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out whom I would not be where I am today, and would not be the person I am today. His support,

guidance, encouragement and belief in myself is what made me even consider taking this step

in my life, and without all of those things it could never have been successfully completed.

I would like to extend my gratitude to all of my colleagues at LARICS (Laboratory for

Robotics and Intelligent Control Systems) for their selfless support, their friendship, and for

confirming my life long suspicion that serious and challenging work is being done by people

who know how to enjoy life, who refuse to take themselves too seriously, and who do their work

with a dose of quality banter. It was a pleasure to have an opportunity to work with people who

share my sense of humor, love for music, sailing and much more.

I would also like to express my deepest gratitude to my family and friends. Without their

love, support, and encouragement throughout my entire life its hard to image where and who I

would be today.



Abstract

This thesis deals with the application of optimization and optimal control for the execution of

viticulture related tasks with a mobile manipulator. The focus is on viticultural procedures that

require manipulation for their successful execution, namely viticultural spraying and suckering.

The central challenge tackled in this thesis is the application of prioritized optimization and

optimal control to resolve different kinds of redundancies that arise in the execution of men-

tioned tasks. Depending on the needs of the specific task, redundancy resolution is performed

in various spaces: task space, joint velocity space and joint position space.

Viticultural spraying refers to the process of applying a protective spraying agent to grapevine

plants. Two variants of the spraying task are considered: applying the spraying agent to the en-

tire plant canopy and to a specific part of the plant. During the treatment of the entire canopy,

referred to as continuous spraying, the position of the spraying agent is controlled by both the

mobile vehicle and the robot arm. This introduces the first kind of redundancy addressed in this

thesis, which is resolved predictively in the task space. A model predictive control algorithm is

employed to anticipate changes in the reference trajectory of the spraying agent and optimize

the coordinated control actions for both the mobile vehicle and the robot arm accordingly. The

control of the robot arm itself for this task presents a second type of redundancy addressed

within this thesis. The spraying nozzle used in this thesis is an axis-symmetric tool, and its

orientation around its approach axis does not affect the application of the spraying agent. The

task of controlling the spraying nozzle is a 3T2R task, where three translational and two rota-

tional degrees of freedom impact task execution. Prioritized task space control is employed to

address this redundancy, approaching the control of the spraying nozzle as a prioritized 3T2R

task. Linear velocity of the spraying agent is prioritized over its angular velocity, with an ad-

ditional priority fully constraining the optimization problem. The task of spraying a particular

plant area, referred to as selective spraying, is tackled using a similar approach, but in the joint

position rather than velocity space. A prioritized positional inverse kinematics solver is devel-

oped for this task, using iterative prioritized task space control to determine the joint positions

that optimize a number of prioritized positional tasks.

The viticultural suckering task refers to the removal of shoots, buds, and suckers emerging

at the lower part of the grapevine plant. Both the robotic tool developed for this task and the

accompanying control method are presented. A brush-shaped robotic suckering tool employs

the direct drive design philosophy, enabling precise and high-bandwidth torque measurements.

This capability allows the developed tool to function as a tactile sensor. An experiment was

conducted to investigate the correlation between the overlap of the brush bristles with an ob-

stacle and the torque exerted by the tool. The established relationship between these values

is employed to convert torque measurements into estimates of obstacle overlap, enabling the



intuitive design of an overlap controller. The developed brush-shaped tool also exhibits axis

symmetry, reintroducing the same type of redundancy encountered in controlling the spraying

nozzle. This redundancy is also addressed through the application of prioritized task space con-

trol. The suckering control method utilizes the torque-sensing capability of the developed tool

for tactile exploration, maintaining physical contact with the plant trunk during the suckering

process. This enables the robot arm to explore and map the trunk relying solely on tactile feed-

back, without the need to previously detect its shape.

There are three main contributions of this thesis:

• Task space model predictive control based method for vineyard spraying with a mobile

manipulator (Chapter3)

• A direct drive brush-shaped vine suckering robotic tool with torque sensing (Chapter4)

• Prioritized task space control based method for compliant vine suckering using a direct

drive brush-shaped robotic tool (Chapter4)

Keywords: Mobile Manipulation, Optimization and Optimal Control, Redundancy Resolution,

Agricultural Robotics
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Optimalno upravljanje mobilnim manipulatorom za zadatke

prskanja i plijevljenja u vinogradarstvu

Ova doktorska disertacija bavi se primjenom optimizacije i optimalnog upravljanja za izvrša-

vanje zadataka povezanih s vinogradarstvom mobilnim manipulatorom. Fokus je na vinogradarskim

zadacima koji zahtijevaju manipulaciju za uspješnu izvedbu, prskanje i plijevljenje. Središnji

izazov kojim se disertacija bavi je primjena prioritizirane optimizacije i optimalnog upravl-

janja za razrješavanje različitih redundancija koje su prisutne u izvod̄enju navedenih zadataka.

Ovisno o potrebama pojedinog zadatka, razrješavanje redundancije se izvršava u različitim pros-

torima: prostoru zadatka, prostoru brzina zglobova te prostoru pozicija zglobova.

Vinogradarsko prskanje odnosi se na zadatak nanošenja zaštitnog sredstva za prskanje na

biljke vinove loze. Dvije varijante zadatka prskanja su razmotrene: nanošenje sredstva na či-

tavu krošnju te na specifične dijelove biljke. Tijekom tretiranja čitave krošnje, koje se još naziva

i kontinuirano prskanje, pozicija sredstva za prskanje upravljana je i mobilnim vozilom i robot-

skom rukom. Ovo rezultira prvom vrstom redundancije kojom se ova disertacija bavi, koja je

razriješena prediktivno, u prostoru zadatka. Algoritam modelskog prediktivnog upravljanja ko-

rišten je za predvid̄anje promjena u referentnoj trajektoriji sredstva za prskanje te optimizaciju

koordiniranih upravljačkih akcija za mobilno vozilo i robotsku ruku u skladu s predikcijom.

Samo upravljanje robotskom rukom za navedeni zadatak predstavlja drugu vrstu redundan-

cije kojom se ova disertacija bavi. Mlaznica korištena za prskanje je osno-simetričan alat te

njena orijentacija oko vlastite osi prilaska ne utječe na nanošenje sredstva. Zadatak upravl-

janja mlaznice za prskanje je 3T2R zadatak, kod kojeg tri translacijska i dva rotacijska stupnja

slobode utječu na izvršavanje zadatka. Prioritizirano upravljanje u prostoru zadatka korišteno

je za razrješavanje navedene redundancije, promatrajući upravljanje mlaznice kao prioritizirani

3T2R zadatak. Translacijska brzina sredstva za prskanje prioritizirana je nad njegovom rotaci-

jskom brzinom, uz dodatni prioritet koji u potpunosti ograničava optimizacijski problem. Za-

datak prskanja odred̄enog dijela biljke, koji se još naziva i selektivno prskanje, riješen je na

sličan način no u prostoru pozicija umjesto brzina zglobova. Algoritam prioritizirane pozicijske

inverzne kinematike razvijen je za ovu svrhu, koristeći iterativno prioritizirano upravljanje u

prostoru zadatka za odred̄ivanje pozicija zglobova koje optimiraju više prioritiziranih pozici-

jskih zadataka.

Zadatak vinogradarskog plijevljenja odnosi se u ovom kontekstu na zadatak uklanjanja iz-

danaka i pupova koji se pojavljuju na donjem dijelu biljke vinove loze. Prezentirani su robot-

ski alat razvijen za ovu svrhu te odgovarajuća upravljačka metoda. Robotski alat za plijevl-

jenje u obliku četke razvijen je u skladu s dizajnom izravnog pogona, što omogućava precizno

mjerenje momenta s visokom frekvencijom. Navedena sposobnost omogućava korištenje razvi-

jenog alata kao senzora dodira. Proveden je eksperiment za evaluaciju odnosa izmed̄u prekla-



panja čekinja četke i prepreke te momenta proizvedenog od strane alata. Uspostavljeni odnos

izmed̄u tih vrijednosti koristi se za pretvaranje mjerenja momenta u estimaciju preklapanja,

što omogućava intuitivan dizajn regulatora preklapanja. Razvijeni alat u obliku četke takod̄er

je osno-simetričan alat, što rezultira istim tipom redundancije kao kod upravljanja mlaznicom.

Ova redundancija takod̄er je razriješena korištenjem prioritiziranog upravljanja u prostoru alata.

Upravljačka metoda za plijevljenje koristi sposobnost mjerenja momenta razvijenog alata za is-

traživanje na temelju dodira, održavajući kontakt s deblom biljke vinove loze tijekom procesa

plijevljenja. Ovo omogućava robotskoj ruci da istraži i mapira deblo oslanjajući se isključivo

na taktilnu povratnu informaciju, bez potrebe za prethodnom detekcijom njegovog oblika.

Disertacija je podijeljena u pet poglavlja.

U prvom poglavlju dan je uvod u istraživanje opisano u ovoj disertaciji te u šire istraži-

vačko područje poljoprivredne robotike. Predstavljeni su motivacija i ciljevi ovog istraživačkog

područja, uz diskusiju o povijesti poljoprivrede te značaju tehnološke inovacije u poljoprivredi.

Takod̄er, provedena je diskusija o benefitima koje nove tehnologije imaju potencijal uvesti u

različite poljoprivredne procedure, gdje korištenje robotske tehnologije može ponuditi dosad

nevid̄enu razinu autonomije i preciznosti. Objašnjeni su motivacija i ciljevi projekta HEKTOR

(Heterogeni autonomni robotski sustav u vinogradarstvu i marikulturi) u sklopu kojeg je is-

traživanje predstavljeno u disertaciji provedeno. Predstavljen je mobilni manipulator korišten

u disertaciji uz kratku argumentaciju izbora njegovih komponenti. Naglasak je na mogućnost

ovakvog sustava da izvršava zadatke koji zahtijevaju manipulaciju njegove okoline, zauzimajući

aktivnu ulogu u poljoprivrednim procedurama. Konkretne procedure razmatrane u disertaciji su

vinogradarsko prskanje i plijevljenje. Predstavljeni su istraživački ciljevi u kontekstu mobilne

manipulacije za izvršavanje navedenih procedura. Zadatak vinogradarskog prskanja podijeljen

je na kontinuirano i selektivno prskanje, dok su za zadatak plijevljenja razmotrene teme dizajna

robotskog alata te razvoja upravljačke metode.

U drugom poglavlju predstavljeni su i proučeni temeljni teoretski principi korišteni za

razvoj predloženih rješenja, potrebni za potpuno razumijevanje disertacije. Uvedena je tema

redundancije u kontekstu upravljanja robotskim sustavima, kao i različiti tipovi redundancije

koji se susreću u praksi. Intrinzična redundancija odnosi se na zadatak upravljanja čitavom

pozom nekog članka u kinematičkom lancu, dok se funkcionalna redundancija odnosi na up-

ravljanje jednog dijela te poze. Oba alata korištena u disertaciji su osno-simetrična, što uvodi

funkcionalnu redundanciju u problem upravljanja robotskom rukom. Osno-simetričan alat zaht-

jeva upravljanje čitavom trodimenzionalnom pozicijom alata te njegovom dvodimenzionalnom

orijentacijom, zanemarujući orijentaciju oko same osi simetrije. Redundancija te njeno razr-

ješavanje usko su povezani uz teme kinematike i upravljanja u prostoru zadatka. Objašnjena je

uloga Jacobian matrice u kinematici te upravljanju u prostoru zadatka. Provedena je diskusija
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o uvjetima u kojima je robotski sustav redundantan te o povezanosti redundancije i svojstava

Jacobian matrice. Predstavljen je problem pozicijske kinematike s objašnjenjem numeričkih

iterativnih metoda za pozicijsku inverznu kinematiku. Zatim, dan je uvod u matematičko po-

dručje optimizacije. Definiran je generalni optimizacijski problem te su objašnjeni pojmovi

kriterijske funkcije, optimizacijske varijable te ograničenja. Kratko je objašnjena klasifikacija

optimizacijskih problema s obzirom na svojstva kriterijske funkcije i ograničenja. Pobliže je

proučena klasa kvadratičnog programiranja, okarakterizirana optimizacijskim problemom s kri-

terijskom funkcijom kvadratičnog oblika uz afina ograničenja. Ovakav optimizacijski problem

pogodan je za upravljanje robotskom rukom u prostoru zadatka. Takod̄er, predstavljena je i

tema prioritizirane optimizacije kao alternative korištenju parametara težina za multikriteri-

jsku optimizaciju. Objašnjen je algoritam za prioritizirano kvadratično programiranje bez i s

ograničenjima te je provedena diskusija o korištenju istih za razrješavanje redundancije kod

upravljanja u prostoru zadatka. Posljednja tema predstavljena u ovom poglavlju je modelsko

prediktivno upravljanje. Modelsko prediktivno upravljanje metoda je optimalnog upravljanja

koja koristi model sustava za predikciju njegova ponašanja kroz odred̄eni vremenski horizont.

U slučaju linearnog sustava, modelsko prediktivno upravljanje takod̄er se može riješiti opti-

mizacijom kvadratičnog programa. U ovoj disertaciji, modelsko prediktivno upravljanje se

koristi za praćenje reference koja se mijenja u vremenu. Predstavljeni su različiti oblici kri-

terijskih funkcija te ograničenja koja se u ovom slučaju mogu koristiti za modelsko prediktivno

upravljanje.

U trećem poglavlju opisana su predložena rješenja za izvršavanje zadatka vinogradarskog

prskanja mobilnim manipulatorom. Poglavlje započinje definicijom problema mobilne manip-

ulacije za kontinuirano i selektivno prskanje, odnosno, za nanošenje tekućeg zaštitnog sredstva

na čitavu krošnju te na specifične dijelove biljke vinove loze. Provedena je diskusija o različitim

načinima kako se ovi zadatci obično izvršavaju u vinogradima. Dana je argumentacija za izvrša-

vanje navedenih procedura mobilnim manipulatorom te za izbor alata. Kombinacija robotske

tehnologije i alata za ručno prskanje nudi mogućnost autonomnog izvod̄enja zadatka uz vi-

soku preciznost nanošenja zaštitnog sredstva na biljku. Zatim, predstavljen je pregled područja

robotskog prskanja u poljoprivredi, planiranja trajektorije za mobilnu manipulaciju, razrješa-

vanja funkcionalnih redundancija te povezanih tema. Predstavljena je upravljačka metoda za

kontinuirano prskanje, kao kombinacija modelsko prediktivnog upravljanja u prostoru zadatka

te prioritiziranog upravljanja u prostoru zadatka. Metoda za kontinuirano prskanje mobilnim

manipulatorom koristi opis oblika krošnje biljke za generiranje referentne trajektorije zaštitnog

sredstva, omogućavajući pokrivenost krošnje bez ekscesivnog trošenja sredstva. Upravljačke

akcije u prostoru zadatka za mobilno vozilo te robotski manipulator dobivene su algoritmom

modelsko prediktivnog upravljanja za praćenje reference promjenjive u vremenu. Opisane su

kriterijska funkcija te funkcije ograničenja korištene za odgovarajući optimizacijski problem.
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Provedena je diskusija o utjecaju parametara kriterijske funkcije na ponašanje sustava te o

izboru parametara za postizanje željenog ponašanja te željenog načina razrješenja redundan-

cije. Upravljačke akcije robotskog manipulatora dobivene ovim algoritmom transformirane su

iz prostora zadatka u prostor zglobova korištenjem prioritizirane optimizacije. Argumentirana

je prioritizacija linearne nad kutnom brzinom upravljanog koordinatnog sustava te korištenje

konačnog prioriteta pozicija pojedinih zglobova. Prezentirani su rezultati metode kontinuira-

nog prskanja na različitim primjerima, uz korištenje različitih ograničenja na prioritizirani opti-

mizacijski problem. Različita ograničenja utječu na ponašanje sustava, odnosno na način razr-

ješenja redundancije prisutne u upravljačkom problemu. Prezentiran je algoritam prioritizirane

pozicijske inverzne kinematike korišten za zadatak selektivnog prskanja. Algoritam je temel-

jen na iterativnom prioritiziranom upravljanju u prostoru zadatka. Prezentirani su i različiti

parametri korišteni u algoritmu, čiji izbor utječe na vrijeme izvod̄enja te preciznost rješenja.

Metoda selektivnog prskanja koristi slične prioritete kao ona kontinuiranog prskanja, priori-

tizirajući poziciju nad orijentacijom upravljanog koordinatnog sustava. Provedena je diskusija

o različitim ponašanjima kojima prezentirani algoritam rezultira ovisno o zadanim vrijednos-

tima pojedinih prioriteta i mogućnosti ostvarivanja ovih vrijednosti.

U četvrtom poglavlju opisana su predložena rješenja za izvršavanje zadatka vinogradarskog

plijevljenja mobilnim manipulatorom. Kao što je već spomenuto, plijevljenje se u ovom kontek-

stu odnosi na proceduru uklanjanja izdanaka i pupova koji se pojavljuju na deblu biljke vinove

loze. Poglavlje započinje definicijom problema te raspravom o različitim načinima kako se ovaj

zadatak obično izvršava, uz predstavljanje alata koji se obično koriste za ručno i mehanizirano

izvršavanje navedenog zadatka. Argumentiran je izbor robotskog alata uz raspravu o potencijal-

nim benefitima korištenja robotske tehnologije za izvršavanje zadatka plijevljenja. Predstavljen

je pregled područja robotskog plijevljenja, robotskih alata s izravnim pogonom, taktilnog is-

traživanja prostora, taktilnog mapiranja i povezanih tema. Prezentiran je dizajn robotskog alata

u obliku četke korištenog za ovaj zadatak, temeljenog na izravnom pogonu. Izravni pogon u

ovom kontekstu označava manjak mehaničkog prijenosa izmed̄u rotora i vanjske osovine aktua-

tora. Ovakav dizajn aktuatora omogućava precizno mjerenje proizvedenog momenta uz visoku

frekvenciju mjerenja, korištenjem mjerenja struje. Predloženi robotski alat koristi navedeno

svojstvo za ostvarivanje taktilne povratne veze, s ciljem izvršavanja zadatka praćenja oblika

debla biljke vinove loze bez korištenja vizualne povratne veze. Objašnjen je eksperiment eval-

uacije odnosa izmed̄u preklapanja čekinja četke i prepreke te momenta proizvedenog od strane

alata. Upravljačka metoda koja omogućava robotskoj ruci praćenje oblika debla temeljena je na

upravljanju navedenog preklapanja korištenjem mjerenja momenta kao povratne veze. Objašn-

jen je automat stanja korišten za ostvarivanje željenog ponašanja obilaska debla biljke vinove

loze. Prioritizirano upravljanje u prostoru zadatka korišteno je za upravljanje robotskom rukom

temeljeno na taktilnoj povratnoj vezi. Definiran je korišteni prostor zadatka, kao i različiti ko-
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ordinatni sustavi korišteni za upravljanje. Predstavljeni su prioriteti korišteni za razrješavanje

redundancije, uz njihovu argumentaciju. Objašnjena je metoda korištena za taktilno mapiranje

debla biljke, uz predloženi vjerojatnosni model senzora. Taktilno mapiranje temelji se na iz-

gradnji više dvodimenzionalnih karata prostora, koje su kombinirane za dobivanje trodimen-

zionalnog modela debla biljke. Poglavlje je zaključeno diskusijom o provedenim eksperimen-

tima te postignutim rezultatima.

