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1 Introduction

A study has shown that weights within a layer can be accurately predicted from only

a small fraction of them, which indicates that deep learning models are highly over-

parametrized [1]. The over-parametrization of deep learning models shows that there is

a significant redundancy in those models [2]. Because of this, high accuracy and high

resource consumption became the defining characteristics of deep learning [3]. Already

in 2019, various deep learning models could be found in nearly any mobile device [4].

The main issues in deploying Deep Neural Networks (DNNs) on resource-limited plat-

forms are high computational complexity and huge model storage requirements [5]. As

an example, in the object classification task on the ImageNet dataset, the top-5 classifica-

tion accuracy increased from 71% in 2012 to 97% in 2016, while the models became 20x

computationallymore expensive [6]. Even older image classificationmodels, such as the

8-layer AlexNet, have over 60M parameters and require more than 729M FLOPs to clas-

sify a single image [7]. As the deep learning model’s accuracy keeps rising, the amount

of computation and storage requirements may become unbearable for mobile and em-

bedded devices even during inference [8]. This will make usages, such as autonomous

vehicles or video surveillance, impossible, as the model will not be able to perform the

real-time decision-making required for such tasks. Especially because these tasks have

to be done on-device due to privacy and reliability concerns [9].

Traditional deep learning workloads have widely used cloud-based solutions to han-

dle mobile applications with constrained hardware resources [10]. DNN inference gen-

erally has high computational cost, and its execution on resource-constrained devices

can result in prohibitively large processing delays. For us to be able to meet the compu-

tational requirements posed by deep learning models, a common approach is to utilize

cloud computing [3]. In this configuration, the data is moved from the embedded device
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to the cloud, which does theDNN inference and then sends the results back to the device.

While cloud-based approaches were initially successful, many newer applications have

privacy concerns because sensitive data is uploaded to publicly available servers. Ad-

ditionally, cloud-based solutions are subject to communication overhead that depends

on network conditions between the device and the used cloud server, resulting in high

latency. Because of the large upkeep cost, cloud computing services are primarily pro-

vided by a limited number of large companies, as they are the only ones with resources to

support such large systems. The edge computing paradigm has emerged as a solution to

address the problems of cloud-based inference. It aims to bring computation close to the

data source to reduce latency, bandwidth use, and power consumption. This approach

uses edge devices, which have lowpower-consumption and high efficiency, whichmakes

them promising for accelerated deep learning algorithms [11]. Edge devices could be in-

stalled in locations such as cellular base stations or Wi-Fi access points, devices that are

close to the end-user. They provide computational capacity significantly lower than the

cloud but higher than mobile devices. Therefore, there is a trade-off between communi-

cation and processing delay. To fulfill these computational demands, vendors have de-

signed and launched low-power hardware accelerators for machine learning [11]. There

are many benefits to performing computing locally on edge devices instead of relying on

cloud computing solutions in terms of privacy, apprehension, and restricted connectivity

[12]. Companies involved in information technology are strongly interested in running

deep learning models at the edge to improve security and privacy while also improv-

ing delays experienced by end users [13]. There have been many proposed solutions to

enable inference on edge, including model redesign, network pruning, parameter quan-

tization, hardware acceleration based on parallel computing, and software acceleration

focused on optimizing resource management and pipeline design [14]. In addition to

performing computation on the edge, thanks to the advent of dedicated hardware ac-

celerators, multi-core processors, and gigabytes of RAM, there is an emerging trend to

perform inference locally on themobile device [8]. Similarly to edge computing, it better

protects user privacy, greatly reduces response time, communication costs, and improves

scalability. Due to the benefits of on-device computation, it is the preferredmode for var-

ious applications, especially in real-time applications [8].

To benefit from edge computing, we need to reduce the costs of performing inference
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on deep learning models. We will split the optimization approaches into two categories,

depending on if the method changes the model output or not. The first category encom-

passes methods that have no cost in model accuracy. The advantage of these methods

is that the user does not have to know the details of their implementation, as they can

only change the speed of model inference but never their outputs. An example of such a

method is developing and using application-dependent hardware or implementing op-

timized GPU kernels for faster algorithm execution. In contrast, the second category,

called accuracy-altering, contains methods that have a possibility of changing model ac-

curacy. These methods promise greater gains in model performance at the cost of possi-

bly lowering model accuracy. Knowledge distillation is an example method; it involves

creating a smaller DNN (student) that imitates the behaviour of a larger, more capable

model (teacher) [3]. This is done by training the smaller model using the output predic-

tions from the larger DNN.

In this work we will be focusing on only accuracy-altering methods that can be ap-

plied on a typical computer with an x86 CPU and an Nvidia GPU.We want our results to

be easily reproducible, and thereforewewill not use any special hardware such as FPGAs

or ASICs. Because edge computing solutions usually only perform model inference and

do the training in the cloud, our focus will be on optimizing inference time model accu-

racy and speed. Best-performing model architectures constantly change. For example,

between 2010 and 2023, there have been more than 5 significant architecture changes in

the audio generation domain [15]. Therefore, instead of doing architecture-specific op-

timizations, we will be focusing on generally applicable or layer-specific optimizations.

The goal of this work isn’t to design a new deep learning model optimized for speed, but

instead, to apply methods that speed up an already existing model. By restricting the

scope of utilized methods, we hope our research will be more broadly applicable.

In this work we will explore model compression techniques, which are general tech-

niques that look at optimizingmodel architecture typically by compressing its layers [16].

We will explore three different model compressionmethods: pruning, quantization, and

low-rank factorization. Chapter 2 will describe some of the DNN optimization meth-

ods that are not explored in this work; Chapter 3 will explain speech separation and

why creating optimized deep learning models is important for the future; Chapter 4 will
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introduce models used to test optimization methods and their respective architectures;

Chapter 5 will explain the specifics of every optimization method and some of the re-

search surrounding them; Finally, chapter 6 will describe the experimental setup and

discuss results.
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2 Related work

In [17], the execution of the deep learning model was partitioned between the edge and

the cloud, where the first DNN layers were executed on the edge and the remaining were

sent to the cloud. Therefore, the problem they faced was to determine how much com-

putation to offload to the cloud. Because some deep learning models use non-invertible

functions, it could possibly be used as a privacy-safe cloud-based method. But, in that

case, the initial layer would have to be done on the edge, where more layers computed

locally provide higher privacy. [18] is a similar work to ours that utilizes many soft-

ware optimization techniques. While useful, it doesn’t contain recent model compres-

sion techniques. Also in [19] a method called ITLUMM was used, where they replaced

matrix multiplication with lookups. The sizes of the lookups determined the trade-off

between accuracy and performance. Another approach attempts to run efficient DNN

inference without affecting accuracy by determining at runtime which of the available

models is the best based on input and evaluation criteria [20]. They construct a machine

learning predictor that can dynamically select the optimal model for inference. While

this approach will not make large models applicable to edge devices, it will reduce the

latency of simpler tasks.

Another approach is the optimization of model architectures. In this category there

are models such as ShuffleNet [21], YOLO [22], MobileNet [23], and SqueezeNet [24].

For example, YOLO object detection takes over two hundredmilliseconds onmostmajor

mobile processors [25]. MobileNet is nearly as accurate as VGG16 but 32 times smaller

and 27 times less computationally intensive, while SqueezeNet achieves a model size

of less than 0.5 MB with 50 times fewer parameters than AlexNet but with the same

accuracy [26].

Another approach is using inference compilers such as TensorRT, TensorFlow Lite,
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Relay, and TVM,which optimizeDL inferencemodels for use in edge devices [14]. These

compilers work with standard models defined in popular DL frameworks to accelerate

model execution. TensorFlow Lite and TensorRT encompass most of the compiler opti-

mization techniques that have been proposed for edge computing [14].

Another approach is developing specialized SoC chips for deep learning inference,

such as Google’s TPU or Intel’s VPU, which can then be used with deep learning com-

pilers [14]. For CPUs, at the instruction level, Intel has added AVX-512 Vector Neural

Network Instruction (AVX-512VNNI) to theAVX-512 instruction set to accelerate CNNs,

along with support for Brain Floating Point (bfloat16) operations [14]. Nvidia combined

Tensor cores with traditional CUDA cores in some platforms, where Tensor cores ac-

celerate large matrix operations. They also added support for a new numerical format

called Tensor Format (TF32) that provides 10x performance in A100 GPU architecture

when compared to FP32 in V100 GPU architecture [27].
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3 Problem

In this work, we focus on a specific task in deep learning: speech separation. In the

broad sense, speech separation is focused on separating speech from the background

interference. Remarkably, humans have the ability to extract one audio source from a

mixture of sources. For example, when listening to a song, a trained ear can separate dif-

ferent instruments. Or, in an environment like a cocktail party, humans have the ability

to extract one speaker from a group of people without much effort. Speech separation

is commonly called the "cocktail party problem"[28]. It is a special case of sound source

separation. Speech is themainmethod humans use to communicate; therefore, methods

such as speech separation and speech enhancement become paramount for increasing

the quality of human communication. We will focus on a special task within speech sep-

aration we will call speaker separation. The goal of this task is to take an audio sequence

containing a mixture of people speaking at once and transform it into distinct sequences

containing only one speaker where each separated audio will contain only one speaker

identity throughout the sequence. In figure 3.1 we show a simple example of speaker

separation task with only two speakers and no added noise.

Figure 3.1: Speech separation problem with two speakers

While the trend in deep learning is to rely on over-parametrization [29] we want to
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create portable models which can be used on low energy devices like hearing aids. It

was shown that model over-parametrization aids in gradient descent convergence [29].

After model training, the over-parametrization is kept going into model inference, and

depending on the percentage of redundancy, we can havemodels performing slowly and

taking up a lot of memory for no increase inmodel accuracy. Therefore, instead of devel-

oping new low-power models, we will focus on transforming already successful speaker

separation models by employing optimization methods. The methods we will introduce

will reduce the number of model parameters, and because we cannot perfectly choose

only the unimportant parameters, they will impact model performance. The goal is to

find or transform a subset of parameters while keeping accuracy as close to the origi-

nal as possible. For optimization methods, we wanted methods that were architecture-

agnostic, meaning they could be used in most models without having to alter the model

architecture. While some of the methods used change the layer architecture, from the

outside perspective, viewing each layer as a black box, nothing changes. In other words,

optimization methods do not change the required input or the resulting output data re-

quirements of the optimized layer. These requirements were important to ensure the

methods can be translated to other fields of deep learning and to allow people without

the knowledge of the inner workings of these optimization methods to still be able to

apply them to their models.

The next section will describe the architectures of the models used; after that, we

will explore three different optimization methods, namely quantization, pruning, and

low-rank factorization. Finally, we will conduct many experiments with different op-

timization hyperparameter configurations and compare them to the original models in

terms of speed, memory, and quality.
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4 Model architectures

When selecting model architectures, we used two criteria. The first criterion we used for

choosing models is the openness of implementation. We want our results to be repro-

ducible and our model architecture code to be open. For the second criterion we have

unique architectures. Because we use architecture-agnostic optimization methods, we

want to choose models with very different architectures so we can gauge how well the

optimization methods will perform on a random model. Even though our methods are

architecture-agnostic, they are expected to performdifferently for different architectures,

as methods, such as low-rank factorization, work differently based on the layer that the

method is applied on. Based on these criteria, we have selected three unique speaker

separation models. All of the selected models operate on the audio sequence in the time

domain. The models are: LSTM-TasNet [30], Conv-TasNet [31], and DPT-Net [32].

The first model is LSTM-TasNet (LSTM Time-domain Audio Separation Network).

Figure 4.1 shows a high-level view of the model. The model consists of three main parts:

encoding, separation, and decoding. The encoding transforms the audio into an interme-

diate representation used by the separation module. The decoder is the reverse process

returning the sequence back to the human intelligible audio. The main module, separa-

tion, contains two paths. The first path takes the intermediate representation and uses

the recurrent and linear layers to estimate a mask. The second path takes the source au-

dio in intermediate representation and multiplies it with the mask, thereby separating

speech. The main hyperparameters of the model include the number of LSTM layers

and the number of hidden units in the LSTM and linear layer. The main standout of this

model is its use of the LSTM layer.
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Figure 4.1: LSTM-TasNet model architecture

The secondmodel is Conv-TasNet (Convolution Time-domain Audio SeparationNet-

work). Similar to the firstmodel, it consists of threemainmodules: encoding, separation,

and decoding. Figure 4.2 shows the different components of the model’s architecture.

