

with the Meta Quest Pro, the heatmaps can also barely be seen. Metrics for dynamic

objects are available no matter how many sessions are filtered.

Figure 5.1: Only a few cubes are visible in the Scene Viewer due to lack of sessions

Dynamic objects with the highest average gaze time for collaborative, competitive,

and both those game modes, and the data available for those objects, are visible in Table

5.2. The dynamic object with the highest average gaze time for both game modes in

the amusement park map is the castle. This is to be expected, because it is a large, tall

object useful for navigation. Additionally, it had a tunnel going through its center that

76

the participant can go into. The average gaze count for the castle is 33.50 times, while

the average gaze time is 10.72 seconds. The second is the Ferris wheel in the middle of

the map, also a tall object, with an average gaze count of 15.25 and an average gaze time

of 3.46 seconds. The third is the red roller coaster spanning across most of the back part

of the amusement park, with an average gaze count of 20.00 and the average gaze time

of 3.34 seconds. The gaze heatmaps for these dynamic objects can be viewed in Figure

5.2. Other dynamic objects with high average gaze time include the orange building,

the pirate ship, the boat swing, and the drop tower. It should be noted that most of

these dynamic objects, except for the castle, boast warm colors, such as reds and browns.

However, most of them, including the castle, are very big objects, so it is expected that

the participants look at them.

When looking only at collaborative sessions, the castle is also the object with the

highest average gaze time, this time of 13.03 seconds, and it has an average gaze count of

41.75. The second dynamic object is, once again, the Ferris wheel, with an average gaze

count of 20.00, and an average gaze time of 5.28 seconds. The third is the orange building

to the right of the map that has an average gaze count of 12.75 and an average gaze time

of 4.13. Other high-ranking dynamic objects in terms of average gaze time include the

red roller coaster, the pirate ship, the swing carousel, the boat swing, and the blue roller

coaster. While most of these dynamic objects also have warm color palettes, some of

them, such as the castle, the swing carousel, and the blue roller coaster, are mainly filled

with cold colors, such as blues.

Figure 5.2: Gaze heatmaps of the castle (left), Ferris wheel (middle), and roller coaster (right)
in the amusement park map in both game modes

77

Table 5.2: Gaze tracking data for dynamic objects with highest average gaze time for each mode
in the amusement park map

Castle
Ferris
wheel

Red
roller
coaster

Orange
building

Drop
Tower

Both modes
average

gaze count
33.5 15.25 20.00 10.00 8.88

Both modes
average
gaze time
(seconds)

10.72 3.225 37.5005 2.81 2.25

Both modes
gaze ratio (%)

100.00 87.50 100.00 87.5 75.00

Collaborative
mode average
gaze count

41.75 20.00 23.25 12.75 9.00

Collaborative
mode average
gaze time
(seconds)

13.03 5.28 4.10 4.13 2.20

Collaborative
mode gaze
ratio (%)

100.00 100.00 100.00 100.00 75.00

Competitive
mode average
gaze count

25.25 10.50 16.75 7.25 8.75

Competitive
mode average
gaze time
(seconds)

8.43 1.65 2.58 1.50 2.30

Competitive
mode gaze
ratio (%)

100.00 75.00 100.00 75.00 75.00

In only the competitive sessions, the castle was also at the top of the list of dynamic

objects by average gaze time. It has an average gaze count of 25.25 and an average gaze

time of 8.43 seconds. The next dynamic object is the red roller coaster, with an average

gaze count of 16.75 and an average gaze time of 2.58 seconds. The third object was the

drop tower, with an average gaze count of 8.75 and an average gaze time of 2.30 seconds.

Other highly ranked dynamic objects by average game time are the yellow, spherical

platform, the fountain near the Ferris wheel, the café, the Ferris wheel, and the surprises

gift stall. Only the castle and the fountain are objects with cold colors, while others are

78

mainly colored in warm colors, such as reds and browns.

The castle has the highest average gaze time of all dynamic objects through all ses-

sions, possibly due to its size and because it in front of the participants’ spawn point. The

Ferris wheel and the red roller coaster are high on the list for all modes, probably also be-

cause of their size. It should be noted that while in both game modes participants gazed

at warm colored objects more often, in collaborative mode, objects with colder colors

caught their attention more often. On the other hand, in competitive mode, participants

looked at objects with colder colors less frequently. The color red is typically associated

with danger, power, and importance [38]. Blue is regularly paired with feelings of calm-

ness, reliability, and productivity [39]. One reason why participants may be looking at

blue objects more when playing collaboratively is because playing with the other partici-

pant puts them at ease as they work together. This in turn could make them notice more

blue objects on the map. On the other hand, playing against the other participant may

give them a sense of urgency or importance to gather as many points as possible to win.

Looking at red objects may also heighten their feeling of competitiveness.

When comparing these data to the pictures that performed best and worst, a few cor-

relations can be found. Firstly, in pictures that performed theworst for both gamemodes,

which can be seen in Figures B.3, B.4, B.6, and B.9, some of the objects with higher aver-

age gaze times can be seen, but they are not the central points of the pictures. In the first

one, none of these dynamic objects, which could have been useful to players for naviga-

tion, can be seen. The second and third ones contain the drop tower, but participants

found it difficult to navigate to where the pictures were actually taken. This could possi-

bly be due to the symmetric nature of the drop tower, so participants could not use only

that attraction for help. The third picture additionally contains the orange building, but

it is part of the background, and many people may not have noticed it. The last picture

features the Ferris wheel, but it is also not the central point of the picture.

