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PREDGOVOR I ZAHVALA

Kako bih dosao do cilja, a to je izrada ove disertacije, moji roboti i ja morali smo
zaobi¢i mnoge prepreke, kako one geometrijske u radnom prostoru robota, tako i
one u stvarnom zivotu, mnogo teze savladive. Ponekad su se prepreke cinile toliko
visoke da je cilj izgledao nedostizan. Strah od nepoznatog davao mi je osjec¢aj da
ako 1 uspijem zaobiéi brdo ispred sebe, mozda me iza ceka jos$ veéa planina.

Iako sam se u disertaciji odlucio za deterministicku metodu planiranja gi-
banja do cilja, pisanje ove disertacije bilo je mnogo manje deterministicko i u
mnogocemu sli¢nije planiranju gibanja jednom mnogo manje deterministickom
metodom — metodom polja potencijala. Pritom sam upadao u “klopke” lokalnog
minimuma svojstvene upravo toj metodi, ¢esto se iz njih izvlacivsi upravo kao sto
je spomenuto u odlomku o poljima potencijala: slu¢ajnim hodom — pristupom
koji ne garantira mnogo vise nego da ¢ete se u nekom konacnom vremenu mozda
izvuéi iz klopke. Pritom zahvaljujem svim svojim “atraktivnim potencijalima”
koji su me vukli ka cilju, a ponajvise svojem mentoru prof. Ivanu Petrovi¢u koji
mi je dao mnogo korisnih savjeta. No, po svemu sude¢i, najtezi lokalni minimum
kojeg je trebalo svladati bio je upravo u meni samom.

Posebno zahvaljujem svojoj obitelji na potpori. Takoder zahvaljujem svojim
kolegama na mnogo lijepih trenutaka provedenih zajedno. Zahvaljujem studenti-
ma koji su implementirali neke od algoritama u disertaciji i svima ostalima za koje
nemam mjesta da ih pojedina¢no navedem, a koji su na bilo koji nacin doprinijeli
nastanku ove disertacije.

Potrebno je jos spomenuti da se ¢itajuéi ovu disertaciju ne stjece pravi dojam
kako je sve to nastajalo. A sve je inspirirano robotskim nogometom te je gotovo
svaki algoritam opisan u disertaciji testiran na platformi za robotski nogomet.
Pritom mi cilj nije bio izgraditi sustav koji ¢e raditi samo za robotski nogomet,
ve¢ za ¢im Siri spektar aplikacija. Tako se doslo na ideju da bi razvijeni algoritmi
bili idealni za primjenu u inteligentnim prostorima, koji svojom mrezom raspo-
dijeljenih senzora pruzaju infrastrukturu sli¢cnu onoj koja se koristi u robotskom
nogometu. Kako se u praksi uvijek mora naciniti kompromis izmedu opcéenitosti i



usmjerenosti ka specificnoj primjeni, nastojanje da se algoritme ucini fleksibilnim
i univerzalnijim, kao i ¢itav niz razli¢itih znanstvenih podruc¢ja u koja je treba-
lo savladati kako bi se dobio funkcionalan sustav, znacajno je produljilo razvoj
cijelog sustava.

Misel Brezak,

Pregrada, 9. lipnja 2010.
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CHAPTER 1

Introduction

1.1 Motivation and Scope

Recent advances in field of sensor networks, mobile robotics and artificial intel-
ligence enable us to realize today what previously could be seen only in science
fiction (SF) movies: Spaces do not interact with the humans only passively, but
can also support humans in a true physical way. The possibilities are numer-
ous, e.g. load delivery, visitor guidance etc. Such a space is called an Intelligent
Space (iSpace). To enable advanced services, iSpace must be capable of monitor-
ing events in it, communicating with objects in it, making decisions in order to
provide services, and act based on these decisions.

In general case an iSpace consists of sensors, processors (computers), actuators
and communication devices. The sensors (e.g. cameras, microphones, ultrasound
or laser beacons) have the role of identification and tracking the objects in the
space and taking orders from space users. The iSpace interacts with objects in
it using actuators (e.g. mobile robots) that provide various advanced services
to the space users. The processors act as the brain of the system, controlling
the actuators with the purpose of performing various tasks, using information
obtained from sensors as a feedback. Actuators, processors and sensors, connected
with communication devices, together make a distributed system, which is the
core of the intelligent space.

As the whole space is intelligent, it is able to provide various services to its
clients (i.e. users), where clients are primarily humans. However, any other device
can be a client of the intelligent space. For example, robots are utilized to provide
physical services to humans as physical agents, but the robot as well as the human
is supported by Intelligent Space if necessary. E.g. if a robot is lacking necessary
sensors to be able to navigate in the space, it is treated as a client, and the
required information is provided to the robot by the intelligent space.

Making a space intelligent is especially useful when multiple mobile robots
navigate within the same structured space (e.g. a flat, warehouse, airport, super-
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market, etc.). In this case it may be reasonable to install sensors and computers,
that are commonly installed in the robot, to the space instead. In this way the
system price can be significantly reduced, because robots are enabled to contain
only cheap sensors for basic collision avoidance (e.g. bumpers and sonars). The
system performances can be increased, too, because more powerful computer sys-
tems can be used resulting in possible higher sampling rate and thus lower delay
and reaction time and higher speeds of the robots.

Moreover, this approach can have multiple advantages regarding three most
common problems that arise in mobile robots navigation: robot localization,
map building and robot motion planning. First, robot localization gets simpler
because sensors can determine robot pose directly in global coordinate frame.
Consequently, the environment map is no more required for robot localization.
Second, the map building process gets also simpler because the robot location
is always known and there is no problem of simultaneous localization and map
building. Besides, distributed sensors, as well as robot onboard sensors, enable
easy and continuous inclusion of new objects in the environment map, so the map
is always up-to-date. Third, robot motion planning is also much easier and more
reliable, since the actual picture of the whole space and all obstacles in it is always
available. Moreover, it is possible to predict the changes in the space and crate a
predictive map, which can then be used for robot optimal path planning in spite
of moving obstacles. The most appropriate sensors to be installed in iSpace and
used for navigation of multiple mobile robots in it are cameras. Such systems are
known as global vision systems.

The research of intelligent spaces is prevalently multidisciplinary—it borrows
many ideas from other research fields, e.g. sensor fields, computer vision, mobile
robotics. Under so broad scale of possible research directions, the focus of this
thesis is set to developing the capability of the space to fully utilize mobile robots,
with the emphasis on development of low-level algorithms that can benefit by
using intelligent space advantages, such as precise localization and mapping and
increased computational power.

To actually provide useful services using mobile robots as agents, apart from
other tasks, intelligent space must be able to locate the robots, plan their motion,
and control them in order to execute the planned motion. Consequently, a re-
search is conducted in two directions. First, a method for fast and precise mobile
robot localization using distributed cameras is developed. Second, a fast and flex-
ible robot motion planning method appropriate for intelligent space application is
developed. Here the idea was to maximally utilize intelligent space’s potential of
accurate robot localization in order to achieve precise and deterministic planning
or robot motion. Besides, the developed algorithms are organized and designed
with maximum modularity in mind, which is the reason why the developed mo-
tion planning algorithms do not explicitly rely on distributed architecture of the
iSpace, but can be used generally for navigation of autonomous mobile robots.
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1.2 Thesis Overview

The rest of the thesis is organized into 7 chapters and a conclusion as follows.

Chapter 2

An overview of the Intelligent Space concept is given. The most important exam-
ples of the similar researches are given, followed by description of how to utilize
mobile robots as agents of the intelligent space. A description of sensors appro-
priate for the intended application is given, as well as some applications in the
intelligent spaces.

Chapter

A novel algorithm that enables precise and accurate robot localization within
intelligent spaces using global vision is described. An overview of the physical
system design used to build global vision system is given. Vision algorithms
for robot detection and tracking are presented. Finally, a detailed experimental
analysis of the developed algorithms is conducted.

Chapter [4]

In this chapter a general motion planning problem is defined, so that it serves
as an introduction to later chapters which provide more details about the topic.
The direct and decoupled approaches to motion planning are introduced. Finally,
selection of the methods used in this thesis is discussed.

Chapter

Path planning while avoiding obstacles has long time been the main goal within
motion planning research community, while in this thesis it is part of the first stage
of the overall motion planning algorithm. Therefore, this chapter is concerned
with methods used to plan obstacle-free paths between two robot configurations.
A novel path-planning algorithm is introduced that enables fast path-replanning.

Chapter

Common path-planning algorithms usually give obstacles-free path, but with no
or very little concern about path feasibility or optimality. Thus, it is described
how to transform a path so that the robot can track it faster. Smoothing algo-
rithm is given that can transform a path that consists of straight line segments to
continuous curvature path, which is essential for fast robot motion. The algorithm
is intended for differential drive robots and uses clothoid curves as primitives for
path smoothing, which have inherent property that their curvature changes pro-
portionally with distance traveled along the curve.
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Chapter [7]

This chapter is concerned with problem of finding an optimal velocity profile
along the planned path so that the path is traversed in shortest time. A dynamic
model of the differential drive robot is developed and used to derive actuator
limits model that is required by time-optimal trajectory planning.

Chapter [§

Control algorithms for generating commands that force the robot to track the
planned trajectory are described. Three types of trajectory tracking controllers
are described and experimentally compared.

Chapter

This chapter brings conclusions and summary of the scientific contributions. Some
ideas for future work are given as well.



CHAPTER 2

Mobile Robots in Intelligent Spaces

This chapter brings an overview of the Intelligent Space concept. The most
important examples of the similar researches are given, followed by description of
how to utilize mobile robots as agents of the intelligent space. A description of
sensors appropriate for the intended application is given, as well as description of
some applications in the intelligent spaces.

2.1 Intelligent Spaces

Although the idea of making spaces intelligent in order to better suit human users
is very old, systematic researches are relatively new and can be tracked back to
1990’s. The concept was initially called ubiquitous computing described by Weiser
[155], where people should be able to use computational resources everywhere in
the environment. This work introduced new infrastructure and paradigms of in-
teraction inspired by need of widespread access to information and computational
capabilities. Wang and Garlan [I53] introduced later task-driven computing which
enables users to interact with computer systems in terms of high-level tasks. In
this way an user does not need to learn low-level configuration details, which
results with reduced attention and knowledge requirements of mobile users in a
pervasive computing environment.

With the recognition and awareness of people in environments, the work on
ubiquitous computing later evolved to research of ambient intelligence. Here
the focus was moved toward intelligent environment research in order to provide
human-oriented services. Several famous corporation laboratories conducted their
own research devoted to various related fields. So the FX Palo Alto laboratory
of Xerox started Smart Media Space project [39], where in network-based envi-
ronments media interacts with the environment to promote knowledge sharing.
In the project called EasyLiving Technologies [28] at Microsoft Research human
tracking technology was employed in order to guess the intent of users in the space
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Intelligent Space

s e @
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Communication network

Figure 2.1. The Intelligent Space

and automate everyday tasks. In the Interactive Workspace Project [66] of HP
the applications of ubiquitous embedded sensors and information displays were
investigated. In yet another work, the Visualization Space research [94] at IBM,
a visual computing system was introduced and used as a testbed for a deviceless
multimodal user interface.

An important research on ambient intelligence was conducted at MIT, where
the concepts such as Smart Room, Smart Space, and Intelligent Room were in-
troduced. The research is now active under name Oxygen which aims at the
development of intelligent environments based on human-centered computation.
The goal is to make the computation “freely available everywhere, like batteries
and power sockets, or oxygen in the air we breathe” [49].

With similar motivation, Hashimoto et al. introduced in 1996 a concept called
Intelligent Space (iSpace) (see e.g. [0, [56]). The novelty of the Intelligent Spaces
over existing concepts was incorporation of physical services for humans, as op-
posed to only informational services. To achieve this, the space could be equipped
with a range of actuated devices such as mobile robots. The overall scheme of the
intelligent space is shown in Figure 2.1 To accomplish its task, the intelligent
space must contain the following:

e distributed sensors;
e computers;
e actuators;
e communication network.

The main role of sensors is to enable perception of what is happening in the



2.1. Intelligent Spaces 7

space. Thus sensors provide various information to the control logic of the intel-
ligent space, and implicitly also to the user (through information services). The
obtained information can give answers to questions such as who the current user
is, what his intentions and habits are, what commands does he give to the space,
etc. The sensors can also measure various environmental parameters if necessary
(temperature, humidity, light). Typically, multiple sensors are distributed so that
the whole space can be perceived. Cameras, microphone arrays and ultrasound
beacons are mostly used nowadays.

The computers build a brain of the space and run various software components
with the main goal of providing services. There are typically three types of tasks
performed by the software [91].

1. Sensor and actuator servers. Those are specialized modules for the data
preprocessing in order to derive relevant information from the sensors and
offer this information on the network.

2. Intermediate processing. Those modules connect as clients to one or more
sensor servers and process their data in order to perform tasks such as sensor
fusion, temporal integration and model building. The intermediate results
are again offered on the network.

3. Application processes. Here the actual applications of the space are imple-
mented. Those can include generation of information understandable to the
user or control of mobile robots using information obtained from sensors as

a feedback.

The software components can be assigned to multiple distributed computers
connected by the network, or onboard computers embedded in robots, and an
actual distribution is application-dependent. Typically, the computers that run
sensor servers are incorporated together with sensor devices and communication
circuitry. In this case they are referred as Distributed Intelligent Network Devices.

Specific tasks are accomplished by utilizing actuators (sometimes called agents).
In order to be able to provide informational services, the space uses passive de-
vices such as monitors, pointing devices, projectors, speakers and other interfaces.
However, to be able to provide physical support active devices must be utilized,
such as embedded motors, active switches, robot arms, and especially mobile
robots.

Finally, the communication network is used to connect sensors, computers
and actuators. Multiple types of networking technologies can be employed and
combined depending on type of communication required. e.g. LAN networks can
be used for connecting computer workstations, wireless LAN for communication
with mobile robots, and CAN networks for real-time sensor communication. In
general, the intelligent space will benefit greatly with the faster network.
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2.2 Introducing Mobile Robots

Due to their mobility, the mobile robots are the most appropriate physical agents
in the intelligent spaces. So mobile robots can be used for various services such
as carrying, delivering, cleaning, guiding. Another possible application of mobile
robots is the interaction with humans (see e.g. [137]).

There are mutual benefits that the intelligent space and mobile robots can
provide each other. Through interaction with the intelligent space, the space can
now be employed as an powerful interpreter between human and robot, in this
way avoiding the necessity of implementing the human interface on each robot. A
human operator can in this way control many systems with only a single human
interface. The space also plans high-level actions to be executed by robots in
order to provide useful services.

Regarding robot control, the system performances can be increased because
more powerful computer systems installed in space can be used resulting in possi-
ble higher sampling rate and thus lower delay and reaction time and higher speeds
of the robots. Moreover, intelligent space integration can have multiple benefits
regarding three most common problems that arise in mobile robots navigation:
robot localization, map building and robot motion planning.

1. Robot localization gets simpler because distributed sensors can determine
robot pose directly in global coordinate frame, and consequently the envi-
ronment map is no more required for robot localization purpose.

2. The map building process (map is required for robot motion planning) gets
also simpler because the robot location is always known and consequently
there is no problem of simultaneous localization and map building.

3. Robot motion planning becomes also easier and more reliable, since the
actual picture of the whole space and all obstacles in it is always available.
For optimal planning of robot motion in spite of moving obstacles, it is
beneficial to predict the changes in the space and crate a predictive map,
which again is being made possible by the intelligent space.

2.3 Sensing in Intelligent Spaces

Sensors in the intelligent space can be divided to distributed (at fixed locations in
the space) and onboard (embedded in the mobile robots). Both have advantages
that make them particularly appropriate for certain applications. So distributed
sensors are better for mobile robot localization, and onboard sensors enable reli-
able mapping of the environment. Therefore it is beneficial to use both types of
sensors if possible. Systems of distributed sensors are usually referred as tracking
systems and localization is in this case referred as tracking (e.g. human tracking,
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Table 2.1. Comparison of different indoor sensors.

METHOD ADVANTAGE LIMITATION MOUNT
Cameras Cheap; FEasy to Hard to achieve Distrib. or on-
install robustness board
Range cameras  Expensive Low resolution Distrib. or on-
board
Sonars Cheap Occlusions; Distrib. or on-
Low angular board
resolution
Laser range find- Accurate; Rela- Occlusions Distrib. or on-
ers tively low price board
Ultrasound, in- Accurate Rather expen- Distrib.; Objects
door GPS, etc. sive must wear tags
RFID Cheap Not accurate Distrib.; Objects

must wear tags

Inertial / En- Direct measure- Accumulating Onboard
coders ment of speed, error

orientation
Microphone ar- Cheap Not accurate Distrib. or on-
rays board

robot tracking). The other special case is when only onboard sensors are used to
estimate robot’s position—this is often called self-localization.

In this thesis distributed cameras are used for robot tracking, but a whole
range of other sensors can be combined for other purposes, such as mapping or
human tracking. Detailed discussion about sensing in intelligent spaces and a
fusion of distributed and onboard sensors can be found in [27], and here only a
short overview is given. Commonly used sensors for applications in intelligent
spaces and their characteristics are given in Table 2.1l and further described in
the sequel.

Cameras

Of all sensors, cameras provide the greatest amount of data. With appropriate
computer vision techniques many useful information can be extracted, such as
color or shape. However, this could easily turn into a disadvantage: it is difficult
to robustly process so many information and high processing power is required.
Problems come from the complexity of real environments, effects of changing illu-
mination (the color looks different under different illumination), small resolution
if cameras are too far away, the need for accurate calibration, etc.

Nevertheless, specialized algorithms for tracking particular objects (e.g. robots)
using artificial landmarks can circumference this problem. In this way precise and
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robust robot tracking can be obtained as described in Chapter Bl Cameras are
also appropriate for human tracking in intelligent spaces [6]. Special camera sys-
tems, such as infrared cameras, can be beneficial in some circumstances. e.g. with
infrared cameras human tracking can become a rather easy job. Different aspects
of visual tracking of objects are described by Hu et al. [60].

Although cameras are relatively cheap today, additional costs come from re-
quirements for appropriate image processing hardware and adequate lighting, and
low-cost cameras may not be the best choice if one wants to achieve robust and
precise tracking. Special types of camera, such as infrared cameras, are very
expensive compared to common cameras.

Range Cameras

As the image obtained from camera has only two dimensions, to obtain a full
3D observation distance information is required (so called range imaging). This
may be achieved by combining information from two (stereo cameras) or more
cameras. However this technique is very computationally intensive as complex
correlation algorithms have to be implemented and it is hard to achieve acceptable
robustness. Another possibility is to combine camera and an additional range
sensor, such as laser range finder.

Recently, with advance of semiconductor technology time-of-flight (TOF) cam-
eras [I58] have become available. Their principle is similar to that of laser range
finders but with the advantage that whole scene is captured at once. Those cam-
eras have illumination unit based on laser or LED array, that emits pulsed light
which is normally in infrared spectrum range to make the illumination unobtru-
sive. The light is reflected from objects and picked up by the camera to calculate
the distances to objects by measuring time-of-flight.

The advantage of TOF cameras are their compactness (as opposed to stereo
cameras) and they have no mechanical parts (in contrast to laser range finders).
Moreover, it is very easy to detect objects based on provided distance information.
Currently, these cameras are expensive and give rather noisy measurements. How-
ever, this is expected to improve in the future, so that many researchers agree that
time-of-flight cameras will become the dominant sensors in the field of robotics,
just as laser range finders are nowadays.

Sonars

Sonar (“SOund NAvigation and Ranging”) measures propagation time of ultra-
sound wave from sensor to some object or surface in the space, and back. A
sensor contains both ultrasound transmitter and receiver. Knowing the speed of
sound, the distance to an object can be computed.

It can be used both as onboard or distributed sensor. However, sonars are
rarely used as distributed sensors, but ultrasound based trackers are used instead
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(they use different arrangement of transmitter and receiver, as described later).
Sonars are cheap, relatively accurate and capable of detecting most materials
typically present in indoor spaces. Problems arise when specular, weak or mul-
tiple reflections occur. Also, sonars have bad angular resolution and short range
(usually 3 m) and limitations connected with low speed of sound. e.g. to mea-
sure a distance of 3 m, a time of 17.6 ms is required. Multiple circularly-placed
onboard sonars are usually mounted on the robot. With this arrangement a 2-D
distance-scan of the 360° space around the robot is obtained.

