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abstract

Fast distributed cross-matching of big astronomical data and

parameter estimation of moving point source model

The thesis develops two original methods: “Distributed Zones Algorithm” and “Online

Multifit”. “Distributed Zones Algorithm” is a zone-based method for fast distributed cross-

matching of big astronomical data. It is developed based on the Zones Algorithm [1] and

comprises a distributed data organization scheme and an efficient method of positionally

joining data using a moving window. The algorithm is implemented within a system called

AXS (Astronomical Extensions for Spark), based on Apache Spark and extended with

astronomy-specific functionalities. The system’s cross-matching performance has been

extensively tested in single-machine and “cloud” environments.

“Online Multifit” is a method for parameter estimation of a moving point-source model

based on sequential Bayesian updating. It was developed by extending the Multifit method.

OnlineMultifit utilizes Bayesian statistics to obtain the full posterior probability distribution

of moving point source model parameters but it does so by processing one image at a time

using “sequential updating” technique, updating the posteriors after each image.Themethod

approximates posteriors as mixtures of Gaussians and the main challenge here is to reduce

the errors introduced by these approximations. The final result is that the method uses

less computational resources while obtaining full posterior estimates. Furthermore, the

estimates can be stored in a compressed form (the means and covariances of Gaussian

distributions).

keywords: astronomy, cross-matching, Apache Spark, Bayesian statistics, sequential

updating
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sažetak

Brzo raspodijeljeno uparivanje velikih astronomskih podataka i

procjena parametara modela gibajućega točkastog izvora

Disertacijom se razvijaju dvije originalne metode: “algoritam baziran na distribuiranim

zonama” i “slijedni Multifit”.

“Algoritam baziran na distribuiranim zonama” (“ABDZ metoda” u nastavku) je metoda

za brzo distribuirano uparivanje velikih astronomskih podataka. Astronomski pregledi su

mape regija neba koje tipično nastaju u sklopu astronomskih projekata vezanih uz pojedine

teleskope. Astronomski pregledi stvaraju astronomske kataloge, velike baze s različitim

mjerenjima svojstava astronomskih objekata. Posljednjih desetljeća svjedočimo sve većem

rastu astronomskih pregleda. Tako će, na primjer, Vera C. Rubin Observatory (projekt ranije

poznat kao “LSST”), koji će s radom početi 2025. g., prikupiti više od 10 PB podataka o

ukupno 20-ak bilijuna objekata.

Podatke iz astronomskih pregleda astronomi tipično analiziraju na način da pristupaju

mrežnim sučeljima vezanim za pojedine preglede, dohvate podskup podataka te ga anal-

iziraju na svojim lokalnim mašinama. Međutim, astronome često zanima obrada podataka

cijelog neba, a ne samo nekih regija. I često žele uparivati i uspoređivati podatke iz više

kataloga u isto vrijeme. Moderni sustavi za analizu i obradu astronomskih podataka bi stoga

trebali biti skalabilni i jednostavni za korištenje, podržavati astronomske funkcije, koris-

titi industrijski standardne biblioteke te omogućiti brzo uparivanje kataloga u stvarnom

vremenu. Sustav AXS, razvijen u sklopu ove disertacije, primjer je takvog sustava.

Prostorno uparivanje kataloga jest zapravo pronalaženje parova detekcija iz jednog i

drugog kataloga koje su dovoljno prostorno blizu (ovisno o nekom parametru “epsilon”).

ABDZ metoda je razvijena na temelju “algoritma baziranog na zonama” [1] koji organizira

nebo u horizontalne zone koje služe kao indeksi u podskupe podataka kataloga. To smanjuje

količinu podataka koje je potrebno pretraživati kako bi se pronašli parovi. Osnovna ideja

ABDZ metode jest organizirati podatke u distribuirane zone (u više datoteka), operaciju

uparivanja izraziti kao “epsilon join” upit s funkcijom za izračun udaljenosti te izvršiti taj

upit u paraleli povrh distribuiranih podataka.

ABDZmetoda podatke, osim po zonama, dodatno organizira u “kante” (eng. “buckets”),

tj. fizičke datoteke, na način da se svi objekti iz pojedine zone spremaju u dediciranu kantu

te da se odabir kante za zonu vrši slijedno. Na taj način se automatski smanjuje asimetrija

(eng. “skew”) u distribuciji podataka (ako su zone dovoljno uske), koja je tako često prisutna

u astronomskim podacima i često uzrokuje probleme u obradi podataka jer neke datoteke
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sadrže puno podataka, a druge vrlo malo. Kod organizacije podataka primijenjene u ABDZ

metodi, podaci se ravnomjerno raspoređuju po “kantama” (datotekama).

Podatke unutar “kanti” je zatim potrebno sortirati po zoni i RA (“right ascention”, tj.

x) koordinati nakon čega je podatke moguće efikasno uparivati u parovima dvije po dvije
“kante” u jednomprolazu kroz podatke na način da se za svaki redak na lijevoj strani na desnoj

strani održava pomični prozor koji sadrži samo one retke unutar određene udaljenosti

na temelju RA kolone. Samo za te parove redaka je onda potrebno izračunati vrijednost

funkcije udaljenosti čime se troši minimalna količina memorije i računalnih resursa.

ABDZ metoda implementirana je unutar sustava AXS (Astronomical Extensions for

Spark), temeljenog na Apache Spark sustavu, koji je standardan alat u industriji za obradu

velikih količina podataka. Sparkov Python API u AXS-u je nadograđen s funkcijama speci-

fičnim za astronomiju te je njegova “sort-merge join” implementacija nadograđena na način

da je u stanju efikasno izvršavati ranije spomenute “epsilon join” upite.

Performanse AXS sustava u uparivanju astronomskih katalogamjerene su nad Gaia (430

GB), AllWISE (352 GB), ZTF (1,1 TB) i SDSS (66GB) katalozima na jednoj velikojmašini. Pri

korištenju 28 paralelnih procesaAXS je uparioGaia i ZTF kataloge za 334 sekunde s praznom

predmemorijom (“cold cache”) te za 41 sekundu s parcijalno popunjenom predmemorijom

(“warm cache”), što je znatno brže od poznatih alternativnih pristupa.

Testirano je i trajanje particioniranja i pripreme podataka u ovisnosti o broju korištenih

“kanti” i broju zona. Niti jedno niti drugo nije znatno utjecalo na trajanje pripreme podataka,

dok je svako udvostručenje broja zona povećalo veličinu kataloga za otprilike 10%.

Skalabilnost AXS sustava testirana je u okolini “u oblaku”, u Kubernetes clusteru na Ama-

zon infrastrukturi. Testovi su pokazali da je sustav linearno skalabilan ako se proporcionalno

povećavaju i količina podataka i broj procesa (“weak scaling”).

“Slijedni Multifit” je metoda za estimaciju parametara modela gibajućeg točkastog

izvora temeljena na slijednom Bayesovom osvježavanju. PSF (“point spread function”)

je funkcija koja određuje oblik kojeg točkasti izvor svjetla (“point source”) proizvodi u

fokalnoj ravnini teleskopa te ovisi o položaju izvora, vremenu, stanju instrumenta itd. Kod

teleskopa smještenih na Zemlji, glavna komponenta PSF funkcije jest atmosfera koja titra

što proizvodi dodatni šum kod astronomskih observacija. Tradicionalan način za smanjenje

šuma, tj. povećanje omjera signala i šuma (eng. “S/N ratio”), jest zbrajanje slika (eng. “image

coaddition”) koje smanjuje šum s korjenom broja slika koje se koriste. Međutim, kod

gibajućih izvora, zbrajanje slika proizvodi mutan trag gibanja zbog čega se tako zbrojene

slike ne mogu koristiti za pouzdana mjerenja.

Multifit metoda [2][3] povećava omjer signala i šuma korištenjem informacija iz svih

dostupnih slika bez zbrajanja slika. Međutim, ona koristi metode tradicionalne statistike,

dakle proizvodi samo procjene najvjerojatnijih vrijednosti parametara te zahtijeva obradu

svih dostupnih slika odjednom. Slijedni Multifit (eng. “Online Multifit”) metoda, razvijena

u sklopu ove disertacije, koristi metode Bayesove statistike i proizvodi procjene potpunih

posteriornih distribucija vjerojatnosti parametara, te zahtijeva obradu samo posljednje slike

u nizu.

Ovdje se za gibanje točkastog izvora svjetla pretpostavlja jednostavan linearan model

gdje su brzine u x i y smjerovima konstantne. Pretpostavka je da je izvor svjetla detektiran
prilikom automatske obrade u sklopu astronomskog pregleda (npr. “LSST data processing
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pipelines”) na nekoj poziciji xE i yE . No zbog mutnog traga gibanja, ta je inicijalna procjena
nepouzdana pa algoritam dopušta korekciju te inicijalne procjene parametrima x0 i y0.
Osim toga, algoritam nastoji procijeniti i “magnitudu” (mjera svjetline) izvoraM počevši

od inicijalno procijenjene magnitudeME . Na početku postupka estimacije dostupne su i

slike I1 . . . IN dobivene u trenucima t1 . . . tN , slike s procijenjenim varijancama V1 . . .VN i

procijenjene PSF funkcije 1 . . .N .
Šum na astronomskim slikama dobro se opisuje Poissonovom razdiobom jer se radi

o diskretnim događajima (udarima fotona na područje nekog piksela). Kod većeg broja

događaja Poissonova razdioba može se dobro aproksimirati Gaussovom razdiobom gdje su

i sredina i varijanca jednake parametru λ, tj. pretpostavljenom signalu, tj. pretpostavljenom

modelu stvaranja slike. Funkcija izglednosti je onda određena Gaussovom razdiobom pa je

za njezinu maksimizaciju dovoljno minimizirati tzv. χ2 statistiku koja se može izračunati
oduzimajućimodeliranu sliku od promatrane, dijeleći kvadrat dobivene razlike s varijancom,

te zbrajajući sve tako dobivene piksele.

χ2 statistika distriburana je po χ2 distribuciji s k stupnjeva slobode (gdje je k jednak broju
ulaznih uzoraka podataka, minus broj parametara koji se estimiraju). Kod većih stupnjeva

slobode k, ta distribucija se također može dobro aproksimirati Gaussovom razdiobom sa

srednjom vrijednošću jednakom k te varijancom od 2k. Ako se ta razdioba zatim podijeli s

k, dobije se χ2 statistika “po stupnju slobode” (eng. “χ2 per degrees of freedom”, ili χ2DoF)

sa središtem u 1 te varijancom 2/k. χ2DoF statistika se na taj način može koristiti kao test

točnosti estimacije.

Slijedni Multifit metoda razvijana je i testirana na simuliranim podacima jer podaci s

dovoljnim brojem pouzdanih mjerenja gibanja nebeskih tijela nisu lako dostupni. Objekti

su simulirani na “pravim” astronomskim slikama s teleskopa HSC SSP, konkrektno na RC2

podskupu slika s tog astronomskog pregleda. Odabrana je regija s dobrom pokrivenošću te

podijeljena u 304 (16x19) sličica (eng. “cutouts”) dimenzija 30x30 piksela te je gibajući izvor

simuliran u središtu svake od sličica. Objekti su simulirani s nasumično odabranimbrzinama

u RA (eng. “right ascention”, tj. x) i Dec (eng. “declination”, tj. y) smjerovima na način da
većina objekata prijeđe 1 piksel imaksimalno 6 piksela u promatranomvremenskomperiodu.

Magnitude simuliranih objekata su se povećavale od 18 (vrlo sjajno) do 27 (nevidljivo na

individualnim slikama) s povećanjem Dec koordinate.

Važno je primijetiti distribuciju vremena kada su slike u odabranom skupu dobivene:

prvog dana dobiveno je 9 ekspozicija, a idućih 8 tek nakon 240 dana, i to ponovno na

isti dan. Ova situacija nije idealna za procjenu gibanja objekata jer njihovo gibanje nije

primjetno unutar jednog dana. Bilo bi puno bolje za primjenu u ovoj disertaciji kada bi

ekspozicije bile ravnomjerno vremenski raspodijeljene.

Za obradu slika i simulaciju objekata korišteni su standardni LSST programski “zadaci”

(eng. tasks), razvijeni u sklopu Vera C. Rubin Observatory projekta, slijedno pozivani u

skladu s preporukama autora: singleFrame, insertImages, jointCal, makeWarp, as-

sembleCoadd, coadd measurement, forced photometry. Nakon završetka cijelog procesa, u

LSST katalogu dostupna su mjerenja nad objektima detektiranim na slikama te ih je moguće

dohvatiti korištenjem LSST komandi i upita. Simulirani objekti uspješno su pronađeni u

katalogu, osimmanjeg broja najmanje sjajnih (magnitude 25, 26 i 27) te objekata simuliranih

u blizini vrlo sjajnih zvijezda. Ovi detektirani simulirani objekti su dalje korišteni u razvoju
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i testiranju algoritama.

Budući da se za razvoj metoda u ovoj disertaciji koristi predviđajuće modeliranje (eng.

“forward modeling”), prvi korak je definiranje modela generiranja slika na temelju pret-

postavljenih parametara (pozicije, sjaja i brzine), te definiranje funkcije izglednosti koja će

oduzimanjem modeliranih od stvarnih slika, te dijeljem rezultata s varijancom i zbrajanjem

svih tako dobivenih piksela dobiti χ2 vrijednost. Validnost funkcije izglednosti može se
provjeriti vizualnom inspekcijom rezultata svakog od koraka, izračunom χ2DoF vrijednosti

ili izračunom njezinih vrijednosti na rešetci parametara (eng. parameter grid), no to vrlo

brzo postaje nemoguće s porastom broja parametara.

Multifit metoda je u ovoj disertaciji implementirana na tri načina:

• Kao grupna Multifit metoda korištenjem tradicionalne, frekventističke statistike, na

temelju rada “Measuring the undetectable” [3].

• Kao grupna Multifit metoda korištenjem Bayesove statistike

• Kao slijedna Multifit metoda korištenjem Bayesove statistike

“Grupna Multifit metoda”, za razliku od “slijedne”, znači da se uvijek obrađuju sve

dostupne slike, a slijedna Multifit metoda jedan je od doprinosa ove disertacije. Ona u

različitim koracima koristi određene aproksimacije te je za očekivati da će njezina točnost

biti manja od prve dvije implementacije. Slično je i s usporedbom Bayesove metode s

frekventističkom te frekventistička može poslužiti kao osnovna implementacija kojoj se

Bayesova treba približiti, a grupna Bayesova metoda kao ideal kojem se treba približiti

slijedna Bayesova metoda.

Frekventistički pristup sastoji se u jednostavnoj maksimizaciji metode izglednosti, tj.

minimizaciji χ2 vrijednosti. Postoje različite optimizacijske metode koje mogu biti korištene
u tu svrhu i čije su implementacije dostupne u obliku Python paketa. Među njima su

Newtonova optimizacijska metoda, Gauss-Newtonov algoritam, Levenberg-Marquardtova

metoda, Trust Region Reflective metoda, Dogbox, Powell, Nelder-Mead itd. Devet glavnih

optimizacijskih algoritama je uspoređeno po preciznosti estimacije parametara te po brzini

rada. Svi algoritmi su rezultirali pogreškom LinAlgError u određenom postotku. U tim bi

slučajevima algoritam bio ponovno pokrenut s neznatno pomaknutom početnom pozicijom.

Powell metoda je odabrana kao općenito najbolja te je korištena za sva daljnja testiranja.

Frekventistička implementacija implementirana je u obliku LSST “zadatka” te je spremna

za korištenje u sklopu Vera C. Rubin projekta.

Druga implementacija jest također grupna implementacija, ali je bazirana na Bayesovoj

statistici. Bayesova statistika temelji se na Bayesovoj formuli koja kombinira izglednost

podataka s obzirom na model i parametre (već definirana funkcija izglednosti), priorne

vjerojatnosti samih parametara (npr. ukoliko je poznato da brzine objekata nikada ne

prelaze određene vrijednosti) te “dokaz”, tj. normalizacijski integral vjerojatnosti podataka i

parametara. Integral dokaza je najteži dio formule za izračunati. U rijetkim slučajevima to

je moguće analitički, a u ostalima se koriste numeričke metode, najčešće Markov Chain

Monte Carlo (MCMC), koja se koristi i u ovoj disertaciji.

Monte Carlometode koriste slučajne uzorke za procjenu ne-slučajnih varijabli, aMarkov

ChainMonteCarlo koristimarkovljeve lance slučajnih vrijednosti koji opisuju danu funkciju
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vjerojatnosti na način da se najviše zadržavaju u najvjerojatnijim područjima. Postoje

različite metode uzorkovanja koje je moguće koristiti unutar MCMC postupka. U ovoj

disertaciji koristi se grupna (eng. ensemble) metoda čija efikasnost ne ovisi o afinim trans-

formacijama (iskrivljenost distribucije) iz [4]. To je grupna metoda jer koristi set “hodača”

(eng. walkers) koji određuju svoju iduću poziciju na temelju pozicija svih ostalih hodača.

Autori predlažu razlčite “korake” koji se pri tome mogu koristiti. Tijekom implementacije,

“DE korak” i “KDE korak” iz [5] pokazali su se najboljima za ovaj Mulitifit problem.

Rezultat MCMC procedure je histogram povijesnih vrijednosti lanaca (njihovih uzo-

raka), a pritom vrijedi da što je više uzoraka u nekom intervalu, vjerojatnost tog intervala je

veća. Iz tih je histograma potrebno dobiti najvjerojatnije vrijednosti parametara, tj. njihove

MAP (eng. maximum a-posteriori) vrijednosti. Također, cilj Bayesovih Multifit metoda jest

i opisivanje posteriornih distribucija vjerojatnosti, a ne samo MAP vrijednosti. U tu svrhu

potrebno je iz histograma dobiti matematički opis distribucije. Za to je moguće koristiti

metodu histograma, no ona ima više nedostataka. Moguće je koristiti i metodu procjene

gustoće jezgrama (eng. kernel density estimation), no ona se je pokazala presporom. U ovom

radu posteriorne distribucije opisuju se Gausovim smjesama (eng. Gaussian mixtures). Za

estimaciju Gaussove smjese iz histograma moguće je koristiti expectation-maximization

ili variational inference algoritam. U ovom radu koristi se variational inference jer je u

stanju smanjiti težine pojedinih komponenti Gaussove smjese blizu nuli te ih praktično

eliminirati.

Histograme koje proizvodi MCMC procedura moguće je vizualizirati i pomoću tzv.

“corner plot” grafova koji za svaki par parametara pokazuju konturne grafove te su korisni

za istraživanje korelacija među parametrima. Još jedan koristan dijagnostički alat su Q-Q

grafovi (eng. quantile-quantile plots) koji daju usporedbu dvije distribucije. Budući da se

u ovom radu histogrami aproksimiraju Gaussovim distribucijama, korisno je histograme

usporediti s Gaussovom distribucijom. Tu je vidiljivo da je za MCMC proceduru potrebno

koristiti dovoljan broj iteracija i “hodača” jer inače oni ne istraže adekvatno posteriornu

distribuciju vjerojatnosti već samo djelomično. U takvim slučajevima će i Gaussova aproksi-

macija unijeti veću pogrešku.

MAP procjene parametara moguće je također dobiti na nekoliko načina. Prvi način je

iz moda (najviše točke) procijenjene Gaussove aproksimacije. Ta metoda, međutim, nema

veliku točnost. Bolja (i najrobusnija) metoda je izračunom medijana iz histograma uzoraka.

No, njezina točnost ovisi o kvaliteti eksploracije distribucije (broju iteracija i “hodača”). U

ovom radu MAP procjene se dobivaju dodatnim izvršavanjem Powell (optimizacijskog)

algoritma kome je medijan histograma postavljen za početnu vrijednost. Pokazalo se da

točnost ove metode ne ovisi o broju iteracija i “hodača”. Međutim, kvaliteta aproksimacije

Gaussove smjese, koja je važna za slijednu metodu, ovisi o kvaliteti eksploracije distribucije

pa se uvijek koristi 400 iteracija, kao kompromis.

Slijedna Multifit metoda temelji se na slijednom Bayesovom osvježavanju gdje se za

svaki novi podatak (tj. sliku u ovom slučaju) ažurira posteriorna distribucija vjerojatnosti

(na temelju funkcije izglednosti). Ta posteriorna distribucija služi kao prior za idući podatak

(tj. sliku). Svaki korak je zasebna Bayes procedura gdje se izvršavaMCMC, dobiva histogram

te se histogram aproksimira Gaussovom smjesom. Nakon svakog koraka moguće je provesti

iste dijagnostičke postupke: analizu corner plotova i Q-Q grafova, a osim toga i analizirati
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kako se procijenjeneMAP vrijednosti sa svakim korakompribližavaju pravim vrijednostima.

Budući da se kod slijedne Multifit metode uvijek obrađuje samo jedna slika, a kod

grupne metode sve dostupne slike, procesna kompleksnost slijedne metode je O(N), a
grupne je O(N2). Memorijska kompleksnost slijedne metode je O(1), a grupne O(N).

Sve tri implementacije uspoređene su na temelju slijedećih metrika:

• Sigmaudaljenost - udaljenost procijenjenog rješenja od pravog rješenja u 5-Dprostoru

parametara u jedinicama standardne devijacije. Međutim, različite metode procjen-

juju standardnu devijaciju na različite načine i uz velike razlike te se ova metrika nije

pokazala previše korisnom.

• Prosječna udaljenost putanje - prosječna udaljenost procijenjenih od stvarnih pozicija

objekta u simuliranim trenutcima

• χ2DoF vrijednost

• Sirova odstupanja vrijednosti parametara od stvarnih (simuliranih) vrijednosti

• Trajanje procedure

Rezultati su pokazali da je frekventistička implementacija na temelju [3] najtočnija i

najbrža. Bayesian grupna metoda joj je vrlo blizu po točnosti sve do magnitude od 26 nakon

koje se točnost znatno smanjuje. SlijednaMultifit metoda ima veću pogrešku (nakon obrade

15 slika), u prosjeku cca. 0.35 piksela, također do magnitude 26, što može biti prihvatljivo za

određene primjene.

Kada se gleda točnost u ovisnosti o koraku (broju obrađenih slika), slijedna metoda

pokazuje da se točnost ustrajno popravlja što dokazuje stabilnost cijelog postupka. Pri tome

je vidljivo pogoršanje koje počinje oko 10-og koraka, a koje se može objasniti distribucijom

vremena kada su slike dobivene: prvih 9 slika dobiveno je na isti dan. Iduće slike donose

novu informaciju koja privremeno algoritam skreće na krivi trag, no nakon manjeg broja

koraka, algoritam se oporavlja.

Sustav AXS se od 2018. godine koristi u Dirac institutu pri Sveučilištu Washington u

razne znanstvene svrhe ([6] i [7]). Također ga je koristilo više istraživačkih grupa diljem

svijeta. Trenutno se AXS razvija na Dirac institutu u iduću verziju radnog imena “HiPSCat”

koja Parquet format zamjenjuje ekstenzijom IVOA HiPS standarda kojeg je moguće čitati

direktno iz Python koda. Plan za ovu novu verziju AXS sustava je da se koristi kao sustav

za obradu podataka na Vera C. Rubin projektu te na drugim NASA projektima.

Frekventistička implementacija Multifit algoritma je zapakirana u obliku LSST “zadatka”

te ju je moguće koristiti u sklopu Vera C. Rubin projekta. Kako informacije s tog pro-

jekta pokazuju, trenutno ne postoji alternativno rješenje za estimaciju parametara gibanja

nebeskih tijela te je izgledno korištenje upravo ove implementacije.

Jedno od mogućih budućih pravaca istraživanja su “particle filteri” koji održavaju skup

točaka koje u svakom trenutku opisuju posteriornu distribuciju vjerojatnosti. Radi se o

vrlo širokom polju različitih pristupa i metoda te bi primjena neke od njih na Multifit

problem bila vrlo zanimljiva. Drugi pravac daljnjeg istraživanja moglo bi biti poboljšavanje

otpornosti metode na prisutnost sjajnih zvijezda u blizini objekta na način da se održava
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nekoliko alternativnih “rješenja” u obliku komponenata Gaussove smjese. Treći pravac

mogao bi biti poboljšanje performansi metode korištenjem GPU procesora. Konačno,

slijedno osvježavanje nije ograničeno na ovaj problem te ga je moguće primijeniti i na druge

probleme u astronomiji.

ključni pojmovi: astronomija, uparivanje podataka, Apache Spark, Bayesova statistika,

slijedno osvježavanje
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1
Introduction

T
his chapter gives an overview of the two main topics that this thesis deals with: cross-

matching of astronomical catalogs and parameter estimation of a moving point source

model.

1.1cross-matching of astronomical catalogs

1.1.1 Background and motivation

g astronomical surveys and catalogs.Astronomical surveys are maps of re-

gions of the sky typically created as part of an astronomical project, often tied to a particular

telescope, producing an astronomical catalog. Astronomical catalogs are large databases con-
taining variousmeasurements of astronomical objects’ properties. Surveys can be contrasted

to observations of a specific target, such as a nebula, galaxy, supernova, etc.