The encoder and decoder have the job of converting to and from the intermediate rep-

resentation of the model. In the separation module, the encoded input is multiplied by

the estimated mask in order to get separated speech. The mask is estimated using a sub-

module that uses the encoded audio as input. The mask estimation submodule consists

of stacked one-dimensional dilated convolutional blocks, which allows the network to

model long-term dependencies of speech. The dilation factors of the stacked convolu-

tional blocks increase exponentially with depth to achieve a large context window. Each

block in the stack consists of one input and two outputs, where one of the outputs from

the last block is ignored. They contain a sequence of convolution, PReLU, and normal-

ization layers. Compared to the first model, here we use stacks of dilated convolutional

blocks in order to replace LSTM layers.

Figure 4.2: Conv-TasNet model architecture

DPT-Net (Dual-Path Transformer Network) is the final model we will be exploring

12



in this work. Like the previous two models, it consists of three main modules: encoder,

separator, and decoder. Figure 4.3 shows the general architecture of the model. The

role of the encoder and decoder is the same as with the previous two models. The out-

side path of the separation module is also the same; in other words, the outside path

carries the encoded input to be multiplied by the estimated mask. The separation mod-

ule consists of three stages: segmentation, dual-path transformer, and overlap-add [32].

The first stage splits the encoded input into overlapped chunks, which are then concate-

nated. The second stage consists of intra- and inter-transformers. The intra processing

block models the local chunk independently, while the inter block is used to summarize

the information from all chunks to learn global dependency [32]. In the final stage, the

output of the last inter-transformer is transformed back into sequences by folding. After

the masks have been estimated, they are additionally fed through a small gated network,

which can only remove or silence values. Looking at 4.3, the first stage is the norm and

unfold layers, the second is the transformer feedback/loop, and the final is up to and in-

cluding the fold layer. The "transformers" used in this model are only the encoder part of

the transformer, which is comprised of scaled dot-product attention, multi-head atten-

tion, and position-wise feed-forward network. Unlike in traditional transformers, this

model does not use positional encodings and instead replaces the first fully connected

layer with a recurrent neural network, as the positional encodings usually lead to model

divergence [32]. While usually transformers deal with sequences with lengths of hun-

dreds, in speech separation we have to model extremely long sequences, which is why

the transformer utilizes the dual-path network as a solution. The author of the model

mentions that RNN- and CNN-based-models cannot model long sequences as well as

transformer-based models, as RNNs suffer from many intermediate states while CNNs

suffer from limited receptive fields.

Figure 4.3: DPT-Net model architecture
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4.1 Layers

We have described the high-level view of model architectures we use. As we deal with

optimizing such architecture, we want to get more specific without delving into all the

different hyperparameters of the model. The middle ground we chose is to display the

number and type of layer we have in the models we use. In addition, we will show the

amount of parameters, as depending on the depth of the model, the number of parame-

ters in the same layer can change drastically. Table 4.1 shows the amount of layers in each

architecture. From the table, we can see the numbers differ from the architecture images

shown. This is because with images we wanted to display the barebones model, while

here we are using an improved version with added layers that do not change the high-

level architecture. Using a barebones model was possible, but we wanted to achieve bet-

ter accuracy. With low-accuracy models, there is a lot of room for improvement, which

could result in optimization methods improving accuracy when in reality they don’t.

Layer name LSTM-TasNet Conv-TasNet DPTNet

Conv2d 0 0 1

Conv1d 3 100 4

LSTM 4 0 4

Multihead-
attention

0 0 4

Linear 1 0 4

Layer norm 1 49 9

PReLU 0 49 1

Table 4.1: Number of layers in architectures

While table 4.1 gives us a good overview of the models, when performing optimiza-

tions we will attempt to reduce the number of parameters while keeping accuracy. With

this in mind, table 4.2 shows the number of parameters for the baseline models. We use

the term baseline for models without any optimization methods applied to them. Look-

ing at the table, we can see where the focus of each model is: LSTM-TasNet focuses the

parameters on LSTM layers, Conv-TasNet focuses on Conv layers, while DPTNet spreads

out tomany different layers. It should be noted that one should not compare the number

of parameters between the models, as the selected models do not perform the same. We

chose the models not for the accuracy similarity but for the difference in architectures.
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Layer name LSTM-TasNet Conv-TasNet DPTNet

Conv2d 0 0 33,280

Conv1d 62,465 5,388,417 12,481

LSTM 22,080,000 0 2,637,824

Multihead-

attention

0 0 66,560

Linear 4,100,096 0 131,328

Layer norm 1,024 50,176 1,152

PReLU 0 49 1

Total 26,243,585 5,438,642 2,882,626

Table 4.2: Number of parameters in architectures
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5 Optimization methods

5.1 Quantization

In the general sense, quantization is the process of mapping a continuous or a larger set

to a discrete smaller set by applying a function. This definition is not very useful when

facing neural networks, as they contain many large sets and therefore have a lot of pos-

sibilities to choose from. Quantization in neural networks reduces the size of the model

by decreasing the precision of values. While at first it doesn’t seem much, the simple

act of reducing model size gives rise to many benefits. Firstly, it reduces the amount of

storage required from the hardware, not just static memory but also runtime memory

like GPUs and CPUs. The reduction of required storage space in turn reduces the mem-

ory bandwidth, and by reducing the memory bandwidth we get faster loading and faster

execution. One important concept of quantization is the quantization error. This error

signifies how well the quantized values approximate the full-precision value. The main

goal for quantization is to keep this error as close to zero while reducing the precision as

much as possible. A simple way to calculate this error is to take the absolute difference

of the approximated and real value. One study has shown that with quantization we can

get networks that are 2 to 8 times more efficient than their full-precision counterparts

[33].

In neural networks, there are three types of values we can quantize: the weights,

the activations, and the gradients [34]. Quantizing weights, for most people, is what

comes to mind when they hear DNN quantization, as they were initially the focus of re-

search [35]. Quantizing weights has two immediate advantages. First, the model takes

less working memory, thereby allowing GPU training or higher batch processing. Sec-

ond, by changing fromfloating-point numbers to low-bit width numbers, we avoid costly

floating-point multiplications, which can have a significant effect on performance [3].
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Additionally, in case we quantize the weights only after the model training, we get ad-

ditional benefits. As the computation is done only once, we can apply more computa-

tionally demanding quantization schemes, possibly giving better model accuracy. Also,

in inference, we will not change the weights, meaning we can additionally fine-tune the

quantized weights, providing even more accuracy. While the weights can be quantized

after the training phase, the activations require quantization at each execution, thus cre-

ating computational overhead. In this case, while activation quantization may reduce

memory requirements, depending on the quantization scheme, it may decrease perfor-

mance. These kinds of quantizations are useful in low memory tasks, as activations can

take several magnitudes more storage than weights for certain applications like speech

separation. The added complexity of handling activation quantization makes it a sec-

ondary choice when considering model quantization. We will not consider quantizing

the gradients because we are focused on inference while keeping most of the accuracy.

Gradients are only ever seen in the training phase, and because they directly alter the

accuracy of the model, if we reduce their precision, we can get worse accuracy, which

will transfer to inference and impact our end results.

5.1.1 Number formats and quantization types

After selecting which layers require quantization, we face the problem of selecting the

quantization number format. Floating-point has the advantage of keepingmodel param-

eters the same, thus ensuring the same accuracy; no special conversion or re-training is

necessary. Using full-precision number format is only viable in simpler tasks, the disad-

vantages come when more advanced methods are employed. Many previously state-of-

the-art deep learning models that work with high resolution images require more than

8 gigabytes of memory in addition to many layers of calculation [4]. These kinds of ca-

pabilities are unseen in the general public hardware, especially in mobile devices.

Figure 5.1: IEEE 754 floating point representation of 𝜋

The three types of low-precision formats are floating-point, fixed-point, and integer.
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One type of the floating-point format is the IEEE 754 standard, shown in figure 5.1. In a

32-bit version (fp32), one bit will express the sign of the number, the next 8 bits represent

the exponent, and the remaining 23 bits represent the mantissa. It can cover the range

of 10−38 to 1038 [35]. The exponent can be considered as the range of the value, while

the mantissa will determine how precise the value is. There are other types of floating-

point numbers; brain floating point (bfloat16) takes the IEEE 754 standard but reduces

the mantissa to 8 bits, while TensorFloat-32 (tf32) reduces the mantissa to 10 bits. The

last type we will mention are posit numbers; they require fewer bits than fp32 for rep-

resenting certain ranges, thus reducing storage requirements and increasing memory

bandwidth [36]. In contrast to floating-point format, fixed-point and integer formats are

extremely similar. The fixed-point format consists of a whole number multiplied by a

scalar whose value is between zero and one. This way, the integer can be thought of as a

special case of fixed-point format where the scaling factor is equal to one. The most pop-

ular representation of the fixed-point number is the two’s complement. One advantage

of the two’s complement is that it doesn’t contain two zeros but instead uses the second

zero to represent an additional number, meaning it has 2𝑏 unique values it can repre-

sent, where 𝑏 is the number of bits. While there are some differences, the fixed-point

number can be thought of as a floating-point number with the exponent being constant

and implicitly defined in the type. Exponent being constant means we can add its bits

to the mantissa, making the number more precise. For example, if we wanted to handle

currency, we could define a fixed-point type formoney that had an implicit scaling factor

of 10−2.

Low-precision formats offer several benefits. First, many hardware platforms support

higher throughput math on low-bit formats, decreasing latency. Second, lower preci-

sion means lower memory requirements, allowing us to store larger models in memory-

constrained devices while also speeding up execution by having more model parameters

stored in cache. Third, the same input sizes in lower precision reduce memory band-

width requirements, improving performance in cases of bandwidth-limited computa-

tion. For example, conversion of 16-bit floating point to 8-bit integer format reduces the

size andmemory consumption by a factor of 4 and potentially speeds up its execution by

2-3 times [4]. Since integer computation consumes less energy onmany platforms, quan-

tization also makes inference more power efficient, which is critical for battery-powered
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devices like smartphones or IOT devices [4]. For example, MAC (Multiply-ACcumulate)

operations performed on an 8-bit fixed point number lead to a power consumption re-

duction of 20x when compared to their floating-point counterparts [34].

Quantization has an inherent trade-off between the two data types. Floating-point

models will always show better accuracy, while integer models enable faster inference

[4]. Concrete differences between data types depend on the used hardware. AI accel-

erators for floating-point models are becoming faster and are reducing the differences

between the speed of int-8 and fp16 inference. Thus the choice will depend on the par-

ticular task. Floating-point models excel when quality is necessary, while integermodels

are more beneficial in low-cost or low-power devices.

The act of reducing the bitwidth of the network weights almost always leads to ac-

curacy loss; while in some cases the loss is minimal, in others it can be detrimental

[4]. Quantization schemes are methods used to define how we convert between the full

precision parameters and the quantized values. One possible way to split quantization

schemes is into linear and non-linear. The key idea of linear quantization is to reduce

the number of bits that represent each activation or weight, while the key idea of non-

linear quantization is to divide weights into a few groups, and each group shares a single

weight [8].

Linear quantization is characterized by evenly-spaced quantization intervals. An ex-

ample of linear quantization is fixed-point coding. It has been widely studied and ap-

plied to neural networks because its hardware implementation is well known [34]. For

example, theNvidia Tesla GPU andGoogle Tensor ProcessingUnits (TPUs) support 8-bit

fixed-point operations. It has been demonstrated that both the weights and activations

can be quantized to 8-bit dynamic fixed-point values without significantly affecting the

accuracy [34]. Additionally, it was shown that dynamic fixed point was superior to float-

ing point and fixed point formats in DNN training [8].

An example of linear quantization is the affine quantizer. The quantizer requires

three values: minimum(𝑥𝑚𝑖𝑛), maximum(𝑥𝑚𝑎𝑥), and precision(𝑛). Equation 5.1 defines

linear quantization. The round and clamp functions are the only lossy parts of the trans-

form. It can be brought down to only one round if the minimum and maximum values
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are well chosen. In the equation, 𝑠 represents the quantization step while 𝑧 represents

the zero-point. The quantization step is based on the range of values and the set precision

and can be calculated as 𝑠 =
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑛−1
. The zero point is much more important as it rep-

resents the value of zero in the quantized space. Unlike other numbers, zero is used as

an empty value, for example in padding, and can therefore introduce many more quan-

tization errors. For this reason we need to make sure that the zero value is represented

exactly the same when dequantizing it back: dequantize (quantize (0)) = 0. We can cal-

culate the zero-point by taking the minimal quantized value and subtracting the scaled

minimum: 𝑧 = round
(
𝑥𝑞𝑚𝑖𝑛 −

𝑥𝑚𝑖𝑛

𝑠

)
. When we have defined quantization, the reverse

process is done by just reversing the order of operations while ignoring the lossy func-

tions: 𝑥𝑑𝑞 = 𝑠 ⋅ (𝑥𝑞 − 𝑧). One work recommends using scale quantization for quantizing

weight and affine quantization for activations without having any performance penalty

[37]. Another minor tweak can be performed on affine quantization, for certain number

formats, to enable a substantial optimization opportunity by keeping the minimum and

maximum values symmetric [38].

