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FOREWORD 

Brain computer interface (BCI) is a relatively new research area. It explores 

possibilities of controlling devices using brain potentials only. The contribution is in 

the introduction of anticipatory brain potentials in the BCI research, as well as 

algorithms and software for BCI control of two robots to solve a common task.  

Following the author’s employment as a bioinformatics engineer and lab 

assistant at the Laboratory of Neurophysiology, at the Institute of Physiology at the 

Medical Faculty at the University “Sv. Kiril i Metodij” in Skopje, Macedonia, in fall 

2005, he obtained duties, such as conducting lab exercises for courses of physiology, 

specifically electrophysiology. The laboratory had been researching anticipatory 

brain potentials for at least a decade and that is how the author first got in contact and 

gained interest in the subject. Around this time the joint Macedonian-Croatian 

project got initiated, which lead to obtaining new equipment, and the author was 

given the duty to create software that would make it function and operate according 

to the paradigms employed in the laboratory. This work led to greater understanding 

of anticipatory brain potentials, and especially the CNV paradigm. The author had 

already enrolled in the Master’s program at the University of Zagreb, Faculty of 

Electrical Engineering and Computing, and the new environment and equipment only 

fostered his research. It was during this time that the idea appeared, that the CNV 

experimental paradigm could be used as a brain-computer interface paradigm. Thus 

far, the paradigm had been used for clinical and diagnostic purposes only, and, at the 

Laboratory, it still is. The developed software and the knowledge the author gained 

during the experimental work resulted in his M.Sc. project in 2007. 

Continuation toward the Ph.D. thesis allowed deeper understanding of BCI 

possibilities based on anticipatory brain potentials. The author started experiments 

with robots and the robotic solution of the Towers of Hanoi task he had already 

worked on before. The author assembled two robots and developed necessary 

algorithms and software to solve the Towers of Hanoi task using BCI control of two 

robotic arms. This is the effort described in this Doctoral thesis.   

This work is the result of the author’s 5 years of effort in understanding and 

building brain-computer interfaces based on anticipatory brain potentials, and using 

them to control devices such as robots. Chapter 1 introduces the subject, from the 

perspective of the broader area of human-computer interaction, and with an emphasis 

on electrophysiologically interactive human-computer interfaces. Chapter 2 focuses 

on the brain-computer interface, as the theme of this work. Chapter 3 explains the 

brain potentials, as the source of information for most brain-computer interfaces. 

Chapter 4 focuses on the anticipatory brain potentials, as being of primary 

importance for this work. Chapter 5 explains the CNV flip-flop paradigm, which is 

the experimental paradigm that is used in this work. Chapter 6 gives an in-depth 

view into the algorithms used in the paradigm. Chapter 7 proposes a generic design 

model for software solutions for BCI systems. Chapter 8 presents the materials and 

methods used for the execution of the experiments. Chapter 9 synthesizes the 

previous chapters and presents the practical part of this thesis, explaining the logic, 



setup and results of the experiments carried out. Chapter 10 gives a discussion and 

conclusion, presenting the results from the work. Following are references, a list of 

all the used abbreviations, summary of the dissertation, as well as the curriculum 

vitae. 
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Chapter 1 

 

INTRODUCTION 

 

This chapter gives the framework within 

which this docoral thesis is placed. It is 

the Computer Science research area 

named Human-Computer Interaction 

(HCI). Here the electrophysiologically 

interactive human-computer interfaces 

will be described, out of which the focus 

will be placed on brain-computer 

interfaces in the next chapters. 
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1. INTRODUCTION 

 

The development of technology has led to numerous discoveries and 

breakthroughs in every aspect of the human life. Perhaps no other device has made 

such an impact as the computer, since it is present in virtually every human 

endeavor. From its inception as a calculating device, it was constantly refined and 

has grown to a complex system, with which special means of communication needed 

to be devised. The research area that deals with the ways in which humans and 

computers communicate is called Human-Computer Interaction. 

 

1.1. Human-Computer Interaction 

Any object, product, system, or service that will be used by humans has the 

potential for usability problems and should be subject to some form of usability 

engineering [Nielsen, 1993]. Cell phones, consumer electronics, and web interfaces, 

are all examples of wide use of design for interactive use [Schneiderman and 

Plaisant, 2004].  One such focus of usability engineering research is Human-

computer interaction. It offers a wide variety of interaction modes, including 

multimedia modes, between humans and computers [Jacko and Sears, 2003]. 

Human-computer interaction is a two-way process. From the point of view of 

each side, two aspects must be observed: that the messages sent to the other side will 

be received and understood, and that the messages received from the other side will 

also be received and understood. Thus, the concept of an interface arises: a system 

that will interpret the messages from the form understandable to one side to a form 

understandable to the other side and vice versa. This way, one might consider the 

keyboard, the mouse, the computer screen etc, as interfaces through which the 

computer processor communicates messages from and to the user. These devices are 

all sorts of Human-Computer Interface (HCI) devices. 
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Historically, several generations of human-computer interaction have been 

noticed. Starting with the batch interface and punched cards (IBM 1130, IBM/360, 

IBM/3), an important step was the interactive terminal and command line (e.g. PDP 

11). Almost revolutionary was the PC approach (Apple, Spectrum, Commodore, 

IBM PC), when humans accepted personal computers and their ports like parallel, 

serial, etc. The next step was a full-screen graphical user interface and a screen 

pointing device (“mouse”). Windows-oriented operating systems (Macintosh) 

expanded the usability range to users like musicians and many others. Color screens 

appeared and elements like buttons and drop down menus became standard in 

human-computer interaction. The World Wide Web expanded the use of computers 

even to politicians. Also, web sites like Facebook, MySpace and so on offer 

everyone a chance to communicate his/her thoughts and agendas to the entire 

Internet audience. Today, sound cards and cameras are standard devices with laptops 

and cell phones.  

While offering various ways of communication, gradually computers started 

to develop an understanding of their users’ personality. User modelling, i.e. 

understanding the way the user thinks and what are the user’s interests and 

preferences, became an important issue. Various methods have been implemented in 

order to collect data for user modelling, including interviews and questionnaires. 

Analyzing the data and having models of their users, companies like Amazon offer 

books and other items according to user preferences.  

Emotional aspects of the user have been studied, in order to produce positive 

emotions in users [Brave and Nass, 2003]. Anthropomorphic agents, virtual pets, and 

other software emotion-related tools were used to improve the human-computer 

interaction [Sharp et al, 2007].  

That is the stage where the human-computer interaction stands at the moment. 

There is always the question about what is the next stage. Among many possibilities 

[Allanson, 2002], interfaces based on electrophysiologically interactive human-

computer interfaces can be foreseen. Those types of devices will be the focus of the 

next section.  

 

1.2. Electrophysiologically Interactive Human-Computer 

Interfaces  

Electrophysiologically interactive human-computer interfaces (EI-HCI) are 

such interfaces, in which the human output is achieved without the need of the 

human’s grasping and touching abilities (e.g. hands and fingers). Immediately, a 

challenge arises when designing such systems – if the human’s hands are to be 

bypassed, some other human-origin measurable data must be used. Candidates are: 

skin conductance change, brain impulses, heart rate change, etc. The data can be 

obtained, processed, and then used to control a device, or perform a task. However, 

to obtain the data, the EI-HCI can follow several scenarios, among which the most 

common ones are mentioned. 
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1.2.1. Monitoring (Diagnosis) Oriented Scenarios 

Gathering and monitoring electrophysiological data is the key process in EI-

HCI. The question is always which data to gather in order to deduce the medical or 

emotional status of the subject. For example, for gathering the emotional status of 

arousal in an HCI, good indicators are heart rate and skin conductance. They might 

be integral data sources for an emotional state. Also, the state of stress, high anxiety, 

absorption, fatigue, and inattention can also be important factors. Brain signals can 

provide direct access to aspects of human brain states such as cognitive workload, 

alertness, task involvement, emotion, and concentration. Figure 1.1. shows an EI-

HCI with a monitoring oriented scenario.  

As shown in Figure 1.1., User1 is the observed person, who generates 

physiological data collected by a physiological signals detection equipment, which is 

an augmentation of a PC that analyses and interprets the data. User2 is a physician or 

another person that observes the process, and he/she might not be always connected 

to the process.   

 

 

 

 

 

Figure 1.1. Monitoring scenario for medical diagnosis, emotional status and operator 

reliability estimation 

 

1.2.2. Biofeedback Oriented Scenarios 

Monitoring EI-HCIs are usually open-loop. Control systems are usually 

closed-loop. One very often closed-loop system in EI-HCI is the biofeedback setup, 

shown in Figure 1.2. User electrophysiological data are collected but the user has 

control over the collection itself and uses the data. 

In a biofeedback setup, physiological changes are detected and relayed back 

to the subject audibly or visually, usually in real time. A physiological parameter 

such as heart rate or skin conductance is measured and the measured level is shown 

visually to the user. The user tends to voluntarily change the observed level, like 

lowering the heart rate by some relaxation technique and/or self-suggestion, for 

example. This scenario is used for self diagnosis, affective computing, operator 

safety (e.g. checking if the operator is awake), rehabilitation/therapy, critical episode 

notification, computer games, and also operator performance enhancement.  

 

user1 

physiological 

signals 

detection 

equipment 

 

PC 

 

user2 
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Figure 1.2. Biofeedback oriented scenario 

 

Today, EEG (electroencephalogram) feedback and neurofeedback are used 

for treatment of psychophysiological disorders such as attention deficit, hyperactivity 

disorder, post-traumatic stress disorder, addictions, anxiety and depression. Surface-

mounted electrodes detect brain signals and present it to the subject as abstract 

images in real time. Using this data in reward/response based control tasks generates 

increased or reduced activity in different aspects of the EEG spectrum to help the 

treatment of these psychophysiological disorders. The EEG itself and the brain 

potentials will be explained in more detail in the next section. 

 

1.2.3. Control Oriented Scenarios 

Device control is another area of EI-HCI research. Figure 1.3. shows a 

scenario of controlling devices, locally and remotely. The devices controlled could 

be prosthetic arms, home appliances, robots, etc. 

Existing device control and biofeedback applications range from interactive 

2D graphical tasks in which muscle signals are amplified and transformed, to control 

tasks such as lifting a virtual dumbbell, to real-world physical tasks such as 

manipulating robots and devices including radio-controlled devices.  

 

 

 

 

 

Figure 1.3. Device control using EI-HCI 

 

1.2.4. Hands-Free Control Scenarios 

Hands-free interface is a special type of device control where hands are not 

used. The hands are either busy with another task or are not operational due to injury. 

Internet 

biofeedback 

 

user1 

physiological 

signals 

detection 

equipment 

 

PC 

 

device, 

robot 

 

user1 

physiological 

signals 

detection 

equipment 

 

PC 
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It is a challenging application area of prosthetics for the handicapped, a need for 

additional way of control when the hands are busy, and for controlling devices 

simply using the mind. A type of hands-free interface is the head-computer interface, 

where devices are controlled using signals from the head only. Usually, the signals 

are recorded in the form of EOG (electrooculogram) and EEG, but other signals, for 

example recorded in the form of electromasticatiogram (EMCG) might also be used. 

Vision and speech are also used. Figure 1.4. shows a hands-free control scenario in 

which control is achieved from signals generated by a human head.  

 

 

 

 

 

Figure 1.4. Communication between a human and a device using head signals only 

 

A special class of device control using EI-HCI is the brain-computer interface 

(BCI), where brain signals are used for device control, which will be considered in 

the next chapter. 

 

biosignals 

vision 

head movement 

speech 
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device 
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Chapter 2 

 

BRAIN-COMPUTER 

INTERFACE 

 

This chapter elaborates on the subject of 

brain-computer interface (BCI). The 

concept is introduced, alongside its 

history, and also its components are 

given. The signal acquisition techniques 

are presented, and its operative 

procedures are explained. The specifics 

of signal processing are explained, how 

one such interface's success is measured, 

and also what are the present and 

possible future applications of such 

interfaces. 
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2. BRAIN-COMPUTER INTERFACE 

 

A special type of Human Computer Interaction is the Brain Computer 

Interface. Brain-Computer Interface (BCI) is a system that can derive meaningful 

signals from a human (or animal) brain, and utilize them for control purposes in real 

time or near real time. In other words, this system utilizes brain states to control a 

device, bypassing the need for motor organs, such as arms or legs, or even speech. In 

a BCI, direct bioelectric control [Bozinovski , 1990] is used to control devices. Using 

a BCI, the device controlled by the brain becomes a sort of an “organ” of the body, 

and a possibility of using BCIs in prosthetic control immediately becomes apparent. 

Indeed, most applications of BCI are related to subjects with severe neuromuscular 

disorders, where a BCI offers them basic operative abilities. It has been shown how a 

BCI can control a spelling program, operate a neuroprosthesis, and control a 

wheelchair.  

Depending on the technique used to extract brain signals, the BCIs can be 

classified into non-invasive (where the signals are collected from the subject’s head, 

i.e. using peripheral electrodes) and invasive (where the signals are collected directly 

from the subject’s brain, i.e. the skull is opened and electrodes are implanted into the 

brain). Historically, non-invasive BCIs have appeared first. 

 

2.1. History of BCI 

Brain-computer interface is today a rapidly growing area. Thousands of 

papers can be found on the Internet related to the subject. It is interesting however, 

that before the 21
st
 century there were just a few papers related to the subject. Here 

just a few of the papers are listed which can be considered the milestones in BCI 

history.  
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EEG was first introduced by Berger [1929]. Possibility of controlling devices 

using EEG was mentioned by Vidal [1973]. Alpha rhythm was proposed to be used 

by Osaka [1984]. The concept of mental prosthesis was introduced by Farwell and 

Donchin [1988]. The first control of a mobile robot using EEG alpha rhythm took 

place in Macedonia [Bozinovski et al, 1988]. In the 1990s [Keirn and Aunon, 1990], 

BCI experiences its renaissance. A cursor was moved on a computer screen using 

EEG [Wolpaw et al, 1991]. The term Brain-computer interface was introduced by 

Pfurtscheller et al. [1993]. The importance of digital signal processing in BCI was 

emphasized by McFarland et al [1997]. Alpha rhythm was again used as a mind 

switch [Craig et al., 1997]. The concept of imaginary voluntary movement-related 

potentials (IMMRP) was introduced by Mason and Birch [2000]. Imagination of 

different simple hand and feet movements were used [Pfurtscheller and Neuper, 

2001]. Cognitive processes based BCIs were introduced starting 2000. A P300 based 

BCI was proposed by Donchin et al [2000]. An invasive BCI built upon an animal’s 

brain was introduced by Nicolelis and Chapin [2002]. A BCI based on anticipatory 

brain potentials was introduced by Božinovski [2005]. In 2008, a BCI based on 

anticipatory potentials was used for device control by Gangadhar et al [2008]. In 

2009 a BCI based on anticipatory potentials was used for robot control by 

Božinovski and Božinovska [2009]. 

 

2.2. Components of a BCI 

A brain-computer interface paradigm (setup and procedures) consists of a 

subject that generates brain signals, a computer that contains software for brain 

signal processing, and a device that would be controlled by those brain signals. The 

basic components of a BCI were introduced since 1988 [Bozinovski, 1988]. Figure 

2.1. shows the modern version of the basic BCI components. Since a BCI must 

operate either in real-time or near-real-time, it is important that the signal processing 

not introduce unacceptable time delays.  

A BCI has the following basic components: 

Brain mental state. The brain’s mental state or intention is reflected in its 

bioelectric field. This mental state is to be recognized and interpreted as an action to 

be performed by the device; an example is moving a robot forward.  

Signal acquisition device. Usually this is a potential amplifier and analog-to 

digital converter, that augments the input capability of the computer. It collects the 

EEG data in which the desired or expected event related signal is hidden within other 

bioelectric phenomena, so-called background EEG.  

Signal preprocessing software. This part of the BCI filters out the signal to 

be processed. Usually preprocessing filters out the power network signals (e.g. 220 

V, 50 Hz.), and artifacts due to movement of the subject. Incorporation of rejection 

criterion to avoid risky decisions is an important issue in BCI.  
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Mental state related signal extraction software. The next part of the BCI is 

the mental state related signal extraction. For example, if the mental state used is the 

relaxation state, then the EEG alpha rhythm, for example, will be sought and 

extracted, because it indicates a relaxed state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Basic components of a BCI 

 

Mental state recognition software. The pattern recognition and 

interpretation software is the part of the BCI that makes a decision whether the 

particular sought brain state is present in the subject’s brain. For example, whether 

“the state of brain relaxation” is present. This is the decision part, and must 

implement decision algorithms, because it’s very possible that the signal be random 

noise, misinterpreted for a relaxation state, for example. 

Application interface software sends appropriate control signals as 

commands to the controlled device. If the device is a robot, it might be a “go 

forward” command, for example.  

Controlled device. The device is connected to the computer via a 

communication port. It can be a parallel, serial, or a USB port. It can also be a 

software device, such as a cursor on the screen or an animation object.  

Feedback connection. The subject is able to receive feedback from the 

command it sends through its EEG, usually by visual and/or sound means.  

Feedback (visual, auditory, etc.) 

 Digital signal processing 

signal 

preprocessing 

desired signal 

extraction 

mental state 

recognition 

signal acquisition application 

interface 

 

brain mental 

state 

Application (spelling 

program, robot 

control, 

neuroprosthesis, TV 

on/off, etc.) 

Brain-Computer Interface 
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2.3. BCI Signal Acquisition Techniques 

There are two major technologies of signal acquisition in BCI: invasive and 

non-invasive.  

Invasive technologies are used on animals. They are basically open-brain 

BCIs, with recordings directly from the brain tissue. Studies that deal with 

algorithms for movement reconstruction from the motor cortex neurons date from the 

1970s. It has been established that monkeys can quickly learn to control the 

frequency of individual neurons in the primary motor cortex, after closed-loop 

operational conditioning [Schmidt et al, 1978]. 

Great progress has been accomplished when, in the late 1980s, a 

mathematical connection was established between electric responses of individual 

motor cortex neurons in monkeys and the direction in which the monkey moved its 

arms. It was also noted that dispersed groups of neurons in different areas of the 

brain collectively control motor commands [Georgopoulos et al, 1989]. 

 

Figure 2.2. An example of a BCI experiment on animals [1] 

 

In 1999, researchers led by Yang Dan at University of California, Berkeley 

decoded neuronal firings to reproduce images seen by cats. The team used an array 

of electrodes embedded in the thalamus (which integrates all of the brain’s sensory 

input) of sharp-eyed cats. Researchers targeted 177 brain cells in the thalamus lateral 

geniculate nucleus area, which decodes signals from the retina. The cats were shown 

eight short movies, and their neuron firings were recorded. Using mathematical 

filters, the researchers decoded the signals to generate movies of what the cats saw 

and were able to reconstruct recognizable scenes and moving objects [Stanley et al, 

1999]. 

By the year 2000, a BCI has been developed, which reproduced monkey 

movements while the monkey was contolling a joystick or reaching for food 

[Wessberg et al, 2000]. The BCI functioned in real time and could also control a 

separate distance robot over the Internet. After 2000, a feedback system has been 

introduced, so that the monkeys could see the results of their actions 
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themselves.Figure 2.4. shows the experimental setup of the group led by Nicolelis 

[Nicolelis and Chapin, 2002]. 

 

 

Figure 2.3. An example of image reconstruction based on neuron activity [2] 

 

The monkeys practiced reaching and grasping of objects on the computer 

screen by handling a joystick, while the appropriate movements of the robotic arm 

were hidden from the view of the monkeys. [Carmena et al, 2003; Lebedev et al, 

2005]. The monkeys then controlled the joystick while watching the robot 

movements, and thus were able to learn what the robot movements were. This BCI 

used speed prediction to be able to control arm extension and also predicted the 

strength of the grasp. The result was that the monkeys, after a number of practice 

sessions, were able to control the robotic arm using the brain alone, and use it to put 

food in their mouths. 

 

 

Figure  2.4. The BCI set by Nicolelis et al [3] 

 

In humans, invasive BCI technologies are most commonly used in the area of 

neuroprosthetics, where a disabled organ’s functionality can be compensated by a 

BCI receiving signals from the brain. One of the first uses of invasive BCIs in 

humans for this purpose was to restore vision in patients blinded in adulthood, led by 

a private researcher named William Dobelle. Cameras would record images, which 

would be driven directly to the vision center of the brain, stimulating it and enabling 
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it to restore images. The most prominent example of such a use was Jens Naumann, a 

man blinded in adulthood, who purchased Dobelle’s implant (which was then 

released as an improved, second version), and was able, with his restored vision, to 

drive a car slowly on a parking lot.  

Usually, the implants used in invasive BCIs consist of multiple electrodes 

arranged close to each other, since the proximity to the brain allows much more 

intensive signal collecting. Invasive BCI technologies can collect signals that are 

with less noise and potentially easier to process. The processing is usually faster. The 

information rate can be increased through surgical implantation of microelectrodes, 

which record the activity of more localized populations of neurons.  The problems 

appear when the signals should be collected for a prolonged period of time - the 

brain’s protective tissue envelops the electrodes and the signal becomes noisy, so the 

advantage over non-invasive technologies is lost.  

The invasive techniques were used to extract relevant signals that are encoded 

in the distributed and redundant way by ensembles of neurons in the motor part of 

the motor, premotor and posterior parietal cortex.  

Non-invasive technologies collect signals from the scalp surface. The 

classical technology is the electroencephalography (EEG), which collects a state of 

the electric field of the brain. The first experiments were shown in 1988 [Bozinovski 

et al, 1988]. Non-invasive techniques suffer from reduced spatial resolution and 

increased noise, due to fatty regions on the surface of the scalp. As a consequence, 

current EEG-based brain actuated devices are limited by a low channel capacity and 

are considered too slow for controlling rapid and complex sequences of robot 

movements. But recently it has been pointed out that online analysis of an EEG 

signal, if used in combination with advanced robotics and machine learning 

techniques, is sufficient for humans to continuously control a mobile robot [Millán et 

al, 2004] and a wheelchair [Galan et al, 2008].  

Today often used, even simultaneously with EEG, is the near-infrared 

microscopy. It obtains an image of the blood from in the brain in the infrared 

spectrum (700 – 1200 nm). A technology that shows the magnetic field of the brain 

is magnetoencephalography (MEG). A version of MEG is functional magnetic 

resonance imaging (fMRI), which focuses on the magnetic field generated by event 

related magnetic fields. Another imaging method is Positron Emission Tomography 

(PET), which follows radioactive material inserted into the blood system as it 

appears in the brain.  