On the other hand, the pictures found by most participants are the ones seen in Fig-

ures B.2 and B.8. The former contains the red roller coaster as amajor part of the picture.

The latter features the ship on the water in the background of the picture. However, even

though it is on the background, participants could have connected the ship to the water

it floats on. This could have ended up making the origin of this picture easier to find.

79

In only the collaborative sessions, the pictures in Figures B.3, B.4, and B.9 also per-

formed poorly, for the same reasons as stated before. However, it should be noted that the

drop tower had less gaze time in collaborative mode than when looking at both modes.

Although the difference is not very significant, this could reinforce the reason partici-

pants have trouble with finding the origin of the picture in Figure B.4. It should also

be noted that in collaborative mode, the orange building had much higher average gaze

time. Additionally, participants did not have as much trouble with the picture in Figure

B.6 when playing collaboratively. The reason could potentially be that they could navi-

gate better due to looking at the orange building more and remembering that part of the

map better.

The pictures participants found most easily are the ones in Figures B.1 and B.8. The

former contains the castle and the Ferris wheel, which had higher average gaze count

and higher average gaze time in collaborative mode. This could point to participants

remembering the castle and the Ferris wheel better, and thus finding the origin of the

picture more easily. The latter contains also performs well when looking at both modes,

but it should be noted that it contains the swing carousel. This attraction has the highest

average gaze time in collaborative mode than when looking at both modes, so this could

be a reason why participants found it easier in that game mode.

In competitive sessions, participants had problems with finding the origins of the

pictures in Figures B.3, B.4, B.6, and B.9. It should be noted that some of the objects in

these pictures are ranked high by their average gaze time, such as the drop tower, the

yellow, spherical platform, and the Ferris wheel. However, even though these dynamic

objects have higher average gaze time than others in competitive mode, these times are

still fairly small when compared to the average gaze time in collaborativemode. Formost

dynamic objects, their average gaze time was higher when participants played collabo-

ratively. Because of that, the reasoning for these pictures performing poorly is the same

as when looking at all sessions. Additionally, although the picture in Figure B.6 was not

listed as one of the badly performing ones in collaborative mode, it should be noted it

had similar results in both game modes. However, in collaborative, there are pictures

that performed worse.

80

The pictures that performed best in competitivemode are the ones in Figures B.8 and

B.10. They both feature attractions that are either on or next to the sea, so participants

could remember the sea because it is next to their spawn point. Other than that, there is

no data pointing to what could make these pictures perform well in competitive mode.

It should also be noted that there weremore finds under 20 seconds in competitivemode

than in collaborative mode. This could point to participants taking the points more se-

riously and trying to beat the opponent, as opposed to working together in collaborative

mode.

Gaze data for dynamic objects with the highest average gaze time collaborative, com-

petitive, and both game modes for the medieval village map can be seen in Table 5.3.

When looking at both collaborative and competitive sessions for the medieval village

map, the highest ranking dynamic object by the average gaze time is the inn close to the

center of the map. Like the castle in the amusement park map, this building is tall and

can be a useful navigation tool. However, the inn also has a large indoor space that can

be explored, which in turn makes the participant gaze at it more if they explore it com-

pletely. The inn has an average gaze count of 56.40 and an average gaze time of 38.60

seconds. The object with the second highest average gaze time is a large house next to

the inn, also containing an interior that can be explored. This building will be called

the large house from here on out. The large house has an average gaze count of 19.40

and an average gaze time of 10.19 seconds. The third one is a house close to the starting

area, with a part of it hanging over the road. This building will be called the overhead

house. The overhead house has an average gaze count of 11.40 and an average gaze time

of 3.93 seconds. The gaze heatmaps for these dynamic objects are seen in Figure 5.3. Dy-

namic objects with high average gaze time other than the mentioned top three include

the small houses next to and behind the overhead house. Additionally, the watermill

house, a larger house behind the overhead house, and a small house on the left part of

the map also have high average gaze times. Just like in the amusement park map, most

of these dynamic objects are tall buildings, which allow the participants to navigate eas-

ier. In addition, the two dynamic objects with the highest average gaze time have indoor

spaces for participants to explore, adding to their gaze time.

81

Figure 5.3: Gaze heatmaps of the inn (left), large house (middle), and overhead house (right) in
the medieval village map in both game modes

If the dynamic objects are filtered to only gaze data in collaborative sessions, the inn

is also the dynamic object with the highest average gaze time. The average gaze count

for the inn is 83.50, while the average gaze time is 57.33. Just like when analyzing all

sessions, the second dynamic object by the average gaze time is the large house next to the

inn. It has an average gaze count of 38.00 and an average gaze time of 22.95 seconds. The

third object with the highest average gaze time is the church at the far back of the map.

The church, like the inn and the large house, also contains an interior. It has an average

gaze count of 7.25 and an average gaze time of 3.30 seconds. Other dynamic objects with

high average gaze time include the small houses next to and behind the overhead house,

a larger house behind the overhead house, the warrior statue, and a small house on the

left part of the map. It seems like when playing collaboratively, participants tended to

look at the interiors of buildings and explore the far back part of the map more.

