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ABSTRACT 

Ultra-wideband (UWB) impulse radio uses very short pulses to transmit data, resulting 

in high-rate transmission. These systems require pulses that efficiently fill desired spectral 

masks and exhibit high energy concentration. Since these requirements are in conflict, many 

methods for the design of UWB pulses make a trade-off between them. Common UWB pulses 

exploit Gaussian derivatives. These derivatives represent bandpass pulses well localized in 

time. However, they do not exploit UWB region efficiently. In this dissertation, two methods 

for the design of spectrally and energy efficient UWB pulses based on Gaussian derivatives as 

well as Gaussian pulses have been presented. First method considers the design of pulses based 

on sharpening technique. The sharpening was introduced in the design of FIR filters, where it 

was used to improve the filter's magnitude response. Here, it is used to develop a method for 

the design of UWB pulses which optimally fill a desired spectral mask. The method is based 

on the sharpening of the magnitude spectrum of an arbitrary Gaussian derivative by applying 

the Kaiser-Hamming polynomials. Such sharpening offers controllable flatness at the top of the 

magnitude spectrum as well as controllable steepness in spectrum's transition regions. Second 

method is inspired by Gaussian derivatives, in which the Gaussian is weighted by Hermite 

polynomials. Here, the polynomials are constructed by imposing maximum flatness at the peak 

of pulse’s amplitude spectrum. Furthermore, to obtain UWB pulses, frequency shift and 

bandwidth scaling are applied. In both methods, the pulse's magnitude spectrum is given in a 

closed form, thus ensuring fast and robust pulse design. Furthermore, compared to other 

Gaussian-based UWB waveforms, both methods bring the pulses which have significantly 

higher spectral efficiency and slightly lower energy concentration. In addition to these methods, 

the approximation of ideal UWB waveforms by using pulse shapers is also considered in the 

dissertation. In particular, the pulse shapers whose impulse responses approximate Gaussian 

derivatives, modified Hermite pulses, prolate spheroidal pulses, as well as the proposed 

sharpened Gaussian derivatives and flat-spectrum Gaussian pulses are presented. To obtain the 

optimum pulse shapers, least-squares error criterion is used. In their design, the transfer 

functions that exhibit spectral efficiency up to 78% are considered. 

Keywords: Gaussian derivatives, impulse response approximation, maximally flat, optimum 

waveforms, polynomial sharpening, pulse shaping, time-domain synthesis, ultra-wideband 

(UWB) systems.  



 
 

 

Spektralno i energetski učinkoviti ultra-širokopojasni 

pulsovi temeljeni na oblikovanju spektra 

Ultra-širokopojasni (ultra-wideband, UWB) radio koristi pulsove kratkog trajanja za 

prijenos informacija. Ovi pulsovi moraju učinkovito popunjavati zadanu spektralnu masku te 

biti koncentrirani u vremenu. Često korišteni pulsovi temelje se na Gaussovim derivacijama. 

Ove derivacije su dobro vremenski koncentrirane, ali ne iskorištavaju učinkovito područje pod 

maskom. U disertaciji su predložene dvije metode za dizajn spektralno i energetski učinkovitih 

pulsova temeljenih na Gaussovom pulsu i njegovim derivacijama. Prva metoda se temelji na 

izoštravanju amplitudnih spektara Gaussovih derivacija Kaiser-Hammingovim polinomima. 

Takvo izoštravanje nudi kontroliranje glatkoće u maksimumu amplitudnog spektra kao i 

kontroliranje nagiba njegovog prijelaznog područja. Druga metoda inspirirana je Gaussovim 

derivacijama, u kojima je Gaussova funkcija otežana Hermitovim polinomima. U disertaciji je 

predložen optimalan težinski polinom koji osigurava maksimalnu glatkoću u vrhu amplitudnog 

spektra pulsa. Uspoređujući dobivene pulsove s drugim pulsovima temeljenim na Gaussovoj 

funkciji, obje metode nude značajno veće spektralne učinkovitosti s tek nešto slabijom 

energetskom koncentracijom. Konačno, razmatrana je aproksimacija idealnih pulsova pomoću 

impulsnih odziva vremenski kontinuiranih filtara. Dane su prijenosne funkcije ovih filtara 

pogodne za oblikovanje raznih konvencionalnih te predloženih UWB pulsova. 

Disertacija je podijeljena u sedam poglavlja. U prvom, uvodnom, poglavlju provedeno 

istraživanje smješteno je u kontekst. Dana je definicija UWB radija i UWB signala. Nadalje, 

navedene su glavne značajke UWB prijenosnih sustava i područja njihove primjene te je 

opisana njihova interakcija s drugima kratkodometnim komunikacijskim sustavima. UWB 

prijenos reguliran je spektralnim maskama koje specificiraju razne regulatorne agencije. U ovoj 

disertaciji razmatrani su pulsovi koji zadovoljavaju maske za otvorene i zatvorene prostore koje 

propisuje Federalna komisija za komunikacije (Federal Communications Commission, FCC). 

Za obje maske izdvojeno je takozvano UWB područje koje obuhvaća frekvencije od 3.1 GHz 

do 10.6 GHz, a u kojem je, prema FCC specifikacijama, za prijenos pulsova dozvoljena 

maksimalna spektralna gustoća snage od −4l.3 dBm/MHz. Pulsovi razmatrani u ovoj disertaciji 

dizajnirani su tako da učinkovito ispunjavaju spomenuto područje. Kao mjera kvalitete ispune, 



 
 

uvedena je spektralna učinkovitost definirana kao omjer snage pulsa u UWB frekvencijskom 

području i ukupne snage koju u tom području dopušta spektralna maska. Nadalje, kao mjera 

kvalitete valnog oblika pulsa uvedena je energetska koncentracija definirana kao omjer energije 

korisnog dijela pulsa i njegove ukupne energije. 

U drugom poglavlju opisana su dosadašnja postignuća u području dizajna UWB 

pulsova. Nadalje, razmotrene su prednosti i nedostatci postojećih pulsova te je dana njihova 

usporedba. Od konvencionalnih pulsova koji se koriste u UWB dizajnu razmatrane su Gaussove 

derivacije, modificirane Hermitove funkcije i izdužene sferoidne valne funkcije (prolate 

spheroidal function). UWB pulsovi temeljeni na Gaussovim derivacijama i izduženim 

sferoidnim valnim funkcijama imaju iznimno velike energetske koncentracije. Međutim, oni 

slabo ispunjavaju UWB područje spektralne maske. Hermitovi pulsovi također imaju veliku 

energetsku koncentraciju. Međutim, karakteristike njihovih spektralnih gustoća snaga imaju 

velike bočne latice što može uzrokovati jaku interferenciju s drugim komunikacijama. S druge 

strane, puls koji nudi vrlo veliku spektralnu učinkovitost je pojasno propusni sinc puls koji 

gotovo u potpunosti ispunjava UWB područje. Međutim, ovakav puls ima veliko i dugotrajno 

istitravanje, što uzrokuje slabu energetsku koncentraciju. Stoga se njegovo trajanje ograničava 

množenjem s odgovarajućim vremenskim otvorom. Dobar kompromis između spektralne 

učinkovitosti i energetske koncentracije nude linearne kombinacije konvencionalnih pulsova. 

U njima se često koriste frekvencijski transponirani Gaussovi i sinc pulsovi, te Gaussove 

derivacije. 

S obzirom da se prva predložena metoda za dizajn pulsova temelji na Gaussovim 

derivacijama, u trećem poglavlju opisan je postupak dizajna UWB pulsova temeljen na njima. 

U ovakvom dizajnu potrebno je osigurati kompatibilnost Gaussovih derivacija s danom 

spektralnom maskom. Za to je potrebno odrediti faktore za skaliranje amplitude i 

frekvencijskog područja. U disertaciji je detaljno opisan postupak određivanja ovih faktora. 

Nadalje, dani su parametri pod kojima Gaussove derivacije optimalno popunjavaju vanjsku i 

unutarnju FCC spektralnu masku. Također, dan je programski kod u kojem je implementiran 

cjelovit dizajn pulsova temeljenih na Gaussovim derivacijama. Za dobivene pulsove izračunate 

se spektralne učinkovitosti i energetske koncentracije s obzirom na obje maske. Kod računanja 

energetske koncentracije, energija korisnog dijela pulsa određena je numerički, dok su za 

izračunavanje njegove ukupne energije izvedeni analitički izrazi. 

Četvrto poglavlje opisuje prvu od predloženih metoda za dizajn pulsova. Ova metoda 

temelji se na izoštravanju amplitudnih spektara Gaussovih derivacija Kaiser-Hammingovim 

polinomima. Polinomno izoštravanje prvi je put primijenjeno za poboljšavanje amplitudnih 



 
 

karakteristika filtara s konačnim impulsnim odzivom (finite impulse response, FIR). Međutim, 

iako je izoštravanje dobro poznato u dizajnu FIR filtara, do sada nije razmatrana njegova 

primjena u sintezi valnih oblika. Izoštravanje Kaiser-Hammingovim polinomima pogodno je 

za dizajn UWB pulsova jer omogućava kontrolu glatkoće u maksimumu amplitudnog spektra i 

kontrolu nagiba njegovog prijelaznog područja. Da bi ovo izoštravanje moglo biti primijenjeno 

na Gaussove derivacije, maksimumi njihovih amplitudnih spektara normirani su na jedinične 

vrijednosti. Na ovako dobivene spektre primijenjeni su polinomi za izoštravanje s raznim 

stupnjevima glatkoće. Nadalje, izvedeni su analitički izrazi za amplitudne spektre izoštrenih 

Gaussovih derivacija te za pripadajuće valne oblike. Uočeno je da valni oblici dobivenih 

pulsova predstavljaju linearne kombinacije Gaussovih derivacija i njihovih Hilbertovih 

transformacija. Stoga je izveden i analitički izraz za ove Hilbertove transformacije. U ovom 

poglavlju opisan je i dizajn ultra-širokopojasnih pulsova temeljenih na izoštrenim Gaussovim 

derivacijama. Kako bi bila osigurana kompatibilnost pulsova s danom spektralnom maskom, za 

pojedine redove Gaussovih derivacija potrebno je odrediti faktore za skaliranje frekvencijskog 

područja te redove glatkoća polinoma. U disertaciji je predložen postupak za određivanje ovih 

parametara. Također, dan je programski kod u kojem je implementiran cjelovit dizajn pulsova 

kompatibilnih s FCC maskama. Za dobivene pulsove izračunate su spektralne učinkovitosti i 

energetske koncentracije. Nadalje, dani su primjeri koji pokazuju superiornost spektralne 

učinkovitosti predloženih pulsova u odnosu na različite gaussovske i sinc pulsove. Također, 

dana je usporedba njihovih energetskih koncentracija. 

Forsiranje glatkoće u vrhu amplitudnog spektra UWB pulsa značajno povećava 

spektralnu učinkovitost, a istovremeno zadržava dobru energetsku koncentraciju. Kod 

izoštrenih Gaussovih derivacija, glatkoća je nametnuta posredno, kao kompozicija maksimalno 

glatkih polinoma i Gaussovih derivacija. Kao posljedica ovakvog pristupa, prilagođavanje 

spektra pulsa na zadanu spektralnu masku bilo je potrebno provesti pomoću optimizacije. Osim 

toga, dio UWB područja i dalje je ostao neiskorišten. Peto poglavlje opisuje metodu koja bolje 

iskorištava UWB područje, a istovremeno omogućava analitičko oblikovanje pulsa. Ova 

metoda koristi Gaussovu funkciju otežanu polinomom dobivenim po maksimalno glatkom 

kriteriju. Ovakav model inspiriran je valnim oblicima Gaussovih derivacija, u kojima je 

Gaussova funkcija otežana Hermitovim polinomima. U predloženoj metodi, najprije je izveden 

analitički izraz za valni oblik i amplitudni spektar pulsova u kojem je Gaussova funkcija otežana 

proizvoljnim polinomom. Nadalje, optimalan težinski polinom je određen po maksimalno 

glatkom kriteriju. Ovaj kriterij je zadovoljen na frekvenciji koja osigurava optimalnu glatkoću 

amplitude. U ovom poglavlju, detaljno je opisano i prilagođavanje dobivenih pulsova 



 
 

spektralnim maskama. Ako je dobiveni amplitudni spektar maksimalno gladak na nultoj 

frekvenciji, valni oblik UWB pulsa dobiva se frekvencijskom translacijom dvostranog spektra 

pulsa iz osnovnog frekvencijskog područja. S druge strane, ukoliko je amplitudni spektar 

maksimalno gladak na frekvenciji različitoj od nule, UWB puls dobiva se frekvencijskom 

translacijom jednostranog spektra pulsa iz osnovnog frekvencijskog područja. U oba slučaja, 

translacija se izvodi uz frekvenciju miješanja koja osigurava kompatibilnost pulsa sa 

spektralnom maskom na frekvencijama na kojima dozvoljena spektralna gustoća snage ima 

diskontinuitet. Na taj način osigurava se optimalno ispunjavanje UWB područja te time i visoka 

spektralna učinkovitost. Polinom dobiven po maksimalno glatkom kriteriju u frekvencijskoj 

domeni ujedno osigurava dobru energetsku koncentraciju pulsova. U disertacija je dan i 

programski kod u kojem je implementiran cjelovit dizajn pulsova kompatibilnih s FCC 

maskama. Kako bi se prikazale značajke predloženog pristupa, napravljena je usporedba 

dobivenih oblika i konvencionalnih UWB pulsova kao što su Gaussove derivacije te linearne 

kombinacije translatiranih sinc pulsova i translatiranih Gaussovih derivacija. 

Šesto poglavlje opisuje metodu za dizajn vremenski kontinuiranih filtara čiji impulsni 

odzivi aproksimiraju kauzalne reprezentacije raznih idealnih pulsova. Kauzalnost pulsova je 

dobivena kašnjenjem koje je određeno tako da kauzalna reprezentacija sadrži najmanje 99.9 % 

energije originalnog pulsa. U disertaciji je detaljno opisana metoda kojom su pronađene 

optimalne prijenosne funkcije filtara po kriteriju najmanje kvadratne pogreške koja je 

definirana u vremenskoj domeni. Ta metoda koristi iterativan postupak u kojem se u svakom 

koraku rješava problem optimizacije linearne funkcije nad prostorom omeđenim stošcima 

drugog reda (second order cone programming). Metoda koristi model prijenosne funkcije 

filtara koji sadrži nultočke, polove i pojačanje (zeros, poles and gain coeffcient, ZPK) sustava. 

Ovakav model omogućava jednostavnu kontrolu stabilnosti sustava te osigurava malu 

osjetljivost postupka na numeričke pogreške. Da bi se aproksimirani pulsovi mogli lakše 

usporediti s originalnim pulsovima, izvedene su mjere spektralne učinkovitosti i energetske 

koncentracije impulsnih odziva filtara u analitičkom obliku. Ove mjere također koriste ZPK 

model sustava. U disertaciji je detaljno opisan postupak za sintezu optimalnih prijenosnih 

funkcija vremenski kontinuiranih filtara čiji impulsni odzivi aproksimiraju Gaussove 

derivacije, modificirane Hermitove funkcije i izdužene sferoidne valne funkcije, kao i 

predložene izoštrene Gaussove derivacije te Gaussove pulsove s maksimalno glatkim 

amplitudnim spektrom. Navedeni pulsovi namijenjeni su komunikacijama u kojima dano 

frekvencijsko područje koristi jedan korisnik. Osim njih, razmatrani su i impulsni odzivi koji 

aproksimiraju idealne pulsove temeljene na izduženim sferoidnim valnim funkcijama, 



 
 

namijenjeni komunikacijama u kojima isto frekvencijsko područje koriste dva korisnika. Za 

ovakve pulsove izvedena je mjera njihove ortogonalnosti u analitičkom obliku. Konačno, za 

predložene aproksimacije pulsova izračunata je spektralna učinkovitost i energetska 

koncentracija. 

U posljednjem, sedmom, poglavlju sažeta su svojstva predloženih metoda za dizajn 

idealnih UWB pulsova te svojstva njihovih kauzalnih aproksimacija. Metoda za dizajn UWB 

pulsova koja se temelji na izoštravanju, kao kriterij za dizajn koristi glatkoću spektra. Time 

osigurava veliku spektralnu učinkovitost i dobru energetsku koncentraciju. Jednostavna je za 

upotrebu, a njena primjena značajno poboljšava spektralna svojstva Gaussovih derivacija. 

Metoda podržava proizvoljnu spektralnu masku. Pulsovi oblikovani s obzirom na FCC maske 

pokazuju značajno veću spektralnu učinkovitost od ostalih gaussovskih pulsova, a istovremeno 

zadržavaju dobru energetsku koncentraciju. Polinomno otežavanje Gaussovog pulsa također 

koristi glatkoću spektra kao kriterij za dizajn. U ovom slučaju, oblikovanje je izvedeno pomoću 

translacije i skaliranja frekvencijskog područja. Taj pristup se pokazao kao vrlo učinkovit pri 

ispunjavanju UWB područja spektralne maske. Pulsovi oblikovani s obzirom na FCC maske 

pokazuju značajno veću spektralnu učinkovitost nego konvencionalni pulsovi, uz istovremeno 

dobru energetsku koncentraciju. Predložene aproksimacije idealnih pulsova jako dobro prate 

valne oblike idealnih pulsova, te stoga osiguravaju približno jednake spektralne učinkovitosti 

kao i njihovi idealni parnjaci. 
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1. INTRODUCTION 

Ultra-wideband (UWB) impulse radio is a short-range communication system providing 

simple design, low power consumption, multipath immunity, and high data rates [1]. UWB 

technology has been originally developed for military communications and radar applications. 

The definition of UWB signal is based on the fractional bandwidth being greater than 25 % of 

the signal bandwidth, where fractional bandwidth is measured within 3 dB points in the 

spectrum. The signal is also considered as UWB if its bandwidth is wider than 500 MHz [2].  

UWB impulse radio offers rates up to several Gbps at distances of 1 to 10 meters [2], 

what makes it suitable for personal area network communications such as Bluetooth or Wi-Fi. 

Also, UWB finds its application in local area networks, indoor data streaming, tracking, 

wireless monitoring, sensor networks, etc. In recent years, it emerged as the most promising 

technology in positioning applications, where it offers localization accuracy in range of 0.1 to 

0.5 meters. Such an application has been successfully tested with Communications-Based Train 

Control in New York subway trains in 2020 [3]. In addition, in 2021 Apple designed a chip that 

uses UWB technology for spatial awareness, allowing iPhone models to precisely locate other 

devices [4]. In the same year, UWB finds its application in the automotive industry as well, 

where it is employed to enable secure keyless entry in BMW iX [5]. 

In 2002 US Federal Communications Commission (FCC) regulated the usage of UWB 

radio for commercial purposes by providing indoor and outdoor power spectral masks as shown 

in Figure 1.1 [6]. For both masks, the FCC defines the UWB region from 3.1 GHz to 10.6 GHz, 

with the maximum power spectral density (PSD) value of 4l.3 dBm/MHz. Later, other 

regulatory organizations allocated particular bands in Europe [7] and Japan [8]. 

UWB impulse radio utilizes very short pulses to transfer data. It is well-known that 

continuous generation of train of short pulses leads to strong spectral lines at multiples of the 

pulse repetition frequency [2]. Therefore, in the UWB transmitter, randomizing the pulse 

repetition frequency needs to be performed. Two most prominent techniques are time hopping 

and direct sequencing. Time hopping is based on adding a delay in the UWB pulse dependent 

on a time hopping code, where the code repeats after a certain interval [2]. In the direct 

sequencing technique, a pseudo random code is used to spread each data bit into multiple 

waveforms [1]. In both techniques, pulse amplitude modulation, on-off keying, and pulse 

position modulation are commonly used as modulation schemes. 
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Figure 1.1 FCC spectral masks for indoor and outdoor UWB communications. 