In this work, the EEG non-invasive technology is used, as it is most readily 

available, being easy transportable and cheap. Other technologies are expensive, 

static and heavy and are therefore only used in specialized laboratories.  
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2.4. BCI Training and Calibration Sessions 

A critical issue for the development of a BCI is training, i.e. how users learn 

to operate the BCI. Usually, the BCI needs a session in which both the subject and 

the BCI itself will engage in an adaptation process, in which the subject intention 

(brain state) will be determined in terms recognizable by the BCI. There are two 

basic approaches to how adaptation is carried out.  

One approach is the subject learning to voluntarily regulate the brain activity. 

Such techniques usually involve neurofeedback and operant conditioning. There is an 

explicit subject training session, in which the subject learns to regulate a specific 

brain activity. After the training, different brain states can be produced on command 

or by the subject’s will, and become suitable as control commands. For example, a 

subject concentrates on a parameter (such as the EEG alpha wave) and tries to 

voluntarily control that parameter. In a series of trials, he/she attempts to increase or 

decrease that parameter and receives feedback at the end of each trial. After the 

training, the subject should be able to voluntarily increase or decrease the parameter 

of interest. This way, using this approach, the subject adapts to the machine. 

Another approach is machine learning, in which statistical data is collected in 

so-called calibration sessions (for example 5 to 20 min). In that session, the subject 

tries to voluntarily produce a brain state that a computer can recognize, for example a 

voluntary signal of intent to raise a hand. The computer collects statistical data and 

recognizes the signal generated by the subject. In the calibration process, the brain 

state recognition software adapts to the subject’s parameters. The statistical signature 

of specific brain states or intentions is obtained. That signal is then used in the real 

experimental (examination or exploitation) session that follows the calibration 

session. This way, the machine adapts to the subject. 

The combination of the two basic approaches can also be used. An example is 

the mutual learning approach to accelerate the user training period [Pfurtscheller and 

Neuper, 2001; Blankertz et al 2006]. The user and the BCI are coupled together and 

adapt to each other. Machine learning approaches are used to discover the individual 

EEG pattern characterizing the mental task executed by the user, while he/she learns 

to modulate his/her brainwaves so as to improve the recognition of the EEG patterns.  

 

2.5. Brain States Used in a BCI 

So far, the following brain states have been used in BCI design (Figure 2.5.). 

Relaxation state. A relaxed brain state can be observed when the eyes are 

closed. In that case, the EEG frequency band named alpha rhythm (8-12 Hz) 

increases its energy, i.e. amplitude. The alpha rhythm is measured mostly in the 

occipital brain region. The amplitude increase of the alpha rhythm has been used as 
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mind switch in the pioneering work of BCI [Bozinovski et al, 1988; Bozinovski, 

1990]. Detailed study of the subject was done by Searle [2000]. 

 

 

 

 

 

 

 

Figure 2.5. Brain mental states used in BCIs 

 

Mental task performing state. Mental task-based BCIs are based on EEG 

analysis while the subject performs a mental task at her/his own will. Possible mental 

tasks are computing an arithmetic task, rotating an image, or some language related 

task [Millán et al, 2004]. But for steering a wheelchair or a robot or prosthesis, 

voluntary mental control is not enough. It is also necessary that the subject be able to 

make self-paced decisions. In such asynchronous protocols, the subject can deliver a 

mental command at any moment, without waiting the external cues.  

Imaginary movement/Intention to move state. Imaginary movement of 

hands and feet also produces specific EEG patterns. The intention to move produces 

increased energy in the EEG frequency band of 8-12Hz in the motor region. It can 

also be denoted as alpha () rhythm, but the term mu () rhythm has often been 

used. One of the techniques used is the imagination of different simple hand and feet 

movements, which are associated with different EEG patterns [Pfurtscheller and 

Neuper, 2001]. The related mental process (motor imagery) is identical to the process 

that results in an actual physical movement, except that the motor (muscle) activity is 

blocked.  

Responding state. If a set of patterns is shown to a brain and a special pattern 

is recognized, a P300 signal appears as a bioelectrical signal of recognition. The most 

impressive application of a BCI is indeed the one based on P300 [Wang et al, 2006]. 

Letters appear on a screen in front of a subject. Whenever a particular letter of 

interest appears, P300 is present and the letter is singled out and put in a string with 

previously selected letters. In such a way, the mind is used as a typewriter to print a 

message. This way, an evoked BCI exploits the signal that appears as an automatic 

response of the brain to an external stimulus. Examples are the P300 and SSVEP 

(Steady-State Visually Evoked Potential). Evoked potentials are relatively easy to 

extract, but the necessity of an external stimulus restricts the applicability of evoked 

potentials.  

Brain mental states used in a BCI 
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alpha rhythm 

imaginary 
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mu rhythm 

mental task 
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Learned expectation state.  If a pair of stimuli is present repeatedly, the 

brain quickly learns that after the first one the second one follows and generates 

expectancy after the first stimulus, expecting the second one. This expectancy is 

generated as an expectancy brain wave, known as CNV (contingent negative 

variation) potential. The CNV potential was used in BCI applications since 2005 

[Božinovski, 2005].   

 

2.6. Signal Processing in BCI 

A BCI, by employing signal processing techniques, translates the EEG signal 

characteristics into commands which control a device. In addition to implementing 

standard signal processing techniques, here, two important features of BCI signal 

processing will be mentioned. One is extracting spectral features from an EEG signal 

and the other is building a classifier that will recognize the mental states and translate 

them into device commands.  

Extracting spectral features from the EEG signal. The most common 

technique for extracting features from an EEG signal is to analyze the spectral power 

in different frequency bands [McFarland et al, 1997]. Spectral analysis of a single 

channel may be useful, although multichannel analysis is preferable, since it accounts 

for spectral variations associated with different types of motor imagery; for example, 

differences between the hemispheres can be exploited by multichannel analysis. The 

frequency bands are selected in such a way, so that they reflect the EEG rhythms of 

interest: the alpha (), mu () rhythm and beta () rhythms have been found 

particularly useful for BCI use. The mu and beta rhythms are usually recorded from 

the sensory-motor cortex, i.e. the area which is primarily responsible for the control 

of hand and foot movement, whereas the alpha rhythm is recorded at the occipital 

region.  

BCI pattern classifier building. In order for the BCI to learn the meaning of 

different EEG signal characteristics, the subject is instructed to imagine or apply one 

of several actions. For each of the actions (imagined or real), a set of features is 

extracted from the EEG and submitted to a classifier. By repeating the imagined 

actions several times, the classifier can be trained to determine which action is 

chosen. Subsequent to the learning phase, the BCI relies on the classifier to translate 

the subject’s action (motor imagery, relaxation, expectation, etc) into device 

commands, such as selection of a letter in a spelling program. The learning phase of 

a BCI should be repeated on a regular basis. Since the EEG exhibits considerable 

variability due to factors such as time of day, hormonal level, fatigue etc, it is 

necessary to adjust the classifier in order to maintain an acceptable level of 

performance. 

Brain signals are usually very slow. Commonly, the signals arrive at a rate of 

one bit per second, which means that controlling a complex sequence of actions at 

that rate would be difficult. The solution is to use behavior based control, where 

rather complex behaviors are executed by device intelligence and just start/stop of a 
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particular behavior is executed by a brain command. So the key element is to 

combine a subject’s mental capabilities with device (machine) intelligence. The 

subject delivers high level commands such as “stop following the line” or “turn right 

at next sensor signal” and the robot executes it. The subject just delivers the intent, 

and the robot executes it when needed with smooth trajectories. An example is 

steering a wheelchair or a mobile robot.  

 

2.7. Measure of a BCI Success 

The overall success of a BCI depends on how well the two adaptive systems – 

the user and the BCI system – are able to interact with each other. The user must 

develop and maintain good correlation between her/his intent and the signal features 

used in the BCI. The BCI system must extract the signal features that the user can 

control and translate them into commands correctly.  

The performance of a BCI may be measured in terms of information transfer 

rate, which is defined in bits per minute. The performance depends on the accuracy 

with which the different mental states are classified. At present, a sophisticated BCI 

is not able to decipher more than 10-25 bits/min – an information transfer rate which 

could enable a completely paralyzed subject to write approximately two words per 

minute. However, these rates are much too slow for the control of complex 

movements or the interaction with neuroprosthesis.  

Low classification error is a crucial performance criterion for BCI; otherwise 

the users become frustrated and stop using it. Furthermore, not executing probable 

wrong commands improves robot performance. The users should not need to turn 

either a robot or a wheelchair back in order to continue toward the desired trajectory. 

 

2.8. Examples of Applications 

The most successful application so far seems to be the “thought-controlled 

typewriter”, a system that can pick up a letter from the alphabet, then another one 

and so on, and thus synthesize a text.  It uses the P300 potential that appears when 

the subject recognizes a particular desired/expected letter in a series of letters. Once 

the letter is recognized, it is added to an evolving word or sentence. The latest 

version is developed by the Fraunhofer Institute in Germany.  

Mobile robot control was the first application of BCI [Bozinovski, 1988], and 

was basically repeated in 1997 [Craig et al, 1997; Searle, 2000]. The application 

gained momentum in 2004, when Millán et al [2004] experimented with two subjects 

that learned to move a robot in a house-like environment using 3 or 4 rooms in the 

desired order. Later the subjects learned to perform the same task manually and the 

performance was only slightly better than when it was executed mentally. Report on 

wheelchair control was given in 2008 [Galan et al, 2007].  
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Robotic arm control was first reported as an application of the invasive BCI 

[Nicolelis and Chapin, 2002]. In 2007, the Fraunhofer Institute for Computer 

Architecture and Software technology (FIRST) and Charité Hospital in Berlin, 

Germany, reported using EEG signal to control a robot arm. The software analyzes 

the normal EEG recording and, using self-learning techniques, extracts the proper 

features. When the movement is carried out, the software notices changes in the 

EEG, i.e. it recognizes the intention to raise the left and/or right hand. Other robotic 

arm control experiments were also reported [Božinovski, 2009]. 

 

2.9. Challenges and Future Directions 

The most challenging application is real-time control of brain actuated robots. 

From the experiments shown, three commands are often enough to control robots, 

especially using shared intelligence. Further increase of the number of commands is 

one challenge for future work. 

Another challenge is lowering the error rate of the BCIs. A common source of 

error is the non-stationarity of brain signals. One solution is online adaptation of a 

BCI to a subject’s performance [Bozinovska et al, 1992; Millán, 2007]. Another 

approach is to use a subject’s cognitive abilities to detect errors directly from their 

EEGs. Single-trial error potential recognition is used, in which the subject becomes 

aware a millisecond after the erroneous response of the BCI [Ferrez and Millán, 

2008]. User commands are only executed if no error is detected in that short time, 

increasing the BCI performance. This error potential provides performance feedback 

which, along with online adaptation, allows improving of the BCI while being used.  

Most of the time, ERPs are extracted using averaging techniques. These 

techniques are easy implemented and can be readily available to most researchers. 

However, the downside is that fast mental commands cannot be executed; normally, 

EEG signals are filled with noise and artifacts, and extracting the meaningful signal 

directly from the raw EEG is normally very difficult. A solution [Jung et al, 2001] is 

to record from multiple electrodes on the head and face and extract components from 

those recordings. This way, “pure” EEG signals can be separated from “pure” EOG 

signals, for example, and thus the effects of EOG to EEG can be easily established 

and corrected, if necessary. This technique is called Independent Component 

Analysis (ICA) and requires laboratory conditions. 

Another way is usable if the sought signals are relatively well-known, i.e. 

prior knowledge about their nature exists. Such well known signals are for example 

finger flexion signals, eyes movement signals etc, that are of the same shape and 

form in all human subjects. This can then be used to create a Bayesian classificator, 

which can discriminate between whether the signal is accepted as a finger flexion 

signal (within determined margins of error) or not [Kohlmorgen and Blankertz, 

2004]. 
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Chapter 3 

 

BRAIN POTENTIALS 

 

Brain potentials are described in this 

chapter, mainly viewed through their 

EEG recordings, and their frequency 

analyses. The origins of brain potentials 

are also described. Afterwards, the brain 

potentials are classified and attention is 

given to the spontaneous and evoked 

event-related potentials. Finally, their 

relations to cognitive science and brain 

functioning itself are discussed. 
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3. BRAIN POTENTIALS 

 

3.1. Electroencephalogram (EEG) and Spontaneous Brain 

Activity 

Electrical signals from the brain surface or the outside head surface 

demonstrate continued electrical activity in the brain. Both the intensity and form of 

this electrical activity are to a large degree determined by the total level of brain 

excitation, which is the result of sleeping, awareness, as well as some brain 

dysfunctions, such as epilepsy or some psychoses. The oscillations in the registered 

electrical potentials are called brain waves or brain potentials, and an entire 

collection of such signals is called an EEG (ElectroEncephaloGram).  

Originally, EEG was, and still is, used in medical diagnosis to diagnose 

mental retardation, sleep disorders, degenerative diseases such as Alzheimer’s 

disease and Parkinson’s disease, and mental disorders such as autism and 

schizophrenia. This chapter deals with the medical nature of brain potentials. 

Brain potential intensities on the skull surface range from 0 to 200 μV 

(microvolts), and their frequencies range from 1 wave per several seconds to more 

than 50 waves per second, i.e. 50 Hz (hertz). The characteristics of these waves 

depend greatly on the cerebral cortex activity, as well as the cumulative health status 

of the body.  

Brain potentials can be registered on any point on the scalp. Still, there are 

standards that recommend recording on specific points, so the measurement results 

obtained in one laboratory could easily be compared to measurements in another 

laboratory. The most commonly used such system is the 10-20 system, shown on 

Figure 3.1. By this system, twenty electrodes are used for standard clinical EEG 

recording, although extensions for this system have been introduced as well.  
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Figure 3.1. The placement and notation of electrodes according to the standard 10-20 

system 

 

The anatomical reference points have been defined as the nasion (the top of 

the nose) and the inion (the lump at the back of the skull). The letters used are 

F(rontal), P(arietal), C(entral), T(emporal), O(ccipital), and A(uricle). Odd numbered 

electrodes are on the left side, even numbered on the right side, and z-indexed are 

along the midline. 

Signals are recorded between two electrodes, e.g. Cz and A2, whereas the 

third electrode is neutral (ground) electrode for example placed Fp2.  Contemporary 

technology allows simultaneous recordings from several electrodes and presentation 

of the measurements as an electric field (topographic map) of the brain (Figure 3.2.). 

 

 

Figure 3.2. Topographic maps of the brain [4] 
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3.2. Frequency Analysis of EEG 

Brain waves are mostly irregular in shape and a standard EEG pattern cannot 

be defined. However, frequency analysis (i.e. Fourier analysis) shows that some 

frequencies are more prominent within the EEG. Traditionally, patterns of waves 

within the EEG have been discovered and defined, that have been called alpha, beta, 

gamma, delta and theta waves. Alpha and beta waves were introduced by Berger 

1929. Gamma waves were introduced in 1938 to refer to brain waves above 30 Hz. 

Delta rhythm was introduced in 1936 to designate waves below alpha rhythm. Later 

the delta range was divided into two ranges with introduction of theta rhythm.  

Commonly, the standard EEG components are extracted and analyzed in the 

frequency domain. Figure 3.3. shows a subject EEG, which has his eyes closed, in 

time domain and in frequency domain. Figure 3.4. below shows the corresponding 

analysis in frequency domain when the eyes are open. 

 

Figure 3.3. EEG from the subject's head, eyes closed, shown in the time domain 

 

On Figure 3.4. it is easy to notice that if the subject's eyes are closed, the 

alpha waves have relatively higher amplitudes. The Figure also shows that the EEG 

may also contain a DC component (frequencies around 0 Hz), which may originate 

from artifacts caused from the process of measurement or the signal itself.  

 



23 

 

 

Figure 3.4.  Fourier analysis of Figure 3.3. 

 

 

 

Figure 3.5.  EEG from the subject's head, eyes open, shown in the time domain 
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Figure 3.6. Fourier analysis of Figure 3.5. 

 

Figure 3.6. shows that when the eyes are open, the alpha waves are not so 

prominent, but the beta waves come more into expression. 

 

Figure 3.7. EEG and its traditional brainwaves, extracted in the time domain 

 

With contemporary computer technology it is possible to filter out the brain 

waves and show them in parallel to the EEG from where the frequency components 
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are extracted. In Figure 3.7., an EEG signal is shown, along with the follow-up 

components of the frequency spectrum, which correspond to the alpha, beta, delta 

and theta waves.  

 

3.3. Characteristics of EEG Waves 

The frequency-amplitude coordinate system of brain waves is shown on 

Figure 3.8. Following is the description of characteristics of those waves [Guyton 

and Hall, 2000]. 

Alpha waves are rhythmical waves, which exist at frequencies between 8 and 

13 Hz and can be found in the EEG of almost all normal, healthy adults, when 

they’re awake. These waves are most intensively found in the occipital region when 

the subject is relaxed with eyes closed, but can also be registered from the parietal 

and frontal regions. Their voltages are about 50 μV. During deep sleep, alpha waves 

diminish completely. When the attention of the awake subject gets focused on a 

specific type of mental activity, the alpha waves get replaced with asynchronous 

waves of a higher frequency, but lesser voltage, i.e. beta waves.  

When the alpha waves frequency range is recorded from the brain motor area, 

a rhythm appears, the positive wave of which is rounded (i.e. corresponds a sine 

wave) but its negative part is sharp. This is called the mu wave. While the alpha 

wave is associated with idling activity of the visual cortex, the mu wave is associated 

with idling activity of the motor cortex.  

 

Figure 3.8. The frequency-amplitude coordinate system of the brain waves , and their 

characteristics 
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Beta waves have frequencies higher than 14 Hz, up to as many as 80 Hz. 

They can most commonly be registered at the central and frontal skull regions, 

during extensive activation of the central nervous system or during tension.  

Some researchers divide the beta range into two parts: beta waves are 

between 14-30 Hz, and above 30Hz are gamma waves. Gamma rhythms are recorded 

in the near sensory-motor area. Sensitive recording technique is required. 

Delta waves are considered all EEG waves below 3.5 Hz and they commonly 

have voltages two to four times higher than of other types of brain waves. They can 

be detected during very deep sleep, early childhood and serious organic brain 

diseases. In normal persons, since they are low frequency waves they appear as a 

carrier (near DC) component of the EEG. Muscle movements can produce artifacts in 

the delta range. 

Theta waves have frequencies between 4 and 7 Hz. They emerge mainly in 

the parietal and temporal regions in children, but also during emotional stress in 

some adults, especially during disappointment and fear. They also emerge in 

transition from conscious states toward drowsiness as well as in many brain diseases, 

often in degenerative states.  

In addition the above described waves of the spontaneous EEG, other waves 

are mentioned by various researchers [Sanei and Chambers, 2007].   

 

3.4. Effects of Various Degrees of Brain Activity to the Basic 

EEG Frequency 

There is a general relationship between the degree of cerebral activity and the 

average frequency of electroencephalographic rhythm, where the average frequency 

rises progressively along with the higher degrees of activity. This is shown on Figure 

3.9. [Guyton and Hall, 2006], which shows that the EEG frequency rises with the 

increased brain activity and vice versa.  

 

 

          

 

 

 

Figure 3.9. Relation of brain frequencies to brain states 
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During the period of mental activity, the waves become more asynchronous 

than synchronous, so the voltage drops significantly, despite the expressedly 

increased cortical activity, as shown on Figure 3.10. The Figure shows the increase 

of amplitude of alpha waves in the relaxation state (eyes closed) and higher 

frequency activity when the eyes are open and observe an event. 

 

 

Figure 3.10. Noticeable difference in brain dominant frequency in relaxation state (alpha 

rhythm) and event observing state [Bozinovski et al 1988] 

 

The origin of alpha waves. Alpha waves won’t emerge in the cortex without 

their links with the thalamus. Also, a stimulation in the non-specific reticular nuclei, 

that surround the thalamus, as well as “diffuse” nuclei deep in the thalamus, often 

generates waves in the thalamocortical system of frequencies between 8 and 13 Hz, 

which is the natural frequency of alpha waves. Therefore, the alpha waves probably 

originate from the spontaneous backward oscillations in the diffuse thalamocortical 

system, with possible participation of the activation system of the brain stem. This 

oscillation causes also the periodicity of the alpha waves and the synchronous 

activation of literally millions of cortical neurons during each wave. Still, in general, 

today one might say that the origin of alpha rhythm is still “at large”, and needs more 

research.   

 

 

Figure 3.11. Basic anatomical localization of the brain 
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The origin of beta waves. Beta waves emerge during active and conscious 

state of the brain, where actions are performed. Curiously, beta waves emerge also in 

deep sleep. It is known [Austin, 2006] that there are two kinds of beta rhythms: 

slower beta (15-18 Hz), associated with slow wave sleep, and faster beta, or so-called 

beta-2 (higher than 18 Hz), that occurs during active waking states and states of rapid 

eye movement (REM) sleep. Curiously, the beta-2 activity accompanies states of 

“spontaneous cognitive operations”, that occur during “conscious rest” in the 

“absence of a task”. Following this, the beta-2 activity during REM sleep can be 

considered as a sort of “defragmenting of the brain” and rearranging of the obtained 

information during the wake period, so as it would be organized and processed 

accordingly. Most commonly, the beta waves originate in the medial cortex of the 

retrosplenial and dorsomedial prefrontal regions, as well as the lateral 

temporoparietal region [Austin, 2006]. 

The origin of delta waves. Trans-section of the nerve fibers from the thalamus 

to the cortex, which blocks the thalamical cortex activation and thus removes alpha 

waves, does not cause a blockade of all the delta waves in the cortex. This indicates 

that some synchronization mechanism can be carried out in the cortical neurons 

themselves – completely independently of all the lower brain structures – causing 

delta waves. Delta waves also exist in very deep “slow-wave” sleep; this suggests 

that the cortex is then mainly free from activation influences of the thalamus and 

other lower centers. They can be found in the animal cortices with sub-cortical trans-

sections, which separate the cerebral cortex from the thalamus. Thus, delta waves can 

exist in the cortex itself, regardless of the lower brain region activities.  

The origin of theta waves. Theta waves have been found in cortical limbic 

areas (such a hippocampus, entorhinal cortex, and cingular areas). These areas 

generate slow rhythmical activity in the frequency band of the theta waves. 

