Primjena digitalne fotogrametrije u antropometriji

Jaković, Goran

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:564421

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-14

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of Electrical Engineering and Computing repozitory

UNIVERSITY OF ZAGREB FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 70

DIGITAL PHOTOGRAMMETRY APPLIED TO ANTHROPOMETRY

Goran Jaković

Zagreb, February 2024

UNIVERSITY OF ZAGREB FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 70

DIGITAL PHOTOGRAMMETRY APPLIED TO ANTHROPOMETRY

Goran Jaković

Zagreb, February 2024

MASTER THESIS ASSIGNMENT No. 70

Student:Goran Jaković (0036502140)Study:Electrical Engineering and Information TechnologyProfile:Electronic and Computer EngineeringMentor:assoc. prof. Tomislav Petković

Title: Digital Photogrammetry Applied to Anthropometry

Description:

Anthropometry is the measurement of the dimensions of the human body. One possibility for performing such measurements is digital photography and the subsequent reconstruction of the three-dimensional world from captured photos, which is a classic photogrammetric procedure. The thesis shall contain a brief description of the current state of the art in the application of digital photogrammetry to anthropometry. A description of a classic process of photogrammetric processing in computer vision will be given using an open system such as AliceVision as a practical example. Investigation into how photogrammetry can be used for 3D reconstruction of the human body will be performed, and a recording protocol that ensures sufficient quality of 3D reconstruction will be proposed. The proposed protocol of photogrammetric recording shall be quantitatively evaluated through comparison with the data obtained by other measurement procedures that can be carried out in the laboratory (e.g. tailor's meter, structured light 3D scanner or ToF camera).

Submission date: 09 February 2024

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 2. listopada 2023.

DIPLOMSKI ZADATAK br. 70

Pristupnik:	Goran Jaković (0036502140)
Studij:	Elektrotehnika i informacijska tehnologija
Profil:	Elektroničko i računalno inženjerstvo
Mentor:	izv. prof. dr. sc. Tomislav Petković

Zadatak: Primjena digitalne fotogrametrije u antropometriji

Opis zadatka:

Antropometrija je mjerenje dimenzija ljudskog tijela. Jedna mogućnost za provedbu takvih mjerenja jest digitalno fotografiranje i rekonstrukcija trodimenzionalnog svijeta iz snimljenih fotografija što je klasični fotogrametrijski postupak. U diplomskom radu potrebno je ukratko opisati trenutno stanje tehnike u primjeni digitalne fotogrametrije u antropometriji. Također je potrebno opisati klasični postupak fotogrametrijske obrade u računalnom vidu na primjeru nekog otvorenog sustava kao što je AliceVision. Zatim je potrebno istražiti kako se fotogrametrija može koristiti za 3D rekonstrukcije. Predloženi protokol fotogrametrijskog snimanja je potrebno kvantitativno evaluirati kroz usporedbu s podacima dobivenim nekim drugim postupkom mjerenja kojeg je moguće provesti u fakultetskom laboratoriju (npr. krojački metar, 3D skener koji koristi strukturirano svjetlo, ToF kamera).

Rok za predaju rada: 9. veljače 2024.

I would like to express my deepest gratitude to everyone involved in this master thesis, with special appreciation extended to my mentor, prof. dr. sc. Tomislav Petković. Additionally, I would like to thank my parents and grandparents for their unconditional love and support.

Table of Contents

Table of Contents 1
1 Introduction
2 State of the Art
3 Digital Photogrammetry Applied to Anthropometry
3.1 Preparation
3.2 Acquisition
3.3 Processing in AliceVision
3.3.1 Camera Initialization
3.3.2 Feature Extraction
3.3.3 Image Matching
3.3.4 Feature Matching 10
3.3.5 Structure from Motion11
3.3.6 Depth Map Estimation
3.3.7 Meshing 15
3.3.8 Texturing 17
4 Results and Discussion 18
5 Conclusion
Acknowledgement
Abstract
Sažetak
References

1 Introduction

The idea of obtaining information about an object without physical contact is not a novel notion, therefore we can say that the roots of photogrammetry extend alongside the historical evolution of photography. Photogrammetry is a branch of engineering that deals with obtaining reliable information about the properties of surfaces and objects without physical measurement, achieved through the capture of images, recording of electromagnetic radiation, and subsequent interpretation of the collected information. The applications of photogrammetry are extensive, ranging from disciplines like topography, archaeology, and geology to practical domains such as quality control, engineering, aerial surveillance, and medicine [1]. Due to the diverse range of applications, various methods have been developed for capturing information from the surface of objects, which are then processed using various software packages. The focus of this work will be on the application of photogrammetry in anthropometry. Anthropometry can be defined as the science of measuring the body. In anthropometry, lengths, widths, and surfaces are used for the numerical description of body parts and the overall body shape [2]. Anthropometric measurements have long been used to study physical variations in the human body and have many applications, leading to the need for the development of non-contact measurements.