 

The spectrum of the transmitted UWB signal depends on the used pulse shaping method, 

randomizing technique, and modulation scheme [9]. Due to strict regulations, the key part of 

UWB transmitter is pulse shaping. Well-established pulse shaping techniques are lowpass 

filtering followed by up-conversion, bandpass pulse shaping filtering, and combined analog-

digital waveform synthesis [10]. The first technique employs a lowpass filter to form a baseband 

pulse, which is then transposed to the UWB region. In the second technique, UWB pulse is 

obtained directly by using bandpass filter called pulse shaper whose impulse response 

approximates the desired waveform. The third technique employs discrete-time pulse synthesis 

followed by a simple bandpass filter. Despite the fact that lowpass filters are less complex than 

bandpass filters, using the lowpass filters in pulse shaping is paid by additional circuitry, which 

implements mixer and local oscillator. Therefore, UWB pulse transmission usually employs the 

pulse shaper approach. A block diagram of such transmission is shown in Figure 1.2. Several 

methods for the design of pulse shapers have been developed, considering Padé [11], elliptic 

[12], and least squares [13] approximation. In addition, the design of pulse shapers 

incorporating the frequency response of UWB antennas is considered in [14] and [15]. 



1. INTRODUCTION 

3 

 

 

 

Figure 1.2 Block diagram of UWB pulse transmission [2]. 

 

In UWB pulse shaping, common figures of merit are spectral efficiency and energy 

concentration. The spectral efficiency is defined as the average power of pulse normalized to 

the total allowed power within the UWB region, that is, 

where W( f ) is Fourier transform of the UWB pulse, M( f ) is spectral mask, and fL and fU are 

lower and upper boundaries of the UWB region. The relative energy concentration of the UWB 

pulse is defined as 

where w(t) is pulse waveform, Ew is the total energy of w(t), and T is period within which the 

energy concentration is measured. 

In the design of pulse shapers, conventional UWB waveforms are Gaussian derivatives 

[9], [16], modified Hermite polynomials [17], and prolate spheroidal wave functions [18], [19]. 

From the spectrum utilization point of view, these waveforms provide acceptable efficiency. 

High spectral efficiency is achieved by utilizing frequency translated sinc pulse [20]. However, 

it is paid by poor energy concentration. The spectral efficiency and energy concentration are 

both optimized in [21]. Furthermore, a good tradeoff between these parameters is offered by 
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doublet Hermite pulses [22], root-raised-cosine pulses [23], Gaussian windowed Gaussian 

derivatives [24], modified prolate-spheroidal wave functions [25], a family of functions 

obtained by solving the Sturm-Liouville differential equation in the frequency domain [26], 

modulated modified and normalized Hermite pulses [17], Hamming and Hann windowed 

pulses [27], sinusoidal-like [28], [29] and square-like [30] pulse, as well as the linear 

combinations of conventional pulses, such as spectrum-shifted Gaussian [31], [32], Gaussian 

derivatives of different orders [14], [33], [34], Hermite pulses [35], wavelets [36], [37], and 

sinc [31] pulses. 

Besides analog pulses, high spectral efficiency can be reached by employing the finite-

impulse-response (FIR) filters [38], [39]. However, generating UWB pulses by using FIR filters 

requires high-speed analog to digital converters. To eliminate the need for such converters, in 

[40] the authors presented an FIR-based architecture which implements UWB waveforms 

entirely in the continuous-time domain. In [41], the optimum design of FIR-based UWB 

waveforms for an arbitrary spectral mask has been considered. 

In this dissertation, two methods for the design of spectrally and energy efficient UWB 

pulses based on Gaussian derivatives as well as Gaussian pulses have been presented. The 

former considers the design of pulses based on sharpening technique. The sharpening has been 

introduced in the design of FIR filters, where it has been used to improve the filter's magnitude 

response. Here, it is used to develop a method for the design of UWB pulses which optimally 

fill a desired spectral mask. The method is based on the sharpening of the magnitude spectrum 

of an arbitrary Gaussian derivative by applying the Kaiser-Hamming polynomials. Such 

sharpening offers controllable flatness at the top of the magnitude spectrum as well as 

controllable steepness in spectrum's transition regions. The latter method is inspired by 

Gaussian derivatives, in which the Gaussian is weighted by Hermite polynomials. Here, the 

polynomials are constructed by imposing maximum flatness at the peak of pulse’s amplitude 

spectrum. Furthermore, to obtain UWB pulses, frequency shift and bandwidth scaling are 

applied. It brings so-called flat-spectrum Gaussian pulses. In addition to these two methods, the 

approximation of ideal UWB pulses by using pulse shapers' transfer functions is also considered 

in the dissertation. In particular, the pulse shapers whose impulse responses approximate 

Gaussian derivatives, modified Hermite pulses, and prolate spheroidal pulses, as well as the 

sharpened Gaussian derivatives and flat-spectrum Gaussian pulses are presented. To obtain the 

optimum pulse shapers, least-squares error criterion is used. 

The dissertation is organized as follows. The second chapter describes conventional and 

state-of-the-art UWB pulses. The third chapter describes the optimum design of UWB pulses 
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by using Gaussian derivatives. In the fourth chapter the sharpened Gaussian derivatives and 

their utilization in the design of optimum UWB pulses are presented. The fifth chapter presents 

flat-spectrum Gaussian pulses. Finally, the sixth chapter presents the time-domain synthesis of 

pulse shapers and provides various zero-pole-gain models of their transfer functions. 
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2. STATE-OF-THE-ART UWB PULSES 

In this chapter, conventional and state-of-the-art UWB pulses obtained by analytical 

procedures are described in the time and frequency domain, and the examples of their 

waveforms and power spectral densities designed for FCC masks are provided. In particular, 

Gaussian derivatives, modified Hermite pulses, prolate spheroidal wave functions, and 

translated sinc pulse are considered as conventional pulses, whereas linear combinations of 

translated sinc and Gaussian pulses as well as linear combinations of Gaussian derivatives are 

considered as state-of-the-art pulses. 

2.1 Gaussian derivatives 

The most popular UWB pulses are the derivatives of Gaussian pulse. These pulses are 

characterized by very good time and frequency localization [9], [16]. 

An nth derivative of the Gaussian pulse 

is given by [9] 

where α and  are amplitude and bandwidth scaling factors and Hn(t) is the Hermite polynomial 

of order n. A closed-form expression for the nth order Hermite polynomial is given by [42] 

where u denotes the greatest integer equal to or smaller than u. 

The first six Gaussian derivatives obtained for α = 1 and  = 1 s are shown in Figure 2.1. 

Clearly, even-order derivatives represent even functions, while odd-order derivatives are odd 

functions. In addition, according to (2.2), the Gaussian derivative can be considered as a 
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polynomially weighted Gaussian. Since the Gaussian suppresses the tail of a polynomial 

regardless of how high the polynomial order is, the Gaussian derivatives are well localized in 

time. 

 

Figure 2.1 First six Gaussian derivatives obtained for α = 1 and τ = 1 s. 

 

The spectrum of gn(t) is obtained as [43] 

where G0(ω) is the Fourier transform of Gaussian pulse given by [1] 

The magnitude spectrum of gn(t) given by 

The peak of |Gn(ω)|is placed at [44] 
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The shapes of |Gn(ω)| are illustrated in Figure 2.2 for the derivatives from Figure 2.1. 

For comparison, the magnitudes |Gn(ω)| are divided by |Gn(ωn)| to ensure unity peaks. It is clear 

that |Gn(ω)| is a bandpass function whose lower transition band is steeper than the upper one. 

 

Figure 2.2 Magnitude spectra of first six Gaussian derivatives with peak 
magnitudes normalized to unity, obtained for  = 1 s. 

 
The compliance of Gaussian derivatives to a given spectral mask is achieved by using 

the appropriate value of . A detailed description of the design of UWB-compliant Gaussian 

derivatives will be described in Chapter 3. Here, the PSDs of the fourth Gaussian derivative 

complaint with FCC indoor mask and the seventh Gaussian derivative compliant with FCC 

outdoor mask are illustrated in Figure 2.3. They are obtained for  = 0.067 ns and  = 0.091 ns, 

respectively [9]. 

2.2 Modified Hermite pulses 

Authors in [17] proposed utilization of modified Hermite pulses in UWB impulse radio 

applications. They used a Hermite polynomial as the pulse basis and modified it to impose 

mutual orthogonality. In such manner pulses can utilize the same frequency region without 

interfering. Consequently, by utilizing multiple pulses in the same region, spectral efficiency is 

enhanced. In such a scenario, each pulse can be assigned to different user to form multiaccess 

communication system. 
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Figure 2.3 Power spectral densities of FCC-compliant Gaussian derivatives, 
obtained for n = 4 and n = 7. 

 
An nth order modified Hermite pulse is given by [17] 

where weighting function  2/ 2t
e


 is introduced to provide orthogonality [19]. The modified 

Hermite pulses for  = 1 s are shown in Figure 2.4. Clearly, the pulses’ durations are similar for 

all n. Consequently, their bandwidths have also similar values. 

The modified Hermite pulses satisfy the following differential equation [19] 

By using time and frequency derivative property of the Fourier transform, spectra of modified 

Hermite pulses can be obtained from expression in (2.9) as [17] 

For illustration, the first three Mn(ω) take the form 
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The first three magnitude spectra of modified Hermite pulses with peak magnitudes normalized 

to unity are illustrated in Figure 2.5. 

 

Figure 2.4 First six modified Hermite pulses obtained for τ = 1 s. 

 
Clearly, the pulse's peak frequency increases with an increase in n. In addition, the peak 

frequency and the bandwidth increase with a decrease in the value of . The compliance of 

modified Hermite pulses with a given spectral mask is satisfied by finding the optimum values 

of , similar as for Gaussian derivatives. The PSDs of the first three modified Hermite pulses 

which are compliant with FCC indoor mask are shown in Figure 2.6. It is clear that modified 

Hermite pulses of order n > 1 contain large sidelobes. In addition, even-order pulses have DC 

components, whereas odd-order pulses do not have DC components but contain significant 
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components at low frequencies [17]. Therefore, to meet the requirements of a spectral mask, 

additional bandpass filtering is required. Nulls in the pulse spectrum can be utilized to mitigate 

interferences from known signal sources which appear in the UWB region, such as Wi-Fi 

signals. 

 

Figure 2.5 Magnitude spectra of first three modified Hermite pulses with peak 
magnitudes normalized to unity. 

 

Figure 2.6 Power spectral densities of modified Hermite pulses for n ≤ 3, for values 
of τ fitting UWB region of FCC indoor mask. 
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2.3 Prolate spheroidal wave functions 

The most popular algorithm for the design of orthogonal pulses is based on prolate 

spheroidal wave functions. This algorithm has been proposed in [18]. In the algorithm, (t) 

denotes a pulse that fits the FCC mask and is time-limited with TP/2 ≤ t ≤ TP/2. This pulse 

satisfies the following equation [18] 

where TP is pulse's duration, and  and h(t) are the gain constant and impulse response of an 

ideal bandpass filter. The solutions of the equation in (2.12) are known as prolate spheroidal 

wave functions [45]. For the FCC masks, h(t) is given by 

where 

and fU = 10.6 GHz and fL = 3.1 GHz are upper and lower band-edge frequency of the UWB 

region. To solve the equation in (2.12), a finite number of samples, Q+1, within TP/2 ≤ t ≤ TP/2 

is used. For an even Q, equation (2.12) can be written in the form 

or shortly 
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It is clear that H is a symmetric Toeplitz matrix. Furthermore, the solutions for  are 

eigenvectors of H. As shown in [45], when TP → ∞, the solutions and the corresponding pulses 

n(t), n = 1, 2, ..., Q+1, are orthonormal. Therefore, the following equation holds [45]  

Even-order pulses are odd functions, whereas odd-order pulses are even functions.  

For a finite value of T, it has been shown in [45] that 

From expressions (2.17) and (2.18), it is recognized that λn, n = 1, 2, ..., Q+1, represent the 

energy concentration of pulses n(t) within the interval T/2 ≤ t ≤ T/2.  

Considering maximum power of pulses, the eigenvectors corresponding to the largest 

two eigenvalues are chosen for UWB pulses. These pulses are called prolate spheroidal pulses. 

They are denoted here as 1 and 2. Waveforms and PSDs of 1 and 2 compliant with the 

FCC indoor and outdoor mask are shown in Figure 2.7. Both pulses are well localized in time. 

 

 

Figure 2.7 Waveforms (left) and power spectral densities (right) of prolate 
spheroidal FCC-compliant pulses 1 and 2. 

 ψ Hψ  (2.16) 
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2.4 Translated sinc pulse 

The UWB region of the FCC spectral masks has a constant PSD. Consequently, a 

frequency translated sinc pulse is the best candidate for filling this region [20]. However, the 

translated sinc pulse suffers from high ringing. In [20], this ringing is limited by pulse 

truncation. 

The spectrum of sinc pulse translated to the UWB band fL < f < fU is given by [20] 

where C is a magnitude limit in the UWB region. The waveform of the translated sinc pulse is 

given by [20] 

where fW is the cut-off frequency of the original sinc pulse and fc is the center frequency of the 

UWB region. In [20], the authors used a rectangular window with the duration of 16 ns to 

truncate the pulse in (2.20). The waveform and PSD of the obtained pulse meeting the FCC 

masks are shown in Figure 2.8. As a consequence of the truncation, the PSD contains 

overshoots and sidelobes which can violate spectral mask. However, their influence can be 

controlled by changing the width of the truncation window. 

 

 

Figure 2.8 Waveform (left) and power spectral density (right) of translated sinc 
pulse truncated to 16 ns, which is compliant with FCC masks. 

 
for

0 for otherwise
L UC f f f

P f
 

 


 (2.19) 

     8 sinc 2 cos 2W W cp t C f f t f t  (2.20) 
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2.5 Linear combination of translated sinc pulses 

In terms of spectral properties, frequency translated sinc pulse fits a rectangular mask 

the best. However, it suffers from large ringing. To solve this problem, a linear combination of 

sinc pulses has been utilized in [31] yielding a good time localization while still maintaining 

high spectral efficiency. 

A linear combination of two translated sinc pulses is given by [31] 

where p(t) is given in (2.20), a1 and a2 are weighting factors, and δ is a delay [31]. The spectrum 

of the pulse in (2.21) is given by [31] 

A linear combination of three translated sinc pulses takes the form [31] 

where a1, a2 and a3 are weighting factors, and δ1 and δ2 are delays. Note that unlike the pulse in 

(2.21), the linear combination in (2.23) employs different sinc pulses, p1(t), p2(t), p3(t). They 

are obtained by using the cut-off frequencies fW1, fW2, fW3, and translation frequencies fc1, fc2, fc3. 

The amplitude spectrum of the pulse in (2.23) is given by [31] 

where P1( f ), P2( f ) and P3( f ) are the spectra of p1(t), p2(t) and p3(t). 

To ensure that c1,2(t) and c1,2,3(t) fit the UWB spectral mask, appropriate values of pulses' 

cut-off frequencies and the translation frequencies, as well as the weighting coefficients and 

delays should be found. In [31], the authors provided pulses which satisfy the criterion for 

maximum efficiency in fitting several UWB spectral masks. The pulses are found by an interior 

point optimization algorithm. As an example, the optimum linear combination of three 

translated sinc pulses which meets the FCC indoor mask is obtained for C = 8.61e3, a1 = 1, 

fW1 = 3.245 GHz, fc1 = 6.47 GHz, a2 = 3, fW2 = 3.325 GHz, fc2 = 7.19 GHz, δ1 = 0.017 ns, 

a3 = 4.35, fW3 = 3.705 GHz, fc3 = 6.73 GHz, and δ2 = 0.04 ns. The corresponding waveform and 

the PSD are shown in Figure 2.9. 

     1,2 1 2c t a p t a p t     (2.21) 

      2
1,2 1 2

f jC f a P f a P f e     (2.22) 

       1,2,3 1 1 2 2 1 3 3 2c t a p t a p t a p t       (2.23) 

       1 22 2
1,2,3 1 1 2 2 3 3

f j f jC t a P f a P f e a P f e        (2.24) 
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Figure 2.9 Waveform (left) and power spectral density (right) of linear combination 
of three translated sinc pulses meeting FCC indoor mask. 

2.6 Linear combination of translated Gaussian pulses 

Unlike sinc pulses, Gaussian pulses have low spectral efficiency but rather high energy 

concentration. These properties are preserved in their frequency translations as well. Therefore, 

by combining translated Gaussian pulses, an increase in spectral efficiency is expected together 

with high energy concentration. 

A general expression for the linear combination of K Gaussian pulses is given by 

where ak and fk, k = 0, 1, ..., K, are the weighting factors and central frequencies of translated 

Gaussian pulses. The corresponding amplitude spectrum is obtained as 

where G0( f ) is given by (2.5) and f = ω/2π. 

The linear combinations of two and three translated Gaussian pulses fitted to arbitrary 

spectral masks have been proposed in [31]. In [32], this technique has been utilized for the FCC 

indoor mask. In the paper referred to, the linear combination of eight Gaussian pulses which 

meets this mask up to 12 GHz is presented. The mask is first divided into five regions, with the 

widest being the UWB region. Then, the weighting factors and translation frequencies are 

     0
0

cos 2
K

c k k
k

g t a g t f t


   (2.25) 

   0
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K

c k k
k

G f a G f f

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optimized to ensure maximum flatness of the spectrum in the UWB region. The weighting 

factors are found by an iterative trial and error procedure for each of the five bands. The 

translation frequencies are found by fitting the bandwidths of the Gaussian pulses. After 

combining the bands, some modification is needed to ensure that the combination fits the mask 

at the UWB edges. The pulse is obtained in a form [32] 

where C = 8.61e3, β = 0.0317, a1 = , f1 = 0.48 GHz, a2 = 1.9790, f2 = 3.85 GHz, 

a3 = 1.9822, f3 = 4.85 GHz, f4 = 5.85 GHz, f5 = 6.85 GHz, f6 = 7.85 GHz, f7 = 8.85 GHz, 

a4 = , and f8 = 9.85 GHz. The waveform and PSD of the pulse in (2.27) are shown in 

Figure 2.10. 

 

Figure 2.10 Waveform (left) and power spectral density (right) of linear 
combination of eight translated Gaussian pulses, which is compliant 
with FCC indoor mask. 

2.7 Linear combination of Gaussian derivatives 

Linear combinations of sinc and linear combinations of Gaussian pulses require 

frequency translations to fill the spectral masks. However, Gaussian derivatives are bandpass 

pulses. Therefore, the design of UWB pulses based on linear combinations of Gaussian 

derivatives contains smaller number of variables then do the design based on linear combination 

of sinc or Gaussian pulses. Consequently, the overall design is simpler. The number of 

waveforms used in the combination is preferably small to keep the pulse generating system 

         
2

7
4

1 1 2 2 3 4 8
3

cos 2 cos 2 cos 2 cos 2

t

c k
k

g t Ce a f t a f t a f t a f t    




 
    

  
  (2.27) 



2. STATE-OF-THE-ART UWB PULSES 

18 

simple [34]. In [33], a linear combination of two second-order Gaussian derivatives has been 

proposed. 

Linear combination of Gaussian derivatives of different orders has been considered in 

[34]. In the paper referred to, the authors proposed a combination of one sixth- and two seventh-

order Gaussian derivatives. It is given by [34] 

where a1 = 0.4368, a2 = 0.6775, a3 = 0.3498, τ1 = 0.1069 ns, τ2 = 0.1069 ns, and 

τ3 = 0.0537 ns. The corresponding amplitude spectrum is given by 

where G6(ω, τ1), G7(ω, τ2) and G7(ω, τ3) are obtained by using (2.4) and (2.5). The waveform 

and PSD of the triplet in (2.28) that meets the FCC indoor mask are shown in Figure 2.11. 

 

 

Figure 2.11 Waveform (left) and power spectral density (right) of linear 
combination of one sixth- and two seventh-order Gaussian derivatives, 
which is compliant with FCC indoor mask. 

2.8 Overview 

The Gaussian derivatives, modified Hermite pulses, and prolate spheroidal wave 

functions represent bandpass pulses well localized in time. However, they do not exploit the 

UWB region efficiently. On the other hand, the truncated and translated sinc pulse offers very 

high spectral efficiency which is paid by poor time localization A good trade-off between 

       6,7,7 1 6 1 2 7 2 3 7 3, , ,g t a g t a g t a g t      (2.28) 

       6,7,7 1 6 1 2 7 2 3 7 3, , ,G a G a G a G          (2.29) 
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spectral efficiency and energy concentration is achieved by linear combinations of translated 

Gaussian pulses, different Gaussian derivatives, and translated sinc pulses. Using (1.1) and 

(1.2), the spectral efficiency for fL = 3.1 GHz and fU = 10.6 GHz as well as the energy 

concentration for T = 0.5 ns are calculated and listed in Table 2.1 for the aforementioned FCC-

compliant indoor pulses. 

