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Summary 

 

The area of research is related to the issue of including personalized health data collected via 

the Internet of Medical Things (IoMT) devices, such as personal tracking devices, into the 

Electronic Health Record (EHR) that today constitutes part of the central health information 

systems of most European countries. 

In order for the collected data to be used in EHR, it is necessary to guarantee its quality and 

inviolability. Therefore, data cleaning and processing is necessary. As part of the scientific 

work, a comparison of different models of health data cleaning has been performed. A method 

for optimizing selected models of data cleaning and data transformation with the aim of 

improving accuracy and precision has been proposed. 

Furthermore, data compliance with existing standards and regulations must be ensured, which 

has been achieved by defining semantic constraints and validation processes via a schematron, 

a structural schema expressed in XML.  

Finally, these components were integrated as modules into a central health system model that 

would allow the use of IoMT data in EHR. 

 

Keywords: Internet of Medical Things, Electronic Health Records, sensors, standardization  



 
 

Model sustava za prihvat mjernih podataka nosivih pametnih 

uređaja u središnji zdravstveni informacijski sustav  

 

Senzori su izvediv i praktičan način za nenametljivo i kontinuirano praćenje vitalnih znakova. 

Dakle, korištenje senzora u medicinskom području potencijalno može pružiti značajnu pomoć 

u pronalaženju uzroka bolesti ili postavljanju dijagnoze u složenim slučajevima. Potencijal 

korištenja zdravstvenih podataka prikupljenih od strane korisnika je ogroman, što ga čini 

paradigmom koja obećava poboljšanje zdravlja i dobrobiti ljudi. Nosivi senzori su sveprisutni 

jer se mogu integrirati u ručni sat, narukvicu, ljepljivu traku ili odjeću. Ovi senzori prikupljaju 

osobne zdravstvene podatke, kao što su broj otkucaja srca, krvni tlak, tjelesna aktivnost i 

kretanje tijela, temperatura, brzina disanja i zasićenost kisikom. Opseg i raznolikost 

zdravstvenih podataka doživljavaju eksponencijalni rast s usvajanjem elektroničkih 

zdravstvenih zapisa, medicinskih nosivih uređaja i osobnih uređaja za praćenje; posljedično, 

korištenje ovih podataka do njihovog punog potencijala dalo bi nam bolje razumijevanje i 

olakšalo optimalne kliničke odluke. Ove bi informacije bile od iznimne pomoći zdravstvenim 

djelatnicima jer bi im kontinuirano pružale vitalan, dubinski uvid u stanje pacijenata, 

omogućujući poboljšani, individualiziraniji pristup njezi pacijenata. Nadalje, takva promjena 

perspektive na više proaktivne, umjesto reaktivne medicinske usluge može dovesti do ukupnog 

pada troškova javnog zdravstva. Cilj studije bio je istražiti bežične senzore u kontekstu Interneta 

stvari s ciljem predstavljanja modela rješenja za njihovu upotrebu u javnom zdravstvenom 

sustavu. 

 

Poglavlje 2 zadire u svijet elektroničkih zdravstvenih zapisa (EHR), počevši s opsežnom 

definicijom. EHR sadrži pacijentovu medicinsku povijest, uključujući prethodne medicinske 

probleme, susrete i tretmane, alergije, imunizacije, vitalne znakove, laboratorijska izvješća te 

radiološke i dijagnostičke slike, sve u digitalnom obliku. Budući da mu je svrha pružanje njege 

pacijentu u više zdravstvenih organizacija, nije u vlasništvu niti jednog subjekta. Stoga mora 

biti sposoban integrirati podatke iz međusobno neovisnih zdravstvenih sustava i omogućiti 

njihovu interoperabilnost. Ovo poglavlje istražuje koncept osobnih zdravstvenih kartona (PHR) 

i prati povijesni razvoj EHR-a. U poglavlju se raspravlja o različitim primjenama i budućem 

potencijalu EHR-a, naglašavajući njegov značajan utjecaj tijekom pandemije COVID-19. Dalje 

zadire u ključne standarde i propise koji reguliraju EHR, s fokusom na HL7 FHIR i openEHR. 



 
 

Poglavlje zaključuje ispitivanjem specifičnog konteksta elektroničkih zdravstvenih kartona u 

Hrvatskoj i pregledom opće arhitekture sustava EHR-a. 

 

Treće poglavlje istražuje područje senzora i prikupljanje podataka u kontekstu zdravstvene 

skrbi. Započinje proučavanjem karakteristika senzora, uključujući detaljnu raspravu o 

klasifikaciji pogrešaka i važnosti kalibracije senzora. Poglavlje zatim prebacuje fokus na ulogu 

bežičnih senzorskih mreža u zdravstvu, naglašavajući njihov značaj u modernim zdravstvenim 

sustavima. Značajan dio poglavlja posvećen je nosivim uređajima za praćenje aktivnosti, 

ističući njihovu rastuću prevalenciju i utjecaj na zdravstvenu skrb. Rasprava se proširuje na 

kvalitetu podataka (QOD) koju generiraju ovi uređaji za praćenje aktivnosti, bacajući svjetlo 

na pouzdanost i točnost prikupljenih informacija. Sveukupno, Poglavlje 3 pruža sveobuhvatno 

ispitivanje tehnologije senzora, bežičnih mreža i nosivih uređaja za praćenje, naglašavajući 

njihovu ključnu ulogu u krajoliku prikupljanja podataka u domeni zdravstvene skrbi. 

 

U idućem poglavlju, fokus se pomiče na razvoj modela sustava za čišćenje i transformaciju 

podataka u kontekstu zdravstvene skrbi. Poglavlje počinje istraživanjem modela vođenih 

podacima posebno dizajniranih za čišćenje podataka senzora eHealtha. Ulazi u zamršenost ovih 

modela, naglašavajući njihovu primjenu u poboljšanju kvalitete i pouzdanosti zdravstvenih 

podataka. Značajan dio poglavlja posvećen je praktičnom slučaju korištenja EKG signala, pri 

čemu se uspoređuju različiti modeli. Ova komparativna analiza služi za isticanje prednosti i 

slabosti različitih pristupa u radu s određenim vrstama zdravstvenih podataka. Poglavlje zatim 

proširuje svoje istraživanje na poboljšanja modela, posebno u području algoritama klasifikacije, 

prikazujući načine za poboljšanje učinkovitosti i točnosti procesa čišćenja i transformacije 

podataka. U sklopu znanstvenog rada napravljena je usporedba različitih modela čišćenja 

zdravstvenih podataka. Predložena je metoda optimizacije odabranih modela čišćenja podataka 

te transformacije podataka s ciljem poboljšanja točnosti i preciznosti. Čišćenje podataka ima za 

cilj kako otkriti i ukloniti pogreške u podacima koje potječu iz početnih podataka. Tehnike 

čišćenja podataka glavni su fokus nastojanja da se riješi problem čišćenja podataka u velikim 

WSN-ovima. Pronalaženje visokoučinkovitog modela predviđanja je neophodno jer korištenje 

modela predviđanja u medicinskoj skrbi zahtijeva veliku preciznost. Brojni modeli uzeti su u 

obzir, uključujući strojeve potpornih vektora, stabla odlučivanja, slučajne šume i višestruku 

linearnu regresiju te neuronske mreže. Skup podataka koji se koristi je skup podataka otvorenog 

pristupa MHEALTH (Mobile HEALTH). Skup podataka MHEALTH sadrži snimke kretanja 

tijela i vitalnih znakova za deset volontera različitih profila (spol, dob i različita razina fizičke 



 
 

spremnosti) tijekom bavljenja različitim fizičkim aktivnostima. Sudionikova prsa, desni zglob 

i lijevi gležanj bili su opremljeni senzorima koji bilježe ubrzanje, brzinu okretanja i orijentaciju 

magnetskog polja različitih dijelova tijela. Senzor, koji se nalazi na prsima, generira očitanja 

EKG-a u 2 odvoda, koja se mogu koristiti za rutinsko praćenje rada srca, probir različitih 

aritmija ili ispitivanje utjecaja tjelesne aktivnosti na EKG. Za sve senzorske modalitete koristi 

se frekvencija uzorkovanja od 50 Hz, što se smatra dovoljnim za bilježenje ljudske aktivnosti. 

Utvrđeno je da se ovaj skup podataka generalizira na uobičajene dnevne aktivnosti. (npr. trčanje 

naspram stajanja). U podacima jednog od rezultata, 10% podataka je odbačeno, a vrijednosti 

koje nedostaju izračunate su pomoću statističkih tehnika i tehnika strojnog učenja kako bi se 

usporedila kvaliteta izračuna različitih modela vođenih podacima. Procijenjene vrijednosti se 

zatim uspoređuju sa stvarnim vrijednostima, a modeli se procjenjuju suprotstavljanjem 

izračunatih pogrešaka. Pogreške se razlikuju među subjektima, a višestruka linearna regresija i 

neuronske mreže dosljedno su nadmašivale sve ostale metode. Kao rezultat toga, odlučeno je 

koristiti te tehnike za daljnje usavršavanje modela. Metoda koristi stabla odlučivanja i slučajne 

šume za otkrivanje segmenata skupa podataka gdje zapisi unutar segmenta imaju veću sličnost 

i korelacije atributa kako bi se poboljšali rezultati imputacije. Podaci koji nedostaju zatim se 

imputiraju korištenjem korelacije i sličnosti. Ova se metoda može koristiti za širok raspon 

podataka, a kao rezultat toga, ima brojne potencijalne upotrebe. Pretpostavljajući da postoji 

veća korelacija u dijelovima koji su odvojeni tjelesnim aktivnostima kojima se bavite (kao što 

je nepomično sjedenje, hodanje ili trčanje), što odražava utvrđeni odnos između tjelesne 

aktivnosti i srčane aktivnosti. Ovi se podaci ručno unose u MHEALTH skup podataka monitora. 

Međutim, ako je vrlo precizna kategorizacija segmenta podataka izvediva, ona bi se mogla 

koristiti za bilo koji usporedivi skup podataka o m-zdravlju. Osim toga, budući da mnogi 

zdravstveni podaci potječu od pametnih narukvica ili pametnih satova, izračuni koji slijede 

koncentriraju se na podatke sa senzora koji se nalaze na desnom zapešću, i žiroskop i ubrzanje. 

Posljednji korak je podjela skupa podataka na dijelove na temelju aktivnosti kategoriziranih u 

prethodnoj fazi. Hodanje i drugi lagani pokreti smatraju se laganom aktivnošću, dok se 

nepomično sjedenje i stajanje smatraju neaktivnim. Trčanje, trčanje ili vježbanje je srednja 

aktivnost. Imputacija se zatim još jednom provodi, ovaj put s višestrukom linearnom regresijom 

i neuronskim mrežama. 

Iako su rezultati dosljedni u svim kategorijama, točnost se povećala za ukupno 10% do 17%. U 

konačnici, rezultati nude zadovoljavajuću razinu točnosti klasifikacije i obećavaju njihovu 

primjenu u imputiranju podataka senzora. Neki od problema uključuju nedosljednosti u izvedbi 



 
 

između laboratorija i okruženja slobodnog života, varijacije u somatotipu i sportskim navikama, 

koje imaju značajan utjecaj na rezultate imputacije i klasifikacije. 

 

Poglavlje 5 zaranja u kritične aspekte specifikacije ograničenja semantičkih podataka i 

validaciju podataka u kontekstu zdravstvene skrbi. Poglavlje počinje prikazom materijala i 

metoda koji su korišteni, uključujući detaljnu raspravu o procesu prikupljanja podataka. Baca 

svjetlo na zamršenost analiziranja, provjere i potvrđivanja zdravstvenih podataka, naglašavajući 

važnost tih procesa u osiguravanju točnosti i pouzdanosti informacija. Ključna komponenta 5. 

poglavlja je istraživanje studije slučaja korištenja koja služi kao mehanizam verifikacije 

procesa. Rezultati ove studije detaljno su predstavljeni, usredotočujući se na specifične 

zdravstvene pokazatelje kao što su otkucaji srca, tjelesna temperatura i zasićenost kisikom. Ovo 

poglavlje pruža sveobuhvatnu analizu ishoda validacije, nudeći uvid u učinkovitost 

implementiranih procesa. Nadalje, Poglavlje 5 uvodi integraciju ovih validiranih podataka u 

postojeće zdravstvene informacijske sustave (HIS), pružajući pregled konceptualnog modela 

implementacije. Ovaj konceptualni okvir ocrtava besprijekornu asimilaciju validiranih 

zdravstvenih podataka, poboljšavajući ukupnu učinkovitost i pouzdanost upravljanja 

zdravstvenim informacijama. Personalizirani zdravstveni podaci, kao što su vitalni znakovi, 

prikupljeni kontinuirano i nenametljivo, potencijalno bi liječnicima mogli pružiti značajnu 

pomoć u praćenju ili postavljanju dijagnoze pacijenta. U ovom istraživanju korištena su dva 

skupa podataka: 

● Skup podataka PMData dostupan je putem Simula Open Datasets, 

● OxyBeat skup podataka prikupljen u svrhu ove studije kako bi se osigurao robusniji 

scenarij slučaja upotrebe dodavanjem brojnih dodatnih tipova podataka, s naglaskom na 

tipove podataka relevantne za COVID (tjelesna temperatura i zasićenost kisikom). 

Oba skupa podataka prikupljena su pomoću uređaja za praćenje aktivnosti Fitbit Versa, tj. 

uređaja opremljenih senzorima koji se koriste za praćenje metrike povezane s fitnessom i 

zdravljem. Iako postoje mnogi čimbenici koji mogu utjecati na kvalitetu podataka, dva skupa 

podataka koji su korišteni prikupljeni su istim modelom nosivog uređaja i stoga su u velikoj 

mjeri usporedivi. Kopiranje podataka, identificiranje oštećenih podataka, tretiranje oštećenih 

podataka kao podataka koji nedostaju, imputiranje svih podataka koji nedostaju, a zatim izrada 

novog skupa podataka, sve su to koraci u procesu čišćenja podataka. U ovom slučaju, 

podatkovne točke s pouzdanošću jednakom 0 bile su one odabrane za imputaciju. Kao rezultat 

toga, pročišćeni podaci uključuju imputirane vrijednosti za podatkovne točke s razinom 

pouzdanosti nula, kao i izvorne vrijednosti za one s razinama pouzdanosti 1-3. Zatim se pomoću 



 
 

provjere temeljene na Schematronu čisti podaci analiziraju i ispituju. Schematron je strukturna 

shema, jezik provjere valjanosti temeljen na pravilima i izražen u Extensible Markup Language 

(XML). Često se koristi za donošenje tvrdnji o prisutnosti ili odsutnosti specifičnih uzoraka u 

XML stablima i ima mogućnost stvaranja ograničenja na način na koji drugi jezici XML sheme, 

kao što su XML shema i definicija tipa dokumenta (eng. Document Type Definition, DTD), ne 

mogu. Provjera valjanosti sheme bila je jedina metoda provjere valjanosti koja se prvobitno 

koristila za XML dokumente. Ovo znači da se XML dokument smatra valjanim ako je 

zadovoljio provjeru valjanosti sheme. Iako osigurava ispravnu strukturu dokumenta, provjera 

valjanosti sheme ne može provjeriti uvjete i kriterije integriteta. Predloženi postupak za ovjeru 

osobnih zdravstvenih dokumenata provjeravao bi strukturu dokumenta prije ovjere sadržaja i 

karakteristika dokumenta. Konačno, potrebno je potvrditi sva dodatna ograničenja koja bi 

mogla dodatno postojati. Razvijena je nova generacija okvira standarda za razmjenu podataka 

iz elektroničkih zdravstvenih zapisa (EHR), nazvana specifikacija HL7 Fast Healthcare 

Interoperability Resources (FHIR). Ne postoji niti jedna globalna ontologija koja bi olakšala 

prijenos zdravstvenih podataka bilo koje vrste u široko korišteni standard HL7 FHIR, 

omogućujući interoperabilnost i poboljšavajući kvalitetu skrbi za pacijente i istraživanja, unatoč 

činjenici da su medicinski standardi razvijeni i prihvaćeni globalno (npr. , HL7 FHIR). Sheme 

će se stoga koristiti za specificiranje strukture zdravstvenih podataka i jamčenje standardizacije, 

što je bitno za uključivanje u službene EHR sustave. Potrebna je provjera i validacija podataka 

prije nego što se oni mogu uključiti u EHR. Proces je korišten za modeliranje procesa provjere 

valjanosti koji je osiguravao pridržavanje podataka propisima i standardima. To je postignuto: 

● Definiranjem semantičkih ograničenja za tipove zdravstvenih podataka kako bi se 

zajamčilo pridržavanje standarda i propisa čineći informacije valjanima i relevantnima 

s medicinskog stajališta  

● Definiranjem i modeliranje procedure za validaciju dobivenih podataka kako bi se mogli 

lako prenijeti i uključiti u službeni EHR. Naposljetku, ova je metodologija testirana u 

studiji slučaja korištenja uz korištenje postojećeg skupa podataka koji je sadržavao 

različite relevantne tipove podataka. 

Dodatno, predložen je konceptualni pregled modela implementacije za integraciju u postojeći 

HIS. Za potrebe korištenja osobnih zdravstvenih podataka u individualiziranoj i preventivnoj 

zdravstvenoj zaštiti ključno je poštivanje propisa i standarda. Korištenjem postupka opisanog u 

ovom radu, novoobrađeni podaci mogu se službeno dodati u EHR u skladu s IHE standardima 

i propisima za relevantne vrste podataka. Model je u skladu s vodećim industrijskim 



 
 

standardom, usmjeren je na integraciju podataka u EHR, nudi modul za čišćenje podataka i 

automatsku provjeru temeljenu na Schematronu. 

Kako bi se zajamčila usklađenost sa standardima i propisima i kako bi informacije bile 

medicinski korisne i valjane, razvijena su semantička ograničenja za tipove zdravstvenih 

podataka. Predlaže se korištenje semantičke provjere valjanosti i validacijske procedure 

temeljene na Schematronu. Podaci će se moći prenijeti i uključiti u službeni EHR zahvaljujući 

metodi provjere valjanosti navedenoj u ovom istraživanju. Metoda je naknadno potvrđena 

pomoću skupova podataka koji uključuju nekoliko vrsta podataka povezanih sa zdravljem. 

Konačno, ove su komponente integrirane kao moduli u model središnjeg zdravstvenog sustava 

koji bi omogućio upotrebu IoMT podataka u EHR-u. Za korištenje osobnih zdravstvenih 

podataka za prilagođeno i preventivno liječenje neophodna je usklađenost sa standardima. 

Korištenjem postupka opisanog u ovom radu, proizvedeni podaci mogu se dodati formalnom 

EHR-u uz pridržavanje najnovijih IHE standarda za navedene vrste podataka. Model je u skladu 

s vrhunskim industrijskim standardom, fokusiran je na integraciju podataka EHR-a, nudi modul 

za čišćenje podataka i nudi automatsku provjeru valjanosti temeljenu na Schematronu. Time je 

zaokružen koncept arhitekture sustava za integraciju podataka s nosivih pametnih uređaja 

unutar središnjeg zdravstvenog informacijskog sustava, uključujući usklađivanje i validaciju 

podataka sa svjetskim standardima i propisima koji se odnose na EHR. 

 

Poglavlje 6 posvećeno je ključnim temama sigurnosti i privatnosti u kontekstu zdravstvenih 

podataka. Poglavlje počinje istraživanjem različitih prijetnji sigurnosti i privatnosti koje su 

relevantne za zdravstvene informacijske sustave. To uključuje detaljno ispitivanje prijetnji 

povezanih s podacima pohranjenim na uređajima za praćenje i mobilnim uređajima, kao i 

potencijalne ranjivosti povezane s podacima koji se prenose bežičnim mrežama. Rasprava se 

proteže na regulatorni krajolik, baveći se propisima o podacima i standardima koji igraju 

ključnu ulogu u osiguravanju sigurnosti i privatnosti zdravstvenih informacija. Poglavlje 6 

također razmatra izazove i razmatranja vezana uz pristup podacima s poslužitelja, naglašavajući 

potrebu za snažnim sigurnosnim mjerama za zaštitu osjetljivih zdravstvenih podataka. U biti, 

poglavlje pruža sveobuhvatan pregled pitanja sigurnosti i privatnosti koja su svojstvena 

upravljanju zdravstvenim podacima, nudeći uvid u potencijalne prijetnje i regulatorne okvire 

koji usmjeravaju zaštitu osjetljivih zdravstvenih informacija. 

 

Cilj je bio omogućiti integraciju podataka prikupljenih s IoMT uređaja u elektronički 

zdravstveni karton (EHR) definiranjem modela sustava čišćenja i obrade podataka koji jamči 



 
 

ukupnu kvalitetu i nepovredivost podataka. Transformacija podataka uključuje proces zamjene 

podataka koji nedostaju ili podataka koji su okarakterizirani kao nepouzdani procijenjenim 

podacima, pri čemu se vrijednosti koje nedostaju ili nepouzdane vrijednosti izračunavaju 

pomoću statističkih metoda i metoda strojnog učenja. Postojeći modeli transformacije podataka 

su analizirani, te je definiran poboljšani model kombiniranjem klasifikacijskih i regresijskih 

algoritama kako bi se osigurala točnost i preciznost podataka. Također, određena su semantička 

ograničenja, a podaci su potvrđeni putem shematrona kako bi se osiguralo da je put digitalnih 

podataka u skladu s međunarodnim normama i propisima za EHR. Hipoteza istraživanja bila je 

da odgovarajući proces čišćenja i transformacije podataka može osigurati točnost i kvalitetu 

podataka prikupljenih s IoMT uređaja te da se transformirani podaci mogu uskladiti s 

međunarodnim normama i propisima, naime Integrating the Healthcare Enterprise (IHE) i 

Health Level 7 (HL7); i uključena u EHR. 

 

Izvorni znanstveni doprinos predloženog istraživanja je: 

● Model sustava za čišćenje i transformaciju podataka koji se temelji na kombinaciji 

odabranih klasifikacijskih i regresijskih modela i njihovoj optimizaciji čime se 

osigurava točnost prikupljenih podataka. 

● Specifikacija ograničenja semantičkih podataka i validacija podataka prikupljenih 

nosivim pametnim uređajima na temelju shematrona koji je u skladu s međunarodnim 

EHR normama i propisima definiranim Integrating the Healthcare Enterprise (IHE), kao 

i zdravstvenom razinom 7 (HL7). 

● Prijedlog modela sustava za integraciju podataka s nosivih pametnih uređaja u središnji 

zdravstveni informacijski sustav koji uključuje usklađivanje i validaciju podataka s 

međunarodnim standardima i propisima vezanim uz EHR. 

 

Ključne riječi: Internet medicinskih stvari, elektronički zdravstveni kartoni, senzori, 

standardizacija 
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1. Introduction 
 

Wireless Sensor Networks (WSN) and smart devices have been developing rapidly. Growing 

use of smart wearables and home automation devices has created numerous opportunities for 

developing novel high-quality solutions in many sectors, including eHealth. Research has 

begun on incorporating personalized health data collected through Internet of Medical Things 

(IoMT) devices [1][2], such as smartwatches or fitness bracelets, into an EHR which is a 

component of the central health information systems of many EU countries.  

Internet of Things (IoT) devices' cutting-edge monitoring capabilities, which include 

continuous tracking of individuals' vitals or Activities of Daily Living (ADLs), can have a 

favorable impact on the quality of medical care they receive. Wearable electronics with 

embedded sensors are required to continuously and in real time monitor a person's vital signs. 

Data can be collected from various sources, including different sensor types, as well as various 

manufacturers, each implementing their own proprietary data handling algorithms. The first 

task is to resolve any disparities, harmonize data, combine various data sets and merge them 

into a single, coherent aggregate. After the data have been aggregated, it must be ensured that 

all of it conforms to the same standard, regardless of its source. Lastly, an adequate data 

protection guarantee is essential given the sensitive nature of such data. One of the major 

challenges in making eHealth solutions impactful and valuable are gaining the trust of patients, 

protecting their privacy, and understanding the ramifications of possible self-diagnosing 

without the involvement of a professional. 

 

1.1. Motivation 

 

Sensors are a feasible and convenient way to unobtrusively and continuously monitor one’s 

vital signs. Thus, use of sensors in the medical field can potentially provide significant 

assistance in finding the cause of a disease or establishing a diagnosis in complex cases.  