U petom poglavlju dan je zaključak ove disertacije.

Ova disertacija sadrži tri glavna znanstvena doprinosa:

• Metoda za prskanje vinograda mobilnim manipulatorom temeljena na modelskom predik-

tivnom upravljanju u prostoru zadatka (Poglavlje3)

• Robotski alat za plijevljenje vinove loze u obliku četke s izravnim pogonom i mjerenjem

momenta (Poglavlje4)

• Metoda temeljena na prioritiziranom upravljanju u prostoru zadatka za podatno pli-

jevljenje vinove loze korištenjem robotskog alata u obliku četke s izravnim pogonom

(Poglavlje4)

Ključne riječi: mobilna manipulacija, optimizacija i optimalno upravljanje, razrješenje redun-

dantnosti, poljoprivredna robotika
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Chapter 1. Introduction

CHAPTER 1

Introduction

1.1Motivation

The research presented within this thesis is a part of an exciting and rapidly growing research

field of agricultural robotics. In recent years, the research community has devoted continuous

efforts to the development and utilization of robotic systems in agriculture, aimed at both au-

tomating and enhancing various agricultural tasks. In order to gain a better understanding of the

underlying motivation driving this research, it is worthwhile to take a glimpse into the history

of agriculture.

Agriculture played a fundamental role in the birth of civilizations. The transition from a

nomadic, hunter-gatherer lifestyle to settled agricultural communities was a historical shift in

human history whose significance cannot be overstated. The advent of agriculture laid the

foundation for the development of societies, cultures and, consequently, the development of

technology. Driven, to a large extent, by technology, agriculture has evolved through several

distinct stages, known as "agricultural revolutions":

Stage 1:First Agricultural Revolution (circa 10,000 BCE - 4,000 BCE): The first agricul-

tural revolution marked the transition from a nomadic hunter-gatherer lifestyle to set-

tled agricultural communities. Early humans began cultivating crops and domesticat-

ing animals, leading to the establishment of agricultural practices as a foundation for

civilization. During this stage, basic agricultural practices were developed, along with

the primitive hand-held tools used to assist in their execution [1].

Stage 2:Second Agricultural Revolution (17th - 19th centuries): Also known as the British

Agricultural Revolution. This time period witnessed significant advancements in

farming technology and techniques. Innovations such as crop rotation, improved
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1.1. Motivation

tools, and the enclosure movement in Europe led to increased agricultural produc-

tivity, which fueled population growth. Already during this period, interest arose for

developing machines to help "automate" certain agricultural procedures. In 1701 (270

years before recording "Aqualung"!) Jethro Tull, an Oxford scholar and a rich land-

owner, developed the first seed drill that became a widely adopted innovation, used to

uniformly and economically sow seeds on prepared land [1].

Stage 3:Third Agricultural Revolution (mid-20th century): Also known as the Green Rev-

olution. This period was characterized by the introduction of high-yield crop vari-

eties and modern agricultural practices. Synthetic fertilizers, pesticides, and advanced

breeding techniques were employed to achieve higher crop yields. Except for max-

imizing crop yield, new breeding techniques were used to produce specific varieties

of particular crops that could lend themselves to a larger degree of mechanization [1].

These techniques proved to be a profoundly effective in addressing the problem of

global hunger. However, concerns arose regarding environmental sustainability and

chemical dependence.

Stage 4:Digital Agricultural Revolution (ongoing): Also known as Precision Agriculture.

This ongoing movement in agriculture involves the integration of technologies such

as data analytics, artificial intelligence, robotics and large-scale automation into farm-

ing practices. Advanced machinery and sensor networks enable optimized planting,

irrigation, and pest management, aiming for increased productivity and reduced envi-

ronmental impact.

The common thread uniting all the highlighted advancements in agricultural production is

their shared dependence on technological progress. From the primitive tools employed during

the inception of agriculture, to Jethro Tull’s pioneering crop planting machine, the evolution of

fertilizers and pesticides, and the continuous refinement of modern machinery, technology has

been the driving force behind these transformative shifts.

Innovations based on robotics are arguably the next big step in the field of agriculture,

offering a potential solution to a variety of contemporary challenges, such as increasing global

demand for food production and labor shortages [2]. The level of precision, autonomy, and mod-

ularity robotic systems offer to introduce is unprecedented in agricultural machinery. Robotic

agricultural systems can perform acquisition of large amounts of data on the state of the crops,

along with on-board processing of that data. Various tasks that require physical manipulation

can be carried out precisely, efficiently, and more frequently with robotic systems than possible

with manual labour. Perhaps the potentially most intriguing is the ability of a single robotic

system to perform all of these tasks, and more. These agricultural robotic systems have the

potential to offer a high level of modularity in terms of the tools they could use and the tasks

they could perform. A single robot with sufficient capabilities for manipulation, sensing and
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Chapter 1. Introduction

locomotion, could have a potential to be used for the large portion agricultural procedures that

are performed manually to this day.

1.1.1HEKTOR Project

The research presented in this thesis was carried out as a part of the HEKTOR project [3,4],

which aims to introduce heterogeneous autonomous robotic systems in agricultural fields of

mariculture and viticulture. A heterogeneous robotic system refers to a collection of robots

that are diverse in terms of their physical characteristics, functionalities, or capabilities. The

heterogeneity of the robot agents offers the ability to leverage the strengths of different robot

types to tackle complex tasks more efficiently and effectively.

This thesis focuses on the viticultural part of the HEKTOR project, where a heterogeneous

robotic system comprising of an unmanned aerial vehicle and a ground mobile manipulator is

employed for various viticultural tasks (Fig.1.1).

Figure 1.1: A visualization of the heterogeneous robotic system employed in a vineyard as a part of the
HEKTOR project, consisting of an unmanned aerial vehicle and an autonomous mobile manipulator.

The aerial vehicle has a fairly unconstrained movement space, and it can traverse the entire

vineyard with ease in a short amount of time. On the other hand, navigation of the ground

vehicle presents a challenge due to the semi-structured nature of the vineyard environment. The

obstacle-free area between the rows of grapevines is typically narrow, significantly restricting

the movement of the vehicle. The strength of the ground mobile manipulator lies in its ability to

manipulate its environment, allowing it to participate more actively in agricultural procedures,

which is the focus of this thesis.

3



1.1. Motivation

Figure 1.2: A mobile manipulator used in the HEKTOR project and throughout this thesis. It features
a custom flipper-tracked vehicle as its mobile base, mounted with a Kinova Gen3 robot arm for the
execution of manipulation tasks. Copyright [8]CC BY 4.0.

Some of the research objectives of the HEKTOR project are directed towards the naviga-

tion and localization capabilities of a mobile manipulator within the vineyard environment.

The research conducted in this area addresses challenges such as autonomous navigation [5],

localization and positioning of the mobile manipulator next to the grapevine trunks [6] and es-

timation of energy consumption during the execution of these tasks [7]. On the other hand, the

central emphasis of this thesis is on control algorithms that employ the ability of such a robot

to manipulate its environment for specific viticultural procedures.

The HEKTOR project focuses on vineyards situated on karst terrain, a characteristic feature

of the Croatian islands and the broader Mediterranean region. The unique topography of such

terrains, characterized by steep inclines and reduced accessibility, poses a significant challenge

for conventional agricultural machinery. In these kinds of vineyards, a substantial portion of

work is still carried out manually, a practice that is both time-consuming and physically de-

manding.

The mobile manipulator used in the HEKTOR project was designed considering two objec-

tives: being able to traverse such difficult, high-slope terrain, and its manipulability (Fig.1.2).

The Kinova Gen3 robot arm has 7 actuated degrees of freedom, making it intrinsically redun-

dant, discussed in detail in section2.1. A recurring theme in this thesis is the exploitation of

redundancy exhibited by the mobile manipulator to optimize execution of different tasks.

4
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Chapter 1. Introduction

1.2Research Objectives

The central emphasis of this thesis is on the developed control algorithms and methodologies

that allow the mobile manipulator to perform viticultural tasks, utilizing optimization and op-

timal control. As the title suggests, this thesis focuses on two of the viticultural procedures

that require manipulation from the robot: spraying and suckering. Different optimization based

methods are utilized for different subtasks that arise in the execution of these procedures, with

a shared objective of redundancy resolution. This chapter functions as a broad introduction to

the research objectives, and a detailed description of method-specific objectives is provided in

chapters dedicated to the individual tasks.

1.2.1Viticultural Spraying

Viticultural spraying involves the application of a protective spraying agent onto the leaves and

fruits of grapevine plants. There are two widely used contemporary approaches to viticultural

spraying:

1. Manual spraying: This approach involves human workers using handheld sprayers to

apply the spraying agent directly to the leaves and fruits of the grapevine plants. While

this allows for targeted application of spraying agent, it can be labor-intensive and time-

consuming, especially in larger vineyards.

2. Mechanical spraying: Widely available mechanization for viticultural spraying comes in

the form of specialized equipment such as atomizers or sprayers mounted on tractors or

other human-operated vehicles. These machines disperse large amounts of the spraying

agent through nozzles, covering a larger area much faster compared to manual spraying.

Although this method is more time-efficient it does not allow for any targeted application

of the spraying agent and poses an environmental sustainability concern.

One of the objectives of the presented research is the development of a methodology for robotic

spraying, combining the best of the two worlds. The robot arm is equipped with a spraying

pole for manual spraying, maintaining the advantages of manual spraying while capitalizing on

the improved efficiency and precision provided by robotic technology. Two separate spraying

applications are considered:

1. Continuous spraying: Referring to the problem of spraying the entire canopy of the

grapevine plant. The term continuous refers to the continuous movement of the spray

nozzle needed to cover the entire canopy area.

2. Selective spraying: Robotic technology introduces the potential of precise selective ap-

plication of the spraying agent to specific parts of the plant, for example a single leaf or a

single fruit cluster.

During the continuous spraying, both the robot arm and the mobile base control the position
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of the spraying nozzle, introducing a first kind of redundancy discussed in this thesis. An-

other form of redundancy is present in both of the spraying task variants, posed by the fact that

the spraying nozzle is axis-symmetric. The orientation of an axis-symmetric spraying nozzle

around its approach axis has no influence on the application of the spraying agent. A com-

mon control objective is resolving the mentioned redundancies in an optimal way, even though

different algorithms are used for their resolution, discussed in detail in later chapters.

1.2.2Viticultural Suckering

Suckering refers to the procedure of removing unwanted growth from the base of grapevines.

This growth (known as shoots, buds or suckers) emerges at the trunk of the plant, and competes

with the main, fruit-bearing vines for nutrients and water, potentially affecting the quality of

the plant’s yield. The objective driving the development of suckering methodologies presented

in this thesis is to combine the elements of both manual and currently available mechanized

approaches to the task with precision and efficiency of robotic technology, explained in more

detail in later chapters.

The research conducted for the suckering task is broken down into two distinct parts:

1. Suckering tool: A novel brush-shaped robotic suckering tool is developed, suitable for

its use as the end-effector of the robot arm. The design of the suckering tool draws

inspiration from both contemporary mechanization and hand-held tools used for the task.

One of the main design objectives for the tool is its ability to measure the torque exerted

onto the plant, allowing it to be used as a tactile sensor.

2. Suckering control method: The suckering tool’s torque sensing ability is used to gen-

erate the feedback for the tactile exploration control method, allowing the manipulator to

perform the suckering task without the need to detect the shape of the trunk. Another ob-

jective for the control method is to estimate the shape of the trunk using tactile mapping.

The trunk shape estimate has the potential to be reused for future executions of the task,

improving its execution time.

The developed suckering tool is shaped as an axis-symmetric circular brush. Even though this

tool and the nozzle used for the spraying task have completely different functionalities and

capabilities, their shared property of axis-symmetry introduces the same kind of redundancy to

the control problem. One of the control objectives for the suckering control method is to resolve

this redundancy in an optimal way.
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1.3Thesis Outline

This thesis is organized in five chapters, as follows:

Chapter2: This chapter provides a comprehensive introduction to the fundamental prereq-

uisites essential for a clear understanding of the rest of the thesis. It explores the topics of

redundancy, task space control, inverse kinematics, mathematical optimization, prioritized op-

timization, and model predictive control.

Chapter3: This chapter focuses on the algorithms and methodologies developed for viticul-

tural spraying. The control of a mobile manipulator for both continuous and selective spraying

task variants is explored. A model predictive control algorithm utilized for resolving the redun-

dancy between the robot arm and the mobile vehicle during continuous spraying is presented

and discussed in detail. A control method for the robot arm during continuous spraying is

presented, handling the task as a prioritized task space control problem. A task of selective

spraying is approached as a prioritized positional inverse kinematics problem. An algorithm for

prioritized positional inverse kinematics and an implementation of a corresponding solver are

presented. The implications of the algorithm and the performance of the solver are discussed.

Chapter4: Within this chapter, the algorithms and methodologies developed for the task

of viticultural suckering with a mobile manipulator are presented. The design of the presented

suckering tool is discussed, along with its torque sensing, signal filtering and obstacle estimation

capabilities. The control algorithm developed for the task of suckering is presented, based on

prioritized task space control. The tactile sensing capability of the presented suckering tool and

its utilization to traverse a trunk of the grapevine plant without detecting its shape is discussed.

The algorithm for tactile mapping of the trunk shape is presented, used to estimate the shape of

the trunk traversed by the suckering tool.

Chapter5: Finally, the thesis is finished with a conclusion of the presented work.
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CHAPTER 2

Fundamentals

2.1Redundancy

One of the focus points of this thesis is the application of optimization and optimal control tech-

niques to address various forms of redundancies that arise during the execution of viticulture-

related tasks. Redundancy occurs when a robot system has more actuated degrees of freedom

than those strictly required to execute a given task [9]. Generally, this means a commanded task

can be achieved in multiple ways by the robot system. It is important to note that redundancy it-

self is not an inherent characteristic of the robot system, but rather a consequence of the specific

task being performed.

Controlling the pose of the end-effector is well-established as an inherent robotic task. The

pose of a rigid body is a collective term for its position and orientation, fully describing its

configuration in three-dimensional space. Robot systems that possess more than six degrees of

freedom can generally achieve a single end-effector pose in multiple ways, and are commonly

referred to as intrinsically redundant [10].

Functional redundancy represents a type of redundancy encountered when the control objec-

tive does not require controlled motion of the entire pose of the end-effector [11]. A commonly

encountered example of functional redundancy is the control of axis-symmetric tools. Various

robotic applications are executed with tools symmetric around their approach axis: drilling,

milling, welding, paint spraying etc. As a consequence of the axis-symmetry, orientation of

these tools around their approach axis has no impact on task execution. For example, in robotic

drilling, both the position and the orientation of the drill bit are important for successful task

execution, but the orientation of the drill bit around its approach axis is irrelevant. Thus, the

task of robotic drilling requires controlled motion of all three components of the drilling tool’s

9



2.1. Redundancy

Figure 2.1: Robotic tools used for robotic viticultural spraying and suckering in this thesis are both
examples of axis-symmetric tools. As a consequence, both of the tasks exhibit functional redundancy.

translation, and only two components of its orientation. These type of tasks are referred to as

3T2R tasks or pointing tasks in literature [10].

Viticultural tasks explored in this thesis, robotic spraying and suckering, are both performed

with axis-symmetric tools: an axis-symmetric spray nozzle, and an axis-symmetric brush-

shaped suckering tool (Fig.2.1). As already mentioned, the robot arm Kinova Gen3 used

in this thesis has 7 actuated degrees of freedom, making the control of the specified tasks a

redundant control problem.

The importance of redundancy lies in the flexibility and adaptability provided by a redun-

dant robot system. Among all the ways a redundant system can achieve its primary task, some

might be preferred over others. However, this enhanced flexibility comes at the cost of addi-

tional complexity, presenting a control challenge. In addition to satisfying the primary task for

which the system exhibits redundancy, additional criteria have to be considered to select a single

control strategy.

Redundancy resolution techniques play a crucial role in harnessing the full potential of

redundant robot systems. These methods aim to find a suitable solution that satisfies the primary

task while considering additional criteria and respecting various constraints. Additional criteria

can be used to incorporate various secondary tasks, such as singularity avoidance, obstacle

avoidance, etc. Various approaches to redundancy resolution exist, ranging from analytical

methods to numerical techniques. These techniques consider factors like kinematic modeling,

inverse kinematics, optimization algorithms, and artificial intelligence to determine the most

suitable joint configuration for a given task. Redundancy resolution methodologies explored in

this thesis are based on prioritized optimization and optimal control.
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2.2Instantaneous Kinematics and Task Space Control

A robot system is typically mathematically described as a set of rigid bodies actuated by joints.

The state and motion of a robot system with NJ actuated joints can be fully described in the joint

space, employing the joint position vector qqq ∈RNJ and its derivatives. Although the joint space

fully describes the motion of the system, the desired system motion is usually more conveniently

described in some other space, for example the end-effector space.

2.2.1Instantaneous Kinematics

Kinematics are a fundamental problem in robotics, studying motion of bodies in a robot system,

while disregarding the forces/torques that cause that motion [12]. The primary objective of

kinematics is to study the geometrical relationship between joint motion and the movement of

individual links within the robot system. Kinematics, in a broader sense of the term, address

general motion of the robot system, incorporating its velocities, accelerations, and all higher-

order derivatives [12]. The term instantaneous kinematics refers to the kinematics specifically

studying the velocities of the robot system, while the kinematics dealing with its positions will

be referred to as positional kinematics. The two fundamental kinematics problems are forward

and inverse kinematics.

The forward instantaneous kinematics problem is to determine the rate of change in the pose

of the end-effector, given the positions and the velocities of all the joints. This problem has a

unique solution:

vvvee = JJJ(qqq)q̇qq, (2.1)

where vvvee ∈ R6 is the spatial velocity of the end-effector, and JJJ(qqq) ∈ R6×NJ is the Jacobian

matrix. The Jacobian can be analytically computed for any configuration qqq and depends on the

geometric parameters of a rigid body system, such as the lengths of the individual links and

joint offsets. The pose of the end-effector combines its position and orientation into a single

six-dimensional quantity. Consequently, the spatial velocity of the end-effector is constructed

as follows:

vvvee =

[
vee

ωee

]
∈ R6, (2.2)

where vee ∈ R3 and ωee ∈ R3 are the linear and the angular velocity of the end-effector respec-

tively. The vector vvvee ∈ R6 is called a spatial vector, combining linear and angular motion into

a single quantity [13].