Along with the progress of related technologies, scopes of astronomical surveys and sizes

of datasets available in their catalogs are growing at an ever-increasing rate. For example,

the 2MASS survey (active 1997-2003) produced a catalog with 470 million sources with

the total size of about 40 GB [8]. The latest release (DR14) of Sloan Digital Sky Survey [9]

(SDSS; active since 2003) contains 1.2 billion objects with the total data size of about 150 GB.

The European space telescope Gaia [10], active since 2016, observing about 1.8 billion stars

in our galaxy and aiming to create the largest and most-precise 3-D map of the Milky Way,

produced its third data release in 2022 with almost 800 GB in the main catalog (source

measurements) and more than 6TB in total (with astrophysical parameters, photometry

and spectroscopy measurements etc.) [11].

In the near future, Vera C. Rubin Observatory (formerly known as “Large Synoptic

Survey Telescope” or LSST), with its aim of producing the first video of the visible universe
in history, is expected to acquire about 1000 observations of close to 20 billion objects

during the first 10 years of its lifetime (with catalog dataset size expected to be larger than
10 PB [12]).

Radio astronomy produces even larger amounts of data so that most of them cannot

even be stored in catalogs and need to be filtered out during acquisition. The research

presented here, however, is confined exclusively to optical astronomy.

g analyzing astronomical catalogs.Astronomers today access datasets pro-

duced by astronomical surveys typically through data archives available online, such as

1
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Strasbourg astronomical Data Centre, or SDC 1; Mikulski Archive for Space Telescopes,

or MAST 2; and NASA/IPAC Infrared Science Archive, or IRSA 3. These online interfaces

allow for efficient searching, filtering and extraction of catalog data stored in relational

databases.

Researchers typically begin their analyses by downloading a subset of the catalog data to

their local cluster (or a machine), typically as FITS files (“Flexible Image Transport System”

is the standard data format used in astronomy4), and then proceed by using custom scripts

(usually written in Python) or code organized in Jupyter notebooks [13]. This workflow

has been used effectively in the past for producing some of the most impactful results in

Astronomy.

g cross-matching of astronomical catalogs.Beyond working on a single

catalog, astronomers often want to positionally cross-match objects from two (or more)

surveys in order to link data about the same physical object observed with different tele-

scopes, optical filters or at different times. Positional cross-match, a fundamental operation

in analyzing survey data, is a join of two catalogs based on the distance between their objects:

finding k nearest neighbors in catalog B of each object in catalog A. For example, accurate
maps of distributions of stars and interstellar matter were recently constructed by com-

bining information from the SDSS, Pan-STARRS, and 2MASS catalogs [14]. Furthermore,

cross-matching can be done probabilistically if it also considers measurement uncertainties

[15].

g analyzing entire catalogs.Analyses spanning entire astronomical catalogs

are becoming increasingly important. Examples of analyses that require whole-catalog

processing include explaining the nature ofDark Energy, automatic classification of observed

objects and searching for outliers (e.g. [16] and [12]).

g analyzing time-series data.Many important astronomical surveys (and some

of the previously mentioned ones) are multi-epoch surveys, meaning that they come with a

time domain component: they repeatedly observe the same objects. These result in catalogs

with time series of object properties (often called light curves). Some of these surveys also
produce real-time alerts when they observe changes in object properties (e.g. a supernova

explosion).

1.1.2 Problem statement

With increases in data volumes of the upcoming astronomical surveys, and with data analy-

sis requirements that were just described, it is increasingly obvious that the RDBMS-based

systems and their data downloaded through web interfaces are becoming a bottleneck for

scientific research in astronomy. RDBMS-based systems have difficulties supporting algo-

rithms that need to frequently go through entire catalogs. Also, positional cross-matching

1 http://cds.u-strasbg.fr/

2 https://archive.stsci.edu/

3 https://irsa.ipac.caltech.edu

4 For more information see https://fits.gsfc.nasa.gov/

http://cds.u-strasbg.fr/
https://archive.stsci.edu/
https://irsa.ipac.caltech.edu
https://fits.gsfc.nasa.gov/
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of catalogs is computationally extremely expensive and usually not straightforward to

implement with a RDBMS-centric system.

An alternative approach is to migrate RDBMS backends to modern, scalable, industry-

standard, distributed data processing systems and store data in columnar file formats, a

setup which would allow for efficient data processing and would map well to the require-

ments posed by the modern astronomy. However, such systems are slow to penetrate

into astronomy community mostly because they are difficult to use and deploy and lack

astronomy-specific functionality, such as cross-matching of astronomical catalogs, spatial

selection or time-series support.

g requirements for a modern astronomical data analysis system.

The preceding considerations can be summarized into the following list of requirements for

a system that can serve astronomers in analyzing future large sets of astronomical data.

1. Support for astronomy-specific functions: in order for the data analysis system to be

useful to a broad community of astronomers, it needs to support astronomy-specific

functions (positional cross-matching and spatial querying being the most important

ones),

2. Efficiency: the principal operations (positional cross-matching, filtering, and scan-
ning through the entire dataset) need to be as fast as possible,

3. Light curve functions: ability to manipulate series of observations of a single object,

4. Scalability: ability to handle highly skewed datasets at petabyte scale,

5. Ease of use: enable astronomers to perform ad-hoc analyses by freely combining SQL

syntax and Python code,

6. Use of industry-standard frameworks and libraries: this would make the system
more maintainable and allow for reuse of services and code from other areas in the

industry.

g fast, on-line cross-matching of catalogs.Being a fundamental astronom-

ical operation, as was already stated, efficient cross-matching function is an essential part of

a modern astronomical data analysis system. Although conceptually simple, designing and

implementing it on an astronomical scale is not trivial. The cross-match operation is often

made possible by pre-computing cross-match tables between catalogs, but as the number of

catalogs grows this becomes inefficient (O(N2), where N is the number of catalogs).

An ideal system would offer sufficiently fast spatial cross-matching of catalogs so that it

can be done on the fly, as required by the researcher.

1.2parameter estimation of a moving point source model

1.2.1 Background and motivation

g astrometry, photometry and spectroscopy.The immediate goal of optical

astronomical surveys is to first detect light sources in the acquired images, associate them
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to physical objects (stars and galaxies) and then determine physical attributes of the objects

as accurately as possible. Measuring positions of objects in the sky is called astrometry.
Astronomers are interested in objects’ luminosity (total energy output), temperature, color,

size, shape, and other properties. These are all based on flux (electromagnetic radiation)

measurements, i.e. photometry and spectroscopy.

Photometrymeasures object’s total flux. Spectroscopymeasures object’s flux as a function

of wavelength in order to determine the object’s chemical composition. Spectroscopy is

much more expensive than photometry and is not possible in low signal-to-noise (S/N)

environments. As a less precise, but also a less expensive and hence feasible alternative,

astronomers use photometry along with wavelength filters, which amounts to low resolution

spectroscopy [17]. Filters let only a discrete range of wavelengths to pass through them.

SDSS uses filters denoted as u (which comes from “ultraviolet”), g (“green”), r (“red”), i

(“infrared”), z (beyond infrared). LSST also adds the y filter (further beyond the z filter).

A Filter response diagram shows a system’s transmission, i.e. the number of electrons
produced in the system by each incoming photon. Figure1.1shows the response of LSST’s

detector system when using different filters.

Figure 1.1: Response of LSST’s detector system for each of its six filters as a function of wavelength.

Filter response is the number of electrons produced in the system by each incoming

photon. Image source: https://www.lsst.org/sites/default/files/img/ugrizY.jpg

There are two main methods of photometric measurements: PSF photometry and

aperture photometry. PSF photometry (PSF stands for “point-spread function”, defined

in the next section) measures object’s flux by fitting a PSF model to a star (reliable PSF

estimation is critical here). Aperture photometry simply sums up pixel values within an

aperture, a circular area centered on the object. PSF photometry is more accurate and
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aperture photometry approximates it well if a star is much brighter than the background, if

PSF cannot be estimated reliably, or when measuring non-point sources [18].

g astronomical image restoration and seeing.PSF determines the shape

a point source produces in the telescope’s focal plane. PSF depends on time, instrument

state, source position and source color [19]. For diffraction limited optical systems, such
as space-based telescopes [17], the Airy function was shown to be the best choice of PSF

function. Large ground-based telescopes are “seeing limited”, “seeing” being defined as full

width at half maximum (FWHM) of the PSF [17]. Atmospheric turbulence is the main

component of ground-based telescopes’ PSF and it changes through time similarly to how

air vacillates above a hot road. As a consequence, on longer exposures of several seconds or

more, the changing PSF causes light sources to get smeared on the resulting image.

Estimating PSF is a critical problem in ground-based surveys. It is especially important

for measuring weak lensing effects [20] where having an accurate PSF model is critical for

galaxy shape measurements.

g image coaddition.Image coaddition is a technique traditionally used in astro-

nomical surveys for obtaining “deeper” images, improving the PSF and removing cosmic

rays and other artifacts [18]. Astronomical images are mostly static (galaxies and stars do

not move much), so multiple images can be combined to increase S/N. The co-added image

(“coadd”) has smaller seeing than original images and the PSF of the coadd can approach

diffraction limit. For example, in [21] images of the so-called Stripe 82 (a 2.5 deg wide region
repeatedly observed by SDSS) were coadded to obtain images about 2 mag (“magnitude” is

a measure of brightness) deeper (meaning “sharper” and “brighter”) and with a median

seeing of approximately 1.1” (1.1 arc-seconds), compared to 1.4” seeing of the original im-

ages. Zackay and Ofek in [22] obtain 0.35” FWHM in co-added images (compared to the

diffraction limit of 0.3”) for seeing conditions of 1.2”-1.5”. Figure1.2shows an example of

deeper objects visible on a coadd from the SDSS project.

1.2.2 Problem statement

Accurate coaddition, which preserves scientific and statistical information in original images,

is not trivial. Different images are typically taken with different PSFs and backgrounds. PSF

also varies across the image. Simply averaging pixels of different images is not sufficient as it

would result in discontinuities in variation of PSF across the coadd [16]. Some astronomical

measurements, such as measurements of galaxies’ ellipsicities which are important for

weak lensing measurements, rely on accurate PSF model estimation. PSF estimation of the

resulting coadded image is the main problem when coadding images.

While image coaddition is extremely useful for detecting faint objects, and while it eases

computational requirements of multi-epoch image processing, it results in images where

discontinuities in variation of PSF across the coadd (at the borders of individual epoch

images) and the correlated noise [2][16] make accurate estimation of the coadd PSF difficult.

The optimal coaddition methods previously mentioned ([18][22]) have limitations: they are

applicable only to images where background noise dominates or to images without blended
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Figure 1.2: SDSS coaddition example ([21]). The original description: “Comparison between single

pass (left) and coadd (right) images in the r band for run 206, camcol 3, field 505, centered

at R.A. = 15 deg, decl. = 0 deg. Images are shown with the same scale, contrast and stretch.

The single pass counterpart (run 5800, camcol 3, field 505) is one out of 28 images used

in the coaddition of this particular image. This example illustrates the fact that a large

number of objects below the detection threshold of each image can be well detected and

measured in the coadd.”

(i.e. overlapping) objects. These are important issues in areas where extremely accurate PSF

modeling is important, such as weak lensing estimations from galaxy shape measurements.

More fundamentally and most importantly for this thesis, when coadding images of

moving sources, the result is a blurred coadd, not appropriate for physical measurements.

A method that preserves information from all individual images of an object and uses that

information to increase signal-to-noise ratio without depending on coadds is called Multifit

([2][3]). However, that method, because it is based on “traditional” or “frequentist” statistics,

provides only point estimates of model parameter values while obtaining a full posterior

probability distribution using alternative methods requires much more computing power.

This thesis proposes an alternativemethod called “OnlineMultifit” which produces estimates

of the posteriors but only handling a single image at a time, thus reducing computational

requirements. The method is applied to the problem of estimating parameters of a moving

point source model, described in section3.2.2.

1.3scientific contributions of the thesis

The original scientific contributions of the thesis are the following.

Zone-based method for fast distributed cross-matching of big astronomical data An
original method called “Distributed Zones Algorithm” is developed based on the Zones

Algorithm [1]. It comprises a distributed data organization scheme and an efficient method

of positionally joining data using a moving window. The algorithm is implemented within
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a system called AXS (Astronomical Extensions for Spark), based on Apache Spark and

extended with astronomy-specific functionalities. System’s cross-matching performance

has been extensively tested in single-machine and “cloud” environments.

Method for parameter estimation of a moving point-source model based on se-
quential Bayesian updating An original method called “Online Multifit” is developed by
extending the Multifit method. Online Multifit utilizes Bayesian statistics to obtain the full

posterior probability distribution of moving point source model parameters but it does

so by processing one image at a time using “sequential updating” technique, updating the

posteriors after each image. The method approximates posteriors as mixtures of Gaussians

and the main challenge here is to reduce errors introduced by these approximations. The

result is that the method uses less computational resources while obtaining full posterior

estimates. Furthermore, the estimates can be stored in a compressed form (the means and

covariances of Gaussian distributions).

1.4thesis outline

The thesis is organized as follows:

Ch 2 This chapter deals with the topic of fast cross-matching of large astronomical catalogs.

Its first section gives an overview of existing systems and algorithms that tried to

solved the problem. The second section formally describes the problem of positional

cross-matching of catalogs and gives a detailed description of the "Distributed zones"

algorithm, one of the scientific contributions of the thesis. In the third section, a

description with details about implementation of the algorithm within the system

called "AXS", based on the Apache Spark platform and created during the work on

the thesis. The same section gives an overview of AXS’ functionalities meant to be

used by astronomers. In the last, fourth section ("Experimental results") detailed

descriptions of test results of cross-matching well-known astronomical catalogs using

AXS conducted on a single machine and "in the cloud" are given.

Ch 3This chapter deals with the topic of estimating parameters of a moving point source

model. In its first section, an overview of development of the "Multifit" idea is given,

where instead of using image coaddition, original images are compared to the images

generated based on the supposedmodel (so called "forwardmodeling"). In the second

section, the differences in approach to the Multifit problem depending on whether

"traditional" or "Bayes" statistics are used are described, andmathematical foundations

of the problem are laid down. In the third section the main idea comprising the core

of the second scientific contribution of the thesis is described: application of the

method of Bayesian sequential updating of the posterior probability distribution (of

model parameters), sequentially with each new image, in order to obtain an estimate

of the shape of the posterior distribution with smaller memory cost. The fourth

section brings the details and source code for Multifit algorithm implementation

using traditional statistical methods in the form of a LSST "task", ready to be used as

part of Vera C. Rubin telescope data processing. The fifth section gives the details and

source code ofMultifit algorithm implementation usingmethods of Bayesian statistics,
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but using all images at once (the so called "batch" approach). The sixth section brings

the details and source code of the Online Multifit idea implementation. The seventh

section gives the results of accuracy and speed testing of all three implementations.

Ch 4 In this chapter, the conclusions resulting from the conducted doctoral research are

presented and potential future directions for further research are given.



2
Fast Cross-Matching of Large Astronomical Catalogs

This chapter handles the theme of fast cross-matching of large astronomical catalogs, which

is actually a positional join of astronomical observation data. The positional join is based

on object coordinates in an astronomical coordinate system.

This thesis proposes the distributed zones algorithm (see section2.2.2), comprising a

specific data organization scheme and a version of an epsilon join, as a solution for fast,
distributed positional cross-matching operation. The proposed data partitioning scheme

also elegantly solves data skew issues so often present in astronomical datasets (see section

2.2.2.4).

This thesis also introduces Astronomical eXtensions for Spark (AXS) [23], a system

based on Apache Spark 1, enriched with astronomy-specific functions and containing an

implementation of the distributed zones algorithm. The goal of AXS is much broader than

cross-matching of astronomical catalogs. Its main aim is to offer a viable option for a

modern astronomical data analysis system. Main requirements for such a system were listed

in section1.1.2.1. AXS functionalities in that regard are described in section2.3.3.

Performance testing described in section2.4was also performed using AXS. The results

show that the approach used by AXS is superior performance-wise to other systems solving

the same problem, listed in the next section.

AXS has been used since 2018 at Dirac institute2 at the University of Washington for

working on Zwicky Transient Facility (ZTF) data (for example, to “efficiently identify can-

didate transits of likely white dwarf stars in the large ZTF data set” in [6]) and for Vera C.

Rubin Observatory (formerly known as LSST) use cases ([7]), but also by other astronomy

research groups around the world.

AXS is currently being evolved by Dirac institute into a system internally called “HiP-

SCat”. The main motivation for this change is replacing the Parquet file storage format with

an extension of IVOA HiPS standard3, which is directly readable with Python. The plan for

this next generation of AXS is to be used as the data processing system for Vera C. Rubin

Observatory and other NASA projects.

1 The main web site is at: https://spark.apache.org

2 See https://dirac.astro.washington.edu/ for more information

3 See https://www.ivoa.net/documents/HiPS/ for more information

9
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2.1related work

Here, a list of projects with similar goals to AXS and offering catalog cross-matching

capabilities is given. Large Survey Database (LSD) is described in more detailed as it was

foundational work behind AXS.

2.1.1 The Large Survey Database

The Large Survey Database [24, 25] is a computing framework and distributed database

management system for querying, cross-matching, and analysis of large survey catalogs. It

is highly scalable (can scale to more than 100 nodes) and is optimized for parallel scans of

positionally (longitude , l atitude) and temporally (time) indexed datasets. It implements
a “shared nothing” architecture (i.e. the one where nodes do not share memory or disk

resources and use them independently in order to maximize concurrency). The LSD code

is available at http://github.com/mjuric/lsd.

Google’s BigTable [26] distributed database and the MapReduce [27] programming

model have influenced LSD’s design and some of its terminology.

g lsd’s data organization.LSD vertically partitions tables into column groups
containing related data (such as astrometry or photometry) and horizontally into space

and time cells of equal sizes in sky pixels [HEALPix; 28] and equal time intervals. The

partitioning scheme maps to compressed and checksummed HDF5 files (tablets) organized
in a distributed directory structure. High performance is achieved by storing related data

close together and loading data in large chunks.

g lsd’s programming model.LSD implements a subset of SQL DML [ 29] with syn-

tax extensions that allow for freely mixing Python and SQL. Users can also write computing

kernels that are applied on partial query results at cell level and transform or aggregate them

before further processing. Such granular processing steps are organized in directed acyclic

graphs (DAGs) of execution, similarly to Dask [30] and Spark [31], and the framework

distributes, schedules and executes the lazily-computed DAGs.

g areas for improvement.While LSD got adopted by a number of research teams

as a ready-made solution for querying, sharing and analyzing large datasets, there are still

some major areas in need of improvement:

• Partitioning skew: Because of its fixed, non-hierarchical partitioning scheme, LSD
suffers from significant partitioning skew.

• Problematic temporal partitioning: LSD enables fast “time slicing” because its tables

are partitioned on time. Most real-world users, however, use queries that request

all data for a certain object. The temporal partitioning scheme makes such queries

slower than what would otherwise be possible.

• Not resilient to failures: LSD is not resilient to failures of individual processes.

http://github.com/mjuric/lsd
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• Legacy code: LSD has custom implementations of functionalities available today in

more mature and widely adopted packages, such as Pandas, AstroPy, scikit-learn, and

Apache Spark. It is also written in Python 2.7, which is not supported anymore.

2.1.2 Other systems

Work has been done on a number of other systems focused on providing efficient cross-

matching and processing of large astronomical catalogs:

• catsHTM is a tool for “fast accessing and cross-matching of large astronomical catalogs”

[32]. It uses Hierarchical Triangular Mesh (HTM) for partitioning and indexing data

and stores them in HDF5 files. The authors report that it takes about 53 minutes to

cross-match 2MASS (470 million objects) and WISE (560 million objects) catalogs

(without saving the results).

• ASTROIDE [33] is a system based on Apache Spark, similarly to the work presented

in this thesis. ASTROIDE also offers an API for cross-matching and processing astro-

nomical data. However, the data partitioning scheme used is HEALPix, resembling

Large Survey Database’s approach. The authors tested their system using 80 CPU

cores spread over 6 nodes and report that ASTROIDE needs about 800 seconds for

cross-matching 1.2 billion with 2.5 million objects.

• Gaia survey data pipelineThe cross-match function implemented in the Gaia survey

data release pipeline is described in [34].That algorithm requires the data to be sorted

by declination so that the data can only be read once. The algorithm differentiates

between good and bad match candidates and stores each in separate tables. The

algorithm is implemented in MariaDB, with custom performance optimizations. The

authors report that the time required to cross-match Gaia DR1 data set (1.1 billion

objects) and SDSS DR9 (470 million objects) is 56 minutes ([34]).

• Open SkyQuery’s cross-match implementation is described in [35] byNieto-Santisteban
et al. They base their implementation on the zones algorithm and implement it on

Microsoft SQL Server. Cross-matching SDSS (350 million objects) and 2MASS (28

million objects) catalogs takes about 20 minutes when using 8 machines.

• Authors Jia et al. developed an algorithm [36] for cross-matching catalogs in heteroge-

neous (CPU-GPU) environments. The data is indexed using HEALPix method. The

authors report that it takes 10 minutes to cross-match SDSS data (1.2 billion objects)

with itself using multiple nodes with high-end GPUs.

• A probabilistic cross-matching algorithm is implemented in [37] by Dobos et al. The

data is partitioned based on zones and each machine contains full copy of the data.

Their cross-match is not only based on distances, but on other criteria as well. All of

the criteria contribute to the final calculation of the likelihood.Their multi-node SQL

queries are orchestrated using a complex workflow framework. The authors do not

report any performance numbers.
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2.2fast, on-the-fly, positional cross-matching

In this section, cross-matching operation is defined more formally and a solution for fast,

distributed cross-matching, the distributed zones algorithm, is explained in detail: the data
partitioning scheme used, the mechanics of the join operation by independent processes

and (the lack of) data skew.

2.2.1 Cross-matching objects in astronomical catalogs

As was already described in1.1.1.3, researchers in astronomy often want to combine obser-

vations from two (or several) catalogs that correspond to the same astronomical objects.

The simplest version of this problem comes down to finding all observations, from two or

more catalogs, that are less than some angular distance apart.

More formally, if L and R are the left and right relations (catalogs/tables), the result

of a cross-matching join operation is a set of pairs of tuples l and r such that the angular
distance between them is less than the defined threshold of є:

{(l , r) ∣ (l , r) ∈ L × R, dist(l , r) ≤ ε} (2.1)

This is graphically illustrated in Figure2.1.

If there were more than one match in the right relation, for a particular item in the left

relation, the cross-matching operation thusly defined returns all such matches. A nearest-
neighbor join is the one where only the match with the minimum distance (which still has to

be smaller than the defined є threshold) is included in the result. Finally, the dist function
can be differently defined, using different distance measures, taking into account other

attributes (such as ellipticity, for example, which can differentiate stars from galaxies), or

can even be probabilistic in nature (as was already mentioned in1.1.1.3).

2.2.2 Distributed zones algorithm

A critical question with cross-matching is how to organize data so that spatially-related

data is stored close together and is available for quick searches. There are known algorithms

that use clever combinations of indexing and advanced SQL query optimizer features to

achieve the needed functionality.

HEALPix (Hierarchical Equal Area and isoLatitutde Pixelization of the sphere) [28]

and HTM (Hierarchical Triangular Mesh) [38] are the two indexing schemes that have

traditionally been popular for indexing astronomical data. They both organize the sky into

meshes of arbitrary granularity.

The zones algorithm [1] uses a different approach. The basic idea is to divide the sky

into horizontal stripes called "zones" which serve as indexes into subsets of catalog data so

as to reduce the amount of data that need to be searched for potential matches. In one of

the earlier papers [39] Gray et al. compare HTM, which is used in SDSS’ SkyServer [40],

and the zones approach and find the zones indexing scheme to be more efficient when

implemented within relational databases.

In this thesis, the zones algorithm is further developed and adapted for a distributed,

shared-nothing architecture. TheDistributed Zones Algorithm comprises a distributed
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Figure 2.1: An example of cross-matching two catalogs in a 10 arcmin x 10 arcmin region of the sky.

Objects of the two catalogs being matched are represented as dots and crosses. The circles

show the search region around each object of the first catalog. Circles are filled if their

area contains a match.

data organization and an indexing scheme, along with an implementation of an efficient

epsilon join. These are described in more detail in the following sections.

g epsilon join with a distance function.The general idea is to express the

cross-join operation as a query of the form shown in Listing2.1and execute it in parallel

over distributed data.

Listing 2.1: Example of an epsilon join

SELECT * from GAIA g JOIN SDSS s ON g.zone = s.zone

AND g.ra BETWEEN s.ra - e AND s.ra + e

AND distance(g.ra, g.dec , s.ra, s.dec) <= e

The first two conditions of the query comprise what is known as an epsilon join [41]: an
equi-join on the primary column (zone) and a range condition on the secondary column
(ra in this case). Epsilon parameter e defines the maximum distance between object pairs

that will be returned and distance is a function which calculates distance between two
points defined by their RA (right ascension; ra column) and Dec (declination; dec column)
coordinates.

g bucketing data and reducing data skew.In order to efficiently cross-

match catalogs using the previously described epsilon join, the data need to be organized

appropriately. As was already stated, distributed zones algorithm divides the sky into N
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horizontal zones but it also enables parallel processing by physically partitioning the data

into B buckets, physical files containing distinct subsets of data, intended to be read by
separate processes.

