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Davor Petrinović bio je član programskog odbora pet med̄unarodnih konferencija.

ii



Preface

I would like to express my sincere gratitude to my thesis supervisor Prof. Davor Petrinović
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Abstract

This research encompasses modeling and robust parameter estimation of a series of point light

sources in multidimensional imaging. In 2D imaging, the point sources are blurred and extended

in the image plane due to diffraction, optical aberrations, distortion, and other degradations

that occur during the imaging. According to the central limit theorem, the joint action of all

these degradations can be approximated by 2D Gaussian profiles. The first part of the research

deals with detecting stellar objects in astronomical images through precise estimation of 2D

Gaussian profile parameters where the main issues are overlapping adjacent objects and noise.

The weighted least squares method with Huber weights is proposed to precisely estimate the

overlapping Gaussian profiles even above the resolution limit. The method is based on robust

statistics of error dispersion and does not require prior knowledge of the profile’s parameters or

noise statistics. The method’s robustness is analyzed for different noise sources, and the optimal

width of the estimation input domain is derived using differential entropy.

In the second part of the research, the estimation problem of Gaussian profile parameters is

generalized to the multidimensional case. Parameters of the profile can be estimated either in

the least squares or maximum likelihood sense. Independently of a chosen approach, the es-

timation of optimal parameters requires iterative techniques for nonlinear optimization, which

depend on the initial guess for parameters and can get stuck in local minima. To circumvent the

drawbacks of the conventionally used iterative methods and to speed up and simplify the estima-

tion procedure, a two-step method for parameter estimation of the multidimensional Gaussian

profile in the domain of the exponential function argument is developed. The method alterna-

tively combines analytical and iterative approaches in parameter estimation to find the optimal

solution in the least squares sense. In the 2D case, the theory of resultants is applied to calculate

all 2D Gaussian profile parameters analytically.

The third research part deals with the image reconstruction of an unknown 2D process in

low-dose positron emission tomography (PET). Reduction of the radiotracer dose causes the

reduction of PET input data, so-called lines of response (LORs), a sparse sinogram, and low

spatial and temporal image reconstruction. Thus, a novel approach for 2D PET data acquisition

is proposed, which uses the intersections of LORs to boost the sinogram and enable reconstruc-

tion of the underlying 2D process. The underlying 2D image is reconstructed from analytical

relations between the spatial statistical properties of intersections of LORs and properties of the

input process.

Keywords: astronomical imaging, modeling and detection of stellar objects, multidimen-

sional Gaussian profile, parameter estimation, iteratively reweighted least squares method, ro-

bust statistics, low-dose 2D PET imaging, 2D PET image reconstruction



Prošireni sažetak

Modeliranje i robusna estimacija niza točkastih izvora u
višedimenzionalnom oslikavanju

Istraživanje obuhvaća modeliranje i robusnu procjenu parametara niza točkastih izvora svjet-

losti iz snimljenih slika. Slike točkastih objekata trebali bi biti rijetki signali s vrijednostima

različitim od nule, koji odgovaraju Diracovim Delta impulsima, samo na očekivanim pozi-

cijama projekcija 3D točkastih izvora svjetlosti u 2D slici. Med̄utim, slike točkastih izvora

svjetlosti su zamućene i proširene u ravnini slike. Čak i u slučaju idealnog optičkog sustava

ograničenog samo difrakcijom svjetlosti na leći, slike točkastih objekata prate oblik Airy diska.

Osim difrakcije, postoje mnoge druge degradacije koje se javljaju pri oslikavanju kao što su op-

tičke aberacije, distorzije, vignetting, neželjeni pomaci sustava oslikavanja, električna svojstva

i šum senzora te spektralni odziv optike i senzora. Različite degradacije mogu se opisati pojedi-

načnim funkcijama širenja točkastog izvora čije se zajedničko djelovanje opisuje konvolucijom

u prostornoj domeni, odnosno umnoškom njihovih spektralnih odziva u frekvencijskoj domeni.

Ukupna konvolucija pojedinačnih funkcija širenja se prema centralnom graničnom teoremu

može aproksimirati 2D Gaussovim profilom. Takod̄er, u umnošku spektralnih odziva pojedi-

načnih funkcija širenja, 2D Gaussova funkcija najčešće odred̄uje prostornu graničnu frekvenciju

rezolucije optičkog sustava. Stoga je precizna procjena parametara Gaussovih profila iznimno

važna za identifikaciju i praćenje takvih točkastih izvora svjetlosti. Primjene se mogu pron-

aći u astronomskim slikama za detekciju zvjezdanih objekata ili u mikroskopiji i medicinskom

oslikavanju za praćenje pojedinačnih čestica.

Prvi dio istraživanja bavi se procjenom parametara višedimenzionalnog Gaussovog profila

iz zašumljenih mjerenja. Estimaciju parametara 2D Gaussovih profila u astronomskim slikama

otežavaju šum i susjedni objekti koji se preklapaju. Glavni problem kod preklopljenih susjed-

nih profila je odred̄ivanje pripadnosti piksela pojedinom objektu. Uobičajeno korištene metode

za prostornu segmentaciju pretpostavljaju postojanje lokalnog minimuma izmed̄u preklopljenih

profila i prestaju raditi kad bliski točkasti izvori prelaze granicu razlučivosti definiranoj Spar-

rowim kriterijem. Nekoliko je pristupa u estimaciji parametara višedimenzionalnog Gaussovog

profila iz zašumljenih ulaznih podataka ovisno o zahtijevanoj preciznosti, o prethodnom znanju

o parametrima i statistici šuma. Dva su pristupa estimaciji s obzirom na domenu estimacije:

estimacija u domeni vrijednosti i estimacija u domeni argumenta eksponencijalne funkcije. Na-

jjednostavnija analitička metoda u domeni vrijednosti je metoda momenata gdje prvi moment

daje očekivanu poziciju središta profila, dok drugi moment daje očekivane varijance profila.

Nedostaci ove metode su osjetljivost na šum i odabranu ulaznu estimacijsku regiju s pristra-

nošću podestimiranju varijanci profila, ali je zbog brzine prikladna za rad u stvarnom vremenu.

Druga grupa metoda za estimaciju u domeni vrijednosti su iterativne metode koje pronalaze

v



optimalne parametre ili u smislu najmanjih kvadrata ili u smislu najveće izglednosti. Oba pris-

tupa zahtijevaju rješavanje prezadanog sustava nelinearnih jednadžbi koristeći iterativne opti-

mizacijske tehnike. Uobičajeno korištena metoda najmanjih kvadrata računalno je skupa, ne

garantira konvergenciju, a rezultat optimizacije je jako ovisan o odabiru početnih parametara.

S druge strane, traženje optimalnih parametara u smislu najveće izglednosti zahtjeva veliki broj

mjerenja i prethodno znanje o distribuciji šuma, ali daje nepristrane procjene minimalne vari-

jance. Drugi pristup estimaciji parametara Gaussovog profila je estimacija u domeni argumenta

eksponencijalne funkcije logaritmiranjem ulaznih mjerenja i modela. U slučaju 1D Gaussovog

profila, estimacija parametara profila u log domeni se svodi na prilagod̄avanje parabole ulaznim

mjerenjima. Med̄utim, u slučaju višedimenzionalnog profila, broj parametara kvadratno raste,

pa posljedično, i složenost estimacije. Štoviše, za više dimenzije parametri profila su čak i u

domeni argumenta nelinearno vezani. Prvi dio istraživanja rješava problem estimacije preklo-

pljenih 2D Gaussovih profila kako bi se omogućila identifikacije slabijih i gusto raspored̄enih

zvjezdanih objekata u astronomskim slikama. U nastavku istraživanja rješava se poopćeni prob-

lem estimacije parametara višedimenzionalnog Gaussovog profila s ciljem pronalaska anali-

tičkog rješenja za parametre, te ubrzanjem i pojednostavljenjem postupka estimacije.

Drugi dio istraživanja bavi se rekonstrukcijom nepoznatog 2D procesa u pozitronskoj emisi-

jskoj tomografiji (PET) iz smanjene doze radioaktivnog sredstva. Takav se proces sastoji od

točkastih izvora koji su povučeni iz neke nepoznate 2D distribucije čiji se parametri pokušavaju

estimirati iz smanjenog broja mjerenja uz analizu moguće primjene rezultata prethodno nave-

denih istraživanja. Kako bi smanjili rizike od izloženosti zračenju tijekom PET snimanja, mnogi

istraživači pokušavaju rekonstruirati sliku nepoznatog 2D procesa koristeći najmanju moguću

dozu radioaktivne tvari i pritom postići istu kvalitetu rekonstruirane slike kao i sa standardnom

dozom. Glavni izazov kod PET snimanja s niskim dozama je nizak omjer signala i šuma (SNR),

i posljedično, niska kvaliteta rekonstruiranih slika. Za postizanje kvalitete slika standardne

doze unosom niže doze kod PET-a potrebno je poboljšati ili performanse mjernog sklopovlja

ili tehnike obrade signala. Performanse mjerne instrumentacije mogu se poboljšati povećanjem

osjetljivosti PET senzora čime se povećava postotak detektiranih dogad̄aja i smanjuje prigušenje

i raspršenje. S druge strane, postoje mnoga programska rješenja koja se temelje na otklanjanju

šuma iz slike prije ili poslije rekonstrukcije ili tehnike koje kombiniraju ulazne podatke do-

bivene iz niskih doza PET-a s ulaznim podacima iz drugih modaliteta snimanja kao što su CT

ili MRI. U novije vrijeme postaju sve popularnije metode koje koriste strojno učenje i metode

dubokog učenja koje koriste slike dobivene s niskim i standardnim dozama za treniranje modela

koji mogu predvidjeti slike standardnih doza iz slika niskih doza. Med̄utim, računalna složenost

takvih metoda je znatno veća od složenosti uobičajeno korištene analitičke metode filtrirane un-

azadne projekcije.

Izvorni znanstveni doprinosi disertacije su
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•Robusna metoda za estimaciju parametara preklopljenih Gaussovih profila uz prisustvo

šuma

•Metoda za estimaciju parametara višedimenzionalnog Gaussovog profila u domeni ek-

sponencijalne funkcije

•Analiti čki opis odnosa prostorne statistike ulaznog procesa i virtualnih sjecišta linija

odziva u pozitronskoj emisijskoj tomografiji

Ova se disertacija sastoji od šest poglavlja.

U prvom poglavlju daje se uvod u problematiku te se opisuje struktura rada.

U drugom poglavlju opisuje se generiranje sintetičke astronomske slike koja uključuje sve

očekivane degradacije tipičnog sustava oslikavanja, a čije se zajedničko djelovanje aproksimira

2D Gaussovim profilima. Inicijalni se parametri profila estimiraju koristeći konvencionalnu

proceduru za obradu niza astronomskih slika. Sintetička slika je dobivena projekcijom točkastih

objekata iz zvjezdanih kataloga i njihovom konvolucijom s 2D Gaussovim profilima s inicijalno

estimiranim parametrima. Eksperimentalni rezultati pokazuju da je tako dobivena sintetička

slika bliska stvarnoj, no potrebna je daljnja manipulacija parametrima primjenom objektivnih

mjera sličnosti sa stvarnim slikama kako bi se dobili precizniji rezultati. Takva sintetička slika

predstavlja temeljnu referentnu sliku koja se može koristiti za daljnja istraživanja pod uvjetom

da su parametri sustava precizno odred̄eni.

U trećem se poglavlju opisuje metoda za preciznu estimaciju preklopljenih 2D Gaussovih

profila kako bi se riješio problem identifikacije gusto raspored̄enih točkastih izvora u astronom-

skim slikama. Predložena metoda je iterativna težinska metoda najmanjih kvadrata (IRWLS)

za koju nije potrebno definirati ni broj, a niti središte preklopljenih komponenti. Metoda redom

estimira i uklanja pojedine komponente na temelju lokalnih ekstrema, a zasniva se na robus-

noj statistici rezidualne pogreške te u nekim slučajevima radi čak i iznad granice razlučivosti.

Huberove težine su korištene za razdvajanje valjanih uzoraka od uzoraka koji pripadaju susjed-

nim objektima. Takve se težine ažuriraju u svakoj iteraciji na temelju robusne analize rezidu-

alne pogreške iz prethodne iteracije. Robusne metrike u analizi pogreške koriste se u defini-

ranju mekog praga koji razdvaja valjane uzorke od iznimaka. Na valjane uzorke se primjenjuje

L2 norma, dok se na iznimke primjenjuje L1 norma. Točnost metode i estimiranih param-

etara verificira se numerički koristeći Monte Carlo simulaciju, a rezultati nadmašuju konven-

cionalnu metodu najmanjih kvadrata u estimaciji preklopljenih objekata na prethodno sintetički

dobivenim slikama. Pokazuje se da metoda postiže do 25 dB veću točnost u usporedbi s kon-

vencionalnom metodom najmanjih kvadrata za odred̄eni skup razlika u magnitudama profila

i udaljenostima njihovih središta. Štoviše, 80% ukupne točnosti metoda postiže u samo pet

iteracija. U nastavku se analizira utjecaj odabranog praga za razdvajanje valjanih uzoraka i izn-

imaka na točnost estimacije. Analizira se robusnost predložene IRWLS metode s Huberovim

težinama na aditivni, multiplikativni Poissonov šum i šum s teškim repovima koji se susreću u
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astronomskim slikama. Rezultati metode najmanjih kvadrata u estimaciji jednog zašumljenog

2D Gaussovog profila uspored̄uju se s predloženom IRWLS metodom za sve tri distribucije

šuma i različite omjere signala i šuma. Kao mjera točnosti koristi se ukupna pogreška mod-

eliranja u decibelima definirana omjerom sume kvadrata razlike estimiranog i stvarnog modela

i sume kvadrata stvarnog modela za sve uzorke koji su unutar odabrane evaluacijske regije.

Odgovarajućim odabirom praga koji se koristi u generiranju Huberovih težina postiže se vi-

soka asimptotska učinkovitost IRWLS metode čak i u slučaju aditivnog Gaussovog šuma za

koji je rješenje najmanjih kvadrata optimalno. Za slučaj Poissonovog šuma, IRWLS metoda

s težinama jednakim recipročnim varijancama uzoraka ima do 3 dB veći dobitak modeliranja

u usporedbi s IRWLS metodom s Huberovim težinama i metodom najmanjih kvadrata budući

da su takve težine optimalne u smislu maksimalne izglednosti za ovu vrstu šuma. Budući da

se točnost estimacije čak i uobičajene metode najmanjih kvadrata mijenja ovisno o odabranoj

širini ulazne estimacijske domene oko pretpostavljenog maksimuma profila, analitički se izvodi

optimalna širina koja maksimizira točnost metode analizom informativnosti ulaznih podataka.

Optimalno rješenje kao i predikcija smanjenja točnosti estimacije za druge neoptimalne širine

se verificira Monte Carlo simulacijama.

U četvrtom se poglavlju opisuje predložena metoda za estimaciju parametara višedimen-

zionalnog Gaussovog profila u domeni argumenta eksponencijalne funkcije. Predložena se

metoda sastoji od dva koraka gdje se iterativno i naizmjenično estimiraju parametri matrice

kovarijance i linearni faktor skale za danu poziciju središta profila, a zatim se središte pro-

fila ažurira koristeći estimiranu matricu kovarijance iz prethodnog koraka. Glavna prednost

metode je analitičko rješenje parametara matrice kovarijance i linearne skale za početno zadano

središte profila proizvoljne dimenzije. Točnost metode u estimaciji parametara iz podataka

kontaminiranih aditivnim šumom analizira se numerički Monte Carlo simulacijama gdje se

kao mjera točnosti koristi ukupna pogreška modeliranja, a rezultati se uspored̄uju s konven-

cionalnom metodom najmanjih kvadrata, metodom momenata i metodom najveće izglednosti

u domeni vrijednosti. Za slučaj 2D Gaussovog profila, predlaže se metoda za analitičku esti-

maciju pozicije centroida za danu matricu kovarijance profila primjenom teorije rezultanti za

rješavanje sustava dva nelinearna polinoma trećeg reda u dvije varijable. Kod estimacije višed-

imenzionalnog Gaussovog profila u domeni argumenta eksponencijalne funkcije, eksperimen-

talni rezultati pokazuju da u slučaju visokih SNR-ova predložena metoda postiže istu točnost

kao i metoda najmanjih kvadrata u domeni vrijednosti Gaussovog profila. Ipak, predložena

metoda u logaritamskoj domeni konvergira brže, posebno za Gaussove profile većih dimenz-

ija. Za mnoge praktične primjene gdje je početno središte već dovoljno točno odred̄eno, do-

voljna je samo jedna iteracija predloženog algoritma za odred̄ivanje svih preostalih parametara

modela korištenjem analitičkog postupka bez potrebe za daljnjim iteracijama. Eksperimenti su

pokazali da su u slučaju estimacije 3D Gaussovog profila iz podataka zašumljenih aditivnim
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Gaussovim šumom, matrica kovarijance i linearna skala procijenjene jedan ili čak dva reda

veličine brže korištenjem analitičkog rješenja predložene metode nego korištenjem iterativne

metode najmanjih kvadrata u domeni vrijednosti. U isto vrijeme, za visoke SNR-ove (≥ 40dB)

predložena metoda postiže sumjerljivu ukupnu pogrešku modeliranja bez prethodnog znanja o

parametrima ili statistici šuma, pod uvjetom da je pozicija središta poznata. Štoviše, eksperi-

menti su pokazali da predložena metoda konvergira u najviše četiri iteracije, dok postupci nu-

meričke optimizacije u domeni vrijednosti zahtijevaju znatno veći broj iteracija od predložene

metode za pronalaženje svih parametara modela. Zbog svoje brzine, metoda se može koristiti

u aplikacijama u stvarnom vremenu. Ipak, metoda najmanjih kvadrata u domeni vrijednosti

točnija je od predložene metode u slučaju niskih SNR-ova (≤ 20 dB) i širokih estimacijskih

regija. Gubitak preciznosti predložene metode dominantno je uzrokovan malim vrijednostima

profila na tako širokim regijama koji mogu unijeti značajne pogreške u log domenu jer aproksi-

macija eksponencijalne funkcije s prvim članom Taylorovog niza nije dovoljna.

Peto poglavlje opisuje predloženu metodu za rekonstrukciju 2D PET slike iz smanjene doze

ubrizgane radioaktivne tvari. Kod 2D PET-a ulazni podaci su koincidentni dogad̄aji koji se

generiraju u uzorcima nepoznatog 2D procesa, a putuju prema detektorima u suprotnim sm-

jerovima duž tzv. linija odziva. Njihov je broj proporcionalan aktivnosti ubrizgane radioaktivne

tvari, a te se linije odziva koriste u rekonstrukciji nepoznatog 2D procesa, dok je pozicija uzorka

procesa koji je generirao pojedinu liniju u stvarnosti nepoznata. Za točnu rekonstrukciju većina

dosadašnjih metoda zahtijeva izuzetno veliki broj detektiranih koincidentnih dogad̄aja što znači

i veliku dozu ubrizgane radioaktivne tvari za praćenje. U ovom se istraživanju na drugi način

pristupa procesu prikupljanja podataka kako bi se smanjila potreba za količinom ubrizgane

radioaktivne tvari koristeći sjecišta linija odziva čiji je broj proporcionalan kvadratu broja uzo-

raka procesa, tj. kvadratu linija odziva. Pri razvoju metode koristi se činjenica da su prostorna

statistička svojstva sjecišta linija odziva povezana s prostornim statističkim svojstvima nepoz-

natog 2D procesa koji se estimira. Virtualne linije odziva se generiraju pod slučajnim kutevima

na mjestima sjecišta te se koriste u generiranju sinograma i u rekonstrukciji konvencionalnom

metodom filtrirane unazadne projekcije (FBP algoritam) kako bi se postigla veća prostorna i

vremenska razlučivost rekonstrukcije. U eksperimentima se provodi Monte Carlo simulacija

gdje se generiraju i uspored̄uju rekonstrukcije iz sinograma dobivenih iz malog broja stvarnih

linija odziva, rekonstrukcije dobivene iz idealnog sinograma te rekonstrukcije dobivene iz vir-

tualnih linija odziva. Eksperimentalni rezultati pokazuju da se sjecišta linija odziva mogu usp-

ješno koristiti za rekonstrukciju nepoznatog 2D procesa čak i u slučaju vrlo malog broja uzoraka

procesa koji je nedovoljan za predstavljanje te nepoznate 2D distribucije. Iako je na prvi pogled

rekonstruirana slika daleko od stvarnog procesa, usrednjavanjem samo 50 takvih rekonstrukcija

dobiva se stabilna slika male varijance reda veličine 10−7. Rekonstruirana slika primarno ima

neželjenu pristranost u odnosu na izvorni proces zbog razlike u matricama kovarijanci procesa
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i sjecišta. Ova bi se pristranost u odnosu na ulaznu funkciju gustoće mogla kompenzirati nelin-

earnom dekonvolucijom poznavanjem analitičkog odnosa prostornih distribucija procesa i sje-

cišta. Stoga je u nastavku istraživanja funkcija gustoće vjerojatnosti (PDF) sjecišta linija odziva

izvedena za par točkastih izvora u prostornoj domeni i domeni sinograma. Pokušalo se izvesti

očekivanje PDF-a sjecišta za sve parove točkastih izvora iz nepoznatog 2D ulaznog procesa s

ciljem primjene algoritama dekonvolucije ili maksimizacije očekivanja za rekonstrukciju nepoz-

natog procesa. Uvodi se regularizacija početnih kuteva izmed̄u linija odziva koje se sijeku

kako bi se ograničilo raspršenje sjecišta i omogućila rekonstrukcija ulaznog 2D procesa. Reg-

ularizacija osigurava konačne prve i druge momente distribucije sjecišta, omogućujući takod̄er

izračun srednje vrijednosti i matrice kovarijance ulaznog procesa. U slučaju numerički izraču-

natog ukupnog PDF-a sjecišta osnovnog 2D Gaussovog procesa, distribucija njegovih sjecišta je

aproksimirana mješavinom generalizirane normalne distribucije bliske Laplaceovoj distribuciji

i normalne distribucije osnovnog procesa.

U šestom zaključnom poglavlju navedeni su glavni rezultati istraživanja te su dane smjernice

za daljnja istraživanja.

Keywords: astronomske slike, modeliranje i detekcija zvjezdanih objekata, višedimen-

zionalni Gaussov profil, estimacija parametara, iterativna težinska metoda najmanjih kvadrata,

robusna statistika, 2D PET oslikavanje s niskom dozom radioaktivnog sredstva, rekonstrukcija

slike kod 2D PET-a
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Chapter 1

Introduction

Modeling and robust estimation of point light sources are essential in many image processing

fields where images are sparse signals of point sources, such as astronomical imaging, mi-

croscopy, and medical imaging. Even in an ideal diffraction-limited imaging system, the image

of a point light source is an Airy disk. Apart from diffraction, many optical aberrations, distor-

tions, and other image degradations have to be modeled and identified for precise point source

detection and tracking. The first part of the research deals with detecting overlapping stellar

components from astronomical images. In the second part of the research, the method for gen-

eralized multidimensional Gaussian profile estimation in the least squares sense is proposed,

which transforms the estimation problem to the argument domain of the exponential function.

The third part of the research deals with image reconstruction in low-dose 2D PET imaging.

Instead of counting the so-called lines of response (LORs), the intersections of these LORs are

used to increase the amount of the input PET data. A detailed analysis of the statistical proper-

ties of intersections of LORs is performed, and they are related to the statistical properties of the

underlying 2D process. The aim is to reconstruct the underlying 2D process from the reduced

amount of radiotracer by employing the quadratically larger number of intersections than the

number of LORs.

This thesis is organized as follows. The second chapter describes the main properties of

astrophotography and gives a few examples of star catalogs that can be used for synthetic as-

tronomical image generation. Linear camera calibration, which represents the projection of

the stellar object from a star catalog to the image plane, and the nonlinear conventional lens

distortion model are given. The contributions of individual image degradations are modeled

by their own point spread functions, which are convolved to obtain the system point spread

function, approximated by the 2D Gaussian profile. The conventional astronomical stack pro-

cessing pipeline for the estimation of initial 2D Gaussian model parameters of stellar objects

is explained. Finally, such estimated initial model parameters are used for synthetic image se-

quence generations, and the synthesis results are compared with captured images for the same
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part of the sky.

The third chapter considers the issue of overlapping adjacent object detection in astronom-

ical images. Conventional segmentation methods fail if overlapping objects exceed the reso-

lution criteria. In the case of overlapping 2D Gaussian components, the Sparrow resolution

criterion is derived. The iteratively reweighted least squares method is used to solve overlap-

ping components and precisely estimate their parameters. Thereby, robust statistics of residual

errors and Huber weights are applied. The matching pursuit algorithm based on the method

of local extrema is used for iterative estimation and removal of 2D Gaussian components to

reduce residual energy in the image. The robustness of the method to the different noise types

is considered. Also, the optimal width of the estimation input domain is derived by introducing

the concept of differential entropy.

The fourth chapter deals with parameter estimation of the multidimensional Gaussian pro-

file, where the estimation problem is transformed in the exponential argument domain by taking

the logarithm of both input measurements and the model. The objective function that is mini-

mized is the sum of weighted squared residuals with weights selected so that simultaneously the

sum of squared residuals in the domain of values is minimized as well. The two-step method

is proposed where in the first step, the covariance matrix and linear scale factor are analytically

estimated for a given initial centroid by solving the system of linear equations, while in the

second step, the centroid is updated through nonlinear optimization given all other Gaussian

profile’s parameters for arbitrary dimension. For the 2D case, the theory of resultants is used

for analytical updating of the centroid as well.

In the fifth chapter, low-dose 2D PET imaging is considered. The method for data acquisi-

tion from a reduced number of coincident events using intersections of LORs is proposed. The

probability density function (PDF) of intersections of LORs for a pair of point sources is de-

rived in the spatial domain and the sinogram domain. Statistical properties of intersections are

related to the statistical properties of the underlying 2D process, which is reconstructed. There

was an attempt to derive the expectation of PDF of intersections for all point sources from the

arbitrarily underlying process aiming to apply the deconvolution and expectation maximiza-

tion algorithms for unknown process reconstruction with the discussion of main issues. The

blur of intersections in the case of the rotationally symmetric underlying 2D Gaussian process

is approximated by the mixture of generalized normal distribution and the distribution of the

process.

Finally, the conclusion of overall results is provided, as well as directions for future research.
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Chapter 2

Astrophotography

An astronomical image, also called astrophotography, is an image of the night sky that contains

astronomical objects such as stars, nebulae, and galaxies. Astronomical objects are usually

distant and faint point light sources that emit light in different spectral bands. Therefore, a long

exposure time is characteristic for astrophotography to collect as much incident light as possible

from such distant objects. Also, specialized optical filters are used in astronomical imaging to

pass only specific wavelengths of light through, thus enabling the detection of objects emitting

even outside the visible light spectrum.

Stellar objects are point light sources, i.e., Dirac Delta impulses in their spatial domain,

but extended and blurred in the image plane due to different degradations that occur during the

imaging such as diffraction of light, optical aberrations, distortions, an unwanted residual mo-

tion of the imaging system during exposure, sensor properties and noise. Every optical system

has many such degradations that need to be identified and compensated for. The identification

and compensation of image degradations are usually done as part of complex calibration proce-

dures. Still, it can also be directly done from a single night sky image in which all those degra-

dations are reflected [1]. Astrophotography is ideal for this since it consists of point sources of

known positions, spectra, and intensities found in publicly available star catalogs.

Star catalogs contain information on stellar objects’ angular positions (declination δ , and

right ascension α) in the equatorial coordinate system and their magnitudes in different spectral

bands. As a relative measure of the brightness of stars observed from the Earth, the apparent

magnitude * is usually used. The most famous star catalog database is VizieR † which con-

tains almost 20000 catalogs that differ by wavelength regimes, missions, and astronomy target

objects. The accuracy and completeness of each catalog are described by the faintest apparent

magnitude (the highest magnitude number) contained in the catalog and the accuracy of ob-

jects’ positions. Some examples of star catalogs are the Bright Star Catalogue, the Thycho-2

*unit increase of apparent magnitude implies the reduction in brightness by 5
√

100≈ 2.512
†VizieR database: https://vizier.cds.unistra.fr/viz-bin/VizieR
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Catalogue, and the Guide Star Catalogue. The Bright Star Catalogue [2, 3] contains around

9000 brightest stars that can be seen with the naked eye from the Earth. An example of a more

extensive catalog is the Tycho-2 Catalogue [4] which contains more than 2.5 million of the

brightest stars in the Milky Way along with their positions, proper motions, and magnitudes in

two different spectral bands. Finally, the Guide Star Catalog [5, 6] is related to the Hubble Space

Telescope, where version GSC-I contains about 20 million stars with an apparent magnitude of

6 up to 15. The GSC-II version has almost a billion stars up to magnitude 21.

Astrophotography is characterized by the geometry of the camera and lens, which are de-

termined as a part of the camera calibration procedure, long exposure time, various optical

aberrations, motions of the imaging system during exposure, the lens vignetting, photon sen-

sitivity of the sensor, sensor gain (ISO) and noise, color filter array in front of the sensor, and

finally by the portion of the sky enclosed in the frame.

2.1 Imaging system modeling

A precise mathematical model of the imaging system and identification of its parameters enables

the generation of synthetic astronomical images. Such a synthetic image should match the

image captured by the camera for the same field of view (FOV). Furthermore, such a synthetic

image represents the ground truth image or a high-resolution image of the same part of the

sky since it can contain a more significant number of extracted and projected stellar objects

than the captured image and can be sampled over the grid of the arbitrary density, but with

the precondition of the accurate imaging system model. The astronomical image model can be

described as

y = WCx+n, (2.1)

where y represents the column vector of captured image values, W is the measurement ma-

trix that models degradations caused by motion effects and anti-aliasing filter, C denotes the

convolution matrix which models blur caused by optics, x is a sparse vector of point sources’

positions, and n is the vector of noise.

2.1.1 Camera calibration

Identification of imaging system parameters is usually part of the complex camera calibration

procedure. Camera calibration is a technique of determining the geometric characteristics of the

camera that describes the transformation of the 3D scene from the real world into the camera

coordinate system and its projection into the 2D image plane [1, 7, 8]. Camera calibration

includes determining the intrinsic and extrinsic camera parameters that are part of the linear

camera model and the lens distortion parameters that are part of the nonlinear camera model.
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The linear camera calibration model is shown in Fig. 2.1. The extrinsic parameters include

Camera coordinate
 system

Extrinsic matrixIntrinsic matrix

World coordinate
 systemImage plane

Figure 2.1: Linear camera calibration model

3D rotation and translation of the point from the global (world) coordinate system to the local

camera’s coordinate system. The point from the word coordinate system xw = (xw,yw,zw) is

transformed to the camera coordinate system as follows

xc = R(xw− cw) = Rxw−Rcw = Rxw + t, (2.2)

where R3x3 is a rotation matrix that is calculated by the multiplication of fundamental rotation

matrices around all three axes (x,y,z) using Euler’s angles. This same transformation of the

point source from the world to the camera coordinates in homogeneous coordinates is

x̃c =



xc

yc

zc

1


=

R3x3 t3x1

01x3 1





xw

yw

zw

1


= Mext x̃w, (2.3)

where Mext represents the extrinsic matrix. Intrinsic parameters include the camera’s focal

length, skew coefficient, pixel widths, and principal point that determine the projection of the 3D

point from the local camera’s coordinate system into the 2D image plane. Perspective projection

of the point from the local camera’s coordinate system xc = (xc,yc) to the point in the image
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plane xi = (xi,yi) is obtained from the similarity of triangles as follows

xi

f
=

xc

zc
→ xi = f

xc

zc
, (2.4)

yi

f
=

yc

zc
→ yi = f

yc

zc
, (2.5)

where f is the focal length. The calculated position of the point xi = (xi,yi) in the image plane

is in millimeters. To obtain the corresponding point position in pixels, the pixel densities in both

x and y directions, mx and my, have to be taken into account, as well as the position of principal

point (ox,oy) where the optical axis pierces the sensor. The projected position of the point in

pixels is

u = mxxi = mx f
xc

zc
+ox = fx

xc

zc
+ox, (2.6)

v = myyi = my f
yc

zc
+oy = fy

yc

zc
+oy, (2.7)

where fx and fy are focal lengths in pixels in both directions. In homogeneous coordinates, the

projected point in the image plane is calculated as


u

v

1

=


ũ

ṽ

w̃

=


zcu

zcv

zc

=


fx 0 ox 0

0 fy oy 0

0 0 1 0





xc

yc

zc

1


= Mint x̃c. (2.8)

The complete linear camera calibration model has the following form


u

v

1

=


fx 0 ox 0

0 fy oy 0

0 0 1 0


R3x3 t3x1

01x3 1





xw

yw

zw

1


= MintMext x̃w. (2.9)

Identification of the camera calibration matrix is usually done by using some calibration object.

Still, it can also be done from a single night sky image by pairing the positions of stars found

in captured images with their positions extracted from the publicly available star catalogs for

the same selected field of view (FOV) [1]. Fig. 2.2 shows the linear calibration model used

in astronomical images. The position of infinitely far stars in celestial coordinates (α ,δ ) are
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extracted from star catalogs and transformed to the 3D positions on the unit sphere through the

following equations:

xw = cos(α)cos(δ ), (2.10)

yw = sin(α)cos(δ ), (2.11)

zw = sin(δ ). (2.12)

The 3D positions of stars on the unit sphere are 3D rotated using the Euler rotation matrix to

align the world coordinate system with the camera coordinate system. The rotated 3D positions

in the camera coordinate system are used to calculate the new right ascension and declination

angles (α ,δ ), which are used to project the point from the camera coordinate system to the

image plane. Thereby, the tangential (gnomonic projection) [9] is applied, and the coordinates

of the point source in the image plane are

u =− fx tan(α), (2.13)

v = fy tan(δ ). (2.14)

Celestial coordinate
 system

World coordinate systemCamera coordinate system

Rotate 3D
Transform

coordinates

Image plane

Tangential (gnomonic)
 projection

Figure 2.2: Camera calibration model for astronomical imaging

2.1.2 Lens distortions

Lens distortion effects cause the nonlinear displacements of the projected point in the image

plane due to the different lens properties such as curvature, decentering, and tilt. The conven-

tionally used nonlinear lens distortion model includes radial, tangential, and thin prism distor-

tions [10, 11]. Distroted point position in the image plane (ud,vd) is calculated as

ud = u+δu(u,v), (2.15)

vd = v+δv(u,v). (2.16)
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According to [12], the radial distortion is a consequence of radial lens curvature and depends

on the radial distance r of the point (u,v) from the center of radial distortion as

δur(u,v) = u(k1r2 + k2r4), (2.17)

δvr(u,v) = v(k1r2 + k2r4). (2.18)

Decentering distortion comes from decentering of the lens or other optical components [11] and

is described as

δud(u,v) = p1(3u2 + v2)+2p2uv, (2.19)

δvd(u,v) = p2(3v2 +u2)+2p1uv, (2.20)

where p1 and p2 are decentering distortion coefficients. The thin prism distortion is caused by

the tilt of a lens concerning the image sensor array [11] and can be written as

δup(u,v) = s1(u2 + v2), (2.21)

δvp(u,v) = s2(u2 + v2), (2.22)

where s1 and s2 are thin prism distortion coefficients. The total lens distortion is the sum of

individual distortion effects

δu(u,v) = δur(u,v)+δud(u,v)+δup(u,v), (2.23)

δv(u,v) = δvr(u,v)+δvd(u,v)+δvp(u,v). (2.24)

Even though these equations describe the physical behavior of a single lens, modern optical

systems and telescopes contain multiple lenses and mirrors. Hence, the total distortion model

requires more complex complete polynomial models in two variables (u and v) to describe such

complex optical systems.

2.1.3 Point spread function

The imaging system model should include all physical effects that cause the spread of the point

source. Each physical effect that causes the blur has its individual point spread function (PSF).

The impulse response of the whole imaging system to a point source corresponds to a convolu-

tion of individual PSFs in the spatial domain or multiplication of their spectra in the frequency

domain, but only if they are shift-invariant. The Fourier transform of the system PSF is a

complex-valued function referred to as the optical transfer function (OTF). Its magnitude is re-

ferred to as the modulation transfer function (MTF), while its phase is referred to as the phase
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transfer function (PTF). MTF describes the ability of the optical system to transfer, i.e., to cap-

ture an object’s contrast at some spatial frequency, and thus is a good measure of the optical

system’s quality. The parameters of the system PSF can be estimated from the stack of captured

astronomical images, thus enabling cheap camera calibration.