Inverse instantaneous kinematics address the opposite problem: determining the joint ve-

locity vector q̇qq that corresponds to some spatial velocity of the end-effector vvvee. This problem

is significantly more complex than forward instantaneous kinematics, and does not generally
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have a unique solution. The inverse instantaneous kinematics problem is closely related to task

space control, discussed in the following sections.

2.2.2Task Space and Redundancy

The term task space refers to the vector space chosen to conveniently describe the desired

motion of the system [9]. While the task space can correspond to the pose of the end-effector, it

can also relate to any other quantity that has a corresponding Jacobian matrix. For example, the

task space can correspond to the pose of any other link within the kinematic model, or to the

distinct component of the link’s pose, such as its position or orientation. Also, the task space

can extend beyond the confines of the kinematic model to involve properties like the center of

mass position [14], centroidal momentum [14], or the manipulability index [15,16].

A task space is defined with a corresponding task Jacobian, leading to an equation similar

to (2.1):

vvvT = JJJT (qqq)q̇qq, (2.3)

where vvvT ∈ RNT is the task velocity, and JJJT (qqq) ∈ RNT×NJ is the task Jacobian. The dimensions

of the matrix JJJT and the vector vvvT depend on the specific task, where NT represents the number

of degrees of freedom required to perform it.

As previously discussed, redundancy, like the task Jacobian, is a property of the specific

task being performed. In fact, redundancy and the Jacobian matrix are closely related, where

the dimensions and the rank of the Jacobian matrix determine whether the task is redundant.

As mentioned in section2.1, a robot system is generally considered intrinsically redundant

(redundant for the six-dimensional task of controlling the pose of the end-effector) if it has

more than six actuated degrees of freedom, implying the condition for redundancy NJ > NT .

However, other factors have to be taken into account to truly determine whether a robot system

exhibits redundancy when performing a certain task.

The Jacobian matrix depends on the specific task being performed, kinematic model of a

robot and its current joint configuration qqq. A robot system with a high number of actuated

degrees of freedom, satisfying the condition NJ > NT , is not necessarily redundant and can

even be underactuated. To illustrate this, consider a simple scenario of a robot system with

NJ > 6 linear joints, all controlling the position of the end-effector in the same direction. In

this case, the robot system is clearly underactuated for the task of controlling the pose of the

end-effector, even though NJ > NT holds. It is also possible for a system to exhibit redundancy

or be fully actuated in one configuration while not being redundant or being underactuated in

another. This loss of manipulability is typically observed when the robot approaches the edge

of its workspace or reaches its joint limits. In general, the claim combining the task Jacobian

and redundancy is that the system exhibits redundancy if the row rank of the task Jacobian is
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higher than the number of degrees of freedom required to perform a specific task:

rank(JJJT )> NT (2.4)

The above condition implies a weaker condition mentioned before, that the number of actuated

joints in a robot system has to be higher than NT , since rank(JJJT )≤ NJ .

2.2.3Task Space Control

The goal of task space control is to determine the control commands necessary to achieve the

desired task space motion. These control commands can take the form of joint torques, joint

accelerations, or joint velocities, depending on the specific control strategy and the capabilities

of the robot [17]. Many modern robots, including those used in this thesis, support direct joint

velocity control. Therefore, in this thesis, the focus is on a task space motion control problem

with velocity commands: selecting such a joint velocity vector q̇qq that generates the desired

task velocity vvvT . This can be seen as a generalization of the instantaneous inverse kinematics

problem to an arbitrary task space.

In some cases, this can be accomplished by calculating the inverse of the Jacobian matrix

and then multiplying it by the desired task space velocity:

q̇qq = JJJ−1
T vvvT (2.5)

The inverse of a matrix exists for square matrices of full rank. For the Jacobian matrix JJJT (qqq) ∈
RNT×NJ to be square, the number of joints in the robot system must be equal to the number of

degrees of freedom required by the task. Even if this condition is met, the Jacobian inverse

approach is rarely used due to the potential loss of rank in certain configurations, as discussed

earlier.

The pseudoinverse, also known as the Moore-Penrose inverse, is a generalization of matrix

inversion for non-square matrices, and is more commonly used to solve the velocity level task

space control problem:

q̇qq = JJJ†
T vvvT (2.6)

The pseudoinverse AAA† of a matrix AAA can be calculated using the following equation:

AAA† = (AAAT AAA)−1AAAT (2.7)

In cases where equation (2.3) does not have a solution, meaning there is no vector q̇qq that results

in vvvT , the pseudoinverse based approach will compute a least-squares closest solution to the

problem. On the other hand, if the system exhibits redundancy and there are multiple vectors q̇qq
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for which equation (2.3) holds, the pseudoinverse results in a value of q̇qq that satisfies equation

(2.3) while having a minimal Euclidian norm. These properties, combined with the ability to

compute the pseudoinverse analytically for any Jacobian, make this approach widely used for

task space control.

One major drawback of this approach to task space control is its inability to constrain the

values of q̇qq. Solving equation (2.6) can yield high values of q̇qq that may not be achievable by the

robot system. To address this issue, optimization-based task space control is often employed.

The optimization-based approach to task space control is utilized throughout this thesis, and is

explained in the following sections.

2.3Positional Kinematics

As mentioned in the previous section, positional kinematics deal with the positional aspects of

both joint and end-effector motion of a rigid-body system. Positional kinematics focus on two

fundamental problems: positional forward and positional inverse kinematics.

The positional forward kinematics problem is to determine the position and orientation of

the end-effector of the robot system relative to its base, given the positions of all the joints [12].

Similar to its instantaneous counterpart discussed before, the positional forward kinematics

problem has a unique solution, and can be solved analytically.

The positional inverse kinematics problem deals with the problem of determining joint posi-

tions that result in a desired position and orientation of the end-effector. The positional inverse

kinematics are generally more complex than forward inverse kinematics, and do not necessarily

have a unique solution. A desired pose of the end-effector can be infeasible, in which case

there is no solution to the positional inverse kinematics problem. It is also possible for the in-

verse kinematics problem to have multiple solutions, which is often the case for intrinsically

redundant robot systems.

As the problem of positional kinematics is fundamental to the field of robotics, a wide

variety of methods has been developed and employed to address it over the years. For some

robot systems, analytical closed-form solutions are possible, offering advantages in terms of

time efficiency and numerical precision. On the other hand, numerical methods for positional

inverse kinematics offer more flexibility and can be applied to any robot system.

2.3.1Iterative Methods for Positional Inverse Kinematics

Perhaps the most commonly used numerical methods for positional inverse kinematics are based

on iteratively solving the instantaneous inverse kinematics problem, also called iterative meth-

ods.
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As already mentioned, the goal of positional inverse kinematics is to select such a joint

position vector qqq that results in the target pose of the end-effector pppee,t ∈ R6. The pose of

the end-effector is a function of the joint position vector, and will be denoted as pppee(qqq). The

iterative methods are based on iteratively updating the value of qqq, starting from its initial guess

qqqinitial , until the pose of the end-effector pppee(qqq) reaches its target value pppee,t [18].

The instantaneous kinematics equation can be rewritten to include the rate of change in the

pose of the end-effector:

ṗppee = JJJee(qqq)q̇qq, (2.8)

and an approximate relationship can be derived:

∆pppee ≈ JJJee(qqq)∆qqq, (2.9)

where ∆qqq is the change in the joint angle vector, and ∆pppee is the change in end-effector pose.

This equation is not exact as the Jacobian matrix depends (nonlinearly) on qqq, but for sufficiently

small values of ∆qqq the equation (2.9) will hold.

The iterative inverse kinematics methods are based on iteratively updating the joint positions

vector:

qqq := qqq+∆qqq, (2.10)

where ∆qqq is calculated from the aforementioned approximation (2.9).

There are various approaches to iterative inverse kinematics that differ in their strategies

for selecting ∆qqq to update the joint angles [18]. One of the commonly used approaches is the

pseudoinverse based method, corresponding to the pseudoinverse based task space control, and

resulting in the following law for updating ∆qqq:

∆qqq := JJJ†
ee(qqq)∆pppee,d, (2.11)

where ∆pppee,d is the desired change in the pose of the end-effector.

One of the challenges encountered in this approach is to ensure a sufficiently small value of

∆pppee,d for the approximation (2.9) to be justified. The most obvious selection of ∆pppee,d is to set

it to the difference between the target pose and the current pose:

∆pppee,d := pppee,t− pppee(qqq), (2.12)

also referred to as the pose error. For a large pose error the approximation will not hold, and the

resulting ∆q̇qq might not decrease the pose error.

One of the techniques used to mitigate this problem is error clamping, having the effect

of moving the target pose closer to the current end-effector pose [18]. Commonly, separate
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maximum values are specified for the translation and the rotational components of the pose

error. Instead of using the pose error as the desired change in the pose, its calculated as:

∆pppee,d := clampMagnitude(pppee,t− pppee(qqq)) (2.13)

The clampMagnitude function limits both the translational and the rotational value of its input

to their respective maximum values.

An example of the pseudoalgorithm for an iterative inverse kinematics solver is given in

algorithm1. The pseudoinverse is applied iteratively to update qqq, until the algorithm reaches its

qqq← qqqinitial
eeerrrrrr← pppee,t− pppee(qqq)
while ∥eeerrrrrr∥ ≥ εe do

JJJ← calculateJacobian(qqq)
∆pppee,d ← clampMagnitude(eeerrrrrr)
∆qqq← JJJ†

∆pppee,d
qqq← qqq+∆qqq
eeerrrrrr← pppee,t− pppee(qqq)

end
Algorithm 1: Positional inverse kinematics solver using the pseudoinverse method.

stopping criterion, defined as the euclidean norm of the pose error reaching a predefined small

value εe.

The strength of iterative positional inverse kinematics solvers is in the provided flexibility.

These solvers can be applied to any robot system and different tasks, not limited to the end-

effector pose. The algorithm discussed here can be extended to any task that has a corresponding

Jacobian matrix.

In this thesis, an algorithm for prioritized positional inverse kinematics is presented, fol-

lowing similar principles to the ones shown here, and discussed in section3.3. The presented

algorithm utilizes the same idea of iteratively updating the solution guess, with a more sophis-

ticated strategy for selecting ∆qqq based on prioritized task space control.
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2.4Mathematical Optimization

Mathematical optimization, often simply referred to as optimization, is a field of mathematics

focused on finding the best or optimal solution to a problem within a set of possible solutions. It

usually involves minimizing or maximizing a real function by systematically selecting its input,

while considering constraints.

A general optimization problem can be written as:

min
xxx

f (xxx)

s.t. gi(xxx)≤ 0, i = 1, . . . ,m
(2.14)

where the vector xxx ∈ Rn represents the optimization variable, function f (xxx) : Rn → R is the

objective function (also called the criterion function or the cost function), and gi(xxx) : Rn→ R
is the i-th inequality constraint function. The optimization problem given above can be read

as: select such an optimization variable vector xxx that minimizes the objective function f (xxx),

subject to the constraint functions gi(xxx) ≤ 0. Constraint functions are real functions of xxx that

are required to be satisfied, effectively constraining the selection of xxx to vectors for which

equations gi(xxx)≤ 0 hold.

Any xxx for which all the constraint functions are satisfied is referred to as feasible, and if such

xxx exist, the overall optimization problem is said to be feasible. In contrast, if no feasible xxx exists,

the optimization problem is said to be infeasible. The solution xxx∗ is optimal if f (xxx∗) ≤ f (xxx)

holds for all feasible xxx.

In the optimization problem formulation (2.14) the objective function is chosen to be mini-

mized, but the formulation is general, and can be used to maximize an arbitrary function f (xxx)

by minimizing − f (xxx). In addition to inequality constraints, the optimization problem can be

formulated in such a way to explicitly include equality constraints:

min
xxx

f (xxx)

s.t. gi(xxx)≤ 0, i = 1, . . . ,m

h j(xxx) = 0, j = 1, . . . , p

(2.15)

Here, equality constraints are explicitly defined as h j(xxx) = 0, while the previous formulation

allows their implicit definition using two inequality constraints, since h(xxx) = 0 is equivalent to

h(xxx)≤ 0 and −h(xxx)≤ 0.

In a general optimization problem, the functions f (xxx), gi(xxx) and h j(xxx) can take the form of

arbitrary nonlinear functions that map from Rn to R. The form of these functions determines

the class of the optimization problem. An optimization problem belonging to a specific class
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is usually solved more efficiently and precisely with a class-specific solver. Perhaps the most

important distinction among different classes of optimization problems is between convex and

non-convex problems [19].

A convex optimization problem is one in which the objective and constraint functions are

convex, meaning they satisfy the inequality:

fi(αxxx+βyyy)≤ α fi(xxx)+β fi(yyy) (2.16)

for all xxx,yyy ∈ Rn and all α,β ∈ R with α +β = 1,α ≥ 0,β ≥ 0 [19].

An important property of all convex optimization problems is that their local optimum is

guaranteed to be a global one. The theory of convex optimization is fairly complete, and there

are methods to solve different subclasses of such optimization problems with guarantees on

finite time execution and the correctness of the solution. For a detailed resource on theory of

convex optimization the reader is referred to [19] by Boyd and Vandenberghe.

Various classes of optimization problems are encountered in both robotics and the broader

field of optimal control. Convex optimization is widely applied in these domains, since the

solving times are often required to be relatively low. A common form of a convex optimization

problem encountered in these fields, and throughout this thesis, is a quadratic program (QP).

2.4.1Quadratic Programming

A quadratic program is a convex optimization problem, where the criterion function is in the

shape of a quadratic form, and both the equality and the inequality constraint are affine:

min
xxx

1
2

xxxTQQQxxx+qqqTxxx

s.t. AAAeq xxx+bbbeq = 000

AAAieq xxx+bbbieq ⪯ 000

(2.17)

where QQQ ∈Rn×n and qqq ∈Rn are the quadratic form matrix and vector respectively, AAAieq ∈Rm×n

and bbbieq ∈ Rm are the inequality constraint matrix and vector respectively, and AAAeq ∈ Rp×n and

bbbeq ∈ Rp are the equality constraint matrix and vector respectively. The symbol ⪯ represents

element-wise comparison between two vectors, requiring every vector entry on the left side of

the symbol to be less than or equal to the corresponding entry on the right side.

A formulation of a quadratic programming problem where the criterion function is written

as a squared quadratic norm is commonly encountered in practice, also called the least squares
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formulation:
min

xxx
||AAAxxx−bbb||2

s.t. AAAeq xxx+bbbeq = 000

AAAieq xxx+bbbieq ⪯ 000

(2.18)

The squared quadratic norm of a vector is defined as a sum of the squares of its individual

components:

||vvv||2 =
n

∑
i=1

v2
i = vvvTvvv (2.19)

This formulation of the criterion function can be expanded to the standard quadratic form as:

||AAAxxx−bbb||2 = (AAAxxx−bbb)T(AAAxxx−bbb) = xxxTAAATAAAxxx−2bbbTAAAxxx+bbbTbbb (2.20)

The term bbbTbbb is a constant which does not depend on the optimization variable vector xxx, and

can therefore be disregarded from the criterion function. It is also worth noting that a sum

of multiple squared quadratic norms is also a squared quadratic norm, and can be used as a

criterion function in a quadratic program.

This form of a quadratic program criterion function can be directly utilized for optimization

based task space control. As explained in previous sections, the velocity level task space control

problem is to select such a joint velocity vector q̇qq that results in the task velocity vvvT , if vvvT = JJJT q̇qq.

A quadratic program can be utilized to solve this problem, while enforcing to joint velocity

limits:
min

q̇qq
||JJJT q̇qq− vvvT ||2

s.t. q̇qq⪯ q̇qq⪯ q̇qq
(2.21)

Here, vectors q̇qq and q̇qq represent the lower and the upper bound on joint velocities, respectively.

Inequality constraints formulated in this specific way are referred to as bound constraints. The

quadratic program given above can be used as a base optimization problem for velocity level

task space control, while the cost function can be modified and additional constraints can be

added to incorporate the needs of a specific task.

Quadratic programming is widely used in robotics and optimal control due to its reliable

and efficient solving techniques, in addition to its complete theory. Due to both the develop-

ment of solving methods and the rise in computing power of contemporary machines, quadratic

programming solvers are able to handle large, high-dimensional problems efficiently, with a

guarantee on the correctness of the solution.
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2.5Prioritized Optimization

Prioritized optimization can be conceptualized as a distinctive category of mathematical opti-

mization. A standard optimization problem deals with selecting an optimization variable vector

xxx that minimizes a single criterion function f (xxx). However, optimization problems encountered

in practice often have multiple optimization objectives. This challenge is commonly addressed

by combining multiple criterion functions into a single function, using a weighted sum of the

individual criterion functions as the overall criterion function:

min
xxx

w1 f1(xxx)+w2 f2(xxx)+ . . .+wN fN(xxx)

s.t. g j(xxx)≤ 0, j = 1, . . . ,m
(2.22)

where N is the number of separate optimization objectives.

The weight wi assigned to a certain objective function fi(xxx) corresponds to its importance

in the overall optimization problem. Increasing the weight wi results in the solution being

closer to the optimum of fi(xxx). However, generally, the minimum of the weighted sum does not

correspond to the minimum of any of the objectives, but presents a compromise between them.

The idea behind prioritized optimization is to replace the commonly used objective weight-

ing approach with hard priorities that are guaranteed to be satisfied. The prioritized optimization

problem can be written as:

hi = min
xxx

fi(xxx)

s.t. fl(xxx) = hl, ∀l < i

g j(xxx)≤ 0, j = 1, . . . ,m

(2.23)

Here, hi ∈ R represents the optimal value of the objective function of the i-th priority, with

the addition of prioritization constraints fl(xxx) = hl, ∀l < i. The objective functions fi(xxx) have

decreasing priorities, f1(xxx) having the highest priority, and fN(xxx) representing an objective

function with the lowest priority. Consider a case with two prioritized objective functions,

f1(xxx) and f2(xxx). The optimization problem (2.23) is solved for the first priority f1(xxx), and

its minimum h1 is found. For the first priority there are no prioritization constraints, and the

problem is solved as a standard optimization problem:

h1 = min
xxx

f1(xxx)

s.t. gi(xxx)≤ 0, i = 1, . . . ,m
(2.24)
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For the second objective, the optimization problem has an additional prioritization constraint:

h2 = min
xxx

f2(xxx)

s.t. f1(xxx) = h1

gi(xxx)≤ 0, i = 1, . . . ,m

(2.25)

The solution to the second priority is found subject to a constraint f1(xxx) = h1, constraining the

first priority objective function to remain in its optimum.

Prioritized optimization relies on redundancy of higher priority objectives to achieve the

prioritization. An objective function is said to be redundant if there are multiple inputs xxx that

minimize the function and result in f (xxx) = h. If the function f1(xxx) has multiple solutions, the

one that minimizes f2(xxx) is selected between them. This logic is extended to enable an arbitrary

number of priorities N. Once a priority with a unique solution (a non-redundant priority) is

reached, the prioritized optimization is finished, as the value of xxx minimizing this priority is

also the solution to the entire prioritized optimization problem.

