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disertacijom. Njih spominjem tek u nekoliko odlomaka koji slijede, a u mojim su

mislima bili čitavim putem.
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pozorno, te je bila uz mene u svim situacijama pa čak i na vrhu drva šljive.
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zavidna količina znanja su mi utirali put k zadanim ciljevima. Zahvaljujući slobodi
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čije bi (ponekad ekstravagantne) ideje zagolicale um i najkonzervativnijih istraživača.
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tima koji su me kao nastavnog asistenta poticali na proširivanje znanja i motivirali u
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jem na srdačnom gostoprimstvu, korisnim savjetima i pažnji koju je posvetio mome
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Zagreb, 20. travnja 2010.

vi



Contents

1 Introduction 1

2 Mathematical Modeling of Marine Vehicles 8

2.1 Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Actuator Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Kinematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Model Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Coupled model in the horizontal plane . . . . . . . . . . . . . . . 20

2.5.2 Uncoupled model for underwater vehicles . . . . . . . . . . . . . 20

2.5.3 Practical model for small surface vessels . . . . . . . . . . . . . . 22

2.6 Distance Keeping Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Line Following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Systems 28

3.1 VideoRay ROV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 AutoMarine AUV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Charlie USV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Vision–Based Laser Distance Module . . . . . . . . . . . . . . . . . . . . 36

3.5 Vision–Based Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Laboratory Apparatus . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Conventional Identification Techniques for Marine Vehicles 46

4.1 Actuator Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Least–Squares Identification . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Identification Based on Open Loop Step Response . . . . . . . . . . . . 51

4.4 Zig–Zag Manoeuvre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Self–Oscillations 60

5.1 Describing Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Symmetric Self–Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Asymmetric Self–Oscillations . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 On the Existence of Self–Oscillations . . . . . . . . . . . . . . . . . . . . 70

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



6 Identification by Use of Self–Oscillations (IS–O) 72

6.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 General Matrix Algorithm Formulation for Linear Static Processes . . . 75

6.3 Modification for Type k Systems . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Modification for Systems with Delays . . . . . . . . . . . . . . . . . . . . 80

6.5 Modification for Discrete–Time Systems . . . . . . . . . . . . . . . . . . 82

6.6 Application to Marine Vehicles . . . . . . . . . . . . . . . . . . . . . . . 84

6.6.1 Identifying Yaw DOF . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6.2 Identifying Surge DOF . . . . . . . . . . . . . . . . . . . . . . . . 88

6.6.3 Identifying Heave DOF . . . . . . . . . . . . . . . . . . . . . . . 89

6.6.4 Identifying Heading Closed Loop . . . . . . . . . . . . . . . . . . 89

6.7 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Experimental Results for Different Identification Methods 95

7.1 Deciding on the Appropriate Model . . . . . . . . . . . . . . . . . . . . . 95

7.2 Model Validation Techniques . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Identifying Yaw DOF – VideoRay ROV . . . . . . . . . . . . . . . . . . 101

7.3.1 Least–Squares Results . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3.2 IS–O Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3.3 Model Validation and Comparison of IS–O and L–S Identification

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4 Identifying Yaw DOF – AutoMarine AUV . . . . . . . . . . . . . . . . . 110

7.4.1 Results from Step Responses . . . . . . . . . . . . . . . . . . . . 110

7.4.2 IS–O Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.3 Model Validation and Comparison of IS–O and Step Response

Identification Methods . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Identifying Yaw DOF – Charlie USV . . . . . . . . . . . . . . . . . . . . 118

7.5.1 Least–Squares Results . . . . . . . . . . . . . . . . . . . . . . . . 119

7.5.2 IS–O Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5.3 Model Validation and Comparison of IS–O and L–S Identification

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.6 Identifying Surge DOF – VideoRay ROV . . . . . . . . . . . . . . . . . 128

7.7 Identifying Heading Closed Loop – Charlie ASV . . . . . . . . . . . . . 131

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 Control and Guidance of Marine Vehicles Using IS–O Experiments 135

8.1 Low–Level Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.1.1 Controller Structure . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.1.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.1.3 Antiwindup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.1.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 145

viii



8.1.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 147

8.1.6 Other Control Algorithms . . . . . . . . . . . . . . . . . . . . . . 149

8.2 Distance Keeping Control System . . . . . . . . . . . . . . . . . . . . . . 150

8.2.1 Kalman Filter Design . . . . . . . . . . . . . . . . . . . . . . . . 150

8.2.2 Distance Keeping Controller . . . . . . . . . . . . . . . . . . . . . 153

8.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 155

8.3 Line Following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.3.1 Direct Actuator Control (Method 1) . . . . . . . . . . . . . . . . 157

8.3.2 Indirect Actuator Control (Method 2) . . . . . . . . . . . . . . . 160

8.3.3 Monotonous Approach . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 167

8.3.5 On Choosing the Model Transfer Function . . . . . . . . . . . . . 170

9 Conclusion 172

Bibliography 175

Nomenclature 182

Abstract 186

Sažetak 187

Curriculum Vitae 188
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Chapter 1

Introduction

Marine vessels (or vehicles) is a common name for all moving objects that operate fully

or partially in the water. Based on the medium which surrounds them, they are divided

into underwater vehicles (UVs) and surface vehicles (SVs). Further on, regarding the

onboard crew, they are divided into manned and unmanned1 vessels. Based on mode

of operation, unmanned vessels are divided into remotely operated vehicles (ROVs)

and autonomous underwater vehicles (AUVs). These abbreviations are usually used in

literature for unmanned underwater vehicles (UUVs), unlike unmanned surface vehicles

(USVs) or autonomous surface vehicles (ASV).

The main difference between remotely operated and autonomous vessels is that

the first are connected with a tether to a central command centre, while the latter

do not have direct link to the centre, but they operate as autonomous systems. In

surface vehicles, the connecting link can be achieved either through a tether or via

wireless electromagnetic link (which is more common). UVs in shallow waters have the

capability to communicate via acoustic or electromagnetic signals. In deep waters only

acoustic signals can be used but with short range. Acoustic signals require a lot of

energy for longer range and they have low bandwidth which makes direct control and

live video feed impossible. In other words, if live feed from an underwater vehicle to the

surface is needed, the vehicle should be equipped with a physical link (tether). This may

get quite inconvenient if the vehicle is supposed to operate at larger depths or greater

distances from the base station – the tether length may increase to the level where it is

impossible to control the vehicle. Autonomous vehicles do not experience this problem.

On the other hand, physical link, common in ROVs, may also serve as an energy link,

making remotely operated vehicles independent on the limited battery capacity which is

inevitable in autonomous vehicles. One way of coping with this problem in autonomous

vehicles is to ensure battery charging using the solar energy. Unfortunately, this is not

possible underwater. Limited tether length is the main reason why ROVs are used for

”point–to–point” inspections, where the vehicle is submerged in the vicinity of the area

1Sometimes referred to as uninhabited

1
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of interest. AUVs are usually used for searching larger areas. A short list of advantages

and disadvantages of remotely operated and autonomous vessels is given in Table 1.1.

Table 1.1. A short list of basic advantages and disadvantages of remotely operated and au-
tonomous vessels.

remotely operated autonomous

a
d
v
a
n
t
a
g
e
s • unlimited power supply

• real–time signal transmission and recep-
tion to surface station

• decreased need for safety algorithms be-
cause of the human in the loop

• possibility of performing tedious, long last-
ing missions without wasting manpower

• area of operation limited only by the
amount of available power

• possibility of covert operation

d
is
a
d
v
a
n
t
a
g
e
s • small area of operation due to limited com-

munication link (”point–to–point” search)

• each vessel must have at least one operator
assigned to it at all times during mission

• limited power supply

• live video feed not possible underwater

• need for complex algorithms which ensure
full autonomy (solutions to unexpected
problems)

The first mention of automatically steered ships goes way back in history when

fishermen used to bind the tiller or rudder of their boats in order to ensure optimal

course, which increased the manpower used for releasing and recovering of nets. The

concept of automation was first accepted during the industrial revolution, and the first

autopilots appeared only in the first part of the twentieth century. First autopilots

would mimic experienced helmsmen. It turned out this was in fact a proportional

derivative controller, [72]. One of key figures in control theory is Minorski whose main

contribution was the introduction of the proportional integral and derivative controller

for ship steering, [49].

However, unmanned surface vessels do not appear in history until 1718. It was then

that a former English Captain, now an infamous pirate, Charles Vane decided to escape

a blockage imposed by Captain Woodes Rogers, by setting a brigantine without a crew

on fire and directing it towards Rogers’s warships. Once the brigantine approached, the

cannons fired and the Royal Navy ships were forced to take evasive action, leaving a clear

way for Vane to continue his piracy. He was captured three years later. After World War

two, many projects involving radio controlled unmanned surface vehicles were initiated.

In 1970, a number of European navies started developing radio controlled vessels as

a new generation mine countermeasure systems. Multiple vessels were controlled of a

manned mine countermeasure ships hence increasing the security of the crew and search

area.

Great mathematicians through history were distinguished by their ideas which were
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(a) (b)

Figure 1.1. A short history view to the times of first submarines: (a) The demonstration of
Drebbel’s submarine with rows, and (b) the first one–man submarine Turtle used in military
action.

far advanced for their contemporaries. One such was William Bourne who we have to

thank for the first concept of a submarine in 1578. However, it was not until 1776 that a

Dutchman Cornelius Drebbel used this concept to give a demonstration to King James

I of the first oar based submersible which was able to cruise at depths 4 to 5 meters

(see Fig. 1.1(a)). Not even the fact that James I took a ride in this leather coated

vessel with a wooden frame was enough to track enough attention from the Admiralty

– it was never used in combat. It was not until the American War of Independence

that a submarine took part in naval operations. A Yale graduate and a great inventor

David Bushnell, built in 1776 the Turtle, a hand–powered egg–shaped submarine with

a single crew member (see Fig. 1.1(b)). The historic mission took place in the same

year September 7, when Sergeant Ezra Lee2 of Old Lyme, Connecticut had the honour

to use the vessel to attach a mine to the bottom of the HMS Eagle, which was blocking

the New York harbour. After two attempts, this ingenious plan failed. Ezra claimed

the ship’s copper sheathing could not have been penetrated. Since the British warships

were not sheathed, the conclusion is raised that Ezra was exhausted due to increasing

amount of carbon dioxide, setting the initial impetus for the search for unmanned

underwater vehicles, [71].

An ancestor of a modern UUV could be considered a floating device, controlled

from land, for destroying ships. It was developed by Captain Giovanni Luppis, member

of the Austrian Navy born in Rijeka, Croatia3. After giving a successful presentation

of the device he called Salvacoste4 to the emperor Franz Joseph in 1860, the naval

2At first, Ezra’s namesake, David’s brother, was supposed to carry out the mission.
3At that time Rijeka was called Fiume (Italian name) and was a part of the Austro–Hungarian

empire. The Luppis family name derived from the Italian version de Lupis. Latin word for ”wolf” is
lupus, in Croatian it is ”vuk”, hence the Slavic form of the family name is Vukić.

4Italian for Coastsaver
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commission refused to accept it without better propulsion and control systems. It was

then that he signed a contract with a British machine engineer Robert Whitehead who

redesigned the torpedo to go under the waterline, making it more effective.

Even though the design of cable controlled underwater recovery vehicles was started

by the US Navy in 1958, leading to successful recoveries of USS Thresher in 1963 and

US Navy hydrogen bomb lost off the coast of Palomares, Spain in 1966, it was not

until the discovery of offshore oil and gas supplies in the North Sea that commercial

potential of UUVs, specifically ROVs, was recognized.

Marine vehicles can roughly be divided into three groups according to application:

military, commercial and research vessels. As it was already mentioned, military UVs

were the first UVs which appeared. Military applications include mine countermeasures,

port security and harbour, anti–terrorism protection, force protection, surveillance and

attack. Unmanned military applications nowadays refer mainly to surveillance and

harbour protection (SAIC/Navtec Owl I and Owl II programmes which investigated

the role of a small USV in the late 1990s) and recently anti–terrorism protection, force

protection, shallow water anti–submarine warfare, shallow water mine countermeasures,

covert surveillance and surface attack (US Spartan USV programme which focused on

adaptation of standard 7 m and 11 m RIBs5 and a similar Israeli Protector USV with

a stabilised machine gun onboard), [71]. However, torpedoes have been used for naval

attack missions long before.

Commercial applications refer mainly to manned surface vessels which are used for

transportation of merchandize around the world such as tankers, Ro–Ro6 boats, con-

tainer ships, cruisers, ferries, etc. Even though this application is present since the

first trading contacts of the old world with newly discovered territories, it is interesting

that tanker ships were first developed during the Israeli Egyptian war in 1971 when

Suez canal was closed down and classical trade routes were jammed. Transportation

underwater vessels are not common, mainly due to safety reasons. This category also

includes fishermen boats as well as boats used for tourists purposes. Tourist submarines

are becoming more and more popular nowadays. They are usually not completely sub-

merged, but are partially above water line, hence can be categorized as semi–submerged

vessels. This category does not appear in an unmanned form, because of safety reasons,

also. In addition to all mentioned, this category includes off–shore vessels.

Research vessels are usually unmanned vessels used for performing experiments in

navigation, guidance and control, testing algorithms, familiarizing with the existing and

the development of new technologies. In addition to that, these vessels are often used

in research related to marine biology, underwater archeology, hydrography, oceanogra-

phy, aquaculture, etc. Some autonomous surface research platforms which have been

developed around the world are listed in the thesis, [10].

During the last two decades, MIT have developed the family of autonomous ves-

5Rigid inflatable boat
6Roll on – roll off
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sels for education and civil applications, consisting of the fishing trawler–like vehicle

ARTEMIS, the catamarans ACES7 and Auto–Cat, and the kayak SCOUT8, [23, 46, 47].

These USVs were used for testing automatic heading control, DGPS–based navigation,

collecting hydrographic data, mission planning and for distributed acoustic underwater

navigation (with the MIT Odyssey class AUVs). Some European projects in this field

are the Measuring Dolphin MESSIN (developed and designed at the University of Ro-

stock, Germany), [45]; the autonomous catamaran Delfim developed by the DSOR lab

of Lisbon IST–ISR as a communication relay for a companion AUV; the autonomous

catamaran Charlie by CNR–ISSIA Genova, Italy, [13], originally designed, developed

and exploited for the collection of sea surface microlayer, and then upgraded for robotic

research on autonomous vessels; the autonomous catamaran ROAZ (developed by the

Autonomous Systems Laboratory at ISEP–Institute of Engineering of Porto), [48]; the

autonomous catamaran Springer (developed by the University of Plymouth, UK, for

tracing pollutants), [83].

Fig. 1.2 schematically describes different types of marine vessels grouped with re-

gard to the medium in which they operate (surface, underwater), application (military,

commercial, research) and crew (manned and unmanned). Unmanned vessels are di-

vided according to mode of operation (remotely operated and autonomous). Red dots

in the figure indicate that this type of vehicle is common in practice. This thesis will

deal with unmanned marine vessels.

MILITARY COMMERCIAL RESEARCH
underwater

surface

Figure 1.2. Marine vehicles according to medium of operation, application and crew.

7Autonomous Coastal Exploration System
8Surface Craft for Oceanographic and Undersea Testing
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From the control point of view, autonomous vehicles require much more effort in

control design and fail safe operation. In general, control structures for marine vehicles

can be divided into three levels. The low level is responsible for control of the vehi-

cles’ speeds (surge, yaw rate, etc.), positions (depth, dynamic positioning, etc.) and

orientations (heading, tilt angle, etc.), [16, 31]. Mid level of control is responsible for

path following, trajectory tracking and it generates commands to the low level, [18].

High level of control is dedicated to mission management, mission planning (path and

trajectory planning) and to safety issues (collision avoidance, fault tolerance, etc.), [65].

For a higher level to function properly, low levels have to be designed and and they

must work reliably. In order to design the low level control structure, UV mathematical

model parameters have to be identified.

Many identification procedures applicable to marine vehicles can be found in the lit-

erature, and only few will be mentioned here. In order to identify mathematical model

parameters of an underwater vehicle, different sensors can be used, such as inertial

measurement units (IMUs), Doppler velocity loggers (DVLs), ultra–short baseline posi-

tioning systems (USBLs), etc., [17]. In research community, vision–based techniques are

widely used, probably due to low cost. The position of an UV can be determined using

a camera, and this data is then processed further to calculate higher order derivatives

and consequently dynamic model parameters.

The above mentioned methodologies and apparatus allow application of classical

process identification methods, [42]. These methods require time consuming experi-

ments, great number of collected data and computations of high complexity, and can

be quite tedious and impractical in situations where sensor suite of the ROV changes.

The parameters of the mathematical model of the vehicle also change significantly and,

unless this model was identified previously, heading and depth controllers will not be-

have in a satisfactory manner. Different payloads can be mounted on an UV (CTD

probes, side–scan sonars, acoustic modems, etc.), depending on the application, and

every time the model parameters will change. Performing conventional identification

methods is tedious in these cases, and the need for a quick, feasible in the field, easily

implementable method is required.

One of such methods has been used for ships and is called the ”zig–zag”manoeuvre.

It was first developed for evaluation of the ship manoeuvrability capabilities, and only

later it was used to determine unknown parameters of the linear model of the ship.

This thesis focuses on a method which uses similar oscillating data as in the ”zig–zag”

test, to determine linear and nonlinear model parameters of vessels. The proposed

methodology enables quick and reliable parameter estimation in field conditions. The

method has been proven to be applicable for controller design.

The thesis is organized as follows. Chapter 2 describes general mathematical models

for marine vehicles. Each component of the control loop is described and detailed

models are presented. Simplified models are derived which are appropriate for control

design. Mathematical models for distance keeping and line following are presented since
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these control systems will be designed later.

Chapter 3 describes marine vehicles and measuring devices which have been used

in the thesis. The aim was to prove the functionality of the self–oscillation method on

a vast range of marine systems – therefore an autonomous and a remotely controlled

underwater vessel are described here together with an autonomous surface catamaran.

In addition to that, two systems for data collection and distance keeping which are

based on image processing are described.

Conventional identification techniques are described in Chapter 4. The focus has

been placed on the classical least–squares identification and the previously mentioned

”zig–zag” manoeuvre. An open loop step response technique, which is applicable in

laboratory conditions is also presented.

Self–oscillations are introduced in Chapter 5. This section gives proof of theorems

on the existence of self–oscillations and their characteristics. The conclusions raised

from these theorems are used in the following chapter.

Chapter 6 describes the identification by use of self–oscillations method. Along

with the generalized methodology for nonlinear systems, a convenient matrix–based

algorithm, which is used for identification of static processes, is presented. This algo-

rithm has than been modified for astatic systems, discrete–time systems and systems

with delays. A detailed application of the proposed method to marine vehicles is given,

and finally some implementation issues are addressed.

Chapter 7 presents extensive experimental results obtained from the laboratory

and field experiments. The concept of identification by use of self–oscillations is tested

and detailed validations have been presented. The proposed method is compared to

conventional identification methods, and discussion on the results is given.

Chapter 8 is dedicated to control design. Control architecture which is common

in marine vehicles is described and control methodology is presented. Experimental

results which are obtained from the real vehicles are presented. These experiments are

based on low–level algorithms, distance keeping and line following controllers. All the

presented control algorithms have been designed on the basis of parameters identified

by the method based on the identification by use of self–oscillations.

The thesis is concluded with Chapter 9 where a concise list of scientific contributions

of this dissertation is given.



Chapter 2

Mathematical Modeling of Marine

Vehicles

In order to define the full mathematical model of a general marine vehicle, the termi-

nology adopted from [25] will be used. First of all, two coordinate frames should be

defined: an Earth–fixed coordinate system {E} which is considered a steady, immobile

coordinate frame, sometimes called the inertial coordinate system; and a body–fixed

coordinate system {B} which is usually attached to the centre of gravity (CG) of the

vehicle whose model is to be defined. Variables that are included in the mathematical

model of marine vehicles are linear and angular velocities, positions and orientations,

and forces that excite the vehicle, as it is shown in Fig. 2.1. These are listed in Table

2.1 together with their names which are common in marine applications, according to

SNAME1 notation, [64].

xB

yB

zB

(SURGE)

(HEAVE)

(SWAY)

p

q

r

(PITCH)

(YAW)
(ROLL)

CG

xEyE
zE

rO

rG
rc

Figure 2.1. Body–fixed and Earth–fixed coordinate frames.

1The Society of Naval Architects and Marine Engineers

8
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Table 2.1. Notation used for marine vehicles

DOF surge sway heave roll pitch yaw defined in

velocities u v w p q r {B}
positions & angles x y z φ θ ψ {E}
exciting forces & moments X Y Z K M N {B}

Surge, sway and heave are defined as translational motion in the x–, y– and z–

direction of {B} coordinate system, respectively, while roll, pitch and yaw are defined

as rotation about x–, y– and z–axis in {B} coordinate system, respectively.

Earth–fixed coordinate system {E} is used to define vehicle’s positions η1 and ori-

entations η2, forming a six element vector η.

η1 =
[

x y z
]T

η2 =
[

φ θ ψ
]T







η =
[

ηT
1 ηT

2

]T
(2.1)

In the same manner, body–fixed coordinate frame is used to define vector ν1 of

linear velocities (surge, sway and heave), vector ν2 of rotational velocities (roll, pitch

and yaw) forming a six element vector ν.

ν1 =
[

u v w
]T

ν2 =
[

p q r
]T







ν =
[

νT1 νT2
]T

(2.2)

Motion of the vehicle is achieved by applying external forces and moments. Three

forces (each in the direction of one body–fixed frame axis) and three moments (defined

as rotation about each body–fixed frame axis) form a six element vector of external

forces as moments in the form

τ =
[

X Y Z K M N
]T
. (2.3)

External forces are exerted by actuators. Let τ i denote commanded thrusts for

each actuator (i = 1, . . . ,m where m is the number of actuators). These thrusts form

a generalized vector τi of size m. Let ni denote commanded input for the i–th actuator

(rotation speed of the propeller, rudder deflection, etc.). These inputs form a gener-

alized vector ni of size m. Based on Fig. 2.2 and using the described notation, block

diagram of a marine vehicle can be divided into 4 elementary parts:

1. Kinematic model which gives relations between positions and orientations η de-

fined in {E} and speeds ν defined in {B},

2. Dynamic model which gives relations between the forces that act on the vessel τ
and the speeds ν exhibited by the vessel,
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3. Actuator allocation which gives relations between forces exerted by actuators τi

and forces that act on the vessel τ, and

4. Actuators which models the thrust exerted by actuators τi with regard to com-

manded input ni of each actuator.

ACTUATOR 
ALLOCATION DYNAMICS KINEMATICS

τi τ ν η
ACTUATORS

ni

Figure 2.2. Block diagram of marine vehicle.

The following sections describe all parts of the model in more detail.

2.1 Actuators

Actuators in all technical systems are actuating devices that perform desired action on

the system. In marine vehicles the same actuators can be found in underwater and

surface vehicles. These can be divided roughly into

• thrusters (propulsors, propellers),

• control surfaces (rudders, fins, etc.) and

• mass.

Thrusters exist in many forms (bow thrusters, azimuth thrusters, etc.) and are

based on a rotating propeller motion. They are most commonly used in marine vehicles

and therefore will be described in detail in the following paragraph. Control surfaces

are usually rudders and fins. While fins are mostly used for roll stabilization, rudders

are used to control heave (indirectly via pitch) and yaw motion. Both are used since

they ensure smooth motions of vehicles. Vehicles whose motion is controlled by moving

the center of mass are called gliders, [40]. Changing the centre of mass causes the

change in pitch which, given a surge speed, changes the depth of the vehicle. Gliders

are slow moving underwater vehicles which are used for ocean sampling in specified

water columns. It is worth mentioning a somewhat novel type of actuator which is

based on a combination of propellers and rudders – the Voith–Schneider thruster. The

rotating part has small rudders attached to it. Each of them rotates in such a way that

a thrust vector is formed in the plane of rotation of the main part. This vector can be

positioned arbitrarily in the plane making the vehicle controlled more efficiently than

in the case of classical thrusters.
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(a) (b) (c)

Figure 2.3. Some examples of actuators. (a) Azimuth thrusters which can rotate around
the vertical axis therefore improving vessels manoeuvring capabilities (photo taken from
www.thrustmastertexas.com). (b) Roll stabilizing fins mounted on a ship (photo taken from
www.wikipedia.org). (c) Perspective view of the Voith–Schneider thruster (photo taken from
www.marinelog.com).

In the following part a more detailed mathematical model of thrusters (propulsors)

and rudders will be described.

Thrusters

In this thesis the discussion will be limited to classical thrusters (propulsors) since they

are the most common in practice. As the thruster i rotates, it exerts thrust τ i and

torque qi which can be described with

τ i = Tn|n|n
i
∣
∣ni
∣
∣− T|n|ua

∣
∣ni
∣
∣ ua

qi = Qn|n|n
i
∣
∣ni
∣
∣−Q|n|ua

∣
∣ni
∣
∣ua

, (2.4)

where ni (commanded input) is propeller revolution rate and Tn|n|, T|n|ua , Qn|n| and
Q|n|ua positive coefficients given by the propeller characteristics. This model is also

known as the bilinear thruster model, [25]. Parameter ua is sometimes called the ambient

water velocity, [2, 65], and can be expressed with

ua = (1− uwake)U, (2.5)

where uwake is the so–called wake speed and U is the vessel’s absolute speed given with

U =
√

u2 + v2. (2.6)

The higher the ambient water velocity ua, the smaller the exerted thrust will be. This

means that if the vehicle is moving at a certain forward speed, the exerted thrust will

be smaller than in the case when the vehicle is moving at smaller speed (given the
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same propeller revolution rate). A simpler model given with (2.7) can be derived if

ambient water speed ua is neglected, where athruster and bthruster are constant thruster

parameters:

τ i = athruster
∣
∣ni
∣
∣ni + bthrustern

i. (2.7)

This model is more applicable in practice especially at low speeds. Further simplification

gives that linear part of the model can also be neglected, i.e. bthruster = 0, giving the

so–called affine model.

However, the force exerted by thrusters is rarely the same when the propeller is

rotating clockwise and counterclockwise. This is why a more complex model given with

(2.8) should be used, [55], where subindices f and b denote ’forward’ and ’backward’. An

example of thrusters with identified characteristic as in (2.8) can be found in Chapter

4.1.

τ i =

{

af
∣
∣ni
∣
∣ni + bfn

i, ni ≥ 0

ab
∣
∣ni
∣
∣ni + bbn

i, ni < 0
(2.8)

Depending on the design of the thruster, ’positive’ thrust can be exerted while

the propeller rotates in clockwise or counterclockwise direction. The direction of the

generated torque qi is determined in both cases by the right–hand rule (curled fingers of

the right hand point in the direction of rotation while the thumb points in the direction

of the generated torque). Having this in mind, if a vehicle is equipped with two thruster

positioned side-by-side (port and starboard thruster) and if both of them have the same

’positive’ spin direction as shown in Fig. 2.4(a), generated torque from both thrusters

is q = q1+q2 causing the vehicle to perform unwanted rotation about the x– axes. This

effect can be avoided if counter-rotating propellers are used, as shown in Fig. 2.4(b),

so that the generated torque is q = q1 − q2 under the assumption that the propellers

are the same.

2

+

+

2
1

1

(a)

2

1
1

+

2

(b)

Figure 2.4. Propeller spin direction and exerted thrusts and torque for the case of a) the same
and b) counter-rotating propellers.
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Rudder

In this section, a rudder model given in [15] and [67] will be presented. This model

assumes that the total resultant force generated by the rudder is normal to the central

plane of the rudder. In order to generate a turning force to the vessel, some sort of

water flow around the rudder is needed. This flow is usually generated with a thruster

that is positioned in front of the rudder. The force achieved by the rudder acts from

the centre of pressure (CP ) as shown in Fig. 2.5 and can be described with

τ i =

{

cF v
2
av sin

(
π
2
δa
δs

)

,

cF v
2
av sin δa,

|δa| < δs
|δa| ≥ δs

, (2.9)

where δ is rudder angle, δa is the relative degree between the rudder and the flow

(attack angle), δf is the angle of the flow in the body–fixed reference frame, and cF is

the rudder coefficient.

δf

δ δa
τi

Flow direction

CP

Figure 2.5. Rudder angles definition.

Stall angle is denoted with δs in (2.9) so the angle of attack can be computed as

δa = δ − δf = δ − arctan

(
v + Lr

u

)

where L is the distance from the rudder to the centre of mass of the vehicle in the

x–direction. Parameter vav is the average flow passing through the rudder and can,

according to [67], be modeled with

v2av = u2a + CT τ (2.10)

where τ is thrust generated by the propeller, ua is ambient water velocity given with

(2.5) and CT is a constant parameter.
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In the case when sway speed v is negligible and yaw rate r is small, the angle of

attack can be approximated by the rudder angle δ. Having this in mind, the thrust

exerted by the thruster can be written as

τ i = cF v
2
av sin

(
π

2δs
δ

)

≈ cF v
2
av

π

2δs
δ = kF v

2
avδ (2.11)

in the case where |δa| ≈ |δ| < δs and the approximation sinα ≈ α is assumed. By

inserting a simplified version of (2.7) where bthruster = 0 and (2.5) into (2.11), the

equation (2.12) is obtained:

τ i = kr1U
2δ + kr2n|n|δ (2.12)

where kr1 and kr2 are constant parameters.

2.2 Actuator Allocation

Actuator allocation is a connection between the space of actuator forces (described with

vector τi) and the space of forces and moments (described with vector τ) in the body–

fixed frame. The matrix which describes this link is called the allocation matrix and it

depends on the number of available actuators and their topology. Table 2.2 gives some

topologies and actuator allocations which can be found in practice on various vehicles

(both surface and underwater).

The simplest and most common actuator topology is given with Table 2.2(a) (e.g.

VideoRay ROV). The two horizontal thrusters can be placed anywhere on the sides of

the vehicle. By adding generated port and starboard thrust, surge thrustX is obtained.

The difference between the two thrusts generates a moment N which causes the vehicle

to rotate about the z–axis. If a vertical thruster is available (in UVs), it ensures three

degrees of freedom – surge, heave and yaw (allocation matrix has full rank 3).

The topology shown in Table 2.2(b) also has three DOF – surge, sway and yaw.

Previously mentioned topologies and the one shown in Table 2.2(e) have as many degrees

of freedom as there are thrusters. It is possible to ensure redundancy as it is shown in

Table 2.2(c) and Table 2.2(d)). In these cases four actuators are used to control three

degrees of freedom. This is convenient in systems where fault tolerance is demanded

– if one of the thrusters is faulty, the vehicle still remains with the same number of

degrees of freedom, [65].

Topology shown in Table 2.2(f) represents the case when the vehicle is actuated

with one thruster (to ensure surge motion) and a rudder (to ensure yaw motion). The

thrust exerted by the rudder can be decomposed into the part which acts perpendicular

to the x– axis, τ2 cos δ, and the one aligned with the x– axis, τ2 sin δ. The latter opposes

the thrust generated by the thruster. It should be stressed that the force exerted by

the rudder is dependent on δ as it is shown in (2.12).
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Table 2.2. Some actuator configurations found in practice.

(a)

1 2

3

d





X

Z

N



 =





1 1 0
0 0 1
d −d 0









τ 1

τ 2

τ 3





(b)

1 2

3

d





X

Y

N



 =





1 1 0
0 0 1
d −d 0









τ 1

τ 2

τ 3





(c)

d

1 2

3 4





X

Y

N



 =





a a a a

−a a a −a

d −d −d d













τ 1

τ 2

τ 3

τ 4









a = sin π
4

(d)

1 3

2

4

d





X

Y

N



 =





1 0 1 0
0 1 0 1
d d −d −d













τ 1

τ 2

τ 3

τ 4









(e)

1

3

2

4

d









X

Z

M

N









=









1 1 0 0
0 0 1 1
0 0 −d d

d −d 0 0

















τ 1

τ 2

τ 3

τ 4









(f)

1

2
δ

L





X

Y

N



 =





1 − sin δ
0 − cos δ
0 L cos δ





[

τ 1

τ 2(δ)

]
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2.3 Kinematic Model

Kinematic model gives the relation between the speeds ν in a body–fixed coordinate

frame {B} and first derivative of positions and angles η in an Earth–fixed coordinate

system {E}. A full set of kinematic equations is given with (2.13), [25]:

[

η̇1

η̇2

]

=

[

J1(η2) 03×3

03×3 J2(η2)

][

ν1
ν2

]

⇔ η̇ = J(η)ν (2.13)

where 03×3 denotes a 3 by 3 null matrix,

J1(η2) =






cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ

sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ

−sθ cθsφ cθcφ






and

J2(η2) =






1 sφtθ cφtθ

0 cθ sφ

0 sφc−1θ cφc−1θ




 .

For the sake of brevity, c denotes cosine, s sine, t tangent and exponent −1 is the

reciprocal function.

2.4 Dynamic Model

Dynamic model of a marine vehicle is nonlinear and coupled. For the sake of generality,

let us assume that the centre of gravity (CG) does not coincide with the origin of

the body–fixed coordinate system (O). In that case the dynamic equation which gives

connection between velocities and accelerations of the rigid body and forces that act

on it can be written in a form, [25]

MRB ν̇ +CRB(ν)ν = τRB . (2.14)

MRB is a rigid–body inertia matrix described with

MRB =

[

mI3×3 −mS (rG)

mS (rG) I0

]

=

=












m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG −mxG 0

0 −mzG myG Ix −Ixy −Ixz
mzG 0 −mxG −Iyx Iy −Iyz
−myG mxG 0 −Izx Izy Iz












(2.15)
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where m is mass of the vehicle, rG is centre of gravity with respect to {B}

rG =






xG
yG
zG




 , (2.16)

I0 is inertia tensor with respect to {B}

I0 =






Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz




 (2.17)

with Ix, Iy and Iz being moments of inertia about respective axes in the body–fixed

frame
Ix =

∫

V

(
y2 + z2

)
ρAdV

Iy =
∫

V

(
x2 + z2

)
ρAdV

Iz =
∫

V

(
x2 + y2

)
ρAdV

, (2.18)

Ixy = Iyx, Ixz = Izx and Iyz = Izy being products of inertia

Ixy =
∫

V

xyρAdV

Ixz =
∫

V

xzρAdV

Iyz =
∫

V

yzρAdV

(2.19)

where ρA is the mass density of the body. It is worth noting that the rigid–body inertia

matrix has the following properties: MRB = MT
RB > 0 and d

dt
MRB = 0.