Diffraction PSF

Diffraction of the light on the lens aperture produces the diffraction PSF, which represents the

upper-resolution limit of any imaging system. Diffraction PSF is shift-invariant, while its shape

and size depend on the lens aperture’s size and shape. In the case of a circular lens aperture,

diffraction PSF has a form of an Airy disk (pattern) [13]. The minimum angular displacement

of two objects before they blur, which is defined as a displacement when the maximum of the

Airy pattern of the first object hits the first minimum of the Airy pattern of the second object, is

the Rayleigh resolution criterion and can be described as

sin(θ) = 1.22
λ

d
,

x
f
= 1.22

λ

d
, x = 1.22

f λ

d
, (2.25)

were θ is the angular displacement, x is the distance of two objects’ images, f is the focal

length, λ is a wavelength of the light, d is a diameter of lens aperture, while the ratio f/d

represents the lens f-number. The normalized intensity function of an Airy pattern is a square

of radially symmetric Bessel function of the first kind J1, which is a function of radial distance

r as
fAiry(r) =

(2J1(r)
r

)2
. (2.26)

An example of the Airy pattern is shown in Fig. 2.3. MTF of the Airy pattern is the Chinese hat

function of the form
chat( f ) =

2
π
(cos−1( f )− f

√
1− f 2) (2.27)

where 0≤ f ≤ 1 is normalized spatial frequency.

Bivariate Gaussian PSF

2D Gaussian distribution coarsely approximates all other image degradations according to the

central limit theorem [14] such as optical monochromatic aberrations (defocus, coma, and astig-

matism) and longitudinal chromatic aberrations, motion blur, electrical cross-talk in the sensor,

etc. Consequently, the blur of extracted and projected point sources in the image plane can

be approximated by the 2D Gaussian profiles. The parameters of such profiles vary across the

image frame so they should be separately estimated for each part of the frame and for each of

three color channels. In real situations, the Gaussian MTF will determine the system cut-off

frequency with its narrower shape in the frequency domain compared to the other MTFs.
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(a) Logarithm of 3D Airy pattern (b) 2D slice of 3D Airy pattern

Figure 2.3: Airy pattern with the parameters: Nrings = 10, f -number = 2.8,Pixel Pitch = 6.5µm,λ =
650nm

Optical low pass filter

The optical low-pass filter (OLPF) is the anti-aliasing filter that prevents the Moiré effect, which

occurs in the spatial domain at high frequencies. The brick-wall filter is an ideal low-pass filter

that completely blocks the signal above the Nyquist spatial frequency and passes through the

whole signal below it. However, it produces undesirable ringing at the Nyquist frequency. As an

alternative, a beam splitter is usually used in digital cameras, which splits the light spot into four

spots at the distance of d in both directions, thus blurring of initial spot and reducing the spatial

frequency. The cutoff frequency where its MTF hits the first zero depends on the displacement

d. Such a filter also attenuates the useful signal below the cutoff frequency, so the displacement

d is typically chosen such that the cutoff frequency is above the Nyquist one.

Box function

The box function of the pixel width integrates spatially continuous light field into the pixel

intensity. The implementation of this convolution can be numerically efficiently performed by

accumulation and differentiation of the over-sampled light field representation (2D CIC filter).

The MTF of the box function is sinc2 function as Fig. 2.5 shows.

System PSF

Fig. 2.4 shows the observation model of astronomical images. The point sources are first ex-

tracted from star catalogs and projected into the image plane. Their positions are nonlinearly

transformed due to the properties of the lens and the projection of the 3D sphere to the 2D
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plane. Point sources in the image plane are convolved with individual PSFs. The convolution

of all individual PSFs yields the system PSF of the imaging system. Finally, the additive and

multiplicative noise is added, and such a continuous light field is sampled to the selected regular

grid. Fig. 2.5 shows individual MTFs and their combination. The multiplication of all MTFs

Spatially invariant,
 time invariant PSF

Airy pattern,
(AA) OLPF 

Gaussian PSF

Spatially variant,
 time invariant PSF

Poisson noise f(y)

Additive
noise n

Light diffraction

Box
Function

Spatially invariant,
 time invariant PSF

Sampling
Observation Nonlinear

transformations

Motion blur Spatially variant,
 time variant PSF

* *

Monochromatic aberrations (defocus,
spherical,coma,

 astigmatism, field curvature) chromatic
aberrations (longitudinal)

Figure 2.4: The observation model

in the frequency domain represents the system MTF. Even if OLPF primarily determines the

cut-off frequency in this example, the Gaussian MTF will usually specify that frequency in real

situations.

Figure 2.5: MTFs of Airy pattern, box function, OLPF, Gaussian and their combination

The deconvolution of such blurred astronomical images has to be performed to identify the

stellar objects and their exact positions. Deconvolution of blurred images is also a part of the

usual image restoration procedures. Some deconvolution algorithms used in astrophotography,

such as Lucy-Richardson algorithm [15], assume that the composite spread function, i.e., the

system PSF, is known in advance. Furthermore, some super-resolution algorithms which recon-
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struct high-resolution images from more captured low-resolution images also assume a precise

estimate of the system PSF. The system PSF is usually estimated as a part of the imaging system

calibration procedure, where each contributing factor of the point spread is modeled separately.

However, the exact mathematical model of the system PSF, which includes all possible sources

of the blur, is extremely complicated even for an objective with a single lens [13, 16] while in

astrophotography, more complex imaging systems are usually used. Also, the parameters of the

system PSF are spatially shift-variant, thus meaning that they gradually vary across the image

frame due to anisotropic lens behavior. Namely, the blurred stellar objects have a circular shape

in the center of the frame, while they are more extended and of elliptic and elongated shapes

at the frame edges. Some PSFs are also time-variant, such as blur caused by the motion or

atmospheric dispersion. Instead of mathematical modeling and estimating each source of the

spread individually, a better approach is estimating a system PSF directly from the captured

astronomic images, thus enabling the simple, cheap, and fast calibration of the whole imaging

system.

According to the central limit theorem [17], the 2D Gaussian profile can approximate the

system PSF, and this assumption is used in this research. Each blurred point source in the image

plane can be described by its 2D Gaussian profile. The parameters of the 2D Gaussian profiles

vary smoothly and gradually across the image frame, so the spatially localized averaging can

be performed to obtain the anisotropic 2D Gaussian model of the system PSF for the whole

image frame. The deviation of estimated 2D Gaussian parameters of a particular object from

the averaged estimated parameters in the same part of the frame is an indicator that such object

is an outlier or some other source of light such as galaxies, nebulae, but also measurement errors

(e.g., faulty pixels) or noise (e.g., salt and pepper noise). Hence, such deviations in estimated

parameters can be used for outlier detection during stellar object identification. However, the

essential prerequisite for precise stellar object detection is an accurate estimate of the composite

PSF model for each point source contained in the image.

2.1.4 Image registration

Image registration includes mapping the star catalog to the referent image plane and mapping

each captured image to the selected referent one by annotating the coincident stellar objects

between each image and the referent one and between the referent image and the projected

star catalog, as Fig. 2.6 shows. In each captured image, stellar objects are detected using the

method of local extrema, thus yielding the list of N brightest stars. Also, for the selected

FOV, the expected stellar objects are extracted from the chosen star catalog. Then, the plate-

solving step is applied to find the coincident stellar pairs between the captured image and the

catalog by applying the triangle similarity method. The method is based on the fact that relative

relations of triangles among stars are preserved independently of linear transformations (scaling,
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translating, and rotating). For each of N brightest stars, feature vectors are formed with all

combinations of two among seven neighbor stars. The triangle similarity method searches for

matching feature vector pairs that infer similar global linear transformation parameters, i.e.,

linear camera calibration parameters (extrinsic and intrinsic parameters - three Euler’s rotation

angles and the gnomonic projection parameters (celestial angle pairs (α,δ ), and sensor focal

lengths fx, fy) in the least mean squares sense). The second step is determining the nonlinear

2D polynomial model, which can describe nonlinear distortion at the frame edges, resulting

from lens properties and projection of the 3D sphere to the 2D image plane. Lateral chromatic

aberrations can also be considered by determining the nonlinear mapping parameters for each

color channel separately. Namely, lateral aberrations cause spatially distant projections of the

same star position in the image plane and different mapping errors for each of the three color

channels.

Star position Referent image
coordinate system

 Sensor coordinate
system 

Catalog Referent
image

2D mapping
i-th

2D mapping

linear + nonlinear (9th order
2D polynomial model)

 nonlinear (9th order
2D polynomial model)

Lateral
aberration 

Motion between
images and

during exposition

Optical
aberrations,
vignetting

Lateral
aberration 

Motion between
images and

during exposition

Optical
aberrations,
vignetting

Figure 2.6: Geometric transformation and image registration

2.1.5 Motion estimation

A long exposure, object motions, and unwanted residual motions of the imaging system dur-

ing exposure are the causes of motion blur. Since stellar objects are static, the motion blur in

astronomical images is primarily caused by the residual tracking error of the imaging system

(e.g., declination drift, right ascension periodic and non-periodic error). Each pixel’s motion

trajectory through images is constructed in the image registration step by the cubic spline inter-

polation (i.e., from the identified 2D mapping model between the referent and i-th image) from

which the motion blur is estimated.

2.1.6 Devignetting

Vignetting manifests as a decrease in image intensity from the center to the edges of the image

frame. Under homogeneous sky illumination, vignetting is usually modeled with a radially

symmetric smooth 2D function, such as the sum of cosines to the fourth power with the initial
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center at the center of the image frame. The parameters of the assumed vignetting model are

fitted to the median pixel intensity values of the pre-processed image stack for different radial

distances from the center of the image frame. The smoothness of the vignetting model can

be ensured by keeping only low spatial frequency coefficients. The 2D polynomial model of

the 4th order can be estimated and cascaded to the radial model to account for the non-radial

vignetting effects. An inverse function is applied to the input images to correct them, smoothing

their background.

2.1.7 Denoising

Long exposure time, typical for astronomical images, causes the dark current noise. The dark

current frame can be captured once during sensor calibration and subtracted from each captured

raw image in post-processing. Alternatively, it can be captured after each captured light frame

and immediately removed from it. Since the dark current rises with the exposure time and

temperature of the sensor, the latter approach is better for tracking dark current variabilities.

Still, it reduces the effective exposure time by half. The quantum nature of the light causes the

photon shot noise, which follows Poisson distribution. Poisson noise is multiplicative signal-

dependent noise with the variance proportional to the pixel’s intensity [18]. One approach for

Poisson noise removal is to use Anscombe transformation [19] to transform it into additive

Gaussian noise and then remove it. In the second approach, after devignetting, the spatial 2D

model of Poisson noise standard deviation is estimated from the image stack. Then the image

stack is divided by that model. Such obtained final image stack is slightly attenuated at the

edges but has a constant value of noise standard deviation across the whole frame [20].

2.1.8 Astronomical image stack processing pipeline

The main steps of the conventional astronomical image stack processing pipeline for stellar

objects identification are

1.Annotation of N brightest stars in each captured image using plate solving and identi-

fication of geometric transformation between each captured image and the chosen star

catalog

2.Temporal motion vector estimation for each bright star from calculated geometrical trans-

formations (primarily caused by residual imaging system motions - declination drift and

right ascension periodic and non-periodic errors)

3.Image registration - 2D mapping of each input image to the chosen referent one by using

coincident star pairs found in plate solving step

4.Initial stacking of all captured images that results in the reduction of additive noise
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5.Estimation of vignetting and 2D model of Poisson noise standard deviation from an initial

image stack

6.Applying the inverse vignetting model to all input frames

7.Application of inverse variance weighting to all input frames to remove Poisson noise

8.New stacking of flattened input frames and flat background removal

9.Separate spatial registration of each of three color channels of the final stack to compen-

sate lateral chromatic aberrations

10.Estimation of spatially smooth temporal noise model and application of its inverse to the

image stack

11.Identification of geometrical transformation between the image stack and the chosen cat-

alog (linear and nonlinear 2D mapping)

12.PSF parameter estimation of all expected point sources in the processed image stack, thus

yielding spatially variant PSF model for the whole frame

13.Deconvolution of the image stack using estimated spatially variant smooth PSF model

2.1.9 Synthetic astronomical image generation

The results of the proposed approach for synthetic astronomical image sequence generation are

given in [20]. Table 2.1 shows the project information about camera parameters and full-stack

information. The chosen star catalogs for extraction of expected object positions were the HR,

TYCHO-2, and GSC 2.2 catalogs. The selected target object, tracked during the imaging and

approximately positioned in the center of the frame, was NGC7635 (also known as Bubble

Nebula). Positions of expected stellar objects were extracted from the HR and TYCHO-2 cat-

alogs for the same sky region and were used in initial plate solving. The synthetic image was

generated only for a narrow region around the TYC4279-1488-1 target star. Positions of all

point sources in this region were then extracted from the GSC 2.2 catalog with six arc minute

radius (658 objects), which are in the magnitude range Rmag < 15 and B jmag < 16. The esti-

mated system PSF was placed at the fractional position of the point source on the interpolated

sensor grid. Fig. 2.7a shows the blue channel of the processed stack image previously demo-

saiced in the stack processing pipeline. Fig. 2.7b shows only blue pixels of one input raw

image. Fig. 2.7c shows the synthesized continuous light field on the interpolated upsampled

grid, and finally, Fig. 2.7d shows the sampled synthesized light field in the sensor image plane.

The results demonstrate that the proposed method generates a good representation of the actual

image using only the previously estimated PSF parameters from the image stack separately for

each of the three color channels. However, more precise synthesis can be achieved if the model

parameters are additionally finely tuned to the parameters of the actual image.
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Table 2.1: Project parameters

Target Name NGC7635

Exposure Time (EXIF) 15.0 sec

f-number (f/Av) 1.4

ISO Speed 800

Camera focal Length 105.0 mm

Sensor Resolution 5505 x 3670 pix

Sensor pixel pitch 6.50 µm

Sensor crop factor 1.01 (35 mm equivalent)

Camera focal Length 105.5 mm

Expected horizontal angle of view 19°20.9’

Expected vertical angle of view 12°59.1’

Expected diagonal angle of view 23°10.1’

Minimum required catalog radius 695.0 min

Image Resolution 5472 x 3648 pix

Expected image scale 12.775 arcsec/pix

Reference star Catalog radius 765.0 min

Number of reference stars in Catalog 62327

Expected number of reference extracted radial segment Catalog stars in frame 30665

Nstar number of extracted stars from frame for plate solving 1000

Catalog star magnitude < 15

Number of good light frames in stack 177

(a) Demosaiced processed stack image (blue
channel)

(b) One selected input raw image of only blue
channel from a series of input images

(c) Synthesised continuous light field on up-
sampled grid

(d) Synthesised image sampled on sensor grid

Figure 2.7: Extracted region around TYC4279-1488-1 - Blue channel
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Chapter 3

Identification of overlapping stellar
components

Precise parameter estimation of 2D Gaussian profiles enables the identification of stellar objects

in astronomical images whose PSFs are approximated by such profiles. Conventional parame-

ter estimation procedures seek optimal profile parameters that minimize the error between the

empirical input data and the model in either a least-squares (LS) [21] or maximum-likelihood

(ML) [22] sense. Overlapping components and noisy measurements are the main issues in the

parameter estimation of 2D Gaussian profiles in astronomical images. The overlapping of two

or more stellar components makes it difficult to determine the belonging of a pixel to a particular

object. For this purpose, spatial image segmentation methods are usually used. However, they

typically assume the existence of local minima between overlapping components. An example

of a spatial segmentation method is the Voronoi tessellation, but it fails when the overlapping

components are closer than the distance defined by the Sparrow resolution limit [23, 24]. Mul-

tiple definitions of the resolution limit describe the resolving power of an optical system, such

as the Rayleigh, Dawes, and Sparrow criteria. The Rayleigh and Dawes resolution criteria are

related to diffraction-limited systems and assume the occurrence of minima of two close Airy

disks. For example, the Rayleigh criterion is defined as the distance of centers of two close

Airy discs when the first minimum of one Airy disc hits the central maximum of the second

Airy disc. Since 2D Gaussian profiles are strictly positive functions, such criteria are not ap-

plicable to this type of function. However, the Sparrow resolution criterion is derived from the

condition for the occurrence of an inflection point between two Airy discs, thus meaning that it

can also be applied to overlapping 2D Gaussian profiles.
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3.1 Sparrow resolution criterion for overlapping Gaussian

profiles

The Sparrow resolution criterion is derived here for two overlapping 1D Gaussian profiles of the

same width σ , but it can also be generalized to the multidimensional case under the assumption

that the profiles are rotationally symmetric with the same semiaxes widths in all directions.

The mean of the first profile is at the origin (µ1 = 0), while the mean of the second profile is

displaced by µ2 = d = kσ . The component at the origin is the stronger component with a unit

amplitude in front of the exponential, while the second component is the weaker of amplitude

A. The sum of individual components equals

f (x) = exp
(−x2

2σ2

)
+Aexp

(
− (x−d)2

2σ2

)
, A≤ 1. (3.1)

By substituting x =
√

2σξ and d = kσ , expression (3.1) becomes

f (ξ ) = exp(−ξ
2)+Aexp

(
−
(

ξ − k√
2

)2)
. (3.2)

The inflection point occurs when the first and the second derivatives of (3.2) are simultaneously

zero at the point x = x0:

δ f (x)
δx

∣∣∣
x=x0

=
δ f (x)

δξ

δξ

δx
= 0, (3.3)

δ 2 f (x)
δx2

∣∣∣
x=x0

=
δ 2 f (x)

δξ 2
δ 2ξ

δx2 = 0. (3.4)

The final expressions for the inflection point and the amplitude of the weaker component are

x0 =
σ

2

(
k+
√

(k2−4)
)
, A≤ 1, (3.5)

A =

exp

((
− x0√

2σ

)2
)

exp

(
−
(

x0√
2σ
− k√

2

)2
)( − x0√

2σ

x0√
2σ
− k√

2

)
. (3.6)

The obtained expression implies that for two components displaced by d = kσ , the inflection

point x0 and the corresponding amplitude A of the weaker component are determined by the

chosen value of factor k. The components of the same amplitude (A = 1) must be displaced at

least by d = 2σ with the inflection point at the midpoint (x0 = σ ). For A < 1, the inflection

point is always closer to the weaker component, and the separation is always greater than d =

2σ , i.e., k > 2. The inflection point between two overlapping Gaussian profiles determines

the resolution upper limit of the imaging system. Conventional methods based on the local

minimum/maximum detection can not separate Gaussian components closer than the resolution
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limit. Our motivation is to introduce a method that would show improvement even when close

components exceed the derived resolution limit. Fig. 3.1 shows the family of curves for six

combinations of center-to-center distances d/σ and ratios of their peak amplitudes 1/A.

Figure 3.1: Sums of two 1D Gaussian profiles with parameters: σ = 1, µ1 = 0 and µ2 = d for different
center-to-center distances k = d/σ and ratios of their peak amplitudes 1/A.

3.2 Two-dimensional Gaussian profile

The mathematical form of the 2D Gaussian profile can be written as

f (xi,µ,Σ,Al) =
Al

2π
√

det(Σ)
exp

(
− 1

2

(
(xi−µ)T

Σ
−1(xi−µ)

))
, (3.7)

where xi = [xi,yi]
T denotes the vector of ith of m input sample positions with corresponding

readout value zi. The profile’s peak position consists of two terms µ = (µx,µy), while the

covariance matrix has three unique terms (Σ11,Σ12 = Σ21,Σ22). The covariance matrix of the 2D

Gaussian profile in uncorrelated form can be calculated as a quadratic form of an orthonormal

rotation matrix R and a diagonal matrix S of profile’s variances, i.e., eigenvalues, as follows

R =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 ,S =

λ 2
1 0

0 λ 2
2

 ,Σ = RSR′,

where λ1 and λ2 are the major and minor semiaxes widths, while θ corresponds to the rotation

angle. An example of a 2D Gaussian profile is shown in Fig. 3.2.
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(a) 2D view (b) 3D view

Figure 3.2: An example of the 2D Gaussian profile with the parameters: λ1 = 4, λ2 = 2, θ = π/4,
µx = µy = 0, A = 105

3.3 Astronomical image model and its estimation

The astronomical image, which consists of blurred point sources, can be considered as a sparse

signal if it is represented as a linear combination of atomic normalized 2D Gaussian functions of

different centroid positions, shapes, and sizes from an infinite parametric dictionary and which

are multiplied by their projection coefficients as follows

I(x,y)≈
N

∑
i=1

αi f (x,y,µ i,Σi,1), (3.8)

where αi corresponds to the projection coefficient which represents the linear scale factor of

the ith of N Gaussian atoms, and f (x,y,µ i,Σi,1) denotes the normalized ith 2D Gaussian atom

(Al = 1) which is completely determined by its covariance matrix (shape and size) Σi and the

centroid position µ i. An example of a synthetic astronomical image that consists of N = 1000

2D Gaussian atoms of random positions and shape are shown in Fig. 3.3. This approach is

similar to the matching pursuit algorithm [25, 26, 27, 28, 29, 30, 31], which, in each iteration,

seeks the sparse approximation of the signal by successively selecting the best matching atom

function which yields the largest inner product with the signal and thereby minimizes the resid-

ual error. Such atomic 2D Gaussian functions can be successively estimated and removed to

reduce residual energy. In our approach, the method of local extrema is used to determine the

profiles’ estimation order. The found N local extrema are sorted in decreasing order by their

values and successively estimated and removed from the input signal to minimize the residual

energy. The first estimation step is selecting the estimation input domain for the local extremum
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Figure 3.3: Synthetic image with 1000 random 2D Gaussian atoms (due to the high dynamic range, z1/4

is shown)

being estimated. Selection of estimation input domain, so-called region-of-interest (ROI), can

be very hard if the stellar objects are densely distributed and overlapped since pixels close to the

selected extremum can belong to adjacent objects or the background. The methods for spatial

segmentation can help to find boundaries between objects, but only if they are displaced enough

that the minimum occurs between them. The example of generalized linear tessellation around

the 2D Gaussian profile, which is being estimated, is shown in Fig. 3.4. The boundaries between

atoms are determined by their center-to-center distances and differences in their magnitudes.

(a) The region around object selected for
estimation

(b) Tessellation around selected object

Figure 3.4: The example of generalized linear tessellation

Our approach is to use a convex input domain placed at the location of the found local
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extremum of the radius kσ where k represents the factor of Mahalanobis distance. Such selected

convex ROI is circular for the rotationally symmetric 2D Gaussian profile with the same major

and minor semiaxes widths. For other cases, such an ROI will be elliptical.

The parameters of the 2D Gaussian atoms and the corresponding projection coefficients,

which are sequentially estimated and removed, must be accurately estimated to avoid the influ-

ence of incorrect atom estimation on subsequent iterations. The parameters of the 2D Gaussian

atoms are calculated from the samples belonging to the selected convex ROI. The convention-

ally used LS method minimizes the sum of squared deviations of the model from the input

measurements and obtains a solution for the profile parameters by nonlinear optimization. If

the input ROI is wrongly chosen, i.e., if it includes samples belonging to overlapping neigh-

boring profiles, the solution of the LS method gives a significant error because it insists on

the simultaneous estimation of overlapping 2D Gaussian profiles with a single profile. After

removing such a compromise 2D Gaussian atom, the residual image used in the following esti-

mations is incorrect. It is necessary to introduce a new approach that would recognize samples

of neighboring profiles as outliers and deweight them so that they do not affect the current

profile estimation but would be used in subsequent iterations.

3.4 Estimation of overlapping 2D Gaussian profiles

Parameters of the 2D Gaussian atoms that need to be estimated from input empirical data and

that are contained in the parametric dictionary are the centroid position (µx,µy), the double

rotation angle ρ = 2θ ,ρ ∈ [−π,π], the widths of major and minor semiaxes (λ1,λ2), and the

projection coefficient which is represented by the apparent magnitude Am. The double rotation

angle is introduced as an auxiliary variable to ensure the continuity of parameters in optimiza-

tion procedures. The vector of parameters β can be written as

β = (Am,λ1,λ2,µx,µy,ρ) (3.9)

The linear scale Al of the 2D Gaussian profile in (3.7) represents the total sensed incident ra-

diant flux, i.e., the intensity of the observed point light source invariant of the PSF size and

shape. Various PSFs only cause a different spatial spread of the same flux. For astronomical

imaging, the dynamic range of such filtered radiant flux is huge, so instead of linear represen-

tation, it is usually represented in the reverse logarithmic domain as an apparent magnitude

Am as Am = log 5√100 Al . For the example of two objects with apparent magnitude difference

∆A = 5*, the equivalent ratio of their linear amplitudes is 1/100. Such a logarithmic represen-

tation also facilitates the numerical stability of the optimization process and is used in further

*For simplicity, apparent magnitude is denoted by A in the following text
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expressions. The readout pixel value zi is linearly proportional to the part of the radiant flux of

the astronomical object that impinges on the ith pixel. The ith pixel error is

ei = zi− f (xi,β ), (3.10)

where f (xi,β ) denotes the ith pixel model value.

3.4.1 State-of-the-art methods for Gaussian profile fitting

Gaussian profiles of different dimensions are widely applied in various engineering fields. In

spectrography, 1D Gaussian profiles are used for modeling emission and absorption spectral

lines [32, 33, 34, 35]. 2D Gaussian profiles are widely used in engineering fields that involve

image processing. A 2D Gaussian profile can approximate a circular Airy disc even in a the-

oretically ideal diffraction-limited imaging system. It can also be used to model the total blur

of a point source. Among others, many papers in astrometry use 2D Gaussian profiles to iden-

tify and track stellar or other astronomical objects [34, 36, 37, 38]. 2D Gaussian models are

applied in bioimaging and medical imaging. In microscopy, they are used for single particle

detection [39, 40] and tracking [41, 42]. Also, 2D and 3D Gaussian profiles are used in com-

puter tomography (CT) [43] and positron emission tomography (PET) [44] to reconstruct the

underlying 3D process, i.e., the volume of interest. The generalized multidimensional Gaussian

profile has even more extensive applications [45, 46]. The selected approach for parameter es-

timation of the multidimensional Gaussian profile, especially from the noisy data, depends on

the required estimate accuracy, computational complexity and speed, and prior knowledge of

the profile’s parameters and statistics of noise [42].

Parameters can be estimated in the domain of exponential function values or an exponential

function argument. The fastest and simplest method in the domain of exponential function’s

values is the analytical method of moments where the first moment yields the expected centroid

position (mean), while the second moment yields the expected covariance matrix [47, 48]. The

method of moments, which is also called the center-of-gravity (CoG) method, can be written as

µ̂ = (x̂0, ŷ0) =
(

∑
m
i=1 xiI

p
i

∑
m
i=1 Ip

i
,

∑
m
i=1 yiI

p
i

∑
m
i=1 Ip

i

)
, where xi and yi are input samples’ position, and Ii is the intensity

of the ith of m input samples within the selected ROI. The variable p denotes the power of pixel

intensity, and it is introduced to adapt the method to different noise statistics and underlying

signals. The profile’s centroid is estimated for p = 1, while the centroid of squares is estimated

for p = 2 [48, 49]. Due to its speed, the method of moments can be used in real-time applica-

tions and when the requirements on the accuracy of estimated parameters are lower [41, 50].

However, the method is sensitive to noise and selected ROI. It is also biased with usually the

underestimated profile’s variances.

Conventionally, optimal parameters of the Gaussian profile are searched for in either the
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least squares (LS) or maximum likelihood (ML) sense. Both approaches require solving the

overdetermined nonlinear system of equations and consequently require iterative procedures for

nonlinear optimization. Examples of such iterative methods are the quasi-Newton method [51],

downhill simplex method [41, 52], and Levenberg–Marquardt method [53], [54].

The conventionally used LS method minimizes the sum of squared residuals between the

empirical input data and estimated model without any prior knowledge of noise statistics [55].

Due to nonlinear optimization, it requires high computational costs. The main disadvantage

of the LS method is that it does not guarantee the global optimum since it can get stuck in

some of the local minima depending on the selected initial parameters, step size, etc. The more

robust version of the LS method for multidimensional Gaussian fitting was proposed in [56],

where the conventional LS method is modified by adding the regularization term that uses the

Kullback-Leibler divergence to measure the closeness of the input empirical data and the esti-

mated Gaussian function [57].

The second approach is searching for optimal Gaussian profile parameters in the maximum

likelihood sense. The ML method searches for the most likely parameters that yield empirical

input data. It yields an unbiased solution of minimum variance, but a precondition is a large

number of input samples and a prior knowledge of noise statistics. N. Hagen et al. in [58, 59]

estimated the 1D and 2D Gaussian profiles in the ML sense from the observations contaminated

with additive Gaussian noise and provided analytical first and second derivatives of the log-

likelihood function. Newton’s method was used for nonlinear optimization and parameters

update. They also provided the estimated parameters’ sensitivity analysis. They calculate the

Fisher information matrix, which is the negative expectation of the Hessian matrix, and invert

it to obtain the Cramer-Rao bound for the covariance matrix of estimated parameters. The ML

estimate achieves the Cramer-Rao bound if the number of input samples is large enough.

The other group of methods searches for optimal Gaussian parameters in the exponential

function’s argument. Both the model and empirical input data are logarithmized, thus reducing

the estimation problem for the 1D Gaussian profile to polynomial fitting. R.A. Caruana et al.

proposed the fast method for 1D Gaussian fitting in the argument domain in the least squares

sense by analytically solving the overdetermined system of linear equations [60]. Such a one-

step solution algorithm is high-speed but of reduced accuracy in the presence of additive noise.

In the log domain, the small profile values introduce a significant estimation error since the

ratio of noise variance and squared profile value occurs in the expectation of the sum squared

residuals between the observations and model. It is especially emphasized at wide ROIs where

additive noise and small profile values dominate. H.Guo [61] proposed extending R.A. Caru-

ana’s method by introducing estimation weights equal to Gaussian profile values to reduce the

method’s sensitivity to additive noise and the influence of small profile values. The input data

values were used to approximate ideal estimation weights since the actual profile’s values are
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usually unknown. The hard thresholding of small values additionally increases the accuracy of

the method. Estimation weights selected as input profile values correspond to the error func-

tion’s approximation with only the Taylor series’s first term. In the case of long-tailed noise

contamination, such an approximation is insufficient, especially at wide ROIs. To solve the

problem of long-tailed noise contamination, H. Guo introduced the iterative procedure where

the weights in each iteration are approximated by the estimated model values from the previous

iteration [61]. Al-Nahal et al.proposed a fast, accurate, and separable method for 1D Gaussian

fitting in the log domain where the profile’s standard deviation (STD) is directly calculated by

equating the total area under the Gaussian function obtained numerically and Q-function proper-

ties [62]. At the same time, the remaining two parameters were calculated the same as in Guo’s

method. An iterative procedure is further introduced to solve the problem of long-tailed noise.

However, for the 2D and higher profile dimensions, even if the estimation is transformed to

the argument domain, the profile’s parameters are still nonlinearly coupled, and the estimation

procedure is complex. S. M. Anthony et al. [52] estimated the parameters of the 2D Gaussian

profile in the log domain, but only the uncorrelated 2D Gaussian profile was considered. Fur-

thermore, the influence of noise was neglected, and it was assumed that the background was

removed.

Another approach that avoids iterative procedure and transforms the nonlinear least-squares

fitting into a standard linear least-squares fitting was proposed by K. Roonizi [63], which uses

differentiation and integration and assumes that the Gaussian function is riding on the poly-

nomial background. The method suffers from accumulated noise error from the numerical

integration process, which was solved in [64]. However, both approaches are proposed only for

the case of 1D Gaussian.

3.4.2 Iteratively reweighted least squares (IRWLS) method with Huber
weights for overlapping 2D Gaussian profiles fitting

We proposed in [65] our adaptation of the conventional iteratively reweighted least squares

method (IRWLS) [66] for solving the problem of overlapping 2D Gaussian components. The

IRWLS method gradually searches for optimal model parameters β̂ by minimizing the weighted

sum of squared residuals D(β ) in each iteration for all samples within the selected ROI as

follows

β̂ = argmin
β

D(β ), (3.11)

where the objective function has the following form

D(β ) = ∑
i∈ROI

wi(ei)e2
i . (3.12)
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Unit estimation weights correspond to the usual LS method. In the case of additive noise con-

tamination, the LS method provides a parameter estimate of the minimum variance. However,

in the case of overlapping objects, which can be considered long-tailed noise contamination,

estimation weights should be introduced to separate valid samples from outliers and reduce

outliers’ contribution to the final estimate. The LS method with unit weights does not rec-

ognize samples belonging to neighboring overlapping objects as outliers and greedily tries to

estimate all overlapping components with a single 2D Gaussian profile since it is the currently

optimal solution in the LS sense. Consequently, the estimated parameters of such a profile do

not correspond to any overlapping actual components. Therefore, the estimation weights must

be adjusted to recognize and reduce the impact of outliers. Outliers can be treated in two ways:

they can be completely omitted from the estimation procedure, which corresponds to a hard

thresholding, or their weights can be reduced, corresponding to a soft thresholding. The hard

thresholding also causes the loss of useful information contained in these discarded samples.

For recognition of outliers and reduction of their contribution to the final estimate, Huber

weights [67] are used in this research. Such weights are based on robust measures of residual

error dispersion from the previous iteration as follows

wi(ei) = wH(ei) =

1, if |ei| ≤ δ

δ/|ei|, if |ei|> δ ,
(3.13)

where ei denotes the residual error between the observation and model for the ith pixel from

the previous iteration, and δ corresponds to the threshold value, which separates the valid sam-

ples from outliers. Huber weights represent the combining of L1 and L2 norms. The L1 norm

is applied to outliers with absolute error larger than the calculated threshold δ , while the L2

norm is applied to the rest of the valid samples. The threshold δ is calculated as a product of

estimated error dispersion σ̂e and the tuning constant kconst as δ = kconst σ̂e. The residual error

dispersion σ̂e is estimated from the errors from the previous iteration using some robust mea-

sure of error dispersion. The most commonly used robust measures of dispersion are the median

of the absolute deviations from the data’s median (MAD) and inter-quartile range (IQR). The

precondition for applying robust statistics is at least 50% valid samples. Robust measures of

dispersion are robust and efficient in the case of long-tailed noise contamination at the cost

of lower efficiency in the case of normally distributed errors. To achieve the high asymptotic

efficiency even in the case of normally distributed errors, the robust error dispersion can be

estimated as σ̂e = MAD/0.6745 or σ̂e = IQR/1.349. We estimated σ̂e as σ̂e = MAD/0.6745

and selected the threshold δ as δ = 1.345σ̂e to achieve the asymptotic efficiency of 95% in the

case of additive noise contamination as it is proposed in [68]. The IRWLS method with Huber

weights can be generally applied in estimation from data contaminated with long-tailed noise
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and outliers but with the prerequisites of 50% of valid samples and the separable bi-modal his-

togram of residuals. The factor kconst determines the share of influence of the L1 and L2 norms.

Smaller values of the factor kconst , such as kconst = 1, prefer the L1 norm, which is then applied

to many input samples. A higher value of the factor kconst increases the value of the threshold

δ , and consequently, the L2 norm is applied to a higher percentage of input samples.

The IRWLS method’s pseudocode for estimation of one 2D Gaussian component is given

in Algorithm 1, while the method’s flowchart is shown in Fig. 3.5. The algorithm consists of

inner and outer nested loops. The outer loop calculates estimation weights from residual errors

from the previous iteration while the inner loop performs the nonlinear optimization to mini-

mize (3.11) and obtain optimal parameters for fixed estimation weights, which are calculated in

the outer loop.

Algorithm 1 IRWLS method for single ROI
Input: positions of all n samples within the ROI and their values (xi,zi) ∈ ROI
Output: parameters β̂

1: t←0
2: w(0)

i ← 1, ∀i ∈ ROI

3: β̂
(0)←{A,λ1,λ2,µx,µy,ρ} . initial LS estimates

4: t← t +1
5: do . outer loop

6: e(t−1)
i ← zi− f (xi, β̂

(t−1)
), ∀i ∈ ROI

7: δ (t) = 1.345 ·MAD(e(t−1))/0.6745
8: w(t)

i ← wH(e
(t−1)
i ,δ (t)), ∀i ∈ ROI . (3.13)

9: β̂
(t)← argmin

β

D(β ) . inner loop (3.11)

10: t← t +1 . outer loop iteration

11: while |δ
(t−1)−δ (t)|
|δ (t−1)| > tol & t < tmax

The analytical gradients of (3.12) concerning each profile’s parameter are provided to speed

up the nonlinear optimization procedure. The analytical gradients are:

δD
δAm

=
δD
δAl

δAl

δAm
= ln 5
√
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Figure 3.5: IRWLS method in the estimation of the stronger of two overlapped 2D Gaussian components
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2
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where τi = 2wi( f (xi,β )− zi) f (xi,β ). The nonlinear optimization for the initial LS solution

requires a good initial guess for the profile’s parameters that can be obtained using the method

of moments or the method of local extrema.