Laser range finders

Laser range finders (LRF; sometimes also called LIDAR — Laser Imaging De-
tection and Ranging) are devices that determine the distance to an object by
measuring time-of-flight of the reflected laser rays. LRF-s achieve significantly
finer angular resolution and shorter measurement time compared to sonars, but
have problem detecting opaque surfaces and mirrors. Most common types contain
mechanical system that rotates the sensor resulting with a 2-D distance cross-scan
of the space.

Due to their relatively low price, LRF-s are today frequently used as onboard
sensors in mobile robotics, especially for applications such as self-localization,
simultaneous localization and mapping (SLAM), and sometimes for detection
and tracking of humans in the vicinity of robots. Distributed LRF-s are seldom
found in literature, but Brsc¢i¢ [27] has found them useful in intelligent spaces
for human and robot tracking. Distributed LRF-s can also be used for mapping,
although onboard LRF-s are much better for this purpose.

Ultrasound and Indoor GPS

Ultrasound trackers work in different way than sonars. Namely, multiple trans-
mitters (or receivers) are mounted into space at known locations, while tracked
object wears a receiver (or transmitter). Some examples of tracking systems based
on ultrasound are Active Bat, Cricket [59] and the Zone Positioning System [114].
Apart from ultrasound, other signal types can be employed, such as radio waves
or light. These systems are sometimes called “indoor GPS” inspired by their
similarity to the GPS system. A typical example are the so-called “pseudolites”
[74], which use a signal similar to the GPS signal. In this way the same GPS
receiver can be used for both outside and inside localization.

The advantages of these systems are relatively high accuracy, especially for
systems based on electromagnetic waves, and low computational requirements for
sensor data processing. The drawbacks are rather high price (usually proportional
with accuracy), need for installation of multiple devices in the space and cum-
bersome calibration process. Furthermore, in human-tracking applications users
have to carry tags in order to be tracked which makes this method impractical.
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Radio-Frequency Identification (RFID) Systems

Recently, radio frequency identification (RFID) devices are being extensively used
for various identification purposes. Such identification is based on RFID tag
device applied to or incorporated into an object or person for the purpose of
identification and tracking using radio waves. RFID tags are very cheap and
small, so they are becoming increasingly prevalent in our everyday life [I57], e.g.
for product tracking, transportation and logistics, human identification, but they
are also utilized for localization purposes [76].

It must be emphasized that RFID tags are actually not sensors, but more
like landmarks for RFID readers that achieve localization only within a certain
area, whereas accurate position cannot be determined. This is what makes RFID
tags inappropriate for applications such as mobile robot control. Nevertheless,
easy installation and small price makes them attractive, so that their increased
application combined with other tracking methods is expected in the future.

Encoders, Inertial Measurement Units

Wheel encoders and inertial measurement units, such as accelerometers and gyro-
scopes, are commonly used as auxiliary sensors in robot localization. The position
estimation based on these sensors is called dead reckoning [17]. Usually some kind
of integration of sensor data must be used to estimate position, or more precisely,
relative change of the position. Because of that dead reckoning suffers of error
accumulation over time, caused e.g. by measurement noise, wheel slippage, inac-
curate robot model etc. Therefore only a short-term estimation can be achieved
reliably, so that these sensors are appropriate for interpolation between measure-
ments from other, usually slower sensors. Of course, encoders and inertial sensors
can only be used in onboard option.

Microphone Arrays

Using microphone array a position of the sound source can be estimated by record-
ing the sound with spatially separated microphones. Most common methods are
based on measuring the phase shift between signals acquired by the microphones,
which in turn is mostly used for localization of a human speaker. Microphone
array can be mounted both distributed and onboard. Distributed microphone
array can also be used for localization of the robot or other sound sources.

The problem with sound-based localization is that it is not easy to determine
location when multiple sources of sound are present, and obtained location may
not be very accurate due to sound reflection, noise, or other disturbances. How-
ever, the advantages are low price and possibility to use microphones for voice
communication with the robot or the intelligent space.
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2.3.1 Mobile Robot Localization

The most appropriate sensors to be installed in the space and used for robot
tracking are cameras, resulting with so called global vision systems [129] 24].
With use of advanced image processing techniques robot pose can be determined
with much higher precision than by relying solely on robot’s onboard sensors.
As general visual-based pattern recognition suffers from weak robustness, usually
some kind of color-based markers placed on the robot body are utilized. Such an
algorithm that enables fast and precise localization of multiple mobile robots is
developed in this work and is described in details in Chapter [3l

Besides visual tracking, in our lab several other localization solutions have
been implemented. Regarding distributed sensors, a pose tracking algorithm has
been developed that ensures accurate mobile robot localization based on active
radiofrequency and ultrasound beacons and passive listeners (Cricket system), to
support pervasive indoor location determination [80]. Pose estimation is done
by Extended Kalman Filter with variable sampling time because of stochastic
nature of measurement arrival times. Experimental verification yielded poses
error approx. 14+2.5 cm and 1+£2 °.

On the other side, self-localization and SLAM algorithms are needed when
certain areas are not covered by the distributed sensors. Here we take the clas-
sical approach to model-based localization, which consists of matching the local
representation of the environment built from sensor information with the global
model map. Our algorithm for robot pose tracking is based on the Unscented
Kalman Filter (UKF), which is computationally simple and provides low uncer-
tainty of the pose [64]. Since UKF cannot solve the problem of global localization
and the problem of kidnapped robots, a multicriteria localization algorithm based
on particle filter has also been developed. Furthermore, our SLAM solution is
based on a view-based representation of the environment and the current and key
past robot poses estimation by using the Extended Information Filter (EIF) [79].

If multiple sensors are utilized, there appears a problem of combining multiple
sensor measurements in order to obtain the best estimate. Onboard sensor fusion
is well covered in literature, but fusion of both onboard and distributed sensors is
yet an open area of research. An approach to this problem is given in [27], where
use of Covariance Intersection method is proposed and several fusion architectures
are introduced.

2.3.2 Human Tracking

To support humans in the space, the iSpace tracks humans. Various methods
exist for human tracking, and most are based on background subtraction [65].
Afterwards, features of a human such as the head, hands, feet, eyes, etc., can be
located. Using the images of several cameras, the 3D position of the human can
be obtained.
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In our lab a human tracking algorithm was implemented which is based on
background substraction, motion detection and region and shape tracking [109].
It is still under development as the problems with false detections caused by
shadows still exist.

Besides that, a general probabilistic algorithm for multiple moving objects
tracking using onboard laser range finder is developed [67], that can also be used
to specifically track humans in combination with other sensors.

Finally, we have been working on the auditory system for mobile robots, which
detects and tracks the sound source [100], but also can recognize who is speaking
and establish a dialog with him /her.

2.4 Mapping in Intelligent Spaces

A map of the environment is usually required for fast and safe navigation of a
mobile robot. In this way a map serves as an abstraction level between sensors
and motion planning modules. In intelligent spaces, distributed sensors enable
easy and continuous inclusion of new objects in the environment map, so the map
is always up-to-date. The space can then provide information which the robot can
lack because it is missing adequate sensors. This includes obstacles not visible to
robot, either because of occlusion or limited sensor range. Humans can also be
tracked by the space and included in the map.

However, using only distributed sensors for mapping may not be sufficient.
e.g. in case of global vision some objects may not be detected due to occlusion
or limited sensor range and complex image processing is required in order to
differentiate objects in the space from image background. Besides that, it is
hard to calibrate the distributed sensors completely accurately so some residual
error always exists and sensors usually have a systematic error in the distance
measurement which cannot be corrected by taking further measurements since
the measurements of static sensors are not informative (the background of the
sensor scan does not change no matter how many scans are taken and further
measurements give no additional information).

Nevertheless, intelligent spaces enable significant simplification of the mapping
process when both distributed and onboard sensors are used [27]. Robot onboard
sensors can provide information about distance to nearest obstacles which is re-
quired for map building, and is not easy to obtain by using distributed sensors
only. e.g. cameras installed into space and robots equipped with laser range sen-
sors is a very powerful combination that enables both, efficient robot localization
and mapping of the space. In this way robot onboard sensors bring benefits not
only to the robot, but also to the whole space. Robot itself becomes a mobile
sensor of the intelligent space and informations of both distributed and onboard
sensors can be combined together.

Currently in our lab a complete solution for exploration and mapping of un-
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known arbitrary polygonal environments is developed, which assumes an onboard
range sensor of finite angular resolution and thus provides sampled version of the
visibility polygon instead of imposing further restrictions on the environment [4].

2.5 Motion Planning in Intelligent Spaces

The tasks of a mobile robot motion planning system are finding the path and
guiding the robot to the goal position given by the user or by superimposed task
planning and scheduling controller. The majority of existing planning algorithms
produce a graph of possible paths to the goal and then a global path is found by
a graph search algorithm. The path produced by such an algorithm is a straight
line path with sharp turns which cannot be used directly due to robot’s kinematic
and dynamic constraints. Therefore a local planner is used that locally modifies
the planned path at the same time ensuring obstacle avoidance by incorporating
reactive behavior using some kind of sensor feedback. Such solution is also de-
veloped in our lab, where D* algorithm is used for path planning and dynamic
window algorithm is used as local planner [132].

Due to use of local short-term planning, this approach cannot ensure long-term
prediction of robot movement which may be too restrictive in some applications
(e.g. coordinated multi-robot planning). However, in intelligent spaces a more
deterministic behavior can be achieved, which is the goal of the motion-planning
algorithm developed in this thesis.

2.6 High-level Applications

The ultimate goal of the intelligent space project is to accomplish an environment
that comprehends human intentions and satisfies them. Such a system is hard
to achieve, since a huge number of functions would need to be prepared, and
human-like intelligence is required. Even though such a complete system cannot
be achieved immediately, it is believed that a useful system can be achieved with
current technology by proper system integration [56]. In this way, the intelligent
spaces are expected to spread from laboratories, where they currently reside, to
our homes and offices.

Some of the so far developed higher level applications in intelligent spaces
include map building by looking at people [6], which uses the fact that mobile
robots can navigate robustly without a precise geometrical model if some other
way of localization is given and a topological map is supplied. This topological
map can be build simply by looking at the movements of people in the room.

Next example is compressed human motion video and identification, where
the intelligent space recognizes what a human is doing and separates the real
video data into index images and actions with a time stamp. In this way a
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compressed human motion is obtained. Moreover, a human recognition function
can be achieved by using visual information.

Another examples are mobile robot control for following a human [65] and
internal state inference by motion tracking, where the space can detect if the
human is e.g. confused with user interface by analyzing movements of her hands
and head.

Although intelligent spaces are primarily oriented toward human servicing,
it must be emphasized that not only human can be a client of the intelligent
space—robot can be a client, too. In this way the space can be configured to
provide services solely to robots. This concept is useful in applications such as
delivery in factories or entertainment platforms such as robot soccer.



CHAPTER 3

Robot Localization Using Global
Vision

This chapter presents a new global vision system for tracking of multiple mobile
robots. To the best knowledge of the authors it outperforms all existing global vi-
sion systems with respect to measurement precision and accuracy, high speed and
real time operation and reliable tracking of large (theoretically unlimited) number
of robots under light intensity changes. The originality of the proposed system lies
mainly in specially designed robot marks and robots’ poses measuring directly in
Bayer format image delivered by the camera. These two measures enable robust
pose estimation of the robots with subpixel precision, while the significant simpli-
fication of the image processing algorithms ensures tracking of many robots with
very high framerate. With algorithms running on a 3 GHz Athlon 64 processor
65 robots can be tracked at 80 fps. Moreover, in order to perform a thorough
analysis of the system performances related to defined requirements, we propose
a new experimental procedure that can serve as a benchmark for evaluation of
other systems for the same purpose.

This chapter has been previously published as: M. Brezak, I. Petrovi¢ and
E. Ivanjko. Robust and accurate global vision system for real time tracking of
multiple mobile robots. Robotics and Autonomous Systems, 56:213-230, 2008 [24].
The early versions of the work have appeared as [20), 84, 26], while the extended
abstract is published in [21I]. The application of the algorithm for mobile robot
odometry calibration is described in [63].

3.1 Introduction
A problem of mobile robot navigation is commonly solved using autonomous
concept where all necessary sensors and computers are on-board. However, when

multiple mobile robots navigate within the same structured space (e.g. a flat,
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warehouse, airport, supermarket, etc.) it may be reasonable to install sensors
and computers in the space instead. In this way the system price can be signifi-
cantly reduced, because robots are enabled to contain only cheap sensors for basic
collision avoidance (e.g. bumpers and sonars), and also the system performances
can be increased. The most appropriate sensors to be installed in a space and
used for navigation of multiple mobile robots in it are cameras. Such systems are
known as global vision systems.

The main task of a global vision system is first to detect robots in the image,
and then to track their poses in the image. In order to be applicable such a
system has to meet the following requirements:

(i) it must ensure high tracking accuracy and precision;

(ii) it must operate with high framerate in order to enable real time tracking
of fast-moving robots, so computational complexity of the image processing
algorithms must be as low as possible;

(iii) it must have ability to track large number of robots using images from one
or more cameras, and finally

(iv) it must be highly robust to light intensity changes.

Therefore, one must carefully design the vision system and address a number
of problems, concerning both physical system design, such as camera and hard-
ware elements selection, artificial landmarks design etc., and software design, such
as which visual cues to use for robot detection and tracking, which image process-
ing algorithms to employ, etc. There are a number of existing approaches tackling
those problems. For example, a global vision system with active cameras is used
in [148] and with omnidirectional cameras in [108]. These two approaches are not
suited for practical use due to high computational complexity and low tracking
accuracy. Other attempts are based on fixed cameras and they have been mainly
concerned with global vision intended for robot soccer. For example, in [85] an
example of global vision system designed for soccer robots is described, but with
limitation to small number of robots that algorithm can track, and with consider-
able computational complexity since the algorithm always makes global search of
the image. In [139] local image search is used, but robot pose measuring is based
only on color marks which cannot guarantee high measuring accuracy without
using expensive cameras that do not require color interpolation. None of men-
tioned works specifically addresses the problems of precision and accuracy. In [31]
a system is presented that can accurately track a broad class of robot patterns,
but it still relies on color information only so that there remain possibilities for
further improvements. Some more recent papers are especially concerned with
problems of camera distortion and non-uniform illumination, for example [80],
[45] and [54]. However, the assumptions that are made in these works make them
applicable only in robot soccer applications.
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In this work a new global vision system that fulfills all of the above enlisted
requirements is proposed. To the best knowledge of the authors the proposed
system outperforms all existing global vision systems with respect to at least
first three out of four enlisted requirements. The originality of the proposed
system lies mainly in specially designed robot marks and robots’ poses measuring
directly in Bayer format image. These two measures enable robust pose estimation
of the robots with subpixel precision and significant simplification of the image
processing algorithms ensuring many robots tracking with very high framerate.
Moreover, in order to perform a thorough analysis of the system performances
related to defined requirements, a new experimental procedure that can serve as
a benchmark for evaluation of other systems of the same purpose is proposed.

3.2 Physical System Design

The system consists of multiple mobile robots moving in the area supervised by
one or multiple distributed cameras fixed above the robots, which track robots’
poses, and one or multiple distributed computers connected via a high speed
communication bus, which execute image processing algorithms as well as decision
making and robot control algorithms (Figure[3.1]). Behavior of the whole system is
highly dependent on the performances of the subsystem for robots’ poses tracking,
which are determined not only by the vision algorithm performances but also by
the characteristics of used cameras and marks placed on the robots for their
detection and tracking. While vision algorithm is described in the next section,
camera selection and calibration as well as robot marks selection are described
hereafter.
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Figure 3.2. Bayer color filter array

3.2.1 Camera Selection and Calibration

Considering requirements imposed on the vision system, particularly requirement
for high framerate, cameras with Bayer color filter arrays (Figure 3.2) [12] are se-
lected. These cameras can deliver color image in standard VGA image resolution
(640x480 pixels) with high framerate (80 fps) via standard IEEE 1394a bus and
have acceptable price. Today are already available cameras that offer even higher
framerates via IEEE 1394b or gigabit ethernet interfaces. Intelligent cameras
would also be of great benefit since robot poses could be computed directly in
the camera and therefore the transfer of the image to the host computer would
become unnecessary reducing the need for high speed communication bus. Al-
though high prices of intelligent cameras currently limits their application, in
the future these cameras could become the prime choice for described system
implementation.

To capture the entire region of interest with as few cameras as possible wide
angle lens are commonly used, but at the cost of severe image distortions such
as radial and tangential distortion. It is very important to correct those distor-
tion effects in order to reach good measurement accuracy. In order to correct
distortion effects, camera calibration procedure has to be performed for extract-
ing distortion parameters. Many calibration techniques have been suggested, e.g.
[19], [146], [159]. Currently Camera Calibration Toolbox for Matlab [19] is used
for determining both intrinsic and extrinsic parameters of the camera using cal-
ibration grid. As the camera is fixed, calibration has to be done only once, and
then calibration parameters are stored and further used. In the future, possibil-
ities of calibration procedure automation will also be considered, so that system
setup would be further simplified.

3.2.2 Design of Robot Marks

The main tasks of a vision algorithm are reliable detection of the robots in the
image and measuring their poses. This means that vision system has to be ca-
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pable of distinguishing image elements that represent robots from elements that
represent other objects or background. Here different approaches can be applied,
but the most commonly used one is the background subtraction [147]. Tt per-
forms subtraction of acquired image and previously stored background image to
differentiate background pixels, which should be ignored, from foreground pixels,
which should be processed for identification or tracking. Although this method
can be very flexible since it can detect not only robots, but also humans or other
moving objects, it suffers from several drawbacks such as if a background ob-
ject moves, it can be recognized as a foreground object or if a foreground object
has the similar color as a background one, it is very difficult to detect it. Other
segmentation methods, like gray scale or color based thresholding methods, edge-
based methods, or region-based methods could also be employed, but generally,
regardless of applied method it is very difficult to design an universal system that
can reliably detect any kind of robot no matter of its size, color or shape, as
it would require very complex algorithms and would result with poor tracking
accuracy.

To overcome the problem of detection generality, customized patterns specifi-
cally designed for detection are used. Although this prevents such vision system
from being applied in every environment, in many situations this is not a major
limitation, and can save substantial amount of computation time and increase the
reliability and accuracy significantly. This customized pattern is implemented as
a robot mark placed on the top of the robot and tracked by the camera. The
robot mark is a critical component of the whole system, because it directly im-
pacts the system reliability and precision. Although both tasks, robot detection
and robot pose measuring, can be implemented using single robot mark, in order
to reach maximum detection reliability and maximum measuring precision and
accuracy a combination of two robot marks is used: one for robot detection and
one for robot pose measuring.

Robot Detection Mark

Design of the detection mark can employ different kinds of visual cues, like tex-
ture, known geometry, color etc. It is common for most cues that they depend
on relatively large portions of the image at once or require extensive hypothesis-
driven detection. In case when distinct geometric patterns are used high spatial
resolution of the image and high computational power are required to detect ev-
ery possible object position and orientation. On the contrary, using color as a cue
offers several advantages such as robustness under rotation, scale and resolution
changes, and the main advantage is processing speed. Namely, decisions can be
initially made at pixel level, and then inductively at whole regions of similar color,
and in case of careful robot mark design and efficient color recognition algorithm,
high detection reliability can be obtained. This is the reason why color patches
for design of the robot detection mark are chosen.
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The first question that arises in detection mark design is whether or not robots
should have different marks in order to enable the vision system to differentiate
and uniquely identify each of them. In case of different marks it is possible
to assign different color or combination of colors to each particular robot, so
that robots can be uniquely distinguished from each other, but this approach
has multiple drawbacks. Firstly, limited number of robots can be tracked since
limited number of colors can be reliably distinguished, which is opposite to our
goal that unlimited number of robots has to be tracked. Secondly, the system
has to be calibrated for each color, and this would result with reduced robustness
to light intensity changes and would also require long setup time. Thus, it can
be more appropriate that all robots use equal color marks. Unfortunately, this
has the drawback that it is impossible to distinguish one robot from another
based solely on robot detection marks. To cope with this problem, identification
method which can identify robots independently of robot detection marks is used,
as discussed later in Section B.3.3

Other important questions concerning robot detection mark design are: (1)
how many color patches to use; (2) where to place them on the mark; (3) which
colors to select and (4) which color patch shape to choose. Of course there are
no general answers to these questions and they depend on many factors, such
as available robot mark area, camera spatial resolution (pixels per meter), robot
environment etc.