2 State of the Art

In recent years, the field of 3D scanning in anthropometry has significantly developed, mostly due to the development of available technologies and an increased demand for precise 3D models in the clothing, medical, fitness, movie and gaming industries [3] [4] [5] [6]. For photogrammetric 3D reconstruction, most of the commercially available solutions come in the form of chambers with numerous cameras that can capture the person from various angles [7] [8]. The main advantage of these kinds of scanning chambers is that the image capturing for 3D reconstruction is instantaneous, which means reduced likelihood of subject movement and improved scan quality. The biggest downside is the cost of these types of chambers, as they typically consist of 70 to 150 cameras and lighting equipment mounted at specific angles around the subject being 3D scanned. Another significant drawback is the spatial requirement as these chambers tend to take up a lot of space due to the necessary setup. Alternatively, photogrammetric 3D reconstruction can be achieved using only one camera to capture multiple images of the subjects [9], which is the method employed in this master's thesis. Utilizing a single camera significantly reduces the cost of photogrammetric 3D scanning, while still producing models suitable for various purposes. The post-processing time for the resulting 3D model can vary significantly, depending on its intended usage. AI and machine learning are also being implemented for processing of 3D models [6]. The current state of the art in photogrammetric 3D body scanning focuses on synchronizing all cameras in the booth, coupled with optimal lighting, to ensure maximum quality in terms of texture resolution and color depth while minimizing space requirements and maximizing portability. Some other methods for scanning bodies include those that utilize RGB-D, time-of-flight cameras, structured-light 3D scanners, and stereo vision.

3 Digital Photogrammetry Applied to Anthropometry

As a part of this master's thesis, research was conducted to explore how singlecamera photogrammetry can be used for 3D reconstruction of the human body. The outcome is a proposed recording protocol that ensures a sufficient quality of 3D reconstruction for extracting body measurements. Since only one camera is utilized the image acquisition will not be instantaneous. As image acquisition is not instantaneous, the resulting 3D model's quality may not match that of the state-of-theart image capturing booths. However, that is not the primary objective. The goal of the proposed protocol is to minimize the time required for image acquisition while attaining the highest possible 3D reconstruction quality, ensuring a sufficient quality of the 3D model for extracting the accurate body measurements. The protocol is divided into three parts: preparation, capturing, and processing.

3.1 Preparation

The subject should wear colorful or textured clothes and avoid black clothing to enable the photogrammetry software to better extract features from the photos. For the best quality of reconstruction, the manual operating mode is used, utilizing manual auto-focus and without the use of integrated flash. The use of the integrated flash is not recommended because it lengthens the time of image capturing due to the charging time of the capacitor used by the built-in flash. Recording can take place either indoors or outdoors. However, for outdoor recording, it should be conducted on a clear, sunny day to ensure optimal lighting. Regardless of the place of recording, it should be spacious, minimally 5x5 meters. On the floor, markings should be made to indicate both the position where the subject will be standing and the locations from which the images will be captured. If the recording is to be performed indoors, additional lighting equipment should be used. To extract measurements after obtaining a 3D model, a reference object with well-known and defined dimensions is needed in the scene. This allows the utilization of a measurement tool within the software used for viewing the reconstructed model, such as MeshLab [10] or Blender [11]. The internal measurement

unit of the software used is correlated with real-world measurements, making it straightforward to convert into standard measuring units (SI). With this kind of setup, capturing of around 20 images was achieved in under 2 minutes, and the resulting 3D model was suitable for extracting body measurements.

3.2 Acquisition

To ensure successful image acquisition, the subject should remain as still as possible. Focusing on a specific point can help the subject maintain steadiness. Images should be captured equidistantly around the subject, with uniform angular increments. It is recommended that the person taking the images captures one at each step along the marked circle. Additionally, to distinguish between pictures from different sessions, taking a dummy photo at the beginning and end of each session is advisable. The images of the subject should be taken with the subject being in either A, I or T-poses. In the context of this study, the A-pose refers to the subject standing with their arms positioned at 30-45 degrees from their body. I-pose is when the subject has their arms placed next to body. T-pose is when the subject has his arms spread 90 degrees from the body.

Figure 1 - Subject standing in A, I and T-poses respectively

3.3 Processing in AliceVision

Before the images are processed, a visual inspection for blurry images is recommended. The process of extracting a 3D model from the recorded images was achieved by employing AliceVision [12]. Meshroom [13] is an open-source software which utilizes its underlying 3D computer vision framework AliceVision. It provides a node-based environment for executing various computer vision tasks. Each node in the system represents a specific task, functioning as a tool implemented in AliceVision. These nodes are then organized into pipelines. The nodes in Meshroom serve as logical steps within the directed graph, which are initiated each time when there are changes in inputs or parameters, or when the graph undergoes modifications. While AliceVision offers preconfigured pipelines, users have the flexibility to change them as desired and save their configurations as the new default pipeline. Users can add or remove nodes in the pipeline and connect multiple nodes to the output of a stage. While it is interesting to explore the various possibilities that the changes in the pipeline enable, the default pipeline provides a good understanding of how photogrammetric processing in computer vision is done. On its example, the general pipeline of photogrammetric software can be explained. The AliceVision photogrammetry pipeline comprises the following steps: camera initialization, feature extraction, image matching, feature matching, Structure-from-Motion, depth mapping (including preparation, mapping, and filtering), meshing, mesh filtering, and texturing. The pipeline graph is provided in the Figure 2.

Figure 2 – Graph of the photogrammetry pipeline used in AliceVision [12]

The suggested protocol is provided in form of an acquisition checklist in Table 1.