CRB is the rigid–body Coriolis and centripetal matrix described with

CRB =

[

03×3 −mS (ν1)−mS (S (ν2) rG)

−mS (ν1)−mS (S (ν2) rG) mS (S (ν1) rG)− S (I0ν2)

]

=

=



















0 0 0 · · ·

0 0 0 · · ·

0 0 0 · · ·

−m (yGq + zGr) m (yGp+ w) m (zGp− w) · · ·

m (xGq − w) −m (zGr + xGp) m (zGq + u) · · ·

m (xGr + v) m (yGr − u) −m (xGp+ yGq) · · ·

· · · m (yGq + zGr) −m (xGq −w) m (xGr + v)

· · · −m (yGp+ w) m (zGr + xGp) −m (yGr − u)

· · · −m (zGp− w) −m (zGq + u) m (xGp+ yGq)

· · · 0 −Iyzq − Ixzp+ Izr Iyzr + Ixyp− Iyq

· · · Iyzq + Ixzp− Izr 0 −Ixzr − Ixyq + Ixp

· · · −Iyzr − Ixyp+ Iyq Ixzr + Ixyq − Ixp 0



















(2.20)

τRB is a generalized vector of forces and moments. It includes the following forces

and moments:
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1. Hydrodynamic rigid–body–like added mass forces and moments −MAν̇,

2. Hydrodynamic Coriolis–like added mass forces and moments −CA(ν)ν,

3. Hydrodynamic damping and lift forces and moments −D(ν)ν,

4. Restoring (gravitational and buoyant) forces and moments −g(η),

5. Environmental forces and moments τE and

6. Propulsion forces and moments (generated by the actuators) τ.

These elements form the rigid–body forces and moments equation, [25]

τRB = τE + τ −MAν̇ −CA(ν)ν −D(ν)ν − g(η). (2.21)

Added–mass matrix MA and added–mass Coriolis and centripetal matrix CA(ν) are
parameters which represent the effects that occur while moving through a fluid. Added

(virtual) mass should be understood as pressure-induced forces and moments due to a

forced harmonic motion of the body, which are proportional to the acceleration of the

body, [2, 25, 63]. Consequently, the added mass forces and the acceleration will be 180◦

out of phase to the forced harmonic motion. If the ROV moves at low speed and has

(almost) three planes of symmetry, then the following expressions for MA and CA(ν)
are obtained:

MA = −diag {Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ} (2.22)

CA =












0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 Kṗp

−Yv̇v Xu̇u 0 −Mq̇q −Kṗp 0












(2.23)

The notation of SNAME, [64], is used in expressions (2.22) and (2.23). For instance,

the hydrodynamic added mass force YA along the y–axis due to an acceleration u̇ in

the x–direction is written as YA = Yu̇u̇ where Yu̇
∆
= ∂Y

∂u̇
.

Total hydrodynamic damping matrix D(ν) is highly complex and has nonlinear de-

pendence to the speed of the vehicle. However, this matrix can be approximated with

a diagonal structure with only linear and quadratic damping terms.

D (ν) = −diag
{
Xu +Xu|u| |u| ,Yv + Yv|v| |v| , Zw + Zw|w| |w| ,

Kp +Kp|p| |p| ,Mq +Mq|q| |q| , Nr +Nr|r| |r|
} (2.24)

Restoring forces g (η) consist of a gravitational force and a buoyant force. Grav-

itational force is induced by weight W of the vehicle and acts through the centre of

gravity rG =
[

xG yG zG

]T
of the vehicle. Buoyant force is induced by buoyancy
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B and elevates the vehicle to the surface. It acts through the centre of buoyancy

rB =
[

xB yB zB

]T
which need not necessarily be at the same place as the centre

of gravity (CG). Restoring forces are defined in the body–fixed frame {B} and have the

following form:

g (η) =












(W −B) sin θ

− (W −B) cos θ sinϕ

− (W −B) cos θ cosϕ

− (yGW − yBB) cos θ cosϕ+ (zGW − zBB) cos θ sinϕ

(zGW − zBB) sin θ + (xGW − xBB) cos θ cosϕ

− (xGW − xBB) cos θ sinϕ− (yGW − yBB) sin θ












. (2.25)

Environmental forces and moments τE are forces which act as the disturbance on

the vehicle. These forces cannot be easily modeled and control systems are designed

in such a way that these effects are attenuated. The main environmental forces to be

considered for marine vehicles are surface waves, wind and ocean currents.

Actuation forces and moments τ are forces exerted by actuators. More details on

these forces can be found in Chapter 2.1.

Now that all the forces have been described, a full dynamic equation of forces acting

on marine vehicles can be written as

(MRB +MA)
︸ ︷︷ ︸

M

ν̇ + (CRB(ν) +CA(ν))
︸ ︷︷ ︸

C(ν)

ν +D(ν)ν + g(η) = τ + τE , (2.26)

leaving only actuation and environmental forces on the right–hand side, [25].

2.5 Model Simplifications

In the previous section, a full mathematical model which describes behavior of marine

vessels has been described. It was shown that this model is highly complex, with many

parameters, couplings and nonlinear dynamics. These effects come as a consequence

the six DOF motion and hydrodynamic effects. These mathematical models are usually

implemented in simulators where it is highly important to include, as realistically as

possible, all effect which may occur.

However, the situation is somewhat different when designing control systems for

marine vessels. These mathematical models are often simplified for this purpose. Two

simplifications that will be described in the following sections include limiting 6 DOF

to 3 DOF in the horizontal plane and decoupling of motions. The first simplification is

usual for surface vessels and underwater vehicles that operate at constant depth. The

second simplification is used for vessels that move at low speed which causes Coriolis

and centripetal effects to be negligible. In addition to that, a practical model, suitable

for control design of small surface vessels is presented.
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2.5.1 Coupled model in the horizontal plane

Often, for underwater applications, vehicles are trimmed in such a way that motions

in horizontal plane are decoupled from heave motion. This is usually accomplished

by appropriate positioning of ballast weights. Roll and pitch motions are often not

controllable in underwater vehicles. They are considered as self–stabilizing degrees of

freedom. This is the case due to restoring forces that exist here and also due to design

of the vehicles. In surface marine vehicles, roll and pitch can be passively controlled

(using fins) or actively controlled mainly to avoid parametric resonance using active

fins, rudder or by other means, [27].

Because of these reasons, the complex dynamic model can be simplified if the above

mentioned degrees of freedom are set to 0 (w = φ = θ = 0) and if motion in horizontal

plane only is observed. This reduces the six–degree of freedom model (2.26) to only

three degrees of freedom: surge (u), sway (v) and yaw (ψ). This way the kinematic

model (2.13) is reduced to






ẋ

ẏ

ψ̇




 =






cosψ − sinψ 0

sinψ cosψ 0

0 0 1











u

v

r




 (2.27)

while the full dynamic model given with (2.26) is reduced to






m−Xu̇ −Xv̇ −myG
−Xv̇ m− Yv̇ mxG
−myG mxG Iz −Nṙ






︸ ︷︷ ︸

MRB+MA






u̇

v̇

ṙ




+






0 0 −m (xGr + v) + Yv̇v

0 0 −m (yGr − u)−Xu̇u

m (xGr + v)− Yv̇v m (yGr − u) +Xu̇u 0






︸ ︷︷ ︸

CRB(ν)+CA(ν)






u

v

r






−






Xu +Xu|u| |u| 0 0

0 Yv + Yv|v| |v| 0

0 0 Nr +Nr|r| |r|






︸ ︷︷ ︸

D(ν)






u

v

r




 =






X

Y

N




+






τXE
τY E
τNE






.

(2.28)

2.5.2 Uncoupled model for underwater vehicles

Coupling effects in (2.28) appear for the following reasons:

• existence of coupled terms in the added mass matrix (Xv̇),

• existence of Coriolis and centripetal forces and
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• difference between the centre of gravity and the origin of the body-fixed coordinate

frame (vector rG not being null vector).

The first reason is almost always neglected because the term Xv̇ has insignificant in-

fluence on the behavior of the vehicle, [25]. If it is assumed that the vehicle is moving

at slow speed, the effect of Coriolis and centripetal forces can also be neglected. This

simplification is almost always performed in modeling underwater vehicles, [70]. Inco-

incidence of the centre of gravity and the origin of the body–fixed coordinate system

can be neglected in underwater vehicles of smaller dimensions [51].

The simplifications which are introduced in order to obtain an uncoupled model for

underwater vehicles are:

• coupled added mass terms are negligible,

• centre of gravity (CG) coincides with the origin of the body–fixed coordinate

frame {B}, i.e. rG = 0,

• pitch and roll motion difference between the centre of gravity and the origin of

the body–fixed coordinate frame,

• roll and pitch motion are negligible, i.e. ϕ = θ = p = q = 0.

As a consequence of these simplifications

• total mass matrix MRB +MA is diagonal,

• the total Coriolis and the centripetal matrix CRB (ν) +CA (ν) vanishes, and

• restoring forces influence only the heave degree of freedom.

These simplifications lead to the following uncoupled, nonlinear dynamic equations for

• surge DOF

(m−Xu̇) u̇−
(
Xu +Xu|u| |u|

)
u = X + τXE (2.29)

• sway DOF

(m− Yv̇) v̇ −
(
Yv + Yv|v| |v|

)
v = Y + τY E (2.30)

• heave DOF

(m− Zẇ) ẇ −
(
Zw + Zw|w| |w|

)
w − (W −B) = Z + τZE (2.31)

• yaw DOF

(Iz −Nṙ) ṙ −
(
Nr +Nr|r| |r|

)
r = N + τNE . (2.32)
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Equations (2.29)–(2.32) can be represented with a single equation:

αν ν̇ (t) + β (ν) · ν (t) = ∆ + τ (t) (2.33)

where parameters ν(t), τ(t), ∆, αν and β(ν(t)) are interpreted in Table 2.3 for each

degree of freedom.

Table 2.3. Parameters in (2.33) depending on the DOF.

DOF ν(t) αν −β(ν) ∆ τ(t)

surge u m−Xu̇ Xu +Xu|u| |u| τXE X

sway v m− Yv̇ Yv + Yv|v| |v| τY E Y

heave w m− Zẇ Zw + Zw|w| |w| τZE +W −B Z

yaw r Ir −Nṙ Nr +Nr|r| |r| τNE N

Further simplification includes the dominance of constant or linear drag only. It has

been shown in literature that usually for small speed constant, drag can be approxi-

mated with a constant while at higher speeds linear drag better describes the dynamics

of the vehicle, [25]. In other words, general drag β(ν) can obtain one of the two values:

β (ν) =

{

βν
βνν |ν|

for constant drag

for linear drag
. (2.34)

2.5.3 Practical model for small surface vessels

This model is derived for the actuator configuration which is found on Charlie cata-

maran, [14, 15], which is described in detail in Chapter 3.3. Charlie USV2 is a small

catamaran equipped with two stern thrusters. Each of the thrusters has a small rudder

used for steering. The actuator configuration on Charlie is shown in Fig. 2.6 and is

similar to the one in Table 2.2(f). Dynamic equations which describe behavior of Char-

lie ASV are (2.30) for surge, (2.32) for yaw and (2.30) for sway DOF. Actuator forces

that act on the vehicle can be expressed with

X = τp1 + τp2
︸ ︷︷ ︸

Xp(n,·)

−
(
τ r1 + τ r2

)
sin δ

︸ ︷︷ ︸

Xr(δ,·)
Y = −

(
τ r1 + τ r2

)
cos δ

N = d
(
τp1 − τp2

)
+∆

(
τp1 + τp2

)

︸ ︷︷ ︸

Np(n,·)

+

+
(
τ r1 + τ r2

)
L cos δ +

[
(d−∆) τ r2 − (d+∆) τ r1

]
sin δ

︸ ︷︷ ︸

Nr(δ,·)

, (2.35)

where

2Unmanned surface vessel
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δ

u

v

{B}
ψ

{E}

L
d

d

τr1
τp1

δ

τr2
τp2

Figure 2.6. Small catamaran Charlie configuration.

• Xp (n, ·) is thruster induced surge force,

• Xr (δ, ·) is resistance force induced by the rudder in surge direction,

• Np (n, ·) is thruster induced yaw moment with ∆d being a possible small displace-

ment of the centre of the mass with respect to the longitudinal axis of the vessel,

and

• Nr (δ, ·) is yaw moment induced by rudder action.

External disturbances are omitted for the sake of clarity.

Charlie does not use thrusters to perform yaw motion. This is why the same control

action is applied to both thrusters all the time, i.e. τp1 = τp2 = τp. In addition to that,

for the sake of simplicity, both rudders are also always commanded the same deflection

angles, i.e. τ r1 = τ r2 = τ r. The term due to small displacement is neglected since

∆dδ ≪ L. Having this in mind and by making a valid assumption that sin δ ≈ δ and
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cos δ ≈ 1 for small δ, (2.35) can be rewritten as

X = 2τp
︸︷︷︸

Xp(n,·)

−2τ rδ
︸ ︷︷ ︸

Xr(δ,·)
Y = −2τ r

N = 2∆dτ
p

︸ ︷︷ ︸

Np(n,·)

+2 (L−∆dδ) τ
r

︸ ︷︷ ︸

Nr(δ,·)

≃ 2∆dτ
p

︸ ︷︷ ︸

Np(n,·)

+ 2Lτ r
︸ ︷︷ ︸

Nr(δ,·)

. (2.36)

Using expression (2.8) for τp (with bthruster = 0) and (2.12) for τ r, the following

mathematical model which uses control inputs n and δ can be written:

X = 2a |n|n− 2kr1U
2δ2 − 2kr2 |n|nδ2

Y = −2kr1U
2δ − 2kr2 |n|nδ

N = 2∆da |n|n+ 2Lkr1U
2δ + 2Lkr2 |n|nδ

. (2.37)

In cases when the vessel speed in negligible, from (2.6) it follows that U = u. By

combining (2.37), (2.29) and (2.32) a set of equations is obtained3 which can be given

with the following form:

αuu̇− (βu + βuu |u|) u = −k̂u2δ2u2δ2 − k̂n2δ2n
2δ2 + n2

αr ṙ − (βr + βrr |r|) r = k̂u2δu
2δ + k̂n2n2 + n2δ2

. (2.38)

It should be noted that in (2.38) parameters αu, βu, βuu, αr, βr, βrr are not real

added mass (inertia) and drag parameters, but normalized values. For the sake of

simplicity, the same notation will be used for the normalized values.

2.6 Distance Keeping Model

The main task of distance keeping algorithms is to ensure that the vehicle keeps either a

predefined distance from a fixed object (during inspections) or follows a moving object

keeping a safe distance. For this purpose, a mathematical model which gives relation

between vehicle behavior and distance and angle with regard to the surface has to be

developed.

The mathematical model of distance keeping is derived based on Fig. 2.7 and is

given in the following part. Using (2.33), the dynamic part of the model can be written

with equations (2.39) and (2.40). Parameters β(u) and β(r) can be constant or linear,

according to (2.34), which results in a linear or nonlinear dynamic model respectively:

u̇ = −β(u)
αu

u+
1

αu
X (2.39)

ṙ = −β(r)
αr

r +
1

αr
N. (2.40)

3After normalization so that control action n2 and n2δ has unitary coefficient.
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ϕd u

Figure 2.7. Variables used for determining the distance keeping mathematical model.

Parameter ϕ is the angle of the vehicle’s coordinate system with respect to the plane–

like surface. Kinematic models for ψ and ϕ are the same and can be expressed with

ϕ̇ = r + vϕ (2.41)

ψ̇ = r + vϕ, (2.42)

where the variable vϕ is the disturbance that may act on the yaw degree of freedom of

the vessel. The kinematic equation which describes distance d of the vessel with respect

to the plane–like surface is given with

ḋ = −u cosϕ+ vd, (2.43)

where the variable vd represents disturbance that may act on the surge degree of freedom

of the vessel.

For the sake of simplicity, disturbances vϕ and vd are assumed to be constant, so

the model can be augmented with two additional equations (2.44) and (2.45). These

two states can also be interpreted as terms which include all the unknown dynamics of

the system:

v̇ϕ = 0 (2.44)

v̇d = 0. (2.45)

Equations (2.39)–(2.45) give the full distance keeping model for marine vessels.

If angle ϕ is small enough, i.e. ϕ ≈ 0, the vessel is almost perpendicular to the
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surface and (2.43) can be simplified and written as (2.46), which approximates this

kinematic equation with a linear one and makes control system design easier:

ḋ = −u+ vd. (2.46)

Distance keeping control design is described in detail in Chapter 8.2.

2.7 Line Following

Line following is a mission which is based on setting a straight line which a vehicle has

to follow. The line can be described by using two points and the orientation of the line,

or one point, and an oriented vector.

The line following approach is graphicly described in Fig. 2.8. The main assumption

is that the vessel is moving at a constant surge speed ur. The aim is to steer the vehicle

in such a way that its path converges to the desired straight line. In Fig. 2.8, γ denotes

the orientation of the straight line that should be followed. A new parameter ϕ = ψ−γ,
which is the vessel’s orientation relative to the line, is defined.

γ

ϕd

ru

lνN

Figure 2.8. Line following scheme.

Using (2.33), the dynamic part of the yaw degree of freedom model can be written

with (2.47), where parameter β(r) can be constant or linear, according to (2.34).

ṙ = −β(r)
αr

r +
1

αr
N (2.47)

ψ̇ = r (2.48)

ϕ̇ = r (2.49)

ḋ = ur sinϕ+ νl (2.50)
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The kinematic equation which describes distance d of the vessel with respect to the

line is given with (2.50), where νl is the external disturbance which is assumed to be

perpendicular to line.

The nonlinearities of the line–following model can appear in (2.47) and are inherent

to (2.50). The first one can be eliminated by introducing a yaw rate or heading feedback,

which will be described later. The second nonlinear equation can be linearized if angle

ϕ is assumed to be small, i.e. ϕ ≈ 0. In this case, (2.50) can be simplified and written

with (2.51) what approximates this kinematic equation with a linear one and makes

control system design easier:

ḋ = urϕ+ νl. (2.51)

An extensive control design procedure for line following is given in Chapter 8.3.

2.8 Conclusion

This chapter presented detailed mathematical models for marine vessels. The initial

step was to define two coordinate systems which were then used to derive motion

equations. A general modeling scheme which consists of actuators, actuator allocation,

kinematic and dynamic model is given. All four elements are described giving equations

which can be used to describe thrusters, rudders, actuator allocation, and full kinematic

and dynamic behavior of marine vessels. Model simplifications which were introduced

are based on the need to develop simpler models for control design. That is why

models in horizontal plane and uncoupled models have been presented. The main

conclusion from these models is that surface and underwater vehicles can be described

using practically the same sets of equations.

In addition to that, mathematical models for distance keeping and line following

have been developed. Both models include dynamic behavior which cannot be neglected

in marine applications. The models that have been described here will be used later on

for the purpose of control design.



Chapter 3

Systems

This chapter will give descriptions of three marine vehicles that have been used for ex-

periments, and two sensors that were developed primarily for the purpose of performing

identification and control experiments.

The vehicles that were used are VideoRay ROV, AutoMarine AUV and Charlie

USV. The first is a remotely operated vehicle by VideoRay, LLC., Phoenixville, USA.

The control system for this ROV was developed at the University of Zagreb, Faculty

of Electrical Engineering and Computing, Laboratory for Underwater Systems and

Technologies (UNIZG–FER, LabUST), Croatia. AutoMarine AUV is in fact a module

developed at the UNIZG–FER, LabUST for the purpose of autonomization of VideoRay

ROV. Charlie USV is a small surface catamaran developed at Consiglio Nazionale delle

Ricerche, Instituto di Studi sui Sistemi Intelligenti per l’Automazione (CNR–ISSIA),

Genoa, Italy.

In addition to this, description of the vision–based laser distance module and a

vision–based data acquisition apparatus, both of which developed in LabUST, will be

presented.

3.1 VideoRay ROV

VideoRay ROV is a vehicle used for underwater inspection missions. It is shown in Fig.

3.1(a). Its dimensions are 355mm x 228mm x 215mm and it weighs 3.5kg. Heading

sensor is a magnetic compass with 2◦ quantization. In addition to that, it is equipped

with a pressure–based depth sensor. The vehicle is actuated using a port, starboard

and vertical thruster. The schematic representation of thruster allocation is shown in

Fig. 3.1(b) from where it follows that the thruster allocation matrix (see Chapter 2.2)

28
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can be written using (3.1):






X

Z

N




 =






1 1 0

0 0 1

d −d 0











τ1

τ2

τ3




 . (3.1)

(a)

1 2

3

d

(b)

Figure 3.1. a) VideoRay ROV and b) thruster allocation.

The ROV is connected to the surface computer via tether as it is shown in Fig. 3.2.

All the control algorithms are calculated and executed on the surface and sent to the

ROV using the RS–232 interface.

RS-232: actuator commands

RS-232: sensor readings

Figure 3.2. Connection of the ROV to the surface control unit.

The schematic representation of the complete system that best describes full math-

ematical model of the vessel is shown in Fig. 3.3. Yellow blocks represent the communi-

cation with the ROV. COMM 1 is communication from the surface computer towards

the vehicle and is modeled as one discretization step delay (Ts = 0.1s). Block COMM
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2 is modeled in the same manner and it represents the communication delay from the

ROV towards the surface where the heading and pressure data is acquired. The blue

block entitled ”VideoRay ROV” represents the vehicle itself. The signals inside this

block are virtual and are marked with a hash symbol. The unknown parameters of the

vehicle, the ones that are subject to change due to payload, are the parameters of the

dynamic model of the vehicle.

HEAVE 
MODEL

SURGE 
MODELf(x)

f(x)

n1#

n2#

τ1#

τ2# Z #

X #f -1(x)

f -1(x)

n1

n2

τ1

τ2Z

x(t-Td)

x(t-Td) x(t-Td)
w

COMM 1 COMM 2VIDEORAY ROVA PRIORI COMPENSATION

YAW 
MODEL x(t-Td)

r

x(t-Td)
u

N #

THRUSTER
ALLOCATION

f(x)n3# τ3#f -1(x) n3τ3
x(t-Td)

INVERSE
THRUSTER

ALLOCATION

N

X

Figure 3.3. Schematic representation of the complete model.

The vehicle demonstrates some static nonlinear behaviors such as nonlinear thruster

characteristic and dead zone due to friction in propellers. These nonlinearities can

be detected before any method for identifying dynamic model parameters is applied.

Nonlinear thruster characteristic is the relation between the thruster input voltage (ni)

and exerted thrust itself (τ i). This relation has been described in Chapter 2.1 and is

schematically represented as f(x) in Fig. 3.3. The thruster allocation block is given

with (3.1). It has been noted that small voltage applied to the thrusters will not cause

them to rotate, mainly because of friction. This effect has been modeled using the dead

zone blocks.

Now that these static nonlinearities and allocations have been defined, they can

be compensated for before the identification procedure is initiated. The green a priori

compensation block has the purpose to compensate for as many nonlinearities in the

system as possible. The dead zone inherent to thrusters is avoided by adding a constant

signal so that the thrusters are rotating even at small input voltages. The nonlinear

thruster characteristic can easily be compensated by applying the inverse of identified

characteristic, f−1(x). In order to control the vehicle by sending individual degree

of freedom force and moments commands (τ), inverse thruster allocation has to be

performed. This block presents the matrix inversion of (3.1).

In other words, the complete system, from the input force or moment (X, Z or

N) through the output value (u, w or r, respectively) can be modeled with uncoupled

equations for each controllable degree of freedom by using (3.2)–(3.4), in concordance

to (2.33). For

• surge DOF

αuu̇+ β(u)u = X (t− 2Td) + τXE, (3.2)
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• heave DOF

αwẇ + β(w)w = Z (t− 2Td) + τZE +W −B (3.3)

and

• yaw DOF

αr ṙ + β(r)r = N (t− 2Td) + τNE, (3.4)

where τXE and τNE represent the external disturbance which is mainly caused by the

tether. The variable τZE includes, in addition to the disturbance term, the difference

between the weight and the buoyancy. All three parameters are assumed to be constant,

for the sake of simplicity, and have to be estimated during the identification process. As

it was assumed in Chapter 2.5, drag terms β(u), β(w) and β(r) are either dominantly

constant or dominantly linear, and can therefore be described with (2.34). Since it is not

known a priori what kind of model best describes the VideoRay ROV, a methodology

for determining which of these models suits the vehicle best has to be developed.

3.2 AutoMarine AUV

Remotely operated vehicles (ROVs) are usually operated via a tether which serves as

energy as well as a communication link with surface. The tether, however, presents a

great disturbance for the vehicle1, especially when the vehicle is operated at greater

depths. This is one of the main reasons why autonomous underwater vehicles (AUVs)

are slowly replacing tether–controlled ROVs. However, AUV systems require not only

low–level control algorithms to be robust and fault–tolerant, but that trajectory and

mission planning be carefully designed in order to avoid catastrophic situations.

The AutoMarine Module has been developed for the purpose of transforming Vide-

oRay ROV into an AUV, with minimal development cost and time, for underwater

system control research purposes at the University of Zagreb, Laboratory for Underwa-

ter Systems and Technologies, [74]. The AutoMarine Module is a system enclosed in

a waterproof hull which can be attached to the bottom of the submersible. It controls

and powers the submersible over its standard communication/power socket as shown

in Fig. 3.4. This way, simple switching between the autonomous and remote mode of

operation is achieved, and, most importantly, the interior of the original submersible

stays intact.

Hardware choice for the autonomization module is focused on upgradeability, mod-

ularity and ease of reprogramming. These demands arise from the underwater system

research purpose. For the module to be completely modular in design, it is necessary

to use already developed components available on the market. This way, development

time and cost is greatly reduced. For the module to be easily reprogrammable it is

1Influence of the tether can be described using a complex mathematical model. This is crucial when
working with towed marine systems, [24].
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VideoRay ROV

Switch On/Off

TETHER socket

WLAN antenna

AutoMarine 
Module

SIDE VIEW

Glands

REAR VIEW

Figure 3.4. The AutoMarine Module installation.

best to use an embedded computer which supports one of popular computer operat-

ing systems. This way, the use of popular programming languages (for example NI

LabVIEW like in this occasion) is made possible in an easy and cost effective way,

instead of using specially designed integrated circuits which would require a lot more

development time and costly equipment. Since Universal Serial Bus (USB) is a fast

serial bus and there is a vast variety of products with support for it, one of the em-

bedded computers with support for USB is the best solution for the task. This kind

of design will result in inferior power efficiency and bigger size of the designed module,

in comparison with an integrated circuit version. This is a small price to pay since

the resulting module will endorse about 1.5 hours of autonomy for the resulting AUV,

which is enough for laboratory use. A two wire differential Controller Area Network

(CAN) is used for communication between the VideoRay submersible and its console.

Therefore it is best to use a CAN to RS–232 converter, since an RS–232 port is available

on the chosen embedded computer. The CAN232 converter supports CAN bit rates up

to 1Mbit
s , which is more than enough since the CAN bus installed on the VideoRay Pro

II operates at a very unusual speed of 138.24kbit
s . The chosen embedded computer is

the Wafer LX–800 single board computer powered by a 500MHz low power processor

which does not require active cooling. This is essential for the given purpose. Wafer

LX–800 also supports a variety of standard busses and interfaces (USB, RS–232, LPT,

PC–104, IDE, etc.). The computer is equipped with 1GB of Random Access Mem-

ory (RAM) and 80GB Hard Disk Drive (HDD) to satisfy any given operation. Large

memory and powerful processor support even most demanding operating systems which

simplify software development and component communication. An USB2.0 video grab-

ber is used for digitalizing the video signal from the submersible (PAL2 format, see Fig.

2Phase alternating line
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3.5). The digitalized video is stored on the 80GB HDD.

iEi®Wafer Wafer LX800-R11 

V1.1 + 1GB RAM
HDD 80GB 
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Figure 3.5. The AutoMarine Module wiring.

The VideoRay ROV requires 48V for operation. This voltage is only used for lights

and thrusters. The circuitry in the submersible is powered over a DC/DC switching

power supply (input range 18 − 75V DC) integrated in the submersible, which lowers

the input voltage to 5V. Therefore any input voltage above 18V keeps the submersible

operational. Knowing that, there is no need to secure a 48V source in the AutoMarine

Module. To obtain a 48V power source, it would take four 12V batteries, but instead it

is enough to secure 24V for the submersible (only two 12V batteries). This configuration

uses much less space at the cost of submersible’s thrust and lights intensity being 4 times

weaker. That does not present a problem since the module is designed for laboratory

testing. This way, the resulting AutoMarine Module is much smaller, since lead–acid
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12V 2.9Ah batteries are used which are pretty big in size. These batteries were chosen

due to their market availability. In an outdoor version of the AutoMarine Module,

different batteries would be used, with a much better capacity/size ratio (like Li–Ion

batteries). A separate DC/DC switching power supply with a 5V output is used in

the AutoMarine Module for powering the installed hardware. Details on hardware

components can be found in [73] and references within.

As seen in Fig. 3.4, the user communicates with the AutoMarine Module over

a Wireless Local Area Network (WLAN). For this purpose, a USB2.0 Wireless LAN

adapter is installed on the chosen embedded computer. The USB2.0 WLAN adapter

uses an external dipole antenna which is put on top of the submersible for communi-

cation. Wireless communication is possible only when the AUV is surfaced. A server

application continuously runs on the AUV itself, while a client application can be run

from any surface computer. When the wireless connection to the server is detected,

clients immediately start receiving data and sending control signals.

The mathematical model of AutoMarine AUV can be described in the same way

as shown in Fig. 3.3 only that communications delay should be omitted, since there is

no tether and all communication is performed onboard the vehicle. This leads to the

conclusion that the same set of equations as for VideoRay ROV can be used to describe

dynamic behavior of AutoMarine AUV.

3.3 Charlie USV

Figure 3.6. Unmanned surface vehicle Charlie.

The Charlie USV (see Fig. 3.6) is a small catamaran–like shape prototype vehicle

originally developed by the CNR–ISSIA for the sampling of the sea surface microlayer
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and immediate subsurface for the study of the sea–air interaction, [13]. Charlie is

2.40 m long, 1.70 m wide and weighs about 300 kg in air. The propulsion system of

the vehicle is composed of a couple of DC motors (300 W @ 48 V). The vehicle is

equipped with a rudder–based steering system, where two rigidly connected rudders,

positioned behind the thrusters, are actuated by a brushless DC motor. The navigation

instrumentation set consists of a GPS Ashtech GG24C integrated with compass KVH

Azimuth Gyrotrac able to compute the True North. Electrical power supply is provided

by four 12 V @ 40 Ah lead batteries integrated with four 32 W triple junction flexible

solar panels. The on–board real–time control system, developed in C++, is based on

GNU/Linux and run on a Single Board Computer (SBC), which supports serial and

Ethernet communications and PC–104 modules for digital and analog I/O.

Charlie can be controlled from a ground station using a wireless connection. This

link is used only to send mission commands and full missions to Charlie. All control

algorithms are performed onboard Charlie. When the vessel is within the wireless link

range, telemetry data can be observed on the ground station. Once the mission is

complete, the same link is used to download all the mission telemetry to the ground

station computer.

The mathematical model which can be used to describe Charlie is derived in details

in Chapter 2.5.3 and given with (2.38). For the sake of simplicity, only yaw degree of

freedom will be observed here, and it is given with

αr ṙ −
(
βr + βr|r| |r|

)
r = k̂u2δu

2δ + k̂n2n2 + n2δ2. (3.5)

This model depends on the forward speed of the vessel as well as the applied torque

(rudder angle δ). The vehicle is usually driven in such a way that forward speed is kept

constant. For different forward speeds, different mathematical models can be identified.

In addition to this, the general yaw model assumes that drag can be described as an

affine function. This drag model can be simplified by assuming only linear or constant

drag model.

Charlie’s sensors have a sample time of 0.5 s. This is not satisfactory enough for

control purposes, therefore Kalman filtering is applied to estimate measurements at

a higher frequency of 10Hz. In order to design the Kalman filter, dynamic model

parameters are needed. This is the reason why identification procedures are performed

at the sampling rate of 0.5s.

Having said that, Charlie yaw model (3.5) can be written in a simpler form

αr
(
n2
)
ṙ + β

(
r, n2

)
r = N (t− Td) + τNE , (3.6)

where τNE represents disturbance which includes all external disturbances (wind, cur-

rents) and possible asymmetries in the vehicle. This parameter is assumed to be con-

stant. The drag parameter β(r, n2) is either dominantly constant or dominantly linear,

and can therefore be described with (2.34). This parameter will depend on the speed
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of the vehicle (i.e. on the applied voltage n to the thrusters), and therefore has to be

identified for every constant n2 separately. The inertia parameter αr(n
2) also depends

on n2. If this type of model as adopted, input yaw moment N is proportional to the

rudder deflection δ, according to (2.38). A detailed yaw model parameter identification

procedure and results for Charlie USV are presented in Chapter 8.1.5.

3.4 Vision–Based Laser Distance Module

Distance keeping of underwater vehicles has important application in practice, espe-

cially during inspection missions. Distance modules can be of great help for the opera-

tor while performing an inspection mission (dams, ship hulls, etc.) and control systems

which use these modules as sensors for distance keeping applications are essential in

fully autonomous applications. In addition to that, distance modules can be used as

an obstacle avoidance modules.