Generally, number of color patches is limited with available area on the robot
where the mark can be placed and size of a particular color patch must be suffi-
ciently large in order for vision system to be able to recognize its color reliably.
A higher number of color patches results with increased detection robustness be-
cause of lower probability that the selected combination of colors is accidentally
found in image background thus resulting with false robot detection. On the
other side, this also results with increased computation time required to detect
and track higher number of colors, and the final decision about the number of
color patches is application dependent.

Once the decision is made about the number and the size of color patches, it
is necessary to place them optimally on the robot detection mark, where criterion
can be maximization of detection reliability. In order to reach unambiguity of
robot mark detection, it is convenient to place a “key patch” [31] in the middle
of the color mark, and other color patches around it so that their distances to the
key patch are identical. In this way, the key patch is first located in the image and
after that other belonging color patches are located on a circle around the key
patch with radius equal to the given distance, where it is guaranteed that no color
patches of other robots can appear, but only patches that belong to the related
robot, which significantly simplifies the color mark detection process. Another
criterion is that color patches must be distributed so that the robot orientation
can be unambiguously determined once locations of all individual patches are
known.
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Figure 3.3. Possible designs of the robot detection mark

The patch colors can be selected in a manner that detection reliability is max-
imized, so that only saturated colors are used, and distance between particular
colors on the hue scale is maximized, or alternatively colors that are less likely to
appear in the image background can be used.

Concerning the shape of the color patch, in order to maximize color recognition
reliability, the square color patch shape which provides maximum space utilization
can be selected. Figure B.3 shows some examples of possible detection mark
designs, where black color is used for the background and blue color for the key
patch. Of course many other designs are possible.

Robot Pose Measuring Mark

Once the problem of robot detection is solved, it is necessary to accurately and
precisely measure its position and orientation. Since the camera with Bayer color
filter array is used (Figure B.2), only one color per pixel is transferred via bus to
the host computer so that the remaining color information not detected by that
pixel must be estimated in host computer using some kind of interpolation algo-
rithm [125], [77]. Even in case that camera delivers full color images, the color
interpolation is also performed, but it is hidden from the user and is implemented
internally in camera (unless an expensive 3-sensor camera is used). Because color
interpolation around the edges in the image can result with colors that do not ap-
pear in the real scene (zipper effect) [125], using color as visual cue for measuring
position and orientation of the robot would cause low measuring accuracy and
precision. Therefore, it would be of great benefit if a way of measuring directly in
original raw Bayer image acquired by the camera could be found, thus avoiding
measuring on estimated RGB image.

In order to solve the aforementioned problem, introduction of a new mark
dedicated only for robot pose measuring is proposed. In this design, robot pose
measuring mark is a white square surrounded by black edge, so there exists clear,
maximum contrast and length black-white edge (Figure B.4]). The key point here
is that if using black-white edge for robot pose measuring, color information is
not important and measuring can be performed directly in Bayer image without
need for any color interpolation, which results in significantly improved precision
and accuracy over existing systems.

It is desirable that the robot pose measuring mark is as large as possible, so
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that maximum possible edge length is used for pose measurement. The size of
the robot detection mark is less critical, since it is not used for measurement.
Therefore, it is proposed that the robot pose measuring mark covers the whole
available area on the robot and that the detection mark is placed on it, but in such
a way that it doesn’t cover edges of the robot pose measuring mark. The final
recommended design of the robot mark, which consists of both robot detection
and robot pose measuring marks, is shown in Figure [3.4

Measuring
mark

Detection
mark

Figure 3.4. Proposed robot mark consisting of robot detection and pose measuring
marks

3.3 Vision Algorithm

The task of the vision algorithm is detection and pose tracking of multiple mobile
robots based on the analysis of the robot marks that appear in the image ac-
quired by the camera. The vision algorithm consists of three main stages: robot
detection, robot pose measuring and robot identification (Figure [3.5), which are

described in detail bellow.
Image

Robot detection

v
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v
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Figure 3.5. Block diagram of the vision algorithm
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3.3.1 Robot Detection

Robot detection is process of determining initial pose of the robot by means of
locating its detection mark in the image. The flowchart of the robot detection
algorithm is shown in Figure3.6l As can be seen, the input to the robot detection
algorithm is raw Bayer image from the camera, and output is approximate robot
pose obtained using determined pose of color patches on the robot detection mark.
Robot detection algorithm consists of two main stages: color classification and
extraction of color patches.

Color Classification

As the color patches are used for robot detection, it is necessary to scan the
image and classify pixels according to a color classification function. If the robot
pose in previous frame is known it is enough to perform local image scan around
expected robot pose (left branch of the flowchart in the Figure B.0]), with benefit
of significant computation time reduction. But, in order to detect new robots
entering the supervised area or to detect again temporarily occluded robots it
is necessary to perform global scan of the image (right branch of the flowchart
in Figure B.0). Therefore, both local and global search are implemented and
combined in such a way that ensures reliable vision system operation.

Local search procedure starts with prediction of the robot pose taking into
consideration robot model and robot pose and velocity measured in previous
sampling instant. Because of high measurement precision and accuracy (which
are experimentally verified later in this chapter), and high framerate, the special
filtering schemes such as Kalman filtering are not necessary, and only simple
prediction based on kinematic model of the unicycle robot is used:

z(k+1) =x(k)+v(k)T cos(0(k) + w(k)T),
y(k+1) =y(k) + v(k)Tsin(6(k) + w(k)T), (3.1)
O(k+1)=0(k)+w(k)T,
where x, y, and 6 are coordinates of measured robot position and orientation
relative to some global coordinate system, v and w are linear and angular robot

velocities, respectively and 7' is the sampling time. Linear velocity of the robot
is estimated with the following equations:

d
(k)z n(o- )w
' = [cos(0(k)), Sln(())]
d:[() ek — 1), y(k) — y(k — )"

where & is robot orientation vector and d is robot motion vector. Angular
velocity estimate is given by:

4

(3.2)
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Figure 3.7. Spiral search of the region of interest in local search

where Af = 0(k) — 0(k — 1), Upq, is maximum robot velocity and L is the
distance between robot wheels. The predicted robot pose obtained by (B.1]) is
taken as the center of the rectangular region of interest that is searched in order to
detect the robot. The size of the region of interest is chosen to grow proportionally
with the robot velocity. The next step is scanning of determined region of interest
in order to localize the key color patch on the robot detection mark. To minimize
the probability that any other object of similar color, or any other robot is found
instead of robot that is being searched (this tracking failure would result with
swapping of robot identifications), the searching begins right from the middle of
the region of interest, i.e. from the predicted robot pose. Then the searching
is continued following the rectangular spiral toward the border of the region of
interest (Figure B.7). Actually, regarding the dimensions of the color patch, not
every pixel must be checked. For example, if color patch has size of 9 pixels, as
was the case in the experiments, it is safe enough to have a scan interval of one
third of searched patch size in pixels, i.e. every third pixel is scanned. In this way,
a total number of checked pixels is reduced nine times. Using this approach in
combination with high vision system framerate, swappings of robot identifications
are almost completely avoided.

Global search procedure is much more computationally complex than local
search as explained afore. Therefore it must be performed only in situations
when previous pose of a robot in the space is not known. However, it is not
always possible to unambiguously detect such situations, e.g. vision system may
not be aware that a temporary occluded robot is visible again. Because of that a
more advanced approach is used, where global search is performed continuously
in every image frame. In order not to interrupt other algorithms and not to
increase system latency, it is conducted in computer idle time, after local search
and all other algorithms are executed, and commands are already sent to robots,
but before a new image is acquired. Of course, this approach requires that some
processor idle time is left available after all other algorithms are executed, but it
is not necessary to assure that this time is sufficient for complete global search
execution. Namely, if hardware is not capable to process entire image in remaining
processor idle time, the image is scanned only partially in single image frame, so
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that complete global search procedure is spanned over multiple frames. This
trade-off enables maintaining a high frame rate, while continuously executing
global search procedure. Of course, for computational efficiency reasons here also
every third pixel is scanned.

In order to enable color-based robot detection the color interpolation from
Bayer format to the RGB color space is computed for every pixel that is being
scanned, no matter global or local search is performed (block (1) in the Figure
B.0). Advanced interpolation methods have been developed [125] that can deal
with most common interpolation artifacts such as zipper effect, but they have
high computational complexity. Since color patches are used only for robot de-
tection and not for robot pose measuring, it is not necessary to apply an advanced
interpolation method. Therefore the bilinear interpolation algorithm is used that
has advantages of relatively low complexity and acceptable interpolation quality
for given application. However, it is well known that the RGB color space shows
too high scattering of all three color components when illumination changes so
that reliable color detection is very difficult, and that the HSV (hue-saturation-
value) color space shows high scattering of V component only, while H and S
components have relatively low scattering no matter of location in the image or
light intensity [51]. Therefore the HSV color system is far better choice for color
detection as it enables reliable color recognition based on H and S components.
However, many real-time color tracking systems use RGB color space due to com-
putationally expensive conversion from RGB to HSV space. In order to enable
the usage of the HSV color system, an efficient way of RGB to HSV conversion is
used. In computer vision applications lookup tables are used commonly as they
are the most efficient way to avoid complex calculations. The lookup table (LUT)
used for RGB to HSV conversion is of the following form:

(H,S,V) = LUT(R,G, B). (3.4)

This is a 3D lookup table whose size in computer memory for 8 bits per color
component is 3-23® = 48 MB. As this is not acceptable, the color resolution of
input components (R, G, B) is reduced to 6 bit per color component so that table
size is decreased to 3-2%% = 768 kB which is acceptable for today’s computers.
In this way color conversion resolution is reduced, especially for colors with low
saturation and intensity values, but this is not an issue in our application because
acquired image contains high amount of noise anyway, and only a few colors have
to be recognized that are well separated on a hue scale and have high saturation
and intensity values. Note that the approach with the reduced lookup table also
allows conversion to any color space other than HSV, and in the same time, various
corrections to pixel values can be made if necessary, such as gamma correction
etc.

The final operation of the color classification stage is examination if the color
of a pixel matches any of defined color classes (color class is a subset of all pos-
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sible pixel color values) assigned to color patches (block (2) in the Figure 3.6]).
The matching criterion is implemented as a thresholding operation, where each
color class is specified as a rectangular volume in the color space and is described
with set of six thresholds: low and high threshold are defined for each color space
dimension. Now the test is performed to check if pixel’s HSV components fall
between thresholds of a particular color class, where the thresholds are defined a
priori using a GUI tool that we have developed. A naive implementation of this
thresholding operation is rather inefficient because in the worst case it could re-
quire six comparisons per each color class, which can result with bad performance
especially on modern pipelined processors with speculative instruction execution.
Therefore a color classification algorithm is used that is capable of testing mem-
bership for all defined color classes at once with only two AND operations, as
described in [30]. Since the HSV color representation is used, this classification
method gave good classification results in the experiments with moderate light
intensity changes. In case that light intensity change would be so high that clas-
sification results would no longer be acceptable despite of using HSV, such as in
outdoor environments, it is possible to apply schemes that have been specially
developed to deal with this problem in real time, for example see [29], [143], [53].
Since lookup table for RGB to HSV color conversion is already used in previous
step, one may wonder why the color—color class mappings are not stored in this
lookup table and in this way color recognition additionally accelerated, as was
done for example in [I1]. The reason is that this scheme would not allow to dy-
namically adjust thresholds of color classes because it would took too long time
to update 3D lookup table. Instead, in algorithm that is used it is only required
to update three arrays of 256 members to adjust thresholds, which enables real
time thresholds adjustment and consequently increases flexibility.

Extraction of Color Patches

If the color classification procedure identifies a pixel that meets the matching
criterion for color patch class, the procedure is executed that labels the whole
region of the given color class starting from that pixel. As the robot detection
mark is used with the key patch in its center, only color class of the key patch
is being searched initially. The common approach to region labelling problem,
in case starting pixel is known, is application of region growing methods. Under
the assumption that we are not interested in region interior properties, such as
number of holes in it, it is sufficient to extract only edge contour of the region.
Thus a contour following algorithm is used [141], which has the advantage of
low computational cost because not every pixel of the region is being checked,
but only pixels around the edge of the region, and pixels inside this contour are
assumed to belong to the region. The algorithm begins from some starting pixel
on the bottom edge of the region and its outputs are integer coordinates of edge
contour pixels. Effect of the algorithm on real robot image is illustrated in Figure
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Figure 3.8. An example of contour following on real robot image in Bayer format
(extracted contour pizels are labelled with blue color)
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Figure 3.9. Contour following procedure with different starting points

B.8

Here a brief overview of the procedure for determining the starting pixel for
contour following is also given. Contour following algorithms locate this pixel
beginning from some pixel inside the region (in our case this is the pixel found by
the global or local search procedure), and scan the image in e.g. bottom direction.
The starting pixel is then the first pixel found, which has bottom neighbor that
does not belong to the region. However in this application this simple approach
does not suffice, since it does not ensure this pixel to be located on the edge of the
region, as it could also be on the edge of a hole contained inside the region (such
a hole may be result of the noise) as shown in Figure B9l This problem can be
solved by examining the contour following direction, which can be obtained using
the chain code representation [141] of the extracted contour. In case that the
found starting pixel is really on the region edge, the contour following algorithm
will run in counterclockwise direction starting from that pixel (see Figure 3.0).
But if starting pixel is on a hole edge, the following direction will be clockwise. In
that case the starting pixel searching procedure is continued by searching again in
bottom direction until new edge point is found that will result in correct following
direction.
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Finally, object recognition is done by computing area, circumference and rect-
angularity of the region surrounded by extracted contour (block (3) in the Figure
[B.0) and their comparison with the expected values for given pose in the image
(these values vary along the image because of lens distortion). If these descriptors
are inside tolerances (block (4) in the Figure[3.]), there is a high probability that
the found region really represents the key color patch on the detection mark of
the robot. In case that apart from the key color patch additional color patches
are used, their locations have also to be determined. As they all have equal,
exactly defined distance to the key patch (see Figure B.3), it is sufficient to search
along the circle centered in the key patch position, with radius equal to the given
distance. When a pixel is found that belongs to some of predefined color classes
of other color patches, the same contour following procedure is repeated as for
the key color patch. If all color patches are located successfully, robot detection
procedure is completed and robot pose is now approximately known. While the
existing color-based tracking algorithms usually finish at this point and use com-
puted robot pose as the exact one, e.g. [85], [31], [45], [104], here it is used only
as the input for the robot pose measuring procedure, which significantly increases
accuracy and precision of the robot pose estimation.

3.3.2 Robot Pose Measuring Procedure

The flowchart of the robot pose measuring procedure is given in Figure B.10
Measuring of robot position and orientation is based on subpixel detection of the
black-white edge of the robot pose measuring mark (Figure [3.4]). Here advantage
can be taken that this edge can be detected directly in raw Bayer image because
theoretically gray tones should have equal values of all three color components of
RGB image so that raw Bayer image can locally be treated as a monochrome gray
scale image. However in praxis these three color components may differ slightly
depending on the illumination type and imaging sensor type (example can be seen
in Figure B.I1] (a) where a raw Bayer image of the robot mark is given). This
can be corrected by applying appropriate gains to red and blue color components
so that for gray tones these components are equal to the green component. This
correction is usually called white balance adjustment [3]. An example of white
balance corrected image is given in Figure 311l (b), and for illustration in Figure
B.I1 (¢) a RGB image interpolated from corrected Bayer image using bilinear
interpolation is given.

Robot pose measuring procedure starts similarly to the one used for extracting
the region of the color mark. Namely, the edge contour of the robot pose measur-
ing mark is extracted (block (2) in Figure [3.10) from the white balance corrected
source image in raw Bayer format (block (1) in Figure B.I0), using the known
approximate robot pose in image coordinates as a starting point. To save compu-
tational time, white balance correction is done only for pixels that are tested by
contour following algorithm. As a criterion for examining if a pixel belongs to the
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Figure 3.10. Flow chart of the robot pose measuring procedure

white region, a threshold is used. If the gray tone intensity of a pixel is greater
than the threshold value, the pixel is labelled as white. When the contour of
the white measuring mark region is extracted using some initial threshold value,
region area, circumference and rectangularity are computed. If these descriptors
are inside given tolerances (block (3) in Figure B.10), we declare that the white
measuring mark is located. Since light intensity is not constant, but depends on
the location in the image, and can also be time variant, the failure can occur
in the contour edge localization. This implies that adaptive threshold should be
used in order to get system robust to light intensity variations. Threshold adap-
tation algorithm (block (4) in Figure B.I0) computes new threshold value using
previous threshold value, approximate robot pose in image coordinates which is
used as starting point for contour extraction, and white balance corrected raw
Bayer image. The threshold is adapted using the fact that the circumference and
area of extracted white mark region are proportional to the light intensity, so
that threshold is iteratively adjusted and the edge contour extraction process is
repeated with this adjusted threshold value until the area of white mark region
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(a) (b) (c)

Figure 3.11. Bayer image of a robot pose measuring robot mark: (a) raw image; (b)
white balance corrected image; (c) interpolated RGB image

gets as close to real as possible (real area is known because of known white mark
size and known location in the image). When the appropriate threshold value is
found, it is stored in virtual grid where each grid cell is assigned to respective
image fragment. This threshold value is then used until the illumination changes
again. In case that illumination variation is so high that even the threshold adap-
tation does not give acceptable results, camera gain or shutter can be adapted as
well.

Once the edge contour of the white mark is extracted, it is parameterized
with the best fit square (block (5) in Figure B.I0)). Inputs to this block are co-
ordinates of white patch edge contour pixels and outputs are parameters of the
best fit square: coordinates of square center (i.e. intersection of diagonals), side
length, and rotation angle, which is defined as orientation of the bottom side of
square which can be in range (—45°,45°]. Center of the square is computed as
an average value of x and y coordinates of all edge contour pixels, side length
is taken as known size of the white mark in pixels, and the only parameter that
left to be found is square orientation. It is found by an iterative method, where
the specified square is rotated, beginning from angle 0°, in finer and finer angle
steps, until the mean square distance of contour points to the square sides is
minimized [26]. The rotation angle step is halved in each iteration, and the di-
rection of rotation is taken so that the distance criterion gets lower. This method
achieves square orientation resolution of less than 1° with only six iterations, and
computational cost is not high because the number of contour pixels that are
fitted with the square is small. Although the method can determine orientation
in range (—45°,45°] only, the range can be extended to (—180°,180°] based on
the previously detected color mark orientation. In this way, approximate location
of the white region edge is found with relatively low computational effort, what
is of great benefit for acceleration of later algorithm stages.

The contour following algorithm uses threshold criterion to find the contour
so that the determined edge position is not very precise and is sensitive to noise.
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(b) (c)

Figure 3.12. Green component interpolation: (a) raw green pizels; (b) bilinear inter-
polation; (c) adaptive interpolation

To further improve measurement results, refinement of extracted white area edge
contour in subpixel precision is made. A problem that arises here, which is com-
mon for color cameras with wide-angle lens, is chromatic aberration. There are
two types of chromatic aberration: (i) longitudinal aberration, which is inabil-
ity of lens to focus different colors in the same focal plane, so that only one
color component is sharply focused, and (ii) transverse aberration, which refers
to sidewards displaced foci for different colors and results with displaced edges
of objects in different color planes. If imaged object is near the image border,
chromatic aberration can result with object edge displaced even for several pixels
in different color planes which would make measurement in subpixel precision
senseless. Since software compensation of this distortion would require too high
computation time, our solution for this problem is to use only one of the three
color components for measurement so that chromatic aberration is avoided. The
green component is chosen because in Bayer pattern there are twice as many
green pixels as red or blue ones (Figure B.2)), so that only 50 % of pixels have
to be interpolated. In order not to deteriorate measurement precision it is very
important to perform interpolation in an adaptive way so that edge structure is
preserved. Here the known approximate edge direction can be utilized for adapta-
tion, by interpolating missing values in the direction of the edge. In order not to
significantly increase computational complexity, only three cases are considered:
(i) if the edge is horizontal a missing green pixel is interpolated as mean value of
left and right neighbor pixels; (ii) if the edge is vertical it is interpolated as mean
value of upper and lower pixels; and (iii) if the edge is slopewise it is interpolated
as mean of four neighboring pixels. This is illustrated in Figure with images
of nearly vertical black-white edge, where Figure (a) shows raw green pixels
acquired by the camera, Figure (b) the edge structure obtained with bilinear
interpolation (zipper effect is visible), and Fig (c) the edge structure with
described adaptive interpolation.