 

Table 2.1 Spectral efficiency and energy concentration of various FCC-compliant 
indoor pulses. 

 

 Pulse , % , % 

C
on

ve
nt

io
na

l Fourth Gaussian derivative [9] 54.3 >99.99 

Modified Hermite pulse [17] 55.5 >99.99 

Prolate spheroidal pulse [18] 25.5 >99.99 

S
in

c Translated and truncated sinc pulse [20] 98.9 95.82 

Linear combination of three translated sinc pulses [31] 82.6 98.53 

G
au

ss
ia

n 

Linear combination of Gaussian derivatives [34] 72.0 99.97 

Linear combination of three translated Gaussians [31] 77.5 99.78 

Linear combination of eight translated Gaussians [32] 82.8 99.56 
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3. DESIGN OF UWB PULSES BASED ON GAUSSIAN 
DERIVATIVES 

In this chapter, the design of UWB pulses whose waveforms correspond to Gaussian 

derivatives is described in detail. In the design, the Gaussian derivatives that fit a given spectral 

mask are considered. As an example, the optimum FCC-compliant Gaussian derivatives are 

provided. 

3.1 Design method 

For an nth-order Gaussian derivative containing bandwidth scaling factor , the 

objective is to find the value of  which optimally fill a desired spectral mask. The filling is 

formulated as the minimization of the distance between the spectral mask and the magnitude 

spectrum of the Gaussian derivative calculated at the edge frequencies of the UWB region. That 

distance is defined as 

where fL and fU are the lower and the upper band-edge frequency whereas AL and AU are 

magnitude limits at fL and fU. For a given mask, the optimum value of  is obtained by solving 

the problem 

where M( f ) denotes the PSD mask. To ensure the maximum PSD value of Gaussian derivative 

corresponds to maximum PSD value of the spectral mask, the magnitude spectrum |Gn( f )| is 

normalized to unity magnitude at its peak, and M( f ) is normalized to unity density in the UWB 

region. Using (2.5), (2.6), and (2.7), the amplitude scaling factor of Gaussian derivative which 

ensures unity peak magnitude is obtained as 

     L n L U n UA G f A G f       (3.1) 

 

   2

minimize

subject to nG f M f


 


 (3.2) 
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Since |Gn( f )| has a bell shape, the problem in (3.2) is simplified as 

where fk are frequencies outside the UWB region at which the mask changes, ( )L LA M f , 

( )U UA M f , and ( )k kA M f . A typical relation between magnitude limits corresponding 

to discontinuities in normalized FCC indoor mask and the magnitude spectrum of a Gaussian 

derivative is illustrated in Figure 3.1. 

 

Figure 3.1 Magnitude limits corresponding to normalized FCC indoor mask and 
magnitude spectrum of Gaussian derivative. Red dots show used 
magnitude limits, P1 = (f1, A1), P2 = (f2, A2), PL = (fL, AL), PU = (fU, AU), 
and corresponding magnitudes, Q1 = (f1, |Gn(f1)|), Q2 = (f2, |Gn(f2)|), 
QL = (fL, |Gn(fL)|), and QU = (fU, |Gn(fU)|). 
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In the design process it is expected that the peak frequency of Gaussian derivative, fn, is 

placed within the band fL < fn < fU. According to (2.7), for a given fn, the corresponding  equals 

From (3.5) it follows that the design deals with  which is limited to the interval 

Since  is bounded by a finite interval, the optimum value of  can be easily found by using the 

direct search. In this search, the objective function  () is evaluated on the uniformly spaced 

grid of  with steps of  defined within the interval in (3.6). 

Assuming that the spectral mask M( f ) limits the magnitude spectrum |Gn( f )| to the 

value of C in the UWB region, the Gaussian derivative is given by 

By substituting (3.3) into (2.2), and (2.2) into (3.7), wn(t) takes the form 

The amplitude spectrum of wn(t) is given by 

The waveforms wn(t) exhibit even symmetry for even n and odd symmetry for odd n, as 

it is illustrated in Figure 2.1. In addition, in both cases their polarity alternates with n. Therefore, 

the amplitude spectrum of wn(t) satisfies Wn(n) = βC, where β = (1)n/2 for an even n, and 

β = (1)(n1)/2 for an odd n. 

An example of MATLAB [47] code implementing the entire design is given by 

Algorithm 3.1 for convenience. The function is called uwbdesign_gaussder. Its input 

parameters are the order of Gaussian derivative, n, vector of mask frequencies expressed in 

GHz, F, vector of mask PSDs having the same size as F expressed in dBm/MHz, M, PSD in 

2
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the UWB region, M0, and indices of the elements in F corresponding to the lower and upper 

UWB-edge frequencies, L and U. The function uwbdesign_gaussder calls the function 

gaussdermag which calculates |Gn(ω)|. In the code, Δτ = 1e4 ns is used. 

 

Algorithm 3.1 Design of UWB Gaussian derivative of order n. 

function tau=uwbdesign_gaussder(n,F,M,M0,L,U) 
 
dtau=1e-4; % the step of tau in ns 
 
k=sqrt(n/2)/pi; tauL=k/F(U); tauU=k/F(L); 
A=10.^((M-M0)/20); w=2*pi*F; K=length(F); 
 
% search for optimum tau 
yold=0; tau=[]; 
for taui=(ceil(tauL/dtau):ceil(tauU/dtau))*dtau 
 Gn=gaussdermag(n,taui,w); 
 if sum(Gn<=A)==K % satisfies mask 
  ynew=Gn(L)+Gn(U); 
  if ynew > yold 
   yold=ynew; tau=taui; 
end, end, end 
 
function Gn=gaussdermag(n,tau,w) 
 
alpha=tau^(n-1)/sqrt(pi)*(exp(1)/2/n)^(n/2); 
G0=alpha*tau*sqrt(pi)*exp(-(w*tau/2).^2); 
Gn=abs(w).^n.*G0; 
 

 

3.2 FCC-compliant Gaussian derivatives 

To illustrate the design procedure, several Gaussian derivatives that fill the FCC indoor 

and outdoor mask are designed. In both masks, the UWB region is placed between fL = 3.1 GHz 

and fU = 10.6 GHz. This region is bounded by the points that are 10 dB and 20 dB below the 

highest PSD. It brings AL = AU = 0.316 for the indoor and AL = AU = 0.1 for the outdoor mask. 

Outside the UWB region, the frequencies f1 = 1.61 GHz and f2 = 1.99 GHz are taken into 

account. It brings A1 = 0.020 for both masks, and A2 = 0.251 and A2 = 0.079 for the indoor and 

the outdoor mask, respectively. For both masks C = 8.61e3 is used. 

The Gaussian derivatives which optimally fill the FCC indoor and outdoor mask are 

obtained for n ≥ 5 and n ≥ 7, respectively. However, the fourth Gaussian derivative slightly 

crosses the indoor mask in the GPS band. Since it is considered acceptable in practice [9], this 

derivative is taken into account by adjusting the GPS magnitude limit to A1 = 0.022. For both 

FCC masks, the optimum values of  and the corresponding peak frequencies fn are given in 
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Table 3.1. Similar values of  are obtained in [16], where the 3dB-bandwidths of Gaussian 

derivatives are maximized under the FCC constraints. 

The power spectral densities of FCC-compliant Gaussian derivatives are shown in 

Figures 3.2 and 3.3, separately for the indoor and the outdoor mask. Clearly, the indoor 

Gaussian derivative with n = 4 and the outdoor Gaussian derivative with n = 7 fill the UWB 

region the best. Figure 3.4 shows their waveforms. Clearly, both pulses are well localized in 

time. 

 

Table 3.1 Optimum peak frequencies and bandwidth scaling factors of FCC-
compliant Gaussian derivatives. 

 

 indoor mask outdoor mask 

n fn, GHz , ns fn, GHz , ns 

4 6.719 0.0670 - - 
5 7.010 0.0718 - - 

6 7.235 0.0762 - - 

7 7.416 0.0803 6.544 0.0910 

8 7.570 0.0841 6.723 0.0947 

9 7.699 0.0877 6.876 0.0982 

10 7.813 0.0911 7.006 0.1016 
 

 

Figure 3.2 Power spectral densities of optimum nth-order Gaussian derivatives 
obtained for FCC indoor mask. 
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Figure 3.3 Power spectral densities of optimum nth-order Gaussian derivatives 
obtained for FCC outdoor mask. 

 

 

Figure 3.4 Waveforms of optimum FCC-compliant Gaussian derivatives with n = 4 
and n = 7. 
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An example of MATLAB code for calculating the values of waveform wn(t) and of its 

amplitude spectrum Wn() is given by Algorithm 3.2. The function is called uwbgaussder. Its 

input parameters are the order of Gaussian derivative, n, amplitude and bandwidth scaling 

factors, C and , the vector of time points in s, t, and the vector of frequency points in rad/s, w. 

The function uwbgaussder calls the function gaussder which calculates gn(t), the function 

hermitepoly which calculates the values of nth-order Hermite polynomial Hn, and the function 

gaussdermag which is given by Algorithm 3.1. 

 

Algorithm 3.2  Calculating values of waveform and amplitude spectrum of UWB 
Gaussian derivative of order n. 

function [wn,Wn]=uwbgaussder(n,C,tau,t,w) 
 
% waveform gn(t) 
alpha=tau^(n-1)/sqrt(pi)*(exp(1)/2/n)^(n/2); 
gn=gaussder(n,alpha,tau,t); 
 
% magnitude spectrum |Gn(w)| 
Gn=gaussdermag(n,tau,w); 
 
% waveform wn(t) 
wn=C*gn; 
 
% amplitude spectrum Wn(w) 
if mod(n,2)==0, Wn=C*(-1)^(n/2)*Gn; 
else Wn=C*(-1)^((n-1)/2)*sign(w).*Gn; 
end 
 
function gn=gaussder(n,alpha,tau,t) 
 
g0=alpha*exp(-(t/tau).^2); 
if n==0, gn=g0; 
else gn=(-1)^n/tau^n*hermitepoly(n,t/tau).*g0; 
end 
 
function Hn=hermitepoly(n,x) 
 
Hn=zeros(size(x)); 
for m=0:floor(n/2) 
 Hn=Hn+(-1)^m/prod(1:m)/prod(1:n-2*m)*(2*x).^(n-2*m); 
end 
Hn=prod(1:n)*Hn; 
 

 

An example of MATLAB code implementing the FCC mask M( f ) is given by 

Algorithm 3.3. The function is called fccmask. Its input parameters are the vector of frequency 

points in GHz, f, and a string containing the mask type, mask, which can be set to 'indoor' or 

'outdoor'. 
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Algorithm 3.3  Implementation of FCC mask. 

function M=fccmask(f,mask) 
 
F=abs(f); M=ones(size(f)); 
if strcmp(mask,'indoor') 
 M=-51.3*M; M(F>=1.61 & F<1.99)=-53.3; 
elseif strcmp(mask,'outdoor') 
 M=-61.3*M; M(F>=1.61 & F<1.99)=-63.3; 
end 
M(F>=0 & F<0.96 | F>=3.1 & F<=10.6)=-41.3; 
M(F>=0.96 & F<1.61)=-75.3; 
 

 

For example, the design of the FCC-compliant indoor pulse with n = 4 is given by the 

following call 

 
n=4; F=[1.61, 1.99, 3.1, 10.6]; M=[-74.5, -53.3, -51.3, -51.3]; 
M0=-41.3; L=3; U=4; 
tau=uwbdesign_gaussder(n,F,M,M0,L,U); 
C=10^(M0/20); 
t=linspace(-0.5,0.5,1001); f=linspace(0,12,1001); w=2*pi*f; 
[wn,Wn]=uwbgaussder(n,C,tau,t,w); 
figure, plot(t,wn/C); 
figure, plot(f,20*log10(abs(Wn)),'g',f,fccmask(f,'indoor'),'r'); 
axis([f(1) f(end) -80 -40]); 
 

The design of the FCC-compliant outdoor pulse with n = 7 is given by the call 

 
n=7; F=[1.61, 1.99, 3.1, 10.6]; M=[-75.3, -63.3, -61.3, -61.3]; 
M0=-41.3; L=3; U=4; 
tau=uwbdesign_gaussder(n,F,M,M0,L,U); 
C=10^(M0/20); 
t=linspace(-0.5,0.5,1001); f=linspace(0,12,1001); w=2*pi*f; 
[wn,Wn]=uwbgaussder(n,C,tau,t,w); 
figure, plot(t,wn/C); 
figure, plot(f,20*log10(abs(Wn)),'g',f,fccmask(f,'outdoor'),'r'); 
axis([f(1) f(end) -80 -40]); 

3.3 Spectral efficiency and energy concentration of Gaussian 
derivatives 

According to (1.1), the spectral efficiency of Gaussian derivative wn(t) in the UWB 

region is given by 
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Since M( f ) = C2 for fL < f < fU, the denominator in (3.10) equals C2(fU  fL). The value of the 

integral in the numerator can be easily found by applying numerical integration. 

The spectral efficiencies of the optimum FCC-compliant Gaussian derivatives from 

Table 3.1 are given in Table 3.2. As expected, the maximum spectral efficiency for the indoor 

and outdoor mask is achieved for n = 4 and n = 7, respectively. For other Gaussian derivatives, 

the spectral efficiency decreases by an increase in n. 

According to (1.2), the relative energy concentration of wn(t) is given by 

Since wn(t)=Cgn(t), the energy concentration is reduced to 

where En is the total energy of gn(t). 

To compute the energy concentration, the total energy of nth Gaussian derivative should 

be determined. Here, it is derived in an analytic form. On the other hand, the value of the integral 

in the numerator should be calculated by applying numerical integration. 

The total energy of the Gaussian derivative is given by 
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To solve the integral in (3.13), Hermite polynomials Hn(t) are written in a power-series form as 

where 

By substituting (3.14) and (3.15) into (3.13), the total energy of gn(t) for even n takes the form 

By simplifying the integral in (3.16), En is reduced to 

For solving the integral in (3.17), the following equality is used [42] 

where Γ is the gamma function. By setting β = 1 and l = 2 in (3.18), the total energy of gn(t) for 

even n is given by 
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A similar procedure is used to obtain the total energy of gn(t) for odd n. In this case, it is 

given by 

By solving the integral in (3.20), En takes the form 

The energy concentrations of the optimum Gaussian derivatives from Table 3.1 

calculated for T = 0.5 ns are given in Table 3.2. Since Gaussian derivatives have exponentially 

decaying tails, high energy concentrations are obtained. 

 

Table 3.2 Spectral efficiency and energy concentration of FCC-compliant Gaussian 
derivatives from Table 3.1. Their highest values are highlighted in bold. 

 

 indoor mask outdoor mask 

n , % , % , % , % 

4 54.3 99.9999 - - 
5 50.9 99.9999 - - 

6 48.1 99.9992 - - 

7 45.7 99.9966 41.0 99.9877 

8 43.7 99.9976 39.4 99.9855 

9 41.9 99.9940 38.1 99.9355 

10 40.4 99.9801 36.8 99.9710 
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4. SHARPENED GAUSSIAN DERIVATIVES 

Gaussian derivatives are bandpass waveforms well localized in time. However, their 

efficiency in filling the UWB spectral mask is low. To increase the efficiency, their 

modification is proposed. It is based on a well-known technique called polynomial sharpening. 

To obtain high spectral efficiency, the magnitude spectrum of a Gaussian derivative is 

sharpened with the Kaiser-Hamming polynomials [48]. These polynomials impose flatness at 

spectrum's peak, while maintaining good time localization. 

4.1 Preparation of Gaussian derivatives for sharpening 

The Fourier transform of nth Gaussian derivative can be written as 

where |Gn(ω)| is the magnitude spectrum of the Gaussian derivative, given by 

To perform sharpening, the magnitude spectra of Gaussian derivatives are normalized 

to ensure unity magnitude at their peaks. This is obtained by applying the amplitude scaling 

factor given in (3.3). 

4.2 Polynomial sharpening 

Kaiser and Hamming proposed the polynomial fp,q(x) which has a pth order of flatness 

at x = 1, qth order of flatness at x = 0, and passes through the points (1,1) and (0,0). This 

polynomial is given by [49] 
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where p and q are non-negative integers. The graphs of fp,q(x) are illustrated in Figure 4.1 for 

p = 0, 1, 2, 4, and 8, assuming q = p. 

By applying α given in (3.3), the magnitude spectrum in (4.2) satisfies 0 ≤ |Gn(ω)| ≤ 1. 

Therefore, the sharpened magnitude spectra are obtained as 

They are illustrated in Figure 4.2 for n = 2,  = 1 s, and the polynomials from Figure 4.1. Note 

that this sharpening preserves requirement for zero DC [26]. The case p = q = 0 corresponds to 

the original Gaussian derivative. Clearly, an increase in p brings flatter top and sharper 

transition regions and, consequently, a larger bandwidth. In addition, the peaks of |Sn(ω)| and 

|Gn(ω)| are placed at the same point. 

 

 

Figure 4.1 Kaiser-Hamming polynomials of various orders of flatness p, obtained 
for q = p. 
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Figure 4.2 Magnitude spectra of second Gaussian derivative with τ = 1 s sharpened 
with Kaiser-Hamming polynomials having p = 0, 1, 2, 4, and 8 and 
q = p. Case p = q = 0 denotes original derivative [48]. 

4.3 Waveforms of sharpened Gaussian derivatives 

To obtain the waveforms of sharpened Gaussian derivatives, polynomial fp,q(x) is first 

expressed in a power-series form. To obtain this form, fp,q(x) is expanded as 

Clearly, fp,q(x) contains the powers running from xq+1 to xp+q+1. Therefore, its power-series form 

is given by 
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where M = p + q + 1 is polynomial order and am are polynomial coefficients. By substituting 

k = m  q  1 into (4.5), the coefficients am are obtained as 

After substituting x = |Gn(ω)| into (4.6), the sharpened magnitude spectrum takes the form 

By applying (4.2), the term |Gn(ω)|m is given by 

By using (2.5), G0
m(ω) can be written as 

By substituting (4.10) into (4.9), applying the identity 

and taking into account that mn is even if m or n is even, it follows 

The expression in (4.12) is recognized in a compact form as 
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where |Gmn(ω)| is the magnitude spectrum of mnth Gaussian derivative. Finally, by substituting 

(4.13) into (4.8), the sharpened magnitude spectrum is obtained as 

Note that |Sn(ω)| is a linear combination of the magnitude spectra of Gaussian derivatives of 

orders mn. 

In the sharpening process, the phase spectrum of the original derivative in (4.1) is 

retained. Therefore, the Fourier transform of the sharpened derivative is given by 

By substituting (4.14) into (4.15) and by using (4.2) to express ( )mnG m , the spectrum Sn(ω) 

is obtained as 

for an even n and as 

for an odd n, where 

The waveforms of sharpened Gaussian derivatives are obtained by applying the inverse 

Fourier transform to Sn(ω). Using (4.16) and (4.17) it results in 
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For an even n, mn is also even. Therefore, the inverse Fourier transform of ( )mnG m  is given 

by 

By substituting (4.20) into (4.19), sn(t) for an even n is given by 

For an odd n, the inverse Fourier transform of )(
~ mGmn  is given by 

where ˆ ( )mng t  is the Hilbert transform of gmn(t). By substituting (4.22) into (4.19), sn(t) for an 

odd n is given by 

In (4.22) and (4.23), the Hilbert transforms of even-order Gaussian derivatives ˆ ( )mng t  

are required. The Hilbert transforms of Gaussian derivatives are given by the integral [50] 
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This integral can be solved numerically. However, the Hilbert transforms of Gaussian 

derivatives can also be obtained by using analytical approximations. One such approximation 

is proposed in [51]. Finally, the Hilbert transforms of Gaussian derivatives can be expressed in 

a closed form via the imaginary error function erfi. The latter approach is presented in the 

following text. 