All the objects from the same zone are stored in the same bucket and the zones are

placed in buckets sequentially: zone z is placed into bucket b = z % B. Figure2.2shows an

example for N=16 zones and B=4 buckets, but in reality, thousands of zones and hundreds

of buckets are used.

Figure 2.2: An example with the sky (shown as a circle) partitioned into 16 horizontal zones and

placed into 4 buckets. Objects from each zone get placed into buckets sequentially. In

reality, there are thousands of zones.

g sorting and joining data within buckets.Data within buckets, in the

distributed zones algorithm, are sorted by zone and ra columns (in that order). These two

columns serve as indexing columns for the cross-match operation.

With data sorted like this, two buckets can then be efficiently joined using an epsilon
join (described previously in section2.2.2.1) in one pass through the data by maintaining
a moving window over the data in the right relation (catalog). This is graphically shown

in Figure2.3. The moving window is defined by the equi-join condition on the primary

column (zone) and the range condition with the epsilon distance on the secondary column

(ra).

If two catalogs are partitioned in the same way (having the same number of buckets and

the same zone heights), objects from the same buckets can then be joined independently

of the other buckets. An arbitrary number of processes can then join pairs of buckets in

parallel, which makes the whole cross-matching operation scalable.
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Figure 2.3: Using the "epsilon join" to reduce the number of rows for which distance is calculated.

For the match candidate row in the figure, only four distance calculations are performed.

(B stands for the number of buckets.)

g data skew considerations.Astronomical objects are unevenly distributed on

the sky. Milky Way, for example, contains much more stars than the rest of the sky. Hence,

large survey catalogs often include highly skewed data. If naively partitioned, processing

such data in parallel could cause some processes to use large amounts of memory and last

much longer than the others, which could considerably degrade the overall performance.

When sequentially placing thin stripes of sky into different buckets, as is done in the

distributed zones algorithm, the data gets evenly distributed between the buckets which

eliminates data skew.

g correctness at zone boundaries.A weakness of the approach described so

far is the lack of cross-matching completeness and correctness at zone boundaries. Because

objects situated near zone boundaries might have a match in a neighboring zone, the

processes strictly joining only pairs of buckets might miss such matches without additional

data exchange between processes (without “looking” into the neighboring zone). This data

movement at runtime would significantly hurt the performance.

One solution is to place duplicates of objects from the lower “border stripe” of each

zone into the zone below it and mark such objects as duplicates. These borders need to be

sufficiently wide in order to cover any search radius that might be used in real life (epsilon
value). 10 arcsec is a reasonable default, capable of handling datasets ranging from SDSS to

Gaia scales.

This approach slightly increases the amount of catalog data but enables processes to run

independently. At the same time, however, the approach complicates other operations: the

duplicated rows need to be excluded from ordinary query results. Additionally, correction
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is needed due to the fact that these duplicated objects will sometimes be cross-matched

twice (once inside their original zone and once inside the neighboring zone).

g zone height and number of buckets.Number of buckets used in the dis-

tributed zones algorithm is a trade-off between the amount of data that need to be processed

by a single process (the bucket size) and the maximum possible number of processes (the

maximum parallelism). A single bucket can be processed by a single task only and a single

task would need to process several buckets one by one (serially).

Zone height is also a trade-off: thinner zones reduce data skew but increase the amount

of data that need to be duplicated (because thinner zones means more zones, which means

more zone boundaries).

2.3 implementation of an astronomical data analysis system on top

of apache spark

The distributed zones algorithm, described in the previous section, was implemented in a

system called AXS 4. More than that, AXS is an attempt at creating a modern astronomical

data analysis system, requirements for which were described in section1.1.2.1, by adapting

one of the standard big data analytic tools in industry – Apache Spark.

In this section, AXS and Apache Spark, as its foundation, will be described in more

detail along with the implementation specifics of AXS’ cross-matching function and other

astronomy-related features it provides.

2.3.1 About Apache Spark

Apache Spark is a fast and general-purpose engine for big data processing, with built-in

modules for SQL,machine learning, near-real-time processing and graph algorithms [31, 42].

Its development started at UC Berkeley in 2009 and it has since become the dominant big

data processing engine due to its speed (more than 10x improvement compared to Hadoop

[43]), ease of use, broad functionalities, cross-language support, and integration with most

of the industry-standard tools and systems in the field.

Spark is scalable and resilient to failures of its components, supports distributed, colum-

nar file formats (such as Parquet [44]) and offers Python interfaces, which are familiar to

astronomers. Compared to other similar projects, such as Dask [30], Spark is more mature

and more widely used. Spark has been used at many large installations and has connectors

to a large number of third-party databases and systems. It is still being actively developed

which makes it a safe option to build on.

Spark was also recognized as a suitable platform for astronomical data analysis in [45],

for example, where the authors describe spark-fits Spark connector “to handle arbitrarily
large FITS files”.

Spark satisfies most of the requirements for a modern astronomical data analysis system

listed in section1.1.2.1. It enables astronomers to combine SQL and Python code, it uses

4 The code is available at https://github.com/dirac-institute/AXS and the documentation at https:

//dirac-institute.github.io/AXS/

https://github.com/dirac-institute/AXS
https://dirac-institute.github.io/AXS/
https://dirac-institute.github.io/AXS/
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industry-standard frameworks and libraries, and it is highly scalable and efficient. AXS

adds a few features that Spark itself lacks: an efficient spatial cross-matching operation and

astronomy-specific functions. These are described in the sections to follow.

g spark programming and operating model.Spark abstracts processing

operations through its notion of resilient distributed datasets, or RDDs, which are defined by
a set of transformations that are applied to data partitions in parallel and in a fault-tolerant
manner. Transformations, such asmap, filter or groupByKey5 create other RDDs. They are

applied serially and formDAGs, directed acyclic graphs, which can be thought of as programs
that are materialized once they are executed on a dataset. RDDs are materialized using
actions, operations that need to evaluate the DAG and return a result. Examples of actions

are count (returns number of elements in a dataset) and sum (returns sum of elements in a

numeric RDD).

Spark elegantly abstracts the underlying distributed nature of the data RDDs represent.

Working with RDDs seems like working with local data collections. Furthermore, if calcu-

lation of a partition fails, Spark can restart the calculation for that partition only, which

makes RDDs resilient to failures.

Spark’s transformations and actions can be used to express almost any data analysis

algorithm and more advanced API’s can be built on top of RDDs. An example especially

important for this thesis are Spark SQL’s DataFrames. While RDDs can operate on data in all

kinds of formats, DataFrames are designed for handling structured data: tables with typed

columns. Users can use the standard SQL or the related Java, Scala or Python DSL (domain-

specific language) APIs to write queries that get translated into physical manipulations of

data through Spark’s Catalyst optimizer, which performs query planning and optimization

as well as generates and compiles Java code to be executed during runtime.

On top of all of this are various end-user libraries: Spark MLlib, with implementations

of major machine learning algorithms; Spark GraphX, with various graph algorithm imple-

mentations; and Spark Streaming, offering real-time processing capabilities. These APIs are

available in Java, Scala, R, and Python. Python support, as was already stated, is especially

important for analysis of astronomical data. The described layers of Spark architecture are

shown graphically in Figure2.4.

2.3.2 Implementing the Distributed zones algorithm

Aswas already explained, theDistributed ZonesAlgorithm, developed by this thesis, consists

of a distributed data organization and indexing scheme, and an implementation of an

efficient epsilon join.
Parquet [44], a distributed and columnar file format, was chosen for AXS’ data storage

because it is well supported by Spark and widely used in Spark community, but is also very

popular outside it. Parquet files can be distributed over many machines and processes and

can also be bucketed, which are features that are central to the Distributed zones algorithm,
as was explained in the previous sections.

5 E.g., see https://spark.apache.org/docs/latest/rdd-programming-guide.html#

transformations for explanations and a complete list

https://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations
https://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations
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Figure 2.4: Layers in Spark’s architecture, including AXS and other user programs.

AXS relies on Spark’s DataFrame API for handling Parquet files, their organization and

bucketing. The epsilon join implementation, however, is not available in Spark API itself

and an extension of Spark’s sort-merge join implementation was needed 6. Without this

intervention into Spark’s source code, Spark’s optimizer and code generator would calculate

the distance function for all object pairs from the two zones being merged (determined

by the first equi-join condition, i.e. the first part of the epsilon join), essentially doing a

cartesian join. Such queries consume too much memory and cannot complete for datasets

of realistic size.

The Spark code extension, as implemented in AXS, enables Spark’s optimizer to recog-

nize an optimization opportunity in the case of an epsilon join on a dataset sorted in an

appropriate way, so that the distance function is calculated only for those row pairs, from

the two zones being cross-matched, that match the prior BETWEEN condition.The algorithm

in this way operates in a moving window, as was explained in section2.2.2.3.

2.3.3 A walk through AXS Python API

AXS Python API, as a thin layer on top of Spark’s pyspark, is the main end-user interface

to AXS. It was also developed as part of the work on this thesis. The main idea behind

its design was to abstract away the implementation details of cross-matching function

and data partitioning details and make it easy to use for astronomers. Main elements of

AXS Python API are described in this section and the full documentation is available at

https://axs.readthedocs.io/en/latest/.

6 The code and discussion regarding this can be found here: https://github.com/apache/spark/pull/21109

https://axs.readthedocs.io/en/latest/
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g an example of a cross-match using axs api.AXS users interact with

the system primarily through AxsCatalog and AxsFrame classes. These two are actually

extensions of Spark’s Catalog and DataFrame interfaces, respectively.

An instance of AxsCatalog is constructed using an instance of SparkSession, analo-

gously to how Spark’s Catalog is created:

from axs import AxsCatalog

axs_catalog = AxsCatalog(spark)

The SparkSession object encapsulates the connection to the Spark metastore database,

and enables manipulation of Spark tables. An AxsCatalog instance is aware of the tables

partitioned according to the distributed zones algorithm and is able to retrieve instances of

such tables as shown here:

axs_catalog.list_tables () # output omitted

sdss = axs_catalog.load("sdss")

gaia = axs_catalog.load("gaia")

The objects that AxsCatalog returns are AxsFrame instances. They extend Spark’s

DataFrame and add astronomy-specific methods, such as crossmatch, used for cross-

matching of two AxsFrame tables.

from axs import Constants

gaia_sd_cross = gaia.crossmatch(sdss , r=3* Constants.ONE_ASEC ,

return_min=False)

gaia_sd_cross.select("ra", "dec", "g", "phot_g_mean_mag").

save_axs_table("gaiaSdssMagnitudes")

The previous snippet performs positional cross-matching of the gaia and sdss catalogs.

A subset of columns is then retrieved from the resulting catalog, and these are finally saved

into a new, zones-partitioned table named gaiaSdssMagnitudes. Note that the DAG

constructed thusly is executed lazily: only when save_axs_table is called. That is because

crossmatch and select are transformations while save_axs_table is an action (already
mentioned in section2.3.1.1).

The crossmatch function returns all matches within specified radius by default. If the

return_min flag is set to True, crossmatch returns only the nearest neighbor.

2.3.4 Spatial selection support

Spatial selection is a query of objects in a region of the sky. One of the ways this can be

done in AXS is by using region queries, which are determined by maximum and minimum

RA and Dec angles. Because sky is partitioned by zones and zones are stored in buckets,

such queries are executed in AXS as parallel, multi-process searches through the matching

bucket files, thanks to the underlying Spark engine. Since AXS catalogs are bucketed by

zones, AXS can skip whole files that do not contain the required zones. And since the bucket

files are sorted by zone and ra columns, the search can be fast. The engine can also skip

parts of files not containing the required ranges.

AXS user is not aware of these optimizations and region queries in AXS API are as

simple as the following:
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region_df = gaia.region(ra1=40, dec1=15,

ra2=41, dec2 =16)

Another method of spatial selection in AXS is cone search using the conemethod. It

requires a center point and a radius and returns all objects with coordinates within the

circle thus defined.

2.3.5 Time series support

Large-scale surveys repeatedly observe the same objects over and over again. This produces

object’s light curves: time series of the objects’ flux (number of photons per second per unit

area) measurements. The measurements typically include the flux, the timestamp, the error

and perhaps some metadata, such as the filter that was used, for example.

Such time series data can be stored in AXS as a set of array columns in the catalog.

This approach stores light curve data alongside the main catalog data, which makes it fast

to retrieve and search for them. Spark supports array functions well, but it is also flexible

enough to allow for other ways of time series data organization, if that is needed by the end

user.

AXS provides two helper array functions to support light curve operations: ARRAY_ALL-

POSITIONS returns an array of indexes of all occurrences of an element; and ARRAY_SELECT

returns all elements indexed by a provided index array.These two functions can be combined

with other built-in Spark SQL functions to further manipulate light curve data.

The following example in Listing2.2illustrates handling of light curves. It will return

the number of all observations with r filter (the band column) in a catalog ztf:

Listing 2.2: Example of using array_allpositions

from pyspark.sql.functions import size , array_allpositions

ztf_rno = ztf.select(size(

array_allpositions(ztf("band"), "r")))

array_allpositions searches arrays in the band column for r-band value and returns
an array of indices of such array elements. The Spark’s built-in function size returns the

length of the indices array.

2.3.6 Fast Histograms

A common technique of summarizing data both in astronomy and other sciences is building

histograms of a statistic as a function of some parameters of interest. For example, Hess dia-
grams contain counts of stars in a galaxy as a function of color and magnitude (brightness).

AXS provides two functions for building histograms, implemented as thin wrappers around

Spark API, taking advantage of its distributed and fault-tolerant nature.

The two functions are histogram and histogram2d, both Spark actions. When calling

the histogrammethod, users provide a column definition and a number of bins into which

the data is to be summarized. Analogously, histogram2d(cond1, cond2, numbins1,

numbins2) summarizes the data in two dimensions, using the two column definitions

(condition expressions) and the two number of bins provided.
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An example is given in code Listing2.3. The code produces a 2D graph showing the

density of differences in g bandmagnitude measurements between SDSS and Gaia catalogs,
versus the same differences between WISE and Gaia catalogs. Both differences are binned

into 100 bins.

As can be seen, the result from histogram2d can be directly forwarded to the Mat-

plotlib’s pcolormesh plotting function.

Listing 2.3: An example of using histogram2d

from pyspark.sql.functions import coalesce

import matplotlib.pyplot as plt

cm = gaia.crossmatch(sdss , return_min=True). \

crossmatch(wise , return_min=True)

(x, y, z) = cm.histogram2d(cm.g - cm.phot_g_mean_mag ,

cm.w1mag - cm.phot_g_mean_mag ,

100, 100)

plt.pcolormesh(x, y, z)

2.3.7 Creating AXS tables

Spark does not save intermediate results of computations, unless this has been requested

explicitly. This saves resources and speeds up processing. However, there are common use

cases where saving intermediate results is useful. For example, when two large catalogs are

cross-matched and when those results will be repeatedly used in further processing. If those

results are to be used in subsequent cross-matching operations with third tables, the results

need to be saved in the same distributed zones format and registered in the AxsCatalog

registry. The same is true for new catalogs that need to be saved in AXS as AXS tables.

AXS provides the AxsFrame.save_axs_tablemethod for this common use case. It

saves an AxsFrame’s data as a new table and partitions the data as was described in section

2.2.2. It assumes ra and zone columns are already present in the AxsFrame, or it can

optionally calculate the zone column.

Saving AXS tables means that the data need to be repartitioned and sorted, which makes

this the most expensive operation. Data partitioning and sorting is a necessary part of the

cross-match operation, but it is performed in advance and only once, so that table joins can

later be performed on the fly.

The results of experimental measurements of the time AXS needs to partition different

catalogs can be found in section2.4.2.

2.3.8 Support for Python user-defined functions

Similarly to some relational databases, Spark allows for defining user-defined functions

(UDFs) that can be applied on rows or groups of rows during execution of Spark’s optimized

queries. AXS offers to methods in AxsFrame class for this purpose which are thin wrappers

around Spark’s pandas_udf and udf functions. These AXS methods are add_column and

add_primitive_column.

Their only purpose is to make it a bit easier for astronomers to run custom data process-

ing functions on a row-by-row basis (i.e. to avoid using @pandas_udf and @udf annota-



2.4. Experimental results 22

tions) and make their code more readable. They can only be used when processing data row

by row, which corresponds to Spark’s udf function and Spark’s pandas_udf function of

type PandasUDFType.SCALAR (they cannot be used for PandasUDFType.GROUPED_MAP

nor PandasUDFType.GROUPED_AGG UDFs).

Both functions accept a name and a type of the column to be added, the function to be

used for calculating the column’s contents, and names of columns whose contents are to be

supplied as input to the provided function. The difference between the two methods is that

add_primitive_column supports only outputting columns of primitive types, but is sig-

nificantly faster because it uses Spark’s pandas_udf support under the hood. add_column

method uses the scalar udf functions, making it slower, but supports columns of complex

types. pandas_udf is faster because it is able to handle blocks of rows at once by utilizing

Python Pandas framework (and its vectorized processing).

2.3.9 Adding New Data to AXS Catalogs

In some use cases, new batches of data need to be added to existing AXS tables. This can be

done with the method

add_increment:

add_increment(self, table_name, increment_df,

rename_to=None, temp_tbl_name=None)

Themethod adds the contents of the increment_df Spark DataFrame to the AXS table

with the name table_name, calculating zones, and bucket and sorting the data appropriately

in the process. The name the old table will be renamed to and the name used for the

temporary table can be customized with rename_to and temp_tbl_name parameters,

respectively.

This operation is also expensive, similarly to save_axs_table (section2.3.7) because

on top of partitioning and sorting the data it also needs to merge new and existing tables.

2.4experimental results

In this section results of testing AXS’ cross-matching and data partitioning performance

are given. The results show that the distributed zones algorithm implemented in AXS easily

outperforms other systems that were listed back in section2.1.

2.4.1 Cross-matching performance

The astronomical catalogs that were used for testing AXS’ cross-matching performance

are listed in table2.1. Two scenarios were tested: when only the nearest neighbor match

was returned and when all matches were returned by the cross-matching operation. The

number of resulting rows for each combination of catalogs for both scenarios is given in

table2.2. Furthermore, cross-matching duration for both scenarios was compared in the

“warm cache” case (data was partially cached in operating system’s memory buffers) and in

the “cold cache” case (the OS memory buffers were empty) 7. This caching mechanism is

7 OS memory buffers were cleared by writing “3” to the /proc/sys/vm/drop_caches file
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Catalog Row count Row count - Size

no duplicates

SDSS 0.8 Bn 0.7 Bn 66 GB

Gaia DR2 1.8 Bn 1.7 Bn 431 GB

AllWISe 0.8 Bn 0.7 Bn 357 GB

ZTF 3.3 Bn 2.9 Bn 1.23 TB

Table 2.1: The catalogs used for cross-matching performance tests, with the number of rows, number

of non-duplicated rows and size of compressed data.

Left catalog Right catalog Results - all Results - NN

Gaia DR2 AllWISE 320 M 320 M

Gaia DR2 SDSS 227 M 126 M

ZTF AllWISE 109 M 109 M

ZTF SDSS 273 M 168 M

Gaia DR2 ZTF 92 M 49 M

AllWISE SDSS 235 M 119 M

Table 2.2: List of catalog combinations used for cross-match performance tests, with the numbers of

resulting rows when returning all matches or only the first nearest neighbor.

distinct from Spark’s own caching mechanism (which was not used during the tests) and

works on OS level.

For each scenario and case, the number of Spark executors in the cluster, determining

the level of parallelism, was varied going from 1 to 28. Each executor had 12 GB of Java

memory heap and 12 GB of off-heap memory at its disposal. Figure2.5shows the results

graphically, and the raw numerical results are given in tables2.3and2.4for the first scenario

and tables2.5and2.6for the second scenario. Each datum in the figure and in the tables is

an average of three tests.

All tests were executed on a single, large machine. There was not much improvement in

performance beyond 28 executors (processes) because of constrained resources of a single

machine. Data used in the tests were stored on the local file system (hard disks).

The results of tests with cold cache show the cross-match performance that can be

expected if there is no memory available for caching (the data needs to be read from disk).

The system did not have enough memory for the whole datasets so even during tests with

warm cache data had to be partly read from disk.

The results show that AXS outperforms other systems (described in Section2.1) in

cross-matching operation, although it is difficult to compare them because of different

architectures, datasets and algorithms that are used. It can be noted, though, that the best

results presented here are in tens of seconds, while other teams report results in tens of

minutes.

2.4.2 Data partitioning performance

In order for AXS to be able to efficiently cross-match data, they first need to be appropriately

prepared: partitioned and bucketed by zone and sorted. This is an expensive operation that
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Execs.
Gaia-AllWISE Gaia-SDSS ZTF-AllWISE

warm cold warm cold warm cold

1 481 2079 363 1143 718 2897

2 287 979 243 665 356 1434

4 156 624 113 355 185 876

8 84 413 58 232 99 566

12 56 332 41 185 68 451

16 49 264 35 156 56 364

20 41 241 30 158 49 327

24 35 226 24 141 41 296

28 34 220 25 136 42 291

Table 2.3: Averaged raw cross-match performance results (in seconds), when returning all matches,

for the first three catalog combinations, depending on the number of executors andwhether

cold or warm OS cache was used.

Execs.
ZTF-SDSS Gaia-ZTF AllWISE-SDSS

warm cold warm cold warm cold

1 788 2401 823 2472 382 1335

2 401 1268 375 1331 185 610

4 216 734 197 969 90 414

8 109 450 99 611 48 256

12 79 370 71 488 35 186

16 62 308 56 422 27 159

20 54 289 49 373 23 140

24 45 257 42 341 20 122

28 45 241 41 334 20 131

Table 2.4: Averaged raw cross-match performance results (in seconds), when returning all matches,

for the last three catalog combinations, depending on the number of executors andwhether

cold or warm OS cache was used.

Execs.
Gaia-AllWISE Gaia-SDSS ZTF-AllWISE

warm cold warm cold warm cold

1 656 1875 491 1067 643 2428

2 327 955 246 542 322 1291

4 165 607 126 314 164 793

8 104 418 70 212 95 563

12 133 331 56 169 89 429

16 132 268 83 157 108 359

20 86 253 80 151 96 320

24 72 230 59 141 66 284

28 70 227 52 137 63 286

Table 2.5: Averaged raw cross-match performance results (in seconds), when returning only the first

nearest neighbor, for the first three catalog combinations, depending on the number of

executors and whether cold or warm OS cache was used.
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Figure 2.5: Performance tests of cross-matching various catalogs in scenarios with file system buffers

empty or full (we used Linux OS-level caching, not Spark caching), when returning all

matches or just the first nearest neighbor ("NN" results).

needs to be done once in advance and pays off later during runtime.This section documents

performance tests of AXS catalog partitioning. These numbers are intended to be only

informational as users are not expected to need to do this on their own, or at least not often.

Table2.7shows the times needed for partitioning various catalogs (in minutes) and

the size of the partitioned and compressed Parquet files on disk (in GB), depending on the

number of zones used, while using the fixed number of buckets (500, which is the default

in AXS). 10800 is the default number of zones in AXS (corresponding to the zone height of

one arc-minute), the results for which are shown in the middle columns. The results on the

left and right correspond to half and double the number of zones. 28 Spark executors were

used for all the tests. Compressed size of partitioned catalogs increases with the number of

zones because of increased data duplication, as was explained in section2.2.2.6.

Table2.8shows the same tests, but this time varying the number of buckets used, while

keeping the number of zones constant at the default of 10800.

As can be seen from the results, data preparation times depend the most on the total

size of the data. Increasing the number of zones also increases the time required to partition

the data, while number of buckets has no influence on time required.

2.4.3 Cross-matching performance depending on the number of zones and buckets

The effect of number of zones and number of buckets on AXS’ cross-matching performance

was also investigated. The table2.9shows cross-matching performance results when using
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Execs.
ZTF-SDSS Gaia-ZTF AllWISE-SDSS

warm cold warm cold warm cold

1 821 2142 651 2258 431 1141

2 406 1067 323 1241 213 618

4 210 654 163 780 110 396

8 121 449 108 573 68 272

12 102 362 101 481 78 204

16 133 299 95 407 74 155

20 114 277 80 368 67 149

24 90 238 52 327 50 132

28 72 234 56 318 37 123

Table 2.6: Averaged raw cross-match performance results (in seconds), when returning only the first

nearest neighbor, for the last three catalog combinations, depending on the number of

executors and whether cold or warm OS cache was used.

Catalog
5400 zones 10800 zones 21600 zones

size time (min) size time (min) size time (min)

SDSS 66 12 71 12 82 12

Gaia 430 89 464 86 532 150

Allwise 352 120 384 119 444 133

ZTF 1124 547 1169 545 1334 523

Table 2.7: Data partitioning: size of the partitioned catalogs (in GB) and time needed to partition

the data (in minutes) depending on the number of zones used. All tests shown here used

500 buckets for partitioning data.

different numbers of zones while keeping number of buckets fixed at the default value of

500. Table2.10shows the same when using different numbers of buckets while keeping the

number of zones fixed at the default value of 10800. Values in the middle columns in both

tables are the same as those in tables2.3and2.4(because those tests used the default values

for both the number of zones and the number of buckets). All tests in this section were

done using 28 executors and with the queries returning all matching results.

