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1 Introduction

Measuring behaviour is crucial aspect of many fields of biomedical research. Depending

on the experiment’s nature, different behavioural traits, such as eye movement, pupil

dilation, respiration and others can be particularly informative. Throughout history, ac-

curate behavioural measurements have been challenging to obtain due to technological

constraints. Today however, microphones, cameras, electroencephalograms (ECG) and

other measurement tools allow us to simultaneously gather experimental data in multi-

ple modalities (Figure 1.1).

Figure 1.1: Examples of recording be-
havioural data. Above, an eye tracking
device records eye movements. Below,
movements of mice are tracked with a
2D bodypart tracking algorithm [1].

This thesis focuses onmonitoring breathing be-

haviour of mice, which have been the animal mod-

els of choice in many biomedical studies. The ad-

vantages of using rodents as animalmodels include

their small size, ease of maintenance, short life cy-

cle, and abundant genetic resources [2]. Breathing

is often studied in the context of odor guided be-

haviours and olfactory perceptual tasks, and is rel-

evant in many other applications, such as drug dis-

covery or disease modeling.

Monitoring breathing behaviour is still an open

problem and many approaches have been pro-

posed, each with its own advantages and draw-

backs, usually related to invasiveness, cost, ease

of use, latency and flexibility in terms of experi-

mental setups. Therefore, choosing the appropri-

ate method for a specific task can be challenging [3].
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Thiswork aims to create amachine learning-based framework formonitoring breath-

ing in infrared (IR) camera. Themethod’smain benefits are its non-invasiveness and ease

of use (once the initial camera setup has been prepared). The proposedmachine learning

model is intended to work with manually annotated labels, thus reducing, or completely

removing the need for gathering reference breathing measurements. The work intends

to be easily accessible to researchers in biomedical sciences and compatible with the

Three Rs Principle [4]. The Three Rs are ethical guidelines adopted by European Union

for using animals in science. The Three Rs stand for:

• Replacement: Seeking alternatives to using animals in experiments whenever

possible, e.g. with cell cultures, or computational models.

• Reduction: using the minimum number of animals necessary to obtain reliable

results, through careful experimental design and statistical analysis.

• Refinement: includes minimizing pain and distress, providing appropriate hous-

ing and care, and enriching their environment to promote natural behaviours.

The proposed framework is evaluated on dataset of manually labeled inhalation on-

sets, and a dataset of intranasal cannula pressure sensor breathing measurments, and is

compared with the previous method used within Haesler lab1.

1https://haeslerlab.sites.vib.be/en#/
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2 Background

This chapter provides a succint overview of methods for measuring respiration in ro-

dents, and introduces the fields of computer vision and deep learning. For a more com-

prehensive overview of measuring respiration in rodents, the reader can refer to the re-

view by Grimaud and Murthy [3].

2.1 Monitoring Respiration in Rodents

Breathing is the involuntary act of inhaling, while sniffing refers to active sampling of

odors for the purpose of information acquisition. Sniffing is typically identified by changes

in respiratory frequency or amplitude, e.g. while interacting with others or exploring the

environment. Breathing and sniffing are related behaviours and are measured with the

same tools. The frequency of breathing of dormant mice ranges from 3 to 5 Hz, and

increases up to 12 Hz during bouts of exploratory behaviour [5]. Several methods for

breathing monitoring are described below and illustrated in Figure 2.1:

Breathing behaviour can be monitored through neuronal or muscular activity. At-

tempts have been made at placing an electrode into brain regions which govern respira-

tory muscle activity in order to measure breathing, but have been shown to lack relia-

bility at higher breathing frequencies [6]. On the other hand, recording breathing from

muscle activity has been more successful and usually involves implanting electromyo-

gram (EMG) electrodes on the diaphragm. Other muscles, such as the tongue and those

involved in whisking, have also been found to contract in accordance with the rhythm

of breathing, however they are less correlated at lower breathing rates. EMG recordings

are regarded as one of the most precise measurements of respiration. However, both

methods have the drawback of being extremely invasive to the animal.
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Plethysmography refers to measuring volume changes within an organ or the entire

body. For example, a plethysmograph can capture the expansions and contractions of

the chest cavity, providing the breathing behaviourmeasurements. Alongsidemeasuring

breathing rate, plethysmography has an added advantage of being able to measure the

volume of air passing at each inhalation and exhalation. Several plethysmograph designs

exist: lung plethysmographs connect the trachea to the instrument, others press a mask

against the face, or place the animal in a chamber, with the lastmethod beingmost suited

for small rodents. Plethysmographs also differ depending onwhat theymeasure: airflow,

pressure, or capacitance.

Anothermethod involves sensors such as pressure transducers or thermistors to record

olfactory behaviour. However, measuring respiration of smaller animals is generally

done through intubation, or implantation of sensors in the intranasal cavity, making

the processes invasive to the animal. Furthermore, intubation can only be performed

on anesthetized rodents, while the intranasal probes require puncturing the roof of the

nasal cavity, which is suspected to affect the way the animal breaths, and disturb odor

perception.