For simplicity, an mnth Gaussian derivative with α = 1 and  = 1 s is considered. It is 

given by 

By using (3.14) and (3.15), and assuming mn is even, the Hilbert transform of gmn(t) takes the 

form 

where 

where erfi is the imaginary error function. This function is defined as [52] 
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For r > 0, the Hilbert transform of 
22r tt e  is calculated by using the recurrence expression 

By using (4.27) and (4.30), the Hilbert transform of 
22r tt e for r ≥ 0 is obtained as 

By substituting (4.31) into (4.26), it follows 

By using (4.25), the Hilbert transforms of Gaussian derivatives are obtained as 

It is known that the Hilbert transform of an even function is an odd function. Consequently, 

 ˆmng t  = 0 for t = 0. Finally, for even-order Gaussian derivatives with arbitrary values α and τ, 

their Hilbert transforms take the form 
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Since the sharpened Gaussian derivatives have the same phase spectra as the original 

derivatives, the waveforms sn(t) exhibit even symmetry for an even n and odd symmetry for an 

odd n. In addition, in both cases their polarity alternates with n. The pulses sn(t) are illustrated 

in Figure 4.3 for n = 2 and the polynomials from Figure 4.1. 

 

 

 

Figure 4.3 Waveforms of second Gaussian derivative with τ = 1 s sharpened with 
Kaiser-Hamming polynomial having p = 0, 1, 2, 4, and 8 and q = p. Case 
p = q = 0 denotes waveform of original derivative [48]. 
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4.4 Design of UWB pulses 

In this section, the sharpened Gaussian derivatives are applied in the design of UWB 

pulses which optimally fill a desired spectral mask. For given n and p, our objective is to find 

the values of q and τ that ensure optimum filling of a given UWB region. The design utilizes 

the method shown in Section 3.1, which is here tailored for sharpened Gaussian derivatives. 

The filling is formulated via the minimization of distance between the spectral mask and the 

sharpened magnitude spectrum calculated at the edge frequencies of the UWB region. This 

distance is defined as 

where fL and fU are the lower and the upper band-edge frequency, whereas AL and AU are 

magnitude limits at fL and fU. For a given mask, the optimum values of q and τ are obtained by 

solving the problem 

where M( f ) denotes the PSD mask normalized to unity density in the UWB region. 

Since |Sn( f )| has a bell shape, the problem in (4.36) is simplified as [48]  

where fk are frequencies outside the UWB region at which the mask changes, ( )L LA M f , 

( )U UA M f , and ( )k kA M f . The magnitude limits corresponding to normalized FCC 

indoor mask and the magnitude spectrum of a sharpened Gaussian derivative are illustrated in 

Figure 4.4, for convenience. 

In the design process the peak of |Sn( f )| should be placed within the band fL < f < fU. As 

shown in Section 3.1, τ is limited to the interval given in (3.6). Since τ is bounded by a finite 
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interval and q is a non-negative integer, the problem in (4.37) can be easily solved by using the 

direct search. In this search, the objective function is evaluated on the uniformly spaced grid of 

τ with steps of Δτ defined within the interval in (3.6). This evaluation is repeated for each q 

running from 0 to some limit qmax. Using the value of τ corresponding to the midpoint of the 

interval in (3.6), qmax can be estimated as the lowest value of q for which the constraints in 

(4.37) are met. 

 

 

 

Figure 4.4 Magnitude limits corresponding to normalized FCC indoor mask and 
magnitude spectrum of sharpened Gaussian derivative. Red dots show 
used magnitude limits, P1 = (f1, A1), P2 = (f2, A2), PL = (fL, AL), 
PU = (fU, AU), and corresponding magnitudes, Q1 = (f1, |Sn(f1)|), 
Q2 = (f2, |Sn(f2)|), QL = (fL, |Sn(fL)|), and QU = (fU, |Sn(fU)|) [48]. 

 

To preserve the same polarity of all UWB pulses and enable the change of peak values 

of their magnitude spectra, the waveforms are scaled as in 

where C is the magnitude limit in the UWB region, β = (1)n/2 for an even n, and β = (1)(n1)/2 

for an odd n. Using (4.15), the amplitude spectrum of the pulse in (4.38) is given by 

   nnw t Cs t  (4.38) 
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Clearly, it satisfies Wn(n) = C. 

An example of MATLAB code implementing the entire design is given by 

Algorithm 4.1, for convenience. The function is called uwbdesign_sharpgaussder [48]. Its input 

parameters are the order of Gaussian derivative, n, order of flatness, p, vector of mask 

frequencies expressed in GHz, F, vector of mask PSDs having the same size as F expressed in 

dBm/MHz, M, PSD in UWB region, M0, and indices of the elements in F corresponding to the 

lower and upper UWB-edge frequencies, L and U. The function uwbdesign_sharpgaussder 

calls the function sharpmag which calculates |Sn(ω)|. In the code, Δτ = 1e4 ns is used. 

 

Algorithm 4.1 Design of UWB sharpened Gaussian derivative of order n. 

function [q,tau]=uwbdesign_sharpgaussder(n,p,F,M,M0,L,U) 
 

dtau=1e-4; % the step of tau in ns 
 

k=sqrt(n/2)/pi; tauL=k/F(U); tauU=k/F(L); 
taum=(tauL+tauU)/2; 
A=10.^((M-M0)/20); w=2*pi*F; K=length(F); 
 

% search for qmax 
qi=0; taum=ceil(taum/dtau)*dtau; 
while 1 
 qi=qi+1; Sn=sharpmag(n,taum,p,qi,w); 
 if sum(Sn<=A)==K % satisfies mask 
  qmax=qi; break 
end, end 
 

% search for optimum q and tau 
yold=0; q=[]; tau=[]; 
for qi=0:qmax 
 for taui=(ceil(tauL/dtau):ceil(tauU/dtau))*dtau 
  Sn=sharpmag(n,taui,p,qi,w); 
  if sum(Sn<=A)==K % satisfies mask 
   ynew=Sn(L)+Sn(U); 
   if ynew > yold 
    yold=ynew; q=qi; tau=taui; 
end, end, end, end 
 

function Sn=sharpmag(n,tau,p,q,w) 
 

alpha=tau^(n-1)/sqrt(pi)*(exp(1)/2/n)^(n/2); 
G0=alpha*tau*sqrt(pi)*exp(-(w*tau/2).^2); 
Gn=abs(w).^n.*G0; 
S=ones(size(w)); 
for r=1:p 
 S=S+prod(q+1:q+r)/prod(1:r)*(1-Gn).^r; 
end 
Sn=Gn.^(q+1).*S; 

( ) for even
( )

sgn( ) ( ) for odd
n
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An example of MATLAB code for calculating the values of the waveform wn(t) and its 

amplitude spectrum Wn() is given by Algorithm 4.2 . The function is called sharpgaussder. 

Its input parameters are the order of Gaussian derivative, n, orders of flatness, p and q, 

amplitude and bandwidth scaling factors, C and , vector of time points in s, t, and vector of 

frequency points in rad/s, w. The function sharpgaussder calls the function ht_gaussder which 

calculates  ˆmng t , the function gaussder which is given by Algorithm 3.2, and the function 

sharpmag which is given by Algorithm 4.1. 

 
 

Algorithm 4.2  Calculating values of waveform and amplitude spectrum of sharpened 
Gaussian derivative of order n. 

function [wn,Wn]=sharpgaussder(n,p,q,C,tau,t,w) 
 
% amplitude scaling factor of original Gaussian derivative 
alpha=tau^(n-1)/sqrt(pi)*(exp(1)/2/n)^(n/2); 
 
% polynomial coefficients am 
M=p+q+1; a=zeros(M,1); 
for m=(q+1):M 
 S=0; 
 for r=(m-q-1):p, S=S+prod(q+1:q+r)/prod(1:r-(m-q-1)); end 
 a(m)=(-1)^(m-q-1)/prod(1:(m-q-1))*S; 
end 
 
% waveform sn(t) 
s=zeros(size(t)); 
if mod(n,2)==0 % even n 
 beta=(-1)^(n/2); 
 for m=(q+1):M 
  gmn=gaussder(m*n,alpha,tau,t/sqrt(m)); % gmn(t/sqrt(m)) 
  s=s+(-1)^(m*n/2)*a(m)*(alpha*tau*sqrt(pi))^(m-1)/sqrt(m)^(m*n+1)*gmn; 
 end 
 sn=beta*s; 
else % odd n 
 beta=(-1)^((n-1)/2); 
 for m=(q+1):M 
  gmn=gaussder(m*n,alpha,tau,t/sqrt(m)); % gmn(t/sqrt(m)) 
  if mod(m*n,2)==0 % even mn 
   % Hilbert transform of gmn(t/sqrt(m)) 
   gmn_ht=ht_gaussder(m*n,alpha,tau,gmn,t/sqrt(m)); 
   g=(-1)^(m*n/2-1)*gmn_ht; 
  else % odd mn 
   g=(-1)^((m*n-1)/2)*gmn; 
  end 
  s=s+a(m)*(alpha*tau*sqrt(pi))^(m-1)/sqrt(m)^(m*n+1)*g; 
 end 
 sn=beta*s; 
end 
 
% magnitude spectrum |Sn(w)| 
Sn=sharpmag(n,tau,p,q,w); 
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% waveform wn(t) 
wn=beta*C*sn; 
 
% amplitude spectrum Wn(w) 
if mod(n,2)==0, Wn=C*Sn; 
else Wn=C*sign(w).*Sn; 
end 
 
function gnht=ht_gaussder(n,alpha,tau,gn,t) 
% Hilbert transform of gn(t~=0) 
gnht=zeros((size(t))); 
for r=0:floor(n/2) 
 br=factorial(n)*(-1)^(n/2-r)*2^(2*r)/factorial(2*r)/factorial(n/2-r); 
 sum=0; 
 for k=0:1:r 
  I=zeros(1,k); 
  for i=0:1:k 
   I(1,i+1)=(2*i-1); 
  end 
  sum=sum+prod(I)/2^k./(t/tau).^(2*k)/(2*k-1); 
 end 
 gnht=gnht+br.*(t/tau).^(2*r+1).*(1-sum); 
end 
gnht=gn.*erfi(t/tau)-2*alpha/sqrt(pi)/tau^(n).*gnht; 
% Hilbert transform of gn(t==0) 
gnht(t==0)=0; 

 

4.5 FCC-compliant sharpened Gaussian derivatives 

To illustrate features of the proposed method, several pulses that fill the FCC indoor and 

outdoor mask are designed. The sharpened first and second Gaussian derivatives that fill the 

UWB region between fL = 3.1 GHz and fU = 10.6 GHz are considered. UWB region is bounded 

by the points that are 10 dB and 20 dB below the highest PSD. It brings AL = AU = 0.316 for the 

indoor and AL = AU = 0.1 for the outdoor mask. Outside the UWB region, the frequencies 

f1 = 1.61 GHz and f2 = 1.99 GHz are taken into account. It brings A1 = 0.020 for both masks, 

and A2 = 0.251 and A2 = 0.079 for the indoor and the outdoor mask, respectively. For both 

masks C = 8.61e3 is used.  

Table 4.1 provides numerical values of the obtained q and τ for various p. In addition, 

pulse's spectral efficiency and energy concentration are calculated by expressions (1.1) and 

(1.2) for T = 0.5 ns. Clearly, both derivatives exhibit similar spectral efficiency and energy 

concentration. Furthermore, an increase in p results in the increase of spectral efficiency. A 

significant increase is achieved already for p = 1. In addition, since the indoor mask is less 

restrictive than the outdoor, the FCC-compliant indoor pulses exhibit higher efficiency. High 

energy concentration is obtained in all cases. The efficiency greater than 80 % is achieved for 
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the indoor mask and p ≥ 6. The obtained PSDs and waveforms for both masks are illustrated in 

Figure 4.5 for n = 2 and p = 8. 

Using Algorithm 4.1 and 4.2, the design of the FCC-compliant indoor pulse with n = 2 

and p = 8 is given by the following call 

 
n=2; p=8; F=[1.61, 1.99, 3.1, 10.6]; M=[-75.3, -53.3, -51.3, -51.3]; 
M0=-41.3; L=3; U=4; 
[q,tau]=uwbdesign_sharpgaussder(n,p,F,M,M0,L,U); 
C=10^(M0/20); 
t=linspace(-0.5,0.5,1001); f=linspace(0,12,1001); w=2*pi*f; 
[wn,Wn]=sharpgaussder(n,p,q,C,tau,t,w); 
figure, plot(t,wn/C); 
figure, plot(f,20*log10(abs(Wn)),'g',f,fccmask(f,'indoor'),'r'); 
axis([f(1) f(end) -80 -40]); 

 

The design of the FCC-compliant outdoor pulse with same n and p is given by the call 

 
n=2; p=8; F=[1.61, 1.99, 3.1, 10.6]; M=[-75.3, -63.3, -61.3, -61.3]; 
M0=-41.3; L=3; U=4; 
[q,tau]=uwbdesign_sharpgaussder(n,p,F,M,M0,L,U); 
C=10^(M0/20); 
t=linspace(-0.5,0.5,1001); f=linspace(0,12,1001); w=2*pi*f; 
[wn,Wn]=sharpgaussder(n,p,q,C,tau,t,w); 
figure, plot(t,wn/C); 
figure, plot(f,20*log10(abs(Wn)),'g',f,fccmask(f,'outdoor'),'r'); 
axis([f(1) f(end) -80 -40]); 

 

As elaborated in Chapter 3, the original Gaussian derivatives which fill the FCC indoor 

and outdoor mask with maximum efficiency are obtained for n = 4 and  = 0.0670 ns, as well 

as for n = 7 and  = 0.0910 ns. These derivatives are here compared with the optimum pulses 

which correspond to the sharpened Gaussian derivatives obtained for n = 1 and n = 2, with 

p = 1. Figure 4.6 shows their PSDs and waveforms. Clearly, the pulses obtained from sharpened 

Gaussian derivatives fill the UWB region more tightly than do the pulses obtained by original 

derivatives. 
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Table 4.1 Parameters and properties of FCC-compliant sharpened Gaussian 
derivatives. Properties are highlighted in bold [48]. 

 

 indoor mask outdoor mask 

p q , ns , % , % q , ns , % , % 

n = 1 

0 4 0.0322 50.8 > 99.99 6 0.0344 41.0 99.99 
1 6 0.0342 66.2 99.84 10 0.0346 53.7 99.62 
2 9 0.0343 71.7 99.68 14 0.0345 59.8 99.21 
3 11 0.0348 76.3 99.60 17 0.0347 64.5 98.94 
4 14 0.0347 78.3 99.48 21 0.0345 67.0 98.74 
5 17 0.0346 79.8 99.38 24 0.0346 69.5 98.60 
6 20 0.0346 80.8 99.26 27 0.0347 71.4 98.48 
7 22 0.0348 82.5 99.21 30 0.0347 73.1 98.40 
8 25 0.0347 83.2 99.11 33 0.0347 74.4 98.33 

n = 2 
0 2 0.0441 48.0 > 99.99 3 0.0474 39.4 99.99 
1 2 0.0491 67.6 99.96 5 0.0478 51.8 99.63 
2 4 0.0478 70.1 99.85 6 0.0489 59.9 99.46 
3 5 0.0483 74.5 99.84 8 0.0485 63.2 99.23 
4 6 0.0487 77.4 99.80 9 0.0490 67.0 99.25 
5 7 0.0489 79.6 99.75 11 0.0486 68.5 99.07 
6 8 0.0491 81.1 99.68 12 0.0489 70.9 99.10 
7 9 0.0492 82.5 99.62 13 0.0491 72.9 99.11 
8 11 0.0486 82.1 99.51 15 0.0487 73.5 98.96 
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Figure 4.5 Power spectral densities (up) and waveforms (down) of FCC-compliant 
sharpened Gaussian derivatives obtained for n = 2 and p = 8 [48]. 
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Figure 4.6 Power spectral densities (up) and waveforms (down) of nth Gaussian 
derivatives (GD) [9] and sharpened nth Gaussian derivatives (SGD) 
obtained for p = 1 [48]. 

 

Recently, a linear combination of three translated Gaussian pulses that fill the FCC 

indoor mask with maximum spectral efficiency has been proposed [31]. This pulse is compared 

with the optimally sharpened Gaussian derivative having n = 2 and p = 4. The PSDs and 
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waveforms of both pulses are shown in Figure 4.7. It is clear from the figure that somewhat 

better filling of the UWB region is encountered in the case of sharpening. 

 

 

 

Figure 4.7 Power spectral densities (up) and waveforms (down) of linear 
combination of three translated Gaussian pulses (LC) [31] and 
sharpened Gaussian derivative (SGD) obtained for n = 2 and p = 4 [48]. 
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A linear combination of eight translated Gaussian pulses that efficiently fill the FCC 

indoor mask has been proposed in [32]. This pulse is compared with the optimally sharpened 

Gaussian derivative obtained for n = 1 and p = 8. Their PSDs and waveforms are shown in 

Figure 4.8. It is clear that the sharpened derivative exhibits somewhat lower spectral efficiency, 

but higher energy concentration. 

 

 

Figure 4.8 Power spectral densities (up) and waveforms (down) of linear 
combination of eight translated Gaussian pulses (LC) [32] and 
sharpened Gaussian derivative (SGD) obtained for n = 1 and p = 8 [48]. 
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Considering FCC indoor mask, Table 4.2 shows the spectral efficiency and energy 

concentration of the pulses from [9], [31] and [32], which are shown in Figures 4.6, 4.7 and 4.8, 

the pulses presented in [20], [31], and [34] as well as of the optimally sharpened Gaussian 

derivative with n = 1 and p = 8. As expected, the sinc-based pulses have high spectral efficiency 

but relatively low energy concentration. Different behavior is encountered with Gaussian-based 

pulses. However, the sharpened Gaussian derivative exhibits the efficiency greater than 83 % 

and the concentration greater than 99 %. 

 

Table 4.2 Comparisons of various FCC-compliant indoor pulses with sharpened 
Gaussian derivative. 

 

 Pulse , % , % 

S
in

c Translated and truncated sinc pulse [20] 98.9 95.82 

Linear combination of three translated sinc pulses [31] 82.6 98.53 

G
au

ss
ia

n 

Fourth Gaussian derivative [9] 54.3 > 99.99 

Linear combination of Gaussian derivatives [34] 72.0 99.97 

Linear combination of three translated Gaussians [31] 77.5 99.78 

Linear combination of eight translated Gaussians [32] 82.8 99.56 

 Sharpened Gaussian derivative with n = 1 and p = 8 83.2 99.11 
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5. FLAT-SPECTRUM GAUSSIAN PULSES 

As elaborated in the previous chapter, imposing flatness in the peak of the magnitude 

spectrum of the UWB pulse significantly increases the spectral efficiency while maintaining 

good energy concentration. In the case of sharpened Gaussian derivatives, the flatness is 

imposed indirectly by using a composition of maximally flat polynomials and arbitrary 

Gaussian derivative. The consequence of such an approach is that pulse fitting in the UWB 

mask should be performed by an optimization procedure. In addition, a part of the UWB region 

still remains unfilled, as illustrated in Figure 4.7. In this chapter it will be shown that these 

drawbacks can be overcome by using a direct approach in flattening the magnitude spectrum. 

For this purpose, UWB pulse shaping based on polynomially weighted Gaussian pulses with 

maximally flat amplitude spectra is developed [53]. 

5.1 Polynomially weighted Gaussian pulse 

Polynomially weighted Gaussian pulse is given by 

where pn(t) is nth order polynomial. Note that in the above model the Gaussian pulse (2.1) with 

amplitude and bandwidth scaling factors set as α = 1 and τ = 1 s is used. Since symmetric pulses 

are considered, pn(t) contains only even or only odd powers. Therefore, the polynomials take 

the form 

for an even n, and 
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for an odd n, where am are polynomial coefficients. 

The Fourier transform of the pulse fn(t) for even n is given by 

Since the Fourier transform is linear operator, Fn(ω) becomes 

By applying the time derivative property of the Fourier transform, the expression in (5.5) is 

written as 

where G0(ω) is the Fourier transform of the Gaussian pulse given in (2.5). By substituting (2.5) 

into (5.6), the transform takes the form 

Note that the derivative in (5.7) can be viewed as an even order derivative of the Gaussian 

function in the frequency domain. Therefore, it can be expressed similarly as in (2.2) by 

Finally, by substituting β = 2 into (5.8), and (5.8) into (5.7), the Fourier transform of fn(t) for 

even n is given by 

For even n, the Fourier transform in (5.9) is real valued and therefore represents the amplitude 

spectrum of fn(t). 

For odd n, the Fourier transform of fn(t) is obtained as 
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In this case, the amplitude spectrum of fn(t) is given by 

5.2 Maximally flat criterion 

The design objective is to find polynomial coefficients am which ensure maximally flat-

spectrum Fn(ω) at a given point ω = ωp. In addition, the coefficients should provide unity 

magnitude at this point. 