Distance modules (sensors) which can be found in underwater technologies are usu-

ally sonars, distance lasers and normal lasers. The greatest advantage of sonars is that

they provide accurate and detailed information on the shape as well as the position of

an obstacle. However, their cost might be a problem especially if low–cost solutions

are needed. Distance lasers give direct distance measurement to the obstacle in front

and are somewhat more appropriate cost–wise. However, the measurements provided

are not as reliable. Normal lasers are the cheapest option (even though at least two

are necessary) but their reliability is the poorest. Also, they are commonly used with

the vision–based algorithms in order to determine the distance from an object. The

latter type of sensor was developed at the Laboratory for Underwater Systems and

Technologies, Zagreb and was mounted on VideoRay ROV, as shown in Fig. 3.7. The

results shown in this thesis were obtained using the combination of these two systems.

Figure 3.7. VideoRay ROV with vision–based laser distance module.

Some prior implementations of similar technology can be found in [11, 31, 32]. Due

to low reliability of laser sensors and the fact that inevitable image processing can be

time–consuming, Kalman filtering is an essential addition to these systems, [59].
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Image processing

The vision–based laser distance module has been developed for underwater vehicles for

the purpose of calculating current distance from the plane–like surface. It is placed

below the vehicle and is projecting two laser dots on the surface as shown in Fig 3.8,

where LL and LR are the distances that the left and the right laser beams, respectively,

have to travel to reach the plane, and dDM is the distance between these two lasers.

The forward distance D of the vessel to the plane and the angle Φ of the vessel with

Φ

LL

LR

D d
D
M

Figure 3.8. The schematic representation of the distance keeping module laser projections.

regard to the plane can easily be calculated by using (3.7) and (3.8):

Φ = arctan
dDM

LR(xR)− LL(xL)
(3.7)

D =
LR(xR) + LL(xL)

2
(3.8)

The variables LR and LL are determined by image processing from the onboard

camera. When there is a plane (obstacle) in front of the vessel, the image will contain

two laser dots projected from the lasers. As the vessel approaches the plane, two laser

dots become more distanced one from another. When the vessel moves away from the

plane, two laser dots approach each other. In addition to the fact that the relative

distance of the laser dots is changing, the distance of each of the dots with respect to

the central vertex of the image (xR and xL for the right and the left dot respectively)

changes also. If the vessel is perpendicular to the plane in front, theoretically xR = xL.

As the angle of the vessel Φ changes, xR and xL will become more different in value.

Distance module calibration

Since the image processing gives distances of the laser dots from the central vertex

within the acquired image (xR and xL), and values LR and LL are required, system
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calibration is necessary to find relations LR = f(xR) and LL = f(xL).

The calibration was performed so that the vessel was kept perpendicular to the flat

surface so that D = LL = LR. Then the vessel was moved from distances D = 10cm

to D = 100cm at the steps of 5 cm. For each distance, xR and xL were noted and the

results are shown in Fig. 3.9 (green dots represent measurements for LL and red for

LR).
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Figure 3.9. Calibration results for the vision–based laser distance module.

The measurements for each laser were interpolated by function

LR,L = acalibe
bcalibxR,L + ccalibe

dcalibxR,L (3.9)

and the obtained parameters are shown in Table 3.4. In Fig 3.9 red line shows the

interpolated curve for the right laser and green line for the left laser.

Table 3.1. Parameters of the interpolated curves given with (3.9).

laser
acalib bcalib ccalib dcalib
[cm]

[
cm−1

]
[cm]

[
cm−1

]

right 230.2 -0.03876 83.3 -0.007234
left 507.7 -0.03745 88.71 -0.007085

Improved image processing algorithm

The process of finding the two dots within the onboard camera image can be a computa-

tionally challenging task, especially if high resolution image (n x m pixels) is obtained.
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This is the reason why an algorithm for finding the two laser dots which does not de-

pend on the acquired image dimensions was developed. It is based on searching only

a limited area of the image (dimensions n∗ x m∗ pixels where n∗ < n and m∗ < m)

around the dots which have been found in the previous step. This significantly reduces

the time required for image analysis compared with other algorithms that search the

whole image obtained from the integrated camera at each step. Detailed description is

given in Algorithm 3.1 where blue areas represent the current search area within the

acquired image.

Algorithm 3.1. Improved image processing algorithm.

I.
Search the whole image (n x m pixels) and find

two laser dots.

II. Calculate D and Φ using (3.8) and (3.7).

III.
Set two square search areas (n∗ x m∗ pixels,

n∗ < n, m∗ < m) around each laser dot.

IV.
Search the two rectangles (n∗ x m∗ pixels) and

find two laser dots.

V. If laser dots are found, go to step 2.

VI. If laser dots are not found, go to step 1.

�
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The square search areas are sized in such a way that under normal conditions

(normal vehicle speeds) the dots will not disappear between two searching steps. If the

dots disappear, the vehicle is either moving too fast (the square search areas should be

larger) or something occludes laser dots and they are not visible any more. In these

cases, algorithm speed decreases until the laser dots are retrieved.

As it was mentioned in Chapter 3.1, the VideoRay ROV data are obtained at the

frequency of 10 Hz. The same frequency is used to control the vehicle. However, the

vision–based laser module operates at frequency 2 Hz mainly because of the image

processing. In order to achieve control at 10 Hz, signals from the vision–based laser

module have to be estimated in time instances when measurements are not available.

This is done by the use of the extended Kalman filter, [39].

3.5 Vision–Based Data Acquisition

Many identification procedures applicable to marine vehicles can be found in the liter-

ature. In order to identify mathematical model parameters of an underwater vehicle,

different sensors can be used, such as inertial measurement units (IMUs), Doppler ve-

locity loggers (DVLs), ultra–short baseline positioning systems (USBLs), etc., [17]. In

research community, vision–based techniques are widely used, probably due to the low

cost. These techniques determine the position of an UV using a camera, and this data

is then further processed to calculate higher order derivatives and thus dynamic model

parameters.

3.5.1 Laboratory Apparatus

An interesting vision–based laboratory apparatus used for UV parameter identification

was introduced in [70]. It was based on using a floor pattern at the bottom of the labo-

ratory pool. The apparatus was used with URIS underwater vehicle, which is equipped

with a down facing camera. It was placed in a swimming pool with a specifically coded

floor pattern as shown in Fig. 3.10. Using the image analysis on the frames obtained

from the onboard camera, the vehicle position can be uniquely determined.

The pattern consists of black and grey dots on a white surface. Places without dots

are surrounded with global marks. Each global mark is unique and can be decoded

based on the combination of the black and grey dots marked with P . In addition to

that, dots marked with O are used to determine the orientation of the vehicle. After

using the decoding algorithm, vehicle’s position within the laboratory pool can be

determined. This data is then used for determining the dynamic model of the vehicle.

For details on the method, the reader is referred to [70] and references within. Even

though this method is innovative, the downside is the complexity of the algorithm used

for determining the position of the vehicle.

Another approach is to use an external camera placed next to the pool. This way

the vehicle can be detected within subsequent frames and its model can be determined.
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Figure 3.10. Floor pattern used in [70] for URIS UV identification.

In [20] the method that is used is based on placing a camera in such a way that the

perspective view of the pool is obtained. The schematic representation is shown in

Fig. 3.11 where points A, B, C and D mark the edges of a frame and the coordinate

system (with (x, y) points) is view of the pool within the frame. In order to get the

(x1, y1) (x2, y2)

(x3, y3)(x4, y4)

(u4, v4)
(u3, v3)

(u1, v1) (u2, v2)

Figure 3.11. Mapping of the swimming pool from a perspective to orthogonal view used in [20].

orthogonal projection of the pool (such that the coordinate system is orthogonal) a

linear transformation has to be performed – points (xi, yi) have to be translated into

points (ui, vi). This operation will distort the frame so the ”upper” part of the pool

has worse resolution than the ”lower”part. In order to obtain satisfactory identification

results, the camera should be placed in such a way that the frame segment with the
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worst resolution provides good results.

The method that was implemented in the Laboratory for Underwater Systems and

Technologies at the University of Zagreb is based on placing a camera directly above the

swimming pool like in Fig. 3.12(a), [51]. This way the orthogonalization of the pool view

(a) (b)

Figure 3.12. a) Laboratory setup for marine vehicle model identification and b) an acquired
image from the camera placed above the pool.

is avoided and the algorithm itself is simpler. It should be mentioned that this method

can be used for identification of mathematical models of surface marine vessels and

underwater vehicles. In order to ensure easier detection of a vehicle within the camera

view, a marker is placed on top of the ROV so that its position and orientation within

the camera frame could easily be extracted from the acquired image (Fig. 3.12(b)).

Since the depth cannot be detected with a camera positioned like this, the identification

procedure can be performed only in the horizontal plane considering surge, yaw and

sway.

3.5.2 Data Acquisition

The scheme of data acquisition system is shown in Fig. 3.13. It has been implemented

in MATLAB as well as in LabVIEW. The principles of implementation in both soft-

ware packages is the same and is described in the following part. The implementation

itself somewhat differs given the fact that LabVIEW has many image processing func-

tions already developed. The Synchronization block is used to ensure that a frame is

recorded and that control signals are sent once every sample time (Ts = 0.1s). Once

the synchronization is achieved, Algorithm 3.2 can be implemented.

Algorithm 3.2. Vision–based data acquisition.

I. Acquire an RGB image from the camera (Fig. 3.12(b)) and separate it to a red,

green and blue component.

II. Convert the components to binary equivalents where detection of the specific color

results in a logical 1 (white) and everything else results in a logical 0 (black) as it
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Figure 3.13. Vision–based data acquisition scheme.

is shown in Fig. 3.14. A threshold should be set when this conversion is performed

in order to avoid noisy results.

III. Perform a logical operation

R ∧ B̄ ∧ Ḡ (3.10)

over the images shown in Fig. 3.14 where the ∧ symbol above the letter denotes

logical AND and¯denotes logical negation. The result of this operation is shown

in Fig. 3.15(a).

IV. Perform additional image processing to avoid scattered pixels in the image. Op-

erations which are suggested are morphing and dilatation. Morphing will remove

most of secluded pixels while dilatation will process the remaining areas from the

inside with a circle of a specified radius, leaving the remaining group of pixels

smooth.
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V. Find the centroid of the group of white pixels which represents the position of

the ROV within the camera frame, and the orientation of the group of white

pixels which represents the orientation of the ROV within the camera frame. The

result of this analysis is shown in Fig. 3.15(b) where the original camera image is

augmented with ROV’s position (green circle) and orientation (blue line).

VI. Perform inverse kinematics on the data to obtain linear and angular speeds that

are required for model identification.

�

(a) (b) (c)

Figure 3.14. a) Red, b) green and c) blue component of the acquired image shown in Fig.
3.12(b).

(a) (b)

Figure 3.15. (a) Binary equivalent as a result of logical operation (3.10) and (b) original image
augmented with the calculated position and orientation of the vehicle.

An example of obtained surge, sway and yaw velocities using the described procedure

is shown in Fig. 3.16. Raw data from camera are naturally noisy, therefore they should

be filtered. In the case in Fig. 3.16 a Savitzky–Golay filter was used. This data can

now be used for identification purposes as it is schematically shown in Fig. 3.13.
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Figure 3.16. Example of speeds obtained using Algorithm 3.2.

3.6 Conclusion

In this chapter three marine vessels which were used as experimental platforms in

this thesis are described: remotely operated underwater vehicle VideoRay, autonomous

underwater vehicle AutoMarine Module and autonomous surface catamaran Charlie.

Hardware construction as well as software and communication have been described for

the three systems. The VideoRay ROV exhibits time delay due to communication via

tether. All three systems can be described using the same mathematical model.

Further on, two measuring systems which were developed at the LabUST are de-

scribed: vision–based laser distance module and vision–based data acquisition system.

The laser distance module projects two laser dots on a flat surface in front of the vehicle.

A description of the algorithm which is used to determine the distance to the surface is

given. The speed of performance of this algorithm does not depend on the size of the

image obtained from the onboard camera.

The vision–based data acquisition module which has proven to be easy to use and

implement in laboratory conditions. By performing image analysis from the camera

placed above the laboratory pool, positions and higher derivatives of the vessel can be

obtained. The developed apparatus has a down side – it can only be used to determine

mathematical models in the horizontal plane. In this chapter, a detailed analysis of

image processing for the purpose of identification is given.
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Conventional Identification

Techniques for Marine Vehicles

The interest in marine vehicles has involved a great number of control engineers mostly

due to the challenge of controlling such a complex system. Six degrees of freedom along

with coupled and nonlinear behavior makes them difficult to control and model. In

order to implement any type of advanced control algorithms, appropriate mathematical

model of the system has to be identified.

Researchers who are involved in navigation and guidance of underwater vehicles use

different methods to identify their system’s dynamics. This should be the first step

towards designing a complex navigation system. Indeed, control of different degrees of

freedom can be accomplished by tuning the controller parameters heuristically, but in

order to implement e.g. optimal controllers, the mathematical model is necessary. Some

interesting aspects on identification of underwater vehicles by P. Ridao et al., [69, 70],

and on surface vehicles by M. Caccia et al., [16, 17], can be found in the literature. While

Caccia uses classical measured data and some estimations to obtain the model of Charlie

USV, Ridao designed a uniquely patterned bottom of a laboratory test pool1 in order

to localize Uris (unmanned underwater vehicle) and thus calculate the speeds which

are necessary for model identification. However, both authors identify only uncoupled

models of their vehicles. Nevertheless, both provide crucial proof of negligible system

parameters and propose improved methods for identifying marine systems’ dynamics.

Some additional methods have been published in [54].

This chapter deals with conventional identification methods applied on marine ve-

hicles which can be found in the literature (least–squares identification, zig–zag ma-

noeuvre) and an open–loop identification method which is applicable in laboratory

conditions. First, a method for actuator mapping is presented, with experimental re-

sults. Least–squares identification is the most widely used identification method and

its basics are described together with a so–called ”zig–zag” manoeuvre which is only

1More details on this can be found in Chapter 3.5

46
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used in marine applications. The open loop step response method is described with

mathematical derivations of identification formulae.

4.1 Actuator Mapping

Determining the static characteristic of a thruster, i.e. the relation between the exerted

thrust and the thruster control signal is called thruster mapping. The procedure consists

in inducing vehicle motion in such a way that the pull–force of the vehicle can be

recorded by a dynamometer, as shown in Fig. 4.1(a). An example of thruster mapping

results is shown in Fig. 4.1(b) where a VideoRay ROV (two horizontal thrusters and

one vertical) is used as a case study. In Fig. 4.1(b) dots represent measured values and

the full line gives the approximated curve.

0
6
10

20

1 2X τ τ= +

(a) (b)

Figure 4.1. Thruster mapping a) experiment and b) results for VideoRay ROV.

4.2 Least–Squares Identification

The least–squares identification (L–S) is the most common identification method for all

technical systems. This section will not describe the method in detail, but only a few

guidelines for its application in marine systems will be presented.

L–S method is applied to discrete time systems, i.e. measurements at time instances

are needed in order to determine system parameters. Let us say that a discrete time

input–output model of a process can be written as

A
(
q−1
)
y (k) = B

(
q−1
)
u (k) + e (k) (4.1)

where y(k) is process output, u(k) process input, e(k) disturbance signal (white noise),
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q−1 backward discrete operator, and A(q−1) and B(q−1) are

A
(
q−1
)

= 1 + a1q
−1 + a2q

−2 + . . . + anq
−n

B
(
q−1
)

= b0q
−d + b1q

−d−1 + b2q
−d−2 + . . .+ bmq

−d−m.
(4.2)

For the purpose of L–S identification, the process should be rewritten in a regression

form, [42]

y (k) = θT (k − 1)ϕ (k) + e (k) (4.3)

where ϕ(k) is the regression vector

ϕT (k) =
[

−y (k − 1) · · · −y (k − n) u (k − d) · · · u (k − d−m)
]

, (4.4)

and θ(k) is the vector of unknown parameters

θT (k) =
[

a1 · · · an b0 · · · bm

]

. (4.5)

The prediction of process output can be written as (4.6) since the disturbance is not

known.

ŷ (k|θ) = θT (k − 1)ϕ (k) (4.6)

From here follows that the prediction error is

ε (k) = y (k)− ŷ (k|θ) . (4.7)

If (4.3) generates true system outputs, and measurements y(k) and u(k) are available,

model (4.8) can be used to determine vector of unknown parameters

y (k) = ϕT (k) θ̂ + ε̂ (k) (4.8)

where θ̂ is vector of unknown parameters and ε̂(k) is fitting error at time k. The aim

is to select θ̂ so that the overall fitting error ε̂(k) is minimized in some sense.

Assume that the process has been running for a sufficient time to form data vectors

of size N , where N > n. The data obtained in this way allows the model (4.8) to be

expressed in a matrix form









y (1)

y (2)
...

y (N)









=









ϕT (1)

ϕT (2)
...

ϕT (N)









θ̂ +









ε̂ (1)

ε̂ (2)
...

ε̂ (N)









. (4.9)

Rewriting (4.9) in a stacked form gives

Y = Φθ̂ + Ê (4.10)
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where

Y =
[

y (1) y (2) · · · y (N)
]T

Φ =
[

ϕT (1) ϕT (2) · · · ϕT (N)
]T

Ê =
[

ε̂ (1) ε̂ (2) · · · ε̂ (N)
]T

(4.11)

By rearranging (4.10) in terms of the vector Ê the following is obtained:

Ê = Φθ̂ −Y. (4.12)

The least square principle says that the unknown parameters of a model should be

chosen in such a way that the sum of squares of the differences between the actually

observed data Y and computed values of data Ŷ = Φθ̂ is minimal, [76], i.e. the L–S

criterion function (4.13) is minimal:

J
(

θ̂
)

= 1
2

N∑

i=1
ε̂i (k) = 1

2Ê
TÊ =

=
(

Y −Φθ̂
)T (

Y −Φθ̂
)

.

(4.13)

In other words,

∂J
(

θ̂
)

∂θ̂
= ΦTΦθ̂ −ΦTY = 0 (4.14)

will give θ̂ for which criterion (4.13) is minimal if the Hessian of J
(

θ̂
)

is positive

semidefinite, i.e.

∣
∣
∣
∣

∂2J(θ̂)
∂θ̂2

∣
∣
∣
∣
≥ 0. The Hessian

∂2J(θ̂)
∂θ̂2

= ΦTΦ will be positive semidefinite

if Φ has full rank.

The least squares parameter estimation follows from (4.14) as

θ̂LS =
(
ΦTΦ

)−1
ΦTY . (4.15)

Definition 4.1. Matrix pseudoinverse. The pseudoinverse A† of matrix A (also

referred to as Moore–Penrose pseudoinverse) is defined as

A† =
(
ATA

)−1
AT. (4.16)

�

Using the described procedure, in the following part regressor forms are used for

identification of a coupled model in the horizontal plane, and a decoupled model is

given.
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Coupled model in the horizontal plane

Coupled model of marine vessels in the horizontal plane is given in Chapter 2.5 with

equation (2.28). Further simplifications that are introduced are that parameter Xv̇ from

added mass matrix is negligible, and xG = yG = 0. In other words, the added mass

matrix is diagonal. These two assumptions have proven to be true for micro–ROVs,

[51]. Having this in mind, three individual equations for each degree of freedom can be

written:

u̇ =
Xu

m−Xu̇
︸ ︷︷ ︸

αu1

u+
m− Yv̇
m−Xu̇
︸ ︷︷ ︸

αu2

rv +
1

m−Xu̇
︸ ︷︷ ︸

αu3

X

v̇ =
Yv

m− Yv̇
︸ ︷︷ ︸

αv1

v−m−Xu̇

m− Yv̇
︸ ︷︷ ︸

αv2

ur

ṙ =
Nr

Iz −Nṙ
︸ ︷︷ ︸

αr1

r +−Xu̇ − Yv̇
Iz −Nṙ

︸ ︷︷ ︸

αr2

uv +
1

Iz −Nṙ
︸ ︷︷ ︸

αr3

N.

(4.17)

The assumption is that the vehicle is controllable only in surge and yaw. Sway motion

may occur due to couplings or external disturbance.

In concordance to the derived models, the regression vectors used to fit input-

output data are augmented with a constant δx in order to exclude all possible model

uncertainties and external disturbances from influencing real model parameters, as in

[70]. The matrix form (4.9) can now be written as

1

T









x (1)− x (0)

x (2)− x (1)
...

x (N)− x (N − 1)









︸ ︷︷ ︸

Y

=









x(0) x2 (0) x3 (0) F (0) 1

x(1) x2 (1) x3 (1) F (1) 1
...

...
...

...

x(N) x2 (N)x3 (N) F (N) 1









︸ ︷︷ ︸

Φ








αx1
αx2
αx3
δx








︸ ︷︷ ︸

θ̂

(4.18)

where derivative has been approximated using Euler forward difference method2. If

(4.18) is used for surge than x = u, x2 = r, x3 = v and F = X; for sway x = v, x2 = u,

x3 = r and F = 0; and for yaw x = r, x2 = u, x3 = v. It should be noted that αu2 and

αv2 are reciprocal and with opposite signs. This fact can be taken into account during

identification procedure, or it can just serve as an indicator of quality of identification,

[51].

Uncoupled model

According to (2.33) and (2.34) general linear equation for uncoupled motions can be

written as

ν̇ (t) =
βν
αν
ν (t) +

1

αν
τ (t) + ∆∗ (4.19)

2Euler forward method: s ≈
z−1
T
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from where the matrix regression model used for L–S algorithm is generated (Euler

forward difference method is again used to approximate the derivative):

1

T









ν (1)− ν (0)

ν (2)− ν (1)
...

ν (N)− ν (N − 1)









︸ ︷︷ ︸

Y

=









−ν(0) τ (0) 1

−ν(1) τ (1) 1
...

...
...

−ν(N) τ (N) 1









︸ ︷︷ ︸

Φ






βν
αν
1
αν

∆∗






︸ ︷︷ ︸

θ̂

(4.20)

The nonlinear model becomes:

ν̇ (t) =
βνν
αν

|ν (t)| ν (t) + 1

αν
τ (t) + ∆∗ (4.21)

and the matrix regression model can be represented with (4.20).

1

T









ν (1)− ν (0)

ν (2)− ν (1)
...

ν (N)− ν (N − 1)









︸ ︷︷ ︸

Y

=









− |ν(0)| ν(0) τ (0) 1

− |ν(1)| ν(1) τ (1) 1
...

...
...

− |ν(N)| ν(N) τ (N) 1









︸ ︷︷ ︸

Φ






βνν
αν
1
αν

∆∗






︸ ︷︷ ︸

θ̂

(4.22)

These two regression models, linear (4.20) and nonlinear (4.22), will be used later in

the thesis for identification of Charlie USV (Chapter 7.5) and VideoRay ROV (Chapter

7.3).

4.3 Identification Based on Open Loop Step Response

Open loop identification methods are suitable for laboratory purposes. They are often

time consuming since a great number of experiments should be run in order to obtain

satisfactory results. On the other hand, these experiments give precise model param-

eters – the more experiments, the more precise results. Let’s assume that a system is

given with (4.23) where in general αν is inertia, β (ν) is generalized drag and ν and η

are process variables.
αν ν̇ + β (ν) ν = τ

η̇ = ν
(4.23)

The response of this system depends on the form of the generalized drag β (ν) and

weather the observed variable is ν or η. With regard to the observed variable, two cases

are possible:

Astatic (Type 1) system is a system for which the step response is constantly rising.

The observed variables are “positions”, marked with η, like heading ψ, depth z
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etc. In this case the SISO system response has a form shown in Fig. 4.2(a) and

the dynamic equation can be represented with

αν η̈(t) + β (ν) η̇(t) = τS(t). (4.24)

Static (Type 0) system for which the response to step input ends up in a steady

state (under the assumption that the system is stable). The observed variables

are velocities, marked with ν, like heading rate r, heave speed w, etc. In this

case the SISO system response has a form shown in Fig. 4.2(b) and the dynamic

equation can be represented with

αν ν̇(t) + β (ν) ν(t) = τS(t). (4.25)

With regard to the drag parameter β (ν), two cases are observed:

Constant drag , i.e.

β (ν) = βν = const. (4.26)

which forms a linear equation (4.23), and

Linear drag , i.e.

β (ν) = βν|ν| |ν| (4.27)

which forms a nonlinear equation (4.23).

η0

τ

εv

t

t

η t

τ t

(a)

ν(∞)

τ

t

t

ν t

τ t

0.63ν(∞)
0.76ν(∞)

TL TN

(b)

Figure 4.2. Open–loop step responses for a) astatic and b) static system.
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Static (Type 0) system

For stable Type 0 systems the steady–state value of the step response given with (4.28)

and some characteristic points of the response can be observed for the purpose of

parameter identification.

Kss = lim
t→+∞

dν (t)

dt
(4.28)

If a linear model (constant drag coefficient) is assumed, one degree of freedom of a

marine vehicle can be described with (4.29) and the response is explicitly given with

(4.30), [77].

αν ν̇(t) + βνν(t) = τS(t) (4.29)

ν (t) =
τ

βν

(

1− e−
βν
αν
t
)

(4.30)

The steady state value of the response is given with (4.31), from where, assuming

enough experimental data, the drag can be determined as precisely as needed.

Kss =
τ

βν
(4.31)

For the calculation of inertia term αν a classical method for determining system’s time

constant can be used. Based on the fact that at the time instance

t = TL =
αν
βν

(4.32)

system response achieves around 63% of the steady state value, i.e.

ν (TL) =
τ

βν

(
1− e−1

)
= ν (∞)

(
1− e−1

)
≈ 0.63ν (∞) . (4.33)

Therefore if TL is determined, based on the known constant drag coefficient, inertia

term can be easily calculated.

If the system is described as nonlinear, i.e. with linear drag, then the SISO equation

is (4.34) and the response is somewhat more difficult to obtain.

αν̇(t) + βνν |ν(t)| ν(t) = τS(t) (4.34)

Under the assumption that sgn (τ) = sgn (ν), (4.34) can be written as

ν̇ = sgn (τ)

(

−βνν
αν

ν2 +
1

αν
|τ |
)
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from where by using the separation of variables the following equation can be obtained:

−sgn (τ)
αν
βνν

ν∫

0

dν

ν2 − 1
βνν

|τ |
=

t∫

0

dt.

For the sake of simplicity, it is assumed that ν0 = ν(0) = 0. Since it is known that
∫

a
x2−a2 dx = tanh−1 x

a
, the step response of the system given by equation (4.34) is given

with (4.35).

ν (t) =

√

|τ |
βνν

tanh

[

sgn(τ)

√

βνν |τ |
α

t

]

(4.35)

The steady state value of the response in this case is given with (4.36) and this term

can be used to calculate the linear drag parameter βνν .

Kss = sgn(τ)

√

|τ |
βνν

(4.36)

Similarly as in the case with constant drag coefficient, at the time instance

t = TN =
α

√

βνν |τ |
(4.37)

the system response achieves around 76% of the steady state value, i.e.

r (TN ) = r (∞) tanh 1 ≈ 0.761r (∞) . (4.38)

Astatic (Type 1) system

In this case the slope of the steady–state response (4.39) and velocity error (4.40) can

be observed, [77].

kss = lim
t→+∞

η̇ (t) (4.39)

εv = lim
t→+∞

[η (t)− ksst] (4.40)

If a linear model given with (4.26) is assumed, one degree of freedom of a marine

vehicle can be described with (4.41) where S(t) is a Heaviside (step) function. The

solution of this linear differential equation is given with (4.42), [77].

αν η̈(t) + βν η̇(t) = τS(t) (4.41)

η (t) = τ
αν
β2ν

(

e−
βν
αν
t − 1

)

+
τ

βν
t+ ψ0 (4.42)

The slope of the steady state response for this case is given with (4.43) and it can

be determined from the identification experiments. Since the applied input τ is known,



Chapter 4. Conventional Identification Techniques for Marine Vehicles 55

constant drag can be precisely calculated using (4.43) depending on the number of

experiments.

kss =
τ

βν
(4.43)

The velocity error for this case is given with (4.44).

εv = η0 −
α

β2ν
τ (4.44)

In other words, if the step input τ and the initial value η0 are known a priori, drag

coefficient can be determined from (4.43), and velocity error can be determined from

the response making it easy to calculate the inertia α of the system.

If the system is described by nonlinear mathematical model, i.e. using linear drag

(4.27), the input–output equation is given with (4.45) and the response is somewhat

more difficult to calculate explicitly.

αν η̈(t) + βνν |η̇(t)| η̇(t) = τS(t) (4.45)

By integrating (4.35) once,

η(t) =

η∫

η0

√

|τ |
βνν

tgh

(

sgn (τ)

√

βνν |τ |
αν

t

)

=

=

√

|τ |
βνν

sgn (τ)
αν

√

βνν |τ |
ln

∣
∣
∣
∣
∣
cosh

(

sgn (τ)

√

βνν |τ |
αν

t

)∣
∣
∣
∣
∣
+ η0 =

= sgn (τ)
αν
βνν

ln

∣
∣
∣
∣
∣
cosh

(√

βνν |τ |
αν

t

)∣
∣
∣
∣
∣
+ η0 =

= sgn (τ)
αν
βνν

ln

∣
∣
∣
∣
∣
∣

et
√

βνν |τ |

αν + e−t
√

βνν |τ |

αν

2

∣
∣
∣
∣
∣
∣

+ η0 =

= sgn (τ)
αν
βνν

[

− ln 2 + ln

∣
∣
∣
∣
et

√
βνν |τ |

αν

∣
∣
∣
∣
+ ln

∣
∣
∣
∣
∣
1 + eln e

−t

√
βνν |τ |
αν −ln e

t

√
βνν |τ |
αν

∣
∣
∣
∣
∣

]

+ η0,

the solution is explicitly given with (4.46).

η (t) = η0 + sgn(τ)
αν
βνν

(

−ln 2 + t

√

βνν |τ |
αν

+ ln

∣
∣
∣
∣
1 + e−2t

√
βνν |τ |

αν

∣
∣
∣
∣

)

(4.46)

The slope of the steady state response for this case is given with (4.47). Just as in

the case before (see (4.43)), linear drag coefficient βνν can be calculated easily based
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on the known parameters.

kss =

√
τ

βνν
(4.47)

The velocity error for this case is given with (4.48). The result is similar as in the case

with constant drag coefficient (see (4.44)), but here constant multiplying term appears.

Again, inertia term α can be calculated based on the parameters which are known from

before.

εv = ν0 − sgn(τ)
αν
βνν

ln 2 (4.48)

Therefore if TN is determined, based on the known linear drag coefficient determined

from (4.36), inertia term αν can be easily calculated. Table 4.1 gives a short overview

of equations for determining model parameters using the open loop experiments.

Table 4.1. An overview of equations for parameter identification based on open loop step
responses.

Linear model Nonlinear model

Astatic (Type 1) model
αν = (ψ0 − εv)

τ
k2ss

αν = 1
ln 2 (ψ0 − εv)

τ
k2ss

βν = τ
kss

βνν = τ
k2ss

Static (Type 0) model
αν = TL

τ
Kss

αν = TN
τ
Kss

βν = τ
Kss

βνν = τ
K2

ss

4.4 Zig–Zag Manoeuvre

When designing marine vessels, special attention has to be payed to its manoeuvring

capabilities such as holding the course, performing turns, operating at a low speed and

stopping in a satisfactory way, [1]. Standard ship manoeuvres which are used to test

these abilities are turning circle, pull–out, zig–zag3 and direct and reverse spiral tests.

A concise description of these tests can be found in [43] while detailed literature is [38].

The zig–zag manoeuvre can also be used to determine unknown parameters of the yaw

mathematical model of the vessel. This aspect will be described in the following part.

In determining marine surface vehicles’ dynamic behavior, zig–zag maneuvers are

widely accepted and are obligatory for ships, according to IMO4. The zig–zag maneuver

is used for determining manoeuvring capabilities of the ship and because of thet is used

when designing ship autopilots, i.e. determining yaw motion of a surface vessel, [43, 61].

The maneuver which is usually run for ships consists of the steps given with Algorithm

4.1, while the ship is sailing in advance at a predetermined speed.

3The zig–zag manoeuvre is also referred to in literature as Kempf’s zig–zag manoeuvre.
4IMO – International Maritime Organisation
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Algorithm 4.1. Zig–zag manoeuvre for ±10◦ rudder deflection5.

I. Turn the rudder at the maximum speed to the starboard6 side at 10◦ (20◦).

II. When ships course changes by 10◦ from the initial course, turn the rudder to the

opposite side (port7) at 10◦. After a while, the ship will turn to port.

III. When the ship course changes by 10◦ from the initial course on the opposite side,

turn the rudder again to the starboard side at 10◦.

�

This manoeuvre us usually performed on ships, hence the port and starboard side.

The results of this test gives us the manoeuvring capabilities, i.e. the capacity of the

rudder to control the ship’s heading. It is advised that the algorithm is performed at

maximal as well minimal forward speed, [1]. The heading ψ and the rudder position δ

should be recorded all the time during the experiment. This algorithm can be simulated

as shown in Fig. 4.3. The response of the zig–zag manoeuvre is shown in Fig. 4.4.

MARINE
VESSEL

ψ tN tψref

Figure 4.3. Simulation scheme for the zig–zag manoeuvre.

t1 t2

ψ1

ψ2

ψ t

t
ψref

(a)

t3 t4 t

ψ t

ψref

(b)

Figure 4.4. The zig–zag manoeuvre: integration area for determining (a) drag and (b) inertia.

5Zig–zag test is performed for ±5◦, ±10◦, ±15◦, ±20◦, ±25◦, etc. rudder deflection.
6Marine term for ”left”.
7Marine term for ”right”
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The initial assumption for application of the zig–zag manoeuvre for parameter iden-

tification is that the yaw motion can be described using a simple Nomoto model, [62],

given with
ψ

δ
=

K

(Ts+ 1)s
(4.49)

where δ is the rudder deflection, ψ heading and K and T parameters which are to be

determined. T and K are also know as the Nomoto time and gain constants, respec-

tively. The same model can be applied to underwater vehicles linear yaw model (4.50)

where the exciting force is the yaw moment.