Catalog
250 buckets 500 buckets 1000 buckets

size time (min) size time (min) size time (min)

SDSS 71 12 71 12 72 10

Gaia 464 88 464 86 464 86

Allwise 384 125 384 119 384 116

ZTF 1169 557 1169 545 1169 514

Table 2.8: Data partitioning: size of the partitioned catalogs (in GB) and time needed to partition the

data (in minutes) depending on the number of buckets used. All tests shown here used

10800 zones for partitioning data.
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Catalog
5400 zones 10800 zones 21600 zones

warm cold warm cold warm cold

G - A 32 207 31 226 36 240

G - S 33 128 37 148 36 151

Z - A 47 260 38 296 39 283

Z - S 48 209 47 239 49 227

G - Z 37 271 39 315 44 326

A - S 27 114 29 122 29 130

Table 2.9: Cross-matching duration (in seconds) depending on the number of zones and whether

cold or warm OS cache was used while keeping number of buckets fixed at 500 (the

default), for each catalog combination (denoted by their first letters), using 28 executors

and returning all results.

Catalog
250 buckets 500 buckets 750 buckets

warm cold warm cold warm cold

G - A 32 211 31 226 32 2314

G - S 33 146 37 148 37 159

Z - A 37 292 38 296 36 289

Z - S 47 237 47 239 47 234

G - Z 39 323 39 315 40 313

A - S 28 119 20 122 28 132

Table 2.10: Cross-matching duration (in seconds) depending on the number of buckets and whether

cold or warm OS cache was used, while keeping number of zones fixed at 10800 (the

default), for each catalog combination (denoted by their first letters), using 28 executors

and returning all results.

2.4.4 AXS performance in a cloud environment

AXS’ scalability was further tested in a “cloud environment”, consisting of a Kubernetes

cluster running in Amazon Web Services (AWS) virtual machines and with data stored in

Amazon Simple Storage Solution (Amazon S3). The setup and results are described in [46]

and summarized in this section.

Kubernetes8 is an “open-source system for automating deployment, scaling, and man-

agement of containerized applications”. Containers are an isolation mechanism that allows

processes on the same operating system to run with isolated resources and Kubernetes or-

chestrates starting, stopping, monitoring, scaling, securing and self-healing of applications

running inside containers.

Apache Spark supports running its processes inside a Kubernetes cluster, which is

a functionality that AXS naturally inherits. Spark provides a script for creating Docker

container images that can be used for starting Spark inside Kubernetes.

Kubernetes itself is cloud-agnostic, i.e. it can be run on any cloud provider. In this case

it was run on Amazon cloud, but it would work equally well on Google Cloud Platform or

Microsoft Azure. Cloud providers offer essentially limitless scalability (in practical terms)

8 The Kubernetes documentation is available here: https://kubernetes.io/docs/
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in CPU and memory resources.

In [46], AXS’ “strong” and “weak” scalability were tested using a simple query (doing

a sum of the RA column) on the ZTF light curve catalog containing 9x109 rows. Strong
scalability shows how much a query can be sped up by increasing the amount of processing

power (number of processor cores) while keeping constant the amount of data being

processed.Weak scalability shows how processing time changes when both the processing

power and amount of data increase.The figure2.6shows the scalability measurement results

calculated as speedup, for strong scaling, and scaled speedup, for weak scaling. Speedup is
defined as tre f /tN , where tre f is the query execution time performed with the reference
number of cores (virtual CPUs, or vCPUs) and tN is the query execution time performed
with N cores. Scaled speedup is defined as tre f /tNxPN/Pre f , meaning that execution query
times are scaled by the problem size PN with respect to the reference problem size Pre f . The

problem size was scaled proportionally to the number of cores: a query running with 10

cores had to handle the problem size 10 times larger than the problem size used for a 1-core

query.

When the reference number of cores was set to one (sequential computing), abnormally

high speedupswere observed. By adjusting the reference number of cores to 16,more realistic

scaling was seen: weak scalability was shown to be linear while strong scalability shows a

slow-down with an increase of processing power, which was to be expected, given that with

more processes, more computing power needs to be spent on inter-process communication,

similarly to what can be seen in Figure2.5.
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Figure 2.6: Figure 6 from [46]. The figure shows the strong scaling speedup (left column) and weak

scaling scaled speedup (right column) observed when running a simple AXS query

summing a column of the ZTF catalog containing 3x109rows. Strong scaling means
increasing query speeds by increasing processing power (processor cores) and keeping the

amount of data constant. Weak scaling means proportionally increasing both processing

power and amount of data. Speedup is calculated as query execution time divided by

reference query execution time. Scaled speedup additionally scales the speedup by inverse

of the factor of data increase. The reference query for tests in the upper row used a single

core, but with such sequential computing as reference, abnormally high speedups were

observed. With the reference point set to 16 vCPUs (lower row), more realistic speedups

are observed for both strong and weak scaling: weak scaling is linear and strong scaling

diminishes for more vCPUs, which was expected.
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Parameter Estimation of a Moving Point Source

Model

3.1related work on the multifit algorithm

Image coaddition, a method of increasing signal-to-noise ratio, was described back in

section1.2. It was noted there that image coaddition cannot help with estimating properties

of moving point sources because such coadds end up containing blurred trails.

Multifit algorithm is a method that preserves information from all individual images of

an object and uses that information to increase signal-to-noise ratio without depending on

coadds. It does this by using forward modeling, i.e. it creates synthetic images, based on the
presumed model of the target object, and compares the generated images with the obtained

ones to estimate how well the model fits the reality. An optimization method drives the

process of changing model parameters so that the difference between the generated and

real images is minimized thus obtaining the optimal parameter values.

This “multi-epoch image processing” was calledMultifit for the first time in [2]. There,

the Multifit method was used for finding a single model per object (star or galaxy) based

on a set of individual epoch images, each convolved with its own PSF. Several advantages of

Multifit were noted [2]:

• If PSF is wrongly estimated for an object in an epoch image, that error will behave as

a random error for that particular object and not as a systematic error for all objects

on an image (which is the case if objects are modeled from a coadd where spatial

correlations are present).

• Pixel interpolation of original images, which can cause noise correlations in coadds,

is avoided here altogether.

• There are no fundamental limitations because of blended objects or if background

noise is not dominant.

• Accounting for artifacts (cosmic rays, etc.) present in epoch images is more elegant

and is taken care of at the model level.

• Finally, and most importantly for this thesis, there are no limitations when applying

the method to measuring properties of moving sources.

30
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3.1.1 Evolution of the Multifit idea

g lensfit.Lensfit was the first name used for the Multifit approach, suggested in [ 47]

as a method for estimating ellipsicities of galaxies. The authors found a way to analytically

marginalize galaxies’ surface brightness and positional parameters. For the rest of the galaxy

model parameters they create a 3D mesh of discretized parameter value combinations and

for each point in the mesh they simulate a 2D brightness model. The resulting models are

transformed using Fourier transformation, multiplied by Fourier transformation of the PSF

model and finally compared with an image of a galaxy.Themodel with the lowest computed

χ2 value has the most likely ellipsicity values.

g “measuring the undetectable”.In [ 3] the authors demonstrate how Multifit

can be used for measuring parallaxes and proper motions of sources that are too faint

for detection on individual epoch images. They use coadds for providing a “first-guess”

positions of sources. Each epoch image needs to have a “reasonable photometric calibration,

noise estimate in each pixel and correct astrometric calibration”. They fit three types of

models, which predict “every pixel value in every image at every epoch”. The three types of

models are:

• Moving point source

• Extended galaxy

• General transient or artifact

The different χ2 values enable hypothesis tests, which give the most likely model. The best-

fitting model’s parameters constitute the source measurement results. The moving point

source model (the one authors are interested in measuring) consists of six features: flux,

position (RA, Dec), parallax and a proper motion (in two dimensions).

g lsst project.Running Multifit was also planned on LSST project as part of its

pipeline. Fitting four types of models was foreseen [12]:

• Slowly Moving Point Source Model - similar to the model from [3], described above

• Small Object Model - intended for measurement of small galaxies

• Large Object Model - intended for identifying large galaxies

• and Solar System Model - intended for comets and near-Earth objects

g james bosch.In his doctoral thesis [ 48], James Bosch investigates which galaxy

models to use and how to efficiently characterize marginal posterior probabilities of their

parameters. He recommends a model based on “multi-scale elliptical shapelet” functions

and usage of “adaptive/iterative importance sampling algorithm”, a version of a MCMC

algorithm.
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g lensfit implementation.The first implementation of the Lensfit algorithm is

described in [49] for the CFHTLenS (Canada-France-Hawai Telescope Lensing) project. A

few innovations are introduced compared to the original algorithm: a more complex galaxy

model is used, PSF function is modeled at pixel level and an “adaptive” algorithm is used

for sampling from the probability distribution, where a mesh of the possible values changes

depending on the current algorithm step.

g dark energy survey.Dark Energy Survey uses Multifit [ 50] for galaxy shape and

shear estimation.They also base their approach on Lensfit from [47] and call their algorithm

implementation NGMIX.

3.2multifit using frequentist and bayesian statistics

There are two main, competing views of statistical inference: frequentist and Bayesian (a

great overview can be found in [51]). Frequentist paradigm argues that probability of an event

can be objectively estimated by repeating an experiment enough times and calculating the

frequency at which the event occurs. Any parameter that influences the event’s probability

is a fixed constant and attaching probabilities to it makes no sense.

Bayesian statistics, on the other hand, allows for assignment of probabilities to models

and their parameters. It does so by producing their probability distributions from which all

other statistical results can be calculated, such as point estimates and confidence intervals.

The “philosophy” of the Bayesian approach is to describe our (incomplete) knowledge that

we have about the world as faithfully as possible, and to quantify how the observed evidence

(the data) changes that knowledge and fits into it.

In this chapter, the two approaches are described in more detail, with special focus given

to their application to the Multifit problem. First, the data used for inference is described.

3.2.1 Input data to the Multifit estimation process

It is assumed that the data listed below are available at the start of the Multifit estimation

process. The problem could be set up differently (depending on the environment, exact

process of obtaining the data and so on) and this setup does not fundamentally change the

way the algorithm functions, as it can be adapted to different models and parameters. But

the setup does change the implementation details on which the subsequent sections depend.

So, the problem will be confined to the environments having these data at the outset (these

are typically produced by astronomical surveys’ data processing pipelines):

• a set of images I1 . . . IN of the observed object obtained at moments t1 . . . tN and the
corresponding set of “variance images” V1 . . .VN

• estimated PSFs 1 . . .N , for each of the input images

• object’s roughly-estimated position xE and yE (estimated from a coadd, with an

implicit assumption of a static object)

• object’s estimated magnitudeME
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Variance images and estimated PSFs are usually produced by data processing pipelines

of large astronomical surveys (e.g. from Vera C. Rubin observatory). Variance images

(V1 . . .VN) are maps that show the statistical uncertainty associated with each pixel in an

astronomical image. The estimated PSFs can be expressed either as approximative 2D

functions (e.g. of 2D Gaussians) or as normalized images (the sum of whose pixels is equal

to 1). The latter is the case with Vera C. Rubin data processing pipeline.

3.2.2 Model of a moving point source

Apparent movement of stars (“apparent” meaning “as viewed from the Earth”) consists of

two main components: the proper motion of the star (i.e. its real movement in space) and the
parallax effect, caused by the Earth’s movement around the Sun, which makes objects that
are close enough appear to be moving in the opposite direction. Asteroids, however, move

much faster than stars, and their observation periods are often short, and so their parallax

effect is often negligible. Since estimating asteroid movement will probably comprise the

bulk of application of the work presented in this thesis, and to preserve simplicity, the model

of a moving point source used here will omit the parallax component. However, nothing

fundamentally restricts the Multifit method (both “batch” and “online”) in this regard: it

can estimate any kind of model parameters.

Expressing a star’s or asteroid’s movement is then very simple. If object’s images were

taken at moments t1 . . . tN , and if xS and yS are object’s starting position at time t = 0

(which corresponds to image I1), object’s apparent motion vx and vy in x (RA) and y (Dec)
directions can be expressed as:

xi = xS + vx ti
yi = yS + vyti

However, since the starting position has already been roughly estimated by the data

processing pipeline (see3.2.1), though with an error due to the fact that object’s motion

has not been taken into account, a good approach would be to allow for correction to this

preliminary starting position estimate by expressing the starting position as comprising of

the starting estimate (xE , yE) and a position offset (x0, y0; which is to be estimated):

xi = xE + x0 + vx ti (3.1)

yi = yE + y0 + vyti (3.2)

The object’s brightness can be expressed as “magnitude”, which is a logarithmic measure

with lower values for brighter objects. It is often used as ameasure of brightness in astronomy.

To summarize, five parameters comprise the “moving point source model” and need to

be estimated:

• M – object’s magnitude

• x0 – object’s starting position offset in the RA direction (in arc-seconds)

• y0 – object’s starting position offset in the Dec direction (in arc-seconds)
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• vx – object’s speed in the RA direction (in arc-seconds per day)

• vy – object’s speed in the Dec direction (in arc-seconds per day)

3.2.3 The likelihood function

Common to both frequentist and Bayesian statistics is that both make use of the likelihood

function, with Bayesian statistics fundamentally depending on it.

The likelihood function gives the probability of the data given the model. It incorporates

the knowledge of how the data get generated (e.g. what kind of images a point source of

a certain brightness produces when observed through a telescope of a certain type) and

is able to compare the actually observed and the modeled data. The likelihood function

should have the highest value when the model (determined by its parameters) the most

closely corresponds to the observed data. Likelihood function often has very small values,

so in practice its logarithm is often used instead, giving the “log-likelihood function”, whose
outputs are easier to handle by a computer.

g a simple example – a 2d line.An example of fitting a linewill be used throughout

the chapter for easy understanding of the concepts presented. A line in a 2D space is

described by its slope (a) and intercept (b) parameters, which gives this model:

y = ax + b (3.3)

For a fixed set of parameters a and b and an input vector x = (x1, x2, . . . , xn) a noisy
data set can be created by adding some random noise є (vectors are denoted in bold letters):

y = ax + b + ϵ (3.4)

If we assume a known Gaussian noise, the likelihood of observing value y, given a “true”
value yT is:

N(y∣yT , σ2) = (2πσ2)−1/2exp(− 1
2

(y − yT)2
σ2

) (3.5)

With the assumption of independently sampled data points {yn}, the full likelihood is
then a product of their individual likelihoods. Since the “true” values are determined by

line parameters (yT = ax + b), the likelihood can also be written as:

L = p({yn}∣a, b, {xn}, {σn}) =
N
∏
n
p(yn∣a, b, xn , σn) (3.6)

The full set of model parameters (a and b in this case) is often denoted as θ and the
likelihood function is often written as:

L = f (θ ,y) (3.7)

The function f above contains in itself the knowledge of the model, i.e. how to produce

the predictions based on model parameters θ, and how to compare them to the input data

y.
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The log-likelihood can then be calculated as:

lnL =
N
∑
n
ln[(2πσ2

n)1/2exp(−
1

2

(yn − (axn + b))2
σ2

n
)] (3.8)

= −N
2

ln(2π) − 1

2

N
∑
n
[(yn − (axn + b))

2

σ 2

n
+ lnσ2

n] (3.9)

= const. − 1

2

N
∑
n
[(yn − (axn + b))

2

σ2

n
] (3.10)

The last equation stands because noise variances are known and can be regarded as

being constant. So, to maximize the likelihood, and thus obtain the optimal parameters

a and b, it is sufficient to minimize the well-known χ2 statistic (using the more common
notation ŷn for the “predicted” value axn + b):

χ2 =
N
∑
n
( yn − ŷn

σn
)2 (3.11)

Or in the case of homoscedastic noise (where noise variance in each point is the same),

the sufficient statistic to be minimized is the familiar sum of squares of differences between

observed and predicted values:

Ss =
N
∑
n
(yn − ŷn)2 (3.12)

g the likelihood function for the moving point source model.In the

case of a moving point source, the data are not points in a 2D space, but images, consisting

of pixels. Each pixel is treated as a single data point and each pixel’s value is determined by

the number of photons that hit the surface of the photo-sensitive chip during the exposition

time.

Probabilities of numbers of events that occur during a specific period of time (number

of photons in this case) follow the Poisson distribution, which is determined by a single

parameter: rate λ. Thus, a model-determined image Î with Poisson noise can be written as:

Îx ,y ∼ Poisson(λ = M(x , y)) (3.13)

Poisson distribution can be safely approximated by a Gaussian when number of events

is large (> 1000), which is usually true for pixels of astronomical images, and then it has the

neat property that its mean µ and variance σ2
are both equal to λ. So, the previous statement

can be rewritten as:

Îx ,y ∼ N(µ = M(x , y), σ =
√
M(x , y)) (3.14)

This leads to the analogous log-likelihood function as in the previous section (3.11) and

to the analogous χ2 function (with that difference that the data points here are indexed with
two indices (x , y), instead of with n):

χ2 = ∑
x ,y

(Ix ,y − Îx ,y)2
2σ 2

x ,y
(3.15)
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As was already explained in3.2.1, the variances of each pixel are available as “variance

images” Vx ,y, , and so the χ2 can be calculated with the original, observed image Ix ,y, the
model-generated image Îx ,y = M(x , y) and the variance image Vx ,y:

χ2 = ∑
x ,y

(Ix ,y −M(x , y))2
2Vx ,y

(3.16)

g testing for goodness of fit with χ2DoF .The χ2 values are distributed as
the χ2 distribution with k degrees of freedom, where k is equal to the number of “free”
data points: number of data points minus the number of model parameters, N − Npar. This

distribution does not depend on model parameter values, but only on k, i.e. the number of
data points N .

For larger values of k, the χ2 distribution can be well approximated by a Gaussian
distribution with the mean of k and standard deviation of

√
2k:

p(χ2∣k) ∼ N(µ = k, σ =
√
2k) (3.17)

Dividing chi2 by k gives the “χ2 per degrees of freedom” value χ2DoF which is distributed

as:

p(χ2DoF) ∼ N(µ = 1, σ =
√

2

N − Npar
) (3.18)

If data is coming from a distribution corresponding to the one assumed by the model

(and the likelihood function), the χ2DoF value should be close to 1 plus or minus several√
2/(N − Npar).

3.2.4 Multifit using the frequentist approach

For finding the “point estimate”, i.e. the optimal model parameters, based on the designed

likelihood function, the frequentist statistics prescribes the “maximum likelihood” approach,

i.e. maximizing the likelihood function. The likelihood function can be maximized either

analytically (if that is feasible), or an optimization procedure can be used to repeatedly

change the model’s parameters in such a way as to arrive to the maximum value of the

likelihood function and thus “fit the model to the data”.

ˆθ = argmax

θ∈Θ
L(θ ,y) (3.19)

As was already stated, minimizing χ2 has the same effect:

ˆθ = argmin

θ∈Θ
χ2(θ ,y) (3.20)

So, “solving Multifit” using the frequentist approach, with the model defined in the

previous sections, means using an optimization procedure to find the optimal values of

magnitudeM, starting position offset (x0, y0) and object’s speed (vx , vy) parameters that
maximize the defined likelihood.
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g optimization procedures.Sum of squares of residuals (differences between

observed and predicted values) was shown in section3.2.3.1to be the sufficient statistic for

a model with Gaussian errors. Minimizing this statistic can be accomplished with many

different methods and techniques.

Themost important procedures include gradient descent, Newton’s optimizationmethod

[52], Gauss-Newton algorithm [53], Levenberg-Marquardt method [54], Trust Region Re-

flective or TRF [55], Dogbox [56], Powell [57], Nelder-Mead [58], BFGS [52], and others.

Implementations of these methods are available in Python packages scipy and lmfit

and were tried out on the Multifit problem in this thesis.

Obtaining error estimates are different with different packages used. The implemen-

tations in the lmfit package return covariances directly and the error estimates can be

found on the diagonal of the covariance matrix. Implementations from the scipy package

(Levenberg-Margquardt, TRF and Dogbox) return the Jacobian matrix J (matrix of all
first-order derivatives of the target function). The Hessian matrix H can be approximated

from the Jacobian as H = 2JT J. Inverting a Hessian then gives the covariance matrix with
the estimated errors on its diagonal.

g jackknife method of error estimation.Jackknife is a method of error

(variance) estimation that calculates an estimate x̂i of a parameter x N times always leaving

out one of the data points from the data set.Themethod then averages out these N estimates

to obtain the “Jackknife estimate” x̂J . Un unbiased estimate of the variance of the main
estimation procedure can then be obtained with:

ˆvar(x̂) = N − 1
N

N
∑
i=1
(x̂i − x̂J) (3.21)

However, if the original estimation procedure is itself expensive and there are lots of

data points, Jackknife method is not practical for real usage.

3.2.5 Bayesian statistics

Themain novelty in Bayesian statistics, compared to “classical statistics”, is that probabilities

are not only attached to data but also to models and their parameters (again, for a good

pedagogical introduction see [51]). What is common to classical statistics and Bayes method

is the usage of the likelihood function, but unlike in Bayesian statistics, in classical statistics

the likelihood function cannot be interpreted as a probability density function of model

parameters because that notion does not even exist there: model parameters are not random

variables.

In Bayes statistics, the relationship of original knowledge, data and that knowledge

which is learned from both is described by the Bayes Theorem, given with the following

formula.

p(M , θ∣D, I) = p(D∣M , θ , I)p(M , θ∣I)
p(D∣I) (3.22)

HereM designates the model, θ is a set of parameters that determine the model and D
are the data. The expression p(D∣M , θ , I) is the likelihood of the data, or in other words,
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the probability that we will see the observed data if their generation is described by model

M with parameters θ. As was already said in section3.2.3, the likelihood comes from design

of the experiment, or knowledge that we have about the problem at hand.

p(M , θ∣I) is the “prior”, or the current knowledge that we have about the possible model
parameter values. Prior is something that does not exist in the classical statistics and is

based on subjective judgment (which is one of the arguments against Bayesian statistics in

the frequentist–Bayesian debate).

The expression in the denominator is called “evidence” and represents the raw probability

of the data. Calculating evidence is computationally the most problematic part of Bayesian

inference. However, it is almost never calculated directly but obtained by normalizing the

numerator.

I is the “background information” and is explicitly shown in all probabilities in3.22in
order to emphasize that the inference is not “suspended in vacuum”, nor is it given us “from

above”, but is always performed in the context of knowledge and assumptions that we have

about the problem (which can be incorrect, and which can render the whole procedure

incorrect).

Finally, the result on the left-hand side, p(M , θ∣D, I), is the “posterior” probability of
model parameters and represents the new knowledge which is a combination of the prior,

the model and the data.

3.2.6 Posterior calculation

Calculating posterior using the Bayes formula3.22requires calculating the evidence integral:

p(D) = ∫ p(D∣θ)p(θ)dθ (3.23)

However, calculating that integral analytically is often impossible. That problem was

often solved in history using conjugate priors which, in combination with the likelihood
function (which also had to be of a simpler form), give a posterior of the same analytical

form. If that is not possible, one would use approximative functions of the same form.

With the development of computer technology, the problem became solvable with

approximative numerical methods. The first such method, applicable only in the case

of a smaller number of parameters, a “grid” is constructed with different combinations

of parameter values and the integral is calculated at points on the grid (an example of

application of this method is “lensfit” mentioned in3.1.1). However, even a modest increase

in the number of parameters leads to a combinatorial explosion and exponential increase

in computing power required.

Another type of numerical approximations, which is used in this thesis, are Markov

chain Monte Carlo algorithms which have seen wide adoption and development. They give

posterior distributions of model parameters without calculating the integral3.23. We give

their brief description in the next section.

3.2.7 Markov chain Monte Carlo

Monte Carlo methods are used today in almost all sciences for simulating complex systems

and evaluating multidimensional integrals. In [59] a definition is proposed according to
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which “Monte Carlo” means “using random numbers for estimating a value which itself is

not random”.

Monte Carlo integration, which is very important in Bayesian statistics, can be described

in the following way ([60]). If f (x) is a probability distribution defined on the interval
from a to b and we randomly generate N numbers X uniformly distributed in the same

interval, then the integral of the function f (x) can be estimated using this formula:

∫ b

a
f (x)dx ≃ 1

N ∑i
f (Xi) (3.24)

However, if the function f (x) varies significantly, which is often the case with higher
number of dimensions (i.e. x is a vector), Monte Carlo is very inefficient [51] because it
spends too much time in the areas where the function contributes very little to the total

value. If x would be sampled directly from distribution f (x), algorithm would be more

efficient (it would spend more time calculating areas where f (x) value is higher). This is

known as importance sampling, but designing such an algorithm when one needs to handle

a large number of dimensions is difficult [61].

A much more efficient group of methods is Markov chain Monte Carlo (or MCMC

for short), where random values are generated by the method of random walk where each

new step depends only on the current state (which is the definition of a Markov chain)

and whose distribution asymptotically approaches f (x). With this group of methods, one

needs to define a transition matrix P{pi j} over a set of states S, in relation to the probability
distribution f , which satisfies these two conditions [62]:

• Irreducibility For any two elements i and j from S it is possible to go from i to j using
transition matrix in a finite number of steps

• Stationarity For every j ∈ S the following holds:∑i fipi j = f j

The sufficient condition for stationarity is the condition of “detailed balance”, which is

easier to check: for every x , y ∈ S, fipi j = f jp ji .