Protocol Checklist		
	Subject(s):	
	wearing bright colored or textured clothing	
	focused on a single point to ensure maximum steadiness	
	barefoot (if wearing shoes adjust the measured height)	
	Equipment:	
	Camera: all automatic features turned OFF, especially	
	automatic flash and focus are turned OFF	
	Lighting setup: if the image acquisition process is	
Droponation	indoors place lighting in such way to ensure uniform and	
Freparation	bright lighting	
	Calibration object: a box of known dimensions is	
	positioned next to the subject	
	Environment/Room:	
	Dimensions: ensure enough space for image acquisition	
	(min. 5x5m)	
	Floor markings: make markings on the floor where the	
	subject is standing and a circle around the subject where	
	images are taken	
	Subject should remain as still as possible in the A-pose	
A a avriation	Images should be captured equidistantly around the	
Acquisition	subject, following the markings	
	Dummy images should be taken between sessions	
Dura	Visual image check for blurry images	
Processing	AliceVision processing	

Table 1 - Acquisition Checklist

For the purposes of this master's thesis, two incandescent light bulb reflectors were used, placed in the opposite sides of the room, pointed towards the white-colored ceiling, to ensure optimal lighting. To record the images, a DSLR Cannon DS126271 camera with Cannon EFS 18-55mm lens was utilized.

3.3.1 Camera Initialization

The main data extracted in this node are camera intrinsics and viewpoints. The lens name and camera maker are used to match the lens correction profile database. Furthermore, you have the option to choose the color processing method for RAW data, and adjust various ID parameters as needed. Additional information is provided in the image below.

主 Node - CameraInit						
Viewpoints		> 21 elemen				
Intrinsics		> 1 elements				
Sensor Database		\${ALICEVISION	I_SENSOR_DB}			
LCP Info		\${ALICEVISION	LENS_PROFILE_INFO}			
LCP Generic Search		V				
Default Field Of View		45		_0		
Group Camera Fallback						
Allowed Camera Models		√ pinhole	radial1 🗸 radial3	🗸 brown 🖌 fisheye4	🗸 fisheye1 🗸 3dean	amorphic4
		✓ 3deradial4	J 3declassicld			
RAW Color Interpretation		LibRawWhiteBa	lancing			
ViewId Method		metadata				
Verbose Level						
S	SfMData	LOMSKI/test1_	corsair/MeshroomCache/	CameraInit/84f826adeed:	364bccbf470ac59548a9e9	c1fabf1/cameraInit.sfm
Attributes		Log	Statistics	Status	Documentation	Notes

Figure 3 - Detailed description of Camera initialization node

3.3.2 Feature Extraction

The goal of this step is to detect a group of distinctive points in every image that are invariant to scale, rotation in 2D and 3D and several other properties such as lighting. AliceVision implements both natural feature extractors (SIFT, and AKAZE) and marker-based features (CCTag, April-Tag) [13]. Once those features are extracted, they can be used to determine the relative pose of the camera in space, and to initiate the scene. In the Advanced Attributes section of this node, "Force CPU Extraction" was unchecked to utilize the GPU for faster feature extraction. All node settings are shown in the image below.

章 Node - FeatureExtract	tion					1m2s :
SfMData		LOMSKI/test1_c	orsair/MeshroomCache/	CameraInit/84f826adeed3	364bccbf470ac59548a9e9	c1fabf1/cameraInit.sfm
Masks Folder						
Describer Types			t_float 🔜 sift_upright	✓ dspsift 🚺 akaze	akaze_liop akaz	ze_mldb cctag3
		cctag4	sift_ocv 🔛 akaze_oc	v tag16h5		
Describer Density						
Describer Quality						
Contrast Filtering						
Grid Filtering		J.				
Working Color Space						
Force CPU Extraction						
Max Nb Threads						
Verbose Level						
Features Fo	older	oran/DIPLOMS	(I/test1_corsair/Meshroo	omCache/FeatureExtractio	n/c4109e1119b6dc97f0a	fb449126fff434e1359e3
Attributes		Log	Statistics	Status	Documentation	Notes

Figure 4 - Detailed description of Feature extraction node

3.3.3 Image Matching

The objective of this node is to find images that look at the same surfaces of the scene. The image needs to be simplified into a compact image descriptor that enables efficient calculation of distances between all image descriptors. One of the most common methods for generating image descriptors is the vocabulary tree approach. By transferring all descriptors of detected features into the tree, it performs classification by comparing descriptors with those at each node in the tree. Each feature ends up at a leaf, which can be stored using the index of the leaf in the tree. The image descriptor is then represented by leaf indexes. Comparing image descriptors in this way makes it possible to see if different images share the same content [14].

辈 Node - ImageMatching		2.31s :				
SfMData	LOMSKI/test1_c	LOMSKI/test1_corsair/MeshroomCache/CameraInit/84f826adeed364bccbf470ac59548a9e9c1fabf1/cameraInit.sfm				
Features Folders	> 1 elements					
Method	SequentialAndV	ocabularyTree				
Voc Tree: Tree	\${ALICEVISION	_VOCTREE}				
Voc Tree: Weights						
Voc Tree: Minimum Number Of Images	200					
Voc Tree: Max Descriptors	500					
Voc Tree: Nb Matches	40					
Sequential: Nb Neighbors	5					
Verbose Level						
Image Pairs	I/test1_corsair/MeshroomCache/ImageMatching/36e2348050fce79ab95ecd868a4ab97366f0f31f/imageMatches.tz)f31f/imageMatches.txt	
Attributes	Log	Statistics	Status	Documentation	Notes	

Figure 5 - Detailed description of Image matching node

3.3.4 Feature Matching

Feature matching involves finding similarities between features extracted in the Feature Extraction node across different images. The goal is to identify points or patterns in one image that correspond to the same points or patterns in another image. In this process relationships between images are established. Descriptors are employed to find the best fitting matches between images. Since this is an intensive step to use a brute force approach, algorithms like Approximate Nearest Neighbor and Cascade Hashing are utilized. Features positions are then used to make a geometric filtering using RANSAC (RANdom SAmple Consensus) outlier detection framework [12].