αrψ̈ + βrψ̇ = N (4.50)

In [22] and [30] it was shown that the first order Nomoto equation can be used to

analyze the ship’s behaviour during zig–zag manoeuvres, i.e. to find the values of K

and T . The unknown parameters can be determined by pure integration of the Nomoto

model, i.e. by integration of (4.50) which results in

αr

∫ t2

t1

ṙdt+ βr

∫ t2

t1

rdt =

∫ t2

t1

Ndt.

If the integration is performed between the first two time instances when extreme

headings appear (the yaw rate at these points equals zero) as it is shown in Fig. 4.4(a),

i.e.

αr r|t2t1 + βrψ|t2t1 =

∫ t2

t1

Ndt, (4.51)

equation (4.52) is obtained.

βr =

∫ t2
t1
Ndt

ψ2 − ψ1
(4.52)

If the integration is performed between two consequent zero crossing point of the

heading response as it is shown in Fig. 4.4(b), equation (4.53) is obtained. In this case,

yaw rate values r(t3) and r(t4) at the zero crossing points are needed.

αr =

∫ t4
t3
Ndt

r4 − r3
(4.53)

It is obvious that in order to get the two parameters, integration of the control

input has to be performed. In Fig. 4.4 the shaded areas are to be integrated in order

to determine inertia and linear drag.

There are a few down sides to the described procedure:

• Zig–zag identification can be used only if linear Nomoto model describes the

vessel’s dynamic properly8. However, if nonlinear terms in the drag appear, the

8This assumption is valid only for small deflections of the rudder.
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procedure cannot be used and they cannot be evaluated.

• If the external disturbance is acting, the equations for calculatung unknown pa-

rameters and the external disturbance increase significantly in complexity, [30],

and the resulting terms are implicit in the unknown parameters which makes their

calculation complex.

• If the rudder dynamics is included into observation, i.e. the nonlinear element in

the closed loop is more complex than the relay with hysteresis (see Fig. 4.3), the

computation of unknown parameters has to be performed iteratively as shown in

[30].

4.5 Conclusion

This chapter gave an overview of some identification procedure which are often ap-

plied for identification of marine vehicle parameters. The chapter starts with a simple

description of thruster mapping procedure.

The least–squares method is also briefly described, as the most common method for

system identification. Its application on linear and nonlinear models of marine vehicles

is given. The main disadvantage of this method is that it requires great number of

experimental data, which leads to multiple time–consuming experiments. On the other

hand, this method can produce precise parameters if the model is accurate and enough

data is gathered. A great advantage is that external disturbance can be taken into

account which significantly improves the accuracy of the method.

The method which is based on open loop step response is suitable for laboratory

purposes only since it does not take into account disturbances which may appear and

moreover assumes stable processes. It was shown that it can be used to identify non-

linear marine models. The proposed methodology also requires a great number of

experiments to be performed in order to ensure accuracy of the identified parameters.

The zig–zag manoeuvre was first developed for determining steering capabilities of

ships and later the obtained data was used to determine vessel’s parameters. This

method gives exact parameters if the model is linear and external disturbances are not

present. The greatest disadvantage of this approach is that the model of the vessel must

be linear, and if the external disturbance is present, the procedure becomes complex,

resulting in an iterative algorithm for calculation of unknown parameters.

The methods that were described here will be used in the following section of the

thesis as a comparison to the novel method based on self–oscillations (IS–O method).



Chapter 5

Self–Oscillations

One of the many possible behaviors that nonlinear systems can exhibit is called the

limit cycle. During the limit cycle regime the closed–loop system state trajectories

are in a closed form. In the time domain, this behavior is represented as oscillatory

behavior. These oscillation are called self–oscillations. The self–oscillations are a stable

behavior characteristic for nonlinear systems, [78], unlike oscillations that arise in linear

time–invariant systems, [77].

The self–oscillations are often considered a malicious effect in control systems. In

transmission systems gears, backlash is most often the cause of self–oscillations which

can cause gears to wear out. Even in computer controlled systems quantizers (A/D

and D/A converters) can cause unwanted oscillations. On the other hand, for some

systems (such as airplanes, marine vessels, etc.) self–oscillations are a normal mode of

operation.

It is beneficial to know under what circumstances self–oscillations appear, what

are their properties and how they can be avoided. The answer to this question can

be obtained from the harmonic linearization procedure. The following subsections will

give insight to the describing function method which is an inevitable tool in harmonic

linearization. Description of conditions for the existence of symmetric and asymmetric

self–oscillations in control systems will also be given.

5.1 Describing Function

Harmonic linearization is a tool for obtaining an approximation of a nonlinear element

in the cases when oscillations are present. The describing function is consequently an

equivalent gain of a nonlinear element which is excited by periodic signals. Let us define

a biased monoharmonic signal in a form

x(t) = x0 +Xm sinωt = x0 + x∗ (5.1)

60
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and let it be at the input of a nonlinear element whose output is in the form

yN (t) = F (x) (5.2)

where F (x) = −F (−x) is symmetric. The output yN(t) of the nonlinear element F (x)

can be expressed by the Fourier series:

yN (t) = Y0 +
∞∑

k=1

YPk sin (kωt) +
∞∑

k=1

YQk cos (kωt) (5.3)

where

Y0 = 1
2π

2π∫

0

F (x0 +Xm sinωt) d (ωt)

YPk = 1
π

2π∫

0

F (x0 +Xm sinωt) sin (kωt) d (ωt)

YQk = 1
π

2π∫

0

F (x0 +Xm sinωt) cos (kωt) d (ωt) .

(5.4)

If only the first harmonic is taken into account, (5.3) can be simplified to

yN (t) ≈ Y0 + YP1 sinωt+ YQ1 cosωt =

= Y0(x0,Xm) +
[
YP1(x0,Xm)

Xm
+

YQ1(x0,Xm)
Xm

p
ω

]

x∗
(5.5)

where p = d
dt

is the differential operator. The basic definition of the describing function

is formed assuming symmetric input oscillations. Therefore, by using (5.5) the output

of the nonlinear element can be written as

yN (t) = YP1 sinωt+ YQ1 cosωt =

=
[
YP1(Xm)
Xm

+
YQ1(Xm)
Xm

p
ω

]

x∗
(5.6)

from where the following definition is stated.

Definition 5.1. Describing function. The describing function of a nonlinear element

is defined as the ratio between the first harmonic of output and input signals of this

nonlinear element expressed in complex form:

GN (Xm) = PN (Xm) + jQN (Xm) (5.7)

where

PN (Xm) = YP1
Xm

= 1
πXm

2π∫

0

F (Xm sinωt) sinωt d (ωt)

QN (Xm) =
YQ1

Xm
= 1

πXm

2π∫

0

F (Xm sinωt) cosωt d (ωt)

(5.8)

�
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Similarly, the output of a nonlinear element with a biased harmonic input can then

be written as

yN (t) ≈ Y0(x0,Xm) +
[

PN (x0,Xm) +QN (x0,Xm)
p

ω

]

x∗ (5.9)

where

Y0 = 1
2π

2π∫

0

F (x0 +Xm sinωt) d (ωt)

PN = 1
π

2π∫

0

F (x0 +Xm sinωt) sin (ωt) d (ωt)

QN = 1
π

2π∫

0

F (x0 +Xm sinωt) cos (ωt) d (ωt) .

(5.10)

This definition allows us to define the describing function parameters of the asymmet-

rical relay. Equation set (5.10) is in fact a generalization of (5.8) – if x0 = 0 is inserted

in (5.10), (5.8) is obtained.

Example 5.1. A symmetric two position relay with hysteresis is given with its output

value C and hysteresis width xa. The input signal is in the form x(t) = x0 +Xm sinωt

and the output is shown in Fig. 5.1.

C

1t
2

1t
π

ω+

1 t

( ) ( )0 sinmx t x X tω= +

C

ax

x

Ny

x

t
2 t

0
x

2t
t

Ny

Figure 5.1. Symmetric two–position relay with hysteresis and it’s input and output signal
forms.

If substitutions ϕ1 = ωt1 and ϕ2 = ωt2 − π are made, the following equations give

expressions for ϕ1 and ϕ2.

x0 +Xm sinϕ1 = xa ⇒ ϕ1 = arcsin xa−x0
Xm

x0 +Xm sinϕ2 = −xa ⇒ ϕ2 = arcsin xa+x0
Xm
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Using (5.10), the describing function for the given nonlinear element when the input

signal is biased is obtained.

Y0 (x0,Xm) = 1
2π

2π∫

0

yN dϕ

= 1
2π

(
π+ϕ2∫

ϕ1

C dϕ+
2π+ϕ1∫

π+ϕ2

−C dϕ
)

=

= C
2π (ϕ2 + π − ϕ1 − 2π − ϕ1 + ϕ2 + π) =

= C
π
(ϕ2 − ϕ1)

Y0 (x0,Xm) =
C

π

(

arcsin
xa + x0
Xm

− arcsin
xa − x0
Xm

)

(5.11)

The biased component can also be expressed as

Y0 (x0,Xm) = C
π
(ϕ2 − ϕ1) =

C
π
(ωt2 − π − ωt1) =

= C
π
(ωt2 − π − ωt1) =

C
π

(

ωt2 − TH+TL
2 ω − ωt1

)

=

= C
π
ω
(

TH − TH+TL
2

)

= C
π

2π
TH+TL

TH−TL
2 =

= C TH−TL
TH+TL

(5.12)

PN (x0,Xm) = 1
πXm

2π∫

0

yN sinϕdϕ =

= 1
πXm

(
π+ϕ2∫

ϕ1

C sinϕdϕ+
2π+ϕ1∫

π+ϕ2

−C sinϕdϕ

)

=

= C
πXm

[− cos (ϕ2 + π) + cosϕ1 + cos (2π + ϕ1)− cos (ϕ2 + π)] =

= 2C
πXm

[cosϕ1 + cosϕ2]

PN =
2C

πXm





√

1−
(
xa − x0
Xm

)2

+

√

1−
(
xa + x0
Xm

)2


 (5.13)

QN (x0,Xm) = 1
πXm

2π∫

0

yN cosϕdϕ =

= 1
πXm

(
π+ϕ2∫

ϕ1

C cosϕdϕ+
2π+ϕ1∫

π+ϕ2

−C cosϕdϕ

)

=

= C
πXm

[sin (ϕ2 + π)− sinϕ1 − sin (2π + ϕ1) + sin (ϕ2 + π)] =

= − 2C
πXm

(sinϕ1 + sinϕ2)

QN (x0,Xm) = −4Cxa
πX2

m

(5.14)
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it is worth noting that the imaginary part of the describing function, QN (x0,Xm), is in

fact not a function of x0. If the input signal to the relay is unbiased, x(t) = Xm sinωt,

it follows that F0 (Xm) = 0 and

QN (Xm) = −4Cxa
πX2

m

PN (Xm) = 4C
πXm

√

1−
(
xa
Xm

)2 (5.15)

forming the describing function GN (Xm) = PN (Xm) + jQN (Xm).

�

Theorem 5.1 (On vanishing of even harmonics). If a nonlinear element described

with yN (t) = F (x) where F (x) = −F (−x) (symmetrical nonlinear characteristic) is

excited with an unbiased monoharmonic signal, x(t) = Xm sin(ωt), then the output

yN (t) consists of odd multiples of the principle harmonic, only.

Proof. The simplest way of proving this theorem is to show that even multiples of the

principle harmonic vanish. In other words, YP,2k and YQ,2k have to become equal to 0.

YP,2k = 1
π

2π∫

0

F (x0 +Xm sinωt) sin (2kωt) d (ωt) =

= 1
π

π∫

0

F (Xm sinωt) sin (2kωt) d (ωt)

+ 1
π

π∫

0

F (Xm sin (ωt+ π)) sin (2kωt+ 2kπ) d (ωt) =

= 1
π

π∫

0

F (Xm sinωt) sin (2kωt) d (ωt)

− 1
π

π∫

0

F (Xm sinωt) sin (2kωt) d (ωt) = 0

In a similar manner the proof goes for YQ,2k.

5.2 Symmetric Self–Oscillations

Symmetric oscillations in general are defined for a closed loop system where nonlinear

and linear part can be separated as shown in Fig. 5.2. It is assumed that the system

is not excited (r is zero). In addition to that, the linear part of the system GL must

attenuate higher multiples of the principle harmonic of self–oscillations. This is usually

achieved when the linear system is a low–pass filter. Since all marine vehicles have

low–pass properties, an assumption is made, from here on, that the higher harmonics

are sufficiently attenuated.

Given a closed loop system as in Fig. 5.2 and under the assumption that the self–

oscillations are symmetric, the input signal is zero R(t) = 0, the following closed loop
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NONLINEAR
ELEMENT

( ) 0R t = ( )x t ( )Ny t
( )LG p

( )y t

Figure 5.2. A closed loop consisting of a nonlinear element and a linear part GL(p) of the
system.

equations for some frequency ω can be written:

x (p) = −y (p)
y (jω) = GL (jω) yN (jω)

yN (jω) = GN (Xm)x (jω) .

(5.16)

These equations boil down to the closed loop equation which is used to calculate the

magnitude Xm and frequency ω of self–oscillations:

GN (Xm)GL (jω) + 1 = 0. (5.17)

Previously it was stated that the input to the closed loop system should be 0 for the

self–oscillations to be symmetric. The following theorem will show that if the process

in the closed loop is astatic (Type k, k > 0), be it linear or nonlinear, the induced

self–oscillations will still be symmetric.

Lemma 5.1 (On symmetric nonlinearities). Let the nonlinear element be described

with yN (t) = F (x) where F (x) = −F (−x) (symmetrical nonlinear characteristic) and

let the odd derivatives at the origin F (2n+1)(0), n ∈ IN0 be of the same sign. The bias

component F0 of the output vanishes if and only if the nonlinear element is excited with

an unbiased monoharmonic signal, x(t) = Xm sin(ωt).

Proof. For the sake of generality, let the nonlinear function be divided into two parts

F (x) =

{

Fu(x), ẋ ≥ 0

Fd(x), ẋ < 0
, (5.18)

where Fu and Fd are the analytic nonlinearities which effect the rising and the falling

input signal, respectively. This definition is introduced to include the nonlinear elements

with the hysteresis into observation. If F (x) is (odd) symmetric, then the following is

true:
Fu(x) = −Fd(−x)
Fd(x) = −Fu(−x)

. (5.19)

For the case of single–valued nonlinearities (without hysteresis), i.e. Fu(x) = Fd(x),

this condition boils down to F (x) = −F (−x). What needs to be proven is that under
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the given conditions

Y0 (x0 +Xm sinωt) = 0 ⇔ x0 = 0. (5.20)

Since the function f(x) =
x∫

0

F (x0 +Xm sinϕ)dϕ is periodic, it can be written that

2π∫

0

F (x0 +Xm sinϕ)dϕ =

2π+α∫

α

F (x0 +Xm sinϕ)dϕ.

Further on, the output can be divided into two parts according to two ranges in which

the input signal is rising and falling:

F (x0 +Xm sinϕ) =

{

Fu(x0 +Xm sinϕ), ϕ ∈
(
−π

2 ,
π
2

)

Fd(x0 +Xm sinϕ), ϕ ∈
(
π
2 ,

3π
2

) .

From here follows that

Y0 =
2π∫

0

F (x0 +Xm sinϕ)dϕ =

3π
2∫

−π
2

F (x0 +Xm sinϕ)dϕ =

=

π
2∫

−π
2

Fu (x0 +Xm sinϕ)dϕ+

3π
2∫

π
2

Fd (x0 +Xm sinϕ)dϕ =

=
π∫

0

Fu (x0 +Xm cosϕ)dϕ+
π∫

0

Fd (x0 −Xm cosϕ)dϕ.

Since F (x) is analytic, Fu(x) and Fd(x) can be developed in the Taylor series around

x = 0 as Fu (x) =
∞∑

n=0
au,nx

n and Fd (x) =
∞∑

n=0
ad,nx

n where au,n = dnFu(x)
dxn

∣
∣
∣
x=0

and

ad,n = dnFd(x)
dxn

∣
∣
∣
x=0

. The even and odd parts of these Taylor series can be separated

resulting in the following equation:

F0 =

π∫

0

∞∑

n=0

au,2n(x0 +Xm cosϕ)2ndϕ

︸ ︷︷ ︸

Iu,2n

+

π∫

0

∞∑

n=0

au,2n+1(x0 +Xm cosϕ)2n+1dϕ

︸ ︷︷ ︸

Iu,2n+1

+

π∫

0

∞∑

n=0

ad,2n(x0 +Xm cosϕ)2ndϕ

︸ ︷︷ ︸

Id,2n

+

π∫

0

∞∑

n=0

ad,2n+1(x0 +Xm cosϕ)2n+1dϕ

︸ ︷︷ ︸

Id,2n+1

= 0.

(5.21)

By developing the term into the binomial series

(x0 +Xm cosϕ)n =

n∑

k=0

(
n

k

)

xk0(Xm cosϕ)n−k, (5.22)
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where the binomial coefficient for non–negative integers n and k is defined as

(
n

k

)

=

{
n!

k!(n−k)! , k ∈ {0, 1, ..., n}
0, k > n

, (5.23)

the following is obtained

Iu,2n =
π∫

0

∞∑

n=0
au,2n

n∑

k=0

(
2n
k

) [

xk0(Xm cosϕ)2n−k
]

dϕ =

=
π∫

0

∞∑

n=0
au,2n

n∑

k=0

(
2n
2k

) [

x2k0 (Xm cosϕ)2n−2k
]

dϕ

+

π∫

0

∞∑

n=0

au,2n

n∑

k=0

(
2n

2k + 1

)[

x2k+1
0 (Xm cosϕ)2n−2k−1

]

dϕ

︸ ︷︷ ︸

=0

(5.24)

Iu,2n+1 =
π∫

0

∞∑

n=0
au,2n+1

n∑

k=0

(
2n+1
k

) [

xk0(Xm cosϕ)2n+1−k
]

dϕ =

=

π∫

0

∞∑

n=0

au,2n+1

n∑

k=0

(
2n+ 1

2k

)[

x2k0 (Xm cosϕ)2n+1−2k
]

dϕ

︸ ︷︷ ︸

=0

+
π∫

0

∞∑

n=0
au,2n

n∑

k=0

(2n+1
2k+1

) [

x2k+1
0 (Xm cosϕ)2n−2k

]

dϕ

(5.25)

Id,2n =
π∫

0

∞∑

n=0
ad,2n

n∑

k=0

(2n
k

) [

xk0(Xm cosϕ)2n−k
]

dϕ =

=
π∫

0

∞∑

n=0
ad,2n

n∑

k=0

(
2n
2k

) [

x2k0 (Xm cosϕ)2n−2k
]

dϕ

+

π∫

0

∞∑

n=0

ad,2n

n∑

k=0

(
2n

2k + 1

)[

x2k+1
0 (Xm cosϕ)2n−2k−1

]

dϕ

︸ ︷︷ ︸

=0

(5.26)

Id,2n+1 =
π∫

0

∞∑

n=0
ad,2n+1

n∑

k=0

(2n+1
k

) [

xk0(Xm cosϕ)2n+1−k
]

dϕ =

=

π∫

0

∞∑

n=0

ad,2n+1

n∑

k=0

(
2n+ 1

2k

)[

x2k0 (Xm cosϕ)2n+1−2k
]

dϕ

︸ ︷︷ ︸

=0

+
π∫

0

∞∑

n=0
ad,2n

n∑

k=0

(
2n+1
2k+1

) [

x2k+1
0 (Xm cosϕ)2n−2k

]

dϕ

(5.27)
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The integrals with even powers of the cosine term vanish (since the subintegral function

is odd in the range of integration) and the result is as follows:

Y0 =
π∫

0

∞∑

n=0

n∑

k=0

(2n
2k

)
(Xm cosϕ)2n−2kx2k0 [au,2n + ad,2n+

+x0
2n+1
2k+1 (au,2n+1 + ad,2n+1)

]

dϕ
(5.28)

Since the nonlinear element is odd symmetric, from (5.19) it can be written that

∞∑

n=0
au,nx

n = −
∞∑

n=0
ad,n(−x)n

∞∑

n=0
au,2nx

2n +
∞∑

n=0
au,2n+1x

2n+1 = −
∞∑

n=0
ad,2nx

2n −
∞∑

n=0
(−1) ad,2n+1x

2n+1
(5.29)

from where it follows that
au,2n = −ad,2n

au,2n+1 = ad,2n+1.
(5.30)

Since the assumption is that au,2n+1 and ad,2n+1 are of the same sign, (5.28) is valid if

and only if x0 = 0, i.e. (5.20) is satisfied.

Theorem 5.2 (On symmetric oscillations with constant input signal). Let the closed

loop consist of a symmetric nonlinear element yN = F (x) where F (2n+1)(0) is of the

same sign for all n ∈ IN0 and a linear time invariant process with k > 0 integrators

(Type k process), and let there be a constant input R0 6= 0 to the closed loop system.

If the self–oscillations are induced, then they are symmetric, regardless of the constant

input.

Proof. Let us say that the process in general is nonlinear and therefore can be joined to

the nonlinear part of the system forming a nonlinearity given with yN = FN (u, u̇, ü, · · · , ẏN , ÿN , · · · )
leaving only the k integrators as the linear process as shown in Fig. 5.3.

0( ) .R t R const= = ( )x t ( )Ny t 1
kp

( )y t
( )F x

Figure 5.3. Closed loop system for proving symmetry of self–oscillations with constant input
and astatic process.

Let us assume that the input to the nonlinear part is biased, i.e. that the self–

oscillations are asymmetric, x(t) = x0 + x∗. The output of the nonlinear element is

then

yN (t) = Y0 +

[

PN (x0,Xm, ω) +
QN (x0,Xm, ω)

ω
p

]

x∗ (5.31)
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where the describing function is dependent on the frequency of self–oscillations ω also.

The aim is to prove that under the given conditions, x0 = 0. This is important since

usually the described constantly excited systems exhibit asymmetric self–oscillations.

The closed loop equations give

x = R0 − y
1
pk
yN = y

yN = F (x) .

(5.32)

Under the assumption that x(t) is biased causing the output of the nonlinear element

to be (5.31), the following equation is obtained:

x0 + x∗ = R0 −
1

pk

[

Y0 +

(

PN +
QN
ω
p

)

x∗
]

. (5.33)

The static part of the equation gives that pk (x0 −R0) = −Y0. Since x0 and R0 are

constant, it follows that Y0 = 0. From Lemma 5.1 follows that x0 = 0, what proves the

theorem.

5.3 Asymmetric Self–Oscillations

Asymmetric self–oscillations in general can be a result of a constant input to the system

(Theorem 5.2 proves that this is not the case with any type of closed loop system)

or asymmetry in the nonlinear element. The following theorem will show that for

astatic systems, self–oscillations can be symmetric if and only if the nonlinear element

is asymmetric.

Theorem 5.3 (On asymmetric self–oscillations of astatic systems). Let the closed loop

consist of a symmetric nonlinear element yN = F (x) where F (2n+1)(0) is of the same

sign for all n ∈ IN0 and a linear time invariant process with k > 0 integrators (Type

k process), and let there be a constant input R0 6= 0 to the closed loop system. The

induced self–oscillations are asymmetric if and only if there exists an additive signal

∆ 6= 0 at the output of the nonlinear element.

Proof. As it was shown in the proof of Theorem 5.2, the closed loop equation is in the

form given with (5.33). Let’s assume there is an additive signal ∆ at the output of the

nonlinear element. Than the closed loop equation is in the form

x0 + x∗ = R0 −
1

pk

[

Y0 +∆+

(

PN +
QN
ω
p

)

x∗
]

. (5.34)

From here follows that Y0 = −∆. If the self–oscillations are asymmetric, x0 6= 0 then

by negating Lemma 5.1 follows that Y0 6= 0 which is the case when ∆ 6= 0. This proves

one direction of the theorem. If there exists ∆ 6= 0, then Y0 6= 0 which again from the
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negation of Lemma 5.1. This proves the other direction of the theorem.

Remark 5.1. Theorem 5.3 is important in order to understand why self–oscillations

may be asymmetric in astatic systems with symmetric nonlinear elements. Basically, it

states that only the presence of the external disturbance δ may cause the oscillations to

be asymmetric. In that case, the disturbance ∆ can be added to the nonlinear element,

forming a new nonlinearity yN = F (x) + ∆ which is now asymmetric.

5.4 On the Existence of Self–Oscillations

Not every nonlinear element can cause self–oscillations in the closed loop systems. Also,

if one closed loop system operates in self–oscillations regime, it does not mean that the

same nonlinear element will cause self–oscillations with a different process in the closed

loop.

The existence of solution of the closed loop equation (5.17) implies the existence

of self–oscillations. However, the solution of this equation can be impossible to find

analytically, and very difficult to find using numerical methods. This is why grapho–

analytical methods have been developed to alleviate the problem of determining the

existence of self–oscillations. One such method is called the Goldfarb method, [78].

By rearranging (5.17) into (5.35) a graphical procedure for determining self–oscillation

parameters can be obtained.

GL(jω) = − 1

GN (Xm)
(5.35)

By drawing GL(jω) (Nyquist plot of the linear part of the system) and the inverse

negative describing function (as a function of Xm), the intersection point is obtained

if solution exists. This intersection point is characterized by the magnitude Xm and

the frequency ω of self–oscillations. Also, if and only if there is an intersection between

the two curves, self–oscillations will exist. For example, an inverse negative describing

function of the two–position relay without hysteresis is a line which coincides with the

negative real axis in the Nyquist plane. Further on, a second order system, has a

Nyquist curve which does not intersect with the negative real axis in the Nyquist plane,

leading to the conclusion that self–oscillations will not be induced for this combination

of elements.

5.5 Conclusion

The previous chapter gave a basic description of the harmonic linearization method

with the description of the describing function. In addition to that, three theorems and

two lemmas were stated and proved. It is proved that symmetric nonlinear elements
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with unbiased input signal can have only odd multiples of the principle harmonic, which

is an important property of symmetric nonlinear element.

A proof that symmetric nonlinear element will not have biased output if and only if

the input signal is unbiased was used in the theorem which stated that the closed loop

systems with symmetric nonlinearities, the astatic process and a constant input signal

will produce symmetric self–oscillations. This fact will be used throughout the thesis,

and it proves that in yaw motion (which is astatic if heading is taken into account) the

induced self–oscillations will have the same parameters regardless of the heading ψref
around which they are induced.

Another important theorem, which is proved, is that in a closed loop system with

astatic systems and a nonlinearity, self–oscillations can be asymmetric if and only if

the nonlinear element is asymmetric. The consequence of this theorem is that if self–

oscillations in experiments with marine vehicles (which are described later) are asym-

metric, this is due to asymmetric nonlinear element which is such due to disturbance

which acts on the vessel, i.e. output of the nonlinear element.



Chapter 6

Identification by Use of

Self–Oscillations (IS–O)

Self–oscillations are very common and sometimes unwanted in control systems. How-

ever, self–oscillations can be used to determine systems’s parameters. In these cases,

nonlinear elements are intentionally introduced in the closed loop in order to induce

self–oscillations.

Identification of process parameters in open–loop is often tedious and time consum-

ing. If process’ parameters change in time (due to time–variant payload, disturbances,

environment, etc.), classical identification methods are simply not convenient. In field

conditions, it is simply not practical to perform series of tests which will give satisfac-

tory set of parameters based on which controllers might be tuned. This was the main

motivation for research in the field of identification by use of self–oscillations and its

application to marine vehicles. This method, unlike conventional identification meth-

ods, is time–parsimonious, easily implementable and applicable in field conditions by

non–experts.

The concept of identification by use of self–oscillations was introduced about 25

years ago when Åström and Hägglund in [4] derived a so called ATV1 method used for

system identification and automatic tuning of regulators. The method was presented

as simple one and quite appropriate for in situ identification. The method is based

on using a relay–feedback to bring the system to self–oscillations. Then Luyben in

[44] used this method in chemical industry to identify a transfer function of extremely

nonlinear systems (distillation columns). Since then, inducing self–oscillations proved

to be an efficient tool for controller tuning in processes and for process identification,

[19, 41], especially in pharmaceutical industry.

Many modifications of the original autotuning method have been made in order to

apply it to different types of processes. The main objection to this method is that only

one frequency is taken into consideration (the frequency of self–oscillations). That is

1Autotuning variation

72
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why some authors used an additional time delay in series with a relay to insert a phase

delay which will rotate the Nyquist curve and therefore obtain different oscillation fre-

quencies, [8, 75]. Another approach for determining process’ characteristics at different

frequencies was to place an integrator in a cascade to a relay element, [34]. As this area

of research expanded, more complex methods have been developed using a similar con-

cept. Great improvement was achieved in using transient response of the relay feedback

system response to tune controllers and identify systems, [28, 81]. Wang et al. used a

switching technique between a relay and a relay with an integrator to obtain sufficient

information about the process, [79]. Another modification of a relay experiment is using

a biased relay to identify system’s parameters, [33, 80]. This method is very accurate

when used to determine open loop gain of the process.

All of these methods were used primarily for static processes (Type 0). However,

a number of processes are not open loop stable, and there are not many references

regarding this problem. First publications that used this method for identification of

Type 1 (one integrator) systems included a derivator in series with a relay element to

compensate for the influence of the integrator. This method is more of a theoretical

value than a practical one, due to non–causality of an ideal derivator. Another, imple-

mentable, approach that uses a liner feedback which ensures the static behavior of the

process was presented by Kwak et al. in [36]. References that address the use of this

method for Type k processes 2 were not found in the available literature.

There are no records of this methodology being used for marine vehicles apart from

the work from the authors. The first published work was [56] and it included some

heuristical recommendations for underwater vehicle autopilot tuning based on self–

oscillation experiments. Since then, many papers have been published with a topic of

application of the proposed method on marine underwater and surface vehicles.

This chapter gives detailed description of the identification by use of self–oscillations

(IS–O). A general formulation applicable to any type of system is presented. From

there, a general matrix algorithm is derived. This algorithm enables the IS–O method

to be easily applied to linear astatic processes of any order. The presented algorithm is

augmented to Type k systems, systems with delays and discrete–time systems. More-

over, software implementation issues are addresses and finally the application of the

algorithm to a class of nonlinear systems which are used to describe marine vehicles is

described.

2Processes with k integrators
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6.1 General Formulation

Let a general nonlinear process with a relative degree3 greater than zero be described

with

f(ai, x
(n), x(n−1), ..., x, u(m) , u(m−1), ..., u̇) = u+∆ (6.1)

where ai are process’ parameters, x is the process output, u the process input and δ

constant term at the input. It is worth stressing that this process is static by definition.

However, modifications for astatic processes will be made in further sections of the

thesis. If self–oscillations are induced by introducing a nonlinear element, the input to

the nonlinear element can be written as −x(t) = x0 +Xm sin(ωt) where Xm and ω are

magnitude and frequency of the established self–oscillations, respectively, and x0 is the

biased component caused by δ. Without the loss of generality, the closed loop reference

is assumed xref = 0. The derivatives of the process’ output are

x = x0 +Xm sin(ωt)

ẋ = Xmjω sin(ωt)
...

x(k) = Xm(jω)
k sin(ωt)

(6.2)

and the process can be developed into a Fourier series. Keeping only the first harmonic,

(6.1) can be written as

f0(ai, x0,Xm, ω) + [fR(ai, x0,Xm, ω) + jfI(ai, x0,Xm, ω)] x
∗ =

= u(t) + ∆(t).
(6.3)

where f0 (·) = 1
2π

2π∫

0

f (·) d (ωt), fR (·) = 1
π

2π∫

0

f (·) sin (ωt) d (ωt) and

fI (·) = 1
π

2π∫

0

f (·) cos (ωt) d (ωt).
Unity feedback implies that

u(t) = −Y0(x0,Xm)−GN (x0,Xm) · x∗(t) (6.4)

where F0(x0,Xm), and GN (x0,Xm) = PN (x0,Xm) + jQN (x0,Xm) are parameters of

the describing function of the nonlinear element and they do not depend on frequency

of self–oscillations if the nonlinearity is static, [78]. Combining (6.3) with (6.4) the

following equation is obtained

f0(ai, x0,Xm, ω) + [fR(ai, x0,Xm, ω) + jfI(ai, x0,Xm, ω)] x
∗ =

= −Y0(x0,Xm)−GN (x0,Xm) · x∗(t) + ∆(t).
(6.5)

3Relative degree in linear systems is the pole excess of the system, difference between the number of
poles n and finite zeros m, [50]. This means that for linear systems this condition boils down to n > m
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Equation (6.5) can be separated to an oscillatory component and static component

forming a set of two equations given with (6.6).

fR(ai, x0,Xm, ω) + jfI(ai, x0,Xm, ω) = −PN (x0,Xm)− jQN (x0,Xm)

f0(ai, x0,Xm, ω) = −Y0(x0,Xm) + ∆
(6.6)

This set of equations represents the generalized procedure for parameter identification.

By solving this set of equations, the vector of unknown parameters (ai) can be de-

termined if all other parameters are known (Xm, ω, x0 and the describing function

parameters PN , QN ). If multiple parameters are to be identified, a number or self–

oscillating experiments should be conducted thus obtaining Xm1, Xm2, ..., ω1, ω2, ...,

PN1, PN2, ... and QN1, QN2, ...