𝑥𝑞 = round (clamp (𝑥, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)
𝑠

) + 𝑧 (5.1)

On the other hand, non-linear quantization is recognized by having unevenly dis-

tributed quantization intervals. These types of quantization schemes can benefit NN as

weights and activations usually have non-uniform distributions [34]. Having more val-

ues close to zero would be better since tensor distributions tend to be bell-shaped [39].

Unlike linear quantization, non-linear have less hardware support since they have to

be carefully designed to be hardware-friendly [39]. One type of non-linear quantiza-

tion is logarithmic quantization, which, when compared to linear quantization, incurs

lower accuracy loss with the same bitwidth [34]. This type of quantization gives finer

granularity for smaller magnitude values. By using base-2 logarithms we can get very

efficient hardware implementations allowing us to replace multiplications with bit-wise

shifts [39]. An example would be the VGG16 network. With linear quantization, the

accuracy loss is 6.2%, while it’s only 0.6% with logarithmic [34]. Another type of non-

linear quantization is vector quantization. It consists of applying clustering algorithms

to the weights of the NN, where the centroids of the clusters are used as the quantized
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values. Weight sharing can be thought of as another form of non-linear quantization, as

it forces multiple weights to contain a single value, thereby removing some of the preci-

sion. Unlike other forms of quantization, weight sharing does not reduce the precision

of calculation, only the storage requirements. Non-linear quantization tends to be more

computationally intensive, meaning it is usually applied in one-off quantizations like

inference quantization.

We can apply equal quantization throughout the entire network (fixed) or choose to

use different precisions for different layers (variable). The second method is also called

mixed precision quantization (MPQ). Here the most important layers would be assigned

higher precision while the less important would be in lower precision [40]. It was shown

that bit-width used for weights can decrease approaching the last layers of the NN, while

the bit-width of the activations remains approximately constant [34].

5.1.2 Quantization techniques

Quantization can be applied both at training and at inference time. At training time,

applying quantization reduces the training time while possibly slowing down conver-

gence or accuracy. Quantization at inference allows us to load large neural networks on

memory-constrained devices while reducing the latency. Additionally, the networks can

be fine-tuned after inference quantization to bring back more accuracy. For example,

math-intensive tensor operations executed on 8-bit integer types can gain up to a 16x

speed increase when compared to fp32, while in memory-limited operations the speed

up can be up to 4x [37].

Post-training quantization (PQT) is where the weights and activations are quantized

after the full-precision model training [41]. Before PQT, we need to determine the range

for the to-be-quantized values. For weights, this is simple, as we have already trained the

model and can learn these values by reading the weights. On the other hand, the range

for activations can be determined from the training, or if using a pretrained model, we

can run a few forward passes on the dataset. Even if we run the whole training dataset

through, it still doesn’t guarantee we found the real minimum and maximum, as it is

impossible to get the inference-time dataset. It was shown that applying post-training

8-bit integer quantization usually leads to minor or no loss of accuracy [41]. Although
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in more complex tasks it may cause noticeable accuracy degradation [39, 16]. These

could be because the outliers stretch the range, making many possible values unused, or

because, in layers like the convolutional, not all filters have the same distribution while

utilizing the same quantization values, whichmay bemore pronounced in low bitwidths

due to the loss of precision [16]. These problems can be alleviated with the next method.

Quantization-aware training (QAT) emulates inference-time quantization during train-

ing. In this setting, the training happens in floating-point, but the forward pass simulates

the quantization behavior during inference. Both weights and activations are passed

through a function that simulates this quantization behavior [16], sometimes also re-

ferred to as fake-quantized. The intuition behind QAT is that while the forward pass will

accumulate quantization errors, the optimization methods applied on the forward pass

will attempt to reduce it with gradients that won’t be quantized. This allows the network

to adapt to tolerate the noise introduced by the clamping and rounding behavior during

inference [16], leading to less performance degradation due to quantization. While the

forward pass is well-defined, the backward pass can be done inmany different ways since

the quantization function is non-differentiable [8]. One common way is to estimate the

gradient by pretending the quantization function is an identity function. At inference

time, fake quantization operations are removed, and the network uses actual quantized

weights and activations.

Unlike the previous twomethods, another type of quantization called data-free quan-

tization aims to reduce the bit-precision without access to training data. This type of

quantization is used in privacy-sensitive applications like learning in the cloud. If the

previously mentioned methods still cause too large of an accuracy drop, another option

is partial quantization. This method only quantizes a few layers, which are mostly unaf-

fected by quantization. Finding out which layers respond better to quantization can be

done using sensitivity analysis.

Some examples of really low-precision models are ternary and binary weight net-

works, which use only three and two values respectively. In the extremes, we can utilize

1-bit weights and activations, which can achieve 32x compression of model size and re-

place expensive mathematical operations with fast XNOR operations [36]. Multipliers

are one of the most power-consuming elements in DL processing. By removing them,
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we also achieve energy consumption reduction, useful for battery-powered devices [36].

Binarization of both weights and activations yields extreme complexity reductions for

DNN inference since MAC operations can be completely eliminated and replaced by bi-

nary operations [39]. Unlike other forms of quantization, binary networks do not only

reduce the precision of operation but they radically change it. This means that the ben-

efits derived from the usage of such networks are even higher than the intuitive 32x

reduction in model size and memory bandwidth when compared to the floating-point

alternative [39]. While there is a trend toward less and less precision, there is a floor.

As precision gets lower than 1 byte or 8 bits, most CPUs will not be able to fetch these

memory locations quickly as they will have to unpack the values. When we reach the

stage of unpacking values, the only solution is to use specialized hardware to reap the

benefits of low-precision models. Several accelerators were proposed to support the us-

age of binary NNs [34]. While binary weights can take on values of −1 and 1, it may

prove beneficial to introduce a third value that allows for weights to be zero. Although

this requires additional storage, the sparsity of weights can be exploited to reduce both

storage and performance costs, thereby canceling out the cost of an additional bit [35].

5.2 Pruning

DNNs are usually over-parameterized to make training easier [35]. In extremes, DNNs

can memorize the entire training dataset along with random patterns or get such pa-

rameters where 95% of the parameters can be predicted from the remaining 5% [29]. For

example, the Inception-V3 network, a highly accurate object recognitionmodel, requires

5.7 billion arithmetic operations and 27million parameters to be evaluated, while GPT-3,

a large language model, requires 175 billion parameters to be evaluated [29]. Because of

their over-parametrization, they can tolerate sparsification [36, 41, 39, 42]. Studies have

shown that most DNNs have redundancy in their weights, and therefore it is possible to

sparsify them without affecting the accuracy [34]. Sparsification (or pruning), in simple

terms, is the process of removing the least important parameters (by setting them to zero)

while keeping most of the models accuracy. Typically, the weight parameters can be re-

duced by a factor of 10 using sparsification [43]. A study showed that the DNN model

after sparsification could achieve up to a 25.6 times reduction in transmission workload,

6 times acceleration in total computation, and a 4.81 times reduction in latency when
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compared to the original DNNmodel [26]. Additionally, studies have shown that DNNs

can retain their performance after sparsification even if plenty of weights are removed

[40]. We can reduce the sparsity of the model by the usage of sparsification algorithms.

Sparsification algorithms rank parameters based on their contributions [44]. The goal

of these algorithms is to find the set of least important weights in the model and to set

them to zero. We can gauge the performance of these algorithms by inspecting the ac-

curacy and the compression ratio achieved. One simple way of sparsifying the network

is to choose weights that fall below a certain threshold. The intuition is that weights

of small magnitudes have a negligible effect on results, and therefore their removal will

not have a high accuracy penalty. The majority of sparsification algorithms operate after

the initial training and then employ iterative sparsification while fine-tuning the model

to recover the drop in accuracy [39]. This means most sparsification algorithms can be

employed on pretrained models. Later we will see that sparsification can be applied for

each weight or for a group of weights like the filters in the convolutional layer or the

heads in multi-head attention. Figure 5.2 shows the ranking of model weights before

sparsification. The weights in red are determined to have the lowest contribution to the

model and are therefore removed (set to zero). Empirical evidence suggests that different

layers should be treated differently and even the same layer types should be sparsified

differently depending on their position in the network [29].

Figure 5.2: Sparsification of a sparse linear layer

Biological brains, especially in humans, are hierarchical, sparse, and recurrent struc-

tures. Sparsity plays a large role in brains, as the more neurons the brain has, the sparser

it gets [29]. Over-parameterized models tend to overfit to the data and degrade general-
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ization [29]. In this context, sparsification can be seen as a form of regularization, which

can improve the model quality by reducing the noise in the model. In addition, with to-

day’s trend of bigger and bigger models, sparsification gives us a way to improve the ex-

plainability and interpretability of themodel for sensitive use cases, such as inmedicine.

Similarily to quantization, the benefit of sparsification is the reduction of the amount of

weights in the model, thereby reducing storage and computational requirements. But

in addition to the model reduction, sparsification also improves the generalization and

the robustness of themodel [29]. When compared to quantization, the possibly achieved

compression ratio is usually much higher in methods that allow for the alteration of the

model architecture, such as sparsification [26]. From the hardware perspective, sparsi-

fication can help speed up basic operations. For instance, multiplying matrices will be

much faster if they are sparse, as the multiplication with zero returns zero and there-

fore can be skipped. Additionally, because sparse structures by definition contain large

portions of the same value, that value being zero, we can utilize compression methods,

which would decrease memory storage requirements and increase memory bandwidth.

An example of a simple compression we can utilize is where instead of directly storing

values, we store the values and counts. The efficiency of such a method would grow

with the level of data sparsity. More specifically, we can describe sparsification by defin-

ing a model as a function of input and weights 𝑓(𝑋,𝑊) where 𝑋 is the input and𝑊 are

the weights. In this context, sparsification is a technique for estimating a minimal sub-

set of weights 𝑊′ ∈ 𝑊 where the missing weights are set to zero while also ensuring

the accuracy of the model is minimally reduced [16]. Keeping up with the notation, we

can define the compression ratio of the technique as the ratio between the original and

pruned weights: 1 − |𝑊′|
|𝑊| . Another way we can define sparsification is with a multipli-

cation of weight with a mask. The mask is a tensor consisting of ones and zeros, and the

sparsified weight is defined as themultiplication of the original weights𝑊 and themask

𝑀: 𝑊′ =𝑊 ∗ 𝑀. Additionally, in this configuration we can define the mask of multiple

sparsification techniques as a chain of multiplications: 𝑀 = 𝑀1 ∗ 𝑀2 ∗⋯ ∗ 𝑀𝑁. Using

masks instead of just setting weight to zero allows us to rollback certain sparsification at-

tempts if we find it degrades the accuracy too much. As we start to sparsify the network,

the accuracy initially increases due to the reduction of learned noise. This phenomenon

has been observed both in natural language processing and computer vision [29]. Intu-
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itively, we can see that the smallermodels form a kind of regularizer, forcing the learning

algorithm to focus on a more general feature of the data. After the initial increase, the

performance will remain stable or perhaps slightly decrease. At the end, we will see a

large drop in accuracy as the sparsity is too high for the model to learn anything. In gen-

eral, the performance increases with higher sparsities, where only for extreme sparsities

will reach an area of diminishing returns, an area deep learningmodels have yet to reach

[29].

In addition to weights, we can also sparsify model activations. In certain tasks, ac-

tivations tend to consume more memory than model parameters, which makes them a

high-priority target for sparsification. In addition to the memory savings, the sparsity

of activations allows us to enable the hardware to allocate computation selectively [40].

This means hardware may skip certain arithmetic operations, or in extreme cases, skip

network paths, leading to major improvements in model latency.