君 Node - FeatureMatchi	ng					18.65s 🚦	
SfMData		LOMSKI/test1_	${\sf OMSKI} test 1_corsair/{\sf MeshroomCache}/{\sf CameraInit}/84f826adeed 364bccbf470ac59548a9e9c1fabf1/cameraInit.sfm}$				
Features Folders		> 1 elements					
Image Pairs		:/test1_corsair/	MeshroomCache/ImageM	atching/36e2348050fce7	ab95ecd868a4ab97366f0)f31f/imageMatches.txt	
Describer Types							
Photometric Matching Method		ANN_L2					
Geometric Estimator		acransac					
Geometric Filter Type		fundamental_m					
Distance Ratio		0.8				-0	
Max Iterations		2048					
Geometric Validation Error		0					
Known Poses Geometric Error Max		5	_				
Minimal 2D Motion							
Max Matches		0					
Save Putative Matches							
Cross Matching							
Guided Matching							
Match From Known Camera Poses							
Attributes		Log	Statistics	Status	Documentation	Notes	

Figure 6 - Detailed description of Feature matching node

3.3.5 Structure from Motion

Structure from Motion (SfM) is a key component of the photogrammetry pipeline, as it merges the matched features into tracks that represent a point in space seen by different cameras. This means that a relationship between 2D images and points in 3D space is made in this step. These points are then used to solve the camera calibration and generate a 3D structure of the scene. AliceVision implements an incremental approach for computing the positions of points, which means that new cameras are incrementally added to the scene from an initial solution. The output of SfM node is statistical data about reprojection error, number of reconstructed 3D points, and number of tracks for each camera individually or globally, for the whole scene [13].