3.4.3 Illustration of the IRWLS method performance

An illustration of the IRWLS method in the estimation of the stronger of two overlapping 2D

Gaussian profiles is given in Fig. 3.6. For simplicity, two rotationally symmetric 2D Gaussian

components with the same semiaxes widths are considered (λ1 = λ2 = σ ,σ1 = σ2 = 1). The

given parameters of the stronger components are β 1 = [Am,λ1,λ2,µx,µy,ρ] = [8,1,1,4,0,0],

while the parameters of the weaker component are β 2 = [7,1,1,0,0,0]. The given parameters

show that their peak positions are displaced by d = 4σ with the difference in apparent mag-

nitudes ∆A = 1. Components of the given parameters were synthesized over the rectangular

grid with the pixel size px = py = 0.5 as Figs. 3.6a and 3.6e show. The given parameters of

the stronger component are passed as an initial parameter guess for the LS method to avoid the

influence of wrong initialization on the accuracy of the final estimate.

Estimation of the stronger of two overlapping Gaussian components

Figs. 3.6c and 3.6g show the residual errors in the initial and final iteration of the IRWLS

method when the stronger of two overlapped 2D Gaussian components is estimated. Figs. 3.6b
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(a) 3D view of two Gaus-
sian profiles

(b) w(1) (c) |e(0)| (d) Total squared resid-
ual error

(e) 2D view of two Gaus-
sian profiles

(f) w( f inal) (g) |e( f inal−1)| (h) Final threshold δ

Figure 3.6: Estimation of the stronger 2D Gaussian profile in the case of two overlapping components
using the IRWLS method with the uniform sampling grid and the pixel size of 0.5 in both directions. The
total number of outer loop iterations is 12.

and 3.6f show the corresponding estimation weights calculated from those residuals. Estimation

errors in Fig. 3.6c correspond to the error of the LS estimate, which has undesirable ridges at

positions where the stronger component is dominant. The same effect can be seen in estima-

tion weights calculated from those errors, indicating that the LS method did not appropriately

estimate and remove the stronger component. Regardless, such a wrong LS estimate is used

for IRWLS method initialization. In each outer loop iteration, the IRWLS method with Huber

weights gradually deweights the weaker component, recognizing its samples as outliers, and

assigns unit weights to the samples belonging to the stronger component. By changing the

domain of the input samples that participate in the estimation, the IRWLS method gradually

converges toward the actual parameters of the stronger component. The residual error of the

IRWLS method in the final iteration is close to zero around the peak position of the stronger

component, which implies that the stronger component is completely removed while the weaker

component is left almost untouched.

Fig. 3.6d shows the increase of the squared residual errors with iterations of the IRWLS

method compared to the error in the initial iteration, which corresponds to the LS solution. It

is the natural behavior of the IRWLS method. Namely, the method reduces the weighted sum

of squared residuals at the expense of increasing the sum of squared residuals. However, the

total squared residual error will be smaller than the initial LS estimation error when the weaker

component is removed as well.

Fig. 3.6h shows the decrease of threshold δ with iterations of the IRWLS method. The

threshold δ converges in approximately six iterations, thus indicating the required number of
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iterations for the convergence of the IRWLS method.

The estimated parameters of the stronger 2D Gaussian component using LS method were

β̂ 1 = [8.0569,1.0912,1.0000,3.9557,0.0000,0.0000], while using the IRWLS method were

β̂ 1 = [8.0122,1.0145,1.0001,3.9885,0.0000,0.0000]. The IRWLS method yields a solution

closer to the actual given profile’s parameters than the LS method. The LS method yields an

elongated and shifted solution since it tries to fit both Gaussian components simultaneously.

Statistical analysis of residual errors

Fig. 3.7 represents the logarithm of the probability density function (PDF) of residual errors

in the initial and final iteration of the IRWLS method when the stronger component is being

estimated. The PDFs of errors are approximated from experimentally obtained error histograms.

(a) PDF of errors in the initial iteration (b) PDF of errors in the final iteration

Figure 3.7: PDF of errors when the stronger of two overlapping 2D Gaussian profiles is being estimated
using the IRWLS method

Fig. 3.7a corresponds to the residual errors of the LS method that have both positive and negative

values. The assumption is that the positive and negative values normally distributed around

zero are related to the estimation error of the stronger component, while the significant positive

errors correspond to the weaker component’s values. The dashed curves denote the PDF of the

weaker component’s values, which is strictly positive, as will be derived below. Hence, the

negative errors indicate that the LS method inappropriately estimated the stronger component

due to negative errors which do not belong to the sample values of the weaker component. Red

lines denote the positive and negative threshold values δ , which determines the action limits

between the L1 and L2 norms. The threshold δ reduces from the initial δ = 4.195 to the final

value δ = 1.444 since the model is gradually adapted to the stronger component with fewer and

fewer undetected outliers. Consequently, the method spatially discriminates against the profiles’

support by solely using the information of the residual errors. Fig. 3.7b shows the residual errors

in the last iteration of the IRWLS method. The residual errors are mostly positive and match

the positive PDF of the weaker component, indicating that the stronger component is properly

estimated.
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3.4.4 Probability density function (PDF) of Gaussian profile’s values

To derive the PDF of the 2D Gaussian profile’s values, let us assume the rotationally symmetric

2D Gaussian profile, centered at µ = 0, which can be expressed in polar coordinates as

z(r,θ) = Aexp

(
−r2

2σ2

)
, (3.14)

where λ1 = λ2 = σ corresponds to the profile’s width, A denotes the high of the profile’s peak,

including the profile’s normalization term, while r denotes the radial distance from the pro-

file’s peak position. Let us assume that the profile’s support is a circular region, centered at

the profile’s peak position, of radius r ∈ [0,kσ ], where k denotes the factor of Mahalanobis

distance †. The maximal radius of the circular domain determines the co-domain of the 2D

Gaussian profile’s values as z ∈ [Aexp(−k2/2),A]. Let us assume that input samples’ positions

are random variables, X and Y , that are uniformly distributed within the circular ROI, defined

as D = {(x,y)|x2 + y2 ≤ (kσ)2}, and whose joint PDF can be expressed as

fXY (x,y) =


1

(kσ)2π
, if (x,y) ∈ D

0, otherwise.
(3.15)

The method of transformations can be applied to transform this joint PDF fXY (x,y) to polar

coordinates fRθ (r,θ) as follows

x = r cos(θ) = h1(r,θ), (3.16)

y = r sin(θ) = h2(r,θ), r ≥ 0, 0≤ θ ≤ 2π, (3.17)

fRθ (r,θ) = fX ,Y (h1(r,θ),h2(r,θ))|J|, (3.18)

|J|= det


∂h1
∂ r

∂h1
∂θ

∂h2
∂ r

∂h2
∂θ

= det

cosθ −r sinθ

sinθ r cosθ

= r. (3.19)

Finally, the joint PDF fRθ (r,θ) is

fRθ (r,θ) =


r

(kσ)2π
, if r ∈ [0,kσ ],θ ∈ (0,2π)

0, otherwise.
(3.20)

†The quadratic form in the argument of the Gaussian function represents the squared Mahalanobis distance of
the samples from the peak position. By choosing the ROI within kσ around the peak position, we are defining a
convex input domain with the radius of the Mahalanobis distance equal to k in all directions. Samples of the profile
at the same Mahalanobis distance are the samples of the same values.
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The 2D Gaussian value is a random variable Z since it is a function of two random variables, r

and θ . Its PDF can be calculated from the cumulative density function (CDF), which equals

FZ(z) = P(Z ≤ z) (3.21)

=
x

D

fRθ (r,θ)drdθ (3.22)

=
∫ 2π

0

∫ kσ

r

r
(kσ)2π

drdθ (3.23)

=
∫ 2π

0

∫ kσ

√
−2σ2 ln z

A

r
(kσ)2π

drdθ (3.24)

= 1+
2
k2 (lnz− lnA). (3.25)

The PDF of Z can be calculated by differentiating FZ

fZ(z) =
dFz(z)

dz
=

2
zk2 . (3.26)

The PDF of value Z corresponds to the log-uniform distribution in the range [a,b] since

fZ(z) =
1

z ln b
a

, (3.27)

where a = Aexp(−k2/2) is the profile’s value at the edge of circular ROI determined by r = kσ ,

while b = A is the maximal profile’s peak value. Finally, the PDF of Z can be written as

fZ(z) =
1

z ln A
Aexp(−k2/2)

=
2

zk2 . (3.28)

with the mean

µZ = E[Z] =
∫ A

Aexp(−k2
2 )

z fZ(z)dz =
2A
k2

(
1− exp

(−k2

2

))
, (3.29)

and the variance

Var(Z) = E[(Z−µz)
2] =

∫ b=A

a=Aexp(−k2
2 )

(z−µz)
2 fZ(z)dz

=
a2−b2

2(log(a)− log(b))
−

(
(a−b)2

log(a)− log(b)

)2

=
A2e−k2

(e
k2
2 −1)(e

k2
2 (k2−4)+ k2 +4)

k4 .

(3.30)
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The 2D Gaussian profile values over the uniform rectangular region, such as a rectangular re-

gion used in the illustrative example in Fig. 3.6, can be considered a realization of a stochastic

process drawn from the derived log-uniform distribution. The proof for that assumption is that

the empirically obtained PDF from the histogram of positive errors follows the analytically de-

rived PDF of the weaker component, as Fig. 3.7b shows. It confirms that those positive errors

belong to the weaker 2D Gaussian component. Regardless of bounded support of log-uniformly

distributed positive errors, such contamination can still be considered a heavy-tailed noise com-

pared to the much narrower normally distributed positive and negative modeling errors around

the zero, which belong to the stronger component. We can conclude that such a histogram

is bi-modal, thus enabling the separation of the errors from the mixture of distributions by a

suitably chosen threshold δ . The given example shows the effectiveness of the proposed IR-

WLS method in handling heavy-tailed noise contamination. After the removal of the stronger

component, the estimated parameters of the weaker component by using the IRWLS method

are β̂ 2 = [6.9913,1.0002,0.9914,−0.0089,0.0000,−3.1416], while using the LS method are

β̂ 2 = [6.9303,1.0000,0.9193,−0.0578,0.0000,−3.1416]. The results show that the IRWLS

method yields a more accurate estimate than the LS method for the weaker component as well.

Total modeling error

Instead of performing a sensitivity analysis of each estimated 2D Gaussian profile parameter to

changes in input data, the total modeling error is used as a composite fitness measure, indirectly

showing the estimation accuracy of all profile parameters. The total modeling error is a relative

integral residual error over some arbitrary evaluation domain I, defined as

etotal = 10log10

(
∑∀i∈I

(
zi−∑

M
j=1 f (xi, β̂ j)

)2

∑∀i∈I z2
i

)
, (3.31)

where zi corresponds to the ith sample value in the evaluation domain I, f (xi, β̂ j) is the jth

of M estimated models over the selected domain I. This common measure has a sense after

removing all expected profiles in the selected evaluation domain I, as Fig. 3.8 shows. Fig. 3.8a

shows the total modeling error after removing only the stronger of two overlapped Gaussian

profiles from the previously illustrative example in Fig. 3.6. In that case, the LS solution in

iteration zero has the smallest total residual error, while this error rises with the iterations of

the IRWLS method. It is the natural behavior of the IRWLS method since the integral residual

error increases at the expense of reducing the sum of weighted squared residual errors, yielding

a better solution for the stronger component. However, the total modeling error after removing

both overlapped components reduces with iterations of the IRWLS method, demonstrating the

method’s efficiency (Fig. 3.8b).

The LS method yields the total modeling error after removing both components -25.0045
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(a) Integral residual error after removal of
the stronger component

(b) Final integral residual error after re-
moval of both overlapped components

Figure 3.8: Total modeling error in estimating two overlapping 2D Gaussian components over a rectan-
gular uniformly sampled domain. Zero iteration corresponds to the LS solution.

dB, and the IRWLS method -38.9272 dB, as shown in Fig. 3.8b. The total modeling error is

achieved after 12 iterations for estimating the stronger of two overlapped components and five

iterations for estimating the weaker component. The number of outer loop iterations of the

IRWLS method was limited to 12, but 90% total modeling gain was achieved after only four

iterations, indicating the IRWLS method’s convergence rate.

IRWLS method’s efficiency

Since the analytical expressions for parameters’ variances are hard to derive due to estima-

tion weights update in each iteration according to residual errors from the previous iteration,

the method’s efficiency was numerically verified through Monte Carlo simulation. The exper-

imental results were published in [65]. We considered the noiseless case of two overlapping

rotationally symmetric 2D Gaussian components of the same semiaxes widths. In the noiseless

case, a few contributing factors affect the method’s efficiency: center-to-center distance d of

profiles’ peak positions, their difference in brightness, i.e., the absolute difference in their ap-

parent magnitudes ∆A = |Am1−Am2|, the ratio of the profiles’ widths and the pixel size, and

the selected tuning factor kconst . Namely, center-to-center distance indirectly affects the number

of samples that belong to a particular component and the ability of the method to separate the

overlapped components. The ratio of the profile’s width and the pixel size also affects the total

number of input samples and, consequently, variances of the estimated profile’s parameters.

In the first experiment, we analyzed the influence of center-to-center distance d and the

absolute difference in magnitudes ∆A on the efficiency of the IRWLS method. The consid-

ered center-to-center distances d were from 0 to 6σ with the stepsize 0.5σ , while considered

differences in absolute magnitudes were from 0 to 5 with the stepsize 0.5. The Monte Carlo sim-

ulation was performed for each combination of these factors. The widths of profiles’ semiaxes

were fixed to λ1 = λ2 = σ = 1 pix, and the tuning factor kconst was set to kconst = 1.345. The
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center-to-center distances are selected from 0 to 6σ since 99.7% In each simulation, one image

with 192 sub-images was synthesized. Each sub-image contains two overlapping 2D Gaussian

components on distance d and of selected difference in magnitudes ∆A, as shown in Fig. 3.9.

The stronger of the two components is positioned at the center of each sub-image with a random

fractional shift of ±0.5 pix. The weaker component is at the distance d from the center of the

stronger component but at a random angular position. The introduced random fractional shifts

simulate the random profile sampling over a regular grid. Fig. 3.10 shows the uniform distri-

bution of profiles’ centers from the nearest integer position for both components. It shows that

such synthesized sub-images are good representatives of random sampling in actual images.

Figure 3.9: Synthetic image of 192 sub-images and 384 objects. Objects’ parameters: σ = 1 pix, d = 6σ ,
∆A = 3.

(a) Random fractional shifts of the
stronger components from the center of
subimage

(b) Distance of the centers of weaker
components to the nearest integers

Figure 3.10: Distribution of centers of the profiles concerning the nearest integers

2D Gaussian components were successively extracted, estimated, and removed based on

maximum pixel intensity detection. In each iteration, the component located at the currently

detected maximum was estimated. Until the total number of components in the synthesized im-

age was not achieved, maxima were iteratively detected, and components were estimated and

removed. The estimation ROI in each iteration was selected as a circular region centered at the
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detected maximum position with the radius adapted to the expected profile’s width. The pro-

posed IRWLS method with Huber weights was compared with the commonly used LS method

by using the total modeling error (3.31) as a measure of accuracy. In each simulation, 384 ob-

jects from all 192 sub-images were detected, estimated, and removed. The total modeling error

was calculated for each sub-image. Medians of these errors are shown in Fig. 3.11 as isolines

over uniformly sampled (d/σ ,∆A)-plane.

(a) IRWLS method, modeling errors in dB (b) LS method, modeling errors in dB

(c) IRWLS method modeling gain in dB

Figure 3.11: The modeling errors of the IRWLS and LS methods and the IRWLS method modeling gain
in dB in d/σ∆A-plane. σ = 1.

The proposed IRWLS method with Huber weights always yields better or the same results

as the LS method. For some combination of contributing factors (d/σ ,∆A), the IRWLS method

modeling gain is up to 25 dB, such as for (d/σ ,∆A)= (5.5,1) where the IRWLS method model-

ing error is -85 dB, while the LS method has the larger modeling error of -60 dB. Consequently,

the IRWLS method modeling gain is 25 dB.

When d/σ = 0, components are completely overlapped and cannot be separated. However,

both methods perfectly model such overlapped components with a single profile, and the IR-

WLS solution corresponds to the LS solution. Contrary, if d/σ = 6, the components are almost

completely separated and modeled as two separated profiles, resulting in high and almost the

same accuracy for both methods again.

For the medium range of distances 1 < d/σ < 4, both methods have more significant mod-

36



Identification of overlapping stellar components

eling errors since some estimated components were declared as invalid due to certain rejection

criteria (too large estimated semiaxes widths, too small number of input samples within the

selected ROI, etc.). Such discarded components were not removed from the synthesized image,

thus resulting in a high modeling error. Fig. 3.12. shows percentages of found objects by using

the IRWLS and LS methods in the d/σ∆A-plane. The results are similar for both methods. In

(a) LS method, the percentage of found objects (b) IRWLS method, the percentage of found
objects

Figure 3.12: The percentage of found objects using the IRWLS and LS methods in d/σ∆A-plane defined
by (3.5) and (3.6)

an area where distances d/σ and differences of magnitudes ∆A are larger than 2, both methods

find 100% of objects. Although it seems that the LS method finds the 100% of objects, the

resolution limits, shown in Fig. 3.12, should be considered. The dashed black line represents

the theoretical resolution limit in the continuous case according to (3.5) and (3.6), while the

solid black line represents the empirical resolution limit in the discrete case with 50% prob-

ability that a local minimum exists between profiles. In such a case, after removing the first

compromise model, the LS method tries to model the secondary object from the ridges, which

correspond to residuals of the first compromise model. In certain cases, such false models still

fulfill the chosen validity criterion and are kept as valid secondary objects. On the other hand,

with the IRWLS method, both estimated objects are valid since the method is based on the ro-

bust analysis of the residual errors and not on the existence of a minimum between overlapped

profiles. Furthermore, the IRWLS method gain is visible even in this unresolved area where

the IRWLS method achieves 5dB modeling gain, as Fig. 3.11c shows. In the medium range of

center-to-center distances 1 < d/σ < 4 and the differences in magnitudes ∆A > 1, the IRWLS

modeling gain is at least 5 dB and increases with larger d/σ . The IRWLS modeling gain in this

area primarily depends on the center-to-center distance d/σ . If objects have equal magnitudes,

they have to be at least d/σ = 2.5 apart so that the histogram of errors becomes bimodal and

the IRWLS method becomes applicable and achieves a modeling gain. The IRWLS method

achieves the highest modeling gain for distances 4 < d/σ < 6 due to an accurate estimate of
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actual profiles’ parameters, as Fig. 3.11c shows.

(a) σ = 0.5,∆A = 3 (b) σ = 1,∆A = 3 (c) σ = 2,∆A = 3

Figure 3.13: Statistical analysis of modeling error for different profile widths σ in pixels

The ratio of the profile’s semiaxes width and the pixel size affects the number of input

samples and, consequently, variances of estimated parameters. Since parameters are estimated

through iterative procedures for nonlinear optimization, the number of input samples has to

be much larger than the number of unknowns to achieve higher accuracy and lower variances

of estimated parameters. The Monte Carlo simulation with the same setup was performed for

profile widths from the set σ ∈ {0.5,1,2}pix to analyze the influence of different profile widths

on estimation accuracy. Fig. 3.13 shows the statistics of modeling errors for different profile

widths. The results show that the parameter variances are most prominent for small profile

widths such as σ = 0.5pix due to a small number of input samples. Still, the median of errors is

slightly decreased compared to the cases σ = 1 pix and σ = 2 pix. For σ = 1 pix and σ = 2 pix,

the optimization problem is overdetermined, the number of input samples increases, and the

parameter variances decrease, as expected. The statistical analysis of modeling error is shown

in Fig. 3.13.

Convergence rate of the IRWLS method

To analyze the convergence rate of the proposed IRWLS algorithm, the elapsed time and the

number of outer loop iterations required for the estimation of each of the 384 components in

the synthesized image were measured. The termination criteria for the algorithm outer loop was

the relative change in threshold δ smaller than 10−5. The threshold δ is used to update estima-

tion weights passed to the algorithm’s inner loop, which performs nonlinear optimization. The

objective function value tolerance and the current point tolerance were set to 10−10, while the

maximal number of iterations was unlimited. The experiment was conducted on a 2.5 GHz In-

tel(R) Core(TM) i5-7200U CPU and 8 GB of RAM. The nonlinear optimization was performed

by using the MATLAB fminunc function. Table 3.1 shows the execution time statistics. The

mean estimation time is 0.1591 seconds per profile if analytical gradients of the objective func-

tion are passed to the optimization procedure. In comparison, it increases to 0.3665 seconds per
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profile without supplying analytical gradients. It indicates that the analytic gradients accelerate

the estimation process more than two times.

Table 3.1: The execution time required to estimate one 2D Gaussian profile. The average number of
input samples per profile was 29, and the average number of outer loop iterations was 20 for the center-
to-center distance d/σ = 4.

With analytical derivatives Without analytical derivatives

Mean time [s] 0.1591 0.3665

Median time [s] 0.1313 0.3137

Maximum time [s] 0.5027 1.0865

Minimum time [s] 0.0438 0.1125

Fig. 3.14 shows the median of outer loop iterations in (d/σ ,∆A)-plane. The median of outer

loop iterations primarily raises with larger center-to-center distances d/σ , with less dependence

on the difference in magnitudes ∆A. However, if the outer loop iteration maximum is limited to

5, 80% of the maximum IRWLS method gain is still achieved. It shows that the method can be

used in low-complexity applications as well.

Figure 3.14: Medial number of outer loop iterations for σ = 1pix, tol = 10−5, different center-to-center
distances d/σ , and different ∆A

Synthetic astronomical image

In the second experiment, 1000 profiles of random semiaxes widths, rotation angles, centroid

positions, and magnitudes were synthesized and placed within the image of 200× 300 pix-

els, including the 10% of padding to simulate the actual astronomical image. An example of

such a synthesized image is shown in Fig. 3.3. This experiment aims to precisely estimate the

parameters of those densely distributed 2D Gaussian profiles.

The segmentation of the synthesized input image was performed to facilitate the estimation

procedure of the LS method and to show that the IRWLS method still achieves a significant
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modeling gain. For the segmentation, the generalized Voronoi tessellation is performed, which

combines the squared Euclidian distance and the additive term of absolute difference in magni-

tudes of neighboring profiles as a criterion of pixel closeness to a particular profile. Determi-

nation of the pixels’ affiliations to the particular profile comes down to searching for bisectors

between each two neighboring profiles and finding the convex affiliation regions by using the

intersections of these bisectors. In that way, the larger convex region belongs to the stronger

component. Fig. 3.4 shows the example of the applied segmentation procedure.

The local extrema method is used to initialize the explained segmentation procedure, where

the detected maxima are sequentially declared as potential centroids of 2D Gaussian profiles.

For the case of the actual astronomical image, which is noisy, the pre-burring has to be per-

formed to remove isolated wrong pixels or pixels contaminated by salt and pepper noise. The

method of moments is used for initial parameter estimation.

(a) Residual error of the IRWLS method with
tessellation

(b) Residual error of the IRWLS method
(zoomed red square)

(c) Residual error of the LS method with tes-
sellation

(d) Residual error of the LS method (zoomed
red square)

Figure 3.15: Residual errors obtained by the IRWLS and LS methods with tessellation (to emphasize
small error values, |e|1/4 is shown).

The ROI was determined either as a convex region around the initial center position of the

expected profile’s width without tessellation (e.g., ±3σ around the initial center position) or
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(a) Sorted log10-semiaxis λ1 errors (b) Sorted log10-semiaxis λ2 errors

(c) Sorted log10-magnitude A errors (d) Sorted log10-angle θ errors

(e) Sorted log10-distances of estimated and actual
center positions

Figure 3.16: Sorted log10-absolute errors of estimated parameters for two object extraction methods: 1)
iterative object removal based on image maximum value (dashed lines) and 2) sorted list of local extrema
of the blurred image with generalized linear tessellation (solid lines)

convex regions obtained by using described generalized Voronoi tesselation. Estimated valid

models were subtracted from the whole input image, while invalid models were discarded. Pro-

files were iteratively estimated and removed similarly to the matching pursuit method. Fig. 3.15

shows residual errors of the IRWLS and LS methods when the generalized Voronoi tessellation

is used.
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Even if residual errors in Fig. 3.15b and Fig. 3.15d look quite similar, differences can be seen

in the zoomed regions. Namely, the LS method produced more false ridges than the IRWLS

method and, consequently, the worse parameter estimates. The sorted log10 errors of λ̂1, λ̂2,

Âm, θ̂ and the L2 distances of estimated and given centroid positions are shown in Fig. 3.16.

Results show that the IRWLS method achieves up to one order of magnitude modeling gain

compared to the LS method, even with previously applied segmentation. As Fig. 3.16e shows,

three regions of sorted profiles’ parameter errors exist. In the left region of Fig. 3.16e are

smaller errors of firstly estimated brightest stars which are completely isolated profiles, and the

accuracy of the IRWLS method in their estimation is similar to the LS solution. In the right

region of Fig. 3.16e are the fainter estimated stars which are almost completely overlapped, and

both methods yield similar results again. However, in the central zone of Fig. 3.16e, the method

modeling gain of the IRWLS method is significant for a large number of found objects for all

estimated parameters.

3.4.5 Influence of the Huber estimator tuning constant on the perfor-
mance of the IRWLS method

According to [66], the tuning constant kconst can be chosen in the range from 1 to 2. Still, the

common practice is to select kconst = 1.345 to achieve high asymptotic efficiency when residual

errors follow a normal distribution. The Huber estimator is more resilient to outliers for smaller

values of kconst at the expense of lower asymptotic efficiency, while it is closer to the LS estimate

for larger values of kconst . The selection of factor kconst represents the trade-off between the L1

and L2 norms, i.e., the outlier rejection and asymptotic efficiency. However, the optimal tuning

factor kconst should be data-driven from the histogram of errors. The assumption is that such

a histogram is bi-modal with smaller errors normally distributed and larger errors heavy-tailed

distributed and that these two modes can be separated.

The Monte Carlo simulation with the same setup was performed for the tuning constants

from the set kconst = {0.5,1,1.345,2} to analyze the influence of kconst on the convergence

rate and the efficiency of the IRWLS method. For each combination of d/σ , ∆A, and kconst ,

the image with 20 sub-images was synthesized. Each sub-image contained two rotationally

symmetric Gaussian profiles of the widths λ1 = λ2 = σ = 1. As before, the fractional shifts

of the first profile within ±0.5pm were introduced, as well as the random angular position of

the second profile, which is at a distance d from the first one. The experimental results were

published in [69]. The results in Fig. 3.17 show that the convergence rate of the IRWLS method

for overlapped Gaussian profiles depends on the tuning factor kconst . A smaller coefficient kconst

reduces the convergence rate of the method. For the case of kconst = 0.5, the convergence rate is

reduced approximately two times compared to the case of kconst = 2. The experimental results
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show that the modeling error is not very sensitive to the tuning factor kconst if it is in the range

from 1 to 2. The smaller kconst yields a solution closer to the L1 solution, while the larger kconst

yields a solution closer to the L2 norm.

(a) δ = 0.5MAD(e) (b) δ = 1MAD(e) (c) δ = 2MAD(e)

(d) δ = 0.5MAD(e) (e) δ = 1MAD(e) (f) δ = 2MAD(e)

Figure 3.17: The influence of the tuning constant kconst on the convergence rate and modeling gain of
the IRWLS method

3.5 Robustness of the IRWLS method to different noise types

The proposed IRWLS method with Huber weights yields good results in estimating overlapping

stellar components in astronomical images without other noise sources. To adapt the proposed

IRWLS method to different noise types in the sense of finding optimal estimation weights, it

is essential to understand noise sources that occur during digital image acquisition and their

distribution models. In this section, three different types of noise distribution models were

considered: additive Gaussian noise, multiplicative Poisson noise, and heavy-tailed noise. As

two types of estimation weights, Huber and inverse variance weights were considered.

In [58] and [59], 1D and 2D Gaussian profiles were fitted in maximum likelihood sense from

data corrupted with additive Gaussian noise. Also, they provided the analytical expressions for

parameter variances in the case of Gaussian and Poisson noise using the Cramer-Rao bound.

In [61] and [62], the 1D Gaussian profile is fitted in the argument domain of exponential from

data contaminated with Gaussian noise through the iterative procedure with the prior knowledge

of noise variance. The advantage of the proposed IRWLS method with Huber weights is that

such weights do not require prior knowledge of noise statistics since they are based on robust
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statistics of residual errors. The assumption is that they successfully solve heavy-tailed noise

contamination, such as the contamination by overlapping adjacent objects, as it is described in

the previous section. On the other hand, the inverse variance weights require prior knowledge of

the variance of each sample, but they can be applied in the case of Poisson noise contamination.

3.5.1 Noise sources

Digital image acquisition corresponds to converting the incoming light into digital pixel values

by commonly using the CMOS or CCD imaging sensors [70]. The incoming light is firstly

transformed to charge. Afterward, the accumulated charge is transformed into the voltage out-

put. Finally, the A/D conversion is applied to the voltage output to obtain the quantized digital

pixel values, as Fig. 3.18 shows. The noise sources present in digital image acquisition can be

divided into random and spatial noise. Random noise is time-variant, while spatial noise can be

time-invariant and time-variant [71].

Transform the incoming light 
into the charge

1. quantum efficiency
2. photon shot noise
3. photo-response non-

uniformity (PRNU)
4. dark current non-uniformity

(DCNU)

Conversion
of the accumulated electrons

into the voltage output

1. reset noise
2. readout noise

A/D conversion of the
voltage output into the

quantized digital pixel value

1. quantization noise

Figure 3.18: Noise sources in digital image acquisition

Random noise

The first acquisition stage is characterized by the ability of the photosensor to transform the

incoming light into the charge, known as quantum efficiency [72]. In the first acquisition stage

are random photon and dark current shot noise, which follow Poisson distribution [72]. Photon

shot noise describes the detection of the photons on the photosensor, while the dark current shot

noise is related to undesirable electron generation in the photosensor, even in the absence of

light, and raises with the temperature and exposure time.

In the second readout stage, the accumulated electrons are transformed to the voltage output

for each pixel as the difference between the initial referent voltage in the absence of the light

and the final after-exposure voltage. In this stage are present two noise types that are normally

distributed: the reset noise, which is caused by the uncertainty of the referent voltage, and

readout noise, which is thermally generated [73].
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Spatial noise

The spatially variant noise includes fixed pattern noise (FPN), bad or hot pixels, etc [71]. The

FPN differs for CCD and CMOS sensors due to the specifics of transformations of accumulated

charge into the voltage and quantization of the output voltage into the digital values. Namely,

in CCD sensors, the accumulated charge is transferred across the sensor to the output ampli-

fier, where it is converted to voltage and quantized. Unlike this, in CMOS sensors, each sensor

column has its amplifier for charge-to-voltage conversion, increasing FPN noise. FPN includes

the photo-response non-uniformity (PRNU) due to variations in generated electrons in pixels

under the same illumination and dark current non-uniformity (DCNU) due to variant dark cur-

rent generation in different sensor pixels [70]. The DCNU follows the heavy-tailed distribution

since hor or bad pixels have to be taken into account [72].

In the third A/D phase, the uniform quantization noise is present, which is almost negligible

compared to other noise sources.

Inverse variance weights

The inverse variance weights are calculated as

wi(σ
2
i ) = wI(σ

2
i ) =

1

σ2
i ∑

N
i=1

(
1

σ2
i

) , (3.32)

where σi corresponds to the standard deviation of the ith pixel value, while N corresponds to

the total number of samples within the selected ROI.

For data contaminated with Poisson noise, the standard deviation of the value of the ith pixel

is equal to the square root of the ideal noise-free sample value and can be approximated by the

square root of the model value as

σi ≈
√

f (xi, β̂ ). (3.33)

The IRWLS method with inverse variance weights approximated by model values will con-

verge to the optimal solution in the case of Poisson noise, but only with the initialization of the

model close to the actual solution. If the variance of each sample is known in advance and its

inverse is used as the weight, the weighted least squares (WLS) method provides the optimal

solution without the need for further iterations.

3.5.2 IRWLS method results in 2D Gaussian profile estimation from noisy
data

In the first experiment, the single 2D Gaussian profile parameters were estimated from data

contaminated with Poisson and heavy-tailed noise. In both experiments, the 2D Gaussian profile
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of the given parameters β = [Al,λ1,λ2,µx,µy,θ ] = [105,2,1,0,0,π/8] was firstly synthesized,

but with random fractional shifts within±0.5pix to simulate the random profile’s sampling over

a regular grid. The estimation ROI was chosen as an elliptic region around the profile’s peak

position within Mahalanobis distance k = 3. The vector of noisy measurements z for all pixels

within the ROI was obtained so that the noise n was scaled with the factor α and added to the

noiseless synthesized profile’s values z as z = z+αn to satisfy the required SNR in dB within

the ROI according to

SNR = 10log10
∑i∈ROI z2

i

∑i∈ROI α2n2
i

[dB]. (3.34)

where i denotes the ith pixel within the ROI.

The chosen SNR was 30dB in both experiments. The given profile’s parameters were passed

to the optimization procedure to avoid the influence of wrong initialization on the final estimate.

The maximum number of outer loop iterations of the IRWLS method was set to tmax = 50, while

optimization termination tolerance was set to tol = 10−10.

As a measure of accuracy, the total modeling error between the estimated and given profile

was used, which can be expressed as

etotal = 10log10
∑ j∈eval( f (x j, β̂ )− f (x j,β ))

2

∑ j∈eval f (x j,β )2 [dB] (3.35)

where f (x j, β̂ ) corresponds to the estimated model value while f (x j,β ) corresponds to the

given model value of the jth pixel position x j, which is within the selected evaluation region

eval. The evaluation region was selected as the estimation ROI but upsampled to better approx-

imate the integral of the continuous error function over the evaluation region. The 2D Gaussian

profile parameters were estimated using the LS method, IRWLS method with Huber weights

according to (3.13), and IRWLS method with normalized inverse variance weights according

to (3.32). The efficiency of these three methods in the profile estimation from noisy data was

compared, and the results were published in [74].

Estimation of the 2D Gaussian profile from data contaminated with heavy-tailed noise

In the first experiment, the heavy-tailed noise was added to the 2D Gaussian profile of the given

vector of parameters which include the random fractional shift of the profile’s peak position:

β = [Al,λ1,λ2,µx,µy,ρ] = [105,2,1,−0.3082,−0.2817,0.7854, ]. Fig. 3.19 shows the estima-

tion of the 2D Gaussian profile parameters from data contaminated with heavy-tailed noise by

using the IRWLS method with Huber weights, the WLS method with inverse variance weights,

and the LS method with unit weights. The long-term statistics of the heavy-tailed noise, i.e.,

the expected variances of noise samples were generated from generalized Pareto distribution of

the shape parameter ε = 3, the scale parameter σ = 1, and the location parameter µ = 0, using
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the MATLAB random function. Then, the random noise samples were drawn from the normal

distribution of zero mean and unit variance for all pixels within the ROI. Their absolute values

were multiplied by the square root of the long-term heavy-tailed noise statistics. Such obtained

noise samples were finally scaled with an appropriate factor α to achieve the required SNR in

dB.

Figure 3.19: The absolute residual errors of the IRWLS method with Huber weights, the WLS method
with inverse variance weights, and the LS method in 2D Gaussian profile estimation from data contami-
nated with heavy-tailed noise

IRWLS method with Huber weights proved to be successful in solving the problem of

heavy-tailed noise with high accuracy and without any prior knowledge of noise statistics. The

WLS method with inverse variance weights calculated yields a more optimal solution but the

noise variance of each sample has to be known in advance, i.e., the spatially variant long-

term noise statistics. The total modeling error of the IRWLS method with Huber weights

was -64.2273 dB with the estimated vector of the 2D Gaussian profile’s parameters β̂H =

[1.0008 · 105,2.0005,1.0006,0.7855,−0.3083,−0.2816,0.7855], while the WLS method with

the specified inverse variance weights yielded the total modeling error of -82.8051 dB with the

estimated vector of parameters β̂I = [1.0001 · 105,2.0001,1.0000,−0.3082,−0.2817,0.7854].

The LS method results were the worst with the total modeling error of -36.4718 dB with the

estimated vector of parameters β̂ LS = [1.0136 ·105,1.9950,1.0175,−0.3199,−0.2864,0.7823].

Poisson noise contamination

In the second experiment, the Poisson noise was applied to the profile with the given parame-

ters: β = [Al,λ1,λ2,µx,µy,ρ] = [105,2,1,−0.3639,−0.3530,0.7854]. The Poisson noise was

generated such that the random samples were drawn from the normal distribution of zero mean

and unit variance, and then they were multiplied with the square root of ideal signal values for

all pixels within the ROI. Such obtained noise samples were multiplied with the factor α to

obtain the required SNR.
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(a) Huber weights within the ROI (b) Normalized inverse variance
weights within the ROI

Figure 3.20: Estimation weights in the last iteration of the IRWLS method when the profile was con-
taminated with Poisson noise. The pixel size was 1, and the sampling grid was uniform. The maximum
number of outer loop iterations was 50.