We can describe the process of model sparsification as a series of steps [29]. Depend-

ing on circumstances, some steps may be skipped while others will be iterated multiple

times. The first step involves initializing network structure. We can define our own ar-

chitecture or use a popular implementation. After creating the model architecture, we

need to initialize model weights. This is usually done randomly according to a distri-

bution that is appropriate for the certain layer or network. In case we wish to skip the

process of training, we can use a pretrained model weights. This is preferable as we save

a lot of time and energy if we can skip the training step. Note that this can only be done

for post-training sparsification methods. If we don’t use a pretrained model, we have

to run training until the model converges. At this point we have an over-parametrized

model, which we can start to sparsify. We run the model through the sparsification al-

gorithm, and in case of deterioration, we run fine-tuning to "regrow" the weights back.

Many works have shown that retraining immediately following each pruning step and

also fine-tuning after the last pruning step are both crucial for well-performing sparsifi-

cation schedules [29]. After we are satisfied with the level of pruning, we can do more

fine-tuning to recover the most accuracy possible. This step is often skipped. Finally,

we have two options: use the pruned module in the current state or go back to step two,

reinitialize the weights, and start over.
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During training, we can differentiate between static and dynamic sparsity. Dynamic

sparsity uses pruning with regrowth of the parameter during the training process, while

static sparsity prunes only once before the training starts and then does not update the

model structure until the training is over [29]. Additionally,model spasity is often trained

with a pruning scheduler. We can differentiate between three different classes of training

schedules [29]. First schedule class is called train-then-sparsify. It is the most common

schedule type. As the name suggests, we use a standard training procedure until model

convergence. Following the training, we apply the sparsification algorithm to the fully-

trainedmodel. It is common for themodel to be retrained after the sparsification, as there

is no guarantee the optimal weights after sparsification are the same as the ones before.

Compared to other schedules, it provides the best baseline performance formodel quality

as it allows for simple comparison between the original and the sparsified model. An-

other advantage of this schedule is that we can re-use existing model hyperparameters

and learning methods as training is not modified. The second schedule class is sparsify-

during-training. In contrast to the first method, this schedule is involved in the training

phase of the model. It starts sparsification before the model reaches convergence and

is therefore usually cheaper than a train-then-sparsify schedule. These schedules also

include methods to correct for approximation errors from the training sparsification. At

the start, they often train themodel a few iterations before sparsification. Unlike the pre-

vious schedule class, at the end of training we end up with a sparsified model, meaning

we don’t have to waste additional iterations on fine-tuning. Also, because we are grad-

ually sparsifying during training, the performance of the model increases, making the

overall training time lower. Gradually sparsifying the model during training "reduces"

the amount of parameters we have available to train, which could lead to less efficient

convergence, and as the model changes during training, we cannot re-use hyperparame-

ters. Final schedule class is called fully-sparse-training. Similarily to the previous class,

it too removes parameters during training, but in addition, it can re-add other parame-

ters. Many fully-sparse-training schedules add parameters while pruning to ensure the

model stays approximately the same size. The process of finding parameters to add is

similar to architecture search as it searches for all possible architectures. When we have

to remove parameters, we can at least take into account the value of weights. The same

isn’t true for adding, as all their values are zero. This makes the task of adding weights
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even more difficult than removing them.

We can split the pruning techniques into data-free and data-driven methods. Data-

free pruning techniques do not consider the training data and can be useful in tasks that

require privacy and security. They often require expensive retraining to recover the lost

accuracy [29]. Data-drivenmethods consider the statistical sensitivity of the output with

respect to the training data. By inspectingwhichweights have an approximately constant

variation, meaning they don’t change much for different training data inputs, we can

determinewhich elements don’t contributemuch to the end output. The intuition is that

if elements with radically different inputs show very little change in values computed,

then they have no role in the network and can therefore be pruned. Because data-driven

methods only consider the input-output behaviour of the network, it becomes useless in

low-accuracy models as they will give wrong information on the importance of weights.

5.2.1 Pruning granularities

Another considerationwhen selecting parameters to remove iswhat granularity to choose.

We will describe three types of granularities: fine-grained, pattern-based, and coarse-

grained. Fine-grained pruning removes individual parameters, meaning it does not care

about the structure of the layer to perform sparsification. This allows us to choose the

parameter to remove arbitrarily. For example, it reduces the number of parameters of

AlexNet by a factor of 9, while for VGG-19 by a factor of 13 with no loss of accuracy

[41]. Pattern-based can be viewed a as special kind of fine-grained pruning that has the

added benefit of better hardware acceleration with compiler optimizations. It works by

assigning a set of fixedmasks to each 3x3 kernel. The number of masks is usually limited

to ensure hardware efficiency. Finally, coarse-grained pruning removes an entire tensor

block for better hardware efficiency. Depending on the block size, we can remove entire

vectors, kernels, or channels. Coarse-grained pruning can provide better hardware ac-

celeration on popular GPU deep learning libraries. But this comes at a cost, as it usually

achieves less accuracy than fine-grained pruning [41].

A more popular separation of pruning granularities is into structured and unstruc-

tured. Unstructured pruning removes the weights but preserves the neuron if at least on

connection to that neuron exists [36]. Because unstructured pruning poses no restric-
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tions on the structure, it contains irregular memory access that limits efficient hardware

implementations and parallelism. It may lead to irregular structure, which cannot be

accelerated directly, while also possibly giving rise to memory and cache access issue

due to the non-structured connectivity [8]. To alleviate these issue structured pruning is

introduced to obtain regular network connections. Structured pruning removes weights

in a group-wise manner [40]. It works by constraining portions of the mask matrix to

contain exactly the same number of non-zero weights. For example, in CNNs, we can

perform structured pruning by removing entire convolutional filters. While CNN has

an intuitive direction for structural pruning, other types of layers, for example recurrent,

aren’t as trivial and thus requiresmore elaborate approaches. It hasmany benefits, as the

weights are removed structurally it aligns better with data-parallel architectures which

results inmore efficient processing. Additionally, it amortizes the overhead cost required

to gather non-zeroweights resulting in improved compression and reduced storage costs.

In terms of flexibility, unstructured pruning is unmatched as it poses no restriction on

how the pruning should be done. We can view structured pruning as a subset of unstruc-

tured pruning meaning there may be cases where structured pruning is unable to match

the accuracy of the unstructured because the optimal pruning method breaks restric-

tions. While we may get higher accuracy with unstructured methods, we will lose on

inference-time performance. Because structured pruning removes "blocks" of weights

it allows hardware to skip computation on large portions of the model decreasing la-

tency and reducing the amount of stored activations. Note that unstructured pruning

can be viewed as structured pruning with a block size of one [16]. Structured pruning

is better for computationally restricted devices such as mobile and embedded devices.

According to granularity we can decompose structured pruning into two groups: vector-

/kernel-level and channel-/filter-level pruning [8]. Vector-/kernel-level pruning tech-

niques focus on the vectors in the convolutional kernels or complete convolution kernels

in a structured way. Channel-/filter-level pruning technique identifies the importance

of channels and filters based on the assumption that the amount of information con-

tributed by each channel can be evaluated by the channel’s activation output variance.

Unstructured sparsity requires storing the offsets of non-zero elements and handling the

structure explicitly during processing. This amounts to a significant cost in processing

and storing such networks. Structured sparsity solves this by constraining the sparsity
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patterns in weights in such a way that they can be described with low-overhead repre-

sentations such as strides or blocks [29]. This reduces the index storage overhead and

simplifies processing. While structural pruning promises higher performance and lower

storage overhead, it does so at the cost of limiting methods available, in other words

by posing restrictions in order to increase performance it has reduced the possibility of

finding an optimal method. One example of structured sparsity is the removal of whole

neurons in fully-connected layers. One type of structured pruning called strided sparsity

considers sparsification at the granularity of channels, kernels, or a strided kernel struc-

ture [29]. For example, we can define a stride-2 weight vector as [0.2, 1.9, 0, 1.3, 0, 0.3, 0,

1.2, 0, 0.4] where after the initial offset the rest of the elements are alternating between

zero and non-zero. This means we would only have to remember the offset, stride and

the non-zero elements [0.2, 1.9, 1.3, 0.3, 1.2, 0.4].

5.2.2 Pruning techniques

The selection of parameters to prune can be a difficult task. Themost precise data-driven

way to select parameters for removal is to evaluate all the possible subsets of model pa-

rameters. This means we would have to evaluate the performance of approximately
(𝑛
𝑘

)
networks, where 𝑛 is the number of network parameters and 𝑘 is the number of weights

to be removed. This is unrealistic, especially for larger models, as we have seen the

amount of parameters in those networks is in the orders of millions or even billions.

Another method we can use is to select elements at random, which can be effective in

certain settings [29].

Probably the simplest approach we can consider is to track the weight change during

training. The intuition being that weights that changed the least during training are less

important. The problem with this method is that it adds additional memory cost during

training as it requires a separate storage of weight change for everyweight in the network

we wish to prune. While this may not be a problem for every network, for large models

that haveweights in the order of billions, it canmakemodel training substantially slower.

One of the first published selection techniques was proposed in 1989 and was called

optimal brain damage [35]. It was based on removing weights with the smallest saliency,

where the weight saliency quantifies the weight’s impact on the training loss [39]. The
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weights with the smallest saliency, that is, the smallest impact on training loss, were

removed, and the remaining model was fine-tuned. As models became larger, calculat-

ing weight saliency became more expensive. Today, in the era of deep learning, weight

saliency has become too expensive and was replaced by magnitude-based pruning ap-

proaches [39]. In this approach, we assume the weights with the lowest magnitudes will

have the least amount of impact on model accuracy and can therefore be pruned. After

we remove the weight with the lowest magnitude, we also need to fine-tune the model

to restore accuracy. It was shown that without fine-tuning, 50% of the weight could be

pruned, while that number increases to 80% when we fine-tune [35]. It is often applied

during training to maintain an approximately constant connection density during train-

ing [29]. It can also be extended to structured pruning, like kernel pruning, where the

norm of the tensor is utilized as the criterion. Other criteria include second-order deriva-

tives, loss-approximating Taylor expansion, and output sensitivity [41]. It was shown

that magnitude-based sparsity can increase the speed of convergence [36]. To get effec-

tive magnitude-based pruning, we have to select the threshold carefully. Additionally, it

may not be optimal to choose the same threshold for all layers, as their means and devia-

tions can differ. It was found that weights in fully connected layers can be safely pruned

with magnitude-based pruning having negligible impact on accuracy [39]. While mag-

nitude pruning can be effective, several works have shown that more precise methods

can achieve significantly better results, especially for high sparsity [29].

When our focus is on energy minimization, some works have shown that utilizing

saliency- or magnitude-based pruning approaches does not always correspond to an op-

timal solution [39]. In such situations, there is a third kind of selection technique called

energy-driven pruning or energy-aware pruning. With this technique, the impact of the

weight is estimated from energy consumption. We can estimate the energy utilized by

considering the number ofMACs, data sparsity, andmovement in thememory hierarchy

[36]. For AlexNet, a popular computer vision model, it has demonstrated an increase of

1.74 in energy efficiency when compared to magnitude-based pruning [36].

While it may not be immediately obvious, regularization methods, such as L1-norm,

are a form of a pruning algorithm as they drive the weights towards zero. We call such

pruning methods regularization-based. Unlike previous methods, here we are not di-
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rectly modifying the weights. Instead, we modify the loss function, which will in turn

make the model sparse through training. Its biggest advantage is that it doesn’t impact

the weights directly and therefore provides better accuracy, but has the disadvantage of

requiring a lot of iterations to allow for the model to converge [36]. This enables us to

proactively find the optimal sparse pattern by forcing the unimportant weights towards

zero [40]. With thesemethods, we are able to choosewhichweights to prune by changing

which group of weights the regularization methods affect.

Most training algorithms forDNNsutilize gradient-basedmethods. Thismeans through-

out training we have the weight gradient information available without having to do ad-

ditional computation. Therefore, we can utilize the available information in order to

make our model sparse. We will call this method gradient-based pruning. It works by

assigning importance to weights based on the value of their gradients. Additionally, we

can combine this method with gating elements to select arbitrary elements for removal

[29]. One approach we can take is similar to magnitude-base pruning, but instead of

focusing on the weight’s magnitude, we will focus on the weight gradient’s magnitude.

We can also form pruning as an optimization problem where the goal is to minimize

the amount of weight while keeping accuracy high. This allows us to use a generic op-

timization algorithms like the genetic algorithm. For the population, we can choose a

random subset of model weights, in other words, a pruned version of the network where

each is trained separately. Every network is rewarded based on the number of param-

eters and accuracy. Then we can make use of operators to create new networks and

repeat the cycle until we are satisfied. An example of operators could be pruning a ran-

dom weight for mutation, intersection for crossover, and tournament for selection. The

problem we face with this algorithm is we will have a lot of wasted computation. Ev-

ery time we remove a chromosome from the population, we throw away a fully trained

model. When we also add multiple iterations, it becomes impossible for large DNNs to

utilize this method.