君 Node - StructureFre	omMoti	on				19.59s :
SfMData		LOMSKI/test1_co	rsair/MeshroomCache/	CameraInit/84f826adeed3	364bccbf470ac59548a9e9c	1fabf1/cameraInit.sfm
Features Folders		> 1 elements 🕀				
Matches Folders		> 1 elements	Ð			
Describer Types						
Localizer Estimator		acransac				
Observation Constraint		Scale				-
Localizer Max Ransac Iterations		4096				
Localizer Max Ransac Err	ror 🔍					
Lock Previously Reconstr Scene	ructed					
Local Bundle Adjustment		V				
LocalBA Graph Distance						
First Unstable Cameras	Nb 🔍	30				
Max Images Per Group		30				
Max Nb Of Outliers After	BA 🛝	50	— ——			
Maximum Number Of Ma	atches					
Minimum Number Of Ma	tches	0				
Min Input Track Length						
Min Observations For						
Attributes		Log	Statistics	Status	Documentation	Notes
幸 Node - StructureFro	omMotio	on				19.59s :
幸 Node - StructureFro Min Angle For Landmark	omMotio	2				19.59s :
후 Node - StructureFro Min Angle For Landmark Max Reprojection Error Min Anglo Initial Pair	omMotio	2 4			_	<i>19.59s</i> :
코 Node - StructureFro Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Apple Initial Pair	omMotio	2 4 5			•	<i>19.59s</i> ;
	omMotio 4 4 4	2 2 4 5 40			00	<i>19.59s</i> :
A Node - StructureFrom Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rin Constraint	omMotio	2 4 5 40			••	<i>19.59s</i> :
Avode - StructureFrom Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rig Constraint	omMotio 4 4 4	2 4 5 40			•	<i>19.595</i> :
Avode - StructureFrom Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rig Constraint Min Nb Cameras For Rig Calibration	omMotio 4 4 4 4 4 4 4	2 4 5 40 ✓			•	<i>19.595</i> :
¥ Node - StructureFro Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rig Constraint Min Nb Cameras For Rig Calibration Lock All Intrinsic Camera Parameters	omMotic 4 4 4	2 4 5 40 2 20			•	19.595 :
Avode - StructureFrom Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rig Constraint Min Nb Cameras For Rig Calibration Lock All Intrinsic Camera Parameters Min Nb Cameras To Refir Principal Point	ne Motio	2 4 5 40 20 20			•	<i>19.59s</i> :
Discrete StructureFrom Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rig Constraint Min Nb Cameras For Rig Calibration Lock All Intrinsic Camera Parameters Min Nb Cameras To Refin Principal Point Filter Track Forks	ne a	2 4 5 40 20 3			•	<i>19.59s</i> :
¥ Node - StructureFro Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rig Constraint Min Nb Cameras For Rig Calibration Lock All Intrinsic Camera Parameters Min Nb Cameras To Refir Principal Point Filter Track Forks Compute Structure Color	nm Motid A A A A A A A A A A A A A A A A A A A	2 4 5 40 20 3		0		.19.59s :
¥ Node - StructureFro Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rig Constraint Min Nb Cameras For Rig Calibration Lock All Intrinsic Camera Parameters Min Nb Cameras To Refin Principal Point Filter Track Forks Compute Structure Color Initial Pair A	em Motid A A A A A A A A A A A A A A A A A A A	2 4 5 40 20 3				19.595
¥ Node - StructureFrom Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rig Constraint Min Nb Cameras For Rig Calibration Lock All Intrinsic Camera Parameters Min Nb Cameras To Refir Principal Point Filter Track Forks Compute Structure Color Initial Pair A Initial Pair B	ne a	2 4 5 40 20 3 3				19.595
¥ Node - StructureFrom Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rig Constraint Min Nb Cameras For Rig Calibration Lock All Intrinsic Camera Parameters Min Nb Cameras To Refir Principal Point Filter Track Forks Compute Structure Color Initial Pair A Initial Pair B Inter File Extension	nm Motid 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 4 5 40 20 3 3 3				19.595
¥ Node - StructureFrom Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rig Constraint Min Nb Cameras For Rig Calibration Lock All Intrinsic Camera Parameters Min Nb Cameras To Refir Principal Point Filter Track Forks Compute Structure Color Initial Pair A Initial Pair B Inter File Extension Verbose Level	nm Motid A A A A A A A A A A A A A A A A A A A	2 4 5 40 20 3 3 .abc info				19.59s :
¥ Node - StructureFrom Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rig Constraint Min Nb Cameras For Rig Calibration Lock All Intrinsic Camera Parameters Min Nb Cameras To Refin Principal Point Filter Track Forks Compute Structure Color Initial Pair A Initial Pair B Inter File Extension Verbose Level S	ne (MData	2 4 5 40 20 3 3 	r/MeshroomCache/Stru	ctureFromMotion/0f113d	1fba7678d2bf391a8ae6bf	19.595 :
¥ Node - StructureFro Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Use Rig Constraint Use Rig Constraint Min Nb Cameras For Rig Calibration Lock All Intrinsic Camera Parameters Min Nb Cameras To Refir Pincipal Point Filter Track Forks Compute Structure Color Initial Pair A Initial Pair B Inter File Extension Verbose Level S Views An	ne re sfMData d Poses	2 4 5 40 40 20 20 3 3 40 5 40 5 40 40 40 40 40 40 40 40 40 40	r/MeshroomCache/Struture	ctureFromMotion/0f113d FromMotion/0f113d1fba	11fba7678d2bf391a8ae6bf1 7678d2bf391a8ae6bf17900	19.59s :
¥ Node - StructureFrom Min Angle For Landmark Max Reprojection Error Min Angle Initial Pair Max Angle Initial Pair Use Only Matches From Input Folder Use Rig Constraint Min Nb Cameras For Rig Calibration Lock All Intrinsic Camera Parameters Min Nb Cameras To Refin Principal Point Filter Track Forks Compute Structure Color Initial Pair A Initial Pair B Inter File Extension Verbose Level S Views And	ne ifMData d Poses Folder	2 4 5 40 5 40 20 20 3 3 40 5 5 40 6 7 7 7 7 7 7 7 7 7 7 7 7 7	r/MeshroomCache/Structure shroomCache/Structure	ctureFromMotion/0f113d FromMotion/0f113d1fba7 che/StructureFromMotion	1fba7678d2bf391a8ae6bf17907 n/0f113d1fba7678d2bf391a8ae6bf17907	<i>19.59s</i> :

Figure 7 – Detailed description of Structure from motion node

Figure 8 - Dense 3D point map generated after Structure from motion node

3.3.6 Depth Map Estimation

This step aims to assign a depth value estimation to each input pixel. The area that is to be estimated needs to be seen by at least two cameras that have been validated by SfM. Some of the methods used for retrieving depth values are Block Matching, Semi-Global Matching (SGM), and ADCensus. AliceVision implements the SGM method. For each image, a number of closest images are selected based on the intersection of the optical axis with the pixels of the selected neighboring cameras. Similarity between them is estimated using the Zero-Mean Normalized Cross-Correlation (ZNCC), after which a denoising filter is applied. Depth maps computed for each image can be visually represented using a colormap in both the 2D and 3D viewer. This visualization allows for a qualitative assessment of the depth map's quality when projected onto the reconstructed scene [13].

75 Node - DepthMa	an a					3m40c :	
care-t-	•₽		- 101		0004-0-01047007		
SIMData		cturerommotion/01150110a/6/60201531a6ae6001/30/004e63/5int.abc					
Images Folder		iche/PrepareDenseScene/298cd3add324e8c5117e0a5819f3a89c01ea955b					
Downscale							
Min View Angle		2					
Max View Angle		70					
Tiling		Buffer Width		1024			
		Buffer Height		1024	i		
			e	54			
		Auto Adjust Small Image		1			
Choose Neighbour C Per Tile	ameras	V					
Max Nb Neighbour C	ameras	10					
SGM		Downscale Factor		2			
		Step XY		2			
		Step Z					
		Max Nb Neighbour Cameras Per Til	e	4			
		WSH		4			
		Use SfM Landmarks		v			
Attributes	Log	Statistics		Status	Documentation	Notes	
辞 Node - DepthMa	ар					3m49s :	
		Neighbour Cameras Per Til	e	4	-		
		Number Of Subsamples		10			
		Half Number Of Depths		15			
		WSH		3	-0		
		Sigma		15			
		GammaC		15.5			
		GammaP	1				
		Interpolate Middle Depth					
		Consistent Scale					
Color Optimization		Enable		V			
		Number Of Iterations		100			
Custom Patch Patter		Enable For SGM					
		Enable For Refine					
Intermediate Results		Export Depth Maps					
		Export Normal Maps					

Figure 9 - Detailed description of Depth map estimation node

Figure 10 - Depth map estimation for one image in the scene

3.3.7 Meshing

In the meshing step, all depth maps generated in the previous steps are combined into a dense point cloud, from which a surface is then extracted. AliceVision uses an iterative KDTree approach to fuse the 3D points, reducing the point cloud to accommodate the available RAM. After the dense point cloud is created, 3D Delaunay triangulation [15] along with a voting strategy is used to create a space filled with tetrahedra. Finally, the mesh surface is extracted using graph cut max-flow [16], and filtering is applied to achieve surface smoothing [13].