● The potential of using user-collected health data is enormous, making it a paradigm that 

holds promise for improving people’s health and wellbeing. Wearable sensors are 

omnipresent as they can be integrated into a wristwatch, an armband, adhesive 

bandaging tape or clothes. These sensors collect personal health data, such as heart rate, 

blood pressure, physical activity and body motion, temperature, respiration rate and 

oxygen saturation. 
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● The volume and diversity of health data are experiencing exponential growth with the 

adoption of electronic health records, medical wearable devices, and personal trackers; 

consequently, utilizing this data to its full potential would give us better understanding 

and facilitate optimal clinical decisions. This information would be extremely helpful 

to health practitioners since it would continuously provide them with vital, in-depth 

insight into patients' status, enabling an improved, more individualized approach to 

patient care. 

● Furthermore, such a perspective change to a more proactive, rather than reactive medical 

service can lead to an overall decline in public health costs. The aim of the study was to 

investigate wireless sensors in the Internet of Things context with the goal to present a 

solution model for their use in a public healthcare system. 

 
 

1.2. Objective and hypotheses of the research 

 

The aim is to enable the integration of data collected from IoMT devices into the Electronic 

Health Record (EHR) by defining a model of cleaning and data processing system that 

guarantees the overall quality and inviolability of the data. Data transformation involves the 

process of replacing missing or data characterized as unreliable with estimated data, where 

missing or unreliable values are calculated by statistical and machine learning methods. 

Existing data transformation models have been analyzed, and an improved model has been 

defined by combining classification and regression algorithms to ensure data accuracy and 

precision. Also, semantic constraints have been specified, and data has been validated via a 

schematron to ensure that the digital data path is in line with international norms and regulations 

for EHR. 

The research hypothesis is that the appropriate process of data cleaning and transformation can 

ensure the accuracy and quality of data collected from IoMT devices and that the transformed 

data can be harmonized with international norms and regulations, namely Integrating the 

Healthcare Enterprise (IHE) and Health Level 7 (HL7); and included in EHR. 
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1.3. Scientific contributions 

 

The area of research is related to the issue of including personal health data which have been 

collected by wearable smart devices, such as personal tracking devices, into the EHR that today 

constitutes part of the central health information system of most European countries. In order 

for the data collected to be used in the EHR, it is necessary to guarantee their quality and 

inviolability. Therefore, data cleaning and processing is necessary. As part of the scientific 

work, a comparison of different models of health data cleaning has been made. A method for 

optimizing selected models of data cleaning and data transformation with the aim of improving 

accuracy and precision has been proposed. Furthermore, data compliance with existing 

standards and regulations must be ensured, which has been achieved by defining semantic 

constraints and validation via a schematron. A schematron is a block diagram, a rules-based 

validation language, expressed in XML.  

Finally, these components are to be integrated as modules into a central health system model 

that would allow the use of IoMT data in EHR. 

The original scientific contribution of the proposed research is: 

● System model for data cleaning and transformation based on combination of selected 

classification and regression models and their optimization which ensures accuracy of 

data collected. 

● Specification of semantic data constraints and validation of data collected by wearable 

smart devices based on a schematron that complies with international EHR norms and 

regulations defined by Integrating the Healthcare Enterprise (IHE), as well as Health 

Level 7 (HL7). 

● Proposal of a system model for the integration of data from wearable smart devices 

within the central health information system, which involves harmonization and 

validation of data with international standards and regulations related to the EHR. 

 

The following chapter gives an overview of Electronic Health Record; its definition, history, 

application and future potential, as well as applicable standards and regulations. Overview of 

Croatian implementation of EHR is also given. Third chapter provides relevant information 

regarding sensors and its use in healthcare, and wearable activity trackers specifically. Fourth 

chapter describes a system model for data cleaning and transformation, devised by comparing 

and optimizing data-driven models with use-case on ECG signals. Fifth chapter presents 
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specification of semantic data constraints and validation of data using the described process for 

parsing, verifying, and validating the data on the dataset collected for this purpose by a wearable 

activity tracker. Security and privacy concerns are explained in the sixth chapter. Finally, 

conclusions are given.   
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2. Electronic Health Record (EHR) 
 

2.1. Definition 

 

Information Technology has become ubiquitous in healthcare, as many healthcare providers 

switch from paper medical charts and documents to IT solutions in order to simplify 

administration, improve management of medical records and, ultimately, optimize the provided 

medical care [24]. The need for improved and more efficient healthcare is increasing, as a result 

of increase and aging of the population, pandemics, and complex health issues. Thus, Electronic 

Health Record (EHR) would provide complete patient's information which would be readily 

available across multiple healthcare organizations. 

EHR is defined by ISO Technical Report (ISO/TR) 20514 as “A repository of information 

regarding the health of a subject of care in computer processable form, stored and transmitted 

securely, and accessible by multiple authorized users. It has a standardized information model, 

which is independent of EHR systems. Its primary purpose is the support of continuing efficient 

and quality integrated healthcare and it contains information, which is retrospective, concurrent, 

and prospective”. 

EHR contains, patient’s medical history, including previous medical issues, encounters, and 

treatments, allergies, immunizations, vital signs, laboratory reports and radiology and 

diagnostic imaging, all in a digital form. As its purpose is to provide care to a patient across 

multiple healthcare organizations, it is not owned by any single entity. Hence, it must be capable 

of integrating data from mutually independent healthcare systems and allow interoperability 

among them. 

Electronic Medical Record (EMR) is usually used interchangeably with EHR, although it is 

important to note that it is sometimes considered as a "snapshot" of a larger EHR, e.g., record 

related to a single encounter.  

The advantages of using an Electronic Health Record are numerous. It improves the efficiency 

of the medical processes and workflow, especially if multiple healthcare providers are involved 

in the treatment (Figure 1). This means better patient care and improves quality of care, as less 

time is used on reporting and charting data. Paperless system requires less physical space, and 

overall reduces healthcare delivery costs. It also provides large amounts of data that can be used 

for disease analysis, treatment monitoring and preventive measures on a wide scale. Through 
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its security control mechanisms; authorization and audit, it offers superior security to paper 

charts. 

 

 

Figure 1. Multiple healthcare providers using EHR 

 

Personal Health Record (PHR), however, is a health record, i.e., a collection of health-related 

information, which is controlled and maintained by the patient. Such record may be generated 

from various sources, e.g., EHR, physicians, the patient, or third-party applications. The 

following chapter gives an overview of PHR, its differences compared to the EHR and the 

potential of interoperability between the two. 

 

2.2. Personal Health Record (PHR) 

 

The ISO TR14639-2:2014 defines PHR as the “representation of information regarding or 

relevant to the health, including wellness, development, and welfare, of a subject of care, which 

may be stand-alone or integrating health information from multiple sources [25]. Loosely, PHR 

can mean any patient-controlled health information, no matter the form, structure or where it is 

stored. The term PHR has first been mentioned in 1978 [25], but a digital PHR has had its 

beginnings much later [26]. In 1994, P. Szolovits, J. Doyle, and W. J. Long (Laboratory for 
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Computer Science, MIT), I. Kohane (Boston Children’s Hospital), and S. G. Pauker (New 

England Medical Center) proposed the Personal Internetworked Notary and Guardian (PING) 

[27], a free, open-source Personally Controlled Health Record (PCHR). PING was controlled 

and maintained by the patient, who is responsible for storing the encrypted information on 

whichever site they chose. Accessing the record, authentication, and authorizing the users and 

the process of encryption was to be done by publicly accessible PING servers. The main 

objective was to pass the control over to the patients themselves. Notable attempts at launching 

a widespread PHR include Google Health and Microsoft HealthVault PHR. 

Google Health was launched in 2008 but discontinued in 2011 [28]. Google Health lacked the 

ability to import data from third-party sources and was not directly connected to the health 

services providers' network. Users would, often manually, enter health-related information such 

as medical conditions, allergies, and medications. 

Subsequently, Microsoft launched HealthVault PHR in 2007, but discontinued it in 2019 [29]. 

HealthVault PHR gave the patients the ability to control and authorize access to their PHR 

record. In 2014, Microsoft Band (Figure 2), a fitness band, was launched. Microsoft Band 

enabled aggregation and integration of data into the HealthVault via MyFitnessPal smartphone 

application which tracked a person's diet and exercise. It was, however, discontinued in 2016. 

In 2018, the application suffered a security data breach of 150 million accounts. HealthVault 

did support some early pre-FHIR standards, i.e., the Continuity of Care Document (CCD) and 

the Continuity of Care Record (CCR). 

Finally, in 2018, Apple added a "Health Records" section within the “Health” iOS application 

where users could see their medical data, such as allergies and conditions, from multiple health 

service providers within the USA, on their smartphones. 

 

 

Figure 2. Microsoft Band fitness band 
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Since clinical institutions supply the majority of the medical data, patients have little control 

over or access to their own medical records. Patients or caregivers may need to maintain track 

of medical information that isn't recorded in the EHR, such as measurements or observed 

symptoms. As a result, monitoring, diagnosis, and treatment would all benefit from an effective 

and efficient Personal Health Record System (PHRS) that enables patients or caretakers to 

continuously monitor and manage the personal health record. Additionally, statistical 

anonymized data improves the overall healthcare system. Thus, personalized medical services, 

as well as healthcare as a whole would benefit from interoperability between these domains 

(Figure 3). 

 

 

Figure 3. Overlapping of health domains 
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2.3. History 

 

Traditionally, as of 1900-1920, health records were notes manually written on paper and 

organized into sections. New technologies developing in the 1960s and 1970s allowed for the 

emergence of what is today known as Electronic Health Record (EHR). Originally, EHRs were 

created and used at academic medical facilities. The first notable attempt to streamline and 

improve the patients’ medical files was the Problem-Oriented Medical Record (POMR) created 

by Dr. Lawrence Weed in 1968 [31]. POMR consisted of: 

● Database, 

● Complete problem list, 

● Initial planning, 

● Notes of daily progress, 

● Discharge summary. 

During 1970s, the first EHR was developed at The Regenstrief Institute in Indianapolis after 

consulting with computer science experts from Purdue University [32] and integrated: 

● Prescriptions and medication orders, 

● Procedures done, 

● Nursing orders, 

● Diets, 

● Laboratory tests, 

● X-ray scans. 

Development of EHRs between 1972 and 1992 included hierarchical or relational databases 

and where EHRs were deployed on large mainframe computers with limited storage [33]. This 

meant additional storage was necessary, either through disks or tape, as well as dedicated wired 

terminals. Very few early EHRs supported prescriptions and notes but were instead focused on 

laboratory results.  

Web-based EHRs started to appear between 1980 and 1990, as a consequence of hardware 

becoming more affordable, powerful, compact and the appearance of the Internet, facilitated 

quicker and more convenient access to information [34]. 

As third-party applications were beginning to be used within EHRs, standards were required. 

In the early 2000s, Health Level Seven (HL7) and IEEE P1157 MEDIX served as the primary 

interface standards. This was necessary to disambiguate data element definitions and use 

standardized dictionary codes. Eventually, the HL7 standard was updated and expanded to 
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incorporate numerous systems, such as laboratory results or electrocardiogram (ECG) [35] and 

included protections: 

● Automatically backup the data, 

● Automatic log off, 

● Data encryption, 

● Audit logs, 

● Access control. 

Between 1991 and 2005, large healthcare providers, academic researchers, and government 

organizations started to push for the use of EHR, first in the USA and, to lesser extent, Canada, 

followed by the United Kingdom, Switzerland, the Netherlands and Norway [36]. Since 2005, 

EHR use has been steadily increasing in the majority of European countries, Australia, and 

Asia.  

Most modern EHRs are web-based with client and server side, use relational databases, provide 

secure authorization-based data access, and allow interoperation of multiple entities, such as 

hospitals, physicians, or pharmacies. Figure 4 shows the timeline of EHR development. 

 

 

Figure 4. EHR timeline 
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2.4. Applications and future potential of EHR 

 

The most significant feature of the smart wearables embedded with sensors is undoubtedly the 

capability to track health. An increase in the demand for wireless fitness wearables is driving 

the market, its cause being consumers' increased health awareness. With an emphasis on vital 

signs and fitness tracking activity, wearable sensors represent a significant component of 

wearable technology. A fitness or activity tracker is a device worn on the human body, made to 

track and document health-related data and an individual's fitness activity, including heart rate, 

body temperature, steps taken, stairs climbed, calories burned, etc. The wearables usually offer 

wireless connection from the wearer's phone. 

According to the report [3], the global market for wearable fitness trackers will expand by an 

estimated 78 million euros from 2020 to 2027, with a Compound Annual Growth Rate (CAGR) 

reaching 22.6%. Equivalently, IoT-capable smart watches are a developing trend because not 

only do they function as a stand-alone device but also enable users to communicate with other 

IoT-devices, significantly enhancing the quality of service. Every smartwatch has a fitness 

tracker built in, therefore providing its user with a variety of capabilities, including serving as 

a health-related data monitor. The report [4] estimates that the global smartwatch market had 

43.87 million in shipping volumes in 2018 and is projected to increase up to 108.91 million by 

2024, with a CAGR of 14.5% over the forecast period between 2019 and 2024. This 

demonstrates that using wirelessly collected personal health-related data in a central health 

information system shows promise since it may provide improved understanding of the patients' 

states, which would help the decision-makers provide optimal, more individualized treatment. 

Nonetheless, the fact that the system deals with such sensitive information presents a number 

of difficulties because it must be reliable, secure, and error-free when handling the data.  

According to reports [5] and [6], the market for the IoMT is anticipated to develop at a 19.9% 

CAGR and reach 455.3 billion euros by 2025. IoMT encompasses all medical devices as well 

as the software that provide health- and healthcare-related services. Telemedicine, also known 

as remote healthcare, and monitoring an individual's activities or health status via wearable 

smart devices are examples of potential applications. Body-worn smart electronics equipped 

with sensors, e.g., smart watches, fitness bands, smart glasses or rings can help monitor health- 

and fitness-related data including calories burned, heartbeat rate, or glucose levels, among many 

other parameters. Additionally, a number of mobile platforms and applications have already 

been created in an effort to support Coronavirus Disease 2019 (COVID-19) impact 

management. 
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2.5. Impact during COVID-19 

 

COVID-19 is a respiratory illness with most common symptoms being fatigue, fever, dry 

cough, dyspnea (shortness of breath). In more severe cases it can lead to Acute Respiratory 

Distress Syndrome (ARDS). It originated in Wuhan City, China in December 2019. Up to 

December 2021, according to the World Health Organization (WHO), 613,942,561 confirmed 

cases of COVID-19 were reported worldwide, 6,520,263 of those instances ending in death [7]. 

The Americas, South Asia, and Europe were the areas that were most impacted during the 

period, as shown in Figure 5. 

Brazil, India, and the United States of America have recorded the largest number of instances 

(Figure 6). According to findings, human-to-human respiratory droplet transmission is the 

primary means by which the COVID-19 virus spreads. It quickly had a devastating effect on 

the world economy, leading several nations to impose travel restrictions and go into lockdown, 

which had a detrimental effect on the industrial sectors [8]. The following are the sectors that 

suffered the most: 

● Automobile industry, 

● Transportation systems, especially airplane transportations, 

● Construction, 

● Tourism, 

● Public healthcare systems. 

When attempting to provide services to an increasingly growing number of patients, public 

healthcare systems in particular encountered a shortage of resources. This put an unparalleled 

burden on the medical staff, which were also more likely to become infected with the virus. 

Personal Protective Equipment (PPE) and medical ventilator shortages plagued most hospitals. 

The goal was "flattening the curve," or to limit the spread of the disease, in order to allow 

medical professionals to maintain delivering the required treatment without feeling 

overburdened. In an attempt to control the pandemic, traditional community-containment 

methods were used. By limiting interpersonal contact, they hoped to contain epidemics and 

lower infection rates and numbers. These actions include: 

● Social distancing - preventive measures such as discouraging needless interpersonal 

contact, regardless of a one's COVID-19 status because people without usual symptoms 
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may carry the virus. Enforcement of the principle of maintaining a safe distance among 

people in both open and enclosed public spaces, 

● Quarantine - restriction of the mobility of people who did not test positive but that may 

have come into contact with a person that did, 

● Isolation – which involves separating those who are confirmed to be COVID-19 positive 

from those who are not in order to stop the spread of the illness, 

● Lockdown restrictions, sometimes known as a "stay at home" order, is a government 

directive that instructs citizens to stay at home as much as they can (not applicable to 

essential tasks). It can be regarded as a tactic of mass-quarantine used to control the 

pandemic. 

In addition, many businesses and governments require that masks be worn while traveling and 

in enclosed or congested areas. Frequent hand washing, avoiding touching the face, and 

covering the mouth and nose with an elbow or tissue when coughing or sneezing are other 

COVID-19 hygiene precautions. 

 

 
Figure 5.  Number of confirmed coronavirus cases by WHO region in 2021 
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Figure 6. Top ten countries with most cases of coronavirus reported in 2021 

 

 

Information technology, as WHO reports, plays a significant role in improving response of the 

health system to the pandemic. It helps with:  

● Monitoring, including remotely, of patient's health,  

● Telemedicine, i.e., provision of remote care, 

● Social distancing, 

● Contact tracing, i.e., identification of people who might have had contact with infected 

individuals.  

Using Bluetooth, blockchain and spatial data analysis are some of the methods used to 

implement contact tracing solutions. A thorough overview of applications used to trace 

coronavirus contact is provided in [9], and Figure 7 depicts their process. The keys are just a 

randomized sequence of letters and numbers; both the device and the user are anonymized. To 

ensure the individual's anonymity throughout, they change multiple times an hour. Mobile 

smartphone devices exchange the keys using communication technology (e.g., Bluetooth) when 

a user is in direct proximity to another application user. As a result, the software can keep 

records of contact made without revealing the identity of the individuals in question.  
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Figure 7. Contact tracing process 

 

 

When a user tests positive for COVID-19, they can send their keys which were broadcasted 

previously to other users in proximity. Similarly, the code for an individual can be entered by a 

healthcare practitioner upon obtaining a positive laboratory result. The software on a regular 

basis compares the keys that were sent to the server following a positive test result and the keys 

kept on the user's smartphone device, collected from other users that the person was in contact 

with. The application determines if a person has been exposed to and is at risk of contracting 

the disease. Upon a positive match, i.e., someone has had contact with another individual who 

has tested positive and shared their keys, the former will be informed and given guidance on 

what to do. The privacy of the user is preserved as the application doesn't require identifying 

information. [10] leverages IoT to implement messaging systems for social distancing. Smart 

medical masks [11] use temperature and strain sensors and serve to detect the illness as soon as 

possible, and [12] has used commercially available particulate matter sensors to detect pathogen 

particles in the immediate vicinity of the user.  
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Figure 8. Schematic for Temperature Sensing Unit (TSU) and Cough Detecting Unit (CDU) 

[13] 

 

The most common signs of COVID-19 are a dry cough and a raised body temperature. As a 

result, [13] proposes that each entrance point at transportation hubs including airports, railway 

stations, and bus terminals be equipped with two units, first one being the Temperature Sensing 

Unit (TSU), which uses a camera to identify an individual's forehead before measuring 

temperature using a temperature gun. Depending on whether the recorded temperature was 

below or over the threshold, the microcontroller then transmits the order to "open" or "shut" the 

gate. The Cough Detecting Unit (CDU) is the second device; it uses two microphones and a 

microcontroller to identify cough sounds. Figure 4 contains the schematics for each of the units. 

Similar to this, [14] suggests an inexpensive scanning device, consisting of several sensors, a 

camera, and a microcontroller, for COVID-19 detection that would combine Artificial 

Intelligence (AI) and IoT. Due to its dimensions and affordability, it would be able to scan a 

significant number of persons successfully. 
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Figure 9. IoT application used in COVID-19 mitigation 

 

Whereas certain approaches attempt to "flatten the curve" by implementing social distancing, 

contact tracing, or prompt detection, others provide assistance by remote monitoring of infected 

or home-confined individuals. [15] suggests a patient monitoring system that uses sensors 

which measure respiration and heartbeat rates, body temperature and oxygen saturation, to 

supervise possibly contagious, quarantined individuals. [16] integrates a smart 

wristwatch positioning and data collected by fitness trackers with a telemedicine platform to 

observe positive persons staying at home. In terms of mental health, machine learning 

algorithms have been utilized by [17] to provide mental health assistance and treatment 

recommendations. Figure 9 provides an illustration of these. 

Finally, the fact that confidential personal information is being exchanged raises worries about 

security and privacy. The following are the top three [18] risks to data security, known as CIA: 

• Confidentiality - data must be kept confidential and must not be shared with 

unauthorized parties, 

• Integrity – tampering with data is not allowed, 

• Availability - data has to be ready to be accessed whenever needed. 

Additionally, in the context of location, security encompasses: 

• Device - the physical device must be protected, for example using a password, 

• Communication channel - data must be maintained secure throughout the process of 

transmission between the user’s device and the cloud, 

• Cloud – storing the data and maintaining it secure by encrypting it. 
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To guarantee secure transmission when sharing and maintaining pandemic data, the COVID-

19 stochastic model was devised [18]. Furthermore, all software that collects personal 

information must be compliant with European Union's laws and guidelines, i.e., General Data 

Protection Regulation (GDPR), which means all data must be: 

• provided voluntarily by the user, 

• used transparently, 

• kept temporarily until not needed, 

• kept securely, e.g., encrypted, 

• use only pseudo-anonymous data. 

Finally, the software must request for the user's explicit consent, which may be revoked at any 

moment. The person shall be able to freely govern the data they wish to disclose, and the use 

of software must be entirely voluntary in all its phases. 

Fifth Generation (5G), and future Sixth Generation (6G), mobile networks will have better 

performance, i.e., faster speeds and reduced latency, are more reliable and have increased 

availability. Table 1 gives a comparison of 4G, 5G and 6G. Due to faster speeds and lower 

latency, 5G and 6G network technology will provide an improved connection for IoMT devices-

to-cloud communication and thus improved performance and QoS in the telemedicine. In 

conjunction with solutions from IoMT and AI, 5G and future 6G can make patient monitoring 

and virus tracking easier. Additionally, further studies can be performed using the acquired 

data. This is how China has already been utilizing commercial 5G network in initiatives, such 

as the COVID-19 internet platform for teleconsultation, diagnosis, and treatment [19]. 

Reconfigurable Intelligent Surfaces (RIS) for 6G are being examined in projects that remotely 

monitor health, e.g., human posture recognition as one of the many options that 6G provides 

for smart healthcare [20]. Additionally, edge intelligence, which applies AI to decentralized 

data and IoMT devices, can be used in analyzing COVID-19 data [21]. Lastly, mURLLC—

massive Ultra-Reliable Low-Latency Communication—will improve communication 

between, wearable sensors and cloud servers [22]. Thus, it is likely 6G will impact healthcare 

in the future. In the following five years, a significant switch to 5G is anticipated. While this is 

happening, initial reports [23] anticipate that 6G will be deployed commercially in 2028 and 

2029. 
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Table 1. Comparison of 4G, 5G and 6G networks 

 4G 5G 6G 

Peak data rate 1 Gbps 10 Gbps 1 Tbps 

E2E latency < 100 ms < 10 ms < 1 ms 

Max spectral efficiency 15 (bps) Hz 30 (bps) Hz 100 (bps) Hz 

Max frequency 6 Ghz 90 Ghz 10 THz 

Mobility support 350 km/h 500 km/h 1000 km/h 

Architecture MIMO Massive MIMO Intelligent surface 

Satellite integration No No Yes 

AI No Limited Yes 

Autonomous vehicles No Limited Yes 

Haptic communication No Limited Yes 

 

 

2.6. Standards and regulations 

 

Multiple widely adopted health data standards exist [38]. Additionally, some healthcare 

providers use their own proprietary standards, which have little to no integration with others. 

Many countries recommend adoption of a specific, recognized standard, interoperability across 

different healthcare institutions being the key objective. Nonetheless, as many of them are 

incompatible with one another, implementing open and globally acknowledged standard does 

not ensure compatibility [39]. The patient's data can be challenging to integrate, despite 

continuous efforts to encourage the usage of the standards and the development of open 

specifications [40]. The complexity of integration of PHR data is greater when it combines data 

from a patient's wearable technology. This is due to the fact that PHR can contain data from 

many sources, irrespective of the healthcare provider. Most popular standards are HL7 

standards (newest being HL7 FHIR) and OpenEHR. 