6.2 General Matrix Algorithm Formulation for Linear Static

Processes

A linear time invariant process can be described by a transfer function (6.7) where n is

the degree of the denominator (number of non–zero poles), m degree of the nominator

(number of finite zeros) and the process is strictly proper (n > m):

GL(s) =

m∑

i=0
bis

i

n∑

i=0
aisi

. (6.7)

Let us suppose that the closed loop system is as in Fig. 5.2. Using the Goldfarb method

given with (5.35) a general equation in the frequency domain that gives relation between

oscillation parameters (magnitude Xm and frequency ω) and process’ parameters can

be obtained. The process transfer function transferred to frequency domain has the

following form:

GL(jω) =

m
∑

i=0
bi(jω)

i

n
∑

i=0
ai(jω)

i
=

=

[

⌊n/4⌋
∑

i=0
b4iω

4i−
⌊n/4⌋
∑

i=0
b4i+2ω

4i+2

]

+j

[

⌊n/4⌋
∑

i=0
b4i+1ω

4i+1−
⌊n/4⌋
∑

i=0
b4i+3ω

4i+3

]

[

⌊n/4⌋
∑

i=0
a4iω4i−

⌊n/4⌋
∑

i=0
a4i+2ω4i+2

]

+j

[

⌊n/4⌋
∑

i=0
a4i+1ω4i+1−

⌊n/4⌋
∑

i=0
a4i+3ω4i+3

]

(6.8)

After combining (5.35) and (6.8), and equating imaginary and real parts, the following

equations are obtained:
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[
⌊n/4⌋∑

i=0
a4iω

4i −
⌊n/4⌋∑

i=0
a4i+2ω

4i+2

]

= − PN

[
⌊n/4⌋∑

i=0
b4iω

4i −
⌊n/4⌋∑

i=0
b4i+2ω

4i+2

]

+

+ QN

[
⌊n/4⌋∑

i=0
b4i+1ω

4i+1 −
⌊n/4⌋∑

i=0
b4i+3ω

4i+3

]

(6.9)

[
⌊n/4⌋∑

i=0
a4i+1ω

4i+1 −
⌊n/4⌋∑

i=0
a4i+3ω

4i+3

]

= − QN

[
⌊n/4⌋∑

i=0
b4iω

4i −
⌊n/4⌋∑

i=0
b4i+2ω

4i+2

]

−

− PN

[
⌊n/4⌋∑

i=0
b4i+1ω

4i+1 −
⌊n/4⌋∑

i=0
b4i+3ω

4i+3

]

(6.10)

From this the conclusion is made that one self–oscillation based experiment gives two

equations that can be used for identification. If enough self–oscillation based experi-

ments are performed so that all unknown parameters can be determined, the latter two

equations can be expressed in a matrix form. In order to obtain a unique solution of

the matrix equation, one of the unknown parameters should be fixed. Fixing a0 = 1

comes as a natural choice. The number of the experiments that need to be run in order

to identify all the parameters of process (6.7) with a0 = 1 is

ε =

⌈
n+m+ 1

2

⌉

. (6.11)

Let us define three vectors of measurements

ω =
[

ω1 · · · ωε

]T
(6.12)

P =
[

PN1 · · · PNε

]T
(6.13)

Q =
[

QN1 · · · QNε

]T
(6.14)

where elements PNi and QNi are functions of the experimentally obtained magnitude

of self–oscillations and nonlinear elements parameters, and ωi frequency of the self-

oscillations obtained in the i–th experiment. The vector of unknown parameters is

defined as

Θ =
[

Θa Θb

]T

=
[

a1 · · · an b0 · · · bm

]T
. (6.15)

From the above definitions of vectors, matrix equation (6.16) can be written where Ωa

and Ωb are given with (6.17) and (6.18), respectively, where Iε is the identity matrix

of dimensions ε × ε, I =
[

1 · · · 1
]T

of size ε, 0ε is the zero matrix of dimensions

ε× ε, 0 =
[

0 · · · 0
]T

of size ε.
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[

Ωa Ωb

]

︸ ︷︷ ︸

Ω

Θ =

[

−I
0

]

︸ ︷︷ ︸

Y

(6.16)

ωa =

[

0ε −Iε 0ε Iε
Iε 0ε −Iε 0ε

]








ω.1 0 0 0 ω.5 0 · · ·
0 ω.2 0 0 0 ω.6 · · ·
0 0 ω.3 0 0 0 · · ·
0 0 0 ω.4 0 0 · · ·








︸ ︷︷ ︸

n

(6.17)

Ωb =

[

PT QT

QT −PT

] [

Iε 0ε −Iε 0ε
0ε −Iε 0ε Iε

]

·

·








ω.0 0 0 0 ω.4 0 · · ·
0 ω.1 0 0 0 ω.5 · · ·
0 0 ω.2 0 0 0 · · ·
0 0 0 ω.3 0 0 · · ·








︸ ︷︷ ︸

m+1

(6.18)

The dot symbol (.k) denotes the element–wise exponent. The parameter vector Θ

can be found by using the formula Θ = Ω−1Y only if there is an even number of

unknown parameters. If there is an odd number of parameters, matrix Ω will have one

row more than there are parameters. In this case, the last row can simply be omitted,

or the pseudo–inversion (6.19) can be used to determine the solution,

Θ =
(
ΩTΩ

)−1
ΩTY. (6.19)

Example 6.1. The following example will describe the algorithm development for the

second order process: n = 2; m = 0. According to (6.11), ε = 2. Partial measurement

matrices Ωa and Ωb are obtained as

Ωa =

[

02 −I2 02 I2
I2 02 −I2 02

]








ω.1 0

0 ω.2

0 0

0 0







=








0 −ω2
1

0 −ω2
2

ω1 0

ω2 0
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Ωb =

[

PT I2 −QT I2 −PT I2 QT I2
QT I2 PT I2 −QT I2 −PT I2

]








ω.0

0

0

0







=

=









[

PN1 0

0 PN2

] [

ω0
1

ω0
2

]

[

QN1 0

0 QN2

][

ω0
1

ω0
2

]









=








PN1

PN2

QN1

QN2







.

Full matrices in (6.19) are

Ω =








0 −ω2
1

0 −ω2
2

ω1 0

ω2 0

PN1

PN2

QN1

QN2








Θ =
[

a1 a2 b0

]T

Y =
[

−1 −1 0 0
]T

From here, equation (6.16) gives the process’ parameters.

�

The algorithm described so far was generalized for static processes of any order. The

modifications presented in the following subsections will enable the use of the gen-

eral algorithm for astatic, discrete–time and processes with delay without changing its

appropriate matrix formulation.

6.3 Modification for Type k Systems

Let us suppose that the general nonlinear process (6.1) has k integrators at the input

u(t) + ∆(t)
.
=

t∫

0

· · ·
t∫

0
︸ ︷︷ ︸

k

[u (t) + ∆ (t)] dt =
1

pk
[u (t) + ∆ (t)] . (6.20)

These integrators can be added to the unity feedback equation (6.4) which is now

rewritten as
1

pk
u(t) = − 1

pk
Y0(x0,Xm)−

1

pk
GN (x0,Xm) · x∗(t), (6.21)
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under the assumption that ∆, i.e. Y0(x0,Xm), is constant at all times. According to

(6.3), the closed loop equation is now

f0(ai, x0,Xm, ω) + [fR(ai, x0,Xm, ω) + jfI(ai, x0,Xm, ω)] x
∗ =

= 1
pk

[u (t) + ∆ (t)] .
(6.22)

Equation (6.22) can be separated into an oscillatory component and static component

forming a set of two equations

fR(ai, x0,Xm, ω) + jfI(ai, x0,Xm, ω) = − [PN (x0,Xm) + jQN (x0,Xm)] (jω)
−k

pkf0(ai, x0,Xm, ω) = −Y0(x0,Xm) + ∆
(6.23)

under the assumption that F0, ∆ and f0 are constant, since the derivative pk of a

constant is 0, (6.23) boils down to

fR(ai, x0,Xm, ω) + jfI(ai, x0,Xm, ω) = − [PN (x0,Xm) + jQN (x0,Xm)] (jω)
−k

Y0(x0,Xm) = ∆.
(6.24)

This modification can be observed from another point of view: the astatic part of

the process is in fact joined to the nonlinear part, thus converting the original non-

linear element into an inertial nonlinear element that depends upon the frequency of

oscillations. This leads to the conclusion that in fact the original describing function

vector PN + jQN is rotated by 90◦ and multiplied by ω−1 for each integrator, obtaining

the modified describing function parameters P ∗
N and Q∗

N given with (6.25). Since the

modification for each experimentally obtained describing function parameter has to be

performed, subscript i which stands for the experiment number is introduced:

[

P ∗
Ni

Q∗
Ni

]

=

[

0 ω−1
i

−ω−1
i 0

]k [

PNi
QNi

]

. (6.25)

This approach is practical, because the original IS–O algorithm developed for static

systems can easily be modified for Type k systems. The only parameters that have to

be changed are PNi and QNi, i.e. the describing function vector.

Remark 6.1 (Modification for linear Type k processes). The same results may be easier

to comprehend if a linear process is taken into consideration, as it is demonstrated in

[52]. Let us suppose that a linear process described with transfer function GP (s) has k

integrators,

G∗
L(s) = GL(s)

1

sk
. (6.26)

Applying the Goldfarb method to this type of process gives

1
GL(jωi)

= −(jωi)
−k (PNi + jQNi) =

= − (P ∗
Ni + jQ∗

Ni)
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which leads to the same modification as in (6.25).

6.4 Modification for Systems with Delays

Delays in systems have great influence on quality of control. They are often present and

seldom negligible. Some research has been done on identifying of systems with time

delays, but they were mostly based on inserting an additional time delay in order to shift

the system in phase and therefore obtain different frequency points for identification.

In this thesis, time delay is treated as a known part of the system, and its influence

has to be compensated for. The influence of time delays is rather obvious in systems

forced into self–oscillations. Systems with delays have greater magnitude and smaller

frequency of oscillations. If the system with a delay is to be identified, the delay should

be taken into account.

Let us suppose that the general nonlinear process (6.1) has a time delay Td at the

input

u(t) + ∆(t)
.
= u(t− Td) + ∆(t− Td). (6.27)

This time delay can be added to the unity feedback equation (6.4) which is now rewritten

as

u(t− Td) = −Y0(x0,Xm)−GN (x0,Xm) · x∗(t− Td); (6.28)

under the assumption that ∆, i.e. Y0(x0,Xm), is constant at all times. The closed loop

equation is now

f0(ai, x0,Xm, ω) + [fR(ai, x0,Xm, ω) + jfI(ai, x0,Xm, ω)] x
∗ =

= u(t− Td) + ∆(t− Td).
(6.29)

Equation (6.29) can be separated to an oscillatory component and static component

forming a set of two equations

fR(ai, x0,Xm, ω) + jfI(ai, x0,Xm, ω) = − [PN (x0,Xm) + jQN (x0,Xm)] e
−jωTd

f0(ai, x0,Xm, ω) = −Y0(x0,Xm) + ∆
(6.30)

under the assumption that ∆(t) = ∆(t− Td) and Y0(x0,Xm, t) = Y0(x0,Xm, t− Td).

This modification can be observed as rotation of the original vector of the describing

function PN+jQN by an angle −ωTd. In other words, same equations as for the system

without process delay can be used, only the modified describing function parameters

P ∗
N and Q∗

N have to be calculated using (6.31). Since the modification for each ex-

perimentally obtained describing function parameter has to be performed, subscript i

which stands for the experiment number is introduced:

[

P ∗
Ni

Q∗
Ni

]

=

[

cosωiTd sinωiTd
− sinωiTd cosωiTd

][

PNi
QNi

]

. (6.31)
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The approach of combining the known time delay with the nonlinear element is elegant

and does not require great intervention with the general algorithm. The case when

time delay exists within the system is similar to the case with k integrators – it can be

viewed as rotation of the nonlinear describing function vector, as shown in Fig 6.1.

0

0

Real part

Im
ag

in
ar

y 
p

ar
t

* 0.1( ) sG s e−

ωTd

*( )G s

Figure 6.1. Rotation of the Nyquist plot due to the presence of the delay.

Unlike the case with integrators, this transformation does not change the magnitude

of describing function, but only its angle. In this case, the describing function can

achieve all possible angles, based on the time delay.

Remark 6.2 (Modification for linear processes with delays). The same results may be

easier to comprehend if a linear process is taken into consideration, as it is demonstrated

in [52]. Let us suppose that a linear process described with transfer function GP (s) has

a time delay,

G∗
L(s) = GL(s)e

−sTd . (6.32)

Applying the Goldfarb method to this type of process gives

1
GL(jω)

= −e−jωTd (PN + jQN ) =

= − (P ∗
N + jQ∗

N )

which leads to the same modification as in (6.31).

Example 6.2. Take a system given with G(s) = 50
s(0.3s+1)e

−0.1s. The simulation

was run with relay with hysteresis nonlinearity (xa = 10 and C = 1). The obtained

oscillations have the magnitude Xm = 24.47 and a period T = 2.8. As it is seen from
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Table 6.1, the errors that occurred when the time delay was ignored are enormous.

Once the algorithm was modified using the proposed method, the results were much

more accurate.

Table 6.1. Comparison of results with and without the proposed modification for systems with
delay.

Modification no yes

rotation matrix

[
1 0
0 1

] [
0.964 0.266
−0.266 0.964

]

K (relative error) 76.98 (+156.6%) 55.14 (+10.28%)
T (relative error) 0.6037 (+101.23%) 0.346 (+15.33%)

�

6.5 Modification for Discrete–Time Systems

What type of modification is needed when dealing with the discrete–time systems will

be shown in the following example. When the identification by use of self–oscillations

is used in practice, the process is usually computer controlled. Therefore a slight mod-

ification of the procedure has to be done.

Let us say that the nonlinear element which caused the self–oscillations in the system

is a relay with hysteresis with xa = 3. This means that it should switch when the input

signal has value 3. It could happen that at some time step k the input is 2.15 and at

the following time step k + 1 it is 6.57, as shown in Fig. 6.2.

0 1 2 3 4 5 6 7 8 9 10 11

6,57

3 

0 

2,15

time step

hysteresis 
switching level

Figure 6.2. Illustration of false switching in discrete–time systems.

Since at the moment k the input to the relay has not yet reached the switching value,

it will switch at the moment k + 1. In other words, this is equivalent to hysteresis
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parameter xa having the value 6.57, which is more than double the assumed value,

therefore false results can be expected. It can also happen that the switching occurs

exactly at the desired moment, resulting in accurate identification. Since it cannot be

known a priori weather the chosen hysteresis parameters will give satisfactory results,

the only way is to perform the correction of the hysteresis width, after the experiment

has been performed. The described procedure is also described in [52].

To conclude, the following procedure is proposed when dealing with discrete–time

systems:

• perform the IS–O test with the relay width xa,

• after acquiring the self–oscillations, determine the exact points in which the

switching occurred (i.e. determine the new x∗a),

• use the general algorithm with the corrected x∗a parameter.

The following simulation example will demonstrate the improvement of the identifica-

tion when the proposed procedure is used.

Example 6.3. The example process is G(s) = 50
s(0.3s+1) with sample time Ts = 0.1s.

When the hysteresis width xa is chosen to be 16, the same oscillations (magnitude

Xm = 24.47 and period T = 2.8) are obtained as in the case when the width is 20

(see Table 6.2). In the first case the identification is far from exact values, while in the

second case it is much better. If the proposed algorithm modification is applied, it is

clear that the relay switching occurs at the moments when hysteresis input is 20.28.

When this hysteresis parameter is used in the identification algorithm, the identified

parameters are the closest to real values.

Table 6.2. Comparison of results with and without the proposed modification for a discrete–time
system.

Modification NO YES
xa 16 20 20.28

K (relative error) 67.43 (+34.86%) 53.94 (+7.88%) 53.2 (+6.4%)
T (relative error) 0.526 (+75.33%) 0.325 (+8.33%) 0.311 (+3.67%)

Fig. 6.3(a) shows results of simulations for hysteresis widths xa from 5 to 20 with

sample time 0.1 s. Void circles present percent parameter errors for the cases when

hysteresis width was not modified. Full circles are positioned at the modified hysteresis

widths and show percent parameter errors. It is self–evident that the results are much

better when relay hysteresis is modified. For the hysteresis widths positioned between

full circles, the magnitude and frequency of self–oscillations remain constant. It is ob-

vious that with greater sampling time, one has more chance of choosing such hysteresis

width so that the real switching moment does not coincide with the assumed one.
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Figure 6.3. Simulation example of improved identification with the proposed modification for
discrete–time systems. Sample time is a) 0.1 s and b) 0.01 s.

In the case when the sampling time is much smaller, i.e. Ts = 0.01 s as in Fig. 6.3(b),

it is clearly visible that the cases where hysteresis width was modified also give better

results. However, the results without modification give satisfactory errors (below 10%).

This is expected, because as sampling time gets smaller, the chances of relay to switch

at a significantly different input value are much smaller, hence the error is smaller.

�

6.6 Application to Marine Vehicles

In Chapter 2.5 it was concluded that different degrees of freedom of underwater vehicles

can be represented with a generalized model in a form given with (6.33). In addition to

this, the drag parameter β(ν) is often approximated with a constant or a linear term,

as shown with (6.34).

αν ν̇ (t) + β (ν) · ν (t) = ∆ + τ (t) (6.33)

β (ν) =

{

βν
βνν |ν|

for constant drag

for linear drag
. (6.34)

A simplification which will be introduced is given with:

η̇ = ν. (6.35)

This is a standard equation for yaw degree of freedom where r = ψ̇, and heave degree

of freedom where w = ż. These are in fact simplified kinematic models which assume
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that pitch and roll angles are 0. These simplifications are introduced in order to obtain

identification procedure for determining dynamic model parameters for marine vessels.

This section will show how the proposed identification by use of self–oscillations

method can be applied for identifying yaw, surge and heave degree of freedom of marine

vessels, under the assumption that their dynamics are described using (6.33).

Linear model (constant drag)

If a simplification given with (6.35) is applied, (6.33) can be rewritten as (6.36) under

the assumption that drag is constant, i.e. β(ν) = βν . This case study will also be

referred to as the ”constant damping” or the ”constant drag” case.

αν η̈ + βν η̇ = τ +∆ (6.36)

The linear model can be written as a transfer function describing the output ν with

regard to the input τ given with (6.37).

ψ (s)

τ (s)
=

1
βν

s
(
αν

βν
s+ 1

) =
b0

s (a1s+ 1)
(6.37)

By following the generalized procedure described in Chapter 6.2 and (6.11), only one

self–oscillation experiment has to be conducted in order to obtain two unknown param-

eters. From (6.17) and (6.18) follows that

Ωa =

[

0

ω

]

and

Ωb =

[

PN
QN

]

.

Since the system has one integrator, according to (6.25) the following modification has

to be made upon the describing function vector:

[

P ∗
N

Q∗
N

]

=

[

0 ω−1

−ω−1 0

][

PN
QN

]

=

[
QN

ω

−PN

ω

]

.

By inserting the obtained values in (6.16), the following matrix equation is obtained

[

0

ω

QN

ω

−PN

ω

][

a1
b0

]

=

[

−1

0

]

,
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which yields the following linear equation parameters:

αν =
PN (x0,Xm)

ω2
(6.38)

βν = −QN (x0,Xm)

ω
(6.39)

The biased term δ which is not included in the transfer function can be determined as

the bias term in the describing function, i.e.

∆ = Y0 (x0,Xm) . (6.40)

It should be mentioned that these equations can be derived using the methodology

developed for nonlinear systems, described in Chapter 6.1. However, the proposed

matrix formulation for linear systems is convenient and can easily be applied in this

case.

Nonlinear model (linear drag)

If a simplification given with (6.35) is applied, (6.33) can be rewritten as (6.41) under

the assumption that drag is linear, i.e. β(ν) = βν · |ν|. This case study will also be

referred to as the ”linear damping” or the ”linear drag” case.

αν η̈ + βνν |η̇|η̇ = τ +∆ (6.41)

By following the generalized procedure described in Chapter 6.1, specifically by substi-

tuting (6.2) into (6.36) gives the following equation

ανXm(jω)
2 sin (ωt) + jβννX

2
mω

2 |sin (ωt)| sin (ωt) =
= ∆+ [−Y0 − (PN + jQN )Xm sin (ωt)]

with Y0 = Y0 (x0,Xm), PN = PN (x0,Xm) and QN = QN (x0,Xm). Further develop-

ment of the nonlinear term to the Fourier series gives

|sin (ωt)| sin (ωt) ≈ 3π

8
sin (ωt) ,

and finally, three equations that describe the unknown parameters can be written:

α =
PN (x0,Xm)

ω2
(6.42)

βνν = −3π

8

QN (x0,Xm)

Xmω
(6.43)

∆ = Y0 (x0,Xm) (6.44)
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If the mathematical model of a specific degree of freedom has a time delay, then

modification given with (6.31) should be applied. In most cases, the nonlinear ele-

ment which will be used for identification purposes will be relay with hysteresis, whose

describing function parameters PN (x0,Xm), QN (x0,Xm) and Y0(x0) are derived in

Chapter 5.1. Here only final formulae are given with (6.45), (6.46) and (6.47).

PN (x0,Xm) =
2C

πXm





√

1−
(
xa − x0
Xm

)2

+

√

1−
(
xa + x0
Xm

)2


 (6.45)

QN (x0,Xm) = −4Cxa
πX2

m

(6.46)

Y0 = C
TH − TL
TH + TL

(6.47)

To sum up, the terms for identifying unknown parameters of the two case studies

when the nonlinear element is in the closed loop, can be found in Table 6.3.

Table 6.3. Formulae for determining unknown parameters using IS–O method with relay with
hysteresis

Linear model Nonlinear model
(constant drag) (linear drag)

αν = PN (x0,Xm)
ω2 = 2C

π
1

ω2Xm

[√

1−
(
xa−x0
Xm

)2
+

√

1−
(
xa+x0
Xm

)2
]

βν = −QN (Xm)
ω

= 4Cxa
π

1
ωX2

m
βνν = −3π

8
QN (Xm)
Xmω2 = 3Cxa

2
1

ω2X3
m

∆ = C TH−TL
TH+TL

The following sections will give detailed description on how to apply the proposed

procedure on yaw, surge and heave degree of freedom of marine vehicles. In addition

to this, the proposed method will be applied for identification of unknown parameters

of the heading closed loop system. Finally, the software implementation is presented.

Some of these application have been published in [53] and [54].

6.6.1 Identifying Yaw DOF

The identification of yaw degree of freedom using the IS–O method requires only the

use of an onboard compass. This means that yaw rate measurements are not necessary,

which significantly simplifies the procedure. The schematic approach to conducting the

IS–O experiment for yaw degree of freedom is shown in Fig. 6.4. Once the experimental

data has been obtained, formulae in Table 6.3 can be applied (by substituting ν =



Chapter 6. Identification by Use of Self–Oscillations (IS–O) 88

ψψREF N

Figure 6.4. Application of IS–O method to yaw degree of freedom.

r) to determine the unknown model parameters. Experimental results of the IS–O

method applied on VideoRay ROV, AutoMarine AUV and Charlie ASC are presented

in Chapters 7.3, 7.4 and 7.5, respectively.

6.6.2 Identifying Surge DOF

The procedure for determining the surge model depends on the sensors that are available

onboard. If a Doppler velocity logger (DVL) is available, direct measurements of surge

speed is available. DVL also gives speeds in all other directions. This means that the

model to be identified would be of the first order without an integrator. However, the

same procedure as in yaw case can be applied if the integral of measured surge speed

u⋄ =
∫
udt is introduced to the relay input, as it is shown in Fig. 6.5. Then the surge

model can be described with (6.48) where β (u̇⋄) can be either βu or βuu |u̇⋄|, just like
in the yaw case. Introducing an extra integrator ensures symmetric self–oscillations

around any uREF (where usually uREF = 0).

αuü
⋄ + β (u̇⋄) · u̇⋄ = X (t− 2Td) + τXE (6.48)

uuREF X∫
Figure 6.5. Application of IS–O method to surge degree of freedom – Approach 1.

Another approach is to use a measurement of a distance d with regard to a flat

surface. The distance keeping model is described in detail in Chapter 2.6. In that

model, d is distance to a flat surface, ϕ is the angle of the vessel with regard to the

surface, and ḋ = −u cos(ϕ). If it is ensured that ϕ ≈ 0, the approximation ḋ ≈ −u can

be made. Having this in mind, value dREF (t)− d(t) can be used as input to the relay

during the experiment and there is no need for introducing an extra integrator – only

small angle with respect to surface has to be maintained. This angle is maintained by

using an angle controller with ϕref = 0 as it is shown in Fig. 6.6.
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ddREF X
CONTROLLER

0 φN

Figure 6.6. Application of IS–O method to surge degree of freedom – Approach 2.

For both approaches the output of the nonlinear element is desired surge force X.

Once the experimental data has been obtained, formulae in Table 6.3 can be applied

(by substituting ν = u) to determine the unknown model parameters.

Experimental results of the IS–O method using the second approach applied on

VideoRay ROV with a vision–based distance sensor are presented in Chapter 7.6.

6.6.3 Identifying Heave DOF

Determining heave degree of freedom makes sense for underwater vehicles only. In order

to conduct the procedure, depth sensor has to be available onboard. The schematic

approach to conducting the IS–O experiment for yaw degree of freedom is shown in

Fig. 6.4.

zzREF Z

Figure 6.7. Application of IS–O method to heave degree of freedom.

In should be stressed here that heave degree of freedom has dominant influence

of the difference between the buoyancy and weight of the vehicle. Because of this,

the self–oscillation data will be asymmetric as it is shown in Fig. 6.8 where the data

have been obtained from a simulation model. Once the experimental data has been

obtained, formulae in Table 6.3 can be applied (by substituting ν = w) to determine the

unknown model parameters, where ∆ will dominantly represent the difference between

the buoyancy and weight of the underwater vehicle.

6.6.4 Identifying Heading Closed Loop

The heading closed loop might have to be identified for the purpose of designing a higher

level of control (see Chapter 8.3 for details). The schematic approach to conducting
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Figure 6.8. IS–O experiment responses for determining heave model (simulation example).

the IS–O experiment for heading closed loop identification is shown in Fig. 6.9. The

reference heading ψ∗
REF is the value around which the oscillations will take place. The

value ψREF is the relay output, i.e. the commanded heading for the heading closed

loop.

ψψ*REF HEADING
CLOSED LOOP

ψREF

Figure 6.9. Application of IS–O method to heading closed loop.

Here an assumption is made that the heading closed loop transfer function can be

expressed with (6.49). Later on in Chapter 8.3 this assumption will be elaborated in

more detail.
ψ

ψref
=

b1ψs+ 1

a3ψs3 + a2ψs2 + a1ψs+ 1
(6.49)

According to the general matrix algorithm for identification by use of self–oscillations

presented in Chapter 6.2, the derivation of equations is as follows. According to (6.11),

the number of experiments that have to be conducted is ε = 3, since systems order is

n = 3 and number of finite zeros is m = 1. Using (6.16), the matrix equation is given
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with (6.50).












0 −ω2
1 0 PN1 −ω1QN1

0 −ω2
2 0 PN2 −ω2QN2

0 −ω2
3 0 PN3 −ω3QN3

ω1 0 ω3
1 QN1 ω1PN1

ω2 0 ω3
2 QN2 ω2PN2

ω3 0 ω3
3 QN3 ω3PN3





















a1ψ
a2ψ
a3ψ
b0ψ
b1ψ










=












−1

−1

−1

0

0

0












. (6.50)

With an assumption that heading closed loop gain is 1, i.e. b0 = 1, equation (6.50) can

be rewritten as












0 −ω2
1 0 −ω1QN1

0 −ω2
2 0 −ω2QN2

0 −ω2
3 0 −ω3QN3

ω1 0 ω3
1 ω1PN1

ω2 0 ω3
2 ω2PN2

ω3 0 ω3
3 ω3PN3



















a1ψ
a2ψ
a3ψ
b1ψ







=












−1− PN1

−1− PN2

−1− PN3

−QN1

−QN2

−QN3












. (6.51)

Two equations can be omitted – the ones obtained from the third experiment are a

reasonable choice, leaving equation (6.52) which is applied for identification purposes.

The unknown parameters are easily obtained by solving the matrix equation.








0 −ω2
1 0 −ω1QN1

0 −ω2
2 0 −ω2QN2

ω1 0 ω3
1 ω1PN1

ω2 0 ω3
2 ω2PN2















a1ψ
a2ψ
a3ψ
b1ψ







=








−1− PN1

−1− PN2

−QN1

−QN2








(6.52)

In this case, it is assumed that the external disturbance is attenuated by the inner

closed loop therefore ∆ parameter is not calculated separately.

Experimental results of the IS–O method applied for identification of the heading

closed loop of Charlie ASV are presented in Chapter 7.7. Two experiments with different

autopilot structures are given.

6.7 Software Implementation

One of the biggest advantages of the proposed identification by use of self–oscillations

is that it is easy to implement and automate apart from the fact that it is time parsi-

monious.

The schematic representation of the subsystem for automated performing of IS–O

experiments and the controller is shown in Fig. 6.10. The subsystem drawn with blue

lines is called The Monitoring and Identification System. It is in charge of making

decisions on when the self–oscillation experiment has finished. Its inputs are relay
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ARINE
VESSEL

CONTROL
ALGORITHM

ητ

MONITORING

ηREF

Figure 6.10. Schematic representation of a closed loop system with a monitoring and identi-
fication subsystem and a controller.

output (commanded force or moment) and relay input (heading, depth, etc.), and

outputs are identified system parameters and switching signal.

The complete algorithm is shown in Fig. 6.11. The identification process is usually

initiated by user. The rest of the procedure is performed automatically. The initiation

phase is in fact inserting the nonlinear element (relay with hysteresis) in the closed

loop, which initiates data collection.

Relay input and output are acquired at every time step. Based on the relay output

data, every time tswitch(i) the relay output changes, the duration of the previous ”half–

period” determined with tswitch(i) − tswitch(i − 1) is recorded, and the extremal value

during that time is logged. If the extremal value is minimum, the period tswitch(i) −
tswitch(i − 1) is the time the relay was in low position (TL), and if it is maximum the

period is the time the relay was in high position (TH). It should be noted that mentioned

”half–period” need not be exactly one half of the period of oscillations, which is the case

when external disturbance is present.

When xa, x0 and Xm from each oscillation are obtained, the condition xa + |x0| <
Xm is checked. If it is fullfilled, that means that the self–oscillations are proper, i.e. the

describing function of the relay with hysteresis can be calculated. If at least one oscil-

lation does not satisfy this condition, the shift registers are cleared and the procedure

begins from the start. This increases the robustness of the algorithm.

This procedure is performed until a predefined number of measurements has a stan-

dard deviation less than a predefined value. The variables in Fig. 6.11 that are in bold

blue are FILO4 shift registers of the size the same as the number of oscillations that are

to be taken into account. The green variables are scalar variables. In this thesis, the

standard deviation of five consecutive maximal and five consecutive minimal values of

4They are filled and emptied on the first in last out principle.
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acquire 
RelayIn
RelayOut

Switch 
occurred?

Yes

Clear shift registers 
Xmin, Xmin, TH, TL, xa_min, xa_max

Calculate parameters 
and finish

Yes

RelayOut < 0

time duration since previous switch → TH
TH updated := YES

extreme since previous switch → Xmax
RelayIn→ xa_max

time duration since previous switch → TL
TL updated := YES

extreme since previous switch → Xmin
RelayIn→ xa_min

TH and TL updated?

Xm := (Xmax(last) - Xmin(last)) / 2
x0 := (Xmax(last) + Xmin(last)) / 2
xa* = (xa_max - xa_min) / 2

TH updated := NO
TL updated := NO

(xa* + |x0|) > XmBuffers full?Stand. dev. in 
buffers < 10% ?

Yes

Yes

No

Yes

No

No

YesNo

No

Xm := (mean(Xmax) - mean(Xmin)) / 2
x0 := (mean(Xmax) + mean(Xmin)) / 2

xa* = (mean(xa_max) - mean(xa_min)) / 2
T_H := mean(TH); T_L := mean(TL);

omega = 2π / (T_H + T_L)

Figure 6.11. Algorithm for implementation of the IS–O method.

self–oscillations (five consecutive periods) was required to be within 10%. This means

that the obtained data is reliable and can be used for identification procedure. This

leads the algorithm to the phase in which the system parameters are calculated and the

controller with the new parameters is inserted in the closed loop.

The procedure described here is the implementation for identification of controllable

degrees of freedom for marine vessels. Similar procedure can be applied for identification
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of the heading closed loop. It is expected in this case that x0 = 0 for the reasons

explained before.

6.8 Conclusion

The chapter begins with an overview of identification methods based on self–oscillations

which can be found in literature. It is shown that autotuning is widely used in process

industry for tuning controllers for linear (or at least linearized processes).

This is why a generalized procedure has been developed for identification by use of

self–oscillations. This procedure was that limited to linear static processes of arbitrary

order, resulting in a matrix algorithm for calculating the unknown parameters. Further

on, the method was augmented to Type k systems. The only modification that has to be

done for this case is change the describing function of the nonlinear element, i.e. simply

multiply the describing function vector with a matrix. Similarly, a modification is

needed if the process has time delay. In order to determine parameters of a process with

time delay, the delay has to be known. This way it’s influence can be computationally

compensated for. Since most of processes are computer controlled, an effect which

occurs in that case is described and a methodology for minimizing it is presented. A

couple of descriptive examples are given to clearly depict the proposed methodology.

Since the goal of this thesis is to develop a methodology for determining parame-

ters of marine vessels, the described method for nonlinear systems is than focused on

determining parameters of nonlinear differential equations that describe marine vessel

motion. In addition to that, the general matrix IS–O equation is used to determine

parameters of a heading closed loop transfer function. This will be used later on the

thesis for tuning higher level controllers.

Finally, the chapter finishes with some software implementation issues. The com-

pletely automated system for IS–O performing consists of The Monitoring and Identifi-

cation Subsystem which is in charge for automated completion of the IS–O experiment.

A block diagram with detail description of this subsystem is given and described thor-

oughly.