[Artamenko, 1972; Lubenov and Siapas, 2009] 

 

3.5. A Taxonomy of Brain Potentials 

Alpha, beta, theta and delta waves are usually called spontaneous brain 

potentials, because they emerge independently of the direct external stimuli. In other 

words, these waves emerge spontaneously and depend only on the momentary state 

of the subject, and not the environment, in which the subject is placed. Contrary to 

this, when the subject is placed in an active environment and reacts to it, different 

brain potentials emerge.  

Investigations have revealed lots of various brain potentials, which emerge in 

specific conditions and have specific traits. A description of these potentials will be 

given first with a taxonomy [Božinovska et al, 1992], given on Figure 3.12. 
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Figure 3.12. A taxonomy of brain potentials 

 

According to this taxonomy, the brain potentials are divided into spontaneous 

(background EEG) and event related potentials (ERP). Event related potentials are 

divided into anticipatory (pre-event) and evoked (post-event). Anticipatory brain 

potentials are event related brain potentials that appear before the event, as opposite 

to classical evoked potentials that appear after the event.  Post-event potentials can 

be divided into exogenous (reflexive) and endogenous (cognitive). An example of 

exogenous signals is the visual evoked potential (VEP). An example of endogenous 

potentials is the P300. Pre-event potentials are divided into expectatory (to an event) 

and preparatory (for the event). An example of an expectatory potential is the 

Contingent Negative variation (CNV) potential. An example of a preparatory 

potential is the Bereitschaftspotential (BP). Both expectatory and peparatory 

potentials were first reported in 1964, by Walter et al [1964] and by Kornhuber and 

Deecke [1964] respectively. Figure 3.13. gives the time scale of the event related 

potentials.  

 

 

 

 

 

 

 

 

Figure 3.13. Time scale of the Event Related Potentials 
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As Figure 3.13 shows, the expectatory potentials appear first, then the 

preparatory potentials. Reflexive (exogenous) potentials appear immediately after the 

event and signal that the event was registered. Cognitive (endogenous) potentials 

appear later, signaling that the event was processed.  

In summary, for anticipatory brain potentials, the preparatory potentials are 

initiated internally, by the will of the subject. Expectatory potentials are initiated by 

some expected external event. 

 

 

3.6. Evoked Brain Potentials 

Event related potentials appear as a reflex reaction of the brain to the event 

(or stimulus). Generally, every event or stimulus, which is registered by the brain, 

creates some sort of a brain potential. Different potentials appear as results of 

different stimuli. Since these potentials show just knowledge of an existence of a 

stimulus after it appeared, and not of its meaning, they are called exogenous 

potentials. Evoked potentials show the function of the sensor pathways from the 

excitation spots (receptors) to the primary cortical region of the examined sensory 

system. Contrary to them, endogenous potentials appear when the event or stimulus, 

that had just happened, is given meaning. Thus, these potentials don’t depend on the 

type of the event or stimulus itself, but on whether that event or stimulus means 

something to the subject. A typical example of such potentials is the P300 potential, 

which peaks 300 milliseconds from the moment of occurrence of the event or 

stimulus, from where it got its name.  

Evoked potentials (EPs) constitute an event-related activity which occurs as 

an electrical response from the brain or the brainstem to various types of sensory 

stimulation of nervous tissues; auditory and visual stimulation are commonly used. 

EPs provide useful information about sensory pathways abnormalities, localization 

of lesions affecting sensory pathways, as well as disorders related to language and 

speech. They are recorded from the scalp in a regular EEG form, but have transient 

waveforms, the morphology of which depends on the evoking stimulus and the 

electrode position on the scalp. The mental state of the subject such as attention, 

wakefulness, and expectation, also influence the waveform morphology. For an EP 

analysis of a subject, usually a normal waveform is assumed or given, and the 

obtained waveform is judged for normality.  

Individual EPs have very low amplitude, ranging from 0.1 to 10 V, and are 

hidden in the ongoing EEG background activity, with amplitudes between 10 and 

100 V. In EP investigation, the normal EEG is viewed as noise, the influence of 

which should be minimized. Therefore, the noise reduction issue is most frequently 

addressed in any work dealing with EPs. The approach used towards this issue is 

based on the assumption that an EP occurs at a certain time after the stimulus, while 

the background EEG is a random noise in regards to the stimulus. So, repetitive 

stimulation with ensemble averaging is the most often used technique. Using this 
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technique is often sufficient to produce an EP waveform, the individual components 

of which can be analyzed in terms of amplitude and latency.  

The ensemble averaging technique is the most useful when the EP is not 

changing over time. In some cases, it is important to detect the time varying EPs. An 

example is a neurosurgical procedure in which a time varying EP is observed. 

Considerable effort has been done to find a technique that can track dynamic changes 

and in the same time provide noise reduction. The analysis of time varying EP 

changes is commonly referred to as single-trial analysis. One popular approach is to 

introduce certain prior information on the behavior of the EP morphology. The 

assumption is that each EP can be modeled as a set of orthogonal basis functions. 

The EP is represented as a weighted sum of those basic functions and the weights are 

fitted to the observed EP.  

By convention, negative amplitudes of EPs are plotted as spreading upwards, 

so the obtained positive and negative amplitudes are numbered by the time latencies 

from the stimulus. For example, P300 is a signal that appears 300 ms after the 

stimulus, and N400 is a negative signal that appears 400 ms after the stimulus. In 

addition to the convention, if a number is less than 10, it shows the temporary order 

of a signal component, rather than the latency of a signal. For example  N3 means the 

third component of a considered signal that has negative amplitude. Figure 3.14. 

shows this convention.  

 

Figure 3.14. Example of an event related potentials containing components such as N100 

and P300. Note that P300 in this case is at 400ms [5] 

 

According to Sutton and Ruchin [1984], the following criteria are used to 

distinguish between components: latency, polarity, sequence, scalp distribution, 

relation to physical parameters of stimuli, relation to behavior, and relation to 

population and state of the organism variables. It is pointed out that latency varies for 

the same ERP and that sometimes negative components appear as positive due to a 

different choice of the baseline. 

EPs are often analyzed from a single channel. However, a technique known 

as brain mapping is also used, in which isopotential lines are recorded by several 

electrodes and thus plotted. A distribution of a wave over the whole scalp can be 

observed by this technique. Figure 3.15. shows this technique.  In Figure 3.15., hard 

lines show zero potential, thin lines show positive potentials, while dashed lines 
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negative potentials. The maps are usually computed for latencies at which the 

waveform either has a peak or a trough. The maps are used to discuss the bioelectric 

distribution in terms of dipoles [Picton at al. 1995]. Figure 3.16. shows a brain map 

using this approach. 

 

 

Figure 3.15. Brain map of an auditory evoked potential.  a) recording places on the scalp 

and recorded waveforms. b) computed brain potential distribution. 

 

 

Figure 3.16. A brain mapping example [8] 



33 

 

 

3.7. Exogenous Evoked Potentials 

Exogenous evoked potentials appear as a reflex of the brain to an external 

stimulus. For example, if an audio signal appears, the brain will produce a signature 

potential, which will show that the signal has been received. The response cannot be 

modulated by the will of the subject. Classical exogenous potentials are Auditory 

Evoked Potentials (AEP), visual evoked potentials (VEP) and somatosensory evoked 

potentials (SEP). Here those potentials will be briefly examined [Soernmo and 

Laguna, 2005].  

 

3.7.1. Auditory Evoked Potentials 

Auditory EPs are generated in response to a sound stimulus, usually a short 

sound wave. This EP shows how information travels from an auditory nerve in the 

ear through the brainstem to the auditory cortex. So, the AEP usually has 3 phases: 

the brainstem phase, early middle cortical response and late cortical response. 

Brainstem auditory evoked potentials (BAEP) have been used to evaluate hearing 

loss (audiometry), diagnosis of certain brainstem disorders, and intraoperative 

monitoring to prevent neurological damage during surgery. Middle cortical response 

has been used to evaluate depth of anesthesia during surgery – it has been found that 

the depth of anesthesia is proportional to the latency of the middle cortical response. 

Recording setup. A short sound wave is delivered through stereo headphones 

(Figure 3.17.). One ear is stimulated at a time, the other being masked by a 

bandlimited noise (“pink noise”). The click sound is produced by a 0.1 ms square 

wave pulse, with repetition rate of 8-10 times per second. The intensity is between 40 

and 120 dB. Zero dB is equivalent to the pressure of 20 Pa. Electrodes are placed 

behind the left and right ear and at the vertex.    

 

Figure 3.17.: Auditory brain potentials (AEP) : a) recording   b) A brainstem AEP waveform 

 

Waveform characteristics. An AEP has three parts: the brainstem AEP has 

very low amplitude, 0.1 to 0.5 V, and occurs 2 to 12 ms after the stimulus. The 

short duration implies that the frequency range of BAEP is between 500 Hz to 1500 

Hz. In a normal subject it is an oscillatory waveform with up to seven peaks. By 
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convention, the peaks are labeled with Roman numerals. Both the loss of a peak and 

variability in duration provide important information for audiometry. A BAEP is 

stable in form, so ensemble averaging will reproduce its form. The middle AEP 

occurs after 12 to 50 ms after the stimulus. The late components follow the late AEP 

and are in the range of 1-20 V. The late components vary in duration so ensemble 

averaging would not reveal a constant pattern.  

 

3.7.2. Somatosensory Evoked Potentials 

Somatosensory evoked potentials (SEPs) are elicited by electrical stimulation 

from the body surface of a particular peripheral nerve, usually from an arm or a leg. 

Somato- means any place on the body. The SEPs are used for evaluation of the 

sensory pathways from a peripheral nerve through the spinal cord to the cortex. 

Certain neurological disorders such as multiple sclerosis can incur damages that can 

be observed by SEPs. SEPs are also monitored during a surgical procedure involving 

the spinal cord.  

Recording setup. Stimulation is performed by delivering a brief electrical 

impulse via stimulus electrodes positioned close to the sensory nerve (Figure 3.18.). 

In clinical practice, the median nerve on the arm and tibial and peroneal nerves on 

the legs are used. Recording electrodes are placed to certain spots over the 

motorsensory cortex. Additional electrodes are also placed along the conduction 

pathways, such as on the knee and the spinal cord.  

 

Figure 3.18. Somatosensory evoked potentials. a) setup   b) typical waveform 

 

Waveform characteristics. A SEP has spectral characteristics above 100 Hz. 

The total SEP duration is about 400 ms, however only the first 40 ms are recorded 

and analyzed. The rest of the long latency exhibits large variability.  

 

3.7.3. Visual Evoked Potentials 

Visual evoked potentials are used for evaluation of visual pathways from the 

eyes to the occipital region of the scalp. Two different stimuli are used: pattern 

reversal and flashing. Relevant information is observed at 75 ms after the stimulus, 

followed by a rather long latency response, lasting beyond 100 ms. VEPs are used 

for detection of ocular and retinal disorders, as well as optic nerve pathology and 

visual field defects.  
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Figure 3.19. Visual evoked potentials. A) setup  b) waveform characteristics 

 

Recording setup. The stimulus is often a chessboard pattern being displayed 

on a video screen (Figure 3.19.). The subject fixes his/her sight on a point in the 

middle of the screen while the squares change the color from black to white and vice 

versa. The rate of change is fixed, usually two changes per second. The size of the 

chessboard, the luminance, the contrast, and the repetition rate are parameters of the 

investigation. The flashing stimulus is used when the subject cannot keep a focus at a 

point in the visual field, or even if the eyes are closed. The repetition rate of flashes 

is between five to seven flashes per second. The electrodes are positioned close to the 

visual cortex and the reference electrode is at the vertex.  

Waveform characteristics. A VEP has a larger amplitude than a SEP or an 

AEP, ranging up to 20 V. A VEP can even be observed directly from the raw EEG. 

The spectral components of the VEP range from 1 to 300 Hz. The P100 peak can 

sometimes split in two waves and is usually interpreted as abnormality.  

 

3.8. Endogenous Evoked Potentials 

AEP, SEP, and VEP are obtained in a stimulus-response paradigm, where the 

stimulus comes from the outside world. Those EPs are referred to as “exogenous”. 

They are usually followed by cognitive waves, which are not related to the stimulus 

itself but to the cognitive reaction to the stimulus. Such EP components are denoted 

as “endogenous”. Latencies of endogenous EPs are 300ms and longer. Here, the 

P300 and N400 cognition related potentials will be mentioned. 

 

3.8.1. P300 

P300 is an event-related potential that occurs upon recognition of a given 

stimulus in a series, as being unlike the previous stimuli, referred to as an oddball 

stimulus in literature. It is important in the study of attention, as it occurs when the 

attended part of reality changes, replacing boredom (or at least inhibited response) 

with interest in the new stimulus. For P300, it is known that if there are two stimuli 

in a sequence, the P300 is larger for the second stimulus. An interpretation of this has 

been given, that the P300 is larger in the region where critical information is 

extracted from a stimulus. The P3 component of an ERP is usually also related to the 

probability of appearance of the corresponding stimulus. 
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P300 is understood to mean that the subject is able to consciously identify 

and categorize a stimulus, and represents the subject updating his working memory 

with the new information. For instance, if a subject has been listening to trombone 

noises and a flute tone is played, a P300 wave will appear 300 ms later on the EEG 

recording. Amplitude of the measured P300 wave is inversely related to the 

probability of the oddball stimulus. This means that the less frequent the oddball is, 

the more visible the P300 spike will be. Interestingly, a small P300 will appear for 

both categories of stimuli when they are presented at nearly the same frequency, and 

will be slightly larger for the slightly less frequent category. For instance, when 

asked to press one button, if the presented letter is a vowel, and another if it's a 

consonant, there will be a P300 wave for both, and it will be higher for whichever 

letter type is less common. Thus, the P300 can be used to determine concealed 

knowledge, and this is utilized when testing for information that only a criminal 

would know, to solve a crime, for example. By placing details of the crime(s) 

randomly among a list of non-relevant items, one can distinguish the criminal from 

any ordinary citizen. If an individual recognizes a detail of the crime, he/she 

produces both a P300 event-related potential and is at least familiar with the crime. 

P300 waves are present in people with most varieties of mental retardation, 

suggesting that their working memory is being updated in the same way as 

everybody else's. Psychotropic drugs, however, do have an effect on P300.  

 

3.8.2. N400 

It has also been noted than N400 is related to ease with which information is 

accessed from the memory. However, N400 is mostly related to processing semantic 

information. If in a sentence an “oddword” appears, additional processing is needed 

and this is reflected in the N400 amplitude. Words expected in context elicit smaller 

N400 responses. Figure 3.20. shows a cognitive task where N400 is elicited.  

  

 

Figure 3.20. The sentence above was shown with three different endings. It seems a kind of 

tree was expected as a word. A flower category word elicited higher N400 [Soernmo and 

Laguna 2005] 
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3.9. Event Related Potentials and Cognitive Science 

Event related potentials are a manifestation of the processes in the brain 

related to some events. Various psychological constructs were assigned to event 

related potentials and their components. Event related potentials might be used to 

answer questions about phenomena in cognitive science and related fields, such as 

affective neuroscience, and psychopathology [Luck, 2005]. 

The intent is to interpret the event related potentials and their components to 

cognitive and behavioral functions. For example, N1 is usually a potential generated 

due to external stimuli as a reflexive brain process. P2 is usually related to signal 

recognition and N2 to a decision what to do.  However, the S2 (the imperative 

stimulus) related potentials contain trained components and the reaction to S2 comes 

faster than N2. 

Other terms are often used to describe an ERP function and its relation to 

behavior. If a potential is endogenous and is generated without a significant external 

event, then it is called a command potential [Gilden et al, 1966] or an emitted 

potential [Sutton et al, 1967]. It is possible that the readiness potential (BP) 

[Kornhuber and Deecke, 1964] is such a type of potential.   

P300 has been related to the construct of confidence level by which 

recognition of the corresponding events is decided upon. For example, Kerkhof 

[1982] has reported that P300 (refereed by him as P450) is larger when the 

confidence is high and smaller when the confidence is low. With increased 

confidence, the latency of P300 decreases. It has been noted that evoked potentials 

always have a positive slow wave component. This has been considered a separate 

evoked potential, named Slow Wave (SW), which is a positive potential. However, 

related to confidence level, opposite relation is found to the one in P300.  

The principal psychological concept used today for endogenous components 

is the concept of cognition introduced in ERP research by Donchin [Donchin, 1984] 

Stimulus salience, stimulus uncertainty, and surprise are also used. The concept of 

value in ERP research was introduced by Sutton and Ruchin [1984]. They suggest 

that rather than concentration on surprise (high uncertainty) and surprise reduction, a 

value of that information should be considered.  

 

3.10. Event Related Potentials and Brain Functioning 

The study of event related potentials at some point of time became a field of 

its own. However, there was a time that going a direction towards “ERPology” did 

not address the real challenges, such as how the brain functions. So a model was 

needed to which event related potentials could relate. Several models have been 

used, one of them being the Luria model. Figure 3.21. shows the Luria model and the 

information flow within the brain.  
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Figure 3.21. The Luria model of brain functioning [6] 

According to this model , the information from the outside world is collected 

in the posterior, sensory portion of the cortex, from where it is send to the anterior, 

motor portion of the cortex. Both cortices are divided into zones: primary, secondary 

and tertiary.  

Information enters the sensory cortex through the primary zone. Here, 

primary sensory data are gathered. In the secondary zone, these data are elaborated, 

i.e. their meaning is established. In the tertiary zone, the “big picture” is understood, 

i.e. the significance of the information obtained in the secondary zone. This 

information would then be transferred to the tertiary zone of the motor cortex, where 

intentions are formed, to act upon the gathered information. Then, in the secondary 

zone, concrete plans of action are formed, to fulfill those intentions. Finally, in the 

primary zone, those steps in the plan are acted upon and executed. The limbic system 

(hippocampus and amygdala) are also involved [Kolb and Whishaw, 1996]. 
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Chapter 4 

 

ANTICIPATORY 

BRAIN POTENTIALS 

 

This chapter focuses on the anticipatory 

brain potentials. As an example of 

preparatory potentials, the 

Bereitschaftspotential (BP) is presented, 

and, as an example of expectatory 

potentials, the contingent negative 

variation potential (CNV) is presented. 

Focus is given to the CNV, and its 

morphology and original paradigm to 

obtain it are presented. Finally, the 

relation of this potential to other 

cognitive processes is shown. 
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4. ANTICIPATORY BRAIN POTENTIALS 

 

The difference between the anticipatory and evoked potentials is that the 

anticipatory potentials appear before the event, whereas the evoked appear after it. 

So, the anticipatory potentials show readiness of the brain for the given event, where 

the evoked show its reaction to that event. The anticipatory brain potentials are a 

distinct manifestation of the brain’s electric field, related to an event, but appearing 

before the event, thus manifesting some anticipatory and preparatory process in the 

brain for that event. 

These potentials are in the group of endogenous potentials. They, along with 

the other late components of post stimulus ERPs, are called cognitive event related 

potentials. They appear in paradigms, in which there is a certain mental or motor 

task, which the subject needs to do (or solve). They are relatively independent of the 

physical parameters of sensory stimulations. A given stimulus may or may not wake 

up an endogenous component, which depends on the cognitive context of the given 

stimulus. These components reflect variables such as: task complexity, importance of 

the stimulus for the subject or the focus of attention of the subject.  

There are two groups of anticipatory potentials: expectatory and 

preparatory.  

Anticipatory (or pre-event) potentials appear immediately before the event or 

some time before it. In both cases, the subject must know that the event will happen. 

In case that the knowledge is about an event that will happen in the further future the 

potentials that emerge are expectatory potentials. These potentials show a general 

state of preparation of the subject and mark his/her knowledge about the event and an 

expectation of it. A typical example is the CNV potential, which will be given more 

attention later.  

Preparatory potentials are also anticipatory. They emerge when the subject is 

ready to react to an event or to produce the event. A typical example of these 
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potentials is the Bereitschaftspotential (BP), which appears immediately before every 

motor action of the subject. This potential shows the existence, so to speak, of a 

willful command of the brain to act or react to the event.  

 

4.1. Preparatory Potentials. The Bereitschaftspotential 

The most prominent and well-studied potential from this group is the 

Bereitschaftspotential (or BP), and it will be presented here in more detail. 

BP has been discovered in 1964 by Hans Helmut Kornhuber (at the time 

assistant professor and chief medical doctor at the neurophysiology hospital in 

Freiburg im Breisgau) and Lüder Deecke (who was doing his doctoral dissertation at 

him). At the spring of 1964 both were aware and unsatisfied by the opinions of the 

scientific public at the time, that the human brain is a passive system, which only 

reacts to external stimuli. They wanted to research the behavior of the brain in cases 

when it performs willfully initiated actions. They were not the only ones with such 

intentions, but at the time they didn’t have conditions for such research.  

 

Figure 4.1. A typical Beitschaftspotential recording [7] 

 

The situation improved when an averaging computer arrived in the laboratory 

in Freiburg. When Kornhuber and Deecke compared the EEG and EMG 
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(ElectroMyoGram – a recording of the electrical potentials from the motor muscles) 

in willful motor movements (finger flexion), they couldn’t notice changed in the 

EEG before the movement. But, when they analyzed the average EEG during the 

trials, they noticed an appearance of a potential, which appeared immediately before 

the action. That same year they published the finding [Kornhuber and Deecke, 1964], 

and the next year, after detailed research and control experiments in passive 

movement, a paper has been published [Kornhuber and Deecke, 1965] which 

introduced the term Bereitschaftspotential. 

The Bereitschaftspotential is 10 to 100 times smaller than the EEG alpha 

rhythm and can be noticed only after averaging. Figure 4.1. shows a typical BP 

recording during hand finger flexion, where the vertical axis, i.e. t = 0 seconds, is the 

moment of flexion. The recording has been done on three regions of the skull, 

namely left precentral (C3), right precentral (C4) and mid-parietal (Pz), whereas the 

reference potential was on the ears. Also, difference between the BP on positions C3 

and C4 is shown. Results on the figure are from the same subject during 8 days. 