 

2.6.1. HL7 FHIR 

Health Level Seven (HL7) [41] is ANSI-accredited family of standards which is extensively 

used worldwide for data exchange in health and medicine IT systems. In 2003, the Health Level 

7 EHR Special Interest Group (HL7 EHR SIG) developed the HL7 EHR-System Functional 

Model (HL7 EHR-S FM) which contains guidelines for functional expectations of an EHR 

system. It defined a functional profiles template which can be used by the users to add new 

functional profiles. Standards developed by HL7 were HL7 v2.x, HL7 v3, Clinical Document 

Architecture (CDA), Continuity of Care Document (CCD), and the latest, Fast Healthcare 

Interoperability Resources (FHIR).  
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The primary goal of HL7 v2.x standards was to enable electronic exchange of healthcare data 

among different healthcare entities, i.e., including data transfer onto removable storage media, 

such as disks or tape. HL7 v2.x standard simplified applications' interface implementation. 

Specifically, in HL7 v2.5 standard there are twelve different functions represented as message 

structures defined, as follows: 

● Patient Administration (ADT), information related to admitting or discharging a patient, 

visits, queries, and changes in status, 

● Order Entry, messages for requests, updates, or query orders, related to, e.g., 

medications, or laboratory tests, given by physicians. Specifically, orders can be general 

(ORM), query (OSQ), general clinical (OMG), laboratory (OML) and imaging (OMI), 

● Financial Management includes adding or changing the billing account (BAR), viewing 

insurance payments and detailed financial transaction (DTF), and accounts 

management, 

● Observation Reporting defines search, query, and report of laboratory test results (ORU 

and OUL) or clinical observations (QRY and ORF), 

● Master Files notification (MFN) and query (MFQ) which preserve information and 

demand that any made update to such files needs to be announced to all entities involved 

in order to synchronize information, 

● Medical Records Management (MDM) contains messages related to document 

management, whether appending, archiving, canceling, or authentication, and updating 

the status of documents, e.g., new, updated, restricted, 

● Scheduling consists of messages for scheduling requests and response (SRM and SRR), 

and scheduling query and response (SQM and SQR) of any resource within healthcare 

facility, such as visit, laboratory test or imaging, 

● Patient Referral contains messages for referring a patient across different medical 

facilities and transferring the relevant information, such as, patient information (RQI), 

clinical information (RQC), unsolicited insurance information (PIN), patient 

authorization (RQA) and patient referral request (REF), 

● Patient Care supports exchange of information related to health problems and treatments 

with messages for patient goal (PGL), problem (PPR), pathway (PPP), and query patient 

care problem (QRY), 

● Clinical Laboratory Automation interfaces medical equipment with the Laboratory 

Information System (LIS) and contains messages for updates of automated equipment 

status (ESU), equipment inventory (INU), and specimen (SSU), 
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● Application Management Query (NMQ) and Data (NMD) consists of messages related 

to application-level information exchange, e.g., software version or system clock, 

● Personal Management (PMU) relates to administrative activities concerning staff, such 

as permission changes, i.e., adding, updating, deleting, deactivating and terminating 

personal records. 

HL7 v2.x defines two basic message types: 

● Event means real event occurring which involves transfer of health information. The 

response is an acknowledgment message (ACK). For example, “Register a patient on a 

clinical trial“ event is defined by CRM_C01 where CRM is the message type and C01 

is the event code.   

● Query queries healthcare data and the response contains the requested information. For 

example, "Query for Master File Record - Test/Observation" is represented by 

MFQ_M03 and the respective response message is MFR_M03. 

Table 2. shows real-world scenarios of various events and respective use of HL7 v2.x messages 

generated. 

 

Table 2. HL7 use-case scenario 

Event HL7 message 

Person visits the hospital. 
Registration of the patient (send Patient 

Register event). 

Doctor diagnoses fever and cough, orders 

COVID-19 test. 
Send Order message to laboratory system. 

Receive results and report. Diagnose the 

patient with COVID-19. 
Send a Patient Admit message. 

Prescribe medications and treatment. 
Send a Medication Order message to the 

pharmacy system. 

Discharge the patient after recovery  Send a discharge message. 

 

However, HL7 v2.x doesn't cover security, confidentiality, nor data integrity of health-related 

information exchanged. It does not specify any security mechanism or encryption algorithms. 

Applications must support their own security and privacy mechanisms. Furthermore, HL7 v2.x 

does not support anonymization of data. Due to these issues, another standard was made. 
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HL7 v3 has domains similar to HL7 v2.x functions, however it does introduce message 

wrappers which provide more information and describe the role of the sender or receiver and 

its messages XML-based. HL7 v3 introduces Reference Information Model (RIM) which is 

object-oriented and consists of: 

● Classes, class attributes, and class relationships, 

● State transition models, and 

● Data types and constraints. 

Aside from the definition of a common message specification, HL7 v3 developed is Role Based 

Access Control (RBAC) specification for role-based access and permissions which provides 

security. HL7 v3 also includes an implementation guide for implementation on a Service-

Oriented Architecture (SOA). 

FHIR expands on previous standards by employing RESTful web services and open web 

technologies and including JSON and RDF data formats alongside previously used XML. FHIR 

is a standard for healthcare data exchange; for exchanging healthcare information 

electronically. Example is given below for HL7 FHIR for fetching administrative data in the 

form of a sequence diagram (Figure 10) [41]. 
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Figure 10. Sequence diagram for fetching Patient Administrative data [41] 

 

The basic building block in FHIR is a Resource, it consists of a set of metadata, standard data 

and a human readable part (as shown in Figure 11) [41]. 
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Figure 11. HL7 FHIR Resource [41] 

 

A new generation of standards framework for the interchange of data from Electronic Health 

Records (EHRs) was developed, called the HL7 Fast Healthcare Interoperability Resources 

(FHIR) specification. There isn't a single global ontology that would facilitate transferring 

healthcare data of any type into the widely used HL7 FHIR standard, enabling interoperability 

and enhancing the quality of patient care and research, despite the fact that medical standards 

are developed and adopted globally (e.g., HL7 FHIR). Schemas will therefore be used to specify 

the structure of health data and to guarantee standardization, which is essential for inclusion 

into official EHR systems. Verification and validation of the data are required before it can be 

incorporated into the EHR.  

Eventually, the release of HL7 Fast Healthcare Interoperability Resources (FHIR) offered the 

first normative for: 

● the RESTful API, the XML and JSON formats, as the basic data types, 

● the Terminology Layer (Code System and Value Set), 

● the Conformance Framework (Structure Definition and Capability Statement), and 

● the key resources – Patient and Observation. 
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FHIR is developed under the 80/20 rule, which means that existing resources cover 80 percent 

of all possible needs and the 20 percent that remain are too specific use cases which will be 

handled with FHIR extensions. 

HL7 standards are the backbone of the National Health Information Service (HIS) in many 

countries, including Croatia, Finland, Norway, Sweden, Iceland [196], and India [197].   

 

2.6.2. openEHR 

openEHR [55] is a health data open standard that outlines how to manage, store, retrieve, and 

exchange health data EHRs. All of a patient's health information is kept in a patient centered 

EHR. In contrast to HL7, the openEHR specification is not focused on the sharing of data across 

EHR systems, with the exception of the EHR Extract specification [54]. The openEHR 

specification [55] covers clinical workflow, demographics, information, and service EHR 

models, and archetypes. It is intended to serve as the cornerstone of a distributed, versioned 

EHR system that is medically and legally sound. The openEHR standard consists of (Figure 12) 

[56]: 

● information models (reference model), 

● the archetype formalisms, 

● the Archetype Query Language (AQL), 

● service models and APIs. 
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Figure 12. openEHR architecture [56] 

 

The collection of information models, referred to as "reference models," is a key component of 

the openEHR standard [56]. They provide the immutable semantics of the EHR, EHR Extract, 

and the demographics model, while supporting data types, data structures, identifiers, and 

practical design patterns. The ENTRY classes' subtypes encompass OBSERVATION, 

EVALUATION, INSTRUCTION, ACTION, and ADMIN ENTRY, and are the most important 

classes defined by the standard. Another important class is the Instruction State Machine, a state 

machine that defines a typical model of medical treatments, such as prescribed medication, 

surgery, and other therapy. Archetype [57] is defined as reusable data point and data group 

definitions, i.e., content item that is reused in various contexts, or a template, which represents 

a data set specific to use-case. Template describes a use case-specific data set and consists of 

several archetype items' references. Semantic rules of archetypes cannot be violated. Templates 

are developed locally by developers in the form of GUI forms, message definitions and 

document definitions. Archetype Querying Language (AQL) [58] serves for writing queries for 

archetypes. openEHR archetypes are being used by the National e-Health Transition Authority 

of Australia, the UK NHS Health and Social Care Information Centre (HSCIC), the Norwegian 

Nasjonal IKT organization, and the Slovenian Ministry of Health. openEHR was selected as 

the base for the standardized EHR in Brazil [59]. 
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openEHR was designed to provide a data platform with a primary focus on data durability and 

lesser on APIs and data exchange. openEHR employs approximately 300 more complicated 

archetypes than FHIR resources, which are intended to offer the greatest number of data 

components. Especially when contrasted to FHIR, which is geared for the easier, its 

volume necessarily adds a degree of complexity. Building patient-centered apps with an easy 

information exchange is made easier by the FHIR's API's simplicity and the availability of a 

simplified data model. 

 

2.7. Electronic Health Record in Croatia 

 

eKarton [60] is an Electronic Health Record system developed for Croatian national Health 

Information Service (HIS) which allows the healthcare professionals access to the patient's data 

and insight into their health record. All important patient information is available, including 

medical history, specialist opinion, all therapy, laboratory findings, etc. 

The application itself was created using web technologies and data is available using Internet 

browsers and smart cards, not only by doctors in primary health care, but also by other users 

such as doctors in hospitals and emergency facilities and other authorized users who have a 

smart card issued by Croatian national health service, HZZO, and have an appropriate role that 

allows access to the system. Croatia's existing Electronic Health Record (EHR), i.e., eKarton 

in Central Health Information System (CEZIH) is depicted in Figure 13. The web application 

itself is shown in Figure 14. 

 

 
Figure 13. Electronic Health Record (eKarton) within Croatian HIS 
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Please note that the following figures do not provide real patient data, but instead are made up 

of dummy (test) data. 

 

 

Figure 14. GUI for eKarton web-based application 

 

Alongside the patient's general information, the physician can see in more detail past doctor 

visits, conditions, vaccinations, allergies, medications, surgeries, laboratory results, and 

additional notes selecting the appropriate icon (Figure 15). 
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Figure 15. Detailed view of prescribed medication 

  

Given the need for the patient's consent for a certain healthcare professional (whether a general 

practitioner, a chosen dentist, an ambulance worker, a pharmacist, etc.) to access eKarton data, 

these functionalities are available only to those healthcare professionals for whom patients have 

allowed access. Existing roles are chosen primary care doctor, chosen pediatrician, chosen 

gynecologist, chosen dentist, ambulance, specialists in hospitals and pharmacists. The level of 

access for each of the roles is determined by the patient. Others can only access basic patient 

identification data from selected physicians. No one can access other data and it is clearly stated 

that the patient has not given consent to access medical data. 

Doctors utilize their Smart Card and PIN code to log into the system. Their role is then verified, 

and only if they have permission to see that specific patient's information will their data be 

provided. Individuals can grant specific doctor’s permissions, as shown in Figure 16. 
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Figure 16. Patient has to authorize physicians’ access to their EHR 

 

The method that permits access in case of emergency exists (sometimes referred to as the 

"break the glass" procedure) in the event that the patient is in some way hindered from 

providing authorization and the physicians determine that access to the medical records is 

required. Using the Patient Portal (Portal Zdravlja) [61], the patient is able to see the history of 

users accessing their medical records, and change permissions, as pictured in Figure 17 below.  

 

 
Figure 17. Patient Portal, PHR in Croatia’s HIS 
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2.8. General EHR system architecture 

 

Architecture of an EHR system is given in Figure 18. The implementation of an EHR system 

involves several key components, including databases, repositories, registries, audit logs, 

providers, and standardization (IHE, HL7).  

 

 

Figure 18. EHR architecture [38] 

 

EHR systems typically involve the creation of one or more databases to store patient data. These 

databases may be centralized or distributed across multiple locations, and may use different 

technologies such as SQL or NoSQL databases. In addition to patient data, these databases may 

also contain information about healthcare providers, insurance plans, and other related entities. 

Data is stored in registries and repositories. In the context of EHR systems, a registry and a 

repository serve different purposes.  

A registry is a database that contains information about a particular disease or condition, 

including data about the individuals who have been diagnosed with the condition. For example, 

a cancer registry would contain information about patients who have been diagnosed with 

cancer, including demographic data, details about their cancer diagnosis, treatment history, and 

outcomes. Registries can be used to monitor the incidence and prevalence of specific 

conditions, to evaluate the effectiveness of treatments, and to identify potential risk factors. A 

repository, on the other hand, is a centralized storage location for health-related data. In an EHR 

system, a repository might be used to store patient data such as medical histories, lab results, 

and diagnostic images. The repository can be accessed by authorized healthcare providers, 
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allowing them to view and update patient information as needed. In summary, a registry is a 

database focused on a particular disease or condition and contains information about patients 

with that condition.  

A repository is a centralized storage location for health-related data, such as patient records, 

that can be accessed by authorized healthcare providers. In the context of electronic health 

record (EHR) systems, several types of repositories may be used to manage various aspects of 

the system's operation. Key repositories are: 

● XSD Document Repository: An XSD (XML Schema Definition) document repository 

contains the schema definitions that define the structure of the data that can be stored in 

the EHR system. This repository ensures that data is stored in a consistent format, 

making it easier to search, retrieve, and analyze. 

● System Policy Repository: The system policy repository contains policies and 

guidelines that govern the operation of the EHR system. This can include rules about 

data access, security, and privacy, as well as policies related to data retention and 

disposal. 

● Expected Behavior Repository: The expected behavior repository defines the expected 

behavior of the EHR system under various circumstances. This can include scenarios 

related to data entry, data retrieval, system maintenance, and system failure. By defining 

expected behavior, the repository helps ensure that the system functions as intended and 

minimizes the risk of errors or inconsistencies. 

● Action Repository: The action repository contains a log of all actions taken within the 

EHR system, such as data entry, updates, and access requests. This log can be used to 

track the activity of users within the system and to identify potential security or privacy 

breaches. 

● Consent Repository: The consent repository contains records of patient consent for the 

collection, use, and sharing of their health data. This can include consent for treatment, 

research, and data sharing with other healthcare providers. The repository helps ensure 

that patients' privacy and autonomy are respected, and that their data is only used in 

ways that they have authorized. 

Overall, these repositories help ensure that the EHR system operates in a consistent and secure 

manner, while also protecting patient privacy and autonomy.  

In the context of EHR systems, several types of registries may be used to manage various 

aspects of the system's operation. An overview of these registries follows: 
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● XSD Document Registry: An XSD (XML Schema Definition) document registry 

contains the schema definitions that define the structure of the data that can be stored in 

the EHR system. This registry ensures that data is stored in a consistent format, making 

it easier to search, retrieve, and analyze. 

● Patient Identity Registry: The patient identity registry contains information about 

patients who have been registered in the EHR system. This can include demographic 

data, such as name, date of birth, and contact information, as well as unique identifiers 

that are used to link patient data across different parts of the EHR system. 

● DIR User Registry: The DIR (Data Interchange for Radiology) user registry contains 

information about users who have access to the EHR system's radiology data exchange 

capabilities. This registry helps ensure that only authorized users can access and 

exchange radiology data and can help track user activity to identify potential security 

breaches. 

● Provider Registry: The provider registry contains information about healthcare 

providers who use the EHR system. This can include information about their 

professional credentials, areas of expertise, and contact information. The registry can 

help patients find and choose healthcare providers and can help ensure that providers 

have the necessary qualifications and training to use the EHR system effectively. 

● Consent Registry: The consent registry contains records of patient consent for the 

collection, use, and sharing of their health data. This can include consent for treatment, 

research, and data sharing with other healthcare providers. The registry helps ensure 

that patients' privacy and autonomy are respected, and that their data is only used in 

ways that they have authorized. 

Overall, these registries help ensure that the EHR system operates in a consistent and secure 

manner, while also protecting patient privacy and autonomy. By centralizing key information 

about patients, providers, and system policies, EHR registries can help improve the quality and 

safety of healthcare services. 

The Business Logic layer of an EHR system is responsible for managing the business rules and 

processes that govern the operation of the system. The Business Logic layer defines different 

Business roles and permissions that users can have within the EHR system. This can include 

roles such as physicians, nurses, and administrative staff, each with their own set of permissions 

and access levels.  
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The EHR Index is a database that contains an index of all patient records in the EHR system, 

along with metadata about each record, such as the patient's name, date of birth, and medical 

record number. This index is used to quickly search and retrieve patient records when needed.  

The Business Logic layer includes configuration files that define how the EHR system is 

configured, including settings for data storage, security, and privacy. These configuration files 

can be updated as needed to modify the behavior of the system. The Business Logic layer 

includes security management data that defines how the EHR system handles authentication, 

access control, and data encryption. This data helps ensure that the EHR system is secure and 

that patient data is protected from unauthorized access. The Business Logic layer includes 

privacy data that defines how the EHR system handles patient privacy, including policies 

around data access, sharing, and consent. This data helps ensure that patient privacy is respected 

and that the EHR system is compliant with applicable privacy regulations. It also defines the 

message structures used to communicate between different components of the EHR system. 

This includes the format of data messages, such as HL7 messages, and how they are structured 

and transmitted. The Business Logic layer includes normalization rules that help ensure that 

data is stored and retrieved consistently across different parts of the EHR system. This includes 

rules for data formatting, data validation, and data mapping.  

Audit logs are records of all actions taken within the EHR system, including data access, 

modifications, and deletions. These logs are important for maintaining the security and privacy 

of patient data, and may be subject to regulatory requirements. EHR systems are used by a 

variety of healthcare providers, including physicians, nurses, and other care team members. 

These providers may access patient data from different locations, including hospitals, clinics, 

and other healthcare settings.  

Overall, the Business Logic layer is critical to the effective operation of an EHR system. By 

defining business roles, managing patient data, and ensuring that the system is secure and 

compliant with privacy regulations, the Business Logic layer helps ensure that patients receive 

high-quality care while also protecting their privacy and confidentiality.  

Standardization is important for ensuring that EHR systems are interoperable and can 

communicate with other systems. Two key standards used in EHR systems are Integrating the 

Healthcare Enterprise (IHE) and Health Level Seven (HL7). IHE defines a set of technical 

standards for integrating healthcare systems, while HL7 defines a set of messaging standards 

for exchanging healthcare information.  

Finally, the implementation of an EHR system involves a complex set of components and 

stakeholders. EHR systems involve a range of stakeholders, including healthcare providers, 
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patients, healthcare organizations, government agencies, and technology vendors. Each of these 

stakeholders may have different goals and requirements for the EHR system, and it's important 

to consider their perspectives when designing and implementing the system. By considering 

each of these elements carefully, healthcare organizations can design and implement EHR 

systems that improve patient outcomes, streamline workflows, and meet regulatory 

requirements.  

HL7 standards are the backbone of the National Health Information Service (HIS) in Croatia's  

eKarton, as well as in many other countries, including Finland, Norway, Sweden, Iceland [196], 

and India [197]. Health information exchange between databases and e.g. EHR in HIS is 

handled by the Messages management system (Figure 13). Messages, i.e. transactions, are 

defined in IHE Technical Frameworks.  

 

 

Figure 19. ITI-41 and ITI-42 messages [19] 

 

IHE Technical Frameworks [44] outline how to put previously established standards into 

practice in order to achieve warranted medical information exchange, enable feasible and 

effective system integration, and provide the best possible patient care. The HL7 standard is the 

foundation for file sharing. A set of documents and related metadata are exchanged using the 

Provide and Register Document Set-b (ITI-41) transaction. Requests are unmarshalled, which 

means that the inbound data stream is converted into an HL7 Resource object (write operations) 

or message header parameters (search operation). When a message fails to unmarshall, an 

exception is thrown. Dependent on the actors and workflows employing the transaction, the 

documents and metadata may be handled, processed, and stored in order to be retrieved in the 
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future. Documents and related metadata are sent to a content receiver by a content sender. These 

events can be triggered by a human decision or as an automatic operation via application, 

wanting to submit a document to a Content Receiver, i.e., HIS repository. The transaction 

Retrieve Document Set (ITI-43) is used for retrieving a document from HIS repository. This 

flow is pictured in Figure 19. IHE Profile leverages HTTP, Web Services, IT presentation 

formats and HL7 Clinical Documentation Architecture (CDA). This enables it to handle HL7 

Resources within the EHR system. The xds-iti43 component provides interfaces for actors of 

ITI-43 messages. The endpoint URI format of the ITI-43 component is defined as: 

xds-iti-43://hostname:port/service[?params] 

where hostname is domain name or IP address, service is path to the service, and params are 

optional parameters. An example of the exposed FHIR REST Service endpoint would thus be, 

e.g.: 

http://ekarton.server.org:8888/IHE/xds/iti43 

Current EHR implementations already use ITI messages in combination with HL7 standards, 

with existing defined and implemented service endpoints for various ITI messages. Ensuring 

the collected data exchanged with HIS is abiding to the messaging standards mentioned is 

covered in Chapter V. 
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3. Sensors and Data Collecting  

 

Sensors are ubiquitous in today's world, and are used, among others, in healthcare, fitness, 

industry, and daily life [62]. A sensor is a device that "senses" something, for example level, 

temperature, flow, pressure, speed, or position. Sensors detect a change in physical, electrical, 

or chemical properties. Then, in response to the detected change, it produces an electrical 

output. Sensors vary from seismic, low sampling rate magnetic, thermal, visual, infrared, 

acoustic and radar, which are able to monitor a wide variety of ambient conditions like 

temperature, humidity, vehicular movement, light, pressure, soil makeup, noise level, object 

detection, mechanical stress level, dimensions, speed and many more.  For example, they are 

used in smart homes for heat and light management, in cleaning robots or security system 

cameras. Proximity and motion sensors are used in vehicles as well as opening doors in 

shopping centers. In industrial processes, sensors are used to measure fluid levels in containers, 

to control temperature in manufacturing processes, or to monitor water quality and chemical 

changes [63]. In short, sensors help in managing day-to-day activities, ensuring safety, 

identifying, and reacting to emergency, monitoring environmental factors, enforce quality 

control of food and other products by monitoring moisture and temperature, help users track 

their fitness activities as well as help managing residential and business areas; from doorbells, 

automating lighting operations to household appliances for cleaning, boilers, and washing 

machines. 

Sensors are the most commonly used monitoring technology. Sensors offer the collection of 

data from the environment within a short time period, and often connect to the cloud through 

the use of several communication and transport modes, e.g., mobile and satellite networks, 

Bluetooth, broad-based networks, low-energy wide-band networks, etc. 

Historical chronology of the discovery and development of different sensors in context of 

materials (blue), sensor technology (orange), and biotechnology (green) is given in Figure 20 

below.  

In order to create entirely new classes of sensors, the creation of novel functional materials 

typically must be coupled with advancements in other domains. According to [64], materials 

are crucial in the development of sophisticated disposable sensing devices because they can 

reduce costs, have a positive influence on the environment, and improve functionality and 

usability.   
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Figure 20a. Historical timeline of the development of different sensors in context of materials 

(blue), sensor technologies (orange) and biotechnology (green)  
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Figure 20b. Continuation of Historical timeline of the development of different sensors  

 

Sensors can be classified into passive and active. Active sensors, such as thermocouple or a 

piezoelectric sensor, do not require an external power supply. Passive sensors require an 

external power source, such as an excitation circuit, to produce an electrical output. Examples 

of passive sensors include Resistance Temperature Detector (RTD) and strain gauge. Figure 21 

shows active thermocouple and Figure 22 shows passive RTD.  
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Figure 21. Active sensor – thermocouple 

 

Thermocouple is widely used as temperature sensor in science, home and office thermostats, 

industrial processes involving kilns, gas turbine exhausts, or diesel engines, as well as flame 

sensor for gas-powered appliances or equipment. Thermocouple consists of two distinct 

electrical conductors that form an electrical junction. When increase in temperature occurs, 

thermocouple produces voltage, which can be interpreted to measure temperature. This is 

known as the Seebeck effect [66]. Commercially, these sensors are inexpensive and able to 

measure wide temperature ranges. However, they are known to be somewhat imprecise as 

system errors lesser than one degree Celsius are difficult to attain. 