The IRWLS method with Huber weights accomplished a total modeling error of -36.9081

dB with estimated parameters β̂ H = [9.9343 · 104,1.9929,0.9889,−0.3695,−0.3721,0.7759].

The better results of -42.7928 dB achieved the IRWLS method with inverse variance weights,

calculated in each iteration from the current estimated model values. The estimated vector

of the profile’s parameters with the IRWLS method with inverse variance weights was: β̂I =

[9.9719 ·104,2.0083,0.9985,−0.3583,−0.3573,0.7837]. The LS method yielded the estimated

vector of parameters β̂ LS = [9.9374 · 104,1.9961,0.9931,−0.3678,−0.3734,0.7739] with the

largest error of -36.8037 dB. Fig. 3.20 shows Huber weights and inverse variance estimation

weights in the last IRWLS method’s iteration. The inverse variance weights, calculated in

each iteration from the current estimated model, reduce the contribution of larger samples with

larger variances which are close to the profile’s peak position and emphasize the contribution of

samples at the ROI edge where the samples’ intensities, as well as variances, are much smaller.

The weights at the ROI edge are variable due to coarse discretization and the fractional shifts

of the profile. Huber weights are units for most of the regular samples, except for a smaller

percentage of central pixels with large errors whose weights are reduced. Even though such

Huber weights correspond to the characteristics of Poisson contamination, they are less efficient

than the inverse variance weights. However, even if the IRWLS method with inverse variance

weights yields the best results, the total modeling errors of all three methods differ by only a

few dBs.

Monte Carlo simulation

Monte Carlo simulations with 100 trials were performed for each combination of three noise dis-

tributions (heavy-tailed, Poisson, and Gaussian distributions), three types of estimation weights

(Huber weights, inverse variance weights, and unit weights), and different SNRs within the ROI

in the range from 20 dB to 50 dB with the stepsize of 5 dB to analyze the efficiency of the IR-
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WLS method. In each of the 100 trials, the profile with the same parameters as in the previous

experiment was synthesized but with the random fractional shift within ±0.5 pix to simulate

random uniform sampling. Fig 3.21 shows medians of estimation modeling errors in 100 trials.

The IRWLS method with Huber weights yields a modeling gain of up to 25 dB compared to the

LS method, while the WLS method with inverse weights yields even better, close to the optimal

solution, but with the priory known long-term noise statistics. The IRWLS method with model-

driven inverse variance weights produces a minor modeling error (up to 3 dB better than the LS

solution) since such weighting is an MLE solution for Poisson noise. In the case of Gaussian

noise, the LS method yields an optimal solution in MSE and MLE sense. The IRWLS method

with inverse variance weights yields the same solution as the LS method since all pixels have

the same variances.

(a) Total modeling error for heavy-
tailed noise contamination

(b) Total modeling error for Poisson
noise contamination

(c) Total modeling error for Gaussian
noise contamination

Figure 3.21: Comparison of the IRWLS method with Huber weights, the IRWLS method with inverse
variance weights, and the LS method for different SNRs in dB and different noise distributions.

3.6 Optimal ROI width for maximizing 2D Gaussian profile

estimation accuracy

The appropriate selection of the estimation input domain’s shape and width is crucial for the

accurate parameter estimation of the 2D Gaussian profile from the noisy data since it defines the

subset of input samples’ positions and values which enter the estimation process. Some papers

propose selecting the estimation ROI as a square region of fixed size centered at the coarsely

estimated profile’s peak position [37]. However, in section 3.3, we defined the estimation ROI

as a circular or elliptical region around the profile’s peak position whose radius corresponds to

the product of the profile’s width, i.e., its standard deviation σ , and the factor of Mahalanobis

distance k. Namely, the Mahalanobis distance k represents the profile’s positions of the same

values. Such a selected ROI is circular when a profile’s semiaxes have the same widths. In

contrast, such an ROI is an elliptic convex region for a profile with different semiaxes widths

and a full covariance matrix.
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Namely, it is noticed that the chosen estimation ROI affects even the estimation of a single

2D Gaussian profile from a fixed number of random input samples contaminated with additive

Gaussian noise. In the case of a single 2D Gaussian profile corrupted with additive Gaussian

noise, the LS method yields the optimal parameters estimate since it is the ML solution for

such contamination type. Still, the accuracy of the solution differs for different ROI widths

due to variations in informativity contained in input data. To find the optimal ROI width, the

rotationally symmetric 2D Gaussian profile was considered, which is defined in (3.14). The

examples of the ideal rotationally symmetric Gaussian profile and the profile contaminated with

additive Gaussian noise are shown in Fig. 3.22.

(a) Ideal circular 2D Gaussian profile (b) Input noisy measurements

Figure 3.22: Circular 2D Gaussian profile in polar coordinates z(r,θ) = Aexp
(
−r2

2σ2

)
,z ∈

[Aexp(−k2/2),A], where σ = σx = σy is the profile’s standard deviation and r ∈ [0,kσ ] denotes the
radius of circular estimation input domain (ROI)

Both parameters that define the radius of the estimation ROI, the profile’s standard deviation

σ , and the factor of Mahalanobis distance k have to be precisely determined for accurate param-

eter estimation of the noisy circular 2D Gaussian profile. If the profile’s σ is overestimated, the

invalid pixels which belong to the background or adjacent objects enter the estimation process

and cause false object identification. On the other hand, the underestimated profile’s σ causes

the discarding of valid pixels and wrong parameter estimation. Similarly, the smaller values of

factor k cause the narrow ROIs that include a small number of pixels around the profile’s peak

position. In that way, the influence of adjacent objects and the background is avoided. Still,

the solution can be highly affected by Poisson noise which is dominant in that region of large

profile values. Finally, the trade-off between these two effects can be achieved by finding the

optimal value of factor k while assuming that the profile’s standard deviation σ is known in

advance.
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This subsection analyzes the accuracy of the circular 2D Gaussian profile estimation from

data contaminated by additive Gaussian noise using the standard LS method. Thereby, two

types of estimation ROI sampling were considered: random and uniform. In the case of random

sampling, the number of input samples for different ROI widths was fixed, and the required

SNR was ensured within the ROI. The input sample positions were considered independent

random variables uniformly distributed in both directions whose joint PDF was given in (3.15).

In the case of uniform sampling in both directions, the number of input samples varies with

different ROI widths. Two sampling types within circular ROI are shown in Fig. 3.23.

(a) Random sampling of circular ROI (b) Uniform sampling of circular ROI

Figure 3.23: Two types of ROI sampling: random with a fixed number of uniformly distributed samples
and uniform with a fixed density of input samples. The estimation ROI is defined as a circular region
around the profile’s peak position of the radius kσ .

To explain the differences in accuracy of the LS method for different ROI widths for the

constant number of input samples and given SNR, the concept of differential entropy [75] is

introduced. Differential entropy is an extended and modified version of Shanon’s discrete en-

tropy but for continuous random variables. It is a measure of information, i.e., the randomness

of a continuous random variable, and determines the number of bits required for its descrip-

tion. In subsection 3.4.4 is proved that the 2D Gaussian profile values follow the log-uniform

distribution. To find the optimal ROI width, differential entropy for the log uniform distribu-

tion is derived and maximized concerning the Mahalanobis distance k. The assumption is that

the reduction of LS method accuracy for different values of factor k can be predicted from the

decrease in differential entropy.
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3.6.1 Differential entropy of the log-uniform distribution of Gaussian pro-
file’s values

Differential entropy is a relative measure of change in information or randomness of continuous

random variables concerning some parameter and can have negative values. High differential

entropy implies a large dispersion of sample values within the sample space and vice versa [75].

If positions of input samples are random variables uniformly distributed within the circular

ROI with the joint PDF (3.4.4), the circular 2D Gaussian profiles values of those samples follow

the log-uniform distribution according to (3.26), where the maximal profile’s value is at the ROI

center where r = 0 and z = A, while the minimal profile’s value is at ROI edge where r = kσ

and z = Aexp(−k2/2). Examples of histograms of Gaussian profile values for different factors

of Mahalanobis distance k and corresponding PDFs are shown in Fig. 3.24.

Figure 3.24: Normalized histograms and corresponding log-uniform PDFs of 2D Gaussian profile’s val-
ues ( fZ(z) = 2/(zk2)) enclosed within ROIs of different widths determined by the factor of Mahalanobis
distance k

Generally, the differential entropy of random variable X is defined as the expectation of the

negative logarithm of its PDF as follows

h(X) = E[−log( f (X)] =−
∫

S
f (x) log2 f (x)dx [bits] =−

∫
S

f (x) ln f (x)dx [nats] (3.36)

where S denotes the support set of random variable X .
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If a = Aexp(−k2/2) and b = A, the differential entropy of 2D Gaussian profile’s values

h(Z) is

h(Z) =−
∫ b

a
fZ(z) ln fZ(z)dz = ln

(bk2

2

)
− k2

4
[nats]. (3.37)

It is expected that narrower ROI will contain samples with values close to the profile’s peak

value but of small variance and, consequently, of slight randomness and informativeness. Con-

trary, wide ROIs which are equal to or larger than r = 3σ contain a large number of samples

close to the additive noise values with less informativeness. To find the optimal ROI width,

which contains the maximal information about the profile’s parameters, differential entropy has

to be maximized concerning the factor of Mahalanobis distance k

∂hZ

∂k
=
−(k2−4)

2k
= 0. (3.38)

It turns out that the maximal differential entropy is for k = 2 and equals

hZmax = hZ(k = 2) = ln(2A)−1. (3.39)

Differential entropy reduction for different values of factor k can be calculated as

∆hZnats = hZ−hZmax = ln
(k2

4

)
− k2

4
+1, (3.40)

∆hZbits = ∆hZnats/ ln2, (3.41)

∆hZdB = ∆hZbits ·20log10 2. (3.42)

The difference in differential entropy for different ROI widths depends only on factor k. It

indicates how much SNR should be increased compared to the case when k = 2 to preserve the

same relative ratio between the information contained in samples’ values and noise.

In the case of additive noise with spatially uniform distribution within ROI, the nominal

SNR can be defined as the ratio of the power of the signal, which corresponds to the squared

maximal profile’s value A, and the power of noise, which corresponds to the noise variance σ2
n ,

as follows

SNRdB = 10log10
b2

σ2
n
= 20log10

b
σn

. (3.43)

To account for the reduction of differential entropy for non-optimal factors k, the noise standard

deviation σn has to be reduced according to

σnreduced = σn ·10(∆hzdB/20) (3.44)
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The differential entropy of additive noise normally distributed is only a function of σn and is

constant regardless of factor k.

The reduction of differential entropy in dBs for different factors k compared to the optimal

case when k = 2 is shown in Fig. 3.25. For k = 0.39 and k = 4.42, ∆hZ =−20dB compared to

the optimal case of k = 2, thus meaning that the standard deviation of noise has to be 10-fold

reduced to preserve the same ratio of informativity in the profile’s values and noise.

Figure 3.25: Differential entropy reduction compared to the nominal case for k = 2

SNR in dBs is a conventional approximate measure of the informativeness of noisy data for

a certain signal class. It is defined as the logarithm of the ratio of the signal variance to the noise

variance. SNR, as a measure of the information content of noisy data, can be used for signals

whose differential entropy is only a function of variance, such as normally distributed signals

and noise. However, the values of the Gaussian profile follow a log-uniform distribution whose

differential entropy strongly depends on the chosen Mahalanobis distance factor k, so SNR is a

too simple measure of the information content of the Gaussian profile values with interference.

By combining the expressions (3.30) and (3.37), we can relate the variance of the log-

uniform distribution of Gaussian profile’s values and the corresponding differential entropy as

ln
√

Var(Z) = hZ +
ln
(

k2 exp k2

2 −4exp k2

2 + k2 +4
)

2
(3.45)

+
ln
(

4exp k2

2 −4
)

2
−4lnk− k2

4
, (3.46)

which shows that the logarithm of the standard deviation of the profile’s values and differential

entropy differ in the offset that depends solely on chosen radius k. This difference is shown

in Fig. 3.26. For ROI widths from k = 0 to k = 4.56σ , the difference between the actual

differential entropy and its predictions calculated as the logarithm of the standard deviation

of the profile samples’ values are ±10.8dB, while equals zero for k = 3.684. Consequently,

instead of using variance-based SNR to measure information content, the actual derived ROI-

dependent differential entropy expression must be considered to circumvent such predicted error
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Figure 3.26: Difference between the natural logarithm of the square root of the variance and the differ-
ential entropy in nats for different factors of Mahalanobis distance k

of estimation performance.

3.6.2 Experiments and results

To analyze the accuracy loss of the LS method in 2D Gaussian profile estimation from noisy

data for different non-optimal ROI widths (k 6= 2) and to verify that the accuracy loss corre-

sponds to a reduction of differential entropy, two experiments were made, as it is described

in [76]. In both experiments, Monte Carlo simulations were performed, where in each trial,

the random measurements were generated as a combination of the ideal 2D Gaussian pro-

file values and random additive noise. As a measure of accuracy, the total modeling error

from (3.35) was used where the estimated and given models were compared over the cho-

sen evaluation grid. The evaluation grid was selected as uniformly upsampled estimation

ROI within 3σ where the samples are displaced for σ/10 in both directions, where σ corre-

sponds to the given profile’s width. The given parameters of the 2D Gaussian profile were

[Al,λ1,λ2,µx,µy,θ ] = [100,1,1,0,0,0]. The simulations were performed for all combinations

of the given SNR from the set SNR = {20,40,60,80} and factor of Mahalanobis distance from

0.5 to 3 with the stepsize 0.5, w/wo differential entropy compensation. Additive noise was

added to synthesized ideal sample values to satisfy the required SNR within the selected ROI.

For the case of differential entropy compensation, the standard deviation of noise σn is calcu-

lated for the given SNR according to (3.43). It is additionally reduced for the predicted reduction

of differential entropy compared to the optimal case for k = 2 according to (3.44).

Random sampling of circular ROI

In each trial of the first experiment, 100 and 10000 input samples were randomly picked within

the selected ROI, which is determined by the factor k. The random samples’ positions were uni-

formly distributed within the ROI. The number of input samples was fixed, while their density

decreased for wider ROIs. For each considered combination of factor k and SNR, 5000 and 50
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trials were performed for 100 and 10000 samples, respectively, to ensure the constant product

of trials and the number of input samples, and consequently, the constant variance of estimation

error. Results are shown in Fig. 3.27. Figs. 3.27a and 3.27c show the mean modeling errors

of the LS method without differential entropy compensation. The LS method accuracy varies

with k, and it is the smallest for narrow ROIs due to the sample values close to the profile’s

peak value and of small information content. A similar effect can be seen for wide ROIs where

most of the samples have small values close to the additive noise values and, consequently,

without much information about the profile’s parameters. Estimation errors in Fig. 3.27c are

only reduced for 20 dBs (10log10 100) due to a 100-fold increase in number of input samples

and consequently reduction of noise standard deviation for
√

100. Figs. 3.27b and 3.27d show

the results after the compensation of differential entropy reduction. The mean modeling errors

became independent of the ROI width, i.e., of the selected factor k, thus proving that the derived

expressions for differential entropy reduction of Gaussian profile’s values precisely predict the

loss of the LS method accuracy.

(a) ns=100, results without differ-
ential entropy compensation

(b) ns=100, results with differen-
tial entropy compensation

(c) ns=10000, results without dif-
ferential entropy compensation

(d) ns=10000, results with differ-
ential entropy compensation

Figure 3.27: Mean modeling errors in dB for different ROI widths and nominal SNRs denoted with: red
- 20 dB, green - 40 dB, blue - 60 dB, black - 80 dB. The number of random input samples is denoted
with ns.

56



Identification of overlapping stellar components

Uniform sampling of circular ROI

In the second experiment, the sampling within the ROI was uniform, with the same pixel size

in both directions (dx = dy) to ensure the fixed density of samples within the ROI of different

widths. The number of input samples consequently rises quadratically with the factor k and the

ratio of the profile’s width σ and pixel size (dx = dy) according to expressions

PROI = (kσ)2, (3.47)

Ppix = dx ·dy, (3.48)

N =
PROI

Ppix
=

k2σ2π

dxdy
= k2 f 2

σ π, fσ =
σ

dx
=

σ

dy
, (3.49)

where PROI and Ppix denote the area of estimation ROI and pixel. Pixel size was selected as

dx = dy = 0.25, while the given profile’s width σ = 1. Such discretization ensures sufficient

input samples for the optimization procedure, even for the narrowest ROI (k = 0.5). The number

of input samples has to be at least equal to the number of unknowns, but such a solution is,

in that case, very sensitive to added noise. The Monte Carlo simulation with 50 trials was

performed for each combination of considered (k,SNR) pairs w/wo compensation of differential

entropy reduction. Fig. 3.28 shows the quadratic increase in input samples with the factor k.

Therefore, the expected total modeling error decreases proportionally to 10log10(N1/N2) =

20log10(k1/k2) where k1 > k2 and N1 > N2.

Figure 3.28: Number of input samples for different ROI widths, σx = σy = 1,dx = dy = 0.25

With the increase of ROI width from the minimal for k = 0.5 to the maximum for k = 3, the

number of input samples raises 36 times since (k2
1/k2

2 = 32/0.52); thus the expected modeling

error should reduce by 10log10(36) = 15.5dB.

Fig. 3.29a shows the total modeling errors of the LS method without compensation of dif-

ferential entropy reduction. Total modeling error decreases by almost 30 dB, twice as much as

expected. On wider ROIs, the reduction of total modeling error slows down, and the further in-

crease of input samples does not significantly increase the estimation accuracy. However, after

the compensation of differential entropy reduction, which is shown in Fig. 3.29b, the total mod-
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(a) Without compensation of dif-
ferential entropy reduction

(b) With compensation of differ-
ential entropy reduction

Figure 3.29: Mean of total modeling errors in dB for 50 trials

eling error linearly decreases with the slope −10log10(N1/N2), as expected. The conclusion is

that the derived analytical expression for differential entropy reduction completely compensates

for the accuracy loss of the LS method caused by the reduction of information content within

the uniformly sampled data with constrained spatial density.
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Chapter 4

Multidimensional Gaussian profile fitting

This chapter describes the method proposed in [77] for multidimensional Gaussian profile fitting

from noisy data in the exponential function’s argument domain. As aforementioned, the Gaus-

sian profiles of 2D and higher dimensions have applications in many engineering fields such as

astronomical imaging, spectroscopy, and medical imaging [37, 38, 42, 50, 54, 55, 56, 64].

The generalized multidimensional Gaussian profile has the following form

f (x,µ,Σ,A) =
A√

(2π)n|Σ|
exp
(
− 1

2
(x−µ)T

Σ
−1(x−µ)

)
, (4.1)

where n denotes the dimension, x(i) = [x(i)1 , ..,x(i)n ]T , ∀i∈ (1,m) corresponds to the position vec-

tor of ith of m input samples within the selected estimation input domain (ROI), A corresponds

to the linear scale factor that multiplies the n-dimensional Gaussian probability density func-

tion (PDF), µ ∈ Rn is the profile’s centroid position, and Σ ∈ Sn
++ is the symmetrical, positive

definite, invertible and of full rank n×n covariance matrix. The matrix of vectors of samples’

positions within the selected ROI is X = (x1, ..,xm), while the vector of corresponding empiri-

cal profile values is z = [z(1), ..,z(m)]T . Estimation ROI does not need to be uniformly sampled

rectangular grid in n-dimensional space. However, samples within ROI must belong to a convex

region symmetrically distributed around the expected profile’s peak position.

Several papers have already dealt with the estimation of the 1D Gaussian profile parame-

ters in the log domain from the noisy measurements using the conventional least-squares (LS)

method, where the estimation problem comes down to parabola fitting [60, 61, 62]. However,

for the multidimensional case, the number of profile parameters quadratically increases, as well

as the estimation complexity. The analytical LS solution for all model parameters exists only for

the 1D case, while the optimal parameters are non-linearly coupled for higher dimensions. The

inverse covariance matrix in the quadratic form and the determinant of the covariance matrix in

the normalization term in front of the exponential additionally complicates the estimation of the

proper linear profile’s scale for higher profile dimensions.

In [77], we propose transforming the problem of multidimensional Gaussian profile fitting

59



Multidimensional Gaussian profile fitting

in the exponential argument domain by taking the natural logarithm of both model and input

measurements. The solution for optimal profile parameters is searched for by minimizing the

weighted sum of the squared residuals in the log domain. The proposed two-step WLS method

in the log domain combines the analytical and iterative approaches. In the first step of the pro-

posed method, the parameters of the inverse covariance matrix and one additional unknown, the

residual vertical shift of the log target, are estimated by solving a system of linear equations

with the one-step analytical solution given an initial centroid. In the second step of the pro-

posed method, the centroid is updated by solving the system of nonlinear equations through the

iterative procedure for a given estimated parameters from the first step. Such a two-step pro-

cedure is iteratively repeated until the required accuracy or convergence is not achieved. Since

most of the profile’s parameters are analytically estimated in the first method’s step, the pro-

posed method provides a significant reduction of computational costs and the estimation speed

up compared to the conventionally used iterative LS method in the domain of values. Addition-

ally, there is also proposed the analytical solution for the centroid update by using the theory of

resultants [78, 79], but only for the 2D case. Also, the sensitivity of the proposed iterative two-

step method to different noise sources is analyzed, and the method’s accuracy and efficiency are

compared with the commonly used LS method in the domain of values from [74].

The estimation weights are introduced to ensure that the minimization of the sum of weighted

squared errors in the log domain simultaneously minimizes the sum of squared residuals in the

domain of values. Two types of estimation weights are considered: model-driven or input data-

driven estimation weights. In addition, there is also analyzed the influence of negative input

samples and the difference in the informativeness of input data for different ROI widths on the

accuracy of the model estimation in the log domain as a function of the input noise level.

4.1 Iterative two-step method for multidimensional Gaussian

profile fitting in the exponential argument domain

The illustration of the iterative method for multidimensional Gaussian profile fitting in the do-

main of exponential argument is given in Fig.4.1. The main steps of the method include

1.Initialization which corresponds to the calculation of ROI width, normalization of input

measurements z with initial scale factor Âinit , and calculation of initial centroid µ init

2.Transformation of the estimation problem in the domain of exponential argument by

taking the natural logarithm of both the model of multidimensional Gaussian profile

ln( f (x,µ,Σ,1)) and the normalized input data values ln(zn)

3.Determination of normalized estimation weights wn as model- or data-driven weights

4.Minimizing the objective function, which is defined as the weighted sum of squared resid-

uals in the log domain, concerning the inverse covariance matrix terms Σ̂
−1 and additional
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Figure 4.1: Illustration of the proposed method

offset of the log target ẑ0 for a given centroid µ̂ by solving the system of linear equations

5.Update centroid position µ̂ by solving the system of nonlinear equations given the esti-

mated parameters Σ̂ and ẑ0 from the previous step

6.Estimate linear scale factor Â directly from estimated parameters in 4 or by fitting the

obtained model to input data as a linear least squares solution as follows

Â =
f (X, µ̂, Σ̂,1)T z

f (X, µ̂, Σ̂,1)T f (X, µ̂, Σ̂,1)
(4.2)

7.Iteratively repeat steps 4-6 until the given termination criterion is not achieved (conver-

gence, maximum number of iterations, etc.)

The proposed method iteratively corrects covariance matrix Σ and centroid position µ to ob-

tain a better Gaussian profile’s fit in each iteration to empirical noisy input data. In the absence

of noise, independently of selected estimation weights, mmin =
n(n+1)

2 +1 input samples are suf-

ficient to find a unique solution for the terms of the inverse covariance matrix with n(n+1)/2

unknowns and residual vertical shift of the log target as one additional unknown. However, in

the case of a minimal number of input samples, their positions must not be collinear concerning
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the centroid position since the system of linear equations would be of non-full rank and without

a unique solution. In estimation from noisy data, increasing the number of input samples is

recommended to reduce the noise variance and, consequently, the variance of estimated param-

eters. Also, due to the nonlinearity of the exponential function, the estimation weights have

to be introduced to achieve that minimizing the sum of weighted squared residuals in the log

domain minimizes the sum of squared residuals in the domain of values as well.

The main advantage of estimating the Gaussian profile parameters in the log domain is an

analytical one-step solution for all terms of the covariance matrix Σ̂ and residual vertical shift

of the log target ẑ0 for a given initial centroid. Input data entering the estimation process are

normalized using an initial linear scale factor Âinit , which is not optimally initialized. Also,

there is an unknown determinant of the covariance matrix in the normalization term in front

of the exponential. Estimation error in one of these two quantities causes the residual vertical

shift of the log target, which must be identified and compensated, thus enabling the proper

transformation of the estimation problem in the log domain.

In the second stage of the method, the centroid position µ̂ is updated by minimizing the

same objective function by solving the nonlinear system of equations. The nonlinear system of

equations consists of n complete polynomials of third order in variables [µ1..µn]. Such a nonlin-

ear system requires some iterative procedure for nonlinear optimization. Analytical gradients

and the Hessian matrix of the objective function are provided for the optimization procedure

to speed up the estimation. The whole estimation process is iteratively repeated (alternately Σ̂,

then centroid µ̂) until convergence.

4.1.1 Selection of estimation weights

In this subsection, the change in the exponential function argument is related to the change in

its values to derive the optimal estimation weights that ensure that the minimization of the sum

of weighted squared residuals in the log domain simultaneously minimizes the sum of squared

residuals in the domain of exponential function values. Let us consider the simplified example

of the 1D Gaussian profile, defined as

y = K exp(x), (4.3)

where x corresponds to the argument, while K corresponds to the amplitude of the exponential

function. Let us add the perturbation dx to the ideal argument x0 and see how the argument

error affects the ideal exponential function value y0 = K exp(x0) as

y = y0 +dy = K exp(x0 +dx) = y0 exp(dx). (4.4)
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From the above equation follows that the change of the ideal exponential function value dy

equals

dy = y0(exp(dx)−1). (4.5)

Exponential function can be approximated by the first term of the Taylor series for small values

of dx as

exp(dx)' 1+dx. (4.6)

Finally, the change of exponential function value with the small perturbations of exponential

argument dx equals

dy = y0(1+dx−1) = y0dx (4.7)

It indicates that the ideal estimation weight w equals the noiseless sample value y0. Since

the ideal sample values are usually unknown, the alternatives use empirical input data values

or model values as estimation weights. In [77], to regularize the dynamic range of estimated

profile parameters, we used normalized input data and, consequently, the normalized estimation

weights, which are

wn = zn, (4.8)

where zn is the normalized input data column vector. In the case of model-driven weights, a

normalized initial moment-based model of the form f (X, µ̂ init , Σ̂init ,1) is used. Such chosen

weights are calculated only once, and the same weights are used in all iterations of the proposed

method. The method can be further improved by updating the estimation weights in each itera-

tion according to the estimated model values from the previous iteration. Such approximation of

estimation weights is appropriate only for small argument errors, which also yield small errors

in the domain of values.

4.1.2 Objective function

The vector of the multidimensional Gaussian profile’ parameters is

β = (A, Σ11,Σ12, ...,Σnn, µx1 , ...,µxn), (4.9)

where n denotes the dimension, A denotes the linear scale factor, (Σ11,Σ12, ...,Σnn) corresponds

to the vector of unique terms of the covariance matrix, and (µx1 , ...,µxn) denotes the vector of

centroid position. The unique covariance matrix terms, (Σ11,Σ12, ...,Σnn), are unequivocally

defined by their unique inverse terms, (Σ−1
11 ,Σ

−1
12 , ...,Σ

−1
nn ) that appear in the quadratic form of

the exponential argument. The residual error in the log domain of the ith of m samples within

the selected ROI with the corresponding position vector x(i) and normalized value z(i)n equals
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e(i)arg = lnz(i)n − ln
(

f (x(i),µ,Σ,A)/A
)

= lnz(i)n − ln

(
1√

(2π)n|Σ|

)
+

1
2
(x(i)−µ)T

Σ
−1(x(i)−µ), ∀i ∈ [1,m].

(4.10)

By introducing the auxiliary variable of residual vertical offset of the log target z0, which is

defined as

z0 = ln

(
1√

(2π)n|Σ|

)
, (4.11)

the residual error in the argument domain of the ith sample becomes

e(i)arg = lnz(i)n − z0 +
1
2
(x(i)−µ)T

Σ
−1(x(i)−µ). (4.12)

Finally, the objective function, which is defined as a sum of weighted squared residuals in

the log domain, has the following form

D =
m

∑
i=1

(w(i)
n e(i)arg)

2, (4.13)

where earg = (e(1)arg, ..,e
(m)
arg )

T corresponds to the column vector of errors for all samples within

the estimation ROI.

4.1.3 Estimation of the inverse covariance matrix

In the first stage of the proposed method, the inverse covariance matrix Σ
−1 and the auxiliary

variable of the residual vertical shift of the log target z0 are estimated. Hence, the vector of

unknowns p in the first stage has the following form p=(Σ−1
11 ,Σ

−1
12 , ..,Σ

−1
nn ,z0)

T . The parameters

are estimated by minimizing the objective function (4.13) as

p̂ = argmin
p

D(p), (4.14)

where

e(i)arg = lnz(i)n − z0 +
1
2
(x(i)− µ̂)T

Σ
−1(x(i)− µ̂), (4.15)

where µ̂ corresponds to the initial centroid for the first iteration or estimated centroid position

from the previous iteration. The partial derivatives of the objective function (4.13) considering

vector p given an initial centroid µ̂ yield a system of linear equations with an analytical one-step

solution. The first derivatives of the objective function considering the vector of unknowns p in

64



Multidimensional Gaussian profile fitting

the matrix form are

∇D(p) = Ap−b, (4.16)

where A corresponds to the matrix of coefficients and b denotes the vector of constant terms.

The solution vector of this system of linear equations is

p̂ = A−1b. (4.17)

The matrix of coefficients A is formed as

A =
m

∑
i=1

2w(i)
n d(i)dT(i)

, (4.18)

while vector of constant terms b is

b =
m

∑
i=1
−2w(i)

n ln(z(i)n )d(i). (4.19)

The auxiliary vector d(i) is the vector of the form

d(i) =
(

dx(i)1,1/2,dx(i)1,2,dx(i)1,3, · · · ,dx(i)1,n,dx(i)2,2/2,dx(i)2,3, · · · ,dx(i)2,n, · · · , (4.20)

dx(i)n−1,n−1/2,dx(i)n−1,n,dx(i)n,n/2,−1
)T

, (4.21)

where dx(i)j = x(i)j − µx j , dx(i)r,s = dx(i)r · dx(i)s , and the index pairs (r, s), with 1 ≤ r ≤ n and

r≤ s≤ n, denote the unique row and column indices of the inverse covariance matrix elements,

taking into account the property of symmetry.

The Hessian matrix of the objective function (4.13) for the vector of unknowns p is equal to

the matrix of coefficients A. According to (4.18), the matrix of coefficients A is calculated from

the positions of input samples and corresponding estimation weights. The transformation of

the estimation process to the log domain requires that noisy input samples have strictly positive

values, thereby discarding the rest of the input samples from the estimation ROI. Consequently,

the estimation weights, which are selected as normalized input sample values according to

(4.8), are also positive. The matrix of coefficients A is calculated as a weighted sum of sample

autocorrelation matrices that are positive semidefinite by definition. Consequently, the matrix

A, which is also a Hessian matrix, is positive semidefinite too.

Hence, the solution of the linear system p̂ is the unique and optimal for the global minimum

of the objective function (4.13) for the given centroid µ̂ and for the chosen and fixed estima-

tion weights, provided that A is nonsingular, i.e., that the Hessian is strictly positive definite.

The matrix A can become singular only for an insufficient number of input samples or their

collinearity relative to the centroid position, resulting in a non-full rank system. Namely, in
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these situations, the determinant of this linear system of equations becomes zero, thus yield-

ing infinitely many solutions. It occurs for the minimal number of input samples (mmin) with

equal absolute distances from the profile’s peak position concerning any one of the n axes

(rank(A) < n if |dx(1)j | = |dx(2)j | = ... = |dx(mmin)
j | = const, 1 ≤ j ≤ n). In that situation, the

positions of all of the mmin input samples are on a flat hyperplane perpendicular to one of the n

axes (±const from the peak position). Also, in the case of a regular grid, the geometric center

of those mmin input samples must not coincide with the profile’s peak position since, in that

case, all input samples are equidistant from the peak position for all axes. In all other cases,

the matrix A and the Hessian matrix are positive definite, ensuring that the obtained solution

for the inverse covariance matrix and the residual vertical shift of the log target is unique and

represents the global minimum of the objective function for the given centroid position and the

chosen fixed estimation weights.

Finally, the optimal solution for the covariance matrix Σ̂ is found by inverting Σ̂
−1 whose

unique elements are contained in p̂ by imposing the symmetry of the inverse. Thus, the solution

Σ̂ will also be a symmetric matrix, but to be a valid covariance matrix, it also has to be posi-

tive semidefinite. Theoretically, the estimated covariance matrix Σ̂ can have some of the axes

(eigenvalues) of zero length, thus indicating that the given Gaussian is actually of a lower di-

mension than the dimension of the input vectors, n. The condition for positive semidefiniteness

of Σ̂ also requires positive definiteness of Σ̂
−1, because if any eigenvalue of Σ̂

−1 is negative,

then its reciprocal value, which is the eigenvalue of Σ̂, will also be negative. Also, none of the

eigenvalues of Σ̂
−1 must be zero since, in that case, Σ̂

−1 would be singular, and would not have

an inverse. Since the solution for p̂ in (4.17) depends on the input data (sample positions, their

values, and weights), the estimated matrices Σ̂
−1 and Σ̂ might become invalid for estimation

from noisy data. Experiments have shown that such exceptions occur only for very low SNRs

and a small number of input samples k, comparable with the number of unknowns.

4.1.4 Estimation of improved centroid

The second step is the calculation of the improved centroid µ̂ using the estimated inverse covari-

ance matrix Σ̂
−1 which will further reduce the summary weighted squared error of the argument.

The centroid was calculated by minimizing the same objective function (4.13) as

µ̂ = argmin
µ

D(µ), (4.22)

where

e(i)arg = lnz(i)n − ẑ0 +
1
2
(x(i)−µ)T

Σ̂
−1
(x(i)−µ). (4.23)

If earg is the column vector of errors of the exponential function’s argument and wn is the
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column vector of normalized estimation weights with m elements that correspond to the number

of input samples, then the expressions for gradients and Hessian matrix of the objective function

concerning the centroid position have the following matrix forms,

∇D(µ) =−2Σ
−1T LT Wnearg, (4.24)

H(D(µ)) = 2(Σ−1T LT WnLΣ
−1 +wT

n eargΣ
−1), (4.25)

where Wn = diag(wn), and dx j = (dx(1)j , ..,dx(m)
j )T denotes the column vector of distances of

all m input samples from the given initial centroid for the jth dimension, and L = (dx1, ..,dxn)

is the matrix of such column vectors for all of n dimensions.

4.1.5 Update linear scale

The previously estimated linear scale Â is updated either from the solution of the system of

linear equations (4.17) by using the estimated Σ̂ and ẑ0 or by fitting the obtained normalized

model to input data values according to (4.2) by using the estimated Σ̂ and µ̂ .

In the first case, the previously estimated linear scale is multiplied by the residual scale

calculated from (4.11) to obtain the updated scale of the form

Â = Âexp(ẑ0)

√
(2π)n|Σ̂|. (4.26)

However, it is easier and more accurate to update a linear scale in the value domain according

to (4.2), but adding the residual vertical shift of the log target z0 to the set of unknowns is nec-

essary to decouple the scale and shape of the Gaussian profile in the first stage of the proposed

method.

4.1.6 Initialization

Application of the proposed method for multidimensional Gaussian fitting in the log domain

requires an appropriate initialization, including ROI selection, estimation of initial scale fac-

tor Âinit , calculation of normalized input data values zn and estimation of the initial centroid

position µ̂ init .

Estimation ROI selection The estimation ROI used in [77] is defined as a convex region

enclosed within an arbitrarily rotated hyper-ellipsoid in n-dimensional space centered at the

profile’s peak position whose width is described by the chosen Mahalanobis distance k. The

Mahalanobis distance factor k is a simple scalar measure of ROI width and denotes the samples’
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positions of the same profile’s values. The Mahalanobis distance is defined as the square root

of the quadratic form in the argument as

k =
√

(X−µ)T Σ
−1(X−µ), (4.27)

where X is the matrix of all input samples positions in n-dimensional space. The inverse co-

variance matrix and centroid position must be known in advance to calculate the Mahalanobis

distance of each input sample using (4.27).

However, since the values of the samples are known, and these are assumed to belong to

the underlying Gaussian profile, simple thresholding of sample values can be used to extract

those expected to be within the selected ROI width, determined by the k. For example, if

the maximum value of input samples is max(z), then the chosen marginal threshold zedge will

extract only those samples whose Mahalanobis distance to the profile center is k at most, where

k equals

k =
√
−2ln(zedge/max(z)), (4.28)

Such selection is invariant concerning the unknown linear scale A since it is canceled in the

quotient in (4.28). Moreover, since input sample values may be contaminated with noise, the

binary domain matrix obtained through thresholding can be further refined using morphological

smoothing to ensure it is convex and homogeneous in all dimensions.