Lastly, breathing behaviour can be extracted using infrared thermography (IRT). By

capturing the temperature changes of the air around the nostrils during breathing, an

infrared (IR) camera can provide the necessary data to extract the breathing signal. The

main limitation of IR camera is its price, as the camera needs to be of high enough frame

rate, and have sufficient thermic sensitivity to accurately capture the heating and cooling

of the air around the nostrils. At the time of writing this thesis, the camera Rabell and

Haesler used in their publication (FLIR A325sc infrared camera) costs several thousand

US dollars, not including the dedicated lens [7]. Additionally, the camera is relatively

large and needs to be placed very close to the animal. This method is currently restricted

to head-restrained animals, since movements might omit the nostrils. After recording,

the breathing signal is extracted through numerous video-provessing steps.
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Figure 2.1: Visual summary of the methods for breathing measurement in rodents: 1) infrared
camera and video monitoring, 2) face mask, 3) intranasal cannula and implanted temperature
probe, 4) brain recording, 5) electromyogram (EMG) of respiratorymuscles, 6) movement sensor,
7) external temperature probe, 8) EMG of nonrespiratory muscles, 9) intubation, and 10) lung
plethysmograph [3].

2.2 Computer Vision

Computer vision is a field of computer science concerned with extracting meaningful

information from images, which can take many forms, such as videos, medical imaging

scans and multiple camera images. The field arose from the desire to mimic the capabil-

ities of the human visual system, such as recognizing faces, or navigating traffic. Thus,

it is intimately intertwined with neuroscience, a relationship fromwhich both have ben-

efited [8]. Several fundamental tasks in computer vision are listed below and illustrated

in figure 2.2:

1. Image Classification: The task of assigning a label to an image from a predefined

set of categories. The aim is to determine the primary subject or content of the

image. For example, classifying an image as a "cat" or a "dog".

2. Object Detection and Localization: This task involves not only identifying ob-

jectswithin an image but also determining their spatial location by drawing bound-

ing boxes around them. This is relevant in applications like autonomous driving,

where the precise location of pedestrians, vehicles, and traffic signs is a necessity.

3. Semantic Segmentation: This task takes object recognition a step further by as-

signing a class label to each pixel in an image, resulting in a pixel-level understand-

ing of the scene, where each pixel is labeled according to the object it belongs to.
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4. Instance Segmentation: Building upon semantic segmentation, instance seg-

mentation goes further by distinguishing individual objects within the same class.

For example, an instance segmentationmodelwould identify each car as a separate

instance, even if they belong to the same class ("car").

Figure 2.2: Illustration of different fundamental computer vision task (image source: [9]).

As the field becomes more capable, more complex tasks gain traction, such as gener-

ating images from text, editing images based on text descriptions (inpainting), and cre-

ating videos from text or image [10][11].
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2.3 Deep Learning

Deep Learning (DL) is a subset ofMachine Learning (ML), which falls under the broader

umbrella of Artificial Intelligence (AI). While AI encompasses various subfields and def-

initions, Russell and Norvig define it as the development and study of methods and soft-

ware that enable machines to perceive their environment and take intelligent actions to

achieve defined goals [12]. ML focuses on systems that automatically learn and improve

fromexperiencewithout explicit programming [13]. It can be further divided into several

branches, of which three are discussed below and illustrated in Figure 2.3:

• Supervised learning: refers to algorithms that learn from a set of data that con-

tains inputs (features) and the desired outputs (labels). Consider an email service

providerwhichwould like to automatically report spamemails. The provider could

train a supervisedML algorithm using email header information, sender’s address,

title, etc., as features, and the users’ spam reports as the desired output. The goal

would be learn to identify feature patterns in spam emails and automatically flag

them for future users. Another example is estimating house prices by looking at

their age, location, square footage, etc. An important difference between these ex-

amples is that the former outputs categorical values, while the latter outputs real

values. These two cases are called classification and regression, respectively.

• Unsupervised learning: this class of algorithms learn and discover patterns from

data which is not labeled. Common tasks include density estimation, content gen-

eration, data compression and anomaly detection. For example, a retailer may

want to create targeted advertisements by grouping customers based on their pur-

chasing behaviour, such as the amount of money spent, purchasing frequency and

types of products purchased.

• Self-supervised learning: this approach leverages unlabeled data by creating

pretext tasks that generate surrogate labels from the data itself. For example, in

natural language processing, a model can be trained to predict masked words in

a sentence with respect to visible words, or in computer vision, to reconstruct a

masked portion of an image [14] [15]. By learning to solve these pretext tasks,

the model learns useful representations of the data that can be transferred to other
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downstream tasks, such as image classification or object detection. Self-supervised

learning tasks are often used in combination with transfer learning, which is fur-

ther described in Section 2.4.

Figure 2.3: Illustration of unsupervised and supervised learning. On the left, a MLmodel learns
to group samples based on their features, without using explicit labels. On the right, a model is
trained to assign labels to samples, based on known feature-label pairs, in this case by learning a
boundary in the feature space which best separates known samples of classes 1 and 2.

DL is specialized subset of ML using methods based on artificial neural networks.

The adjective "deep" refers to the use of multiple hierarchical layers in the network. Al-

though current DL architectures do not intend to model the human brain, the field has

producedmany successful architectures that were heavily inspired by neuroscience [16].