When these conditions are satisfied, the distribution f is called stationary or equilibrium
distribution.

g convergence to equilibrium.It can be shown that Markov chains satisfy-

ing these conditions inevitably converge to the equilibrium distribution regardless of the

distribution they were initialized with. Sampling from a chain that has not reached the

equilibrium state introduces statistical errors. So, in practice, chain histories from before

the equilibrium state was reached (the so-called “burn-in”) are discarded. However, deter-

mining exactly when the chain reaches equilibrium is hard and can demand additional

computing resources. The number of steps needed to reach stationarity, though, can usually

be empirically determined by visually inspecting chain histories.

g metropolis-hastings algorithm.There exist many versions of MCMC algo-

rithms for generating Markov chains that satisfy conditions from3.2.7. The most famous

one is the Metropolis-Hastings algorithm [63] where the next sample θ t+1 in Markov chain
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for the current state θ t is selected in two steps. First, a suggested value γ is sampled from
a proposal distribution q(γ∣θ t) (which can be of any shape, such as multivariate Gaussian
distribution), and theMetropolis ratio r is calculated (p is the posterior):

r = p(γ∣D, I)
p(θ t ∣D, I)

q(θ t ∣γ)
q(γ∣θ t)

(3.25)

The second factor will be equal to 1 for symmetrical proposal distributions. As was

alreadymentioned, calculation of evidence integral is problematic, but in ratio r it is canceled
out. One only needs to calculate priors and the likelihood, and these functions are readily

available. If the calculated ratio r ≥ 1 (the proposed value γ is more probable than the current
value θ t), the proposal is immediately accepted and θ t+1 becomes γ. If r < 1, the proposed
value is accepted with probability r. Otherwise, θ t+1 remains equal to θ t .

It can be shown [64] that Metropolis-Hastings algorithm always (after a sufficient

number of steps) ends up faithfully describing the target probability distribution.

g affine invariant ensemble mcmc method.In [ 4] the authors propose an

ensemble MCMCmethod invariant to affine transformations. For an algorithm to be “affine

invariant” means that its efficiency is not dependent on the level of asymmetry of the target

distribution (if it’s significantly skewed in one or several of the dimensions). The classical

MCMC algorithms (Metropolis-Hastings and Gibbs) cannot use different moves in different

dimensions and so they become inefficient (although they still give equally good estimate

of the target distribution after a large number of steps).

The authors call a MCMC algorithm “affine invariant” if the following holds:

R(aθ + b) = aR(θ) + b (3.26)

where R is the sampling function θ(t + 1) = R(θ(t)).
The suggested method is an ensemble method because it uses a set of L “walkers” that

explore the domain space based on the current position of all other walkers. One step of

the ensemble MCMC chain comprises the full circle across all walkers. The authors suggest

the “stretch move”, “walk move” and “replacement move” as options for choosing the next

positions of a walker in an affine-invariant manner.

g kde move.During the work on the Multifit implementations described in later

sections it became apparent that the default “stretch move” tended to leave some chains in

local minima and skew the later density estimation results. “DE move” and “KDE move”,

based on [65], were much more stable (and worked equally well) and enabled the procedure

to reach statistical performance described in3.8.

g mcmc sampling efficacy and autocorrelation.More efficient MCMC

algorithms will describe the target distribution in a smaller number of steps. Every time

a newly proposed chain value is rejected, time and computing power need to be spent

at repeated sampling and prior and likelihood calculations, so the so-called “acceptance

rate” (of proposed values) is one of measures of efficacy of MCMC algorithms. None of

the extreme values of this measure are not satisfactory. If the acceptance rate is 0%, the
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algorithm will not advance at all. If it is 100% the algorithm will advance regardless of the

target distribution and such a result would be useless. In [61] authors recommend to tune

the acceptance rate to be between 25% and 50%.

Chain autocorrelation is correlation of the chain with itself at two different moments
with a lag of k steps. Autocorrelation usually drops when k increases. Effective sample size
is another measure of MCMC sampling efficiency and tells us what would be the number

of samples in the chain that would have no autocorrelation but would contain the same

amount of information [64]. The higher the length of a chain from its effective sample size

is, the less efficient the sampling has been.

Reliably estimating autocorrelation of a chain, however, is computationally demanding

and requires availability of a large number of samples, which can render the procedure not

feasible in practice.

3.2.8 Estimating the posterior distribution

Result of a MCMC inference procedure is a history of MCMC chain values. As was seen in

section3.2.7.2, after a number of steps large enough, the chains end up spending, at different

parameter values, an amount of time which is proportional to values’ posterior probability.

In other words, the more samples there are inside an interval, the probability of that interval

is larger.

One oftenwants to know parameter’smarginal probability density, i.e. posterior probabil-

ity density function of a parameter considering all the possible values of all other parameters

by integrating over them.The MCMC algorithm gives an easy way to find such marginal

probability densities: from all the N-dimensional sampled values one only needs to retain

the specific parameter’s dimension and discard all the others.

To obtain amathematical description of this posterior one needs to analyze the histogram

of chain samples.There are twomain groups of techniques for describing distributions based

on data samples. In the first group are summary statistic-estimation techniques, which give

only a partial estimate of the target distribution, often with a single value. Point estimation,

maximum likelihood estimation, and estimation of confidence intervals belong to this

group. In the second group are the methods that estimate the full posterior distribution,

such as histogram-based and kernel density estimation (KDE) techniques.

g summary statistics.Estimating summary statistics of probability densities, based

on a set of samples, results in simple estimates in the form of a single value (point estimates)

or in the form of intervals of parameter values.They do not give the full picture of a probabil-

ity density and can therefore be misleading. MAP approximation is similar to the maximum

likelihood estimate, but also includes information from the prior. Another estimate that

can be used for describing posterior distribution is mean estimate:
¯θ = ∫ θp(θ∣D)dθ. In

[61] MAP, mean and median of posterior probability distributions are compared and the

conclusion is that the median is the most robust option of the three.

Posterior distributions can also be described by estimating credible regions, i.e. ranges
within which a certain percentage of possible values resides. When estimating credible

regions, one wants to find values a and b such that ∫ a
−∞

f (θ)dθ = ∫∞b f (θ)dθ = α/2. Then
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the probability that the true value of parameter θ is between a and b is equal to 1 − α, and
that interval is called 1 - α posterior interval [51].

g density estimation using histograms.Estimating density of a target distri-

bution using the histogram itself is done by grouping the values into discrete bins, counting

number of samples in each bin, and normalizing thusly obtained function with the number

of samples. The histogram-based estimation function, for n samples, where h(x) deter-
mines the width of a bin, and Nm denotes number of samples in the bin m, can therefore be
described with the following formula [66]:

fhist(x) =
Nm(x)
nh(x) (3.27)

g kernel density estimation.A better method of estimating densities (than using

histograms) is kernel density estimation (KDE) which converges faster to the true distri-

bution [67]. Besides bin sizes, even bin placement is problematic when using histograms

and can influence the estimate. That problem could be circumvented if every sample would

belong to its dedicated bin and if bins would be allowed to overlap. Replacing each sample

with a Gauss function and summing up all of their values results in a KDE with a Gaussian
kernel. However, then the question of width of the Gaussian kernel comes up. If the kernel
is too narrow, the result is a function with too much variance (noise). A kernel too wide

averages the peaks too much and some of the information is lost.

Instead of Gaussian, any other functionK can be used as kernel if it satisfies the following

requirements: that its strictly positive (K(X) ≥ 0), that it’s normalized to 1 (∫ K(x)dx = 1),
and that its mean is equal to 0 (∫ xK(x)dx = 0). The estimated function is then obtained

using this formula:

ˆf (x) = 1

n
1

hD

n
∑
i=1

K (d(x , Xi)
h

) (3.28)

where h is width of the kernel (or “bandwidth”), Xi are themeasured values, d is distance
function, and D is dimensionality of the parameter space [51]. Other options for choosing a

kernel are the “top-hat” kernel:

K(u) = {
1

VD(1)
za u ≤ 1,

0 za u > 1
(3.29)

And Epanechnikov kernel:

K(u) = 3

4

(1 − u2) (3.30)

for −1 ≤ u ≤ 1.
Although kernel density estimation can describe the target distribution faithfully, in

practice however, evaluating it on new samples can be prohibitively slow.

g approximating posteriors with a gaussian mixture.Another method

for approximating distributions is by using Gaussian mixtures where A mixture of Gaussian

models can be fit to data (histograms) using the expectation-maximization (EM) algorithm.
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The input to the process is the assumed number of components in the mixture and random

parameters for each component. The EM algorithm then computes for each sample the

probability that it is generated by each of the components in the mixture (the “expectation”

step). Then the total likelihood of the data is maximized by changing the parameters

(the “maximize” step). This is repeated in iterations until the likelihood cannot be further

improved.

Another option for fitting a Gaussian mixture to data is variational inference, a similarly

iterative procedure, which does not just maximize the likelihood but also includes the prior

information, namely the prior on distribution of component weights, usually represented

with the Dirichlet distribution.

Variational inference is slower than classical EMalgorithm, but it is able to set theweights

of some of the components close to zero, which is not the case with EM.That means that

the number of components does not need to be specified in advance as the procedure can

determine it on its own. However, its “weights concentration prior” hyperparameter, which

needs to be specified in advance, can influence the results significantly. So, the flexibility of

variational inference comes with additional cost.

Outliers can influence both procedures and skew the final solution. The same is true

with incomplete data, where part of the Gaussian curve is missing, for example.

Implementations of both of these procedures are available in the Python’s scipy pack-

age. Variational inference (BayesianGaussianMixture class) is used in this thesis. More

information in section3.6.8.

3.2.9 Multifit using the Bayesian approach

Finally, putting all this together, to fit an object’s magnitude M, starting position offset

(x0, y0) and object’s speed (vx , vy), based on all the object’s acquired images I1 . . . IN (i.e.
the Multifit approach) using Bayesian statistic, one would:

1. Choose a prior distribution for each parameter based on existing knowledge about

the world and the model. For example, it might be known that detecting objects with

magnitude of less than 18 or more than 28 is not possible with the equipment used or

in the area being observed. And it might also be the fact that observing objects of

any magnitude in that range is equally likely. Then, one would specify a uniform (or

“flat”) prior for the magnitude parameter in the range between 18 and 28.

2. Design an image generation procedure, based on the assumed model (forward mod-

eling)

3. Design a likelihood function that would compare the generated and observed images,

using the χ2 statistic (as was previously described in section3.2.3.2).

4. Run a MCMC procedure that would explore the posterior distribution (combining

both priors and the likelihood) and produce a set of samples from the posterior (chain

values)

5. Estimate the posterior distribution using the generated chain values with one of the

methods from section3.2.8
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6.Use the estimated posterior distribution to obtain the required statistical properties

for all the parameters

For details on how this can be implemented in practice please skip to section3.6.

3.3online multifit

The “standard” Multifit approach, whether using frequentist or Bayesian statistics, always

considers all available images of an object at the same time. This could also be called the

batchMultifit approach.
The novelty of the onlineMultifit is to consider images one by one. For the first image x1,

the procedure uses the original parameter priors (π(θ)) and produces the first posterior:

π1 = p(θ∣x1) ∝ p(x1∣θ)π(θ) (3.31)

This posterior then becomes the prior for the next image x2:

π2 = p(θ∣x2) ∝ p(x2∣θ)π1(θ) (3.32)

and so on. For the N-th image we have:

p(θ∣xN) ∝ π(θ)
N
∏
i=1

p(xi ∣θ) (3.33)

This procedure, also known as “sequential” (and also “recursive”) “Bayesian updating”,

results in the same posterior as the batch procedure, if the posteriors in each step can be

perfectly calculated.

3.3.1 Fitting a 2D line with online Bayesian inference

How online Bayesian inference works in practice will now be illustrated using the simple

model of a 2D line presented back in section3.2.3.1. The rightmost graph in Figure3.1shows

the example dataset. The true slope a and intercept b values of the example line are 0.5 and
1.5. The four points on the line were randomly chosen and Gaussian noise with σ = 0.2 was
added to their y dimension. Batch fitting of a line through those points (using Numpy’s
polyfit) gives an estimate of a = 0.54 and b = 1.48.

Model and the log-likelihood function can be defined in Python like this:

def M(x, a, b):

return a * x + b

def logL(x, y, a, b, sigma):

return ((y - M(x, a, b)) / sigma )**2

Online approach dictates that each data point is processed sequentially one by one. If

a range of acceptable a and b values is assumed (for example [0, 2] for both parameters)
and if each range is divided into a number of bins (for example 1000) and those bins are

represented as pixels, the log-likelihood value can be calculated for each combination of the

parameter values (i.e. bins, which makes 1 million points for this example). That produces
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Figure 3.1: Fitting a line using a random dataset with online Bayesian inference. Each image in the

lower row is the log-posterior after processing one additional point, plotted on a grid

corresponding to different a and b values. Upper row shows the ground truth (blue line)

and the best estimate (orange line) at each step. Precision increases with each new image.

a 2D matrix of log-likelihood values which can be plotted as an image. As was already

explained in section3.2.3.1, a fitting choice for the log-likelihood function is the negative

sum of squared differences between the predicted and data y values.The larger the difference,

the smaller the likelihood of that combination of parameter values.

According to the Bayes theorem (equation3.22), log-prior values need to be added to the

log-likelihood. In this example a flat prior will be used, or an image with pixels equal to zero

(which means that all parameter values are equally likely at the onset), so the log-posterior

after the first point is equal to the calculated log-likelihood image. This log-posterior is

then used as a log-prior for the next data point, i.e. it is added to the next log-likelihood to

produce the next log-posterior, and so on.

Using this method, posterior values can be directly calculated on a grid and there is

no need for the full-fledged MCMC simulation. However, there is obviously a limit to

the method as adding more parameters exponentially increases the grid size and, hence,

computational cost. Besides, the accuracy of the method is limited by the granularity of the

grid.

Figure3.1shows the four consecutive log-posteriors after processing each of the four

data points (the values are clipped in the range [−1, 0]). The first posterior looks like a line.

All combinations of a and b values on that line correspond to lines in x − y space that all go
through the first data point. After the second data point, the posterior is already centered at

the correct a and b values, but with a relatively large uncertainty. The uncertainty decreases

with each subsequent point.

After the last point, the a and b values corresponding to coordinates pointing to the
largest log-likelihood value in the grid are 0.54 and 1.48, the same values as those estimated

with the batch approach.
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3.3.2 Applying online Bayesian inference to Multifit

The same principle is applied to the Multifit method in this thesis. The difference is that

the data are images and not points in a 2D space and the model has more parameters,

so calculating log-likelihoods and posteriors on a grid is not possible. Instead, posteriors

can be estimated from MCMC histograms after each image and approximated with a

mixture of Gaussians. This approximation will undoubtedly introduce some errors and the

main challenge is to reduce those to the minimum. On the other hand, approximating the

posteriors with a set of Gaussians compresses the information from sample histograms into

means and covariances of the mixture components.

3.3.3 Benefits of online Multifit and computational efficiency

When the data used for Bayesian inference are images instead of points in 2D space, the

advantages of the approach become more apparent: an online algorithm needs to process

only a single image at each step, while the batch algorithm always needs to process all the

available images.

Consider an astronomical catalog consisting of hundreds of detections (images) of each

object in the catalog (potentially billions). Each night brings new images to the catalog and

the measurements need to be updated with the new information. If the Multifit algorithm

is used for estimating objects’ measurements, the batch version would need to process all

the available images for each detected object (some surveys will observe the same objects

hundreds of times). The online version processes only the new images and updates the

posteriors accordingly. When the next image arrives, only the mathematical representation

of the posterior needs to be loaded to represent all the knowledge accumulated so far.

Let’s assume the same number of MCMC chainsW and the same number of iterations

I is used for both batch and online algorithms. Let’s also assume that all of N images have

the same dimensions. Then the following observations can be made.

g cpu efficiency.For each iteration I and each walker W both procedures will

compare the available images with the simulated ones: N images for the batch version and 1
image for the online version. For each iteration both procedures also need to generate new
proposals for new walker positions, but that step does not depend on the number of images

and so it can be left out from the analysis. This givesW × I × N image operations for the

batch version andW × I image operations for the online version.
However, when the next image N + 1 is added and the new posterior needs to be

calculated, the batch version will now need to performW × I × (N + 1) image operations
while the online version stays atW × I. So, in total, if N images are added one by one, and

the new posterior is calculated every time, the batch version would performW × I × N(N+1)
2

image operations (which is O(N2) complexity) while the online version performs only
W × I × N (O(N) complexity).

In reality, astronomical catalogs are not updated after each object gets a single new

observation, so the number of batch operations would need to be divided by some average
number of observations that are processed in bulk, but the complexity still remains O(N2)
for the batch version.
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g memory efficiency.The main observation stays the same when comparing mem-

ory consumption: the batch version needs to hold in memory all N images and the online
version needs only the new image.That gives the memory complexity of O(N) for the batch
version and O(1) for the online version.

The online version does not even have to store the images once they have been pro-
cessed. However, it needs to store the estimated posterior data which consists of means

and covariance matrices of Gaussian approximations, which is smaller in size than a single

image.

3.4common elements of the multifit implementations presented

Before describing various Multifit implementations developed in this thesis, this section

describes two elements that are common to all of them: the simulated data and the likelihood

function.

3.4.1 Simulated data

The data that were used for implementation and testing of the various Multifit implemen-

tations were based on the “RC2 subset” (available at https://github.com/lsst/rc2_

subset) of the HSCRC2 dataset, which is “a collection of three tracts (in the GAMA, VVDS,

and COSMOS fields) from the first public data release of the HSC SSP survey, used for

regular testing of the LSST Data Release Production pipelines” (https://github.com/

lsst-dm/gen3-hsc-rc2). The subset consists of the central 6 detectors for 8 randomly

chosen exposures (exposing the telescope’s focal plane to the light coming from a certain

location in the sky) in the 5 broad band filters. So, the images that were used came from a

real telescope.

However, theHSCRC2 dataset does not containmoving point sources that could be used

for algorithm evaluation, so a set of fake moving sources had to be inserted into the existing

images. The code used for generating fake sources was taken from the insertFakes LSST

task 1. The same, although slightly modified code was also used for implementing “forward

modeling” in the likelihood function, as will be explained below.

The RC2 subset is covering the region between coordinates (149.7829, 1.9873) and

(150.6144, 2.3215), but not all parts of the region have been observed the same number

of times. The Figure3.2shows the coverage of the region, i.e. the number of overlapping

exposures covering each pixel (with Dec coordinate placed on the x axis to better fit the
page). With the pixel scale of the telescope roughly equal to 0.1686 arc-seconds per pixel,

the full region spreads over an image 7138x17758 pixels in size.
A small subregion of 502x574 pixels in size with a good coverage was chosen for placing

the simulated moving point sources into.

The exposures making up the chosen region cover a time range of 421 days (since 56741.4

until 57163.3 in MJD – Modified Julian Day, i.e. since 25 March 2014 until 21 May 2015).

1 The source code can be foundhere:https://github.com/lsst/pipe_tasks/blob/main/python/lsst

/pipe/tasks/insertFakes.py and somedocumentation here:https://pipelines.lsst.io/v/daily

/py-api/lsst.pipe.tasks.insertFakes.InsertFakesTask.html#lsst.pipe.tasks.insertFa-

kes.InsertFakesTask

https://github.com/lsst/rc2_subset
https://github.com/lsst/rc2_subset
https://github.com/lsst-dm/gen3-hsc-rc2
https://github.com/lsst-dm/gen3-hsc-rc2
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Figure 3.2: Number of observations for each pixel in the region covered by the RC2 subset

Figure 3.3: Distribution of times (in days) when exposures were made relative to the first exposure

in the dataset.

Figure3.3shows time of each exposure in the dataset in days since the first exposure. The

distribution of exposures is not ideal: instead of being spread out evenly over a period of

time, exposures are grouped on only several specific days.

g preparing hsc data.Before inserting fake moving sources, the HSC data is pre-

pared with the “single frame processing” task of the LSST pipelines (described here: https:

//pipelines.lsst.io/v/weekly/getting-started/singleframe.html). This step

“removes instrumental signatures with dark, bias and flat field calibration images” and

also “uses the reference catalog to establish a preliminary WCS and photometric zeropoint

solution”.

g simulating moving point sources.The chosen subregion was divided into

304 cutouts (16x19 – 16 in RA direction and 19 in Dec direction) of 30x30 pixels in size. At
the center of each cutout a simulated object was placed with a random speed (except those

in the leftmost column which all have the speed of zero in both directions). The speeds

were chosen so that the objects travel at most 5 pixels during the observed period with most

of them traveling about 1 pixel.

The Figure3.4shows speeds of the simulated objects. The lower two graphs show

https://pipelines.lsst.io/v/weekly/getting-started/singleframe.html
https://pipelines.lsst.io/v/weekly/getting-started/singleframe.html
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Figure 3.4: Speeds of simulated objects.The lower two graphs show histograms of speed distributions

in RA and Dec directions, respectively. The upper two graphs show speeds in the two

directions as pixel intensities, where each pixel correspond to an object in a cutout as

they are placed inside the chosen subregion.

histograms of speed distributions in RA and Dec directions, respectively. The upper two

graphs show speeds in the two directions as pixel intensities, where each pixel correspond

to an object in a cutout as they are placed inside the chosen subregion.

Magnitudes of the simulated objects increase with their Dec position going from 18 to

27, i.e. the objects are becoming dimmer.

The insertFakes LSST task used for generating fake sources uses galsim Python

package behind the scenes. The task code was modified so that it also adds fake sources to

variance images (otherwise, the simulation would not be realistic). The code is using the

PSF function estimated during the initial processing of the data and places objects at their

proper locations into each original image depending on the object speed and the current

image’s timestamp.

The method used for inserting fake sources is the following:

def insert_fakes(objs , dataIds , butler , in_collection , out_collection ,

add_to_variance=True):

for dref in dataIds:
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calexp = butler.get(’calexp ’, dataId=dref , collections=in_collection)

calexp_clone = calexp.clone()

insert_fakes_in_calexp(calexp_clone , objs ,

add_to_variance=add_to_variance)

butler.registry.registerCollection(out_collection , CollectionType.RUN)

butler.put(calexp_clone , ’calexp ’, dref , run=out_collection)

Themethod inserts all MovingSource objects (defined in code listingA.1) from objs

into exposures from the in_collection and identified with dataIds and stores the results

into out_collection. LSST Butler2 object is used for reading and writing data (images

and metadata) to and from a repository. A full description of the LSST API and how to use

the Butler is out of scope of the discussion here as it is quite involved. The main method

for simulating fake data, insert_fakes_in_calexp, is the same method later used in the

likelihood and is given in code listingA.2.

Figure3.5shows one of the original images with some of the simulated objects added.

g processing the simulated objects.After the fake moving objects are added

to all images covering the region they’re placed in, the images are processed with the LSST

software stack so that the objects are detected and measured on the coadded images, thus

simulating the typical scenario how the Multifit code would be used. The steps performed

by the LSST processing pipeline are these 3:

• Forward Global Calibration Method (FGCM) – photometric calibration using a

reference catalog from Pan-STARRS

• jointcal – Refined astrometric calibration algorithm

• makeWarp – warps the exposures created by the singleFrame pipeline onto the pixel

grids of patches described in the skymap

• assembleCoadd – assembles the warped images into coadds for each patch

• Coadd measurement – detects sources in coadded images; merges detections into a

single catalog; deblends and measures sources in the individual coadds using the uni-

fied catalog; merges multi-band catalogs to identify the best positional measurement

for each source

• Forced photometry – re-measures the coadds in each band using fixed positions

Multifit algorithm can now use data produced by these steps to find the most likely

motions of the detected objects.

2 More information here: https://pipelines.lsst.io/v/weekly/py-api/lsst.daf.butler.

Butler.html

3 For more information see https://pipelines.lsst.io/v/v24_0_0/index.html

https://pipelines.lsst.io/v/weekly/py-api/lsst.daf.butler.Butler.html
https://pipelines.lsst.io/v/weekly/py-api/lsst.daf.butler.Butler.html
https://pipelines.lsst.io/v/v24_0_0/index.html
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g finding the detections.After processing the images with the LSST processing

pipeline, the resulting object catalog can be queried for detections and variousmeasurements.

Figure3.6shows with red X marks the objects that were detected and measured by the

pipeline.

Figure 3.5: Part of the original image with simu-

lated objects added.

Figure 3.6: The simulated objects (red X marks)

detected by the LSST processing

pipeline.

g removing objects with bright sources next to them.When an object

is present next to a bright source, this can interfere with measurement algorithms. This is

usually handled by the telescope’s data processing pipeline itself by masking those sources.

However, this does not always work perfectly. So, all such objects, that had bright sources

next to them, were removed from the data set.

3.4.2 The likelihood function

As was already stated, the same likelihood function is used for both frequentist and Bayesian

implementations. Python implementation of the likelihood function is given in listingA.3.

That code also uses the model generation code from listingA.2and helper code fromA.1.