章 Node - Meshing		3m57s 🚦
SfmData	ctureFromMotion/	/0f113d1fba7678d2bf391a8ae6bf17907dd4e89f/sfm.abc
Depth Maps Folder	comCache/DepthM	MapFilter/f89b08d0707fecd53e34f97b7f031e9d06346f50
Mesh Type		
Custom Bounding Box		
Estimate Space From SfM	V	
Min Observations For SfM Space Estimation	3	••
Min Observations Angle For SfM Space Estimation	10	
Max Input Points	5000000	
Max Points	500000	·
Max Points Per Voxel	1000000	
Min Step	2	-1
Partitioning	singleBlock	
Repartition	multiResolution	
Angle Factor	15	
Sim Factor	15	
Pix Size Margin Init Coef	2	
Pix Size Margin Final Coef	4	
Vote Margin Factor	4	
Contribute Margin Factor	2	
Attributes Log	Statistics	Status Documentation Notes

፰ Node - Meshing					3m57s	
Angle Factor		15				
Sim Factor		15				
Pix Size Margin Init Coef		2				
Pix Size Margin Final Coe		4				
Vote Margin Factor				-		
Contribute Margin Factor		2				
Sim Gaussian Size Init		10				
Sim Gaussian Size		10				
Min Angle Threshold						
Refine Fuse		J				
Helper Points Grid Size		10				
Densify						
Nb Pixel Size Behind		4		-0		
Full Weight						
Weakly Supported Surfac Support	e	1				
Add Landmarks To The Dense Point Cloud						
Tretrahedron Neighbors Coherency Nb Iterations		10				
Min Solid Angle Ratio		0.2				
Nh Solid Anale Filterina						
Attributes	Log	Statistics	Status	Documentation	Notes	

Figure 11 - Detailed description of Meshing node

3.3.8 Texturing

Texturing is the final phase of the pipeline, and its primary objective is to enhance the realism of the reconstructed 3D model by applying texture to the mesh. AliceVision uses views from different cameras to form the final texture that will be used. If there is no UV associated, a basic UV mapping approach to minimize the texture space is incorporated [17].

幸 Node - Texturing			3m27s :			
Dense SfMData		shing/91e583cc71	baff187fb1b0f4d8f15008c2b430f5/densePointCloud.abc			
Images Folder		che/PrepareDenseScene/298cd3add324e8c5117e0a5819f3a89c01ea955b				
Mesh		/MeshFiltering/1e	d10680e22cd21a52a9b2c212f250cb03472084/mesh.obj			
Ref Mesh						
Texture Side		8192				
Texture Downscale						
Mesh File Type						
Color Mapping		Enable	4			
		File Type				
Unwrap Method		Basic				
Use UDIM		V				
Fill Holes						
Padding		5				
Multi Band Downscale		4				
Multi-Band Contributions		High Freq	1			
		Mid-High Freq	5			
		Mid-Low Freq	10			
		Low Freq	0			
Use Score		V				
Best Score Threshold		0.1				
Attributes Log	3	Statistics	Status Documentation Notes			

Figure 12 - Detailed description of Texturing node

4 Results and Discussion

In this chapter, the results will be presented through a photo gallery that includes images from the photoshoots and visuals of the reconstructed 3D models. Subsequently, a comparison of measurements obtained from the 3D models, as well as those measured with a measuring tape, will be provided in a table. Following that, measurement errors and the required number of images for reconstruction will be discussed. The measurements were extracted following the CAESAR anthropometry protocols [18]. The measurement chosen for comparison is body height. To ensure the highest possible accuracy of the results, attention should be paid to these few things:

Firstly, spatial constraints play a crucial role in photogrammetry. Limited space can hinder the ability to capture comprehensive images of the subject.

Secondly, proper lighting is necessary to avoid distortions in measurements and reconstructed models. Shadows, reflections, and uneven illumination can affect accuracy. Overhead lighting may cause glare or obscure body features, while insufficient lighting can lead to underexposed images.

Furthermore, clothing worn by subjects significantly impacts measurement accuracy. Loose or bulky clothing can obscure body contours, affecting the precision of extracted dimensions. Ideally, subjects should wear brightly colored, textured, and tight clothes.

Finally, subjects' cooperation during the photo session is vital. Proper posture, relaxed limbs, and rests between sessions are needed to minimize errors introduced by movement or deviation from the desired pose.

As mentioned before, the equipment used for the purposes of this masters thesis is a single DSLR Cannon DS126271 camera equipped with a Cannon EFS 18-55mm lens and two incandescent light bulb reflectors to ensure proper lighting. In the Figure 13, we can see the images used for reconstructing a subject's model. To maintain anonymity, we shall refer to her as Subject 1.