For even n, Fn(ω) is even function of ω. Therefore, we impose flatness at ωp = 0. The 

maximally flat criterion at this point is satisfied by setting the first n + 1 derivatives of Fn(ω) in 

(5.9) to 0. Since odd-order derivatives of an even function vanish at the origin, the flatness is 

imposed by setting 

For odd n, Fn(ω) is odd function of ω, Therefore, it satisfies Fn(0) = 0. Consequently, 

the flatness should be imposed at two frequencies  ωp and ωp. The maximally flat criterion at 

ω = ωp is satisfied by setting first (n  1)/2 + 1 derivatives at Fn(ω) in (5.11) to 0 as in 
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The derivatives in (5.12) and (5.13) are obtained by deriving Fn(ω) in (5.9) and (5.11). 

However, from (5.1), (5.2) and (5.3), it is clear that fn(t) = tfn–1(t) for odd n. Consequently, Fn(ω) 

in (5.11) can be expressed as Fn(ω) = dFn–1(ω)/dω. Since n – 1 is even, the derivatives in (5.13) 

can also be obtained by deriving Fn(ω) in (5.9). It follows 

assuming L = n for an even n, and L = n – 1 for an odd n. By applying general Leibniz rule for 

rth derivative of a product [42], it follows 

Furthermore, using (2.2) the first term in the sum in (5.15) can be written as 

By using (2.3) the second term in the sum takes the form 

By substituting (5.16) and (5.17) and (5.17) into (5.15), and (5.15) into (5.14), the 

derivatives of Fn(ω) in (5.9) are obtained as 
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where k = r for an even n, and k = r + 1 for an odd n. 

5.3 Optimum polynomials 

It is known that a0 = 1/√ for n = 0 and a0 = െඥ2݁/ for n = 1. Note that for n = 1 ωp 

is derived from setting F1
(1)(ωp) = 0 in (5.18) as ωp = √2. For n > 1, the optimum coefficients 

are found by using the following procedure. By substituting (5.18) into (5.12) or (5.13), a 

system of equations can be formed. By using a = [a0, a1, ..., aL/2]T as the vector of coefficients, 

the system can be written in a matrix form as 

where A  M(L/2+1), b  M, M = L/2 + 1 for an even n, and M = L/2 + 2 for an odd n. The 

elements of matrix A = [Au,v] are given by 

and vector b is obtained as 

For even n, the system in (5.19) is formed assuming p = 0. Earlier, the coefficient a0 is 

derived for n = 0. Now, by using (5.19), (5.20) and (5.21) and assuming p = 0, coefficients for 
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n = 2 are calculated as a0 = 3/2√ and a1 = 1/  . Generally, the solution of the system in 

(5.19) for an arbitrary even n is obtained in a closed form as 

The optimum coefficients am for even order polynomials are given in Table 5.1. 

Table 5.1 Coefficients of optimum weighting polynomials, am, for even n [53]. 

 

n a = [a0, a1, ..., an/2], for even n  

0 a = 
1


 

2 a = 
1 3

, 1
2
   

 

4 a = 
1 15 5 1

, ,
8 2 2

   
 

6 a = 
1 35 35 7 1

, , ,
16 8 4 6
    

 

8 a = 
1 315 105 63 3 1

, , , ,
128 16 16 4 24
    

 

10 a = 
1 693 1155 231 33 11 1

, , , , ,
256 128 32 16 48 120
     

 

 

For odd n, p is not known in advance. Therefore, it is considered as a design variable. 

Fortunately, its value can be found by using the direct search. In this search p increases from 

1e5 in steps of 1e5. For each p, the system Qa = c is formed, where Q and c consist of the 

first L/2 + 1 rows in A and b. For a given p, this system is linear, and its solution is obtained 

as a = Q1c. Then, the solution is applied to calculate the left-hand side of the last equation in 

(5.19), as in [53] 
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The optimum p and, consequently, the optimum a are achieved for p which results in 

Dn(p)  0. Note that because of imposing flatness at p as well as at p, an additional degree 

of flatness can only be achieved by increasing the polynomial order by 4, that is, for 

polynomials with n = 1, 5, 9, 13, etc. The optimum polynomial coefficients for 

n = 1, 5, 9, 13, 17, and 21 and the corresponding p are given in Table 5.2. 

The magnitude spectra and waveforms of optimum polynomially-weighted Gaussian 

pulses obtained for various even and odd n are shown in Figures 5.1 and 5.2. As expected, 

increasing n causes an increase in the bandwidth. Note that the pulses with n = 2 and n = 5, the 

pulses with n = 4 and n = 9, etc. exhibit the same degrees of flatness. Clearly, all pulses are well 

localized in time, even for high-order polynomials. 

 

Table 5.2 Coefficients of optimum weighting polynomials am and corresponding 
frequencies p, for odd n [53]. 

 

n a = [a0, a1, ..., an/2], for odd n  p [rad/s] 

1 a = [1.31549] 2 

5 a = [2.91916, 2.48477, 5.72622101] 2.05287 

9 a = [4.53910, 7.73062, 4.41539, 9.02059101, 6.24122102] 2.53720 

13 
a = [6.16308, 15.7481, 14.3618, 5.63520, 1.05548, 9.17657102,  
       3.02457103] 

2.94326 

17 
a = [7.78862, 26.5392, 33.2489, 19.2006, 5.81973, 9.73749101,  
       9.00278102,  4.28795103, 8.24614105] 

3.29987 

21 
a = [9.41494, 40.1044, 63.9146, 48.6727, 20.3458, 5.01133,  
        7.53235101, 6.94380102, 3.81480103, 1.14299104,  
1.43897106] 

3.62159 

 

An example of MATLAB code implementing the procedure for obtaining the peak 

frequencies, p, polynomial coefficients, a, pulse's waveform, fn(t), and amplitude spectrum, 

Fn(), is given by Algorithm 5.1. The function is called maxflatgauss. Its input parameters are 

the order of polynomial, n, the vector of time points in s, t, and the vector of frequency points 

in rad/s, w. The function maxflatgauss calls the function hermitepoly which is given by 

Algorithm 3.2. 
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Figure 5.1 Magnitude spectra (left) and waveforms (right) of optimum 
polynomially-weighted Gaussian pulses obtained for even n [53]. 

 

 

Figure 5.2 Magnitude spectra (left) and waveforms (right) of optimum 
polynomially-weighted Gaussian pulses obtained for odd n [53]. 

 

Algorithm 5.1 Design of maximally flat Gaussian pulse of order n. 

function [wp,a,fn,Fn]=maxflatgauss(n,t,w) 
 
if mod(n,2)==0, L=n/2; 
else L=(n-1)/2; 
end 
 
% Optimum polynomial coefficients and peak frequencies 
if n==0, wp=0; a=1/sqrt(pi); 
elseif n==1, wp=sqrt(2); a=-sqrt(2*exp(1)/pi); 
elseif mod(n,2)==0 % even n 
 wp=0; a=zeros(n/2+1,1); 
 for m=0:(n/2) 
  if m==n/2, a(m+1)=(-1)^m/prod(1:m); 
  else a(m+1)=(-1)^m*prod(2*m+3:2:n+1)/2^(n/2-m)/prod(1:n/2-m)/prod(1:m); 
 end, end 
 a=1/sqrt(pi)*a; 
else % odd n 
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 if n==3,      wp=1.94333; elseif n==5,  wp=2.05287; 
 elseif n==7,  wp=2.47976; elseif n==9,  wp=2.53720; 
 elseif n==11, wp=2.91217; elseif n==13, wp=2.94326; 
 elseif n==15, wp=3.28477; elseif n==17, wp=3.29987; 
 elseif n==21, wp=3.62159;  
 else error('The required n is not supported.'); 
 end 
 % system of linear equations Aa=b 
 A=zeros(L+1,L+1); 
 for u=1:L+1, for v=1:L+1 
   S=0; 
   for k=0:(u-1) 
    if k<=2*v-1 
     S=S+prod(u-k:u-1)/prod(1:k)*(-1/2)^(u-k-1)*... 
       prod(2*v-k:2*v-1)*hermitepoly(2*v-k-1,wp/2)*hermitepoly(u-k-1,wp/2); 
    end, end 
   A(u,v)=(-1)^(v-1)*2^(-2*(v-1))*S; 
 end, end 
 b=[-2/sqrt(pi)/exp(-(wp/2)^2); zeros(L,1)]; 
 % the system's solution 
 a=A\b; 
end 
 
% Waveform fn(t) 
if isempty(t), fn=[]; 
else g0=exp(-t.^2); pn=zeros(size(t)); 
 for m=0:L 
  if mod(n,2)==0, pn=pn+a(m+1)*t.^(2*m); 
  else pn=pn+a(m+1)*t.^(2*m+1); 
 end, end 
 fn=pn.*g0; 
end 
 
% Amplitude spectrum Fn(w) 
if isempty(w), Fn=[]; 
else F=zeros(size(w)); 
 if mod(n,2)==0 % even n 
  b=zeros(L+1,1); 
  for m=0:L 
   if m==L, b(m+1)=2^(-m)/prod(1:m); 
   else b(m+1)=prod(2*m+3:2:n+1)/2^L/prod(1:L-m)/prod(1:m); 
  end, end 
  for m=0:L, F=F+2^(-m)*b(m+1)*hermitepoly(2*m,w/2); end 
  F=1/sqrt(pi)*F; 
 else % odd n 
  for m=0:L 
   F=F+(-1)^(m+1)*2^(-(2*m+1))*a(m+1)*hermitepoly(2*m+1,w/2); 
 end, end 
 Fn=sqrt(pi)*F.*exp(-(w/2).^2); 
end 
 

 

For example, the design of the maximally flat Gaussian pulse with n = 10 is given by 

the following call 

n=10; t=linspace(-3,3,1001); w=linspace(-10,10,1001); 
[wp,a,fn,Fn]=maxflatgauss(n,t,w); 
figure, plot(t,fn); figure, plot(w,Fn); 
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5.4 Pulse shaping 

To perform pulse shaping, the baseband pulse fn(t) is first transformed into a bandpass 

pulse sn(t). Then, sn(t) is scaled to fit its spectrum into a desired part of the spectral mask. This 

part is given by 

where AL, AU, and C are magnitude limits whereas L and U are the lower and the upper band-

edge frequency. To obtain the bandpass pulse, p is transposed to some frequency s, where 

s > p.  

For pulse fn(t) synthesized by even order polynomial this transposition is obtained by 

forming sn(t) as a double-sideband signal 

Note that the pulse in (5.25) does not satisfy the requirement for zero DC [26]. This requirement 

is fulfilled by subtracting scaled version of the original pulse fn(t) rather than by subtracting a 

constant, thus preserving pulse's time localization. This technique is known from the wavelet 

theory, where it is used to implement the admissibility criterion [54]. Then, the expression in 

(5.25) becomes 

where Fn(s) and Fn(2s) are calculated by using (5.9). The amplitude spectrum of the pulse in 

(5.26) is given by 

Note that the denominator in (5.26) ensures Sn(s) = 1. 

For pulse fn(t) synthesized by odd order polynomial, sn(t) is formed as an upper-sideband 

signal. Its canonical representation is given by [55] 
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where  ˆ
nf t  is the Hilbert transform of fn(t), u = s – p and u  0. The amplitude spectrum 

of the pulse in (5.28) is given by 

The Hilbert transform of fn(t) is given by 

The transform in (5.30) can be expressed in a closed form by following the procedure described 

in Section 4.3. It results in 

This expression is not defined for t = 0. Since  ˆ
nf t for an odd n is an even function, the value 

of  ˆ 0nf  needs to be calculated. The Hilbert transform of fn(t) at t = 0 is 

The integrand in (5.32) can be expressed as 

where fn1(t) is an even function. Then,  ˆ 0nf  can be expressed as 

         ˆcos sinn n u n us t f t t f t t    (5.28) 
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Note that expression under the integral represents the Fourier transform of fn1(t) calculated at 

ω = 0. It follows 

where Fn1(ω) takes the form as in (5.9). Finally,  ˆ 0nf  is equal to 

As elaborated in Section 5.3, the spectrum Fn() is maximally flat at  = p. For an odd 

n, Sn() is also maximally flat at  = s, assuming u = s – p. For an even n, Sn() is 

approximately maximally flat, what is a consequence of overlapping the tails in the left- and 

the right-hand side of Sn(). However, such overlapping is negligible if s > c, where c > 0 

is the band edge frequency of Fn(). For practical purposes, c is estimated as the frequency at 

which Fn() = 1e2. For n = 0, 2, 4, 6, 8, and 10, c is obtained as 4.29194 rad/s, 5.15300 rad/s, 

5.79861 rad/s, 6.33881 rad/s, 6.81312 rad/s, and 7.24113 rad/s. 

The scaling of sn(t) is performed as 

where C and  are amplitude and bandwidth scaling factors. The amplitude spectrum of wn(t) is 

given by 

Note that, as a consequence of scaling, spectrum's peak is moved from s to w = s/. In 

addition, Wn(0) = 0 and Wn(w) = C. 

The scaling ensures mapping the appropriate baseband frequencies 1 and 2 of Fn() 

onto L and U. The values of 1 and 2 are obtained by solving the equations Fn() = AL/C 

and Fn() = AU/C. It is clear from Figures 5.1 and 5.2 that two solutions for 1 as well as for 

2 exist. These solutions have opposite signs for even n and positive sign for odd n. The choice 

is made 1 < 0 and 2 > 0 in the former, and 1 < 2 in the latter case. Finally, the values of  

and w are obtained as 
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An example of MATLAB code implementing the procedure for obtaining the values of 

 and w, as well as the UWB pulse's waveform, wn(t), and amplitude spectrum, Wn(), is given 

by Algorithm 5.2. The function is called uwbdesign_maxflatgauss. Its input parameters are the 

order of polynomial, n, baseband frequencies, 1 and 2, the lower and the upper band-edge 

frequency of UWB region, fL and fU, the magnitude limit, C, vector of time points in s, t, and 

vector of frequency points in rad/s, w. The function uwbdesign_maxflatgauss calls the function 

translated_maxflatgauss which calculates sn(t) and Sn(), the function ht_maxflatgauss which 

calculates  ˆ
nf t , and the function hermitepoly which is given by Algorithm 3.2. 

 

Algorithm 5.2 Design of UWB flat-spectrum Gaussian pulse of order n. 

function [tau,fw,wn,Wn]=uwbdesign_maxflatgauss(n,w1,w2,fL,fU,C,t,w) 
 
wp=maxflatgauss(n,[],[]); 
tau=(w2-w1)/(2*pi*(fU-fL)); 
fw=fU+(wp-w2)/2/pi/tau; 
ws=2*pi*fw*tau; 
[sn,Sn]=translated_maxflatgauss(n,tau,ws,t,w); 
wn=C*sn/tau; Wn=C*Sn/tau; 
 
function [sn,Sn]=translated_maxflatgauss(n,tau,ws,t,w) 
 
[wp,a,fn,Fn]=maxflatgauss(n,t/tau,w*tau); 
Fn=tau*Fn; 
 
if mod(n,2)==0 % even n 
 % calculation of Fn(ws) and Fn(2ws) 
 Fn_ws=0; Fn_2ws=0; 
 for m=0:n/2 
  Fn_ws=Fn_ws+(-1)^m*2^(-2*m)*a(m+1)*hermitepoly(2*m,ws/2); 
  Fn_2ws=Fn_2ws+(-1)^m*2^(-2*m)*a(m+1)*hermitepoly(2*m,2*ws/2); 
 end 
 Fn_ws=sqrt(pi)*Fn_ws.*exp(-(ws/2).^2); 
 Fn_2ws=sqrt(pi)*Fn_2ws.*exp(-(2*ws/2).^2); 
 % waveform sn(t) 
 sn=2*fn.*(cos(ws*t/tau)-Fn_ws)/(1-2*Fn_ws^2+Fn_2ws); 
 % amplitude spectrum Sn(w) 
 Fm=zeros(size(w)); Fp=zeros(size(w)); 
 for m=0:n/2 
  Fm=Fm+(-1)^m*2^(-2*m)*a(m+1)*hermitepoly(2*m,(w*tau-ws)/2); 
  Fp=Fp+(-1)^m*2^(-2*m)*a(m+1)*hermitepoly(2*m,(w*tau+ws)/2); 
 end 
 Fnm=sqrt(pi)*tau*Fm.*exp(-((w*tau-ws)/2).^2); 
 Fnp=sqrt(pi)*tau*Fp.*exp(-((w*tau+ws)/2).^2); 
 Sn=(Fnm+Fnp-2*Fn_ws*Fn)/(1-2*Fn_ws^2+Fn_2ws); 

2 1

U L

 
 





 (5.39) 

2 p
w U

 
 




   (5.40) 



5. FLAT-SPECTRUM GAUSSIAN PULSES 

65 

else % odd n 
 % waveform sn(t) 
 fnht=ht_maxflatgauss(n,a,t/tau); 
 wu=ws-wp; 
 sn=fn.*cos(wu*t/tau)-fnht.*sin(wu*t/tau); 
 % amplitude spectrum Sn(w) 
 Fm=zeros(size(w)); Fp=zeros(size(w)); 
 for m=0:(n-1)/2 
  Fm=Fm+(-1)^(m+1)*2^(-(2*m+1))*a(m+1)*hermitepoly(2*m+1,(w*tau-wu)/2); 
  Fp=Fp+(-1)^(m+1)*2^(-(2*m+1))*a(m+1)*hermitepoly(2*m+1,(w*tau+wu)/2); 
 end 
 Fnm=sqrt(pi)*tau*Fm.*exp(-((w*tau-wu)/2).^2); 
 Fnp=sqrt(pi)*tau*Fp.*exp(-((w*tau+wu)/2).^2); 
 Sn=1/2*(1+sign(w*tau-wu)).*Fnm+sign(wu)/2*(1-sign(w*tau+wu)).*Fnp; 
end 
 
function fnht=ht_maxflatgauss(n,a,t) 
% Hilbert transform of Gaussian 
ght=exp(-t.^2).*erfi(t); 
% Hilbert transform of fn(t~=0) 
fnht=zeros((size(t))); 
for m=0:(n-1)/2 
 fnht=fnht+a(m+1)*(t.^(2*m+1).*ght); 
 for k=0:m 
  Q=zeros(1,k); 
  for q=0:k 
   Q(1,q+1)=(2*q-1); 
  end 
  fnht=fnht+a(m+1)*t.^(2*m-2*k)*1/2^k/sqrt(pi)*prod(Q); 
 end 
end 
% Hilbert transform of fn(t==0) 
ind=find(t==0); fnht(ind)=0; 
for m=0:(n-1)/2 
 fnht(ind)=fnht(ind)+(-1)^m*2^(-2*m)*a(m+1)*hermitepoly(2*m,0); 
end 
fnht(ind)= -1/sqrt(pi)*fnht(ind); 
 

 

5.5 FCC-compliant flat-spectrum Gaussian pulses 

To illustrate the proposed design, several pulses that fill the FCC indoor and outdoor 

mask are presented. The pulses are shaped to fit the UWB region between fL = 3.1 GHz and 

fU = 10.6 GHz. In both masks, this region is bounded by the points that are 10 dB and 20 dB 

below the highest power spectral density (PSD), which equals 41.3 dBm/MHz. Therefore, the 

band-edge frequencies and upper magnitude limit in (5.24) are set to L = 2fL, U = 2fU, and 

C = 8.610e. For the outdoor mask, AL = AU = 8.610 is applied. For the indoor mask, 

AL = AU = 2.723e is used for all n except for n = 0, 2, and 4. For these values of n, the pulses 

obtained do not meet the mask in the GPS band. Therefore, for n = 0, 2, and 4 the lower band 

edge is changed to L = 2fGPS, where fGPS = 1.61 GHz, and AL = 1.718e. For these values of 

L and U, the baseband frequencies 1 and 2 of Fn() are given in Tables 5.3 and 5.4. 
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Table 5.5 provides numerical values of the obtained fw and  for various n. In addition, 

pulse's spectral efficiency and relative energy concentration are calculated as in (1.1) and (1.2) 

respectively. The energy concentration is calculated for T = 0.5 ns. As expected, an increase in 

n results in the increase of spectral efficiency. Clearly, a significant increase is achieved already 

for n = 2 and n = 5. In addition, since the indoor mask is less restrictive than the outdoor, the 

FCC-compliant indoor pulses exhibit higher efficiency. High energy concentration is obtained 

in all cases. The waveforms and the corresponding power spectral densities of the pulses 

compliant with the indoor and the outdoor FCC mask are shown in Figures 5.3 and 5.4 for even 

n, and in Figures 5.5 and 5.6 for odd n. 