5.2.3 Sparse storage formats

While pruning zeroes out weights, it does not remove them. This means that the pruned

model will have the same amount of parameters and therefore the same memory usage.
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While our models still have the same number of parameters, a large amount of those

parameters are set to zero, which means we should be able to reduce the storage cost by

changing the way weights are stored. However, not all compression formats are suitable

for neural networks. For example, using complex compression algorithms will hurt our

inference performance while also increasing energy consumption. This is due to the fact

that for every forward pass, the weights have to be decompressed in order to use them.

We may choose to decompress the weight only once before inference, but this defeats

the purpose of optimized storage in the first place as we could just use the initial for-

mat. Therefore, compression algorithms for DNN inference have been proposed. They

attempt to simultaneously provide a low-cost decompression algorithm while also pro-

viding away to exploit sparsity for skipping computational paths [39]. With compression

algorithms on sparse parameters, we can reduce memory access bandwidth by 20%–30%

[35].

One simple format is the compressed sparse row (CSR). CSRuses three vectors, one to

store the non-zero values of the network’s weightmatrix and two to recover their original

location. The first indexing vector, called the row vector, describes which rows contain

non-zero values. The second indexing vector, called the column vector, describes which

column indexes in the current row contain non-zero values. The size of the row vector

is fixed for the same matrix size, while the column vector and non-zero vector depend

on the number of non-zero elements in the matrix. For instance, let’s use a 4x4 matrix

described in equation 5.2. The row vector is [0, 2, 2, 2, 4], the column vector is [0, 2, 1,

3], and the non-zero vector is [0.1, 0.3, 0.6, 0.9]. We interpret the row vector from left to

right, where every two values describe the start and end index of the column/non-zero

vector for each row. In addition, the end index of one row is the start index of the next

row. For the current example, this means the elements of the first row start from index

0 up to index 2 of the column/non-zero vector. The second and third rows start and end

in index 2, meaning they have no elements, and finally, fourth row starts at index 2 and

ends at index 4 of the column/non-zero vector.

The compression may not seem as high for the current example matrix, but keep

in mind that in practice the matrices are much larger and the number of elements in

a matrix grows polynomially with the matrix size. The size of the row vector is always
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𝑅 + 1 where 𝑅 is the number of rows, but for column and non-zero vectors the size is

the number of non-zero elements in the matrix. We can easily conclude that for this

compression format to be better than just storing the elements normally, our matrix has

to have the sparsity of 𝑆 > 1 +
𝑅+1−𝑅𝐶

2𝑅𝐶
where 𝑅 and 𝐶 denote the number of rows and

columns respectively. For very large matrices, the 𝑅 + 1 part will become negligible,

and the sparsity required will approach 50%. CSR decoding is efficient for matrices in

row-major order, meaning the consecutive elements in the row are next to each other.

Every row can be accessed in constant time, and reconstructing the row is linear in the

number of non-zero elements. The problem of this format occurs when trying to skip

computations related to zero-weights, in particular when accessing the activation’s ten-

sor with which the compressed matrix is multiplied [39]. Since the non-zero elements

in the CSR matrix are stored in rows, the activations corresponding to the element have

to be accessed multiple times. Alternatively, we can store the decompressed vector in

memory, but this might not be an option in memory-constrained devices.

CSR focused on the rows in the matrix. Similarly, we have the compressed sparse

column format (CSC) which uses the opposite approach, swapping the roles of the row

and column vector. This change allows the matrix to be read by columns while perform-

ingmultiplications, which removes the problem ofmultiple accesses to input activations

[39]. We can see this is because in matrix-vector product, each matrix column is multi-

plied with the same input element, which guarantees that the matrix will be read once

and in order. While this fixes the problem of multiplication with the input, it creates the

same problem for the output activations, which again have to be accessedmultiple times

or stored in memory during computation. This might not be as big of a problem as the

output size is usually smaller than the input size in deep learning models [39].

CSR andCSCbelong to the class of compressed stripe storage [34]. BothCSR andCSC

are flexible compression formats, meaning they can be used for unstructured pruning

algorithms where the position of non-zero elements is arbitrary. Without restrictions on

the structure, it prevents hardware for optimizing computation as there is no possibility

of exploiting parallelism. Because every multiplication with a row or column requires a

different number of operations based on the number of non-zero elements, it prevents

hardware from parallelly executing such operations due to the ever-changing position of
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non-zero elements. The hardware can still skip some of the computation once it detects

the whole rows or columns are filled with zeros, but this does not fully exploit parameter

sparsity as we cannot predict how many rows or columns will be sparse. In the worst-

case scenario, we can have a highly sparsematrix, such as a diagonal matrix, where none

of the rows or columns are fully non-zero, preventing us from skipping computation in

a parallel manner.

One example of structured pruning compressed formats is the compressed sparse

banks (CSB) format. Unlike CSR/CSC, this format uses only two vectors. The first one

stores the non-zero values, and the second stores their column indexes. This means we

have effectively removed the row vectors. Now the final size after compression only de-

pends on the number of non-zero elements. While this is a big improvement, this format

requires a specific configuration of the matrix. This means we cannot use just any prun-

ing algorithm with this format. The pruning algorithm used with this storage format is

called bank-balanced pruning. In it, we remove the same number of elements in each

group called a "bank". Going back to our example matrix defined in equation 5.2, it has

been pruned in a compatible format with banks of 2𝑥4, meaning each group of 2 rows

and 4 columns has the same number of elements. Because we are using banks, the row

vector can be inferred, and now our matrix can be stored with [0.1, 0.3, 0.6, 0.9] as the

non-zero vector and [0, 2, 1, 3] as the column vector. When we decode this format, we

are going row by row, starting from the top, and because each bank is guaranteed to have

the same number of elements, we always know which column index corresponds to the

row element. Under the assumption that the entire activation vector can be split into the

same banks, it will allow us to perform interbank parallelization where weights from

different banks are simultaneously multiplied [39].

The simplest storage scheme is called the bitmap (BM) scheme, also called com-

pressed image size (CIS). It is so called because it stores a map of N bits, where 𝑁 is

the number of elements, including zeros. Every bit signifies whether the element is zero

or non-zero. It is efficient for denser formats as the storage cost is proportional to the

total number of elements. Another simple storage format is the coordinate offset (COO).

It stores each non-zero element along with its absolute offset, which depends on how

the tensor is stored. Unlike the previous format, this format is more efficient for very
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sparse structures as its storage cost is proportional to the number of non-zero elements.

An extension of this format is called run length encoding (RLE), where only the differ-

ence between two element offsets are stored. Using offset differences may be preferable

for larger tensors, as we can use integer formats with fewer bits. Additionally, if the

differences between offsets are too large, we can insert zero elements in the non-zero

vector between the largest offset differences in order to reduce them. Note that in some

works, RLE can mean a different algorithm. We will call this algorithm run length cod-

ing (RLC), and while it can be used to store sparse tensors, it does so by storing zeroes

too. It works by storing value and its repetition count. This means it favors tensors with

the least amount of unique elements, especially if they are consecutive. Following our

example matrix in equation 5.2 all the schemes have the same vector of non-zero ele-

ments [0.1, 0.3, 0.6, 0.9], and assuming row-major order, BM scheme would store [1, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6, 0, 0.9], COOwould store [0, 2, 13, 15] and RLE would store

[0, 2, 11, 2]. If we added a zero in the RLE, the "non-zero" vector would change into [0.1,

0.3, 0, 0.6, 0.9] and the offset differences vector would become [0, 2, 6, 5, 2]. This way

we can represent the elements of the vector with only 3 bits, saving us 1 bit on each ele-

ment. With RLC, we do not have a vector of non-zero values but instead get one vector

of unique consecutive values [0.1, 0, 0.3, 0, 0.6, 0, 0.9] and another of their repetition [1,

1, 1, 10, 1, 1, 1].

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0 0.3 0

0 0 0 0

0 0 0 0

0 0.6 0 0.9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.2)

An example of a sparse matrix

While we have introduced many sparse-specific storage formats, there is a question

of why we aren’t using any of the already established compression methods. Huffman

coding is the most efficient method to encode scattered data due to its optimal compres-

sion rate [34]. It can be used to gain even higher compression ratios than the previous

method, but it does so by using computation-heavy encoding and decoding schemes.
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Therefore, these kinds of methods are only ever useful for long-term storage, as they

would introduce a large overhead in each operation where a sparse tensor is involved.

5.3 Low-rank factorization

Low-rank factorization, or specifically, tensor decomposition technique, attempts to find

an approximate low-rank tensor that is close to the original tensor. Low-rank factoriza-

tion methods have long been used to accelerate and compress neural networks. The two

most popular tensor decomposition models are CANDECOMP/PARAFAC (CP) and the

Tucker model [45]. The technique is often applied to reduce the complexity of fully-

connected or convolutional layers in DNNs. It has been long investigated in the field of

signal processing in order to accelerate convolution [41]. When we use decomposition

methods on a network’s layer, we are breaking apart that layer into many layers, which

will attempt to approximate the output of the original layer while also having a reduced

number of parameters. Some works have shown that factorization can reduce the model

size up to 75% without a decrease in accuracy [41].

The most widely used matrix decomposition is called Truncated Singular Value De-

composition (TSVD). It is effective for speeding up the execution of fully connected layers

[41]. While SVD decomposes the matrix in an exact way, TSVD is only an approxima-

tion. From equation 5.3 we can see the decomposition of thematrix by the application of

the SVD algorithm. As previously mentioned, the equation is only true for SVD because

TSVD is only an approximation, and thus equality is not satisfied. The decomposed ma-

trix is defined as 𝐗 ∈ ℝ𝑚×𝑛, while the decomposed factors depend on which method we

use. For SVD they are 𝐔 ∈ ℝ𝑚×𝑚, 𝚺 ∈ ℝ𝑚×𝑛, and 𝐕 ∈ ℝ𝑛×𝑛, while for TSVD they are

𝐔 ∈ ℝ𝑚×𝑡, 𝚺 ∈ ℝ𝑡×𝑡, and 𝐕 ∈ ℝ𝑡×𝑛 where 𝑡 ≪ 𝑟 and 𝑟 is the number of non-zero sin-

gular values. By utilizing the TSVD, we can reduce the number of elements from 𝑚 ⋅ 𝑛

to 𝑡 ⋅ (𝑚 + 𝑛 + 𝑡) which will be less if 𝑡 < 0.5(
√
𝑚2 + 6𝑚𝑛 + 𝑛2 − 𝑚 − 𝑛). Because of

its structure, TSVD can be easily applied to fully connected layer, breaking it apart into

two different layers where the bias is appended to the last. It requires no retraining and

thus can be applied for run-time layer compression [46]. Even though the decomposi-

tion gives us three factors, we only use twomatrices bymerging the 𝚺 into one of the two

other matrices, thereby reducing the amount of parameters by 𝑡2 while keeping the end
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result the same.

𝐗 = 𝐔𝚺𝐕𝑇 (5.3)

Singular value decomposition

While matrix decomposition methods such as SVD, LU, QR, and Cholesky decom-

position are widely supported, tensor decomposition methods have scarce support. For

example, while popular Python deep learning libraries PyTorch and TensorFlow support

all the mentioned matrix decomposition methods, they do not support neither Tucker

nor CP decomposition. Additionally, in deep learning we are much more likely to come

across higher-order tensors thanmatrices, making tensor decompositionmethodsmuch

more useful. There are many uses for tensor decompositions in the area of machine

learning, such as relation inference and latent variable modeling [47].