It’s interesting that this potential appears before all conscious and voluntary 

muscle movements, regardless of whether it’s a movement of a finger, the eyes, the 

lips or even the throat during swallowing [Huckabee et al, 2003]. Therefore, the BP 

represents a command from the brain for voluntary muscle movement. At the time of 

its discovery, the voluntary muscle movements were connected to a person’s free 

will, which was contrary to the opinion of the public that freedom is just an illusion; 

Freud’s psychology, which was dominant at the time, claimed that a person’s actions 

are predetermined and depend solely upon external circumstances, and not the 

person’s will. At the time of discovery of the BP, things have gone so far, that the 

free will of a person was not even discussed, so words like “will” and “volition” 

were erased from the dictionary of the American Physiological Society [Heckhausen, 

1987]. The BP showed that the supplementary motor area of the brain takes part in 

movement realization and activates before it, i.e. before the primary motor regions 

[Deecke and Kornhuber, 1978]. The discovery of BP has reignited the discussion 

around free will [Deecke and Kornhuber, 2003], which is still ongoing. 

 

4.2. Expectatory Potentials. The Contingent Negative 

Variation 

The expectatory potentials imply that there is a prior knowledge that an event 

is going to happen, and they show expectation to that event. A typical expectatory 

potential is the contingent negative variation (CNV) potential, which will be 

described here. 

As a term, CNV describes the slow shift of the brain signal, which develops 

during a warning period, and before a certain event, such as motor or mental activity. 

The shift toward the negative begins around 400 milliseconds after a warning 

stimulus (S1) and usually ends with the appearance of an imperative stimulus S2), 

i.e. a stimulus that requests a response from the subject.  
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Curiously, both the CNV and the Bereitschaftspotential findings were 

published in 1964. The first paper about the CNV appeared in the Nature magazine, 

and was published by a group led by W. Grey Walter [Walter et al, 1964]. 

Interestingly, before his work on brain potentials, Walter worked on robot building. 

He built the first mobile robot, able to follow light by the heliotropism principle. In 

the brain potential research area, though, he introduced the expectancy potentials 

through the CNV. 

The CNV potential appears in an experimental procedure called the CNV 

paradigm. Basically, it is a reaction time measurement procedure, in which at the 

same time the EEG is recorded. In the reaction time measurement procedure there is 

signal S1, which directs the attention, and signal S2, that is to be reacted on.  The 

distance between the signals is about 2 seconds. Walter and his coworkers have 

noticed that after several appearances of the S1-S2 pair, a negative shift in the EEG 

emerges between S1 and S2. Using the averaging technique, they showed that this is 

a separate potential, which connects S1 and S2 and is thus of a cognitive type. The 

group suggested that this is a potential of expectation of S2 after the appearance of 

S1. The potential isn’t reflexive event-related, but contains a cognitive component of 

expectation, and possibly preparation for S2. Figure 4.2. shows the originally 

published result. 

 

4.3. CNV Morphology  

Figure 4.3. shows a typical CNV potential. It is actually a complex potential, 

composed of several components or several evoked potentials, which appear in this 

period: an exogenous evoked potential, which appears because of the appearance of 

S1; the N100 peak, which is the reaction of expectancy to S1; P300 – the storage of 

S1 in the short-term memory and its comparison to the existing patterns. After P300, 

the rise of the negative potential shift starts, about 400 milliseconds after S1, which 

lasts until the appearance of the preparatory potential to S2. Immediately after S2 

there is usually a drastic shift towards positivity, so-called postimperative positivity, 

i.e. a decrease of negativity of the CNV potential immediately after the motor 

response to S2. This is normal in healthy subjects in simple experimental conditions 

of the CNV paradigm.  

Observing the CNV potential morphology, it can be seen that it is a rather 

complex signal. After the stimulus S1, reflexive evoked potentials appear related to 

S1. The cognitive P300 potential can also be recognized. Somewhere after P300, a 

negative ramp is taking shape, manifesting the expectation to S2. It is the most 

important part of the morphology and represents a complex cognitive process of 

learning to expect S2 after S1 in order to achieve a goal – minimum RT on S2. 

After S2, reflexive and cognitive evoked potentials are present. In some cases a 

prolonged plateau is present after S2. 
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Figure 4.2. The CNV potential. If the subject is administered the auditory stimulus S1, he/she 

responds with an auditory evoked potential. If only a light stimulus S2 is shown, he/she 

responds with a light-caused evoked potential. If S1 – S2 is repeated many times, within the 

interval S1 – S2 an expectancy potential appears, because S1 has already appeared and the 

subject expects the appearance of S2 [Walter et al, 1964]. 

 

Figure 4.3. Morphology of a CNV potential [Bozinovska et al 1992] 

 

The CNV morphology varies across subjects. The CNV potential has been 

extensively studied in relation to various populations of both healthy and unhealthy 

subjects. Its morphology can be (and in some cases is) used as a diagnostic tool, to 

N100 

N100 

P300 

P300 
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determine the presence or absence of certain neurological diseases. Different 

parameters of the wave, such as slope (measured in microvolts per second), peak-to-

peak amplitude, total energy, topography etc, vary from subject to subject and 

depend on the experimental procedures. These parameters vary and depend also on 

the physical state of the subject (anxiety, depression, schizophrenia etc.) 

There is still the question about the CNV potential morphology: is it a brain 

wave, which has many relations to a large number of experimental variables, or is it a 

combination of many waves, of which each has simple relations with a limited 

number of variables. The CNV potential is considered complex, composed of two 

groups: early and late (terminal) CNV. The early CNV, also called the orientation 

wave, has a frontal origin and is actually a late component of the event potential, 

caused by the warning S1 stimulus. Therefore, there is an influence of the meaning 

of the task to the degree of early negativity. On the other hand, the late CNV has its 

peak above the central region, where a motor response is necessary. It is considered 

that it displays the preparation for a motor response of S2. It must be noted that other 

sources of expectation to S2 exist as well, such as the working memory activity and 

the mental work invested in the task.  

In the CNV example shown in Figure 4.3., above the P2 is actually P300, 

which means that P300 is the second positive component in a CNV complex. Also, 

in Figure 4.3. it can be seen that if the baseline is defined at the level of the mean of 

the potential before S1, a positive post-S2 complex will be obtained below the 

baseline; such a component is known as a late positive complex. 

It is not easy to distinguish the components and to give interpretation of a 

particular component, because the components usually overlap in time and space. 

The principal component analysis has been proposed [Donchin, 1966] as a 

mathematical method for distinguishing various ERP components. Scalp distribution 

is often used as a discriminating factor between components. It is known for example 

that the CNV is higher at Cz than at Pz. However, studies show that is also not 

always possible to discriminate components using scalp distribution criterion.  

By convention, the components of an ERP are denoted regardless of the 

physical characteristic of the stimulus. For example, the N1 component of the CNV 

is named N1, regardless of whether the stimulus is auditory or visual. It is now 

accepted that the CNV has at least three negative components, possibly four 

[Rohrbaugh and Gaillard, 1983].  

An interesting ERP in relation to the CNV is the O wave. It appears in a 

paradigm where one stimulus is present but in two modalities, for example a 2000 Hz 

tone and a 1000 Hz tone. The 2000 Hz tone appears in 75% of trials and 1000Hz 

tone in 25% trials. The subject should count number of appearances of the 1000Hz 

tone. The O wave morphology is shown in Figure 4.4.   
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Figure 4.4. The O wave measured at Fz, Cz, and Pz [Ritter et al, 1984] 

 

4.4. The CNV Paradigm 

Originally [Walter et al, 1964], the CNV potential has been obtained through 

the CNV paradigm, where, in an open loop way, a slow negative potential (the CNV) 

appeared in the inter-stimulus interval of the S1-S2 stimulus pair. The CNV 

paradigm is actually an extended reaction time paradigm. In a standard reaction time 

paradigm, two stimuli are presented: S1 (warning stimulus) and S2 (reacting 

stimulus). The subject tends to press a button as fast as possible after S2. A subject’s 

reaction time (RT) is measured. To this paradigm the CNV paradigm adds measuring 

the EEG between S1 and S2. In fact, recording of the EEG starts before S1 and ends 

after S2. After several repetitions and after averaging over several trials of EEG 

segments, a specific shape forms between S1 and S2, which is the CNV potential. 

Figure 4.5. shows the experiment setup. 

 

 

      S1        S2 

                            

           negative shift in EEG 

 

    RT 

  

            push button 

 

 

Figure 4.5. The experimental setup for the CNV paradigm 

     S1           S2 
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The procedure lasts for several trials. Figure 4.6. introduces the concepts of 

inter-stimulus interval (ISI) and inter-trial interval (ITI) used in the CNV paradigm.   

                     

 

                                                                                               

 

 
Figure 4.6. The CNV paradigm: inter-stimulus and inter-trial interval  

 

Since its introduction, many modifications of the CNV paradigm have been 

proposed, and, according to the modification proposed in this work, a 2 second fixed 

inter-stimulus (ISI) interval is chosen, and a random 7-13 seconds inter-trial (ITI) 

interval. Both ISI and ITI can be chosen to be longer or shorter, if desired.  

 

4.5. The CNV potential and cognitive processes 

The activity of the CNV potential has been suggested as an index for many 

processes (awakeness, expectancy, attention focus, preparation for activity or 

decision making) , which influence the forthcoming choice of response or cognitive 

processes that are connected with the imperative stimulus [Donchin and Johnson, 

1982]. 

The focus of this research is the activity of the CNV potential, as an 

objectively measurable parameter of the degree of expectation, which itself is a 

cognitive process, which takes place in the CNV paradigm. Therefore, the next 

chapter elaborates it in more detail. 
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Chapter 5 

 

THE CNV FLIP-FLOP 

PARADIGM 

 

This chapter describes the CNV flip-flop 

paradigm. Its flow chart its presented, 

along with the central issues it faces as a 

paradigm, which must be worked out. 

Also, the Electroexpectogram (EXG), as 

a cognitive curve resulting from this 

paradigm, is presented. 
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5. THE CNV FLIP-FLOP PARADIGM 

 

The discovery of the CNV potential and the CNV paradigm [Walter et al, 

1964] has sparked scientific interest, and they have both been extensively studied 

[Tecce and Cattanach, 1993]. The original paradigm proposed by Walter et al is 

sometimes referred to as “The Classical CNV Paradigm”. Figure 5.1. shows the 

flowchart of the paradigm.  

 

 

 

 

 

Figure 5.1. The original (“classical”) CNV paradigm 

 

Several authors proposed various modifications of the classical CNV 

paradigm. Here the work of Božinovska, Išgum and Barac [1985] will be mentioned, 

who worked with random change of appearance of signal S2 in the paradigm. Figure 

5.2. shows their modification. 

Figure 5.3. shows the result of their work. Here p(S2/S1) gives conditional 

probability of appearance of S2 given S1. The shape of the CNV potential is shown, 

in case of appearance probability of P1 = p(S2/S1) = 1 and P0,5 = p(S2/S1)=0,5. 

Figure 5.3. shows that the CNV forms its shape very clearly if p(S2/S1) = 1, while in 

case that p(S2/S1) = 0,5, only the evoked potential appears due to S1, while the 

expectancy potential on S2 does not form.   
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no 

yes 

start end 
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Figure 5.2. S2 appearance change in the CNV paradigm 

 

 

Figure 5.3. Modification of the CNV appearance due to modulation of S2 [Bozinovska et al 

1985] 

 

Here another modification of the paradigm is introduced, which is called 

called the CNV Flip-Flop Paradigm. The main feature is that it is a closed-loop 

procedure, by feeding the produced event-related potential back to the paradigm, and 

making it have an influence on the paradigm realization. Figure 5.4. shows the 

closed-loop design of the paradigm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. The closed loop CNV paradigm 
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As Figure 5.4. shows, S1 and S2 are inputs to the subject and R(S2), the 

reaction to S2, is the output. Here, instead of the p(S2/S1) condition, the p(S2/CNV) 

condition is introduced. The ERP is computer monitored and when the ERP becomes 

a CNV, S2 is blocked by a feedback loop. The subject continues to receive only S1. 

Because there is no R2, and consequently there is no R(S2), the CNV degrades 

beyond recognition. Then the computer activates S2 again through a feedback 

pathway. The CNV appears again and so on, until some end-condition stops the 

procedure. The end-condition might be a pre-specified number of trials, or a manual 

interruption of the procedure by the experimenter. This paradigm causes the 

expectancy state in the brain to oscillate. Figure 5.5. shows the paradigm’s flow 

chart, which resembles a flip-flop device, and this is why the paradigm is so named. 

 

 

      start 

         S1             S2 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. The CNV flip-flop paradigm 

 

Figure 5.6. shows a more elaborated version of the CNV flip-flop paradigm 

flow chart. It shows the handling of the end-condition (running out of available 

trials) of the paradigm. If an experimenter is present, he/she is also able to manually 

interrupt the paradigm at any time. 

The CNV flip-flop paradigm is a continuation of a previous work on 

introducing biofeedback in a CNV paradigm [Bozinovska et al 1988]. 

 

5.1. Central Issues in the CNV Flip-Flop Paradigm 

A common method of extracting an event-related potential (ERP) is ensemble 

averaging. The ERP is assumed to be constant, so when the event is administered 

several times in a row, the obtained signal is averaged over trials, and thus the ERP 

would remain as a constant in the signal, while the background noise would get 

canceled out. This technique is especially effective for evoked potentials processing, 

since their EEG appearances are relatively stable in form. 
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Figure 5.6. Handling of the end-condition in a CNV flip-flop paradigm 

 

However, the nature of the CNV flip-flop paradigm is such, that the signal 

would at one time be considered a CNV, and at other time not. Thus, the signal is 

certain to change its form over trials and at one trial to be recognizable as a CNV, 

and at another trial not. As an illustration, Figures 5.7. and 5.8. show the signal in 

trials where it can and cannot be recognized as a CNV, respectively. Figure 5.7. is 

actually the same as Figure 4.3., but is repeated here for clarity. 

To be able to recognize the appearance and disappearance of the CNV 

potential over time, one or more parameters of the signal need to be tracked. When 

one or more of those parameters surpass some threshold value, the signal can be 

considered a CNV and when it drops below the threshold, it is no longer considered a 

CNV. This is the method that is used in this work. 
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Figure 5.7. The ERP, when it can be recognized as a CNV [Bozinovska et al, 1992] 

 

Figure 5.8. The ERP, when it cannot be recognized as a CNV [Bozinovska et al, 1992] 
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5.2. Electroexpectogram 

The most commonly used parameter is the amplitude difference of the signal 

near S2 and the “baseline” of the signal, i.e. before S1. Another parameter of interest 

is the slope of linear regression of the signal between after the P300 segment 

following the appearance of S1, and at S2. Comparing one or both of these 

parameters against respective threshold values over trials can lead to successive 

recognitions of CNV appearances and disappearances. 

Plotting the values of these parameters over trials results in a curve called the 

electroexpectogram (EXG). The EXG can be constructed for any parameter of 

interest during the trials, and can be used to track the CNV oscillations over the 

course of the experiment. Figure 5.9. shows an EXG, constructed from the amplitude 

difference of the signal over trials, as well as the presence/absence of the S2 

stimulus. 

 

Figure 5.9. An EXG, constructed out of amplitude difference and S2 presence  

 

The EXG is actually a cognitive wave, which represents expectancy and a 

learning process in the human brain. It shows the subject's ability to adapt to the 

environment changes and to maintain a certain level of expectation and attention 

over a relatively long period of time. In other words, the EXG shows how fast the 

subject adapts to the changing environment, i.e. how fast he/she learns to expect and 

not to expect. 

Since the EXG is obtained as a result of an experiment involving a subject, it 

is case-specific and subject-specific and therefore it is safe to assume that no two 

subjects can produce the same EXG. Thus, as a tool, the EXG it can be (and indeed 

is) used for diagnostic purposes, to explore the cognitive abilities of the brain for 

adaptive expectancy. 

In this work, in the subsequent chapters, it will be shown how the CNV flip-

flop paradigm and the EXG can be used for control purposes as well. Also, given that 

the signal varies drastically during the course of the experiment trials, a method for 

extracting time-varying ERPs needs to be used. The method that is used is actually a 

neural learning method and is explained in more detail in the next chapter. 
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Chapter 6 

 

BCI ALGORITHMS 

APPLIED IN THE CNV 

FLIP-FLOP 

PARADIGM 

 

This chapter shows all the algorithms 

that the CNV flip-flop paradigms uses. 

They are for signal pre-processing, ERP 

extraction, and CNV recognition. The 

algorithm for CNV recognition is 

presented as a neural element, and the 

entire CNV recognition and calculation 

procedure is then presented in a form of 

a neural network. 
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6. BCI ALGORITHMS APPLIED IN THE CNV FLIP-

FLOP PARADIGM 

 

The setup that is used in this work contains all the basic elements of a BCI 

(shown on Figure 2.1.), with the addition of the experimenter. The experimenter 

starts the paradigm, monitors its course and is able to reject certain trials, as well as 

stop it altogether. Figure 6.1. shows the experimental setup used. 

The total paradigm time is organized in trials and intertrials, the brain signals 

from the subject being acquired during the trial periods. The trials last for 7 seconds 

fixed, where the first stimulus (S1) is administered at second 1, and the second 

stimulus (S2) is administered at second 3 of the trial. The remaining 4 seconds are 

used for acquisition of the post-stimulus potentials. Figure 6.2. shows the time 

organization of the paradigm. 

The following sections explain the algorithms used in the BCI paradigm used 

in this work in more detail. 

 

6.1. Algorithms for Signal Pre-Processing 

Initially, after acquisition, the signal from the brain is filtered, using a 

standard low-pass filter, with a 15 Hz cutoff frequency. This is sufficient to eliminate 

most of the artefacts, as well as the power network noise of 50 Hz. Additionally, the 

DC component (i.e. the frequency of 0 Hz) of the signal is also filtered out, so as to 

center the signal around the baseline. If acquired, the EOG signal is also filtered like 

this, whereas the EMG signal is not filtered (since muscle contractions require that 

the system be submissive to high frequencies in order to detect them). 
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Figure 6.1. The BCI paradigm used in this research 

 

 

Figure 6.2. Time organization of the paradigm in trials and intertrials 
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After the signal has been processed and shown on the screen, the 

experimenter may decide that it contains a drift, is still full of other artefacts or for 

any reason unacceptable, and may decide to reject that trial. If so, then that trial is 

repeated and the rejected trial’s data is discarded from further processing. 

 

6.2. Algorithm for ERP Extraction 

When the ERP has a constant form (as is the case with most of the evoked 

potentials), the resulting EEG can be formulated using the following equation: 

 EEG(t) = ERP + random(t) (6.1) 

where EEG(t) is the EEG signal, which is time varying and is a sum of the constant 

ERP and the random(t) portion of the signal, which is also time varying and is 

usually a combination of noise and other artefacts.  

In the CNV flip-flop paradigm, this model would be presented as 

 EEG(t) = ERP(t) + random(t) (6.2) 

where ERP(t) is itself time varying. The problem thus becomes how to extract a time 

varying ERP.  

One approach towards solving that problem is using the following algorithm  

 ERP(t) = p ERP(t-1) + q EEG(t) (6.3) 

where      p + q = 1 (6.4) 

Both ERP(t) and EEG(t) above are vectors containing N samples. The scalar 

version of the equation (6.2.3) is  

 ERP(s, t) = pERP(s, t-1) + qEEG(s, t) (6.5) 

where s (s = 1,2,…, N) is the sample number in a trial, t (t = 1,2,…,T)  is the 

experimental trial number, and p and q are weighted parameters, satisfying p + q = 1. 

For the parameters (p, q) in this research the values (0.9, 0.1) are used. It is 

convenient to write percentages instead of fractions, so for example, when p=90% is 

used, the equation becomes  

 ERP(n) = 90% ERP(n-1) + 10% EEG(n) (6.6) 

The solution of that difference equation is  

ERP(n) = 10%EEG(n) + 9%EEG(n-1) + 8,1%EEG(n-2) + 7,3% EEG(n-3) + …. (6.7) 

which means that an algorithm is used that computes a discounting sum of all the 

EEG samples recorded in all trials before. The most current EEG is weighted 10% 

and the previous EEG signals take part in it in gradually more diminutive traces. In 
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other words, this algorithm learns the new value of ERP, exponentially forgetting the 

previous values.  

 

6.3. Algorithm for ERP Extraction as a Neural Learning 

Algorithm 

One can recognize that the algorithm used in this work can be viewed as a 

neural learning algorithm. Consider the ERP extraction algorithm again 

 ERP(t) = p ERP(t-1) + q EEG(t) (6.3) 

where  p + q = 1 (6.4) 

where both ERP and EEG above are vectors containing N samples.  

The algorithm above is a difference equation of type 

 w(t) = pw(t-1) + qx(t) (6.8) 

which is a neural learning algorithm. The scalar version of the algorithm is  

 wi(t) = p wi(t-1) + q xi(t) (6.9) 

where i is the sample index and i = 1, ..., N. 

Two additional forms can be written for the algorithm (6.9). Since q = 1-p, it 

yields 

 w(t) = p w(t-1) + (1-p) x(t)  = p [w(t-1) – x(t)] + x(t) (6.10) 

or since p = 1-q 

 w(t) = (1-q) w(t-1) + q x(t) = w(t-1) +q(x(t) – w(t-1)) (6.11) 

So the extraction algorithm (3) can be written as  

 ERP(t) = ERP(t-1) + q (EEG(t) - ERP(t-1)) (6.12) 

It means that the learning algorithm tries to find the approximation of the 

current ERP by using what is computed so far for the ERP and adds the discounted 

(by q) difference between the current EEG and the previously learned ERP. 

 

6.4. Algorithms for Computing ERP Parameters 

Once the ERP is extracted in an experimental trial, a set of parameters are 

computed. Here a list of extracted parameters will be given and a mathematical 

algorithm for their computation. Figure 6.3. gives the time scale where the 

parameters are computed. 
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Figure 6.3. Time scale and ERP parameter computation 

 

Following are the algorithms for computing the relevant ERP parameters: 

                  S1 

Ref0 =   MEAN  erp baseline signal     [V] 

                   0 

 

                   S2                      S1 

AMP =  MEAN  erp   -   MEAN  erp signal amplitude difference [V] 

                   S2-e                    0 
 

 

                        S2 

SLOPE =  b(REGR erp) signal linear regression slope [V/s] 

                      S1+d 
 

In the above algorithms, the values d and e define small intervals (500ms and 

50 ms respectively) around S1 and S2 in which the computation is performed. The 

functions MEAN and REGR represent mean value and regression slope functions in 

the specified intervals respectively. 