2.5.1Prioritized Quadratic Programming

The term prioritized quadratic programming is used to refer to a prioritized optimization prob-

lem where all of the objective functions are quadratic forms, and the constraints are affine:

hi = min
xxx

Ei(xxx)

s.t. El(xxx) = hl, ∀l < i

AAAeq xxx+bbbeq = 000

AAAieq xxx+bbbieq ⪯ 000

(2.26)

Symbol Ei denotes a quadratic criterion function of the i-th priority, which can be written as a

squared quadratic norm:

Ei(xxx) = ||AAAixxx−bbbi||2 (2.27)

As explained in the previous section, prioritized optimization exploits the redundancies in

the higher priority objective functions, and resolves those redundancies in such a way to op-

timize the lower priorities. It is therefore worthwhile to investigate the circumstances under

which an objective function of a quadratic form exhibits redundancy.

A quadratic form xxxT QQQxxx+qqqT xxx can exhibit various configurations determined by the definite-

ness of the matrix QQQ. A visualization of different configurations of a two-dimensional quadratic

form is given in figure2.2. For a positive definite matrix QQQ it can be said that xxxT QQQxxx > 0 for all

x∈Rn\{000}. The level curves of such a quadratic form are shaped as ellipsoids, and minimizing
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Figure 2.2: Different configurations of two-dimensional quadratic forms determined by the definiteness
of the matrix QQQ. The definiteness of matrix QQQ dictates the shape of the level curves and the number of
minimums a quadratic form has.

a positive definite quadratic form will yield a unique solution. Indefinite quadratic form are the

ones that do not exhibit a consistent sign pattern for xxxT QQQxxx for all x ∈ Rn \ {000}. An indefinite

quadratic form has a minimum of−∞, and is usually not encountered in optimization problems.

For a positive semi-definite matrix QQQ, it follows that xxxT QQQxxx ≥ 0 for all x ∈ Rn \ {000}. The level

curves of a positive semi-definite quadratic form are shaped as straight lines, resulting in mul-

tiple minimums, as shown in figure2.2. An important property of the redundancy exhibited by

minimizing a positive semi-definite function, is that all the solutions xxx∗ can be parameterized as

an affine function of some parameter www:

xxx∗(www) = AAA∗www+bbb∗ (2.28)

As previously discussed, the complexity of an optimization problem in terms of its execu-

tion time and the correctness of the solution depends on the nature of its objective function and

constraint functions. The formulation of the prioritized quadratic program given in (2.26) has

non-affine equality constraints El(xxx) = hl, ∀l < i, since the cost function El is quadratic. This

disqualifies the given formulation of the optimization problem as a quadratic program. How-

ever, it is still possible to solve a prioritized quadratic program using N quadratic programs,

by transforming the vector space of the optimization variable between the priorities. This is

done by exploiting the already mentioned ability to parametrize all the solutions to a criterion

function of a semi-definite quadratic form.

Algorithms for unconstrained and constrained versions of prioritized quadratic optimization

are given by de Lasa et. al. in [20] and [21] respectively. Unconstrained prioritized quadratic

optimization refers to the optimization problem with no equality or inequality constraints, ex-

cept for the constraints posed by the prioritization itself. A pseudoalgorithm for unconstrained

prioritized quadratic optimization by de Lasa et. al. [20] is given in Algorithm2. The algorithm

solves N unconstrained quadratic optimization problems, using the Moore-Penrose pseudoin-

verse. Vector ddd stores a solution to the current priority, while the matrix CCC transforms the
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CCC← III, ddd← 000
for i← 1 to N do

AAAi← AAAiCCC
bbbi← bbbi−AAAiddd
ddd← ddd +CCC AAA

†
i bbbi

if AAAi is full rank then
return ddd

end
CCC←CCC null(AAAi)

end
return ddd

Algorithm 2: Unconstrained quadratic prioritized solver pseudoalgorithm by De Lasa et.
al. [20].

problem into the nullspace of all the higher priorities. The algorithm is finished once all N

priorities are solved, or once the transformed matrix AAAi is of full rank. If the matrix AAAi is of full

rank, the prioritized optimization problem has a unique solution at the i-th priority.

The algorithm for constrained prioritized quadratic optimization by de Lasa et.al. [21] func-

tions in a similar way (Algorithm3). Here, instead of solving N unconstrained quadratic op-

CCC← III, ddd← 000
for i← 1 to N do

AAAi← AAAiCCC
bbbi← bbbi−AAAiddd
dddi← arg minwww ||AAAiwww−bbbi||2

s.t. AAAeqCCCwww+AAAeqddd +bbbeq = 000
AAAieqCCCwww+AAAieqddd +bbbieq ⪯ 000

if problem is infeasible then
return ddd

end
ddd← ddd +CCCdddi
if AAAi is full rank then

return ddd
end
CCC←CCC null(AAAi)

end
return ddd

Algorithm 3: Constrained quadratic prioritized solver pseudoalgorithm by De Lasa et. al.
[21].

timization problem using a pseudoinverse, N constrained quadratic programming problems are

solved. In addition to transforming the AAAi matrices to the null space of previous priorities,

equality and inequality constraints posed by the problem are also transformed into the men-
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Figure 2.3: Visualization of prioritized optimization with quadratic criterion functions.

tioned space. There is an additional stopping criterion for the algorithm, ending the solver

once the transformed quadratic programming problem is infeasible. This stopping criterion is

inserted before the solution update ddd ← ddd +CCCdddi since this means there is no solution for the

current priority, and the solution of the previous priority is returned as the solution of the overall

prioritized optimization problem.

A visualization of both the unconstrained and the constrained version of the prioritized

quadratic optimization problem with two priorities is given in Fig.2.3. The objective function

of the first priority E1(xxx) is positive semi-definite, and its level curves are visualized as red

lines. The first priority objective function has multiple minimums, shown as a thick red line,

which can be parameterized as xxx(www). The solution to the prioritized optimization problem is

given by transforming a second priority objective function E1(xxx) to the nullspace of the first

problem, E1(www), and minimizing that function. This vector space transformation is used to

implicitly constrain the second optimization problem to the space of all the solutions of the first

one. Solution is given as a point on the line xxx(www) that minimizes the second criterion function

E2.

Prioritized optimization is especially useful for redundancy resolution. Prioritized optimiza-

tion allows the primary task (the one for which the system exhibits redundancy) to be prioritized

over other criteria that serve to resolve the redundancy. There can be an arbitrary number of

priorities between those redundancy-resolving criteria, allowing multiple levels of redundancy

resolution, while respecting different constraints posed by the tasks.

2.6Model Predictive Control

Model predictive control (MPC) represents a type of predictive optimal control, aiming to deter-

mine a sequence of control inputs that result in optimal system performance during some time
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horizon. This approach involves employing a mathematical model of the process to predict the

future behaviour of its output yyy(t), and state xxx(t), for some control input sequence uuu(t).

While a general (nonlinear) model predictive control approach might involve a nonlinear

system model and a general nonlinear objective function, in the context of this thesis, the em-

phasis will be on linear MPC. In the realm of linear MPC, the attention is directed towards

linear control systems.

The state-space system dynamics equation for a discrete linear control system can be written

as follows:

xxx(k+1) = AAAxxx(k)+BBBuuu(k), (2.29)

where xxx(k) ∈Rnx is the system state vector, and uuu(k) ∈Rnu is the control input vector in control

step k ∈N. The system dynamics are fully described with matrices AAA ∈Rnx×nx and BBB ∈Rnx×nu ,

called the state matrix and the input matrix respectively. The equation for calculating the output

of such a system can be written as:

yyy(k) =CCCxxx(k)+DDDuuu(k), (2.30)

where yyy(k)∈Rny is the output vector in control step k ∈N. Matrices CCC ∈Rny×nx and DDD∈Rny×nu

are called the output matrix and the feedforward matrix respectively. If the system does not have

direct feedforward of the control inputs to its output, DDD is a zero matrix.

The MPC algorithm predicts system output during some time horizon of Nh ∈ N control

steps. Let us define the vectors that store the control input, system state and system outputs

during the entire horizon as:

UUU =


uuu(0)

uuu(1)
...

uuu(Nh−1)

 ∈ RNh·nu , XXX =


xxx(0)

xxx(1)
...

xxx(Nh−1)

 ∈ RNh·nx , YYY =


yyy(0)

yyy(1)
...

yyy(Nh−1)

 ∈ RNh·ny (2.31)

Then, the MPC optimization problem can be written as follows:

min
UUU

J(XXX ,UUU ,YYY )

s.t. xxx(k+1) = AAAxxx(k)+BBBuuu(k)

yyy(k) =CCCxxx(k)+DDDuuu(k)

xxx(0) = xxx0

(2.32)

Function J(XXX ,UUU ,YYY ) represents a cost function optimized by the MPC algorithm, which is gen-

erally a function of system outputs, states and control inputs. The optimization problem selects
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a sequence of control inputs (uuu(0), uuu(1), . . . , uuu(Nh− 1)) that minimize this function, while

respecting the system dynamics. The constraint xxx(0) = xxx0 sets the currently measured state of

the system as the initial state of the system.

Solving the optimization problem (2.32) gives an optimal sequence of control inputs, that

results in optimal behaviour of the system according to the given model. To increase the ro-

bustness of the control method, and to allow for some inaccuracy in system modeling, MPC is

based on using only the first control input of the optimal sequence uuu(0) as the system input.

After applying the first control input to the system, a new initial state xxx0 is measured and the

optimization problem (2.32) is solved again. This results in constantly moving the predictive

horizon forward in time, which is why model predictive control is also referred to as receding

horizon control.

Criterion functions for linear MPC are most often quadratic, which results in the optimiza-

tion problem being a quadratic program. An MPC algorithm used to optimally follow a se-

quence of changing desired output values YYY d is referred to as reference tracking MPC. A com-

mon optimization problem used for reference tracking MPC is given as follows:

min
UUU

Q||YYY −YYY d||2 +R||UUU ||2

s.t. xxx(k+1) = AAAxxx(k)+BBBuuu(k)

yyy(k) =CCCxxx(k)

xxx(0) = xxx0

(2.33)

Here, the first part of the criterion function Q||YYY −YYY d||2 serves to minimize the difference

between the desired reference and the predicted system output, where Q is a scalar weight

value. The second part of the criterion function R||UUU ||2 serves to minimize the control inputs,

with R as the associated scalar weight value. The selection of weight parameters Q and R is

used to tune the trade-off between the reference tracking error and the aggressiveness of control

inputs. For example, if R is set to zero, the optimization problem will select such control inputs

that result in ideal reference tracking. However, this will result in large values of control inputs,

which the system might not be able to produce. One way to combat this issue is to introduce

additional bound constraints for the control inputs:

uuu⪯ uuu(k)⪯ uuu (2.34)

The optimization problem (2.33) is a simple solution for reference tracking MPC, and re-

quires only two parameters to be tuned. However, this simplicity comes with the cost of limited

flexibility. If the optimal control problem at hand is redundant, and there are multiple ways con-

trol inputs can produce the same output, the cost function can be modified to introduce more
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versatility regarding the tuning process. A version of reference tracking MPC used in this thesis

solves a following optimization problem:

min
UUU
||YYY −YYY d||2 + ||WWW uUUU ||2 + ||WWW xXXX ||2

s.t. xxx(k+1) = AAAxxx(k)+BBBuuu(k)

yyy(k) =CCCxxx(k)

xxx(0) = xxx0

xxx⪯ xxx(k)⪯ xxx

uuu⪯ uuu(k)⪯ uuu

(2.35)

There are three parts to the criterion function. The first one is the same as in (2.33) and serves

to minimize the reference tracking error. The second part of the criterion function ||WWW uUUU ||2

is similar to the part of the criterion function associated with the control inputs in a previous

example, with the difference of the weighting being done by a matrix WWW u instead of a scalar

R. This is used to have separate weights for separate control inputs, which allows for more

flexibility in the tuning process. The third part of the criterion function ||WWW xXXX ||2 minimizes a

linear function of all the process states. Additional bound constraints are introduced to limit the

control inputs and system states at each control step.
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CHAPTER 3

Vineyard Spraying with a Mobile
Manipulator

3.1Introduction

Agricultural spraying refers to the process of applying various substances, such as pesticides,

herbicides, fungicides and fertilizers to crops. There are two widely used contemporary ap-

proaches to vineyard spraying: manual and mechanized spraying. Manual spraying usually

involves a human operator carrying a tank of the spraying agent and controlling its application

using a spray wand: a nozzle attached at the end of a lightweight pole. A nozzle is commonly

mounted at an angle to the pole, allowing the operator to control both the position and the di-

rection of the nozzle with minimal movement at the base of the pole. This allows the operator

to target both high and low areas of the foliage with the spraying agent, and apply the spraying

agent at the desired angle. However, manual spraying is generally labor-intensive and time-

consuming, which has driven the development of contemporary mechanization for agricultural

spraying.

The widely used contemporary mechanization for the vineyard spraying task usually in-

volves mounting a trailer with atomizers or multiple nozzles to a tractor or some other form of a

human-operated vehicle (Fig.3.1). These machines are designed with time-efficiency in mind,

processing a large area of a vineyard in a short amount of time. Precise targeting of the spraying

agent is sacrificed in order to achieve this, and large amounts of it end up in the soil, presenting

an ecological and sustainability concern.

The proposed robotic system for viticultural spraying uses a spray wand for manual spray-

ing, mounted on a mobile manipulator, aiming is to achieve targeted application of the spraying

29



3.1. Introduction

Figure 3.1: The image on the left depicts a contemporary agricultural spraying machine, in a form of a
trailer with multiple spray nozzles on both sides. This kind of machine is usually attached on a human-
operated vehicle. The image on the right depicts the proposed robotic solution for agricultural spraying.
A spray wand, often used for manual vineyard spraying, is mounted as the end-effector of a mobile
manipulator, allowing for precise targeting of the spraying agent.

agent without the need for manual labour (Fig.3.1). While the time-efficiency of this approach

cannot reach the one of contemporary mechanization, the introduction of autonomy to the sys-

tem has the potential to mitigate this concern.

In this chapter, two variants of the viticultural spraying task are considered: application of

the protective substance to the entire grapevine canopy, and its application to a specific area of

the plant (for example a single disease-ridden leaf or a cluster of grapes). These two tasks will

be referred to as continuous and selective spraying, respectively.

During continuous spraying, position of the spraying agent is controlled both by the mobile

vehicle and the robot arm. This introduces a redundancy, where the desired motion of the nozzle

can be achieved in multiple ways: either by movement of the mobile base, or that of the robot

arm. This redundancy is resolved in a predictive way, using task space model predictive control

(MPC) to anticipate changes in the reference spraying agent trajectory, and optimize mobile

vehicle and robot arm movement accordingly. MPC provides the task space commands for the

robot arm, and an additional task space control algorithm is used to select its low-level controls.

Control of the robot arm itself for the task of continuous spraying is also a redundant task.

As already discussed, the spraying nozzle used in this thesis is an axis-symmetric tool (Fig.2.1),

meaning its orientation around its approach axis does not impact the application of the spraying

agent. The task of controlling the spraying nozzle is a 3T2R task, where three translational

and two rotational degrees of freedom affect task execution. This redundancy is resolved using

prioritized task space control, handling the control of the spraying nozzle as a prioritized 3T2R

task. Linear velocity of the spraying agent is prioritized over the orientation of the nozzle,
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since applying the agent at the commanded area of the plant is generally more important than

applying it with some exact orientation.

The proposed solution to the selective spraying task follows similar reasoning, resolving the

redundancy posed by the axis-symmetry of the nozzle using the same prioritization between the

tasks, but in joint position rather than joint velocity space. Prioritized positional inverse kine-

matics solver is presented, using iterative prioritized task space control to select joint positions

that optimize a number of prioritized positional tasks.

The methods discussed in this chapter are previously discussed in two papers: one dealing

with task space model predictive control [8], and another one addressing constrained prioritized

3T2R task control for vineyard spraying [22].

3.1.1Related Work

In recent years, significant research efforts have been devoted to the development of robotic

systems for various viticultural tasks, with research focusing on areas such as navigation, mon-

itoring, spraying, harvesting, and more [23,24,25,26,27,28,29,30,31]. However, interest in

this research field dates back much earlier. As early as 1995., Monta et al. [32] presented their

work on a multipurpose robot for grapevine harvesting, berry thinning, spraying, and bagging.

There is a significant amount of research focusing on the development and utilization of

robotic technology for vineyard spraying [23,25,33,34,35,36,37]. In [33], Berenstein et al.

present computer vision algorithms for grape cluster and foliage detection, which they utilize

for autonomous vineyard spraying. They use a mobile vehicle with multiple sprayer nozzles

mounted at different heights, similar to the one shown on the left side of Fig.3.1. However,

instead of constantly spraying from all the nozzles, the visual feedback is used to select which

nozzles should be active at which point in time. Oberti et al. [23,34] mounted a precision-

nozzle on a robot manipulator, and use it for selective spraying, to spray specific, disease-ridden

spots of the grapevine. Again, the focus is on the detection algorithms developed for disease

detection in multispectral images, rather than on control of the robot manipulator.

There is a number trajectory planning algorithms developed for mobile manipulation [38,

39,40,41,42]. These algorithms are often designed to be as general as possible, capable of

performing a variety of different tasks while considering obstacles, dynamics and stability. The

vineyard is a semi-structured environment, the grapevines usually being planted in fairly straight

rows. Area between the rows is obstacle-free, and, during the vineyard spraying task, mobile

base is constrained to move in a straight line between the rows. Therefore, for this specific

use case, a linear MPC algorithm is presented, considering only the motion of the mobile base

along the row, and two-dimensional manipulator tool motion. This simplification results in an

optimization problem that can be solved in real-time even for large prediction horizons.

In the research focusing on utilization of mobile manipulation for paint spraying [43,44,45],
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a lawnmower trajectory is often used as a tool position reference to ensure uniform coverage,

an approach adopted in the presented work.

As previously mentioned, a nozzle used for viticultural spraying in this thesis is an axis-

symmetric tool, introducing functional redundancy to the spraying problem. There is extensive

research on different approaches to resolving functional redundancies in robot manipulation

[10,11,46,47,48]. Some of the research in the field of robotic paint spraying suggests that

achieving commanded position of the spraying agent during the task is more important than

having ideal nozzle orientation [48,49,50]. According to the findings presented in the work of

From et al. [50], the linear velocity of the paint gun holds greater significance than its orientation

in ensuring uniform paint coating. The presented research is motivated by the hypothesis that

the same is the case for agricultural spraying, and perhaps to an even greater degree. This is

primarily due to the fact that the spraying agent used in agricultural applications is typically less

dense than the paint used in spray painting, and human operators tend to be less careful in their

handling of nozzle orientation during agricultural spraying tasks compared to their counterparts

in paint spraying applications.