The next step is edge detection of robot pose measuring mark in subpixel
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Figure 3.13. An image with gradient magnitudes of the edge of the robot pose mea-
suring mark

precision using interpolated green component (block (6) in Figure BI0). Inputs
to this block are square parameters from the square parameterization procedure
(block (5) in Figure B.10) and white balance corrected raw Bayer image (block
(1) in Figure B.I0). Outputs are coordinates of white patch edge contour pixels
refined in subpixel precision.

The main problem with subpixel edge detection methods is their high compu-
tational cost, because it is commonly required to compute gradient magnitude and
direction for each image pixel. This represents high computational burden, as it is
commonly conducted by applying a derivative filter in both horizontal and verti-
cal image direction, and then the gradient magnitude and direction are computed
in each pixel from horizontal and vertical gradient components. Fortunately, in
our case a great reduction of computational time can be obtained by utilizing the
fact that approximate edge positions and orientations are known from the square
parameterization procedure. This results with the following three benefits: (i)
it is not necessary to interpolate the green component, nor to compute gradient
magnitude and direction for each pixel, but only for pixels in neighborhood of
best fit square border, (ii) gradient directions do not need to be computed since
they are already accurately approximated by directions perpendicular to the sides
of the best fit square, and (iii) using the fact that gradient directions are known,
computing of gradient magnitudes is considerably simplified, since it is possible
to reduce complicated problem of edge detection in two-dimensional space to the
problem of detecting edges in one dimension only. Namely, it is sufficient to apply
the derivative filter in one direction only, i.e. in the previously computed gradi-
ent direction. To further reduce computational burden, gradient directions are
discretized, so that there are eight possible gradient directions allowed.

Thus, gradient magnitude is computed by applying the derivative filter in
horizontal, vertical or slopewise image direction, depending on gradient direction.
The example of gradient magnitude image of the edge of the robot pose measuring
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Figure 3.14. Ezxample of computing the edge position in subpizel precision

mark obtained using this method is shown in FigureB.13] (size of applied derivative
filter convolution mask was 4), where it can be seen that for each edge pixel, three
gradient magnitude values are computed. Local maximums of the gradient image
can be observed in the image as the most bright pixels in the middle of the
edge, and for each local maximum two neighbor gradient values are computed
so that subpixel edge position can be estimated. The subpixel edge position is
computed as follows: if the local maximum of gradient image is in pixel with
coordinates (z,y), go is gradient magnitude of that pixel, and ¢; and g_; are
gradient magnitudes of neighbor pixels in gradient direction, and in direction
opposite to the gradient direction, respectively, (see Figure 3.14) then the bias of
edge position m is computed using quadratic interpolation [43]:
g-1— 41

m = . 3.5
2(9-1 — 290+ 1) (3:5)

The subpixel edge position is now estimated as:

Ts = T -+ md,

Ys = y"'mdya <36)

where (z5,ys) is subpixel edge position and (d,, d,) are projections of gradient
direction vector to x and y axes with possible values of {—1,0,1} depending on
edge direction.

Based on the subpixel coordinates of the white Bayer edge contour, robot pose
is estimated (block (7) in Figure B.I0) relative to the image coordinate frame.
First, edge points of each square side are approximated with lines using least
squares method, and then robot position is computed as centroid of quadrangle
formed by those four lines, and robot orientation angle is computed as average
value of all four line angles. Using this method, measurement precision is greatly
improved with only slightly increased total computational time.

In order to calculate robot pose in the world coordinate frame from its pose
in the image coordinate frame it is necessary to correct lens distortion (block
(8) in Figure B.I0). The correction could be applied directly to the image pix-
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els, or to the measured position and orientation of the robots. Approach that
works directly on the image data is not applicable in this case, because of its high
computational load and loss of precision. Thus the correction is performed on
measured coordinates using camera calibration parameters determined in setup
phase (see Subsection B:2]). Intrinsic parameters are used to obtain undistorted
robot pose relative to the image coordinate frame, and then these corrected co-
ordinates are converted to 2D world coordinate frame using extrinsic parameters
of the camera.

3.3.3 Robot Identification

Robot identification is a procedure of assigning unique identification number to
each individual robot localized in the image. As the equal marks for each robot
enable only localization of the robots, but not their identification, reliable robot
identification method is essential for practical use of the proposed vision algo-
rithm, otherwise the measured positions and orientations are useless for robot
navigation because we do not know which data belongs to which robot.

The simplest identification method is manual assignment of identification
numbers to individual robots in the image. Unfortunately, this method is suitable
only for small number of robots and can be used only in initialization phase, so
that application of one of two different methods is suggested. The first method
is based on special movement commands that are transmitted to robots and then
this movement is recognized by the software. For example in case of mobile robots
with differential drive that are capable of rotating in place, the first robot can be
commanded to rotate full circle, the second can rotate also full circle but in oppo-
site direction, the third robot rotates two circles and so on. The second method
is usage of controllable identification light (LED) mounted on top of the robot.
Then if necessary the software can turn on and detect this light in the image, and
distinguish the robot based on the color of light, number of light on-off sequences
or duration of the light. These procedures are used whenever robot identifications
are unknown, that is in initialization phase, in case when new robots enter the
field of view, when robots identification marks are temporary occluded and when
two or more robots swap identifications because of some unpredictable situations
like very fast collisions.

Another problem that arises here is how to detect tracking failure, i.e. false
robot identification (e.g. when swapping occur). One possible solution, which is
also able to correct this mistake in a few samples only, is described in [20]. The
approach is based on continuous online comparison of command velocities sent
to robots and measured robots velocities using residuals. If v;(k) and w;(k) are
commanded linear and angular velocities and 0;(k) and @;(k) are measured linear
and angular velocities of the i-th robot at time sample k, residual Rv;; for the
linear velocities is calculated as
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Figure 3.15. Robot soccer platform
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and residual for angular velocities Rw;; as

Rung(k) = ¢ ™ Rugy(k — 1)+ (1 — ¢ ™) Jwi(k) — & (k)] . (3.8)

where T} is the filter time constant. If there are no wrong identifications,
then all Rv;; and Rw;; with i = j are lower than some predefined thresholds.
However in case that commanded and measured velocities are not correlated, i.e.
identification failure has occurred, the process of reassignment of identification
numbers is started so that proposed criterion is minimized. This approach is
successfully used in this work.

The main drawback of described methods is that none can identify the robot
based on single image. This may be limitation for some time critical applications
because some initial time is required for identification. However for many appli-
cations it is acceptable, because this time is very short since high sampling rate
is used.

3.4 Experimental Results

The main goal of experiments was to verify whether the proposed vision system
meets the given requirements. Experiments were performed using robot soccer
platform (Figure BI5) that is ideal for testing various mobile robot navigation
algorithms [78]. It consists of a team of five radio-controlled microrobots of size
7.5 cm cubed with differential drive and maximum velocity 4 m/s. The play-
ground is of size 2.2x1.8 m. Above the center of the playground, Basler a301fc



3.4. FExperimental Results 39

Figure 3.16. Typical image acquired by the camera

Robot pose
measuring
mark

Robot
detection
mark

Figure 3.17. Robot marks used in erperiments

[EEE-1394 Bayer digital color camera with resolution of 656 x494 pixels and with
maximal framerate of 80 fps is mounted perpendicular to the playground. The
height of the camera to the playground is 2.40 m. A wide angle 6 mm lens is
used. For illustration, a typical image acquired by the camera is shown in Figure

2. 16l

The robot mark shown in Figure .17 was used in experiments. The mark size
is 7.5x 7.5 cm, giving the image size of the white area of the robot pose measuring
mark of about 16 x 16 pixels. As can be seen, robot detection mark consists of
only one color patch, which was sufficient for reliable robot detection, because
rules for robot soccer propose that blue or yellow color is reserved only for robot
identification and must not be used for any other purposes. The benefit is also
lower computational complexity of algorithms for robot detection. In order to
determine robot orientation unambiguously the color patch is not placed in the
middle of the white robot pose measuring mark, but shifted to the rear side of
the robot.
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In all experiments, an image coordinate frame (in pixels) that is used cor-
responds to the image borders as indicated in Figure B.16, where z axis is in
range [0, 655] pixels, and y axis in range [0, 493] pixels. Global coordinate frame
(in meters) corresponds to playground borders, as indicated in Figure B.I8 (b),
where x axis is in range [0, 2.2] m, and y axis in range [0, 1.8] m.

A number of experiments were performed and below obtained results and their
analysis is presented. First, results of the experiments related to the precision and
accuracy of measured robot position and orientation in real world conditions are
described and analyzed. Then analysis of the vision system performances related
to other requirements stated in the introductory section is conducted.

3.4.1 Analysis of Vision System Precision and Accuracy

The analysis of precision and accuracy was performed using method described in
[144], where it was used to evaluate subpixel line and edge detection precision and
accuracy. Results of three experiments are presented illustrating high precision
and accuracy of both robot position and orientation measurements.

In the first experiment, the linear positioning device Linear Technology, PE1.4,
LM 6.2 (Figure[3.I8 (a)) with robot mark on it were placed on playground (Figure
BI8 (b)). The precision of linear positioning device is 10 pym so that robot
mark can be shifted in one direction with resolution of 10 ym. The robot mark
was placed near the image border, so that influence of chromatic aberration was
notable and comparison of various algorithms with respect to this effect could be
performed. Using the linear positioning device, the robot mark was accurately
shifted in y direction of global coordinate frame in increments of 100 ym. A
total number of 100 increments were made so that total shift of the robot mark
was 1 cm. In each position 20 images were taken, and for each of those images
y coordinate of robot pose was calculated using proposed algorithm. Then the
standard deviation and mean of those 20 obtained y position coordinates were
calculated for each position. Figure (a) shows obtained mean of measured
y coordinates as a function of robot mark shift and Figure (b) precision
of the position measurement, i.e. its standard deviation. Each single value in
those figures is calculated from 20 obtained y coordinates in each position. It
can be seen that the standard deviation is almost everywhere less than 0.01 pixel
(0.040 mm) and the average standard deviation is 0.007 pixel (0.027 mm).

To determine absolute position accuracy camera would have to be calibrated
and results would be highly impaired by the quality of the calibration. To avoid
this dependency in the experiment it was assumed that the linear shift of the
object in the real world corresponds to the linear shift in the image which is true
for small shifts. Therefore a straight line can be fitted through measured positions
by means of least squares method. The equation of the line obtained from the
experiment shown in Figure .19 (a) is y = 0.2484x + 84.6973, where y is in pixels
and z in millimeters. Thus, 1 mm in the real world corresponds to 0.2484 pixels
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Figure 3.18. (a) Linear positioning device; (b) Sketch of the experimental setup

for this part of the image, i.e. one pixel corresponds to the length of 4.0258 mm.
Using this equation, the absolute position error of the line is calculated as the
difference of the measured position mean and obtained regression line. The results
are shown in Figure As can be seen, the absolute error shows a systematic
sinusoidal component, which may be caused by the mapping of the scene intensity
to the pixel values in the image, but it is always less than 0.002 pixels (0.008 mm).
Of course, the absolute accuracy (but not the precision) will vary in different
parts of the image, and in general can be worse than obtained in the experiment,
because it depends not only on vision algorithm, but also on many other factors,
such as quality of lens, quality of calibration, etc. However for many applications
precision is more important than absolute accuracy, because it enables precise
detection of robot relative movement and thus directly impacts the quality of
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robot control and motion.
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Figure 3.19. Mean (a) and standard deviation (b) of the measured robot position y
coordinate as functions of the robot shift

The next series of experiments were conducted in order to compare the pro-
posed method with other similar methods. As the first method for comparison
(method M1), the standard color based method is used (e.g. see [31]), which does
not utilize any kind of subpixel edge detection algorithms and is commonly applied
for robot pose tracking in robot soccer application. The second method (method
M2) measures the black-white edge position directly in Bayer image with pixel
precision. This method is based on square parametrization method described
in Section 332 and it was our first attempt to enhance existing methods [20].
The third and the forth methods (methods M3 and M4) measures black-white
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edge position in subpixel precision, but they differ in the fact that method M3
estimates edge position directly in Bayer image and is thus sensitive to chro-
matic aberration, and M4 is the proposed method that uses interpolated green
component for edge detection. The comparison results are shown in Table 3.1l
Measurements for all four compared methods were performed simultaneously, so
that they operated in the same conditions. The table shows average standard
deviations (o) and average values of absolute error (e,) in y coordinate of the
position for all four methods as well as their decreases with respect to the method
M1 (UZ(,Ml)/UZSMi),GZSMl) e@(,Mi),i =2,3,4).

As can be seen from the table, improvements of both position precision and
accuracy are noticeable even with method M2 (precision 2.6 times, accuracy 1.3
times), which are achieved by measuring directly in Bayer image although with
pixel precision only. But, methods that deal with subpixel precision enhance the
precision more than an order of magnitude (method M3 13.2 times and method
M4 11.6 times). The slightly worse precision obtained by method M4 is most
likely caused by green color interpolation. Methods M3 and M4 outperform the
other two also in accuracy but method M3 not so significantly (improvement: 2.7
times wrt M1 and about 2 times wrt M2) as method M4 (improvement: 25.6
times wrt M1, about 20 times wrt M2 and 9.5 times wrt M3). So big difference
in accuracy of methods M3 and M4 is most likely due to chromatic aberration
effect, which is present in M3 and avoided in M4 by green color interpolation.

The precision and accuracy of measured orientation angle is evaluated in sim-
ilar manner as for the position. The angle is measured while the robot mark is
rotated in increments of 0.29°, which was achieved using described linear posi-
tioning device and a lever for converting linear shifts to rotation increments. In
order to enable color based angle measurement, which was needed for methods
comparison, apart from yellow color patch another color patch of smaller size was
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Table 3.1. Comparison of position precision and accuracy for different methods

Method oy [pix/mm] aéMl) /al(,Mi) e, [pix/mm]| eéMl) eg,Mi)
M1: Color tracking 0.0776/0.3124 | 1 0.2050/0.8253 | 1

M2: Bayer pixel 0.0297/0.1196 | 2.6 0.1535/0.6180 | 1.3

M3: Bayer subpixel 0.0059/0.0238 | 13.2 0.0746/0.3003 | 2.7

M4: Green comp. subp. | 0.0067/0.0270 | 11.6 0.0080/0.0322 | 25.6

added next to it. For each angle increment 20 images were taken, and standard
deviation and mean of 20 measured angle values were determined. Figure 3.21]
(a) shows the mean of measured angle as a function of the robot mark rotation
angle. The precision of the angle, i.e. its standard deviation is displayed in Figure
B.21] (b) wherefrom it can be seen that the standard deviation is everywhere less
than 0.12°, and average standard deviation is 0.0797°.

To determine angle accuracy a straight line is fitted through the measured
angles. The equation of the line obtained from the experiment shown in Figure
B21] (a) is -1.00012+179.4794. Then, the absolute angle error is estimated as
the difference of the measured angle mean and the regression line. The results
are shown in Figure B.221 As can be seen, the absolute angle error is almost
everywhere less than 0.2°.

Comparison of angle precision and accuracy between different methods is made
in similar manner as for position measurement and the results are shown in Table
3.2l As can be seen from the table, the similar observations can be made as for
position measurement although the enhancements are slightly lower. Obviously,
methods M3 and M4 give far better results than the other two methods, and
the method M4 is better than M3, particularly in the accuracy enhancement.
Therefore, the usage of method M4 is proposed.

Table 3.2. Comparison of angle precision and accuracy for different methods

Method o6]°] aéMl) / O'éMi) eol°] eng) / eéMi)
M1: Color tracking 0.6444 | 1 0.9762 | 1

M2: Bayer pixel 0.3036 | 2.1 0.7049 | 1.4

M3: Bayer subpixel 0.0911 | 7.1 0.3714 | 2.6

M4: Green comp. subpixel | 0.0797 | 8.1 0.0831 | 11.8

Although it is not possible to directly compare the obtained results with results
of others because of different camera types, different shapes and sizes of robot
marks etc., here a comparison with results presented in referential paper [31] is
given, where a very comprehensive analysis of the performance of the color based
method is done. Only precision results could be compared, as results for accuracy
are not presented there. Standard deviations reported there (o, = 0.3432 mm
and oy = 0.4011°) are comparable with those obtained with method M1, which is
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Figure 3.21. Measured angle mean (a) and standard deviation (b) as functions of the
robot mark rotation

our implementation of the color based method. Therefore, the proposed method
M4 significantly outperforms the method from [31] with about 13 times smaller
position standard deviation and about 5 times smaller angle standard deviation.

To investigate performance of the algorithm when robot is moving, a number
of experiments were performed with different velocities ranging from 0.1 m/s
to 1 m/s. It was observed that standard deviation of the measured velocity is
always less than 2 % of actual robot velocity, which is rather small. For the sake
of illustration, the result of an experiment is shown in Figure 3.23] where the
robot was moving in horizontal direction from the left to the right border of the
image with velocity of about 1 m/s with noncalibrated camera. The velocity of
the robot is computed by dividing the distance between the current measured
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robot position and measured position in the previous sampling instant with the
sampling time 7' = 0.0125 s, without any filtering. As can be seen, measured
velocity is lower near the image borders than in the image center, and the main
reason is lens distortion. Standard deviation of the velocity computed from 20
images taken near the image center is 0.01325 m/s, i.e. 1.3 % of the actual robot
velocity. The variations of the measured velocity are mainly consequence of the
image blurring caused by robot motion, lens distortion, and also fluctuations of
actual robot velocity during motion.
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Figure 3.23. Measured robot velocity
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3.4.2 Analysis of Robustness to Light Intensity Changes

There are two algorithm stages that are particularly sensitive to light intensity
changes: thresholding of HSV image to detect color marks and thresholding of
gray intensity image to detect white measuring marks. Regarding the first thresh-
olding stage, using of HSV color system by itself guarantees some degree of ro-
bustness to light intensity changes, and by the second thresholding stage robust-
ness of white measuring mark detection is achieved using algorithm for threshold
adaptation described in 3.3.2

To test robustness of the system to light intensity changes in praxis, exper-
iments with three different light sources were conducted: daylight, fluorescent
lamps with daylight spectrum and fluorescent lamps with yellow spectrum. In
the first experiment only daylight was used with measured illuminance ranging
from approximately 150 to 500 lux. Under such light conditions HSV thresholds
had been initially adjusted and were no more changed through later experiments.
The algorithm was started and thresholds for white measuring mark detection
were automatically adapted. The image obtained with adapted thresholds is
shown in Figure [3.24] (a), where brighter areas correspond to image segments
with higher thresholds. One can note that light distribution is not uniform and
the brightest part is at the left image border. The system was not losing robots
in any part of the image despite this nonuniform light distribution.

In the second experiment only fluorescent lamps with spectrum close to day-
light were used as light source where the illuminance had its maximum value
near the center of the image (140 lux), and the minimum illuminance was near
the image border (100 lux). The system adapted successfully to light change and
tracking of the robots was reliable in all parts of the image without change of any
settings. The obtained distribution of white measuring mark detection threshold
is shown in Figure 3.24] (b).

Above described two experiments verify tracking robustness to the wide range
of illuminance change, i.e. from 100 to 500 lux. In cases when illuminance was
outside of this range too low pixel intensity values or saturation occurred. If
wider range of illuminance changes is necessary the camera parameters should
be adapted (e.g. gain or shutter) according to illuminance change, and possibly a
camera with higher dynamic range should be used. The adaptation of the camera
parameters can be done by hardware (usually in the camera) or by software. In
this case hardware adaptation is more convenient, because it does not require
additional processing time. As the camera used in the experiments does not
posses automatic gain feature, and software adaptation would consume too much
processing time, camera parameters adaptation is not used so far.