The likelihood function lnlike takes in a set of input images (alongwith othermetadata

such as image timestamps, PSF functions, variance images, etc.) of an object and a set of

model parameters (magnitude, position, speeds). It uses model parameters to produce a

corresponding set of images of the object representing the “model” (the generate_model

function is used for this). It then subtracts generated images from the original ones, divides

the square of this difference image by the variance image (pixel by pixel) and finally returns

all pixels thusly obtained as “residuals”. The optimization code using the likelihood function

will then square and add up all the residuals to calculate the final χ2 value.

g model generation code.Images are generated according to provided parameters

using the method generate_model, given in code listingA.2. The method receives an
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instance of the MovingSource class (obj), RA and Dec coordinates for the center of the

cutout (the resulting subimage), a cloned “calibrated exposure” object (“calexp” for short,

an instance of the LSST class lsst.afw.image.exposure.ExposureF) and cutout size.

It needs to add a fake source to a cloned exposure, instead of the original one, because

otherwise the fake source would also be automatically added to the collection and saved

on disk. The method then just calls insert_fakes_in_calexp, but without adding the

fake to the variance image and without noise (as would be done when simulating testing

data). The rest is the same as with the data simulation code, except that the method returns

a cutout centered on the specified ra and dec parameters and of the size image_size.

g validating the likelihood function.One way to validate the likelihood

function is to examine its output for each of the inner steps it performs. Figure3.7shows

outputs of these steps for three cutouts of an example simulated object from three different

moments. Going from left to right, the images shown are:

1.The input image of a simulated object

2. The generated image within the likelihood function based on the parameters provided

3.The difference image between the two

4.The difference image divided by the square root of the variance image

There should be no “artifacts” in the difference images when using the correct model

parameters. This was shown to be the case for the objects in the simulated dataset.

Figure3.8shows an example of images produced by the likelihood function when given

model parameters do not match the actual object in the images. Typical “dipoles” can be

seen in the difference images when positions of real and modeled objects do not match

exactly.

g validating likelihood with χ2DoF .Another way of validating the likelihood

function is to calculate its “χ2 per degrees of freedom” (χ2DoF) value by dividing the χ2 value
by the number of valid pixels (across all the images). This value should be close to 1, as was

explained in section3.2.3.3. Indeed, this is the case for the simulated objects in the dataset

when there are no other bright objects in the vicinity.

g validating likelihood on a grid.Yet another way of making sure that the

likelihood is modeled correctly is to visually examine likelihood values calculated on a grid

for each pair of parameters (corner plot). To calculate the likelihood on a grid means to

place an equally-spaced N-dimensional mesh into a region of the parameter space and

calculate the value of the likelihood for each combination of the parameters defined by the

mesh. This is time consuming and the cost of this calculation exponentially rises with the

number of dimensions and the grid size. The marginalized parameter pair-wise plots can

then be obtained by summing up the calculated values along all other dimensions not being

visualized. Visualizing likelihood values like this can then reveal shapes due to correlation

of different parameters.
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Figure 3.7: Images internally used and produced by the likelihood function for the first three cutouts

of a simulated object, using the model parameters with which the object was originally

simulated with. From left to right: the input images, the model-generated images, the

difference images, the difference images divided by the square root of the variance images.

Figure 3.8: An example of images the likelihood function produces in the case of a non-optimal

estimate.

3.5frequentist batch implementation

The “frequentist” batchMultifit implementation is based on [3], whichwas described inmore

detail in section3.1.1.2. The implementation uses methods of traditional (frequentist) statis-

tics, which were explained in section3.2.4. This implementation is a batch implementation,

meaning that it uses all available images at once, as was also explained previously.

The implementing code was packaged as an LSST task 4 and will probably be used within

LSST pipelines for processing images from Vera C. Rubin Observatory. The code was used

4The code is available on Github here: https://github.com/dirac-institute/

batch-multifit-proto

https://github.com/dirac-institute/batch-multifit-proto
https://github.com/dirac-institute/batch-multifit-proto
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for comparing how well different algorithms work on the Multifit problem, comparing

their accuracy and processing efficiency. The main parts of the code are given in listing

A.4. The two main functions are do_lmfit and do_multifit. do_multifit function

implements least squares, Levenberg-Marquardt, “Dogbox” and Trust Region Reflective

(TRF) algorithms using Scipy’s least_squares and leastsqmethods, while do_lmfit

implements Cobyla, BFGS, L-BFGS-B, Conjugate-Gradient, Truncated Newton, “trust-

region for constrained optimization”, Sequential Linear Squares Programming, Simplicial

HomologyGlobal Optimization, Nelder-Mead, differential evolution, and Powell algorithms

using the LMFIT Python package. do_multifit will call do_lmfit depending on the

algorithm.

The LMFIT package (used by do_lmfit function) requires the user to formally declare

model parameters and their boundaries. The two main functions also differ in the way

they obtain covariance matrices: the LMFIT’s minimizemethod calculates it on its own and

returns it directly, while in do_multifit the Jacobian matrix needs to be obtained first,

then a Gauss-Newton approximation of the Hessian matrix is calculated by multiplying the

Jacobian by its transpose, and then finally the covariance matrix is calculated by inverting

the Hessian.

The different algorithms listed above were compared and the best performance, accuracy-

wise, was obtained using the Powell algorithm. The Powell algorithm was the slowest, but

accuracy was deemed to be more important for this thesis. The details are given in section

3.8.1.

Implementations of all the algorithms listed above result in a LinAlgError at varying

percentages of runs, which means that no solution could be reached.This could probably be

explained (this is pure speculation) by floating point inconsistencies when the algorithm gets

to a point where changes in parameters suddenly make unrealistic jumps in the likelihood,

or do not make any effect at all. Although the cause of this problem is still uncovered, the

situation is mitigated by running the algorithm again a certain number of times with starting

parameters varied randomly with standard deviation of 0.1%.

3.6bayesian batch implementation

This section describes a MCMC-based Multifit implementation processing all available

images at the same time, i.e. the batch Multifit version. The result of this procedure is not

just the maximum likelihood estimate of the model (moving point source) parameters, as is

the case with the frequentist approach, but also an estimate of the full posterior probability

distribution (see section3.2.8) of all model parameters.

In this section, implementation details are given, while various tests and results obtained

using this implementation are described in section3.8.2.

3.6.1 Emcee package and EnsembleSampler

Themain Python package used for implementing MCMC inference was Emcee ([68])5. It is

an implementation of the “affine invariant ensemble MCMC sampling method” described

5 More info at https://emcee.readthedocs.io/

https://emcee.readthedocs.io/
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back in section3.2.7.3. The package offers the EnsembleSampler class as the main driver

of the inference process. It requires the following to be specified:

• nwalkers - Number of walkers (chains) in the ensemble

• ndim - Number of parameters to be estimated

• log_prob_fn - Log-likelihood function

Optionally, EnsembleSampler can also accept additional arguments to be forwarded

to the log-likelihood function (the args argument), a list of “moves” to be used for choosing
next walker positions, and a few arguments enabling parallelization of the computations.

The list of available moves can be found in the documentation 6 and several of them can

be combined with specific weights (percentages specifying how often different moves will be

used). Different moves are supposed to explore the parameter space more or less efficiently,

using more or less iterations for exploring the full posterior distribution, but should arrive

at the same result. For the dataset used here, KDEMove and DEMove were shown to work

equally well.

3.6.2 The log-likelihood function

The log-likelihood function used by the Emcee package works a bit differently than the

function that was used in section3.5. First of all, the log-likelihood function here is supposed

to return a single log-likelihood value for each combination of input parameters values,

i.e. the function should calculate the final χ2 value on its own. If the function returns
-numpy.inf (because of hard limits on parameter values, for example), this will stop the

sampler from further exploring the parameter space in that direction.

Furthermore, parameter log-priors can (and should) be added to the final χ2 value. The

only prior used in the batch Multifit implementation is a wide Gaussian prior on vx and vy
parameters, centered on 0 with a standard deviation of 1 pixel in 50 days.

So, a simple wrapper function is used for calling the original function described in3.4.2,

checking the parameter hard limits and calculating the prior and the total χ2 return value.
In other words, the sampling procedure is essentially using the same code for generating

model images and comparing them to the inputs as was used in section3.5. The likelihood

function for the Bayesian batch Multifit is implemented as the lnprobmethod in listing

A.5.

3.6.3 Running MCMC

After creating an EnsembleSampler instance, its run_mcmcmethod can then be used for

running the actual inference. It only requires a starting state and a number of iterations
to run. The state needs to specify the starting values for each walker, i.e. it needs to be

an array with dimensions [number of parameters, number of walkers]. The authors of

the Emcee package recommend using a “tiny random ball” for starting values, which will

expand across the parameter space during the sampling procedure.

6 Here: https://emcee.readthedocs.io/en/stable/user/moves/

https://emcee.readthedocs.io/en/stable/user/moves/
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After running run_mcmcmethod, the EnsembleSampler object contains the history of

walker positions in the chain property. Another useful property is acceptance_fraction,

containing fractions of proposed steps that were accepted, for each walker chain. Acceptance

fraction was discussed back in section3.2.7.5). Its value should be somewhere between 0.25

and 0.5.

The best practice when running MCMC is to allow the sampler to “stabilize”, i.e. to

“converge to the equilibrium distribution” (see section3.2.7.1). However, finding out when

that happens is a hard problem, so what is often done instead, which is also the approach

taken here, is to run the process for a certain number of iterations (the so-called “burn-in”)

which are then discarded. Here, these are called “warm-up iterations”.

3.6.4 A 2D example

In order to better explain the procedure, we will now revisit the example from section3.2.3.1

and try to fit a line with the Emcee package. With the model function M and log-likelihood

function logL defined back in section3.3.1, a function for fitting a 2D line with Emcee can

be defined as in listing3.1.

Listing 3.1: A function for MCMC fitting of a 2D line

import emcee

def doemcee(data , nwalkers =150, niter =500):

ndim = 2

x, y = data

def lnlike(params ):

a, b = params

return -np.sum(logL(x, y, a, b, sigma))

sampler = emcee.EnsembleSampler(nwalkers , ndim , lnlike ,

moves=emcee.moves.DEMove ())

start_params = (np.random.rand(nwalkers * ndim )).\

reshape ((nwalkers , ndim))

state = sampler.run_mcmc(start_params , niter)

return sampler.chain.reshape((-1, ndim))

The function returns walker chains that can be used for further processing of the results.

3.6.5 Examining walker chains

Once a MCMC procedure is done, the chain histograms can be analyzed to gain insight into

the MCMC process. Firstly, a “chain plot” showing the timeline of walker (chain) values

can be examined for visual inspection of the MCMC process.

Secondly, a “corner plot”, whose manually-produced version was discussed back in

section3.4.2.4, shows 2D “heat maps” for each pair of the estimated model parameters.

Corner plots can be produced with the corner Python library. It automatically draws

histograms for each of the individual parameters and can also show the true parameter

values, if they are provided.
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Figure 3.9: Left: An example of walker chain histories when estimating 2D-line model parameters

(from a MCMC run using 150 walkers and 500 iterations). Right: Corner plot obtained

from chain histories shown on the left with vertical and horizontal lines showing the true

parameter values.

Example chains for the 2D line-fitting problem, and the matching corner plot, obtained

from a MCMC run that was using 150 walkers and 500 iterations, are given in figure3.9.

3.6.6 Examining Q-Q plots

“Quantile-Quantile plots”, or “Q-Q plots”, are used for comparing two different distributions:

quantiles of the two histograms being compared are plotted on the two axes and compared

visually. The two distributions are more similar, the more the resulting graph – connecting

the matching quantiles – resembles a straight line.

In the case discussed here, since the goal is to approximate the posterior with a Gaussian,

it would be useful to compare histograms of each estimated parameter (i.e. a and b param-
eters for the 2D example, or M, x0, y0, vx and vy for the moving point source model) to
histograms of a Gaussian distribution. If the Q-Q plot does not show a good correspondence

between the two distributions, one can expect larger error obtained when approximating

the distribution with a Gaussian.

In Python, 101 equally-spaced percentiles (0th to 100th) of a normalized Gaussian

distribution (with the mean of 0 and standard deviation of 1) can be generated as follows:

from scipy.stats import norm

normq = norm.ppf(np.arange(0, 1.01, 0.01))

Equivalent percentiles to the ones above, normalized in the same way, can be obtained

from the histogram chains for parameter i like this:
def normalized_percentiles(chains , i):

std = np.std(chains[:, i])

q = np.percentile(chains[:, i], np.arange(0, 101, 1))

mean = np.mean(chains[:, i])

# normalize the distribution:

return (q - mean) / std
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Figure 3.10: Q-Q plots for parameters a and b of the 2D line-fitting model corresponding to chains

from figure3.9shown with dark points with the original histogram in the background.

Figure 3.11: Corner plot and Q-Q plots for parameters a and b of the 2D line-fitting model obtained

from a MCMC procedure ran with only 50 walkers and 50 iterations.

Figure3.10shows Q-Q plots comparing a normalized Gaussian distribution with per-

centiles of histograms for parameters a and b from the same MCMC run from figure3.9.

One can notice a very good match between the two distributions (the lines are almost

straight).

3.6.7 The effect of poor sampling

If we were to run a MCMC procedure with a lower number of walkers and iterations, the

sampler would not adequately sample the posterior distribution and the resulting histograms

would not be that reliable. Figure3.11shows an example of a corner plot and Q-Q plots

for the 2D line-fitting model, from a MCMC procedure ran with only 50 walkers and 50

iterations. A poor correspondence to the Gaussian distribution can be noticed so one can

expect larger errors when approximating these histograms with a Gaussian.

3.6.8 Obtaining posterior distributions

Obtaining a posterior distribution from a histogram of chain values is the critical issue for

the success of the online procedure. If these estimates are inaccurate, the errors propagate

and accumulate with each new data point (e.g. image) and the final result can veer away

from the real solution.
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For that reason quite some effort during the work on the online Multifit problem for

this thesis has been put into accurate estimation of posterior distributions. Experiments

were done with different methods and implementations:

• SKLearn’s KernelDensity algorithm

• SKLearn’s BayesianGaussianMixture and GaussianMixture algorithms

• Gaussianmixture implementations from Python’s pyro, SVAE and pygmmis packages

All of these take a set of samples from a multidimensional space of possible values

and produce an object representing an estimate of their distribution. These objects expose

a score_samplesmethod which returns log-likelihood values for new sets of proposed

parameter values. Approximating a histogram with a probability distribution determined

by a finite set of parameters, such as the Gaussian distribution, allows one to “compress”

information contained in chain histograms to a much smaller set of numbers.

Obtaining a BayesianGaussianMixture, for example, from historical chain samples

can be done in the following way:

from sklearn import mixture

gm = mixture.BayesianGaussianMixture(n_components=N,

covariance_type=’full’)\

.fit(chains)

This gives us a set of Gaussian distributions, determined by their centers (the means_

property) and their covariance matrices (the covariances_). The weights_ property

determines the influence of each Gaussian distribution in the overall mixture.

However, approximating the target distribution with a mixture of Gaussians would

represent multiple competing solutions (a Gaussian for each solution). But these rarely

exist. Usually a single solution is dominant and the procedure most often finds a single

Gaussian “cluster”.Therefore, in order to simplify the implementation, reduce the amount of

data that needs to be stored, and lower the probability of the online procedure “wandering

off” in wrong directions, a single Gaussian estimate is always searched for, still using the
BayesianGaussianMixture implementation.

3.6.9 Obtaining MAP estimates

Maximum a-posteriori (MAP) estimates are “point estimates” of summary statistics of

the posterior distribution, described back in section3.2.8.1. One is, of course, primarily

interested in MAP estimates of the parameter values.

One way of obtaining these estimates is in the case of a single Gaussian distribution

approximated from the histogram values: the most likely parameter values according to

this distribution are determined by the Gaussian’s N-dimensional mean point.

Another way of obtaining the most likely parameter values is by calculating medians of

each parameter’s histogram values. Histogram medians actually represent an unbiased and

the most robust solution (see section3.2.8.1). This estimate is also more accurate compared

to the one determined from the approximated Gaussian distribution.
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For example, in the 2D line-fitting example presented above (figures3.9and3.10), a 2D

Gaussian fit gives an estimate of a = 0.548 and b = 1.477 (with the true values being a = 0.5
and b = 1.5). Histogram medians give a = 0.545 and b = 1.484, which is about 17% smaller

error.

The difference becomes even more noticeable when the Gaussian approximation poorly

fits the underlying histogram. For the MCMC run from figure3.11, a 2D Gaussian fit gives

an estimate of a = 0.608 and b = 1.297. Histogram medians give a = 0.564 and b = 1.416,
which is about 50% smaller error.

Taking a cue from these facts, the Multifit method developed in this thesis employs

the following procedure: it takes the covariance matrices (the shapes) from the estimated

Gaussian mixture, but corrects the mean of the most significant component using the
histogrammedians or Powell run results (see the below section3.6.12).

3.6.10 Expanding to the full Multifit model

Everything described in the previous sections regarding the 2D-line model fitting can be

applied to the 5D moving point source model. For the full moving point source model, the

parameters to be estimated are magnitudeM, offset from the detected position (x0 and y0
expressed in arc-seconds) and speed in both directions (vx and vy expressed in arc-seconds
per day). An example of a corner plot with all these parameters is given in figure3.12.

One can notice the correlation between x0 and vx parameters and between y0 and vy
parameters. This correlation is understandable: changing the starting point makes changing

the speed in that direction also necessary (and all other speed values less likely). The

magnitude plots show interesting correlations in the shape of a letter “T” (rotated counter-

clockwise), especially with respect to vx and vy parameters. The vertical part of this shape is

easily explainable: the same magnitude (brightness) of the object, near its true magnitude,

corresponds to several combinations of vx and x0 parameters, or vy and y0 parameters,
because they are correlated. The “stem” of the “T shape” (the horizontal part) is showing

that a solution describing a fainter (larger magnitude) but static object is also somewhat

likely.

3.6.11 Choosing the number of iterations

As was already said in section3.6.7, running MCMC with lower number of walkers and/or

iterations results in poor sampling, which means that the samples obtained do not faith-

fully describe the posterior distribution. By consequence, the sample medians also do not

correspond to the most likely parameter values. Left graph in figure3.13shows the χ2 per
degrees of freedom value depending on the number of iterations (the tests were made for

two objects of magnitude 18). The χ2 values clearly decrease, and hence the accuracy of the
estimates increases, when more iterations are used.

3.6.12 Correcting the estimates using Powell

Accuracy of the estimates can be improved if the Powell algorithm was ran using the

obtained medians as a starting point. The right graph in figure3.13shows the same runs



3.6. Bayesian batch implementation 61

Figure 3.12: Corner plot for an example batch run for the moving point source model.

from the previous section, but corrected with runs of the Powell algorithm. One can see that

the correlation between χ2 and number of iterations is now gone: the same point-estimate

accuracy can now be obtained with any number of iterations.

However, accurately describing the shape of the posterior distribution still depends on

the number of iterations. As a compromise between algorithm running time and posterior-

describing accuracy, 400 iterations was chosen for all MCMC runs.

So, to summarize: the procedure employed by the Multifit method developed in this

thesis is the following. Shapes of the Gaussian distributions forming the mixture describing

the posterior are approximated from MCMC run samples (ran with 400 iterations), but the

center of the Gaussian with the largest weight is corrected using a Powell run. If the Powell

procedure does not produce a result, the sample median is used instead.
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Figure 3.13: Left graph: χ2 per degrees of freedom depending on the number of MCMC iterations,

for two objects of magnitude 18. Right graph: The results improved with additional runs

of the Powell algorithm.

3.6.13 Plotting marginalized posteriors

Another useful way of examining and validating the procedure is by plotting marginalized

Gaussian approximations of the posterior, along with histograms that were used for obtain-

ing the N-dimensional Gaussian. The approximated Gaussian mixture is evaluated on a

grid and those values are then marginalized to a single dimension and plotted along with

the original histogram values. Figure3.14shows an example for the moving point source

model. It also shows the true and estimated values (the medians) of the parameters using

dashed and solid vertical lines, respectively.

What can be noticed on these plots is that marginalized approximated posterior shows

the worst fit for the magnitude parameter. The reason is that the chains do not explore

magnitude values equally in both directions around the true value. That is because lower

magnitude values represent brighter objects, which are less likely than fainter ones, and

so the distribution of the samples is asymmetrical. Those kinds of distributions are harder

to approximate with a Gaussian and so this introduces additional error into the overall

process.

3.7bayesian online implementation

The online procedure, as was already stated, takes a single image at a time, along with any

priors, and produces a posterior probability distribution. That posterior becomes a prior

for the next image and so on. However, starting with only a single image when determining

motion parameters does not make much sense (all speed values are equally likely) so the

procedure described here starts by running in a “batch mode” for the first 3 images and

then continues from there in an “online mode”.

At each step of this process (i.e. after each image) one can calculate metrics and create

diagnostic plots that were described in the previous sections: plots of chain histories, corner

plots, Q-Q plots and plots of marginalized posteriors.
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Figure 3.14: Marginalized posteriors and histograms for the moving point source model for aMCMC

run on an object with the magnitude of 19. Vertical dashed lines show the true parameter

values while the vertical solid lines mark histogram medians.

3.7.1 A 2D example

Illustrating the procedure is easier with a smaller number of dimensions so let us return to

the 2D example from sections3.2.3.1and3.6.4. The doemcee function from code listing3.1

now needs to be expanded so that it takes a prior into account, if it is provided, and add it

to the calculated χ2 value. The resulting function that implements the change, given in code

listing3.2, also calculates and returns the resulting posterior estimate (the kderes object).

This object is actually an instance of a helper class ScipyWrapper (given in Addendum

in code listingA.6) which is used for correcting the mean values of the most significant

component in the Gaussian mixture, as was explained previously.

Listing 3.2: A modified function for MCMC fitting of a 2D line from listing3.1so that it can now be

used in online mode.

import emcee

import numpy as np

def doemcee(data , nwalkers =150, niter =500, kde=None):

ndim = 2

x, y = data

def lnlike(params ):

prior = 0

if kde is not None:

prior = kde.score([ params ])

a, b = params

return -np.sum(logL(x, y, a, b, sigma)) + prior

sampler = emcee.EnsembleSampler(nwalkers , ndim , lnlike ,



3.7. Bayesian online implementation 64

Figure 3.15: Fitting a 2D line using data from section3.3.1.

moves=emcee.moves.DEMove ())

start_params = (np.random.rand(nwalkers * ndim) * 2).\

reshape ((nwalkers , ndim))

state = sampler.run_mcmc(start_params , niter)

samples = sampler.chain.reshape((-1, ndim))

kderes = mixture.BayesianGaussianMixture(n_components =5,

covariance_type=’full’).\

fit(samples)

medians = np.median(samples , axis =0)

kderes = ScipyWrapper(kderes , medians)

return samples , kderes

Running the full online procedure on all data points is simple as in the following code

listing. Because estimating a line using a single point does not make much sense, the

procedure starts with two points and proceeds from there.

samples , kde = doemcee ((x[:2], y[:2]))

allsamples = [samples]

allkdes = [kde]

for xp, yp in zip(x[2:], y[2:]):

samples , kde = doemcee ((xp, yp), kde=kde)

allsamples.append(samples)

allkdes.append(kde)

Corner plots and other diagnostic plots can now be examined after each of the three

steps (the first two data points together and then two others one by one). Figure3.15shows

corner plots after each step. Figure3.16shows how a and b parameter estimates change after
each step. The dashed and dotted horizontal lines show the true parameter values and the

estimates obtained using the batch procedure, respectively. What can be noticed is that the

estimates of the online procedure are approaching the estimate from the batch procedure

closer and closer after each step.

3.7.2 The full moving point source model

The full code listing for the Bayesian MCMC implementation is given in code listingA.5.

The same code can be used for both batch Multifit and individual steps of online Multifit,
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Figure 3.16: Fitting a 2D line using data from section3.3.1. The two graphs show how the estimated

a and b parameter values change after each step of the online procedure. The dashed

horizontal lines show the true parameter values and the dotted horizontal lines show

the estimates from the batch procedure.

Figure 3.17: Estimates of the five parameters of the moving point source model depending on the

step (image) number, for a run of the online procedure on an object of magnitude 18.

similarly to what was done with the 2Dmodel: if the prior object (kde) is supplied, the prior

will be calculated and added to the final result. Also, the imagedata object would contain

all images (and the related information) for the batch procedure, but only a single image for

a step of the online procedure. The listing also contains additional code for saving results,

printing out diagnostic messages and so forth.

Similarly to what was done for the 2D mode, estimated parameter values can be plotted

depending on the step (image). Figure3.17shows an example for a run on a simulated

object of magnitude 18. Figure3.18shows χ2DoF values and “average trajectory distances” of

the estimates at each step, for the same run. “Average trajectory distance” is calculated as

an average Euclidian distance between estimated and true positions of the object at the

simulated time points.

The figures show that the estimates at first move away from the true solution but go

back after a certain number of steps. The reason for this is mostly due to the distribution of

observation dates of the exposures in the simulated dataset. This distribution was shown in

figure3.3back in section3.4.1. There are 10 observations on the first day, then a pause of 230

days when the next 8 observation are made. This causes the online algorithm to first start
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Figure 3.18: The χ2DoF and average trajectory distance of estimates from the true positions depending

on the step (image) number, for the same run from figure3.17.

based on 10 observations made within a short period of time, too short for reliable motion

estimation. Then the next 8 data points (also made within a too short of a time span) cause

the solution to suddenly veer in a different direction. As can be seen from the figures, as

the new points appear, the accuracy of the estimates slowly goes back close to the levels

comparable to the batch procedure.