This insight is addressed by introducing a prioritization between the translational and ro-

tational components of the 3T2R task. The constrained prioritized quadratic programming al-

gorithm presented in [21], and discussed previously in section2.5.1, is used to enforce this

prioritization in the velocity space, for the task of continuous spraying. Similar approaches to

task prioritization for robot arm control are sometimes referred to as prioritized velocity space

inverse kinematics, prioritized instantaneous inverse kinematics or just prioritized inverse kine-

matics in the literature [51,52,53,54].

A solution to the problem of selective spraying is also presented, handling it as a priori-

tized positional inverse kinematics problem. A numerical, iterative solver to this problem is

presented, similar to the one discussed in section2.3.1. The prioritized quadratic programming

problem with the same prioritization as for continuous spraying is iteratively solved to update

the joint position vector, until a solution is reached.
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3.2Continuous Spraying

The continuous spraying task involves controlling the position and the orientation of the spray-

ing nozzle continuously, to achieve sufficient coverage of the entire plant canopy. The position

of the spraying nozzle is controlled both by the robot arm and the mobile base, while its orien-

tation is controlled solely by the robot arm.

This section is divided into two subsections. Subsection3.2.1describes the task space model

predictive control algorithm used to calculate coordinated motion actions for the mobile base

and the robot arm that result in desired motion of the spraying nozzle. Here, the motion actions

for the robot arm are selected in a task space rather than joint space. Subsection3.2.2presents

a prioritized optimization based task space control algorithm used to select the low-level joint

velocity commands for the robot arm, while also taking into account the orientation and the

axis-symmetry of the nozzle.

3.2.1Task Space Model Predictive Control

The MPC algorithm described in this section aims to solve the following problem: given a de-

scription of a row of grapevines, select coordinated mobile vehicle and robot arm commands

that result in satisfactory canopy coverage, while aiming to minimize spraying agent waste. One

of the controller objectives is to enable the mobile manipulator to adapt to different row struc-

tures, accelerate in areas without grapevines and slow down in areas with largest foliage heights.

The grapevine plants are usually planted in structured rows, the obstacle-free area between the

rows being fairly narrow. The limited width of this area significantly constrains the movement

of the vehicle. Therefore, in order to simplify the MPC algorithm and the corresponding opti-

mization problem, a simplifying assumption is made. It is assumed that the mobile base is able

to travel at a constant distance to a row of grapevines, and that its velocity along the row can be

controlled separately to this assumption.

A coordinate frame is defined at a fixed distance to the spray nozzle, referred to as the spray

frame and denoted as LS (Fig.3.2). Using the assumption that the mobile base is at a fixed

distance to the vines, the goal of the MPC becomes to control the two-dimensional position of

the LS frame, with respect to a fixed ground-level global frame denoted as LG. The vertical

position of the LS frame with respect to LG is denoted as pS,z, and its position along the row is

denoted as pS,x (Fig.3.2). The vertical position of the LS frame (pS,z) is controlled solely by the

robot arm, while its position along the row of grapevines (pS,x) is the sum of mobile base and

robot arm components of that position, pB,x and pA,x respectively:

pS,x = pB,x + pA,x (3.1)
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Figure 3.2: Three coordinate frames defined for the task space model predictive control algorithm: a
global frame at the ground level LG, mobile base frame LB and the spray frame LS. The x, y and z axes
of the coordinate frames are represented with red, green and blue arrows respectively.

The redundancy in the control of pS,x is clearly visible from equation3.1. The desired move-

ment of the spray frame along the row of grapevines can be produced in multiple ways, by

mobile base or robot arm movement in that direction, or a combination of the two. The MPC

algorithm serves to predictively resolve this redundancy, using knowledge of the future changes

in reference trajectory to select the optimal controls for the mobile base and the robot arm.

Considering task space rather than joint space motion commands for the robot arm significantly

simplifies the MPC problem, allowing the use of a linear system model.

The overall control diagram used for continuous spraying is shown in Fig.3.3. A two-

dimensional reference trajectory for the spray frame is used as an input for a reference tracking

MPC solver. The MPC solver resolves the already discussed redundancy, and selects the coor-

dinated motion of the mobile base and the robot arm that track this reference. The output of

the MPC solver is the mobile base velocity along the row, and the two-dimensional task space

velocity for the robot arm.

The reference spray frame trajectory is generated from the canopy description, with the aim

of providing full coverage of the canopy area. The canopy description consists of its upper and

lower boundary, shown with a blue and a red line respectively (Fig.3.4). The spray frame ref-

erence is a lawnmower trajectory, traversing the area between the provided canopy boundaries.

The Height Offset and Spraying Width parameters shape the trajectory, depending on the width

of the spraying agent produced by the nozzle, and its distance to the vines. A constant velocity

piecewise linear functions are used in between the lawnmower pattern vertices.
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Figure 3.3: Overall system control diagram. The reference trajectory for the spray frame is generated
based on the canopy description. This trajectory is used as an input to the MPC solver. The MPC solver
selects the velocity of the mobile base along the row of vines, denonted as ṗB,x, and the task space
velocities for the robot arm ṗA,x and ṗA,z. The task space control solver is used to select the joint velocity
commands sent to the robot arm q̇qq. Copyright [8]CC BY 4.0.

Figure 3.4: Orange line represents the lawnmower trajectory used as the spray frame reference. The
upper and lower boundary of the canopy description are represented by a blue and a red line respectively.
Copyright [8]CC BY 4.0.
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3.2. Continuous Spraying

3.2.1.1System Model and MPC Optimization Problem

A reference tracking linear MPC is used to select the trajectories for the mobile base and the

robot arm that follow a two-dimensional spray frame reference, by solving an optimization

problem described in this section. The optimization is performed over a prediction horizon Nh,

with a fixed discretization time step T . Although the velocities of the mobile base and robot

arm are used to control the robot (as seen in Fig.3.3), the model used in the MPC algorithm

considers acceleration control inputs to achieve the desired behavior.

A linear system model used by the MPC has the following states and inputs:

xxx(k) =



pB,x(k)

pA,x(k)

pS,z(k)

ṗB,x(k)

ṗA,x(k)

ṗS,z(k)


∈ R6 uuu(k) =


p̈B,x(k)

p̈A,x(k)

p̈S,z(k)

 ∈ R3, (3.2)

where xxx(k) and uuu(k) are the system state and control input vector respectively, at the time step

k.

The output of the system is the two-dimensional position of the spray frame LS, relative to the

global frame LG:

yyy(k) =

[
pS,x(k)

pS,z(k)

]
=

[
pB,x(k)+ pA,x(k)

pS,z(k)

]
∈ R2, (3.3)

where yyy(k) is the system output in the k-th step.

The dynamics of the discrete linear system used by the MPC can be written as follows:

xxx(k+1) =



1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


AAA

xxx(k)+



T 2

2 0 0

0 T 2

2 0

0 0 T 2

2

T 0 0

0 T 0

0 0 T


BBB

uuu(k) (3.4)

yyy(k) =

[
1 1 0 0 0 0

0 0 1 0 0 0

]
CCC

xxx(k) (3.5)
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The optimization problem used for reference tracking MPC is a QP problem, with a criterion

function formulated as previously discussed in section2.6:

min
UUU

Wy||YYY −YYY d||2 + ||WWW uUUU ||2 + ||WWW xXXX ||2

s.t. xxx(k+1) = AAAxxx(k)+BBBuuu(k)

yyy(k) =CCCxxx(k)

xxx(0) = xxx0

xxx⪯ xxx(k)⪯ xxx

uuu⪯ uuu(k)⪯ uuu

(3.6)

where YYY d is the system output reference and Wy is the reference tracking weight. WWW u and WWW x

are control input and system state weight matrices, respectively. For more details on the used

form of the criterion function the reader is referred to section2.6.

The reference tracking part of the criterion function (Wy||YYY −YYY d||2) ensures that the system

output follows the reference lawnmower trajectory, shown in Fig.3.4. The second part of the

criterion function (||WWW uUUU ||2) is employed to minimize a general linear function of the system

inputs. For the specific use case of continuous spraying, only a single control input is mini-

mized, corresponding to the acceleration of the vehicle along the row. The control input weight

matrix used for this purpose is as follows:

WWW u =


wwwu 0 · · · 0

0 wwwu · · · 0
...

... . . . ...

0 0 · · · wwwu

 , wwwu =


wp̈B,x 0 0

0 0 0

0 0 0

 (3.7)

where the scalar wp̈B,x represent the mobile base acceleration weight.

The third and final part of the criterion function (||WWW xXXX ||2) minimizes a linear function of

the system state vector. In this specific use case, the displacement of the robot arm in the x

direction is minimized. This is achieved with a weight matrix of the following form:

WWW x =


wwwx 0 · · · 0

0 wwwx · · · 0
...

... . . . ...

0 0 · · · wwwx

 , wwwx =



0 0 0 0 0 0

0 wpA,x 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(3.8)
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To summarize, the criterion function of the MPC optimization problem minimizes three distinct

criteria: the reference tracking error, mobile base acceleration and robot arm displacement. The

reasoning behind this choice of the criterion function is to resolve the redundancy exhibited by

the system in a specific way, where the mobile base is responsible for gradual, global changes

in the reference trajectory, and the robot arm is responsible for rapid, local ones. To achieve

this behaviour, the optimization problem has to include an appropriate set of constraints, and

the weights used in the criterion function have to be selected in a specific way.

3.2.1.2MPC Constraints and Parameter Tuning

The performance of the MPC algorithm and its ability to achieve the described behaviour de-

pend on the constraints within the optimization problem and the tuning of the weights present

in the criterion function.

The MPC optimization problem (3.6) can include bound constraints on any of the system

states and control inputs. For the presented use case of continuous spraying, the general state

and control input bound constraints can be written as:

−pmax
B,x

−pmax
A,x

−pmax
S,z

− ṗmax
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B,x

p̈max
A,x

p̈max
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 (3.10)

While these constraints are easily incorporated in the MPC optimization problem, the num-

ber of inequality constraints has a significant effect on its execution time. Therefore, it is gen-

erally desirable to reduce the number of constraints as much as possible, while achieving the

desired behaviour. To achieve the desired behaviour where the robot arm is responsible for local

movement of the spray frame in the x direction, its position is constrained to remain in between

some bounds −pmax
A,x ≤ pA,x ≤ pmax

A,x .

The bound constraints on control inputs have a lesser effect on the time required to solve the

optimization problem. The limit on the acceleration of the mobile base p̈max
B,x is known, and is

directly enforced as− p̈max
B,x ≤ p̈B,x ≤ p̈max

B,x . The maximum values of the robot arm accelerations

in the task space p̈max
A,x and p̈max

S,z are determined experimentally. While the velocity and accel-

eration limits of each joint are known, the maximum acceleration the robot arm can produce in
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the task space depends on the current arm configuration. Therefore, the task space acceleration

constraints used in the MPC optimization problem are determined experimentally, and the joint

space constraints are enforced at the level of the task space control algorithm (Section3.2.2).

While the constraints themselves are sufficient to find feasible solutions to the MPC prob-

lem, tuning the weights of individual objectives of the optimization problem (3.6) affects the

balance between mobile base and robot arm motion used for redundancy resolution. The

weights minimizing arm displacement pA,x and mobile base acceleration p̈B,x are tuned by trial

and error to achieve the desired effect where the mobile base is responsible for slower, global

changes in the reference trajectory and the arm is responsible for faster, local changes. Ex-

treme examples of possible results of the weight tuning process are shown in Fig.3.5, with the

corresponding criterion function weights presented in Table3.1.

Figure 3.5: The trajectories of the mobile base and the robot arm in the x direction corresponding to the
criterion function weights given in Table3.1. Spray frame trajectory pS,x is a sum of pA,x and pB,x. In
all the examples reference tracking is achieved, with extreme examples of varying redundancy resolution
behaviours.

Table 3.1: Weights used in the MPC criterion function corresponding to the examples shown in Fig.3.5.

Fig.3.5 a) b) c)
Wy 800.0 800.0 800.0

wp̈B,x 80.0 1.5 1.0
wpA,x 1.0 1.0 10.0

The behaviour of the system depends on the ratios between the different optimization weights

rather than their exact value. In the examples shown in Fig.3.5, the system assumes an initial

state with zero velocity. Large values of the weight corresponding to the vehicle acceleration
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w p̈B,x result in large arm displacement while the base accelerates (Fig.3.5a)). Lowering the

value of wpA,x has a similar effect. Large arm displacement weight wpA,x (Fig.3.5 c)) leads to

the effect where the mobile base alone tracks the reference with large accelerations, while the

robot arm displacement remains close to zero. The desired behaviour is shown in Fig.3.5b),

where the base follows the general shape of the reference trajectory with low accelerations, and

the robot arm moves rapidly with small displacements.

3.2.2Prioritized Task Space Control

Prioritized task space control is utilized to select the joint velocity commands that result in

the desired task space motion provided by the MPC (Fig.3.3). In addition to following the

linear velocity of the spray frame commanded by the MPC solver, the selection of joint velocity

commands also considers the orientation of the nozzle. The nozzle is symmetric around the

z axis of the spray frame, and its orientation around this axis does not impact the application

of the spraying agent. Therefore, the task space control algorithm only needs to consider two

components of the spray frame’s orientation, a characteristic of 3T2R tasks.

As already mentioned, the area affected by the spraying agent is considered to be of larger

importance than the exact direction of the nozzle [48,49,50]. Therefore, the translational

component of the 3T2R task is chosen to be prioritized over its rotational component. This is

achieved using prioritized quadratic programming, explained in detail in section2.5.1. Priori-

tized optimization is utilized to achieve task space control handling multiple, conflicting tasks

with clear priorities, also referred to as prioritized task space control. The control algorithm

aims to achieve the commanded orientation of the spray frame, but its translation is considered

to be of a higher priority.

Priorities used for the continuous spraying are, with descending priorities:

•Translational part of the 3T2R task

•Rotational part of the 3T2R task

•Desired joint positions

The cost function of the first priority has the following form:

E1(q̇qq) =||JJJT q̇qq−vc||2 (3.11)

where vc is the commanded linear velocity of the spray frame, and JJJT is the translational part

of the spray frame Jacobian. The commanded linear velocity vvvccc is constructed using the output
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of the MPC solver and the assumption that the distance from the robot to the vines is constant:

vvvccc =


ṗc

A,x

KP,y(pc
A,y− pA,y)

ṗc
A,z

 (3.12)

Since the MPC algorithm considers a two-dimensional task space, it only provides two com-

ponents of the linear spray frame velocity, ṗc
A,x and ṗc

A,z. The y component of the commanded

spray frame velocity is calculated using a proportional controller, where pc
A,y and pA,y denote

the commanded and the currently measured position of the spray frame in the y direction, re-

spectively.

Generally, the task of following the commanded linear velocity of the spray frame is redun-

dant, and there are multiple joint velocity vectors q̇qq that achieve it. The criterion function of the

second priority deals with the rotational part of the 3T2R task:

E2(q̇qq) = ||JJJL
R,xq̇qq−ω

L
c,x||2 + ||JJJL

R,yq̇qq−ω
L
c,y||2 (3.13)

where ωL
c,x and ωL

c,y are commanded angular velocities of the spray frame around its local x

and y axes respectively, and JJJL
R,x and JJJL

R,y are the corresponding Jacobian matrices. As already

mentioned, the angular velocity around the local z axis of the spray frame does not affect task

execution, and is not directly controlled. The use of angular velocities around local axes results

in a more complex calculation of their commanded values, explained in section3.2.2.1.

The final priority, used to resolve any redundancy remaining after minimizing the first two

priorities, favors such joint velocities q̇qq that move the arm towards a desired configuration:

E3(q̇qq) = ||q̇qq− q̇qqc||2 (3.14)

The commanded joint velocities q̇qqc that drive the robot arm towards a desired pose qqqd are

selected by a proportional controller:

q̇qqc = KP,q(qqqd−qqq) (3.15)

where KP,q is the controller gain and qqq is a current joint position vector.

Inequality constraints are used to enforce joint velocity and acceleration limits at the task space

control level:

q̇qq⪯ q̇qq⪯ q̇qq (3.16)

q̈qq⪯ q̈qq⪯ q̈qq (3.17)

Since the prioritized task space control problem deals with joint velocities, equation (3.17) is
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replaced with the one in the velocity space:

q̇qqP + q̈qq∆t ⪯ q̇qq⪯ q̇qqP + q̈qq∆t (3.18)

where ∆t is the control time step for the task space control (not necessarily the same as MPC

control step T ), and q̇qqP are joint velocities in the previous time step.

To summarize, the prioritized optimization approach to spray frame control leads to the

following behaviour: if both the commanded linear and angular velocities of the spray frame

are simultaneously achievable, the prioritization between these tasks is not activated. Both tasks

are achieved, and a single solution is selected, achieving the commanded 3T2R velocity while

minimizing the final priority. However, if the 3T2R task velocity is not feasible in its entirety,

its linear component is prioritized over its rotational component.

Whether the 3T2R task velocity is feasible depends on the current configuration of the robot

arm and various constraints that can be incorporated into the optimization problem, as discussed

in section3.2.3.

3.2.2.1Rotational Component of the 3T2R Task

The local angular velocity commands of the spray frame ωL
c,x and ωL

c,y are calculated based on

the error between the desired and current approach axis orientation. If aaappppppz and aaappppppz,d are the

current and the desired approach axis vector, respectively, the angular approach axis error errα

is calculated as the shortest angular distance between them:

errα = arccos(aaappppppz ·aaappppppd,z) (3.19)

The axis around which the angular error acts is calculated as:

eeerrrrrraxis = aaappppppz×aaappppppd,z (3.20)

Assuming vectors aaappppppz and aaappppppz,d are defined with respect to some base frame, the angular

error vector in the local spray frame is:

ααα
L
err = LRRRB(errα · eeerrrrrraxis), (3.21)

where LRRRB ∈ R3×3 is the corresponding rotation matrix.
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If the z axis of the frame is considered its approach axis, the z component of αααL
err will always

be zero, and commanded local angular velocities can be calculated as:

ωωω
L
c = KP,ωααα

L
err =


ωL

c,x

ωL
c,y

0

 (3.22)

where KP,ω is the associated proportional controller gain.

3.2.3Results and Discussion

The first experiment described in this section demonstrates continuous spraying of a single row

of grapevines using a mobile manipulator (Fig.3.6). Footage of the experiment can be seen in

the accompanying video*. In this experiment, a previous version of task space control algorithm

is used, controlling only the position of the spray frame and disregarding its orientation. The

reasoning behind this decision was that, in order to achieve large linear velocities of the spray

frame and reach high and low areas of the foliage, it is not possible to fully control the orienta-

tion of the spray frame. As demonstrated through a second set of experiments discussed in this

section, this problem is successfully addressed by the prioritized 3T2R task control algorithm

discussed in this thesis.

Figure 3.6: Mobile manipulator performing a continuous spraying experiment in a vineyard. A single
row of grapevines is sprayed using the presented task space MPC based method. Copyright [8]CC BY
4.0.