 

6.5. Algorithms for Recognizing the ERP as a CNV 

The pattern recognition module decides whether the current ERP can be 

classified as a CNV. The key parameters are the slope of the regression angle and the 

ERP amplitude difference near S1 and S2. In the experiments, the ERP amplitude is 

used, which is computed as the parameter AMP defined above, which is the 

difference between the amplitude before S2 and the baseline. The decision whether 

the ERP is a CNV is made after comparing AMP with a threshold value. And it 

should happen three times in a row that AMP is greater than the threshold, in order 

for the CNV to be acknowledged.  

time 
0 S1 S2 

d e 
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In programming notation   

In CNV forming phase  

if  (AMP > threshold) = true in three consecutive trials 

then  ERP = CNV  

 

In CNV decaying phase  

if  (AMP < threshold) = true in two consecutive trials 

then  ERP ≠ CNV 

 

6.6. A Neural Element for CNV Computation 

For computing the CNV, a special type of artificial neural element is 

introduced here. First, the standard model of artificial neuron is considered, given in 

Figure 6.4. It contains excitatory synapses and inhibitory synapses. Each synapse has 

its weight (influence) on the neural potential formed in the neuron. Let xexc and xinh 

be the vectors of excitatory and inhibitory synapses respectively. Let wexc and winh be 

the corresponding weight vectors. Let PSP be postsynaptic potential, i.e. the internal 

neural potential which develops inside the neuron because of the synaptic activity. 

The weighted sum of all excitatory synapses is computed as a vector inner product 

SUMexc = wexcxexc. Analogously, SUMinh = winhxinh shows the weighted sum of all 

inhibitory synapses. The PSP is a function of those weighted sums, i.e. the influences 

of all excitatory and all inhibitory synapses. 

 PSP = f(SUMexc, SUMinh) (6.13) 

According to Figure 6.4., the neuron will send out a signal of 1 if PSP > ϴ, 

and otherwise it won’t.  

A McCulloch-Pitts artificial neuron [McCulloch and Pitts, 1943] computes 

the PSP according to the following equation: 

 PSP1 = SUMexc - SUMinh (6.14) 

i.e. as a difference of the sum of all excitatory synapses and the sum of all inhibitory 

synapses. Figure 6.4. shows a McCulloch-Pitts artificial neuron. 

The neuron proposed in this work computes its internal potential slightly 

differently: 

 PSP2 = SUMexc/ Nexc -  SUMinh / Ninh (6.15) 

where Nexc is the number of excitatory synapses and Ninh is number of inhibitory 

synapses. In other words, the neural potential is computed as the average of the 

excitatory minus the average of the inhibitory synapses. 

 PSP2 =  MEANexc - MEANinh (6.16) 

This type of neuron is used to compute the CNV using a neural network. 
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Figure 6.4. The McCulloch-Pitts artificial neuron 

 

An additional feature of this artificial neuron is introduced – the occurrence 

threshold . It is a number of times that the event PSP >  must occur before the 

neuron fires. For example, if  = 3, then it needs three times in a row PSP >  to 

happen in order for the neuron to fire. Figure 6.5. shows the artificial neuron 

proposed in this work. 

 

Figure 6.5. The artificial neuron proposed in this work 

 

6.7. A Neural Network for CNV Computation 

Using this neural element, a neural network is now proposed, that computes 

the CNV given series of EEG traces. Figure 6.6. shows the neural network.  

The neural network shown in Figure 6.6. takes 700 samples from 7 seconds 

of EEG recording from each trial of the CNV flip-flop paradigm. Using a neural 

learning algorithm, it extracts the ERP in each trial. The first 100 samples are 

considered inhibitory inputs and the samples between 295 and 300 are considered 

excitatory inputs. The neuron computes the internal PSP potential by taking averages 

of both the excitatory and inhibitory inputs, which is then compared to the threshold 
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(5V).  If the PSP is above the threshold 3 times, the neuron fires and CNV is 

acknowledged.  

This is the neural network implemented in the software that extracts ERP and 

recognizes CNV for given series of EEG recording trials. 

 

 

Figure 6.6. Neural network algorithm for extracting a time-varying ERP and recognizing 

CNV 
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Chapter 7 

 

DESIGN MODEL FOR 

BCI SOFTWARE 

 

A generic design model for BCI 

software implementation, proposed in 

this chapter, is based on the 

implementation of the BCI paradigm 

carried out in this work. Its modules are 

presented, with an emphasis on their 

object-oriented nature. 
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7. DESIGN MODEL FOR BCI SOFTWARE 

 

Since the appearance of BCI and direct brain bioelectric control of devices, 

software systems were used to perform central functions of a BCI. Specific BCI 

functions that should be taken into account in building a BCI software system are 

experimental paradigm control, biosignal acquisition, biosignal processing, decision 

making, device interface, and graphical user interface. The specifics of BCI software 

can be addressed from the standpoint of software engineering. Recently within 

software engineering, the concept of design model was introduced. By that approach, 

a group of applications has a specific pattern, i.e. a design model.  

One of the issues in BCI is the lack of standardized software architecture for a 

BCI system. Based on the BCI software design in this work, in this chapter a generic 

BCI architecture will be proposed.  

 

7.1. BCI Design Model: Proposal 

Figure 7.1. shows five modules that constitute a design model for a BCI 

application. They are biosignal acquisition module, device control module, graphical 

user interface module, file control module and the experimental paradigm control 

module. 

Biosignal acquisition module. This module is the interface between the 

computer and the biosignal acquisition hardware. It depends on the specific 

hardware, as well as on the operating system and development environment of the 

software used. 

Device control module. Similar to the previous, this module is the interface 

between the computer and the device controlled by the BCI. Again, it depends on the 

specifics on the device and also the software system used by the computer. 
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Figure 7.1. A generic BCI design model 

 

Experimental paradigm control module. This module controls the 

experimental paradigm, i.e. the specifics of its realization. It controls the biosignal 

acquisition, as well as device operation. It is the module that is active during 

application run-time, and also controllable by the experimenter. 

Graphical user interface module. This is the module that shows the results 

of the experiment on the computer screen. It’s safe to assume that all BCIs must have 

some sort of a graphical interface, since the signals from the brain must be shown 

either as EEG curves, or magnetic resonance areas, or any other graphical form, to be 

understandable to the user and/or experimenter. Even though the data from the 

subject is most commonly delivered in digital format, displaying numbers on the 

screen would not be understandable or useful, so the graphical user interface (or 

GUI) module must make sure that the data get displayed visually and 

understandably. 

File control module. The experiment data are almost always stored for later 

review and analysis, so there must be some way of keeping track of them, i.e. 

maintaining a database of experimental results. This is what the file control module 

does, and, because the stored experiments must also be viewable for the user, it 

works closely with the GUI module. 

 

7.2. BCI Design Model: Implementation 

Figure 7.2. shows the complete implementation the BCI system presented in 

this work. Since it has been developed in the C# language, the structure of the system 

is object-oriented. Furthermore, Figure 7.3. shows the individual BCI modules and 

their location in the system structure. It can be seen in the figures that both software 
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and hardware elements compose the system. The hardware devices shown are the 

signal acquisition hardware (i.e. Biopac MP35 biopotential amplifier in this case) and 

the device(s) controlled by the BCI (i.e. the Lynx robotic arm(s) and the 

corresponding servo-controller(s)). 

 

 

Figure 7.2. The structure of the BCI implementation in this work 
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Figure 7.3. The BCI modules used in the implementation 

 

7.3. BCI Design Model: Modules 

In this section, a slightly more detailed overview of the BCI modules, that are 

used in the BCI implementation, is given. Here, only the software modules will be 

explained, whereas the hardware equipment will be explained in more detail in the 

next chapter. 

 

7.3.1. The Biosignal Acquisition Module 

This module consists of software device drivers to communicate with the 

biopotential acquisition device, in this case a Biopac MP35 biopotential amplifier. 

The device drivers are obtainable with the purchase of the device, but the real 

advantage of using this device is its programmability. A special C# namespace is 

also available, which offers methods for controlled acquisition of the MP35, which 

can then be utilized to serve a special purpose. In this case, the MP35 is programmed 

to serve the needs of the CNV flip-flop acquisition. 
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7.3.2. The Device Control Module(s) 

If there is a device controlled, a device control module must be present. In 

this case, two robotic arms are controlled, hence two device control modules are 

present. They are represented by two C# classes: one named Lynx6, which 

communicates with the Lynxmotion Lynx6 robotic arm, and the other is named 

Lynx5, which communicates with the Lynxmotion Lynx5 robotic arm. Both robots’ 

servo-controllers accept commands through serial ports, and such communication is 

achievable using the C# language, so messages are sent to the robots using methods 

available in these classes. 

 

7.3.3. The Experimental Paradigm Control Module 

As shown in Figure 7.4., the acquisition of signals takes place during the 

trials, whereas the signal processing and BCI parameter calculations take place in the 

intertrials. The parameters are then used to determine whether a CNV signal has 

appeared, whether a robot should be moved and so on. 

 

Figure 7.4. Time organization of the paradigm in trials and intertrials 

 

7.3.4. The Graphical User Interface (GUI) Module 

This module displays all the relevant experiment data in a manner 

understandable by the user. Figure 7.5. shows a screen of the GUI. It is divided into 

signal display and experiment data display.  

The screen is designed in such a way that it shows an experimental trial. It 

contains two distinctive parts: a signal display part and an  experiment data part, 

which is divided into subject data and experiment data.  

The signal display part shows 6 channels of data on the same time scale of 7 

seconds. The first four channels are recording channels: EEG, EMG from the press 
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button pressing hand, EOG, and press button length are shown. The fifth channel is 

the Control Signal sent to the device. It is present only occasionally, when there is a 

signal sent to the robots. The last sixth channel is the ERP channel. In the situation 

shown, the extracted ERP is recognized as a CNV, as noted on the right part of the 

screen.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. The screen design part of the graphical user interface (GUI) module 

 

The subject data part collects information about the subject, name, age, sex, 

and other data.  

The experiment data part contains several sections. First, it shows when the 

experiment started, date and time. It also shows the number of the trial that is 

currently shown on the screen. The experimenter or analyzer of the experiment has 

an option to see any experimental trial of this particular experiment. Then, the data 

about the current ERP parameters are shown, that are taken into account for the CNV 

appearance/dissappearance decision. If the CNV is detected, it is also acknowledged, 

as in the case on Figure 7.5. The Notes text field collects notes about the experiment 

from the experimenter.  

The last part of the experiment data contains experiment control options. It 

includes which channel to be recorded and how many trials to be carried out. The 

Start button starts a new experiment and the Stop button can stop an experiment 

before the preset number of trials has elapsed. The Clear button will clear the screen 

and all the generated data, discarding it from memory. Repaint will show the 

experiment trial shown in the Now Displaying data field, if the image has been lost 
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due to window minimization, for example. The Reject button will reject the current 

trial, possibly because the experimenter noticed obvious artefacts. Finally, the Exit 

button will exit the program.   

Several buttons on the screen in Figure 7.5. are designed to deal with the 

experiment files, and can be considered a part of the file control module (this is why, 

among other things, on Figure 7.3., both the GUI module and the file control module 

are shown in the same class). The Browse button browses in the experiment directory 

which experiment to be shown for analysis. The Load button loads the experiment 

data file. The Save button saves the current experiment with the name shown chosen 

by the experimenter. The Save button saves the experiment in a .bin (binary) file. An 

experiment .txt (text) file is generated using the Export button. These are explained 

as follows. 

 

7.3.5. The File Control Module 

This module deals with the data collected during the course of the paradigm 

realization, i.e. its storage, export and retrieval. 

These data are initialized at the beginning of the experiment. The most 

relevant data are the values of each acquisition sample in each channel in each trial, 

and therefore the key value is the number of trials in the experiment, which is always 

stored first. It is possible that not all 4 channels of the MP35 have been used, and 

data about which channels have been used is stored next. Following them are the data 

about the subject (first name, last name, sex, date of birth), as well as data about the 

experiment (diagnosis, experiment date, experiment notes). Then, trial-dependent 

data are stored, such as the value of each sample in each channel (which takes the 

largest amount of memory), the CNV recognition parameters (amplitude difference 

and slope), the reaction time, whether CNV has been recognized in that trial, whether 

S2 was administered in that trial, and also which robot has moved and using which 

behavior, if any.  

All of these data are stored in the RAM, i.e. the operational memory, for the 

duration of the experiment. At the end of the experiment, all the data can be written 

as a binary file, and also textual representation of the data can be exported as a text 

file (Figure 7.6.). The binary file can later be loaded into the software program, and 

thus the experiment data can be reproduced at a later time. The text file, on the other 

hand, can be used to extract data which can be used for other purposes, like statistical 

calculations, for example. 
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RELEVANT TRIAL DATA FOR EXPERIMENT DONE ON 03.01.2009 17:47:59 

Subject:   Date of birth:  Sex:  

Other data: none 

 

 

Recognition parameters: 

Amplitude difference:    5 [µV] 

Linear regression slope: 3.6 [µV/s] 

 

Trial Ampl.diff[µV] Rgr.slope[µV/s] CNV S2 Reac.time[ms] 

 

1 0,5714519765 -0,2052679709 False True 350 

2 2,5522192643 -0,6251843186 False True 320 

3 1,8609022851 -0,8240090533 False True 310 

4 4,6102989909 -0,8095393023 False True 250 

5 5,3817953670 -1,2189364127 False True 260 

6 5,6088257790 -2,0034099774 False True 200 

7 4,0126344040 -1,6297823960 False True 210 

8 4,4432145453 -1,7606259425 False True 200 

9 3,4326213893 -1,5323060820 False True 210 

10 5,7102406045 -0,6272841592 False True 210 

11 5,5990220290 -0,7641709436 False True 200 

12 6,3037339170 -0,8176551087 True True 210 

13 6,4753174273 -1,4676593642 True False n/a 

14 6,2375162288 -1,0281176426 True False n/a 

15 5,6968893777 -1,0189252420 True False n/a 

16 6,0853722360 -0,7391625463 True False n/a 

17 8,7718380501 -0,2617799521 True False n/a 

18 7,8771015730 0,4327445488 True False n/a 

19 6,3495148634 0,1257781550 True False n/a 

20 6,8722250614 0,7205715811 True False n/a 

21 5,9885209787 1,5134721593 True False n/a 

22 5,1680190138 0,9929997497 True False n/a 

23 4,4430567928 2,5181157809 False False n/a 

24 1,6207181710 1,8887387855 False True 980 

25 3,3223991822 2,6431792463 False True 190 

26 3,5215410840 2,3589461813 False True 190 

27 5,2366729240 2,3631201226 False True 160 

28 5,3047791874 2,3121524229 False True 200 

29 5,9965265994 1,6818804998 True True 190 

30 6,6610297817 0,9990884007 True False n/a 

 

Experiment notes: 

 

Figure 7.6. An example of .txt file generated by a CNV flip-flop experiment 
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Chapter 8 

 

MATERIALS AND 

METHODS 

 

This chapter deals with the practical 

issues of the BCI implementation in this 

work. The used hardware (biosignal 

acwuisition units, robotic arms and the 

computer itself), the subjects (i.e. how 

they are prepared for the experiments) 

and the experimental procedure are 

presented.  
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8. MATERIALS AND METHODS 

 

This chapter gives a more detailed description of the hardware equipment 

used in the CNV flip-flop paradigm realization, as well as its use and 

interconnection.  

 

8.1. BCI Devices: Biosignal Acquisition Equipment 

The communication between the subject and computer is carried out through 

the MP35 biopotential amplifier (Figure 8.1.), a product of the company Biopac Inc. 

This amplifier amplifies the signal up to 50 thousand times, and is therefore, as well 

as because of its programmibility, suitable for neurophysiological experiments 

carried out in this work. 

MP35 has 4 analog channels, through which it can collect data from the 

subject. Electrode leads (Figure 8.2.) are connected to those channels, where each 

lead is connected to an active electrode, a reference electrode and a ground electrode. 

There are several different types of leads, where it's possible that the cables to the 

active and referent electrode also have additional shielding electrodes. The ground 

doesn't have a shield. For the purpose of this work, special leads have been ordered, 

which have a built-in entry DC amplifier with a large input resistance (9 megaohms) 

and a time constant of 10 seconds.  

Since this paradigm is non-invasive, quality surface electrodes are used.  

Figure 8.3. shows the electrodes and the accompanying materials, used during the 

experiments.  

There are two types of electrodes. The first type of electrodes are vinyl 

electrodes, usable only once. They have an adhesive band, in the centre of which 

there is the conductive part, through which the potentials are received. The 

conductive part itself is covered with a sponge cover, on which there is a little 
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conductive gel, so as to augment the electrical conductance on that part. Despite the 

ease of setup and removal of these electrodes, they are only usable on spots where 

there's plenty of space, and absence of hair, like arms, legs and face. These electrodes 

would be useless on the scalp, however, due to the interference from the subject's 

hair (unless the subject is bald). 

 

 

Figure 8.1. Biopac MP35 biopotential amplifier 

 

 

Figure 8.2.Electrode leads used in the CNV flip-flop paradigm 
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Figure 8.3. Electrodes and accompanying materials used during experiments using the 

MP35 biopotential amplifier 

 

Therefore, standard Ag/AgCl electrodes are used, which can be used more 

than once. The electrodes used in this work are also manufactured by Biopac Inc. and 

have a circular shape, with a little hole on one side, into which conductive gel can be 

inserted, and on the other side they have small barbs, by which the electrode attaches 

to the skin of the subject. This is especially useful for setting up the electrodes on the 

scalp, because the electrode encompasses a relatively small area, so the hair of the 

subject can be put aside just enough so as not to obstruct. In order for the electrodes 

to be better attached, they are filled up with conductive gel, also a product of Biopac 

Inc. (shown on Figure 8.3.). 

 

8.2. BCI Devices: Robotic Arms 

In the experimental work, two types robotic arms, manufactured by 

Lynxmotion Inc., were used: Lynx6 with 6 degrees of freedom (DOF) and Lynx5 

with 5 DOF. Figure 8.4. shows both robots in a position to perform a task of solving 

the three-disk Towers of Hanoi problem (i.e. TOH(3)).  
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Figure 8.4. Two robotic arms used in the BCI experiments 

 

Both robots utilize an SSC-32 microcontroller each, also a product of 

Lynxmotion. This microcontroller controls the robot motor movements and enables 

their open-loop control, respective to the computer. In other words, the computer can 

simply send a signal to the controller as to which motor needs to be moved to which 

position, and the controller will ensure that this get accomplished; the commands 

from the computer get transformed to electrical impulses that move the motors by the 

microcontroller. 

The method used to control robots is the behavior based method [Arkin, 

1998]. Figure 8.5. shows the method. 

 

 

Figure 8.5. Behavior based method for controlling robots using BCI 

 

According to the behavior based method, several behaviors are 

preprogrammed. The behaviors are activated by a BCI system that recognizes a 

behavioral environment 

behavior 1 

behavior k 

behavior n 

 

BCI event 

recognition 

software 

 

behavior 

selection 

system 



78 

 

particular brain state. Therefore, the behaviors are preprogrammed and executed by a 

BCI signal, in a sequence that would ensure the solution of the task, in this case the 

Towers of Hanoi problem.  

 

8.3. BCI Devices: Computer 

Since MP35 converts the signals from analog to digital form, it is logical for 

the data to be further processed on a computer. Any computer configuration 

commercially available nowadays would suffice the requirements of the paradigm, 

since almost all of them have built-in graphics and sound cards, and the sampling 

rate is 100 Hz, which is far less than every computer microprocessor nowadays 

available. The operating system required is Windows XP, but Windows Vista is also 

acceptable.  

The communication between the computer and BCI specific devices is shown 

on Figure 8.6. The software system was developed in the C# language, using the 

.NET 2.0 development environment. 

 

Figure 8.6. Communication among BCI devices 

 

MP35 communicates with the computer through a USB port, i.e. data 

collected from the electrodes are converted to digital form and sent to the computer 

through the USB port. The device drivers for the amplifier enable it to be accessed 

directly, i.e. be programmable.  

The Lynx robotic arms that are used require serial communication. Since the 

new laptops do not support serial ports, a USB port is used and a USB to serial 

converter is needed for the communication with these serial devices. The converter 

itself comes with device drivers, that enable the computer to recognize the ports on 

the interface as serial ports of the computer. 

 

8.4. Subjects in the Experiments 

This experimental work serves just the purpose of a proof of the concept. 

Therefore, this is not a population-intensive research and is not intended to conclude 
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anything about a population. Thus, just several subjects were included in the 

experiment.  

To be able to conduct the experiment properly, the subject must first be 

prepared. The preparation consists of setting up the electrodes on the subject's head, 

and also face and arm, as needed for the EOG and EMG recording, respectively. 

Figures 8.7. to 8.9. show the preparation of the subject for measurement, the 

instrumentation, as well as the outlook of the setup of the subject, instrumentation 

and experimenter during the conducting of the paradigm. 

First, electrodes are connected to the subject's head. The active electrode is on 

Cz, the referent on the mastoid and the ground on the forehead, according to the 

standard 10-20 system. All electrodes are Ag/AgCl and are attached using a 

conductive gel, whereas the referent and ground electrodes are additionally affixed 

on the skin using a medical adhesive tape. Electrode connectors enable the resistance 

between the electrodes to be measured, and if it is less than 5 kiloohms, the setup is 

considered solid. 

When necessary, electromyogram (EMG) and electrooculogram (EOG) 

electrodes are placed as well, according to figures 8.10. and 8.11., respectively 

[Biopac Systems Inc., 1998-2003]. They don't affect the experiment directly, but are 

useful as hints to the experimenter, whether a certain trial should be rejected.  

 

Figure 8.7. Placing the electrodes on the subject's head 
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Figure 8.8. Experimental procedure 

 

 

Figure 8.9. The instrumentation and its interconnection 
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Figure 8.10. Placement of the EMG electrodes Figure 8.11. Placement of the EOG electrodes 

 

The subject lies on a comfortable couch and usually keeps his/her eyes 

closed, so as to minimize the artefacts due to eye movement. The data from the 

subject are collected during the course of the experiment, whereas the experiment 

can have a predefined number of trials. Most commonly, 100 trials per experiment 

were performed. 

During the experiment, the subject hears stimuli S1 and S2, which are crucial 

for successful realization of the paradigm. S1 has a fixed length of 200 milliseconds, 

and a frequency of 300 Hz. S2 has a frequency of 3000 Hz and its duration is 

determined by the subject's reaction time – it lasts until a pushbutton press is 

detected.  