Figure3.23in the next section shows the same information averaged over MCMC runs

on different objects, for each magnitude separately.

3.8experimental results

In this section experimental results from tests of all three methods are given: frequentist

batch, Bayesian batch and Bayesian online implementation. All three methods are evaluated

using several metrics:

• Sigma distance – (Euclidian) distance from the real solution in the units of the

estimated standard deviations.

• Trajectory average distance – obtained by calculating the average difference between
object’s real and estimated positions (distance in arc-seconds) at time points when

each image was taken

• χ2 per degrees of freedom – χ2DoF obtained from the likelihood function using the

estimated parameter values, as was explained in section3.4.2.3

• Raw parameter estimates – offsets of the estimated from the real (simulated) param-

eter values

• Duration - Duration of the three methods are compared

3.8.1 Frequentist batch Multifit (Lang et al., 2009)

The frequentist batch Multifit implementation is an implementation of the idea from Lang

et al., 2009 ([3]), as was already mentioned. Before running actual tests of the frequentist

batch procedure, different optimization algorithms were compared. Figure3.19and table3.1

show their comparisons with regards to the accuracy of trajectory estimates, χ2DoF of the
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Figure 3.19: Comparison of different algorithms with regards to trajectory estimate accuracy, χ2DoF
and duration, depending on magnitude. While being slower than the others, Powell

algorithm shows the best accuracy overall.

solutions, duration and percentage of successful runs (failed runs do not complete because

of a LinAlgError, mentioned in section3.5). All tests were done on 5 objects for each

magnitude and were repeated 50 times (50 repetitions, times 5 objects, times number of

magnitudes, times number of algorithms).

Powell algorithmwas shown to be among the best algorithms accuracy-wise. Nelder and

Cobyla have similar accuracy, however they are somewhat slower so the Powell algorithm

was used for all tests and implementations.

What can also be noticed is that, for higher magnitudes, the difference in χ2DoF tends to

become less significant. The reason is that the objects are then much fainter and, for the

highest magnitudes, even not visible by the naked eye and so, the difference in residuals

between the good and bad estimates is exponentially smaller than for lower magnitudes.

Also, Powell has high percentage of failed runs for higher magnitudes. TRF is the most

robust in that regard, but it is much less accurate.

g accuracy depending on magnitude.Figure3.20and tables3.2and3.3show

accuracy of the frequentist batch procedure (using the Powell algorithm), measured by the

metrics previously described (sigma distances, trajectory average distances, χ2DoF of the

solutions, and raw parameter estimates, all depending on magnitude. All the tests were

done using only the first 15 images of each object.



3.8. Experimental results 68

Algorithm Mag. Traj.dist. χ2DoF Duration % success

Powell

19 0.0005 3.12 1.83 100

23 0.001 1.13 40.79 20

27 0.225 0.58 3.14 44

Dogbox

19 0.082 19.66 0.17 100

23 0.020 1.26 0.26 100

27 1.504 1.17 0.41 86

LM

19 0.040 12.06 0.25 100

23 0.033 1.43 0.31 100

27 0.436 1.17 0.52 70

TRF

19 0.094 14.14 0.22 100

23 0.068 1.51 0.66 100

27 0.736 1.17 0.97 100

CG

19 0.0042 5.32 79.53 20

23 0.014 0.37 529.64 14

27 0.151 0.59 75.03 32

LBFGSB

19 0.005 5.88 52.82 18

23 0.011 0.39 150.55 18

27 0.344 1.18 28.7 26

BFGS

19 0.006 7.63 98.66 18

23 0.006 0.35 435.83 16

27 0.406 1.18 96.59 26

Nelder

19 0.0002 0.24 3.2 92

23 0.001 0.28 27.67 51

27 0.226 1.18 5.82 88

Cobyla

19 0.0002 0.23 7.67 88

23 0.001 0.28 42.10 51

27 0.360 1.18 6.56 56

Table 3.1

As can be seen from the plots and the tables, and as could be expected, accuracy of the

estimates tends to decrease with magnitude.The average trajectory distance of the estimates

goes up more significantly only above magnitude 23, and even for magnitude 27 the mean

is only 0.7 pixels. “Sigma distances” are Euclidian distances (in 5D space) from the true

parameter values in the units of standard deviations. But that measure depends on standard

deviations estimated by the optimization procedure (Powell algorithm) and makes sense

only when comparing different runs of the same type of algorithm (different algorithms

and procedures tend to have wildly different uncertainty estimates).

As was already noted, χ2DoF tends to vary less for higher magnitudes and can be seen

here to start to stagnate, although the accuracy of the estimates is starting to get significantly

worse. In other words, the signal is getting lost in the noise and the algorithm is starting to

have more trouble finding the solution.
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Figure 3.20: Frequentist batch procedure results comparing variousmetrics depending onmagnitude.

The shaded areas mark the range of a standard deviation around the mean.

3.8.2 Bayesian batch Multifit

The Bayesian batch Multifit, i.e. running MCMC on all available images at the same time

(batch mode), was run for 8-10 objects of each magnitude using the first 15 images of each

object. The results, measured by the metrics previously described, are given in figure3.21

and tables3.4and3.5.

Average trajectory distances are somewhat higher than for the frequentist procedure,

but not much. The same can be said for χ2DoF and sigma distances as before, with the note

that χ2DoF is also, not surprisingly, higher than for the frequentist procedure.

g bayesian batch duration.Processing 15 images in batch mode with 150 walkers

and 400 iterations takes about 172 minutes on average. This is obviously prohibitively high.

However, batch implementation is not meant to be used directly and is done only to serve

as a comparison between frequentist and online implementations: batch implementation is

not expected to be more accurate than the frequentist one and online implementation is

similarly not expected to be more accurate than the batch implementation.
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mag 18 19 20 21 22

Tr.dist.(px)
Avg 3.6 × 10

−4
8.7 × 10

−4
1.3 × 10

−3
3.5 × 10

−3
9.98 × 10

−3

Stdev 8.9 × 10
−5

2.2 × 10
−3

2.7 × 10
−4

1.2 × 10
−3

9.9 × 10
−3

χ2DoF
Avg 0.67 0.78 0.90 1.02 1.55

Stdev 0.014 0.018 0.003 0.031 0.768

Sig. dist.
Avg 1.8 2.7 2.9 2.0 6.2

Stdev 0.6 2.9 0.4 0.6 7.0

Mag. diff
Avg 0.0003 0.0007 0.0021 0.0023 0.0025

Stdev 0.0003 0.0013 0.0003 0.0011 0.0031

x0 diff
Avg 8.1 × 10

−6
3.8 × 10

−5
7.0 × 10

−5
3.4 × 10

−5
−8.2 × 10

−4

Stdev 2.0 × 10
−5

3.5 × 10
−4

8.0 × 10
−5

3.8 × 10
−4

2.2 × 10
−3

y0 diff
Avg 3.0 × 10

−5
−2.9 × 10

−5
6.5 × 10

−5
−2.2 × 10

−4
1.9 × 10

−3

Stdev 4.1 × 10
−5

6.2 × 10
−5

1.1 × 10
−4

3.6 × 10
−4

2.3 × 10
−3

vx diff
Avg −1.1 × 10

−8
−3.4 × 10

−7
1.2 × 10

−6
−1.2 × 10

−7
−3.7 × 10

−6

Stdev 2.4 × 10
−7

4.2 × 10
−7

3.8 × 10
−7

1.9 × 10
−6

9.6 × 10
−6

vy diff
Avg 1.8 × 10

−8
−3.5 × 10

−7
3.6 × 10

−8
8.3 × 10

−7
6.7 × 10

−6

Stdev 2.5 × 10
−7

4.9 × 10
−7

1.2 × 10
−6

1.0 × 10
−6

9.2 × 10
−6

Table 3.2: Frequentist batch procedure: accuracy results corresponding to figure3.20for magnitudes

18-22.

mag 23 24 25 26 27

Tr.dist.(px)
Avg 1.65 × 10

−2
8.56 × 10

−2
1.00 × 10

−1
3.51 × 10

−1
6.44 × 10

−1

Stdev 6.8 × 10
−3

4.2 × 10
−2

1.4 × 10
−2

7.4 × 10
−1

1.1

χ2DoF
Avg 1.12 1.23 1.21 1.33 1.17

Stdev 0.001 0.089 0.151 0.180 0.008

Sig. dist.
Avg 1.5 × 10

4
3.3 × 10

3
1.9 × 10

1
1.9 × 10

7
1.7 × 10

9

Stdev 1.1 × 10
5

1.7 × 10
4

1.8 × 10
1

9.3 × 10
7

1.4 × 10
10

Mag. diff
Avg 0.015 -0.038 -0.020 -0.065 0.136

Stdev 0.005 0.028 0.066 0.066 0.102

x0 diff
Avg −3.2 × 10

−2
−1.4 × 10

−2
1.0 × 10

−2
−7.9 × 10

−3
−6.4 × 10

−2

Stdev 2.0 × 10
−1

1.6 × 10
−1

9.9 × 10
−3

4.4 × 10
−2

7.7 × 10
−2

y0 diff
Avg −1.4 × 10

−2
2.3 × 10

−2
−5.2 × 10

−3
−6.3 × 10

−2
−5.3 × 10

−3

Stdev 1.5 × 10
−1

1.6 × 10
−1

1.1 × 10
−2

8.0 × 10
−2

8.2 × 10
−2

vx diff
Avg −1.4 × 10

−4
−4.3 × 10

−5
5.0 × 10

−5
−2.7 × 10

−5
−6.3 × 10

−4

Stdev 9.2 × 10
−4

7.0 × 10
−4

5.4 × 10
−5

2.5 × 10
−4

7.2 × 10
−4

vy diff
Avg −6.3 × 10

−5
6.9 × 10

−5
−9.6 × 10

−5
−1.7 × 10

−4
−3.2 × 10

−4

Stdev 7.0 × 10
−4

7.2 × 10
−4

6.4 × 10
−5

3.2 × 10
−4

5.7 × 10
−4

Table 3.3: Frequentist batch procedure: accuracy results corresponding to figure3.20for magnitudes

23-27.

3.8.3 Bayesian online Multifit

Online Bayesian procedure was tested in two ways: testing the accuracy depending on

magnitude (as was done for the previous two procedures), and also testing the accuracy

depending on the step (image) number.

Accuracy results of the Bayesian online procedure, measured by the metrics previously
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Figure 3.21: Bayesian batch procedure results comparing various metrics depending on magnitude.

The shaded areas mark the range of a standard deviation around the mean.

mag 18 19 20 21 22

Tr.dist.(px)
Avg 6.1 × 10

−4
2.7 × 10

−3
9.2 × 10

−3
6.7 × 10

−3
5.7 × 10

−2

Stdev 5.6 × 10
−4

3.8 × 10
−3

1.0 × 10
−2

7.9 × 10
−3

1.2 × 10
−1

χ2DoF
Avg 0.64 0.99 1.95 1.04 1.62

Stdev 0.05 0.41 1.87 0.05 0.76

Sig. dist.
Avg 3.21 5.78 8.05 4.36 17.74

Stdev 2.10 6.21 8.21 5.38 36.90

Mag. diff
Avg -0.0002 -0.0013 -0.0077 0.0029 -0.0098

Stdev 0.0008 0.0025 0.0146 0.0093 0.0214

x0 diff
Avg −4.44 × 10

−5
2.82 × 10

−4
2.49 × 10

−4
1.28 × 10

−8
−3.80 × 10

−3

Stdev 8.85 × 10
−5

6.21 × 10
−4

2.26 × 10
−3

7.97 × 10
−4

9.29 × 10
−3

y0 diff
Avg 1.40 × 10

−5
1.51 × 10

−4
−2.46 × 10

−4
3.74 × 10

−4
5.98 × 10

−3

Stdev 6.94 × 10
−5

3.09 × 10
−4

1.26 × 10
−3

1.02 × 10
−3

1.31 × 10
−2

vx diff
Avg −1.16 × 10

−7
9.20 × 10

−9
4.08 × 10

−7
−5.37 × 10

−7
1.50 × 10

−5

Stdev 1.88 × 10
−7

7.90 × 10
−7

3.56 × 10
−6

1.83 × 10
−6

3.60 × 10
−5

vy diff
Avg −1.88 × 10

−8
−2.49 × 10

−7
8.13 × 10

−7
−1.71 × 10

−6
−7.43 × 10

−6

Stdev 5.40 × 10
−7

1.09 × 10
−6

3.50 × 10
−6

5.08 × 10
−6

3.96 × 10
−5

Table 3.4: Bayesian batch procedure: accuracy results corresponding to figure3.21for magnitudes

18-22.
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mag 23 24 25 26 27

Tr.dist.(px)
Avg 4.26 × 10

−2
1.08 × 10

−1
1.33 × 10

−1
7.28 × 10

−1
1.81

Stdev 6.47 × 10
−2

1.23 × 10
−1

4.75 × 10
−2

1.10 1.68

χ2DoF
Avg 1.14 1.38 1.20 1.18 1.17

Stdev 0.04 0.51 0.10 0.08 0.02

Sig. dist.
Avg 2.24 1.11 × 10

1
7.97 7.55 × 10

6
8.84 × 10

9

Stdev 1.40 1.40 × 10
1

1.42 × 10
1

2.00 × 10
7

1.97 × 10
10

Mag. diff
Avg 0.01 -0.03 0.02 -0.03 0.02

Stdev 0.01 0.07 0.05 0.17 0.43

x0 diff
Avg −4.49 × 10

−3
−2.15 × 10

−2
−9.69 × 10

−3
−5.76 × 10

−2
−6.50 × 10

−2

Stdev 8.03 × 10
−3

4.80 × 10
−2

2.11 × 10
−2

1.13 × 10
−1

1.42 × 10
−1

y0 diff
Avg −1.59 × 10

−3
−9.74 × 10

−3
−1.68 × 10

−2
−1.20 × 10

−2
−5.58 × 10

−2

Stdev 2.09 × 10
−3

3.62 × 10
−2

1.02 × 10
−2

5.55 × 10
−2

1.15 × 10
−1

vx diff
Avg 1.54 × 10

−5
−7.07 × 10

−5
−3.50 × 10

−5
1.69 × 10

−4
1.36 × 10

−5

Stdev 5.12 × 10
−5

1.53 × 10
−4

1.09 × 10
−4

7.14 × 10
−4

1.68 × 10
−3

vy diff
Avg 4.95 × 10

−6
−1.81 × 10

−5
−3.19 × 10

−5
−2.76 × 10

−4
−2.47 × 10

−5

Stdev 1.39 × 10
−5

8.83 × 10
−5

9.26 × 10
−5

4.96 × 10
−4

2.10 × 10
−3

Table 3.5: Bayesian batch procedure: accuracy results corresponding to figure3.21for magnitudes

23-27.

mag 18 19 20 21 22

Tr.dist.(px)
Avg 0.38 0.28 0.46 0.01 0.35

Stdev 0.55 0.50 0.37 0.02 0.39

χ2DoF
Avg 744.52 164.05 53.82 1.06 5.22

Stdev 1.48 × 10
3

3.51 × 10
2

5.80 × 10
1

1.08 × 10
−1

4.59

Sig. dist.
Avg 6.32 6.19 5.32 2.69 6.66

Stdev 5.02 6.1 1.64 2.17 9.04

Mag. diff
Avg −1.41 × 10

−4
−1.42 × 10

−3
−6.21 × 10

−3
−7.15 × 10

−4
−1.56 × 10

−2

Stdev 0.001 0.003 0.016 0.004 0.041

x0 diff
Avg 0.003 0.006 0.009 -0.001 0.004

Stdev 0.006 0.010 0.009 0.001 0.010

y0 diff
Avg 0.010 0.005 0.009 -0.0001 0.011

Stdev 0.014 0.011 0.008 0.001 0.013

vx diff
Avg −1.73 × 10

−4
−2.61 × 10

−4
−4.51 × 10

−4
4.64 × 10

−6
−2.66 × 10

−4

Stdev 3.62 × 10
−4

4.60 × 10
−4

4.19 × 10
−4

1.54 × 10
−5

3.60 × 10
−4

vy diff
Avg −4.79 × 10

−4
−2.37 × 10

−4
−4.05 × 10

−4
7.39 × 10

−6
−3.20 × 10

−4

Stdev 7.09 × 10
−4

5.15 × 10
−4

3.40 × 10
−4

2.25 × 10
−5

4.64 × 10
−4

Table 3.6: Bayesian online procedure: accuracy results corresponding to figure3.22for magnitudes

18-22.

described, depending on magnitude, are given in figure3.22and tables3.6and3.7. These

results show the final accuracy after the 15th image.

g performance after each step.Figure3.23shows the average and the spread

(standard deviations) of “trajectory distances” after each image, for each magnitude sepa-

rately. The procedure was run on 10 objects for each magnitude, using the first 15 images
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Figure 3.22: Bayesian online procedure results comparing various metrics depending on magnitude.

The shaded areas mark the range of a standard deviation around the mean.

only. The graphs show steady improvement in results with each new image, more so for

higher magnitudes. The reason is that the estimates for objects with higher magnitude

(fainter objects) start with worse results and have more room for improvement. For brighter

objects the procedure makes a pretty good estimate at the start and can improves more

gradually.

g bayesian online duration.Regarding the duration, processing a single image

takes about 7 minutes on average when running 400 iterations with 150 walkers. With 150

iterations the running time is decreased to 3 minutes, but that also makes the quality of

posterior estimates also poorer, so it is a tradeoff.

3.8.4 Comparison of all Multifit implementations

As a summary of performance of all three methods, average trajectory distance for all three

methods depending on magnitude is shown in figure3.24and table3.8.
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mag 23 24 25 26 27

Tr.dist.(px)
Avg 0.30 0.36 0.53 0.70 1.22

Stdev 0.31 0.62 0.43 0.50 1.15

χ2DoF
Avg 1.48 1.84 1.28 1.22 1.17

Stdev 5.45 × 10
−1

1.22 1.30 × 10
−1

1.15 × 10
−1

2.02 × 10
−2

Sig. dist.
Avg 2.15 4.84 5.72 2.81 1.06 × 10

4

Stdev 1.53 3.47 7.15 1.96 2.81 × 10
4

Mag. diff
Avg 3.20 × 10

−2
−4.13 × 10

−2
−3.46 × 10

−1
−1.38 × 10

−1
−1.99 × 10

−1

Stdev 0.04 0.08 0.09 0.14 0.35

x0 diff
Avg 0.0071 -0.0102 -0.0006 -0.0233 0.0600

Stdev 0.0148 0.0264 0.0290 0.0722 0.1671

y0 diff
Avg 0.023 -0.002 0.017 -0.057 -0.017

Stdev 0.050 0.031 0.028 0.109 0.195

vx diff
Avg −1.91 × 10

−4
−3.59 × 10

−4
−3.74 × 10

−4
−3.55 × 10

−4
−5.59 × 10

−4

Stdev 3.35 × 10
−4

7.01 × 10
−4

3.56 × 10
−4

7.40 × 10
−4

9.24 × 10
−4

vy diff
Avg −3.88 × 10

−7
−1.52 × 10

−4
−2.70 × 10

−4
−3.56 × 10

−4
−5.28 × 10

−4

Stdev 2.99 × 10
−4

2.41 × 10
−4

4.89 × 10
−4

5.82 × 10
−4

3.27 × 10
−4

Table 3.7: Bayesian online procedure: accuracy results corresponding to figure3.22for magnitudes

23-27.

Mag. Lang et al, 2009 Bayes. batch Bayes.online

18
Avg 0.0004 0.0006 0.3777

Stdev 0.0001 0.0006 0.5486

19
Avg 0.0009 0.0027 0.2755

Stdev 0.0022 0.0038 0.4959

20
Avg 0.0013 0.0092 0.4592

Stdev 0.0003 0.0105 0.3672

21
Avg 0.0035 0.0067 0.0116

Stdev 0.0012 0.0079 0.0214

22
Avg 0.0100 0.0572 0.3468

Stdev 0.0090 0.1173 0.3906

23
Avg 0.0165 0.0492 0.3165

Stdev 0.0068 0.0645 0.2993

24
Avg 0.0856 0.1179 0.4003

Stdev 0.0417 0.1192 0.6477

25
Avg 0.1002 0.1333 0.5279

Stdev 0.0144 0.0475 0.4343

26
Avg 0.3511 0.7278 0.7720

Stdev 0.7350 1.0989 0.4841

27
Avg 0.6443 1.8109 1.2208

Stdev 1.0500 1.6784 1.1513

Table 3.8: Average trajectory distance for all three methods depending on magnitude and corre-

sponding to the figure3.24.
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Figure 3.23: Average trajectory distance measure (for 10 tests/objects) plotted for each magnitude

separately, depending on step (image) number.
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Figure 3.24: Accuracy (trajectory distance in px) of all three Multifit implementations compared

depending on magnitude: frequentist batch (based on Lang et al, 2009) shown with

dotted blue line and dotted background, Bayesian batch shown with dashed red line and

leaning-striped background, Bayesian online shown with solid green line and vertically-

striped background.



4
Conclusions and future work

A
stronomy is the common theme connecting the twomain topics of this dissertation:

cross-matching of astronomical catalogs and parameter estimation of a moving point

source model. Technological advances are causing explosion of data in all spheres of human

activity and so is the case with astronomy. New generations of astronomical telescopes,

most notably the upcoming Vera C. Rubin Observatory, are enabling “wide” and “deep”

surveys, meaning: they observe large regions of the sky while at the same time capturing

light from the most distant objects. This translates to increased pressure on data storage

and processing requirements.

4.1positional cross-matching of astronomical catalogs

One of the most fundamental astronomical operations is positional cross-matching. Since

(most of the) stars and galaxies do not have names, nor IDs, they have to be identified by

their positions.When astronomers want to compare data obtained by different telescopes, in

the modern times they issue queries to the respective “catalogs”: large databases containing

variousmeasurements of objects in the sky observed by a particular telescope.The traditional

paradigm astronomers employ is to select a subset of the data using a tool associated with a

catalog, download the data to a workstation, and analyze the data locally.

However, lots of today’s astronomical research, such as explaining the nature of Dark

Energy, automatic classification of observed objects or searching for outliers, requires

processing full catalogs and combining data from many of them.The issue then are sizes

of these catalogs with billions of measurements of stars and galaxies in them. Fast and

on-the-fly cross-matching, therefore, is a strong requirement for any such astronomical

data analysis tool.

This work has shown that by organizing data using a distributed, zone-based approach,

one can accomplish faster positional cross-matching of astronomical data than what existing

solutions offer. Astronomical Extensions for Spark (AXS) is an astronomical tool developed

as part of this thesis, based on Apache Spark but adding astronomy-specific functionalities

and implementing the “DistributedZonesAlgorithm”.The algorithm consists of a distributed

data organization scheme based on zones and an implementation of an “epsilon join” using a

moving window.This scheme enables the system to process data in parallel, always retaining

in memory just enough data minimally required for the cross-matching operation.

The extensive tests, both on a single machine and “in the cloud” have shown that this

77
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system is capable of significantly better cross-matching performance than the existing ones.

4.2 estimating parameters of a moving point-source model with

sequential bayesian updating

Measuring properties of faint objects from astronomical images is traditionally done by

coadding images. Coaddition is a method of increasing signal-to-noise ratio by averaging

(simply put) multiple images of the same object. The resulting “coadds” are brighter and

crisper than the original images. However, coaddition cannot be applied to moving objects

because the result are their blurred trails.

Multifit is a method for estimating parameters of models of astronomical objects based

on their images using “forward modeling”, i.e. simulating images of an object based on

assumed model and its parameters, comparing the simulated images with the real ones and

changing the parameters until the difference is minimized. In this way no coaddition is

necessary and information from all images is preserved.

In this work, Multifit method is first implemented using methods of both Bayesian

and “traditional” (“frequentist”) statistics. Traditional statistics means maximizing the likeli-

hood function using an optimization algorithm, as was done in [3]. Different optimization

algorithms were compared in this thesis based on running time, accuracy and reliability.

Unlike in [3], here it was found that Powell algorithm had the best accuracy when estimating

the trajectory of a moving source, although it was the slowest. Accuracy was chosen over

duration as being more important for this thesis and Powell algorithm was used for all other

tests and implementations where a frequentist approach was needed (i.e. obtaining only

MAP estimates and not the full posterior distribution). Jackknife method of estimating

variance of the estimates has proved itself to be too computationally demanding to be useful

for this use case. It was also shown that the difference between algorithms in χ2DoF for higher

magnitudes tends to become less significant. The reason is that the objects are then much

fainter and, for the highest magnitudes, even not visible by the naked eye. So the difference

in residuals between the good and bad estimates becomes exponentially smaller for higher

magnitudes. The resulting frequentist batch implementation code is packaged as an “LSST

task” to be used as part of the data processing pipeline of the Vera C. Rubin Observatory.