 

Table 5.3 Baseband frequencies ω1 and ω2 of Fn(ω) for even n. 

 

n 
indoor mask outdoor mask 

1, rad/s 2, rad/s 1, rad/s 2, rad/s 

0 3.95697 2.14597 3.03486 

2 = 1 

2 4.83186 3.07546 3.94448 

4 5.48442 3.75506 4.61404 

6 4.31682 

2 = 1 

5.16945 

8 4.80646 5.65459 

10 5.24615 6.09087 

12 5.64862 6.49064 

14 6.02195 6.86176 

16 6.37170 7.20964 

18 6.70182 7.53817 

20 7.01529 7.85026 

30 8.39871 9.22874 

40 9.57410 10.4010 

50 10.6141 11.4388 

60 11.5569 12.3798 
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Table 5.4 Baseband frequencies ω1 and ω2 of Fn(ω) for odd n. 

 

n 
indoor mask outdoor mask 

1, rad/s 2, rad/s 1, rad/s 2, rad/s 

1 0.27648 3.12721 0.08593 3.90855 

5 0.27281 4.59877 0.08444 5.36934 

9 0.27150 5.68046 0.08393 6.44342 

13 0.27084 6.57604 0.08368 7.33375 

17 0.27044 7.35725 0.08353 8.11107 

21 0.27017 8.05908 0.08343 8.80989 
 

 

Table 5.5 Parameters and properties of FCC-compliant flat-spectrum Gaussian 
pulses. Properties are highlighted in bold [53]. 

 

 indoor mask outdoor mask 

n fw, GHz , ns , % , % fw, GHz , ns , % , % 

0 7.439 0.1080 40.4 > 99.99 6.850 0.1288 41.2 > 99.99 
2 7.103 0.1400 53.0 99.90 6.850 0.1674 53.5 99.74 

4 6.946 0.1636 59.6 99.90 6.850 0.1958 60.0 99.50 

6 6.850 0.1832 76.1 99.92 6.850 0.2194 64.2 99.37 

8 6.850 0.2040 78.4 99.87 6.850 0.2400 67.2 99.28 

10 6.850 0.2227 80.1 99.82 6.850 0.2585 69.6 99.21 

20 6.850 0.2977 85.0 99.48 6.850 0.3332 76.4 98.98 

30 6.850 0.3565 87.4 99.17 6.850 0.3917 79.9 98.77 

40 6.850 0.4063 89.0 98.90 6.850 0.4414 82.2 98.59 

50 6.850 0.4505 90.0 98.68 6.850 0.4855 83.8 98.42 

60 6.850 0.4905 90.8 98.50 6.850 0.5254 85.0 98.28 

1 6.093 0.0605 58.2 99.73 5.706 0.0811 44.5 99.41 

5 6.186 0.0918 69.6 99.32 5.893 0.1121 57.8 98.74 

9 6.242 0.1148 75.0 99.09 5.993 0.1350 64.4 98.36 

13 6.279 0.1338 78.3 98.95 6.058 0.1539 68.6 98.16 

17 6.306 0.1504 80.5 98.83 6.105 0.1704 71.6 98.03 

21 6.327 0.1653 82.2 98.74 6.141 0.1852 73.8 97.94 
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Figure 5.3 Waveforms (left) and power spectral densities (right) of flat-spectrum 
Gaussian pulses with even n, obtained for FCC indoor mask. 

 

 

Figure 5.4 Waveforms (left) and power spectral densities (right) of flat-spectrum 
Gaussian pulses with even n, obtained for FCC outdoor mask. 

 

 

Figure 5.5 Waveforms (left) and power spectral densities (right) of flat-spectrum 
Gaussian pulses with odd n, obtained for FCC indoor mask. 
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Figure 5.6 Waveforms (left) and power spectral densities (right) of flat-spectrum 
Gaussian pulses with odd n, obtained for FCC outdoor mask. 

 

The spectral efficiency greater than 90 % is achieved for the indoor mask and even n, 

where n ≥ 50. The waveforms and PSDs for n = 60 obtained for both masks are illustrated in 

Figure 5.7. 

 

 

Figure 5.7 Waveforms (left) and power spectral densities (right) of FCC compliant 
flat-spectrum Gaussian pulses obtained for n = 60 [53]. 

 
Using Algorithm 5.2, the design of FCC-compliant indoor pulse with n = 4 is given by 

the call 

 
n=4; w1=-5.48442; w2=3.75506; fL=1.61; fU=10.6; C=8.61e-3; 
t=linspace(-0.5,0.5,1001); f=linspace(0,12,1001); w=2*pi*f; 
[tau,fw,wn,Wn]=uwbdesign_maxflatgauss(n,w1,w2,fL,fU,C,t,w); 
figure, plot(t,wn/C); 
figure, plot(f,20*log10(abs(Wn)),'g',f,fccmask(f,'indoor'),'r'); 
axis([f(1) f(end) -80 -40]); 
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The design of the FCC-compliant indoor pulse with n = 60 is given by the call 

 
n=60; w1=-11.55686; w2=-w1; fL=3.1; fU=10.6; C=8.61e-3; 
t=linspace(-1,1,1001); f=linspace(0,12,1001); w=2*pi*f; 
[tau,fw,wn,Wn]=uwbdesign_maxflatgauss(n,w1,w2,fL,fU,C,t,w); 
figure, plot(t,wn/C); 
figure, plot(f,20*log10(abs(Wn)),'g',f,fccmask(f,'indoor'),'r'); 
axis([f(1) f(end) -80 -40]); 
 

The design of the FCC-compliant outdoor pulse with n = 5 is given by the call 

 
n=5; w1=0.08444; w2=5.36934; fL=3.1; fU=10.6; C=8.61e-3; 
t=linspace(-0.5,0.5,1001); f=linspace(0,12,1001); w=2*pi*f; 
[tau,fw,wn,Wn]=uwbdesign_maxflatgauss(n,w1,w2,fL,fU,C,t,w); 
figure, plot(t,wn/C); 
figure, plot(f,20*log10(abs(Wn)),'g',f,fccmask(f,'outdoor'),'r'); 
axis([f(1) f(end) -80 -40]); 
 

 

5.6 Comparison with other FCC-compliant pulses 

To illustrate features of the proposed method, several examples of the designed pulses 

that fill the FCC masks are described. First, the original Gaussian derivatives which fill the 

indoor and the outdoor mask with maximum efficiencies, obtained for n = 4 and n = 7, are 

compared with optimum flat-spectrum Gaussian pulses having n = 2 and n = 5. Their PSDs and 

waveforms are shown in Figure 5.8. It is clear that the proposed pulses fill the UWB region 

more tightly. 
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Figure 5.8 Power spectral densities (up) and waveforms (down) of nth Gaussian 
derivatives (GD) [9] and nth order flat-spectrum Gaussian pulses (FS) 
[53]. 

 

In the second example, the sixth-order flat-spectrum Gaussian pulse is compared with a 

linear combination of three translated Gaussian pulses [34], both filling the FCC indoor mask. 

The PSDs and waveforms of the pulses are shown in Figure 5.9. Both pulses are very well 

localized in time. However, somewhat better filling of the UWB region is encountered in the 

proposed pulse. 
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Figure 5.9 Power spectral densities (up) and waveforms (down) of sixth-order flat-
spectrum Gaussian pulse (FS) and linear combination of one sixth-order 
and two seventh-order Gaussian derivatives (LC) [53]. 

 
 

In the last example, the proposed flat-spectrum Gaussian pulses are compared with the 

sharpened Gaussian derivatives [48]. The flat-spectrum pulses with n = 20 and n = 21 are 

considered, filling the indoor and the outdoor mask, respectively. They are compared with the 

sharpened second and first Gaussian derivatives with p = 8. The PSDs and waveforms of these 

pulses are shown in Figure 5.10. All pulses exhibit high spectral efficiency and energy 
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concentration. However, for the indoor mask, better results are obtained for the flat-spectrum 

pulse, whereas for the outdoor mask, the sharpened Gaussian derivative is favorable. 

 

 
 

 
 

Figure 5.10 Power spectral densities (up) and waveforms (down) of nth-order flat-
spectrum Gaussian pulses (FS) and sharpened nth Gaussian derivatives 
(SGD) obtained for p = 8. 
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Table 5.6 shows the spectral efficiency and energy concentration of the pulses from [9], 

[20], [31], [32], [34], optimally sharpened Gaussian derivative with n = 1 and p = 8, as well as 

optimal flat-spectrum Gaussian pulses with n = 20, n = 40 and n = 20, all obtained for the FCC 

indoor mask. The flat-spectrum Gaussian pulses reach the efficiency of 90.8 % with the 

concentration of 98.5 %. 

 

Table 5.6 Comparison of various sinc-based and Gaussian-based pulses with flat-
spectrum Gaussian pulses. All pulses are compliant with FCC indoor 
mask. 

 

 Pulse , % , % 

S
in

c Translated and truncated sinc pulse [20] 98.9 95.82 

Linear combination of three translated sinc pulses [31] 82.6 98.53 

G
au

ss
ia

n 

Fourth Gaussian derivative [9] 54.3 >99.99 

Linear combination of Gaussian derivatives [34] 72.0 99.97 

Linear combination of three translated Gaussians [31] 77.5 99.78 

Linear combination of eight translated Gaussians [32] 82.8 99.56 

Sharpened Gaussian derivative with n = 1 and p = 8 83.2 99.11 

Flat-spectrum Gaussian, n = 20 85.0 99.48 

Flat-spectrum Gaussian, n = 40 89.0 98.90 

Flat-spectrum Gaussian, n = 60 90.8 98.50 

 



6. TRANSFER FUNCTIONS OF FCC-COMPLIANT PULSE SHAPERS 

75 

6. TRANSFER FUNCTIONS OF FCC-COMPLIANT 
PULSE SHAPERS 

As shown in Figure 1.2, UWB pulses are formed by shaping filters called pulse shapers. 

In this chapter, the synthesis of pulse shapers whose impulse responses efficiently approximate 

ideal FCC-compliant UWB pulses is described. As a result of this synthesis, several sets of 

transfer functions are provided, which cover the approximations of the original and sharpened 

Gaussian derivatives as well as the approximations of modified Hermite, prolate-spheroidal, 

and flat-spectrum-Gaussian pulses. 

6.1 Time-domain synthesis based on least squares approximation 

The time-domain synthesis of pulse shaper approximates an ideal pulse p(t) with the 

impulse response of a causal continuous-time filter. To ensure causality, p(t) should be delayed 

and zeroed for t < 0, thus forming a desired impulse response 

where td is the delay. The objective is to design a filter whose impulse response approximates 

the response in (6.1) in the least-squares sense. Therefore, the approximation error is given by 

where h(t, x) is filter’s impulse response, x is the vector of filter's parameters, and TU is high 

enough to ensure h(t, x) ≈ 0 and hd(t) ≈ 0 for t > TU. 

The filter parameters that minimize error in (6.2) can be found by solving the problem 

To solve the problem in (6.3), the method proposed in [56] is used. In the method referred to, 

the function  (x) is approximated as 

    for 0

0 for 0
d

d
p t t t

h t
t

  
 
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      2
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,
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dh t h t dt    x x  (6.2) 
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x

x x
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(6.3) 



6. TRANSFER FUNCTIONS OF FCC-COMPLIANT PULSE SHAPERS 

76 

where h(t, x) and hd(t) are evaluated on uniformly spaced grid tq = qTs, q = 0, ..., Q, with 

Ts = TU/Q. The method deals with the zero-pole-gain model of the filter, thus enabling simple 

control of filter stability. The optimum parameters are found by iterative procedure in which a 

second-order cone program is solved in each iteration. 

To apply the method in [56], the value of td should be known in advance. For a given 

TU, td is chosen to ensure that hd(t) contains at least 99.9 % of the total energy of p(t), as in 

Clearly, the condition in (6.5) determines a lower bound for td. Its exact value can be found 

experimentally. The experiments show that this value is placed near this bound. 

6.2 Zero-pole-gain model of pulse shaper 

The transfer function of an Nth order filter with M zeros is given by 

where H0 is the gain constant, and pk and zi denote transfer function poles and zeros. If the poles 

are simple and M < N, the impulse response h(t) can be obtained as 

where Kr; r = 1, ..., N; are pole residues given by 
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Since the filter is uniquely described by pk, zi, and H0, these parameters represent the 

components of x. To form x as a real vector, complex pairs of the poles and the zeros are 

described by their real and imaginary parts. If the transfer function contains M1 real zeros, M2 

complex zeros, M3 imaginary zeros, N1 real poles, and N2 complex poles, where M1+M2+M3=M 

and N1+N2=N, then x can be defined as [56] 

where i, i, k, l, and l are real and imaginary parts of complex zeros and poles, as given in 

The procedure in [56] requires the appropriate value of x as an optimization starting 

point. The choice of the starting point is not critical, provided it describes a stable filter [56]. 

However, the convergence rate can be significantly reduced if the starting point is far from the 

optimum. Furthermore, since the transfer function in (6.6) vanishes for H0 = 0, it is 

recommended to start the optimization with H0 of the appropriate sign or run the optimizations 

for both signs [56]. 
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6.3 Spectral efficiency and energy concentration of impulse 

response 

The spectral efficiency of h(t) in the UWB region fL ≤ f ≤ fU is obtained as 

where |H( f )| is filter's magnitude response and M( f ) is PSD mask. Since M( f ) = C2 for 

fL < f < fU, the denominator in (6.13) equals C2(fU  fL). The integral in the numerator can be 

expressed as 

where E(c) denotes the total energy of the filter's response to a sinc pulse occupying the band 

c ≤  ≤ c. This energy is given by [57] 

The energy concentration of h(t) in the interval 0 ≤ t ≤ T is obtained as 

where eh is the total energy of h(t), given by [58] 

By using (6.7), the integral in (6.16) is calculated as 
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The expression in (6.17) is recognized as a part of (6.18). Consequently, the energy of h(t) 

occupying the interval 0 ≤ t ≤ T can be simplified as 

6.4 Optimum pulse shapers 

In this section, the optimum transfer functions approximating FCC-compliant Gaussian 

derivatives, modified Hermite pulses, prolate spheroidal wave functions, sharpened Gaussian 

derivatives, and flat-spectrum Gaussian pulses are provided. All transfer functions are obtained 

by minimizing the error in (6.4), assuming Q = 2000. For each transfer function, the spectral 

efficiency and energy concentration of its impulse response, calculated for fL = 3.1 GHz, 

fU = 10.6 GHz, and T =2td, are provided. Finally, the time axis is normalized to 1 ns. 

Consequently, the zeros and poles are normalized to 1 Grad/s. 

6.4.1 Pulse shapers forming Gaussian derivatives 

The pulse shapers forming nth-order Gaussian derivative were obtained by 

approximating p(t) = wn(t), where wn(t) is given in (3.8), and by utilizing TU = 10. The 

optimum zeros, poles, and gain constants for n = 4, 5, 6, and 7 are given in Tables 6.1 and 6.2. 

For each n, the sixth- and eighth-order transfer function is obtained. In the tables, the spectral 

efficiencies and energy concentrations of the corresponding impulse responses are also given. 

The impulse response of eighth-order pulse shaper forming fourth-order Gaussian derivative is 

shown in Figure 6.1. Figure 6.2 and 6.3 show the power spectral densities of the impulse 

responses of the proposed sixth- and eighth-order pulse shapers for various derivative orders, 
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together with the FCC indoor mask. It is clear that the shapers are compliant with the mask in 

the UWB region. The only exception is the shaper with N = 8, M = 4 and n=6, where a small 

violation is encountered at the upper band edge. However, outside the UWB region, some 

violations occur in many cases. Nevertheless, all these violations are considered tolerable since 

the UWB antennas have bandpass responses which additionally filter the pulses [14], [15]. 

Figure 6.4 shows the impulse responses and the corresponding PSDs of the pulse shaper 

with N = 6 and M = 4 forming fourth-order Gaussian derivative and the elliptic pulse shaper 

having N = 6 and M = 5, which is proposed in [12]. Within the UWB region, the former shaper 

ensures  = 50.8%, whereas the latter results in  = 56.6%. Clearly, the elliptic shaper generates 

the pulse with higher spectral efficiency. However, this pulse exhibit poor time localization, 

which is a consequence of its sharp transition bands. 

 

Table 6.1 Zeros, poles, and gain constants of various pulse shapers forming even 
order Gaussian derivatives, together with pulses' spectral efficiency and 
energy concentration [59]. 

 

n = 4 with  = 0.06647 ns and td = 0.18688 ns, M = 4 and N = 6 

zi 24.3772  63.6343j, 4.41124  1.52466j 
 = 50.8 % 
λ = 99.67 % 

pk 7.05717  59.4434j, 8.17639  42.9447j, 6.84788  27.4355j 

H0 2.05990
n = 4 with  = 0.06647 ns and td = 0.18688 ns, M = 6 and N = 8 

zi 13.3323  79.0313j,  8.36727j, 38.9955, 38.9955 

 = 55.6 % 
λ = 99.94 % 

pk 
9.05537  66.1232j, 10.7319  48.7615j, 10.4152  32.5719j, 

9.67026  13.0463j 

H0 6.46810
n = 6 with  = 0.07495 ns and td = 0.22071 ns, M = 3 and N = 6 

zi 29.9416  47.8954j, 2.39398 
 = 46.5 % 
λ = 99.50 % 

pk 5.38548  60.6325j, 6.42499  47.1044j, 5.52264  33.9556j 

H0 233.974
n = 6 with  = 0.07495 ns and td = 0.22071 ns, M = 4 and N = 8 

zi 40.0656  57.1491j,  14.3802j 

 = 51.6 % 
λ = 99.88 % 

pk 
6.01416  65.1139j, 7.55214  51.7788j, 7.49202  39.0740j, 

6.14528  26.0428j 

H0 9207.52
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Table 6.2 Zeros, poles, and gain constants of various pulse shapers forming odd 
order Gaussian derivatives, together with pulses' spectral efficiency and 
energy concentration [59]. 

 

n = 5 with  = 0.07212 ns and td = 0.20922 ns, M = 4 and N = 6 

zi 23.2788  63.4835j, 21.6042, 0 
 = 47.5 % 
λ = 99.61 % pk 6.25793  59.9713j, 7.26166  45.1554j, 6.09085  31.1535j 

H0 5.20835
n = 5 with  = 0.07212 ns and td = 0.20922 ns, M = 5 and N = 8 

zi 19.1303  71.3904j, 12.9017, 0, 0 

 = 51.7 % 
λ = 99.93 % pk 

7.39071  65.7296j, 8.85083  50.9586j, 8.58172  37.4470j, 
6.73907  24.1066j 

H0 296.149
n = 7 with  = 0.08061 ns and td = 0.23093 ns, M = 3 and N = 6 

zi 20.7203  64.6888j, 0 
 = 43.9 % 
λ = 99.33 % 

pk 5.15940  63.5246j, 5.94215  50.4177j, 4.84870  38.1205j 

H0 222.469
n = 7 with  = 0.08061 ns and td = 0.23093 ns, M = 4 and N = 8 

zi 28.8548  74.8823j, 1.62664, 1.62452 

 = 46.3 % 
λ = 99.93 % 

pk 
6.17274  67.1398j, 7.57758  54.5552j, 7.45103  42.8736j, 

6.00026  31.3212j 

H0 7052.51
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Figure 6.1 Desired impulse response of pulse shaper forming fourth-order Gaussian 
derivative and its approximation obtained by pulse shaper with N = 8 
and M = 6. 

 

 
 

Figure 6.2 Power spectral densities of impulse responses approximating nth 
Gaussian derivatives obtained by shapers with N = 6, together with FCC 
indoor mask [59]. 
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Figure 6.3 Power spectral densities of impulse responses approximating nth 
Gaussian derivatives obtained by shapers with N = 8, together with FCC 
indoor mask [59]. 