Calculation of initial scale factor Ainit After extracting only the samples within the cho-

sen bounded hyper-ellipsoidal ROI, these samples approximate the truncated multidimensional

Gaussian profile at Mahalanobis distance of k. The total probability of all samples within such

a truncated region is known to be erf(k/
√

2), which can be used to normalize the input data

(i.e., to remove the unknown scale Ainit). In the case of uniformly sampled ROI, the initial

scale factor Ainit can be calculated as a quotient of the total probability under the n-dimensional

histogram of input data and the total probability of the truncated Gaussian profile as

Ainit =
∑z ·δx1 · .. ·δxn

erf( k√
2
)

, (4.29)

where δx j denotes the distance between neighboring samples for the jth axis in n-dimensional

space in the case of regularly and uniformly sampled ROI.

Normalization of input data values The input data values z are normalized according to

zn =
z ·δx1 · .. ·δxn

Ainit
=

z · erf( k√
2
)

∑z
, (4.30)
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where zn represents the normalized n-dimensional histogram, approximating the regularly sam-

pled Gaussian profile truncated at maximal Mahalanobis distance k.

Initial centroid estimation The simplest method for initial centroid estimation is the method

of moments in the domain of values. The first moment yields the expected centroid, i.e., the

profile’s peak position, along the x j-axis as

µx j =
∑

m
i=1 x(i)j z(i)n

∑
m
i=1 z(i)n

, (4.31)

where the denominator represents the total probability within the enclosed input region of trun-

cated Gaussian, m is the number of input samples within the ROI, and j is the notation of the

axis in n-dimensional space ( j ∈ [1,n]).

Initial covariance matrix estimation In the case of using the normalized moment-based

model of the form f1 = f (X, µ̂1, Σ̂1, Â)/Â = f (X, µ̂1, Σ̂1,1) as estimation weights, the corre-

sponding covariance matrix has to be calculated as well. The second moment yields the vari-

ances that form the covariance matrix as follows:

Σrr = σ
2
r =

m

∑
i=1

z(i)n (x(i)r −µxr)
2, (4.32)

Σrs = σrσsρrs =
m

∑
i=1

z(i)n (x(i)r −µxr)(x
(i)
s −µxs), (4.33)

where σr and σs denotes the profile’s STDs for the r and s axes and ρrs ∈ [−1,1] is the Pearson

product-moment correlation coefficient of r and s. Since the Gaussian profile is truncated at the

maximal Mahalanobis distance k, the calculated profile’s STDs have to be additionally scaled

using the following expression

σtrunc =
σ√

1− k exp(−k2/2)√
π

2 erf( k√
2
)

(4.34)

Initial scale factor update Additionally, the initial linear scale factor can be updated by fitting

the obtained model to empirical data as the ordinary LS estimate in a simple linear regression

model as

Â1 =
fT
1 z

fT
1 f1

, (4.35)

where the numerator in (4.35) represents the sample covariance between the initial model and

input data values, while the denominator represents the sample variance of the estimated model.
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4.1.7 Probability of negative noisy input samples

Transformation of the Gaussian estimation problem to the log domain requires positive input

sample values. We considered estimating the Gaussian profile parameters from data contami-

nated with additive Gaussian noise of zero-mean and σ2
n variance.

Samples that belong to a Gaussian profile have strictly positive values. However, after

adding Gaussian noise, they can become negative, thus preventing the transformation of the

Gaussian profile estimation to the log domain. If we assume that the Gaussian profile value, a

function of input sample positions which are random variables uniformly distributed within the

chosen ROI, is also a random variable Y that follows log-uniform distribution and that additive

noise is a random variable X that follows the normal distribution, let us calculate the probability

that the sum of these two random variables (Z = Y +X), Gaussian profile value, and additive

noise is less than zero, i.e., P(Z < 0). For Z to be less than z, X must be less than z−Y . The

cumulative distribution function (CDF) of Z can be calculated as

FZ(z) =
∫

∞

−∞

∫ z−y

−∞

fXY (x,y)dxdy. (4.36)

If X and Y are independent, the CDF of Z becomes

FZ(z) =
∫

∞

−∞

fY (y)
(∫ z−y

−∞

fx(x)dx
)

dy. (4.37)

In our case, z = 0 and the PDF of variables X and Y are

fY (y) =
2

k2y
,Aexp(−k2/2)≤ y≤ A, (4.38)

fX(x) =
1

σn
√

2π
exp
−1
2

x2

σ2
n
,µ = 0 (zero-mean noise), (4.39)

while the CDF of normal noise is

FX(x) =
1
2

(
1+ erf

( x
σn
√

2

))
, (4.40)

and the CDF of total signal Z is

FZ(z) =
∫ A

Aexp(−k2/2)
fy(y)

(∫ −y

−∞

fX(x)dx
)

dy =
∫ A

Aexp(−k2/2)
fy(y)Fx(−y)dy

=
∫ A

Aexp(−k2/2)
fy(y)

1
2

(
1+ erf

( −y
σn
√

2

)))
dy =

1
2
− 1

(2k2σn
√

π)

(
2
√

2A 2F2

([1
2
,
1
2

]
,
[3

2
,
3
2

]
,
−A2

2σ2
n

)
−2
√

2Aexp
(−k2

2

)
2F2

([1
2
,
1
2

]
,
[3

2
,
3
2

]
,
−A2 exp(−k2)

2σ2
n

))
,

(4.41)
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where 2F2 is a hypergeometric function. The derived expression for the CDF of total signal

FZ(z) can be used for predicting the percentage of negative samples depending on the linear

scale A, the standard deviation of noise σn, and the maximal Mahalanobis distance k.

4.1.8 Analytical 3D Gaussian profile fitting for a given centroid

To analyze the proposed method’s efficiency and speed, the parameters of the 3D Gaussian pro-

file were fitted to the synthesized noiseless data and data contaminated with additive Gaussian

noise using the proposed method. The results were compared with the results of the commonly

used method of moments [48], LS method [54, 80, 81], and ML method [59]. The examples of

the 3D Gaussian fitting to the noisy data using the proposed method are shown in Fig. 4.2.

To emphasize the method’s speed and to easily compare it with the mentioned methods, we

fixed the centroid position and measured the accuracy and the execution time for estimation

of all other profile parameters: the covariance matrix and the linear scale. The experiments

were executed on a system with Intel(R) Core(TM) i5-7200U CPU @ 2.5 GHz and 8 GB of

RAM, with MATLAB implementation of all methods. The solution of the method of moments

was provided as an initial guess for the LS and ML methods which minimize the objective

function using the iterative optimization procedure. The optimization was performed using the

native MATLAB fminunc solver without specified analytical gradients. The maximum number

of iterations was set to 50, while the optimality tolerance and the current point tolerance were

set to 10−7.

The total modeling error etotal from (3.35) was used to measure accuracy. The total modeling

error represents the sum of the squared residuals between the estimated and given model over

the same evaluation grid and indirectly aggregates the accuracy of all model parameters.

For experimental purposes, to obtain the synthetic noisy measurements, the profile with the

given parameters was firstly synthesized, and then the additive noise with the appropriate STD

σn was added to the profile to ensure the desired SNR within the ROI. In this case, the SNR was

defined as PSNR according to the following formula

SNRdB = 20log10
A/
√

(2π)n|Σ|
σn

. (4.42)

Fig. 4.2a illustrates the given 3D Gaussian profile estimation using the proposed method. Its

actual parameters in the uncorrelated form are

[A,λ1,λ2,λ3,θ1,θ2,θ3] = [1000,3,2,1,π/3,π/4,π/6],

where λ1, λ2 and λ3 denote the semiaxes widths, θ1, θ2, θ3 denote the Euler rotation angles, and

A is the linear scale factor. The centroid position was fixed to µ = [0,0,0] and passed as input
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(a) A = 1000,λ1 = 3,λ2 = 2,λ3 = 1,θ1 = π/3,θ2 = π/4,θ3 = π/6, λ̂1 = 3.01, λ̂2 = 2.03, λ̂3 = 1.02, θ̂1 =
π/3.00, θ̂2 = π/4.09, θ̂3 = π/6.21, Â = 1019.02

(b) A = 1000,λ1 = 4,λ2 = 2,λ3 = 0.5,θ1 = π/5,θ2 = −π/7,θ3 = π/3, λ̂1 = 4.13, λ̂2 = 2.00, λ̂3 =
0.50, θ̂1 = π/5.03, θ̂2 =−π/7.09, θ̂3 = π/3.00, Â = 1020.49

Figure 4.2: Examples of 3D Gaussian fitting results in 3D and 2D views using the proposed method for
a given centroid. Estimation was done from m = 70 input samples with the noise level of SNRdB = 30.
Estimated profile parameters are: the linear scale Â, the semiaxes widths (λ̂1, λ̂2, λ̂3), and the rotation
angles (θ̂1, θ̂2, θ̂3). The fitted 3-D surfaces represent the points where the estimated model equals the
given model value at k = 1, which is f = Aexp(−1/2). The blue dots represent only the input samples’
positions but not their values (due to the limitation of the 3D example visualization).

to all estimation methods. The actual profile’s parameters yield the following rotation matrix R

72



Multidimensional Gaussian profile fitting

R = Rz(θ1)Ry(θ2)Rx(θ3) =


0.3536 −0.5732 0.7392

0.6124 0.7392 0.2803

−0.7071 0.3536 0.6124

 , (4.43)

and the corresponding covariance matrix Σ

Σ = R


λ 2

1 0 0

0 λ 2
2 0

0 0 λ 2
3

R′ =


2.9858 0.4609 −2.6080

0.4609 5.6392 −2.6801

−2.6080 −2.6801 5.3750

 . (4.44)

Finally, the vector of the actual profile’s parameters can be expressed as

β =[A,Σ11,Σ12,Σ13,Σ22,Σ23,Σ33]

=[1000,2.9858,0.4609,−2.6080,5.6392,−2.6801,5.3750].

The proposed method estimated the unique terms of the covariance matrix by solving the system

of linear equations (4.17) and inverting the obtained solution, while the linear scale factor was

calculated from the estimated additional unknown z0 as Â = exp(ẑ0)

√
(2π)3|Σ̂|, thus avoiding

the need for initialization. In the noiseless case, the unit estimation weights were used, while

for the estimation from the noisy data, the estimation weights were fixed to input sample values.

Table 4.1: The mean total modeling errors in dB for estimating the 3D Gaussian profile given the
actual centroid position.

Mean total modeling error [dB]

Ideal noiseless case SNRdB = 40

Number of input samples 7 70 7000 70 7000

Proposed method -255.5804 -293.3372 -293.5277 -40.6434 -58.8981

Method of moments -7.1845 -13.9014 -15.3146 -13.7786 -15.3044

LS method -67.0825 -134.5511 -135.3360 -41.4402 -61.9902

ML method -89.9811 -134.5511 -135.3360 -41.4402 -61.9902

The parameters of the given profile were estimated for different numbers of input samples

(m = {7,70,7000}) and different SNRs (SNRdB = {20,30,40,

50,60,70,80}). The Monte Carlo simulation with 1000 trials was performed for each combi-

nation of those parameters, including the noiseless case. In each trial, the input samples were
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Table 4.2: The mean execution times in seconds for estimating the 3D Gaussian profile given the actual
centroid position.

Mean execution time per trial [s]

Ideal noiseless case SNRdB = 40

Number of input samples 7 70 7000 70 7000

Proposed method 0.0004 0.0004 0.0101 0.0004 0.0105

Method of moments 0.0001 0.0001 0.0007 0.0001 0.0009

LS method 0.0475 0.0349 0.1239 0.0255 0.1286

ML method 0.0638 0.0391 0.1922 0.0285 0.2008

randomly picked within convex ROI determined with maximal Mahalanobis distance k = 2

from the actual centroid position. The evaluation region was selected as uniformly sampled ROI

enclosed within Mahalanobis distance k = 3 with the step size of 0.1 in each direction and is de-

fined by the given model’s parameters. For the same 3D example, for SNRdB = 40, the estimated

parameters from 70 random input samples using the proposed method in one trial were β̂ =

[Â, Σ̂11, Σ̂12, Σ̂13, Σ̂22, Σ̂23, Σ̂33] = [1004.5,3.0018,0.4664,−2.6003,5.6972,−2.6807,5.3330] with

the total modeling error etotal =−42.8741dB.

The solution of the method of moments was provided as an initial guess for LS and ML

methods. Since the objective of the ML method assumes the presence of stochastic additive

Gaussian noise, in the noiseless case, σn = 10−4 was passed as an input to the optimization

procedure to mimic the almost ideal measurements (SNRdB = 100). In the case of noisy mea-

surements, the considered numbers of input samples were only 70 and 7000 since, in that case,

the minimum number of input samples which corresponds to the number of unknowns, was in-

sufficient for a valid solution (for the 3D Gaussian with the given centroid position, the number

of unknowns is 7). The mean execution times and total modeling errors for different numbers

of input samples for the noiseless case and for SNRdB = 40 are given in Tables 4.1 and 4.2. The

trends of mean total modeling errors and execution times for different SNRs and numbers of

input samples are shown in Fig. 4.3.

In the noiseless case, the proposed method finds the optimal (ideal) solution of all seven

unknowns from only seven randomly positioned input samples with an average modeling error

of −255dB for 1000 trials (etotal = −255.58dB,m = 7). For such a small number of input

samples, the LS and ML estimates are inaccurate due to the wrong initial guess obtained by

the method of moments. The LS and ML methods also converge to the optimal solution in

the noiseless case for a more significant number of input samples (m = 70 and m = 7000).

However, their speed and accuracy highly depend on the initial guess. The method of moments

has poor accuracy since it underestimates all parameters (etotal =−15.31dB,m = 7000). In the
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(a) Mean execution time per trial, m = 70 (b) Mean execution time per trial, m =
7000

(c) Mean total modeling error, m = 70 (d) Mean total modeling error, m = 7000

Figure 4.3: Comparison of the speed and the accuracy of the following methods: proposed method,
method of moments, LS method, and ML method

estimation from noisy measurements, the LS and the ML methods behave similarly considering

the accuracy since they yield the same optimal solution for the case of additive Gaussian noise

contamination, as can be seen in Fig. 4.3c and Fig. 4.3d. The 100-fold increase in the number

of input samples from 70 to 7000 caused the 20dB increase in the accuracy of the LS and ML

methods due to averaging, as expected. The proposed method follows the trends of LS and ML

methods concerning accuracy, except for very low SNRs (20dB) where the approximation of the

exponential function with the first term of the Taylor series for estimation weights determination

in the argument domain is insufficient. However, the proposed method requires at least ten

times less time to calculate the covariance matrix and linear amplitude scale than LS and ML

methods yielding comparable estimates without prior knowledge. Fig. 4.3a and Fig. 4.3b show

that the mean execution time of the proposed method is comparable with the mean execution

time of the method of moments since both methods do not use the iterative procedure and find
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a solution analytically. Both methods are almost 100 times faster than the LS method for the

smaller number of input samples (70) and up to 10 times for the larger number of input samples,

according to Table 4.2. The LS and ML methods have a similar mean execution time for the

small number of input samples, but with the increasing number of samples, the ML method

becomes slower than the LS method, as shown in Fig. 4.3b.

To sum up, the proposed method is much faster than the commonly used LS and ML meth-

ods and has a mean execution time comparable with the fastest method of moments. Thereby,

it yields the estimate of almost the same accuracy as the LS and ML methods except for very

low SNRs.

4.1.9 Iterative method’s accuracy

In the second experiment, the parameters of the rotationally symmetric 2D Gaussian profile

were estimated from noisy data using the proposed method to verify its accuracy. In addition,

the results are compared with those previously published in [76], where the same 2D Gaussian

profile was estimated in the value domain using the numerical LS method. Although we fitted

the 2D Gaussian profile, the proposed method can be applied to estimate the Gaussian profile

of arbitrary dimensions and arbitrary shapes, as was demonstrated in the 3D experiment.

In [76] and section 3.6.1, it was shown that the accuracy of the LS method in the estimation

of the 2D Gaussian parameters from data corrupted with additive noise varies for different

ROI widths as the consequence of the difference in the informativeness of the input data, i.e.,

the difference in the differential entropy of the input data. The maximal differential entropy

is obtained when the Gaussian profile is truncated at Mahalanobis distance k = 2. For other

non-optimal ROI widths, the reduction of differential entropy compared to the optimal case for

k = 2 was compensated by the proportional reduction of the given noise level. The difference in

differential entropy of the input data precisely predicts a decrease in the LS method accuracy for

different ROI widths in the value domain. We performed the same experiments in this section

and re-applied the data entropy compensation.

In addition to differential entropy, we also analyzed the influence of negative samples on

the method’s accuracy since it is necessary to handle negative input sample values before the

log transformation. Therefore, the probability of negative samples when a Gaussian profile is

contaminated with additive noise was derived and given in subsection 4.1.7. The total number

of input samples was increased in proportion to the predicted percentage of negative samples for

the given ROI width and SNR to eliminate the loss of method accuracy due to the occurrence of

negative samples that cannot participate in the estimation in the log domain. Negative samples

were either set to eps = 2−52 and logarithmized or simply removed from the input data and

the estimation process. However, the compensation of negative samples did not significantly

improve the accuracy of the proposed method for the considered ROI widths.
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Furthermore, two types of estimation weights were considered and compared. In the first

case, the weights in the objective function (4.13) were the values of the input samples, while,

in the second case, the weights were selected as the initial moment-based model values for the

same sample positions.

Two experiments were made considering circular ROI sampling: random sampling with

a fixed number of input samples or uniform sampling with a fixed density of input samples.

The total number of performed test cases in each experiment was 16, depending on the input

parameters given in Table 4.3. In each test case, the Monte Carlo simulation with 50 trials was

performed for all Mahalanobis distances k from the set k = {0.5,1,1.5,2,2.5,3} and for all

given SNRs from the set SNRdB = {20,40,60,80}. As an evaluation grid, we used a uniformly

sampled circular region of fixed width r = 3σ , where σ = σ1 = σ2 is the profile’s STD with

equal x and y spacing of σ/10.

In both experiments, the same six parameters of the specified 2D Gaussian profile were

estimated from noisy measurements: profile’s STDs σ1,σ2, the correlation coefficient ρ12,

the profile’s peak position µ = [µx1 ,µx2 ], and the linear profile’s scale A. The given profile

parameters in the correlated form were [A,σ1,σ2,ρ12,µx1 ,µx2 ] = [100,1,1,0,0,0], i.e., β =

[A,Σ11,Σ12,Σ22,µx1 ,µx2 ] = [100,1,0,1,0,0]. In the case of compensation of differential en-

tropy reduction compared to the nominal case for k = 2, the noise STD calculated from (3.43)

was reduced according to the formula in [76], as follows

σnreduced = σn ·10(∆hzdB/20), (4.45)

where ∆hzdB denotes the reduction of differential entropy in dB for the chosen factor k compared

to the optimal case for k = 2.

Table 4.3: Input parameters combined in experiments

Weights wn zn f1

Number of input samples m (only for random sampling) 100 10000

Compensation of predicted number of negative samples yes no

Negative input samples set to eps removed

Compensation of differential entropy reduction compared to the case for k = 2 yes no

The fixed number of input samples

In the first experiment, the estimation input samples were randomly picked within circular ROIs,

and their number was fixed for all ROI widths. The number of input samples was chosen as m1 =
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10000 or m2 = 100. Thus, the total number of test cases in this experiment was 32, considering

all combinations of input parameters in Table 4.3. The comparison of the mean total modeling

errors averaged over 50 trials of the LS method in the domain of values, and the proposed

method in the argument domain are shown in Fig. 4.4. As shown in [76], by compensating the

differential entropy reduction, compared to the nominal optimal case for k = 2, the efficiency

of the LS method in the domain of values became invariable of ROI widths for each given SNR

(flat dashed lines). Additionally, as expected, the 100-fold increase in the number of random

input samples increases the accuracy of the LS method by 20 dB (10log10(m1/m2)) due to

averaging, which effectively reduces the noise level and, therefore, improves model accuracy.

The accuracy of the proposed argument domain method depends on the selected combina-

tion of input parameters used in each test case. The results of a few representative test cases are

shown in Fig. 4.4 where differential entropy reduction was compensated, and the compensation

of the predicted number of negative samples was not applied.

As shown in Fig. 4.4, the accuracy of the proposed method is smaller than the LS method in

the value domain only for very low SNR ratios and extensive ROI widths. For sufficiently high

SNR ratios and narrower ROIs, the efficiency of the proposed method is practically identical to

the efficiency of the LS method in the value domain. In Figs. 4.4a and 4.4d, the input sample

values are used as estimation weights in the objective function (4.13), while in Figs. 4.4b- 4.4f

the initial model values are used as estimation weights. When input sample values are utilized

as estimation weights, both methods’ mean total modeling errors are almost the same whether

negative samples are removed before estimation or set to eps. However, for the case of using

initial model values as weights, the results of the proposed method are closer to the results of the

LS method in the value domain, but only if negative samples are removed from the estimation

process (Figs. 4.4b and 4.4e). The most significant deviation in the accuracy of the proposed

method compared to the LS method in the value domain is observed in the case of replacing

negative samples with eps when the initial model values were used as weights, especially for

low SNR and wide ROI (SNR = 20 dB,k = 3) as Figs. 4.4c and 4.4f show. Additionally, in

Figs. 4.4a, 4.4b and 4.4c is shown that a 100-fold increase in the number of input samples does

not increase the estimation accuracy by 20 dB on wide ROIs and low SNRs. The causes of

such behavior are inappropriate handling of negative samples and improper weight selection

since the assumption that the exponential function can be approximated with the first term of

the Taylor series holds only for small errors.

In Fig. 4.4 can be seen that the relative degradation for low SNRs (20 dB) and wide ROIs is

not the same for m1 = 10000 as for m2 = 100 but increases more for the larger m and less for the

small m. However, it is simply a consequence of direct bias in the input data, which are falsified

so that no averaging can help. The averaging can only attenuate a stochastic error and not a

consistent one, so the error is almost the same in absolute terms for both cases (m1 = 10000 and
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(a) m1 = 10000, w = zn (b) removed negative samples, m1 =
10000, w = f1

(c) negative samples set to eps, m1 =
10000, w = f1

(d) m2 = 100, w = zn (e) removed negative samples, m2 =
100, w = f1

(f) negative samples set to eps, m2 =
100, w = f1

Figure 4.4: Comparison of the mean total modeling errors in dB of the LS method in the value domain
(dashed lines) and the proposed method in the argument domain (solid lines) in the case of random
sampling with fixed number of input samples for different factors k and different SNRs: 20 dB (red),
40 dB (green), 60 dB (blue), and 80 dB (black). f1 denotes a vector of initial model values, while zn
denotes input sample values.

m2 = 100 when SNR = 20 dB and ROI = 3). It can be concluded that increasing the number of

input samples reduces the model error only for very narrow ROIs when the percentage of such

negative samples is small, so the contribution of stochastic noise is effectively attenuated. With

very low SNRs, the initial moment-based model might also be inaccurate. Using such a model

for weights and even throwing out negative samples results in a model denoted with the red line

that is not parallel to green, blue, and black but instead increases incrementally (SNR = 20dB).

The fixed density of input samples

The circular ROI was uniformly sampled in the second experiment, so the number of input sam-

ples was variable for different ROI widths depending on the ratio between the profile’s STD and

the pixel size. Since the STD of the given 2D Gaussian profile was σ1 = σ2 = 1, the selected

pixel width was chosen as δx1 = δx2 = 0.25 to ensure the sufficient number of input samples

for estimation of all given profile’s parameters even for the narrowest ROI (k = 0.5), as it was
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described in [76]. From the ratio of the ROI size and individual pixel size, it can be concluded

that the number of input samples increases quadratically with the factor of Mahalanobis dis-

tance k (m = PROI/Ppix = k2σ1σ2π/(δx1δx2) so m1/m2 = k2
1/k2

2) so it is expected that the total

modeling error decreases with the increase of ROI width as 10log10(m1/m2) = 10log10(k
2
1/k2

2).

Since the minimal ROI width considered in this experiment is for k = 0.5 while the maximal for

k = 3, the number of input samples increases 36-fold. Consequently, the expected reduction of

the total modeling error due to the ROI size increase should be 15.56 dB. The mean total mod-

eling errors are shown in Fig. 4.5. Again, only some of the 16 test cases are shown considering

all input parameters in Table 4.3, while the number of input samples is directly determined by k.

The results show that the proposed method’s accuracy follows the LS method’s accuracy trend

in the value domain when using initial model values as weights and removing negative samples.

The results are worse when input sample values are used as weights for low SNRs (20 dB) and

wide ROIs. However, both methods achieve the same accuracy in cases of high SNRs.

(a) negative samples are removed,
wn = f1, where f1 is a vector of ini-
tial model values

(b) negative samples are removed,
wn = zn, where zn is a vector of in-
put sample values

Figure 4.5: Comparison of the mean total modeling errors in dB of the LS method in the value domain
(dashed lines) and the proposed method in the argument domain (solid lines) in the case of uniform
sampling and a variable number of input samples for different ROI widths determined by the factor k and
different SNRs: 20 dB (red), 40 dB (green), 60 dB (blue), and 80 dB (black).

4.1.10 Discussion

This subsection analyses the influence of each input parameter given in Table 4.3 on the estima-

tion accuracy of the proposed method. In the case of using input sample values as estimation

weights, the weighted squared residual error is the same whether the negative samples are re-

moved or set to eps. Since the squared residual error between the log of eps and the log of

model value is further weighted with eps2, it does not contribute to the total error sum, thus

achieving the same effect as the negative sample removal. However, when the model values
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are used as estimation weights in the log domain, setting negative samples to eps or removing

them yields different estimation results. Namely, the log transform of such a small value (eps)

yields a significant negative value. The initial moment-based model is sensitive to noise and

imprecise at wide ROIs where negative samples typically occur and yields falsely and poten-

tially more enormous model values at those positions than eps. When such a model value is

used as a weight at a place of negative input sample set to eps, it can significantly degrade the

estimation since such weight is false and arbitrary. This can be observed only for the lowest

SNR ratio of 20 dB when such negative samples predominantly occur and, of course, only for

the widest ROIs. For narrower ROIs, the probability of negative samples is lower, even for such

low SNRs, so it is much better to remove negative samples from the estimation process and

avoid the problems of weight selection. Therefore, using the initial model values as weights

yields better results only if negative samples are removed and SNR is sufficiently high.

In addition, the experimental results show that the contribution of differential entropy com-

pensation is not ideal. For example, in the case of a fixed number of input samples, an alignment

of the error curves similar to the estimation in the value domain is achieved, but these curves

are still not wholly flat across all ROI widths.

Noise level compensation performed by predicting the expected number of negative samples

for a given width and SNR also does not significantly improve the estimation accuracy in the

log domain since these negative samples occur mainly for very low SNRs and wide ROIs. In

these cases, the problem is not a lack of valid positive samples but rather a poor approximation

of quadratic error in the value domain by the weighted quadratic error in the argument domain

using the weights that describe only the first term of Taylor’s series of that approximation. Such

simplified weights are insufficient for considerable errors when measurements significantly de-

viate from the given model.

4.1.11 Method’s complexity

The complexity of the proposed two-step method in the argument domain is comparable to the

complexity of only a single iteration of the LS method in the domain of values that simultane-

ously estimates all profile parameters using Newton’s optimization technique that requires the

calculation of analytical derivatives and Hessian matrix concerning all profile parameters.

The complexity of both methods is parameterized with the dimension of the Gaussian profile

n and the number of estimation input samples m. The number of input samples m must be at

least equal to the number of unknowns, which is of order n2. When the number of input samples

is of order n2, the complexity of both methods in a big O notation is O(n6). For the number of

input samples of order n3 or higher, the complexity of both methods in a big O notation equals

O(mn4).

Although the complexity of a single iteration is comparable, we have experimentally de-
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termined that the proposed method converges in at most four such iterations since most of the

optimal model parameters are found analytically, which explains the significant advantage of

this method.

4.1.12 Iterative method’s convergence

This subsection explains the proposed iterative method’s convergence, where the centroid and

the covariance matrix are updated alternately. If the given initial centroid is close enough to

the actual solution and the estimation weights are fixed, the proposed method’s first step finds a

unique solution that minimizes the objective function by solving a system of linear equations.

The proof of this statement with the description of exceptions is given in subsection 4.1.3.

In the second step of the method, we search for a better centroid that gives a smaller

weighted squared error than the centroid from the previous iteration for the calculated covari-

ance matrix by solving the system of coupled nonlinear equations. Due to the minimization

criterion itself and the fixed estimation weights, an iterative optimization procedure such as

Newton’s method returns, in the worst case, the current centroid, and the iterative procedure

terminates. In all other situations, the new centroid will yield a better fit (smaller value of the

objective function), and a new estimation of the covariance matrix and scale can be performed

for the new centroid position, further improving the model fit. The method can get stuck in

a local minimum if the initial centroid is far from the real solution or if SNR is low. How-

ever, the method’s first step with the analytical solution and the fixed estimation weights ensure

convergence, at least according to the local minimum.

4.2 Analytical method for centroid estimation

There are many papers which deal with centroid estimation of Gaussian profile from noisy

measurements [41, 48, 48, 49, 49, 52, 52, 55, 56, 59, 62, 82, 83, 84, 85, 86]. This section

represents an extension of the proposed two-step method for multidimensional Gaussian profile

fitting in the argument domain where the estimation of the centroid in the second stage of the

method is also analytical, but only for the 2D case. The same objective function (4.13) is

minimized to find the optimal solution for centroid where the ith sample’s error is

e(i)arg = lnz(i)n − ẑ0 +
1
2
(x(i)−µ)T

Σ̂
−1
(x(i)−µ), (4.46)

w(i)
n = z(i)n ,∀i ∈ ROI, and the total number of input samples is m.

The centroid estimation is reduced to fitting an elliptical paraboloid of the known shape

determined by the covariance matrix Σ̂ and the residual vertical shift of the log target ẑ0 to

the logarithm of normalized input noisy data by finding the solution for an optimal centroid
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position µ̂ = [x0,y0] in the weighted least squares sense [87]. The logarithm of the normalized

noisy input data is shown in Fig 4.6.

Figure 4.6: Logarithm of the noisy 2D Gaussian profile values

To minimize such an objective function, which is the 4th order polynomial in two variables

of the form

D(x0,y0) = d40x4
0y0

0 +d31x3
0y0 + ...+d01x0

0y1
0 +d00, (4.47)

it is necessary to find the centroid position where the gradients of the objective function con-

cerning both x0 and y0 variables are simultaneously zeros (∇D(µ) = 0) and where the Hessian

matrix is positive definite, and in the case of multiple solutions, the one with the minimum

objective function value has to be selected as the global minimum.

The gradients of the objective function (4.13) with respect to the centroid position (x0,y0)

in the matrix form are given in (4.24) which are two bivariate cubic polynomials in µ = [x0,y0]

as follows

g1(x0,y0) =
∂D
∂x0

= a1x3
0 +a2x2

0 +a3x0 +a4y3
0 +a5y2

0

+a6y0 +a7x2
0y0 +a8x0y2

0 +a9x0y0 +a10,

(4.48)

g2(x0,y0) =
∂D
∂y0

= b1x3
0 +b2x2

0 +b3x0 +b4y3
0 +b5y2

0

+b6y0 +b7x2
0y0 +b8x0y2

0 +b9x0y0 +b10,

(4.49)

with ten nonzero coefficients in each gradient polynomial: a1, ..,a10, for g1(x0,y0), and b1, ..,b10

for g2(x0,y0). The unique terms of the inverse covariance matrix Σ
−1 are for simplicity denoted
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with C11, C12, and C22. The coefficients of the gradient polynomials are

a1 =C2
11s1, b4 =C2

22s1,

a2 =−3C11s2, b5 =−3C22s3,

a3 = 2s4 +2C11s7, b3 = 2s6 +2C12s7,

a4 =C12C22s1, b1 =C11C12s1,

a5 =−C22s2−2C12s3, b2 =−C11s3−2C12s2,

a6 = 2s6 +2C12s7, b6 = 2s5 +2C22s7,

a7 = 3C11C12s1, b8 = 3C22C12s1,

a8 = (C11C22 +2C2
12)s1, b7 = (C11C22 +2C2

12)s1,

a9 =−4C12s2−2C11s3, b9 =−4C12s3−2C22s2,

a10 =−2s8, b10 =−2s9,

which contain, except the terms of the inverse covariance matrix, the nine composite sums

(s1, ..,s9) as functions of the terms of inverse covariance matrix again and input samples’ posi-

tions, values, and weights, which form the 13 auxiliary sums s jkl = ∑
m
i=1 wix

j
i yk

i zl
i as follows:

s1 = s000,

s2 =C11s100 +C12s010,

s3 =C12s100 +C22s010,

s4 =C2
11s200 +2C11C12s110 +C2

12s020,

s5 =C2
12s200 +2C12C22s110 +C2

22s020,

s6 =C11C12s200 +(C11C22 +C2
12)s110 +C12C22s020,

s7 = 1/2(C11s200 +2C12s110 +C22s020)− s001,

s8 = 1/2(C2
11s300 +3C11C12s210 +(C11C22 +2C2

12)s120

+C12C22s030)−C11s101−C12s011,

s9 = 1/2(C2
22s030 +3C12C22s120 +(C11C22 +2C2

12)s210

+C11C12s300)−C12s101−C22s011.

Finding a minimum of an objective function D(µ) concerning the centroid µ is a non-trivial

problem since it requires, in this case, solving the nonlinear system of two coupled bivariate

cubic polynomials. The solution of such a nonlinear system of equations is usually searched

for by utilizing iterative optimization techniques such as Newton’s method or trust region al-

gorithm [88]. However, the iterative techniques require high computational costs and highly

depend on an initial guess for the centroid.
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4.2.1 Method of resultants

To analytically estimate the optimal solution for the centroid by minimizing (4.47), the neces-

sary condition on µ̂ is ∇D(µ̂) = 0, i.e., gradients in both directions must be zero. To solve this

system of nonlinear equations, the theory of resultants [78] is applied. The resultant is a deter-

minant of the Sylvester matrix [89], formed from the coefficients of two gradient polynomials.

The auxiliary resultant polynomial, obtained by calculating this determinant, is equal to zero

only when both gradient polynomials have a common root [90]. To solve the bivariate nonlin-

ear system, two Sylvester matrices and two resultants were calculated where each resultant is a

function of one variable (x0 or y0), while the other variable is treated as a constant,

Res(g1,g2,y0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ay3 0 0 by3 0 0

ay2 ay3 0 by2 by3 0

ay1 ay2 ay3 by1 by2 by3

ay0 ay1 ay2 by0 by1 by2

0 ay0 ay1 0 by0 by1

0 0 ay0 0 0 by0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= ry5x5
0 + ry4x4

0 + ry3x3
0 + ...+ ry0 , (4.50)

where ay3 = a4,ay2 = a5 + a8x0,ay1 = a6 + a9x0 + a7x2
0,ay0 = a10 + a3x0 + a2x2

0 + a1x3
0,by3 =

b4,by2 = b5 +b8x0,by1 = b6 +b9x0 +b7x2
0,by0 = b10 +b3x0 +b2x2

0 +b1x3
0, and

Res(g1,g2,x0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ax3 0 0 bx3 0 0

ax2 ax3 0 bx2 bx3 0

ax1 ax2 ax3 bx1 bx2 bx3

ax0 ax1 ax2 bx0 bx1 bx2

0 ax0 ax1 0 bx0 bx1

0 0 ax0 0 0 bx0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= rx5y5
0 + rx4y4

0 + rx3y3
0 + ...+ rx0 , (4.51)

where ax3 = a1,ax2 = a2 + a7y0,ax1 = a3 + a9y0 + a8y2
0,ax0 = a10 + a6y0 + a5y2

0 + a4y3
0,bx3 =

b1,bx2 = b2 +b7y0,bx1 = b3 +b9y0 +b8y2
0,bx0 = b10 +b6y0 +b5y2

0 +b4y3
0.

The determinants of these Sylvester matrices are found symbolically, yielding two resultant

polynomials with 6 coefficients in each polynomial (ry0 , ..,ry5 ,rx0 , ..,rx5). These coefficients are

functions of 9 composite sums (s1, ..,s9) and the three unique terms of the inverse covariance
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matrix (C11,C12,C22). Generally, two bivariate cubic polynomials yield two resultant polyno-

mials of the 9th order. However, we obtained two resultants of the reduced 5th due to common

terms in coefficients of gradient polynomials. Since the resultant is a polynomial of 5th order

in one variable, each resultant yields 5 roots. Only the real roots should be considered, which

can be 1,3, or 5. Even though the maximal number of possible combinations of solution is 25,

we have experimentally verified that it is always at most 5. The second derivative test can be

applied to multiple stationary points to inspect which of the stationary points are minima in-

deed. Finally, the objective function has to be evaluated for all minima to find the global one.