A quintessential DL architecture is the perceptron model (Figure 2.4), and its multi-

layer generalization (Figure 2.5). They are examined below:

Figure 2.4: The perceptron model.
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A neural network’s task is to learn an arbitrary function:

𝑦 = 𝑓∗(𝐱) (2.1)

where x is the input vector of features and y is the target label. This can be represented

as a training set consisting of many input-output pairs of data:

(𝐱1, 𝑦1), (𝐱2, 𝑦2), ...(𝐱𝑛, 𝑦𝑛) (2.2)

The perceptron model can be expressed with the following equation:

𝑦 = 𝜎(
𝑚∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏) (2.3)

where 𝑥𝑖 are input features, 𝑤𝑖𝑗 and 𝑏 are model parameters (weights), and 𝜎 is the acti-

vation function, which is some non-linear function, such as the sigmoid:

𝜎(𝑥) =
1

1 + 𝑒−𝑥
(2.4)

or a ReLU (Rectified Linear Unit) function:

ReLU(𝑥) = max(0, 𝑥) (2.5)

Essentially, for a given input sample, the perceptron computes a weighted sum of the

feature vector and passes the resulting value through a nonlinearity. The training of a

perceptron (and other DL architectures) amounts to finding the set of model parameters

𝐰 which assign a correct label 𝑦, given the input features 𝐱. This is achieved by defining

a loss function and using an optimization algorithm to minimize it.

The loss function quantifies the error between the model’s prediction and the true

target value. This error is typically a non-negative number where smaller values indicate

better performance. A common loss function in regression tasks is the Mean Squared

Error (MSE):

𝑀𝑆𝐸 = (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒)
2 (2.6)
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For binary classification tasks, Cross-Entropy Loss is commonly used:

𝐿 = −𝑦𝑡𝑟𝑢𝑒𝑙𝑛(𝑦𝑝𝑟𝑒𝑑) − (1 − 𝑦𝑡𝑟𝑢𝑒)𝑙𝑛(1 − 𝑦𝑝𝑟𝑒𝑑) (2.7)

The goal of the optimization algorithm is to minimize the loss function by adjusting

model parameters. Today, most neural networks are optimized with iterative algorithms

using backpropagation, such as the Stochastic Gradient Descent (SGD). For a given sam-

ple, the SGD calculates the loss based on the forward pass through the network, it then

uses the calculus’ chain rule to propagate this loss backward through the network, com-

puting the gradient of the loss with respect to each parameter. With the gradients, the

algorithm updates the model’s parameters in a direction that reduces the overall loss, as

shown in the following expression:

𝑤̂𝑖 = 𝑤𝑖 − 𝜂
𝜕𝐿

𝜕𝑤𝑖

, (2.8)

where 𝜂 is the learning rate, a hyperparameter which modulates the strength of the up-

date. Care must be taken when choosing the learning rate, because overly large learning

rateswill result in overshooting the optimal solution or divergence, while too small learn-

ing rates result in a very slow and inefficient convergence. The whole process is repeated

for many iterations, and with each iteration the model’s ability to approximate the target

function improves.

Themultilayer perceptron (MLP) is a natural extension of the base perceptron, and is

formed by stacking multiple perceptron layers on top of each other. The outputs of one

layer become the inputs to the next. MLPs are also commonly referred to as feedforward

neural networks due to the unidirectional flow of information. Each layer in an MLP

applies a linear transformation to its input, followed by a non-linear activation function.

The hidden layers, situated between the input and output layers, learn to extract progres-

sively more complex and abstract representations of the input data. An MLP with two

hidden layers is represented with the following equations:

𝐡𝟏 = 𝜎(𝐖1𝐱 + 𝐛2) (2.9)
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𝐡𝟐 = 𝜎(𝐖2𝐡𝟏 + 𝐛2) (2.10)

𝐲 = 𝜎(𝐖3𝐡𝟐 + 𝐛3) (2.11)

Figure 2.5: A depiction of a multilayer perceptron architecture

Although the base perceptron and its multilayer generalization are considered sim-

ple compared to contemporary architectures, the core ideas surrounding them are still

present in most DL algorithms.

2.3.1 Transformer model

Transformer models are a type of DL architecture that has revolutionized the field [17].

They were initially used for tasks involving sequential data (such as text), but have over

time been adapted to handle data of other modalities. Since their introduction in 2017.,

transformers models have often been described as groundbreaking and have been suc-

cessfully applied in a wide variety domains [18].

The core innovation of transformers is the self-attention mechanism, implemented

using a set of query, key, and value matrices. For each element (token) in the input se-

quence, a query vector is computed, which is then used to compute attention scores with

all other elements in the sequence based on their corresponding key vectors. These at-

tention scores are then used to weight the value vectors, producing an output representa-

tion for that element. The scaled dot-product attention, used in the original transformer
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paper, can be expressed as:

Attention(𝑄,𝐾,𝑉) = softmax (𝑄𝐾𝑇√
𝑑𝑘
)𝑉 (2.12)

where 𝑄 is the query matrix, 𝐾 is the key matrix, 𝑉 is the value matrix, and 𝑑𝑘 is the

dimensionality of the key vectors. In addition to self-attention, transformers typically

include feedforward layers and residual connections.

While the original transformer model used an encoder-decoder architecture, not all

transformer models follow this structure. Some are encoder-only (like those used for

tasks like sentiment analysis), and others are decoder-only (such as those used for text

generation).