 

  

Figure 22. Passive sensor – 2-wire Resistance Temperature Detector (RTD) 
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RTD element usually consists of a thin wire wrapped around ceramic or glass core. Wire is 

usually pure nickel (Ni), copper (Cu) or platinum (Pt), with a known, accurate temperature-

resistance correlation. Resistance of RTD changes with temperature. An external power supply 

or excitation circuit is needed to produce the change in voltage; electrical current is passed 

through the sensor in order to measure the resistance of the conductor, thus measuring the 

temperature. RTD elements are fragile, but they offer higher accuracy than thermocouples. 

 

3.1. Sensor characteristics 

 

Sensor characteristics regarding data quality and faults are: 

● Sensor accuracy represents how close the output of the sensor is compared to the real 

value being measured. Accuracy is determined by testing and comparing the sensing 

system with a standard, known value or the readings of the sensors must be 

benchmarked against another system with already established very high accuracy.  

● Trueness is a measure of systematic error and shows how close the average of the 

measured values is to the real value. Systematic error means that measured values of the 

same measurand will vary in a systematic, predictable way; they will diverge from the 

real value in the same direction or even amount.  

● Precision is a measure of statistical variability or "random error" which is determined 

by the standard deviation, i.e., amount of variation or dispersion of a collected set of 

values. The lower the standard variation is, the values are closer to the mean or expected 

value. Consequently, the higher the standard variation is, the values are spread out over 

a wider range. Precision encompasses repeatability and reproducibility. 

o Repeatability is the level of agreement, i.e., how close the measures are among 

each other, when collected in independent measuring processes under identical 

conditions; meaning the same operator, material and instrumentation was used, 

and the measurements took place in a short period of time between them. 

o Reproducibility is the degree of agreement, i.e., how close the values are among 

each other, when collected in independent measuring processes under variable 

conditions, whether by using different instrumentation, material or operators, 

was conducted in vastly different time or both. 
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● Sensitivity is determined by the ratio of the difference between the output of the sensing 

system and the variation of the quantity being measured. Sensitivity can be linear 

(constant) or nonlinear (varied). 

● Limit of blank (LOB) is the highest concentration of an analyte habitually detected when 

replications of a blank sample which contains no analyte are tested. 

● Limit of detection (LOD) is the lowest analyte concentration which can be reliably 

measured against a blank sample (limit of blank) and at which detection is feasible. 

● Limit of quantification (LOQ) is the smallest analyte concentration that can be detected 

with acceptable accuracy, meaning it has to meet predefined goals for bias and 

imprecision. 

● Drift or operational stability shows how stable is the output signal of the sensing system 

with continuous and constant input in a long term. Drift can be caused by the changes 

in temperature and humidity or can happen due to the degradation of the sensor's 

components. 

● Stability represents the sensor's capability to produce the same output signal over a 

period of time while measuring a standard, known value. 

● Response time is defined as the time required for a sensing system to output a signal 

with a stable value. 

 

 

Figure 23. Examples of measured values with different data quality 
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Figure 23. shows in a. accurate and precise value; in b. precise, but not accurate value; in c. 

accurate, but not precise value; in d. not precise nor accurate value. 

 

3.1.1. Classification of errors 

By the use of measurements, it is impossible to ascertain a quantity's true value, which can be 

defined as the average value of an infinite measurement with average deviation approaching 

zero. Measured value is an approximation of true value, gained by the process of measuring. 

An error or fault can be defined as the disparity between the measured (approximated) and true 

value. The following categories of measurement errors exist, based on the sources from which 

the faults may arise (Figure 24). 

 

Figure 24. Types of errors 

 

Systematic errors are errors not caused by chance but, instead, by repeatable system-inherent 

process. Error of observation is an error caused by imperfection in methods of observing a 

quantity, whether caused by instrumental or human factors. Environmental errors occur as a 

result of the measurement devices' environment. These kinds of faults usually occur because 

of temperature, moisture, dirt, vibration, or an electrostatic or magnetic field. Instrumental 

errors can occur due to the shortcomings of the instrument (e.g., friction in bearings of various 

moving parts, irregular spring tension), misuse or improper handling of the device, and “effect 
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of loading”, i.e., after the instrument had been subjected to overload, the following 

measurements may be erroneous no matter the range. 

Gross errors include errors made by humans when recording readings, documenting process 

variables, and computing outcomes. These readings happen as a result of the instruments' 

erroneous settings. There is no mathematical way to handle these faults.  To minimize gross 

errors, when recording, calculating and taking readings, extreme caution should be exercised.  

The cause for random errors in most cases remains unknown and, thus, they cannot be corrected 

by any method of correction or calibration. The frequency of measurement needs to be increased 

in order to prevent these faults. That implies that the same parameter should be measured 

frequently. 

 

3.1.2. Sensor calibration 

In order to obtain precise, accurate, and repeatable measurement results, sensors must be 

calibrated. Calibration is the widely used technique for eliminating or minimizing sensor bias. 

International Bureau of Weights and Measures (BIPM) defines the term calibration as an 

"operation that, under specified conditions, in a first step, establishes a relation between the 

quantity values with measurement uncertainties provided by measurement standards and 

corresponding indications with associated measurement uncertainties (of the calibrated 

instrument or secondary standard) and, in a second step, uses this information to establish a 

relation for obtaining a measurement result from an indication. [67]". The implementation of a 

test equipment monitoring procedure and the calibration of measuring tools are required by DIN 

EN ISO 9001 [68]. Due to use, aging, and environmental conditions, measuring instruments or 

equipment can lose accuracy, i.e:  

● Incorrect zero reference – measuring instrument returns false reading when the actual 

value of a measured quantity is zero, e.g., the ammeter's needle returns non-zero value 

when no current flows. Since most modern sensors and transmitters are electronic 

devices, changes in external factors such as temperature, pressure, or time may cause 

the reference voltage or signal to drift over time. 

● Error caused by Sensor Range Shift: Due to the aforementioned factors, the "sensor's 

range" may shift, or possibly the process's operational range has altered. For instance, a 

process may now function between 0 and 200 pounds per square inch (PSI), but 

modifications to its operation will need it to operate between 0 and 500 PSI. 
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● Error caused by mechanical wear or damage, in which case the instrument may require 

servicing or replacement. 

As a result, sensors require periodic recalibration. The application determines the calibration 

schedule of the measuring instruments. Recalibration must be carried out periodically to 

maintain confidence in the traceability chain. The length of the intervals depends on a number 

of variables, such as the importance of the readings, the stability of the equipment, the frequency 

and usage pattern, or the threshold of required uncertainty. There can be several sensor 

calibration procedures employed depending on the measurement. Modern instruments can be 

calibrated manually or automatically. In calibration, a basic standard metric of accuracy is the 

Root Mean Squared Error (RMSE) [69]. 

In order for wearable sensors to be useful for measuring physical activity, they must be 

calibrated and validated against gold standard measures [200]. Calibration involves determining 

the relationship between the output of the wearable sensor and the actual physical activity being 

measured. This relationship can be affected by factors such as the type of physical activity, the 

position of the wearable on the body, and the individual wearing the monitor. Validation, on 

the other hand, involves comparing the output of the wearable monitor to a gold standard 

measure of physical activity. This can be done using methods such as direct observation or 

indirect calorimetry. Apart from highlighting the importance of calibration and validation for 

wearable trackers used in measuring physical activity, [200] reviews several studies that have 

attempted to calibrate and validate wearable monitors and conclude that the accuracy of these 

devices varies widely depending on the specific device and the activity being measured. They 

also note that there is a need for more standardized protocols for calibration and validation, in 

order to ensure that the results are comparable across studies. In another study [201], the authors 

tested three different wearable fitness trackers on a group of older adults with varied levels of 

ambulatory ability, using direct observation as the gold standard measure. Standardized 

protocols for calibration and validation, as well as careful consideration of the limitations of 

these devices, are important for ensuring that the results are accurate and meaningful. There are 

several methods for calibrating wearable monitors, including indirect and direct methods. 

Indirect methods involve using equations or statistical models to estimate energy expenditure 

or other parameters based on the wearable monitor's output. Direct methods involve measuring 

energy expenditure or other parameters using a reference method and then adjusting the 

wearable monitor's settings to match the reference method's measurements. Furthermore, [202] 

presents a study on the accuracy and reliability of wearable heart rate sensors. The authors 

aimed to develop a fully automated system that could calibrate and validate the performance of 
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such devices, with the goal of improving their accuracy and usefulness for clinical and research 

purposes. The data collected by the sensors were then compared to the reference measurements 

to assess their accuracy and reliability. A calibration curve was obtained by interpolating the 

experimental data, and a polynomial model was employed, resulting in a significant decrease 

in RMSE (0.81 to 0.33). The patent [203] describes a system for calibrating a set of sensors 

used to measure health-related parameters, such as body temperature and heart rate. The system 

includes a calibration chamber with a reference sensor and a set of test sensors, and a calibration 

circuit that applies a reference signal to the reference sensor and a test signal to the test sensors. 

The calibration process involves comparing the readings from the reference sensor and the test 

sensors and adjusting the test signals until the test sensors match the reference sensor, creating 

a baseline. The calibration circuit then stores the calibration coefficients for each test sensor, 

which can be used to adjust the sensor readings in subsequent measurements. Similarly, [204] 

presents a calibration method by using a second medical monitoring device to obtain conversion 

factor including first cross correlation that describes the correlations between measurements 

made by the two devices, such as a blood pressure monitor and a portable ECG device. In some 

cases, the second device can instead be a clinical "benchmark" device which a physician would 

use to calibrate the monitoring device. Using a data-driven approach improves the accuracy of 

the calibration. 

 

3.2. Wireless Sensor Networks in healthcare 

 

Wireless Sensor Network (WSN) comprises small electronic devices, sensors. Sensors can be 

used for monitoring areas, processes or objects, and tracking animals or persons. A sensor 

measures a physical phenomenon, such as temperature, humidity, light, pressure, or motion, 

among others. Output of a sensor is quantifiable data that can then be further processed and 

interpreted by a person or a machine. Wireless sensors have a number of limitations as a result 

of their low cost and low complexity, including a small transmission range, limited computing 

and processing power, lower reliability and data transfer speeds, and a finite amount of energy. 

Thus, WSNs must be designed with the goal to circumvent these limitations, for example, by 

exploiting the synergy among multiple nodes. 

The type of sensor deployed, the area and extent of deployment, the computational needs, and 

the QoS requirements can vary greatly, depending on the application. Common use cases 

include agronomic industries, tracking resources in heavy industries and research laboratories, 
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manufacturing processes, monitoring of environmental conditions for forecasting and 

observation, monitoring remote and inaccessible areas, emergency and disaster-relief systems, 

automated processes, smart homes, as well as fitness and health-related applications.  

Sensors have a variety of uses in the field of eHealth, including telemonitoring of a 

person's physiological data, general monitoring of patients, diagnosing the patients, and the 

administration of medications in medical facilities [70]. The use of sensors in both fitness and 

healthcare can be very beneficial in identifying internal complexity and disease causes, which 

would ordinarily be quite challenging. Some of the examples of sensor applications in 

healthcare include the Smart Sensors and Integrated Microsystems (SSIM) used for monitoring 

the levels of glucose, sensing allergens and monitoring respiration rate, tracking of blood 

pressure and monitoring of cardiovascular diseases, as well as general monitoring of physical 

and mental health. 

Initial applications consisted of a single wireless sensor that would serve for monitoring and 

predicting of activities or health conditions. Some examples include walk analysis using 

sensors embedded in wearables [71] or flooring within a smart home [72], as well as and daily 

activity tracking from wearable motion sensors or sensors placed in the surroundings [73]. 

While applications based on video and/or audio inputs can produce gigabytes of data, the 

volume of data that may be stored is restricted to megabytes [74]. The majority of the time, 

processing was done centrally and in batches that were retrospectively processed offline. 

Technological advancements regarding sensors facilitated continuous monitoring using a 

number of sensors, each of which is accountable for generating inference, whether from 

wearables or ambient sensors. Thus, the concept of an agent was introduced. Agent is 

a processing entity capable of both detecting and acting in order to accomplish an aim. These 

activities may depend on an agent's autonomy in interacting with the environment or on the 

collaboration with other agents. Therefore, a higher-level of reasoning was needed than in 

the initial devices to integrate the outputs from a variety of sources. By combining multisensory 

data and/or offering a concept of context-awareness, the goal was to minimize the uncertainty 

of predictions. One example of this is monitoring system or sleeping disorder [75], employing 

wearables, ambiance sensors, and video recordings to determine the most significant sleep-

related events. Furthermore, [76] describes a fall detection system being used to recognize 

environmental risks by understanding the context of a fall using data from wearable motion and 

ambient vision sensors as well as electricity consumption (devices and lights switched on and 

off). 
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Novel approaches try to integrate various sources of clinical knowledge with continuous 

tracking of a person's health. Current research aims to incorporate intelligent agents that 

leverage modern technology (stream processing, data mining, genetical and multiomics data 

coupled with the pervasive sensing abilities of the previous applications. Thus, the agents are 

capable of retrieving data from a range of domains, such as medical research, EHR, and data 

collected in laboratories (such as genomes, proteomics, and metabolomics). These systems 

assess a patient at a system level, taking into consideration all contributing aspects, through the 

efficient merging of multimodal data [77]. This will aid in making decisions based on the most 

recent biological and health informatics findings. The ability to combine knowledge from 

several sources has the potential to greatly advance and personalize diagnosis and treatment. 

One of the examples is a non-invasive 3D printed colorimetric early wound-infection indicator 

[78] that can provide an early warning of infection before it has progressed into a chronic state 

by responding to a rapid, aerobic microbial colonization by changing the color. (Figure 25). 

Another example is a degradable silk-based subcutaneous sensor measuring blood oxygen 

levels [79]; the small circular silk film oxygen sensor placed under the skin glows purple when 

exposed to UV light and oxygen. A detector can then determine the level of oxygen by the 

brightness and duration of the purple glow (Figure 26).  

 

 

Figure 25. Non-invasive 3D printed colourimetric early wound-infection indicator [78] 
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Figure 26. Degradable silk-based subcutaneous oxygen sensor [79] 

 

A wearable sensor with a gold mesh that can measure different biomarkers or substances to 

perform on-body chemical analysis using Surface-Enhanced Raman Scattering (SERS) 

technique was developed [80]. SERS is a method of detecting the presence of a chemical 

indirectly by using laser light and a specialized sensor (Figure 27).  

 

 

Figure 27. SERS detection of drug molecules in sweat [80] 

 

 

Finally, review [81] classifies sensors in the healthcare domain into physical, electrochemical, 

optical sensors, and magnetic sensors. It also presents a full taxonomy of sensors deployed 

(Figure 28). 
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Figure 28. Taxonomy of sensors in healthcare 

 

Personalized health data, such as vital signs, collected continuously and unobtrusively could 

potentially provide the physicians significant assistance in monitoring or diagnosing the patient. 

In this research, two datasets have been used: 

● PMData dataset [146] made available via Simula Open Datasets, 

● OxyBeat [147] dataset gathered for the purpose of this study to ensure a more 

robust use-case scenario by adding a number of additional data types, with an 
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emphasis on COVID-relevant data types (body temperature and oxygen 

saturation).  

Both datasets were collected using Fitbit Versa activity trackers, i.e., devices equipped with 

sensors used to track fitness and health related metrics. Using the same wearable device, it is 

expected that the data will be largely comparable. One factor that can affect the quality of sensor 

data is the accuracy of the device. Some sensors may be more accurate than others, depending 

on their design, construction, and calibration. For example, a sensor that is designed to measure 

heart rate may have a higher level of accuracy if it uses advanced algorithms to filter out noise 

and interference from other sources. Similarly, a sensor that is designed to measure temperature 

may have a higher level of accuracy if it is calibrated regularly to ensure that it is measuring 

the correct temperature range. Using the same manufacturer and model of the device ensures 

that the sensors collecting the data are equivalent and the data is subjected to the same 

proprietary processing. Another factor that can affect the quality of sensor data is the way the 

device is worn. Some sensors need to be worn close to the skin, while others can be worn on 

clothing or other accessories. The way a sensor is worn can affect its accuracy, as it may be 

subject to interference from clothing, movement, or other factors. For example, a heart rate 

sensor that is worn too loosely may not be able to detect the wearer's heart rate accurately, while 

a sensor that is worn too tightly may cause discomfort or even injury. User behavior is also a 

factor that can affect the quality of sensor data. Users may behave differently when wearing a 

sensor, which can affect the accuracy of the data collected. For example, a user who is nervous 

or anxious may have a higher heart rate than usual, which can affect the accuracy of a heart rate 

sensor. Similarly, a user who is very active may produce more movement than usual, which can 

affect the accuracy of a motion sensor. To ensure that sensor data is accurate and reliable, it is 

important to choose high-quality sensors that are calibrated regularly, worn correctly, and used 

in a consistent manner. It is also important to take user behavior into account when analyzing 

sensor data, and to use advanced algorithms and statistical techniques to filter out noise and 

interference from other sources. In conclusion, while there are many factors that can affect the 

quality of the data, the two data sets being used were collected by the same wearable device 

model and thus are largely comparable. 
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3.2. Wearable Activity Trackers 

 

Wearable activity trackers, commonly known also as fitness trackers, are devices worn by users, 

usually in the form of a wristband or a smartwatch which are used to collect health-related data. 

Research on the global wearable technology market [82] reports the wearable technology 

market was valued at 115 billion US dollars in 2021 and is projected to reach 380 billion US 

dollars by the end of 2028. Wrist-worn wearables account for 30% of the global market. 

Something similar to modern fitness trackers first appeared in 1965 when Dr. Yoshiro Hatano, 

professor at Kyushu University of Health and Welfare, Japan was researching ways to combat 

obesity. Dr. Hotano invented Manpo-kei (Figure 29), a 10,000 steps meter. His later published 

research [83] and [84] states that 10,000 steps is necessary daily activity which maintains the 

body healthy, supposing the caloric intake is balanced properly. Today's fitness trackers still 

use 10,000 steps as a benchmark goal. 

 

 

Figure 29. First modern pedometer, manpo-kei [84] 

 

In 1980, Finish company Polar patented wireless heartbeat rate measurement, invented 

previously by the company’s founder, Seppo Säynäjäkangas. The world's first wearable heart 

rate monitor, Sport Tester PE 2000 (Figure 30) was launched in 1982 by the same company. 

 

 

Figure 30. First wearable heart rate monitor [92] 
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In 2006, mobile phones started incorporating 3D accelerometers which measure movement and 

vibration on three different axes: up and down, side-to-side, and front to back. Nokia’s 5500 

Sports was the first mobile phone that implemented this and, thus, was able to track the user’s 

physical activity more accurately. 

Today, modern wearable fitness trackers contain various sensors and keep track of various 

health-related parameters. Table 3 lists sensors which can be commonly found in modern 

wearable activity trackers. 

 

Table 3. Most common sensors in wearable activity trackers 

3-axis accelerometer 

Senses motion and movement on three axes, using measurements of 

velocity and position. It senses inclination, tilt and orientation of the 

body. Ubiquitous in fitness trackers. 

Gyroscope 

Measures orientation and rotation, used for navigation and measuring 

angular velocity. A 3-axis gyroscope combined with 3-axis 

accelerometer provides a "6 degree of freedom" motion tracking 

system that's used in the majority of fitness trackers as it is useful 

when tracing workout motions.    

Temperature sensor 
Senses temperature. Combined with motion readings, it measures 

physical activity. 

Bioimpedance 

sensor 

Measures galvanic skin response (resistance to small electric current). 

Used to interpret activity and collect heart rate data. 

Optical sensor Preferred way to measure heart rate using light.  

Altimeter Measures altitude by using pressure sensing. 

 

 

The data collected via sensors is then processed using manufacturer's proprietary algorithms in 

order to generate more detailed information, e.g., the data collected by the 3-axis accelerometer 

is used to calculate how many steps the user has taken, what was their speed, and at what pace, 

as well as the calculation of how many calories were likely burned. Most common measured 

metrics are given in Table 4. 
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Table 4. Most common metrics measured or calculated by wearable activity trackers 

Steps taken 3-axis accelerometer 

Distance covered 3-axis accelerometer and gyroscope 

Floors climbed 
Altimeter. This metric is also used for calculating calories 

expenditure and workout. 

Heart rate 
Optical sensor uses light and reflection to check the speed of 

blood flow on the wrist. 

Body temperature 

Measures temperature, also used to calculate physical 

activity and menstrual cycle as well as detect health issues 

(e.g., fever). 

Oxygen saturation (SpO2) 

Deoxygenated blood in veins is of a darker red color than 

the oxygen-filled blood in the arteries. Sensor measures 

relative reflection of red and infrared light. SpO2 value is 

estimated taking into account heartbeat rate as well. 

Exercise time and calories 

burned 

Both are calculated taking into account steps taken, distance 

covered, movement, velocity, and altitude, as well as heart 

rate, and body temperature. 

Sleep duration and sleep 

quality 

Estimated by monitoring body movements, changes in 

heartbeat rate, body temperature, and oxygen saturation. 
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3.3. Activity trackers and Quality of Data (QOD) 

 

Medical devices and related services need to consistently fulfill the regulatory requirements 

specified in standard ISO 13485:2016 [85]. This encompasses design and development, 

manufacture, storage, as well as distribution, installation, and maintenance of the device. 

Standards regarding diagnostic equipment, including medical monitoring equipment, medical 

thermometers and related materials are under ICS code 11.040.55, such as ISO 80601-2-

56:2017 [86] for clinical thermometers for measurement of body temperature. Testing, 

sampling, and calibration are generally covered by the standard ISO 17025:2017 [87]. Proper 

calibration results in reliable measurement traceability and accurate compliance to the 

standards. Nevertheless, regular usage of medical measurement tools is prevalent. Because the 

quality of medical apparatus directly affects patient's life and health, thus medical 

devices should be examined with more scrutiny. More focus should be given to 

calibrating medical measuring devices because they are an integral part of treatment. This is 

particularly true for devices that come into direct touch with patients, for equipment whose 

proper usage is essential to the patient's health, or for equipment that serves as a diagnostic tool 

for additional therapies. Due to the complexity of most medical measuring equipment, multiple 

distinct physical characteristics must be controlled during calibrations (e.g., voltage, resistance, 

time, temperature, pressure, mass, etc.). Regular calibration is required to check for accuracy 

and precision. If any faults are discovered, corrective action must be done, and any negative 

impacts must be assessed and recorded.  

The data must be accurate, precise, and error-free in order to be used in a formal medical 

practice. In this context, it is necessary to revise how to ensure the quality of data collected by 

fitness trackers.  

Wearable sensors, if worn incorrectly, e.g., too loosely, can report inaccurate readings due to 

“contact” problems between sensors and the skin. Fitness tracker should not be worn on the 

wristbone, as it prevents it from laying flat against the skin. This can cause additional light to 

enter and modify any readings made via optical sensor (e.g., heartbeat rate). It should not be 

worn too tightly, nor too loosely; ideally, two fingers should be able to fit between the wrist 

and the band. In order to ensure the necessary level of accuracy, wearables must be worn 

appropriately. Furthermore, all sensors have slightly different threshold levels which makes it 

improbable that two fitness trackers combined would result in exactly the same measurements 

of health-related data for the same individual, i.e., in a situation where a person wears multiple 

different activity trackers on the same wrist, it is likely that the results yielded by the different 
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trackers will vary in measurements. That, however, does not indicate they are at fault; but rather 

indicates that the sensor's readings differ slightly or that different manufacturers use different 

proprietary algorithms to calculate health-related metrics. The study [88] featured twenty 

individuals utilizing five distinct wearables. Nevertheless, it found that the reported distance 

and steps taken by several devices worn concurrently by the same participant can differ up 

to 26% depending on the device worn. On various devices, there was low correlation between 

the number of calories expended and the number of steps taken. This demonstrates how the 

computations depend greatly on the wearable itself and the manufacturer's proprietary 

algorithms. Because of this, it is challenging to use such metrics as a precise determinant of 

health issues, making it impossible to use them in a professional medical environment without 

some type of data cleaning procedure.  

In paper [89], to increase the accuracy of both step and energy expenditure (EE) estimation, 

comparison and evaluation of regression-based models was performed. Seven fitness wearables 

were utilized to collect data, while two other devices served as references. In three separate 

iterations, twenty young adults wore all of the devices at once. Each of the devices' EE 

measurements and five of the devices' step measurements improved as a consequence of the 

creation of regression models for all the devices using reference data. Similarly, [90] examines 

several data-driven methods for cleaning eHealth sensor data from IoMT devices and offers 

recommendations for improving them to increase the acquired data's accuracy in preparation 

for inclusion in a formal EHR. 