 

 

 
 

Figure 6.4 Impulse responses (left) and their power spectral densities (right) 
obtained for pulse shaper with N = 6 and M = 4 forming fourth Gaussian 
derivative and elliptic pulse shaper with N = 6 and M = 5 [12], [59]. 
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6.4.2 Pulse shapers forming modified Hermite pulses 

Pulse shapers whose impulse responses approximate modified-Hermite pulses with 

n = 2, 3, and 4, are considered. The were obtained with p(t) = Cmn(t), where mn(t) is given in 

(2.8), and by utilizing T = 20. In addition, according to [17], the magnitude responses of the 

modified-Hermite pulses contain zeros. Therefore, in the approximations of these pulses, the 

transfer functions with imaginary zeros are used. The optimum zeros, poles, and gain constants 

of the obtained pulse shapers are given in Table 6.3, together with the obtained spectral 

efficiency and energy concentration. It should be noted that high order modified-Hermite pulses 

require higher transfer function's order. 

Figure 6.5 shows the impulse response and the PSD obtained for the pulse shaper 

forming the fourth-order modified-Hermite pulse. It is clear that this shaper is not FCC 

compliant. It is expected since the ideal modified-Hermite pulses is also not FCC-compliant 

[9]. Therefore, the pulses obtained by the proposed pulse shapers require additional bandpass 

filtering. 

 

Table 6.3 Zeros, poles, and gain constants of various pulse shapers forming nth-
order modified-Hermite pulses, together with pulses' spectral efficiency 
and energy concentration [59]. 

 

n = 2 with  = 0.05515 ns and td = 0.20074 ns, M = 4 and N = 6 

zi 23.9001  44.3637j,  12.4314j 
 = 38.7 % 
λ = 99.58 % 

pk 6.42630  39.6797j, 7.06111  24.3636j, 6.06555  7.56470j 

H0 1.78995
n = 3 with  = 0.06223 ns and td = 0.24734 ns, M = 6 and N = 8 

zi 20.6618  39.4412j,  19.5214j,  0.99368j 

 = 37.2 % 
λ = 99.06 % 

pk 
4.81876  39.7134j, 5.07600  27.0069j, 4.70509  13.2715j, 

1.78883  1.01560j 

H0 1.95497
n = 4 with  = 0.06647 ns and td = 0.28410 ns, M = 8 and N = 10 

zi  75.9298j, 19.9731  46.1548j,  24.8823j,  7.80364j 

 = 32.7 % 
λ = 99.93 % 

pk 
5.36191  49.7136j, 6.60265  38.5947j, 6.10334  27.7797j, 

6.25259  16.3914j, 5.90958  5.33935j 

H0 0.75294
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Figure 6.5 Desired impulse response of pulse shaper forming modified-Hermite 
indoor pulse with n = 4 and its approximation obtained by pulse shaper 
with N = 6 and M = 8 (left), and power spectral density of approximated 
pulse together with FCC indoor mask (right) [59]. 

 

6.4.3 Pulse shapers forming prolate spheroidal pulses 

Pulse shapers forming prolate spheroidal pulses are designed for an orthogonal pair used 

in multiple access. However, due to generation imperfections, the generated pulses cannot be 

completely orthogonal. Therefore, a measure for the orthogonality of the generated pulses is 

required. 

Let H1(s) and H2(s) denote the transfer functions of the pulse shapers whose impulse 

responses approximate 1 and 2. Assuming H1(s) and H2(s) contain N1 and N2 poles, as well 

as M1 and M2 zeros, they are given by 
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where H01 and H02 are gain constants, zi and ci are transfer function zeros, and pk and dk are 

transfer function poles. If the poles are simple, M1 < N1, and M2 < N2, the impulse responses are 

obtained as 

where Kr and An are pole residues given by 

Assuming perfect synchronization, the measure for orthogonality of the impulse 

responses h1(t) and h2(t) is defined via their normalized cross-correlation calculated for the zero 

lag, as in [60] 

where 

and e1 and e2 denote the total energies of impulse responses h1(t) and h2(t). These energies are 

given by [58] 
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It can be shown that for simple poles located in the left half-plane of the complex plane, 

the cross-correlation in (6.27) takes the form [60] 

By substituting (6.30) into (6.26), analytic expression for the measure of orthogonality is 

obtained as [60] 

It is clear that highly orthogonal pulses have   0. 

The time-domain synthesis of prolate-spheroidal pulse shapers approximates delayed 

pulses 1 and 2 by using causal impulse responses in (6.22) and (6.23). Since the ideal pulses 

are zero outside the interval TP/2 ≤ t ≤ TP/2, the desired impulse responses take the forms [18] 

The approximated error functions are obtained by using (6.4) and TU = 2TP. They are given by 

[60] 
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The parameters of pulse shapers that minimize errors in (6.34) and (6.35) are found by solving 

the problem in (6.3). 

The pulse shapers are obtained by approximating the ideal pulses with the duration of 

TP = 1 ns. The pulses are represented with 65 points, that is, with Q = 64. For each pulse, the 

sixth-, eighth-, and tenth-order transfer functions are optimized. The optimum zeros, poles, and 

gain constants obtained for 1 and 2 are given in Table 6.4 and Table 6.5, together with the 

obtained spectral efficiency and energy concentration. In addition, for the pairs of transfer 

functions with equal complexity, the orthogonality of the impulse responses is provided. It is 

clear that for the eighth- and tenth-order pulse shapers the orthogonality is less than 1e3, 

whereas the efficiency is close to 25%. The latter is expected since the prolate spheroidal pulses 

belong to the class of orthogonal UWB pulses with low spectral efficiency. 

 

Table 6.4 Zeros, poles, and gain constants of various pulse shapers forming prolate-
spheroidal pulse 1, together with pulse's spectral efficiency, energy 
concentration, and orthogonality with their counterparts from Table 6.5 
[60]. 

 

M = 4, N = 6 

zi 8.39436  47.0141j,  10.9794j 1 = 22.2 % 
λ1 = 99.12 % 
 = 6.91e3 

pk 2.32565  49.1046j, 2.70852  42.7923j, 2.13370  36.7477j 

H01 0.43243
M = 6, N = 8 

zi 7.73952  55.8954j, 12.7742  35.2706j,  16.8938j 
1 = 26.2 % 
λ1 = 99.90 % 
 = 2.17e4 

pk 
3.01165  51.4290j, 3.71406  45.0846j, 3.67363  38.9992j, 

2.89246  32.8404j 

H01 0.35375
M = 6, N = 10 

zi 7.52737  61.3555j, 31.7015  36.7887j, 6.26145  23.2928j 
1 = 25.3 % 
λ1 = 99.99 % 
 = 1.01e5 

pk 
3.40210  54.6866j, 4.28802  48.6866j, 4.54515  42.9541j, 

4.31194  37.2215j, 3.45030  31.2181j 

H01 173.588
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Table 6.5 Zeros, poles, and gain constants of various pulse shapers forming prolate-
spheroidal pulse 2, together with pulse's spectral efficiency, energy 
concentration, and orthogonality with their counterparts from Table 6.4 
[60]. 

 

M = 4, N = 6 

ci 11.5187  44.1935j, 42.1453, 42.1453 2 = 23.1 % 
λ2 = 99.29 % 
 = 6.91e3 

dk 2.36742  49.7739j, 2.83391  43.4868j, 2.38244  37.1900j 

H02 0.19318
M = 6, N = 8 

ci 12.3902  48.7513j, 2.92240, 2.92240, 0, 0 
2 = 25.5 % 
λ2 = 99.80 % 
 = 2.17e4 

dk
2.61145  51.2162j, 3.23008  45.2111j, 3.14462  39.4264j, 

2.28670  33.7071j 

H02 0.15718
M = 6, N = 10 

ci 9.80439  58.7597j, 11.6355  26.8504j, 0.75866  13.9595j 
2 = 24.9 % 
λ2 = 99.98 % 
 = 1.01e5 

dk
3.27600  54.3405j, 4.14431  48.4190j, 4.39378  42.7537j, 

4.15336  37.0925j, 3.28685  31.1931j 

H02 .009
 
 

Figure 6.6 shows the impulse responses of the pulse shapers with N1 = N2 = 8 and 

M1 = M2 = 6 together with the desired impulse responses. It is clear that both pulse shapers 

generate the desired pulses with a small error. Figure 6.7 shows the pulses' power spectral 

densities together with the FCC masks, for convenience. 

 

 

Figure 6.6 Impulse responses of pulse shapers with N1 = N2 = 8 and M1 = M2 = 6 
forming delayed prolate-spheroidal pulses 1 (left) and 2 (right), 
together with corresponding desired impulse responses [60]. 
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Figure 6.7 Power spectral densities of impulse responses approximating delayed 
prolate-spheroidal pulses 1 and 2 with N1 = N2 = 8 and M1 = M2 = 6, 
together with FCC masks [60]. 

 

6.4.4 Pulse shapers forming sharpened Gaussian derivatives 

In this section, the pulse shapers whose impulse responses approximate sharpened 

Gaussian derivatives with n = 2 and p = 8 from Table 4.1 are considered. The pulse shapers are 

optimized assuming TU = 15. The zeros, poles, and gain constants of the optimum shapers are 

given in Table 6.6, together with pulse's spectral efficiency and energy concentration. An 

efficient approximation of the FCC-compliant indoor and outdoor pulse is achieved with 12th- 

and 14th-order transfer functions, resulting in the spectral efficiency of 78.4% for the indoor 

and 71.3% for the outdoor pulse. The corresponding impulse responses and their power spectral 

densities are shown in Figures 6.8 and 6.9. 
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Table 6.6 Zeros, poles, and gain constants of pulse shapers forming sharpened 
Gaussian derivatives with n = 2 and p = 8, together with pulse's spectral 
efficiency and energy concentration. 

 

indoor mask, td = 0.4042 ns, M = 9, N = 12 

zi 
9.55380  74.5862j, 10.7889  49.7172j, 10.5129  35.0886j, 

 13.7414j, 0 
 = 78.4 % 
λ = 99.92 % pk 

3.84132  64.0258j, 5.66522  56.0146j, 6.57212  46.4578j, 
6.70120  35.9577j, 5.35748  26.2801j, 4.31093  19.8174j 

H0 71.9335

outdoor mask, td = 0. 5040 ns, M = 9, N = 14 

zi 
5.47365  71.0651j, 8.87791  48.8466j, 8.47769  35.7927j, 

 15.9573j, 0

 = 71.3 % 
λ = 99.96 % pk 

3.55734  63.2944j, 4.66959  57.4548j, 5.97048  50.5432j, 
6.33009  42.8853j, 6.08789  35.2177j, 4.85209  28.0375j, 

3.34908  23.0890j

H0 84863
 

 

 
 

Figure 6.8 Desired impulse response of pulse shaper forming sharpened Gaussian 
derivative with n = 2 and p = 8 and its approximation obtained by pulse 
shaper with N = 12 and M = 9 (left), and power spectral density of 
approximated pulse together with FCC indoor mask (right). 
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Figure 6.9 Desired impulse response of pulse shaper forming sharpened Gaussian 
derivative with n = 2 and p = 8 and its approximation obtained by pulse 
shaper with N = 14 and M = 9 (left), and power spectral density of 
approximated pulse together with FCC outdoor mask (right). 

 

6.4.5 Pulse shapers forming flat-spectrum Gaussian pulses 

As shown in Chapter 5, the flat-spectrum Gaussian pulses obtained for even and odd 

polynomial orders behave differently. Therefore, in further text, these two classes are 

considered separately. In both cases, the pulses are synthesized assuming T = 15. 

6.4.5.1 Flat-spectrum Gaussian pulses with even polynomial orders 

After experimenting with various numbers of zeros and poles, efficient approximations 

of ideal FCC-compliant indoor pulses are obtained by using the tenth-order transfer function 

for n = 2 and by the 12th-order transfer functions for n = 4 and n = 6. Efficient approximations 

of ideal FCC-compliant outdoor pulses are achieved with the 12th-order transfer functions for 

n = 2 and n = 4, and with the 14th-order transfer function for n = 6. 

The optimum zeros, poles, and gain constants of the pulse shapers forming flat-spectrum 

Gaussian pulses with even n, compliant with FCC indoor and outdoor mask, are given in 

Tables 6.7 and 6.8. In both tables, the spectral efficiencies and energy concentrations of the 

corresponding impulse responses are also given. It should be noted that these spectral 

efficiencies are close to those provided by the ideal pulses given in Table 5.5. The obtained 

impulse responses and their power spectral densities are shown in Figures 6.10 and 6.11 for 

both FCC masks. 
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Table 6.7 Zeros, poles, and gain constants of various pulse shapers forming flat-
spectrum Gaussian pulses with even n compliant with FCC indoor mask, 
together with pulse's spectral efficiency and energy concentration. 

 

n = 2, td = 0.3074 ns, M = 7, N = 10 

zi 8.2664074.8274j, 14.078944.3345j, 0,0,0 

 = 62.8% 
λ = 99.94% 

pk 
5.4861066.7521j, 6.7907256.4203j, 7.7213445.6240j, 

6.4111334.5937j, 4.3305424.7381j 

H0 67.2060

n = 4, td = 0.3605 ns, M = 7, N = 12 

zi 17.718570.0258j, 12.578641.6633j, 0,0,0

 = 68.1% 
λ = 99.96% 

pk 
4.5362666.5192j, 5.8307958.0152j, 6.9538748.9761j, 
6.8682338.9683j, 5.5341629.7980j, 3.6856521.5125j

H0 90478.5

n = 6, td = 0.3851 ns, M = 9, N = 12 

zi 5.15633  75.6110j, 13.951850.4316j, 13.356336.1040j, 0,0,0

 = 74.5% 
λ = 99.97% 

pk 
4.6285866.2378j, 5.9735657.9576j, 7.2547648.6274j, 
7.1734838.4707j, 5.7544728.9733j¸3.9840120.8141j

H0 58.7661
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Table 6.8 Zeros, poles, and gain constants of various pulse shapers forming flat-
spectrum Gaussian pulses with even n compliant with FCC outdoor 
mask, together with pulse's spectral efficiency and energy concentration. 

 

n = 2, td = 0.3470 ns, M = 7, N = 12 

zi 3.9939573.5956j, 16.270641.9552j, 11.8263j, 0 

=52.8% 
λ>99.99% 

pk 
5.6458365.5680j, 6.8075657.0742j, 7.7058349.0605j, 
7.9801439.3269j, 6.6494431.0674j, 4.9537222.6029j 

H0 84462.9

n = 4, td = 0.4211 ns, M = 9, N = 12 

zi 9.5359568.5894j, 11.058443.7695j, 20.889014.3229j, 0,0,0

=58.9% 
λ=99.98% 

pk 
4.0464761.6085j, 5.2916254.0044j, 6.3863245.5863j, 
6.1843036.6779j, 5.1373529.0586j, 3.9595621.5530j

H0 25.5522

n = 6, td = 0.4985 ns, M = 9, N = 14 

zi 
6.7249670.9040j, 11.280147.2774j, 12.669335.6687j, 

10.9387j, 0

=63.5% 
λ=99.99% pk 

3.6545564.2156j, 4.6715857.8925j, 5.6502751.3844j, 
5.9969643.8411j, 5.6342336.2446j, 4.5027929.5113j, 

3.2086423.2617j

H0 48336.4
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Figure 6.10 Desired impulse responses of pulse shapers forming flat-spectrum 
Gaussian pulses and their approximations obtained for n = 2, N = 10 
and M = 7 (top left), n = 4, N = 12 and M = 7 (top right), n = 6, N = 12 
and M = 9 (bottom left), together with power spectral densities of 
approximated pulses (bottom right). All pulse shapers are compliant 
with FCC indoor mask. 
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Figure 6.11 Desired impulse responses of pulse shapers forming flat-spectrum 
Gaussian pulses and their approximations obtained for n = 2, N = 12 
and M = 7 (top left), n = 4, N = 12 and M = 9 (top right), n = 6, N = 14 
and M = 9 (bottom left), together with power spectral densities of 
approximated pulses (bottom right). All pulse shapers are compliant 
with FCC outdoor mask. 
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6.4.5.2 Flat-spectrum Gaussian pulses with odd polynomial orders 

In this section, the FCC-compliant flat-spectrum Gaussian pulses with n = 5, 9 and 13 

are considered. Note that these pulses exhibit the same order of flatness as the pulses with 

n = 2,  4 and 6, which were approximated in the previous section. The optimum zeros, poles, 

and gain constants of the pulse shapers approximating the aforementioned pulses are given in 

Tables 6.9 and 6.10 for the FCC indoor and the outdoor mask. For both masks, the 12th-, 14th- 

and 16th-order transfer functions are found appropriate for the approximation of the pulses with 

n = 5, 9, and 13. The obtained impulse responses and their power spectral densities are shown 

in Figures 6.12 and 6.13 for the FCC indoor and the outdoor mask, respectively. 

 

Table 6.9 Zeros, poles, and gain constants of various pulse shapers forming flat-
spectrum Gaussian pulses with odd n compliant with FCC indoor mask, 
together with pulse's spectral efficiency and energy concentration. 

 

n = 5, td = 0.4527 ns, M = 9, N = 12 

zi 
8.1709262.5009j, 10.058946.7728j, 10.110833.0004j, 

10.2861j, 0 
=66.2% 
λ=99.80% pk 

3.1761564.2742j, 4.4631755.2349j, 5.1008546.1783j, 
5.1949636.8827j, 4.4005028.3405j, 2.8133321.2510j 

H0 72.9407

n = 9, td = 0.4978 ns, M = 9, N = 14 

zi 
8.5642160.8318j, 9.1409845.4491j, 8.9303032.3676j, 

15.3966j, 0

=71.5% 
λ=99.90% pk 

2.9323265.0832j, 4.1497357.4008j, 4.8937149.5391j, 
5.2541441.1886j, 5.0539832.8938j, 4.0866125.5142j, 

2.3470619.6225j

H0 132553

n = 13, td = 0. 5225 ns, M = 9, N = 16 

zi 
10.312763.1151j, 9.4965046.2420j, 8.7255932.9462j, 

15.6517j, 0

=77.3% 
λ=99.95% pk 

3.0161067.2740j, 4.2387860.4548j, 4.9905553.5829j, 
5.6292246.1728j, 5.8570138.4728j, 5.3752230.9456j, 

4.1899224.3647j, 2.3049319.4268j

H0 2.05604e8
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Table 6.10 Zeros, poles, and gain constants of various pulse shapers forming flat-
spectrum Gaussian pulses with odd n compliant with FCC outdoor 
mask, together with pulse's spectral efficiency and energy 
concentration. 

 

n = 5, td = 0.4296 ns, M = 7, N = 12 

zi 10.380657.3166j, 10.051138.2123j, 14.4478j, 0 

=58.3% 
λ=99.93% 

pk 
3.5551161.5076j, 4.8677853.1647j, 5.5659744.9766j, 
5.7525836.4237j, 4.7321828.6072j, 2.9031322.3376j 

H0 85531.9

n = 9, td = 0.4690 ns, M = 9, N = 14 

zi 
5.7077168.2733j, 12.151250.5142j, 9.4308935.9289j, 

17.0634j, 0

=63.3% 
λ=99.93% pk 

 65.5678j,  5.7622657.8235j,  6.4734450.5644j, 
7.1275442.8231j, 6.6809234.6871j, 5.1254827.2355j, 

2.8905421.9192j

H0 

n = 13, td = 0.5358 ns, M = 11, N = 16 

zi 
6.9415964.7165j, 9.3910047.8593j, 8.3822635.1047j, 

19.0888j, 7.52255, 7.52255, 0
=67.1% 
λ=99.83% pk 

3.5152763.7467j, 4.6287156.9629j, 5.1458650.3286j, 
5.9407443.0729j, 5.6207935.7032j, 4.8971228.7284j, 

3.1667523.1703j, 0.6610819.6254j
H0 71725.6
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Figure 6.12 Desired impulse responses of pulse shapers forming flat-spectrum 
Gaussian pulses and their approximations obtained for n = 5, N = 12 
and M = 9 (top left), n = 9, N = 14 and M = 9 (top right), n = 13, N = 16 
and M = 9 (bottom left), together with power spectral densities of 
approximated pulses (bottom right). All pulse shapers are compliant 
with FCC indoor mask. 
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Figure 6.13 Desired impulse responses of pulse shapers forming flat-spectrum 
Gaussian pulses and their approximations obtained for n = 5, N = 12 
and M = 7 (top left), n = 9, N = 14 and M = 9 (top right), n = 13, N = 16 
and M = 11 (bottom left), together with power spectral densities of 
approximated pulses (bottom right). All pulse shapers are compliant 
with FCC outdoor mask. 
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7. CONCLUSION 

Two methods for the design of spectrally and energy efficient UWB pulses were 

developed. Both methods are based on shaping the pulses' magnitude spectra. In such shaping, 

the research has explored new analytical techniques which ensure the filling of the desired 

spectral mask in a spectrally efficient way, while maintaining a high energy concentration. 