 

8.5. Experimental Procedure 

The procedure inplemented in each trial of the experiment is shown in Figure 

8.12. It is initiated by the experimenter, by clicking a certain button on the computer 

screen. Every trial starts with one second of “empty” recording, where signals from 

the subject are collected without the presence of stimuli. After that one second, 

stimulus S1 is applied, and 2 seconds afterwards, stimulus S2 is applied. After that, 

there are 4 more seconds of recording, where the pushbutton press is recorded, as 

well as the resulting potentials after S2. Thus, the total trial time is 7 seconds, after 

which the intertrial begins, which lasts randomly, from 7 to 13 seconds. Therefore, 

the total time between trials ranges from 14 to 23 seconds. All recording takes place 

during the trials, and the signal processing, robot movement and GUI representation 

takes place in the intertrials. 

Figure 8.13. shows a more elaborate view of the procedure in each trial of the 

experiment, where the experimenter interaction is also included. The texts shown in 

bold are the commands that can be given through the GUI. It is shown that the 

experimenter starts the experiment, and can also stop it, during the acquisition phase, 

or during the intertrial pause. Once the experiments runs out of trials or is manually 

stopped by the experimenter, it enters the survey mode, where the past experiments 
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can be viewed. It is at this time that the experiment is saved or exported to a text file 

on the disk. Also, if an experiment is loaded from the disk, it is viewed in the survey 

mode as well. In order to start the next experiment, the memory must first be cleared, 

as shown from the image. The experimenter can also exit the program at any time. 

 

Figure 8.12. The control procedure for each trial of the experiment 

 

 

Figure 8.13. The control procedure of an experimental trial, elaborated 
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Chapter 9 

 

BCI BASED ON 

ANTICIPATORY 

BRAIN POTENTIALS 

 

This chapter presents a new BCI, created 

as a synthesis of the notions discussed in 

previous chapters. It first demonstrates 

how the CNV flip-flop paradigm is a 

BCI paradigm, and presentes the 

challenge and solution of controlling a 

robotic arm to solve a common problem. 

Also, the challenge and solution of 

simultaneous control of two robotic arms 

are presented.  
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9. BCI BASED ON ANTICIPATORY BRAIN 

POTENTIALS 

 

This chapter provides a synthesis of all the previous chapters, by showing the 

practical realization of the CNV flip-flop paradigm, and its use as a BCI. The control 

of one and then two robots, using this BCI, which is based on anticipatory brain 

potentials, is described. Experimental results are shown, as well as their explanations.  

 

9.1. The CNV Flip-Flop Paradigm as a BCI Paradigm 

The first observation, that the CNV flip-flop paradigm is actually a BCI 

paradigm, was made in 2005 [Božinovski, 2005]. Figure 4.1. shows this observation, 

but it is repeated here, as Figure 9.1., for clarity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1. The CNV flip-flop paradigm as a BCI paradigm 
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It is shown that, when the ERP is recognized as a CNV, i.e. when the CNV is 

present, enable = 0, which leads that S2 be absent, i.e. that the subject not receive it. 

On the other hand, when the ERP is not recognized as a CNV, i.e. when the CNV is 

absent, enable = 1, which leads that the S2 be present, i.e. that the subject receive it. 

This way the state of expectation controls a software device, i.e. the appearance of 

the CNV leads to the disappearance of the S2 stimulus and vice versa.  

 

9.2. The Challenge of Controlling a Robot 

Following the contribution that BCI based on anticipatory potentials is 

possible, a second challenge is undertaken here, to show that with an anticipatory 

brain potentials based BCI one can control other external devices. In particular, in 

2008 the challenge of controlling a robot using this kind of BCI was considered.  

The following challenging task was considered. Solve the well-known 

computer science problem, the Towers of Hanoi, with a robotic arm using 

Anticipation based BCI. The basic idea is to use the behavior based robotics 

approach [Arkin, 1998]. Several robotic arm behaviors are preprogrammed, ready to 

be invoked by a BCI signal. The behaviors are preprogrammed in such a way that 

when they are called in sequence, they will solve the Towers of Hanoi problem.  The 

robot control software receives a signal from the CNV recognition software that a 

CNV appeared (is ON) or decayed (is OFF). This activates one of the available 

behaviors from the behavior selection system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.2. The Towers of Hanoi problem, here with three disks 
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9.3. The Towers of Hanoi Problem 

The Towers of Hanoi (Figure 9.2.) is a well known puzzle in the theory of 

algorithms and artificial intelligence. Given a stack of disks with different diameters, 

a tower is defined as a stack of disks in which a smaller disk is always above a larger 

one. Three spots are given – A, B, and C. If the initial tower is in the spot A, move it 

to the spot C, using a “buffer” tower in the spot B. At each step of the task the 

concept of a tower is preserved, a smaller disk is always above a larger one. It is 

known that to move a tower of d disks, 2
d
-1 movements of the individual disks are 

required. 

Following is the sequence of behaviors needed for solving the TOH(2) 

problem (Towers of Hanoi with two disks) and the TOH(3) problem (Towers of 

Hanoi with three disks). 

TOH(2): 

Behavior 1: move from A to B 

Behavior 2: move from A to C 

Behavior 3: move from B to C 

 

TOH(3): 

Behavior 1: move from A to C 

Behavior 2: move from A to B 

Behavior 3: move from C to B 

Behavior 4: move from A to C 

Behavior 5: move from B to A 

Behavior 6: move from B to C 

Behavior 7: move from A to C 

 

9.4. BCI Based on Anticipation: Algorithm for Controlling a 

Multi-Behavior Device  

Once the Towers of Hanoi problem is decomposed to behaviors, the 

challenge of solving it translates into a challenge of controlling a behavior based 

robot. The idea is to use the property of the electroexpectogram (EXG) that it is an 

oscillatory curve generated by the human brain and shows an oscillation of the 

expectancy process during the CNV flip-flop paradigm. Events that can trigger a 

sequence of robot behaviors could be the appearing and disappearing of a CNV 

pattern in the ERP signal. Figure 9.3. shows the idea.  

Figure 9.3. shows series of four robot behaviors being generated by the brain 

state of expectation, as observed by the computer using the EXG curve (here 

generated from amplitude difference as the parameter). How many behaviors can be 

generated in a series depends on the subject and his/her ability to adapt to the CNV 

flip-flop paradigm in a prolonged number of trials. 
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Figure 9.3.  Using the electroexpectogram (EXG) to generate a series of BCI control signals 
 

Figure 9.4. shows the logical setup of the BCI solution. n and u are counters 

of how many trials in a row the CNV potential has been found as present and absent, 

respectively. It can be seen that, for S2 to be switched off, the CNV must be present 

3 trials in a row, after previously being absent. Contrary, for S2 to be switched back 

on, the CNV must be absent 2 trials in a row, after previously being present. 

 

Figure 9.4. Anticipation based BCI controlling a robot arm – logical setup 
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9.5. The Experimental Setup 

As described in the previous chapter, the equipment consists of a 4-channel 

biopotential amplifier, a PC Windows based computer, and a Lynxmotion 6-degrees-

of-freedom robotic arm. The CNV flip-flop paradigm part of the software recognizes 

series of appearances and disappearances of the CNV potential, and triggers the 

behavior realization part of the software which moves the robotic arm toward the 

completion of the Towers of Hanoi task. The subject is connected to the biopotential 

amplifier with the EEG electrodes placed on Cz and mastoid, while the forehead is 

the ground. The experimental setup is shown on Figure 9.5. 

 

Figure 9.5. Experimental setup for a BCI solution of the Towers of Hanoi problem, using 

one robot 

 

An example of an experimental trial, as observed by the experimenter, is 

shown in Figure 9.6. The screen shows six channels out of which the first four are 

acquisition channels and the last two are mathematically computed channels. The 

first channel is the EEG acquisition channel, the second is the EMG acquisition from 

the arm pressing the button, the third is the EOG signal channel, and the fourth is the 

press-button recognition channel. The sixth channel is the event related potential 

extracted so far. If an appearance or disappearance of CNV is recognized on that 

channel, a signal is given to the robot to move, which is recorded on channel five.   
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The experimental investigation described here is just a proof-of-the-concept 

series of experiments. Four experiments were performed on one subject different 

than the experimenter/programmer. A two-disk Towers of Hanoi requires three 

behaviors for the task to be completed, which means that the subject needs to 

produce a CNV1-noCNV1-CNV2 sequence in the CNV flip-flop paradigm to 

complete the task. Table 9.1 summarizes the experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.6. A  trial of the experimental work 

 

Table 9.1. Proof of the concept series of experiments 

 Experiment 

1 2 3 4 

 Event → Behavior Trial number 

 CNV1 → Behavior1 16 22 11 6 

no CNV1→ Behavior2 22 23 12 19 

 CNV2 → Behavior3 26 29 22 22 

no CNV2    29 26 

 CNV3    30 

 

Each entry in Table 9.1 is the trial number in which the event occurred. For 

example, in the first experiment, the first appearance of CNV was in trial 16 and 

disappearance in trial 22 and the second CNV appearance was in trial 26. As can be 

seen from Table 9.1, in each experiment within 30 trials the two-disk Towers of 

Hanoi task was executed successfully using the Brain-Robot Interface based on 

anticipatory potentials.  

Table 9.1 also suggests that a learning process is taking place, in which the 

subject in each new experiment tends to develop his/her first CNV potential earlier, 
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and also tends to increase the number of appearances and disappearances of a CNV 

potential. The series of four experiments shown in Table 9.1 were carried out with 

the same subject. In all four experiments the sequence CNV1-noCNV1-CNV2 was 

produced which resulted in a solution of the TOH(2) problem.  

This result is one of the main contributions of this thesis. The result was 

presented in 2009 at an IEEE conference on Neural Engineering in a section on 

Brain-Computer Interface. The reviewers of the paper published in the conference 

proceedings [Božinovski and Božinovska, 2009] pointed out that it is a pioneering 

work in controlling a robot using anticipatory brain potentials.  

A question arises whether the TOH(3) problem can be solved with a BCI. 

This is indeed possible, as will be demonstrated in the following section. 

 

9.6. Control of Two Robotic Arms Using an Anticipation-

Based BCI: Setup 

To accomplish this, the property of the electroexpectogram, that it is an 

oscillating process, is again used, only this time when the EXG curve goes above the 

threshold, one of the robots is invoked to perform its behavior, and when it goes 

below the threshold, the other robot is invoked to perform its behavior. Figure 9.7. 

shows the events that are triggered and the respective behaviors of the corresponding 

robots. 

 
 

Figure 9.7.  Using electroexpectogram (EXG) as a series of BCI control signals 

 

Figure 9.8. shows the logical setup of this solution. Note that different robots 

are selected on different occasions, i.e. it is important whether the CNV potential has 

appeared in the current trial and was absent in the previous or it is the other way 

around. Robot1 is always invoked when the CNV appears after having been absent 

and Robot2 is always invoked when the CNV disappears after having been present. 
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Figure 9.8. Anticipation based BCI controlling two robotic arms solving a common task – 

logical setup 

 

Figure 9.9. shows a close-up display of the two collaborating robots (Lynx6 

at left bottom and Lynx5 at right bottom, a 6-DOF and 5-DOF robotic arm, 

respectively) and the 3-disk Towers of Hanoi problem between them. Figure 9.10. 

shows the experimental setup, including the subject connected to the biopotential 

amplifier via the electrodes, the computer and the two robots in the background, 

having completed the 3-disk Towers of Hanoi task. 
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Figure 9.9. The two collaborating robotic arms solving the TOH(3) problem 

 

 

Figure 9.10. TOH(3) solution experimental setup, using two robotic arms 
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9.7. Control of Two Robotic Arms Using an Anticipation-

Based BCI: Example 

Here all the relevant screens of a successful CNV flip-flop experiment are 

given, demonstrating BCI control of two robotic arms solving the TOH(3) problem. 

Following are eight images, showing the first trial of a successful experiment, as well 

as seven trials when robot behaviors were invoked, in order to execute the respective 

seven disk movements of the 3-disk Towers of Hanoi problem solution. For better 

overview, text explanations are given beforehand, and the images follow one 

another. 

Figure 9.11. shows the start of the experiment, i.e. the first trial. Note that the 

ERP is identical in form to the EEG. This is so because it is a property of the GUI to 

normalize the output, to fill up the channel peak-to-peak; in reality, the ERP is the 

EEG signal diminished by a factor of 10 (according to the time varying signal 

extraction algorithm proposed in Chapter 5).  

Figure 9.12. shows the first appearance of a CNV. In channel 5, a control 

signal has been sent, and it is shown to which robot, initiating which behavior. In this 

case, the first robot executes its first behavior (Move from A to C).  

Figure 9.13. shows the first CNV disappearance. Note that the subject did not 

press the button (there is no signal in the pushbutton channel) so the EMG channel 

shows noise, again, normalized to the entire channel. The loss of CNV is a signal for 

the second robot to execute its behavior, in this case its first behavior (Move from A 

to B). 

Figure 9.14. shows that the computer recognized an appearance of CNV 

again, so the first robot is invoked to execute its following behavior, i.e. its second in 

this case (Move from B to C). 

Figure 9.15. shows a subsequent CNV disappearance, and the second robot 

executes its second behavior (Move from A to B). Note that the EMG channel shows 

large artifacts in the EMG channel (likely due to arm movement), but in the “safe 

zone”, i.e. past the 3-second mark, when the S2 stimulus is applied. Thus, these 

artifacts don’t corrupt the CNV oscillatory process and therefore this trial is not 

rejected. 

Figures 9.16., 9.17. and 9.18. show the following CNV reappearance, 

disappearance, and reappearance, so respectively the first robot executes its third 

behavior (Move from B to A), the second robot executes its third behavior (Move 

from B to C) and the first robot executes its fourth behavior (Move from A to C), 

completing the task. 

Thus, it took 59 trials with a subject previously participating in CNV flip-flop 

experiments. The experiment log is given in Figure 9.19., with an added 60
th

 trial, to 

round up the experiment.   
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This way, it is shown that it is possible to solve the 3-disk Tower of Hanoi 

problem with two robots collaborating on the task, controlled by a BCI based on 

anticipatory brain potentials.  

 

Figure 9.11. Trial 1: The experiment starts 

 

 

Figure 9.12. Trial 14: CNV presence detected. Robot1Behavior1 activated 
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Figure 9.13. Trial 16: CNV absence detected. Robot2Behavior1 activated 

 

 

Figure 9.14. Trial 19: CNV presence detected. Robot1Behavior2 activated 
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Figure 9.15. Trial 25: CNV absence detected. Robot2Behavior2 activated 

 

 

Figure 9.16. Trial 39: CNV presence detected. Robot1Behavior3 activated 
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Figure 9.17. Trial 44: CNV absence detected. Robot2Behavior3 activated 

 

 

Figure 9.18. Trial 59: CNV presence detected. Robot1Behavior4 activated 
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Figure 9.19. Experiment log file, BCI control of two robotic arms solving TOH(3) 

 

RELEVANT TRIAL DATA FOR EXPERIMENT DONE ON 04.08.2009 10:08:48 

Subject:   Date of birth:  Sex:  

Other data: Experiment #2 

 

Recognition parameters: 

Amplitude difference:    5 [µV] 

Linear regression slope: 3.6 [µV/s] 

 

Trial Ampl.diff[µV] Rgr.slope[µV/s] CNV S2 Reac.time[ms] Robot Behavior 

 

1 1,0479640038 -0,4272922317  False True 600  n/a n/a 

2 1,8411260002 -0,5490886110  False True 390  n/a n/a 

3 2,2596004005 -0,5729276856  False True 350  n/a n/a 

4 3,3415762224 -0,6572719481  False True 330  n/a n/a 

5 3,1202094781 -0,7257954109  False True 400  n/a n/a 

6 4,5477780160 -0,7204147296  False True 320  n/a n/a 

7 4,4406467136 -0,7307793448  False True 340  n/a n/a 

8 3,9764451457 -0,7888757057  False True 380  n/a n/a 

9 4,3958323701 -0,5857044597  False True 350  n/a n/a 

10 4,3635574858 -0,4338176937  False True 290  n/a n/a 

11 4,8140205469 -0,6067659593  False True 310  n/a n/a 

12 5,5021454002 -0,7529786339  False True 290  n/a n/a 

13 5,2177297645 -0,7649148965  False True 380  n/a n/a 

14 5,7598447678 -0,5793513325  True True 300  1 1 

15 4,8966466292 -0,7711640556  True False n/a  n/a n/a 

16 4,5372615150 -0,6971468266  False False n/a  2 1 

17 5,7690360328 -0,5105485650  False True 550  n/a n/a 

18 5,5426469339 -0,6603284080  False True 480  n/a n/a 

19 5,3822630139 -0,6594161877  True True 360  1 2 

20 6,1692445810 -0,7223460501  True False n/a  n/a n/a 

21 6,7633742972 -0,4305102087  True False n/a  n/a n/a 

22 5,7776024721 -0,5498719298  True False n/a  n/a n/a 

23 5,0232872594 -0,4233438253  True False n/a  n/a n/a 

24 4,3953835596 -0,2053363242  True False n/a  n/a n/a 

25 4,1790519274 -0,3392365251  False False n/a  2 2 

26 3,5594778977 -0,5230307557  False True 710  n/a n/a 

27 3,6860504170 -0,6446942816  False True 430  n/a n/a 

28 4,6292372391 -0,6992757053  False True 390  n/a n/a 

29 4,3915808343 -0,9950820989  False True 1390  n/a n/a 

30 4,4732624659 -0,8744053815  False True 390  n/a n/a 

31 4,5038118181 -0,8459950701  False True 350  n/a n/a 

32 4,4793829407 -0,8683461750  False True 440  n/a n/a 

33 4,3675884838 -0,7271725637  False True 450  n/a n/a 

34 4,4790874093 -0,7364192131  False True 490  n/a n/a 

35 4,8971196548 -0,6472795391  False True 390  n/a n/a 

36 4,1048616860 -0,6241738905  False True 820  n/a n/a 

37 5,3682958363 -0,4887858690  False True 370  n/a n/a 

38 5,9130000269 -0,5245627823  False True 1070  n/a n/a 

39 6,5922162149 -0,5393598881  True True 390  1 3 

40 5,7075494375 -0,6031686389  True False n/a  n/a n/a 

41 5,3248675658 -0,7807958578  True False n/a  n/a n/a 

42 5,2814680733 -0,8275046338  True False n/a  n/a n/a 

43 4,5574795184 -0,7170438031  True False n/a  n/a n/a 

44 3,0627587802 -1,1225789691  False False n/a  2 3 

45 2,6569663890 -1,1967414015  False True 880  n/a n/a 

46 2,7258049917 -1,0894845369  False True 410  n/a n/a 

47 3,3612137525 -1,0853422512  False True 1220  n/a n/a 

48 3,0991312830 -1,1599201931  False True 380  n/a n/a 

49 3,3636400129 -1,0786881769  False True 370  n/a n/a 

50 2,5239304718 -1,1077641164  False True 710  n/a n/a 

51 3,7215059270 -0,9517129522  False True 420  n/a n/a 

52 3,9085921950 -0,7663147248  False True 360  n/a n/a 

53 4,3673311248 -0,6103260666  False True 430  n/a n/a 

54 4,0345172895 -0,6397775331  False True 710  n/a n/a 

55 4,6815393665 -0,4670419696  False True 410  n/a n/a 

56 4,8140081671 -0,7033954028  False True 1410  n/a n/a 

57 5,2044434244 -0,8478657311  False True 780  n/a n/a 

58 5,9458875563 -0,6542198031  False True 330  n/a n/a 

59 5,7351323037 -0,5832876073  True True 390  1 4 

60 5,3825910415 -0,5215695345  True False n/a  n/a n/a 

 

Experiment notes: Resistances: < 10kOhm 
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9.8. Control of Two Robotic Arms Using Anticipation-Based 

BCI: Statistics 

Table 9.2 shows experimental results from the BCI based on anticipatory 

potentials, controlling 2 robots that are simultaneously solving the 3-disk Towers of 

Hanoi task. Shown are results from 8 experiments conducted on various subjects. 

Again, the trial number is written, when the corresponding event (and thus behavior) 

occurred in the corresponding experiment. 

Table 9.2. Experiment results for 2-robot solution of TOH(3) using an anticipation-based BCI 
 Experiment 

1 2 3 4 5 6 7 8 9 10 11 12 Average 

 Event→ Robot#Behavior# Trial number 

 CNV1→ Robot1Behavior1 (A to C) 9 14 15 11 6 6 11 13 7 18 17 36 14 

no CNV1→ Robot2Behavior1 (A to B) 15 16 24 27 22 16 13 17 21 22 31 39 22 

 CNV2→ Robot1Behavior2 (C to B) 22 19 29 29 25 20 21 19 25 33 36 46 27 

no CNV2→ Robot2Behavior2 (A to C) 31 25 48 40 35 32 24 22 41 40 42 49 36 

 CNV3→ Robot1Behavior3 (B to A) 38 39 50 42 38 38 30 26 47 46 46 54 41 

no CNV3→ Robot2Behavior3 (B to C) 43 44 71 45 51 44 34 32  53 51 50 56 48 

 CNV4→ Robot1Behavior4 (A to C) 57 59 75 47 54 46 39 39 57 59 53 68 49 

 FINISH 60 60 80 50 55 50 40 40 60 60 55 70 57 

 

As can be seen, the durations of all the experiments were rounded to the 

nearest five (and also to the nearest ten, if the experiment ended on the five). It can 

be seen that on one occasion as many as 80 trials were needed to successfully 

complete the paradigm. However, upon averaging, it can be seen that 57 is the 

average number of trials at which the TOH(3) problem can be solved using the 

anticipation-based BCI, controlling two robots, working simultaneously. 
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Chapter 10 

 

DISCUSSION  

 

Discussion about the work is given in 

this chapter. The most important 

information from all the chapters is 

presented here. 
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10. DISCUSSION  

The discovery of the computer and its development has led to its widespread 

use in virtually every human endeavor. The computer has become such an integral 

part of human life, that a research area has emerged, which deals with the ways 

humans interact with computers. This research area is called Human-Computer 

Interaction (HCI). 