Chapter 7

Experimental Results for Different

Identification Methods

Previous chapters are mostly engaged in description of the mathematical models and

identification procedures. This chapter will present experimental results obtained with

two underwater vehicles (VideoRay ROV and AutoMarine AUV) and one autonomous

surface vehicle (catamaran) Charlie. The IS–O method that was introduced in this

thesis will be compared to conventional methods, and comparative analysis and detailed

results will be presented.

The chapter begins with a description of the methodology on how to decide on the

appropriate model when using IS–O method. Then validation methods are presented.

The following part, gives results for yaw identification of the three marine vessels and

for identification of surge degree of freedom of VideoRay ROV. The latter is performed

with the help of the vision based laser module described in Chapter 3.4. Finally,

experimental results for identification of the closed loop system of Charlie USV are

given. In order to prove the applicability of the method, two different low–level control

structures were used during the experiments.

7.1 Deciding on the Appropriate Model

As is the case with identification methods, once the data have been collected, the first

step is to determine which model fits the data best. With conventional identification

methods such as the least–squares algorithm (L–S), the usual procedure is to perform

a correlation function between the input and the output data to determine which pa-

rameters in the regression model are the most dominant, i.e. most contributing to the

vehicle behavior, [51].

Another approach for the least–squares method is to fit the data to all the models

that are considered. Once this is done, standard deviation can be calculated over sets

of estimated parameters. The set of model parameters with the smallest standard

deviation will than which is the model that best fits the collected data. This approach

95
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has been applied in the thesis.

However, while performing IS–O experiments, a set of data is obtained and unknown

parameters of different models can be calculated. It is obvious that the conclusion on

which model is more appropriate cannot be made from only one IS–O experiment.

That is why an additional experiment, with different relay parameters should be con-

ducted, giving us two sets of estimated model parameters. The methodology on how

to determine which model structure is more appropriate is described in the continuing

part.

Let us say that from the first experiment αx1, βx1, βxx1 are calculated, and from

the second αx2, βx2, βxx2. Having this in mind, standard deviations between αx1 and

αx2, βx1 and βx2, and βxx1 and βxx2 can be calculated as

σαx% =
∣
∣
∣
αx1−αx2
αx1+αx2

∣
∣
∣ · 100%

σβx% =
∣
∣
∣
βx1−βx2
βx1+βx2

∣
∣
∣ · 100%

σβxx% =
∣
∣
∣
βxx1−βxx2
βxx1+βxx2

∣
∣
∣ · 100%.

(7.1)

Theoretically, σαx% will be 0 because it is calculated through the same formula for

both assumed models (see Table 6.3). In real experiments it will have some value,

which can be interpreted as measurement uncertainty. The criterion which is proposed

for determining which model best describes the vehicle is given with (7.2). In (7.2), λ

is a parameter which determines the robustness of the decision making which model is

more appropriate.

σβx% − σβxx%







> λ

< −λ
∈ [−λ, λ]

⇒ linear drag (βxx)

⇒ constant drag (βx)

⇒ no decision

. (7.2)

Depending on robustness parameter λ, four different criteria are tested:

1. λ = 0 is the least robust criterion ensuring that any pair of measurements will

result in a decision on the model, even though the difference between standard

deviations is small. This criterion may lead to wrong decisions.

2. λ = σαx% is a criterion which includes the measurement uncertainty described by

the standard deviation of αx. Robustness in this case is increased and there is a

margin in which decision might not be made.

3. λ = σαx%+5% is a criterion with increased robustness. The margin of not making

a decision is also increased.

4. λ = σαx% + 10% is a criterion with increased robustness where it is demanded

that the difference between standard deviations be significantly different. In this

case the decision that is made can be considered correct, but the path to making

a decision may require more measurements being taken.
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Example 7.1. The normalized yaw simulation model parameters of the FALCON

vehicle are shown in Table 7.1. The results of the two self–oscillation experiments that

were performed for yaw degree of freedom are shown in Table 7.2. The calculated

Table 7.1. FALCON ROV yaw simulation model parameters

αr βr βrr

80 300 10

Table 7.2. Self–oscillation data for FALCON ROV yaw simulation model identification

Xm[
◦] ω[s−1] α̃r β̃r β̃rr

xa = 10◦

C = 300
14 3.722 78.97 298.48 385.66

xa = 20◦

C = 300
24.4 2.547 79.29 288.3 312.97

σ% 0.29% 2.45% 14.71%

standard deviation of β̃r is less than the one of β̃rr under all suggested criteria which

leads to the conclusion that linear model describes the behavior of the system better.

However, it should be noticed that the true simulated vehicle dynamics also include the

βrr term.

�

Example 7.2. The real heave model parameters of the FALCON vehicle are shown in

Table 7.3. The results of the two self–oscillation experiments that were performed for

heave are shown in Table 7.4. The calculated standard deviation of β̃w is less than the

Table 7.3. FALCON ROV heave simulation model parameters

αw βw βww τZE

130 200 20 10

one of β̃ww under all suggested criteria which leads to the conclusion that linear model

describes the behavior of the system better. However, it should again be noticed that

the true simulated vehicle dynamics also include a βww term.

�
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Table 7.4. Self–oscillation data for FALCON ROV heave simulation model identification

Xm[
◦] ω[s−1] α̃w β̃w β̃ww

xa = 0.5m
C = 200

0.664 1.405 127.79 205.75 259.94

xa = 0.5m
C = 100

0.594 0.935 132.28 192.86 408.81

σ% 1.73% 3.23% 22.26%

Example 7.3. The real heave model parameters of an underwater vehicle with dom-

inant nonlinear behavior in yaw degree of freedom that were used in this simulation

example are shown in Table 7.5. The results of the two self–oscillation experiments

that were performed for yaw are shown in Table 7.6.

Table 7.5. Dominantly nonlinear yaw simulation model parameters

αr βr βrr

1.018 0 1.257

Table 7.6. Self–oscillation data for the dominantly nonlinear yaw model identification

Xm[
◦] ω[s−1] α̃r β̃r β̃rr

xa = 20◦

C = 1
35.12 1.32 0.98 0.896 1.305

xa = 20◦

C = 0.8
35.32 1.18 0.984 0.795 1.292

σ% 0.2% 5.97% 0.5%

�

7.2 Model Validation Techniques

Once a model has been chosen, and parameters have been identified, the usual approach

is to validate the obtained model. This is performed on validation sets of data which

should be different from the data set that was used for identification. One of common

validation techniques is the sum of absolute errors. It is based on running the validation

input data through the identified model. The output yvalid which is obtained through

validation is than compared to the experimentally obtained output y, i.e. the differences
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at the same time instances are calculated and their absolute values are summed up as

shown with (7.3), where e(k) = yvalid(k)− y(k).

J =
1

N

N∑

k=1

|e(k)| (7.3)

If a novel method (I–SO) is to be compared to a conventional identification method

(e.g. least–squares), the results obtained from a conventional method should be consid-

ered exact, perfectly correct. In this case the parameters obtained by using the novel

method are compared to those obtained by a conventional one.

Often, when the parameters are compared to parameters obtained from a con-

ventional method, the difference in parameters can seem significantly large, but the

responses do not seem to differ. This is usually the case with systems that have large

quantization levels or sampling time of the same order of magnitude as dominant system

dynamics.

Comparison of steady states

It is often much more convenient to compare the two obtained models by giving a

comparison of steady–state values that both give. This way it is much easier to make

conclusions on the similarity of the two models. In addition to this, systems with

significant quantization levels may give different identification results when using two

methods, but because of the quantization of the measured signal, better results cannot

be obtained. An example of systems with large quantization levels is VideoRay ROV

which has an onboard compass with quantization of 2◦. This may not seem large, but

when least–squares identification is performed, the output heading is differentiated in

order to identify first order input yaw moment to yaw rate differential equation. When

the output heading is differentiated, the resulting yaw rate will have a quantization

level of 20◦/s (under the assumption the sample time is 0.1s). This is why the following

comparison validation tests are suggested, where bullet (•) superscript stands next

to the variables regarding conventional method, and circle (◦) marks the variables

regarding a novel method.

For the linear astatic case, the step response is given with (4.30). From here it

follows that the steady state value is given with (7.4) where, in the specific case of yaw

identification, τ is applied yaw moment (N), νSS = rSS and βν is constant drag.

νSS = ν (∞) =
|τ |
βν

(7.4)

The next step is to calculate the difference in steady states (∆νSS) by using (7.5).

∆νSS = |ν•SS − ν◦SS| =
∣
∣
∣
∣
τ

(
1

β•ν
− 1

β◦ν

)∣
∣
∣
∣

(7.5)
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If this difference is within one quantization interval, the identified drag β◦x can be

considered the same, i.e. due to the quantization error, the difference between the

two estimated parameters is insignificant given the sensors which were used to perform

the identification. The difference in steady states is a function of τ so the worst case

scenario is calculated by substituting τ = τmax, where τmax is the maximal applied

input during the identification experiments.

A similar approach can be used for the nonlinear astatic case, for which the response

is given with (4.35). The steady state value is now given with (7.6) where again in the

specific case of yaw identification, τ is applied yaw moment (N), νSS = rSS and βνν is

linear drag.

νSS = ν (∞) =

√

|τ |
βνν

(7.6)

The difference in steady states (∆νSS) is given with (7.7). After applying τ = τmax
the same procedure can be followed as in the linear case.

∆νSS = |ν•SS − ν◦SS| =
∣
∣
∣
∣
∣

√
τ

(

1
√
β•νν

− 1
√
β◦νν

)∣
∣
∣
∣
∣

(7.7)

Comparison of equivalent time constants

Similar logic can be applied to validate the correctness of the identified inertia parameter

for the linear and nonlinear models. Inertia identified using a novel method (IS–O) can

differ substantially from the one obtained using a conventional identification method,

and still step responses of the two models need not be that different. That is why

the proposed validation technique is based on finding equivalent time constants of the

system, and making a comparison between the two. For the linear astatic case, the step

response is given with (4.30). From here it follows that the time constant TL (which

is defined as the time it takes for the step response to reach 63% of the steady state

value) is given with (7.8) where, in the specific case of yaw identification, αν = αr and

βν = βr. It is worth noting that TL does not depend on the input τ , i.e. the system

will respond equally fast for any input signal.

TL =
αν
βν

(7.8)

The next step is to calculate the difference in equivalent time constants ∆TL by

using the parameters obtained from a conventional and novel identification method,

as it is shown with (7.9). It is worth noting that these time constants depend on the

previously determined drag.

∆TL =

∣
∣
∣
∣

α•
ν

β•ν
− α◦

ν

β◦ν

∣
∣
∣
∣

(7.9)

Using ∆TL it can be determined how many time samples is the difference between the

rise time of the two models. Based on this, the conclusion can be made on the quality of
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the identified inertia α◦
ν : the smaller the difference, the better the identification results.

Again a similar approach is used for nonlinear astatic case, for which the response is

given with (4.35). The equivalent time constant TN which has been defined in Chapter

4.3 as the time it takes the output to reach 73% of the steady state value is given with

(7.10). It is worth noticing that this time constant is a function of input τ : the smaller

the input, the longer it will take for the output to reach 73% of steady state, and vice

versa.

TN =
αν

√

βνν |τ |
(7.10)

The next step is to calculate the difference in equivalent time constants ∆TN by

using the parameters obtained from a conventional and novel identification method, as

it is shown with (7.11). It is worth noting that these time constants depend on the

previously determined drag.

∆TN =

∣
∣
∣
∣
∣

1

τ

(

α•
ν

√

β•νν
− α◦

ν
√

β◦νν

)∣
∣
∣
∣
∣

(7.11)

Since ∆TN is a function of the input τ a similar approach is used as in the case with

quantization levels. The worst case scenario implies substitution τ = τmin. Theoreti-

cally, this means that τmin should be chosen to be 0. Since that choice does not make

much sense, τmin can be chosen as the smallest input applied during the identification

experiments. From here, just as in the linear case, ∆TN can be used to determine how

many time samples is the difference between the rise times of the two models, given

some step input value τ . Based on this, the conclusion can be made on the quality

of the identified inertia α◦
νν : the smaller the difference, the better the identification

results.

7.3 Identifying Yaw DOF – VideoRay ROV

The experimental data for the identification of the yaw degree of freedom have been

obtained from experiments performed in the Laboratory for Underwater Systems and

Technologies, Faculty of Electrical Engineering and Computing, University of Zagreb

with the VideoRay ROV. The vehicle’s technical characteristics, system architecture

and mathematical models are described in Chapter 3.1. The Laboratory is equipped

with a circular pool 1.5 m deep, which makes it impossible to conduct heave degree of

freedom tests on the real vehicle. However, extensive experiments have been carried

out on identifying the yaw degree of freedom.

The data have been collected by inducing the system into self–oscillations. An

example of responses during one experiment is shown in Fig. 7.1. First plot gives the

input to the relay, ψref − ψ, while the second plot gives commanded yaw moment to

the vehicle N , which is in fact output of the relay with C = |N |. Red circles represent

maxima of the oscillations, green dots minima and yellow stars represent the moments



Chapter 7. Experimental Results for Different Identification Methods 102

in which relay switching occurred.

For the experiment to be successful, self–oscillations have to be obtained. A con-

dition which has to be fulfilled for this is given with (7.12). This comes as a direct

consequence of the domain of real part of the describing function of the asymmetric

relay with hysteresis. An example of the relay parameters set inappropriately is given

in Fig. 7.2, where hysteresis width was chosen to be xa = 0.

x∗a + |x0|
Xm

< 1 (7.12)
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Figure 7.1. Example of responses during an IS–O experiment performed with VideoRay ROV
for yaw degree of freedom.

All together, 15 data sets were obtained by changing relay hysteresis output N

and width xa. These experiments are considered to be informative enough to make a

decision on the mathematical model parameters.

The obtained data is first used to fit a model by using the least–squares algorithm

(L–S). Later on, the same data sets will be used to determine the model by using IS–O

method.

7.3.1 Least–Squares Results

The least–squares method was applied on the data obtained from the self–oscillation

experiments. For each data set a least–squares identification was performed. The

assumed dynamic model of the yaw degree of freedom is given with (3.4) where drag

βr can be expressed as constant or linear as in (2.34). From here follow the linear
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Figure 7.2. Example of responses during the IS–O method when conditions for inducing self–
oscillations are not fulfilled (xa = 0).

and nonlinear regression model used for performing least–squares identification. Least–

squares identification is described in detail in Chapter 4.2, so it will be omitted here.

In addition to that, linear and nonlinear regression models are given with (4.20) and

(4.22), respectively (ν = r in this case).

The identified parameters of the linear and nonlinear model are shown separately

in Tables 7.7 and 7.8. The conventional identification by use of the least–squares gives

poor results at small input signals because of the big quantization level. It was shown

that in these cases drag can be identified with sufficient accuracy, but inertia is difficult

to determine due to rather large quantization levels. This is why measurements marked

with a dagger (†) are not taken into account when calculating the mean value of the

measurements.

From Tables 7.7 and 7.8 it is obvious that standard deviation of identified inertia

αr is higher than 30% for both linear and nonlinear case. This comes as a direct

consequence of the compass quality. In addition to that, this data is not confident

enough to make a conclusion on which model fits the data better. However, in the

nonlinear case the standard deviation of the identified drag βrr is much smaller (around

10%) than in the linear case where drag βr was identified with standard deviation of

about 32%. This leads to the conclusion that the nonlinear model better describes

VideoRay ROV in the yaw degree of freedom, based on the discussion presented in

Section 7.1.
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Table 7.7. Experimental results for the Videoray ROV yaw DOF by applying least–squares
identification – the linear model.

N αr αr βr βr
[
Nm · 10−2

] [
Nms2

deg · 10−4
] [

Nms2

deg · 10−4
] [

Nms
deg · 10−4

] [
Nms
deg · 10−4

]

2.21 3.36 3.36 † 8.66 8.66

3.96

3.44

3.01

12.93

11.90
3.17 11.99
3.34 11.76
2.07 10.92

8.34

5.06

5.30

18.29

17.44
5.87 18.40
4.52 16.77
5.36 16.91
5.69 16.82

12.71 7.27 7.27 18.98 18.98

17.09

7.26

7.30

20.33

20.11
6.72 20.11
7.41 19.99
7.81 20.01

x 5.72 15.42
σx
x
· 100% 35.60 31.91

7.3.2 IS–O Results

From each of the 15 experiments, unknown parameters were identified using the identi-

fication by use of self–oscillations method. The results obtained from the experiments

are shown in Table 7.9.

The results by using IS–O are consistent even at smaller applied moments, i.e. when

oscillations have smaller amplitudes. This is one great advantage in comparison to the

L–S method: there is no need to differentiate heading signal in order to obtain a second

order model but only heading measurements are needed. This way the sensor’s bad

properties are not exacerbated by differentiation.

Mean values for overall measurements shown in Table 7.9 are insignificant because

IS–O method should give satisfactory parameters for each experiment. The table only

has standard deviation as a parameter so that the consistency in determining inertia

and drag can be noticed.

Inertia term αr is calculated using the same formula for both linear and nonlin-

ear model. Linear model has much greater standard deviation in the drag parameter

βr (around 28%) than the nonlinear model with 11.22% standard deviation in drag

parameter βrr. This again shows that the nonlinear model better describes the yaw de-
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Table 7.8. Experimental results for the Videoray ROV yaw DOF by applying least–squares
identification – the nonlinear model.

N αr αr βrr βrr
[
Nm · 10−2

] [
Nms2

deg · 10−4
] [

Nms2

deg · 10−4
] [

Nms2

deg2
· 10−6

] [
Nms2

deg2
· 10−6

]

2.21 3.17 3.17 † 23.53 23.53

3.96

3.25

2.99

31.12

26.38
3.21 26.01
3.19 27.20
2.30 21.18

8.34

4.95

4.87

28.61

28.97
5.57 33.43
4.18 25.62
4.78 28.59
4.87 28.58

12.71 6.53 6.53 26.31 26.31

17.09

6.56

6.63

22.72

22.15
6.15 22.22
6.66 21.62
7.17 22.04

x 5.26 25.95
σx
x
· 100% 32.60 10.29

gree of freedom of VideoRay, but more importantly shows the consistency of parameter

identification during a single experiment.

Deciding on the model

Based on the experiments which were performed, the conclusion is made that the model

with linear drag (nonlinear model) describes system dynamics better than the one with

constant drag (linear model). However, the point is not to have to perform numerous

IS–O experiments to determine the suitable model, but only two as it is suggested in

Section 7.1.

Among the 15 experiments, pairs were taken in such a way that each member of

the pair must have different relay outputs N . This is not an uncommon demand, since

the two experiments that are performed to decide on the model should be as different

as possible. This condition leads to 83 different combinations of pairs. All four criteria

listed in Section 7.1 have been tested and the results are shown in Fig. 7.3, where

dark green represents the number of pairs when the conclusion was correctly made,

light green the number of pairs when the conclusion was falsely made and in yellow the

number of pairs where the conclusion could not be made.
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Table 7.9. Experimental results for the Videoray ROV yaw DOF by applying identification by
use of self–oscillations (I–SO).

N x∗a Xm ω x0 αr βr βrr
[
Nm · 10−2

]
[deg] [deg]

[
rad
s

]
[deg]

[
Nms2·10−4

deg

] [
Nms·10−4

deg

] [
Nms2·10−6

deg2

]

2.21 10.29 20.60 1.47 2.00 4.26 6.75 26.17

3.96

11.00 26.17 1.64 1.17 5.16 8.10 22.20
16.84 29.78 1.52 2.22 4.52 8.77 22.89
21.20 35.25 1.35 1.25 4.75 8.38 20.69
41.07 53.00 0.95 3.86 4.87 8.79 20.52

8.34

6.58 26.36 2.34 3.80 5.46 11.27 21.53
12.21 30.69 1.95 1.62 6.29 12.69 24.92
17.73 36.57 1.86 2.86 5.35 12.01 20.84
22.37 41.08 1.71 2.62 5.38 12.01 20.21
31.29 47.17 1.47 1.50 5.43 13.02 22.10

12.71 22.42 44.09 1.91 1.55 6.09 15.20 21.21

17.09

12.00 38.67 2.60 2.33 5.57 16.03 18.78
17.83 44.40 2.38 4.40 5.38 15.92 17.72
22.50 47.33 2.21 2.67 5.59 16.77 18.93
34.00 60.33 1.79 2.67 6.46 16.45 17.94

x
σx
x
· 100% 11.46 28.08 11.22

It is obvious from Fig. 7.3 that criterion 1 always caused the decision to be made,

and in almost 90% of chosen pairs the conclusion was made correctly. In about 9 times

less cases, the conclusion was false. When using criterion 2, the margin of no decision is

introduced and for a number of experiments the decision could not be made (less than

20%). If a pair for which the conclusion cannot be made is chosen, additional experi-

ments should be performed to make conclusion about the possible model. However, in

this case, the number of correct decisions is 16 time bigger then wrong decisions. By

increasing the margin of decision (criteria 3 and 4) the number of cases without decision

increases, but the number of pairs with falsely made decision vanishes.

7.3.3 Model Validation and Comparison of IS–O and L–S Identifica-

tion Methods

In this section, the parameters obtained by use of the least–squares method will be

taken as correct ones, even though the standard deviations of the estimated parameters

are significant. However, they will be used as a means of comparison to the model

obtained by using the IS–O method, as it was described in Section 7.2. Fig. 7.4 shows

the absolute value of the percentage error of each IS–O obtained inertia parameter αr
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Figure 7.3. Number of cases when the conclusion was correct, false or undefined for VideoRay
ROV.

with respect to the parameter obtained from the least–squares method with a nonlinear

model. The error is always smaller than 25%. The same type of errors only for the

obtained drag βrr are shown in Fig. 7.5. From here it is seen that the errors can get

significantly high, up to 30% or more for greater relay outputs, when comparing to the

L–S identified parameters.
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C = 12.7 ⋅ 10−2 Nm

C = 17.1 ⋅ 10−2 Nm

Figure 7.4. Relative errors of IS–O obtained inertia αr with respect to the inertia obtained by
LS method.
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Figure 7.5. Relative errors of IS–O obtained drag βrr with respect to the drag obtained by LS
method.

Comparison of steady states

However, these results may be misleading. Using the methodology described in Section

7.2, the differences in achieved steady states of each IS–O model is compared to the

L–S obtained model and ∆rSS is calculated by using (7.7). Since ∆rSS is a function of

τ , the worst case scenario is when τ = C is the biggest. For this reason, the maximal

C that was used in all experiments is taken into calculation (C = 17.1Nm · 10−2).

The results are shown in Fig. 7.6. From this point of view, ∆rSS is always smaller

than 20◦/s.

Comparison of equivalent time constants

The error which is included in the identified αr should be observed from the point of

view of equivalent time constant TN as it was elaborated in Section 7.2. TN is calculated

for each of the identified IS–O models and compared to the L–S obtained model. ∆TN
is calculated using (7.11). Since ∆TN is a function of τ , the worst case scenario is when

τ = C is the smallest. For this reason, the minimal C that was used in all experiments

is taken into calculation (C = 2.21Nm · 10−2).

The results are shown in Fig. 7.7 as numbers of time samples contained in each

∆TN . From this point of view, it is much easier to comprehend what the difference

between IS–O and L–S obtained models really is. It is obvious that in only one case the

difference is greater that 3 sample times and all other cases it is smaller that 2 sample

times, they will reflect as 2 sample times difference.
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Figure 7.6. Relative errors of IS–O obtained drag βrr with respect to the L–S obtained one
observed from the steady state quantization point of view.
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Figure 7.7. Relative errors of IS–O obtained inertia αr with respect to the L–S obtained one
observed from the rise time TN point of view.

Sum of absolute errors

Finally, the rudimentary sum of absolute errors is performed for each obtained model.

The model obtained using the least–squares method has been validated on all 15 data

sets and the calculated average sum of absolute errors JLS was taken as reference. Each

of the 15 models obtained using the IS–O method was also validated on all 15 data sets,



Chapter 7. Experimental Results for Different Identification Methods 110

and for each model i an average sum of square errors J IS−O,i was calculated. Fig. 7.8

shows the relative difference
J IS−O,i − JLS

JLS

(7.13)

for all experiments. It can be seen that the models obtained using the IS–O method

give smaller sum of absolute errors in most cases. In other cases the increase in sum

of absolute errors is acceptable with respect to the simplicity of performing the IS–O

method. These results are the best demonstration of how IS–O method gives good

identification results.
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Figure 7.8. Comparison of sum of absolute errors obtained using IS–O obtained models with
the L–S model.

7.4 Identifying Yaw DOF – AutoMarine AUV

The experimental data for the identification of the yaw degree of freedom have been

obtained from experiments performed in the Laboratory for Underwater Systems and

Technologies, Faculty of Electrical Engineering and Computing, University of Zagreb

on the AutoMarine AUV. The vehicle’s technical characteristics, system architecture

and mathematical models are described in Chapter 3.2.

7.4.1 Results from Step Responses

Conventional method that was used for this vehicle is the identification based on the

open loop step response (SR method) which is described in detail in Chapter 4.3. The

experiments were carried out on the AUV in such a way that each time a different
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yaw moment ranging from −0.0515Nm to 0.0515Nmwas applied, resulting in 24 SR

experiments. The measurements that were made were based on the compass signal

which implies that the identified system was astatic. From each experiment, the steady

state was determined and the results are shown in Fig. 7.9 with green circles. From

these results it is obvious that the model that fits the data better is the nonlinear model,

with linear drag. By fitting the obtained steady state data to a linear drag model, using

(4.47), the red line in Fig. 7.9 is obtained.

Next step was to determine the velocity errors εv from the experimental data sets.

By using (4.48), the unknown inertia parameter αr can be calculated for each exper-

iment. These results are shown in Fig. 7.10 with green circles. The fitted constant

value is shown with the red line.
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Figure 7.9. Steady–state yaw rate values obtained from step response (SR) experiments.

The experimental data are also shown in Table 7.10 showing the parameters of fitted

curves as mean values from all experiments. It is also seen that standard deviations of

measurements are satisfactory, which leads to the conclusion that the chosen model fits

the data well.

7.4.2 IS–O Results

The IS–O method was applied on AutoMarine AUV and 32 experiments were performed

with different relay outputs and hysteresis widths. The results are presented in Table

7.11.

Mean values for overall measurements shown in Table 7.11 are insignificant, just

as in the case with VideoRay ROV, because IS–O method should give satisfactory

parameters for EACH experiment. The standard deviation in determining inertia and
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Figure 7.10. Parameter αr obtained from step response (SR) experiments.

drag gives the measure of consistency of experimentally obtained parameters.

Inertia term αr is calculated using the same formula for both linear and nonlinear

model. Linear model has greater standard deviation in the drag parameter βr (around

12.5%) than the nonlinear model with 8.55% standard deviation in drag parameter

βrr. This again shows that the nonlinear model better describes the yaw degree of

freedom of AutoMarine AUV, but more importantly shows the consistency of parameter

identification during a single experiment.

Deciding on the model

Based on the experiments which were performed, the conclusion is made that the model

with linear drag (nonlinear model) describes system dynamics better than the one with

constant drag (linear model). However, the same as in the case of VideoRay ROV, the

point is not to have to perform numerous IS–O experiments to determine the suitable

model, but only two as it is suggested in Chapter 7.1.

Among the 32 IS–O experiments, pairs were taken in such a way that each member

of the pair must have different relay outputsN . This is not an uncommon demand, since

the two experiments that are performed to decide on the model should be as different

as possible. This condition leads to 347 different combinations of pairs. All four criteria

listed in Chapter 7.1 have been tested and the results are shown in Fig. 7.11, where

dark green represents the number of pairs when the conclusion was correctly made,

light green the number of pairs when the conclusion was falsely made and in yellow the

number of pairs where the conclusion could not be made.

Fig. 7.11 shows that criterion 1 always caused the decision to be made, and in about
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Table 7.10. Experimental results obtained from the AutoMarine AUV yaw DOF using the step
response (SR) method.

N kss εv βr βrr αr
[
Nm · 10−2

] [
deg
s

]

[deg]
[
Nms2

deg · 10−4
] [

Nms
deg · 10−6

] [
Nms2

deg2
· 10−4

]

-5.15 -49.38 27.93 10.42 21.11 8.51
-4.71 -44.93 18.46 10.48 23.33 6.21
-4.27 -40.73 18.12 10.49 25.75 6.73
-3.83 -39.71 23.06 9.66 24.32 8.09
-3.40 -39.26 23.28 8.65 22.04 7.40
-2.96 -35.72 19.63 8.29 23.19 6.57
-2.52 -32.53 20.85 7.75 23.83 7.17
-2.08 -28.29 15.68 7.37 26.05 5.89
-1.65 -28.13 22.87 5.86 20.82 6.87
-1.21 -27.49 36.94 4.40 16.01 8.53
-0.77 -18.62 29.38 4.15 22.26 9.44
-0.34 -10.96 18.86 3.05 27.87 7.58

0.34 13.32 27.89 2.51 18.87 7.59
0.77 19.96 29.61 3.87 19.39 8.28
1.21 23.72 23.15 5.10 21.50 7.18
1.65 27.71 21.90 5.95 21.46 6.78
2.08 28.38 21.57 7.35 25.89 8.05
2.52 31.35 20.16 8.05 25.67 7.46
2.96 37.64 22.75 7.86 20.89 6.86
3.40 38.99 19.14 8.71 22.35 6.17
3.83 41.77 19.53 9.18 21.98 6.19
4.27 41.84 17.23 10.21 24.41 6.07
4.71 46.18 15.22 10.20 22.08 4.85
5.15 50.54 20.88 10.18 20.15 6.07

x 7.49 22.55 7.11
σx
x
· 100% 34.00 11.84 14.75

63% of chosen pairs the conclusion was made correctly. Criteria 2, 3 and 4 significantly

minimize the number of cases when the conclusion is made. If a pair for which the

conclusion cannot be made is chosen, additional experiments should be performed to

make conclusion about the model.

7.4.3 Model Validation and Comparison of IS–O and Step Response

Identification Methods

In this section, the parameters obtained by use of the SR method will be taken as the

correct ones. They will be used as a means of comparison to the model obtained by

using the IS–O method, as it was described in Chapter 7.2. Fig. 7.12 shows the absolute
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Table 7.11. Experimental results for the AutoMarine AUV yaw DOF by applying identification
by use of self–oscillations (I–SO).

N Xm ω x∗a xa αr βrr βr
[
Nm · 10−2

]
[deg] [s−1] [deg] [deg]

[
Nms2·10−4

deg

] [
Nms·10−6

deg

] [
Nms2·10−4

deg2

]

3.40 23.8 1.42 13.0 10 7.60 24.54 7.01

4.27

23 1.68 11.2 10 7.32 20.90 6.85
27.0 1.52 14.6 12 7.36 20.64 7.18
28.4 1.45 16.8 14 7.30 22.22 7.79
31.2 1.35 18.8 16 7.59 21.63 7.76
32.8 1.31 20.4 18 7.58 21.62 7.88
34.6 1.30 23.0 20 6.97 21.12 8.05
37.0 1.21 25.0 22 7.37 21.50 8.19
39.4 1.17 27.6 24 7.17 21.04 8.25
40.2 1.13 28.4 26 7.55 22.09 8.49
41.8 1.11 30.2 28 7.35 21.65 8.50
43.8 1.07 32.8 30 7.21 21.91 8.70
47.0 1.00 35.4 32 7.61 21.83 8.71

5.15

26.0 1.78 12.8 10 6.89 17.65 6.95
28.4 1.63 14.8 12 7.43 18.83 7.39
30.0 1.52 17.6 14 7.61 21.64 8.40
30.2 1.53 18.6 16 7.35 22.42 8.76
31.8 1.45 20.4 18 7.54 23.37 9.13
34.6 1.36 23.2 20 7.60 23.38 9.34
37.2 1.25 25.0 22 8.39 24.13 9.50
40.2 1.19 26.6 24 8.70 22.49 9.10

6.46

30.8 1.59 14.8 10 9.21 19.30 8.05
32.6 1.58 15.6 12 8.89 17.51 7.65
33.4 1.55 16.8 14 8.89 18.24 8.00
34.8 1.50 18.8 16 8.89 19.32 8.54
37.0 1.43 21.0 18 8.89 19.52 8.79
37.6 1.38 22.6 20 9.21 21.70 9.54
38.4 1.34 24.4 22 9.18 23.16 10.14
42.2 1.26 27.4 24 9.39 22.37 10.07
43.0 1.24 29.0 26 9.16 22.92 10.39
44.6 1.20 30.6 28 9.33 23.25 10.55
47.2 1.14 33.8 30 9.39 24.04 10.96

x 8.06 21.50 8.58
σx
x
· 100% 10.66 8.55 12.53

value of the percentage error of each IS–O obtained inertia parameter αr with respect

to the parameter obtained from the SR method with a nonlinear model. The error can
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Figure 7.11. Number of cases when the conclusion was correct, false or undefined for AutoMa-
rine AUV.

get around 30%. The same type of errors only for the obtained drag βrr are shown in

Fig. 7.13, from where it is obvious that the errors can get as high as to almost 25%.
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Figure 7.12. Relative errors of IS–O obtained inertia αr with respect to the inertia obtained
by the Step Response method.
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Figure 7.13. Relative errors of IS–O obtained drag βrr with respect to the drag obtained by the
Step Response method.

Comparison of steady states

Again, these results may be misleading since the model obtained by using the SR

method is taken as the perfect model. Using the methodology described in Chapter

7.2, the differences in achieved steady states of each IS–O model is compared to the SR

obtained model and ∆rSS is calculated by using (7.7). Since ∆rSS is a function of τ ,

the worst case scenario is when τ = C is the biggest. For this reason, the maximal C

that was used in all experiments is taken into calculation (C = 6.46Nm · 10−2).

The results are shown in Fig. 7.14. From this point of view, it is seen that the

system parameters have been identified well, since ∆rSS for each IS–O experiment is

less than 8◦/s.