Furthermore, to obtain the corresponding pulse shaping filters, the rational transfer functions 

which efficiently approximate ideal pulses were proposed. More specifically, three 

contributions have been made. 

First, a simple method for the design of UWB pulses based on sharpening technique was 

developed. In this method, the spectral properties of Gaussian derivatives were significantly 

improved by polynomial sharpening of their magnitude spectra. To obtain the pulses with good 

frequency and time localization, the spectrum flatness was introduced as a sharpening criterion. 

The method supports arbitrary UWB masks. Considering the FCC masks, the obtained 

waveforms outperform the spectral efficiency of other Gaussian-based pulses, while retaining 

high energy concentration. 

In the scope of second contribution, polynomial weighting of the Gaussian pulse was 

exploited to develop a method for the waveform design. In this method, maximum flatness was 

introduced as a spectrum shaping criterion, thus resulting in the pulses with very high time and 

frequency localization. The presented shaping relies on frequency shift and bandwidth scaling. 

Such an approach allows very efficient filling of a given spectral mask. Considering the FCC 

masks, the obtained spectral shapes significantly outperform state-of-the-art pulses, while 

maintaining a high energy concentration. 

Finally, the transfer functions whose impulse responses efficiently approximate the ideal 

UWB pulses and comply the FCC spectral masks were investigated. In their synthesis, the zero-

pole-gain model was used because it describes the impulse response simply. The transfer 

functions were obtained by minimizing the mean squared error in the time domain, where 

special attention was paid to maintaining a high spectral efficiency. 

 



8. REFERENCES 

102 

8. REFERENCES 

[1] Ghavami, M., Michael, L. B., Kohno, R., "Ultra wideband signals and systems in 
communication engineering", Second edition, John Wiley & Sons Ltd, 2007. 

[2] Oppermann, I. J., Hämäläinen, M., Iinatti. J. H., "UWB Theory and Applications", John 
Wiley & Sons Ltd, 2005. 

[3] "Signaling of the New York City Subway", available on 
https://en.wikipedia.org/wiki/Signaling_of_the_New_York_City_Subway (2023., 
November 2nd). 

[4] "Ultra Wideband security in iOS", available on 
https://support.apple.com/guide/security/ultra-wideband-security-sec1e6108efd/web 
(2021., February 18th). 

[5] “What’s the deal with Ultra Wideband?”, available on 
https://www.bmw.com/en/innovation/bmw-digital-key-plus-ultra-wideband.html (2021., 
March 11th). 

[6] FCC 02-48, "FCC first report and order: Revision of part 15 of the Commission’s rules 
regarding ultra-wideband transmission systems", February 2002. 

[7] ECC/DEC/(06)04, "Electronic Communications Committee (2006) ECC Decision of 24 
March 2006 on the harmonic conditions for devices using ultra-wideband (UWB) 
technology in bands below 10.6 GHz", amended July 2007., amended December 2011. 

[8] Association of Radio Industries and Businesses (2015) UWB (Ultra-Wideband) radio 
systems. STD-T91, Version 2.0, English translation, March 2015. 

[9] Hu, B., Beaulieu, N. C., "Pulse shapes for ultrawideband communication systems", IEEE 
Transactions on Wireless Communications, Vol. 4, No. 4, July 2005., pp. 1789–1797. 

[10] Zhu, Y., Zuegel, J. D., Marciante, J. R., Wu, H., "Distributed waveform generator: a new 
circuit technique for UWB pulse generation, shaping and modulation", IEEE Journal of 
Solid-State Circuits, Vol. 44, No. 3, March 2009., pp. 808–823. 

[11] Haddad, S. A. P., Verwaal, N., Houben, R., Serdijn, W. A., "Optimized dynamic 
translinear implementation of the Gaussian wavelet transform", Proceedings of the IEEE 
International Symposium on Circuits and Systems, Vancouver, Canada, May 2004., pp. 
145–148. 

[12] Shamsa, Y., Serdijn, W. A., "A 21pJ/pulse FCC compliant UWB pulse generator", 
Proceedings of the IEEE International Symposium on Circuits and Systems, Paris, France, 
May/June 2010., pp. 497–500. 



8. REFERENCES 

103 

[13] Neves, L. C., de Araujo, G. M., da Costa, J. C., Haddad, S. A. P., "Design of a PSWF 
impulse response filter for UWB systems", Proceedings of the IEEE International 
Symposium on Circuits and Systems, Seoul, Korea, May 2012., pp. 1935–1938. 

[14] Mirshafiei, M., Abtahi, M., Rusch, L. A., "Ultra-wideband pulse shaping: bypassing the 
inherent limitations of the Gaussian monocycle", IET Communications, Vol. 6, No. 9, 
June 2012., pp. 1068–1074. 

[15] Bagga, S., Vorobyov, A. V., Haddad, S. A. P., Yarovoy, A. G., Serdijn, W. A., Long, J. 
R., "Codesign of an impulse generator and miniaturized antennas for IR-UWB", IEEE 
Transactions on Microwave Theory and Techiques, Vol. 54, No. 4, April 2006., pp. 1656–
1666. 

[16] Sheng, H., Orlik, P., Haimovich, A. M., Cimini Jr., L. J., Zhang, J., "On the spectral and 
power requirements for ultra-wideband transmission", Proceedings of the IEEE 
International Conference on Communications, Anchorage, Alaska, USA, May 2003., pp. 
738–742. 

[17] Ghavami, M., Michael, L. B., Haruyama, S., and Kohno, R., "A novel UWB pulse shape 
modulation system", Wireless Personal Communications, Vol. 23, October 2002., pp. 
105–120. 

[18] Parr, B., Cho, B., Wallace, K., Ding, Z., "A novel ultrawideband pulse design algorithm", 
IEEE Communications Letters, Vol. 7, No. 5, May 2003., pp. 219–221. 

[19] Ghavami, M., Amini, A., and Marvasti, F., "Unified structure of basic UWB waveforms", 
IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 55, No. 12, December 
2008., pp. 1304–1308. 

[20] Beaulieu, N. C., Hu, B., "On determining a best pulse shape for multiple access ultra-
wideband communication systems", IEEE Transactions on Wireless Communications, 
Vol. 7, No. 9, September 2008., pp. 3589–3596. 

[21] Sharma, S., Bhatia, V., "UWB pulse design using constraint convex sets method", 
International Journal of Communication Systems, Vol. 30, No. 14, September 2017., 
e3290. 

[22] Zaki, A., Ommar, M., Yousry, I., "A novel doublet hermite pulse for performance 
enhancement and interference mitigation in UWB STC systems", 2017 Progress in 
Electromagnetics Research Symposium - Fall (PIERS - FALL), Singapore, November 
2017., pp. 2715-2721. 

[23] Kim, S., Kim, Y., Li, X., Kang, J., "Orthogonal pulse design in consideration of FCC and 
IEEE 802.15.4a constraints", IEEE Communications Letters, Vol. 17, No. 5, May 2013., 
pp. 896–899. 

[24] Sharma, A., Sharma, S. K., "Spectral efficient pulse shape design for UWB 
communication with reduced ringing effect and performance evaluation for IEEE 
802.15.4a channel", Wireless Networks, Vol. 25, April 2019., pp. 2723–2740. 



8. REFERENCES 

104 

[25] Yin, L., Hongbo, Z., “UWB pulse design using the approximate prolate spheroidal wave 
functions,” Proceedings of the International Symposium on Microwave, Antenna, 
Propagation and EMC Technologies for Wireless Communications, Beijing, Vol. 1, 
August 2005., pp. 450–453. 

[26] Amini, A., Esfahani, P. M., Ghavami, M., Marvasti, F., "UWB orthogonal pulse design 
using Sturm-Liouville boundary value problem", Signal Processing, Vol. 159, June 
2019., pp. 147–158. 

[27] Beaulieu, N. C., Hu, B., "A pulse design paradigm for ultra-wideband communication 
systems", IEEE Transactions on Wireless Communications, Vol. 5, No. 6, June 2006., 
pp. 1274–1278. 

[28] Vauche, R., Bourdel, S., Dehaese, N., Fourquin, O., Gaubert, J., "Fully tunable UWB 
pulse generator with zero DC power consumption", Proceedings of the IEEE 
International Conference on Ultra-Wideband, Vancouver, Canada, September 2009, pp. 
418–422. 

[29] Popa, A., Alexandru, N. D., "Waveform and CMOS generator for a pulse designated for 
UWB European band 6–8.5 GHz", Proceedings of the International Symposium on 
Signals, Circuits and Systems, Iasi, Romania, July 2015, pp. 1–4. 

[30] Pohoata, S., Popa, A., Alexandru, N. D., "Approximation of the third derivative of the 
Gaussian pulse", Proceedings of the International Symposium on Signals, Circuits and 
Systems, Iasi, Romania, July 2011, pp. 1–4. 

[31] Taki, H., Abou-Rjeily, C., "On enhancing the transmission efficiency of modulated UWB 
signals under different emission standards", Annals of Telecommunications, Vol. 77, June 
2022., pp. 847–865. 

[32] Bai, Z., Liu, J., Chen, H.-H., "Design of ultra-wideband pulses based on spectrum shifted 
Gaussian waveforms", IET Communications., Vol. 7, No. 6, April 2013., pp. 512–520. 

[33] Lu, G., Spasojevic, P., Greenstein, L., "Antenna and pulse designs for meeting UWB 
spectrum density requirements", IEEE Conference on Ultra Wideband Systems and 
Technologies, Reston, VA, USA, November 2003., pp. 162–166 

[34] Taki, H., Abou-Rjeily, C., "Spectrally efficient IR-UWB pulse designs based on linear 
combinations of Gaussian derivatives", Telecommunication Systems, Vol. 81, August 
2022., pp. 269–288. 

[35] Silva, J. A., Campos, M. L., "Spectrally efficient UWB pulse shaping with application in 
orthogonal PSM", IEEE Transactions on Communications, Vol. 55, No. 2, February 
2007., pp. 313–322. 

[36] Yin, Z., Wu, M., Wu, S., Wu, Z., Chen, Y., "IA-OPD: An optimized orthogonal pulse 
design scheme for waveform division multiple access UWB systems", IEEE Systems 
Journal, Vol. 13, No. 3, September 2019., pp. 2386–2395. 

[37] Akansu, A. N., Serdijn, W. A., Selesnick, I. W., "Emerging applications of wavelets: A 
review, " Physical Communication, Vol. 3, No. 1, March 2010., pp. 1–18. 



8. REFERENCES 

105 

[38] Rodrigues, J., Menon M. K, D., Lonappan, L., Gudino, L. J., "Spectral Efficient Pulse 
Shaping for Impulse Radio Ultra Wideband Communications", Helix, Vol. 10, No. 02, 
April 2020., pp. 226-231. 

[39] Miao, G. J., Clements, M. A., "Digital shaped Gaussian monocyles in ultra wideband 
communications", United States Patent Application Publication, US 2004/0086001 A1, 
May 2004. 

[40] Luo, X., Yang, L., Giannakis, G. B., "Designing optimal pulse-shapers for ultra-wideband 
radios, " Journal of Communications and Networks, Vol. 5, No. 4, December 2003., pp. 
344–353. 

[41] Wu, X., Tian, Z., Davidson, T. N., Giannakis, G. B., "Optimal waveform design for UWB 
radios", IEEE Transactions on Signal Processing, Vol. 54, No. 6, June 2006., pp. 2009–
2021. 

[42] Gradshteyn, I. S., Ryzhik, I. M., "Table of Integrals, Series, and Products", Elsevier, 2007. 

[43] Martens, J.-B., "The Hermite transform - theory", IEEE Transactions on Acoustics, 
Speech, and Signal Processing, Vol. 38, No. 9, September 1990., pp. 1595–1606. 

[44] Di Benedetto, M. G., Vojcic, B., "Ultra-wideband wireless communications: A Tutorial", 
Journal of Communications and Networks, Vol. 5, No. 4, December 2003., pp. 290–302. 

[45] Slepian, D., Pollak, H. O., "Prolate spheroidal wave functions, Fourier analysis, and 
uncertainty-I", The Bell System Techical Journal, Vol. 40, No. 1, January 1961., pp. 43–
46. 

[46] Hayes, M. H., "Statistical Digital Signal Processing and Modeling", Wiley, New York, 
1996. 

[47] MATLAB, version 9.7.0 (R2019b), The MathWorks Inc, Natick, Massachusetts, USA 
2019. 

[48] Molnar, G., Milos, A., Vucic, M., "Sharpened Gaussian Derivatives and Their 
Application in UWB Pulse Design", 2023 International Symposium on Image and Signal 
Processing and Analysis (ISPA), Rome, Italy, September 2023., pp. 1-6. 

[49] Kaiser, J., Hamming, R., "Sharpening the response of a symmetric nonrecursive filter by 
multiple use of the same filter", IEEE Transactions on Acoustics, Speech, and Signal 
Processing, Vol. ASSP-25, No. 5, October 1977., pp. 415–422. 

[50] Hahn, S. L., “Hilbert transforms in signal processing”, Artech House, Inc., Boston, 1996. 

[51] Molnar, G., Milos, A., Vucic, M., "Closed-form approximation of Hilbert transforms of 
Gaussian derivatives based on weighted polynomial fitting". Proceedings of the IEEE 
International Convention MIPRO, Opatija, Croatia, May 2018., pp. 117–121. 

[52] Temme, N. M. "Error Functions, Dawson's and Fresnel Integrals", in NIST Handbook of 
Mathematical Functions, Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; 
Clark, Charles W. (eds.), Cambridge University Press, 2010. 



8. REFERENCES 

106 

[53] Milos, A., Molnar, G., Vucic, M., "Spectrally Efficient UWB Pulse Shaping Based on 
Polynomially Weighted Gaussian Pulses with Maximally Flat Amplitude Spectra," IEEE 
Communications Letters, Vol. 27, No. 7, July 2023., pp. 1869-1873. 

[54] Daubechies, I., "Ten Lectures on Wavelets", SIAM, Philadelphia, PA, USA, 1992. 

[55] Haykin, S., "Digital Communication Systems", Wiley, Hoboken, NJ, USA, 2014. 

[56] Vucic, M., Molnar, G., "Time-domain synthesis of continuous-time systems based on 
second-order cone programming", IEEE Transactions on Circuits and Systems I: Regular 
Papers, Vol. 55, No. 10, November 2008., pp. 3110–3118. 

[57] Vucic, M., Molnar, G., "Measure for phase linearity based on symmetry of time-domain 
response", IET Electronics Letters, Vol. 39, No. 19, September 2003., pp. 1425–1426. 

[58] Vucic, M., Babic, H., "A class of systems with symmetric impulse response", 
Proceedings of the IEEE International Symposium on Circuits and Systems, Monterey, 
CA, USA, Vol. 3, May/June 1998., pp. 485–488. 

[59] Milos, A., Molnar, G., Vucic, M., "Spectral-efficient UWB pulse shapers generating 
Gaussian and modified Hermitian monocycles", Proceedings of the IEEE International 
Convention MIPRO, Opatija, Croatia, May 2017., pp. 121–126. 

[60] Molnar, G., Miloš, A., Vučić, M., "Prolate-spheroidal UWB pulse shapers with highly 
orthogonal impulse responses", Proceedings of the 10th International Symposium on 
Image and Signal Processing and Analysis (ISPA), Ljubljana, Slovenia, September 2017., 
pp. 171–176. 

 



BIOGRAPHY 

107 

Biography 

Ante Miloš was born in 1989 in Mostar, Republic of Bosnia and Herzegovina. He 

received the master’s degree in electrical engineering and information technology from the 

University of Zagreb Faculty of Electrical Engineering and Computing, Zagreb, Croatia, in 

2013. In 2016 he enrolled in the Doctoral study at the same faculty in the field of pulse-shaping 

techniques and filter design for ultra-wideband impulse radio. After the Master study, he has 

been employed in the Research and Development Centre of Ericsson Nikola Tesla d.d. in 

Zagreb, where he works as a Software/Hardware Developer in the Radio Development Unit. In 

the unit, he is also a member of the Scientific Radio group, where he participates in various 

research activities of the project Improvements for LTE Radio Access Equipment (ILTERA) - 

an educational and research collaboration project between Ericsson Nikola Tesla d.d. and the 

Department of Electronic Systems and Information Processing of the Faculty of Electrical 

Engineering and Computing, University of Zagreb. Additionally, he participates in the project 

Efficient Signal Processing Systems for Software Defined Radio funded by Croatian Science 

Foundation. He is a member of IEEE societies on Signal Processing, Antennas and Propagation, 

and Circuits and Systems. 

Publications: 

[1] Miloš, A., Molnar, G., Vučić, M., "Spectral-efficient UWB pulse shapers generating 
Gaussian and modified Hermitian monocycles", Proceedings of 40th International 
Convention on Information and Communication Technology, Electronics and 
Microelectronics (MIPRO 2017), Opatija, Croatia, May 2017, pp. 121–126. 

[2] Molnar, G., Miloš, A., Vučić, M., "Prolate-spheroidal UWB pulse shapers with highly 
orthogonal impulse responses", Proceedings of the 10th International Symposium on Image 
and Signal Processing and Analysis (ISPA 2017), Ljubljana, Slovenia, September 2017, pp. 
171–176. 

[3] Molnar, G., Miloš, A., Vučić, M., "Closed-form approximation of Hilbert transforms of 
Gaussian derivatives based on weighted polynomial fittin", Proceedings of 41st 
International Convention on Information and Communication Technology, Electronics and 
Microelectronics (MIPRO 2018), Opatija, Croatia, May 2018, pp. 117–121. 



BIOGRAPHY 

108 

[4] Molnar, G., Miloš, A., Vučić, M., "Time-domain synthesis of pulse shapers for ultra-
wideband impulse radio", Abstract Book of Third International Workshop on Data Science 
(IWDS), Zagreb, Croatia, October 2018, pp. 1415. 

[5] Milos, A., Molnar, G., Vucic, M., "Spectrally efficient UWB pulse shaping based on 
polynomially weighted Gaussian pulses with maximally flat amplitude spectra," IEEE 
Communications Letters, Vol. 27, No. 7, July 2023, pp. 18691873. 

[6] Molnar, G., Milos, A., Vucic, M., "Sharpened Gaussian derivatives and their application in 
UWB pulse design", 2023 International Symposium on Image and Signal Processing and 
Analysis (ISPA 2023), Rome, Italy, September 2023, pp. 16. 

 



ŽIVOTOPIS 

109 

Životopis 

Ante Miloš rođen je 1989. godine u Mostaru, Republika Bosna i Hercegovina. 

Diplomirao je 2013. godine elektrotehniku i informacijsku tehnologiju na Sveučilištu u 

Zagrebu, Fakultet elektrotehnike i računarstva. Godine 2016., upisao je doktorski studij na 

istom fakultetu u području dizajna pulsova i filtara za ultra-širokopojasne impulsne radio 

sustave. Nakon magistarskog studija zaposlio se kao razvojni programer u kompaniji Ericsson 

Nikola Tesla d. d., Centar za istraživanje i razvoj, Jedinica za razvoj radija u Zagrebu. U jedinici 

je član znanstvene radio skupine, gdje sudjeluje u istraživačkim aktivnostima projekta 

Improvements for LTE Radio Access Equipment (ILTERA) - obrazovano-istraživački 

kolaboracijski projekt između kompanije Ericsson Nikola Tesla d. d. i Zavoda za elektroničke 

sustave i obradu informacija na Fakulteta elektrotehnike i računarstva, Sveučilište u Zagrebu. 

Također sudjeluje u projektu Učinkoviti sustavi za obradu signala namijenjeni programski 

definiranom radiju, financiran od strane Hrvatske Zaklade za Znanost, HRZZ IP-2019-04-4189. 

Član je IEEE društava za Obradu Signala, Antene i Rasprostiranje Elektromagnetskih Valova i 

Električne Krugove i Sustave. 