In human-computer interaction, a concept of an interface arises – a system 

that will interpret messages given in a form understandable to one side to a form 

understandable to the other side and vice versa. This way, one might consider the 

keyboard, the mouse, the computer screen etc, as interfaces through which the 

computer processor communicates messages from and to the user. These interfaces 

have undergone several stages of development themselves, and the current stage is 

the one of electrophysiologically interactive human-computer interfaces (EI-HCIs). 

EI-HCIs are such devices in which the human output is achieved without the 

need of the human’s external devices. The concept is challenging, since information 

from the subject must be gathered in a form understandable to the computer – 

commonly, electric signals are used from the skin, heart and so on, which can be 

digitized and converted to binary information. Four basic types of EI-HCI systems 

have been conceived: monitoring-oriented systems (where the experimenter simply 

gathers data from the subject and receives no feedback), biofeedback-oriented 

systems (where the measurements from the subject are fed back to him/her), control-

oriented scenarios (where the measurements from the subjects are fed back to 

him/her, with a purpose of controlling a device) and hands-free control scenarios (a 

special type of control-oriented scenarios, where hands are not used in any way). 
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The type of EI-HCI discussed in this work is the brain-computer interface 

(BCI), where the signals from the subject are collected specifically from the subject’s 

brain. Signals from the brain can be used to determine a certain brain state. Some of 

these states are relatively difficult to extract, i.e. determine from the brain recording 

alone, whereas others are obtainable through certain procedures. The latter can be 

used for control purposes and such states are the state of relaxation, the state of 

mental task, the state of imaginary movement, the state of response, and, as of 

recently, the state of expectation. This state is used in the experiments carried out in 

this work as well. 

To obtain the brain state, signals from the brain must be recorded. According 

to the type of acquisition, BCIs can be non-invasive (where the signals are collected 

from the scalp, using surface electrodes), and invasive (where the signals are 

collected using electrodes that are implanted directly into the brain tissue). Invasive 

techniques are expensive and require laboratory conditions, but provide the best 

signal quality. Non-invasive techniques are more readily available, but offer poorer 

signal quality. However, because they’re so widespread, they are the preferred 

method of signal acquisition, especially the electroencephalogram (EEG), which 

records electrical signals from the brain. The most commonly used system for 

placing EEG electrodes is the 10-20 system, which is utilized in this work as well. 

In order for the acquisition to be successful, the subject and the BCI must 

undergo mutual training or calibration sessions, so that the subject would be prepared 

and/or the BCI would be set up for proper operation. In the first case (training), the 

subject learns to voluntarily regulate the brain activity, to obtain a desired brain state, 

so a certain result would be achieved. After the training activity, the subject is able to 

voluntarily control the parameter of interest, i.e. adapt to the machine. The other case 

(calibration) requires that certain parameters of the BCI be adjusted, so that the 

measurements would be sensible for that particular subject. In this case, it’s the 

machine that adapts to the subject. Depending on the BCI, any one or both of these 

setup methods for BCI operation may be used. 

Since the EEG is the preferred means of recording brain signals, it has been 

more extensively studied, and two basic methods for signal processing have been 

commonly used: extracting spectral features from the EEG signal (where certain 

frequencies have been found to correspond to certain brain states), and building 

pattern classifiers (where a brain signal is repeated several times and its features are 

fed into the classifier, so it would recognize future appearances if such a signal). Any 

one or both of these methods may be used when operating a BCI. 

How successful a BCI will perform depends usually on how much 

information is transferred from the subject to the BCI, and also how little errors (i.e. 

wrong commands) the BCI executes. Lowering the error rate and executing fast 

mental commands are the challenges for future BCI development. Common 

examples of BCI control are the “thought-controlled typewriter” (which utilizes the 

P300 evoked potential), mobile robot control (which utilizes relaxation state), as well 
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as an invasive BCI, using which a robotic arm is controlled. This work presents a 

robotic arm control using anticipatory brain potentials.  

Many brain potentials have been discovered, and they are divided into 

spontaneous or event-related. The event-related potentials are further divided into 

anticipatory and evoked. The evoked brain potentials appear after an event and can 

mean either that the brain reflexively reacts to the event (in which case the potential 

is exogenous), or that the brain has discerned the meaning of the event (in which case 

the potential is endogenous). Because these potentials can be controlled by 

controlling the event, the ease with which they are obtained had led to their early 

discovery and they have been extensively studied and are well known.The 

anticipatory brain potentials appear before an event. They are further subdivided into 

potentials that express readiness or preparation of the subject to react to the event (an 

example of such a potential being the Bereitschaftspotential), or expectation to the 

event (an example being the Contingent Negative Variation, i.e. CNV potential). The 

CNV potential is central to this work and has been discovered in 1964 by Walter and 

his team. The paradigm using which it has been discovered is called the CNV 

paradigm and consists of two stimuli, a warning one (S1) and an imperative one (S2), 

and the subject is instructed to react to the imperative stimulus as soon as possible. 

This way, after several repetitions and averaging of the obtained signals, the CNV 

potential appears, as a conglomerate of several evoked potentials and a negative shift 

in the EEG in the interval between the two applied stimuli.  

The CNV potential and the CNV paradigm itself have sparked interest and 

several modifications have been proposed for the paradigm. The modification given 

in this work involves adding a feedback loop, in which the output signal is fed back 

to the paradigm, influencing its outcome. The presence or absence of the CNV 

potential determines the absence or presence of the imperative stimulus respectively. 

If S2 is present and CNV is absent, the reactions to S2 foster the appearance of CNV 

in the subject. When the CNV appears, the S2 is switched off, thus making the 

subject have nothing to react to. This leads to degradation of the CNV in the subject, 

which in turn switches the S2 back on and so on. This paradigm leads to an 

oscillatory process of CNV appearances and disappearances in the subject and has 

been named the CNV flip-flop paradigm. 

The CNV flip-flop paradigm is trial-based. One trial consists of 7 seconds of 

acquisition, in which the first second is so-called baseline recording, where the signal 

is recording against which the CNV presence or absence will be determined. At the 

first second of recording, the S1 stimulus is applied, and at the third second the S2 

stimulus is applied. The following 4 seconds of recording are used to capture the 

post-imperative positivity, i.e. diminishing of the CNV potential. After the trial, there 

are from 7 to 13 seconds of inter-trial time, where the signal is processed and the 

presence or absence of CNV is established. The experiments lasted while there were 

trials available, which was usually 100 trials. 

The presence or absence of CNV is usually determined by observing one or 

more parameters and when the signal is such that those parameters exceed their 
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respective thresholds, a CNV is recognized, and not when the thresholds of the 

parameters are not exceeded. Such an oscillatory process can be plotted on a graph 

and the resulting curve is called an electroexpectogram (EXG). The oscillatory 

nature of the EXG (which is in turn obtained from the CNV potential) is the reason 

why the CNV potential is suitable for use in a BCI paradigm, in a sense that there 

will be times when the BCI will be active and times when not. 

Because the nature of the CNV flip-flop paradigm is such that it will produce 

a time-varying signal, the challenge is to create algorithms that will extract such a 

signal and compute the parameters necessary to determine whether it is a CNV 

potential or not. The algorithm for extraction of the event-related potential is a neural 

learning algorithm, which progressively learns the current form and forgets the 

previous ones. Moreover, it is a part of a neural element, in which the presence or 

absence of the CNV potential is computed using a neural network, with the 

excitatory synapse is the average of the samples of the signal near the S2 stimulus, 

and the inhibitory synapse is the average of the samples of the signal from the 

beginning of recording to the S1 stimulus. If the internal potential of the neuron 

exceeds the threshold three trials in a row, a presence of CNV is recognized. 

Even though BCI research is extensively underway, there is little 

standardization, in a sense that every researcher or research group develops their own 

software products for BCI operation. This work proposes a generic design model for 

BCI software, in which several modules are proposed, that each BCI software 

architecture should have. They are the biosignal acquisition module, the device 

control module, the experimental paradigm control module, the graphical user 

interface module and the file control module. All of these modules contain software 

elements, such as device drivers, program code elements etc, that enable them to 

function and connect with the devices used in the paradigm. 

The materials and methods used in this work concern primarily the hardware 

and experimental procedures. The biopotential amplifier that was used is the Biopac 

MP35 amplifier, and electrodes used to connect to it are standard Ag/AgCl electrodes 

for EEG recording. EMG and EOG are also recorded, using adhesive electrodes for 

single use. The user’s reaction is obtained through a pushbutton. The devices 

controlled are one or two robotic arms of the type Lynxmotion Lynx5 and/or Lynx6. 

The computer can be any commercially available computer, since the paradigm’s 

demands are small, as far as working memory, processor speed, and graphics and 

sound card are concerned.  

The robotic arms that are controlled using this paradigm are controlled using 

the behavior based approach. This means that the behaviors of the robots are already 

programmed, and are selected according to the situation. This is utilized to solve the 

Towers of Hanoi problem using the robotic arms, where each behavior consists of 

moving a disk from the tower to its appropriate spot during the realization of the 

problem solution. The oscillatory nature of the electroexpectogram is then used, and 

each crossing of the threshold is then used as a signal to invoke the appropriate 

behavior of the robotic arm. In the case that one robotic arm was used, an appearance 



105 

 

of CNV was the control signal sent to the robotic arm to invoke its appropriate 

behavior. In the case that two robotic arms were used, an appearance of CNV meant 

sending a control signal to one robotic arm, and a disappearance of CNV meant 

sending a control signal to the other robotic arm. Both robotic arms had their 

behaviors preprogrammed so as to work simultaneously on the problem. 

The experimental results given in this work support proof-of-the-concept 

experiments, and do not represent an exhaustive population study. Rather, several 

experiments on a small group of subjects have been performed, and the experiments 

consisted of finding a solution to the problem of Towers of Hanoi with two disks 

using one robotic arm, as well as the problem of Towers of Hanoi with three disks, 

using two robotic arms, working simultaneously. The results have shown that normal 

subjects were generally capable of producing sufficient appearances and 

disappearances of the CNV potential, in order to generate the number of robot 

behaviors necessary to complete the corresponding Towers of Hanoi tasks. 

As a summary of the discussion, it can be said that BCIs based on 

anticipatory brain potentials are possible and feasible. It is possible to extract time-

varying event-related potentials and test them for parameters of interest, in order to 

obtain information about CNV appearance and disappearance in a trial-based 

paradigm. This knowledge and practice can be further combined with other BCI 

knowledge, as an addition to how anticipatory brain potentials can be used for 

control purposes and to give guidelines for future research in this area. 
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11. CONCLUSION 

Until 2005, the brain potentials used in BCI were: alpha waves (relaxation 

brain state), evoked potentials (engaged brain state recognizing patterns), beta waves 

(engaged brain state computational task), and mu waves (imagined motor 

movements). In 2005 this research started with an idea that  anticipatory brain 

potentials should also be used in the Brain-Computer Interface research. This 

opened a new road towards BCI. This work introduced a new concept, the CNV flip-

flop paradigm, which is an experimental and application paradigm. It is proposed 

that this paradigm be used as a BCI paradigm. The CNV flip-flop paradigm 

generates a cognitive wave, named the EXG curve, which can be used to generate 

series of device behaviors. In order to observe the changing state of anticipation 

during the CNV flip-flop paradigm, a particular problem appears, extracting a time 

varying event related potential (ERP) signal from the recorded EEG. In this work 

proposed a neural learning algorithm that extracts the needed time varying ERP is 

proposed. The whole signal-processing process in the CNV flip-flop paradigm 

requires also pattern recognition decisions in order to determine when the extracted 

ERP can be declared to have a particular CNV shape. Special neurons are proposed, 

as well as a special neural network that performs both the ERP extraction and CNV 

recognition. BCI systems are currently available world wide, and all of them are 

supported by a particular software system. Yet there is no software engineering 

template proposed for BCI systems. In this work a software design model is 

proposed, for a generic BCI system, as well as for an object oriented software design 

in particular. The main contribution of this work is controlling a device (robot) using 

anticipatory brain potentials. A BCI that controls a robotic arm is designed and it is 

demonstrated how a BCI can be used in solving the well known problem in 

Computer Science, the Towers of Hanoi. This contribution was confirmed by the 



108 

 

reviewers of the paper presented at an IEEE conference on neural Engineering in the 

section of Brain-Computer Interface. The final contribution of this paper is the 

control of two devices (robots) with an anticipation based BCI. Two robotic arms are 

successfully controlled, collaboratively solving the Towers of Hanoi problem, using 

anticipation based BCI. To the best of the author’s knowledge, so far there has been 

no report of BCI control of two robots solving a common task.  

The work presented here was carried out during the author’s Master’s and 

Doctoral study. It covers six years of research. This period also includes participation 

in a scientific project entitled “Electrophysiology of the Expectation and Learning 

Processes”, as part of a bilateral scientific collaboration between Macedonia and 

Croatia.  

The hope is that this work gives significant contribution to the area of 

Computer Science, in the subarea of Brain-Computer Interface. The development of 

electrophysiologically interactive computer interfaces will enable the creation of 

truly personal computers, i.e. systems that read and understand their users’ signatory 

brain potentials.  That will improve human interaction with devices, as well as help 

us learn more about our psychophysiological selves. Combining computing with 

physiological sensing technologies will transform human machine interaction and 

foster in a wide range of new applications. 
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APPENDIX A: SOFTWARE 

SPECIFICS OF THE BCI 

BASED ON ANTICIPATORY 

BRAIN POTENTIALS 

 

This appendix is meant to give a more 

in-depth view into the software solution for the 

BCI presented in this work. The software 

contains more than 3500 lines of code, and 

explaining it fully would require a paper on its 

own, so here only the principles of its operation 

will be described. 
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APPENDIX A:  

SOFTWARE SPECIFICS OF THE BCI BASED ON 

ANTICIPATORY BRAIN POTENTIALS 

 

The software was developed in the C# language, using the .NET 2.0 

environment. The development was enhanced by using the SharpDevelop code 

editor.  

 

A.1. The Software Design  

In this work, the paradigm setup, shown on Figure A.1., was used (this figure 

has been previously shown as Figure 6.1., but it is repeated here for clarity). As can 

be seen, the subject’s mental state is first acquired (through signal acquisition and its 

conversion to digital form), and then the signal is pre-processed (i.e. channel-wise 

structured and filtered), the ERP (event-related potential) is extracted, i.e. isolated 

from other signals which are not of interest, and then the desired mental state is 

recognized (in this case, the CNV potential) as present or absent. The next step is the 

application interface, i.e. the GUI (graphical user interface) to the user (in this case 

experimenter), at which moment the experimenter may affect the course of the 

experiment, by rejecting the current trial, if he/she decides to do so. The next step is 

the robot control, when an appropriate signal is sent to the robot (or robots), if the 

conditions are met (i.e. if the CNV potential has appeared or disappeared, in this 

case). All of this takes place in one trial of the experiment. 

However, even though Figure A.1. explains the paradigm generically, Figure 

A.2. (first shown in the text as Figure 7.1.) gives a more software-oriented structure 

of the paradigm. Not surprisingly, because it shows the generic structure of a BCI 

design model, which is followed by the software solution for the BCI based on 
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anticipatory potentials, developed for the purposes of this work. In fact, it was that 

same software structure, which yielded that this generic BCI design model be 

proposed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. The BCI paradigm used in this research 

 

 

 
 

Figure A.2. A generic BCI design model 
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A.2. The Parts of the BCI Structure 

The structure of the software and hardware parts, that form the complete BCI, 

are shown on Figure A.3. (this figure was shown in the text as Figure 7.2. but is 

repeated here for clarity). It displays the complete structure, including all the 

namespaces, classes, interfaces, as well as hardware devices used in the solution. The 

methods and objects used are omitted.  

 

 

Figure A.3. The structure of the BCI implementation in this work 
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The modules of the BCI design model in this structure are shown on Figure 

A.4. (in the text shown as Figure 7.3., but repeated here for clarity). In this case, the 

GUI module and file control module are set in the same class, mainly because the file 

manipulation operations are relatively simple and straightforward, so they can be 

incorporated inside another module. And, since the file manipulation operations are 

performed by clicking buttons, which are a part of the GUI module, it made sense to 

combine both of these modules in a single class. 

 

Figure A.4. The BCI modules used in the implementation 

 

The following sections will explain the most important parts of the software 

solution, as well as their functions, in greater detail. The order of precedence will be 

given according to the parts that the user encounters during the realization of the 

paradigm. 

 

A.3. The Graphical User Interface: Experiment Start 

Figure A.5. shows the screen immediately after the start of the program. The 

dominant figures on the screen are the 6 data windows, of which the top 4 are 

reserved for so-called “raw” data, and the bottom 2 are for data that are obtained 

upon computation. At right, from top to bottom, there are the data about the subject 

(first name, last name, date of birth and sex), below them are the data concerning the 

experiment (the moment of experiment start, the current trial observed, as well as the 
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trial-dependent data), followed by a “Notes:” text box, where the experimenter may 

enter notes during the entire course of the experiment. Below are the file 

manipulation GUI parts, such as the file name text box and file manipulation buttons. 

Control buttons are at the very bottom right of the screen, using which an experiment 

can be started, stopped, cleared from memory, or the screen repainted, if necessary. 

Also, a Reject Trial button is given, as a means of the experimenter’s control of the 

paradigm. An Exit button is also given. 

 

Figure A.5. The initial screen of the software, before an experiment begins 

 

The initial number of trials is 100, which can be seen at the bottom right of 

the screen. Initially, the 4 CheckBoxes at the right of the number of trials selector 

are all checked, whereas CheckBoxes numbered 1 and 4 are also disabled. This is to 

make certain that channel 1 (EEG) and channel 4 (Button) can never be disabled, 

because they the CNV flip-flop paradigm depends on data obtained through them, 

whereas channels 2 (EMG) and 3 (EOG) are not of key importance to the paradigm 

and are useful only as hints to the experimenter, and can be disabled, if desired. 

At the moment of pressing the Start button, several things happen. First, the 

number of trials in the experiment is read from the number of trials selector (the 

default value is 100). A 3-dimensional array of double (i.e. double precision 

floating point) values is created, which will contain every sample in every channel in 

every trial. The first dimension is the channel number, the second dimension is the 

sample number, and the third dimension is the trial in question. Since the acquisition 

frequency is 100 Hz, and there are 7 seconds of acquisition, there will be 700 

samples per channel per trial. The reason that double values are used is that the 

MP35 biopotential amplifier returns the results of acquisition in double values, and 
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since hardware limitations are not an issue, working with high-precision values is 

beneficial. Initially, all of these values are set to zero. 

Another array that gets initialized is the one that holds the sample numbers at 

which the trial-specific “lines” are to be drawn on the screen. These “lines” represent 

the three paradigm-determining moments, which are the moment of applying the 

warning stimulus (S1), the imperative stimulus (S2) and the user’s reaction (RT, i.e. 

reaction time). Thus, this is a two-dimensional array, with the first dimension being 

the “line” in question and the second – the trial number. Since all of these values are 

positive integers, the uint (i.e. unsigned integer) value type is used. Again, initially, 

all of these values are set to zero. 

The third array that gets initialized is a one-dimensional array of 

TrialData elements. TrialData is a custom-created struct compound type, 

consisting of several variables, that are trial-dependent, and which hold the values of:  

- the amplitude difference of the signal, which will be used to calculate the 

presence of absence of the CNV potential (a double value);  

- the slope of the signal, again useful for calculating the presence or absence of 

the CNV potential (a double value);  

- the reaction time of the subject, shown as a sample number (a uint value);  

- a flag, showing whether the CNV potential has been recognized in the trial or 

not (a bool, i.e. Boolean value);  

- another flag, showing whether the S2 stimulus should be present in the trial or 

not (a bool value);  

- the number of the robot that is to be moved, as a result of the BCI’s operation 

(a uint value); 

- the behavior of the robot that is to be moved, as a result of the BCI’s 

operation (a uint value); 

Since these values are trial-dependent, this array has as many of these 

elements as there are trials in the experiment.  

Another array that gets initialized is one that holds the ERP (event-related 

potential) signal of a previous trial. This is useful if a rejection of the trial occurs, and 

the previous ERP signal needs to be restored. Thus, this is a one-dimensional array 

and contains 700 samples, i.e. double values. 

All of these elements are a part of the MainForm class, which contains the 

GUI module of the software, because they are needed for graphical data display. This 

process will be given more attention in a subsequent section, following the order of 

operation of the software. 
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A.4. The Acquisition Process and Data Decimation 

The complete process of data processing is carried out in the 

CNVAcquisition class, i.e. by the object of that class that is instantiated within 

the MainForm class. The first part of the data processing is the data acquisition, 

specifically the conversion of the signal from analog to digital. 

The MPDevImports class communicates with the MP35 biopotential 

amplifier. This class communicates with the MP35’s device driver library, using its 

methods for connection, channel set-up, acquisition, etc.  

Initially, a connection with the MP35 must be established. This is followed by 

setting up of the sample rate, which in our case is 100 Hz. Next, the acquisition 

channels are set up, passed as an array of bool values (this is why the channels are 

designed as CheckBoxes, which can be switched on or off, as shown on Figure A.5. 

– obtaining an array of values from them is straightforward). 

The next activity is the acquisition itself. It is actually realized 

asynchronously, since a software server is set up between the MP35 and the 

computer, which can draw data out of the MP35 whenever programmed to do so 

(which is the essence of the MP35’s programmability).  

The data are drawn in a form of an array of double values, which contains 

as many elements as there are active channels, i.e. it contains one sample per 

channel. This means that the data acquisition must be set up in such a way, that a 

loop is performed, which will collect as many samples as needed, in order to collect a 

sufficient amount of samples for the duration of the acquisition. In other words, the 

loop must be set up to run 700 iterations, so as to collect 700 samples for each 

channel, i.e. 700 arrays of double elements, which will be later distributed into a 

two-dimensional array containing each sample per channel (the acquisition here 

described is performed in one trial). That would be a memory-inefficient algorithm, 

and therefore just one array is used as a buffer array, into which the “raw” 

acquisition data are placed, which are then distributed into another two-dimensional 

array, set up as to contain each sample per channel, and thus the next sample for the 

next channel is filled in at the appropriate spot. This way, through the process of data 

decimation, at the end of the acquisition, an array, that contains 700 samples for as 

many rows as selected, will be obtained, which is easy to convert into the form useful 

for drawing on the screen. 

However, since, during the acquisition, the S1 and S2 stimuli need to be 

applied, the acquisition becomes more complicated. Therefore, it is separated into 

three parts: pre-S1, between S1 and S2, and post-S2. The pre-S1 part is the simplest, 

as there are no stimuli applied, and this is the so-called “baseline” recording, where 

data are simply gathered and stored. This part lasts for one second. 