Comparison of equivalent time constants

The error which is included in the identified αr should be observed from the point

of view of equivalent time constant TN as it was elaborated in Chapter 7.2. TN is

calculated for each of the identified IS–O models and compared to the SR obtained

model. ∆TN is calculated using (7.11). Since ∆TN is a function of τ , the worst case

scenario is when τ = C is the smallest. For this reason, the minimal C that was used

in all experiments is taken into calculation (C = 3.4Nm · 10−2).

The results are shown in Fig. 7.7. From this point of view, it is much easier to

comprehend what the difference between IS–O and SR obtained models really is. It is

obvious that only for the last set of experiments this difference gets higher than 0.2 s,

but never above 0.35 s.
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Figure 7.14. Relative errors of IS–O obtained drag βrr with respect to the Step Response
obtained one observed from the steady state quantization point of view.

Sum of absolute errors

Since the main assumption was that the SR obtained model is the perfect one, the best

way of validating the IS–O obtained models is to calculate the sum of absolute errors

validation data sets. All together, 35 different validation data sets were taken. One

set is shown in Fig. 7.16 where blue line in the upper plot shows the experimentally

obtained data, red line the simulated output of the nonlinear model, and green line

simulated output if the linear model. This example once again shows how nonlinear

model fits the data better. The lower plot gives the input yaw moment during the

validation experiment.

In order to have better visual representation of the systems output, the experimen-

tally obtained yaw rate was filtered by using the Golay filter. As a consequence of this,

the original validation input was fed through the same filter producing filtered input

which is than used for validating the models. This way the filtering of the real output

was compensated for.

Based on these validation sets, the average sum of absolute errors JSR was calculated

for the SR model. For each of the 32 obtained IS–O models, the average sum of absolute

errors was also calculated resulting in J IS−O,i, where i is the model number. Fig. 7.17

shows the relative difference
J IS−O,i − JSR

JSR

(7.14)

for all experiments. It can be seen that the models obtained using the IS–O method

give smaller sum of absolute errors in most cases. These results are again the best

demonstration of how IS–O method is preferable to SR method.
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Figure 7.15. Relative errors of IS–O obtained inertia αr with respect to the Step Response
obtained one observed from the rise time TN point of view.
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Figure 7.16. Relative errors of IS–O obtained inertia αr with respect to the SR obtained one
observed from the rise time TN point of view.

7.5 Identifying Yaw DOF – Charlie USV

The experiments on the Charlie USV were carried out in Genoa Pra Harbour in Genoa,

Italy during two day extensive trials. During Day 1 (25th September 2009) and Day 2

(29th September 2009) the same experimental procedures were performed. The forward

speed was changed consecutively through the values of n2i = {16, 25, 36, 49, 64}[V2 ]. For
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Figure 7.17. Comparison of sum of absolute errors obtained using IS–O obtained models with
the SR model.

each speed the self–oscillating experiment was changed with the relay output parameter

taking the values Ci = {10, 15, 20, 25}[deg]. For each pair
(
n2i , Ci

)
the hysteresis width

was changed between the values xa,i = {5, 10, 15}[deg]. In other words, each of two

days (Day 1 and Day 2) had 5 speed sets, each of which had 4 different relay output

sets, each of which had 3 different relay switching sets. This means that during one

day, 60 different experiments were taken, resulting in all together 120 experiments.

The experiments were taken during two days so that the results could be compared

under different environmental conditions. Charlie is equipped with an anemometer

which gives wind speed and wind direction relative to the vehicle. The wind speed

conditions during days 1 and 2 are shown in Fig. 7.18(a) and Fig. 7.18(b), respectively.

Green circles denote average wind speeds during the whole day of experiments, at dif-

ferent angles relative to the vehicle. Blue dashed lines show the measurement standard

deviation which shows how much the conditions changed during the day.

From Fig. 7.18(a) it is obvious that during Day 1 the wind was significantly stronger

than during Day 2 (see Fig. 7.18(b)).

7.5.1 Least–Squares Results

The least–squares method was applied on the data obtained from the self–oscillation

experiments. For each data set a least–squares identification was performed. The

assumed dynamic model of the yaw degree of freedom is given with (3.5) where drag

βr can be expressed as constant or linear as in (2.34). From here follow the linear and

nonlinear regression models used for performing least–squares identification. Least–

squares identification is described in detail in Chapter 4.2, so it will be omitted here.
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Figure 7.18. Average wind speed and direction during (a) Day 1 and (b) Day 2 measured in
the Earth–fixed coordinate frame show significantly different environmental conditions during
the two days.

In addition to that, linear and nonlinear regression models are given with (4.20) and

(4.22), respectively (ν = r in this case).

Using the same regression models and the parameters estimated with the least–

squared algorithm, evaluation of results was performed. Table 7.12 shows estimated

drag coefficients for different surge speeds. For the sake of clarity, only drag coefficients

are shown. These results can be used to determine wether a linear or nonlinear model

described the vehicle behavior better. From the results shown in Table 7.12 it can be

concluded that for speeds higher than n2 = 16V2, almost the same model parameters

can be applied. It is also obvious that the results obtained from the two different

days give practically the same identified parameters what leads to the conclusion that

the identification method is consistent. In addition to that, the evaluation parameters

elin and enonlin for the linear and nonlinear model, respectively, show that linear model

describes the vehicle behavior in yaw degree of freedom better than the nonlinear model.

7.5.2 IS–O Results

The self–oscillation experiments were taken in such a way that 5 consecutive oscillations

have to be obtained to compute the unknown parameters. In order to have a successful

self–oscillation experiment, condition (7.12) has to be fulfilled, just as described before.

If any of the 5 consecutive oscillations does not fulfill condition (7.12), the experiment

was discarded from the analysis.

During Day 1, all the obtained oscillations were self–oscillations (condition (7.12)

is fulfilled) which lead to 60 valid self–oscillation experiments. During Day 2, not all

oscillations were self–oscillations. Fig. 7.19 gives a schematic representation of the

experiments which were not successful. Red squares present the experiments which
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Table 7.12. Experimental results obtained from the Charlie USV yaw DOF using the L–S
method.

n2 αr(lin) βr elin αr(nelin) βrr enelin

[V2]
[
Nms2

rad

] [
Nms2

rad

] [
rad
s · 10−3

] [
Nms2

rad

] [
Nms
rad

] [
rad
s · 10−3

]

Day 1

16 11.09 -3.42 16.02 11.95 -35.58 19.02
25 8.55 -2.56 16.54 8.95 -22.14 23.88
36 7.51 -2.39 17.30 7.79 -20.08 22.92
49 7.89 -2.67 17.10 8.35 -24.41 22.78
64 7.92 -2.66 17.48 8.44 -22.89 24.63

Day 2

16 10.50 -3.24 11.40 11.01 -34.28 14.71
25 8.96 -2.71 13.96 9.32 -23.47 20.63
36 8.89 -2.54 21.36 9.03 -21.01 29.81
49 10.42 -2.82 23.15 10.84 -24.53 34.33
64 9.47 -2.98 19.14 9.90 -24.10 29.46

were not successful, while green ones are the successful ones. It can be clearly seen

that the majority of unsuccessful experiments were obtained while hysteresis output

was C = 10◦. This is quite normal since greater output is needed to induce the self–

oscillations. This leads to the conclusion that higher relay output should be applied in

order to conduct a successful experiment.
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Figure 7.19. Graphical representation of successful and unsuccessful IS–O experiments in
relation to parameters of the relay with hysteresis.

After the unsuccessful experiments were discarded, 48 experiments from Day 2 were

taken into consideration. All together, this resulted in 108 self–oscillation experiments.

An example of a successful self–oscillation experiment obtained on Charlie USV is

shown in Fig. 7.20, where green circle marks the beginning and red square the end

of the self–oscillation experiment (it has finished after 5 oscillations were recorded).

During the experiment, the vessel was performing a path shown in Fig. 7.21 where

green circle marks the beginning, red square the end of data recording and dotted line



Chapter 7. Experimental Results for Different Identification Methods 122

0 20 40 60 80

80

90

100

ψ
 [°

]

0 20 40 60 80
−30

−15

0

15

30

δ 
[°

]

time [s]

Figure 7.20. Charlie’s heading and rudder angle during one of the self–oscillation experiments.

is the path before and after the experiment.
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Figure 7.21. Charlie’s path during one of the IS–O experiments.

The drag coefficient βr obtained from the self–oscillation was compared to the drag

coefficient obtained using the least–squares algorithm (see Table 7.12), and relative

error was calculated using (7.15) where kr,IS−O is drag obtained from the self–oscillation

experiment and kr,LS drag obtained from the least squares experiment.

∆kr [%] =

∣
∣
∣
∣

kr,IS−O − kr,LS
kr,LS

∣
∣
∣
∣

(7.15)

Tables with experimental results are omitted due to great number of experiments.
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Deciding on the model

Based on the experiments which were performed, the conclusion is made that the model

with constant drag (linear model) describes system dynamics better than the one with

linear drag (nonlinear model). However, the point is not to have to perform numerous

IS–O experiments to determine the suitable model, but only two as it is suggested in

Chapter 7.1.

Among the experiments taken during one day, pairs were taken in such a way that

each member of the pair must have different relay outputs N . This is not an uncommon

demand, since the two experiments that are performed to decide on the model should be

as different as possible. This condition leads to more than 1300 different combinations

of pairs for Day 1, and more than 800 different combinations of pairs for Day 2. All

four criteria listed in Section 7.1 have been tested and the results are shown in Fig.

7.22 and Fig. 7.23 for experiments taken during Day 1 and Day 2, respectively. Dark

green colour represents the number of pairs when the conclusion was correctly made,

light green the number of pairs when the conclusion was falsely made and in yellow the

number of pairs where the conclusion could not be made.

From Fig. 7.22 and Fig. 7.23 it can be concluded that the criterion 1 always caused

the decision to be made, and in about 90% of chosen pairs the conclusion on the most

appropriate model was made correctly, during both days. When using criterion 2,

the margin of no decision is introduced and for a number of experiments the decision

could not be made. If a pair for which the conclusion cannot be made is chosen,

additional experiments should be performed to make conclusion about the model. By

increasing the margin of decision (criteria 3 and 4) the number of cases without decision

increases, but the number of pairs with falsely made decision is extremely low, proving

the robustness of the decision making algorithm. In addition to that, the decisions are

made somewhat easier during Day 2, when the influence of external disturbances was

smaller.

7.5.3 Model Validation and Comparison of IS–O and L–S Identifica-

tion Methods

Since the model which described yaw degree of freedom is linear, the proposed com-

parison of steady state and comparison of equivalent time constants will give the same

results as validation based on error in βr and αr. Having this in mind, the validation of

the obtained models is performed by observing error in determined βr and by comparing

equivalent linear time constants.

In this section, the parameters obtained by use of the least–squares method will be

taken as correct ones. However, they will be used as a means of comparison to the

model obtained by using the IS–O method, as it was described in Section 7.2. Fig. 7.24

and Fig. 7.28 show the absolute value of the percentage error of each IS–O obtained

inertia parameter βr with respect to the parameter obtained from the least–squares
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Figure 7.22. Number of cases when the conclusion was correct, false or undefined for Charlie
USV during Day 1.
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Figure 7.23. Number of cases when the conclusion was correct, false or undefined for Charlie
USV during Day 2.

method with a linear model. The errors get as high as 22% during Day 1, while during

Day 2 they are below 15%.

As it is shown in Fig. 7.26, a great majority (more than 90%) of experiments show

the relative drag error smaller than 15%. During Day 2, when weather conditions were

better, all experiments resulted in the identified drag relative error smaller than 15%.
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Figure 7.24. Relative drag error from experiments obtained during Day 1.
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Figure 7.25. Relative drag error from experiments obtained during Day 2.

During Day 1, only 5 experiments resulted in relative error greater than 15% while the

maximum error was about 22%.

The error which is included in the identified αr should be observed from the point

of view of equivalent linear time constant TL as it was elaborated in Section 7.2. TL
is calculated for each of the identified IS–O models and compared to the L–S obtained

model. ∆TL is calculated using 7.11. In the case of linear model, ∆TL is not a function

of τ , i.e. the system will take TL to achieve 63% of the steady state value, regardless of
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Figure 7.26. Percentual representation of IS–O method accuracy while identifying kr = βr.

the input signal. This, of course, is under the assumption that the system is completely

linear.

The results are shown in Fig. 7.27 and Fig. 7.28 as numbers of time samples

contained in each ∆TL, for Day 1 and Day 2, respectively. From this point of view,

it is much easier to comprehend what the difference between IS–O and L–S obtained

models really is.
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Figure 7.27. Relative errors of IS–O obtained inertia αr with respect to the L–S obtained one
observed from the rise time TL point of view – Day 1.



Chapter 7. Experimental Results for Different Identification Methods 127

1 24 48

1

2

3

Experiment number

 ∆
T

L  [
0.

5 
⋅ s

]

 

 

n2=16 [V2]

n2=25 [V2]

n2=36 [V2]

n2=49 [V2]

n2=64 [V2]

Figure 7.28. Relative errors of IS–O obtained inertia αr with respect to the L–S obtained one
observed from the rise time TL point of view – Day 2.

The percentual analysis of these results is shown in Fig. 7.29 from where it is seen

that always in more than 90% of cases the results fall within 2TS difference. During

Day 1, only one experiment resulted in the difference being above 2TS but it was always

under 3TS . During Day 2, the results were always under 3TS .
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Figure 7.29. Percentual representation of IS–O method accuracy while determining equivalent
time constant difference ∆TL.

These results show that the identification by use of self–oscillations is a method
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which gives confident results. Identified drag and inertia in all experiments fall within

the boundaries of acceptable results. In addition to that, the results obtained under

considerable wind are also confident which leads to the conclusion that this method is

robust to external disturbances.

Sum of absolute errors

Finally, the rudimentary sum of absolute errors is performed for each obtained model.

Each identification data set was used also as a validation set. The model obtained using

the least–squares method has been validated on all data sets obtained with a specific

forward speed. The calculated average sum of absolute errors JLS is taken as reference.

Each IS–O model was also validated on these data sets, and for each model i an average

sum of square errors J IS−O,i was calculated.

Fig. 7.30 shows the relative difference

J IS−O,i − JLS

JLS

(7.16)

for experiments during Day 1, for different commanded forward speeds. The same

results are shown for Day 2 in Fig. 7.31.

The results which were obtained using the IS–O method are somewhat worse that

the ones obtained by L–S method, but still satisfactory. Given the time it takes to

perform IS–O experiments, these results can be used in practice.

7.6 Identifying Surge DOF – VideoRay ROV

Surge degree of freedom has been identified for the purpose of designing the distance

keeping controller. Distance keeping modeling has been described in detail in Chapter

2.6. For this application, VideoRay ROV was equipped with a vision–based laser system

which is described in Chapter 3.4.

Due to the limited distance at which the vision–based laser system can operate,

a great number of experiments could not have been performed. In addition to that,

the sample rate of the vision–based laser system is 1s, therefore careful tuning of relay

parameters had to be performed in order to obtain oscillations which can be used for

identification purposes.

In order to identify surge degree of freedom using the available apparatus, angle

with regard to the flat surface had to be kept at a small value. This way, the distance

from the surface is in fact integral of the surge speed, as it can be seen from (2.43).

This is why, firstly, the angle controller is set, and than surge degree of freedom can be

identified.

The experimental results are shown in Fig. 7.32 with relay switching set to xa =

10cm. The a posteriori analysis showed the modified relay switching is x∗a = 12.33cm.
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Figure 7.30. Comparison of sum of absolute errors obtained using IS–O obtained models with
the L–S model – Day 1.

In this case, relay output is somewhat asymmetric which is a result of influence of the

tether that presents significant disturbance. The self–oscillation parameters obtained
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Figure 7.31. Comparison of sum of absolute errors obtained using IS–O obtained models with
the L–S model – Day 2.

from the experiment are Xm = 16.22cm and ω = 0.393s−1. While calculating the

identified parameters, it was assumed that surge drag is linear, i.e. the surge model is
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Figure 7.32. The self–oscillation experiment for identifying surge degree of freedom.

dominantly nonlinear.

7.7 Identifying Heading Closed Loop – Charlie ASV

The experiments for identification of heading closed loop transfer function were per-

formed on a Charlie ASV. Two cases with different heading controllers, i.e. different

closed loop structures were taken into account:

• Case 1 includes a P–D heading controller and

• Case 2 an I–PD heading controller.

These experiments were performed to test if the the proposed methodology works for

various inner control loop structures. The relay parameters for both cases are listed

in Table 7.13. Each case included two S–O experiments, since both are needed to

determine the heading closed loop transfer function parameters (see Chapter 6.6.4). As

it is shown in Fig. 6.9, relay output is commanded heading ψref .

Table 7.13. Relay parameters for Cases 1 & 2.

Case IS–O Experiment #1 IS–O Experiment #2

1 C = 20◦, xa = 5◦ C = 15◦, xa = 5◦

2 C = 10◦, xa = 5◦ C = 30◦, xa = 10◦
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Experiments for Case 1 are shown in Fig. 7.7 and for Case 2 in Fig. 7.7. In both

cases, duration of the experiment is short and last 5 oscillations per experiment. The

procedure for obtaining this data is the same as in the case of IS–O applied to yaw

degree of freedom.
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Figure 7.33. IS–O results for Case 1.
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Figure 7.34. IS–O results for Case 2.

While performing the experiments, relay output can be chosen in such a way that

the rudder of the vessel saturates. This is the case if relay output has high values.
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Since the model which is to be identified is linear, these saturations should be avoided,

i.e. during the experiment the vehicle should operate in the linear domain. Since it is

not known a priori what the inner closed loop structure is, relay parameters have to be

tuned during the experiment so that the saturation does not occur.

These self–oscillation data can be used to determine the heading closed loop transfer

function parameters and tune high level controllers. These results are given in Chapter

8.3.2.

7.8 Conclusion

This chapter primarily deals with experimental results which prove the applicability of

the IS–O method on real vessels. First, a method is described which can be used to

determine which model better describes vessel dynamics. It’s a simple approach that

relies on performing an additional IS–O experiment. Based on the two sets of identified

parameters, criteria are given which are later on used to determine validity of models.

The proposed method has proven to give good results.

Once the parameters have been identified, the models should be validated and com-

pared to some conventional identification methods. The validation which was engaged

in this thesis is the classical sum of absolute errors and two methods based on steady

state values and equivalent time constants. By comparing steady state values of the

model obtained using a conventional method and the one using the IS–O method, a

conclusion was made on the quality of identified drag parameter. This approach has

proven to be suitable when significant quantization levels appear in the system. The

second approach engages comparison of equivalent time constants of the two models,

based on which a conclusion can be made on the quality of the identified inertia. For

liner systems, the equivalent time constant is the time it takes the step response to

reach 63% of steady state value. For nonlinear cases, it was shown that this constant

should be time for step response to reach 73% of steady state value.

The experimental results were performed on three vehicles and comparisons between

IS–O method and some conventional method: for VideoRay ROV it was IS–O vs. L–S,

for AutoMarine AUV it was IS–O vs. open loop step response, and for Charlie ASC it

was also IS–O vs. L–S.

L–S experiments on VideoRay first showed that nonlinear model describes the sys-

tem better. This was also proved by using IS–O experiments and the procedure de-

scribed in the chapter. These experiments also prove that IS–O gives even better results

than the L–S method, especially when it comes to identification of yaw inertia. The

sum of absolute errors validation tests show that IS–O obtained results are sometimes

even better than the L–S obtained ones. An important conclusion, and an advantage

of the IS–O method is that it does not require signal differentiation, compared with the

case of L–S method. The parameters identified by the IS–O method have proven to be

consistent.
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The open loop step response method was applied on AutoMarine AUV and it showed

that nonlinear model better describes the dynamics also. The validation results show

that SR method gives good results and that it is applicable in laboratory conditions. In

addition to that, results show that IS–O method gives satisfactory results. It is much

simpler and faster than the SR method.

The methods which were applied to Charlie USV were L–S and IS–O identification.

The results show that for forward speeds greater than n2 = 16V2 the model parameters

practically do not depend on the forward speed. Experiments were performed during

two days in order to show the robustness of the IS–O procedure with different envi-

ronmental disturbances. Extensive experiment have demonstrated that IS–O method

gives good results. This was shown with a thorough validation of the results.

Finally, the procedure for identifying heading closed loop was applied to Charlie

ASC with two different inner loop structures. The experiments give satisfactory results

what will best be seen when results if line following will be presented. An important

thing in application is to make sure that the actuators do not saturate during the

experiments since the main assumption which is made is that the inner closed loop is

linear. The low level controller should make sure that this is true.



Chapter 8

Control and Guidance of Marine

Vehicles Using IS–O Experiments

The control architecture for marine vessels can roughly be divided into three levels of

control as it is shown in Fig. 8.1. The highest control level is called Planning and it
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Figure 8.1. Marine vehicle control architecture.

includes mission planning, [5], path and trajectory planning, [3, 6, 35, 68], and way–

135
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point generating. In a completely automated system, this level takes into account all

the situational changes and makes sure that the planned path does not collide with

other vessels’ paths or with unmoving objects, [29]. On–line replanning is of high

importance especially in the case of control of multiple vessels or moving obstacles, [7].

The inputs to this level of control are state variables based on which the conclusion

is made on the state of the current mission. Using this information, high level will

output planned paths, trajectories, way–points to the mid control level. If high control

level does not exist, the control is not fully automated and the operator is in charge of

mission planning.

The medium control level, also called Guidance, takes the planned paths, trajectories

or way points from the high level (or the operator), [9, 12, 21, 37, 61, 66], and generates

reference values for the low control level. The task of this control level is to ensure

that individual path, trajectory or task, in general, commanded from the higher level

is executed with a predefined accuracy. This level also includes performing tasks such

as vessel parking within a certain area (dynamic positioning), keeping a predefined

distance to an object, etc.

The low–level control is a rudimentary control level, called simply Control. It is in

charge of compensating external disturbances and keeping elementary variables such as

speeds or positions at a predefined, set value commanded by the mid control level. In

surface marine vehicles, this level usually includes heading control (autopilots), forward

speed control and roll control, [26, 27]. In underwater marine vehicles, this level is in

charge of controlling all controllable speeds (usually yaw rate, surge and heave speeds),

heading, depth, pitch, etc. Output of this level is directly connected to the vessels

actuators, setting the desired forces and moments upon the vessel. Low level inputs are

measured and/or estimated vessel states.

A simplified control hierarchy in this section was described starting from the high

level and descending to the low control level. However, while designing individual con-

trol levels, low level is the first step. After that, higher control levels can be designed. In

order to design low control level, mathematical model and parameters of the controlled

vehicle have to be known, i.e. systems identification has to be preformed.

This chapter will describe methods for designing low–level controllers, distance keep-

ing controllers and line following controllers based on IS–O experiments, which have

been published in [57, 59, 60]. After the theoretical background, experimental results

are given.

8.1 Low–Level Control Design

In Chapter 2 a detailed description of mathematical models for marine vehicles is pre-

sented. It is stated that these models can be simplified for the purpose of controller

design. The main nonlinearities which appear in these models are nonlinearities intro-

duced by actuators (see Chapter 2.1) and by the nonlinear model of the vessel.
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The basic low–level control structure is shown in Fig. 8.2. The mathematic model

of a vessel is shown as the blue subsystem and it consists of all the elements described

thoroughly in Chapter 2. Before control algorithms are developed, it is crucial to

compensate for as many static nonlinearities in the system as possible. This is done in

the Control accommodation block. The Actuator nonlinearity compensation block is in

charge of compensating for the nonlinear characteristic of the actuators (an example of

this is given in Chapter 4.1) which in the case of thrusters can be described with 2.4.

This block in fact contains the inverse function of this nonlinearity, if it is static.

The Control allocation block is in fact the inverse function of the actuator allocation

matrix described in Chapter 2.2. It ensures that commanded forces and moments vector

τ, which acts on the rigid body, are mapped properly on each of the available thrusters

on the vessel, forming the vector τi. If the actuator allocation matrix Φ is square, than

this block implements its inverse Φ−1. If it is not square, i.e. there is redundancy

in the number of actuators, there are multiple solutions of how commanded forces

and moments can be distributed to the thrusters. The simplest way is to perform

a pseudoinversion
(
ΦTΦ

)−1 ΦT. Other approaches for distributing these forces and

thrusts can be found in [65].

Once the control accommodation has been implemented, the controllers for control-

ling the dynamic part of the process have to be designed. These are given with the

Control block in Fig. 8.2. The following part of this section deal with methods for

designing these controllers (autopilots).
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ALLOCATION DYNAMICS KINEMATICSACTUATORS

ACTUATOR
NONLINEARITY
COMPENSATION

CONTROL 
ALLOCATIONAUTOPILOTS

VESSEL

#i#iiREF

CONTROL ACOMMODATIONCONTROL

Figure 8.2. Low–level control structure.

8.1.1 Controller Structure

The controller which is developed in this section is designed based on a model function.

Using the proposed controller, even a nonlinear process will give desired response. This

will be achieved by compensating the nonlinearity which arises in the system itself.

Under the assumption that the process in general can be written using

αν η̈ (t) + β(ν)η̇ (t) = τ (t) + τE, (8.1)

where

β(ν) =

{

βν
βνν |ν|

for linear model

for nonlinear model
,
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the I–PD controller algorithm given with (8.2) is designed, [77].

τ (t) = KIη

t∫

0

[ηref (t)− η (t)] dt−KPηη (t)−KDηη̇ (t)− τE (8.2)

This controller is used since the control action never abruptly changes: step–like

reference changes are driven only through the integral channel, i.e. they are not directly

fed to the actuator. This is convenient in marine applications where abrupt actuator

changes are not allowed. Using the proposed control algorithm given with (8.2), the

closed loop equation is given with (8.3).

η

ηref
=

1

αν

KIη
s3 +

β(ν)+KDη

KIη
s2 +

KPη

KIη
s+ 1

. (8.3)

The controller parameters are set so that the closed–loop transfer function is equal

to the model function given with (8.4) which is stable.

Gm (s) =
1

a3ηs3 + a2ηs2 + a1ηs+ 1
. (8.4)

In that case, the controller parameters are as follows:

KIη =
αν
a3η

KPη =
a1η
a3η

αν (8.5)

KDη =
a2η
a3η

αν − β(ν).

This controller can be used for controlling yaw and heave motion as well as other

degrees of freedom.

Heading control

As it was mentioned before, yaw degree of freedom can be described by using (8.1)

where η = ψ, τ = N , αν = αr and τE = 0. If the model is linear, β(ν) = βr and if it

is nonlinear β(ν) = βrr|r|. The assumption is that only estimated model parameters

are available, i.e. α̃r and β̃r or β̃rr, depending on the appropriate model. According to

(8.5), parameters of the controller given with (8.2) are
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KIψ =
α̃r
a3ψ

KPψ =
a1ψ
a3ψ

α̃r (8.6)

KDψ =
a2ψ
a3ψ

α̃r − β(r).

It should be stressed that in the nonlinear case parameter β(r) varies in time resulting

in time–varying controller parameters.

Depth control

Just as in the case of the yaw motion control, the heave degree of freedom can be

described by using (8.1) where η = z, τ = Z, αν = αw. In this case there will exist

a bias term τE which represents the difference between the weight and buoyancy of

the vehicle. This term can be compensated by adding an estimated bias τ̃E to the

controller action. If the model is linear, β(ν) = βw and if it is nonlinear β(ν) = βww|w|.
The assumption is that only estimated model parameters are available, i.e. α̃w and β̃w
or β̃ww, depending on the appropriate model. According to (8.5), parameters of the

controller given with (8.2) are

KIz =
α̃w
a3z

KPz =
a1z
a3z

α̃w (8.7)

KDz =
a2z
a3z

α̃w − β(w).

Again, it should be stressed that in the nonlinear case parameter β(w) varies in

time resulting in time–varying controller parameters.

For both yaw and heave control cases, the controller can be presented with a general

structure shown in Fig. 8.3, which will be explained after the robustness analysis.

8.1.2 Stability Analysis

Every identification method has a certain uncertainty in the identified parameters, [42].

The stability of the closed–loop system can be compromised if

• the identified parameters are not identical to real process parameters (robust

stability), or

• if the process has a structure different than the one that is assumed (structural

stability).
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Because of the two reasons, the stability of the closed–loop system will be observed

with regard to the following assumptions.

Assumption 8.1. Identified parameters α̃ν and β̃(ν) may differ from real parameters

αν and β(ν) in value.

Assumption 8.2. The process may not have the structure which can be described

with dominant constant or linear drag as shown with (8.1), but with a more general,

affine equation (8.8).

αν η̈ (t) + βν η̇ (t) + βνν |η̇ (t)| η̇ (t) = τ (t) (8.8)

Assumption 8.3. The controller is always designed under the assumption that the

process structure can be described with constant or linear drag as shown with (8.1).

Because of Assumption 8.1, the controller parameters are written with estimated

(denoted with a tilde) process parameters so that the closed loop equation can be

described with (8.9) where αν and β(ν) are real process parameters.

η

ηref
=

1

αν

α̃ν
a3ηs3 +

[

a2η + a3η
β(ν)−β̃(ν)

αν

]

s2 + a1ηs+ 1
(8.9)

It should be noticed that in the case of exact parameter identification for values α̃ν = αν
and β̃(ν) = β(ν) the model function itself is obtained.

From the characteristic equation of the system, stability of the closed loop can be

determined by using the Jury criterion, [77], which results in conditions (8.10)–(8.13).

αν
α̃ν
a3η > 0 (8.10)

a1η > 0 (8.11)

a2η + a3η
β(ν)− β̃(ν)

α̃ν
> 0 (8.12)

β̃(ν)− β(ν) <
a2η
a3η

α̃ν −
1

a1η
αν . (8.13)

Conditions (8.10) and (8.11) are always satisfied if the model function is stable.

Condition (8.12) can be written in the form

β̃(ν)− β(ν) <
a2η
a3η

α̃ν . (8.14)

Since only conditions (8.13) and (8.14) are left, it should be determined which of these

is stricter. By observing the sign of the right–hand side of (8.13), inequality (8.15) is

obtained.
α̃ν
αν

?
>

a3η
a2ηa1η

(8.15)
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For example, third order Butterworth filter has a transfer function

GButter(s) =
1

s3 + 2s2 + 2s + 1

which gives α̃ν

αν
> 0.25. The third order Bessel filter has a transfer function

GBessel(s) =
1

1
15s

3 + 2
15s

2 + s+ 1

which gives α̃ν

αν
> 0.1667. Since the ratios between estimated and real parameters

can never be so drastic, this implies that (8.15) is always satisfied. The conclusion is

that condition (8.13) is stricter than condition (8.14) and therefore it will be used for

determining stability. Further on, since

αν
a1η

<
a3η
a2η

α̃ν , (8.16)

the right–hand side of (8.13) is always greater than 0. From (8.13), if β̃(ν)− β(ν) < 0

the system is always stable. If β̃(ν)−β(ν) > 0 a constraint on the system stability given

with (8.13) is obtained. For further calculus, ratios between the identified parameters

and real parameters are defined as

pαν =
α̃ν − αν
αν

(8.17)

pβ(ν) =
β̃(ν)− β(ν)

β(ν)
(8.18)

from where it follows that

αν =
α̃ν

pαν + 1
, pαν ∈ (−1, 1) (8.19)

β(ν) =
β̃(ν)

pβ(ν) + 1
, pβ(ν) ∈ (−1, 1) . (8.20)

It was mentioned before that for pβ(ν) < 0 the system is always stable, therefore the

assumption for further analysis is that pβ(ν) > 0.

From Assumption 8.2 and Assumption 8.3 follows that there exist four different

cases: when the model is assumed to be linear and it is linear or affine, and when the

model is assumed to be nonlinear and it is nonlinear or affine. These cases are observed

in the following part.
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Linear model & linear controller

For this case the model has β(ν) = βν and the controller β̃(ν) = β̃ν . From (8.13) follows

that (8.21) has to be fulfilled in order to have stable closed–loop system.

1 <

a2η
a3η
α̃ν − 1

a1η
αν

β̃ν − βν
(8.21)

Using the ratios, (8.22) is obtained.

β̃ν
α̃ν

pβν
pβν + 1

− a2η
a3η

< − 1

a1η

1

pαν + 1
(8.22)

This inequality gives an elegant method of determining stability of the closed system af-

ter the system parameters have been identified. With estimated errors of identification,

bounds can be set on the model function in order to ensure stability. If it is assumed

that the identification experiment is carried out in such a way that the absolute error in

determining βν is definitely smaller than 20%, it can be written that |pβν | < 0.2. If this

is the case, than parameter αν has an absolute error lower than 10%, i.e. |pαν | < 0.1.

The worst case for stability condition (8.22) is when pβν = 0.2 and pαν = −0.1, which

gives (8.23).

β̃ν
α̃ν

<
2

3

9a1ηa2η − 10a3η
a1ηa3η

(8.23)

Affine model & linear controller

For this case the model has β(ν) = βνν |ν| + βν and the controller β̃(ν) = β̃ν . From

(8.13) follows that (8.24) has to be fulfilled in order to have stable closed–loop system.

β̃ν − βν <
a2η
a3η

α̃ν −
1

a1η
αν + βνν |ν| (8.24)

By comparing (8.22) and (8.24) it can be seen that condition (8.22) is stricter – if

the stability is ensured for the previous case, this case will also be stable. However,

while designing the controller, one should bear in mind that the differences between the

identified and real parameters might be greater.

Nonlinear model & nonlinear controller

For this case the model has β(ν) = βνν |ν| and the controller β̃(ν) = β̃νν |ν|. From

(8.13) follows that (8.25) has to be fulfilled in order to have stable closed–loop system.

|ν| <
a2η
a3η
α̃ν − 1

a1η
αν

β̃νν − βνν
(8.25)
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Using the ratios, (8.26) is obtained.

|ν| < α̃ν

β̃νν

pβνν + 1

pβνν

(
a2η
a3η

− 1

a1η

1

pαν + 1

)

(8.26)

This inequality does not provide stability condition immediately after the parameters

have been identified, but it can be used to set a limit to the derivative control action of

the controller. This limitation in the controller will ensure the stability of the system.