In competitive sessions, the inn also has the highest average gaze time, 26.12 seconds,

and an average gaze count of 38.33. The overhead house is second, with an average gaze

count of 15.83 and an average gaze time of 5.92 seconds. The third object with the highest

average gaze time is a small house next to the overhead house, with an average gaze count

of 17.50 and an average gaze time of 3.57 seconds. Dynamic objects which also have high

average gaze time include thewatermill house, a small house behind the overheadhouse,

and a larger house behind the overhead house. In addition, a small house on the left part

of the map, the large house, and a small house next to the far windmill also have high

average gaze time. From this data, it seems that participants focused most of their time

exploring the starting part of the map. As can be seen from the two buildings with the

highest average gaze time, the bigger buildings caught their attention as well.

82

Table 5.3: Gaze tracking data for dynamic objects with highest average gaze time for each mode
in the medieval village map

Inn
Large
house

Overhead
house

Church

Small house
next to
overhead
house

Both modes
average

gaze count
56.40 19.40 11.40 3.50 15.70

Both modes
average
gaze time
(seconds)

38.60 10.19 3.93 1.48 3.12

Both modes
gaze ratio (%)

100.00 90.00 100.00 40.00 80.00

Collaborative
mode average
gaze count

83.50 38.00 4.75 7.25 13.00

Collaborative
mode average
gaze time
(seconds)

57.33 22.95 0.95 3.30 2.45

Collaborative
mode gaze
ratio (%)

100.00 100.00 100.00 75.00 50.00

Competitive
mode average
gaze count

38.33 7.00 15.83 1.00 17.50

Competitive
mode average
gaze time
(seconds)

26.12 1.68 5.92 0.27 3.57

Competitive
mode gaze
ratio (%)

100.00 83.33 100.00 16.67 100.00

In both collaborative and competitive version of the game, participants were drawn

to bigger, taller buildings. They also spent a lot of time exploring the interior of buildings.

However, participants spentmore time exploring interiors in collaborative sessions, both

by the average gaze count and the average gaze time. Collaborative sessions also had the

church in their top dynamic objects by average gaze time, while this was not the case

with competitive sessions. The church also has an interior space to explore, although

smaller than the inn and the large house. Additionally, in collaborative mode, it appears

that participants spent more time exploring the back part of the map compared to the

83

competitive mode. The warrior and the statue are both at the back of the map, and they

had high average gaze time in collaborative sessions, but not in competitive sessions. A

reason for this could be that when playing collaborative, participants tend to split up to

cover more of the map and only meet up near the end of the game or on accident. In

competitive sessions, participants tended to have more gaze time on the objects near the

middle of the map. This could be because they had to explore the whole map themselves

and could not rely on the other participant for help. In turn, when playing collabora-

tively, participants could explore the outskirts of the map more.

In the medieval village map, the worst performing pictures for both game modes are

the ones in Figures B.16, B.17, and B.20. The first of these contains both the inn and the

large house, both of which had high average gaze time, but they are far away from the

origin. Perhaps participants only viewed these buildings from up close, so they did not

remember the part of themapwhere this picturewas taken from. The second picturewas

taken between the inn and the large house, but they are not seen on the picture itself,

so this could be the reason for its bad performance. The last picture was taken in the

church, which is not among the higher rated dynamic objects. The church was also only

looked at in only 40% of sessions, so a big reason why it performed so poorly is possibly

because participants did not even know about it.

The pictures in Figures B.11, B.12, and B.18 performed the best among participants.

In the first picture, a small house behind the overhead house can be seen, and this build-

ing had a high average gaze time. However, it is also likely players managed to find the

origin of this picture due to its proximity to the starting area or by navigating using the

windmill in the background. The second picture contains both the overhead house and

the large house behind it, both boasting high average gaze times. This could have poten-

tially helped participants find them faster, but this picture is also close to the spawnpoint.

The last of these pictures is taken inside the inn, which had the highest average gaze time

among all dynamic objects. Because of this, participants could have remembered it very

well by looking at it for a long time.

In the collaborative sessions, participants had the most problems with the pictures

seen in Figures B.17 and B.20. The reasoning for both are explained earlier, but it is

surprising to see the latter perform so bad, as the church was the dynamic object with

84

the third highest average gaze time. However, many participants confused the inside of

the church with the inside of the inn, so this could be an explanation. The picture in

Figure B.16 performed better in collaborative than when looking at all sessions, and a

reason for this could be that the inn was looked at more often in collaborative.

The pictures participants had the least trouble with are the ones in Figures B.11 and

B.12. Possible reasons why for both of these are described before. It should be noted that,

while the picture in Figure B.18 is not one of the best performing, every participant still

managed to find it, so there was no problem with the inn building. Other pictures in the

collaborative mode were simply found faster by the participants.

When looking at only the competitive sessions, the worst performing pictures are the

ones seen in Figures B.16 and B.20. The reasons for both performing poorly are described

before, and dynamic objects visible on the photos all have lower average gaze times in

competitive mode than in collaborative. Additionally, it should be noted that the picture

in Figure B.16 was missed by the same amount of people in both the collaborative and

the competitive game modes.

The picture that performed best is the one in Figure B.11. This could be due to it

being close to the starting area, but the overhead house had significantly higher average

gaze time in competitive mode as opposed to the collaborative one. Participants may

have found the origin of this picture easier due to looking at the overhead house visible

on the picture for longer.