Transformer architectures have been successfully adapted for computer vision tasks,

giving rise to Vision Transformers (ViTs) [19]. The ViT architecture is similar to BERT,

withmain differences being in early layers of the network, which transform inputs into a

form suitable for the attentionmechanism [14]. Images are transformed by splitting into

patches, which are then flattened and passed through a linear embedding layer. ViTs led

to significant advancements in many vision related tasks.

Transformers have been applied to a wide range of tasks, including machine trans-

lation, text-to-image generation and are the key component for the success of large lan-

guage models.

2.4 Transfer learning

An important question when training DLmodels is what set of initial model parameters

to use, as it has been shown to greatly impact the speed and convergence of the training

procedure [20]. In the past, initialization techniques generally involved assigning ran-

dom values to model parameters by sampling from the probability distributions, such as

the uniform orGaussian distribution. More recently, an idea emerged to reuseweights of

previously trained (pretrained)models on new tasks. The intuition is that the knowledge

obtained by solving a particular task will transfer well into solving similar tasks, hence

the name transfer learning. For example, a model trained to classify images of dogs has
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likely learned to extract features which are relevant for detecting other animals. A pre-

trained model can be used either as a fixed feature extractor, in which case its weights

are frozen, or its weights can be updated, but generally with a lower learning rate than

during pretraining.

With the growing sizes of DL architectures, training from scratch has become in-

creasingly laborious, and transfer learning has stood out an especially useful concept,

offering numerous benefits. When used appropriately, transfer learning has been shown

to improve generalization capabilities of the model, significantly shorten training time,

and reduce the amount of training data necessary to solve a task. It has also played a

key role in bringing sophisticated DL models to a wider audience, thus democratizing

accessibility.

2.4.1 Masked Image Modeling

Masked Image Modeling (MIM) has recently emerged as a powerful technique for self-

supervised pre-training of vision transformers [21][15]. MIM aims to learn robust image

representations by randomly masking a percentage of an image and training a model to

predict the masked content, conditioned by the visible portions of the image. This ap-

proach learns to translate the inherent structure and patterns within images into mean-

ingful representations without relying on explicit labels. MIM draws inspiration from

the success ofMasked LanguageModeling (MLM) in natural language processing, where

models are pretrained by predicting masked words in a sentence.

Several implementations of MiM exist, usually consisting of the following core steps:

First, the image is divided into patches, of which a random percentage is masked. An

encoder extracts features of the visible patches, which are then passed to the decoder,

that attempts to predict either the masked patches, or the whole image. An example

architecture is illustrated in Figure 2.6.

2.4.2 Evaluation of trained models

Evaluation of trained models is an essential step in DL, and ML in general. It allows us

to quantify how well the model performs on unseen data and understand its strengths

and weaknesses.
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Figure 2.6: TheMaskedAutoencoder architecture [15]. During pretraining, the encoder receives
the visible patches of the image. The features obtained from these are passed to the decoder
that reconstructs the original image. After pre-training the decoder is discarded and the encoder
applied to uncorrupted images.

Training, Test and Validation Datasets

In order to properly evaluate the performance of amodel, the available dataset is split into

a training, validation and test sets. The training set is used to adjust model parameters

during the training process. The validation set is used to monitor model performance

on unseen data during training process and to fine-tune hyperparameters, which are set

before the training process begins. Examples of hyperparameters are the learning rate

in the SGD algorithm, or the number of hidden layers in a multilayer perceptron. The

test set provides an unbiased evaluation of the final model fit on the training dataset.

It is important that the test set remains unseen during training to provide an accurate

estimate of how the model will generalize to new data.

Classification Metrics

When evaluating the performance on a binary classification task, each prediction can be

assigned to one of four categories:

• True Positive (TP): The model correctly predicts the positive class.

• False Positive (FP): The model incorrectly predicts the positive class.
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• True Negative (TN): The model correctly predicts the negative class.

• False Negative (FN): The model incorrectly predicts the negative class.

Using these four categories, we can calculate various classification metrics:

• Accuracy: The fraction of correct predictions.

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.13)

This metric is suitable when the dataset is balanced, meaning that the number of

positive and negative samples is roughly equal. In this case, accuracy provides a

good overall measure of model performance.

• Precision: Measures the quality of positive predictions made by the model.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.14)

Precision is suitable when the cost of false positives is high. For example, in a spam

filter (where a spam is denoted as a positive sample), it is more important to avoid

classifying a legitimate email as spam than to miss a few spam emails.

• Recall (Sensitivity): The fraction of actual positives that themodel identifies cor-

rectly.

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.15)

Recall is used when the cost of false positives is high. A classic example is medi-

cal diagnosis system, in which it is more important to identify all patients with a

disease even if it means some healthy patients are misdiagnosed.

• F1 Score: The harmonic mean of Precision and Recall, providing a balanced mea-

sure of the model’s performance.
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F1 Score = 2 ∗
Precision ∗ Recall

Precision + Recall
(2.16)

It is important to note that previously mentioned metrics are not well suited for time

series event detection, since they do not consider temporal information. For example, a

prediction that is a few miliseconds off the actual event could be considered a false posi-

tive, even though it may be practically useful. However, they can be easily adapted using

the concept of the tolerancewindow: a neighbourhood is defined around the groundtruth

events. Detections falling within this neighbourhood are considered true positives. The

size of the window can be adjusted to reflect the desired level of tolerance (Figure 2.7).