Thus, it is crucial to take into account that, while fitness trackers worn by an individual can 

serve as a reference point for the physical activities of an individual, careful interpretation is 

needed. It is typical for the numbers for steps taken, heart rate, and other metrics to vary 

amongst trackers. The statistics will make sense over time as long as the person uses the same 

activity tracker, so long as there is a certain continuity. However, this means special attention 

should be given when choosing the wearables considered for use in medical context, taking into 

account the lack of rigorous calibration that medical equipment is subjected to, as well as 

potentially decreased accuracy due to aging of the sensors. Numerous studies on commercially 

available wearable heart rate monitors were done. Study [91] measured the accuracy of wrist-

worn commercial heart rate monitors compared to ECG on 25 persons, resulting in correlation 

coefficient with ECG reaching up to 0.92 (0.903-0.934 depending on the participant), which is 

very promising. Similarly, [92] reports a coefficient of variation (CV) (%) of less than 5% 

across different fitness activities for some models. Another study [93] assesses accuracy of 

fitness trackers pertaining to heart rate and energy expenditure, using Bland-Altman analysis, 
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correlational analysis, and error bias, resulting in mean relative error (RE, %) of -3.3% to -

4.7%. Common conclusion is that tested wearables have shown acceptable heartbeat rate 

accuracy with a small negative bias. Out of the brands currently available on the market, the 

five most utilized in research projects are Fitbit, Garmin, Misfit, Apple, and Polar. Fitbit has 

been used in twice as many validation studies as any other brands and is registered in Clinical 

Trials [94] studies ten times more frequently than other brands. Fitabase library [95], shows 

numerous clinical trials and systematic reviews of used Fitbit wearables which resulted in 992 

publications at the time of writing. Additionally, systematic review for validity and reliability 

of fitness trackers [96] reports higher consistency and correlation coefficients (CC) on Fitbit 

devices in various studies for steps taken, energy expenditure, sleep time and sleep efficiency. 

Wearable sensors possess impressive accuracy, but their performance can be enhanced by 

implementing calibration procedures periodically and employing data cleaning techniques to 

remove instances of low confidence data that may compromise the overall accuracy of the 

sensor readings, thereby facilitating more precise data capture. 
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4. System model for data cleaning and transformation 

 

A step closer to ensuring continuous healthcare access would be achieved if EHRs were 

equipped to store and interpret data collected by sensors. This would result in standard-

compliant personalized medical services. However, there are a number of faults and errors that 

might affect sensor data, which can further result in imprecise or even erroneous and deceptive 

answers. For the data to be used in a formal EHR, it is crucial to ensure the quality of the data 

gathered from sources such as wearables. Wireless sensors may be employed for remote 

monitoring, object tracking, and a variety of other applications in a broad range of contexts. 

WSNs can be utilized in eHealth for telemonitoring of personal physiological data as well as 

monitoring patients, diagnostics, administering medication in hospitals, and tracking of the 

internal processes of extremely sensitive bio-fluids. The utilization of sensors in healthcare and 

medicine may be incredibly beneficial in identifying internal complexity and disease causes, 

which might otherwise be quite challenging given that these phenomena are linked to the 

patient's interior anatomy. Notable instances of wireless sensor devices in healthcare 

application include monitoring blood sugar levels [97], cancer detection [98], monitoring 

organs [99], as well as overall health supervision. The primary purpose of WSNs is data 

collection, that is accomplished via periodic, distributed, and cooperative sensing and 

transmission actions by sensor node [100]. The network-collected sensor data expands 

exponentially and exhibits big data traits. Data integrity protection technologies have not caught 

up with the growth of WSN, despite the prevalence of these networks increasing [101-103]. 

One major contributing factor to this is an absence of in-depth understanding of the various 

fault types that might arise in WSNs. In general, there are various potential sources of faults in 

sensor data (i.e., data points do not accurately represent the physical phenomena measured by 

the sensor) [104] [105]. Before designing an efficient process for fault detection in WSN, a 

suitable model of the faults in the system is necessary. The following potential faults are defined 

by the model of data faults as stated in [106]: Discontinuous or intermittent faults whose 

occurrence is sporadic and discreet. If the erroneous readings occur regularly (at a frequency 

rate above the threshold), the sensor is malfunctioning. If not, faults are viewed as random. 

Continuous or regular if a sensor consistently gives off erroneous data over the course of the 

observation period and patterns in the form of a function can be seen. These flaws may be 

further broken down into:  

● bias (the error function is a constant with either a positive or negative offset) 
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● drift (the deviation of data can be described by a learnable function, e.g., polynomial 

change). 

Such faults may appear as noise (random undesired variation in data that generates ambiguity 

in data), erroneous measurements, or missing values and may be brought on by a variety of 

external factors including environmental impacts and perturbations or by flaws in the 

equipment. Because of its low cost and sensors' limited resources, many hardware-related flaws 

emerge (WSN devices are not able to store a large amount of data due to memory 

constraints, processor constraints make operations slow and short battery life is due to battery 

capacity limitations) [105] [106], and variation of Link Quality Indicator (LQI), that acts as a 

gauge of a communications channel's suitability for accurate signal transmission and reception 

[107]. This could also result in answers that are imprecise, inaccurate, or misleading. The most 

recent data quality study is reported in [108]. Furthermore, [109] outlines 24 attributes or 

properties as criteria of health-related data quality from different sources emerging in the US, 

Canada, the UK, Australia and WHO. The ten criteria listed below are indications of data 

quality according to the American Health Information Management Association (AHIMA) data 

quality model:  

● accuracy – data shouldn’t have errors, noise or missing values 

● accessibility – data needs to be available for access,  

● comprehensiveness – clearly documented what the collected data represents,  

● consistency – data is reliable and without contradictions,  

● currency – the data is up to date, outdated data is clearly marked or removed,  

● definition – all data elements must be singularly defined,  

● granularity – the level of detail of data collected is appropriate,  

● precision – the data collected needs to be precise in term of values,  

● relevancy – the data needs to be useful for the purposes for which it is gathered, and  

● timeliness – data is entered promptly into the system and available within required time 

frames [110]. 

Data collection processes in WSN have been actively explored. [111] presents a Denoising 

AutoEncoder (DAE) trained to compute the data measurement and the data reconstruction 

matrices from previously sensed data and gathering the data along a data collection tree. The 

data measurement matrix is utilized to compress the sensed data in each sensor node, and the 

data reconstruction matrix is utilized to reconstruct the original data in the sink. There are 

several procedures [112] of evaluating the data collected in order to achieve target requirements 

in terms of data accuracy and privacy protection, as well as taking into account challenges with 
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flexibility in a range of healthcare data collection contexts [113]. Machine learning algorithms 

and data mining depend heavily on the quality of the collected data because flawed data 

dramatically lowers their efficiency. To be able to draw any more conclusions and apply the 

data in an official health system, it is crucial to make sure the data collected is accurate and 

comprehensive. 

Data cleaning aims at how to detect and eliminate data errors originated from the initial data. 

Data cleaning techniques are the main focus of efforts to address the issue of data cleaning in 

large WSN. The general flow of the data cleaning process is given in Figure 31. 

 

 

Figure 31. Data cleaning process 

 

The current data cleaning techniques most commonly imply repeated object detection, outlier, 

value detection, and missing data processing. The impact of missing values in a WSN data set 

is analyzed [114] by artificially creating missing values in the Intel Lab data set that is publicly 

available from the Intel Berkeley Research lab. Classification accuracy was then calculated by 

applying the C4.5 classifier on the original data set as well as the dataset having 10% missing 

values. The classification accuracy dropped considerably on the data set with the dropped 

values which suggests that there is a need to clean the erroneous sensor dataset acquired from 

a WSN.  

The traditional approach for data cleansing requires manual review of the data. This is 

performed by domain experts who manually review the collected data, looking for outliers and 

unusual events which makes it slow, expensive, tiresome and unscalable. The data cleaning 

procedure must be automated as a result. An active field of research is automated purification 

[114]. The accuracy of upcoming readings from the sensor was evaluated by calculating their 
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probability given the model in the initial techniques, which utilized long-term historical records 

of a single sensor to construct a probabilistic model of the sensor's behavior over time. The 

evaluation determines whether the sensor's condition is good or poor according to the evaluation 

[115]. In environment monitoring WSNs, in which each sensor was encircled by several of its 

kind for whom the areas interlaced, machine learning-based systems for data cleaning were 

used. This redundancy was then utilized to learn the interdependencies among sensors and grant 

accurate predictions without needing long-term historical records [116]. Other researchers 

propose algorithm solutions for the fault detection and classification in sensor data. In [117], 

four indicators of the data quality assessment are provided: amount of data, correctness, 

completeness, and data variation as well as detailed measurement for interrelationships among 

them. The proximity of the observed value to the true value is indicated by the correctness. The 

data is deemed accurate if the difference between the recorded value and the actual value of the 

environment is lesser than a predetermined threshold. The degree of data loss issues in a data 

set is indicated by its completeness. The raw data volume compared to the necessary data 

volume is typically used to calculate it. Some measurements, such as displacement, have high 

volatility when they fluctuate often, but temperature and humidity have low volatility. Volatility 

is typically used to represent data variance, and it can be evaluated by the acceptable time frame 

over which the data holds relevant. The study involved uses the data cleaning procedure 

described above, in which inaccurate data are first identified, then assumed to be missing, and 

finally all missing values are imputed. A corrupted data detection method known as [118] is 

used to identify inaccurate data. This method uses the co-appearance matrices, which show the 

frequency with which each pair of input variables occurs in the data set. By distinguishing the 

clean records from the records containing noise in the original dataset, CAIRAD creates a clean 

dataset. FIMUS, an existing missing value imputation method for data pre-processing, is 

employed to impute the missing data [119]. In order to determine the co-occurrences of the 

values with other values corresponding to other attributes, FIMUS extrapolates the numerical 

data points into a number of categories. The capabilities of medical WSNs comprise extremely 

essential systems, thus it goes without saying that they must be reliable and resistant to sensor 

failures. To prevent false alarms, it is crucial to identify anomalous data that differ from 

previous observations and to differentiate between sensor malfunctions and emergency 

situations. As a result, [120] suggests an algorithm for anomalies identification for WSN in the 

medical industry. The suggested method initially divides occurrences of detected patient 

attributes into normal and abnormal categories. Hardware errors, faulty sensors, energy 

depletion, calibration issues, electromagnetic interference, broken connectivity, compromised 
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sensors, heart attacks, deteriorating health, etc. can all lead to abnormal readings. Regression 

prediction is used to differentiate between an erroneous sensor reading and a patient entering a 

critical state once a very anomalous instance has been identified. [121] demonstrates benchmark 

datasets for classifying and detecting faults in sensor data. A recent study [122] provides an 

example of data preprocessing for wearable devices, using adaptive spectrum noise cancellation 

(ASNC) to remove motion artifacts from photoplethysmography (PPG) signal measured by an 

optical biosensor and produce clean PPG waveforms for heart rate calculation. Additionally, 

this cancels out movement-related noise that occurs naturally while a user is moving, which 

happens frequently when the motion frequency is extremely close to the target cardiac rate. The 

suggested method does this by making use of the inbuilt accelerometer and gyroscope sensors 

to dynamically detect and eliminate the abnormalities and achieve accurate heartbeat rate 

measurement while moving. Instances of pertinent data-driven imputations are provided in 

[123], where manually collected gathered patient data (BMI) was imputed using various data-

driven algorithms, and in [124], where soft sensor data for calculating solar radiation was 

imputed. 

 

4.1. Data-driven models for cleaning eHealth sensor data 

 

 Finding the high-performing prediction model is necessary since using prediction models in 

medical care demands great precision [123]. Following similar research that was already 

covered in the previous chapter, numerous models are taken into consideration, including 

support vector machines, decision trees, random forests, and multiple linear regression. 

 

A. Multiple linear regression 

Multiple linear regression (MLR) uses several explanatory variables to predict the outcome of 

a response variable (Figure 32). Its objective is to represent the linear relationship between the 

explanatory (independent) variables and response (dependent) variables. The formula for MLR 

is: 

𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖1 +  𝛽2𝑥𝑖2 + ⋯ +  𝛽𝑝𝑥𝑖𝑝 +  𝜖 

where yi is the dependent variable, xi are explanatory variables, β0 is y-intercept (constant term), 

βp are slope coefficients for each independent variable and ϵ is the model’s error term 

(residuals). Linear regression can only be used when the data has at least two continuous 

variables, one of which is a dependent variable. The explanatory variables are the parameters 
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that are used to calculate the dependent variable. The slope coefficients can be used to interpret 

the outcomes of multiple linear regression while holding all other variables constant. Linear 

regression works well for both regression [125] and classification problems [126].  

The MLR is based on the several conjectures: 

● A linear relationship between the dependent variable and the explanatory variable(s) 

exists 

● The independent variables don't have a high correlation among each other 

● yi observations are chosen in an independent and random manner from the population 

● Residuals need to have normal distribution with a mean of 0 and variance σ 

The coefficient of determination (R2) is used to measure the amount of the variation in outcome 

that may be explained by the variation in the explanatory variables. Value of R2 is between 0 

and 1, where 0 means none of the explanatory variables can predict the result, whereas 1 

indicates that the result can be predicted with no error from the explanatory variables. R2 always 

increases as the additional predictors are incorporated into to the MLR model, whether those 

predictors are related to the outcome variable or not. Thus, R2 must not be the only identifier of 

which predictors should include into and which excluded out of the model. 

 

Figure 32. Multiple linear regression in a 3D plane 

 

 

 

 

B. Decision tree 

Decision tree (Figure 33) is a prediction model that makes conclusions about the variable’s 

target value from previous observations of the item [127]. Branches represent observations and 



64 

 

leaves represent the conclusions.  Tree models in which the target variable has a value which is 

in a discrete set of values are called classification trees [128]. In such tree structure, class labels 

are represented by leaves, and the feature conjunctions that result in those class labels are 

represented by branches. Regression tree is a decision tree in which the outcome variable may 

assume continuous values (usually a real number).  

 

 

Figure 33. Example of a decision tree 

 

General advantages of decision tree include: 

● Easy to visualize and understandable. 

● Does not require extensive data preparation. 

● The cost is logarithmic in the number of data points in training the tree. 

● Can handle data numerically or per category. 

● White box model allows for results to be easier to interpret as the conditions are defined 

by boolean logic. 

● Can be validated using statistical tests. 

 

Disadvantages however are:  

● Overfitting, i.e., creation of overly complicated trees that leads to data not being well 

generalized. 

● Small data variations can lead to vastly different trees being created. 
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● Optimal decision tree is known to be NP-complete. 

● Some logical concepts are not expressed easily, e.g., XOR or parity. 

● Data set needs to be balanced in order to avoid bias.  

 

C. Random forest 

As it was already mentioned, one of the disadvantages of decision trees is that they can be 

unstable as any variation in data may lead to a completely different tree getting generated. In 

order to mitigate this, an ensemble of trees is used instead. More distinct decision trees that 

operate as an ensemble are used to create the random forest (Figure 34). In a random forest, 

each individual tree makes a prediction, and the value that receives the most votes is considered 

the model's prediction. The trees of the forest and, crucially, their predictions must not be 

correlated (or need to have low correlations among each other). Generally, a high number of 

models (trees) with minimal to no correlation operating as an ensemble will perform better than 

any of the individual models. However, this is more suitable for classification [129] and not 

regression problems [130]. 

 

 

Figure 34. Random forest 

 

D. Neural network 

Neural networks (Figure 35) are a set of algorithms which are designed to recognize patterns, 

modeled loosely after the human brain. All real-world data, including images, sounds, texts, 
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and time series, must be converted into vectors in order for them to recognize the patterns, 

which are numerical and contained therein. Neural networks consist of multiple hidden layers 

that are made of nodes (Figure 36). A node assigns relevance to inputs in relation to the job the 

algorithm is attempting to learn by combining input from the data with a set of coefficients, or 

weights, that either amplify or diminish that input. Starting with an initial input layer that 

receives data, each layer's output serves as the next layer's input at the same time. The 

significance of the input data is assigned by matching the changeable coefficients of the model 

with those features. Imputing data using the neural network has been increasing in popularity; 

one example of using a neural network to impute the missing data for medical IoT applications 

is given in [131]. 

 

 

Figure 35. Neural network 

 

Neural networks can learn using human-generated labels, i.e., supervised learning or learn 

without them by detecting similarities and clustering, i.e., unsupervised learning. Neural 

networks pose an alternative to standard techniques as they self-train efficiently even when the 

relationships of variables are non-linear or dynamic. Thus, neural networks can be used in 

modeling problems which would have been difficult or impossible to describe otherwise as they 

can be used to discover structure within unlabeled, unstructured data or raw data. However, a 

neural network is a black box; autonomous, provided only with architecture, random seed 

numbers and input data. Neural networks also can take longer to train, especially when having 

massive amounts of data. 
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Figure 36. Neural network node 

 

E. Support vector machines 

Even though SVM models are usually used for classification objectives, they can be used for 

both regression [132] and classification [133] tasks. With less processing power, it provides 

accuracy that is apparent. Finding a hyperplane in an N-dimensional space (N is the number of 

features) that clearly categorizes the data points is the goal of the support vector machine 

algorithm (Figure 37). There are a variety of different hyperplanes that might be used to split 

the two classes of data points. The goal is to identify a plane with the largest margin, or the 

greatest separation between data points from both classes. Maximizing the margin distance adds 

some support, increasing the confidence with which future data points can be categorized. A 

function used in SVM for helping with problem solving is called kernel. Kernel function can 

be: 

● linear: (𝑥, 𝑥′) 

● polynomial: (𝛾(𝑥, 𝑥′) + 𝑟)𝑑, where d is specified by parameter degree, r by coef0. 

● rbf: 𝑒𝑥𝑝 (−𝛾||𝑥 − 𝑥′||2), where 𝛾 is specified by parameter gamma, greater than zero. 

● sigmoid: 𝑡𝑎𝑛ℎ (𝛾(𝑥, 𝑥′) + 𝑟), where r is specified by coef0. 

Additionally, custom kernels can be defined. 

 

 

Figure 37. Hyperplanes in 2D and 3D space 
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Support vector machines are: 

● Efficient in high-dimensional spaces, even when the number of dimensions is greater 

than the number of samples. 

● Memory efficient; using support vectors in the decision function. 

● Multifaceted as various kernels can be used. 

However, compute and storage requirements increase significantly with the number of training 

vectors.  

 

4.2. Use case on ECG signal: comparison of models 

 

The dataset used is open access MHEALTH dataset [134][135]. The MHEALTH (Mobile 

HEALTH) dataset comprises body motion and vital signs recordings for ten volunteers of 

diverse profiles (sex, age and different levels of physical fitness) while engaging in a variety of 

physical activities. The participant's chest, right wrist, and left ankle were fitted with sensors 

that record the acceleration, rate of turn, and magnetic field orientation of various body parts. 

The sensor, which is placed on the chest, generates 2-lead ECG readings, which may be used 

for routine cardiac monitoring, screening for different arrhythmias, or examining how exercise 

affects the ECG. A sample rate of 50 Hz is used for all sensory modalities, which is regarded 

to be enough for capturing human activity. This dataset has been found to generalize to common 

daily activities. (e.g., running vs. standing still). The example sample in Table 5 includes 

acceleration from the chest, left ankle and right wrist sensors, as well as a 2-lead 

electrocardiogram signal, with all sensor measurements (columns) provided. Column Label 

indicates the action taking place at the time (e.g., activities like standing still, walking and 

running are all denoted with different numbers). The samples in Table 5 were all collected when 

the individual was still, therefore they are all identified by the same number (one). In one of the 

leads' data, 10% of the data was discarded, and the missing values were computed using 

statistical and machine learning techniques in order to compare the quality of computation of 

various data-driven models. The estimated values are then contrasted with the actual values, 

and models are assessed by contrasting the calculated errors. 
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Table 5. Sample of all measurements readings (columns) from the MHEALTH (Mobile 

HEALTH) dataset 

Acceleration from 

the chest sensor (X 

axis) [m/s^2] 

Acceleration from 

the chest sensor (Y 

axis) [m/s^2] 

Acceleration from 

the chest sensor (Z 

axis) [m/s^2] 

Electrocardio-gram 

signal (lead 1) [mV] 

-9.5987 -1.3757 -1.3238 -0.41863 

-9.549 -1.3385 -0.95204 -0.21769 

-9.3709 -1.1514 -1.3036 -0.18838 

Electrocardio-gram 

signal (lead 2) [mV] 

Acceleration from 

the left-ankle sensor 

(X axis) [m/s^2] 

Acceleration from 

the left-ankle sensor 

(Y axis) [m/s^2] 

Acceleration from 

the left-ankle sensor 

(Z axis) [m/s^2] 

-0.22606 0.99362 -9.7838 1.8228 

-0.15908 0.76724 -9.6756 1.7426 

-0.15489 0.71657 -9.7453 1.7074 

Gyro from the left-

ankle sensor (X axis) 

[deg/s] 

Gyro from the left-

ankle sensor (Y axis) 

[deg/s] 

Gyro from the left-

ankle sensor (Z axis) 

[deg/s] 

Magnetometer from 

the left-ankle sensor 

(X axis) 

0.28757 -0.61914 0.63065 0.36139 

0.28757 -0.61914 0.63065 0.017437 

0.29499 -0.60788 0.6169 0.555 

Magnetometer from 

the left-ankle sensor 

(Y axis) 

Magnetometer from 

the left-ankle sensor 

(Z axis) 

Acceleration from 

the right-wrist sensor 

(X axis) [m/s^2] 

Acceleration from 

the right-wrist sensor 

(Y axis) [m/s^2] 

0.54684 -0.012696 -1.5735 -9.341 

0.3668 -0.58122 -1.4181 -9.5123 

0.54491 -0.44945 -1.4724 -9.3015 

Acceleration from 

the right-wrist sensor 

(Z axis) [m/s^2] 

Gyro from the right-

wrist sensor (X axis) 

[deg/s] 

Gyro from the right-

wrist sensor (Y axis) 

[deg/s] 

Gyro from the right-

wrist sensor (Z axis) 

[deg/s] 

2.8975 -0.070588 -0.64066 0.96552 

2.7744 -0.068627 -0.64066 0.97198 

2.8474 -0.068627 -0.64066 0.97198 

Magnetometer from 

the right-wrist sensor 

(X axis) 

Magnetometer from 

the right-wrist sensor 

(Y axis) 

Magnetometer from 

the right-wrist sensor 

(Z axis) 

Label 

0.17578 -0.37549 -1.0758 1 

0.17763 -0.19043 -0.71656 1 

0.18126 0.17247 -0.72012 1 
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Scatterplots show the values for a set of data for two variables, usually. A point's position on 

the horizontal axis is determined by the value of one variable, while its position on the vertical 

axis is determined by the value of a second variable. The scatterplots for the second lead's 

original (blue) and computed (green) values for each of the five imputation techniques are 

shown in Figure 38. Root mean square error (RMSE) and relative root mean square error 

(RRMSE), which are determined by dividing RMSE by range, serve as the accuracy criteria 

(max-min).):  

 

𝑅𝑀𝑆𝐸𝑓𝑜
= √[

∑𝑁
𝑖=1 (𝑧𝑝𝑖

− 𝑧𝑜𝑖
)

2

𝑁
] 

where 𝑧𝑝𝑖
 is the predicted value for the ith observation in the dataset, and 𝑧𝑜𝑖

 observed value for 

the ith observation in the dataset, and N being the sample size. 