The third experiment was performed with the fluorescent lamps with yellow
light in order to test robustness to the light spectrum change. The spectrum
change caused the change of the key patch hue component value from 140 to about
125, resulting occasionally with non detected robots in some parts of the image.
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Therefore, the vision system is robust to light intensity changes but problems with
robustness may arise in cases when the light spectrum changes (e.g. in outdoor
environments). This problem is not addressed in this work but it was addressed
by a number of researchers, e.g. possible solutions can be found in [29] or [143].

(b)

Figure 3.24. (a) Thresholds obtained using daylight; (b) Thresholds obtained using
fluorescent lamp with daylight spectrum

3.4.3 Ability to Track Large Number of Robots

As stated in previous sections, the ability to track large (theoretically unlimited)
number of robots is guaranteed by using equal robot marks for all robots while
the only limitations are available computational power and sizes of the space and
the robots. However, there remains potential problem of identification swapping.
Therefore in the focus of the experiments was to find out how often identification
swapping occurs and if algorithm is capable to recover from such situations. The
experiment was performed through many robot soccer games, where 5 robots
with equal robot marks were simultaneously on the playground together with 5
opponent robots. Because of the high frame rate used (80 fps) the tracking of
robots was reliable and identification swapping did not occur. The only exception
is when the vision system loses multiple robots for some reason (typically when
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robot marks are temporarily occluded by some object). But even in such situa-
tions, the identification algorithm is capable to recover correct identifications of
robots in only few samples.

3.4.4 Analysis of Real Time Operation Requirement

In order to fulfill real time and high speed requirements, i.e. to enable the track-
ing of large number of fast moving robots, a special attention is given to the
computational simplicity of the algorithms. The achieved execution time of the
algorithm on a 3 GHz Athlon 64 processor, when tracking five robots, was only
about 1.6 ms in local search mode and about 3.1 ms in global search mode.
Therefore the proposed vision system is able to track five robots with framerate
of at least 300 fps. In other words, there left enough time for execution of other
algorithms (e.g. algorithms for robot mission planning and motion control) within
the sampling time of 12.5 ms defined by the framerate of used camera (80 fps).

The find out which stage of the algorithm is most computationally expensive,
execution times of various stages of the algorithm were measured. Results for the
case where one robot is in the scene are shown in Table[3.3] As threshold adapta-
tion time varies randomly depending on illumination changes, its maximum over
multiple samples (about 500 samples) is taken and in this way a worst case is
considered. Execution times of other stages are computed as average value over
multiple samples, because these times are nearly constant over time. From the
table it is evident that in the case of local search most significant part of total
execution time refers to other necessary tasks that are not part of the algorithm,
such as buffer copying, image flipping etc. Pose measuring task takes more time
than robot detection, as it is expected because in local search robot position is
known. In global search, the most significant part of the execution time refers to
the color classification and robot detection time is significantly higher than the
robot pose measuring time. This is expected because the whole image has to be
scanned to detect the robot. The fact that in global search mode subpixel robot
pose measuring time is minor compared to robot detection time also proves the
claim that increased precision and accuracy are accomplished without significant
performance loss.

The goal of the next experiment was to find out how the execution time
depends on the number of robots, so that execution times for local and global
search and for different number of the robots on the playground were measured.
The results for local search mode are given in Figure[3.25 If line is fitted through
obtained results by means of least squares method, we obtain the following line
equation: t = 0.1606n + 0.7652, where t is execution time in milliseconds and n
is the number of robots. From this equation it is evident that the majority of
execution time is constant part, which refers to routines whose execution time is
independent on the number of robots, like buffer copying, image flipping etc. It
is also obtained that in local search mode all times except t9 grow nearly linearly
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Table 3.3. Ezecution times of various stages of algorithm for one robot in milliseconds

Stage Local | Global
t1: Color classification 0.0146 | 1.5290
to: Color patch extraction 0.0192 | 0.0181
t3 = t1 + to: Robot detection 0.0338 | 1.5471
t4: White patch extraction 0.0161 | 0.0168
tsm: Threshold adaption max. 0.0575 | 0.0556
tg: Subpixel measuring 0.0347 | 0.0353
t7: Square parameterization 0.0461 | 0.0439
ts =ty + tsm + t + t7: Robot pose measuring | 0.1544 | 0.1516
to: Other tasks 0.7636 | 0.7352
tig = t3 + tg + tg: Total execution time 0.9518 | 2.4339

with the number of robots.
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Figure 3.25. Local search algorithm execution time as function of number of robots

The results for global image search mode are given in Figure 326l If line is
fitted through obtained results, we obtain the following equation: ¢ = 0.1569n +
2.2792. From this equation, it can be observed that execution time grows with
approximately same rate as for local search, but the constant part of the execution
time is about 3 times bigger, because the whole image has to be scanned. Using
this equation, it can also be estimated that within camera sample time of 12.5 ms,
a maximum number of robots that can be tracked is 65. It is observed that in
global search mode times ¢; and t9 are independent on the number of robots,
while other times are nearly proportional with the number of robots.
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3.5 Summary

A new global vision system for real time tracking of two-dimensional poses of
multiple mobile robots is presented. A novel algorithm is proposed that operates
directly in Bayer format image thus enabling high framerates and at the same
time high measurement precision and accuracy as it works in subpixel precision.
Although the algorithm is highly optimized for Bayer format image, it is not re-
stricted to it and can be easily adapted to work with any image format. High
measurement precision and accuracy are verified by carefully performed experi-
ments. Moreover, algorithm is robust to the light intensity variations, and number
of robots that can be simultaneously tracked is not limited by the algorithm, but
only by available computational power and sizes of the space and robots, so that
it is very convenient for tracking robot teams with large number of robots. The
system requires easy and short setup process.

It is very important that the above mentioned advantages are not gained by
using high cost hardware or algorithms with high computational cost, so that
the system price is reasonably low, and high processing speeds can be achieved
(more than 80 fps is possible with adequate camera and hardware). The possible
drawback of the proposed algorithm is the fact that all robots use equal detection
marks, so that in some unpredictable situations (e.g. if robots mutually collide
with high velocities), there is still a small possibility of swapping identifications
of the robots. Implemented supervision algorithm requires some (but small) time
to detect and correct such situations. However, because of high framerate and
reliable tracking algorithm those situations occur very rarely.

Camera calibration procedure automation in order to further reduce the sys-
tem setup time is also planned, although it is still very short comparing to other
existing systems. Currently, every camera of the global vision system must be
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calibrated separately, which is a rather cumbersome task. However, the calibra-
tion can be automated by tracking the robots by the distributed cameras (and
possibly other sensors) while at the same time estimating the calibration param-
eters, utilizing the fact that robot’s state is continuously changing while moving
from one to another camera’s field of view. This is sometimes called simultaneous
localization and tracking (SLAT) [99].

Besides tracking multiple objects in intelligent spaces, there are many other
practical applications of developed vision algorithms, such as robot soccer, esti-
mation of mobile robots odometry parameters using global camera as a reference
sensor [5], tracing a marker on visually impaired person’s finger to assist him
reading tactile environment map [98] or for emulating an input device, like a
switch, a joystick or a mouse in human-computer interaction for people with
severe movement restrictions [I01]. The developed vision algorithm is already

successfully applied for calibration of mobile robot odometry parameters in our
lab as described by Ivanjko in [62] and [63].



CHAPTER 4

Mobile Robot Motion Planning

This chapter defines a general motion planning problem and serves as an intro-
duction to later chapters which provide more details about the particular topics.
The direct and decoupled approaches to motion planning are introduced. Fi-
nally, selection of the motion-planning method used in this thesis is discussed.
Previously published works on motion planning include [23] and [25].

4.1 Introduction

Once a robot is localized, i.e. its pose in global coordinate frame is determined,
there remains a task of its automated driving to the desired location. This task is
called the mobile robot motion planning. The directives of the robot are usually
given in some kind of a high-level language, which the motion planning system au-
tomatically compiles into a set of low-level motion primitives to be accomplished
by appropriate feedback controllers.

As a robot actually moves in a physical world, it is subject to physical laws,
geometric constraints and uncertainty. Therefore, analysis and design of motion
planning algorithms consists of a combination of problems in many scientific dis-
ciplines with contributions coming from fields such as robotics, control theory and
artificial intelligence. Within field of robotics, the focus is on designing algorithms
that generate useful motions by processing complicated geometric models. Here
many algorithms from computational and differential geometry are used. Within
control theory, the focus is on algorithms that compute feasible trajectories for
systems, with some additional coverage of dynamics, feedback and optimality.
Analytical techniques are typically used to derive appropriate feedback laws ca-
pable of executing desired robot motion. Within artificial intelligence, the focus is
on designing systems that use decision-theoretic models to compute appropriate
actions.

Pioneer researches in robot motion planning can be traced back to the late

33
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60’s (e.g. [113]). Nevertheless, most of the effort started during 80’s and is still
in progress. The motion planning problem was first extensively studied for the
application in industrial manipulator robotics, and lately extended for use in
mobile robotics.

It is interesting to compare motion planning algorithms specific to industrial
manipulators to those in mobile robotics field. It can be concluded that motion
planning in static environment for a manipulator with, for instance, six degrees
of freedom is far more complex than that of a differential-drive robot operating
in a flat environment [I38]. This comes from the fact that the motion planning
algorithms used by mobile robots tend to be simpler approximations owing to the
greatly reduced degrees of freedom. Furthermore, industrial robots often operate
at the fastest possible speed because of the economic reasons. So, the dynamics
and not just the kinematics of their motions are significant, further complicating
path planning and execution. In contrast, a number of mobile robots operate
at such low speeds that dynamics are rarely considered during motion planning,
further simplifying the mobile robot instantiation of the problem.

However, once we step out of static worlds, planning the motion of mobile
robots becomes much more complex. The key difference is that in mobile robotics
tasks are less repetitive and environments are less structured. Such dynamic envi-
ronments are manifested by the unexpected obstacles that can show up anywhere
and anytime in robot’s workspace. Those obstacles can be static (e.g. a chair)
or moving (e.g. people) which further complicates the problem. To adequately
react to those changes in environment, a mobile robot must also incorporate some
reactive behaviors based on readings of sensors. Static motion planning that is
usually used for industrial manipulator motion planning cannot detect or predict,
and therefore cannot react to changes in the environment.

Furthermore, possible motions of the most mobile robots are limited by non-
holonomic constraint. It is the consequence of the fact that robot wheels can only
roll without slipping so that many mobile robots have the property that they can-
not instantaneously slide sideways. From the control point of view, nonholonomic
systems are underactuated, i.e. they have less controls than configuration vari-
ables. For instance a car-like robot has two controls (longitudinal and angular
velocity) while it usually operates in a 3-dimensional configuration space (2-D
position and orientation).

The motion planning problem is usually solved by finding a path for a robot
from initial pose (configuration) to desired pose (configuration) while avoiding ob-
stacles. In many cases, e.g. when synchronized moving of multiple mobile robots
is required, planning only the path (where we worry only about geometric or
kinematic issues) is not sufficient, but also the velocity along the path must be
planned. This is called a trajectory planning, where we also consider dynam-
ics of the robot (e.g. its maximum velocity and acceleration). Today’s research
covers many more interesting topics, such as coverage, optimality, uncertainty
constraints, etc.
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The motion planning algorithms can be characterized according to the task
to accomplish, properties of the used mobile robot and properties of the used
algorithm. The most important motion planing tasks are navigation, coverage
and mapping. Navigation is the problem of finding a collision-free motion for
the robot system from initial configuration (state) to the desired configuration.
Coverage is the problem of passing a robot (or some sensor or tool mounted on
the robot) along all points in a space (mowing, cleaning). Mapping is the problem
of exploring and sensing an unknown environment to construct a representation
that is useful for navigation, coverage, or localization.

A selection of the most appropriate motion planning algorithm depends also on
properties of the robot that will execute the given task. The main characterization
of the robots is according to their mobility. In this way robots can be divided
to fized-base robots (industrial robot arms) and mobile robots (wheeled robots).
Also, the robots are characterized by the number of degrees of freedom and the
shape of the configuration space. Further, if a robot can move in any direction in
its configuration space (when there are no obstacles), it is called omnidirectional.
On the contrary, if the robot has some velocity constraints, such as a car that
cannot move sideways, it is called nonholonomic.

Motion planning algorithms can be characterized according to many proper-
ties, such as optimality, computational complexity, completeness etc. Algorithm
is optimal if it finds motions that have minimal length, execution time, energy
consumption or any other criterion. Very important property is computational
complezity of the algorithm. If it is expected that the inputs of the algorithm will
vary in size (e.g. number of obstacles), then the algorithm is only considered prac-
tical if it runs in time polynomial or better in the inputs. The planner is offline
if it constructs the motion plan in advance, based on known map or model of the
environment, and it is online if it incrementally constructs the plan during robot
motion. There is no definite distinction between offline and online algorithms, as
offline planer can also be used as online if it has low computational time and it is
used to re-plan the motion with each new sensor data. The motion planner algo-
rithm can also be divided into planning and reactive algorithms. With planning,
the robot uses models of the environment and itself to determine the motion plan
to a specified goal in advance—this is the same as offline planning. With reactive
(sensor-based) control the motion of the robot is conditioned by the current state
of the environment based on sensor data, typically for small time period—this is
kind of an online planning algorithm. The key advantage of planning is that it
enables a robot to achieve complex goals. However, the planning capability has
its limitations since environment may not be deterministic in a sense that it is not
possible for the robot to predict all future states of both the robot and the envi-
ronment. Therefore, it becomes apparent that it is best to combine advantages of
both planning and reactive control to achieve robust execution of complex tasks.

We say that a planner is complete if it always finds a solution if one exists, and
otherwise indicates a failure in finite time. In complex environments, as number
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of degrees of freedom increases, complete solution may be computationally infea-
sible. In this case the completeness requirements can be relaxed and we may be
satisfied with resolution completeness (if a solution exists at a given resolution of
discretization, the planner will find a solution) or with probabilistic completeness
(probability of finding a solution, if one exists, converges to 1 as time goes to in-
finity). Demands such as completeness, optimality and computational complexity
are of course contradictory. E.g. planners that are both complete and optimal
will have increased computational complexity.

4.2 Common Approaches to Motion Planning

Motion planning is one of the fundamental challenges in robotics so that early
studies in this area date from the 1960’s. The motion planning problem was
originally studied as path planning in field of robotics, but trough this research
it has gained many applications in areas such as computer graphics, simulations,
geographic information systems (GIS), very large scale integration (VLSI) design,
and games. Due to its widespread application, there is a strong interest in indus-
trial and research areas where a multitude of approaches have been proposed.

The Bug algorithm [95] is based on a simple idea of finding a path to the goal
by avoiding obstacles by following their contours. In its first version Bugl, the
robot circumvents the obstacle in its full contour, finds the point of departure that
is closest to the goal position and then departs from the obstacle. In the worst
case it can circumvent the object twice in its full size. Although this algorithm
is inefficient, it is complete as it guarantees that the robot will reach a goal if it
is possible.

The Bug2 algorithm bring some improvements compared to Bugl, as it de-
parts immediately when it is able to move directly towards the goal. This may
significantly speed up the traversal to the goal, but the drawback is that there
exists situations where robot traversal is non optimal in the direction sense to-
wards the goal. There are several extensions to the basic Bug algorithm, such as
the Tangent Bug [68] which uses range sensing by constructing a local tangent
graph towards the goal position direction.

The problem of motion planning considered in this thesis is actually trajectory
planning problem where robot motion is planned as a function of time. Generally,
the trajectory planning problem is to find control inputs (e.g. forces) yielding a
trajectory that avoids obstacles, takes the robot to the desired goal state, and
perhaps optimizes some objective function. This is a complete motion planning
problem, as opposed to a path planning problem that only finds a feasible curve
in the configuration space without reference to the velocity. Two approaches to
this problem are usually divided into two categories: direct motion planning and
decoupled motion planning, described in the sequel.
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4.2.1 Direct Motion Planning

Direct motion planning is method for planning the trajectory directly in the
state space. If additionally the trajectories are to be found that optimize some
optimality criterion such as motion time or utilized energy, the problem of finding
the trajectory is actually optimal control problem. Unfortunately, the optimal
control problem is too complex for almost any robot system, and as such cannot be
solved analytically. Therefore, a numerical approach must be used. In literature
usually two numerical approaches are studied: nonlinear optimization and grid
based search. When optimization is not crucial, potential field method and the
Rapidly exploring random tree method (RRT) are used as well.

If motion planning is viewed as the optimal control problem, the problem can
be transformed to a finite-dimensional parameter optimization problem, allowing
nonlinear optimization to be used to numerically solve the optimality conditions
[38]. If the problem is well formulated (e.g. the objective and constraint functions
are sufficiently smooth), nonlinear optimization may result in rapid convergence
to a locally optimal trajectory. The drawbacks of this approach are that the
method requires an initial guess (possibly provided by another method), and the
locally optimal solution reached generally depends heavily on this guess. Also,
evaluation of constraint and objective functions, and their gradients, may be
computationally demanded.

A grid-based search method enables the user to specify how close the solution
should be to time-optimal while avoiding the obstacles. The planned motion
is only approximate, but with property that user can determine how large the
error in final state can be. The advantage of this approach is that it is global,
i.e. it does not require initial guess like nonlinear optimization. The drawback
is that the size of the grid grows exponentially in the dimension of the state
space so that this approach is not appropriate for high dimensional systems.
Unfortunately, both nonlinear optimization and grid based search approaches are
usually computationally too complex to be used online.

Artificial potential fields method was first introduced for robotic manipulator
arms and later suggested for mobile robot platforms. Drawing from the field the-
ory concept in physics, this method models obstacles as emitting a repulsive force
and the goal point as emitting an attractive force on the robot. The robot senses
its current configuration, and applies the gradient forces at the actuators, i.e.
the navigation is performed by moving the robot so as to minimize the potential
energy. In this way a trajectory is implicitly defined by the potential field.

Finally, a Rapidly exploring random tree approach is a probabilistic method
that trades off optimality for planner run time. It may be able to quickly find a
feasible trajectory that is in no sense optimal.
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Figure 4.1. A decoupled approach to motion planning.

4.2.2 Decoupled Motion Planning

There are many situations in which direct planning is computationally too ex-
pensive due to numerical integration, collision detection etc. In those situations
decoupled planning is appropriate because it divides the complicated problem of
motion planning into subproblems (or modules) that are easier to solve [89]. This
is the reason why this approach is sometimes called a refinement approach. A
typical decoupled trajectory planning approach consists of four modules (Figure

41):
1. Using a path-planning algorithm to find collision-free path.

2. Transforming the obtained path so that velocity constraints (if any, e.g.
nonholonomic) are satisfied. In case of a car-like robot this step ensures
that the path is feasible for the robot by ensuring that the curvature of the
path is never less than the minimum. Here at least a kind of smoothing
algorithm is used in most circumstances.

3. Computing a time scaling function so that the path from previous module
is time-parameterized while respecting robot actuator limitations.

4. Executing a feedback control law that will ensure tracking of the planned
trajectory. The control law should minimize tracking error, i.e. difference
between the desired state and measured state of the robot.

Decoupled approach is often used for planning in environments with mov-
ing obstacles or control of robot teams, because it decouples high-dimensional
problems to multiple low-dimension problems. However, although decoupled ap-
proach performs well in many situations, sometimes there arise situations that is
decoupled approach unable to solve. For example, typical decoupled schemes are
unable to solve a multiple robot planning problem in Figure [4.21

The main drawback of decoupled approach is therefore its incompleteness—in
some situations it may not find a solution even if one exists. The incompleteness
also occurs when a module finds a solution that causes the failure in some of the
later modules. In other words it is often difficult for modules to take into account
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Figure 4.2. An example of multi-robot planning problem where solution cannot be
found by prioritized decoupled approach, although problem has a solution in general.
This happens because in prioritized scheme priority is given to either robot robot R1 or
R2, while the second robot is neglected.

problems that may arise later. This is sometimes solved by merging the modules,
e.g. there are many methods that solve the first two modules simultaneously.