The Tucker decomposition, shown in equation 5.4, is a form of higher-order PCA

[48]. In Tucker decomposition, we decompose the tensor 𝐗 ∈ ℝ𝐼1×𝐼2×⋯×𝐼𝑁 into a core

tensor 𝐆 ∈ ℝ𝑅1×𝑅2×⋯×𝑅𝑁 and 𝑁 matrices 𝐀(𝑛) ∈ ℝ𝐼𝑛×𝑅𝑛 . The parameter 𝑅𝑖, which we will

call rank, is freely chosen based on the compression required. If we choose ranks for

which 𝑅𝑖 < 𝐼𝑖 is true, then the core tensor can be thought of as a compressed version

of the original tensor X. There are 𝑁 ranks in total, and in case we choose ranks for

which 𝑅𝑛 = 𝑟𝑎𝑛𝑘𝑛(𝐗) our decomposition becomes exact, where 𝑟𝑎𝑛𝑘𝑛(𝐀) denotes the

column rank of unfolded tensor 𝐀 on dimension 𝑛. Note that Tucker decompositions

are generally not unique, as we can modify the core tensor without affecting the result

as long as we apply the inverse to the factor matrices [48]. This allows us to change the

structure of the factors so most of the elements are zero We can view this as a form of

pruning, allowing us to utilize the introduced sparse tensor techniques. In addition, we

will introduce partial Tucker decomposition. Equation 5.5 shows the structure of the

decomposition. As we will see later in the chapter, the partial Tucker decomposition has

a desirable structure. The only difference between the full and the partial decomposition

is in the core tensor, where now only two dimensions correspond to the ranks while the

others correspond to the initial decomposed tensor’s dimensions.
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𝑥𝑖1,𝑖2,...,𝑖𝑁 =
𝑅1∑
𝑟1=1

𝑅2∑
𝑟2=1

⋯

𝑅𝑁∑
𝑟𝑁=1

𝑔𝑟1,𝑟2,...,𝑟𝑁𝑎
(1)
𝑖1,𝑟1

𝑎
(2)
𝑖2,𝑟2

⋯ 𝑎
(𝑁)
𝑖𝑁 ,𝑟𝑁

(5.4)

Tucker decomposition

𝑥𝑖1,𝑖2,...,𝑖𝑁 =
𝑅1∑
𝑟1=1

𝑅2∑
𝑟2=1

𝑔𝑟1,𝑟2,𝑖3,𝑖4,...,𝑖𝑁𝑎
(1)
𝑖1,𝑟1

𝑎
(2)
𝑖2,𝑟2

(5.5)

Partial Tucker decomposition with two ranks

CANDECOMP (canonical decomposition)/PARAFAC (parallel factors), orCP for short,

is an extension of SVD [8]. While in Tucker we had a core tensor, CP decomposes the

tensor𝐗 ∈ ℝ𝐼1×𝐼2×⋯×𝐼𝑁 into𝑁 matrices defined as𝐀(𝑛) ∈ ℝ𝐼𝑛×𝑅. Each matrix has the sec-

ond dimension size set to the same value 𝑅 we call rank. CP can be viewed as a special

case of Tucker where the core tensor is diagonal and 𝑅1 = 𝑅2 =⋯ = 𝑅𝑛 [48]. It can often

be useful to normalize the matrices to length one, which will add factor 𝜆 ∈ ℝ𝑅 to the

decomposition. If we choose rank for which 𝑅 = 𝑟𝑎𝑛𝑘(𝐗) is true, then our CP decompo-

sition will be exact. While there are upper bounds for rank on tensors of specific number

of dimensions, calculating the rank of an arbitrary tensor is an NP-hard problem [48],

and the best low-rank approximation of a higher rank tensor may not even exist [49]. An

exact CP decomposition is called the rank decomposition [48]. Unlike matrix decom-

position, rank decomposition of higher-order tensors is often unique [48]. As finding

tensor rank is a difficult problem, most algorithms try to fit multiple CP decompositions

and take the best approximation [47].

𝑥𝑖1,𝑖2,...,𝑖𝑁 =
𝑅∑
𝑟=1

𝑎
(1)
𝑖1,𝑟
𝑎
(2)
𝑖2,𝑟
⋯ 𝑎

(𝑁)
𝑖𝑁 ,𝑟

(5.6)

CP decomposition

5.3.1 Convolutional layer decomposition

While the decomposition methods can be utilized on many different layers, we chose

to focus on convolutional layers as they exist in all the models chosen. Decomposition

methods are applied to the kernels of convolutional layers. Depending on the type of
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convolutional layer, kernel sizes go from three dimensions to more. We will be focusing

on one (1-D) and two (2-D) dimensional convolutions, meaning our kernel sizes will

have three and four dimensions respectively. Equations 5.7 and 5.8 describe 1-D and 2-

D convolution operations respectively. We do not include additional terms like dilution

factors or padding, as they would only add unnecessary notation. For 1-D convolution,

our input tensor is𝐗 ∈ ℝ𝐵×𝐿𝑥×𝐼, output is𝐘 ∈ ℝ𝐵×𝐿𝑦×𝑂, and kernel is𝐊 ∈ ℝ𝐿𝑘×𝐼×𝑂. While

for 2-D convolution our input tensor is 𝐗 ∈ ℝ𝐵×𝐻𝑥×𝑊𝑥×𝐼, output is 𝐘 ∈ ℝ𝐵×𝐻𝑦×𝑊𝑦×𝑂, and

kernel is 𝐊 ∈ ℝ𝐻𝑘×𝑊𝑘×𝐼×𝑂. Each convolution consists of batch 𝐵, input 𝐼 and output 𝑂

channels, and size. For 1-D convolution we can interpret the input as an audio recording

of length 𝐿 with 𝐼 channels, while for 2-D the input can be an image with 𝐻 height,𝑊

width, and 𝐼 color channels. Additionally, we used batch notation, as it’s common in

deep learning libraries to perform convolution onmultiple data points at once. It should

be noted that kernel sizes, designated with a 𝑘 subscript, are usually much smaller than

input (𝑥 subscript) and output (𝑦 subscript) sizes.

𝑦𝑏,𝑙,𝑜 =
𝑑𝐿∑
𝑑𝑙=1

𝐼∑
𝑖=1

𝑥𝑏,𝑠𝑙 𝑙+𝑑𝑙,𝑖𝑘𝑑𝑙,𝑖,𝑜 (5.7)

1-D convolution

𝑦𝑏,ℎ,𝑤,𝑜 =
𝑑𝐻∑
𝑑ℎ=1

𝑑𝑊∑
𝑑𝑤=1

𝐼∑
𝑖=1

𝑥𝑏,𝑠ℎℎ+𝑑ℎ,𝑠𝑤𝑤+𝑑𝑤,𝑖𝑘𝑑ℎ,𝑑𝑤,𝑖,𝑜 (5.8)

2-D convolution

We apply the decomposition methods to the kernel 𝑘, decomposing it into many fac-

tors. Because we now have several kernels, our single convolution will turn into a series

of convolutions. If we replace the kernel with the regular Tucker decomposition equa-

tion, we will notice an issue. The core tensor in the Tucker decomposition consists of

all user-specified ranks. This prevents us from trivially using the core tensor as a part of

the convolution equation. Therefore, instead of applying the normal Tucker, we will use

the partial Tucker decomposition, where only two dimensions of the core tensor will be

ranks while the rest will be from the kernel. For 1-D convolution our core tensor will

become 𝐆 ∈ ℝ𝐿𝑘×𝑅1×𝑅2 , while for 2-D it will become 𝐆 ∈ ℝ𝐻𝑘×𝑊𝑘×𝑅1×𝑅2 . In equation 5.9
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we show how to split up a single 2-D convolution into three where each factor of the

partial Tucker decomposition is a kernel in their convolution operation. Keep in mind

that to implement this operation additional steps must be taken to ensure the tensors are

of the correct size. In equation 5.9 this would mean expanding the first dimension of

factor 𝑎(1), and the first dimension of factor 𝑎(2), this will allow us to index them on three

dimensions. There are additional parameters such as padding, dilation, and bias, which

have been excluded for readability as they are trivial to implement.

𝑦𝑏,ℎ,𝑤,𝑜 =
𝑅2∑
𝑟2=1

⎛⎜⎝
𝑑𝐻∑
𝑑ℎ=1

𝑑𝑊∑
𝑑𝑤=1

𝑅1∑
𝑟1=1

( 𝐼∑
𝑖=1

𝑥𝑏,𝑠ℎℎ+𝑑ℎ,𝑠𝑤𝑤+𝑑𝑤,𝑖𝑎
(1)
𝑖,𝑟1
) 𝑔𝑑ℎ,𝑑𝑤,𝑟1,𝑟2⎞⎟⎠ (𝑎

(2)
𝑜,𝑟2
)𝑇 (5.9)

2-D convolution with partial Tucker applied

Similarly to Tucker decomposition, we apply the CP decomposition to the convolu-

tional kernel 𝑘. In equation 5.10 we show the decomposition of 2-D convolution. Unlike

Tucker decomposition, here we have four different convolutions where every kernel is

a matrix. Just as in Tucker decomposition, we have omitted optional parameters of the

convolution operation to help readability. While implementing this operation, great care

must be taken to correctly expand the matrices, as 2-D kernels are four dimensional ten-

sors.

𝑦𝑏,ℎ,𝑤,𝑜 =
𝑅∑
𝑟=1

⎛⎜⎝
𝑑𝐻∑
𝑑ℎ=1

⎛⎜⎝
𝑑𝑊∑
𝑑𝑤=1

( 𝐼∑
𝑖=1

𝑥𝑏,𝑠ℎℎ+𝑑ℎ,𝑠𝑤𝑤+𝑑𝑤,𝑖𝑎
(3)
𝑖,𝑟 ) 𝑎(2)𝑑𝑤,𝑟⎞⎟⎠ 𝑎

(1)

𝑑ℎ,𝑟

⎞⎟⎠ (𝑎
(4)
𝑜,𝑟)

𝑇 (5.10)

2-D convolution with CP applied

We have shown how to decompose 2-D convolution composition for both partial

Tucker and CP decompositions. We do not show the decomposition for 1-D convolu-

tion as it contains fewer dimensions and therefore should be simpler to derive. The final

issue we have to face is how to decide the ranks for the decomposition methods. As we

do not want to have an exact decomposition, we will not be calculating the tensor 𝑟𝑎𝑛𝑘𝑛

or 𝑟𝑎𝑛𝑘. While there are different methods of finding ranks for decompositions, such as

Variational BayesianMatrix Factorization (VBMF) [50], wewanted a simplemethod that

only needed a single parameter that signifies the level of compression. We can equate the
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compression level parameter to sparsity, but instead of zeroing weights, we are removing

them. The main condition we have for determining ranks is that the number of parame-

ters of the decomposed convolution divided by the number of parameters of the original

convolution is equal to the compression level, or mathematically 𝑆 =
#𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

#𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
. For CP

decomposition we can just calculate the rank giving us 𝑅 = 𝑆
∏

𝑖
𝐼𝑖∑

𝑖
𝐼𝑖
where 𝐼𝑖 is the size of

the 𝑖th dimension. On the other hand, for partial Tucker, we cannot calculate the ranks

directly as there are many solutions for two ranks with only one equation. Therefore,

we will include another restriction, which says that the ratio of the input rank and input

channel has to be equal to the ratio of the output rank and output channel. Mathemati-

cally, we can write
𝑅1

𝐼3
=

𝑅2

𝐼4
. More broadly, we can say the ratio is between the rank and

the dimension the rank is applied to. Solving the equation will give us 𝑅1 =
−𝐴+

√
𝐴2+4𝐵𝐶2𝑆

2𝐵𝐶

where 𝐴 =
𝐼23+𝐼

2
4

𝐼3
, 𝐵 = 𝐼−23 , 𝐶 =

∏
𝑖
𝐼𝑖, and the 𝑅2 can be derived from the ratio.
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6 Experiments

6.1 Datasets

To test our optimizationmethods, we will be using three different datasets: Aishell1Mix,

LibriMix [51], and LibriCSS [52]. Aishell1Mix is an open-sourceMandarin version of the

speech separation dataset. It mixes two or three speaker sources from the open-source

Aishell1 [53] and can contain noise from the dataset WHAM! [54]. The base Aishell1

contains around 165 h of speech from 400 speakers, whileWHAM! noise contains 80 h of

audio from 44 different locations. The second dataset, called LibriMix, is an open-source

dataset for generalizable noisy speech separation. It contains a two- or three-speaker

mixture where each mixture can be set to contain noise. The dataset is created from

speech utterances taken from LibriSpeech [55] and noise samples taken from WHAM!

[54]. In total, the dataset contains around 470 h of speech from 1252 speakers with a

60k vocabulary. In our experiments, we will be using only the two-speaker mixture with

noise included, which is around 292 h of speech. Finally, LibriCSS is an open source

dataset derived from LibriSpeech [55] by concatenating utterances to simulate conversa-

tion. It consists of 10 hours of audio recordings, where each session is an hour long and

each session is split into 10 minute segments with different overlap ratios. The dataset

was recorded by playing each LibriSpeech utterance from a different loudspeaker in a

meeting room and capturing the acoustics with a microphone array.