Pseudocode for the process of data cleaning and calculating RMSE and RRMSE is as follows: 

 

1. Copy the data into a new dataset, called "cleaned_data" 

2. Mark randomly 10% of data as erroneous 

   Let n be the total number of data points 

   Let m be the number of data points to be marked as erroneous, i.e., m = 0.1*n 

   For i = 1 to m: 

      Choose a random index j between 1 and n 

      Set cleaned_data[j] = NaN (i.e., mark it as missing data) 

3. Impute missing data using various algorithms 

   Let X be the set of features (i.e., sensor readings) 

   Let y be the target variable (i.e., the value to be predicted) 

   For each feature x in X: 

      For each algorithm A (MLR, Decision tree, Random forest, Neural network, SVM): 

         Let X_A be the set of features other than x 

         Let X_imputed be the imputed version of X using algorithm A on x 

         Let X_combined be the combined dataset of X_A and X_imputed 

         Fit A on X_combined and y to get a model M_A 

         Predict the missing values in x using M_A and X_combined 

         Set the missing values in cleaned_data[x] to the predicted values 

4. Return cleaned_data 

5. Compare cleaned_data to original data set and calculate RMSE and RRMSE 

Step-by-step explanation of each part of the pseudocode: 
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First step simply creates a new dataset called "cleaned_data" that is a copy of the original 

dataset. This is done to ensure that the original dataset is not modified during the cleaning and 

imputation process. Second step randomly selects 10% of the data points in the dataset and 

marks them as erroneous by setting their values to NaN, which represents missing data. This is 

done to simulate missing data that may occur in real-world datasets. Third step involves using 

various algorithms to impute the missing data in the dataset. For each feature in the dataset, the 

algorithm first creates a version of the dataset where the missing values for that feature have 

been imputed using the chosen algorithm. It then combines this imputed dataset with the 

original dataset (with the missing values still present) and fits a model using the chosen 

algorithm on this combined dataset to predict the missing values. The predicted values are then 

used to replace the missing values in the cleaned dataset. Fourth step simply returns the cleaned 

dataset that was created in step 1 after the missing data has been imputed using the various 

algorithms. Final fifth step involves comparing the cleaned dataset to the original dataset using 

two previously mentioned metrics: RMSE and RRMSE. The purpose of this step is to evaluate 

how well the imputation algorithms performed in filling in the missing data. 

The errors vary between subjects (Table 6), and multiple linear regression and neural networks 

consistently outperformed all other methods. As a result, it was decided to use those techniques 

to further refine the model in the chapter that follows. 

 

Table 6. Root mean square error (RMSE) and relative root mean square error (RRMSE) for 

predictions of ECG signal using various models for imputation of missing values for three 

different participants 

 
RMSE  

(person A) 

RRMSE 

(person A) 

RMSE 

(person B) 

RRMSE 

(person B) 

RMSE 

(person C) 

RRMSE 

(person C) 

Multiple 

linear 

regression 

0.27320 0.04362 0.21398 0.03184 0.05657 0.01366 

Decision 

Tree 
0.27678 0.04419 0.24916 0.03708 0.10049 0.02427 

Random 

Forest 
0.27606 0.04408 0.21263 0.03164 0.05698 0.01376 

Neural 

Network 
0.27161 0.04337 0.21189 0.03153 0.05660 0.01367 

Support 

Vector 

Machines 

0.28006 0.04472 0.21446 0.03198 0.05658 0.01366 
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Figure 38. Scatterplots for original (blue) and computed (green) values of the second lead for five 

imputation methods (rows); LM – linear model with multiple imputation, DT – decision tree, RF – random 

forest, NN – neural network, SVM – support vector machine for three different subjects (columns). Blue – 

original values, green – missing imputed values
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4.3. Model improvements: classification algorithms 

 

The method [136] employs decision trees and forests to discover segments of a data set where 

the records within a segment have higher similarity and attribute correlations in order to 

improve imputation outcomes. The missing data are then imputed using the correlation and 

similarity. This method can be used for a wide range of data, and as a result, it has numerous 

potential uses. Nine publicly accessible data sets of various information, such as housing or 

credit approval, were experimentally examined, and the findings showed an apparent 

superiority of such statistically-based methodologies. Assuming that there is a higher 

correlation in the portions that are separated by the physical activities engaged in (such as sitting 

motionless, walking, or running), which reflects the established relationship between physical 

activity and heart activity [137]. This data is entered by hand into the MHEALTH dataset by 

the monitor (last column Label). However, if very accurate data segment categorization is 

feasible, it might be used to any comparable m-health dataset. Additionally, as a lot of health 

data originates from smart wristbands or smartwatches, such as [138], the calculations that 

follow concentrate on the data from the sensors that are located on the right wrist, both gyro 

and acceleration (columns 15-20). The final step is to divide the dataset into parts based on the 

activities categorized in the previous stage. Walking and other light motions are considered 

light activity, whereas sitting and standing motionless are considered inactive.  Jogging, 

running or exercising is a medium activity. The imputation is then carried out once more, this 

time with multiple linear regression and neural networks because they produced the greatest 

outcomes in the previous chapter. Pseudocode: 

 

1. Copy the data into a new dataset, called "cleaned_data" 

2. Mark randomly 10% of data as erroneous 

   Let n be the total number of data points 

   Let m be the number of data points to be marked as erroneous, i.e., m = 0.1*n 

   For i = 1 to m: 

      Choose a random index j between 1 and n 

      Set cleaned_data[j] = NaN (i.e., mark it as missing data) 

3. Impute missing data using MLR / Neural network taking the new variable created 

in previous step as additional input 

    for column in new_data: 

        missing_indices = new_data[column].isnull() 
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        new_data.loc[missing_indices, column] = 

impute(new_data[~missing_indices][column], activity_levels[~missing_indices]) 

4. Return cleaned data 

    return new_data 

5. Compare cleaned data to original data set and calculate RMSE, RRMSE 

 

First step creates a new dataset called cleaned_data that will be used to store the cleaned sensor 

health data. The original dataset is not modified. Second step randomly selects 10% of the data 

points in the dataset and marks them as erroneous by setting their value to NaN, which indicates 

missing data. This is done to simulate the presence of errors or missing data in real-world sensor 

data. Third step uses a machine learning algorithm, either multiple linear regression (MLR) or 

a neural network, to impute missing data in the dataset. The algorithm takes the cleaned_data 

dataset with the randomly marked missing values as input, along with an additional variable 

that was created in the previous step to indicate which data points were marked as erroneous. 

The algorithm then imputes the missing values in the dataset using the other available sensor 

data. Fourth step returns the cleaned dataset with imputed missing values. The new_data dataset 

will now be free of any missing values or errors that were previously present. Final step involves 

comparing the cleaned dataset with the original dataset to evaluate the accuracy of the cleaning 

process. RMSE and RRMSE are calculated to quantify the difference between the two datasets. 

This step provides a measure of how much the cleaning process changed the original dataset 

and how well the imputation algorithm performed in filling in the missing data. By randomly 

marking some data as erroneous and then using a machine learning algorithm to impute missing 

values, the cleaned dataset can be compared to the original dataset to evaluate the effectiveness 

of the cleaning process. The goal was to optimize the data cleaning model and improve accuracy 

by using an extra variable - intensity of physical activity, which is known to correlate with the 

values being imputed. These imputed entries are then combined into a complete dataset that has 

no missing information. For combined datasets, values for RMSE and RRMSE are shown in 

Table 7. While the results are consistent across categories, the accuracy increased by a total of 

10% to 17%. 
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Table 7. Root mean square error (RMSE) and relative root mean square error (RRMSE) for 

predictions of full ECG signal using multiple linear regression and neural networks method 

for imputation of missing values by activity for three different participants 

 RMSE  RRMSE 
Improved 

accuracy (%) 
Person 

Multiple linear regression  0.23764 0.03794 13,2 

Person A 
Neural  

Network  
0.22992 0.03671 15,34 

Multiple linear regression  0.18340 0.02728 14,29 

Person B 
Neural  

Network  
0.17541 0.02610 17,21 

Multiple linear regression  0.05098 0.01231 9,88 

Person C 
Neural  

Network  
0.05094 0.01230 10,0 

 

 

4.4. Discussion 

 

It is crucial for the suggested strategy to have an effective classifier that can observe and classify 

various physical activities. In [139] and [140], a single waist-worn accelerometer is used to 

identify physical activities, producing robust findings in a lab setting. Results from the free-

living scenario, however, revealed noticeably worse performance. Three data mining 

algorithms (Decision Tree, Random Forest, and PART algorithm) were tested for recognition 

of 33 different physical activities in [141], with an overall accuracy of 96.52% while utilizing 

6 sensors. Similar results were obtained by [142] using a multi-sensor system using a 3D 

accelerometer and gyroscope to attain 97.38% accuracy. In recognition of physical activity 

using smartphone sensors, [143] achieves an accuracy of 88% while [144] classifies five 

common activities with 98% accuracy. This is due to the integration of acceleration sensors and 

gyroscopes in smartphones. The results are significantly influenced by the position of the 

smartphone, even though employing smartphone sensors is less intrusive than multi-sensor 

setup. Long processing delays also interfere with other typical mobile phone tasks. Body-
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mounted smartwatches make it possible to monitor activities unobtrusively. In addition, the 

precise location aids activity recognition research by relieving the strain of determining the 

location of the device. Ultimately, the results offer a satisfactory level of classification accuracy 

and a show promise for their application in imputing sensor data. Some of the problems include 

performance inconsistencies between the lab and free-living environments, variances in 

somatotype and athletic habits, which have a significant impact on the imputation and 

classification outcomes. 
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5. Specification of semantic data constraints and validation of 

data 
 

After ensuring quality of data, it is necessary to organize and reformat the data collected across 

various devices into certain, predetermined format for simple integration into the EHR. This 

also implies that all data and information exchange must carefully adhere to the most recent 

norms and regulations [145]. The following chapter will provide more detail on this. 

 

5.1. Materials and methods 

 

The study involved three steps: 1) data collection, 2) modeling the process of parsing, data 

verification and validation, and 3) verifying the proposed process through a use-case study 

employing datasets including various pertinent data types. 

 

5.1.1. Data collection 

Two datasets have been utilized to validate the validation process outlined in the next chapter. 

The Fitbit Versa 2 smartwatch wristband was used by sixteen people to report their activities 

across a five-month period for the PMData Dataset [146], which was made available via Simula 

Open Datasets. Additionally, during the period of two months, the OxyBeat [147] dataset, 

which includes heart rate, body temperature, and oxygen saturation (SpO2), was gathered for 

the purpose of this study using Fitbit Versa 3. This was done to ensure a more robust use-case 

scenario by adding a number of additional data types, with an emphasis on COVID-relevant 

data types. When compared to the total amount of hemoglobin in the blood, SpO2 indicates the 

proportion of oxygenated hemoglobin (hemoglobin containing oxygen) (oxygenated and non-

oxygenated hemoglobin). Deoxygenated blood has a darker red hue than fully oxygenated 

blood in the arteries and arterioles and travels back to the lungs through veins. Even during 

physical activity and sleep, blood oxygen saturation (SpO2) tends to fluctuate very little; during 

the day, blood oxygen levels typically range from 95 to 100%. Since less air is breathed in total 

while a person sleeps, their SpO2 will often be lower than it is during the day. SpO2 levels at 

night are often >90%. Additionally, the Fitbit Versa 3 smartwatch wristband was used to collect 

the data as it offered access to readings for oxygen saturation. One of the most well-known 

commercial wearable activity trackers, Fitbit, has sold over 105 million units globally since 

2010 and has close to 30 million active users. The Health Metrics Dashboard (Figure 40), which 
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tracks parameters including breathing rate, heartbeat rate variability, and SpO2 — all crucial 

metrics when it comes to disease diagnosis — was incorporated into the devices in the third 

quarter of 2020 [148]. Wearables' triaxial accelerometers record spatial body movements. 

Utilizing specialized algorithms, motion data is evaluated. In order to measure health-related 

metrics like steps taken, exercise time, or sleep time, patterns of motion are discovered. 

Wearables were first designed as a consumer product to encourage people to exercise and be 

physically active, but their use as research equipment and a patient support aid is growing [149]. 

260 clinical experiments have been registered at ClinicalTrials.gov since 2011 that employed 

Fitbit exclusively for data collection [150]. Steps were the main outcome of interest for the 

majority of the studies in question, followed by time spent exercising or sleeping, heart rate, 

and energy expenditure. Smart wearables, particularly those worn on the wrist, have 

demonstrated that they are dependable, durable, and acceptable [151].  

 

 

Figure 40. Health Metrics Dashboard 

  

Heart rate, oxygen saturation (SpO2), and body temperature are the health-related indicators 

taken into account in this study. The pulse rate is one of the critical indications that all personal 

trackers monitor. Additionally, the module for cleaning sensor data of this specific datatype has 

already been created and extensively discussed in earlier published paper [90]. As a result, this 

will also serve as the model's initial syntax and semantic validation example. The HL7 Structure 

Definition of HeartRate [152] must be adhered to in order to comply with HL7 standards. The 
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structure is developed from vital indicators observed during observation [153]. The tracker 

exports heart rate information as a JSON file, as seen below. 

 

 

Figure 41. An example of Heartbeat rate data (JSON) 

 

5.1.2. Process for parsing, verifying and validating the data 

Five seconds pass between heart rate observations, giving the PMData dataset a total of more 

than 1.5 million readings for the specified time frame. Each reading includes a timestamp, a 

"bpm" field that indicates the heart rate value, or beats per minute, and the reading's confidence 

level. The device's level of confidence in the accuracy of the heartbeat measures varies from 0 

to 3, with 3 denoting the highest level of confidence. For cleansing eHealth data, a data-driven 

methodology was used in earlier research [90]. It has demonstrated an accuracy improvement 

of between 10 and 17% and imputes inaccurate data using neural network methods. Copying 

the data, identifying corrupt data, treating corrupt data as missing data, imputing all missing 

data, and then producing the new dataset are all steps in the data cleaning process. In this 

instance, the data points with confidence equal to 0 were those chosen for imputation. As a 

result, cleaned data includes imputed values for data points with confidence level zero as well 

as original values for those with confidence levels 1-3. Then, using Schematron-based 

validation, clean data is parsed and examined. This process is illustrated in Figure 42.  

  



80 
 

 

Figure 42. Process of data cleaning and validation 

 

Large amounts of data must be supported by the parser effectively. Additionally, it must be 

reliable and not crash. A JSON parser that is SIMD-accelerated (single instruction, multiple 

data) and can process data at speeds of up to 2.2 GB/s was designed and implemented in Python 

using the pysimdjson module. It has two stages, with translator components in between: the 

first stage processes input in 64-byte batches, while the second stage creates a "tape 

representation" after it has been translated. The technique is described in detail in Figure 43 

below. 

 

 

Figure 43. Process of data parsing 
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Pseudocode for data parsing process, including the algorithm used to extract and convert data 

within the Translator component is given below: 

 

1. Identify structural characters (braces, brackets, colons, commas) 

2. Identify pseudo structural characters (null, true, false, numerical value) 

3. Index the data 

Let data be an empty array 

For each character in JSON_data: 

    If the character is a brace or bracket, push it onto the data array 

    If the character is a colon or comma, push it onto the data array 

    If the character is a quotation_mark, push the entire string within the quotes 

onto the data array 

    If the character is a pseudo structural character or numerical value, push it 

onto the data array 

4. Validate UTF-8 encoding 

5. Translate data into HL7 compliant format 

Extract non HL7 data and convert to HL7-compliant data 

 Input: list of indexed data lines from JSON (L) that need to be translated 

 Input: name ID to verify type of Resource (R) 

 Output: data mapped to correct HL7 Resource element (M) 

Use name ID to identify Resource type (R) using keywords from Resource IDs (K) 

var: current line (l) to convert 

loop for each l є L: 

 var: list of elements (E) 

 split(s) into E 

 tokenize(s) into E 

 var e є E is current element 

 loop for each e є E: 

  var current map element m(K,e) 

  correctFormat(e) 

  tag(m(K,e)) 

  add to output map M(k,e)  

 done 

done  

6. Creating element tree 

Let root be a new XML element called "health_data" 

For each item in HL7_data: 

    Let element be a new XML element with the name of the HL7 element and the value 

of the HL7 element 
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    Append the element to the root element 

7. Create XML document 

    Let xml_doc be a new XML document 

    Append the root element to the xml_doc 

    Return xml_doc as a string of XML-formatted data 

 

The input parameters for the algorithm are the list of indexed data lines from JSON parser (L) 

and name ID to identify the Resource (R). Output is a data map of elements of a specific HL7 

Resource. Each line is split into tokens. For each token, corresponding element of the resource 

is found (K). Elements are added into an output map containing values (e) mapped to elements 

(K) of a particular Resource (R). This is passed onto the XML parser. 

Extensible Markup Language (XML) documents are the data format required for EHR. 

Elements and attributes make up XML documents. The following schemas can be used to 

specify an XML document's permitted structure: 

• Document Type Definition (DTD),  

• Microsoft XML-Data Reduced (XDR), or, most commonly used  

• XML Schema definition language (XSD). 

Schema validation was the only validation method initially used for XML documents. This 

signifies that an XML document was considered valid if it had satisfied schema validation. 

While ensuring document structure is correct, schema validation is unable to verify conditional 

and integrity criteria. The suggested procedure for validating personal healthcare papers (Figure 

44) would check the document's structure before validating the content and characteristics of 

the document. Finally, it is necessary to validate any extra limitations that might 

additionally exist. 

 



83 
 

 

Figure 44. Expected validation process 

 

Schematron is a structural schema validation language based on rules and expressed in 

Extensible Markup Language (XML).  It is frequently used for making assertions about the 

presence or absence of specific patterns in XML trees and has the ability to create restrictions 

in a way that other XML schema languages, such as XML Schema and Document Type 

Definition (DTD), cannot (Figure 45).  

 

 

Figure 45. Classification of schema languages 

 

Skeleton implementation of ISO Schematron is a four-stage XSLT pipeline [197]. XSLT 

(Extensible Stylesheet Language Transformations) is a declarative language used for 

transforming XML documents into other formats, such as HTML, plain text, or another XML 

format. XSLT is part of the XSL (Extensible Stylesheet Language) family of languages and is 
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often used in conjunction with XSL-FO (Extensible Stylesheet Language Formatting Objects) 

for generating printable documents. XSLT uses XML-based templates and rules to describe 

how to transform an input XML document into a desired output format. XSLT works by 

applying templates to the nodes of the input XML document, which match specific patterns 

defined in the XSLT stylesheet. Each template contains instructions on how to transform the 

matched node and its children into the desired output format. The first two stages are macro-

processors and only necessary if expert features are being used.  

 

 

Figure 46. UML diagram showing Schematron integration [198] 

 

Here's how Schematron validation of an XML document works, step by step: 

● Schematron schema: Create a Schematron schema, which is an XML document that 

defines the validation rules for desired XML documents. A Schematron schema 

typically consists of two parts: a set of patterns that define the rules, and a set of 

assertions that implement those rules. 
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● XSLT compiler: XSLT Compiler compiles Schematron schema into an XSLT 

stylesheet. The XSLT compiler takes Schematron schema and generates an XSLT 

stylesheet that can be used to validate XML documents against the rules defined in the 

schema. 

● XSLT processor: Then use an XSLT processor, such as Saxon or, in this case, Xalan, to 

run the XSLT stylesheet generated by the compiler. The XSLT processor takes your 

XML document and applies the rules defined in the Schematron schema to it. 

● XSLT checker: The XSLT processor produces an intermediate result in the form of an 

XML document that contains information about the validation results. This intermediate 

document is then processed by an XSLT checker, which is another XSLT stylesheet that 

converts the intermediate result into a human-readable report that lists the validation 

errors and warnings. 

● Document with XSLT checker: Finally, run XML document through the checker. The 

checker applies the rules defined in the Schematron schema to your XML document 

using the XSLT processor and produces a validation report that shows any validation 

errors and warnings that were found. 

In summary, Schematron validation involves creating a Schematron schema, compiling it into 

an XSLT stylesheet, running the stylesheet against your XML document using an XSLT 

processor, processing the intermediate result with an XSLT checker, and producing a validation 

report that shows any errors or warnings. This process is pictured below: 

 

 

Figure 47. Process of Schematron validation 

 

This requires specific attributes, content control of certain elements by another element or even 

specification of requirements between multiple XML files [42]. "ISO as Information 

Technology, Document Schema Definition Languages (DSDL), Part 3: Rule-based validation, 

Schematron (ISO/IEC 19757-3:2016)" has standardized Schematron. Schematron is the most 

widely used industry standard language for defining data constraints. To express analogous 
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health data (e.g., heartbeat rate), different devices follow varying XML syntax. The XML 

documents must have correct syntax in addition to being meaningful in terms of their semantics 

for personal health data exchange and integration to be successful. The goal is to simplify things 

by creating and maintaining a single Schematron document for similar health data across 

various personal tracking devices. Schematron may construct relationships or constraints where 

one element depends on another element and can demand the presence of some, all, or none of 

the attributes in any given element. Complex rules and restrictions required for semantic 

validation can be implemented with it. Syntax validation refers to grammar-based validation, 

such as data field type (number, string or Boolean) and simple value constraints (minimum or 

maximum length of a string, or minimum and maximum values of a number). Semantic 

validation means constraint rules among the data fields in a document. For example, if data 

field value ‘A’ is ‘X’ then field ‘B’ must be ‘Y’. The data coming from different manufacturers 

or devices usually means data structure is proprietary to that device (or line of devices) and is 

described differently for the same specific measure (e.g., heart rate). In order to process such 

data, data points need to be confined to a single shared schema, regardless of the source. 

Schematron makes review of a document according to its context and has a set four-layer 

hierarchy: 

I. Phases 

II. Patterns 

III. Rules 

IV. Assertions / Reports 

Assertion is a common element in Schematron schema for defining assertions. It specifies data 

constraints which will be inspected from the specified context of the XML document. The test 

attribute that the assert element contains is an XSLT pattern. This is expressed using 

Schematron assertions as follows: 

 

<assert test="@id">The element Observation must have an id attribute.</assert> 

 

<assert test="count(*) = 2 and count(Category) = 1 and count(Code)= 1">The element 

Observation must have the child elements Category and Code.</assert> 

 

Unless the condition is fulfilled, an exception is raised, with the message displayed being the 

content of the assertion element. Alternatively, report can be used instead of assert.  
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The distinction between an assert and a report is that the former produces an error when its 

assertion is broken, whereas the latter does so when its condition is fulfilled. 

The rule element, which has a context property with a value that must match an XPath 

Expression that chooses at least one node in the document, is used to create Schematron rules. 

Where the assertion must be applied is specified by the context attribute. The context is fixed 

to the Observation element in the example above, so the Schematron rule with the Observation 

element as the context should appear as follows: 

 

<rule context="Observation"> 

 -assert 1- 

 -assert 2- 

</rule> 

 

Pattern element groups various rules together and has a name attribute which is shown to the 

user when the pattern is applied. For example: 

 

<pattern name="Check structure"> 

 -rule 1- 

 -rule 2- 

</pattern> 

 

Finally, the Phase element allows progressive validation of constraints in stages rather than 

validating everything at once. Furthermore, it is possible to use Schematron for validation of 

XML instance documents which use namespaces, with each of the namespaces being declared 

in the schema prefixed by the ns element. Namespace URI and namespace prefixes found in ns 

element are defined by its two attributes, uri and prefix. For the XML instance document 

defined in namespace “http://hl7.org/fhir”, the Schematron schema would look like this: 

 

<sch:schema xmlns:sch="http://www.ascc.net/xml/schematron"> 

    <sch:ns uri="http://hl7.org/fhir" prefix="ex" /> 

 -pattern 1- 

 -pattern 2- 

</sch:schema> 

 

It is necessary to standardize the personal health data to EHR data transfer in this scenario 

through the use of schematrons so that it has the proper medical context and structure. Together 
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with other EHR data (such as past diagnoses, medication usage, doctor visits, and test results), 

this information can help medical professionals evaluate patients remotely, identify problems 

early, and provide better healthcare. A project involving industry and healthcare professionals 

called Integrating the Healthcare Enterprise (IHE) aims to improve healthcare. It offers 

guidelines, resources, and services for managing and exchanging healthcare data 

interoperability. "Engage physicians, health authorities, industry, and users to create, test, and 

deploy standards-based solutions to critical health information needs," is the organization's 

stated objective [43]. This is accomplished by setting standards, outlining requirements, and 

giving developers technical frameworks and guidelines to work within. IHE Technical 

Frameworks [44] outline how to put previously established standards into practice in order to 

achieve warranted medical information exchange, enable feasible and effective system 

integration, and provide the best possible patient care. These are regularly expanded and 

maintained by the IHE Technical Committees on an annual basis, following a period of public 

review. Among others, Technical Frameworks (TF) described includes those of Anatomic 

pathology, Dental, Cardiology and IT infrastructure. IT infrastructure describes integration 

profiles [45] as well as ITI transactions ITI-1 to ITI-28 [46], ITI-29 to ITI-64 [47], ITI-65 and 

greater [48], together with the metadata [49][50]. Cardiology TF specifically encourages the 

creation of a variety of implementation profiles, such as cardiac or intravascular imaging, 

resting ECG (REFW), or stress testing workflow (STRESS), many of which would profit from 

the aforementioned incorporation of aggregated personal health data (such as ECG information) 

into a formal EHR [51][52]. Furthermore, Quality, research and public health TF under 

Supplements for Trial Implementation invites beginning of development for several 

implementation profiles, among them, Aggregate Data Exchange (ADX) [53].  