4.3 Motivation

Regarding the motion planning task, this thesis covers the problem of robot nav-
igation, i.e. finding a collision-free motion from the initial to the desired location.
The solution should enable a wide spectrum of applications, ranging from simple
load delivery to precise planning required for robot soccer. A robot that is used
to accomplish those tasks is a differential drive robot. This is the robot that
has two drive wheels and one or more castor wheels that ensure stability of the
robot. The presumed operation space is flat environment, and it is assumed that
the map of the environment is known (at least partially). The environment is
assumed to be dynamic, where obstacles and zones can change shape or move
concurrently with the robot so that ability of efficient recomputation of the path
is required. It is also assumed that the robot is able to identify its position on
the global scale so that the problem of finding a path to a desired goal is well
defined.

The majority of approaches currently used in robot navigation are based on a
combination of global path planner and local planner that avoids obstacles that
were not known at the planning time. A typical example is combination of D*
algorithm for global path planning and dynamic window algorithm which is a
kind of reactive, direct grid-search algorithm that locally modifies the path in
order to avoid obstacles (see e.g. [I32]). Due to computational complexity, local
planner is typically capable of planning only for a small time period ahead. This
is similar to the way that human plans his motion, where he first plans the rooms,
passages or doorways through which to pass, and then locally modifies the path
according to perceived situation while traversing to the goal.
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While this approach satisfies when it is simply required to drive the robot
from point A to point B, it has two major drawbacks that limit its use in some
applications:

e Even in static environments, it is impossible to precisely plan robot’s path,
as well as its velocity profile because reactive component is used. This also
means that traveling time cannot be predicted and no precise scheduling of
robot tasks can be made.

e Due to inability to precisely plan robot motion, it is also not possible to tell
the robot how it should enter the goal configuration, e.g. at what velocity
and heading direction. In other words, only goal position can be specified.
This can be too restrictive in applications such as robot soccer.

Motivation of this work is to overcome these difficulties, as well as to develop
a flexible, modular and real-time motion planner. Here flexibility means that the
method must be easily adaptable to environments of different complexity and
structure, different tasks, multi-robot planning etc. This means that the planner,
with little modification, must be applicable for various tasks in many possible
variants of intelligent spaces e.g. cleaning, entertainment (robot soccer, robot
dance), automated warehouses etc.

Particularly, the developed motion-planning algorithm must have the follow-
ing capabilities:

e leading the robot to the desired state (e.g. position, orientation, velocity)
in near-minimum time, while respecting actuator limits of the robot;

e reacting to changes in the environment;

e fast enough execution for online application.

4.4 Choosing an Adequate Planning Method

Although direct motion planning methods are superior over the decoupled ap-
proaches, they are still not not applicable for long-term online planning, mainly
due to their high computational burden. Therefore the decoupled approach is
selected as the method of choice because it decomposes complex motion planning
problem into simpler subproblems allowing a real-time execution. Besides, a very
important advantage of the decoupled approach is its flexibility, manifested by
easy to achieve software modularity and reusability. Each module is a separate
component that can easily be replaced or reused with other robot types or for
other robot tasks. This is important because mobile robots are expected to spread

'If differential drive robot is used, it can attain the desired heading at the goal by simply
reorientating itself after reaching the goal. However, this requires additional time.
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all over our homes and offices—in that sense a motion planner that is hard to
adapt to other tasks is of little practical use because robot destiny will be to
accomplish very distinctive missions.

As mentioned, the main drawback of decoupled approach is its incompleteness.
However, in this work this problem is at least alleviated by extending classical
decoupled architecture in Figure[4.Il This is obtained by avoiding strict algorithm
flow from the previous to the next module—in the developed method algorithm
execution can flow back and forth as necessary because modules are capable of
calling functions from other modules. In this way it became possible for a module
to ask other modules for instructions for further planning or rate the current plan,
so that it can be corrected as necessary.

In this way loss of completeness of the decoupled approach will manifest only
in some special circumstances, e.g. in multi-robot example in Figure De-
spite that fact, the predominant algorithms for coordinating teams of robots are
still decoupled and prioritized. In recent time some efficient methods that can
overcome this problem have been developed, such as by Bennewitz et al. [14],
where a method for finding and optimizing priority schemes for multiple robots
is described.

By a decision to use the decoupled approach, the selection job is in no way
finished. There still left to select appropriate planning methods in each particular
module. Those decisions will be guided by the goal of best utilization of intelligent
space advantages, as will be described in the following chapters.






CHAPTER 5

Path Planning

Path planning while avoiding obstacles has long time been the main goal within
motion planning research community, while in this thesis it is part of the first stage
of the overall motion planning algorithm. Therefore, this chapter is concerned
with methods used to plan obstacle-free paths between two robot configurations.
A novel path-planning algorithm is introduced that enables fast path-replanning.

5.1 General Notions

The first stage of the decoupled approach is path planning. Path planning still
remains one of the core problems in modern robotic applications. The basic path-
planning problem is concerned with finding a good-quality path from a source
point to a destination point that does not result in collision of the robot and
obstacles.

Hereby, a robot is considered a rigid object capable of moving in a physical
space called workspace W, which is usually planar (R?) or three-dimensional R3.
Although the robot always moves in the three-dimensional space, the third di-
mension (height) is often not considered in algorithms as the robot is constrained
to move in the ground plane. This is also assumed throughout this work. The
workspace of the robot often contains obstacles. Let WO, be the closed set that
represents the i-th obstacle in the robot workspace, where WO, € W, Vi € [1,n].
The free workspace is then defined as the set of points Wy, = W\ U, WO,.

Motion planning is usually not performed in the workspace but in the so
called configuration space C of the robot (also called C-space). This is the set
of all robot configurations, where the robot configuration ¢ contains a complete
specification of the position of every point of the robot system. E.g. for a mobile
robot that can translate and rotate in a planar workspace, ¢ contains position
(x,y) and orientation 6. Therefore, its configurations space is an open unbounded
environment given by R? x S! where the x represents Cartesian product and S*
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is the unit circle representing angles in range [—m, 7.

Let R(q) be the set of points of the workspace occupied by the robot at
configuration ¢g. Then the i-th obstacle in the configuration space CO; corresponds
to the configurations of the robot that intersect an obstacle in the robot workspace
W, ie. CO; = {q|R(q) YWO; # (}. Now the free configuration space can be
defined as

Crree = C\| JCO:, (5.1)

and is often referred simply as “free space”. The configurations in the free space
are called free configurations or admissible configurations.

Therefore, a path can be described as a continuous curve on the configuration
space, i.e. it is a continuous function that maps some path parameter to a curve
in Cfree. The path parameter can be chosen arbitrarily; in this work an interval
[0, s,] is chosen, where s, is parameter s at goal configuration. Therefore, a path
can be written as a continuous function from the initial configuration gy, to the
goal configuration gg.q such that

q(s) : [0, s4] — C,where ¢(0) = Gstart; 9(Sg) = @goar a0d q(s) € Cpree Vs € [0, 5.

(5.2)
By definition, every configuration along the path is free, so that such a path is
called free path or admissible path. If a path touches obstacles, but does not
penetrate them, it is no more determined in free configuration space, but in its
closure cl(Cyree). Such a path is called semi-free path.

The main difference between path planning and trajectory planning is that
the path planning only takes into account time-independent constraints such as
geometric constraints (i.e. obstacles) and kinematic constraints (i.e. curvature
constraint), but not time dependent (dynamic) constraints such as limits of robot
velocity and acceleration. If moving obstacles have to be taken into account, ob-
stacle avoidance is no more pure geometric constraint because obstacle positions
must be treated as time-dependent variables. Therefore path-planning techniques
deal only with static obstacles. Nevertheless, in some circumstances those meth-
ods can be adopted so that moving obstacles are directly taken into account. This
is usually achieved by adding time as an additional configuration variable.

Numerous methods are proposed that solve the path-planning problems. De-
pending on the amount of information available about the environment, which
can be completely or only partially known, the approaches vary considerably.
In many path-planning algorithms computational geometry plays a special role.
Many methodologies that rely on geometric representation of the space, have their
roots in computational geometry. Path-planning problems that are solved using
these methodologies usually have a well-defined and deterministic set of objec-
tives, regular geometric space representation, and specific functions that describe
robotic movements.

The common methods that are based on computational geometry are the cell
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decomposition methods, the roadmap methods (and the sampling-based methods
as a special case), and the artificial potential field methods [38]. If robots are rep-
resented by polygonal objects, an approach based on the Minkowski sum is often
used [73]. It must be emphasized that this classification is somewhat arbitrarily
because many methods cannot be classified exactly to certain category as they
combine algorithms and principles from multiple categories. In continuation it
is shown how the free configuration space is geometrically constructed, which is
a prerequisite for some methods. Thereafter, description of the most important
path-planning methods and a literature review is given.

5.2 Free Configuration Space Construction

As motion planning is usually executed in the configuration space, many path-
planning methods depend on explicit construction of the free configuration space
Cree Of the robot. The configuration of a robot system is a complete specification
of the position of every point of that system, which is needed to ensure that no
point on the robot collides with an obstacle. The dimension of the configuration
space, i.e. minimum number of parameters needed to specify the configuration
depends on the type of a robot, and is equal to the number of degrees of freedom
of the robot.

This can be illustrated by considering a simple mobile robot that can translate
without rotating in the plane. A common way to represent robot configuration
is to specify the location of its center, (z,y) relative to some fixed coordinate
frame. If radius r of the robot is known, the set of points occupied by the robot
can be easily determined from the configuration ¢ = (z,y) and is denoted as
R(q). Therefore, the configuration space of this robot can be represented by
R%  As this robot operates in a two-dimensional Euclidean ambient space (i.e.
workspace) also represented by R? one may assume that configuration space
and workspace represent the same spaces. But those are different spaces, as will
become evident in the next example.

Apart from translation, mobile robot are usually capable of rotating, so let’s
consider a more complex robot that can translate and rotate in a planar workspace.
To specify configuration of this robot, it suffices that ¢ contains robot position
given by the coordinates (z,y) and the orientation given by the angle 6 with re-
spect to the workspace frame. Then the triple ¢ = (z,y, 0) completely determines
position of any point of the robot relative to the workspace coordinate frame be-
cause the robot is a rigid body. This configuration space is denoted by R? x S*.
The workspace of this robot is again R?, but it is now evident that it is different
from its configuration space, R? x S!. Properties of the different configuration
spaces can be described using tools from mathematic field called topology, see
e.g. [89].

The free configuration space Cyre. is in equation (5.1I) defined as the set of
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Figure 5.1. Construction of the free configuration space. (a) The circular mobile robot
approaches the workspace obstacle. (b) The robot slides around the obstacle touching
it. Robot path coincides with the contour of the configuration space obstacle (the thick
line). The configuration space obstacle therefore corresponds to the Minkowski sum of
the workspace obstacle and the robot. (c) Problem has been transformed into motion
planning for a point robot in the configuration space.

configurations at which the robot does not intersect any obstacle. To plan a path,
it is necessary to construct this set, i.e. map obstacles from robot workspace into
its configuration space. A simple example of the free C-space construction is for
the circular mobile robot in the planar workspace with a single polygonal obstacle
(Figure [51]). The configuration space obstacle is obtained by an isotropic growth
of the workspace obstacle by the radius of the circular robot, which is actually the
Minkowski sum of the obstacle and the disc. Even in this simple example it can
be noticed that configuration space obstacles can have more complex geometric
shape than corresponding workspace obstacles. In particular case the C-space
obstacle contains also circular segments which were not present in the workspace
obstacle. As the robot in this example is circular, its geometric representation
is rotation invariant. Therefore, the shape of the free C-space does not change
along the third dimension and planning can be performed in first two dimensions
only.

Let’s now consider a more general case: a mobile robot of arbitrary shape that
can translate and rotate in the planar workspace. Whether or not is a particular
point in the C-space free depends now also on robot orientation resulting in true
3-dimensional free configuration space. Because of this the motion planning can
no more be reduced to two dimensional C-space, but has to be performed in 3
dimensions. This results in two main consequences. First, if motion planning is
to be performed in environment with moving obstacles, the 3-D free configuration
space has to be regularly updated, which is a complex operation. Second, motion
planning in three dimensions is also much more complex than in two dimensions.
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Both consequences contribute to significantly higher algorithm execution time.

This is the reason why in many applications the non-circular mobile robot
is approximated by its bounding circle. Unfortunately, even if a complete path-
planning algorithm is used, such an approximation makes it incomplete, meaning
that the planner might not find a path even if one exists. However, this may
not be considered as a practical limitation until e.g. precise manipulation tasks
are demanded that require motion very close to the obstacles. Moreover, many
commercial differential-drive mobile robots (e.g. Pioneer [2]) are approximately
circular.

In applications where the approximation by a bounding circle is too restrictive,
a multiple-planner strategy can be used. In this approach a high-level decision
algorithm makes a selection of the the most appropriate planner in a particular
situation. E.g. roadmap methods (Section [5.6) can be used for fast, near-optimal
motion planning in open environments. When it comes to navigation through very
narrow passages or precise manipulation tasks, sampling-based planners (Section
B.0) that do not depend on explicit configuration space construction are suitable.
The sampling-based planner will produce a path that may not be optimal, how-
ever, optimality is not of primary concern in manipulation tasks, and non-optimal
solution is better than no solution at all.

As it was shown, for the case of the circular mobile robot in a planar world pop-
ulated with polygonal obstacles, it is easy to explicitly construct free C-space by
dilating the workspace obstacles. When the robot is even slightly more complex,
it becomes much more difficult to do so. This process is sometimes simplified by
using grid-based representation of the configuration space. For the mentioned mo-
bile robot of arbitrary shape that translates and rotates in the planar workspace,
the configuration space C = R? x S! can be partitioned to 3-dimensional grid. For
each point in this grid we can perform a simple test to see if the corresponding
configuration is in collision with any of the obstacles; in this case the correspond-
ing grid cell can be labeled as “one”, or as “zero” otherwise. Then the graph
search algorithm can be used to find a path from start to goal configuration.
However, this approach is not very practical for large robot workspaces as the
3-D grid can become very “memory-hungry”. The memory requirements further
depend on selected space and orientation resolution; finer the resolution—higher
the memory requirements. Therefore, the grid partitioning approach is more
commonly used with circular-shaped robots, where the resulting grid map is only
two-dimensional.

5.3 Artificial Potential Fields

As it is not simple to explicitly represent the configurations space, especially
for robots with many degrees of freedom, an alternative is to use methods that
incrementally explore the free space while searching for a path. Example of this
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approach is the artificial potential field method, which was introduced by Khatib
[75] for robotic manipulator arms and later suggested for mobile robot platforms
(see e.g. [88, [18]).

The idea is to assign a function similar to the electrostatic potential to each
obstacle and then derive the topological structure of the free space in the form
of minimum potential valleys. The robot is pulled toward the goal configuration
as it generates a strong attractive force. In contrast, the obstacles generate a
repulsive force to keep the robot from colliding with them. The path from the
start to the goal hopefully can be found by following the direction of the steepest
descent of the potential toward the goal. This can be viewed as a landscape where
the robot moves from a high-value state to a low-value state, i.e. the robot follows
a path “downhill” by following the negated gradient of the potential function.

The environment for the original formulation of this idea is assumed to be
static, however there have been adaptations for using this approach for dynamic
environments. Potential can be associated with the objects in the environment
as they are encountered. Various variants of the artificial potential field method
have been developed to make the approach usable in dynamic or cluttered or
partially known environments.

The potential field experienced by the robot at configuration ¢ can be ex-
pressed as

Uaps (@) = Ugoat (q) + Uobs(q)- (5.3)

where Uy r(q), Ugoai(q) and Ugs(q) denote the artificial potential field, the attrac-
tive potential from goal and the repulsive potential from obstacles, respectively. A
related artificial force F'(q) is then obtained as negative gradient of the potential
field U,pf(q) as

F(q) = =VUap(q)- (5.4)

Typically, obstacles are treated as exponentially repulsive bodies so that the
repulsion experienced by the robot rises exponentially as it approaches the bound-
ary of an obstacle at which point the force becomes practically infinite:

1
p(q)?’

where p(q) is the distance between the robot and an object. The goal is typically
chosen to have a parabolic well shaped attractive force such as

Uobs(q) = log|p(g)| + (5.5)

Ugoal(Q) = K|q - QQoal|27 (56)

where K is a positive constant.

The main advantage of the potential field method is that information on the
locations of all obstacles is not required beforehand so that path planning can be
done in real time by considering only the obstacles close to the robot. Besides,
it is extremely easy to implement. However, as only local properties are used in
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planning, the robot may get stuck at local minima and never reach the goal. There
are some adaptations of the original methods that use random walk sequences to
escape from local minima traps. But the heavy amount of parameter tuning
caused most people to abandon the method in recent times, in favor of newer
methods.

5.4 Cell Decompositions

The cell decomposition method uses nonoverlapping cells to represent the free
space connectivity. The decomposition can be exact or approximate. An ex-
act decomposition divides the free space into regions called cells whose union is
exactly the free space [10), B8]. The cells can be of various shape. The shared
boundaries of cells often have a physical meaning such as a change in the closest
obstacle, a change in line of sight to surrounding obstacles or some other change
in the constraints applying to the motion of a robot. Two cells are adjacent if
they have a common boundary. Therefore an adjacency (or connectivity) graph
is constructed which stores the information about adjacency relationships of the
cells, where a node corresponds to the particular cell, and edge denotes the adja-
cency between cells, i.e. ability to generate the path between corresponding cells
(example: a straight line). Once the decomposition is computed, i.e. the space
is divided up into cells, the adjacency graph that comes out gives all the regions
that need to be traversed to get from initial to goal configuration. The path
planning is then usually done in two steps:

1. The planner determines the cells that contain initial and goal configuration,
respectively;
2. The planner searches for a path in the adjacency graph.

There exist many techniques for decomposition. E.g. for convex polygonal
obstacles a typical sample algorithm is known as the sweep line algorithm that
sweeps through the vertices of all obstacles and splits the cells according to local
obstacle edge directions [88]. Other examples include triangulation, cylindrical
decomposition and 3D vertical decomposition [89)].

An approximate cell decomposition treats a set of cells which approximately
covers free space. This scheme samples the free space with cells, where cells
have regular boundaries and thus it is easier to compute traversals, but a lot of
details about the environment may be lost. Specifically, a detail that is smaller
than half the smallest dimension of the cell would not be captured at all. This
method usually decomposes the free space recursively, stopping when a cell is
entirely in free space or entirely inside an obstacle. Otherwise, the cell is further
divided. Because of memory and time constraints, the recursive process stops
when a certain degree of accuracy has been reached. An example is the quad-
tree algorithm [112]. The computational efficiency of this method depends on
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the fineness of the decomposition. The finer decomposition, the more paths are
created, and the closer to the shortest path in the network.

An important decomposition that is frequently used in practical applications
is the occupancy grid map which also can be classified in the category of ap-
proximate methods. The occupancy grid method covers the space with a regular
grid and then determines whether a cell is free or occupied based on the pres-
ence or absence of an obstacle. Since in motion-planning problem one is basically
concerned whether an object occupies a cell or not, the representation can be a
simple histogram of sensor hits with respect to a certain cell. A threshold value
is used to filter out false noisy obstacle detection. In order to discourage robot
movements close to the obstacle contours, a certain mask operator is applied to
the occupied cells which propagates the increased costs in the case when graph
search algorithm are used to find the global path. The global path is usually found
using some variant of D* graph search algorithm, which allows efficient path re-
planning. Omne such example is an integration of focused D* and Witkowski’s
algorithm which produces the shortest path in occupancy grid maps [133].

The cell decomposition method, although simple to implement, seldom yields
high-quality paths. The exact cell decomposition technique is faster than the
approximate one, but the path obtained is not optimal. The approximate cell
decomposition can yield near-optimal paths by increasing the grid resolution, but
the computation time will increase drastically. There is also the known problem
of digitization bias associated with using a grid. This stems from the fact that
while searching for the shortest path in a grid, the grid distance is measured and
not the Euclidean distance.

However, cell decompositions distinguish themselves from other methods in
that they can be used to achieve coverage. A coverage path planner ensures that
an effector (e.g. a robot, a tool, etc.) passes over all points in a free space. Once
the robot visits each cell, the coverage is achieved.