Figure 2.7: Impact of the tolerance window in a time series event detection task. Red and blue
lines represent actual and predicted events, respectively. In the first image, where no tolerance is
used, zero actual events would be considered correctly predicted, even though several predictions
differ by only one frame from the nearest actual event. In the centre and right image, a tolerance
is introduced represented by the red areas around actual events, is introduced. Predictions falling
within these areas are considered true positives.

Many other metrics exist. In general, the choice of metric depends on the specific

problem and the relative importance of different types of errors. Appropriately evalu-

ating the performance of trained models is crucial for understanding how well are they

about to generalize to new data and for identifying areas where they can be improved.

By using appropriate evaluationmetrics and understanding their implications, informed

decisions can made about model selection and deployment.
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3 Methodology

The goal of extracting the breathing behaviour of mice through IR footage is formulated

as a supervised learning video classification task, where each frame is labeled as an in-

halation onset or not. The dataset used for the experiments consists of many laboratory

trails collected as part of the research in Haesler lab. During all trails, an IR camera was

used to record the behaviour of lab mice. The dataset can be split into three distinct sub-

sets: (i) trails for which breathing behaviour was measured with an intranasal cannula,

(ii) trails with manually labeled inhalation onsets, (iii) trails without labels. The dataset

description and the preprocessing methodology is further described in chapter 4.

A small, custom sized ViT is used as the backbone of the DL architecture throughout

all experiments. A smaller size was deemed sufficient considering the narrow domain

of the task at hand. The backbone splits the image into patches of 16x16 pixels, with an

embedding dimension of 64, 6 encoder layers, and 2 encoder heads. The training proce-

dure consists of the following steps: First, the backbone is pretrained on a large dataset

of unlabeled trails using the masked image modeling task. Then, the model is finetuned

using the dataset with manual annotations. Finally, an inhalation onset extraction algo-

rithm is tuned on the generated probabilistic output. The architecture is illustrated in

Figure 3.1. The resulting model is evaluated on both the test set of manually annonated

dataset and the intranasal cannula dataset.

The backbone is pretrained with amasking ratio of 0.5, using themean squared error

loss, Adam optimizer with the cosine annealing learning rate with warmup, and a batch

size of 1280 [22]. The pretraining is stopped when the validation loss starts increasing.

Thefinetuning uses binary cross entropy as the loss function, and theAdamoptimization

algorithm alongside the cosine annealing learning rate scheduler. To adjust for the label

imbalance, a weighted random sampler is used.
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Figure 3.1: Proposed archtecture for extracting the inhalation onsets. A shared ViT outputs
features ofN consecutive frames (each frame independently), which are fed to the predictonhead.
The prediction head outputs the probability of the inhalation onset in the center frame. After the
probabilties of all frames in a video have been generated, inhalation onsets can be extracted.

Several hyperparameters are considered during training: (i) aside from using a pre-

training with Masked Image Modeling, the backbone is also trained from scratch, (ii)

different sets of stochastic data augmentations are considered, the first consists of apply-

ing horizontal flipping, cropping and resizing, and rotation of the original image, while

the second additionally adjusts brightness, contrast and applies Gaussian blurring. (iii)

a fully connected layer and an LSTMneural network are considered for the classification

head [23].

The experiments are conducted using the Python programming language, its DL li-

braries Pytorch1 and DeepLabCut2, and scikit-learn3, a library offering simple and ef-

ficient tools for predictive data analysis [24][1][25]. The labeling was done using the

CVAT.ai framework4 [26]. All experiments were run on a single machine with four

Nvidia GeForce GTX 980 Ti GPUs.

1https://github.com/pytorch/pytorch
2https://www.mackenziemathislab.org/deeplabcut
3https://github.com/scikit-learn
4https://github.com/cvat-ai
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4 Dataset

The initial dataset comprises of experimental trials on mice. During each trail, mice are

presented with an odor, which triggers a behavioural response. The response strength

varies depending on the mouse’s familiarity with the odor: novel odors generally evoke

stronger responses than familiar ones. To ensure consistent experimental conditions, the

mice are head-restrained inside a sound and light isolated box.

Figure 4.1: Illustration of the camera placement (based
on [27]) and several frames captured from different trails

During the experiments, a 60 Hz

IR camera is placed under the

mouse’s nose (illustrated in Fig-

ure 4.1). Additionally, an in-

tranasal cannula was connected

to a pressure sensor, recording

the airflow inside the nostrils

(signal sampled at 3 kHz). The

recordings last about 10-15 sec-

onds.

The dataset consists of five

mice, with a total 541 trails, how-

ever the number of trails per mouse is variable, as shown in Table 4.1.

Mouse Name Edirne Jose Lausanne Montreux Neuchatel
# Trails 3 9 137 203 189

Table 4.1: Number of experimental trails per mouse.