"Interoperable public health reporting of aggregate health data" is the purpose of ADX. Periodic 

(weekly, monthly, quarterly, or annual) reports from a health facility to an administrative 

jurisdiction are the most typical use cases for ADX. Two normative message structure definition 

files must be created in order for a Content Data Structure Creator to determine the structure of 

the XML data that will be transmitted between a Content Creator and Content Consumer: 

● A Data Structure Definition (DSD) file that follows the standard schematron 

● The ISO Schematron schema and the W3C XML Schema Definition (XSD), both of 

which need to match the output of the normative XSLT transformation from DSD to 

XSD and from DSD to schematron. 

Rules-based schema language is required for the phases in the validation process that deal with 

contents and constraints. Grammar-only based schemas, like XSD, can't possibly achieve the 
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desired level of validity. Alternative choices include the XML schema languages Tree Regular 

Expressions for XML (TREX), REgular Language for XML Next Generation (RELAX NG), 

and Schematron, which can all check both the structure and the contents of an XML document. 

In contrast to TREX and RELAX NG, Schematron is able to make assertions about patterns of 

occurrence anywhere in the text. The ability to nest Schematron schemas inside XSD schemas 

is another benefit of utilizing Schematron. Due to this, Schematron is the most appropriate 

schema language for the process of validation described in this study. Using the aforementioned 

datasets, a schematron-based validation procedure will be defined and subsequently verified.  

To express comparable health data, different devices develop varying XML syntax (e.g., 

heartbeat rate). The XML documents must represent a complete FHIR resource and have 

acceptable syntax in order for personal health data transfer and integration to be successful. The 

goal is to simplify things by creating and maintaining a single Schematron document for similar 

health data across various personal tracking devices. Schematron may construct relationships 

or constraints where one element depends on another element and can demand the presence of 

some, all, or none of the attributes in any given element. Complex rules and restrictions required 

for semantic validation can be implemented with it. The rule element, which has a context 

property with a value that must match an XPath Expression that specifies one or more nodes in 

the document, is used to create Schematron rules. The place of application of the assertion is 

specified by the context attribute. The context is set to the Observation element in the instance 

above, thus the Schematron rule with the Observation element serving as the context should 

seem as follows (Figure 48). 

 

 

Figure 48. Rule instance for FHIR Resource Observation 

 

Heartbeat rate Schematron for validating data with the intention of being included in EHR must 

have the rules specified in order (Figure 49) to satisfy all of the aforementioned requirements 

and adhere to the standards. 
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Figure 49. Rules hierarchy for heartbeat rate Schematron 

 

5.1.3. Process verification: use-case study 

In a use-case study, the defined method was validated using two sets of data that contained a 

range of pertinent types of data. The results are shown in the chapter that follows. 

5.2. Results 

 

The objective was to investigate the inclusion of personal health-related data collected by mass-

market wearables into the central HIS's EHR. Data including cardiac rate, body temperature, 

and oxygen saturation (SpO2) was collected via use of activity tracker for the goal of this 

research in order to evaluate the data cleaning and validation process described in this work. 

The data was cleaned using the data-driven methodology for cleaning of eHealth data [90], 

which imputes inaccurate data using neural network techniques and has previously improved 

accuracy by 10-17%. Two-stage parsing model has been designed to test the given validation 

process in a use-case scenario. Two months' amount of readings for each of the three data types 

evaluated equates to over 50MB of JSON files with over 2 million data points, which a Ryzen 

5 5600X six core processor analyzed in 58 seconds (set to run at 3.7 GHz in 64-bit mode). This 

has been done for all data points, with a success rate of one hundred percent, in terms of 

reliability. 

As a thorough explanation of the necessary requirements, a detailed overview of all the rules 

established is provided in the remainder of this chapter. This made it easier to make 

Schematrons for three different sorts of data. This is applied in the procedure' last stage of data 

validation.  

 

 

 
 Vital signs profile rules 

 

 
Profile-specific rules (e.g. heartbeat 
rate, body temperature, oxygen 
saturation) 

 
 Reporting-specific rules (continuous) 



91 
 

5.2.1. Heartbeat rate 

FHIR HeartRate Structure Definition provides a description of heartbeat rate data. Schematron 

for heartbeat rate type data is presented in Figure 50. 

 

 

Figure 50. Schematron for heartbeat rate type data 

 

Line by line explanation of the schematron is as follows: 

1. This is the opening tag of the Schematron schema. It declares the start of the 

schema definition, specifies the XML namespace for Schematron and specifies that 

the query language used is XSLT 2.0. 

2. Defines a namespace with prefix "f" and URI "http://hl7.org/fhir". This namespace 

will be used in XPath expressions throughout the schema. This namespace is used 

throughout the schema to specify elements and attributes from the FHIR data format. 

3. Defines a namespace with prefix "h" and URI "http://www.w3.org/1999/xhtml". This 

namespace will also be used in XPath expressions throughout the schema. This 

namespace is used to specify elements and attributes from the XHTML data format. 

4. Line starts a new pattern with ID "observation", which contains rules for 

validating FHIR Observation resources. 

5. Specifies the title of the pattern as "Observation". Provides a human-readable 

title for the pattern. 
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6. Starts a new rule within the pattern, which applies to all elements in the 

document with the FHIR Observation resource type. 

7-8. This line defines an assertion (a condition that must be true for the data to 

be considered valid). It checks that either the dataAbsentReason element is not 

present, or if it is present, then none of the value elements in the Observation 

element start with the word "value".  

9-11. This line defines another assertion. It checks that either the code element 

in the component element is not the same as the code element in the Observation 

element, or if they are the same, then the system attribute in the code element of 

the component element is not the same as the system attribute in the code element 

of the Observation element. 

12. Defines an assertion that checks that the "id" attribute of the "Observation" 

element is equal to "heart-rate". 

13.  Defines an assertion that checks that the "subject" element is present and has 

a "reference" attribute with a value. 

14-15. Defines an assertion that checks that the "effectiveDateTime" element has a 

value in the correct format. 

16. This asserts that an Observation resource must have a measured value, which is 

represented by the valueQuantity element with a nested value attribute. 

17. End of rule definition for Observation resource. 

18. End of pattern definition for Observation resource. 

19. Declares a pattern with an id of "category". This pattern will contain rules 

for validating the Observation category code.  

20. Declares a rule that applies to the category coding code element within the 

Observation resource. 

21. Declares an assertion that the value of the code element must be "vital-signs". 

22. Declares an assertion that the code element must exist and be uniquely defined. 

23. End of rule definition for category coding code. 

24. Declares a rule that applies to the category coding system element within the 

Observation resource. 

25-26. Declares an assertion that the value of the system element must be 

http://terminology.hl7.org/CodeSystem/observation-category, i.e., that Vital signs 

must be defined by the correct system. 

27. End of rule definition for category coding system. 

28. End of pattern definition for category coding. 

29. Declares a pattern with an id of "code". This pattern will contain rules for 

validating the Observation code. 

30. Declares a rule that applies to the code element within the Observation resource. 

31.  Declares an assertion that the value of the code element must be "8867-4", 

i.e., Heartbeat rate must be defined by correct observation code. 
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32. Declares an assertion that the system element must have a value of 

http://loinc.org, i.e., Heartbeat rate must be defined by the correct system. 

33. Declares an assertion that the code element must exist and be uniquely defined. 

34. End of rule definition for code. 

35. End of pattern definition for code. 

36. End of schema. 

 

Below is the data after the transformation process, adhering to all the rules in the 

abovementioned schematron for its particular data type (heartbeat rate). 

 

 

Figure 51. HL7 compliant heartbeat rate data 

 

Process of validating a XML data against a Schematron results in a report where all, if there are 

any, rules violations have been found. There are several libraries available for validating XML 

with Schematron in various programming languages, including Java. One of the most popular 

Java libraries for Schematron validation is the "Saxon" library, which provides full support for 

Schematron validation in addition to XSLT and XQuery processing. Saxon is an open-source 

library that can be used in both commercial and non-commercial applications. To use Saxon for 

Schematron validation in Java, the following was used: 

 



94 
 

// Load the XML and Schematron files 

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance(); 

DocumentBuilder builder = factory.newDocumentBuilder(); 

Document xml = builder.parse(new File("sample.xml")); 

Source schematron = new StreamSource(new File("schematron.sch")); 

 

// Create a Schematron validator 

Processor processor = new Processor(false); 

XsltCompiler compiler = processor.newXsltCompiler(); 

XsltExecutable exec = compiler.compile(schematron); 

XsltTransformer transformer = exec.load(); 

 

// Validate the XML 

transformer.setSource(new DOMSource(xml)); 

transformer.setDestination(new NullDestination()); 

transformer.transform(); 

 

This code uses the Saxon library to load the XML and Schematron files, create a Schematron 

validator, and validate the XML against the Schematron rules. 

Other programming languages also have libraries available for Schematron validation, such as 

"libxml2" for C/C++, "lxml" for Python, and "Xerces" for Java and C++. The specific library 

and code that should be used depend on the programming language and environment of the HIS 

system (in this case, Java). 

If the message contains data as shown on abovementioned Figure 51, the report confirms the 

data as valid. However, if instead the data (Figure 52) does not comply with all of the rules, the 

result is shown on Figure 53.  
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Figure 52. Invalid FHIR heartbeat rate resource 

 

 
Figure 53. Negative report of Schematron validation for heartbeat rate 

 

Upon inspection, it is clear that the observation code does not match the necessary heartbeat 

rate LOINC code. Furthermore, the patient is not defined. Finally, the datetime field doesn’t 

have a proper format. Thus, the received data is not a proper FHIR resource and does not comply 

with the specification and HL7 standard. 

 

5.2.2. Body temperature 

Conversely, body temperature data is defined by FHIR BodyTemp Structure Definition [154] 

which is to be adhered to. The structure derives from Observation vital signs. Body temperature 

data readings are exported in the form of a JSON file. Readings occur every sixty seconds. Each 

reading consists of a timestamp, the temperature value and the unit used to log the temperature 

in (in this case, degrees Celsius).  
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Figure 54. Schematron for temperature type data 

 

Line by line explanation of the schematron is as follows: 

1. This is the opening tag of the Schematron schema. It declares the start of the 

schema definition, specifies the XML namespace for Schematron and specifies that 

the query language used is XSLT 2.0. 

2. Defines a namespace with prefix "f" and URI "http://hl7.org/fhir". This namespace 

will be used in XPath expressions throughout the schema. This namespace is used 

throughout the schema to specify elements and attributes from the FHIR data format. 

3. Defines a namespace with prefix "h" and URI "http://www.w3.org/1999/xhtml". This 

namespace will also be used in XPath expressions throughout the schema. This 

namespace is used to specify elements and attributes from the XHTML data format. 

4. Line starts a new pattern with ID "observation", which contains rules for 

validating FHIR Observation resources. 

5. Specifies the title of the pattern as "Observation". Provides a human-readable 

title for the pattern. 

6. Starts a new rule within the pattern, which applies to all elements in the 

document with the FHIR Observation resource type. 

7-8. This line defines an assertion (a condition that must be true for the data to 

be considered valid). It checks that either the dataAbsentReason element is not 
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present, or if it is present, then none of the value elements in the Observation 

element start with the word "value".  

9-11. This line defines another assertion. It checks that either the code element 

in the component element is not the same as the code element in the Observation 

element, or if they are the same, then the system attribute in the code element of 

the component element is not the same as the system attribute in the code element 

of the Observation element. 

12. The first rule in the observation pattern checks that the Observation element 

has an id attribute with value "body-temperature". 

13. The next rule checks that the Observation element has a subject element with a 

reference attribute that has a unique value. This references the patient. 

14-15. The third rule checks that the effectiveDateTime element has a value that 

matches a specific date-time format. 

16. The fourth rule checks that the valueQuantity element has a value attribute with 

a value. 

17. End of rule definition for Observation resource. 

18. End of pattern definition for Observation resource. 

19. The next pattern with id "category" contains rules for validating the category 

element within the Observation element. 

20. Declares a rule that applies to the category coding code element within the 

Observation resource. 

21. The first rule in the category pattern checks that the code attribute of the 

coding element within the category element has a value of "vital-signs". 

22. The second rule in the category pattern checks that the code attribute of the 

coding element within the category element is uniquely defined. 

23. End of rule definition for category coding code. 

24. Declares a rule that applies to the category coding system element within the 

Observation resource. 

25-26. The next rule in the category pattern checks that the system attribute of 

the coding element within the category element has a specific value. 

27. End of rule definition for category coding system. 

28. End of pattern definition for category coding. 

29. Declares a pattern with an id of "code". This pattern will contain rules for 

validating the Observation code. 

30. Declares a rule that applies to the code element within the Observation resource. 

31.  Declares an assertion that the value of the code element must be "8310-5", 

i.e., Body temperature must be defined by correct observation code. 

32. Declares an assertion that the system element must have a value of 

http://loinc.org, i.e., Body temperature must be defined by the correct system. 

33. Declares an assertion that the code element must exist and be uniquely defined. 
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34. End of rule definition for code. 

35. End of pattern definition for code. 

36. End of schema.  

 

Below is the data after the transformation process, adhering to all the rules in the 

abovementioned schematron for its particular data type (body temperature). 

 

 

Figure 55. HL7 compliant body temperature data 

 

In Figure 56, data does not comply with FHIR body temperature resource, as is shown by the 

rules violation report in Figure 57. 
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Figure 56. Invalid FHIR temperature body resource 

  

 

Figure 57. Negative report of Schematron validation for body temperature 

 

This time, LOINC code does identify body temperature resources correctly, however, 

observation code is not set to “vital-signs”. Furthermore, the temperature value itself is missing. 

 

5.2.3. Oxygen saturation 

Finally, oxygen saturation in arterial blood is specified by FHIR OxygenSat Structure 

Definition [155] which is to be adhered to. The structure is developed from Observation vital 

signs. Oxygen saturation is output in a form of JSON file, consisting of dateTime and value 

attributes. dateTime has the same format as in previously mentioned heartbeat rate readings 

while value attribute is expressed in percentage. Figure 58 and Figure 59 present Schematrons 

for body temperature and oxygen saturation.  
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Figure 58. Schematron for oxygen saturation data 

 

Line by line explanation of the schematron is as follows: 

1. This is the opening tag of the Schematron schema. It declares the start of the 

schema definition, specifies the XML namespace for Schematron and specifies that 

the query language used is XSLT 2.0. 

2. Defines a namespace with prefix "f" and URI "http://hl7.org/fhir". This namespace 

will be used in XPath expressions throughout the schema. This namespace is used 

throughout the schema to specify elements and attributes from the FHIR data format. 

3. Defines a namespace with prefix "h" and URI "http://www.w3.org/1999/xhtml". This 

namespace will also be used in XPath expressions throughout the schema. This 

namespace is used to specify elements and attributes from the XHTML data format. 

4. Line starts a new pattern with ID "observation", which contains rules for 

validating FHIR Observation resources. 

5. Specifies the title of the pattern as "Observation". Provides a human-readable 

title for the pattern. 

6. Starts a new rule within the pattern, which applies to all elements in the 

document with the FHIR Observation resource type. 
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7-8. This line defines an assertion (a condition that must be true for the data to 

be considered valid). It checks that either the dataAbsentReason element is not 

present, or if it is present, then none of the value elements in the Observation 

element start with the word "value".  

9-11. This line defines another assertion. It checks that either the code element 

in the component element is not the same as the code element in the Observation 

element, or if they are the same, then the system attribute in the code element of 

the component element is not the same as the system attribute in the code element 

of the Observation element. 

12. The first rule in the observation pattern checks that the Observation element 

has an id attribute with value " satO2", identifying Oxygen saturation. 

13. The next rule checks that the Observation element has a subject element with a 

reference attribute that has a unique value. This references the patient. 

14-15. The third rule checks that the effectiveDateTime element has a value that 

matches a specific date-time format. 

16. The fourth rule checks that the valueQuantity element has a value attribute with 

a value. 

17. End of rule definition for Observation resource. 

18. End of pattern definition for Observation resource. 

19. The next pattern with id "category" contains rules for validating the category 

element within the Observation element. 

20. Declares a rule that applies to the category coding code element within the 

Observation resource. 

21. The first rule in the category pattern checks that the code attribute of the 

coding element within the category element has a value of "vital-signs". 

22. The second rule in the category pattern checks that the code attribute of the 

coding element within the category element is uniquely defined. 

23. End of rule definition for category coding code. 

24. Declares a rule that applies to the category coding system element within the 

Observation resource. 

25-26. The next rule in the category pattern checks that the system attribute of 

the coding element within the category element has a specific value. 

27. End of rule definition for category coding system. 

28. End of pattern definition for category coding. 

29. Declares a pattern with an id of "code". This pattern will contain rules for 

validating the Observation code. 

30. Declares a rule that applies to the code element within the Observation resource. 

31.  Declares an assertion that the value of the code element must be " 2708-6", 

i.e., Oxygen saturation must be defined by the correct observation code. 
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32. Declares an assertion that the system element must have a value of 

http://loinc.org, i.e., Oxygen saturation must be defined by the correct system. 

33. Declares an assertion that the code element must exist and be uniquely defined. 

34. End of rule definition for code. 

35. End of pattern definition for code. 

36. End of schema.  

 

Below is the data after the transformation process, adhering to all the rules in the 

abovementioned schematron for its particular data type (oxygen saturation). 

 

 

Figure 59. HL7 compliant oxygen saturation data 

 

Finally, in Figure 60, non-compliant oxygen saturation XML is given, with the report on 

Schematron validation given in Figure 61. 
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Figure 60. Invalid FHIR oxygen saturation resource 

 

 

Figure 61. Negative report of Schematron validation for oxygen saturation 

 

Here, wrong resource ID is given (sat02 instead of satO2). Also, data absent reason is given 

even though the data is present. Thus, this is not a valid FHIR resource. 

 

The following is a detailed breakdown of the mandatory requirements for the specified data 

types: 

Observation.code must include a single code with:  

● fixed value of coding system corresponding to loinc.org 

● fixed coding code corresponding to: 

▪ 8867-4 for heartbeat rate 

▪ 8310-5 for body temperature 

▪ 2708-6 for oxygen saturation 

● all codes must have system value 
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Additionally, an Observation must have a value quantity or, in the absence of a value, a reason 

why the data was not present. In case the value quantity is available, it must have: 

▪ numerical value 

▪ fixed value quantity system corresponding to unitsofmeasure.org 

▪ Unified Code for Units of Measure (UCUM): 

▪ /min (per minute) for heartbeat rate 

▪ Cel (Celsius) or degF (Fahrenheit) for body temperature 

▪ % (per cent) for oxygen saturation 

In total, Observation needs to:  

▪ comprise of three mandatory elements (with four more nested mandatory elements), 

▪ support four elements, 

▪ have fixed values for three (body temperature) to four (heartbeat rate, oxygen saturation) 

elements. 

The adoption of the appropriate Schematron ensures adherence to each and every rule for all 

provided data types. The semantic constraints framework allows the specification of data with 

typically highly complex structure, while the validation framework can be utilized as an 

independent component or can be integrated as a module into a major data processing system. 

General points to note regarding FHIR resource representation: 

▪ FHIR elements are always in the namespace http://hl7.org/fhir, typically defined as 

default namespace on root element 

▪ Resource names are case-sensitive 

▪ Element names are case-sensitive and must appear in the order the documentation 

specifies. In case of elements repeating, they must be ordered 

▪ FHIR elements must not be void - they either have a value attribute, valid child element 

or extension 

▪ Attributes must not be void 

▪ Infrastructural elements need to appear before any other defined child elements, i.e. first 

base resource elements, then domain resource elements 

Element Observation resource offers "measurements and simple assertions made about a 

patient, device or other subject" and is utilized for vital signs, height, weight, laboratory results, 

etc. The logical ID of the resource, in this case heartbeat rate, is contained in the element id. 

Metadata contains information about the resource, and a profile URL, which refers to a structure 

profile that this resource contends to follow, such as vital signs. An optional Text provides a 
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human-readable summary of the resource. While coding refers to a code that is explicitly 

specified by a terminology system (observation-category and http://loinc.org, correspondingly) 

and distinguished by an existing code, category defines the general sort of observation (vital 

signs and 8867-4). The display makes the meaning of the code human-readable. The term 

"subject" refers to the patient, who is the object of the observation. The four types that are 

accessible for Effective[x] are dateTime, period, timing, and instant. EffectiveDateTime is 

employed here. DateTime may represent date, date-time, or partial date, with the appropriate 

formats being YYYY-MM-DD or YYYY-MM-DDThh:mm:ss +zz:zz and YYYY or YYYY-

MM, according to the standard. Nonetheless, only date-time is anticipated for this particular 

use case, and the Schematron rules must reflect this. Value[x] offers information determined as 

a result of the observation and there are several types possible (as shown in Figure 62). 

ValueQuantity is utilized here. ValueQuantity is made up of a numerical value, a unit 

representation (such as bpm), a system that specifies the coded unit form, and the unit itself in 

coded form. Comparator is a second (optional) argument with the following potential values < 

(less), less or equal (<=), > (more) and more or equal (>=).  In this scenario, mapping data 

points from the wearable is simple after modifying the datetime format.  

 

 

Figure 62. value[x] types 

 

▪ Since the FHIR Vital Signs profile establishes minimal requirements for the 

Observation resource to record, search, and get the vital signs, all data types must adhere 

to the same set of criteria (e.g., temperature, blood pressure, respiration rate, etc.). The 

regulations relevant to each profile and any extra rules that may be necessary to come 

after this. Following the guidelines of the most recent FHIR version, all XMLs 
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generated from data points and consistent with the schematrons established in this 

research include:data types, in XML and JSON format 

▪ the terminology layer, meaning CodeSystems and ValueSets 

▪ the conformance framework (StructureDefinition) 

▪ the FHIR resources, meaning Patient and Observation 

Regarding the implementation described within this research, executable components in a form 

of parser and validator were developed in Python 3 using Anaconda Spyder, open-source IDE 

for scientific programming and computing (data science, machine learning applications, large-

scale data processing, etc.) and utilizing scientific packages NumPy, SciPy, Matplotlib, 

pysimdjson and pandas. XML templates and Schematrons were written in Notepad++. 

 

5.3. Integration into existing HIS: conceptual implementation model overview 

 

The choice of integration method often depends on the specific use case and requirements of 

the healthcare organization. Proposed conceptual model implementation is given in Figure 64 

below. Many Hospital Information Systems (HIS) use RESTful APIs (Application 

Programming Interfaces) to access Electronic Health Record (EHR) data. RESTful APIs are a 

popular way to allow communication between different software systems over the internet. 

With RESTful APIs, a HIS can provide access to specific EHR data and functionality to other 

systems, such as mobile apps, patient portals, and other healthcare applications. RESTful APIs 

are often used because they provide a flexible and scalable approach to integrating EHR data 

with other systems. Using RESTful APIs, EHR data can be securely accessed and shared across 

different systems, allowing healthcare providers to improve patient care, streamline workflows, 

and enable interoperability between different healthcare systems. Thus, a REST-based access 

layer for standard HL7-defined data models can be used to enable the FHIR server to receive 

data generated by wearable sensors. RESTful API is a software architectural style that defines 

a set of constraints for building web services. RESTful APIs are typically used to expose a set 

of resources or endpoints that can be accessed over the internet using standard HTTP methods 

(such as GET, POST, PUT, and DELETE). They are commonly used in modern web 

applications to provide a scalable and flexible way to access and manipulate data. To use 

RESTful API with HL7 messages, one approach is to create a RESTful API that can receive 

and send HL7 messages. This can be done by creating specific endpoints that accept or return 

HL7 messages in a specific format. For example, the RESTful API could expose an endpoint 
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that accepts an HL7 message in XML format. Thus, POST endpoint on the server (Figure 63) 

handles data uploads. Once on the server, parse the incoming request and extract the file and 

metadata from it. Then, save the file to the server's filesystem or database. Lastly, return a 

response to the client indicating that the file was successfully uploaded. 