*https://www.youtube.com/watch?v=BDO7qQldmyQ
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3.2. Continuous Spraying

Figure 3.7: The canopy description used for the continuous spraying experiment in a vineyard, selected
by an operator using a simple graphical user interface. Copyright [8]CC BY 4.0.

Figure 3.8: The lawnmower reference trajectory and reference tracking during the continuous spraying
experiment in the vineyard. The reference trajectory generated based on the row description is denoted
as pppRef

S , where zR and zR represent the upper and lower foliage boundaries respectively. The trajectory of
the spray frame during the experiment pppS is represented by a red line. Copyright [8]CC BY 4.0.

The canopy description used to generate the reference spray frame trajectory is shown in

Fig.3.7. For the purpose of the experiment, the description was manually selected by a human

operator through a simple graphical user interface (GUI). A canopy segmentation algorithm

could be utilized to generate this description autonomously using visual feedback, while the

vehicle travels along the row of grapevines. Here, the emphasis is on the control aspect of the

problem, demonstrating the ability of the system to perform continuous spraying on an uneven

canopy, using its description.

A graph demonstrating the spray frame trajectory tracking during the experiment is given in

Fig.3.8. Here, the position of the spray frame is calculated based on the encoder feedback from

the robot arm, and the odometry of the mobile base. Because of the existence of acceleration

constraints on control inputs, there is a trade-off between the reference tracking error and the
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Figure 3.9: The upper diagram shows the x component of the reference trajectory pS,x, along with the
robot arm and mobile base components, pA,x and pB,x respectively. The bottom graph shows the forward
velocity of the vehicle during the experiment. Copyright [8]CC BY 4.0.

velocity of the reference spray frame trajectory. Reducing this velocity would result in slower

task execution, but would also reduce the reference tracking error.

A non-uniform canopy shape used in the experiment demonstrates the adaptability of the

presented approach. The velocity of the vehicle adapts to the row description by automatically

accelerating in areas without vines and decelerating to the lowest velocities in areas with the

highest vines (Fig.3.9).

The second set of experiments demonstrate the utility of the presented prioritized task space

control scheme for continuous spraying. The implementation of this control scheme is based on

the constrained prioritized task space control algorithm by de Lasa et al. [21]. This algorithm

is implemented in C++ using the OSQP (Operator Splitting Quadratic Program) quadratic pro-

gramming solver [55], and is available on GitHub†. The implementation is based on the Eigen

linear algebra library, and allows for definition of a set of prioritized quadratic tasks and linear

constraints. Unconstrained version of the prioritized quadratic optimization algorithm by de

Lasa et al. [20] is also implemented in the same GitHub library.

†https://github.com/ivatavuk/ptsc_eigen
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Figure 3.10: Prioritized 3T2R task control demonstration for three continuous spraying examples. The
examples vary based on the commanded linear velocity of the spray frame, and constraints used in the
optimization problem, and demonstrate, from left to right: slow spraying, positionally constrained slow
spraying, fast spraying.

As already mentioned, depending on the velocity of the reference lawnmower trajectory,

and the high and low limits of the canopy, it might not always be possible to achieve spraying

with the desired orientation of the spray frame. The prioritization between the translational and

rotational components of the spray frame control task was tested on three continuous spraying

examples, with different commanded linear velocities and constraints (Fig.3.10). Footage of

these experiments can be seen in the accompanying video‡.

The rotation of the spray nozzle around its approach axis does not affect task execution,

and, as the task is handled as a 3T2R control task, the spray frame rotates freely around its

approach axis in all the examples (Fig.3.11). First of the three examples uses a low value of

the commanded linear velocity of the spray frame (0.2 m/s), resulting in both the linear and

rotational components of the 3T2R task being feasible during the entire trajectory. The 3T2R

task is followed in its entirety as a result, and, if there are multiple joint velocities that achieve

it, the third priority (Eq. (3.14)) is minimized to select a single solution between them.

The second example uses the same value of the commanded linear velocity (0.2 m/s), but

with an addition of a positional constraint on a nozzle height. The nozzle is constrained to re-

main above the height of 0.3 m from the robot arm base. The inclusion of such a constraint is

motivated by the inability of the spray frame to reach high or low areas of the canopy using the

ideal orientation of the nozzle. During the lower segment of the trajectory, this positional con-

straint on nozzle height becomes active, which results in the prioritization between the trans-

lational and rotational component of the 3T2R task being noticeable (Fig.3.10). The solver

selects a solution sacrificing ideal spray frame orientation in order to achieve the commanded

linear velocity of the spray frame.

The third and final example uses a large commanded linear velocity of the spray frame (0.8

m/s), which results in joint velocity and acceleration constraints being active throughout the

execution of the trajectory. As a consequence, the 3T2R task is not achievable for the most part

‡https://www.youtube.com/watch?v=FRdmGsSCAh4
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Figure 3.11: As a consequence of treating the control of the spray frame as a 3T2R task, the spray frame
freely rotates around its approach axis during all the examples. If the 3T2R task is feasible in its entirety,
the third priority of the prioritized task space control problem selects this rotation.

of the trajectory, and the third priority of the prioritized task space control scheme is disregarded.

To combat this issue, in this example the prioritized optimization problem is modified to include

only two priorities. The first priority is the same as in the previous examples (Eq.3.11), while

the second priority is a weighted combination of the rotational component of the 3T2R task and

desired joint movement:

E2(q̇qq) = ||JJJL
R,xq̇qq−ω

L
x,d||2 + ||JJJL

R,yq̇qq−ω
L
y,d||2 +w||q̇qq− q̇qqd||2 (3.23)

This results in the commanded linear velocity of the spray frame being followed, while its

orientation is sacrificed in order to achieve this.

In summary, the utility of the presented method resides in the prioritization between the

translational and rotational components of the 3T2R tasks. This prioritization addresses the

challenge of not being able to achieve high spray frame linear velocities, or high and low areas

of the canopy, with an ideal nozzle orientation. When this limitation is active, the presented

method prioritizes achieving the commanded linear velocity over the nozzle orientation. The

nozzle orientation achieved as a result of the prioritized optimization can be considered optimal

under the circumstances.
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3.3Selective Spraying

The term selective spraying is used to describe the task of spraying a specific part of a plant, for

example a single leaf or a cluster of grapes. The application of robotic technology for selective

spraying has the potential to be combined with advanced sensing techniques, utilizing multi-

spectral cameras and other sensors to detect specific disease-ridden areas of the plants. This

section discusses the proposed solution to the selective spraying problem from a manipulation

perspective, assuming the desired position and orientation of the spray frame are known, and

focusing on selecting the joint positions that achieve them.

The objective is to include the previously discussed prioritization between the translational

and rotational components of the 3T2R task to selective spraying, performing the prioritization

at the position rather than velocity level. A method for prioritized positional inverse kinematics

is presented, inspired by the iterative positional inverse kinematics methods described in section

2.3.1.

3.3.1Prioritized Positional Inverse Kinematics

The standard positional inverse kinematics problem deals with selecting such joint positions qqq

that result in the commanded pose of the end-effector. The goal of prioritized positional inverse

kinematics is to expand the aforementioned problem with multiple, potentially conflicting po-

sitional tasks. Similarly to prioritized task space velocity control, the idea is to allow multiple

task variants with hard priorities that are guaranteed to be satisfied.

To gain a better understanding of the underlying idea, consider an example where the de-

sired end-effector pose can be achieved in multiple ways by a robot arm (Fig.3.12). Prioritized

positional inverse kinematics allow for the introduction of a secondary positional task to fully

constrain the inverse kinematics problem. In the concrete example shown in Fig.3.12, the

position of the elbow frame is commanded as a lower priority task. Because of the hard pri-

oritization of the tasks, different commanded elbow positions result in different joint positions,

but do not affect the pose of the end-effector. The examples shown in Fig.3.12demonstrate

the utility of prioritized inverse kinematics for redundancy resolution on a positional level. It

is worth noting that the commanded elbow position is not achieved in either of the examples

shown in Fig.3.12, but the solutions selected by the solver minimize the elbow position error,

while respecting all the higher priorities.

In the case the commanded end-effector pose in infeasible by the robot arm, prioritized

positional inverse kinematics can be used to prioritize its translational over its rotational com-

ponent. The introduction of this prioritization does not change the outcome of the examples

shown in Fig.3.12, since both the position and the orientation commands for the end-effector

are feasible. However, if the commanded end-effector position is feasible but its pose is not fea-
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Figure 3.12: Prioritized positional inverse kinematics can be used for redundancy resolution at a po-
sitional level. The pose of the end-effector is prioritized over the elbow frame position, whose desired
value is shown with a purple sphere. Out of the multiple solutions achieving desired the end-effector
position, a single one is selected minimizing the elbow position error.

sible in its entirety, the solver selects the solution reaching the commanded end-effector position

while minimizing its orientation error, shown in Fig.3.13. In this case, the solver completely

disregards the commanded elbow position, since there is a unique solution that minimizes the

end-effector orientation error, while remaining in its commanded position.

The final case that might be considered is the one where neither the position or the orien-

tation of the end-effector are feasible, shown in Fig.3.14. In this case the solution to the first

priority (e.g. minimizing the end-effector position error) has a unique solution, achieved by the

robot arm "reaching" towards the commended position as much as possible, and all the other

priorities are disregarded.

It is worth mentioning that all the previously discussed behaviours are achieved using an

identical set of task priorities. The strength of prioritized positional inverse kinematics is that

it performs redundancy resolution between different positional tasks based on the feasibility of
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Figure 3.13: Prioritizing end-effector position over its orientation affects the solution if the desired end-
effector pose is infeasible. The elbow position task is given third priority, and is disregarded by the
solution in order to minimize the end-effector orientation error.

Figure 3.14: In the case none of the priorities are feasible, a solution is found minimizing the first
priority, or, more specifically, the end-effector position error.

the commanded task values.

3.3.1.1Solver Implementation

The implementation of the prioritized positional inverse kinematics solver is inspired by stan-

dard iterative inverse kinematics methods, discussed in section2.3.1. These methods are based

on iteratively solving the velocity level inverse kinematics problem, to achieve the commanded

end-effector pose. In order to introduce the ability of handling multiple, potentially conflicting
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positional tasks with different priorities, the presented solver replaces the standard velocity level

problem with a constrained prioritized task space control problem.

The pseudoalgorithm for the prioritized inverse kinematics is given in Algorithm4. The

algorithm shares multiple similarities with Algorithm1: both require an initial guess for joint

positions qqqinitial , both iteratively update the solution guess using the Jacobian matrix and the

task error, and both use the error magnitude as the stopping criteria. The main difference lies in

the way the solution step ∆qqq is updated at each iteration of the algorithm, replacing the Jacobian

pseudoinverse with a prioritized task space control algorithm.

qqq← qqqinitial
tasks← []
while ∑∥eeerrrrrri∥ ≥ εe and ∑∥∇eeerrrrrri∥ ≥ ε∇ do

for i← 0 to N do
JJJi← getTaskJacobian(qqq, tasktypei)
eeerrrrrri← getTaskError(qqq, tasktypei)
∇eeerrrrrri← updateGradient(eeerrrrrri)
eeerrrrrri← clampTaskError(eeerrrrrri, tasktypei)
tasks.insert(JJJi,eeerrrrrri)

end
∆qqq← solvePTSC(tasks,constraints)
qqq← qqq+∆qqq
tasks.clear()

end
Algorithm 4: Positional prioritized inverse kinematics solver.

Algorithm4has an additional for loop, since there are N prioritized tasks instead of a sin-

gle task considered by standard inverse kinematics. Task errors and Jacobians are calculated

for each priority, based on the current joint position guess qqq and the specific type of the task.

Another crucial difference between the algorithms is the inclusion of an additional stopping

criterion, based on task error gradients. As already discussed in the previous section, the pri-

oritized positional inverse kinematics problem often includes lower priority tasks which are

infeasible. Therefore, as the solver approaches the solution, all the task errors do not neces-

sarily approach zero. Error gradients are calculated as a difference between the task error in

current and previous iteration of the algorithm. The error gradient serves as the measure of

how much the last iteration of the algorithm improved the error of a specific task. A sum of all

the gradients approaching zero is interpreted as reaching the solution to the overall prioritized

inverse kinematics problem, as additional solver iterations do not improve the solution guess.

The task error calculation and clamping depends on the type of the specific task, and follows

similar principles to the ones discussed in section2.3.1. The solution update ∆qqq is the solution

to the prioritized task space control problem, constructed from task Jacobians, clamped errors

and constraints bounding the solution.
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The prioritized task space control problem used to calculate ∆qqq is as follows:

hi = min
∆qqq

||JJJi∆qqq− eeerrrrrri||2

s.t. ||JJJl∆qqq− eeerrrrrrl||2 = hl, ∀l < i

−∆qqqlim ⪯ ∆qqq⪯ ∆qqqlim

(3.24)

Here, JJJi and eeerrrrrri are the Jacobian matrix and the clamped error for a task of the i-th priority,

respectively, and ∆qqqlim > 0 is a limit on the absolute value of the solution step ∆qqq.

The implementation of the presented algorithm in C++, PikRos (Prioritized Inverse Kine-

matics ROS library) is available on GitHub§. A widely used open-source library for robot

manipulation MoveIt [56] is used to calculate the Jacobians of the specified links, which must

be present in the URDF file of the MoveIt planning group. The implemented algorithm follows

the general idea shown in the pseudoalgorithm4, while introducing additional implementation

details and features such as various user defined parameters, solution polishing and iteration

visualization for debugging purposes.

The MoveIt library allows for the calculation of a Jacobian corresponding to a pose of a

specific link in the kinematic chain. The Jacobians obtained using MoveIt are modified to

support any of the following tasks:

•Link pose task

•Link position task

•Link orientation task

•Link approach axis direction task

These task types correspond to the tasktypei variable in the pseudoalgorithm4. The link posi-

tion and orientation task Jacobians correspond to the first and last three rows of the standard,

pose Jacobian. The link approach axis direction task refers to the direction of a single axis

of a link’s coordinate frame, which corresponds to the rotational component of the 3T2R task.

Jacobian and the error for the approach axis direction task type are calculated as described in

section3.2.2.1.

The solution polishing feature is based on the idea of using larger steps ∆qqq at the start

of the algorithm, and smaller steps once the vicinity of the solution is reached. The current

guess being near to the solution is detected as the sum of the error gradient norms reaching a

certain threshold ∑∥∇eeerrrrrri∥ ≤ ε
p
∇

. The value ε
p
∇

is implemented as a user defined parameter,

and ε
p
∇
> ε∇ has to hold for the solution polishing to be triggered. Once the vicinity of the

solution is reached, ∆qqqlim is replaced with a more restricting limit ∆qqqp
lim.

§https://github.com/ivatavuk/pik_ros
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The library allows for the solver to be tuned using following user defined parameters:

•Joint step limit (scalar value used as each entry of the ∆qqqlim vector, in radians)

•Linear clamp magnitude (for tasks associated with link position, in meters)

•Angular clamp magnitude (for tasks associated with link orientation, in radians)

•Error norm threshold ( εe)

•Error gradient norm threshold ( ε∇)

•Error gradient norm threshold for polishing ( ε
p
∇

)

•Polishing joint step limit (scalar value used as each entry of the ∆qqqp
lim vector, in radians)

•Use constrained optimization (if false, ∆qqqlim and ∆qqqp
lim are not enforced during optimiza-

tion)

•Use solution polishing ( true or false)

•Run in debug mode (if true, the robot movement is displayed for every iteration of the

solver)

•Solver timeout (maximum allowed execution time in seconds)

•Maximum number of iterations (integer value)

3.3.2Prioritized Selective Spraying

The presented prioritized positional inverse kinematics method fits the requirements of the task

of selective spraying, where a specific area of the plant needs to be sprayed with a mobile

manipulator. The position of that area is assumed to be known, as is the desired orientation

of the nozzle. One example of such a selective spraying problem would be to select the joint

positions required to spray the lower surface of a single disease ridden leaf. While both the

position and the desired orientation of the nozzle are commanded, the prioritization between

these components used for continuous spraying remains for this use case.

Therefore, the prioritized positional inverse kinematics algorithm is used with the following

task priorities:

•Spray frame position task

•Spray frame approach axis direction task

•Elbow frame position task

The commanded elbow frame position is used to fully constrain the solution in cases where the

3T2R task can be achieved in multiple ways, similar to the examples in Fig.3.12.

Four different examples of selective spraying are shown in Fig.3.15, with the desired values

for all the tasks given in Table3.2. In the first two examples the desired values of the full 3T2R

task are feasible, and the elbow position task fully constrains the problem. In the third example,

the 3T2R task is not feasible in its entirety, resulting in a solution with the correct spray frame

position, and minimal approach axis direction error for the commanded spray frame position.

This example demonstrates the utility of the prioritization between the translational and the
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Figure 3.15: Prioritized positional inverse kinematics examples for the task of selective spraying. The
desired position and approach axis direction of the spray frame are represented with a transparent blue
sphere and arrow respectively, and the transparent purple sphere represents the desired elbow position.

Example
Spray frame
position [m]

Spray frame
approach axis

vector

Elbow
position [m]

1 [0.4 1.0 0.2] [0 1 0] [0.0 -0.5 0.5]
2 [0.4 1.0 0.8] [0.511 0.511 0.69] [0.0 -0.5 0.5]
3 [0.4 1.0 0.8] [0.577 0.577 -0.577] [0.0 -0.5 0.5]
4 [0.5 1.6 1.0] [0.577 0.577 -0.577] [0.0 -0.5 0.5]

Table 3.2: Desired values for prioritized tasks used in the examples.

rotational components of the 3T2R task: the desired part of the plant is sprayed, at an angle

as close as possible to the commanded one. In the final example neither of the commanded

tasks are feasible, corresponding to the previously discussed example shown in Fig.3.14. This

behaviour where the first priority has a non-zero error at the solution is not useful for the use case

of selective spraying, and can be treated as the selective spraying problem having no solution.

The solver performance was evaluated for the presented examples, with the results given

in Tab.3.3. All experiments were conducted on a 2 .2GHz Intel Core i7 processor. It can be

noticed that the execution time is higher for later examples (examples 3 and 4), which is due
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Example
Task 1
err [m]

Task 2
err [rad]

Task 3
err [m]

Time
[ms]

1 0.00020 0.00019 0.3525 11.09
2 0.00054 0.00067 0.7222 19.86
3 0.00247 0.2052 0.6253 30.07
4 0.10456 1.359 0.87901 84.78

Table 3.3: Task errors and calculation time for the examples.

to the solution in these examples being close to singularity. This is even more noticable if

solution polishing is not used, which can result in oscillatory behaviour of the solver around the

singularity.