5.5 Sampling-Based Algorithms

As the dimension of the configuration space grows, path planners that depend on
explicit representation of the configurations space become impractical. In those
cases sampling-based methods [38] have proved as very promising as they can be
used to solve very complex path-planning problems. Those planners do not at-
tempt to explicitly construct the boundaries of the configuration space obstacles
or represent cells of free configuration space. Instead, they conduct a search that
probes the C-space with a sampling scheme using a procedure that can decide
whether a given configuration of the robot is in collision with the obstacles or
not. Therefore, efficient collision detection procedures ease the implementation
of sampling-based planners and increase the range of their applicability. Further-
more, since collision detection is considered by a motion-planning algorithm as a
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“black box”, collision detection module can be designed for specific robots and
applications. The collision detection module handles concerns such as whether
the models are semi-algebraic sets, 3D triangles, nonconvex polyhedra, and so
on. Recent advances in collision detection algorithms have contributed heavily
to the success of sampling-based planners. Sampling-based methods use different
strategies to generate collision-free samples (i.e. configurations) and to connect
the samples with paths to obtain feasible solutions to path-planning problems.

This general philosophy has been very successful in recent years for solving
complex problems that involve thousands and even millions of geometric primi-
tives. Such problems would be practically impossible to solve using techniques
that explicitly represent C-space [89]. Sampling-based methods are often used
to solve complex path-planning problems in industrial automation, bat are also
used to solve problems beyond classic path planning. For example, sampling
based planner can be used to determine if a part can be removed from an aircraft
engine during construction phase using a CAD (computer-aided design) model
of an engine. This information is extremely important to verify correct design
of the engine, as some parts need to be removed and replaced for maintenance.
Sampling-based planners can also be used in computer animation (e.g. to plan
movements of a human model), planning with kinematic and dynamic constraints
etc. Sampling-based algorithms and their applications are still under intensive
research.

The Probabilistic RoadMap planner (PRM) [72] was one of the early ap-
proaches that demonstrated the tremendous potential of sampling-based meth-
ods. This planner fully exploits the fact that it is cheap to check if a certain
configuration is in free configuration space or not. PRM uses coarse sampling to
generate nodes of the path and very fine sampling to connect those nodes. In
this way a roadmap is constructed (usually offline) which can be used later to
find a path between user-defined initial and goal configurations (possibly online).
Initially, node sampling in PRM was done by using a uniform random distribu-
tion (basic PRM). This planner is probabilistic complete and worked very well
for a wide variety of problems. It was also observed that many other sampling
schemes (quasirandom sampling, sampling on a grid) can be used to effectively
solve many classes of problems.

PRM is intended for multiple-query problems (the constructed roadmap is
used many times later). If PRM is used to answer a single query, some modifi-
cations can be made to optimize it: the initial and goal configurations are added
to the roadmap nodes, and the construction of the roadmap is done incremen-
tally and is stopped when the solution is found. However, the faster planners
exist for single-query problems, e.g. Expansive-Spaces Tree planner (EST) and
the Rapidly-exploring Random Tree planner (RRT).

In general, sampling-based methods, being probabilistic in nature, do not meet
any optimality criteria. Further, execution time may vary considerably between
different queries so that it is hard to achieve real-time performance. However,
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sampling-based planners have been successfully used for many complex prob-
lems where real-time issues are not of primary concern. Despite their simplicity,
sampling-based planners are capable of dealing with robots with many degrees of
freedom and with many different constraints. They can take into account kine-
matic and dynamic constraints, closed-loop kinematics, stability constraints, re-
configurable robots, energy constraints, contact constraints, visibility constraints
and others. The PRM planner can also be used for dynamic path planning, as
its complexity depends mostly on the difficulty of the path and to a much lesser
extent on the global complexity of the environment or the dimension of the con-
figuration space. For example, a recent PRM-based algorithm that can efficiently
re-compute paths in dynamic environments can be found in [13].

5.6 Roadmap Methods

Data structure that models robot environment is called map, and mapping is
the task of generating such models from sensor data. In the context of indoor
systems, three map concepts prevail: topological, geometric, and grids [38].

Topological representations aim at representing environments with graph-like
structures, where nodes correspond to “something distinct” and edges represent
an adjacency relationship between nodes. For example, places may be locations
with specific distinguishing features, such as intersections and T-junctions in an
office building, and edges may correspond to specific behaviors or motion com-
mands that enable the robot to move from one location to another, such as
wall-following.

Geometric models use geometric primitives for representing the environment.
Mapping then amounts to estimating the parameters of the primitives to best
fit the sensor observations. In the past, different representations have been used
with great success. Many researchers use line segments to represent parts of
the environment, e.g. [7]. Popular approaches also represent three-dimensional
structures of the environment with triangle meshes.

Occupancy grids are grid structures, where the value of each pixel corresponds
to the likelihood that its corresponding portion of workspace or configuration
space is occupied [46]. Occupancy grid maps were first introduced for mapping
of robot environment using ultrasonic sensors.

A class of topological maps that attempt to capture the free-space connectiv-
ity with a graph are called roadmaps [34]. This roadmap graph is like network
of 1D curves or lines (roads). Roadmap graph also has physical meaning because
roadmap node corresponds to a specific location and an edge corresponds to a
path between neighboring locations. Therefore it could be viewed as decomposi-
tion of the robot configuration space based on obstacle geometry. Planning with
roadmaps is similar to the way people use highways. Instead of planning every
possible side-street path to a destination, people usually plan their path to a net-
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work of highways, then along the highway system, and finally from the highway
to the destination. Therefore, the bulk of motion occurs on the highway system.
Similarly, the roadmap-based planner first constructs a collision-free path from
initial configuration to the roadmap. Then it performs a graph search and finds
the path to the vicinity of the goal, and then departs from roadmap and con-
structs the path to the goal configuration. The most of the motion occurs on the
roadmap so that searching does not occur in a multidimensional configuration
space or workspace. Here the challenge is to construct roadmap that enables the
robot to reach any goal in the free space, while minimizing the length of roads or
minimizing some other criterion.

Roadmaps are appropriate if numerous start-goal queries are given to the
algorithm, while keeping the robot model and obstacles fixed. This leads to a
multiple-query version of the motion planning problem. In this case, it makes
sense to invest substantial time to preprocess the models so that future queries
can be answered efficiently. Intuitively, the paths on the roadmap should be easy
to reach from each initial and goal configuration, and the graph can be quickly
searched for a solution. If the obstacles are not fixed (dynamic environment), a
roadmap has to be efficiently updated, or a new roadmap must be constructed in
each algorithm sample. In the later case, there is of course no sense to construct
a whole roadmap, but only a part which is required to connect start and initial
configuration. Then it makes sense to optimize roadmap construction algorithms
so as to make them more appropriate for single query usage.

Formally the roadmap can be defined as [38]: A wnion of one-dimensional
curves is a roadmap RM if for all qsare and qgoa i Cree that can be connected
by a path, the following properties hold:

1. Accessibility: there exists a path from qgare € Cpree to some ¢lyony € RM;
2. Departability: there exists a path from qfqoal € RM to qgoar € Ctrees

3. Connectivity: there exists a path in RM between qg,,, and qj,q-

By satisfying those properties, a roadmap provides a discrete representation
of the continuous motion planning problem without losing any of the original
connectivity information needed to solve it. Those properties ensure completeness
of the roadmap algorithms; the first two conditions ensure that any query can
be connected to roadmap, and the third condition ensures that the search always
succeeds if a solution exists.

Sampling methods, such as PRM, previously discussed in Section 5.5 can also
be classified as roadmap methods as they represent the free space connectivity
with a graph whose vertices are generated randomly in free space and connected to
the neighboring vertices such that the connecting edges do not cross any obstacle,
which is actually a roadmap. The probabilistic aspect, however, is not important
to the method, but is relevant only to how the method determines roadmap nodes
and edges.
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Many types of the roadmaps can be found in literature, among them the most
important are visibility maps, deformation retracts and silhouettes. Visibility
maps are typically used for models with polygonal obstacles, where the edges of
the corresponding graphs, as the name suggests, are defined between the vertices
that are visible from each other, and the nodes of the graph are the vertices of
the obstacle polygons. Deformation retractions can be viewed as first creating a
cell decomposition of free space from which the roadmap is generated. A typical
example is a Voronoi diagram based method. In continuation two examples of
roadmaps will be described: visibility graphs and Voronoi diagrams that achieve
roadmaps with dramatically different types of roads. In the case of the visibil-
ity graph, roads come as close as possible to obstacles and resulting paths are
minimum-length solutions. In the case of the Voronoi diagram, roads stay as far
away as possible from obstacles.

5.6.1 Visibility Graph

The visibility graph has the properties that its nodes share an edge if they are
within line of sight of each other, and that all points in the free space of the robot
are within line of sight of at least one node of the graph. The second property
ensures accessibility and departability—the inherent properties of all roadmaps.
The idea was first introduced by Nilsson [I13], which is maybe the first work
that concerns the path-planning problem. The visibility graph enables to find a
shortest path. Such a path is only semi-free—the robot is allowed to “touch” the
obstacles, but it is not allowed to penetrate them. To use such paths in praxis,
where position uncertainty is present, they need to be transformed in some way
so that they come close to obstacles but do not make a contact.

Problems of computational visibility found in the literature vary in form (see
[52] for an extensive survey). Among the two-dimensional spaces, the problem
is sometimes restricted to visibility in a simple polygon (no obstacles). More
generally, there can be obstacles, sometimes called holes or islands. The obstacles
can be restricted to special shapes, such as rectilinear, circular, line segments, or
convex polygons; or they can be more general, such as simple polygons. The
former case is often encountered in path planning, as in the real world obstacles
are often nonconvex.

For path-planning purposes, the visibility graph is usually defined in a two-
dimensional configuration space where obstacles are represented as simple poly-
gons [38]. The nodes v; of the visibility graph include the start location, the
goal location, and all the vertices of the configuration space obstacles. The graph
edges e;; are straight-line segments that connect two line-of-sight nodes v; and
vj. Nodes and edges are embedded in the free space and edges of the polygonal
obstacles can also serve as edges in the visibility graph. The visibility graph can
be searched for the shortest path using the Euclidean distance norm. The visi-
bility graph can also be defined for a three dimensional configuration space with
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Figure 5.2. The tangent visibility graph contains edges between reflex vertices and
bitangent edges.

polyhedral obstacles, but in this case it may not contain the shortest path.

In order to construct a shortest path it is not required to connect all mutually
visible vertices within roadmap. Such visibility graph is called tangent visibility
graph, reduced wvisibility graph or shortest path roadmap. The tangent visibility
graph G is constructed as follows [89]. Let a reflex vertex be a polygon vertex
for which the interior angle (in Cy,..) is greater than w. All vertices of a convex
polygon (assuming that no three consecutive vertices are collinear) are reflex
vertices. The vertices of G are the reflex vertices. Edges of G are formed from
two different sources:

e Consecutive reflex vertices: If two reflex vertices are the endpoints of an
edge of C,ps, then an edge between them is made in G.

e Bitangent edges: If a bitangent line can be drawn through a pair of reflex
vertices, then a corresponding edge is made in G. A bitangent line is a line
that is incident to two reflex vertices and does not poke into the interior of
Cops at any of these vertices. Furthermore, these vertices must be mutually
visible from each other.

An example of the tangent visibility graph is given in Figure It can be
noticed that roadmap can have isolated vertices, like at the top of the figure. Fur-
thermore, between two disjoint convex obstacles there are exactly four bitangent
segments.

The path from initial configuration gs,+ and goal configuration ggee is ob-
tained by inserting gssq,+ and ggoq; as nodes to the graph and then connecting new
nodes to all visible vertices; this is shown in Figure 5.3l This makes an extended
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Ostart

Figure 5.3. The extended tangent visibility graph used to solve a query is obtained by
connecting all visible roadmap vertices to qstart and n Ggoqi-

roadmap that is searched for a shortest path. To each edge in graph a weight is
assigned, which is the Euclidean length of the physical edge. Dijkstra algorithm
can be used to find the shortest path within the visibility graph. Its running
time is O(nlogn + k), where n is the total number of obstacle edges, and k is the
number of edges in the graph, which is in worst case k = O(n?) (to achieve this
time bound, one has to use Fibonacci heaps in the implementation). An example
of the shortest path is shown in Figure 5.4

If the bitangent tests are performed naively, then the resulting algorithm re-
quires O(n?) time. There are O(n?) pairs of reflex vertices that need to be checked,
and each check requires O(n) time to make certain that no other edges prevent
their mutual visibility. The radial sweep algorithm can be used to obtain a better
algorithm, which takes O(n?logn) time. The idea is to perform a radial sweep
from each reflex vertex, v. A ray is rotated starting at § = 0, and check is
performed when the ray touches vertices. A set of bitangents through v can be
computed in this way in O(nlogn) time. Since there are O(n) reflex vertices, the
total running time is O(n*logn) [40]. This algorithm is due to Lee [90].

More efficient algorithms for visibility graph construction based on arrange-
ments have been proposed, which run in O(n?) time. An example is algorithm
of Welzl [156], which works for a set of line segments, but can be adapted for
sets of polygons. Ghosh and Mount developed an optimal, planar-scan technique
using triangulation and funnel splits to achieve O(k +nlogn) time bounds. This
algorithm is important because it is output sensitive, meaning that its running
time depends on the number of edges in the graph. Therefore it can be very
efficient for sparse graphs. A practical comparison of those algorithms with real
time measurements against a variety of testcases is performed by Kitzinger [81].
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Ostart

Figure 5.4. The thick line represents the shortest path obtained by graph search in the
extended tangent visibility graph.

Any algorithm that computes a shortest path by first constructing the visi-
bility graph is doomed to have at least quadratic running time in the worst case,
because the visibility graph can have a quadratic number of edges. However,
if a shortest path is constructed directly, it can be found in O(nlogn) time, as
demonstrated by Hershberger and Suri [5§].

Sometimes it may be necessary to represent the obstacles with generalized
polygons. Generalized polygons are regions bounded by straight segments and
circular arcs. For example, generalized polygons show up when the polygonal
obstacles are isotropically grown by a disc of radius ¢ in a preprocessing phase.
This ensures minimum clearance ¢ between the path and the obstacles. The
visibility graph method can be extended so that it handles generalized polygons

59

5.6.2 Voronoi Diagram

Paths obtained using the Voronoi diagrams have the property that they keep as
far as possible from obstacles, so that the corresponding roadmap is also called
maximum clearance roadmap. Such paths may be preferred when the uncertainty
of the robot and obstacles position is high, and when it is hard to precisely control
mobile robot position. There are many variants of the Voronoi diagram (for a
survey on Voronoi diagrams see [9]). Here we primarily address Voronoi diagram
of polygons in the plane, which is a generalization of the Voronoi diagram of
points in the plane (thus it is also called generalized Voronoi diagram, although
the word “generalized” is often omitted).

A basic Voronoi diagram is defined for a set of points called sites [38]. A
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Voronoi region is the set of points closest to a particular site. The Voronoi
diagram is then the set of points equidistant to two sites; it sections off the free
space into regions that are closest to a particular site. In the case of points in the
plane, the Voronoi diagram contains only the line segments.

Within the path-planning, we can think of the point sites as obstacles. How-
ever, obstacles are usually represented by objects other than points. The distance
from a point to an object is then measured to the closest point on the object.
The definition of a Voronoi region is extended to the generalized Voronoi region,
F;, which is the closure of the set of point closest to obstacle CO;, i.e.

Fi=1{q € Cpree | diq) < dn(q) Vh # i}, (5.7)

where d;(q) is the distance to an obstacle CO; (its closest point) from g, i.e.
d;(q) = min.eco, d(g, c).

The basic building block of the Voronoi diagram is now the set of points
equidistant to two obstacles CO; and CO;. This set is called a two-equidistant
surface defined by S;; = {q € C | di(¢) = d;(¢)}. This two-equidistant surface is
further restricted to the set of points that are both equidistant to CO; and CO;
and have CO; and CO; as their closest obstacles. This restricted structure is the
two-equidistant face denoted by Fi; = {q € S;; | di(¢) = dn(q) Vh}. The union
of the two-equidistant faces forms the Voronoi diagram V' D, i.e.

VD = UU]:” (5.8)

This definition of the Voronoi diagram is valid in any dimensional space. For
planar maps, the faces F;; are called Voronoi diagram edges which terminate at
meet points, i.e. graph nodes. Those points are equidistant to three or more
closest obstacles.

If the obstacles are represented by polygonal objects, obstacles have two fea-
tures, vertices and edges. The set of points equidistant to pair of vertices is a
line, as well as set of points equidistant to pair of edges. But, the set of points
equidistant to a vertex and an edge is a parabola, therefore the corresponding
Voronoi diagram also contains parabolas. The Voronoi diagram can be built by
breaking down the free space with the appropriate equidistant curves (Figure [5.H).
The construction of the Voronoi diagram leads to a naive O(n?*) time algorithm.
Several algorithms exist that provide better asymptotic running times, but they
are considerably more difficult to implement. The best-known algorithm uses
sweep line method [40] and runs in O(nlogn) time in which n is the number of
roadmap curves.

Other useful generalizations of the Voronoi diagram concerning the shape of
the sites is the Voronoi diagram of the edges of a simple polygon, interior to the
polygon itself. Then Voronoi diagram is the subdivision of the interior of the
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Figure 5.5. The Voronoi diagram of polygonal obstacles.

polygon into faces where one or two edges are the closest. This Voronoi diagram
is also known as the medial axis or skeleton. The medial axis can be computed
in O(n) time, where n is the number of edges of the polygon, as demonstrated by
Chin et al. [37].

In comparison to the Voronoi diagram for point sites, which is composed
of straight edges, the occurrence of curved edges in the line segment Voronoi
diagram can be a disadvantage in the computer representation and construction,
and sometimes also in the application. There have been several attempts to
linearize and simplify the Voronoi diagram, mainly for the sake of efficient point
location and motion planning. For example McAllister et al. [I02] developed an
algorithm for building a compact piecewise-linear Voronoi diagram for convex
sites in the plane.

In computational sense, the advantage of the Voronoi diagram over the visi-
bility graph could be its usually better efficiency. The Voronoi diagram has O(n)
edges, so that querying for a path in the Voronoi diagram roadmap is faster than
querying in a visibility graph. However, the quality of path obtained from the
Voronoi diagram may be far from optimal. It usually has many unnecessary
turns, and the length of the path may be undesirably long at regions where the
obstacles are far apart. In fact, it is worth noting that minimizing the path length
and maximizing the clearance seemingly contradict each other, as increasing the
clearance results in a longer path whereas reducing the path length necessarily
reduces the clearance from obstacles.
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Figure 5.6. The VWV diagram (image from [15])]). The boundary of the union of
the dilated obstacles is drawn in a solid blue line, the relevant portion of the Voronoi
diagram is shown in dotted red. The visibility edges are drawn in a dashed line.

5.6.3 Other Roadmap Methods

Other common roadmap-based path-planning algorithms include silhouette meth-
ods [38]. Those approaches use extrema of a function defined on a codimension
one hyperplane called a slice. When the slice is one-dimensional, it can also be
called a sweep line. As the slice is swept through the configuration space, the
critical points of a function restricted to the slice are determined. The resulting
network of extremal point forms the roadmap. The first silhouette method was
roadmap algorithm of Canny [33], which indicated a begin of roadmap theory in
motion planning.

Recently, Bhattacharya and Gavrilova [15] developed a roadmap-based algo-
rithm that utilizes the Voronoi diagram to obtain a path that is a close approxi-
mation of the shortest path satisfying the required clearance to the obstacle value
set by the user. If the required clearance is set to zero, the obtained path is the
same as the one obtained with the visibility graph method. The obtained path is
further refined in order to make it smoother. The advantages of their approach
are claimed to be simplicity, versatility, and efficiency (it runs in O(nlogn) time).