The second part, between S1 and S2, lasts for two seconds, and is a bit more 

complex, in a sense that the S1 stimulus must be applied for a certain period of time, 

while the acquisition takes place. The solution is to load the sound for the S1 
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stimulus into an asynchronous sound player (which is an option available in C#), i.e. 

another so-called “server” for playing the sound, and let it play before the beginning 

of the loop that will acquire the 200 samples between the moment of application of 

S1 and S2. Since the sound itself lasts for 200 milliseconds, and the press button 

won’t be applied in this period, there is no need for it to be manually interrupted. 

The third part, after S2, lasts for four seconds (to add up to a total of 7 

seconds of acquisition) and is the most complex to program. First, for each sample of 

acquisition, the previous sample value of the press button channel must be kept, to 

check whether a press of the button occurred in that sample. Afterwards, the 

acquisition occurs. Next, a test is performed, whether the S2 stimulus should be 

sounded. If a CNV potential is absent, if the S2 stimulus hasn’t been sounded yet (i.e. 

if the third part of the acquisition is at its beginning) and if the press of the button 

hadn’t occurred yet, the S2 stimulus is sounded, again asynchronously. If any of the 

aforementioned becomes false, the S2 stimulus is stopped, i.e. isn’t allowed to be 

played for the remainder of the third part of the acquisition. 

During the acquisition, the “line” values are also calculated, i.e. the moments 

of application of the S1 stimulus, the S2 stimulus and the press of the button (i.e. the 

reaction time). Also, at the moment of application (or not) of the S2 stimulus, 

information is stored for the current trial whether the S2 stimulus is present, and 

whether a CNV potential has been detected in that trial. 

 

A.5. Filtering 

It can be said that the data decimation, explained in the previous section, is 

one half of the signal pre-processing, i.e. arranging the signal values in such a way so 

as to distribute the values among channels. The other half is filtering, i.e. removing 

the unwanted signal frequencies. Since the paradigm requires that the subject be 

relaxed, the alpha frequency will be the dominant frequency in the obtained signal, 

and therefore all high signal frequencies need to be filtered out. This is not the case 

for the EMG signal (in case it is recorded), as the EMG signals usually have high-

frequency components. 

In this case, the cutoff frequency for the low-pass filter is 15 Hz. All 

frequencies above it are removed, and also the DC component (i.e. the 0 Hz 

component) of the signal is filtered out. Again, this is not the case when handling the 

EMG signal. 

The filtering is performed using the direct Fourier transform method: the 

signal is first converted into frequency domain, and certain values of the thus 

obtained signal are set to zero, after which, using the inverse Fourier transform, the 

signal is returned back to the time domain. Because both Fourier transforms require 

operations involving complex numbers, which are not built into the .NET 2.0, a 

special class of complex numbers, called Complex, was created. It contains 

methods for complex number definition, as well as overloads of the basic binary 
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operators (+, -, *, /) between a complex and another complex or real operand. Also, 

functions for absolute value and complex exponent are also built in, the latter being 

of key importance for successful Fourier transform-based filtering. 

Since the signal is digital, it is discrete by nature, so the discrete Fourier 

transforms must be used. Equations A.1. and A.2. show the formulae for the direct 

and inverse discrete Fourier transform, respectively. 
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In both cases, x(n) is the time-domain signal and is a real value, whereas X(k) 

is the signal in the frequency domain and is a complex value. N is the signal length, n 

is the time-domain sample, and k is the frequency-domain sample. 

The principle is as follows. Both the real and the complex signal have the 

same amount of samples, namely N = 700. The direct Fourier transform produces a 

complex signal, in which each sample shows the effect of a certain frequency on the 

overall signal. Since the signal in the frequency domain also has 700 samples, and 

the sampling frequency is 100 Hz, each sample represents the effect of one seventh 

of a hertz to the overall signal. Having this in mind, filtering out the unwanted 

frequencies means simply setting the unwanted frequency samples to zero. In this 

case, the frequencies above 15 Hz, i.e. samples with indices above 15  7 = 105, are 

set to zero, as well as sample indexed 0, i.e. the frequency of 0 Hz, which is the DC 

component. Then, applying the inverse Fourier transform on this newly obtained 

signal, the filtered signal in time domain is obtained. 

 

A.6. ERP Extraction 

The ERP extraction feature is explained in equation (6.5.) in the text, and is 

repeated here as equation (A.3.) for clarity: 

ERP(s, t) = pERP(s, t-1) + qEEG(s, t) (A.3.) 

where s (s = 1,2,…, N) is the sample number in a trial, t (t = 1,2,…,T)  is the 

experimental trial number, and p and q are weighted parameters, satisfying p + q = 1. 

For the parameters (p, q) in this research the values (0.9, 0.1) are used. This is, in 

fact, a neural network learning method, which is efficient for extracting a time-

varying ERP, such as in this case. 

This method of computing the ERP is relatively straightforward, since it 

involves only a simple sample-by-sample multiplication and addition, which is easy 
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once the signal is placed in an array. After the ERP extraction, the ERP signal (stored 

in channel 6) is ready to be tested for presence or absence of the CNV potential. 

 

A.7. CNV Recognition and S2 Management 

Recognizing the presence or absence of CNV is easy, once the ERP is placed 

in an array and the noise artifacts are removed. Values of the samples with indices 

from 295 to 300 are averaged, and from this value the “baseline” value (i.e. the 

average of the values of samples with indices from 0 to 100) is subtracted. In other 

words, the average value of the signal 50 milliseconds before S2 to the moment of 

applying S2 represents the “high end” of the CNV slope, whereas the first second of 

acquisition represents the “baseline” according to which the CNV slope is calculated. 

The value of the difference needs to be 5 μV or more, for the signal to be considered 

as a CNV potential. 

There is also the possibility of calculating the linear regression of the slope of 

the signal between S1 and S2, but this approach has proved unnecessary, as the 

amplitude difference is a sufficient parameter for an accurate estimate of the CNV 

potential. Nevertheless, the value for the linear regression slope is calculated 

according to equation A.4. 
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where a is the regression slope, N is the number of samples in the signal, xi is the 

sample index, and yi is the value of the sample at that index. Values of samples with 

indices from 150 to 295 are usually taken into consideration. The slope of linear 

regression needs to be 3.6 μV/s or more, for the signal to be considered a CNV. 

However, it is possible that the signal might have a lot of artifacts, and that 

the amplitude difference may exceed the 5 μV threshold due to noise. For this reason, 

a counter is present, which counts how many times the amplitude is greater than 5 

μV. If this happens 3 trials in a row, the CNV is recognized as present, the S2 

stimulus is switched off and a control signal is sent to the appropriate robot. If, on the 

other hand, the CNV has been present and needs to be recognized as absent, another 

counter counts how many trials in a row the amplitude difference has fallen below 5 

μV. If this has happened in 2 trials in a row, the CNV is recognized as absent, the S2 

stimulus is switched on, and a control signal is sent to the appropriate robot. 
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A.8. The Graphical User Interface: Data Representation 

At this point, the acquisition has ended, the data have been decimated into 

channels and filtered, the reaction time has been calculated, the CNV has been 

recognized or not, also whether the S2 stimulus should be present in the current trial, 

as well as which robot should be moved using which behavior. All of these data are 

stored in the three-dimensional array of double values, as well as in the one-

dimensional array of TrialData values. The next step is to present the data 

graphically on the screen. 

The .NET 2.0 environment has a very rich collection of libraries for creating 

Windows applications, which has been utilized here. The CheckBox class for 

representing the channels that are enabled for acquisition is an example of such a 

class. Also, static text messages are displayed on Labels, whereas text that can be 

edited is entered and read from TextBoxes. User interaction is enabled through the 

use of Buttons. The graphical data is displayed on 6 Panels, which correspond to 

the 6 rows of the current trial of the three-dimensional array of double values. 

To be able to hold graphical content, each of these classes must be associated 

with a Graphics object. However, since graphical data are displayed only on the 

Panels, a Graphics object is linked with each one of them only. This way, an 

array of 6 Graphics objects is created, one for each Panel. Also, since a Point 

object represents a graphical point, an array of Point arrays is declared, which will 

then be instantiated for each Graphics object, i.e. each Panel. This is done this 

way, because a DrawLines method of the Graphics object accepts an array of 

Point objects (each containing two coordinates) and then draws them on the 

corresponding Graphics object.  

However, because the received signals would likely be with amplitudes that 

exceed the height of the panels, they are normalized, so that the maximum value of 

the 7 seconds of signal length is placed at the top of the panel at its corresponding 

place, and the lowest value of the signal is placed at the bottom of the panel, at its 

corresponding place. The coordinate system of the Graphics object is inverted, i.e. 

the higher the value of the vertical coordinate, the lower the point is placed on the 

screen. Therefore, the following system of equations would ensure that the signal 

gets normalized within the limits of the Panel: 

lownk

highnk





max

min
 (A.5.) 

where k is the linear slope coefficient, n is the displacement, min and max are the 

minimum and maximum value of the signal respectively and high and low are the 

highest coordinate (lowest point) and lowest coordinate (highest point) of the 

Panel, respectively. Solving for k and n, the following results are obtained: 
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Now, using the linear transformation 

ynxk   (A.7.) 

where x is the value of each sample, the y-coordinate of the point for each sample on 

the screen is obtained. And since the values of the points along the x-axis are the 

same as the sample indices, this way both coordinates for each point, corresponding 

to each sample, are obtained. In other words, an array of Points is directly 

obtained, which can then be used to draw out the entire signal on the screen, in the 

corresponding Panel. 

Of course, this means that the minimum and maximum values drawn in the 

Panels will always be different, i.e. that the signal will be displayed only 

qualitatively. This is sufficient, however, since it is not the actual amplitude of the 

ERP that is of interest for CNV recognition, but the amplitude difference between 

certain points of the signal. Also, since the DC component is also filtered out, the 

signal will always have its extreme values on both sides of the zero value. In any 

case, the extreme values of the current signal are also displayed on each Panel. 

Figure A.6. shows an example of graphical data display. 

 

 

Figure A.6. Graphical data display 
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It can be observed that the Control Signal channel (second from bottom) does 

not adhere to the aforementioned normalization method. This is so, because the only 

information that is stored in this channel is whether a control signal has been sent. 

Therefore, no normalization is necessary, since the signal will have only two possible 

appearances, i.e. one of an empty signal and one of a control pulse sent to the robot. 

Also, on this channel, a textual representation of which robot has been moved, using 

which behavior, is displayed. 

 

A.9. Robot Control 

In the case of controlling two robotic arms, two classes that will communicate 

with each one of them, are derived. They are called Lynx6 and Lynx5 respectively. 

Since both robotic arms are controlled using a SSC-32 servo-controller each, the 

structure of sending commands to both robots will be the same.  

Namely, first a SerialPort object is instantiated, which will set up a serial 

port for communication with each robotic arm. This object will specify the serial port 

through which the hardware connection is established between the computer and the 

controller, rate (in bits per second) of communication, the parity check choice, the 

number of data bits in a packet sent through the port, and the number of stop bits.  

To move a certain motor of the robot to a certain position, three bytes must be 

sent to the servo-controller: a control message (seven ones, i.e. a byte 

representation of 255), the motor number and the position. The servo-controller then 

translates these messages into movements of the motor, so it would reach the given 

position. This is the most basic way of operating a robotic arm. 

However, a method has been devised, that would enable the positions of all 

the motors to be given at a moment, and the motors would all reach the end positions 

at the same time. This is achieved by breaking down the full range of motion that 

each motor must perform into individual steps. There is an equal amount of steps for 

each motor to perform, and the amount of displacement that each motor will traverse 

in each step depends on the difference between the end position and the initial 

position. There is also an option for a time delay, which enables the user to control 

the speed of motion of the motors.  

This gives the opportunity to preprogram the robot motions. An array of an 

array of an array of byte elements is declared, whereas 

- the first array contains the behavior that should be performed at the given 

time (7 moves, i.e. behaviors, are necessary to solve the Towers of Hanoi 

problem with three disks); 

- the second array contains the motion of the robotic arm within the 

behavior, which is necessary to fully complete the behavior (such as 

approaching to the disk, grasping it, pulling it away upwards, moving to 

the destination position, approaching, releasing the disk, etc). There are 9 

motions that are needed for completion of each behavior; 
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- the third array contains the positions of each of the motors of the robot. 

For a Lynx6 robotic arm, this array has 6 elements, whereas for a Lynx5 

robotic arm, this array has 5 elements (because Lynx6 and Lynx5 have 6 

and 5 degrees of freedom, respectively). 

Preprogramming the robot behaviors has the advantage that the computer can 

always know which behavior is needed to be executed next. Thus, when the 

conditions are met (appearance or disappearance of CNV), the appropriate behavior 

is invoked, which is then decomposed to motions, which are then decomposed to 

sequences of robot motor positions, which are sent to the servo-controller of the 

appropriate robotic arm one by one. 

 

A.10. Trial Rejection 

At times, the experimenter may decide that an experimental trial should not 

be included into the ERP calculation, due to noise, artifacts, etc. The experimenter 

can reject such a trial, using the “Reject Trial” button, at the bottom right of the 

screen. Figure A.7. shows an example of a rejected trial. 

 

 

 

Figure A.7. An example of a rejected trial 

 

Because rejected trials are very common during experiments, the following 

data are backed up before the acquisition starts in the current trial: the ERP channel 

data, the counter of how many trials in a row the signal had gone above the 

threshold, the counter of how many trials in a row the signal had gone below the 

threshold, as well as whether the CNV potential had been recognized in the current 
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trial. Should there be a rejection, these data are written back to their corresponding 

positions in the memory, and the trial number is taken one back. In this sense, the 

trial will be repeated as many times as it gets rejected, and there is no limit as to how 

many rejected trials in the experiment there can be. 

 

A.11. Data Storage and File Management 

After the experiment has ended, whether successfully or by the user, it may 

be necessary to store the experiment data in a file. Two methods of data preserving 

are available: saving the data and exporting the data. 

Saving the data means writing it to a binary file, which cannot be read by the 

user, but which can later be retrieved by the computer. First, the number of trials in 

the experiment is written, so that the appropriate amount of memory could be 

reserved upon loading of the experiment. Then, the information about the subject is 

written, as well as about the experiment itself (e.g. on what date and what time it has 

been started etc). After this, the trial-dependent data follow: the signal samples for all 

channels, the locations of the “lines”, i.e. moments of application of the first 

stimulus, the second stimulus and the button press, as well as the relevant 

information for each trial, such as the amplitude difference upon CNV recognition, 

the linear regression slope calculation, the reaction time, whether CNV has been 

recognized in that trial and whether the S2 stimulus has been applied in that trial. 

Exporting of the data means outputting a textual representation of these data, 

which the user can later put into another program and work with, for example to 

extract some statistical information. The subject and experiment data are written out 

first, followed by numerical representation of the trial-dependent data. The actual 

signal values are not exported, since their use is primarily to offer a graphical display 

of the data. 

Loading the data follows the exact same sequence of steps as saving it, except 

that the data are read from a file, instead of being written into it. To locate the 

experiment files more easily, a Browse button has been added, which opens a 

browsing form, which enables the user to locate the files anywhere on the disk and 

load them into memory. 
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LIST OF USED ABBREVIATIONS 

 
AEP   Auditory Evoked Potentials 

BAEP   Brainstem Auditory Evoked Potentials 

BCI   Brain-Computer Interface 

BP   Bereitschaftspotential 

CNV   Contingent Negative Variation 

dB   decibel 

DC   Direct current 

DOF   Degrees of Freedom 

EEG   Electroencephalogram 

EI-HCI  Electrophysiologically Interactive Human-Computer Interfaces 

EMCG   Electromasticatiogram 

EMG   Electromyogram 

EOG   Electooculogram 

EP   Evoked potential 

ERP   Event-Related Potential 

EXG   Electroexpectogram 

fMRI   Functional Magnetic Resonance Imaging 

GUI   Graphical User Interface 

HCI   Human-Computer Interface 

Hz   hertz 

ICA   Independent Component Analysis 

ISI   Inter-stimulus interval 

ITI   Inter-trial interval 

MEG   Magnetoencephalography 

min   Minute/Minutes 

ms   millisecond 

PET   Positron Emission Tomography 

RAM   Random-Access Memory 

REM   Rapid eye movement 

RT   Reaction time 

SEP   Somatosensory Evoked Potentials 

SSVEP  Steady-State Visually Evoked Potential 

SW   Slow Wave 

TV   Television 

TOH   Towers Of Hanoi 

USB   Universal Serial Bus 

V   Volt 

VEP   Visual Evoked Potentials 

μPa   micropascal 

μV   microvolt 
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BRAIN-COMPUTER INTERFACE BASED ON 

ANTICIPATORY BRAIN POTENTIALS 
 

Dissertation Summary 
 

 

Brain-Computer Interface (BCI) is about controlling devices directly with 

brain potentials, bypassing the external motor organs such as arms or legs. It is a part 

of Human-Computer Interaction (HCI) research, which itself is a part of computer 

science. Starting from punched cards, through keyboards, mouse, multimedia, a new 

possibility now is interaction through physiological signals, including brain signals.  

The human brain generates various types of potentials, depending on the task 

considered. So far, the mental states used in BCI are the state of relaxation (alpha 

rhythm), the state of mental task, such as calculation (beta rhythm), the state of 

response to stimuli (evoked potentials), the state of intention to move (mu rhythm), 

and the state of expectation (CNV potential). The CNV potential in a BCI paradigm 

was first introduced in this work.  

Experimental research (materials and methods) in this dissertation is carried 

out using a special experimental paradigm, which is called the CNV flip-flop 

paradigm. A subject hears two auditory stimuli, S1 (warning) and S2 (imperative, to 

be reacted on) stimulus. The brain develops expectation (S2/S1) on S2, given S1. 

When the expectation produces a certain level of CNV amplitude, the computer turns 

off the S2 signal. Since there is no S2, the CNV potential disappears. The computer 

turns on the signal S2 again, and after several trials the CNV reappears. The 

paradigm generates an oscillatory process in the brain, which produces series of 

appearances and disappearances of the CNV potential. The paradigm tackles a 

difficult problem in signal processing, namely dealing with a time varying potential. 

A neural network learning algorithm to deal with this problem was used.  

The BCI experimental research is based on controlling a robotic arm using 

the CNV flip-flop paradigm. The demonstration task is the Towers of Hanoi (TOH) 

problem, well known in computer science. A set of behaviors are preprogrammed to 

move one disk at a time toward the solution of the problem. For two-disk and three-

disk TOH, three moves and seven moves are needed respectively. It was shown that 

using the CNV flip flop paradigm, a subject is able to generate series of CNV and 

noCNV events, that will reach the solution of the Towers of Hanoi problem with two 

and three disks.  

The main contribution of this work is introducing the anticipatory brain 

potentials in the BCI research and achieving control of a robot using them. Also, it is 

shown how two robotic arms, working together on the same problem (namely the 

Towers of Hanoi with three disks), can be simultaneously controlled using this 

paradigm. This is the first time that such a thing has been achieved in the world. 
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SUČELJE MOZGA S RAČUNALOM ZASNOVANO 

NA ANTICIPACIJSKIM POTENCIJALIMA 

MOZGA 
 

Sažetak disertacije 
 

 

Sučelje mozga s računalom (Brain-Computer Interface – BCI) je oblast 

istraživanja u kojoj se uređaji upravljaju izravno s pomoću potencijala mozga, 

zaobilazeći vanjske motoričke organe (ruke i noge). Ovo područje je dio šireg 

područja istraživanja interakcije čovjeka s računalom (Human-Computer Interaction 

– HCI), koje je samo po sebi dio računarskih i komunikacijskih tehnologija.  

Ljudski mozak generira različite vrste potencijala, ovisno o zadatku. Za sada, 

mentalna stanja koja se koriste u BCI-ju su stanje opuštenosti (alfa ritam), stanje 

mentalne angažiranosti (beta ritam), stanje odgovora na stimuluse (evocirani 

potencijali), stanje namjere za pokret (mu ritam) i stanje očekivanja (CNV 

potencijal). CNV potencijal u BCI paradigmi je predmet istraživanja prvi put uveden 

u ovom radu.  

Eksperimentalno istraživanje (materijali i metode) u ovoj disertaciji izvedeno 

je s pomoću eksperimentalne paradigme nazvane CNV flip-flop paradigma.  

Ispitanik prima dva zvučna podražaja S1 (upozoravajući) i S2 (imperativni, na koji 

treba reagirati). Mozak razvija potencijale očekivanja (S2/S1) na S2, nakon zadatog 

S1. Kada ti potencijali pređu određenu razinu CNV amplitude, računalo isključi 

stimulus S2. Budući da više nema S2, CNV potencijal nestaje. Računalo tada ponovo 

uključuje S2 i, nakon nekoliko pokusa, CNV se ponovo pojavljuje. Paradigma 

izaziva oscilatorni proces u mozgu, koji proizvodi niz pojavljivanja i gubljenja CNV 

potencijala. Paradigma se suočava s problemom obradbe vremenski promjenljivih 

signala. U radu je za obradbu signala kognitivne aktivnosti mozga korištena metoda 

zasnovana na neuronskim mrežama. 

Eksperimentalno istraživanje BCI je zasnovano na upravljanju robotske ruke 

pomoću CNV flip-flop paradigme. Prikazano je rješavanje problema Hanojskih 

tornjeva (Towers of Hanoi – TOH), dobro poznatog u računarstvu. Skup ponašanja 

robota je preprogramiran, kako bi se izvjela micanja diskova u tornjevima prema 

pravilima dolazeći tako do rješenja problema. Za probleme tornjeva sa dva i tri diska 

potrebna su odgovarajuće tri i sedam micanja. Pokazano je da je, pomoću CNV flip-

flop paradigme, ispitanik u stanju proizvesti niz pojavljivanja i gubljenja CNV 

potencijala, koji donose rješenje problema.  

Glavni doprinos rada je uvođenje anticipacijskih potencijala mozga u BCI 

istraživanja i izvedbu upravljanja robota pomoću njih. Također je pokazano da je 

istim principom, s pomoću anticipacijskih potencijala mozga, moguće upravljati i s 

dvije robotske ruke (dva uređaja istovremeno).  
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brojne radove i dobio međunarodna priznanja za svoj rad. 
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