Figure 13 – Subject 1 image gallery

From these images the following 3D model was obtained:

Figure 14 – Subject 1 reconstructed 3D model: a) without texture; b) with texture In the images below, Subjects 2, 3 and 4 are introduced, along with their respective 3D models.

a)

Figure 15 – a) Subject 2 and reconstructed 3D model; b) Subject 3 and reconstructed 3D model; c) Subject 4 and reconstructed 3D model

It can be observed that all the provided images and models depict subjects in Apose, despite the reconstruction being conducted for both I and T poses, respectively. This is because the desired measurements are easiest to extract from the 3D models reconstructed from subjects in the A-pose. Measurements can also be extracted from I-pose; however, there is a larger volume of reconstruction-based artifacts present in the reconstructed models.

Figure 16 – a) Subject 3 I-pose; b) a close-up of reconstruction-based artifacts

In the case of the T-pose, the primary challenge lies in achieving a wellreconstructed model where all the limbs are reconstructed in their entirety. This happens mainly because it is difficult for subjects to maintain the T-pose without moving throughout the duration of the image capturing process.

Figure 17 – Subject 3 T-pose

Furthermore, the difference between utilizing manual and auto modes during image capturing process should be discussed. While the full automatic mode can be utilized, better quality 3D models were achieved using the manual mode. In the images below we can observe the difference between models reconstructed using these different modes. When utilizing auto mode, the photogrammetry software may encounter difficulties in accurately forming depth maps, leading to misaligned texture mapping. As can be seen in image below, the subject's arms were reconstructed poorly due to movement during the capturing process. However, this still means that using manual mode is more accurate for reconstructing the 3D models.

Figure 18 - a) reconstruction using photos taken with manual mode; b) reconstruction using photos taken with auto mode

As previously mentioned, the clothing worn by the subject significantly influences the quality of the reconstruction. The images below illustrate how darker-toned clothing can adversely affect the reconstruction quality. This is primarily due to the challenges photogrammetry software faces when extracting features from darker colors. Consequently, superior lighting equipment yields better results. Ideally, for the purposes of anthropometrical measuring, the subject should wear gym clothes that are tight, brightly colored, and textured.

Figure 19 - a) Subject 3 wearing a neoprene diving suit; b) Subject 3 wearing casual outfit; c) Subject 1 wearing tight and textured clothes

Extracting measurements from 3D models is accomplished using free software such as MeshLab or Blender. In the image below, the measurement tool from MeshLab is shown being used to extract anthropometric measurements from the 3D model. AliceVision utilizes autocalibration, providing calibration parameters up to scale, which requires a known-sized object in the scene to establish scale.

Figure 20 - Using measuring tool to extract anthropometric measurements

Subject	Height measured, x_{An}	Height estimated, x_{Bn}	$ x_{An}-x_{Bn} $
1	169 cm	168.69 cm	3.1 mm
2	184 cm	184.67 cm	6.7 mm
3	182 cm	184.00 cm	20.0 mm
4	179 cm	181.43 cm	24.3 mm
		Average	13.5 mm

Table 2 – Height measurement and its absolute errors

The ANSUR study establishes the Allowable Error (AE), which sets the maximum Mean Absolute Error (MAE) that a measurement method can have. For height, the MAE is 10 mm [19]. The calculated error for height using single-camera photogrammetry is 13.5 mm, which exceeds the allowed limit. This discrepancy can be attributed to some subjects having their height measurements taken while wearing shoes, significantly influencing the results. Measurements were retaken, adjusted, and the results are presented in the table below.

Subject	Height measured, x_{An}	Height estimated, x_{Bn}	$ x_{An}-x_{Bn} $
1	169 cm	168.69 cm	3.1 mm
2	184 cm	184.67 cm	6.7 mm
3	183 cm	184.00 cm	10.0 mm
4	181 cm	181.43 cm	4.3 mm
		Average	6.0 mm

Table 3 - Measurements compensated for shoe height and recalculated absolute errors

The new measurements reveal that the calculated absolute error (AE) is less than the mean absolute error (MAE), indicating that the proposed method is suitable for anthropometric measuring. The proposed protocol resulted in acceptable reconstruction quality using 20 images. The recommended minimum number of images for successful reconstruction is 15; below this threshold, reconstruction quality is significantly affected.

5 Conclusion

In this master's thesis the application of digital photogrammetry for extracting anthropometric measurements was explored and a recording protocol that ensures reliable 3D reconstruction for extracting body measurements was proposed.

By employing a DSLR camera and utilizing the open-source software AliceVision, 3D models were generated from photographs of subjects. The method demonstrated sufficiently accurate measurements for the height measurement, with the mean absolute error of 6.0 mm which is falling within the acceptable limit of 10.0 mm.

However, to ensure reliable results critical steps of the proposed data acquisition protocol are: (a) The spatial requirements needed for image acquisition should be taken care of. (b) Lighting should be uniform and bright. (c) Subjects should wear brightly colored, textured, and tight clothes. (d) Subjects should be given adequate time to rest between sessions, and the images should be captured in either the I or A-poses to minimize errors caused by movement.

Acknowledgement

This master thesis has been partially supported by the research project "Smartphone and Tablet Extraction of Anthropometric Measurements" which was funded by the Croatian Science Foundation under the grant number IP-2018-01-8118.