Key Findings

To summarize the findings brought by the gaze tracking data, players definitely seemed

drawn to bigger and taller objects on both maps, as they probably helped them with

navigation. The data concludes that participants seemed to have looked at objects with

colder colors more when playing collaboratively as opposed to playing competitively. In

competitivemode, participants tended to lookmore atwarmer colored objects. However,

more research needs to be done to determine whether this is a coincidence. Participants

also have higher average gaze times for buildings that have interiors. While a reason for

this could be that these building have a larger amount of space to look at, it could also be

that these spaces intrigue participants, so they choose to spend more time in them. This

85

could especially be true for collaborative sessions, as in that game mode, buildings with

interiors to explore had higher average gaze times as opposed to competitive sessions. It

also appears that when playing collaboratively, participants tended to look more evenly

around the whole map. On the other hand, in competitive mode, it appears participants

focused their attention more on the beginning and middle of the map.

Additionally, almost all dynamic objects had higher average gaze times in collabora-

tivemode. Finally, the analyzing of the gaze datawas coupledwith howwell participants

found the origins of the given pictures. It seems that participants had fewer problems

finding where a picture was taken if they spent more time looking at objects featured

on that picture. In other words, they would find the origin of a picture easier if objects

present in the picture had high average gaze time. However, further research and more

participants are required before concluding the results of the analyzed data.

5.2.4 Practical Implication of Test Results

If one wants to draw the attention of players of multiplayer VR games to certain objects,

there appear to be some ways to do so. Firstly, players tend to be drawn to bigger and

taller objects, so implementing those could potentially sway the player’s gaze towards

them. Players also seem to be drawn to exploring the interiors, so adding them to build-

ings could increase the time players spend looking at them. This could work even better

in collaborative games. Additionally, participants tend to look at more parts of the map

in collaborative games, so open-world environments could be a better choice for collab-

orative games, if the type of the game allows it. On the other hand, players tend to focus

their gaze more on only the central part of the map in competitive games. Because of

this, if the gaze of a player is important in a competitive game, a small map may prove

better. Players in competitive games seem to look at warm colors more often than cold

ones. Due to this, adding warmer colored objects may draw the player’s attention more

to those objects. Finally, if the point of a game is for players to remember something,

the longer they look at it, the better they may remember it. Because of this, it could be

important to draw the player’s attention to whatever object or part of themap theymight

have to remember in the future.

86

6 Conclusion

In this thesis, the design and implementation of OVRseer, a networked multiplayer VR

game for analyzing the players’ gaze, is presented. The game contains twodifferentmaps,

an amusement park and a medieval village. Players are instructed to explore the maps,

then try to find certain places on them. The game is played in pairs, either collaboratively

or competitively. The gaze data can then be analyzed with the use of the Cognitive3D

web-application. Even though a few problems are present in the game and the gaze

analyzing software contains some limitation, this game provides a potential base for an-

alyzing gaze data in multiplayer VR games. Future improvements for the game should

address these issues. Additionally, investigation of other VR gaze tracking software or

the improvement of Cognitive3D could prove useful for future analysis.

The conducted user study provides insights into the gaze pattern differences of play-

ers when playing collaboratively or competitively. On the amusement park map, slight

differences were found in the colors of objects players were looking at. On the other

hand, on the medieval village map, players tended to look at different parts of the map

when playing on differing game modes. However, larger and taller buildings were most

gazed at by the majority of players, as those objects can be utilized for easier navigation.

Additionally, players tended to more frequently find where a picture was taken if they

have spent longer looking at the objects visible on the picture.

However, the user study suffers from a small sample size. With more participants,

the results of this study could be analyzed even further in future research. In addition,

more data could be gathered and then analyzed, both subjective and objective measures.

Despite these limitations, the study highlights some differences in gaze patterns of play-

ers when playing together with or against another player. It also contains suggestions on

how to utilize the gaze data results to create better VR games for players.

87

References

[1] Datagen. Eye Gaze Tracking: Applications, Techniques, and Key Metrics. Last

accessed on 08/04/2024. [Online]. Available: https://datagen.tech/guides/face-

recognition/eye-gaze-tracking/#

[2] Eyeware. Top 7 3D Eye Tracking Use Cases Applications. Last accessed on

08/04/2024. [Online]. Available: https://eyeware.tech/blog/top-7-use-cases-for-

3d-eye-tracking/

[3] B. Farnsworth, “What is Eye Tracking and How Does it Work?” iMotions, last

accessed on 31/05/2024. [Online]. Available: https://imotions.com/blog/learning/

best-practice/eye-tracking-work/

[4] ——, “What is VREyeTracking? [AndHowDoes itWork?],” iMotions, last accessed

on 31/05/2024. [Online]. Available: https://imotions.com/blog/learning/best-

practice/vr-eye-tracking/

[5] Merriam-Webster. Virtual Reality. Last accessed on 07/04/2024. [Online]. Available:

https://www.merriam-webster.com/dictionary/virtual%20reality

[6] Virtual Reality Society. What is Virtual Reality? Last accessed on 07/04/2024.

[Online]. Available: https://www.vrs.org.uk/virtual-reality/what-is-virtual-reality.

html

[7] H. E. Lowood, “virtual reality,” Britannica, last accessed on 07/04/2024. [Online].

Available: https://www.britannica.com/technology/virtual-reality

[8] G. I. Zheng J. M., Chan K. W., “Virtual reality,” Ieee Potentials, vol. 17, no. 2, pp.

20–23, 1998.