Aishell1Mix and LibriMix are quite similar because they both use WHAM! as their

noise source. The only difference is that Aishell1Mix uses Aishell1 as the source dataset,

while LibriMix uses LibriSpeech. While the datasets share a lot of similarities, each of

the chosen datasets serves a purpose in our testing. Aishell1Mix is used to test how

the models respond to a different language; LibriMix is the generic noisy dataset; and

LibriCSS is used to test how models handle many speakers with different overlap ratios.
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6.2 Evaluation methods

For evaluation, we are using objective speech separation performance metrics: Scale-

Invariant Signal-to-Distortion ratio (SI-SDR) and Signal-to-Noise ratio (SNR). In addition

to the standard metrics, we include evaluation methods specific to optimization method

evaluation. We will include the evaluation of model duration, memory consumption,

latency, throughput, and number of parameters. In equations 6.1 and 6.3 we describe

the calculation of SNR and SI-SDR respectively, where 𝑇 is the target separation and 𝑃 is

the predicted separation. For both the target and prediction tensors, the first dimension

is the audio channel, or the separated speaker, and the second dimension is the length

of the audio. We can write this mathematically as 𝑃, 𝑇 ∈ ℝ𝐶×𝐿.

SNR = 10 log10 ( ‖𝑇‖2‖𝑃 − 𝑇‖2) (6.1)

𝑇𝑠 =

∑
(𝑇 ⋅ 𝑃)‖𝑇‖2 ⋅ 𝑇 (6.2)

SI-SDR = 10 log10 ( ‖𝑇𝑠‖2‖𝑃 − 𝑇𝑠‖2) (6.3)

When we feed the input audio to the chosen model, we get𝑁 audio channels, which

correspond to the set number of speakers. Because each channel can be any speaker, we

don’t know how to match it with the output of the dataset. While we can require the

model to match the output channels from the dataset exactly, we aren’t using speaker

identities, and thus our output channel orderings do not have any meaning. This prob-

lem is termed the label ambiguity or permutation problem [56]. Therefore, instead of

matching the channel ordering exactly, we will attempt to match every possible output

channel from the model with every possible output channel from the dataset. With this,

themodel is free to choosewhich channels to pick for each speakerwithout a loss penalty.

This method is called Permutation Invariant Training (PIT), and it works by calculating

a cost matrix where each row corresponds to the model output channel and each col-

umn to the dataset output channel. To construct the matrix PIT requires an additional
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algorithm that can take two tensors of the same size and output a scalar, for example, an

algorithm such as SI-SDR. Then PIT will select a unique column for each row such that

the sum of all the selected elements is minimal (or maximal). In equation 6.4, we show

an example cost matrix with the solution highlighted. The model channel to dataset

channel matching is then: 1→ 3, 2→ 1, 3→ 2, 4→ 4.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 11 8 10

23 25 21 24

17 15 30 12

15 20 17 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.4)

An example of a cost matrix with the solution highlighted

On the side of performancemeasurements there are also problems that need to be ad-

dressed. Due to the intricacies of today’s processors and the prevalence of non-uniform

memory access, we cannot guarantee the latency is measured reliably. We have taken

steps in order to ensure smaller measurement variation, such as repeating measure-

ments, setting CUDA clocks to stable, and synchronizing CUDA devices after each mea-

surement. In order to determine the variations inmeasurements caused by thehardware,

we will measure the expected performance metric deviation by calculating the standard

deviation of the repeated performance measurements.

6.3 Testing setup

Before using any optimizations, we will first create a baseline to compare. Each model

will be trained on each dataset, and results will be stored. We will use the baseline to

compare how the optimizationmethods have impacted the accuracy and performance of

the model. All the models use the same optimizer, scheduler, and loss function. For the

loss function, we use SI-SDR.We use SI-SDR instead of SDR as it takes into consideration

the scale of given estimates and doesn’t allow the model to artificially boost the value by

rescaling the estimate. Additionally, the computation of SI-SDR is much faster than that

of SDR [57]. Alongwith SI-SDR,weuse PIT,wherewe select themaximum loss out of the
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cost matrix. For the optimizer, we use Adam with a learning rate of 0.001 and no weight

decay. Our scheduler reduces the learning rate by a factor of 0.5 once the validation error

stops improving for 5 epochs. Finally, we added an early stop mechanism that watches

the validation error, and if it hasn’t improved in 30 epochs, the training is concluded.

All the model training and optimizations are written in Python programming language

using the PyTorch library. To prevent code duplication, we only added functionalities

that PyTorch didn’t already support. Our library, which was used to perform all testing,

is publicly available and open source 1.

For our pruning setup, we are using 7 different pruning strategies: random struc-

tured, L2-norm structured, L1-norm structured, gradient change structured, randomun-

structured, L1-norm unstructured, and gradient change unstructured. Every one of the

strategies has an additional parameter that sets the percentage of weights to prune; we

are using 10%, 20%, and 30%. In total, this makes 21 different pruning configurations for

each model and dataset. We implemented pruning only for a select number of layers,

which were most abundant in our models. These layers are: linear, conv1d, conv2d, and

multihead-attention. Every pruning strategy is done iteratively with a maximum of 5 it-

erations of pruning/fine-tuning, and in case the validation error decreases by more than

5% we terminate the pruning and keep the previous result. While with pruning there

is an additional multiplication of weight with the mask, at the end of fine-tuning we

are merging the masks with the weights to remove this tiny overhead. Because pruning

only sets weights to zero, we will not get a reduction in memory or computation. There-

fore, we implemented many sparse storage formats, but because PyTorch tensors do not

support many operations with this format, we could not use them for our models.

For quantization, we are using PTQ with an affine quantizer. The implementation

quantizes weights ahead-of-time, but activations are dynamically quantized. This can

add overhead to the model and slow down the performance during inference. Other

forms of quantization, such as PTQwith ahead-of-time activation quantization and QAT

were not tested as there is not support for them in PyTorch using CUDA GPUs. In addi-

tion, we tested two quantization number formats: 8-bit integer and 16-bit floating-point

IEEE 754 with 1 sign bit, 5 exponent bits, and 11 mantissa bits. Because of the limited

1https://github.com/mb52598/SSepOptim
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support for quantization, we are only using it on convolutional layers, as they are the

most used.

To the best of our knowledge, PyTorch does not support tensor factorization. There-

fore, we had to implement it in its entirety. We implemented CP and Tucker decom-

position for both one- and two-dimensional convolutional layers. Both decomposition

methods will do 5 iterations of the decomposition algorithm. As we are not doing a lot of

iterations, our approximation error will be high, which is why we additionally perform

fine-tuning. Same as for pruning, wewill be testing the decompositionmethods for three

different sparsities: 10%, 20%, and 30%. But unlike pruning, tensor factorization does re-

duce the amount of parameters, whichmakes us expect a reduction inmodel latency and

throughput. We focus on convolutional layers as they are substantially more expensive

than linear layers [58].

This researchwas performedusing theAdvanced computing service provided byUni-

versity of Zagreb University Computing Centre - SRCE 2. This is a publicly available su-

percomputer forHighPerformanceComputing (HPC). The supercomputer, called Supek

after a famous Croatian academic, allows users to execute applicationswith high compu-

tational or memory demands on CPUs or GPUs. It is realized with HPE Craya technol-

ogy, an operating system based on standard SUSE Enterprise Linux which is designed

to run complex applications at scale. The supercomputer has in total 8384 processing

cores, 81 graphical processors, 32 TB of work memory, which amounts to 1.25 PFLOPS.

For the CPUs, the supercomputer uses an AMD Epyc 7763 2,45 GHz CPU, while it uses

an NVIDIA A100 40 GB for the GPUs. Because the supercomputer is publicly available

and the resources are given on first come, first served principle, the amount of available

computational resources at any time fluctuated rapidly, and therefore, some of the test-

ing was done in slightly different hardware configurations. We attempted to compensate

by changing the node configuration as little as possible, but this still makes the results

less reliable.

2https://www.srce.unizg.hr/napredno-racunanje
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6.4 Results and discussion

We will start with baseline results, as they provide us with a starting point. Tables 6.1,

6.2, and 6.3 show the baseline measurements for LSTM-TasNet, Conv-TasNet, and DPT-

Net respectively. We can see that Conv-TasNet performs best in terms of SI-SDR, while

DPTNet is better with SNR. Also, we can notice the amount of parameters is the same

for Aishell1Mix and LibriMix while it changes for LibriCSS. This is because model size

depends on the number of speakers. Aishell1Mix and LibriMix have only two speak-

ers, while LibriCSS has eight. Latency and throughput should not be compared between

models as batch sizes are different. Multiplying latency and throughput by the batch size

wouldn’t work, as performing multiple small batches has higher overhead than a single

large batch. Total memory describes the maximum amount of CUDA memory used to

test themodels. Therefore, thismetric does not take into account trainingmemory usage

such as activations and gradients.

For the sake of readability, in upcoming results we won’t write the number of pa-

rameters or model memory usage as they can be inferred from the optimization method

used. For pruning, the amount of parameters and model memory won’t change unless

we use a sparse storage format, in which case model memory usage will be reduced by

the sparsity percentage. In quantization, we only change the precision of weights, mean-

ing the effect is on the model memory. Fp16 will half the model memory usage, while

Int8 will half Fp16. Tensor factorization methods alter the model layers and reduce the

amount of parameters, meaning the number of parameters is directly reduced based on

the percentage specified.

After baseline results, we will first start with the accuracy results of optimization

methods, as we don’t want to use methods that cause high accuracy degradation. Fig-

ures 6.1, 6.2, and 6.3 show the accuracy graph of optimizationmethods for LSTM-TasNet,

Conv-TasNet, andDPTNet respectively. In the graphs, we color each optimizationmethod

differently and are looking for points that are closest to the top right, meaning they

achieve high SI-SDR and SNR.

Tensor decomposition methods were not used on the Conv-TasNet model as it con-

tained too many convolutional layers for the methods to be executed in a reasonable
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Metric

Dataset
Aishell1Mix LibriMix LibriCSS

SI-SDR[db] -0.494116 -15.750694 -53.724457

SNR[db] -21.255798 -25.018694 -56.821930

Latency[ns/batch] 1,042,926,828.4 1,425,516,681 12,375,298,454.5

Throughput[batch/s] 0.994591 0.682281 0.082434

Parameters 23,168,513 23,168,513 26,243,585

Model memory[bytes] 92,674,052 92,674,052 104,974,340

Total memory[bytes] 3,549,108,224 719,061,504 12,210,176,512

Table 6.1: LSTM-TasNet baseline results

Metric

Dataset
Aishell1Mix LibriMix LibriCSS

SI-SDR[db] -0.485094 -0.383385 -50.609952

SNR[db] -69.226654 -69.213966 -68.760139

Latency[ns/batch] 357,075,077 310,947,963.2 3,032,943,748

Throughput[batch/s] 3.304651 4.0358795 0.36473475

Parameters 4,985,394 4,985,394 5,447,346

Model memory[bytes] 19,941,576 19,941,576 21,789,384

Total memory[bytes] 464,708,096 278,207,488 1,548,478,464

Table 6.2: Conv-TasNet baseline results

Metric

Dataset
Aishell1Mix LibriMix LibriCSS

SI-SDR[db] -0.554791 -15.892398 -53.429151

SNR[db] 2.438616 -22.330877 -55.249344

Latency[ns/batch] 964,047,325.9 1,515,144,942.1 10,506,321,391.6

Throughput[batch/s] 1.116504 0.695022 0.096712

Parameters 2,857,666 2,857,666 2,882,626

Model memory[bytes] 11,430,664 11,430,664 11,530,504

Total memory[bytes] 4,046,401,536 826,960,384 6,082,228,224

Table 6.3: DPTNet baseline results

time. Additionally, we have excluded CP decomposition from accuracy graphs as they

are much worse than the rest of the methods and therefore make the graph unreadable.

This is possibly because the gradients in the inserted CP layers are prone to gradient ex-

plosion, as one study has found [59]. One possible way to remedy this is to reduce the

learning rate while fine-tuning the model. In tables 6.4 and 6.5 we added the values of
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CP decomposition for LSTM-TasNet and DPTNet models. Because CP decomposition

methods have a substantial decrease in accuracy, we will not be analyzing them further.