Abstract

Digital Photogrammetry Applied to Anthropometry

Goran Jaković

Anthropometry is the science of measuring human body dimensions and proportions, with many applications ranging from medicine and fashion to fitness. In this master thesis a study was conducted to explore how digital photogrammetry can be utilized to extract anthropometric measurements. The goal of the thesis is to define a reliable and quick data acquisition protocol which utilizes photogrammetry for anthropometric measurements, providing sufficiently accurate measurements of the human body. To achieve this, a DSLR camera was employed to capture photographs of several subjects. Then, AliceVision, an open-source photogrammetry software, was utilized to generate 3D models from these images, and selected measurements were extracted from the 3D models using a calibration object. Finally, obtained measurements were compared to those taken using a measuring tape. The mean absolute error of selected measurements is within the allowable error margin indicating that the proposed method can be used for anthropometric measurements.

Keywords: anthropometry ; photogrammetry ; computer vision

Sažetak

Primjena digitalne fotogrametrije u antropometriji

Goran Jaković

Antropometrija je znanost koja se bavi mjerenjem dimenzija i proporcija ljudskog tijela. Antropometrija ima mnoge primjene, uključujući one u medicini, modi i fitnesu. U okviru ovog diplomskog rada provedeno je istraživanje kako se digitalna fotogrametrija može iskoristiti za antropometrijska mjerenja. Cilj rada jest definirati pouzdan i brz postupak za dobivanje preciznih mjera ljudskog tijela koji koristi fotogrametriju. Korištena je DSLR kamera za snimanje fotogrametriju, generirani 3D modeli iz tih fotografija. Odabrana antropometrijska mjera je izmjerena iz 3D modela pomoću kalibracijskog objekta. Na kraju su dobivene izmjere uspoređene s onima dobivenima pomoću krojačkog metra. Prosječna apsolutna pogreška odabrane mjere nalazi se unutar dopuštene granice pogreške, što ukazuje da se predložena metoda može koristiti za antropometrijska mjerenja.

Ključne riječi: antropometrija ; fotogrametrija ; računalni vid

References

- T. Schenk, Introduction to Photogrammetry, Columbus: Department of Civil and Environmental Engineering and Geodetic Science, 2005.
- [2] T. O. Kevin Norton, Anthropometrica: A Textbook of Body Measurement for Sports and Health Courses, Sydney: University of New South Wales Press Ltd, 1996.
- [3] Reactive Reality, "Reactive Reality Virtual Try-On for Fashion Retail and E-Commerce," [Online]. Available: https://www.reactivereality.com. [Accessed 23 January 2024].
- [4] Crisalix, "Crisalix | VR 4D & 3D plastic & cosmetic surgery simulation software," [Online]. Available: https://www.crisalix.com/en. [Accessed 23 January 2024].
- [5] Styku, "3D Body Scanning for Fitness, Health, & Wellness Styku," [Online].
 Available: https://www.styku.com. [Accessed 23 January 2024].
- [6] 3Lateral, "3Lateral," [Online]. Available: https://3lateral.com. [Accessed 23 Januaray 2024].
- [7] PICS3D, "PICS3D Digitalizing the Human Body In Three Dimensions,"[Online]. Available: https://pics-3d.com/pics/. [Accessed 20 January 2024].
- [8] botspot, "Full Body 3D-Scanner: Digital twins with BOTSCAN NEO," [Online].
 Available: https://www.botspot.de/botscan-neo. [Accessed 25 February 2024].
- [9] F. Remondino, "3D reconstruction of static human body with a digital camera," in *Human Vision and Electronic Imaging VIII*, Santa Clara, 2003.
- [10] MeshLab, "MeshLab," [Online]. Available: https://www.meshlab.net. [Accessed 25 February 2024].

- [11] blender, "blender.org Home of the Blender project Free and Open 3D Creation Software," [Online]. Available: https://www.blender.org. [Accessed 25 February 2024].
- [12] AliceVision, "AliceVision | Photogrammetric Computer Vision Framework," 2024. [Online]. Available: https://alicevision.org. [Accessed 20 January 2024].
- [13] S. G. L. C. P. G. F. C. e. a. Carsten Griwodz, "AliceVision Meshroom: An opensource 3D reconstruction pipeline," in 12th ACM Multimedia Systems Conference (MMSys 2021), Istanbul, Turkey, 2021.
- [14] D. N. a. H. Stewenius, "Scalable Recognition with a Vocabulary Tree," in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), New York, 2006.
- [15] B. Lévy and A. Filbois, "Geogram: a library for geometric algorithms," in VII International Conference on Adaptive Modeling and Simulation (ADMOS 2015) , Nantes, 2015.
- [16] Y. B. a. V. Kolmogorov, "An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 26, no. 9, pp. 1124-1137, 2004.
- [17] S. P. N. R. a. J. M. L. s. Bruno Lévy, "Least squares conformal maps for automatic texture atlas generation," *Seminal Graphics Papers: Pushing the Boundaries*, vol. 2, no. 1, pp. 193-202, 2023.
- [18] SYTRONICS INC DAYTON OH, Civilian American and European Surface Anthropometry Resource (CAESAR), Final Report, Volume II: Descriptions, Warrendale: SAE International, 2002.
- [19] D. B. T. P. T. P. Kristijan Bartol, "A Review of Body Measurements Using 3D Scanning," *Ieee Access*, no. 9, pp. 67281-67301, 2021.