The explained procedure has to be performed only if the number of input samples is very small

and comparable with the number of unknowns since, only in those situations, up to 5 stationary

points may occur. When the number of input samples is larger, there is only one combination

of real roots, which is also the global minimum indeed.

The analytical results of centroid estimation were compared with those obtained by fminunc

function in MATLAB, which uses the iterative procedure for nonlinear optimization, and the

results are shown in Figs. 4.7 and 4.8.

(a) SNR = 10dB, nsamp = 2, k = 1 (b) SNR = 20dB, nsamp = 2, k = 2 (c) SNR = 80dB, nsamp = 5, k = 3

Figure 4.7: Objective function and stationary points (cyan), iteratively obtained minimum (red), and
analytically obtained minimum (blue)

The results show that the number of stationary points, and consequently possible differ-

ence of iterative and analytical solution for centroid, depends on the given signal-to-noise ratio

(SNR), the number of input samples, and the closeness of the input samples’ positions to the

actual centroid position. The number of extrema increases with the expansion of the input do-

main from the actual centroid position. The number of extrema and the equality of analytical

and iterative solutions also depend on the given SNR. The experimental results show that for the

case of low SNRs, the iterative and analytical procedures yield different solutions more often

since the iterative methods can get stuck in the local minimum while the proposed analytical

approach always yields the global minimum. The number of extrema reduces when the number

of samples is much larger than the number of unknowns. In most cases, when the number of
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(a) nsamp = 5,niter = 500 (b) nsamp = 10, niter = 500

(c) nsamp = 5, niter = 500 (d) nsamp = 10, niter = 500

Figure 4.8: Percentage of multiple real roots and different iterative and analytical solutions for different
factors of Mahalanobis distance and SNRs

input samples is large enough, there is only one extremum, which is the minimum, and both

analytical and iterative procedures yield the same solution.

4.2.2 Accuracy of the method of resultants in centroid estimation

To analyze the accuracy and the speed of the proposed method of resultants in centroid estima-

tion of the 2D Gaussian profile from noisy data, the proposed method results were compared

with the results of the center-of-gravity (CoG) method in the domain of values and the iterative

LS method w/wo provided analytical gradients of the objective function. The actual 2D Gaus-

sian profile parameters were: the centroid position µ = [x0,y0] = [1,1], the linear A = 1000,

and the unique inverse covariance matrix terms (C11,C12,C22) = (5/8,−3/8,5/8). The profile

with the specified parameters was synthesized and first evaluated over uniformly and randomly

sampled ROI. The additive Gaussian noise εi was added to the ideal sample value to satisfy the
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required signal-to-noise ratio (SNR) defined as SNRdB = 20log10
A/(2π
√
|C|)

σε
, where σε denotes

the standard deviation of the added noise. Two types of estimation domains were considered:

symmetrical input domain within maximal Mahalanobis distance k = 3 from the given centroid

position, and asymmetrical and truncated input domain as shown in Figs. 4.9a and 4.9b.

(a) Symmetric estimation domain (k≤ 3,m=
1897).

(b) Truncated estimation domain (k ≤ 3,x <
0,y > 0,m = 306).

Figure 4.9: Estimation domain with uniformly distributed positions of input samples

The Monte Carlo simulation was performed for different numbers of input samples from the

set m = {4,40,400,4000} and different SNRs from the set SNRdB = {10,20,30,40,50,60}.
The number of trials in Monte Carlo simulations depended on the number of input samples and

was niter = {50000,5000,500,50}, respectively, so that the product of the number of trials and

the number of input samples was constant, making the centroid estimator equally reliable for

all cases.

The experiments were conducted on a 2.5 GHz Intel Core i5 processor with 8 GB of RAM

under the Matlab environment. The solution of the CoG method was provided as an initial guess

for the iterative LS method, which uses the native MATLAB fminunc. For the case of specified

analytical gradients, the gradient descent method was used. The maximal number of function

evaluations was limited to 500, while the optimality tolerance and the current point tolerance

were set to 10−14. As a measure of accuracy, the mean squared error (MSE) of the form

MSE(µ̂) = E[||µ̂−µ||2]≈ 1
niter−1

niter

∑
i=1
||µ̂ i−µ||2 (4.52)

was used to simultaneously take into account the influences of both the estimator’s variance and

its bias.

Fig. 4.10 clearly illustrates the advantage of the proposed method of resultants in centroid

estimation. Namely, when the number of input samples m is small and comparable with the

number of unknowns and the SNR is high, the multiple stationary points occur, and the iterative
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(a) Initial and final points of the LS method (blue
arrows). Plus signs denote the initial centroids. Yel-
low shows the surface domain in (b).

(b) The objective with two minima and one inflec-
tion (cyan) (LS minimum (blue), minimum of re-
sultants (red)).

Figure 4.10: Comparison of the LS method and the method of resultants for different initial centroids
using the same 4 input samples (green). SNRdB = 60.

LS method can get stuck in a local minimum if the initial guess for the centroid position is far

from the actual (Fig. 4.10a). However, the proposed method of resultants calculates the first

and the second derivative tests for all stationary points to find the global minimum without any

initialization.

MSEs in centroid estimation of the 2D Gaussian profile for the case of symmetric and asym-

metric estimation domains are shown in Fig. 4.11. For the case of the symmetric input domain,

the MSEs are primarily caused by the estimators’ variances. The variances and, consequently,

MSEs of the CoG method are invariant of SNR and depend only on m. The variances and the

MSEs of the iterative LS method and the method of resultants reduce with the increase of m,

but also with the increase of SNR. The 10-fold increase in m reduces the estimation variance 10

times (10 dB MSE reduction, as expected). The iterative LS and the resultant methods achieve

the same MSEs for larger m (m ≥ 40). However, for a small m, as for m = 4, the method of

resultants has a much smaller MSE due to optimality, especially for higher SNRs. Namely, in

those situations, the objective has multiple stationary points, and the iterative LS method can

end up in a local minimum, depending on the initial guess for the centroid. The method of

resultants always yields the global minimum, even for the small m (red line).

For the case of the asymmetric estimation domain, the CoG method has large and constant

MSEs for all SNRs, primarily due to the inherent bias. The iterative method and the method of

resultants exhibit nonlinear behavior with lower asymptotic efficiency, especially for small m

and low SNRs, due to higher bias and higher variance. However, for small m and high SNRs,

the method of resultants yields much smaller MSEs again.
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(a) Symmetric input domain (k ≤ 3) (b) Asymmetric input domain (k ≤ 3,x < 0,y >
0).

Figure 4.11: MSEs in dB of the method of resultants (red), the LS method (blue), and the CoG method
(green) for different numbers of input samples m: 4 - diamonds, 40 - circles, 400 - squares, 4000 -
triangles (m ·niter = 200000).

4.2.3 Complexity of the method of resultants in centroid estimation

The computational complexity of the resultant method consists of variable and fixed parts. The

variable part is related to the calculation of 9 composite sums (s1, ..,s9). It linearly depends on

the number of input samples m and equals 12m+ 44 multiplications and 13m+ 11 additions,

which are MAC operations. The fixed part is related to the formation of coefficients in resultant

polynomials in (4.50) and (4.51). The calculation of coefficients requires 9296 multiplications

and 1594 additions. Using the composite sums (s1, ..,s9) instead of simple sums s jkl in analyt-

ical expressions reduces the total number of numerical operations by 43%. Finally, the fixed

part also includes the polynomial rooting complexity.

The complexity of the method of resultants is compared with the iterative LS method, with

and without analytical gradients, and with the CoG method by measuring the average elapsed

time for different numbers of input samples. The log-log plots of average elapsed times for

symmetric and asymmetric input domains are shown in Fig. 4.12. The CoG method is the fastest

but with the least accuracy. The proposed method of resultants is much faster than the iterative

LS method, especially when the gradients are calculated numerically, 5 to 9 times in the case

of symmetric and 8 to 19 times in the case of asymmetric input domain. When the analytical

gradients are provided, this relative difference is reduced, but the method of resultant is still 3

to 4 times faster in the case of symmetric and 4 to 7 times faster in the case of asymmetric input

domain.

90



Multidimensional Gaussian profile fitting

(a) Symmetric input domain (4.9a) (b) Asymmetric input domain (4.9b)

Figure 4.12: Log-log plots of average elapsed times of the resultant method, the LS method with and without
analytical gradients, and the CoG method for different numbers of input samples m (SNRdB = 30 and m · niter =
400000).
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Chapter 5

Low-dose 2D PET imaging

Positron emission tomography (PET) is a medical imaging technique widely used for diagnos-

ing and monitoring various diseases [91, 92]. The accurate and fast reconstruction of underlying

unknown volume from the acquired PET data is the subject of many research works. In this sec-

tion, only the 2D PET imaging is considered, i.e., only the transversal slices of the unknown

3D function are considered. In the proposed algorithms for the 2D PET reconstruction, the

acquired data are coincident events proportional to the activity of the radiotracer injected into

the patient’s body. Namely, the radiotracer is metabolized in the places of the unknown process

samples, thus generating the annihilation photons that travel in opposite directions along the

straight lines, also called the lines of response (LORs). Two photons detected in the sufficiently

short time window make a coincident event detected by the PET scanners typically placed at

the ring surrounding the patient’s body and the edge of the field of view (FOV). In the ideal

noiseless case, the number of coincident events detected by the pair of detectors is proportional

to the activity of the radiotracer in the space between those detectors. The detected coincident

events represent the acquired PET data, which are further used in the reconstruction process.

The aim of this research is to reduce the dose of injected radiotracer by proposing a method

for 2D PET image reconstruction from a small number of process samples using the intersec-

tions of LORs. Each point source of the underlying unknown process generates a series of

LORs at random angles. The number of generated LORs in a given time depends on the ac-

tivity of the particular point source, i.e., the amount of radiotracer comprised in that spatial

point. Information about the point source’s activity is obtained through a long-term acquisition

process due to the quantum nature of coincident events, i.e., an integer number of generated

LORs. Such a long-term acquisition aims to obtain activity information about all point sources

within the volume of interest throughout the entire acquisition period. A shorter acquisition

time limits the number of generated LORs, directly impacting the accuracy of measurements

and reconstruction. The parameters of LORs, the signed distance s between the LOR and the

origin of the coordinate system, and angle θ , which specifies the LOR’s orientation, are deter-
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mined in the detection process. At the same time, the information on the actual point source

position along the LOR remains unknown. The motivation for using the intersections of LORs

as starting points to generate virtual LORs is their quadratically larger number and the fact that

the distribution of process samples is related to the distribution of intersections of LORs, as

described later in this chapter. Namely, the number of intersections of LORs Nc is associated

with the number of coincident events (LORs) N as Nc = N(N−1)/2. It is especially interesting

to use the intersections of LORs for generating virtual LORs in the cases of extra-low-dose PET

imaging where the number of coincident events is extremely small. It is proposed that the inter-

sections of LORs can be used as a new technique of PET data acquisition since the mean and

the covariance matrix of the process samples and those of intersections of LORs are related.

Moreover, the reconstruction from such a small number of process samples can significantly

improve the temporal resolution of the reconstruction. It can be used in dynamic PET imaging,

where fast reconstruction is extremely important.

This chapter consists of several sections. Section 5.1 describes 2D PET imaging and pro-

vides an overview of existing methods for reconstructing the unknown underlying process in

2D PET. Section 5.2 describes a proposed method for data acquisition in low-dose 2D PET

images, which uses intersections of LORs to generate more virtual LORs and thereby increase

the available dataset. In the following, the analytical relationship between the spatial statistical

properties of the process and the intersections of LORs is described in detail. In addition, few

experiments were made to demonstrate the effectiveness of the proposed method. At the end of

the chapter, there is a discussion about the advantages and drawbacks of the proposed method

and suggestions for further research directions.

5.1 2D PET imaging

In 2D PET imaging, the detected LORs are used for the reconstruction of 2D images, i.e., slices

that can be stacked to form the unknown 3D volume activity. Each LOR is parametrized with the

angle θ and the signed distance s of the LOR from the origin of the coordinate system located at

the center of FOV. The LORs are generated at places of the underlying process samples and are

recorded in the 2D function called a sinogram. The sinogram is a 2D histogram of coincidental

events for all (θ ,s) pairs across all angles θ ∈ [0,π] and distances |s| < R f where R f is the

radius of the FOV. Geometrically, the sinogram represents the set of projections, a line integrals

of the unknown 2D object activity over all angles θ and distances |s|< R f . The name sinogram

comes from the fact that a single point source of the unknown 2D object is mapped into a single

sinusoid in the sinogram, as shown in Fig. 5.1a. One column of the sinogram represents a

projection at a single angle along all parallel LORs at distances |s| < R f (Fig. 5.1b). Unlike

other medical imaging techniques such as CT or MRI, the choice of desired projection angle
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θ is not feasible during PET imaging, but a 2D histogram is formed by simply counting the

discrete coincident events that belong to particular discretized angle θ and signed distance s.

The suitable discretization step of θ and s sinogram parameters is determined by the number

of detectors Nd at the edge of FOV and their mechanical properties. The number of detected

coincident events from which the underlying process is reconstructed is usually huge and can

exceed 109 with modern PET scanners.

(a) Projection of the one process sample across all angles

(b) Projection of the unknown process at a single angle along all parallel LORs

Figure 5.1: 2D PET imaging

5.1.1 Data acquisition in 2D PET

The 2D PET data are projections p, i.e., the line integrals of the unknown 2D function f (x,y)

along the LORs. The projection at the specified distance s and angle θ can be calculated as

p(s,θ) = X f (x,y), where the operator X is called the X-ray transform [93], i.e., Radon trans-

form of the function f (x,y) along the LOR as follows

p(s,θ) = X f =
∫

∞

u=−∞

f (x = scosθ−usinθ ,y = ssinθ + t cosθ)du, |s|< R f ,θ ∈ [0,π] (5.1)
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where u is the integration variable along the chosen integration line (LOR) with the angle θ .

Due to the uniform distribution of detectors over the edge of the circular FOV and their finite

number Nd , the set of possible pairs of variables s and θ in the sinogram is finite and prede-

termined. However, the uniform distribution of detectors over the circular FOV causes a non-

uniform distribution of areas covered by the individual detector pairs in the spatial domain and,

consequently, the non-uniform distribution of corresponding projection areas in the sinogram.

Examples of the uniform distribution of 16 detectors over the ring of the FOV and the non-

uniform distribution of projection areas in the sinogram, which are associated with individual

detector pairs, are shown in Fig. 5.2.

(a) PET scanner with Nd = 16 detectors uniformly dis-
tributed over the ring of FOV and LORs that connect
all possible detector pairs. Detector centers are denoted
with blue dots, while edges are denoted with red dots

(b) Non-uniform distribution of acquired 2D
PET data in sinogram and the projection areas
related to particular detector pairs

(c) Green and red LORs which correspond to
uniformly sampled green and red polygons in
sinogram

Figure 5.2: 2D PET data acquisition
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In order to use the acquired sinogram data in analytical reconstruction algorithms, it is often

necessary to resample the data on a uniform rectangular grid in the variables s and θ . In [94], it

is recommended to use the following discretization of the sinogram

sk = k∆s, −Ns < k < Ns,Ns = Nd/π, ∆s = R f π/Nd, (5.2)

θ j = j∆θ , j = 0, ..,Nθ −1,∆θ = 2π/Nd,Nθ = Nd/2. (5.3)

The coincident event determined with its actual measured s and θ value pair joins the nearest bin

in a uniformly sampled sinogram based on the smallest distance to the center of that bin. There-

fore, the accuracy of the spatial localization of the LOR depends on the sensor’s geometrical

dimensions and the number of sensors in the ring.

5.1.2 2D PET image reconstruction techniques

The reconstruction problem involves determining the unknown distribution f (x,y) from the set

of projections p. The proposed techniques for 2D PET data reconstruction from projections can

be divided into analytical and iterative reconstruction techniques. The review of the proposed

methods can be found in [94, 95, 96, 97]. Analytical reconstruction techniques assume that the

data are deterministic, the acquisition process is noiseless, i.e., data are pre-corrected by remov-

ing the scattering, attenuation, and random events, and the reconstruction can be described as a

linear inverse problem [94]. These methods are based on the central slice theorem [98], which

states that the 1D Fourier transform of projection at angle θ across all parallel LORs is identical

to the section through the center of the 2D Fourier transform of the 2D object activity at the

same angle θ . The most widely used technique from this group is the Filtered back-projection

(FBP) [93, 98] due to the fast reconstruction and the ability of noise control.

The other group of techniques includes iterative reconstruction techniques, which iteratively

correct the unknown 2D image to achieve that the projections of a corrected image are the most

similar to the given projections. The Maximum Likelihood Expectation Maximization (MLEM)

and Ordered Subset Expectation Maximization (OSEM) [94] are the most important methods

from this group.

Many researchers attempt to reconstruct the standard-dose PET image from the low-dose

PET inputs to reduce the risks of radiation exposure in PET imaging. Since low-dose PET

imaging implies the reduction of the injected radiotracer, the main challenge in low-dose PET

imaging is the low signal-to-noise ratio (SNR) and, consequently, the low quality of the re-

constructed image. The hardware performance or software techniques should be improved to

achieve the standard-dose PET image quality from the low-dose inputs. The hardware perfor-

mance can be improved by enhancing the sensitivity of PET sensors [99], thus increasing the

percentage of detected events and reducing the attenuation and scattering. On the other hand,
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there are many software techniques based on the image pre- or post-reconstruction denois-

ing [100] or techniques that combine the low-dose PET inputs with inputs from other imaging

modalities such as CT or MRI [101]. In [102], an iterative method was proposed that considers

the low-dose reconstruction problem as a convex optimization problem combining a sinogram

with the regularization term, which suppresses noise. In recent times, increasingly popular be-

come machine learning [103, 104] and deep learning methods [105, 106, 107] which use both

low-dose and standard-dose images to train models that can predict standard-dose images from

low-dose inputs. However, the computational complexity of the mentioned reconstruction tech-

niques is higher than the complexity of the simple analytic filtered back-projection algorithm.

5.1.3 Discrete Filtered Backprojection

Discrete Filtered Backprojection (FBP) method implies reconstruction of 2D function f (x,y)

by the back projection X∗ of filtered projections pF as

f (x,y) = X∗pF(x,y)≈ ∆θ

Nθ−1

∑
j=0

pF(s,θ j) (5.4)

where the variable s = xcos(θ j)+ ysin(θ j) and the filtered projections are calculated from the

convolution of projections with the apodized ramp filter h as

pF(k∆s,θ j)≈ ∆s
Ns

∑
k′=−Ns

p(k′∆s,θ j)h((k− k′)∆s), (5.5)

k =−Ns, ..,Ns (5.6)

h(s) =
∫

∞

−∞

exp(2π jsωs)w(ωs)|ωs|dωs, (5.7)

where ωs is the frequency related to the variable s, and w(ωs) is the low-pass filter that sup-

presses the noise dominant at high frequencies [95, 108]. A frequently used low-pass filter is

the Hamming window

wham(ωs) =

(1+ cos(πωs/ωc))/2, |ωs|< ωc

0, |ωs|> ωc,
(5.8)

where ωc denotes the cut-off frequency. The filtered projection at a specified point (s,θ j) can

be obtained by linear interpolation of the closest available projections as

pF(s,θ j)≈ (k+1− s
∆s

)pF(k∆s,θ j)+(
s

∆s
− k)pF((k+1)∆s,θ j), (5.9)

where k∆s≤ s < (k+1)∆s. The back-projection operator X∗ is the dual of the X-ray transform.

Filtering sinogram projections is necessary since the back projection of sinogram projections
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without filtering would yield a blurred reconstructed image. The blurring of the reconstructed

image can be described as a convolution of an ideally reconstructed image with the cone fil-

ter [98] as a consequence of line integration and loss of information about the sample position

along the LOR. Namely, the constant value is back-projected along the whole LOR in the back-

projection step. In the ideal continuous case, the filtering of projections with a 1D ramp filter

enhances the high frequencies and enables the reconstruction of the ideal 2D image but also

enhances the noise, which is dominant at high frequencies. Therefore, the low-pass filter w(ωs)

is introduced to suppress the noise influence at high frequencies. Determining the cutoff fre-

quency of such a filter represents the trade-off between noise and spatial resolution.

5.1.4 Maximum likelihood expectation maximization algorithm for 2D
PET image reconstruction

The maximum likelihood expectation maximization (MLEM) is an iterative algorithm similar to

the Lucy-Richardson deconvolution algorithm for astronomical images. The MLEM algorithm

consists of a series of successive projections and back projections, which are used for iterative

image correction, and can be described in a simplified manner as

Image(next) = Image(current) ·
Backproject

{
Measured projections

Projections of Image(current)

}
Backproject{1}

, (5.10)

where the measured projections represent the sinogram of detected coincident events (LORs),

Image(current) is the current estimate of the reconstructed image, and 1 is the matrix of ones

whose size is equal to the sinogram size. The algorithm assumes that the number of detected

LORs, i.e., the number of photons emitted from each image pixel is a Poisson random variable.

The objective function of the MLEM algorithm is the Poisson likelihood function, which is the

joint PDF of Poisson random variables. The solution, i.e., the reconstructed image, is iteratively

searched for in two steps. The expectation of this likelihood function for the current image

estimate and measured projections is calculated in the first "E" step. The expected likelihood

function is maximized to update the current image estimate in the second "M" step. These

two steps are iteratively exchanged until convergence. This algorithm is described in detail

in [109, 110].

5.1.5 Low-dose 2D PET imaging

The application of analytical reconstruction algorithms assumes the uniformly resampled sino-

gram obtained from a large number of coincident events. The reconstruction spatial resolution

and accuracy depend on the sinogram spatial resolution but also on the SNR of the sinogram val-
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ues (i.e., counts). In the low-dose 2D PET imaging, the dose of radiotracer and, consequently,

the number of coincident events is extremely small. The small number of coincident events

produces a sparse sinogram with many empty bins as consequence of the detection process that

follows the Poisson distribution. In that case a further increase of the sinogram spatial resolution

can not improve the reconstruction accuracy. Contrarily, the pre-undersampling of such a sino-

gram by grouping and summing the consecutive rows of the sinogram can enhance the quality

of the reconstruction but at the expense of lower spatial resolution. The number of coincident

events is directly proportional to the integration time and volume activity that depends on the

amount of injected radiotracer. The main idea of this research is to reduce the amount of injected

radiotracer while still enabling the detection and reconstruction of the underlying 2D process

representing a chosen slice of the inspected volume. Furthermore, monitoring the dynamic un-

derlying process requires high temporal resolution. The spatial resolution, temporal resolution,

and the amount of injected dose are in triangular relation, as shown in Fig. 5.3. The reduction

Figure 5.3: The relation between the radiotracer dose, spatial resolution, and temporal resolution

of radiotracer dose or reduction of the integration time decreases the number of acquired coin-

cident events, thus causing a necessary reduction of the sinogram spatial resolution to achieve

the required SNR (events per bin), but at the same time increasing the temporal resolution due

to shorter integration. To achieve higher spatial resolution, either dose must be increased or

integration lengthened, thus causing lower temporal resolution for dynamic events. Finally, the

reconstruction accuracy is also limited by the minimum number of required samples (and cor-

responding LORs) that should be large enough to represent the unknown underlying process

statistically.

5.2 Proposed method for low-dose 2D PET imaging

The peculiarity of this research represents the utilization of intersections of LORs as starting

points for the artificial generation of a more significant number of coincident events whose sta-

tistical properties are inherited from the properties of the underlying unknown process. To the

best of our knowledge, this is the first mention of using the intersections of LORs for boosting

the number of coincident events and PET image reconstruction. In this research, the virtual

LORs are generated at the places of intersections of original LORs to boost the available PET
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dataset. The relation between the spatial distribution of intersections of LORs and the dis-

tribution of process samples from which those LORs originate is derived. It sets the ground

for reconstructing an unknown 2D function from a small number of process samples and cor-

responding LORs, i.e., by using a very low dose of the injected radiotracer. Otherwise, the

reconstruction from such a small number of LORs using conventional methods would be al-

most impossible, as it is demonstrated in the following sections. However, such an approach

has a drawback since the image reconstructed from virtual LORs is biased due to the difference

between spatial distributions of intersections and the original process samples, and it also has

an estimation variance due to the finite (small) number of underlying process samples (LORs)

that are used for reconstruction. This variance can be reduced by increasing the integration

time (i.e., using a larger sample size) or by averaging several neighboring reconstructions from

virtual LORs drawn from different process samples, but the estimation bias remains. Since the

number of virtual LORs is quadratically larger than the number of process samples, a relatively

high spatial and temporal resolution can be achieved simultaneously by using the virtual LORs,

while the amount of injected radiotracer can be significantly reduced.

5.2.1 The first and the second moments of intersections of LORs and their
relationship to corresponding moments of the original process

This section describes how the parameters of the real-valued 2D unknown distribution, the first

and the second moment are related to the first and the second moments of intersections of LORs,

where the LORs pass through the random process samples. Let z1 = (x1,y1)
T and z2 = (x2,y2)

T

be two points drawn from an arbitrary distribution with the finite first and the second moments,

i.e., the covariance matrix C =

C11 C12

C21 C22

 and the mean value µ = [µx,µy]. The process mean

µ and the covariance matrix C can be computed as µ = E[z] and C= E[(z−µ)(z−µ)T ], where

E denotes the expectation.

Let each of the two points has an associated LOR

y− y1 =
s1

c1
(x− x1),y− y2 =

s2

c2
(x− x2), (5.11)

where s1 = sin(θ1), s2 = sin(θ2), c1 = cos(θ1), c2 = cos(θ2), while LOR angles θ1 and θ2 are

assumed to be random variables with uniform distribution in the range from −π/2 to π/2. The

intersection point zs = (xs,ys) can be found as the intersection of these two lines:

ys− y1 =
s1

c1
(xs− x1),ys− y2 =

s2

c2
(xs− x2), (5.12)
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or in the matrix form

zs =

xs

ys

=
1

c1s2− c2s1
·

−c2s1 c1c2 c1s2 −c1c2

−s1s2 c1s2 s1s2 −c2s1





x1

y1

x2

y2


. (5.13)

The expectation of intersections is

E[xs] = E
[c1c2y1− c1c2y2− c2s1x1 + c1s2x2

c1s2− c2s1

]
= E

[c1c2− c1c2

c1s2− c2s1

]
µy +E

[−c2s1 + c1s2

c1s2− c2s1

]
µx = µx,

(5.14)

E[ys] = E
[c1s2y1− c2s1y2− s1s2x1 + s1s2x2

c1s2− c2s1

]
= E

[c1s2− c2s1

c1s2− c2s1

]
µy +E

[ s1s2− s1s2

c1s2− c2s1

]
µx = µy.

(5.15)

The equations above show that the expectation of intersections is equal to the process mean:

µs = E[zs] = µ . Once we have determined the first moment, we can also derive the second

moment of intersections which is calculated as

Cs = E[(zs−µ)(zs−µ)T ],

where E(x2
1) = E(x2

2) =C11,E(x1y1) = E(x2y2) = E(y1x1) = E(y2x2) =C12,E(y2
1) = E(y2

2) =

C22 , while mixed expectations equal zero. Finally, terms of the covariance matrix of the inter-

sections Cs =

Cs11 Cs12

Cs21 Cs22

 are connected with the terms of the covariance matrix of the process

C via the expectation of the transformation matrix M as follows
Cs11

Cs12

Cs22

= E[M]


C11

C12

C22

 , (5.16)
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where transformation matrix M is

M = k2


c2

1s2
2 + c2

2s2
1 −2s2c2

1c2−2s1c1c2
2 2c2

1c2
2

c2s2
1s2 + c1s1s2

2 −4c1c2s1s2 s2c2
1c2 + s1c1c2

2

2s2
1s2

2 −2c2s2
1s2−2c1s1s2

2 c2
1s2

2 + c2
2s2

1

 , (5.17)

where (s1,s2,c1,c2) are sine and cosine functions of random angles θ1 and θ2, while the ex-

tracted term k2 in front of the transformation matrix is

k2 =
1

(c1s2− c2s1)2 =
1

sin2(θ1−θ2)
. (5.18)

According to (5.16), the terms of the covariance matrix of an underlying 2D process C can

be calculated from the inverse of the analytically derived optimal transformation matrix E[M]−1

and the estimated terms of the covariance matrix of intersections Cs as
C11

C12

C22

= E[M]−1


Cs11

Cs12

Cs22

 . (5.19)

Expectation of the transformation matrix M depends on statistics of LOR angles. Through-

out this derivation, we assumed that the LOR angle is statistically independent of the point

source position from which the LOR originates. In subsection 5.2.3 the expectation of the

matrix M will be derived for chosen characteristic joint distribution of θ1 and θ2.

5.2.2 Underlying PDF reconstruction from intersections of LORs

To describe and compare the reconstruction of the unknown underlying 2D function from the

original and virtual LORs, two experiments were made. In both experiments, the discrete FBP

algorithm is used. In the first baseline experiment, the underlying process is reconstructed from

two sinograms: the sinogram obtained from counting the LORs at random angles that pass

through a large number of process samples, and the ideal sinogram obtained from geometrical

projections of the ideal continuous underlying process. The second experiment is an example

of extra-low-dose 2D PET imaging. It compares the reconstruction from sinograms obtained

from a small number of process samples by utilizing virtual LORs.
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Baseline FBP reconstruction from a large number of LORs

The first experiment was performed to establish the baseline using the classical FBP reconstruc-

tion algorithm on a synthetic 2D process with uniform distribution over 3×3 patches. Fig. 5.4a

shows the used 2D PDF f (x,y) which is a set of 9 uniform distributions with probabilities within

rectangular regions

p = [0.0864,0.1152,0.1537,0.0480,0.0864,0.1152,0.1921,0.0192,0.0384].

The goal of the experiment was to identify the required number of coincident events necessary

to reconstruct the given process from the sinogram. The efficiency of the discrete FBP method

in the reconstruction of an underlying process consisting of a large number of samples was

analyzed.

The process was synthesized by drawing 107 and 106 random samples from this distribution.

Each random sample generated one LOR at a random angle from the range θ ∈ [−π/2,π/2].

It is assumed that the PET detectors are on a circle of radius R f = 3
√

2/2 to ensure the whole

process fits within the FOV. Depending on the experiment, the number of detectors in the ring

was selected as Nd = 100 or Nd = 200. The discretization per variables s and θ was determined

using (5.2)-(5.3). The LOR with the positive segment on the y axis of the Cartesian coordi-

nate system has a positive sign of distance s and vice versa. The sinogram was constructed

in two ways: analytically and statistically. The analytical sinogram was made by calculating

the projection matrix from the cross-sectional areas of the original process grid (Fig. 5.4a) and

the projection grid. The projection grid rotates with an angular increment of ∆θ , and its pixel

dimensions are equal to ∆s×2R f . The results of intersections of these two grids is a projection

matrix that is ideal for the given parameters and determines the contributions of individual pro-

cess regions in each projection determined with the θ j and sk. The dimension of the projection

matrix is (2Ns + 1)×Np×Nθ where Np is the number of specified rectangular regions with

uniform probabilities (9 in our case). The ideal sinogram for the given parameters is shown in

Fig. 5.4b and was obtained by matrix multiplication of the projection matrix with the specified

process probability column over all angles and center displacements. The statistically obtained

sinograms for different numbers of process samples shown in Figs. 5.4c and 5.4d are obtained

by counting the LORs belonging to each angle index where the indices go from 0 to Nθ and

to each distance index where the indices go from −Ns to Ns. Reconstructions were made from

the obtained sinograms which were filtered with an apodized ramp filter. The larger number of

samples yields the reconstructed image closer to the one reconstructed from the ideal sinogram.

It is further shown that increasing the number of sensors Nd , and thus the number of segments

on the s axis of the sinogram, only improves the reconstruction if there are enough events. Such

a sinogram and the reconstructed image are more grainy, i.e., high-frequency noise components

are present. In such cases, the reconstruction can be improved by introducing a low-pass filter,
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(a) Underlying PDF f (x,y)

(b) Ideal sinogram obtained analyti-
cally, Nd = 200

(c) Sinogram obtained as histogram
of coincident events, N = 107, Nd =
100

(d) Sinogram obtained as histogram
of coincident events, N = 106, Nd =
200

(e) Reconstructed image from the an-
alytically obtained sinogram

(f) Reconstructed image from sino-
gram (c) filtered with the apodized
ramp filter

(g) Reconstructed image from sino-
gram (d) filtered with the apodized
ramp filter

Figure 5.4: Comparison of the reconstructed underlying PDF using the analytically and statistically
obtained sinogram from different numbers of LORs N and detectors Nd . wcuto f f = π .

i.e., by applying an apodized ramp filter, which reconstructs a more blurred image. This exper-

iment shows that high-resolution image reconstruction can only be achieved from a very large

number of events, thus requiring the injection of a high dose of radiotracer into the patient’s

body or a very long integration.

FBP reconstruction from intersections of LORs

The same procedure as in the baseline experiment was performed but on a much smaller number

of LORs (1000). Vector of probabilities within rectangular regions was in this experiment

p = [0.0539,0.1409,0.1876,0.0374,0.0767,0.1170,0.1716,0.1189,0.0960].
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The given 2D distribution shown in Fig. 5.5a was reconstructed from a very small number of

samples using the virtual LORs at places of intersections of the original LORs. The number

of process samples was 1000 and 100. The corresponding sparse sinogram and the FBP re-

construction from original LORs that pass through the process samples are shown in Figs. 5.5c

and 5.5d. The figures show that the sinogram is very sparse, and the conventional reconstruc-

(a) A set of 9 uniform distribu-
tions over 3×3 rectangular regions

(b) Ideal sinogram obtained ana-
lytically

(c) Sinogram obtained from orig-
inal LORs, N = 1000

(d) Reconstructed image from
sinogram in Fig. 5.5c

(e) Sinogram obtained from NcNθ

virtual LORs, N = 100
(f) Reconstructed image from
sinogram in Fig. 5.5e

(g) Averaged reconstructed im-
age, N = 100

(h) Variance of reconstructed im-
age, N = 100

(i) Sinogram obtained from NcNθ

virtual LORs, N = 1000
(j) Reconstructed image from
sinogram in Fig. 5.5i

(k) Averaged reconstructed im-
age, N = 1000

(l) Variance of reconstructed im-
age, N = 1000

Figure 5.5: 2D underlying PDF reconstruction using the virtual LORs for a different number of pro-
cess samples. Each intersection of original LORs was used as a point source to generate NcNθ virtual
LORs over the predetermined angles. The Monte Carlo simulation with 50 trials was performed and the
averaged reconstructed images are shown. Nd = 48.

tion does not resemble the original process for such a small and insufficient number of samples.

However, the result is different if the virtual LORs are used. Based on the theoretically derived

statistical relationship in subsection 5.2.1 between intersections and process samples, the inter-

sections were used to generate virtual LORs. Only intersections within the square area of the

process were used in the reconstruction. Instead of passing a single virtual LOR through each

intersection with a random angle, we have generated Nθ virtual LORs at angles θ = k∆θ , where

k = 0, ..,Nθ (i.e., by adding the whole sinusoid in the sinogram for each valid intersection). The

sinograms of those virtual LORs are shown in Figs. 5.5e and 5.5i for N = 100 and N = 1000

original process samples, respectively. It can be seen that the sinogram in Fig. 5.5i obtained

from original samples using the virtual LORs is more similar to the ideal analytically obtained
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sinogram in Fig. 5.5b than the sinogram in Fig. 5.5c obtained from the same number of samples

but using the conventional methods and 1000 original LORs. Reconstructed images from such

sinograms are shown in Figs. 5.5f and 5.5j. It can be seen that the reconstruction is better if

more process samples are used, and consequently, more intersections and more virtual LORs,

although such a reconstruction is far from ideal. The Monte Carlo simulation with 50 trials was

performed. The mean and the variance of the reconstructed images for 50 trials were obtained.

It is shown that by averaging several reconstructed images, an averaged image increasingly re-

sembles the initial process, even though, in each iteration, only 100 or 1000 random samples

were drawn from the given distribution. Also, by increasing the number of process samples

from 100 to 1000, the variance of reconstruction decreases by 10 times. However, the averaged

image is biased concerning the initial process because the covariance matrices of the process

and intersections are connected via expectation of the transformation matrix, i.e., although they

are related, they are not identical. This experiment shows that with a much lower dose of

radiotracers, a lot of information about the initial process can be obtained, and the temporal

resolution of the reconstruction can be increased.