In addition to the labeled dataset, the Haesler lab collected IR camera recordings

between 2019 and 2024 of approximately 268 000 trails from 220 different mice.
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4.1 Pressure sensor signal

Intranasal cannula pressure sensor signals are considered the reference (groundtruth)

measurement for breathing behaviour. As the mouse inhales, the air flowing through

the nostrils results in lowered voltage output of the pressure transducer. For exhalations,

the voltage increases. The recorded signals exhibit a high degree of inter-individual vari-

ability. The signals have a varying amounts of noise, slope steepness, localminimumand

maximum amplitudes and other features, resulting in distinct breathing cycles for each

mouse (as shown in Figure 4.2). This could be due to behavioural differences between

mice, but could also be caused by artefacts of the recording method.

Figure 4.2: Cannula pressure sensor signal samples (groundtruth) from each mouse of the
dataset, with mouse and trail names written above the plots.

The initial pressure sensor dataset faces several challenges when examined through

the lens of supervised ML. A major drawback is that it only contains five mice, two of

which only have several trails, which means that the dataset is likely a poor representa-

tion of the whole distribution of experimental recordings that can be found "in the wild".

The limited amount of mice for which groundtruth signals exist also severely limits the

possibility of robustly testing a trained ML model. Ideally, to conduct proper testing of a

ML model, the dataset samples are independently and identically distributed, and split

into subsets for training, validation and testing. For the purpose of this task, this implies

that different data subsets must not share trails of the same mouse. As there are only
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Figure 4.3: Relationship of the IR camera footage and the pressure sensor breathing signal. On
the left, a typical breathing cycle is depicted with 6 representative frames. On bottom right, a
pressure sensor signal is plottedwith enumerated pointsmapping the signal to the camera frames.
The top right plot showcases the signal overmultiple breathing cycles. Inhalations and exhalation
periods are marked on frames and signals with blue and red color, respectively.

five mice, it follows that each stage of the ML workflow contains one, two or three mice.

Even if the trained model performs well on the test set, it would have been tested on a

very fewmice, making it hard tomake conclusions on the generalizing capabilities of the

model. Cross-validation can be used to alleviate the latter issue, but it still holds that the

available labeled dataset is inherently limited and might not guarantee a truly generaliz-

able model. Additionally, the small sample size of mice increases the risk of the dataset

being biased, reflecting specific characteristics of these particular mice rather than the

broader population.

For these reasons, alongside the high intervariability of the pressure signal, the initial

dataset was not deemed sufficient for using supervisedML to extract the breathing signal

from IR camera footage.

4.2 Manual Annotation

Since the labeled dataset was deemed not satisfactory, an alternative approach is consid-

ered. Instead of extracting the whole breathing signal, it would be sufficient to only

extract inhalation onsets. The proposed changes reduce the complexity of the prob-

lemwithout significantly reducing the usefulness of the framework, as inhalation onsets

themselves are often a behavioural trait of interest in biomedical experiments, and they
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allow for computing of the breathing frequency, which is another important trait [28].

Focusing on predicting of specificmoments of the breathing behaviour offers advantages

as it reduces the problem of pressure signal intervariability. Additionally, since the in-

halation onsets are characterized by sudden cooling of air around the nostrils (visible as

darkening of pixels on the IR camera), it becomes possible to manually label new trails

of other mice, thus expanding the dataset for a more robust training procedure.

130 trails were randomly sampled for annotation from the large unlabeled dataset.

The sampled subset contains data from multiple researchers and experimental setups,

thus being a representative sample of data generated in Haesler lab in the recent years.

First and last few seconds of the sampled videos were cut, as they mostly contain control

phases of the trail, where the mouse doesn’t percieve and odor, and generally behaves in

a passive manner with a stable, low-frequency breathing rate.

During the labeling process, frames which capture the sudden darkening of the pix-

els around the nostrils (as shown on frames in Figure 4.3) are labeled as the inhalation

onsets. 11 trails have been discarded due to poor video quality.

4.3 Preprocessing of camera footage and the pressure

sensor signal

The most informative part of the footage for breathing extraction is the area around the

nostrils; however, the camera has a much broader field of vision, introducing irrelevant

infromation for the DL model. This raises several potential issues: first, the model is at

risk of learning bad correlations, i.e. mapping uninformative features to the breathing

behaviour, second, if a model would be trained on the whole frame (as opposed to only

the image of the nostrils), it would require significantly more computational power and

likely a DL model with a higher capacity (i.e. more parameters).

To address this, nose position was extracted for each frame and the frames were

cropped to only contain the nose. The positions were extracted with DeepLabCut (DLC),

a DL framework for pose estimation in animals [1]. DeepLabCut streamlines the whole

data collection, training and inference workflow by offering a graphical user interface

for labeling key points, several pretrained models, and out-of-the-box training and infer-
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ence pipelines. The nose is cropped by extracting four keypoints, from which a cropping

bounding box is created (Figure 4.4). To maintain uniform size, the cropped frames are

resized to 128x128 pixels.

Figure 4.4: An example of the keypoints and the resulting cropped frame using the DeepLabCut
framework.

Inhalation onsets were extracted from the groundtruth pressure sensor signals in the

following manner: for each trail, the signals were centered by substracting their mean,

then a lowpass filter was applied to reduce noise. Peaks were detected from the resulting

signals using scikit-learn’s find_peaks algorithm, and the first zero-crossing after each

peak was taken as the inhalation onset. Extracted onsets were visually inspected before

being used for testing purposes. An example of inhalation onsets extracted from the

pressure sensor signal is plotted in Figure 4.5.