Another recent approach is a diagram called the VV(® diagram (the Visibility-
Voronoi diagram for clearance c¢) developed by Wein et al. [154]. An example of
the VV(© diagram is drawn in Figure[5.6. The motivation behind this work is also
to obtain a shortest path for a specified clearance value. The diagram evolves from
the visibility graph to the Voronoi diagram as the value of ¢ increases. According
to [154], the VV(© diagram can be constructed in O(n?logn) time, however this
result is further enhanced to O(nlogn) by Bygi and Ghodsi [32].
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5.7 Proposed Path-Planner

In the sequel a path-planning algorithm developed in this work is described. As
a prerequisite, a map representation is discussed first, followed by path-planning
algorithm description and some implementation aspects.

5.7.1 Map Representation

Distributed and onboard sensors of the intelligent space enable fast and precise
sensing of the whole space. To utilize those advantages, it is desirable to use a
deterministic environment model. Therefore a geometric map representation is
selected as the most appropriate. The advantage of geometric maps over com-
monly used grid maps is their precision due to continuous representation of the
robot workspace. Grid maps introduce discretization error typical for cell decom-
position methods (see Section [1.4]). Additionally, geometric maps are typically
more compact and consume less memory, which is especially remarkable in sparse
environments.

It is commonly agreed that most geometric scenarios can be modeled with
sufficient accuracy by polygonal objects, especially in indoor environments where
walls are usually straight, as well as other objects (furniture, etc.). Therefore it
is decided to represent the obstacles by simple polygons. In the case that circular
objects are present, they can be approximated with multiple lines where number
of lines depends on desired quality of the approximation. The possible drawback
of this approximation can be the map overfilled with lines which could lead to
inefficiency. If this is a major problem, one can switch to generalized polygons
representation which, apart from lines, can also contain circular arc segments
(but algorithms are then more complex).

A possible difficulty with geometric maps could arise in large spaces with
many and complicated obstacles (but this is common for most other map rep-
resentations as well). In this case planning may become inefficient. A possible
solution for this problem is decomposition of the complex map into smaller maps.
For example, every room of a building could be a separate cell. Cell boundaries
and connections could be automatically determined using the narrow passages as
natural connectors between cells (see e.g. work by Seder et al. [131]). In this way
path planning is decomposed into high-level and low-level planning. High-level
planning first determines the cells with start and goal configurations. Then it
performs graph search to determine which cells the robot should traverse in order
to get from the start to the goal cell. Low-level planning then plans a path within
each cell.

In this work it is assumed that environment is dynamic and that obstacles can
move. Therefore, two kind of maps are utilized: static and dynamic map. The
static map serves as a placeholder for non-moving obstacles, such as walls, furni-
ture, etc. This map is created offline and can be generated using various methods,
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e.g. using building plan, using distributed sensors of the space, or using a mobile
robot equipped with appropriate sensors to explore and map the environment.
On the other side, dynamic map contains moving objects such as robots, and
people, which are detected online using onboard or distributed sensors. Unlike
the static map, the object positions in the dynamic map are updated in every
processing cycle to enable handling of changes in the environment. Details about
mapping algorithms are out of the scope of this work (see Section [2Z4] for more
details).

It should be mentioned that in this work a map is used as an abstraction layer
between sensors on the one side, and planning modules on the other side. This
has an advantage of avoiding an explicit dependency of algorithms on a certain
type of sensors and increasing flexibility. Of course, use of the map abstraction
level presumes that map update and replanning can be performed in real-time.

In this way a map abstraction layer substitutes reactive algorithms that use
direct sensor feedback for obstacle avoidance commonly used in mobile robotics.
However, reactive algorithms are still very useful, particularly for a supervision
of higher-level planning algorithms. As sensor-feedback reactive algorithms can
be implemented very efficiently, they can run in robot onboard hardware as a
watchdog module. In this way a reactive algorithm would circumvent decisions
of the high-level planner if a dangerous situation occurs, such as a potential
collision. This can be caused by a number of reasons, such as hardware failure or
an unexpected error in the high-level motion planner.

5.7.2 Path-Planning Algorithm

A path planner that is ideal in our application would at least have the following
capabilities: (i) finding a shortest path that satisfies minimum clearance require-
ment wherever possible, (ii) reporting amount of available clearance otherwis,
and (iii) acceptable execution time. Thus, a design of the algorithm was lead by
the three enlisted guidelines.

Further, to utilize advantages of precise localization of the robot and obsta-
cles in intelligent spaces, using of deterministic path-planning method is desirable.
The potential field methods are not appropriate because of local minima prob-
lems and the reactive character of the method. The sampling-based methods
are excluded because of their probabilistic nature. The cell decompositions are
excluded as well because, due to decomposition, they produce approximative or
low-quality paths.

Therefore the roadmap methods are picked as the most appropriate. One of
the goals is to obtain fast robot motion, which in most cases corresponds to taking
a shortest path. The visibility graph method is a roadmap method that produces

!This information is useful in later modules, e.g. a trajectory planner can reduce robot
velocity if the required clearance is not available.
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the shortest path in the geometric map with polygonal obstacles. Unfortunately,
the visibility graph produces only a semi-free path (a path that touches obstacles),
which is not acceptable in praxis due to uncertainty. Moreover, the next module
of the decoupled approach (path-smoothing) will produce deviations from an
original path, so that even if the original path is semi-free, smoothed path may
not be. One possibility to overcome this problem is to insert additional module
between path-planning and path-smoothing modules for path postprocessing. Its
task would be ensuring a necessary clearance to the obstacles. However, besides
the fact that it is very difficult to develop such algorithm, it would also bring
increased computational cost.

To avoid path postprocessing, in this work the configuration space is trans-
formed in order to account for required clearance from obstacles. This is achieved
by dilating configuration space obstacles. Minkowski sum is typically used for this
operation. This works well in most circumstances, but problems occur in narrow
passages as passage may disappear due to dilating. Although in praxis we usually
don’t prefer our robot to go through narrow passages, there are two situations
where this is still desirable: (i) if a pass through narrow passage considerably
shortens the path, and (ii) if the narrow passage is the only way to the goal.
Therefore, a way must be found to somehow allow passing through narrow pas-
sages even after dilating configuration space obstacles. Of course, such paths
should preferably go through the middle of the narrow passage.

This is achieved by kind of a selective dilatation of the configuration space
obstacles—obstacles are dilated for a required clearance only where possible. If
the visibility graph is constructed among such dilated obstacles, the resultant
roadmap will ensure required clearance from the obstacles. In narrow passages
where the required clearance is not available, a path is constructed through the
middle of the passage. This is obtained by using the Voronoi diagram. Therefore,
in the final roadmap both the visibility graph and Voronoi diagram are combined.

For later modules, path smoothing and trajectory planning, it is beneficial
to have information about the path clearance available at the particular path
segment. This is exactly what this method enables. The path segments produced
by the visibility graph are guaranteed to have required minimum clearance from
the obstacles everywhere but in narrow passages, where in turn the clearance is
reported based on Voronoi diagram.

The algorithm is decomposed to separately handle static and dynamic obsta-
cles. This is motivated by the fact that static roadmap can be computed offline
and efficiency is here not of big importance. On the contrary, it is critical that
dynamic obstacles are processed fast enough as it must be done online. For this
reason the algorithm that handles dynamic obstacles is designed to act more
locally, i.e. it updates only those portions of the configuration space where the
change occurred. Both algorithms are described in the sequel.
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Construction of the Static Roadmap

In the first stage of the algorithm static obstacles are processed to construct the
static roadmap. The algorithm is in many details similar to algorithm of Wein et
al. [I54] that produces the visibility-Voronoi diagram for clearance c. Input to the
algorithm is the static workspace map containing a set of simple disjoint polygons
Wi, i € [1,n,] that represent the static workspace obstacles. The algorithm is
called CONSTRUCTSTATICROADMAP and is enlisted in Algorithm B.77.11

Algorithm 5.7.1: CONSTRUCTSTATICROADMAP

Input: W;, i€ [1,n,] : static workspace
Output: SRM : static roadmap

1. Approximately construct the configuration space C', i.e. configu-
ration space obstacles C;, i € [1,n.,n. < n, by approximately
offsetting the workspace obstacles by the radius r of the robot (or
its bounding circle) plus some preferred safety distance €. Unify
configuration space obstacles that intersect.

2. Construct the dilated configuration space obstacles CZ-(C), i€ [l,n
by offsetting the configuration space obstacles by preferred clear-
ance value ¢ minus €. Dilated configuration space obstacles CZ»(C)
may not be disjoint. A point of intersection of two dilated obstacle
boundaries is called a chain point.

3. Fi(n)d the dilated configuration space C® by computing union of all
Co.

1

4. Compute the extended visibility graph VG of C(© by first com-
puting the tangent visibility graph of C(9. Extend the graph by
connecting chain points to the graph. In this way visibility edges
between two chain points and tangent visibility edges emanating
from chain points are added to the tangent visibility graph.

5. Construct the Voronoi diagram V' D of the configuration space C.
Compute the intersection VD (C©), i.e. the part of the Voronoi
diagram that is contained within the union of the dilated con-
figuration space obstacles. Approximate Voronoi arcs by straight
segments. Static roadmap SRM is obtained by combining ex-
tended visibility graph VG and corresponding Voronoi segments,
ie. SRM = VGU(VDNC™). Also find and store the clearance
of each Voronoi segment in the SRM.
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The first step of the algorithm deserves a further explanation. In Figure [5.1]it
is shown that the configuration space for the circular robot is exactly constructed
by finding the Minkowski sum with the robot (i.e. disc). However, Minkowski
sum, in addition to straight lines, produces also circular arcs. The obstacles
dilated in this are generalized polygons whose boundary consists of straight lines
and circular arcs and is therefore G! continuous. Consequently, the visibility
graph constructed on such generalized polygons would also be G! continuous.

Although G! continuity may be sufficient in some applications, in this work
G2 continuity is required to achieve smooth velocity of the robot. As will be
discussed in Chapter [, the required G2 continuity is ensured in the next, path-
smoothing module. However, the path-smoothing module is designed so that its
input can be only GY continuous (piecewise-linear) path, and the module does all
the necessary job to transform it to G2 continuos path.

Therefore, we do not insist on G! continuity in the path-planning module, so
that it is designed to produce only G° continuous path. This also helps to save
some computation time, as it is more complex to construct visibility graph of
generalized polygons. This is the main difference between CONSTRUCTSTATIC-
ROADMAP algorithm and Wein’s algorithm [154] that produces G! continuous
paths. This is achieved by computing the Minkowski sum only approximately by
approximating circular arcs by line segments. In general case polygons may not
be convex, so that they are decomposed to convex polygons prior to computing
Minkowski sum [36].

The obstacles are dilated for r + ¢, where an extra amount ¢ is the safety
distance that determines how close the robot may approach to an obstacle. This
parameter is user-defined, and it must at least account for various uncertainties,
such as uncertainty of the map, measurements, positioning, etc.

The most time-consuming task of the described algorithm is computing the
visibility graph. If standard radial sweep algorithm is used O(n?*logn) time is
required, which is acceptable because computation is done offline.

Adding Dynamic Obstacles

Dynamic obstacles make robot life considerably harder compared to their relatives
that reside in the static worlds. Consequently, the algorithm for incorporating
dynamic obstacles into the roadmap is significantly harder to design—it is more
time-critical because all computations have to be done online. For example, in the
algorithm CONSTRUCTSTATICROADMAP it is acceptable to construct the Voronoi
diagram of the whole configuration space, although usually only a small portion
of it is incorporated into the final roadmap. On the contrary, when handling
moving obstacles the Voronoi diagram is computed only locally. The algorithm is
called ADDDYNAMICOBSTACLES and is enlisted in Algorithm B.7.2] Input to the
algorithm is the dynamic workspace (i.e. map) containing a set of simple disjoint
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polygons DW;. i € [1, ng,] representing dynamic workspace obstacles.

Algorithm 5.7.2: ADDDYNAMICOBSTACLES

Input: DW,,i € [1,n4,] : dynamic workspace
Output: RM : final roadmap

1. Initialize the final roadmap RM to be equal to the static roadmap,
ie. RM = SRM.

2. Approximately construct the dynamic configuration space DC' i.e.
its obstacles DCj,i € [1,n4c], nge < Mgy by offsetting the dynamic
workspace obstacles by the radius of the robot (or its bounding
circle) plus the preferred safety distance . Use collision module
to find collision(s) with the static configuration space obstacles or
another dynamic configuration space obstacles. If some obstacles
collide, there is no free pass between them so that they are joined by
computing their union. As this could invalidate some of the static
roadmap edges, these should be identified and marked as invalid

(they are not deleted, because they may become valid again).

3. Construct the dilated dynamic configuration space obstacles
DC’i(C),i € [1, nge) by offsetting the dynamic configuration space ob-
stacles by clearance ¢ minus €. Again, dilated configuration space
obstacles DCZ(C) may no longer be disjoint.

4. Use collision detection to find collision(s) with the static dilated
configuration space obstacles. Compute intersection of colliding ob-
stacles and construct the medial axis of this intersection. Insert
valid edges of the medial axis into the final roadmap, where valid
edges are all inner edges and those edges that are connected with
chain points.

5. Update the visibility edges of the roadmap. This is done by updat-
ing the static extended visibility graph with any new chain points
and dilated configuration space obstacles DC’i(C).

The last step of the algorithm requires use of the algorithm that can handle
dynamic changes to maintain the visibility graph. For this the algorithm of Asano
[8] is appropriate that can handle dynamic changes (inserts and deletes) each in
O(n) time. The algorithm of Vegter [150] can do the same using a structure called
visibility diagram. This algorithms requires O log® n + klog n time, where k is the
number of visibility edges created or destroyed at the change.
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It is also important to mention that, in case of multi-robot scenario, final
roadmap RM is different for each particular robot because a robot must not
be contained in its own map, but other robots may be, depending on the pri-
ority scheme. Only dynamic obstacles that are closer to the robot than some
threshold distance are included into robot roadmap. The reason for this is, be-
sides performance improvements, the position uncertainty of distant dynamic
obstacles—their position could change significantly at the time the robot reaches
them.

The algorithm ADDDYNAMICOBSTACLES can also be used to incrementally
build a roadmap in case that map is initially unknown and new obstacles are
detected online.

Once the final roadmap is constructed, it is used to plan the shortest path
from the start to the goal configuration. This is performed by connecting start
and goal configurations to the roadmap, which can be done in O(nlogn) time
using Lee’s algorithm [90] that performs a radial sweep from each configuration.
Then the shortest path is found using Dijkstra algorithm [44]. The execution
of Dijkstra algorithm takes O(nlogn + k), where k is the number of diagram
edges encountered during the search. A* algorithm [55] can be used as well,
as it increases the performance of the shortest path algorithm considerably in
case one is only interested in a path between a single source and a single goal.
Asymptotically however, the running time of Dijkstra algorithm and A* is equal.
With this step the shortest path is found and the path-planning algorithm is
terminated.

5.7.3 Collision Detection

In some circumstances the motion planner will require explicit collision check. In
this work the collision checks are used for the following tasks:

1. To check whether the current robot configuration is in collision with an
obstacle (which indicates robot position or map inconsistency) and whether
the goal configuration is in collision (then the motion planning problem has
no solution).

2. In Algorithm (ADDDYNAMICOBSTACLES) to detect potential colli-
sions of dynamic configuration space obstacles, i.e. to identify narrow pas-
sages. In this case, in addition to the logical predicate that denotes the
collision, the output of the algorithm must also include the polygons that
are result of intersection operation of underlaying polygons.

3. In some circumstances it is used by path-smoothing module to check path
segment for the collision.

All collision checks are performed in configuration space, i.e. it must be deter-
mined whether a certain geometric primitive lies in free configuration space Cyyee.
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As the robot in configuration space is represented by a point, and obstacles are
represented by polygons, the enlisted collision-check tasks impose the following
possible geometric pairs that have to be checked for the collision: point—polygon,
path segment—polygon, and polygon—polygon. Therefore, a path segment can be
a line, circular arc or clothoid arc (see Chapter [l for details about clothoids).

To check point—polygon collision an instance of point-in-polygon problem must
be solved. If the polygon is convex the problem is straightforward to solve in O(n)
time, where n is the number of polygon edges. For simple polygons the problem
is more complex but can still be solved in O(n) time using ray crossings algorithm
[119].

Having the algorithm for point—polygon collision, it is straightforward to ex-
tend it to handle path segment—polygon collision tests in linear time. Here the
collision occurs if either of the following two cases is true: (i) the path segment
is completely contained in the polygon interior, and (ii) the path segment inter-
sects the polygon. To check the first case it is sufficient to detect whether either
one of path-segment endpoints lies in the polygon. If the answer is positive, the
collision is detected. To check the second case it is necessary to test every edge
of the polygon for the intersection with the path segment. If any of the edge in-
tersects the path segment, then the collision occurred. The second case requires
algorithm for detecting intersection between line-line, circle-line and clothoid-line
pairs. While the first two cases are straightforward to implement, the third case
is more complex and is described in Section [6.7]

Finally, the most complex problem is to determine collision of polygon-polygon
pairs. Here, if collision is detected, we also require computing of the corresponding
polygon-polygon intersection. Many algorithms exist for this purpose and in this
work a robust algorithm of Leonov and Nikitin [92] is used, whose running time
is O(nlogn).

To check whether a geometric primitive is in collision with any of configura-
tion space obstacles, a naive implementation would require to perform collision
check with every single polygon in the configuration space map, which is ineffi-
cient. To accelerate the collision check, the map is organized in rectangular grid.
Commonly, every cell of the grid map stores the probability of the corresponding
portion of the space being occupied by an obstacle, resulting with discrete repre-
sentation of the free space. However, in order to retain continuous representation
of the geometric map, here every cell stores a list of polygons that intersect that
cell. If the map contains large and complex polygons, they are in this way decom-
posed into smaller pieces that can be checked more quickly for the collision. To
perform a collision check, it is first determined which grid cells need to be tested
for the collision. Then a collision algorithm is invoked only with the polygons
that are stored in the identified grid cells.

To decide about an appropriate cell size a tradeoff must be made, which
is also typical for any grid map application. So, too fine grid resolution will
result with much time needed to update the grid and many cells will have to
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be checked in collision tests. On the contrary, too coarse resolution will result
in poor performance gains. The final decision is application dependent and is
usually conducted empirically.

5.7.4 Implementation Aspects

A whole motion planning algorithm is implemented using modular architecture
imposed by the decoupled approach. Hereby, the path-planning algorithm is im-
plemented as a separate module. The motion planning is executed with constant
sampling time and the path-planning module is therefore executed in each pro-
cessing cycle. The algorithm is divided into preprocessing component and online
component, where online component is executed only as necessary (when goal
point changes, an obstacle moves etc.).

The visibility graph algorithm implementation is based on Obermeyer’s VisiLi-
bity C++ library [116]. For some computational geometry operations in prepro-
cessing stage CGAL (Computational Geometry Algorithms) library was used [35].
For online set operations with polygons (e.g. intersection), PolyBoolean C++
library was used [I].

5.8 Experimental Results

To verify effectiveness of the proposed path planner, the developed algorithms
are applied to the exemplary workspace. First the construction of the dilated
workspace is demonstrated, which actually represents first two stages of the al-
gorithm CONSTRUCTSTATICROADMAP. The stages of the algorithms are illus-
trated in Figure 5.7 The test workspace is shown in Figure 5.7 a) and consists
of a boundary, two convex obstacles and one nonconvex obstacle.

In Figure 5.7 b) the approximated configuration space of the robot is shown (a
small robot with radius » = 4 c¢m is assumed and value € = 0 was used), which is
computed as the union of approximate Minkowski sums of each obstacle and the
robot represented by a disc of radius r. By applying a similar algorithm again, the
approximated dilated configuration space is constructed, which is shown in Figure
B c¢). Here the clearance value of ¢ = 6 cm was used. A test for intersection
of the dilated configuration space obstacle boundaries was performed and in this
way the chain points are identified.

Intersections of dilated C-space obstacles and chain points are shown in Figure
B d). We see that dilatation of the configuration space results with a loss of
space connectivity, as a passage between the left and the right part of the map
disappeared. A care must be taken about the fact that a single dilated C-space
obstacle can intersect even by itself, which typically happens with nonconvex
obstacles. An example is the obstacle in lower right part of the map in Figure
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Figure 5.7. Construction of the dilated configuration space. (a) Workspace that
consists of three obstacles and the boundary. (b) Configuration space (approximated).
(c) Dilated configuration space (approximated). (d) Chai