The same solver parameters are used in all the examples:

•Joint step limit = 10 [ ◦]

•Linear clamp magnitude = 0 .3 [m]

•Angular clamp magnitude = 30 [ ◦]

•Error norm threshold = 1 ×10−3

•Error gradient norm threshold = 1 ×10−3

•Error gradient norm threshold for polishing = 1 ×10−2

•Polishing joint step limit = 3 [ ◦]

•Use constrained optimization = true

•Use solution polishing = true

•Run in debug mode = false

•Solver timeout = ∞ [s]

•Maximum number of iterations = ∞

All three tasks are not feasible in any of the given examples, so the solver considers the

problem solved once task error gradients reach a specified threshold. For most prioritized in-

verse kinematics applications the same would be the case, as the main strength of this approach

is its ability to handle conflicting, infeasible tasks with clearly defined priorities.

In summary, the examples discussed in this section demonstrate the utility of prioritized

positional inverse kinematics for the task of selective spraying. The reason why the nozzle is

usually mounted at an angle to the pole of the spray wand is also made obvious by the examples.

The angled nozzle allows for a wider range of achievable 3T2R poses, and allows for much

more flexibility than would be possible with the nozzle pointing in the direction of the pole. In

the third example, the solver determines that the optimal strategy to achieve the commanded

positional 3T2R task is to rotate the base of the pole upside down. Achieving such angles of the

spray nozzle would not be possible without the angled nozzle.

The presented prioritized inverse kinematics framework is planned to be expanded to accom-

modate additional task types, such as preferred joint positions and manipulability maximization
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tasks. Future enhancements may also include positional constraints and voxel-based obstacle

avoidance. This method is applicable to various robotic tasks, being particularly interesting for

high dimensional floating base robot systems, which could have a large number of prioritized

conflicting tasks.

3.4Summary

This chapter focuses on methodologies and algorithms developed for robotic vineyard spraying

using a mobile manipulator. The scenario considered in this thesis revolves around a mobile ma-

nipulator equipped with a spray wand as its end-effector. Both the continuous and selective vari-

ant of the vineyard spraying task are discussed. The continuous spraying method presented in

the thesis utilizes reference tracking model predictive control to resolve the redundancy between

the mobile base and robot arm movement during the task. Additionally, the axis-symmetry of

the spraying nozzle used in this thesis introduces another form of redundancy to the robot arm

control problem. The problem of controlling the spraying nozzle with the manipulator is ap-

proached as prioritized 3T2R task control, prioritizing its linear movement over its angular

component. This prioritization is also applied to positional inverse kinematics, corresponding

to the selective spraying task. This chapter discusses the first contribution of this thesis:

• Task space model predictive control based method for vineyard spraying with a mobile

manipulator
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CHAPTER 4

Viticultural Suckering with a Mobile
Manipulator

4.1Introduction

Modern vineyards use various plant training methods, referring to the methods of physical ma-

nipulation of a plant’s form [57]. Plant training achieves multiple objectives such as optimizing

leaf exposure to sunlight, allowing for better and more efficient disease control, and making

manual work easier for the human workers [57]. Many contemporary plant training techniques

rely on grapevine trellis that consist of multiple wires and posts which are used to train the plant.

In most training methods, the fruit bearing vines are kept above a horizontal wire installed at a

certain height, and all the growth emerging bellow it is removed.

This process is known as suckering, removing shoots, buds and suckers that emerge on that

trunk area of the grapevine plant. The idea is to remove the unwanted growth that competes

with the main, fruit-bearing vines for nutrients and water, potentially affecting the quality of the

grape crop.

Performing the suckering task manually usually requires the worker to assume a bent po-

sition and remove the buds by hand (Fig.4.1). This method is tedious and time consuming,

especially for larger vineyards. A number of hand-held suckering tools are developed with the

idea of removing the need for the worker to crouch or bend to perform the suckering task man-

ually (Fig.4.2a)). A curved brush is mounted at the end of a long handle, allowing the worker

to use the brush bristles to remove the growth while standing up.

In addition to manual methods, there are mechanized solutions available for the viticultural

suckering task. Most contemporary approaches to this mechanization use a form of a motorized
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Figure 4.1: A human worker performing the suckering task. All the shoots and buds on the trunk are
removed by hand, requiring the worker to assume a bent position. Copyright [58]CC BY 4.0.

Figure 4.2: The design of different tools used for the suckering task in viticulture. The figure on the left
shows a handheld tool used for manual suckering, consisting of a curved area with brush bristles at the
end of a long handle. The figure in the middle shows a motorized flailing mechanism, commonly used
in contemporary mechanization, consisting of long rubber strips actuated by a motor. The figure on the
right shows the actuated, circular, brush-shaped robotic tool discussed in this thesis.

flailing mechanism, mounted on a tractor or some other human-operated vehicle (Fig.4.2b)).

These mechanisms operate by continuously spinning the flails, which, upon impact with the

plant, remove the unwanted growth. Such machinery sacrifices precision for fast execution of

the suckering task. Multiple flailing mechanisms can be mounted on both sides of a vehicle,

and a single traversal between the rows of plants will remove most, although usually not all, of

the growth. In our previous work [59], a robotic suckering tool based on direct drive actuation

with a functionality similar to that of a flailing mechanism is presented.
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The objective driving the development of the suckering method discussed in this thesis is to

provide the precision of manual suckering to an autonomous mobile manipulator. The aim is to

remove the need for time-consuming and tedious manual work, without sacrificing precision.

The proposed solution consists of a novel motorized brush-shaped suckering tool mounted as

the end-effector of the robot arm (4.2c)), previously discussed in an article dedicated to its

development [58]. The design of this tool combines different properties of both of the tools

in Figures4.2a) and4.2b), combining a motorized, constantly spinning approach used by the

flailing mechanism, with brush bristles instead of rubber flails.

This chapter is divided into two main sections, one discussing the development and proper-

ties of the proposed suckering tool (section4.2), and one dedicated to the control approach used

for the suckering task (section4.3). The proposed tool design utilizes the direct drive design

philosophy, allowing the actuator driving the tool to be used as a torque sensor. The torque

sensing ability of the tool is utilized both to avoid damaging the plant and to provide the robot

arm with tactile feedback. The latter is achieved using an estimated relationship between the

torque exerted by the tool and the overlap between the brush bristles and the plant trunk.

The ability of the presented tool to be used as a tactile sensor is exploited to achieve com-

pliant robot arm control. Compliant robot arm control is used for tactile exploration of the

plant, allowing the suckering task to be performed without previously detecting the shape of a

plant trunk. Like the nozzle used for the previously discussed task of vineyard spraying, the

presented suckering tool is also axis-symmetric. Similar principles are applied to control the re-

sulting 3T2R task, and resolve the redundancy caused by the tool’s axis-symmetry. Finally, the

torque sensing ability of the presented tool is also utilized for tactile mapping, using multiple

occupancy grid maps to estimate the shape of the trunk during the suckering procedure.

4.1.1Related Work

Prior research has examined various methods for applying robotic technology to suckering and

shoot thinning tasks [59,60,61,62,63,64,65]. Majeed et al. [61,62] report on computer

vision algorithms used to detect vine cordon shapes, and on the use of a flailing mechanism for

robotic shoot thinning. In [64], Martelloni et al. propose the use of flaming as an alternative to

purely mechanical suckering methods. In [65], Polić et al. present a tactile plant exploration

algorithm, using joint torque measurements to estimate the tactile feedback acting on the robot

end-effector. This tactile feedback is also used to construct an estimate of the plant shape,

and its reuse for future procedures is discussed. A possible use case of the presented tactile

exploration algorithm for vine suckering is discussed.

The investigation of direct drive actuation and its application in robotics has been the focus

of continuous research [66,67,68,69]. The direct drive design philosophy is predicated on the

absence of mechanical reduction between the rotor and the mounting shaft of the actuator. This
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lack of mechanical reduction results in maximal backdrivability of the actuator, enabling pre-

cise torque control with high transparency [70,71]. Due to the lack of gearing-related friction

or losses, it is possible to achieve precise and high-bandwidth torque sensing through motor

current measurements [70,71]. The driving force behind the development of direct drive ac-

tuation is its ability to offer transparency and high-bandwidth torque sensing without the need

for external torque sensors. Interest in direct drive actuation emerged as early as 1983, with

its early application in the field of robotics documented by Asada et al. [66]. The absence of

mechanical reduction required the motor itself to generate a significant amount of torque, which

presented a challenge in the early stages of research. This eventually led to the development

of quasi direct drive actuation, a concept frequently applied in legged robots [71,72,73,74].

The quasi direct drive design philosophy aims to achieve torque transparency comparable to a

direct drive actuator while producing higher torques, using a single-stage transmission with a

low reduction ratio. In [73], Seok et al. examine the correlation between the geometry of a

brushless DC motor and its torque density. These principles guided the selection of the brush-

less motor actuating the suckering tool presented in this thesis. The utilization of both direct

drive and quasi direct drive actuation for the design of robotic tools and grippers is an active

area of research [69,75,76]. These tools have the ability to provide precise tactile feedback

through their high bandwidth torque sensing and transparency, eliminating the need for external

sensors.

The integration of tactile perception for robotic exploration, mapping and shape estimation

is a long-lasting research endeavour [77,78,79,80,81,82,83]. This pursuit is driven by

the aspiration to replicate the human ability to employ the sense of touch for accomplishing

these tasks. The approach to robotic suckering adopted in this thesis follows similar principles,

relying on the tactile sensing ability of the presented suckering tool for plant trunk exploration.

This allows for the traversal of differently shaped trunks, without the need to detect their shape

prior to the procedure. Also, the use of tactile feedback for plant shape estimation is discussed.
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4.2Direct Drive Brush-Shaped Suckering Tool

This chapter focuses on the development and properties of a robotic suckering tool, which takes

the form of a motorized circular brush. This specialized tool is used as the end-effector for

the robot manipulator, enabling it to perform the suckering task (Fig.4.3). It is designed with

compliant task execution in mind, allowing the mobile manipulator to perform the suckering

task without requiring prior detection of the plant trunk’s shape. The remainder of this chapter

presents the design, as well as control and sensing capabilities of the developed tool.

Figure 4.3: Mobile manipulator equipped with a specialized brush-shaped suckering tool in a vineyard.
Copyright [58]CC BY 4.0.

As already mentioned, the presented suckering tool follows the direct drive design phi-

losophy, having no mechanical transmission between the rotor and the mounting shaft of the

actuator. This design allows for maximum backdrivability of the actuator, referring to the abil-

ity to transparently transmit forces from the output shaft of the actuator to its rotor. The lack of

gearing related friction and energy losses allows for precise and high bandwidth torque sensing,

using the motor current measurements and the relationship:

τ = KtI, (4.1)

where τ is the torque, I is the current and Kt is the torque constant of the motor.

61

https://creativecommons.org/licenses/by/4.0/


4.2. Direct Drive Brush-Shaped Suckering Tool

Figure 4.4: Exploded view of the direct drive brush-shaped suckering tool. The tool is actuated by a
high torque density brushless DC motor. The lack of mechanical reduction allows for the use of current
measurements from the motor for precise torque sensing.

In the context of robotic suckering, the torque sensing ability of the actuator driving the

suckering tool is useful for three reasons:

•limiting the amount of torque exerted by the tool to avoid damaging on the plant

•using torque measurements as tactile feedback for compliant robot arm control

•using torque measurements as feedback for tactile mapping of the plant trunk’s shape

An exploded view of the suckering tool design is shown in Fig.4.4. The tool consists

of a circular brush mounted on a brushless DC motor and a magnetic encoder. The circular

brush features flexible plastic bristles, which are responsible for removing the growth from the

plant. The choice of the Herlea X8308 brushless DC motor for actuating the tool is driven by

its favorable geometrical properties: it has a small length and a large radius, resulting in high

torque density [73]. Torque density is defined as the ratio between the output torque of a motor

and its mass. Given the lack of mechanical reduction in the actuation system, the high torque

density of the motor is essential for the tool to generate sufficient torque. Both the motor and

encoder are connected to a high-performance brushless motor control board ODrive, which is

utilized for control and current sensing purposes.

The motor is controlled in the torque control mode using velocity limiting as described in the

ODrive documentation [84]. This results in the behaviour where the circular brush is spinning at

the velocity limit while the resistance torque from the obstacle is smaller than the commanded

torque, and comes to a stop if the resistance torque felt by the tool is greater then or equal to the

commanded torque. As already mentioned, this stopping behaviour serves as a safety feature,

aiming to avoid damaging the plant. Consider the case when the tool spins at its velocity limit.

The amount of torque necessary to achieve that velocity depends on the resistance between the
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Figure 4.5: Torque measurements acquired by the suckering tool in torque control mode with velocity
limiting. Raw torque signal calculated from current measurements is denoted as τraw, and the filtered
torque signal as (τfiltered). Copyright [58]CC BY 4.0.

brush bristles and the obstacle, and the tool acts as a sensor, measuring the resistance torque

(Fig.4.5).

The amount of resistance torque sensed by the tool depends on the overlap between the

brush bristles and the obstacle. This relationship and its use for tactile compliant control of the

robot arm are discussed in the rest of this chapter.

4.2.1Torque-Overlap Relationship

This section discusses a correlation of the torque exerted by the suckering tool and the overlap

between brush bristles and the obstacle (Fig.4.6). The initial hypothesis is that increasing

this overlap produces increased resistance, resulting in higher values of torque produced by the

motor. The focus of this section is on the experimental investigation into the relationship of

these two quantities.

An experiment is performed, slowly moving the robot arm equipped with a brush-shaped

tool in a single direction, and linearly increasing obstacle overlap (Fig.4.6). Once the torque

exerted by the motor reaches its maximum specified value the experiment is stopped. The

motor current and robot arm encoder measurements are used to calculate the torque and overlap

values during the experiment, and their measured relationship is shown with a blue line in Fig.

4.7. The acquired experimental results suggest that this relationship can be approximated with

a quadratic function:

O(τ) = aτ
2 +bτ + c (4.2)

where O(τ) is the estimated obstacle overlap, and a,b and c are quadratic function parameters.
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Figure 4.6: The torque exerted by the brush depends on the overlap between the brush bristles and the
obstacle. The relationship between those values is estimated in order to simplify tactile control explained
in the following section.

Figure 4.7: Experimental results suggest that the relationship between obstacle overlap and resistance
torque resembles a quadratic function. Unfiltered torque measurements are denoted as τraw and the fitted
quadratic function model as τmodel.

Least squares method is used to select these parameters that minimize the error between the

quadratic approximation and real-world data. Multiple brush designs were used during the

development of the tool, the particular one presented in this thesis having fitted parameter values

of a = 6281.9,b = 13.626 and c = 0.0238.

This estimated relationship is used to transform the torque measured by the tool into obstacle

overlap feedback, to simplify the tuning of the controllers used for tactile exploration of the

grapevine trunk, further elaborated in the following sections.
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4.3Prioritized Task Space Control based Suckering

This section focuses on the control methodology developed for the suckering task, utilizing the

previously presented suckering tool. The control algorithm used for suckering is based on pri-

oritized optimization, which is used, among other reasons, to exploit the functional redundancy

introduced by the axis-symmetry of the tool (Fig.4.8).

Figure 4.8: To perform the suckering task, the mobile manipulator is equipped with a direct drive brush-
shaped suckering tool discussed in previous section. The tool is axis-symmetric, introducing functional
redundancy into the control problem.

The torque sensing capability of the brush-shaped tool is utilized for tactile trunk exploration

and mapping. The objective is to enable the tool to navigate and process as much of the trunk

area as possible, relying solely on the tactile feedback. While certain general assumptions about

the trunk’s shape are considered, the method is designed to accommodate irregular and uneven

trunks with significant curvatures. The tactile exploration algorithm aims to control the tool’s

movement along the trunk, while keeping the amount of overlap with the brush bristles constant.

A prioritized task space control algorithm is utilized to prioritize between different components

of the tool’s velocity.

The torque measuring ability of the suckering tool is also utilized for tactile mapping, uti-

lizing a probabilistic model of the tool. Multiple occupancy grid maps are constructed during

the exploration, and are used to estimate the shape of the trunk.

4.3.1State Machine

As already mentioned, the presented control method has the objective of processing as much

of the trunk area as possible using the suckering tool. The control algorithm is based on a

high-level state machine that switches the robot arm between different work modes. The goal
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is to produce a behavior similar to the lawnmower trajectory used in the spraying algorithm

described in Chapter3. This lawnmower behaviour is based on switching between stages of

sideways and vertical movement of the suckering tool, as shown in Fig.4.9.

Figure 4.9: The processing of the trunk area is achieved using a state machine switching between dif-
ferent control modes for the robot arm, resulting in a lawnmower shaped trajectory. The green path
corresponds to the position of the suckering tool, and the red path represents the point of contact with
the trunk.

A visualization of the state machine used to achieve this behaviour is shown in Fig.4.10.

The initial assumption is that prior to running the state machine the robot arm is positioned

directly in front of the trunk. If this initial assumption is met, the control algorithm allows the

execution of the entire algorithm based solely on the tactile feedback provided by the developed

suckering tool.

First, the robot arm is commanded to move forward until contact with the trunk is made,

detected as the estimated overlap exceeding a prescribed threshold. Once contact with the trunk

is made, the arm is commanded to move sideways. It is worth mentioning that this movement

is not purely sideways with respect to the base coordinate frame but is tangential to the detected

obstacle, as a result of the tool remaining in contact with the trunk at all times. Since the

shape of a trunk in a horizontal plane exhibits a quasi-circular shape, the obstacle tangent angle

constantly changes during this stage. Once this tangent angle exceeds a certain threshold, the

robot arm is commanded to move downwards by a specified amount, while maintaining contact

with the trunk. To ensure full vertical coverage of the trunk, this specified height must be lower

than the height of the brushing tool itself. After this movement is completed, if the global

height limit has not been reached, the arm is once again commanded to move sideways, but in

an opposite direction, and the entire process is repeated. Once the global height limit is reached,

the suckering task is considered to be finished.
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Figure 4.10: A diagram of the state machine used to execute the suckering task. To achieve the lawn-
mower shaped trajectory, robot arm is commanded to switch between sideways and downwards move-
ment modes.

The main control challenge is to satisfy the requirement to remain in contact with the trunk

at all times, while moving in a specified fashion. This is achieved using prioritized task space

control, presented in the following section.

4.3.2Prioritized Task Space Control for Tactile Exploration

A custom task space is defined for the purpose of tactile trunk exploration, referred to as explo-

ration space, with the corresponding exploration velocity vvvE and exploration Jacobian matrix

JJJE . Two coordinate frames are defined, the end-effector coordinate frame and the exploration

coordinate frame, as seen in Fig.4.11. The end-effector frame is fixed with respect to the final

link of the robot arm. It is positioned in the center of the suckering tool, and both its position and

orientation are fully determined by the current joint positions of the robot arm. For the purpose

of the tactile exploration task, the exploration coordinate frame is defined as the end-effector

frame rotated around its z axis. The exploration frame is rotated for the amount αO, aligning its

y axis with the estimated obstacle tangent.