5.2.3 Expectation of the transformation matrix

In this subsection, we will derive the expectation of the transformation matrix M which relates

terms of the covariance matrix of the underlying process C and terms of the covariance matrix

of intersections of LORs Cs. This expectation of tranformation matrix M is found by computing

the expectation of each of its terms Mi, j(θ1,θ2)∀i, j ∈ [1,3], as follows

E(Mi, j(θ1,θ2)) =
∫

θ1

∫
θ2

Mi, j(θ1,θ2) · fθ1,θ2(θ1,θ2)dθ1dθ2, (5.20)

where fθ1,θ2(θ1,θ2) corresponds to the joint PDF of random angles θ1 and θ2.

Expressions (5.17) and (5.18) show that the multiplicative factor k in the transformation

matrix M diverges to infinity when the difference of angles between two intersected LORs are

θ1− θ2 = 0 or θ1− θ2 = ±π . Consequently, the expectation of the transformation matrix M
and the covariance matrix of intersections of LORs Cs also diverge to infinity. On the other

hand, k = 1 for θ1−θ2 =±π/2. To circumvent the divergence to infinity of the expectation of

transformation matrix M and, consequently, of the covariance matrix of intersections Cs, which

occurs if the whole range of input angles is allowed θ1,2 ∈ [−π/2,π/2], the regularization of

input angles has to be introduced.

Intersecting LORs angle pairs, which are in the range ±a around the perpendicular LORs,

are declared as valid LOR angle pairs as Fig 5.6 shows. Red bands represent the areas of valid

angle combinations. In that way, the multiplicative factor k is limited, as well as the values of the

covariance matrix of intersections Cs. This criterion can be used to limit the intersections only
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to those with sufficient perpendicularity between LOR pairs, which limits the spatial expansion

of intersections.

If θ1 and θ2 are independent random variables uniformly distributed within the range [−π/2,

π/2], and if the regularization band of width a around the line where θ1⊥θ2 is introduced, the

θ2 can be expressed as a function of random variables θ1 and ax, where ax is a random variable

uniformly distributed within ±a,

θ2 = θ1 +π/2+ax. (5.21)

The multiplicative factor k2 then becomes a function of ax according to

k2 =
1

sin2(θ1−θ2)
=

1
sin2(θ1−θ1−π/2−ax)

=
1

sin2(−π/2−ax)2
=

1
cos2(ax)

(5.22)

The joint PDF of valid angles can be derived from Fig. 5.6 from the total area enclosed within

red bands of valid angle pairs Pvalid = 2πa as fθ1,ax(θ1,ax) =
1

2πa . By substituting θ2 = θ1 +

Figure 5.6: The band regularization (the red active area)

π/2+ax, the expectations of the terms in the transformation matrix M are

E(M1,1) =
1

2πa

∫ a

−a

∫
π/2

−π/2

c2
1s2

2 + c2
2s2

1
cos2 ax

dθ1dax

=
1

2πa

∫ a

−a

(
π

2
+

π

4cos2 ax

)
dax

=
1
2
+

tana
4a

,

(5.23)
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E(M1,2) =
1

2πa

∫ a

−a

∫
π/2

−π/2

−2(s2c2
1c2 + s1c1c2

2)

cos2 ax
dθ1dax = 0, (5.24)

E(M1,3) =
1

2πa

∫ a

−a

∫
π/2

−π/2

2c2
1c2

2
cos2 ax

dθ1dax

=
1

2πa

∫ a

−a

( 3π

8cos2 ax
− π

4

)
dax

=
3tana

8a
− 1

4
,

(5.25)

E(M2,1) =
1

2πa

∫ a

−a

∫
π/2

−π/2

(c2s2
1s2 + c1s1s2

2)

cos2 ax
dθ1dax = 0, (5.26)

E(M2,2) =
1

2πa

∫ a

−a

∫
π/2

−π/2

c1c2s1s2

cos2 ax
dθ1dax

=
1

2πa

∫ a

−a

(
π

8cos2(ax)− π

4

)
dax

=
tana
8a
− 1

4
,

(5.27)

E(M3,1) = E( f1,3) =
3tana

8a
− 1

4
. (5.28)

Finally, the expectation of the transformation matrix M for the chosen band regularization a

becomes

E(M) =


E(M1,1) −2E(M1,2) 2E(M1,3)

E(M2,1) −4E(M2,2) E(M1,2)

2E(M3,1) −2E(M2,1) E(M1,1)

 . (5.29)

By introducing the auxiliary variable t = tan(a)
a , the expectation of the transformation matrix

gets the following form

E(M) =


1
2 +

t
4 0 3t

4 −
1
2

0 1− t
2 0

3t
4 −

1
2 0 1

2 +
t
4

 . (5.30)

5.2.4 Estimation of process parameters using transformation matrix and
intersection statistics

In this subsection, the parameters of the 2D Gaussian process realization, the sample mean and

sample covariance, are estimated from the intersections of LORs and the expectation of the

transformation matrix M. The given parameters of the 2D Gaussian distribution were

[λ1,λ2,µx,µy,φ ] = [3,1,4,7,−π/4],
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where (µx,µy) is the distribution mean, λ1 and λ2 are the major and minor semiaxes widths,

while φ denotes the rotation angle of the major semiaxis relative to the x-axis of coordinate

system. Fig. 5.7 shows the realization of the given 2D Gaussian process with 500 random

samples drawn from the distribution with the given parameters. The calculated sample mean

Figure 5.7: Realization of the 2D Gaussian process with the given parameters [λ1,λ2,µx,µy,φ ] =
[3,1,4,7,−π/4]. Number of samples was N = 500.

and the sample covariance matrix for this process realization were

C =

 4.9255 −3.9920

−3.9920 5.0545

 ,µ = [4.000,7.000], (5.31)

and they represented the ground truth of the process parameters. Monte Carlo simulation with

100 trials was performed for different values of regularization factor a. The theoretical range

of regularization band a is from a = 0, where only the intersections obtained by perpendicular

LORs are valid, to the a = π/2, where all intersections are declared valid. The values of regu-

larization band a varied in this experiment from a minimum of a =±π/128, which corresponds

to kmax = 1.0003 with 1.56% of valid pairs of angles, to a maximum of a = ±63/128π which

corresponds to kmax = 40.7 with 98.4% of valid angle pairs. Small values of the regularization

band a caused only a small percentage of angle pairs to be valid but also low dispersion of

intersections from the underlying process. Consequently, the covariance matrix was prevented

from spreading to infinity. Conversely, larger absolute values of the regularization band ±a

yielded more valid angle pairs and intersections. Also, the consequence was a larger disper-

sion of intersections from the underlying process since some distant intersections were declared

regular.

In each trial of Monte Carlo simulation, one LOR at a random angle was generated through

each process sample. The LORs’ angles were uniformly distributed in the range [−π/2,π/2].
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All possible intersections of LORs were found, but only those that satisfied the regularization

condition determined by factor a were retained. The sample mean and covariance matrix were

calculated for the process of intersections. Also, for each factor a, the expectation of the trans-

formation matrix was calculated by using (5.30), and the inverse of this expectation was applied

to the calculated parameters of the process of intersections to estimate the original process pa-

rameters (sample mean and the sample covariance matrix). Such an estimator was verified by

calculating the bias and variance of the estimated sample mean and covariance matrix and the

results are shown in Fig. 5.8.

(a) Bias of the estimated intersection mean
concerning the sample mean

(b) Variance of the intersection mean estima-
tion concerning the sample mean

(c) Bias of the covariance estimation concern-
ing the sample covariance

(d) Log-variance of the covariance estimation
concerning the sample covariance

Figure 5.8: Bias and variance of the mean and covariance estimation concerning the sample mean and
sample covariance

Figs. 5.8a shows that the estimation bias of the sample mean has small positive and negative

values close to zero, thus indicating that the estimation of the sample mean is insensitive to the

selected factor a. Figs. 5.8b shows that the estimation variance of the sample covariance terms is

also small and almost constant for all regularization factors a. Figs. 5.8c and 5.8d show that for

small values of the regularization band a (a< π/4), the estimated sample covariance is unbiased

with small variances of its terms. For the medium-range regularization bands a = [π/4,3π/4],
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the estimation variance of the sample covariance terms increases with the maximal value at so-

called critical point where tan(a) = 2a. This critical point of the largest error is for±acrit = 66◦

which corresponds to kmax = 2.537 and is denoted with a vertical line in Figs. 5.8c and 5.8d.

For acrit , the covariance matrix of intersections is diagonal with the same widths of semiaxes.

In such a diagonal matrix, the information about the rotation of the original process is lost,

thus preventing the reconstruction by inversion (the determinant of the transformation matrix

M becomes zero). The estimation variance of the covariance terms decreases for values larger

than acrit , but they are still higher than for a < π/4. Consequently, choosing the regularization

band in the range 0 < a < π/4 is recommended. The estimation bias of the covariance terms is

close to zero for most values of regularization factor a except for those in the vicinity of acrit .

This experiment also shows that an increase in the number of valid angle pairs and in-

tersections does not reduce the estimation variance, which indicates that intersections do not

introduce new information and that the total information about the process is contained in the

process samples.

5.2.5 Probability density function of intersections for a pair of point sources

In this subsection, we will derive the probability density function (PDF) of intersections for a

pair of samples drawn from some distribution with a finite covariance matrix, i.e., a finite second

moment. The total PDF of intersections for the process with N point sources can be found as the

sum of PDFs of all Nc = N(N− 1)/2 possible combinations of unique point source pairs. Let

us assume two process samples drawn from some underlying distribution at positions A and B

as Fig. 5.9 shows. The origin of the coordinate system O is placed exactly at half of the junction

of these two points. Both samples are at the distance c from the origin O. The
#  »
AB junction is

at angle ρ concerning the x-axis of the coordinate system. Two LORs at angles θ1 and θ2 pass

through the samples A and B and intersect at the point T = re jθ , which is described by polar

coordinates, radius r and the rotation angle θ . The LOR angles θ1 and θ2 can be expressed in

polar coordinates (r,θ) from the geometry of Fig. 5.9 as follows

#  »
OB+

#  »
BT =

#   »
OT , (5.32)

#  »
OA+

#  »
AT =

#   »
OT , (5.33)

θ1 = ]
#  »
BT = ](

#   »
OT − #  »

OB) = ](r exp( jθ)− cexp( jρ)) = arctan
r sinθ − csinρ

r cosθ − ccosρ
, (5.34)

θ2 = ]
#  »
AT = ](

#   »
OT − #  »

OA) = ](r exp( jθ)+ cexp( jρ)) = arctan
r sinθ + csinρ

r cosθ + ccosρ
. (5.35)

The mapping of each intersection point T = re jθ to a pair of angles (θ1,θ2) is bijective if it is

parametrized with the rotation angle of the junction of two point sources ρ , and the correspond-
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Figure 5.9: Intersection of two LORs

ing halfwidth c as follows

θ1,2(r,θ , [c,ρ]) = arctan
r sinθ ± csinρ

r cosθ ± ccosρ
. (5.36)

The PDF of intersections for a pair of process samples in polar coordinates (r,θ ) can be calcu-

lated from the joint PDF of angles of LORs fθ1,θ2 and the ratio of the surface differentials in

both mapping domains, θ1θ2- and rθ -domains. Since the surface differential in domain θ1θ2 is

P =
(

∂θ1

∂θ

∂θ2

∂ r
− ∂θ2

∂θ

∂θ1

∂ r

)∣∣∣
r0,ρ0

∆r∆θ , (5.37)

while the surface differential in the domain rθ is Pa = r∆θ∆r, the PDF of the intersections for

a pair of samples in domain rθ equals

fr,θ (r,θ , [c,ρ]) = fθ1,θ2

P
Pa

= fθ1,θ2

(
∂θ1
∂θ

∂θ2
∂ r −

∂θ2
∂θ

∂θ1
∂ r

)∣∣∣
r0,ρ0

∆r∆θ

r∆r∆θ

= fθ1,θ2

2cr|sin(ρ−θ)|
(c4−2cos(2ρ−2θ)c2r2 + r4)

.

(5.38)

The alternative expression for the intersection PDF for a pair of point sources is

fr,θ (r,θ , [c,ρ]) = fθ1,θ2

2cr|sin(ρ−θ)|
(c2− r2)2 +4r2c2 sin2(ρ−θ)

, (5.39)

which shows that the denominator is always positive or at least equals zero when r = c, and

ρ−θ = 0 or ρ−θ = π . There is also assumed that r > 0 and c > 0.
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In the limit when the radius r tends to c, the PDF of intersections gets the following form

lim
r→c

fr,θ (r,θ , [c,ρ]) = fθ1,θ2

|sin(ρ−θ)|
2c2 sin2(ρ−θ)

. (5.40)

The joint PDF fθ1,θ2 of uniformly distributed random angles θ1 and θ2 in the range [−π/2,

π/2] is fθ1,θ2 =
1

π2 . In the case of the band regularization, the angles θ1 and θ2 satisfy the

following expression θ2 = θ1+π/2+ax. The area of valid pairs of angles, in that case, is equal

to a
π/2π2 = 2πa with the joint PDF fθ1,ax =

1
2πa . The area of valid angles achieves the maximum

value π2 when all pairs of angles are allowed and a = π/2, while for a = 0, only perpendicular

LORs are declared valid. The intersections are in band regularization spatially limited to two

"regularization balls" whose common secant is the junction of these two point sources. The

radius of these balls is ckmax, where kmax = 1/cos(a). In the limit when a tends to zero, kmax = 1,

θ1 and θ2 are perpendicular, and these two balls become completely overlapped and turned into

a circle of radius c. Contrary, when a tends to π/2, then kmax tends to ∞, so the "regularization

balls" have an infinite radius and cover the entire R2 domain of intersections. Valid intersections

with the described band regularization of ±a around the perpendicular angles are never within

the intersection area of the two "regularization balls." The examples of "regularization balls"

for different values of regularization factor a are shown in Fig. 5.10.

(a) a = π/128 (b) a = π/6

(c) a = π/4 (d) a = π/3

Figure 5.10: PDF of intersections for a pair of point sources in the spatial domain for different regular-
ization factors a
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5.2.6 Analysis of the behavior of the PDF of intersections for a pair of
point sources

The partial fraction decomposition of (5.39) yields the following expression

fr,θ (r,θ , [c,ρ]) = fθ1,θ2

|sin(ρ−θ)|
2cos(ρ−θ)

(
1

c2−2cr cos(ρ−θ)+ r2 −
1

c2 +2cr cos(ρ−θ)+ r2

)
,

(5.41)

or alternatively

fr,θ (r,θ , [c,ρ]) = fθ1,θ2

|sin(ρ−θ)|
2cos(ρ−θ)

(
1

(c− r)2 +4rcsin2 (ρ−θ)
2

− 1

(c+ r)2−4rcsin2 (ρ−θ)
2

)

=
|sin(ρ−θ)|
2cos(ρ−θ)

( 1
d1
− 1

d2

)
.

(5.42)

The expression obtained by partial fraction decomposition describes the individual contribu-

tions of point sources to the final PDF of intersections. The denominator d1 in (5.42) is always

positive or at least equal to zero for each combination of ρ and θ angles since r and c are pos-

itive real numbers. When the intersection hits the position of the first point source, r = c and

ρ = θ , and d1 becomes zero. In that case, 1/d1 tends to infinity, as well as the whole PDF in the

vicinity of the first point source. The second denominator d2 is also non-negative and achieves

the smallest value when sin2((ρ − θ)/2) = 1. In that case, d2 = (c2− 2rc+ r2) = (c− r)2,

which can not be less than zero. Thus, the second denominator achieves zero value only when

c = r and ρ−θ =±π .

Since d1 and d2 are non-negative, the difference of two fractions (1/d1− 1/d2) is positive

when 1/d1 > 1/d2, i.e., d1 < d2. According to (5.41), this inequality is satisfied if 2cos(ρ −
θ) > 0. Expression 2cos(ρ−θ) is the same as the denominator of the factor |sin(ρ−θ)|

2cos(ρ−θ) which

multiplies the difference (1/d1− 1/d2). As the numerator of this multiplicative factor is also

always non-negative |sin(ρ−θ)|, it follows that the overall PDF will also be non-negative for

each combination of parameters (r > 0,c > 0,ρ,θ). Namely, the denominator of the factor
|sin(ρ−θ)|
(2cos(ρ−θ)) as well as the difference (1/d1− 1/d2) are either at the same time positive or at

the same time negative. Therefore, the overall expression for the intersection PDF will always

be positive, as expected, since the intersection PDF is derived from the ratio of two surface

differentials, which must be necessarily positive or at least zero.

In addition, the horizontal and vertical cuts of the intersection PDF from (5.38) are derived

to determine the function decay rate in the directions of the principal axes of the local PDF

coordinate system. To calculate these cuts, the auxiliary variable δ = ρ − θ is introduced. A
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vertical cut is the limit of (5.38) when δ tends to ±π/2 as follows

lim
(ρ−θ)→±π/2

fr,θ (r,θ , [c,ρ]) =
2rc

(r2 + c2)2 . (5.43)

For r >> c, (5.43) tends to fr,θ (r,π/2) = 2c
r3 , which describes the cubic decay of the PDF of

intersections with the radial distance r from the center of the junction.

The horizontal cut is in the direction of the junction of two point sources, which corresponds

to θ = ρ . The horizontal cut has the right side ρ − θ = 0 and left side for ρ − θ = ±π . To

calculate the horizontal cut, the |sin(ρ − θ)| is removed from the numerator in (5.38) since it

surely goes to 0, but the rest of the PDF potentially goes to ∞ if the left or right point source is

hit. The limit of the rest of the PDF expression with the removed sine term when one or another

point sources (r→ c) is approached equals

lim
(ρ−θ)→0

fr,θ (r,θ , [c,ρ])
sin(δ )

=
1

2(c2−2cr+ r2)
− 1

2(c2 +2cr+ r2)
. (5.44)

To determine the dominant term in the denominator of the (5.44), the inverse of the (5.44) is

expanded in the Taylor series, yielding the following expression

(c− r)4

2c2 +
(c− r)5

2c3 +2(c− r)2. (5.45)

For (c− r)<< c, the last term in the Taylor expansion is dominant, so the rest of the PDF tends

with the power of two to infinity when we approach the point r = c according to the expression

1/(2(c− r)2). For all other values of r, the PDF at the horizontal junction is equal to zero,

because sin(ρ−θ) = 0, and the rest of the PDF expression is finite.

Marginal PDF of intersections for a pair of point sources

The marginal PDF of intersections for a pair of point sources as a function of radius r can be

obtained by integrating the joint PDF of intersections f (r,θ , [c,ρ]) from (5.41) over the variable

δ = ρ−θ in the range from 0 to π/2, where all terms (sin(δ ),cos(δ ),1/d1−1/d2) are positive

and multiply the obtained integral by 4 to cover the whole range of angles. This integral for

non-regularized case when a = π/2 is

fr(r) = fθ1,θ24r
∫

π/2

δ=0

|sin(δ )|
(2cos(δ ))

( 1
c2−2cr cos(δ )+ r2 −

1
c2 +2cr cos(δ )+ r2

)
dδ

= fθ1,θ24r
log (c+r)2

(c−r)2

2c2 +2r2

(5.46)
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For non-regularized case, the joint PDF fθ1,θ2 =
1

π2 , while for the case of band regularization

fθ1,θ2 =
1

2πa . In the case of band regularization, the marginal PDF is obtained by integration

from the initial angle δ = ψ to the final angle δ = π/2 as follows

fr(r) = fθ1,θ24r
∫

π/2

δ=ψ

|sin(δ )|
(2cos(δ ))

( 1
c2−2cr cos(δ )+ r2 −

1
c2 +2cr cos(δ )+ r2

)
dδ =

r log
(

A+1
A−1

)
πa(c2 + r2)

,

(5.47)

where

A = tan(a)(c2 + r2)

√
− 1
−4tan2(a)c2r2 + c4−2c2r2 + r4 .

The initial angle ψ is analytically derived in the next subsection.

5.2.7 Regularization of angles of LORs

The band regularization in the domain of angles θ1θ2 is mapped in the spatial xy domain into

the disjunctive union of two intersecting circles which corresponds to their union without their

intersection, as shown in Fig. 5.11 as two blue regions. In the boundary case with the regu-

larization factor a = 0, only the perpendicular LORs are declared valid, and their intersections

are mapped to a circle of the radius c in the spatial domain. For the maximal value of the

regularization band a = π/2 all angles of LORs are valid and the intersection domain is infinite.

It is necessary to find the intersection of the small circle of an arbitrary radius r and large

circle from Fig. 5.11 to find the initial integration angle ψ for the calculation of marginal PDF of

intersections f (r) from (5.47). Firstly, the lengths b, e, and d are calculated from the geometry

Figure 5.11: The intersection PDF shape with the regularization bandwidth a
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of Fig. 5.11 as follows

c2 +b2 = c2k2
max =

c2

cos2(a)
, (5.48)

b2 = c2
( 1

cos2(a)
−1
)
= c2

(1− cos2(a)
cos2(a)

)
= c2 tan2(a), (5.49)

b = c| tan(a)|,a→ 0,b→ 0,a→±π/2,b→ ∞, (5.50)

d = ckmax−b =
c

cos(a)
− c

sin(a)
cos(a)

= c
(1− sin(a)

cos(a)

)
,a→ 0,d→ c,a→±π/2,d→ 0, (5.51)

e = ckmax +b =
c

cos(a)
+

csin(a)
cos(a)

= c
(1+ sin(a)

cos(a)

)
. (5.52)

If r < d or r > e, there is no intersection between a small circle centered at the origin of the

local coordinate system and a large circle centered at (0,b). The equations of the large and

small circles are, respectively

x2 +(y−b)2 =
c2

cos2(a)
, (5.53)

x2 + y2 = r2, (5.54)

with the intersection points that satisfy the following equations

y =
r2− c2

2tan(a)c
, (5.55)

x2 = r2− (c2− r2)2

4tan(a)2c2 . (5.56)

The condition x2 > 0, i.e., r4− (2c2 +4b2)r2 + c4 < 0, should be full-filled to find a real inter-

section between two circles. If at = tan(a), a solution of this inequality exists for the following

range of radius r

d2 < r2 < e2, (5.57)

c2(at−
√

a2
t +1)2 < r2 < c2(at +

√
a2

t +1)2. (5.58)

Finally, the corresponding initial angle where the large and small circles intersect for a given

regularization factor at = tan(a) and for the distance from the center of the junction r is

ψ = arctan
(y

x

)
= arctan

(
|c2− r2|

2atc
√

r2− (c2−r2)2

4atc2

)
. (5.59)

The term under the root must be positive, which is ensured only if d < r < e.
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5.2.8 Vector formulation of the PDF of intersections for a pair of samples
in global coordinate system

In this section, the vector formulation of the intersection PDF for a pair of point sources is

derived. In Fig. 5.12, r and θ are the polar coordinates of intersection in the local x′y′ coordinate

system with the origin at the center of the junction of these two points, c represents the junction

halfwidth, and ρ is the rotation angle of the junction concerning the x′ axis.

The intersection PDF for a pair of point sources in the local x′y′ coordinate system is de-

scribed in (5.38) and in (5.39). To transform this PDF to global coordinate system xy, the point

sources can be considered as complex numbers (r1 = r1 exp( jθ1) and r2 = r2 exp( jθ2)). Also,

a complex vector of the intersection point in the global coordinate system is z. According to

Fig. 5.12, the vector from the origin of the local coordinate system to the second point source

can be found as c = r2−r1
2 , while the vector from the origin of the global to the origin of the local

coordinate system is r0 =
r1+r2

2 . The vector of intersection in the local coordinate system~r is in

the global coordinate system z = r+ r0. The intersection PDF after the partial decomposition

Figure 5.12: Vector formulation of the intersection PDF

in vector formulation in the local coordinate system can be expressed as

f (r, [c]) = fθ1,θ2

|cr∗− c∗r|
2(cr∗+ c∗r)

[
1

(r− c)(r− c)∗
− 1

(r+ c)(r+ c)∗

]
, (5.60)
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since

cr∗− c∗r = [cexp( jρ)r exp(− jθ)− cexp(− jρ)r exp( jθ)]

= rc(exp( j(ρ−θ))− exp(− j(ρ−θ)))

= 2rc j
exp( j(ρ−θ))− exp(− j(ρ−θ))

2 j

= 2rc j sin(ρ−θ),

(5.61)

cr∗+ c∗r = rc(exp( j(ρ−θ))+ exp(− j(ρ−θ)))

= 2rccos(ρ−θ),
(5.62)

(r− c)(r− c)∗ = [r exp( jθ)− cexp( jρ)][r exp(− jθ)− cexp(− jρ)]

= r2− rcexp( j(ρ−θ))− rcexp(− j(ρ−θ))+ c2

= r2−2rc
exp( j(ρ−θ))+ exp(− j(ρ−θ))

2
+ c2

= r2−2rccos(ρ−θ)+ c2,

(5.63)

(r+ c)(r+ c)∗ = [r exp( jθ)+ cexp( jρ)][r exp(− jθ)+ cexp(− jρ)]

= r2 + c2 +2rc
exp( j(ρ−θ))+ exp(− j(ρ−θ))

2
= r2 + c2 +2rccos(ρ−θ).

(5.64)

Finally, the PDF of intersection, parametrized with the pair of point sources (r1,r2), in the global

coordinate system for the nonregularized case has the following form

f (z, [r1,r2]) =
|cr∗− c∗r|

2(cr∗+ c∗r)

(
1

(r− c)(r− c)∗
− 1

(r+ c)(r+ c)∗

)
(5.65)

=− |t2− t1|
2(t2 + t1)

(
1(

|r1|2
r1
− |z|

2

z

)
(r1− z)

− 1(
|r2|2
r2
− |z|

2

z

)
(r2− z)

)
, (5.66)

where

t1 =

(
r1

2
− r2

2

)(
|r1|2

2r1
+
|r2|2

2r2
− |z|

2

z

)
, (5.67)

t2 =

(
|r1|2

2r1
− |r2|2

2r2

)(
r1

2
+

r2

2
− z

)
. (5.68)

The regularization within the ±a around the perpendicular LORs in the vector formulation is

achieved by the following condition

|(z− r1)(z− r2)
∗+(z− r1)

∗(z− r2)|
|(z− r1)(z− r2)∗− (z− r1)∗(z− r2)|

< | tan(a)|. (5.69)
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5.2.9 Alternative expression for the PDF of intersections for a pair of
point sources in the global coordinate system

To find the general expression for the intersection PDF of two point sources in the global coor-

dinate system, we can start from Fig. 5.12, equations (5.34), (5.35), and the following vectors

r1 = r1r + r1imi, (5.70)

r2 = r2r + r2imi, (5.71)

z = x+ yi, (5.72)

where i denotes the imaginary unit, (r1r,r1im) and (r2r,r2im) are real and imaginary parts of the

first and the second point source respectively, while x and y represent the intersection coordi-

nates in the global coordinate system. Then equations (5.34) and (5.35) become functions of

random variables x and y as follows

θ1 = arctan
r1im− y
r1r− x

, (5.73)

θ2 = arctan
r2im− y
r2r− x

. (5.74)

The joint PDF of intersections fxy can be found by using the method of transformations

fxy(x,y, [r1r,r1im,r2r,r2im]) = fθ1θ2 |J|=
1

π2 |J|, (5.75)

where

J = det

∂θ1
∂x

∂θ1
∂y

∂θ2
∂x

∂θ2
∂y

 . (5.76)

The final expression for the PDF of intersections for a pair of point sources fxy(x,y), parametrized

with real and imaginary parts of point sources in the global coordinate system, has the following

form

fxy(x,y, [r1r,r1im,r2r,r2im]) = fθ1θ2

|r1imr2r− r2imr1r− r1imx+ r2imx+ r1ry− r2ry|
((r1im− y)2 +(r1r− x)2)((r2im− y)2 +(r2r− x)2)

. (5.77)

5.2.10 Total PDF of intersections

The total PDF of intersections for all pairs of point sources drawn from some underlying 2D

distribution can be numerically found as a sum of PDFs of intersections for all pairs of process

samples. For the process with N samples, there are N(N−1)/2 combinations of unique sample

pairs. Fig. 5.13 shows the example of the total PDF of intersections for three process samples.
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Figure 5.13: The total PDF of intersections with regularization for the process with three samples

An analytical expression for a total PDF of intersections is the expectation of the PDF of

intersections as follows

E( fxy(x,y, [r1r,r1im,r2r,r2im])) =
∫

r2im

∫
r2r

∫
r1im

∫
r1r

fxy(x,y, [r1r,r1im,r2r,r2im]) fr1r fr1im fr2r fr2im dr1rdr1imdr2rdr2im,

(5.78)

where (x,y) represents the intersection position and (r1r,r1im,r2r,r2im) are real and imaginary

parts of process samples, which are random variables with their PDFs fr1r , fr1im , fr2r , and fr2im .

The analytical expression for this expectation is very hard to obtain since it is necessary to

calculate the quadruple integral over the real and imaginary positions of the point sources which

are random variables from some distribution. Even for assumed uniform distributions of point

source positions within a circle or square, the quadruple integral was not calculated and the

closed form of this expectation was not obtained. Fig. 5.14 shows the numerically obtained total

PDFs of intersections for uniformly distributed processes within triangle, square, and circle with

500 samples drawn from such distributions. The total PDFs were obtained as sums of individual

(a) Uniformly distributed process
over a triangle

(b) Uniformly distributed process
over a square

(c) Uniformly distributed process
over a circle

Figure 5.14: Distributions of intersections for uniformly distributed processes with 500 samples. Regu-
larization was a = π/4.

contributions of PDFs for all unique sample pairs. Also, the regularization term was used, which

was a = π/4.
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5.2.11 PDF of intersections for a pair of point sources in the local sino-
gram domain

The intersection PDF for a pair of point sources in the local and global sinogram domains is

derived in this subsection. As shown in Fig. 5.15, the PDF of intersections in the local sinogram

domain can be obtained by rotating the junction of two point sources in the local spatial domain

by changing its rotation angle ρ in the range [−π/2,π/2] and by integrating over y. At the same

time, the local coordinate system in the spatial domain xy remains static, and its variable x is

simultaneously the variable of signed distance in the local sinogram domain, while the junction

rotation angle ρ denotes the angle in the local sinogram.

Figure 5.15: Calculation of the PDF of intersections in the local sinogram xρ domain by integrat-
ing (5.82) over y for all angles ρ = [−π/2,π/2]

Let us start from the expression for the PDF of intersections for a pair of point sources (5.38)

in the local spatial xy domain, but in the vector form and without regularization

f (r, [c]) =
1

π2
|r∗c− rc∗|
|r− c|2|r+ c|2

, (5.79)

where r is a vector of an arbitrary point in that local coordinate system xy and c is the vector of

one of two point sources as follows

c = cr + cimi, (5.80)

r = x+ yi, (5.81)

where cr = |c|cosρ,cim = |c|sinρ . After including (5.80) and (5.81) in (5.79), the expression

for the PDF of intersections for a pair of point sources in the local spatial xy domain becomes a

function of spatial x and y variables parametrized with the local coordinates of the point source
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cr and cim as follows

f (x,y, [cr,cim]) =
1

π2
2|cimx− cry|

((cr− x)2 +(cim− y)2)((cr + x)2 +(cim + y)2)
. (5.82)

To obtain the PDF of intersections for a pair of point sources in the local xρ sinogram do-

main, (5.82) is integrated over y

Iy =
∫

f (x,y, [cr,cim])dy

=− cimx− cry
π2|cimx− cry|(4c2

im +4x2)
(2cim atan2(cr− x,cim− y)

+ x log
(cr− x)2 +(cim− y)2

(cr + x)2 +(cim− y)2 +2cim atan2(cr + x,cim + y)).

(5.83)

In order to calculate the definite form of this integral, limits were used to omit the exact

positions of point sources where this PDF tends to infinity (y0 = cimx/cr). Finally, the PDF of

intersections for a pair of point sources in the local sinogram domain has the following form

f (x,ρ, [cr,cim]) = lim
y→y−0

Iy− lim
y→−∞

Iy + lim
y→∞

Iy− lim
y→y+0

Iy =
x log (cr+x)2

(cr−x)2 +4cimρ

2π2(c2
im + x2)

. (5.84)

This PDF is transformed to the global sθ sinogram domain by relating the local and global

sinogram coordinates as follows

x = s−|r0|cos(θ −∠r0), (5.85)

ρ = θ −∠c, ρ ∈ [−π/2,π/2], (5.86)

where c = (r2− r1)/2, r0 = (r1 + r2)/2, θ ∈ [−π/2,π/2], and r1 and r2 are the vectors of

the first and the second point sources in the global coordinate system in the spatial domain.

Fig. 5.16 shows the sinogram obtained analytically by using (5.84) and the sinogram obtained

by transforming the PDF of intersections for a pair of point sources from the spatial to the sino-

gram domain by using radon function in Matlab. The results show that the analytically obtained

expression for the PDF of intersections for a pair of point sources in the global sinogram domain

is correct.

Fig. 5.17 shows the realization of the input process in the spatial domain that consists of

two circular 2D Gaussians ( 5.17a), the total PDF of intersections for that process in the global

sinogram domain ( 5.17b), and the integrals of individual sinograms for each unique pair of

point sources ( 5.17c). The input process consists of the first component with 10 samples

drawn from the bivariate normal distribution with the centroid µ1 = [1,3] and the semiaxes

widths λ1 = λ2 = 1/3 and of the second component with 20 samples drawn from the bivariate
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(a) Log of input PDF of in-
tersections for a pair of point
sources in the spatial domain

(b) Log of normalized analyt-
ical sinogram obtained by us-
ing (5.84) of input PDF of in-
tersections

(c) Log of PDF of intersec-
tions in sinogram obtained by
using radon function in Matlab

Figure 5.16: Reconstruction of the input intersection PDF for a pair of sources using transformed coor-
dinates

normal distribution with the centroid µ2 = [−3,4] and the same semiaxes widths. The total

PDF of intersections in the global sinogram domain was obtained as the sum of the analytically

calculated individual sinograms of PDFs of intersections for all unique pairs of point sources.

Fig. 5.17c shows numerical integrals of individual sinograms. The numerical integrals close to

one indicate the PDFs of intersections for pairs of point sources that originate from the same

Gaussian component, while the PDFs of intersections obtained from a combination of point

sources from two Gaussian components are dispersed and of smaller integrals.

(a) Input process in the spatial
domain

(b) Sinogram of the intersec-
tion density for all pairs of
point sources

(c) Numerical integral of indi-
vidual sinograms for each pair
of point sources

Figure 5.17: Sinogram of the PDF of intersections for all pairs of point sources obtained by transforma-
tions from the global to local coordinates

PDF of intersections for a pair of point sources in sinogram for a regularized case

To understand how the regularization of angles of LORs is reflected in the sinogram domain,

the calculation of the definite integral of (5.83) for the regularized case is considered for the

selected regularization band a = π/4 and the junction semi-width c = 1. Integration by parts

of (5.83) includes several cases depending on the relationship between the regularization angle a

and the junction angle ρ . Fig. 5.18 shows typical cases that should be considered in integration
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by parts: ρ = 0, ρ < a, ρ = a, ρ > a, ρ = π/2. Integration areas are within the union of

two circles without their intersection. The radius of each circle is equal to r = c/cos(a), while

(a) ρ = 0, a = π/4 (b) ρ = π/8, a = π/4 (c) ρ = π/4, a = π/4

(d) ρ = 3π/8, a = π/4 (e) ρ = π/2, a = π/4

Figure 5.18: Different domains for the regularized case of intersection PDF of two point sources

the distance of the junction of point sources to the center of each circle equals b = c| tana|.
The centers of upper and lower circles are [x01 ,y01 ] = [−bsinρ,bcosρ], [x02 ,y02 ] = [−x01 ,−y01 ]

∀ρ ∈ [−π/2,π/2], while the equations of upper and lower semicircles which represent the

integration upper and lower boundaries are:

y1upper = y01 +
√

r2− (s− x01)
2, y1lower = y01−

√
r2− (s− x01)

2, (5.87)

y2upper = y02 +
√

r2− (s− x02)
2, y2lower = y02−

√
r2− (s− x02)

2. (5.88)

The sinogram of the PDF of intersections for a pair of point sources is calculated for a regular-

ized case by including the upper and lower boundaries for y in (5.84). Fig. 5.19 represents such

an analytically obtained local sinogram of the PDF of intersections for a pair of point sources

for a = π/3 and c = 1.

5.2.12 Parameter estimation of rotationally symmetrical 2D Gaussian pro-
cess from the total PDF of intersections

In this subsection, the rotationally symmetric 2D Gaussian process parameters were estimated

from the empirically obtained marginal total PDF of intersections. The underlying PDF was the

rotationally symmetric 2D Gaussian distribution with the same semiaxes widths σ1 = σ2 = σ
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Figure 5.19: Analytically obtained local sinogram of the PDF of intersections for a pair of point sources
for regularized case (a = π/3,c = 1)

and the center at the origin µ = [0,0]. Monte Carlo simulation with 10 trials was performed for

each semiaxis width from the set σ = {0.5,1,2,4}. In each trial, N = 200 samples were drawn

from the given 2D Gaussian distribution. The regularization factor was chosen as a = π/4. For

each unique sample pair, the PDF of intersections f (x,y, [r1r,r1im,r2r,r2im]) was calculated over

a uniformly sampled grid in polar coordinates (r,θ ). The sum of N(N−1)/2 synthesized PDFs

was calculated and integrated over the angle θ to obtain the mean cut of PDFs of intersections,

i.e., the marginal total PDF of intersections as a function of the radius r from the origin of

coordinate system.