88

https://datagen.tech/guides/face-recognition/eye-gaze-tracking/#
https://datagen.tech/guides/face-recognition/eye-gaze-tracking/#
https://eyeware.tech/blog/top-7-use-cases-for-3d-eye-tracking/
https://eyeware.tech/blog/top-7-use-cases-for-3d-eye-tracking/
https://imotions.com/blog/learning/best-practice/eye-tracking-work/
https://imotions.com/blog/learning/best-practice/eye-tracking-work/
https://imotions.com/blog/learning/best-practice/vr-eye-tracking/
https://imotions.com/blog/learning/best-practice/vr-eye-tracking/
https://www.merriam-webster.com/dictionary/virtual%20reality
https://www.vrs.org.uk/virtual-reality/what-is-virtual-reality.html
https://www.vrs.org.uk/virtual-reality/what-is-virtual-reality.html
https://www.britannica.com/technology/virtual-reality

[9] Iberdola. Virtual Reality: another world within sight. Last accessed on 07/04/2024.

[Online]. Available: https://www.iberdrola.com/innovation/virtual-reality

[10] S. Thompson, “VR Applications: Key Industries already using Virtual Reality,”

VirtualSpeech, last accessed on 07/04/2024. [Online]. Available: https://

virtualspeech.com/blog/vr-applications

[11] G. Beqiri, “Experiential Learning and Kolb’s Learning Styles,” VirtualSpeech,

last accessed on 07/04/2024. [Online]. Available: https://virtualspeech.com/blog/

experiential-learning-vr

[12] A. T. Duchowski, V. Shivashankaraiah, T. Rawls, A. K. Gramopadhye, B. J. Melloy,

and B. Kanki, “Binocular eye tracking in virtual reality for inspection training,” in

Proceedings of the 2000 Symposium on Eye Tracking Research & Applications, ser.

ETRA ’00. New York, NY, USA: Association for Computing Machinery, 2000, p.

89–96. https://doi.org/10.1145/355017.355031

[13] V. Clay, P. König, and S. Koenig, “Eye tracking in virtual reality,” Journal of eye

movement research, vol. 12, no. 1, 2019.

[14] Steam. Blink. Last accessed on 10/04/2024. [Online]. Available: https://store.

steampowered.com/app/447210/Blink/

[15] ——. Before Your Eyes. Last accessed on 10/04/2024. [Online]. Available:

https://store.steampowered.com/app/1082430/Before_Your_Eyes/

[16] I. Higton, “Synapse - a pure power fantasy that epitomises everything great about

virtual reality,” Eurogamer, last accessed on 10/04/2024. [Online]. Available: https:

//www.eurogamer.net/synapse-a-pure-power-fantasy-that-epitomises-everything-

great-about-virtual-reality

[17] J. Erl, “PSVR 2 eye tracking makes VR horror even scarier,” Mixed News, last

accessed on 10/04/2024. [Online]. Available: https://mixed-news.com/en/psvr-2-

eye-tracking-makes-vr-horror-even-scarier/

[18] A. K. Mutasim, W. Stuerzlinger, and A. U. Batmaz, “Gaze Tracking for Eye-Hand

Coordination Training Systems in Virtual Reality,” inExtendedAbstracts of the 2020

89

https://www.iberdrola.com/innovation/virtual-reality
https://virtualspeech.com/blog/vr-applications
https://virtualspeech.com/blog/vr-applications
https://virtualspeech.com/blog/experiential-learning-vr
https://virtualspeech.com/blog/experiential-learning-vr
https://doi.org/10.1145/355017.355031
https://store.steampowered.com/app/447210/Blink/
https://store.steampowered.com/app/447210/Blink/
https://store.steampowered.com/app/1082430/Before_Your_Eyes/
https://www.eurogamer.net/synapse-a-pure-power-fantasy-that-epitomises-everything-great-about-virtual-reality
https://www.eurogamer.net/synapse-a-pure-power-fantasy-that-epitomises-everything-great-about-virtual-reality
https://www.eurogamer.net/synapse-a-pure-power-fantasy-that-epitomises-everything-great-about-virtual-reality
https://mixed-news.com/en/psvr-2-eye-tracking-makes-vr-horror-even-scarier/
https://mixed-news.com/en/psvr-2-eye-tracking-makes-vr-horror-even-scarier/

CHI Conference on Human Factors in Computing Systems, 2020, pp. 1–9.

[19] Z. Hu, “Gaze Analysis and Prediction in Virtual Reality,” in 2020 IEEE conference

on virtual reality and 3d user interfaces abstracts and workshops (VRW). IEEE,

2020, pp. 543–544.

[20] A. Burova, J. Mäkelä, J. Hakulinen, T. Keskinen, H. Heinonen, S. Siltanen, and

M. Turunen, “Utilizing VR and Gaze Tracking to Develop AR Solutions for Indus-

trial Maintenance,” in Proceedings of the 2020 CHI conference on human factors in

computing systems, 2020, pp. 1–13.

[21] K. Qian, T. Arichi, A. Price, S. Dall’Orso, J. Eden, Y. Noh, K. Rhode, E. Burdet,

M. Neil, A. D. Edwards, and J. V. Hajnal, “An eye tracking based virtual reality

system for use inside magnetic resonance imaging systems,” Scientific Reports,

vol. 11, no. 16301, 2021.

[22] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, and J. Van de

Weijer, Eye tracking: A comprehensive guide tomethods andmeasures. oup Oxford,

2011.

[23] H. J. Joo and H. Y. Jeong, “A study on eye-tracking-based Interface for VR/AR

education platform,”Multimedia Tools and Applications, vol. 79, no. 23, pp. 16 719–

16 730, 2020.

[24] Z. Zhu and Q. Ji, “Novel Eye Gaze Tracking Techniques Under Natural Head

Movement,” IEEE Transactions on biomedical engineering, vol. 54, no. 12, pp. 2246–

2260, 2007.