The path of the tool during the tactile exploration, shown with a green line in Fig.4.9,

is used to estimate the angle αO. The latest segment of the tool path is used to numerically
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Figure 4.11: Coordinate systems used for the task of tactile trunk exploration. Exploration coordinate
frame rotates with respect to the final link of the robot arm. The y coordinate of the exploration frame is
parallel to the estimated obstacle tangent, and its x coordinate is directed towards the obstacle.

calculate its tangent and αO. This angle constantly changes during the Move sideways stages

of the tactile exploration process, resulting in the task space that is not a part of the kinematic

chain. The obstacle angle αO is assumed to remain constant during the Move downwards state.

The axis-symmetry of the suckering tool introduces a functional redundancy into the tactile

exploration problem. The angle around the z axis of the tool does not affect task execution and

is disregarded, resulting in a five dimensional exploration velocity:

vvvE =



vE,x

vE,y

vE,z

ωE,x

ωE,y


=



vO

vtan

vE,z

ωE,x

ωE,y


∈ R5 (4.3)

The x and y direction components of the exploration velocity are given more descriptive labels,

vO and vtan respectively. Velocity vO denotes the tool’s velocity approaching the obstacle, and

vtan its velocity tangential to the obstacle (Fig.4.11).

The task space control problem used for tactile exploration, similarly to the one used for

continuous spraying, utilizes task prioritization for multi-stage redundancy resolution. One

of the roles of the prioritization is to separate the bristle overlap control from the rest of the

exploration velocity. As already mentioned, the tactile exploration algorithm aims to keep a

constant amount overlap between the bristles of the suckering tool and the plant trunk while

traversing it. The component of the exploration velocity controlling overlap vO is given a lower

priority than the rest of the exploration velocity. The reasoning behind this is to allow for

aggressive overlap controller design, while ensuring the correct angle, height and tangential

velocity of the tool.
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Therefore, the cost function of the first priority regards the entire exploration velocity except

for the obstacle approach velocity. The tangential and vertical linear velocities are considered,

along with rotational velocities around the x and y axes of the exploration frame. The cost

function of the first priority can be written as:

E1(q̇qq) = ||JJJ1q̇qq− vvv1||2, (4.4)

where:

vvv1 =


vtan

vE,z

ωE,x

ωE,y

 ∈ R4, JJJ1 =


1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

JJJE ∈ R4×NJ , (4.5)

The cost function of the second priority, referring to the obstacle approach component of

the exploration velocity, has the following form:

E2(q̇qq) = ||JJJ2q̇qq− vO||2, (4.6)

where JJJ2 is the second row of the exploration Jacobian:

JJJ2 =
[
0 1 0 0 0

]
JJJE ∈ R1×NJ , (4.7)

The final priority, which resolves any redundancy remaining after minimizing the first two

priorities, favors such joint velocities q̇qq that move the arm towards a desired configuration:

E3(q̇qq) = ||q̇qq− q̇qqc||2, (4.8)

where the commanded joint velocities q̇qqc that drive the robot arm towards a desired pose qqqd are

selected by a proportional controller:

q̇qqc = KP,q(qqqd−qqq) (4.9)

Here, KP,q is the controller gain and qqq is the current joint position vector. Similarly to the

continuous spraying task space control problem, inequality constraints are used to enforce joint

velocity and acceleration limits:

q̇qq⪯ q̇qq⪯ q̇qq (4.10)

q̇qqP + q̈qq∆t ⪯ q̇qq⪯ q̇qqP + q̈qq∆t (4.11)

where ∆t is the control time step, and q̇qqP are joint velocities in the previous time step.
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The commanded overlap velocity vO is the result of a proportional overlap controller:

vO = KP,O(Od−O(τ)), (4.12)

where Od is the desired amount of overlap and O(τ) is the current overlap estimate, calculated

using equation (4.2). KP,O represents the gain of the proportional controller.

One of the challenges of the presented method is the choice of this controller gain. While

the tool is able to estimate the amount of overlap with the obstacle, this estimate is saturated,

and has values from 0 to 8 millimeters (as seen in Fig.4.7). The prioritization between the

components of the exploration velocity allows for aggressive overlap controller design, since

correct orientation and height of the tool are guaranteed by the higher priority.

The commanded tangential velocity vtan depends on the current stage of the exploration

process. In the Move downwards stage the tangential velocity is commanded to be zero, and in

the Move sideways stage it is calculated as:

vtan = movement_direction · |vtan|, (4.13)

where |vtan| is the absolute value of tangential velocity set as a parameter by the user, and

movement_direction is either 1 or −1 based on the current movement direction, and changing

after each Move downwards state as seen in Fig.4.10.

The commanded vertical velocity vE,z also depends on the current stage of the exploration

process, being set to zero during the Move sideways state, and having the user defined value

|vE,z| during the Move downwards state. Commanded angular velocity values are calculated as

for the continuous spraying task, discussed in section3.2.2.1.

4.3.3Trunk Shape Estimation using Tactile Mapping

Trunk shape estimation is performed utilizing the torque sensing ability of the developed suck-

ering tool as feedback for tactile mapping. Multiple two dimensional occupancy grid maps are

gathered at different heights, each map relating to a single Move sideways state (Fig.4.10). The

main challenge presented by this task is to estimate the obstacle position at a point in time based

solely on tool’s movement and torque measurements.

Occupancy grid maps address the problem of generating consistent maps from noisy and

uncertain measurement data, under the assumption that the sensors pose is known [85]. A map

is represented by an evenly spaced two-dimensional grid with values 0 ≤ mi, j ≤ 1, where mi, j

represents the probability of the map cell at coordinates i, j being occupied by an obstacle. The

map is initially set to mi, j = 0.5 for all map cells, representing an unobserved point in space,

neither free nor occupied.
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The probability values of an occupancy grid map are updated according to the Bayes rule,

and the calculations can be performed with the probability representation of the map. However,

the log-odds representation of occupancy is often used to improve execution time and avoid

numerical instabilities for probabilities near zero or one [85]. The odds of the event x is defined

as its probability divided by the probability of its negate, and the log-odds refers to the logarithm

of this expression:

l(x) = log(odds(x)) = log
(

p(x)
1− p(x)

)
, (4.14)

where 0≤ p(x)≤ 1 is the probability of the event x, and −∞≤ l(x)≤ ∞ is its log odds.

The recursive equations used to update the log-odds representation of the occupancy grid

map are as follows:

li, j
k = li, j

k−1 + log
Si, j

k

1−Si, j
k

(4.15)

Here li, j
k represents the log-odds representation of the map cell mi, j, at the k-th iteration of

the mapping algorithm. The value Si, j
k represents the corresponding value of the probabilistic

sensor model. Probabilistic sensor model represents the sensor measurement as the probability

of the obstacle being at a certain point in space. The main challenge tackled in this section

is determining the probabilistic sensor model of the developed suckering tool. The probability

representation of the occupancy grid map can be retrieved from the log-odds notation as follows:

mi, j = 1− 1
1+ eli, j (4.16)

Even though the overlap between the brush and the obstacle can be estimated from torque

measurements (as discussed in section4.2.1), the torque measurements cannot be used to de-

termine the angle at which the obstacle is contacted, due to the axis-symmetry of the tool.

Additionally, the overlap estimate might not be ideal due to the noise or delay present in torque

measurements. Both of these issues are addressed using a probabilistic sensor model of the

suckering tool, also referred to as the inverse sensor model [85].

This model uses torque measurement and tool movement data to calculate a probability of

the presence of an obstacle at a certain point in space. Both the overlap and the obstacle angle

are handled as probabilistic variables with normal distributions. Mean value of the overlap

depends solely on the current torque measurement and is calculated using the relationship (4.2),

while the mean value of the obstacle angle is chosen as the angle of the obstacle tangent, shown

as αO in Fig.4.11.

The probability density function of the normal distribution is given by:

p(x) =
1

σ
√

2π
e
−
(x−µ)2

2σ2 , (4.17)
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Figure 4.12: Probabilistic sensor model of the suckering tool incorporates two normal distributions, one
for the obstacle angle and one for the obstacle overlap.

where p(x) is the probability density function of a random variable x, µ is the mean and σ is

the standard deviation. Two normal distributions are used in the probabilistic sensor model, the

overlap distribution pO(O(τ)) and the obstacle angle distribution pα(αO). The mean values

used for these distributions represent their expected value, and are calculated as follows:

µO = aτ
2 +bτ + c, µα = αO (4.18)

The corresponding standard deviations σO and σα represent the trust in the correctness of the

overlap and angle measurement respectively, and are chosen experimentally.

The probabilistic sensor model is represented by the probability of the obstacle being mea-

sured at a certain two-dimensional point in space:

S(x,y) =


0.45, if r(x,y)≤ r

pO · pα , if r ≤ r(x,y)≤ r and α ≤ α(x,y)≤ α

0.5, else

(4.19)

Here, S(x,y) represents the probability of an obstacle being at the coordinates x,y. A visual-

ization of the probabilistic sensor model is shown in Fig.4.12. The first segment of the sensor

model represents the point (x,y) located inside the brush, with a small radius for which pO is
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Figure 4.13: A two-dimensional occupancy grid map is built at the constant tool height using the Bayes
rule and the inverse sensor model. Dark pixels represent obstacles and the white pixels represent obstacle
free space, while the grey area is not observed by the sensor.

negligible. Since the points inside the brush itself cannot be occupied by an obstacle, these

points are given a probability S(x,y) ≤ 0.5, and are shown as the black area in Fig.4.12. The

second segment of S(x,y) represents the points in space for which neither of the normal distri-

butions yields negligible values, and the combination of the pO and pα is used as the overall

probability of the obstacle being present. The product of pO and pα yields probability values

of S(x,y) ≥ 0.5, resulting in highest probability of the obstacle being present at the mean of

both the overlap and obstacle angle distributions. The final segment of S(x,y) corresponds to

unobserved space.

The limits used in the sensor model are:

r = µO +3σO, r = µO−3σO (4.20)

α = µα +3σα , α = µα −3σα (4.21)

A visualization of the process of building a map for a single Move sideways state can be seen

in Fig.4.13. The sensor model is used to recursively update the occupancy grid map, resulting

in the obstacle being represented with sufficiently dark parts of the map.
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4.3.4Results and Discussion

The experimental evaluation of the presented suckering method commenced in a controlled

setup is depicted in Fig.4.14. A grapevine trunk with prominent curves and bumps was fixed

to the ground next to the mobile manipulator. This trunk was intentionally selected to deviate

from the conventional straight structure, showcasing the flexibility of the presented method.

Figure 4.14: Experimental setup for testing the trunk shape following and tactile mapping. A grapevine
trunk with an unconventional shape was deliberately chosen to demonstrate the utility of tactile explo-
ration and mapping for a wide range of trunk shapes.

As previously explained, once contact with the plant is established, the lawnmower be-

haviour consisting of multiple Move sideways and Move downwards states is initialized. Through-

out the Move sideways states, the tool maintains a constant height, and online occupancy grid

mapping is executed estimating the shape of the trunk in real-time (Fig.4.15).

Once a particular Move sideways state finishes, an acquired occupancy grid map correspond-

ing to that state is stored for future use. This process is repeated for every Move sideways state,

and once the entire algorithm is finished, the stored occupancy grid maps are layered at their

respective tool heights to estimate the overall shape of the trunk (Fig.4.16).

The shape of the trunk estimated by the presented method, and the path of the suckering tool

during this experiment are shown in Fig.4.17. The three-dimensional path data is fitted to two

images of the trunk used in the experiment, demonstrating the resemblance of the estimation

and the real trunk shape.

Additional experiments were conducted in actual vineyards, demonstrating the ability of the

presented method to successfully remove the growth from the grapevine plant trunk. Some of

the results can be seen in the accompanying video *.

*https://www.youtube.com/watch?v=y9Cca1SuyCU
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Figure 4.15: Occupancy grid mapping at a constant tool height during the suckering experiment. The
map is built online, being constantly updated during the experiment.

Figure 4.16: Once the suckering experiment is finished, all the occupancy grid maps built at different
heights are accumulated to estimate the overall shape of the trunk.

The presented method demonstrated satisfactory performance in real-world conditions, suc-

cessfully executing the suckering task in most cases. One of the drawbacks of the presented

method is its inability to process the entire area of the trunk. The robot arm is not able to reach

the opposite side of the trunk without collisions, which is why the tangent angle limits are set in

such a way to conservatively constrain the amount of the trunk processed by the tool. This issue

could be combated to some extent by including collision awareness to the control algorithm,

allowing the tool to reach more of the trunk area. Although the method is expected to perform

well in various vineyards, additional obstacles that are sometimes found on grapevine trunks

(such as wires or water hoses) can disrupt its execution. Also, the trunk of the grapevine plant is

not completely rigid, which can result in the oscillatory behaviour of the system, usually more

pronounced at the upper part of the trunk. This has to be taken into account when tuning the

overlap controller, and the desired tangential and vertical velocity values. Successful removal

of the growth also highly depends on its stage of development, the younger buds being easier
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Figure 4.17: The green line represents the path of the tool during the experiment, and the red line
represents the shape of the trunk estimated using tactile mapping. The estimated trunk shape is fitted on
images of the actual trunk used in the experiment.

to removal than the older, more developed ones. Apart from that, the length, thickness, flexibil-

ity and sharpness of the brush bristles also has a profound effect on successfulness of growth

removal.
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4.4Summary

This chapter is dedicated to the application of a mobile manipulator in the context of robotic

viticultural suckering. The chapter is divided into two parts: one addressing the development

of the robotic tool for the suckering task, and the other covering the control methodology and

algorithms developed for this task. The robotic suckering tool is designed as a circular brush-

shaped tool, utilizing the principle of direct drive actuation to achieve precise torque feedback.

The use of these torque measurements for tactile sensing is discussed. The circular suckering

tool is axis-symmetric, introducing a functional redundancy into the robot arm control problem.

Prioritized task space control is used to resolve this redundancy, while prioritizing between the

different velocity components of the tool. The tactile sensing capability of the suckering tool

is used to achieve tactile plant shape exploration and mapping. Two contributions of this thesis

related to the viticultural suckering task are discussed in the chapter:

• A direct drive brush-shaped vine suckering robotic tool with torque sensing

• Prioritized task space control based method for compliant vine suckering using a direct

drive brush-shaped robotic tool

Associated Publications

Parts of this chapter have already been published by the author in the following article:

•Vatavuk, I., Stuhne, D., Vasiljevi ć, G., and Kovačić, Z. (2023). Direct Drive Brush-

Shaped Tool with Torque Sensing Capability for Compliant Robotic Vine Suckering.

Sensors, 23, 1195. https://doi.org/10.3390/s23031195 (IF = 3.9, Q2)
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CHAPTER 5

Conclusion

The aim of the research presented in this thesis is to develop control methods for mobile manip-

ulation in a viticultural scenario. Tasks of spraying and suckering in viticulture are considered,

both of which require the robot system to manipulate its environment. The common theme for

all the developed control algorithms is the use of optimization and optimal control to resolve

different kinds of redundancies that arise in the execution of mentioned tasks. The tools used

for both of the manipulation tasks are axis-symmetric, introducing functional redundancy to

both control problems. The main contributions of the thesis are laid out as follows.

Task space model predictive control based method for vineyard spraying with a mobile
manipulator

The first contribution is focused on the task of vineyard spraying. The first kind of redun-

dancy tackled as a part of this task is the redundancy in control of the spraying nozzle during

continuous spraying, which is controlled both by the robot arm and the mobile base. Task space

model predictive control is used to select coordinated control inputs for the robot arm and the

mobile base that follow the reference while predictively resolving the redundancy. A function

of the acceleration of the mobile base and the displacement of the robot arm is minimized as

the criterion function of the model predictive control optimization problem. This results in a

behaviour where the robot arm is responsible for fast, local movement of the nozzle, and the

mobile base is responsible for slower movement, tracking the global trend in change of the

reference trajectory.

The model predictive control algorithm selects the desired task space movement of the robot

arm, which does not correspond to the actual low-level commands used in its control. The task
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space control of the robot arm, selecting the low-level joint velocity commands, is itself a re-

dundant problem. Axis-symmetry of the spray nozzle introduces a functional redundancy to

the problem, which is resolved using prioritized task space control. The translational velocity

of the spray frame is prioritized over its orientational velocity, due to its larger importance for

even spray coverage. The methodology and implications of including various constraints to the

prioritized task space control are discussed. Inspired by the velocity level prioritization between

the task components used in continuous spraying, a positional version of this prioritization is

utilized for the task of selective spraying. A prioritized positional inverse kinematics algorithm

is developed for this task, iteratively solving the velocity level problem. The developed algo-

rithm allows for positional inverse kinematics of an arbitrary robotic system with multiple tasks

with clearly defined priorities.

A direct drive brush-shaped vine suckering robotic tool with torque sensing

The second contribution is focused on the task of viticultural suckering. The goal of the sucker-

ing procedure is to remove all the unwanted growth beneath a certain height of the trunk of the

grapevine plant. A brush-shaped robot tool relying on direct drive design philosophy is devel-

oped for this task. The direct drive design is based on having no mechanical reduction between

the motor shaft and the actuator output. The lack of mechanical reduction allows for precise

and high-bandwidth torque sensing, based on the motor current measurements. Brushless DC

electric motor with high torque density is chosen to allow sufficient torque output without any

reduction. The design objectives and decisions are discussed, along with the details on tools

torque sensing ability. An experiment is conducted to estimate the relationship between the

measured torque and the overlap between the brush bristles and the obstacle. The data gathered

during this experiment is used to approximate a mathematical relationship between the two val-

ues. Using estimated obstacle overlap value as control feedback instead of torque measurements

is advantageous for the suckering control method, which relies on constant overlap control. Like

the nozzle used for vineyard spraying, the developed tool is also an axis-symmetric tool, which

introduces the same kind of functional redundancy. The probabilistic model of the tool is pre-

sented, using torque measurements and brush movement data to estimate both the overlap and

the angle at which the obstacle is contacted.

Prioritized task space control based method for compliant vine suckering using a direct
drive brush-shaped robotic tool

The final contribution is focused on the control method developed for the suckering task, uti-

lizing the previously described robotic tool and its torque sensing ability. The method is based
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on prioritized task space control, using prioritized optimization to resolve the functional redun-

dancy posed by the axis-symmetry of the tool, and assign priorities to different components of

tool’s velocity. The component of the tool velocity approaching the obstacle is given a lower

priority than the rest of the translational velocity together with the direction of the brush. The

reasoning behind this is to allow the obstacle overlap controller to be as aggressive as possible

without affecting other components of the brush pose.

The high-level goal of the control method is to execute a lawnmower trajectory, and cover

a large portion of the trunk area while maintaining contact with the tool. A state machine

is used to switch between different robot arm control modes, following the logic resulting in

lawnmower behaviour. Overlap estimation from the suckering tool’s torque measurements is

used to maintain the overlap as close as possible to its desired value throughout the trajectory.

The probabilistic sensor model of the developed suckering tool is used for the probabilistic

mapping algorithm, allowing the method to be used to estimate the overall shape of the trunk.

Estimated trunk shape can be reused for future executions of the suckering procedures, reducing

execution time.
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