Figure 4.5: Automatically extracted inhalation onsets from the pressure sensor signal.
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5 Results and Discussion

The model with a backbone trained from scratch, milder data augmentations and an

LSTMclassificationhead achieved the lowest validation loss during training. Even though

pretraining generally yields better results, in this case both the pretrained and fromscratch

trained backbone converged to a very similar validation loss. However, the pretrained

backbone converges faster compared to training from scratch. The similar end result can

mean that: (i) the finetuning dataset is large enough to properly train the model with-

out extra data, (ii) the features learned with the pretraining task are not informative for

extracting inhalation onsets. The best performing model is further evaluated on the test

set of the manually annotated dataset and the intranasal cannula dataset. Additionally,

comparisons are made with previous method used within Haesler lab.

Previous method

The previous method is based on supervised machine learning using two mice of the in-

tranasal cannula dataset and an AlexNet model [29]. The model is trained to predict

the pressure sensor signal value from a context of three consecutive IR frames. The

frames are concatenated and passed to the model as an RGB image would be, that is,

the channel dimensions represents a temporal relation, rather than RGB values. This is

not ideal as AlexNet employs only 2D convolutions, which collapse temporal informa-

tion into single-channel feature maps, preventing any temporal reasoning to happen in

subsequent layers [30]. Another issue arises from the organization of data subsets for

training, validation and testing. Namely, the subsets share trails from the same mice,

leading to data leakage.

26



5.1 Evaluation on manual annotations

Precision, recall and F1 score are computed for various tolerance windows (Figure 5.1).

For the strictest evaluation (no tolerance), the model achieves 0.63 F1 score. The rela-

tively poor performance for the strictest evaluation is expected since the dataset contains

human annotated samples, which are prone to some margin of error. Additionally, ex-

tracting the exact moment of the inhalation onset through an IR camera, with a limited

frame rate is subject to ambiguity. Themodel performs significantly better for a tolerance

of one, achieving 0.92 F1 score. Considering that one frame represents 16.67miliseconds,

the high performance for such a low tolerance window demonstrates the consistency of

annotations and is deemed a satisfactory result. Further increase of the tolerance yields

diminishing returns.

The previous method performs significantly worse with no tolerance, however some

of its poor performance can be explained with the fact that the models are evaluated

on manually annotated labels. Considering that our method was trained on the manual

annotations, and the previous one was trained on pressure sensor signals, the former has

an inherent advantage.

Figure 5.1: Proposed and previous architectures evaluated on the manually annotated dataset.

Since breathing frequency is a common behavioural trait of interest for researchers

conducting olfaction experiments, the number of annotated and predicted inhalation

onsets is compared for each trail in the test set (5.2).
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Figure 5.2: A histogram comparing the number of inhalation onsets extracted by the proposed
method and the previous method, and the number of manually annotated onsets .

5.2 Evaluation on intranasal cannula pressure sensor

signal

Similar tomanual annotations, precision, recall and F1 scores are calculated for different

tolerances for each mouse of the dataset (Figure 5.3). Although the model show promis-

ing results, the quality of the inference varies between mice. The best performance is

achieved for Edirne, with the results being slightly lower than the manual annotation

test set. The results of other mice are far below the manual annotation test set and the

model is not be considered reliable. Importantly, comparisons with the previousmethod

are considered uninformative, since the previous method used this dataset as its training

subset.

Figure 5.3: Model performance on different mice in the intranasal cannula dataset.

Further work should be done to conclude the exact reason for degraded performance,
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but the most likely cause is the difference in IR footage collection and preprocessing

methods between the intranasal cannula and manually annotated dataset. Specifically,

it remains unclear whether the camera calibration procedures employed during the col-

lection of the two datasets were consistent, and which preprocessing method was used

to derive pixel values from the raw IR footage of the intranasal cannula dataset. Either

of these can results in videos of significantly different pixel distributions, making them

unrecognizable to the DL architecture.

An attemptwasmade to standardizemanually labeled and intranasal cannula dataset

pixel distributions by performingZ-score normalization on individual videos (previously,

same normalization parameters were used for all videos). The model was retrained with

the rest of hyperparameters unchanged, with the evaluation results shown in Figure 5.4.

Model performs is slightly better on the previously worst performingmouse, while other

mice are almost unchanged. In conclusion, individual Z-score normalization did not

solve the problem of poor perfomance on the intranasal cannula dataset.

Figure 5.4: Model performance on different mice in the intranasal cannula dataset.

5.3 Error analysis

There are several failure modes of the proposed architecture (Figure 5.5). Firstly, crop-

ping the frameswithDLCduring preprocessingmight produce cropswhich don’t contain

the nose. Naturally, it is not possible to extract the breathing signal from such frames.

However, most of the times when such a failure occurs, it is caused by obstruction of

the nose (e.g. by the paws of the mouse), which is a limitation of the recording method,

rather than the DL architecture. Bad croppings are easily detected since DLC provides

robust, very high confidence scores for correctly extracted nose keypoints, hence the in-

ference algorithm can track confidence scores and inform the end user of uncertain pre-
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Figure 5.5: Several examples of inference on the manually annotated test set. On the left, two
trails with satisfactory predictions are plotted. The top right plot demonstrates a fault in the event
detection algorithm. The bottom right plot showcasesmodel outputs which do not correlate with
the annotated inhalation onsets.

dictions.