[25] S. L. Matthews, A. Uribe-Quevedo, and A. Theodorou, “Rendering Optimizations

for Virtual Reality Using Eye-Tracking,” in 2020 22nd symposium on virtual and

augmented reality (SVR). IEEE, 2020, pp. 398–405.

[26] M. Cognolato, M. Atzori, and H.Müller, “Head-mounted eye gaze tracking devices:

An overview of modern devices and recent advances,” Journal of rehabilitation and

assistive technologies engineering, vol. 5, p. 2055668318773991, 2018.

90

[27] Wikipedia. Unity (game engine). Last accessed on 31/05/2024. [Online]. Available:

https://en.wikipedia.org/wiki/Unity_(game_engine)

[28] ——. C Sharp (programming language). Last accessed on 31/05/2024. [Online].

Available: https://en.wikipedia.org/wiki/C_Sharp_(programming_language)

[29] Meta Quest. Import Meta XR SDKs in Unity Package Manager. Last accessed

on 31/05/2024. [Online]. Available: https://developer.oculus.com/documentation/

unity/unity-package-manager/

[30] Photon Engine. Pun. Last accessed on 31/05/2024. [Online]. Available: https:

//www.photonengine.com/pun

[31] Cognitive3D. Cognitive3D. (2024) (SDK version 1.4.7). Last accessed on 06/02/2024.

[Computer Software]. Available: https://cognitive3d.com/.

[32] Wikipedia. Microsoft Visual Studio. Last accessed on 31/05/2024. [Online].

Available: https://en.wikipedia.org/wiki/Microsoft_Visual_Studio

[33] Unity. Asset Store. Last accessed on 31/05/2024. [Online]. Available: https:

//assetstore.unity.com/

[34] Unity Asset Store.Meta XRAll-in-One SDK. Last accessed on 31/05/2024. [Online].

Available: https://assetstore.unity.com/packages/tools/integration/meta-xr-all-in-

one-sdk-269657#description

[35] ——. PUN 2 - FREE. Last accessed on 31/05/2024. [Online]. Available:

https://assetstore.unity.com/packages/tools/network/pun-2-free-119922

[36] ——. Amusement park 1. Last accessed on 31/05/2024. [Online]. Available:

https://assetstore.unity.com/packages/3d/environments/landscapes/amusement-

park-1-235574

[37] ——. Dreamscape Village - Stylized Fantasy Open World. Last accessed

on 31/05/2024. [Online]. Available: https://assetstore.unity.com/packages/3d/

environments/fantasy/dreamscape-village-stylized-fantasy-open-world-244797

91

https://en.wikipedia.org/wiki/Unity_(game_engine)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://developer.oculus.com/documentation/unity/unity-package-manager/
https://developer.oculus.com/documentation/unity/unity-package-manager/
https://www.photonengine.com/pun
https://www.photonengine.com/pun
https://cognitive3d.com/
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://assetstore.unity.com/
https://assetstore.unity.com/
https://assetstore.unity.com/packages/tools/integration/meta-xr-all-in-one-sdk-269657#description
https://assetstore.unity.com/packages/tools/integration/meta-xr-all-in-one-sdk-269657#description
https://assetstore.unity.com/packages/tools/network/pun-2-free-119922
https://assetstore.unity.com/packages/3d/environments/landscapes/amusement-park-1-235574
https://assetstore.unity.com/packages/3d/environments/landscapes/amusement-park-1-235574
https://assetstore.unity.com/packages/3d/environments/fantasy/dreamscape-village-stylized-fantasy-open-world-244797
https://assetstore.unity.com/packages/3d/environments/fantasy/dreamscape-village-stylized-fantasy-open-world-244797

[38] K. Cherry. Red Color Psychology. Last accessed on 21/06/2024. [Online]. Available:

https://www.verywellmind.com/the-color-psychology-of-red-2795821

[39] ——. The Color Blue: Meaning and Color Psychology. Last accessed on

21/06/2024. [Online]. Available: https://www.verywellmind.com/the-color-

psychology-of-blue-2795815

92

https://www.verywellmind.com/the-color-psychology-of-red-2795821
https://www.verywellmind.com/the-color-psychology-of-blue-2795815
https://www.verywellmind.com/the-color-psychology-of-blue-2795815