 

 

Figure 63. POST REST API  

 

By using RESTful API with HL7 messages, healthcare organizations can create a flexible and 

scalable solution for exchanging healthcare data. RESTful APIs can provide a modern and user-

friendly interface for accessing healthcare data, while HL7 messages can ensure interoperability 

with legacy healthcare systems. This approach can also provide a more granular level of control 

over healthcare data, allowing organizations to control which resources are exposed and who 

has access to them. The HL7 gateway is a middleware that facilitates communication between 

the HIS and external system granting access to secured FHIR endpoints. HL7 gateways provide 

a secure and controlled way to exchange healthcare information between different systems. To 

ensure the confidentiality, integrity, and availability of data transmitted through the HL7 

gateway, various authentication and authorization methods can be used, such as Single Sign-

On (SSO) authentication.  
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Figure 64. Component for integration of HL7 compliant sensor data into HIS 

 

SSO authentication enables users to authenticate once and then access multiple applications or 

systems without having to re-enter their credentials. This can be achieved through various 

authentication protocols such as OAuth 2.0. OAuth 2.0 is widely used in many industries, 

including healthcare, to provide secure and controlled access to protected resources. OAuth 2.0 

is an authorization framework that allows a user to grant a third-party application access to their 

protected resources on a server without sharing their credentials. In OAuth 2.0, authorization is 

separated from authentication, which means that a user can grant an application permission to 

access their data without sharing their login credentials. OAuth 2.0 uses access tokens to grant 

access to protected resources. These tokens are issued by an authorization server after the user 

has provided consent. The access token is then sent to the third-party application, which can 

use it to access the user's protected resources on the server (Figure 65). 
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Figure 65. API Gateway as an OAuth 2.0 Resource Server and Authorization Server [199] 

 

Resource profiling involves creating a standardized representation of the sensor data to enable 

interoperability between different systems. This can be achieved using standard terminologies 

and data models such as LOINC (Logical Observation Identifiers Names and Codes). By 

profiling HIS resources using HL7, healthcare organizations can improve the efficiency and 

effectiveness of data exchange, reduce errors and inconsistencies, and improve patient 

outcomes by facilitating the sharing of health information across different systems and 

organizations. The messages are validated with the Schematron for the appropriate data type. 

Resource linking involves connecting the sensor data with the corresponding patient record in 

the HIS. This linking can be achieved by using a unique patient identifier or other relevant 

information such as date of birth or medical record number. FHIR server is a platform that 

enables the exchange of healthcare data between different systems. The FHIR server stores the 

standardized sensor data in a FHIR resource format and provides APIs for accessing and 

exchanging the data. A FHIR server provides a platform for healthcare organizations to store, 

manage, and share healthcare data in a standardized format that can be easily accessed and 

integrated with other healthcare applications and systems. FHIR servers can be used to manage 

various types of healthcare data, including patient information, clinical data, and administrative 

data. FHIR servers typically support RESTful APIs, which allow healthcare applications and 

systems to access and exchange healthcare data in a standardized format. FHIR servers also 
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support various data formats, including XML and JSON, to facilitate interoperability and data 

exchange across different systems. FHIR servers can be deployed in different ways, including 

as standalone servers or as part of larger healthcare information systems (HIS). FHIR servers 

can also be used to support various healthcare use cases, including patient engagement, clinical 

decision support, and population health management. 
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6. Security and privacy 
 

Lastly, ensuring privacy and security as the data collected is sensitive in nature; it is crucial to 

offer a safe system that allows usage of data in an official health information system, — in other 

words, its integration into EHR. Article [156] has identified two vulnerabilities in 

communication between activity tracker Fitbit® and its associated Web server:  

 (a) Cleartext login information pertaining to the user’s password, meaning it is sent to 

the server in clear text and is afterwards logged, and  

 (b) Cleartext HTTP data processing, meaning the data is transmitted in a form of 

cleartext as plain HTTP. 

Both situations lack data protection and authentication. A comprehensive security study of 

some of the most widely used fitness tracking devices available is also provided in the article 

[157]. It focuses primarily on malicious actor behaviors that try to introduce fake data into 

virtualized cloud services, resulting in inaccurate data analytics. A fraudulent FIT file (reporting 

80 million steps taken) was successfully submitted to the cloud using a Man-In-The-Middle 

(MITM) attack with no warnings being raised. The Advanced Encryption Standard (AES) 

technique is used for data encryption and decryption in the design for a fitness activity tracking 

application in [158]. This prevents the manipulation of the data. Encryption and decryption 

processes are carried out in the database and saved on the server. In summary, the initial task is 

to reconcile the discrepancies and combine several data sets into a single, coherent aggregate. 

The effort spent gathering, connecting, and mapping data from various sources turned out to be 

laborious and time-consuming. Therefore, a transparent, clear, and automated method is 

required. It would provide useful information and improve the standard of government-based 

eHealth services (as it would provide a more individualized approach). First, regardless of the 

source, data must be standardized after being aggregated. This is accomplished by designing 

schemas. Data schemas define all data types' formats and contents (such as heartbeat rate). This 

impacts how that data will be processed by software. It is required to transform all data for a 

single measure (such as heartbeat rate) and integrate it into a standard schema for that distinct 

metric because the systems in question would be processing data arriving from various devices 

and platforms, all of which describe the same data differently. A common schema functions as 

a unique source of documentation as a result, and it may be referred to from any source. The 

complexity of the data and semantic significance must be taken into account in order to provide 

reliable insights. Schemas need to specify significant distinctions for every clinical 

measurement in order to optimize their value and usefulness (e.g., to distinguish whether a heart 
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rate is at rest or during exercise). The schemas can also be utilized to describe a particular 

measure (for instance, one value of a blood pressure measurement) or a descriptive statistic of 

a collection of measurements in general (e.g., an average, minimum or maximum blood 

pressure value over a period of time). Finally, the usage of schemas standardizes the data and 

gives it the appropriate clinical context. In addition to the rest of the data from the EHR (such 

as previous diagnoses and prescriptions, hospitalizations, and laboratory tests), this information 

can assist doctors in remotely monitoring patients, diagnosing diseases early, and customizing 

therapies and medications. However, a suitable privacy assurance is essential given the 

sensitivity of such data. One of the largest challenges to making sure that eHealth solutions are 

successful is gaining the trust of patients, protecting their privacy, and understanding the 

ramifications of self-diagnosis without a doctor's assistance. Recent changes aim to provide 

patients more authority, autonomy and control over decisions involving their personal health 

information by gradually transferring the control over eHealth data from an institutional level 

to the level of the patient. Data gathered by using wearable sensors is prone to data security 

vulnerabilities. With an emphasis on the potential for malicious user insertion of fake data into 

the tracker's cloud-based services, [157] provides security analysis of a number of fitness 

trackers that are currently on the market. As data is wirelessly sent from the sensor to the 

smartphone via Bluetooth LE (low energy), [159] highlights the significance of secure pairing 

protocols to prevent eavesdropping attempts. By executing attacks to find weaknesses in 

hardware and software, SecuWear [160], a multiple-domain wearables testbed framework, 

improves the security investigation of wearables. The greatest threat to data privacy in cloud-

based applications is recognized as unencrypted communication [161]. SensCrypt, a secure 

protocol for Bluetooth activity tracker management, is presented by [162] and [163] suggests a 

filtering system that balances the security and sharing of health data. The AES algorithm is used 

by [158] for data encryption and decryption because it prevents data manipulation. Another 

concern is privacy, since various health-related applications that connect with well-known 

activity trackers interact with "unexpected" third parties such as social networks [18]. Even 

though the application's privacy policy is required to make this information clear, the majority 

of users never review it [164], therefore they are unaware that their data is being shared. Finally, 

for better, more individualized, and more economical healthcare, it is essential that people 

accept modern healthcare technology. Evidence shows that some patients, however, object 

because they feel their privacy is being invaded. [165] focuses on how privacy issues affect the 

choice of whether to use eHealth technology. The findings indicate that the perception of 

advantages is the best predictor of the usage of digital health technology. Similar to this, [166] 
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demonstrates a strong association between people's ongoing health conditions and their 

decisions to adopt healthcare technology. 

 

 
Figure 66. Security and privacy threats in the context of 6G 

 

Figure 66 illustrates an analysis on 6G's security and privacy issues. It covers: 

● Attacks on weaker cryptographic systems by the use of quantum computers, 

● Corrupted or hijacked IoT devices, 

● Data theft from IoT devices, 

● Eavesdropping, 

● Signal jamming, 

● Node compromise attack on Visible Light Communication (VLC). 

Artificial intelligence is considered as the major technology to help reduce these dangers [167]. 

Additionally, [168] suggests a BloCoV6, a blockchain-aided unmanned aerial vehicles (UAV) 

contact-tracing strategy, for locating prospective COVID-19 patients. Despite the difficulties, 

there is massive interest in this system's potential and advantages, particularly in light of the 

present coronavirus (COVID-19). Possible use-case scenarios for telemedicine and wearable 

technology during the COVID-19 pandemic are shown in Figure 67. 
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Figure 67. Use-case scenarios for sensor-equipped wearables and telehealth 

 

6.1. Security and privacy threats 

Data security safeguards digital data from being accessed by unauthorized users, altered in a 

malicious manner (corrupted), or stolen. The following are three significant dangers to the 

security of medical data [161]: 

• integrity - data must not be altered (tampering), 

• availability - it must be possible to readily access data when needed, 

• confidentiality - data must not be shared with an unauthorized party. 

Privacy guarantees that data is handled correctly, including obtaining users' consent, providing 

relevant notice, and adhering to legislative requirements. Particular worries in relation to data 

privacy include: 

• sharing data with potentially unauthorized third party, 

• data collection and storage methods, 

• regulatory constraints (e.g., GDPR or HIPAA).  

Regulation (GDPR), a single piece of legislation. Health Insurance Portability and 

Accountability Act is the legislation that governs medical data protection in the United States 

(HIPAA). In Table 9 below, a comparison between GDPR and HIPAA is provided. 
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Table 9. GDPR and HIPAA comparison 

 GDPR HIPAA 

Data protected  

Any non-anonymized data 

related to identifiable 

individual 

Protected Health Information 

(PHI) 

Accountabilit

y 
Data controller  

Covered entity (healthcare 

provider) 

Breach 

notification 

The breach has to be 

reported within 72 hours; 

the users affected must be 

informed  

Health provider must notify 

the patient 

Third parties Written safeguards User must be informed 

Sanctions Depends on the country Criminal and money penalties 

 

In this research, the focus is on the EU and GDPR. General principles of GDPR are: 

● consent – patient needs to be fully informed and must express their explicit consent to 

processing of data, 

● purpose limitation – purposes must be clear and relevant (impactful), 

● data minimization – gathering, using and storing only necessary data, 

● transparency to the patient, 

● accuracy of the gathered data, 

● privacy by design (default) – taking into account privacy during the planning and 

implementation processes, 

● data subject rights – patients have the right to seek data deletion and to view their data; 

data retention duration - information shouldn't be kept forever, data integrity, 

availability, and confidentiality are ensured by security measures. "Personal data 

relating to physical or mental health of a person, including the provision of health care 

services, which reveal information about their health state," is how GDPR's Article 4 

paragraph 15 defines "health data." Some sorts of data, such those from activity trackers, 

aren't always included in this category. Health information is therefore further defined 

as: refers to information that is obtained in a professional medical environment, such as 

EHR dataRaw data, such as that gathered by fitness tracker sensors, only in cases it is 

used to evaluate a person's health. Step count may or may not be considered health data 

depending on whether it is being utilized in a medical setting or not, in contrast to data 

like cardiac rate, oxygen saturation, or blood pressure, which are clearly identified as 

such. 

Because different categories of data may have distinct legal ramifications, it is necessary to 

clearly specify them when using raw data from a tracker. 
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When managing private data, a Privacy Impact Assessment (PIA) is an essential step. The 

purpose of PIA is to identify and evaluate privacy issues while gathering, storing, managing, 

and exchanging data in order to reduce the risks associated with information [169]. Before 

beginning the creation of any system that is intended to gather or handle the personal data of 

persons, an evaluation must be done. So that the risks may be further examined, any privacy 

concerns discovered throughout this procedure must be reported. Then, mandated activities are 

established in accordance with the impact and likelihood that have been identified. Figure 68 

provides a summary of the security and privacy risks that have been found in the eHealth system 

that leverages patient-side obtained personal health data, such as information from a wearable 

device; it shows how handling personal health data can be subject to security and privacy risks 

at the subsequent steps: 

● data collection (sensors) and communication to mobile devices;  

● data transmission via wireless networks;  

● processing and storing information on healthcare servers, i.e., adhering to standards and 

regulations; and  

● accessing stored information (e.g., physician viewing patient's EHR). 

 
Figure 68. Overview of security and privacy issues in mHealth system 

 

6.1.1. Data on tracker and mobile devices 

Fitness trackers have been found to have a number of vulnerabilities over the years, including 

the following: 

● using third party analysis tools,  
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● lack of privacy policies, 

● internal (device) or external (cloud) insufficient encryption, 

● insufficient security at transport layer, for example, using HTTP instead of HTTPS 

protocol, 

● insufficient security at application level, such as allowing injection on the client side, 

e.g., SQL injection, 

● poor authentication and authorization (password-protected access), 

● incorrect session handling. 

These may be avoided, but while building activity trackers, producers must assure privacy and 

security. Any mHealth mobile application must also be impervious to manipulation with 

data and able to defend itself by identifying threats in real time. 

6.1.2. Data on wireless network 

Data transfer between a mobile device and a cloud server is vulnerable to manipulation, 

including Man-in-the-Middle attacks (MITM). End-to-end encryption (E2EE), shown in Figure 

69, using a device-specific key is required to avoid this from happening. 

6.1.3. Data regulations and standards 

Data must be kept in a manner that complies with all applicable standards and regulations, 

including healthcare data type semantic constraints. Verifying and validating data utilizing a 

Schematron-based validation process can do this [170]. Legal requirements must also be 

followed. The GDPR requires privacy policies that expressly warn patients about the data that 

will be collected, how it will be used, and whether it will be shared with outside parties. Data 

usage requires patient consent, which must be obtained. The patient has the right to rescind their 

permission at any moment. 

 

Figure 69. End-to-end encryption 
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6.1.4. Data access from server 

As it is used in several Central HIS throughout the world, the EHR demonstrates its value as a 

tool in the delivery of medical treatment. Security procedures must be put in place within the 

medical facility to prevent unauthorized individuals from entering it (or other access point). In 

order to protect patient privacy and secure the security of data inside the EHR, the policy must 

contain role-based access control. Table 10. concludes by outlining potential security and 

privacy threats as well as mitigating measures. 

 

Table 10. List of possible risks and solutions 

Risk Solution Result 

Purpose of data collecting has 

not been explained to the 

patient 

The purpose must be 

explicitly stated in the 

Privacy policy or in a consent 

form signed by the patient 

Mitigated 

The nature of data is not 

explicitly stated to the patient 

(i.e., exact data types) 

Data types must be explicitly 

stated in the Privacy policy or 

in a consent form signed by 

the patient (e.g., heartbeat, 

oxygen saturation) 

Mitigated 

Extent of data usage not 

explicitly stated 

Extent to which data will be 

used must be explicitly stated 

in Privacy policy or consent 

form signed by the patient 

Mitigated 

Potential sharing of data with 

third parties not addressed 

In case of sharing the data 

with third parties, must state 

this beforehand in the Privacy 

policy or consent form signed 

by the patient 

Mitigated 

Patient has no option to 

withdraw consent at any time 

and have their data deleted 

Patient must be able to 

revoke their consent at any 

time at which point all their 

data must be deleted 

Mitigated 

Patient not able to revise or 

correct data they deem 

incorrect 

Secure channel must exist 

through which patients can 

inform errors in data exist 

and data revision or 

modification is necessary 

Mitigated 

Data is not anonymized 
Data must be anonymized, 

i.e., processed in such a way 
Mitigated 
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that makes identification of a 

specific patient impossible 

Data stored longer than it is 

necessary for processing 

Data is kept only temporarily 

during processing until it is 

uploaded to the cloud 

Mitigated 

Data is not stored securely 

(e.g., data is publicly 

accessible or unencrypted) 

Data must be stored 

encrypted and mustn't be 

accessible from external 

storage devices or 

applications 

Mitigated 

Password or encryption keys 

are kept in plain text 

Secure Hash Algorithm 

(SHA) is used to store keys 

and passwords 

Mitigated 

Insecure points of input; risks 

of client-side attacks or data 

tampering (e.g., SQL 

injection) 

Prevented by input 

sanitization 
Mitigated 

Insecure data transmission 

channel 

Data transmission secured by 

Secure Sockets Layer (SSL) 

protocol 

Mitigated 

Inadequate logging practices, 

i.e., writing sensitive data 

into logs 

Ensure no confidential data is 

written into logs 
Mitigated 

Data backup lacks encryption 
Data backup stored after 

encryption 
Mitigated 

Data breaches, i.e., access by 

unauthorized parties 

Authentication and 

authorization process in 

place, following AuthO2 

standard. Role-based access 

control 

Mitigated 

Data tampering, i.e., 

modifications to data made 

by an unauthorized party 

All data is encrypted, all keys 

are securely hidden 
Mitigated 
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Possibility of exploits by 

malicious software, i.e., 

taking advantage of bugs and 

vulnerabilities to cause harm 

Sandboxed software, i.e., 

isolated virtual machine 
Partially mitigated 
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7. Discussion 
 

Wireless sensor networks commonly experience faults, which can accumulate and decrease the 

accuracy of sensory readings over time. This can negatively impact the reliability of the network 

and lead to incorrect conclusions. To use personal health data in a machine learning algorithm, 

data quality assessment and cleaning are necessary. This involves assessing specific data quality 

indicators such as accuracy, timeliness, completeness, and consistency, and using similarity and 

correlations between attributes to identify incomplete or corrupt data. In Chapter 4, data-driven 

models for data cleaning were compared on a use case of ECG signal, namely, multiple linear 

regression, decision tree, random forest, artificial neural network and support vector machines. 

In one of the leads' data, 10% of the data was discarded, and the missing values were computed 

using statistical and machine learning techniques in order to compare the quality of computation 

of various data-driven models. The estimated values are then contrasted with the actual values, 

and models are assessed by contrasting the calculated errors. Multiple linear regression and 

neural networks have shown the best results and were chosen for further optimization. The 

missing data were imputed using the correlation and similarity. This method can be used on a 

wide range of data, and as a result, it has numerous potential uses. RMSE and RRMSE were 

calculated to quantify the difference between the two datasets. This step provides a measure of 

how much the cleaning process changed the original dataset and how well the imputation 

algorithm performed in filling in the missing data. By randomly marking some data as erroneous 

and then using a machine learning algorithm to impute missing values, the cleaned dataset can 

be compared to the original dataset to evaluate the effectiveness of the cleaning process. The 

goal was to optimize the data cleaning model and improve accuracy by using an extra variable 

- intensity of physical activity, which is known to correlate with the values being imputed. 

These imputed entries were then combined into a complete dataset that has no missing 

information. For combined datasets, the accuracy increased by a total of 10% to 17%. This has 

resulted in a system model for data cleaning and transformation based on a combination of 

selected classification and regression models and their optimization which ensures accuracy of 

data collected. 

The process described in Chapter 5 was used to model a validation process that made sure the 

data adhered to regulations and standards. This was achieved by:  

● Defining semantic constraints for healthcare data types in order to guarantee adherence 

to standards and regulations making the information valid and relevant from a medical 

standpoint 
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● Defining and modeling a procedure for validating the obtained data so that it may be 

readily transferred and included into an official EHR. Lastly, this methodology was 

tested in a use-case study utilizing an existing dataset that contained a variety of 

pertinent data types. 

● Additionally, conceptual implementation model overview for integration into an 

existing HIS was proposed. 

For the purpose of using personal health data in individualized and preventative healthcare, 

compliance with regulations and standards is crucial. By using the procedure outlined in this 

work, newly processed data may be officially added to an EHR in accordance with IHE 

standards and regulations for the relevant data types. Finally, Table 8 below provides a 

comparison of the suggested model with those already described in literature. The model is 

consistent with the leading industry standard, has its focus on integrating data into EHR, offers 

a data cleaning module and automatic Schematron-based validation. 

  

Table 8. Comparison of the performances and functionalities of various system models 

 Data 

collected via 

wearables 

Data 

cleaning 

process 

Data 

integration 

Validation 

process 

Complianc

e with 

standards 

WearableHUB Yes N/A PHR N/A N/A 

Angel-Echo Yes N/A PHR N/A N/A 

OpenHealth Yes 

Machine 

learning 

algorithms 

PHR N/A N/A 

mHealth No N/A PHR/EHR N/A 
HL7 FHIR-

based 

Tangle Yes N/A PHR/EHR N/A 
HL7 FHIR-

based 

mHealth4Afrik

a 
Yes N/A PHR/EHR 

Validation 

through human 

review; group 

interviews and 

observation 

HL7 FHIR-

based 

Proposed model Yes 

Machine 

learning 

algorithm: 

neural 

network 

EHR focus 
Schematron 

validation 

HL7 FHIR-

based 

 

In order to guarantee compliance with standards and regulations and to make the information 

medically useful and valid, semantic constraints for healthcare data types were developed. It is 

suggested to use a semantic validation and Schematron-based validation procedure. The data 
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will be able to be transferred and included into a formal EHR due to the validation method 

provided in this research. The method was subsequently validated using data sets that include 

several health-related data types. 
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8. Conclusions 
 

Given that the accuracy of sensory measurements declines over time, faults in wireless sensor 

networks are very prevalent. Therefore, if not adequately addressed, the buildup of flaws can 

have a major detrimental impact on the network's dependability and result in false inferences. 

To be used in a machine learning algorithm, the quality of the collected personal health data (a 

variety of person's metrics and vital signs, including heartbeat rate, oxygen saturation, 

respiration rate, body temperature, electrocardiogram, electromyogram, blood pressure, blood 

glucose levels, and galvanic skin response) must be sufficient. In this situation, the required 

process entails the estimation of data quality and data cleaning process, which entails breaking 

down the data quality into distinct data quality indicators, these being accuracy or correctness, 

timeliness, completeness, and consistency. This is done via use of similarity and correlations 

between attributes, i.e., by creating co-appearance matrices, normalized similarity matrix for 

attributes, and correlation matrix. The correlation between physiological characteristics is well 

established, and alterations in at least two or more indicators are common (e.g., the heart rate 

and respiration ratio increase simultaneously). A precise missing value imputation (e.g., 

statistical pattern recognition, especially, decision trees and regression) is essential to boost the 

usability of the data set for continued usage in a HIS when incomplete or corrupt data has been 

found. 

Various data-driven models for imputing data were examined as a part of this research for a 

diverse range of subjects, and the findings indicated that neural networks and multiple linear 

regression were the most effective. These algorithms were picked for improvement as a result. 

Additionally, the data was afterwards categorized according to the level of activity performed 

and imputed piece by piece, producing better imputation results. 

Thus, the effort contributes the following: 

● Thorough comparison of data-driven methodologies to identify the best imputation 

model for future advancements in calculating ECG signal data obtained from sensors. 

● An improved method in which physical activity is first separated from the health-

related sensor data before being categorized and then imputed. The suggested data-

driven approach has demonstrated 10-17% better predictions by integrating 

classification and regression methods.  

Furthermore, by deliberately attempting to check incorrect XML files against the relevant 

Schematron, conformance to every rule for all provided data types has been thoroughly 
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validated. The research's next major obstacle was defining a validation procedure to make sure 

the data complied with standards. This was accomplished by:  

● Defining semantic restrictions for health-related data types to assure standard 

compliance and make the information meaningful and legitimate from a medical 

standpoint 

● Defining and modeling the validation process for the gathered data, allowing for 

simple transfer and incorporation of the data into a formal EHR. Last but not least, 

this methodology was tested in a use-case study utilizing an existing dataset that 

contained a variety of pertinent data types. 

To utilize personal health information for tailored and preventative treatment, compliance with 

standards is necessary. By using the procedure outlined in this work, produced data can be 

added to a formal EHR while adhering to the most recent IHE standards for the specified data 

types. The model is consistent with the top industry standard, focuses on EHR data integration, 

offers a data cleaning module, and offers automatic Schematron-based validation. 

The work also provides in-depth identification and analysis of security and privacy threats when 

integrating IoMT health data into EHR in both the pre-6G and future 6G eras. Pre-6G risks are 

addressed with solutions, while 6G general solution concepts are examined, with certain 

outstanding questions being noted. This completes the concept of a system architecture for the 

integration of data from wearable smart devices inside the central health information system, 

including harmonization and validation of data with global standards and regulations pertaining 

to the EHR. 
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