If the croppings are correct, two further failure modes are possible. The model might

fail to provide reliable probability scores for inhalation onsets, for which several causes

exists. Sometimes the IR camera is not properly calibrated, resulting in blurry footage,

which leads to a loss of relevant information for breathing extraction. In this case, the

main remedy is ensuring proper camera calibration before starting the experiments. Ad-

ditionally, different IR cameras might have different color mappings for producing im-

ages from temperatures of objects in the camera frame. Again, a potential solution is to

properly calibrate the camera. Alternatively, it is possible to manually label several trails

for which themodel underperforms and retrain themodel. Similarly to the errors during

cropping, these faults can be automatically reported to the user by tracking output the

model output; a model that is uncertain will produce very low logits throught the trail.

If the model produces correct croppings and informative confidence scores, a failure

can still happen when the event detection algorithm extracts inhalation onsets.
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6 Conclusion and Future work

This thesis approaches extracting mice breathing behaviour from IR camera footage by

formulating it as a supervised learning video classification task. We train a MLmodel to

extract inhalation onsets from IRvideos, leveraging the recentDLadvancements, namely

the ViT architecture. The model is trained with a combination of self-supervised pre-

training and supervised finetuning onmanually annotated inhalation onsets. The frame-

work is compatible with the Three Rs guidelines for animal welfare and is intended to

be easily transferable and user-friendly for biomedical science researchers.

TheDL architecture is evaluated on the test set of trails withmanual annotations, and

a smaller dataset of trails which use an intranasal cannula pressure sensor to monitor

breathing, considered a reference measurement for breathing behaviour. Although the

proposed solution achieves excellent performance on the manually annotated test set, it

lacks reliability on the intranasal cannula dataset.

6.1 Future work

Additional work is required to determine why the trained model achieves poor perfor-

mance on the intranasal cannula dataset. Themost likely cause is the difference between

collecting and preprocessing IR videos between the two datasets.

To further improve model robustness, performance and speed, several architectural

changes can be considered: (i) the ViT transformer backbone can be modified to gener-

ate a single embedding for multiple frames, as opposed to generating frame-wise embed-

dings. This would promote learning of temporal features, relevant for extracting breath-

ing behaviour, (ii) instead of extracting inhalation onset probabilities frame by frame, the

model can be modified to produce multiple probabilities simultaneously, thus enabling
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training on a wider context, and making each training sample more informative, (iii)

the experiments presented in this thesis do not vary the DL architecture size. Reducing

the number of parameters will result in a faster model, potentially allowing for real-time

inference and also reducing the risk of overfitting.

Even though the pretraining tasks increased the speed of finetuning convergence, it

didn’t reduce the final validation loss. Other pretraining tasksmight produce a backbone

better suited for extracting inhalation onsets. Tasks such as next frame prediction or

video masked image modelling are considered as promising approaches [31].
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Abstract

Breathing Signal Recognition from Thermal Footage

Marko Cvjetko

Video recognition is an important computer vision task with many interesting ap-

plications that can improve it research in biology and medicine. This thesis considers

the recognition of the physiological functions of laboratory animals in thermal imaging.

In the scope of this work, it is necessary to select a framework for automatic differenti-

ation and to familiarize oneself with the libraries for handling tensors and images. To

study and briefly describe the existing architectures based on convolutions and attention.

Obtain sets of recordings and form subsets for training, validation and testing. Select

and adapt a suitable model for the observed application and find hyperparameters using

learning and validation procedures. Apply the trainedmodels and evaluate the achieved

performance. Suggest directions for future work. Attach to the work the original and

executable code of the developed procedures, test sequences and results, along with the

necessary ones explanations and documentation. Cite the literature used and indicate

the help received.

Keywords: Respiration recording; computer vision; deep learning
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Sažetak

Raspoznavanje dišnog signala iz toplinskih snimki

Marko Cvjetko

Raspoznavanje videa važan je zadatak računalnog vida s mnogim zanimljivim pri-

mjenama koje mogu pospješiti istraživanja u biologiji i medicini. Ovaj rad razmatra ras-

poznavanje fizoloških funkcija laboratorijskih životinja u toplinskim snimkama. U ok-

viru rada, potrebno je odabrati okvir za automatsku diferencijaciju te upoznati biblioteke

za rukovanje tenzorima i slikama. Proučiti i ukratko opisati postojeće diskriminativne

arhitekture utemeljene na konvolucijama i pažnji. Pribaviti skupove snimki te obliko-

vati podskupove za učenje, validaciju i testiranje. Odabrati i prilagoditi prikladan model

za promatranu primjenu te uhodati postupke učenja i validiranja hiperparametara. Pri-

mijeniti naučene modele te prikazati i ocijeniti postignutu točnost. Predložiti pravce za

budući rad. Radu priložiti izvorni i izvršni kod razvijenih postupaka, ispitne slijedove i

rezultate, uz potrebna objašnjenja i dokumentaciju. Citirati korištenu literaturu i navesti

dobivenu pomoć.

Ključne riječi: Mjerenje respiracije; računalni vid; duboko učenje
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