List of Figures

2.1 Gaze tracking in the real world (left) and in VR (right), adapted from [3] . 8

4.1 The OVRCameraRigInteraction prefab from the Meta XR All-in-One SDK 17

4.2 Poke interaction with the UI using a hand 18

4.3 Ray interaction with the UI using a controller 19

4.4 Teleport interaction using a controller . 20

4.5 Turn interaction using a hand . 21

4.6 The amusement park map . 22

4.7 The medieval village map . 22

4.8 Cognitive3D’s Project Setup window in the Unity Editor 23

4.9 Part of Cognitive3D’s Project Overview window on the web-application . . 25

4.10 Part of Cognitive3D’s App Performance window on the web-application . 26

4.11 Cognitive3D’s Scene Summary window in the Scene Viewer on the web-

application . 27

4.12 Examples of recorded sessions in Cognitive3D 27

4.13 Gaze query on Cognitive3D’s Scene Viewer 28

4.14 User position query on Cognitive3D’s Scene Viewer 28

4.15 Dynamic object gaze heatmap in the Object Explorer 29

4.16 One session viewed in the Scene Explorer 30

4.17 Aggregated gaze heatmap for one session in the Scene Explorer 31

4.18 Eye fixations for one session in the Scene Explorer 31

4.19 Path for one session in the Scene Explorer 32

4.20 Dynamic object data for one session in the Scene Explorer 32

4.21 Example of a Photon application . 33

4.22 Properties of the PhotonServerSettings asset 34

93

4.23 The Player prefab, representing a networked player’s presence 35

4.24 The variables and the Start function in the VRTracker script 35

4.25 The Update andMapPosition functions in the VRTracker script 36

4.26 The different UI elements a player sees while going through all phases of

connecting with another player . 37

4.27 The Start and OnConnectedToMaster functions in the NetworkManager

script . 38

4.28 The OnJoinedLobby function in the NetworkManager script 39

4.29 TheOnJoinedRoom andOnPlayerEnteredRoom functions in theNetwork-

Manager script . 40

4.30 The game menus for the owner of the room (left) and the other player

(right) . 40

4.31 The ShowGameMenu function in the NetworkManager script 41

4.32 The RemoveNetworkText function in the NetworkManager script 41

4.33 The StartGame function in the GameManager script 43

4.34 The StartExplorationTimer function in the Timer script 43

4.35 The text that appears on the game menus while players are exploring the

map, along with the timer counting down the time they have left 44

4.36 The Update function in the Timer script 45

4.37 The ShowOnGUI function in the Timer script 45

4.38 The RPC function ExplorationEnded in the Timer script 45

4.39 The player hand menu displaying the amount of time left to explore the

map . 46

4.40 The Start and Update functions in the HandMenuController script 47

4.41 The StartQuestions function in the GameManager script 49

4.42 The player hand menu displaying a picture taken on the map 49

4.43 The NextPictureNumber function in the GameManager script 50

4.44 The RPC functionNextPicture in the GameManager script 52

4.45 The game menu displaying a picture and questions related to the picture . 52

4.46 The transparent, green cube in the place a picture was taken 53

4.47 The SubmitAnswers function in the GameManager script 54

4.48 The AnswerSubmitted function in the GameManager script 54

94

4.49 The FindPictureCollider function in the GameManager script 55

4.50 The StartPictureTimer function in the Timer script 55

4.51 The OnCollisionEnter function in the PictureCollider script 56

4.52 The gameplay part of thePlayerFoundPictureCollider function in theGame-

Manager script . 57

4.53 The PictureNotFound function in the Timer script 57

4.54 The gameplay part of the PictureNotFound function in theGameManager

script . 58

4.55 The player points part of the PlayerFoundPictureCollider function in the

GameManager script . 59

4.56 The player points part of the PictureNotFound function in theGameMan-

ager script . 59

4.57 The PictureColliderFound function in the GameManager script 61

4.58 The UpdatePlayerPoints function in the GameManager script 61

4.59 The EndGame function in the GameManager script 62

4.60 A player’s final score shown at the end of the game 62

4.61 The medieval village map appears mostly gray and flat in Cognitive3D’s

Scene Explorer . 64

4.62 A player’s left controller appears red in Cognitive3D’s Scene Explorer be-

cause it was gazed at often . 65

5.1 Only a few cubes are visible in the Scene Viewer due to lack of sessions . . 76

5.2 Gazeheatmaps of the castle (left), Ferriswheel (middle), and roller coaster

(right) in the amusement park map in both game modes 77

5.3 Gaze heatmaps of the inn (left), large house (middle), and overheadhouse

(right) in the medieval village map in both game modes 82

B.1 The first picture in the amusement park map 103

B.2 The second picture in the amusement park map 103

B.3 The third picture in the amusement park map 104

B.4 The fourth picture in the amusement park map 104

B.5 The fifth picture in the amusement park map 105

B.6 The sixth picture in the amusement park map 105

95

B.7 The seventh picture in the amusement park map 106

B.8 The eight picture in the amusement park map 106

B.9 The ninth picture in the amusement park map 107

B.10 The tenth picture in the amusement park map 107

B.11 The first picture in the medieval village map 108

B.12 The second picture in the medieval village map 108

B.13 The third picture in the medieval village map 109

B.14 The fourth picture in the medieval village map 109

B.15 The fifth picture in the medieval village map 110

B.16 The sixth picture in the medieval village map 110

B.17 The seventh picture in the medieval village map 111

B.18 The eight picture in the medieval village map 111

B.19 The ninth picture in the medieval village map 112

B.20 The tenth picture in the medieval village map 112

96

List of Tables

5.1 Average participant scores and time to find picture origins for each map

and game mode . 72

5.2 Gaze tracking data for dynamic objects with highest average gaze time for

each mode in the amusement park map 78

5.3 Gaze tracking data for dynamic objects with highest average gaze time for

each mode in the medieval village map 83

97

Abbreviations

AR Augmented reality

3D Three-dimensional

UI User Interface

VR Virtual reality

98

Appendix A: User Study Form

99

General questions

1.

2.

Mark only one oval.

Other:

Woman

Man

Transgender woman

Transgender man

Prefer not to answer

User study for Master's Thesis "Analysis
of Gaze Tracking in Collaborative and
Competitive Virtual Reality Games"
The information and responses gathered by this user data will be used solely for
research reasons as part of the Master's Thesis "Analysis of Gaze Tracking in
Collaborative and Competitive Virtual Reality Games". Because all data will be evaluated
collectively, your personal information will be kept anonymous.

* Indicates required question

Age in years: *

Gender: *

100

3.