The Multifit is also implemented with techniques of Bayesian statistics, i.e. MCMC,

using Python’s Emcee package. In addition to the maximum a-posteriori (MAP) estimates

of parameter values, this procedure also gives out an estimate of full posterior probabil-

ity distribution in the form of MCMC sample histograms. The posterior estimates can

be obtained from histograms using different techniques. The method employed in this

work is to approximate posterior with a mixture of Gaussians using variational inference

(BayesianGaussianMixture class from Python’s scipy package). However, for obtaining

MAP estimates, the histogram medians were shown to be much more accurate than the

estimated Gaussian mixture components. MAP estimates are further improved by running

an optimization procedure (Powell algorithm), starting from the median values. It was

demonstrated that accuracy of this final MAP estimate does not depend on the number

of iterations of the MCMC procedure. The trajectory-estimation accuracy of this batch

procedure was comparable to the frequentist batch implementation, except for the higher
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magnitudes (26 and 27).

Finally, a new procedure called “Online Multifit” is developed using Bayesian sequential

updating where the posterior is updated after each new data point (image). The positions of

the posteriors (Gaussians) are corrected after each step with results from an additional run

of an optimization procedure (Powell algorithm).

All three procedures have been tested on fake objects simulated on top of images from

a real telescope using LSST simulation code. The tests have shown that the frequentist

approach gives a very good trajectory-predicting accuracy, with the maximum of only 0.64

pixels for themagnitude of 27.The Bayesian batch approach has slightly worse accuracy than

the frequentist approach, with the maximum of 1.8 pixels for the magnitude of 27 and with

the accuracy of 0.7 pixels reached for magnitude of 26. The Bayesian online approach has

again worse accuracy than the Bayesian batch procedure. That was, however, expected with

approximations that are taken after each step. The accuracy is about 0.25-0.5 pixels for all

magnitudes except for the 26 and 27 with accuracies there of 0.7 and 1.2 pixels, respectively.

The duration of the three methods are as follows. The Powell algorithm takes about

4 seconds to process 15 images in a batch mode. The Bayesian procedures are MCMC

procedures trying to explore the full posterior and naturally take longer to accomplish that.

Processing 15 images in batch mode with 150 walkers and 400 iterations takes about 172

minutes on average, which is obviously prohibitively high. However, batch implementation

was only meant to be used as a guide post for online implementation’s accuracy target and

not to be used directly. Online implementation takes about 7 minutes on average when

running with 400 iterations. This goes down to about 3 minutes with 150 iterations, but

then the quality of the posterior estimate also goes down, so it is a tradeoff.

4.3further research directions

There are many different directions in which further research could be conducted.

For cross-matching of astronomical catalogs, and Astronomy Extensions for Spark,

research has already begun on its next version called HIPSCat ([69]), which will be using

astronomy-standard formats, and which will probably be used by LSST and NASA.

For Online Multifit, firstly, particle filters are an alternative approach whose application

could be investigated. It is a vast field of many methods and approaches but the main idea

is the same: maintaining a set of points that are describing the posterior distribution at all

times. Compressing that information while maintaining an accurate estimate could be an

interesting direction of research.

Secondly, behavior of the procedures in the presence of bright sources in the images could

be investigated. Online procedure has the potential to overcome those kinds of situations,

perhaps with a smart choice of priors and maintaining a set of alternative solutions.

Finally, performance of the Multifit procedures could be perhaps improved with parallel

(multi-thread or multi-process) processing and by using Graphics Processing Units (GPUs).



A
Code listings

Listing A.1: Helper code for the likelihood function

import numpy as np

from lsst.geom import SpherePoint , degrees

class MovingSource ():

’’’ A helper object describing a moving point source.

ra0 , dec0 - position at mjd0 in degrees

sra , sdec - speeds in arcsec/day

mag - magnitude ’’’

def __init__(self , ra0 , dec0 , mjd0 , sra , sdec , mag):

self.ra0 = ra0

self.dec0 = dec0

self.mjd0 = mjd0

self.sra = sra

self.sdec = sdec

self.mag = mag

self.sra_degs = sra / 3600

self.sdec_degs = sdec / 3600

def position_at(self , mjd):

ra = self.ra0 + (mjd - self.mjd0) * self.sra_degs

dec = self.dec0 + (mjd - self.mjd0) * self.sdec_degs

return (ra, dec)

def sphere_point_at(self , mjd):

pos = self.position_at(mjd)

return SpherePoint(pos[0], pos[1], degrees)

def __repr__(self):

return f"Moving source: \n\tMagnitude: {self.mag}, \n\t"+\

f"ra0: {self.ra0} deg , \n\tdec0: {self.dec0} deg , \n\t"+\

f"MJD0: {self.mjd0}, \n\tSpeed in ra: {self.sra} "+\

f"arsec/day , \n\tSpeed in dec: {self.sdec} arcsec/day"

def get_object(params , imagedata ):

if params is None:

80
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return None

mag , x0, y0, vx, vy = params

t0 = imagedata[’t0’]

return MovingSource(imagedata[’ra’]+x0/3600, imagedata[’dec’]+y0/3600 ,

t0, vx, vy, mag)

def get_clone_empty_image(calexp ):

key = f"EMPTY{calexp.getWidth ()}x{calexp.getHeight ()}"

if key in OBJ:

OBJ[key].fill (0.)

return OBJ[key]

img = np.zeros(calexp.image.array.shape)

OBJ[key] = img

return img

def get_imgcutout(wcs , img , center_coord , SIZE =21):

MARGIN = SIZE // 2

extra_pixel = SIZE % 2

pix = wcs.skyToPixel(SpherePoint(center_coord [0], center_coord [1],

degrees ))

h, w = img.shape

if pix.x < 0 or pix.y < 0 or pix.x >= w or pix.y >= h:

return None

xl, yl = (round(pix.x - SIZE/2 + 0.5), round(pix.y - SIZE/2 + 0.5))

xh, yh = (round(xl + SIZE), round(yl+SIZE))

c = (img[max(0, yl) : min(h, yh), max(0, xl) : min(w, xh)]).\

astype(np.float64)

if c.shape == (SIZE , SIZE):

return c

offs = [0, 0]

if xh >= w:

offs [0] = xh - w

if yh >= h:

offs [1] = yh - h

newimg = np.zeros((SIZE , SIZE))

newimg[offs [1]:, offs [0]:] = c

return newimg

# caching the computation

APFLUXES = {}

def get_ap_flux(psf , cfr):

import warnings

warnings.filterwarnings("ignore", category=FutureWarning)

key = f"{psf.computeImage (). array.sum ()}#{ cfr}"

if key in APFLUXES:

return APFLUXES[key]

apflux = psf.computeApertureFlux(cfr , psf.getAveragePosition ())

APFLUXES[key] = apflux
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return apflux

def calexp_contains_point(calexp , coord):

p = calexp.getWcs (). skyToPixel(SpherePoint(coord[0],

coord[1], degrees ))

return p.x > 0 and p.y > 0 and p.x < calexp .\

getBBox (). getWidth () and p.y < calexp.getBBox (). getHeight ()

Listing A.2: Model generation code

import galsim

from lsst import geom

# The method copied from lsst.pipe.tasks.insertFakes.py and modified so that:

# - we can add fakes also to variance images

# - we can switch off noise.

def add_fake_sources(exposure , objects , empty_img=None , add_to_variance=True ,

add_noise=True , calibFluxRadius =12.0, logger=None):

"""Add fake sources to the given exposure

Parameters

----------

exposure : ‘lsst.afw.image.exposure.exposure.ExposureF ‘

The exposure into which the fake sources should be added

objects : ‘typing.Iterator ‘ [

‘tuple ‘ [‘lsst.geom.SpherePoint ‘,

‘galsim.GSObject ‘]]

An iterator of tuples that contains (or generates) locations and object

surface brightness profiles to inject.

add_to_variance : whether to also add noise to the variance image

add_noise : if False will turn off Poisson noise

calibFluxRadius : ‘float ‘, optional

Aperture radius (in pixels) used to define the calibration for this

exposure+catalog. This is used to produce the correct instrumental

fluxes within the radius. The value should match that of the field

defined in slot_CalibFlux_instFlux.

logger : ‘lsst.log.log.log.Log ‘ or ‘logging.Logger ‘, optional Logger.

"""

exposure.mask.addMaskPlane("FAKE")

bitmask = exposure.mask.getPlaneBitMask("FAKE")

if logger:

logger.info(f"Adding mask plane with bitmask {bitmask}")

wcs = exposure.getWcs ()

psf = exposure.getPsf ()

bbox = exposure.getBBox ()

fullBounds = galsim.BoundsI(bbox.minX , bbox.maxX , bbox.minY , bbox.maxY)

if empty_img is None:

img = exposure.image.array
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else:

img = empty_img

_add_fake_sources(img , fullBounds , wcs , psf , objects , exposure=exposure ,

bitmask=bitmask , add_noise=add_noise ,

calibFluxRadius=calibFluxRadius , logger=logger)

def _add_fake_sources(imgArr , fullBounds , wcs , psf , objects , exposure=None ,

bitmask=None , add_noise=True ,

calibFluxRadius =12.0, logger=None):

gsImg = galsim.Image(imgArr , bounds=fullBounds)

pixScale = wcs.getPixelScale (). asArcseconds ()

for spt , gsObj in objects:

pt = wcs.skyToPixel(spt)

posd = galsim.PositionD(pt.x, pt.y)

posi = galsim.PositionI(pt.x // 1, pt.y // 1)

if logger:

print(f"Adding fake source at {pt}")

mat = wcs.linearizePixelToSky(spt , geom.arcseconds ). getMatrix ()

gsWCS = galsim.JacobianWCS(mat[0, 0], mat[0, 1], mat[1, 0], mat[1, 1])

# This check is here because sometimes the WCS

# is multivalued and objects that should not be

# were being included.

gsPixScale = np.sqrt(gsWCS.pixelArea ())

if gsPixScale < pixScale / 2 or gsPixScale > pixScale * 2:

print("WCS check failed. Skipping the calexp ...")

continue

try:

psfArr = psf.computeKernelImage(pt).array

except InvalidParameterError:

# Try mapping to nearest point contained in bbox.

bbox = exposure.getBBox ()

contained_pt = geom.Point2D(

np.clip(pt.x, bbox.minX , bbox.maxX),

np.clip(pt.y, bbox.minY , bbox.maxY)

)

if pt == contained_pt: # no difference , so skip immediately

print(f"Cannot compute Psf for object at {pt}; skipping")

continue

# otherwise , try again with new point

try:

psfArr = psf.computeKernelImage(contained_pt ).array

except InvalidParameterError:

print(f"Cannot compute Psf for object at {pt}; skipping")

continue
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# OPTIMIZED:

apCorr = get_ap_flux(psf , calibFluxRadius)

psfArr /= apCorr

gsPSF = galsim.InterpolatedImage(galsim.Image(psfArr), wcs=gsWCS)

conv = galsim.Convolve(gsObj , gsPSF)

stampSize = conv.getGoodImageSize(gsWCS.minLinearScale ())

subBounds = galsim.BoundsI(posi). withBorder(stampSize // 2)

subBounds &= fullBounds

if subBounds.area() > 0:

subImg = gsImg[subBounds]

offset = posd - subBounds.true_center

# Note , for calexp injection , pixel is already part of the PSF and

# for coadd injection , it’s incorrect to include the output pixel.

# So for both cases , we draw using method=’no_pixel ’.

if not add_noise:

conv.drawImage(

subImg ,

add_to_image=True ,

offset=offset ,

wcs=gsWCS ,

method=’fft’,

)

else:

conv.drawImage(

subImg ,

add_to_image=True ,

offset=offset ,

wcs=gsWCS ,

method=’fft’

)

subBox = geom.Box2I(

geom.Point2I(subBounds.xmin , subBounds.ymin),

geom.Point2I(subBounds.xmax , subBounds.ymax)

)

if exposure and add_noise:

exposure[subBox ].mask.array |= bitmask

else:

raise ValueError("Subbounds area 0")

def insert_fakes_in_calexp(calexp , objs , empty_img=None ,

add_to_variance=True , add_noise=True):

# object speed in arcseconds per day

spoints = []

stars1 = []



85

mjd = calexp.getMetadata ()[’MJD’]

wcs = calexp.getWcs ()

for obj in objs:

if calexp_contains_point(calexp , obj.position_at(mjd )):

spoint = obj.sphere_point_at(mjd)

spoints.append(spoint)

f = calexp.getPhotoCalib (). magnitudeToInstFlux(obj.mag ,

wcs.skyToPixel(spoint ))

stars1.append(galsim.DeltaFunction (). withFlux(f))

arr_copy = None

if add_to_variance:

arr_copy = calexp.image.array.copy()

add_fake_sources(calexp , [( spoints[i], stars1[i]) \

for i in range(len(spoints ))],

empty_img=empty_img , add_to_variance=add_to_variance ,

add_noise=add_noise)

if add_to_variance:

calexp.getVariance (). array += (calexp.image.array - arr_copy)

def generate_model(obj , ra, dec , calexp_clone , image_size =100):

’’’ ra, dec should be in degrees ’’’

empty_img = get_clone_empty_image(calexp_clone)

insert_fakes_in_calexp(calexp_clone , [obj], empty_img=empty_img ,

add_to_variance=False , add_noise=False)

return get_imgcutout(calexp_clone.getWcs(), empty_img , (ra, dec),

SIZE=image_size)

Listing A.3: The likelihood function

def lnlike_fun(params , imagedata , calexp_clones ):

""" Returns chi -square differences between pixels of simulated images

(according to the provided parameters) and input images."""

cutouts = imagedata[’cutouts ’]

IMGSIZE = cutouts [0]. shape [0]

psfs = imagedata[’psfs’]

wcss = imagedata[’wcss’]

variances = imagedata[’variances ’]

ras = imagedata[’ras’]

decs = imagedata[’decs’]

prepmasks = imagedata[’prepmasks ’]

ra = imagedata[’ra’]

dec = imagedata[’dec’]

# MODEL:

# mag - magnitude

# x0 , y0 - object offset from the detected position at t=0 in arcsec
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# t0 - calculated from input time points; should be calculated

# so that it corresponds to the object ’s detected position

# (from the coadd) as much as possible

# vx0 , vy0 - object speed in x and y directions in arcsec per day

mag , x0, y0, vx0 , vy0 = params

t0 = imagedata[’t0’]

obj = MovingSource(ra+x0/3600, dec+y0/3600, t0, vx0 , vy0 , mag)

total = None

for _i in range(len(cutouts )):

simimg = generate_model(obj , ras[_i], decs[_i], calexp_clones[_i],

image_size=IMGSIZE)

diffimg = cutouts[_i] - simimg

msk = prepmasks[_i]

varimg = variances[_i]

imgsum = diffimg

imgsum[msk] = (diffimg[msk] / np.sqrt(varimg[msk]))

imgsum [~msk] = np.inf

imgsum = imgsum[np.isfinite(imgsum )]. flatten ()

if total is not None:

total = np.concatenate ([total , imgsum ])

else:

total = imgsum

return total

Listing A.4: Frequentist batch Multifit implementation

class MultifitResult(object ):

def __init__(self , mov_src , res_norm , res_denorm , errors , errors_denorm ,

C, result , real_solution , real_obj , object_mjds ):

self.moving_source = mov_src

self.x_normalized = res_norm

self.x = res_denorm

self.errors_normalized = errors

self.errors = errors_denorm

self.C = C

self.result_object = result

self.real_solution = real_solution

self.real_source = real_obj

self.object_mjds = object_mjds

def get_trajectory_diff(self):

if self.real_source is None:

return [np.inf] * len(self.object_mjds)

return trajectory_diff(self.moving_source , self.real_source ,

self.object_mjds)
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def get_mag_diff(self):

if self.real_source is None:

return np.inf

return self.moving_source.mag - self.real_source.mag

def __getstate__(self):

# omitting result_object because those can be HUGE

return [self.moving_source , self.x_normalized , self.x,

self.errors_normalized , self.errors , self.C,

self.real_solution , self.real_source , self.object_mjds]

def __setstate__(self , depickl ):

(mov_src , res_norm , res_denorm , errors , errors_denorm , C, real_params ,

realsrc , mjds) = depickl

self.moving_source = mov_src

self.x_normalized = res_norm

self.x = res_denorm

self.errors_normalized = errors

self.errors = errors_denorm

self.C = C

self.real_solution = real_params

self.real_source = realsrc

self.object_mjds = mjds

def __repr__(self):

return f"ESTIMATED OBJECT: {self.moving_source}, " + \

f"REAL OBJECT: {self.real_source}, " + \

f"\nX: {self.x}, " + \

f"\nX normalized: {self.x_normalized}, " + \

f"\nStandard deviations: {self.errors}, " + \

f"\nStandard deviations normalized: {self.errors_normalized},"+ \

f"\nCovariance matrix: {self.C}, " + \

f"\nReal parameters: {self.real_solution}, " + \

f"\nAverage trajectory diff: {self.get_trajectory_diff ()}, " + \

f"\nMagnitude diff: {self.get_mag_diff ()}, " + \

"\nObject from the field ’result_object ’ ommited ..."

def do_lmfit(imagedata , butler , real_solution=None , start_params=None ,

clones=None , in_collection=None ,

method=’leastsq ’, bounds=(-np.inf , np.inf)):

x0 = [20, 0, 0, 0, 0] if start_params is None else start_params

maxs = [27.5, 2* MAX_PIXEL_SCALE , 2* MAX_PIXEL_SCALE ,

MAX_SPEED , MAX_SPEED]

mins = [15, -2*MAX_PIXEL_SCALE , -2*MAX_PIXEL_SCALE ,

-MAX_SPEED , -MAX_SPEED]
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fit_params = Parameters ()

fit_params.add(’mag’, value=x0[0], max=maxs[0], min=mins [0])

fit_params.add(’x0’, value=x0[1], max=maxs[1], min=mins [1])

fit_params.add(’y0’, value=x0[2], max=maxs[2], min=mins [2])

fit_params.add(’vx’, value=x0[3], max=maxs[3], min=mins [3])

fit_params.add(’vy’, value=x0[4], max=maxs[4], min=mins [4])

if clones is None:

clones = get_calexp_clones(butler , imagedata[’dataIds ’], in_collection)

def _lnlike_fun_wrap(params , imagedata , calexp_clones ):

ps = (params[’mag’], params[’x0’], params[’y0’],

params[’vx’], params[’vy’])

return lnlike_fun(ps, imagedata , calexp_clones)

result = minimize(_lnlike_fun_wrap , fit_params ,

args=(imagedata , clones),

method=method , calc_covar=True , nan_policy=’omit’)

if not hasattr(result , ’covar ’) or result.covar is None:

raise LinAlgError("Covariance not found")

C = result.covar

diag = np.diag(result.covar)

if (diag < 0).any ():

raise LinAlgError("Negative variances")

errors = np.sqrt(diag)

resmag , resx0 , resy0 , resvx , resvy = (result.params[’mag’].value ,

result.params[’x0’].value ,

result.params[’y0’].value ,

result.params[’vx’].value ,

result.params[’vy’].value)

res = np.array([resmag , resx0 , resy0 , resvx , resvy])

ms = get_object(res , imagedata)

return MultifitResult(ms, res , res , errors , errors ,

C, result , real_solution ,

get_object(real_solution , imagedata),

imagedata[’times’])

def do_multifit(imagedata , butler , real_solution=None , start_params=None ,

clones=None , in_collection=None , method=’powell ’,

bounds=(-np.inf , np.inf), verbose =0):

if method in ["cg", "lbfgsb", "bfgs", "tnc", "trust -constr", "slsqp",

"shgo", "nelder", "differential_evolution", "cobyla",

"powell"]:
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return do_lmfit(imagedata , butler , real_solution , start_params ,

clones , in_collection , method , bounds)

start_mag = 20

errors = None

C = None

x0 = [start_mag , 0, 0, 0, 0] if start_params is None else start_params

if clones is None:

clones = get_calexp_clones(butler , imagedata[’dataIds ’], in_collection)

if method == ’leastsq ’:

result = leastsq(lnlike_fun , x0, args=(imagedata , clones),

full_output =1)

res = result [0]

fjac = result [2][’fjac’]

ipvt = result [2][’ipvt’]

n = len(x0)

perm = np.mat(np.take(np.eye(n), ipvt -1, axis =1))

r = np.mat(np.triu(fjac[:, :n]))

jac = np.dot(r, perm)

elif method in [’trf’, ’dogbox ’, ’lm’]:

result = least_squares(lnlike_fun , x0, args=(imagedata , clones ,

False , None , fast_model),

method=method , verbose=verbose , max_nfev =100)

res = result.x

jac = result.jac

else:

raise NotImplementedError("Method not supported")

# With Jacobian J (result.jac): J^T J is a Gauss -Newton

# approximation of the Hessian of the cost function.

# Hessian is an inverse of covariance matrix C

if jac is None:

raise LinAlgError("Jacobian not found")

hess = 2 * jac.T @ jac

C = np.linalg.inv(hess) # this can raise an Exception

errors = np.sqrt(np.diagonal(C))

resmag , resx0 , resy0 , resvx , resvy = res
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ms = get_object(res , imagedata)

return MultifitResult(ms, res , res , errors , errors ,

C, result , real_solution ,

get_object(real_solution , imagedata),

imagedata[’times’])

Listing A.5: Bayesian (MCMC) batch and online Multifit implementation

import datetime

import emcee

import numpy as np

import pickle

from multifit_lib import get_calexp_clones , lnlike_fun

from multifit_lib import generate_random_params

def run_emcee(imagedata , OBJID , CUTID , butler , in_collection , IMGID=None ,

kde=None , nwalkers =150, move=None , warmup_iters =100,

main_iters =500, save_every =100, ndim=5, filename=None ,

verbose=True):

clones = get_calexp_clones(butler , imagedata[’dataIds ’], in_collection)

emcee_move = emcee.moves.DEMove ()

if move is not None:

if move == "de":

emcee_move = emcee.moves.DEMove ()

elif move == "kde":

emcee_move = emcee.moves.KDEMove ()

elif move == "desnooker":

emcee_move = emcee.moves.DESnookerMove ()

pixel_scale = 4.6831063024143785e-05

MAX_DIST = 5 * pixel_scale * 3600 # 5 pixels in arcsec

MAX_SPD = pixel_scale * 3600 / 10 # 1 pixel in 10 days

SPD_STDEV = MAX_SPD / 5

MIN_MAG = 15

MAX_MAG = 30

def lnprob(params , imagedata , clones ):

mag , x0, y0, vx, vy = params

dist_from_detection = np.sqrt(x0 ** 2 + y0 ** 2)

if dist_from_detection > MAX_DIST:

return -np.inf

if mag <= MIN_MAG or mag >= MAX_MAG:

return -np.inf

priorval = 0

if kde is not None:

priorval = kde.score ([ params ])

# speed prior
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priorval += np.sum(scipy.stats.norm.logpdf ([vx, vy], 0, SPD_STDEV ))

if not np.isfinite(priorval ):

return -np.inf

try:

chi2 = lnlike_fun(params , imagedata , clones)

chi2 = np.sum(chi2 ** 2)

return -chi2 + priorval

except ValueError:

return -np.inf

start_params = generate_random_params(nwalkers , priors=priors)

sampler = emcee.EnsembleSampler(nwalkers , ndim , lnprob ,

args=[imagedata , clones],

moves =[( emcee_move , 1)])

state = start_params

if warmup_iters > 0:

if verbose:

print(f"Running {warmup_iters} warmup iterations ...")

state = sampler.run_mcmc(start_params , warmup_iters ,

progress=’notebook ’ if verbose else False)

if verbose:

print(f"Mean acceptance fraction: "+\

f"{np.mean(sampler.acceptance_fraction ):.3f}")

sampler.reset()

if filename is None:

datestr = datetime.date.today (). strftime(’%Y%m%d’)

imgidstr = "" if IMGID is None else f"_{IMGID}"

filename = f"flatchain_{datestr}_{OBJID}_{CUTID}{ imgidstr}"+\

f"_{main_iters}_{warmup_iters }. pickle"

if verbose:

print(f"Running {main_iters} main iterations. "+\

f"Saving flatchain to {filename} every {save_every} iterations.")

for i in range(int(main_iters/save_every )+1):

# if state is None , then resume where it left off the last time it ran

st = state if i == 0 else None

iters = save_every

if i == int(main_iters/save_every ):

iters = main_iters % save_every

if iters > 0:

state = sampler.run_mcmc(st, iters , progress=’notebook ’)

with open(filename , ’wb’) as f:

if verbose:

print("Saving")

samples = sampler.chain

pickle.dump(samples , f)
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if verbose:

print(f"Mean acceptance fraction: "+\

f"{np.mean(sampler.acceptance_fraction ):.3f}")

try:

print(f"Autocorrelation time: {sampler.get_autocorr_time ()}")

except emcee.autocorr.AutocorrError:

pass

return samples , filename , sampler

Listing A.6: A helper object used for modifying means of a Gaussian mixture

import scipy

class ScipyWrapper ():

def __init__(self , kde , newmean ):

self.means = kde.means_

self.covs = kde.covariances_

self.weights = kde.weights_

maxind = np.argmax(self.weights)

self.means[maxind] = newmean

def score_samples(self , samples ):

return self.score(samples)

def score(self , samples ):

ret = 0

for i, w in enumerate(self.weights ):

ret += scipy.stats.multivariate_normal .\

pdf(samples , mean=self.means[i], cov=self.covs[i],

allow_singular=True) * w

return np.log(ret)

def __getstate__(self):

return [self.means , self.covs , self.weights]

def __setstate__(self , depickl ):

means , covs , weights = depickl

self.means = means

self.covs = covs

self.weights = weights
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