It was assumed that the mean cut of the total PDF of intersections can be described as the

mixture of underlying PDF and the bivariate generalized normal distribution, integrated over

θ ∈ [0,π] as

f (r) = π(m1 f1(r,σ1,β )+m2 f2(r,σ)), (5.89)

where m1 and m2 are contributions of components to the mixture, f1(r,σ1,β ) corresponds to

the bivariate generalized normal distribution according to [111] with the β as a shape parameter

and σ1 as a scale parameter, while f2(r,σ2) corresponds to the rotationally symmetric bivariate

normal distribution of the underlying process. Finally, this mixture can be expressed as

f (r) = π

(
m1β

2(1/β )πσ2
1 Γ(1/β )

exp
(−1

2

( r
σ1

)2β)
+

m2

2πσ2 exp
(−1

2

( r
σ

)2))
, (5.90)

where Γ(·) denotes the gamma function.

The given model was fitted to the empirically obtained mean cut of the total PDF of inter-

sections in the least squares sense in the logarithmic domain as

D = ∑
r
(ln f (r)− lnz(r))2, (5.91)

where f (r) corresponds to the model, while z(r) corresponds to the empirical input data.
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Experiments have shown that the estimated mixture model parameters depend on the chosen

width of the underlying 2D normal distribution. To obtain the general form of this mixture of the

underlying and the contamination distributions that fits the empirical data, the estimated model

parameters were approximated as m1 = m2 = 0.45, σ1 = 0.8σ , and β = 0.55. The factors

m1 = m2 = 0.45 were selected to obtain the same integral as by integrating the empirical data

(≈ 0.9). The estimation results for different widths σ of the underlying normal distribution are

shown in Fig. 5.20.

(a) Log of estimated and approximated models that were fitted to empiri-
cal data for different widths σ

(b) Estimated (green dashed curve) and approximated models (blue
curve) that were fitted to empirical data (red curve) for different widths σ

Figure 5.20: Fitting of a mixture of the generalized bivariate normal distribution (close to Laplace
distribution) and the normal bivariate distribution of the underlying PDF to the empirical marginal PDF
of intersections f (r), obtained by summing the individual PDFs of intersections for each pair of samples
and integrating over all angles θ .
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The results show that the estimated model fits the empirical data very well. This means

that the blurred PDF of intersections can be described as the sum of the underlying process

distribution and a heavy-tailed distribution whose shape parameter is close to that of the Laplace

distribution. The mean of estimated parameters for different factors σ of the underlying 2D

process are shown in Table. 5.1.

Table 5.1: The mean estimated parameters of a mixture of generalized normal distribution and
normal distributions

m̂1 m̂2 σ̂1 β̂

σ=0.5 0.4408 0.4520 0.4271 0.5562

σ=1 0.4177 0.4746 1.0377 0.6085

σ=2 0.4735 0.4249 1.4424 0.5214

σ=4 0.4343 0.4607 3.1392 0.5365

5.2.13 Expectation maximization algorithm for parameter estimation of
the 2D Gaussian process from intersections

This section describes the application of the expectation-maximization (EM) algorithm for pa-

rameter estimation of the 2D Gaussian process from the intersections of LORs generated by

such a process. The EM algorithm is an iterative two-step method to find the statistical model’s

parameters that maximize the log-likelihood of observations. In the first step, the EM calculates

the expectation of the log-likelihood for the current estimate of the model’s parameters. In the

second step, the log-likelihood is maximized, i.e., the negative log-likelihood is minimized, to

update the model’s parameters. These two steps alternate until convergence, at least to the local

minimum.

The given parameters of the 2D Gaussian process in the uncorrelated form were: θ =

[µx,µy,λ1,λ2,φ ] = [1,1,2,1,π/4], where (µx,µy) is the mean, (λ1,λ2) are the major and minor

semiaxes widths, while φ denotes the rotation angle with the x-axis of the coordinate system.

The number of process samples was N = 100. The Monte Carlo simulation with 10 trials was

performed. In each trial, N = 100 random samples were drawn from the 2D Gaussian process

of the given parameters. Each process sample generated one LOR at a random angle in the

range [−π/2,π/2]. All possible Nc = N(N−1)/2 intersections of LORs were found and only

intersections within the rectangular region of ±10λ1 were declared valid and passed to the EM

algorithm.

The initial parameters of the 2D Gaussian process and the valid intersections were passed to

the EM algorithm. The initial process parameters were selected as 90% of the actual parameter

values. In the objective function of the EM algorithm, 100 random samples were generated
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from the 2D Gaussian process with the initial parameters. The total PDF of intersections was

calculated as a sum of individual PDFs of intersections for all unique sample pairs. Such a total

PDF was evaluated for all observed intersections. The sum of individual PDFs of intersections

for all unique sample pairs represented the approximation of expectation of PDF of intersec-

tions, whose analytical form remained unknown. If D = {xi,yi}∀i ∈ [1,Ns] was the set of all

Ns valid intersections that entered optimization, the probability of intersection point (xi,yi) was

approximated with the total PDF of intersections as follows

p(xi,yi)≈ ftot ≈∑
j,k

fxiyi(xi,yi, [r jr,r jim,rkr,rkim]) (5.92)

= ∑
j,k

1
π2
|r jimrkr− rkimr jr− r jimxi + rkimxi + r jryi− rkryi|

((r jim− yi)2 +(r jr− xi)2)((rkim− y)2 +(rkr− xi)2)
, (5.93)

where r jr,r jim,rkr,rkim are real and imaginary parts of Nc unique ( j,k) sample pairs of generated

process in the objective function. This approximation is closer to the actual expectation of the

actual intersection PDF for a larger number of process samples.

The second step was maximization of the log-likelihood function, i.e., the minimization of

the negative log-likelihood function, which was calculated as

−L (θ |D) =− 1
Ns

Ns

∑
i=1

ln p(xi,yi), (5.94)

where Ns denotes the number of valid intersections. This objective function was minimized

to update the 2D Gaussian process parameters, and these two steps were iteratively repeated

until the convergence of the EM algorithm. The objective function achieved different scores for

the same model parameters due to the random process sample generation in each evaluation of

the objective function. In order to reduce the stochastic component in the objective function,

the median of 10 negative log-likelihood values for different realizations of the 2D Gaussian

process was the final objective function score in each objective function evaluation.

The minimum of such a stohastic objective function can be found through the algorithms

for stochastic optimization, which do not use derivatives of the objective function to find an

optimal point. In this example, Matlab patternsearch function with classic algorithm was used

for stochastic optimization. The stochastic optimization is performed for the stochastic non-

smooth objective functions where the conventional gradient-based optimization method can not

be applied.

Since the PDF of intersections for a pair of point sources goes to infinity at the places of

process samples, only 90% of the lowest values of the total PDF of intersections were used to

calculate the log-likelihood.

The results of parameter estimation of the 2D Gaussian process in 10 trials of Monte Carlo
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simulation are shown in Table. 5.2. The number of iterations of the patternsearch method,

objective function values, and distribution similarity measures (Euclidian, cosine, and Kull-

back–Leibler divergence) when in the objective function 100 samples were each time drawn

from a distribution with current parameters are given in Tables 5.2 and 5.3. The results of the

same experiments but with the generation of 1000 random samples in each evaluation of the

objective function are given in Tables 5.4 and 5.5. The estimated parameters with the best dis-

tribution similarity measures are denoted with green, while the worst estimates are denoted with

red.

Table 5.2: Estimated parameters and objective function values (N=100)

µx µy λ1 λ2 φ iter −L (θ̂ |D)

θ 1 1 2 1 0.7854

θ̂ 1 1.1539 1.4000 2.0500 0.9000 0.7069 30 4.8447

θ̂ 2 1.4000 0.9000 2.5500 0.9000 0.7069 28 5.1452

θ̂ 3 0.8999 0.4000 1.5500 1.4000 0.9549 44 4.9707

θ̂ 4 1.4000 0.9000 1.9250 1.4000 1.2069 38 5.1121

θ̂ 5 0.9000 1.2750 2.3156 1.1500 0.8944 36 5.2699

θ̂ 6 0.9000 0.9000 1.8000 1.4000 0.4583 30 5.1203

θ̂ 7 0.6500 0.9000 2.1750 0.9156 1.2069 40 5.0461

θ̂ 8 1.1969 1.0875 2.5656 1.1500 0.7694 50 5.3317

θ̂ 9 0.9000 1.1500 2.1750 1.1500 0.9569 34 5.2567

θ̂ 10 0.9000 1.4000 2.8000 0.9000 0.9569 28 5.3648

Table 5.3: Similarity measures between given and estimated distributions (N=100)

KL divergence Cosine similarity Euclidian distance

θ̂ 1 0.0766 0.9763 0.0045

θ̂ 2 0.2329 0.9467 0.0064

θ̂ 3 0.4279 0.9191 0.0079

θ̂ 4 0.4655 0.9308 0.0074

θ̂ 5 0.1445 0.9718 0.0052

θ̂ 6 0.2971 0.9597 0.0058

θ̂ 7 0.4145 0.9234 0.0078

θ̂ 8 0.1497 0.9768 0.0053

θ̂ 9 0.1182 0.9798 0.0043

θ̂ 10 0.4293 0.9271 0.0075
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Table 5.4: Estimated parameters and objective function values (N=1000)

µx µy λ1 λ2 φ iter −L (θ̂ |D)

θ 1 1 2 1 0.7854

θ̂ 1 1.1500 0.9000 2.0539 1.4000 0.7069 40 5.2829

θ̂ 2 1.0406 0.7750 2.0500 0.9000 0.6600 54 4.9757

θ̂ 3 1.0240 0.9000 1.3000 2.0250 2.1444 56 5.1499

θ̂ 4 1.2749 1.1510 2.1086 1.2750 0.7069 54 5.1464

θ̂ 5 1.0250 0.9000 2.5656 0.9625 1.1444 42 5.2802

θ̂ 6 0.9000 0.9000 2.3000 1.3844 0.7069 30 5.2982

θ̂ 7 0.7750 0.6696 2.5500 1.2750 0.7069 48 5.3522

θ̂ 8 1.1656 1.1500 2.3000 1.1500 0.7069 38 5.1403

θ̂ 9 0.7750 0.9313 1.3000 1.9000 2.2069 38 5.1495

θ̂ 10 1.1500 0.9039 2.2961 1.2750 0.9569 48 5.2552

Table 5.5: Similarity measures between given and estimated distributions (N=1000)

KL divergence Cosine similarity Euclidian distance

θ̂ 1 0.1652 0.9665 0.0058

θ̂ 2 0.0506 0.9806 0.0041

θ̂ 3 0.1270 0.9743 0.0049

θ̂ 4 0.0944 0.9772 0.0048

θ̂ 5 0.3405 0.9360 0.0071

θ̂ 6 0.1648 0.9675 0.0061

θ̂ 7 0.1730 0.9611 0.0065

θ̂ 8 0.0584 0.9860 0.0041

θ̂ 9 0.1126 0.9748 0.0047

θ̂ 10 0.1459 0.9688 0.0057

5.2.14 Estimation of the 2D Gaussian mixture model parameters from
virtual LORs at intersections

The PDF of the bivariate Gaussian mixture model (GMM) of two components has the following

form

f (x(i)|µk,Σk) =
2

∑
k=1

wk
1

2π
√
|Σk|

exp

(
− 1

2

(
(x(i)−µk)

T
Σ
−1
k (x(i)−µk)

))
, (5.95)

where x(i) denotes the ith sample position, Σk denotes the covariance matrix, µk denotes the

mean, while wk is the weight, i.e., the proportion of the kth component in the mixture.
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The given parameters of the 2D Gaussian components were:

θ 1 = [µx,µy,λ1,λ2,φ ] = [−2,−2,2,1,π/4],w1 = 0.5,Σ1 =

2.5 1.5

1.5 2.5

 , (5.96)

θ 2 = [µx,µy,λ1,λ2,φ ] = [3,3,1.5,1,0],w2 = 0.5,Σ2 =

2.25 0

0 1

 . (5.97)

2000 random samples were drawn from the GMM distribution with the given parameters.

The given GMM probability density function and the generated process samples are shown

in Fig. 5.21.

(a) The given GMM model (b) Generated process with N = 2000 samples

Figure 5.21: The input GMM model and generated process samples

Each process sample at position (x(i),y(i)) generated one LOR at random angle from the

range θ = [−π/2,π/2]. The signed distance s of each LOR was calculated as s = l√
k2+1

,

where k = tan(θ) and l = y(i)− kx(i). The sinogram was obtained as a 2D histogram of s and

θ parameters of all N original LORs. The discretization of the sinogram angle θ and signed

distance s parameters was determined by the number of detectors at the edge of the circular FOV.

The number of detectors was Nd = 260, the number of discretized angles was Nθ = Nd/2, while

the number of discretized signed distance s bins was 2Ns +1 where Ns = Nd/π . The sinogram

bin widths were ds = R f π/Nd and dθ = 2π/Nd , where R f = (max(x)−min(x))/2
√

2. The

filtered back-projection (FBP) and maximum likelihood expectation maximization (MLEM)

algorithms [112] were used for the reconstruction. The underlying process was reconstructed by

using the FBP algorithm with linear interpolation and Hamming filter and by using the MLEM

algorithm with 10 iterations starting from the white image. Fig. 5.22 shows the sinogram of

the original LORs and the images reconstructed from that sinogram using the FBP and MLEM
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algorithms. All possible Nc = N(N − 1)/2 intersections of original LORs were found. 2D

(a) Sinogram from original LORs (b) Reconstructed image (FBP) (c) Reconstructed image (MLEM)

Figure 5.22: Sinogram from 2000 original LORs and corresponding reconstructions by using FBP and
MLEM algorithms

histograms of eigen intersections which were generated by the LORs of the same 2D Gaussian

component, and the cross intersections which were generated by the LORs from different 2D

Gaussian components are shown in Fig. 5.23.

(a) 2D histogram of eigen intersections (b) 2D histogram of cross intersections

Figure 5.23: 2D histograms of intersections of LORs of the same or cross 2D Gaussian components

Each intersection generated one sinusoid which was recorded in the sinogram. Recording

sinusoids for intersections is equivalent to an infinite number of virtual LORs at each intersec-

tion point. In this way, the number of events in the sinogram was increased, which enabled the

reconstruction of an unknown process from a reduced number of input data. Although the addi-

tional input data are artificially invented in this way, it is acceptable because the spatial mean of

the intersection is proven to be equal to the spatial mean of the underlying 2D process. Each in-

tersection (xsi,ysi) uniquely determined the sinusoid s =−r sin(θ −φ), where r =
√

xs2
i + ys2

i ,

and φ = atan2(ysi,xsi). The sinogram of these intersections was obtained by counting the num-

ber of sinusoids that intersect a certain sinogram bin. Fig. 5.24 shows sinograms of sinusoids of

eigen, cross, and total intersections and corresponding reconstructions using FBP and MLEM

algorithms.

The reconstructed images using the MLEM algorithm were used to fit the GMM model.

10000 random samples were generated from the normalized reconstructed 2D histograms from
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(a) Sinogram of sinusoids for eigen
intersections

(b) Sinogram of sinusoids for cross
intersections

(c) Sinogram of sinusoids for all in-
tersections

(d) Reconstructed image from (a) us-
ing FBP

(e) Reconstructed image from (b) us-
ing FBP

(f) Reconstructed image from (c) us-
ing FBP

(g) Reconstructed image from (a) us-
ing MLEM

(h) Reconstructed image from (b) us-
ing MLEM

(i) Reconstructed image from (c) us-
ing MLEM

Figure 5.24: Sinograms from infinitely many virtual LORs and corresponding reconstructed images by
using FBP and MLEM algorithms

sinograms of sinusoids belonging to eigen and total intersections. The cumulative distributions

of the reconstructed 2D histograms were calculated. 10000 random samples were generated

from the uniform distribution, and then a class was assigned to each sample by summing the

number of pixels where the random sample value was larger than the cumulative distribution

value. After assigning a class (bin) to each sample, the sample position was randomly selected

within the bin.

GMM model was then fitted to the generated random samples, whose distribution followed

the reconstructed 2D histogram, by using the MLEM algorithm. The Matlab function f itgmdist

was used to estimate the parameters of the GMM model. Due to cross intersections, the recon-

structed 2D histogram using total intersections was necessarily blurred, and the estimated GMM

parameters did not correspond to the actual parameters. In the first case, the spatial median was
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subtracted from the reconstructed 2D histogram and then a 2D GMM model with two compo-

nents was fitted to the generated random samples whose distribution followed the modified 2D

histogram. The estimated parameters were

ŵ1 = 0.5134, Σ̂1 =

 4.2994 −0.1739

−0.1739 4.2920

 , µ̂1 = [−1.2280,−1.1977], (5.98)

ŵ2 = 0.4866, Σ̂2 =

 3.5816 −0.6965

−0.6965 3.1033

 , µ̂2 = [3.0365,3.1924] (5.99)

In the second case, the GMM model with three components was fitted to the generated

samples which followed the distribution of the originally reconstructed 2D histogram, where the

third wide component described the spatial blurring due to cross intersections. The estimated

GMM parameters were:

ŵ1 = 0.5135, Σ̂1 =

17.1461 −0.5129

−0.5129 17.6351

 , µ̂1 = [0.5992,0.6021], (5.100)

ŵ2 = 0.2310, Σ̂2 =

2.6477 0.8224

0.8224 3.1927

 , µ̂2 = [−1.6856,−1.5928], (5.101)

ŵ3 = 0.2555, Σ̂3 =

 2.5139 −0.0222

−0.0222 1.9073

 , µ̂3 = [3.3219,3.3221]. (5.102)

In the third case, the GMM model with 2 components was fitted to the reconstructed image from

the sinogram that was obtained from counting the sinusoids that belong to eigen intersections.

The estimated parameters were:

ŵ1 = 0.5123, Σ̂1 =

 7.1165 −0.4595

−0.4595 6.2084

 , µ̂1 = [−1.4663,−1.6689], (5.103)

ŵ2 = 0.4877, Σ̂2 =

 4.4542 −0.6739

−0.6739 3.7758

 , µ̂2 = [3.3145,3.5496]. (5.104)

The estimated GMM model with three components and GMM model with two components
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fitted to the reconstructed 2D histogram from eigen intersections yield the parameters closest to

the given model parameters. The estimated GMM models with two and three components are

shown in Fig. 5.25.

(a) GMM model with 2 components
and removed spatial median

(b) GMM model with 2 components
fitted to the reconstructed image of
eigen intersections

(c) GMM model with 3 components

Figure 5.25: GMM models fitted to images reconstructed using MLEM algorithm

5.2.15 Head phantom image reconstruction

The modified Shepp-Logan phantom was reconstructed from a small number of original LORs

(N = 1000) and from infinitely many virtual LORs at the positions of intersections of origi-

nal LORs by using the previously described FBP and MLEM algorithms. The high and low-

resolution versions of the modified Shepp-Logan phantom are shown in Fig. 5.26. The di-

mensions of the reconstructed image correspond to the low-resolution version of the modified

Shepp-Logan phantom which, consequently, represents the ground truth image. The dimensions

of the reconstructed image were 84×84, which was determined by the number of detectors at

the edge of the FOW Nd = 188.

(a) High-resolution version (b) Low-resolution image

Figure 5.26: Modified Shepp-Logan head phantom
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Two versions of the Monte Carlo simulation with 1000 trials were performed. In the first

version, in each trial of the Monte Carlo simulation, new 1000 random samples were drawn from

the distribution which corresponds to the high-resolution version of the modified Shepp-Logan

head phantom. From each process sample, one original LOR at a random angle in the range

[−π/2,π/2] was generated. The process with 1000 random samples and the corresponding

sinogram of original LORs are shown in Fig. 5.27. In the second version, the 1000 random

samples were drawn from the high-resolution phantom distribution only once, while in each

trial of the Monte Carlo simulation, only the angles of LORs were randomly picked.

(a) Process with N = 1000 samples (b) Sinogram of original LORs

(c) Reconstructed image from 1000 original
LORs (FBP)

(d) Reconstructed image from 1000 original
LORs (MLEM)

Figure 5.27: Process with N = 1000 samples, sinogram of original LORs, and reconstructed images
using the FBP and MLEM algorithms

The intersections of original LORs were found. For each intersection, one sinusoid was

generated. The sinusoids were recorded in the sinogram by counting the number of sinusoids

that intersect a particular sinogram bin. This corresponds to the virtual generation of infinitely

many virtual LORs over the whole range of angles at the positions of intersections. The gener-

ation of 20 original LORs, their intersections, and sinograms of sinusoids at intersection points

and reconstructed images are shown in Fig. 5.28.

The underlying 2D distribution was reconstructed from sinograms of original and virtual

LORs by using the FBP and MLEM algorithms. The mean reconstructed images from 10 such

trials are shown in Fig. 5.29.
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(a) 20 original LORs from process samples,
corresponding LORs, and intersections

(b) Sinogram of sinusoids for 128 valid of
190 intersections of 20 LORs

(c) Sinogram of virtual LORs at in-
tersections for all 1000 process sam-
ples

(d) Reconstructed image from virtual
LORs (FBP)

(e) Reconstructed image from virtual
LORs (MLEM)s

Figure 5.28: Illustration of the proposed method for infinitely many virtual LORs generation at the
positions of intersections, sinogram, and reconstructed images from virtual LORs

The averaged reconstructed image from virtual LORs resembles the original phantom dis-

tribution more than the grainy averaged reconstructed image from original LORs. The recon-

structed image from virtual LORs is blurred due to the difference in covariances of original

process samples and intersections, which is especially noticed in the averaged reconstructed

images from all 1000 trials which are shown in Fig. 5.30. However, the reconstruction from

virtual LORs can be used in real-time applications for fast scanning of the underlying process

from a small number of detected coincident events. To reduce the blurring of the averaged re-

constructed image, the image of the phantom’s skull was reconstructed from the virtual LORs

using the FBP and MLEM algorithms and was subtracted from the averaged reconstructed im-

age of the phantom. Results are shown in Fig. 5.30.

In order to estimate the vignetting function, the uniformly distributed 2D circular process

within the FOV with 10,000 samples was generated. From each process sample, one LOR at a

random angle was generated. Intersections of generated LORs were calculated and recorded in

the 2D histogram. The averaged 2D histogram of intersections of LORs for 10 trials is shown in

Fig 5.31d where in each trial new 10000 random LORs were generated from the same process

samples. Fig. 5.31b shows the 2D Gaussian vignetting model, which was fitted to the averaged

2D histogram of intersections. The scaled inverse vignetting model was applied to the averaged
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(a) Mean reconstructed image
from original LORs (FBP)

(b) Mean reconstructed image
from virtual LORs, new 1000
random samples in each trial
(FBP)

(c) Mean reconstructed image
from virtual LORs, same 1000
random samples in each trial
(FBP)

(d) Mean reconstructed image
from original LORs (MLEM)

(e) Mean reconstructed image
from virtual LORs, new 1000
random samples in each trial
(MLEM)

(f) Mean reconstructed image
from virtual LORs, same 1000
random samples in each trial
(MLEM)

Figure 5.29: Averaged 10 reconstructed images from original and virtual LORs

(a) The mean recon-
structed image from
original LORs (FBP)

(b) The mean recon-
structed image from
original LORs (MLEM)

(c) The mean recon-
structed image from vir-
tual LORs (FBP)

(d) The mean recon-
structed image from vir-
tual LORs (MLEM)

(e) The mean recon-
structed image of the
skull from virtual LORs
(FBP)

(f) The mean recon-
structed image of the
skull from virtual LORs
(MLEM)

(g) The mean recon-
structed image from vir-
tual LORs without the
skull (FBP)

(h) The mean recon-
structed image from vir-
tual LORs without the
skull (MLEM)

Figure 5.30: Averaged reconstructed images from original and virtual LORs for 1000 trials where in
each trial new 1000 random samples were generated
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reconstructed phantom image in Fig. 5.31e and the results are shown in Fig. 5.31c. In the other

version, the scaled vignetting model was subtracted from Fig. 5.31e and the results are shown

in Fig. 5.31f.

(a) 2D circular process with 10000
samples

(b) 2D Gaussian fitted to the 2D his-
togram of intersections

(c) Application of inverse scaled vi-
gnetting model to (d)

(d) Averaged 2D histogram of inter-
sections of LORs for 10 trials

(e) Averaged reconstructed images
from virtual LORs (MLEM)

(f) Subtracted scaled vignetting
model from (d)

Figure 5.31: Devignetting of averaged reconstructed image from virtual LORs with a 2D Gaussian
model of intersections of LORs for uniformly sampled circular FOV. Estimated parameters of the 2D
Gaussian: [µ̂x, µ̂y] = [0.0706−0.0574], Σ̂ =

(
43.4248 0.1253
0.1253 43.6020

)
, Â = 2.486 ·104

Results show that the averaged reconstructed image from original LORs is better than the

reconstructed image from virtual LORs if the effective number of process samples is large or

if number of trials is large (1000 in this case). The image reconstructed from virtual LORs

is blurred, as expected, but such a blur can be reduced by devignetting. However, if only 10

reconstructed image is averaged, the image obtained by using virtual LORs resembles the given

phantom distribution more than the image obtained from a still insufficient number of original

LORs.

5.2.16 Discussion

The first and second moments, i.e., the mean and the covariance matrix of the underlying 2D

process, can be calculated from the first and second moments of intersections of LORs that

pass through those process samples, but only for a single underlying 2D process. However, the

analytical PDF of the underlying 2D process still remains unknown. By calculating the higher

moments of the intersections of LORs, more statistical information about the underlying 2D

process could be obtained. On the other hand, if the expectation of the PDF of intersections of
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LORs were known, the deconvolution algorithms could be applied to reconstruct the underlying

2D process. For example, the expectation-maximization algorithm could be applied to find the

process that is most likely to have a given total PDF of intersections. Since the distribution of

intersections of LORs is related to each pair of process samples, simple deconvolution algo-

rithms that assume that each point of the process is blurred with a specific PSF are inapplicable.

The PDF of intersections for a pair of process samples was derived in the spatial and sinogram

domains. The expectation of such a PDF was searched for by assuming that process samples

come from some simple uniform 2D distribution. Even with the assumption that the process

samples are uniformly distributed within a circle or rectangle, the analytical integral of the PDF

of the intersections, i.e., the expectation of the PDF of intersections, was not found. Experimen-

tally, this integral can be calculated by summing the individual PDFs of intersections for each

unique pair of process samples. The shape of the underlying process can be guessed from such

experimentally obtained total PDF of intersections of LORs, but it is blurred. In the case of two

or more underlying 2D processes, the total PDF of the intersections of LORs is additionally

more complex due to cross-intersections of LORs that originate from different components.

Experiments showed that the blurring of a rotationally symmetric process that follows a 2D

normal distribution can be approximated by a mixture of the distribution of that process and a

heavy-tailed generalized normal distribution with a shape factor close to the shape factor of the

Laplace distribution and with the scale factor related to the width of the underlying 2D normal

distribution.

The experiments with the reconstructions of the Gaussian mixture model and the Shepp-

Logan head phantom from intersections of LORs show that such reconstructions, although

blurred and potentially biased, can be used for fast scanning in real-time applications since

they require an extremely small number of process samples. Such reconstructions resemble

the original underlying 2D processes and recognize the regions of the underlying processes’

activities since the first moments of intersections of LORs and of original process samples are

equal.
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Conclusion

The synthetic astronomical image that includes all expected image degradations of a typical

imagining system was generated. The current implementation includes optical distortion, aber-

rations and vignetting, camera motion effects, electrical sensor properties, sensor noise, and

spectral response of the optics and sensor. Parameters of individual degradation models are

derived from a typical astronomical stack processing pipeline and are fed to the synthesis al-

gorithm. Parameters need to be finely tuned to the actual imaging parameters for accurate

modeling. Experimental results show that the synthesized image is close to the real one, but

further parameter manipulation with objective similarity measures is necessary to obtain even

more precise results. Such a synthetic image represents the ground-truth or high-resolution

image which can be used for further research.

The main advantage of the proposed robust iteratively reweighted least squares (IRWLS)

method for the estimation of overlapped 2D Gaussian components in astronomical images com-

pared to the conventional least squares (LS) method is the more precise estimation of Gaussian

profile parameters when neither the centers of the profiles nor their total number is known. Since

the method is based only on the histogram of residual errors, it recognizes the outliers and ap-

plies soft thresholding, which with an appropriate threshold δ provides unbiased and efficient

estimates as it is demonstrated through Monte Carlo analysis. It was shown that the method

achieves greater accuracy up to 25 dB compared to the conventional least squares method for a

certain set of differences in profiles’ magnitudes and center-to-center distances. Moreover, the

80% of total improvement is achieved in only five iterations. As expected, the modeling gain

is primarily determined by the distances of the profiles’ centers. For the case of rotationally

symmetric profiles, the minimum ratio of the effective profile width and the pixel size should

be around one to have a sufficient number of samples for the optimization process and smaller

variances of the estimated parameters. Through the synthetic example, the applicability of the

proposed method for the analysis of astronomical images is demonstrated. The tuning constant

of the Huber estimation in the relatively wide range from 1 to 2 results in approximately the
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same IRWLS method efficiency. However, it primarily affects the convergence rate where the

smaller values of the tuning constant yield a solution closer to the L1 norm with a slower conver-

gence rate, while the greater values of the tuning constant yield a solution closer to the L2 norm

with the faster convergence rate. The main benefit of the IRWLS method with Huber weights

in the estimation from the noisy data is that a priori knowledge about the noise distribution

is not required. The method can achieve a large modeling gain of up to 25 dB in the case of

heavy-tailed noise contamination. Furthermore, the appropriate choice of the threshold δ yields

the high asymptotic efficiency of the IRWLS method in the case of additive Gaussian noise

contamination. For the case of Poisson distributed noise, the IRWLS method with inverse vari-

ance weights has the largest modeling gain of up to 3 dB compared to the IRWLS method with

Huber weights and the LS method since the inverse variance weighting is optimal in the MLE

sense for this type of contamination. For the case of additive Gaussian noise, the LS solution

is optimal as expected. Differences in differential entropy for different ROI widths predict the

reduction of estimation accuracy very well. The maximizing of differential entropy concerning

the factor of Mahalanobis distance k yields the optimal ROI width for k = 2. Random samples

uniformly sampled within such an ROI contain the maximal informativity and randomness in

the case of additive Gaussian noise contamination. Smaller and larger values of factor k than

k = 2, reduce the estimation accuracy. In the case of uniformly spaced samples with fixed ROI

density, the total modeling error in dB reduces with wider ROI with the slope of 10 dB for each

10-fold increase in the number of samples after the compensation of variations in data infor-

mativity. Future work should be focused on the verification of the proposed IRWLS method to

actual astronomical images.

In the case of multidimensional Gaussian profile fitting in the log domain, the experimen-

tal results show that in the case of high SNRs, both the WLS method in the log domain and

the LS method in the domain of Gaussian profile values achieve the same accuracy. Still, the

proposed method in the log domain converges faster, especially for the Gaussian profiles of

higher dimensions. The main advantage of the proposed method is a one-step solution for the

covariance matrix and linear scale for a given centroid position, thus avoiding the nonlinear

optimization for the estimation of those parameters. For many practical applications where the

initial centroid is already sufficiently accurately determined, only one single iteration of the pro-

posed algorithm is sufficient to determine all remaining model parameters using the analytical

procedure without the need for further iteration. Experiments showed that in the case of the 3D

Gaussian profile estimation from data contaminated with additive Gaussian noise, the covari-

ance matrix and the linear scale were estimated one or even two orders of magnitude faster using

the analytical solution of the proposed method than using the iterative LS method in the domain

of values. At the same time, for high SNRs (≥ 40dB) the proposed method achieved almost

the same total modeling error (with suboptimality of less than 3dB) without prior knowledge
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except for the assumed centroid position in comparison to the iterative LS method in the do-

main of values, which yields an optimal solution for the case of Gaussian noise contamination.

Moreover, experiments showed that such a model could be further improved by the described

correction of the initial centroid through a maximum of four iterations of this two-step method.

For comparison, numerical optimization procedures in the value domain require a significantly

larger number of iterations than the proposed method to find all model parameters, which ex-

plains the significant advantage of our method. Due to its rapid convergence, the method can be

used in real-time applications. The LS method in the domain of values is more accurate than the

proposed WLS method in the case of low SNRs (≤ 20dB) and wide ROIs. The loss of precision

of the proposed method is dominantly caused by small profile values on such wide ROIs that

can introduce significant errors in the log domain when the approximation of the exponential

function with the first term of the Taylor series does not hold. The proposed method achieves

higher accuracy in the case of model-driven estimation weights, which are selected as values of

the initial, moment-based model. Such selected estimation weights are fixed for all iterations

of the proposed method, thus guaranteeing the method’s convergence. However, in the case of

low SNRs, the initial model can significantly deviate from the specified model, and using the

initial model weights yields even worse parameter estimates than using the input data-driven

weights. This issue can be approached by iterating the estimation procedure where the weights

in each iteration are selected as estimated model values from the previous step. Under the as-

sumption of getting a better model in each iteration and consequently more appropriate weights,

the updated estimates in each iteration will be closer to the given model. Such a procedure with

adaptive weights should converge for high SNRs. As noise gradually grows and SNR reduces,

the estimation should still converge and get a usable solution due to robustness until the noise

does not become so high that the estimation diverges and becomes unfeasible. However, the

guarantee of convergence is much more difficult to prove in the case of an iterative procedure

with adaptive weights since in each iteration, in addition to the model, the optimization criterion

also changes. However, this approach is undoubtedly worth future work. The proposed ana-

lytical method of resultants for the centroid estimation of the 2D Gaussian profile from noisy

data yields up to 30 dB smaller MSE than the iterative LS method for a small number of input

samples symmetrically distributed around the centroid. The robustness of the proposed method

is validated for asymmetrically distributed samples, where the analytical solution for centroid

reduces the MSE by up to 15 dB. The proposed method is up to 19 times faster than the iterative

LS method without analytical gradients when the number of input samples is large (m= 40000),

independently of the given SNR. Thereby, the method of resultants guarantees the finding of the

global minimum even from sparsely sampled truncated estimation domain with low complexity.

The reconstruction of the underlying process in low-dose 2D PET imaging is possible by

using the intersections of LORs which are quadratically larger than the number of process sam-
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ples from which those LORs originate. Thereby, it is possible to simultaneously obtain a re-

construction of high spatial and high temporal resolution with extra small doses of the received

radiotracer. The baseline experiment shows that the FBP algorithm gives an accurate recon-

struction provided that the number of LORs is of the order of 107. Such a large number of

LORs, i.e., process samples, very well represent the unknown distribution, but a reduction in

the number of samples by an order of magnitude gives a grainy reconstructed image. The ex-

perimental results show that even in the case of a very small number of process samples whose

number is hardly sufficient to represent an unknown distribution, the intersections of LORs can

be successfully used as starting points for artificial generation of virtual LORs. Although at first

glance the reconstructed image from virtual LORs at positions of intersections of original LORs

is far from the original process, by averaging only 50 such reconstructions, a stable image of

small variance of the order of 10−7 is obtained, thereby the variance decreases with the number

of samples. It was proved that the mean of the process samples is equal to the mean of intersec-

tions and that the covariance matrix of the process is in analytical relation via the expectation

of transformation matrix with the covariance of the intersections. The averaged reconstructed

image primarily has an unwanted bias concerning the original process due to the difference in

the covariance matrix of the process and intersections. This bias concerning the given density

function could be compensated by nonlinear deconvolution by knowing the analytical relation

of process and intersections spatial distributions. The PDF of intersections is derived for a pair

of process samples in the spatial and the sinogram domain. The total PDF of intersections can

be found as the sum of individual PDFs for all pairs of point sources. The regularization of

initial angles is introduced to limit the dispersion of the intersections and enable the reconstruc-

tion of the underlying process. The regularization ensures the finite first and second moments

of the distribution of intersections, enabling the calculation of the mean and the covariance ma-

trix of the underlying process as well. The attempt to analytically derive the expectation of

PDFs of intersections was unsuccessful even for a simple circular of rectangular 2D uniform

distributions. If this expectation could be calculated, a reconstruction of any 2D input process

could be obtained by applying expectation maximization or deconvolution algorithms. In the

case of numerically calculated total PDF of intersections of underlying 2D Gaussian process,

the distribution of its intersections is approximated by the mixture of the generalized normal

distribution close to Laplace distribution and the normal distribution of the underlying process.

Even though the reconstruction from intersections of LORs is blurred, it can be used as a fast

scanning technique since it can recognize the regions of the underlying process activity from a

very small number of coincident events.
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