Mark only one oval.

I don't play video games

5 or less hours a week

10 or less hours a week

20 or less hours a week

40 or less hours a week

More than 40 hours a week

4.

Mark only one oval.

I don't use virtual reality

5 or less hours a week

10 or less hours a week

20 or less hours a week

40 or less hours a week

More than 40 hours a week

5.

Other:

Check all that apply.

PC
Mobile
Console
Virtual Reality
Handheld Consoles

Playing the game

Stop here and wait for the examiner to explain the game.

How many hours a week do you spend on video games? *

How many hours a week do you spend on virtual reality? *

Please check all platforms that you have played video games on in the last year:

101

6.

Mark only one oval.

Amusement Park

Dreamscape Village

7.

8.

Mark only one oval.

Amusement Park

Dreamscape Village

9.

10.

Mark only one oval.

Yes

No

This content is neither created nor endorsed by Google.

(COLLABORATIVE) What map did you play on? *

(COLLABORATIVE) How many points did you get? *

(COMPETITIVE) What map did you play on? *

(COMPETITIVE) How many points did you get? *

(COMPETITIVE) Did you win? *

 Forms

102

Appendix B: Pictures Players Need to Find

the Origin of

Figure B.1: The first picture in the amusement park map

Figure B.2: The second picture in the amusement park map

103

Figure B.3: The third picture in the amusement park map

Figure B.4: The fourth picture in the amusement park map

104

Figure B.5: The fifth picture in the amusement park map

Figure B.6: The sixth picture in the amusement park map

105

Figure B.7: The seventh picture in the amusement park map

Figure B.8: The eight picture in the amusement park map

106

Figure B.9: The ninth picture in the amusement park map

Figure B.10: The tenth picture in the amusement park map

107

Figure B.11: The first picture in the medieval village map

Figure B.12: The second picture in the medieval village map

108

Figure B.13: The third picture in the medieval village map

Figure B.14: The fourth picture in the medieval village map

109

Figure B.15: The fifth picture in the medieval village map

Figure B.16: The sixth picture in the medieval village map

110

Figure B.17: The seventh picture in the medieval village map

Figure B.18: The eight picture in the medieval village map

111

Figure B.19: The ninth picture in the medieval village map

Figure B.20: The tenth picture in the medieval village map

112

Abstract

Analysis of Gaze Tracking in Collaborative and Competitive

Virtual Reality Games

Emilia Haramina

This Master’s thesis delves into the development of a VR game namedOVRseer and

presents a user study (N=16) to assess the difference in gaze patterns between collab-

orative and competitive game modes. Players have time to explore two different maps

and remember as much of them as possible. Players gather points by returning to var-

ious places on the map. The amount of points received depends on their speed to find

the required places. On one map, they play collaboratively, and on the other, competi-

tively. When playing collaboratively, they score points andwork together to gain asmany

points. In the competitive game mode, players gain points independently of each other,

with their goal being to have more points than the other player. Afterward, the gaze

tracking technology present in the game is utilized to analyze the difference in their gaze

behavior between the two game modes.

Keywords: VR; Virtual Reality; Gaze Tracking; VR Games; Multiplayer; Collabora-

tive; Competitive

113

Sažetak

Analiza praćenja pogleda u kolaborativnim i kompetitivnim VR

igrama

Emilia Haramina

Ovaj diplomski rad bavi se razvojem VR igre OVRseer i predstavlja korisničku stu-

diju (N=16) kako bi se procijenila razlika u uzorcima pogleda između kolaborativnog i

kompetitivnog načina igre. Igrači imaju vremena istražiti dvije različite mape i zapam-

titi ih što je bolje moguće. Zatim igrači skupljaju bodove vraćajući se na različita mjesta

na mapi. Broj osvojenih bodova ovisi njihovoj brzini pronalaska traženih mjesta. Na

jednoj mapi igraju kolaborativno, a na drugoj kompetitivno. Kada igraju kolaborativno,

dobivaju bodove zajedno i surađuju kako bi skupili što više bodova. U kompetitivnoj ver-

ziji igre, igrači dobivaju bodove neovisno jedan o drugom, a cilj im je imati više bodova

od drugog igrača. Nakon toga, tehnologija praćenja pogleda prisutna u igri koristi se za

analizu razlike u njihovim uzorcima pogleda između dvije verzije igre.

Ključne riječi: VR; virtualna stvarnost; praćenje pogleda; VR igre; višekorisničko;

kolaborativno; kompetitivno

114

	Introduction
	Gaze Tracking in Virtual Reality
	Design of OVRseer
	Game Analysis
	Map Design
	Gameplay

	Development of OVRseer
	Used Technologies and Tools
	Implementation and Features of OVRseer
	Meta XR All-in-One SDK Integration
	Scene Design
	Gaze Tracking
	Multiplayer Implementation
	Map Exploration
	Picture Finding
	Player Points

	Limitations
	No Scene to Scene Sessions
	Missing Shaders Data
	Players Looking at Their Controllers
	Slow Aggregated Gaze Data
	Slow Loading of Multiple Sessions
	Meta Quest Pro Comfort
	Networked Hands

	User Study
	Methodology
	Results and Discussion
	Form Data
	Session Questions and Points Data
	Gaze Tracking Data
	Practical Implication of Test Results

	Conclusion
	References
	List of Figures
	List of Tables
	Abbreviations
	User Study Form
	Pictures Players Need to Find the Origin of
	Abstract
	Sažetak