In the results, we can see every model responds differently to each dataset. While

for Aishell1Mix and LibriMix the optimization methods come close to baseline, in Lib-

riCSS baseline is always better in terms of SI-SDR. This could be because the number of

speakers affects the performance of optimization methods. Also, the baseline model is

better than optimization methods in terms of SI-SDR, while for SNR, sometimes opti-

mizations exceed the baseline model. This could indicate that SNR is not a good metric

of model performance, as we do not expect the optimizationmethods to exceed the base-

line. We can also see the scale ranges of values differ substantially for each dataset and

each model. In table 6.6, we extract the accuracy ranges from the graphs. Lower ranges

indicate the optimizationmethods do not have a substantial effect onmodel accuracy. In

our tested models, there is no clear winner in terms of having the lowest range, as all of

them have a configuration where they are the best. Note that just having low range does

not indicate a good configuration, as we would expect models with higher accuracy to

have larger ranges. Intuitively high-accuracymodels are less probable than low-accuracy

models as they require a specific configuration of model parameters. By introducing op-

timization methods that affect parameter precision or their amount, we are reducing the

pool of available parameter configurations and therefore making high-accuracy models

less likely.

10% 20% 30%

SI-SDR SNR SI-SDR SNR SI-SDR SNR

Aishell1Mix -37.2551 -37.2607 -36.3692 -69.1230 -35.3168 -69.0785

LibriMix -37.5460 -69.1290 -29.4931 -67.9022 -35.0663 -68.7375

LibriCSS -63.7152 -69.1728 -63.5798 -69.1633 -63.5385 -68.0773

Table 6.4: LSTM-TasNet CP accuracy

10% 20% 30%

SI-SDR SNR SI-SDR SNR SI-SDR SNR

Aishell1Mix -32.4208 -41.4395 -34.0540 -41.7094 -30.5297 -40.5451

LibriMix -36.1560 -61.3936 -32.9784 -59.9193 -34.6262 -56.3932

LibriCSS -63.6869 -63.5381 -63.4647 -63.4828 -62.8411 -63.0791

Table 6.5: DPTNet CP accuracy
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Figure 6.1: LSTM-TasNet optimizations accuracy

Figure 6.2: Conv-TasNet optimizations accuracy

Figure 6.3: DPTNet optimizations accuracy

Aishell1Mix LibriMix LibriCSS

SI-SDR SNR SI-SDR SNR SI-SDR SNR

LSTM-TasNet 0.40696 20.833 4.3197 6.5886 2.4544 0.53728

Conv-TasNet 1.2912 7.0745 7.8005 0.052749 4.9404 14.791

DPTNet 1.6437 0.85631 3.3194 6.7283 2.7374 1.0503

Table 6.6: Accuracy ranges without CP decomposition

Next we will look at only the pruning optimization accuracies. Figures 6.4, 6.5, and

6.6 show pruning accuracies for all the tested models. In the graph, each sparsity is col-
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ored differently, and each point has an annotation for the type of pruning method used.

For readability, the names of methods are compressed, where R is random, GC is gra-

dient change, L1/L2 is L1-/L2-norm, S is structured, and U is unstructured. Because

most of our configurations use pruning methods, the graphs haven’t changed much. For

Aishell1Mix, we can clearly see how higher sparsities have lower accuracy. Most of the

lower accuracy methods are structured and do not contain the gradient change method.

Another pattern we can observe is that configurations with higher median accuracies

separate sparsities, while those with low medians lack structure. This is the reason we

want models with high accuracy. The change in model accuracy due to optimization

methods will be much lower if our model already has low accuracy, which will prevent

us from analyzing the behaviour of those methods. Throughout all graphs, four pruning

methods always performed the worst at high sparsity: random unstructured, random

structured, l1-norm structured, and l2-norm structured. While these methods outper-

formed gradient change in low sparsities, the gradient change methods seem to work

better than others for higher sparsities.

Quantization and tensor factorization will be shown in a single graph as there are

only 5 configurations considering we excluded CP decomposition. Figures 6.7, 6.8, and

6.9 show quantization and tensor factorization methods for LSTM-TasNet and DPTNet,

while for Conv-TasNet we only show quantization methods. For tensor decomposition,

the results are similar to pruning, but because we are using only one method, they are

more pronounced. We can see that the bigger the reduction in the number of parameters,

the higher the accuracy drop. On the quantization side, 8-bit integer and 16-bit floating

point are performing almost exactly the same. In almost all cases (except DPTNet Lib-

riCSS), quantization methods are as good or better than tensor decomposition methods

in terms of accuracy.

Because we are not using sparse storage formats in pruning optimization methods,

there should be no change in latency or throughput for those models. We also removed

CP from the considered methods because of its effect on accuracy. This leaves us with

quantization optimizations and Tucker decomposition. Before we analyzemodel perfor-

mance, we need to determine the possible variation of latency and throughput due to the

changing environment. In table 6.7, we calculated the mean and standard deviation for
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Figure 6.4: LSTM-TasNet pruning accuracy

Figure 6.5: Conv-TasNet pruning accuracy

Figure 6.6: DPTNet pruning accuracy

all models in each dataset using the baseline and pruning results. From the table, we can

see the standard deviation is only one or two magnitudes less than the mean. In figures

6.10, 6.11, and 6.12, we show the optimization performance for all the models in all the

datasets. For almost all models, the optimization methods have higher throughput and

lower latency than the baseline model. There are two exceptions: Conv-TasNet LibriMix

and DPTNet LibriCSS. The first exception is most likely caused by implementation dif-

ferences between quantization and baseline model structure. The second exception is
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Figure 6.7: LSTM-TasNet quantization and factorization accuracy

Figure 6.8: Conv-TasNet quantization accuracy

Figure 6.9: DPTNet quantization and factorization accuracy

not really an exception as the measurements are close together, where the differences

are only 0.7 seconds for latency and 0.007 batches per second for throughput. Compar-

ing tensor decomposition and quantization performance, no method stands out as they

all have comparative performance results. This is unexpected, as models with a lower

number of parameters should be faster, but the speed gain seems to be negligent.

While the results are not definitive, there are a few takeaways. In higher sparsity

pruning, random, l1-norm, and l2-norm structuredmethods did not perform as well and
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Latency Throughput

Mean Std Mean Std

LSTM-TasNet

Aishell1Mix 9.66927e8 5.52746e7 1.06006 5.36619e-2

LibriMix 1.17543e9 2.11066e7 8.43605e-1 1.96107e-2

LibriCSS 1.07480e10 2.37264e8 9.33370e-2 2.10463e-3

Conv-TasNet

Aishell1Mix 2.88155e8 9.77031e6 4.27277 1.49526e-1

LibriMix 2.92663e8 2.89972e7 3.50815e 1.71752e-1

LibriCSS 2.68844e9 2.50997e7 3.78454e-1 2.40725e-3

DPTNet

Aishell1Mix 8.92666e8 5.60578e6 1.20919 5.44137e-3

LibriMix 1.17284e9 3.72547e7 8.47294e-1 3.16489e-2

LibriCSS 1.06686e10 2.56276e8 9.43626e-2 2.23814e-3

Table 6.7: Model latency and throughput variation

had a significant drop in accuracy. Gradient change methods seemed to handle higher

sparsities better while dropping behind in lower. We did not notice a significant differ-

ence between structured and unstructured pruning methods except in higher sparsities

where unstructured were better. In quantization methods, there was practically no dif-

ference in model accuracy between the methods, while 8-bit integer was slightly more

performant than 16-bit floating point. For low-rank factorization methods, we had CP

decomposition, which did much worse than all other optimization methods, possibly

because of the learning rate was too high. On the other hand, Tucker decomposition

performed slightly worse than quantization still but had accuracy results comparable

to other optimization methods while providing increases in throughput and reductions

in latency. Much of the results did not show a structure in the data, which is possi-

bly because models did not achieve high enough accuracy. For example, we expected

higher sparsity pruning methods to be worse than lower sparsity. While this was true

for Aishell1Mix, it was not for the other two datasets. We believe much higher accuracy

models can be produced if we train the model with SI-SDR and PIT where the PIT is

minimized instead of maximized.

While there were significant steps taken in order to ensure the reliability of testing,

we were using a publicly available cluster for which we don’t have total control and thus

were not in control of all the resulting variables. Therefore, for future work, more testing

should be attempted on more reliable equipment. While our chosen models have many

differences between them, we only used time-domain models due to their simplicity. It
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Figure 6.10: LSTM-TasNet optimizations performance

Figure 6.11: Conv-TasNet optimizations performance

Figure 6.12: DPTNet optimizations performance

would prove useful to add frequency-domainmodels. We have also seen that the current

models were not capable of achieving high accuracy in the used datasets. It would be

beneficial to test the current models with minimized PIT and also include larger models

capable of achieving high accuracy.

While pruning methods have shown great promise, to get throughput and latency

improvements, they should be tested with sparse storage formats. For quantization, we

used dynamic activation quantization, which contains a small overhead because the ac-
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tivations are quantized during run-time. It would prove useful to test ahead-of-time ac-

tivation PTQ and an even more promising QAT. We also used only two number formats

when there are many more available. Additionally, the implementation of the CP and

Tucker decomposition should be moved to a low-level language, such as C++. Because

we couldn’t perform many algorithm iterations, we got worse approximations, and for

Conv-TasNet, we couldn’t use the decomposition at all. Just using a single optimization

method does provide us with faster inference, but to get even greater improvements,

many optimization methods could be applied at once. While our library supports ev-

erything except faster low-rank factorization, the support is limited to CPUs and there-

fore requires substantially longer training times, and the inference will also be limited to

CPUs.
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7 Conclusion

Cloud computing is a traditional solution used to handle deep learning on mobile de-

vices. Faced with privacy concerns, we shifted to edge computing in the task of speech

separation. Speech is themainmethod people used to communicate, making speech sep-

aration an area of great importance for improving lives. While edge computing solves

the privacy problem, we face a new problem: resource-constrained inference. High-

accuracy deep learning models in speech separation have prohibitively large amounts of

parameters, making edge computing infeasible.

In order to speed up deep learning models, we introduce three optimization meth-

ods: quantization, pruning, and low-rank factorization. To test these methods, we ex-

plored three different models with diverse architectures on three diverse speech separa-

tion datasets. Results have shown that some models were not capable of achieving high

accuracy for certain datasets, which prevented us from analyzing them in depth.

We have shown that high sparsity pruning generally performsworse than lower spar-

sities, but also that certain methods handle higher sparsities better while others are bet-

ter suited for lower sparsities. Both quantization methods performed similarly in terms

of accuracy, while the lower precision method had better speed improvements. Simi-

larly to pruning, low-rank factorization methods performed worse for higher reductions

in model parameters. We found CP decomposition to be performing much worse than

other optimization methods, possibly because it required lower learning rates on fine-

tuning.

While we were unable to test the performance of pruningmethods due to implemen-

tation constraints, quantization and low-rank factorization methods have shown great

improvements in terms of latency and throughput. Finally, we described the problems
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we faced, possible solutions, and gave directions for future work.
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Sažetak

Razvoj učinkovitog modela dubokog učenja za raspoznavanje

govora

Matej Božić

Modeli dubokog učenja postali su temelj u razvoju naprednih algoritama za obradu

govora, postižući izuzetne rezultate u točnosti i izražajnosti. Međutim, njihova složenost

često ograničava primjenu u stvarnom vremenu gdje su brzina i učinkovitost ključni.

Ovaj rad je usmjeren na istraživanje i razvoj modela dubokog učenja koji su optimirani

za primjenu u raspoznavanju govora iz zvučnog signala s naglaskom na smanjenje slože-

nosti modela. Cilj je razviti model koji nudi optimalan kompromis između brzine rada,

broja parametara za učenje i upotrijebljene memorije, uspoređujući s trenutno zastup-

ljenim rješenjima u ovom području primjene. Posebna pažnja bit će posvećena kreiranju

modela s manjim brojem učenih parametara koji zadržavaju visoku učinkovitost uz po-

boljšanu brzinu rada.

Ključne riječi: Raspoznavanje govora; Duboko učenje; Optimizacije; Sparsifikacija;

Kvantizacija; Tenzorska dekompozicija
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Abstract

Development of efficient deep learning models for speech

separation

Matej Božić

Deep learning models have become the foundation in the development of advance

speech processing algorithms, achieving exceptional results in terms of accuracy and ex-

pressiveness. However, their complexity often limits real-time applications where speed

and efficiency is key. This work is focused on the exploration and development of deep

learning models optimized for speech separation tasks with an emphasis on reducing

model complexity. Our goal is to develop a model that offers an optimal compromise

between the speed of computation, number of trainable parameters, andmemory usage,

comparing them with the currently available solutions. Special attention will be ded-

icated to creating models will smaller number of learned parameters that retain high

efficiency with improved execution speed.

Keywords: Speech separation; Deep learning; Optimizations; Pruning; Quantization;

Tensor decomposition
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