If the same identification errors as described before are assumed, i.e. pβν = 0.2 and

pαν = −0.1, the worst case scenario gives limitation (8.27).

|ν| < 2

3

α̃ν

β̃νν

9a1ηa2η − 10a3η
a1ηa3η

(8.27)

Affine model & nonlinear controller

For this case the model has β(ν) = βνν |ẋ|+βν and the controller β̃(ν) = β̃νν |ν|. From
(8.13) follows that (8.28) has to be fulfilled in order to have stable closed–loop system.

|ν|
(

β̃νν − βνν

)

<
a2η
a3η

α̃ν −
1

a1η
αν + βν (8.28)

By comparing (8.26) and (8.28) it can be seen that condition (8.26) is stricter,

which means that false assumption on the process’ structure will not cause instability.

However, in this case one should be careful while limiting ν because the estimation

errors may be larger than in the previous case.

After having defined the stability bounds for the closed–loop system, the general

controller given in Fig. 8.3 can be described. Parameter K̃∗
D =

a2η
a3η
α̃ν is the part of

K̃D that does not change whether the controller is linear or nonlinear. Parameter β̃νν
equals 0 if the controller is linear. The limiter which is in the derivation channel is here

to ensure stability of the closed loop. If the process is linear the limiter does not have

any function since this channel does not exist and stability is determined immediately

after calculating the controller parameters. If the process is nonlinear, the lower limit

to the saturation block is 0, while the upper limit is given with (8.26).

8.1.3 Antiwindup

Real processes are always subject to different constraints. One such constraint that is

present in marine systems is input force (moment) saturation. For example, Charlie

USV which is controlled by rudder has a constraint that maximum rudder deflection

angle is 30◦. Model based controllers such as the one described in previous section

do not take these limits into consideration. However, they are present and can cause

significant problems in system response.

If a process is controlled by a controller consisting of an integrating channel, the

controller may give outputs which are not feasible. Specifically, integrator output may



Chapter 8. Control and Guidance of Marine Vehicles Using IS–O Experiments 144

DK∗ɶ
PKɶ

IKɶ 1
s

ννβɶ

( )tηɺ
( )tη

( )ref tη ( )tτ
δɶ

x

Figure 8.3. The I–PD controller structure

increase, even though the system cannot accept the change in the controller any more.

The problem arises when the integrator starts ”discharging”: first it has to ”discharge”

all the output which was not accepted by the process, before the process starts reacting.

This is why the output may have large overshoot and oscillations, as it is shown in Fig.

8.4. The effect which has been described is called integrator windup.
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Figure 8.4. Closed loop responses with and without antiwindup.

In order to avoid this effect, the integrator should stop integrating when controller
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output τc is greater than feasible action τref . This procedure is called antiwindup. This

procedure can be implemented as shown in Fig. 8.5 and the integral channel output in

this case is

τI = KI

∫ t

0
(ηref − η) dt−

∫ t

0
[τc − sat(τc, τmin, τmax)] dt (8.29)

where τmin and τmax are upper and lower saturation limit of the input signal to the

vehicle.

DKPK

IK 1
s ηɺ

η
refη

cτ

1
IK

refτ
Iτ maxτ

minτ

Figure 8.5. The antiwindup controller scheme.

When implementing the antiwindup scheme programmatically (in a microproces-

sor), the implementation is somewhat simpler since integration only has to be stopped

when τc > τmax. Fig. 8.4 also shows the responses when antiwindup is used. The model

function is given in green colour while the red one is using the antiwindup. Of course,

it cannot be expected for the system to be exactly like the model function because of

the limiter, but the overshoot is almost the same as in the model function. Lower figure

shows the realized controller output τref for the cases with and without antiwindup.

8.1.4 Simulation Results

The simulation results were performed in such a way that the parameters of the vessel

were identified using the identification by use of self–oscillation method as it is described

in detail in Chapter 6.

Example 8.1. A simulation example of a dominantly linear system, FALCON ROV

yaw model was used whose parameters are given in Table 7.1. Based on the procedure

for determining the appropriate model given in Chapter 7.1, it was decided that the

linear model describes the yaw degree of freedom better, and the identified parameters

are given in Table 7.2. First set of identified parameters was used to tune controller

parameters. However, it should be noticed that the real vehicle dynamics also include

a βrr term.
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Based on these identification results, a linear I–PD controller with parameters ac-

cording to (8.6) with β(r) = βr can be designed so that a 3rd order Bessel filter with

characteristic frequency ω0 = 1.5 rad
s

behavior is achieved. This model function is chosen

so that the vehicle could perform a 90◦ turn without the thrusters saturating. Using the

stability condition (8.23), inequality 3.78 < 17.84 is obtained which proves the stability

of the designed closed loop. The simulation results are shown in Fig. 8.6.
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Figure 8.6. FALCON ROV heading response.

�

Example 8.2. A simulation example of a dominantly linear system with a biased

component, FALCON ROV heave model was used whose parameters are given in Table

7.3. Based on the procedure for determining the appropriate model given in Chapter

7.1, it was decided that the linear model describes the heave degree of freedom better,

and the identified parameters are given in Table 7.4. First set of identified parameters

was used to tune controller parameters. However, it should be noticed that the real

vehicle dynamics also include a βww term.

Based on these identification results, a linear I–PD controller with parameters ac-

cording to (8.6) with β(w) = βw can be designed so that a 3rd order Bessel filter with

characteristic frequency ω0 = 0.8 rad
s

behavior is achieved. This model function is chosen

so that the vehicle could perform a 3m dive without the thrusters saturating. Using

the stability condition (8.23), inequality 1.61 < 9.5153 is obtained which proves the

stability of the designed closed loop. The simulation results are shown in Fig. 8.7.
�
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Figure 8.7. FALCON ROV depth response.

Example 8.3. A simulation example of a dominantly nonlinear system, yaw model was

used whose parameters are given in Table 7.5. Based on the procedure for determining

the appropriate model given in Chapter 7.1, it was decided that the nonlinear model

describes the heave degree of freedom better, and the identified parameters are given

in Table 7.6. First set of identified parameters was used to tune controller parameters.

Based on these identification results, an I–PD controller with parameters according

to (8.6) with β(r) = βrr|r| can be designed so that a 3rd order Bessel filter with

characteristic frequency ω0 = 1.5 rad
s

behavior is achieved. This model function is

chosen so that the vehicle could perform a 90◦ turn without the thrusters saturating.

Using the stability condition (8.27), the yaw rate should be limited to |ψ̇| < 13.4. The

simulation results are shown in Fig. 8.8 and in the third graph of the same figure it can

be seen that |ψ̇| never passes the critical value, i.e. the limit in the controller in Fig. 8.3

is never reached.

�

8.1.5 Experimental Results

The experimental results which will be shown here are obtained on yaw degree of free-

dom of Charlie USV, and were performed in Genoa, Italy together with the team from

Consiglio Nazionale delle Ricerche. The algorithm for controller tuning procedure using

the self–oscillation identification experiment can be summarized as follows:
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Figure 8.8. Heading response of the dominantly nonlinear yaw model.

Algorithm 8.4. Tuning the heading controller.

I. Perform one self–oscillation experiment with the open loop steering system and

determine magnitude Xm and frequency ω of self–oscillations.

II. Calculate α̃r and β̃r using formulae in Table 6.3.

III. Define desired closed loop dynamics (a3ψ, a2ψ and a1ψ).

IV. Calculate controller parameters using (8.6) and implement the controller using

(8.2).

�

Extensive IS–O experiments for identifying Charlie USV are given in Chapter 7.5.

Only one experiment has to be performed in order to tune heading controller for Charlie

USV. Specifically in this case, the experiment consisted in setting relay output (rudder

angle δ) to C = 25◦ and hysteresis width to xa = 10◦. The experiment is shown in

Fig. 7.20. The complete identification experiment finished after 5 oscillations which

took about 80s. The I–PD controller given with was tuned so that the desired closed

loop function is Bessel filter with characteristic frequency 0.45s−1, i.e. Gmψ (s) =
1

10.97s3+12.01s2+5.48s+1
. Heading responses are shown in Fig. 8.9. Heading response

has small overshoot and the steady state error does not exist. Rudder activity in the

steady state is low, which is one of the strongest specifications while designing the

control system in order to minimize energy consumption and mechanical stress.
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Figure 8.9. Heading and rudder angle response.

8.1.6 Other Control Algorithms

Other control algorithms will be derived only for the heading controller, for the sake

of simplicity. Heading controllers can have different structures. Naturally, heading

closed loops depend on these structures. For heading control it is rather important to

have smooth control signals, especially if actuators cannot bear abrupt changes (e.g.

rudders) which occur during step reference changes. This is why ”–” controllers are

often used, e.g. I–PD controller implies that the control difference is taken through the

integration channel, while proportional and derivative channel are connected directly

to heading, [77]. This can be quite convenient, especially if it is taken into account

that the derivation channel connected to the heading signal is in fact the yaw rate

measurement which is almost always available.

Table 8.1 shows heading closed loop transfer functions for numerous control algo-

rithms under the assumption that the steering equation is described with a Nomoto

model given in the form

ψ

ψref
=

K

s(Ts+ 1)
. (8.30)

This assumption does not limit the application of the proposed procedure since the

control algorithm can be modified in such a way that the nonlinearity inherent to the

steering equation can be compensated for, e.g. as described in the previous section

and in [58]. All algorithms, except for classic PID, have at most three poles and one
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Table 8.1. Heading closed loop transfer functions depending on the control algorithm (e =
ψref − ψ)

Name Algorithm Transfer function ψ
ψref

P KPψ
KKP

Ts2+s+KKP

PD KPψ +KD ė
KKR+KKDs

Ts2+(1+KKD)s+KKR

P–D KP e−KDψ̇
KKP

Ts2+KKDs+KKP

PI KP e+KI

∫
e KKI+KKP s

Ts3+s2+KKP s+KKI

I–P −KPψ +KI

∫
e KKI

Ts3+s2+KKP s+KKI

PID KP e+KDė+KI

∫
e KKDs

2+KKP s+KKI

Ts3+(1+KKD)s2+KKP s+KKI

PI–D KP e+KI

∫
e−KDψ̇

KKP s+KKI

Ts3+(1+KKD)s2+KKP s+KKI

I–PD KI

∫
e−KPψ −KDψ̇

KKI

Ts3+(1+KKD)s2+KKP s+KKI

finite zero. The classic PID algorithm will be excluded from analysis due to the fact

that leading the control difference directly through the derivation channel can seriously

damage the actuator. In practice, PI–D controller is used instead, [61].

8.2 Distance Keeping Control System

Mathematical model of distance keeping scheme has been described in detail in Chapter

2.6. In the following part, a Kalman filter will be developed together with an angle and

distance keeping controller. The angle controller is used to keep the vehicle at a specific

angle with regard to the flat surface, and distance controller ensures the distance to

the surface is kept at a desired value. The main sensor which is used in this control

structure is the vision–based laser distance module which is described in Chapter 3.4.

8.2.1 Kalman Filter Design

Some motivation for the use of Kalman filtering has already been mentioned in Chapter

2.6. In fact, the motivation for the use of Kalman filter is dual:

1. estimation of unmeasurable yaw rate, r and surge speed u, which are needed for

controller design.

2. estimation of the distance d from the surface when measurements are not available.

The latter motivation comes from the fact that the vision–based laser module works

with frequency of 2Hz while control is performed at 10Hz and therefore estimation is
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needed between two available measurements, see Fig. 8.10. Also, the vehicle might get

too close or too far from the plane–like surface which leads to laser dots disappearing

from the image – estimation in these cases is crucial for system operation.

0 1 2 3 4 5 6 7 8 9 10 11 12 ...k =

measured:
d, φ

measured:
ψ

estimated:
d, φ, ψ, u, r

Figure 8.10. Timeline of measurements and estimations.

The signals that are measured in the distance keeping setup are compass heading,

ψ, distance from obstacle, d, and angle with regard to the obstacle, ϕ, (two latter are

obtained from the vision–based distance sensor). The estimates from the Kalman filter

will be d, ϕ, heading ψ, surge speed u and yaw rate r.

The mathematical model that describes distance keeping is explained in detail in

Chapter 2.6. That model is given in a general form. Since it has been shown in

Chapters 7.3 and 7.6 that the dynamic model of VideoRay ROV is best described

using a nonlinear model with constant drag parameters, i.e. β(r) = βrr|r| and β(u) =
βuu|u|, the distance keeping model for that vehicle is given with equations (8.31)–(8.37).

Detailed description of model parameters can be found in Chapter 2.6.

u̇ = −βuu
αu

|u|u+
1

αu
X (8.31)

ṙ = −βrr
αr

|r|r + 1

αr
N (8.32)

ϕ̇ = r + vϕ (8.33)

ψ̇ = r + vϕ (8.34)

ḋ = −u cosϕ+ vd (8.35)

v̇ϕ = 0 (8.36)

v̇d = 0 (8.37)

Having this model in mind, an extended Kalman filter (EKF) in its discrete form can

be designed, see [39] and [82]. If the state vector is

y(k) =
[

u(k) r(k) ϕ(k) ψ(k) d(k) vϕ(k) vd(k)
]T
,

discrete–time EKF prediction and correction equations are derived from the mathemat-

ical model and are presented in Table 8.2. The minus sign in the superscript denotes

the prediction. A is the Jacobian matrix in the form given with (8.38). Covariance



Chapter 8. Control and Guidance of Marine Vehicles Using IS–O Experiments 152

matrices are determined based on a priori measurements as

QKF = 0.1I7x7

P0 = 1000I7x7

R =






0.5 0 0

0 10 0

0 0 0.1




 .

Table 8.2. Distance keeping Kalman filter equations

Prediction equations:

u−(k) = u(k − 1)− T βuu
αu

|u(k − 1)|u(k − 1) + T 1
αu
X(k)

r−(k) = r(k − 1)− T βrr
αr

|r(k − 1)|r(k − 1) + T 1
αr
N(k)

ϕ−(k) = ϕ(k − 1) + Tr(k − 1) + Tvϕ(k)

ψ−(k) = ψ(k − 1) + Tr(k − 1) + Tvϕ(k)

d−(k) = d(k − 1)− Tu(k − 1) cosϕ(k − 1) + Tvd(k − 1)

v−ϕ (k) = vϕ(k − 1)

v−d (k) = vd(k)

P−(k) = A(k)P(k − 1)A(k)T +QKF

Correction equations:

K(k) = P−(k)H(k)T
[
H(k)P−(k)H(k)T +R(k)

]−1

x̂(k) = x̂−(k) +K(k)
[
y(k)−H(k)x̂−(k)

]

P(k) = [I−K(k)H(k)]P−(k)

A(k) = I7x7 + T















−2βuu
αu

|u(k)| 0 0 0 0 0 0

0 −2βrr
αr

|r(k)| 0 0 0 0 0

0 1 0 0 0 1 0

0 1 0 0 0 1 0

− cosϕ(k) 0 0 u(k) sinϕ(k) 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0















(8.38)
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Measurement matrix, H(k), which appears in correction equations has a form H1(k)

given with (8.39) when measurements from the vision–based laser module are available,

and H2(k) given with (8.40) when measurements are not available (at times between

two measurements, or when laser dots are not found).

H1(k) =






0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0




 (8.39)

H2(k) =






0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0




 (8.40)

The unknown dynamic model parameters which appear in Kalman equations will be

identified using the procedure described in the following section.

8.2.2 Distance Keeping Controller

The control scheme is given in Fig. 8.11. Underwater vehicle is presented with a gen-

eral dynamic and kinematic block while the sensors that are used are magnetic compass

(giving ψ measurements) and laser based distance module (giving ϕ and d measure-

ments). Kalman filter outputs are used in both angle and distance controllers. The
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refϕ

dɶϕɶ ψɶrɶuɶ dvɶ vϕɶ

COMPASS

Figure 8.11. Distance keeping control scheme.

main objective of the distance keeping controller is to keep a desired distance from a

flat surface. However, from (8.35) it is obvious that the angle relative to the surface

and the distance are coupled. This coupling can be resolved if the vehicle is kept at a

constant angle, which is chosen to be 0. This is the reason why an angle ϕ controller

should be developed also. Setting ϕREF = 0 ensures that ϕ ≈ 0. That is why, prior to
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activating the distance d controller, angle ϕ controller is activated first.

Both angle and distance controllers which were implemented are of an I–PD form

with a modification used for compensating the nonlinear term of the process, as it has

already been described in Chapter 8.1.1. The angle controller is given with (8.41). It

is worth noting that the derivative channel has estimated yaw rate r̃ from the Kalman

filter instead of ˙̃ϕ. The reference value is set to ϕref = 0.

N (t) = KIϕ

t∫

0

[ϕ̃REF (t)− ϕ̃ (t)] dt−KPϕϕ̃ (t)−KDϕr̃ (t) (8.41)

The distance controller is given with (8.42). It is worth noting that the derivative

channel has −ũ(t) cos ϕ̃(t) instead of
˙̃
d.

X (t) = KId

t∫

0

[

dREF (t)− d̃ (t)
]

dt−KPdd̃ (t)−KDd [−ũ(t) cos ϕ̃(t)] (8.42)

Parameters of both controllers are set so that the closed loop transfer function for

corresponding feedback loop (x = ϕ for angle closed loop and x = d for distance closed

loop) is equal to the model function

Gm (s) =
1

a3xs3 + a2xs2 + a1xs+ 1

which is stable. In that case, according to (8.5) the controller parameters for angle

control are given with

KIϕ =
1

a3ϕ
αr

KPϕ =
a1ϕ
a3ϕ

αr (8.43)

KDϕ =
a2ϕ
a3ϕ

αr − βrr|r̃|

and for distance control with

KId =
1

a3d
αu

KPd =
a1d
a3d

αu (8.44)

KDd =
a2d
a3d

αu − βuu| − ũ cos ϕ̃|.

From (8.43) and (8.44) follows that controller parameters are time varying. A

detailed stability analysis of the closed loop is given in Chapter 8.1.2 and the main result

is that the structural and robust stability can be ensured by limiting the derivation
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channel action.

8.2.3 Experimental Results

The identification by use of self oscillations which is presented in detail in Chapter 6 is

used to determine unknown system parameters which are used for Kalman filter tuning

as well as tuning of angle ϕ and distance d controllers. The algorithm for tuning the

complete distance keeping controller is as follows:

Algorithm 8.5. Tuning the distance keeping system.

I. Perform IS–O method on yaw DOF using compass measurements in order to

obtain unknown αr and βrr, as it is shown in Fig. 8.12. Refer to Chapter 6.6.1

for details. It is better to use compass measurements ψ than ϕ since compass

measurements are usually more reliable.
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refψ

Figure 8.12. Distance keeping tuning algorithm: Step 1.

II. Set angle ϕ controller according to (8.43) and keep ϕref = 0, as shown in Fig.

8.13. Estimated yaw rate r is still not available therefore differentiate heading ψ

do obtain r, i.e. r(k) = 1
T
[ψ(k)− ψ(k − 1)].
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refϕ
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Figure 8.13. Distance keeping tuning algorithm: Step 2.

III. Perform IS–O method on surge DOF using measured distance from the vision-

based laser distance module in order to obtain unknown αu and βuu, as it is shown

in Fig. 8.14. Refer to Chapter 6.6.2 for details.

IV. Tune Kalman filter using the estimated αr, βrr, αu, βuu and equations given in

Table 8.2 (see Fig. 8.15).
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Figure 8.14. Distance keeping tuning algorithm: Step 3.
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Figure 8.15. Distance keeping tuning algorithm: Step 4.

V. Use Kalman filter estimates as angle and distance controller inputs, as it is shown

in Fig. 8.11.

�

Experimental result of IS–O method applied to the yaw DOF is analyzed in detail in

Chapter 7.3, while the same method applied to surge DOF is shown in Fig. 7.32. Based

on these experiments, unknown dynamic model parameters were calculated.

Fig. 8.16 demonstrates the responses of the complete closed loop distance keeping

system to the ramp and step referent distance change and constant angle ϕREF = 0 with

the previously described I–PD control algorithm. It can be seen that the Kalman filter

estimates the distance value well in between the measurements. Also, surge (uEKF ) and

yaw (rEKF ) speed estimates are smooth and show that the disturbance was significant

during the experiments (mostly due to the influence of the tether). However, the

controller preforms well in transient as well as the steady state.

The case where measurements are not available for quite some time are shown in

Fig. 8.17. At times t = 435s and t = 455s the laser dots from the laser–based distance

module become unavailable due to an external disturbance and they appear back at

t = 440s and t = 460s, respectively. During this time, the Kalman filter estimated the

behavior of the vehicle properly and control was not lost.
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Figure 8.16. Responses of the closed loop system to the ramp and the step reference distance
change and constant angle ϕREF = 0.

8.3 Line Following

The line following guidance goal is to set to zero the range d from the vessel and the

target line, while maintaining the angle β = ψ− γ between the desired line orientation

γ and the vehicle heading ψ in
(
−π

2 ,
π
2

)
. Detailed equations for modelling the line

following behaviour are given in Chapter 2.7.

Line following controllers can be implemented using two procedures, both of which

will be described in the following part. Method 1 will be called direct actuator control

since the line following controller will generate actuator command signals directly (rud-

der angle). Method 2 will be called indirect actuator control since the line following

controller will generate commanded signals for the lower control level (heading control).

Both methods have advantages and disadvantages and they will be referred to later.

8.3.1 Direct Actuator Control (Method 1)

Direct actuator control method generates actuator commands (rudder angle), which

implies that the inner closed loop is yaw rate based as shown in Fig. 8.18 (Method 1).

This method is advised if the vehicle control systems allows direct actuator commands,

i.e. if inner closed loop controllers can be tuned, mostly because of it’s simplicity. The

design procedure is based on a model function and is described in the following part.
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Figure 8.18. Line following control structure – Method 1

This method assumes that the low level controller is a yaw rate controller, i.e.

the line following controller gives the reference yaw rate rref , as output. Firstly, the

yaw rate closed loop transfer function design is presented, and than the line following

controller design is given.



Chapter 8. Control and Guidance of Marine Vehicles Using IS–O Experiments 159

Yaw rate controller

The yaw rate controller is a P–D controller modified to compensate the process’ non-

linearity, if it exists, and it is given with (8.45).

N = KIr

t∫

0

(rref − r) dt−KPrr + β̃(r)r (8.45)

The inner closed loop transfer function is then

r

rref
=

1
α̃r

KIr
︸︷︷︸

a2r

s2 + KPr

KIr
︸︷︷︸

a1r

s+ 1

where a2r and a1r are the desired closed loop transfer function parameters. The con-

troller parameters are then given with (8.46).

KPr =
a1r
a2r

α̃r

KIr =
1

a2r
α̃r

(8.46)

Line following controller

According to Fig. 8.18, the open loop transfer function is given with

d

rref
=
ur
s2

r

rref
,

the line following controller is given with

rref = KPd (dref − d) +KDd
d

dt
(dref − d) (8.47)

which yields the closed loop transfer function given with (8.48) where a4d, a3d, a2d and

a1d are desired line following closed loop transfer function parameters.

d

dref
=

1 + KDd

KPd
s

a2r
urKPd
︸ ︷︷ ︸

a4d

s4 + a1r
urKPd
︸ ︷︷ ︸

a3d

s3 + 1
urKPd
︸ ︷︷ ︸

a2d

s2 + KDd

KPd
︸︷︷︸

a1d

s+ 1
(8.48)
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Combining (8.46) and (8.48), the line following controller parameters can be calculated

using (8.49).

KIr =
a2d
a4d

α̃r

KPr =
a3d
a4d

α̃r

KPd =
1

ura2d

KDd =
a1d
ura2d

(8.49)

Now it is evident that by setting the desired line following closed loop dynamics, the

inner closed loop parameters are set automatically.

Algorithm 8.6. Direct actuator control (Method 1).

I. Perform one self–oscillation experiment with the open loop steering system (6.33)

and determine magnitude Xm and frequency ω of self–oscillations.

II. Calculate α̃r and β̃(r) using expressions in Table 6.3.

III. Define desired line following closed loop dynamics (a4d, a3d, a2d and a1ψ).

IV. Calculate yaw rate and line following controller parameters using (8.49) and iden-

tified α̃r.

V. Implement the yaw rate (8.45) and the line following (8.47) controllers.

�

8.3.2 Indirect Actuator Control (Method 2)

The second approach, indirect actuator control, is to generate referent heading as output

from the line following controller (Method 2). This implies that there exists an inner

heading based closed loop as shown in Fig. 8.19. If heading controller already exists

and its structure or parameters cannot be changed, Method 2 is advised because the

line following controller is tuned without changing the dynamics of the inner control

loop. Design procedure for this method is also model based and will be described in

the following part.

All classical closed loop transfer functions are listed in Table 8.1. As it has already

been stated, all transfer functions have maximally three poles and one finite zero, apart

from the case when PID controller is used and two zeros are generated. Since classical

PID is not used for marine control purposes, the assumption is made that the low level

heading closed loop can have three poles and one finite zero. This transfer function can

be identified using the IS–O procedure as it is described in Chapter 6.6.4.
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Figure 8.19. The line following control structure – Method 2

Let us suppose that the identified transfer function is given in a form (8.50).

ψ

ψref
=

b1ψs+ 1

a3ψs3 + a2ψs2 + a1ψs+ 1
. (8.50)

The parameters in (8.50) are not known so two self–oscillation experiments have to be

carried out as described in Chapter 6.6.4.

Measured variables that can be used in the line following controller tuning are

heading ψ, yaw rate r and distance to the line d. These three states are not enough to

position poles of the transfer function (8.50) using the pole placement method. That is

why, for the purpose of controller design, the transfer function (8.50) is simplified using

the Algorithm 8.7. The aim of this algorithm is to approximate the transfer function

(8.50) with a second order transfer function with one finite zero, given with (8.51).

ψ

ψref
≈ b̄1ψs+ 1

ā2ψs2 + ā1ψs+ 1
(8.51)

Algorithm 8.7. Simplification of heading closed loop transfer function.

I. Calculate additional parameters Q, R, D, S and T .

Q =
1

9a23ψ
(3a1ψa3ψ − a22ψ)

R =
1

54a33ψ
(9a3ψa2ψa1ψ − 27a23ψ − 2a32ψ)

D = Q3 +R2

S =
3

√

R+
√
D

T =
3

√

R−
√
D

II. Find the real pole

p = −1

3

a2ψ
a3ψ

+ S + T

.
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III. Find the two complex poles’ parameters

ωn =

√

1

−pa3ψ
,

ζ =

√−pa3ψ
2

(
a2ψ
a3ψ

+ p

)

.

IV. Calculate the new, simpler, transfer function (8.51) where

b̄1ψ = b1ψ +
1

p
,

ā1ψ =
2ζ

ωn
,

ā2ψ =
1

ω2
n

.

�

Line following controller

According to Fig. 8.19, open loop transfer function is given with

d

ψref
= −ur

s

ψ

ψref
,

where ψ
ψref

is described with (8.51). The line following controller is than given with

ψref = −Kψψ −Krr −Kdd+KId

t∫

0

(dref − d) dt (8.52)

which yields the closed loop transfer function (8.53) with

a0 =
urKId

ā2ψ + b̄1ψKr

,

a1 =
urKd + b̄1ψKIdur

ā2ψ + b̄1ψKr

,

a2 =
1 +Kψ + b̄1ψKdur

ā2ψ + b̄1ψKr

a3 =
ā1ψ +Kr + b̄1ψKψ

ā2ψ + b̄1ψKr

.

d

dref
=

(
b̄1ψs+ 1

)
a0

s4 + a3s3 + a2s2 + a1s+ a0
(8.53)
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From here, the controller parameter vector ΘK =
[

Kr Kψ Kd KId

]

can be cal-

culated by solving the matrix equation (8.54).








1− a3b̄1ψ b̄1ψ 0 0

−a2b̄1ψ 1 b̄1ψur 0

−a1b̄1ψ 0 ur urb1ψ
−a0b̄1ψ 0 0 ur







ΘK =








a3ā2ψ − ā1ψ
a2ā2ψ − 1

a1ā2ψ
a0ā2ψ








(8.54)

The algorithm for designing line following controllers according to Method 2 is as

follows.

Algorithm 8.8. Indirect actuator control (Method 2).

I. Perform two self–oscillation experiments on a closed loop steering system (6.49)

and determine magnitudes Xm1, Xm2 and frequencies ω1, ω2 of self–oscillations.

II. Calculate a3ψ, a2ψ, a1ψ and b1ψ using (6.52).

III. Use the Algorithm for simplification of heading closed loop transfer function to

calculate ā2ψ, ā1ψ and b̄1ψ.

IV. Define desired line following closed loop dynamics (a4, a3, a2 and a1).

V. Calculate line following controller parameters using (8.54).

VI. Implement the line following controller using (8.52).

�

8.3.3 Monotonous Approach

If the line that the vehicle should approach is too far from the current vessel position,

the vessel might start performing a spiral movement toward the line, or even worse

it may start rotating at the smallest possible turn radius. This section will describe

procedures which prevent this effect from happening in cases of direct and indirect

actuator control.

Direct actuator control

The line following controller in this method is given with (8.47) where the assumption

is made that dref = 0. If d is large enough, the proportional part may result in rref so

large that the vessel starts rotating or moving spirally towards the line as it is shown in

Fig. 8.20(a). In this case the distance to the path is not monotonously decreasing and

this presents an unacceptable behavior. The simulation was conducted with γ = 90◦,
initial vessel heading ψ(0) = 90◦ and initial distance from the line d(0) = 75m.

The controller output rref (blue line) and vessel yaw rate r (red line) are given in

Fig. 8.20(b), together with the rudder angle.
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Figure 8.20. Spiral movement with Method 1: (a) line following, (b) responses.

This problem can be heuristically addressed if the reference heading is demanded to

be zero, i.e. rref(d, β) = 0. If this is inserted into (8.47), expression (8.55) is obtained,

where β ∈
(
−π

2 ,
π
2

)
.

sin (β) = −
(

KPd

KDdur
d+

ν

ur

)

(8.55)

Equation (8.55) has a solution if and only if

∃β̄ ∈
(

−π
2
,
π

2

)

:

∣
∣
∣
∣

KPd

KDdur
d+

ν

ur

∣
∣
∣
∣
< sin β̄. (8.56)
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If maximum absolute value of the sea current ν is denoted with ν̄, and under the

assumption that controller parameters and ur are positive, (8.56) has a solution if

|d| < KPd

KDd

(
ur sin β̄ − ν̄

)
= d̄. (8.57)

Since |d| > 0 and sin β̄ < 1, the trivial solution ν̄ < ur is embedded. In other words,

limiting the value d in (8.47), the heuristic line following control law is

rref = −KPdsat(d,−d̄, d̄)−KDdḋ (8.58)

which forces the vessel to approach the target line for large values of |d| with approach

angle β such that rref = 0, i.e.

β =







arcsin
(

− sin β̄ + ν̄+ν
ur

)

, d > d̄

arcsin
(

sin β̄ − ν̄+ν
ur

)

, d < −d̄
,

maintaining β ∈
(
−π

2 ,
π
2

)
also in the presence of the effects of measurement noise and

underlying system dynamics. It is worth noting that for large values of |d| applying the

control law (8.58) is equivalent to requiring value of ḋ to be constant.

Using the saturated control law (8.58), path of the vessel shown in Fig. 8.20(a) is

now shown in Fig. 8.21(a) from where it is obvious that the approach to the desired

line is monotonous at a predefined approach angle β̄ = 45◦. The controller output rref
(blue line) and vessel yaw rate r (red line) are given in Fig. 8.21(b), together with the

rudder angle.

Indirect actuator control

For the direct actuator control, the proportional channel of the controller must be

limited in order to ensure constant approach angle β = ψ − γ to the line. In indirect

actuator control the same has to be ensured in order to avoid paths toward the line as

shown in Fig. 8.22(a), where the controller output (blue line), heading of the vessel (red

line) and commanded rudder angle are given in 8.22(b). The line following controller

for this method is given with (8.52). The simulation was conducted with γ = 90◦,
initial vessel heading ψ(0) = 90◦ and initial distance from the line d(0) = 70m. From

Fig. 8.22(b) it is obvious that the vehicle was circling before it converged to the desired

path.

Ensuring constant approach angle in this method is much simpler since the controller

itself gives commanded heading to the vehicle. In other words, if the maximum desired

approach angle is β̄, the controller output has to be limited so that

−β̄ − γ < ψref < β̄ + γ.
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Figure 8.21. Method 1 with limited proportional channel: (a) line following, (b) responses.

This means that the controller given with (8.52) is in fact

ψref = sat



−Kψψ −Krr −Kdd−KId

t∫

0

d dt,−β̄ − γ, β̄ + γ



 (8.59)

where it is assumed that dref = 0. Since the controller output is limited, it is crucial to

perform antiwindup algorithm to the integrating channel as it is described in Chapter

8.1.3. The simulation results using the proposed algorithm for achieving monotonous

approach to the path is given in Fig. 8.23(a). Fig. 8.23(b) shows commanded and

vessel heading, and the commanded rudder angle.
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Figure 8.22. Spiral movement with Method 2: (a) line following, (b) responses.

8.3.4 Experimental Results

The experimental results were obtained from autonomous catamaran Charlie. Forward

speed was kept almost constant during the experiments by commanding n2 = 36[V2].

Both direct and indirect actuator control methods were applied and the results are

given in the following part.



Chapter 8. Control and Guidance of Marine Vehicles Using IS–O Experiments 168

0 40 80 120 160 200 240 280
0

40

70

x [m]

y 
[m

]

(a)

0 50 100 150 200 250 300

45

90

[°
]

 

 

ψ
ref

ψ

0 50 100 150 200 250 300
−30

−20

−10

0

10

t [s]

δ 
[°

]

(b)

Figure 8.23. Method 2 with limited controller output: (a) line following, (b) responses.

Direct actuator control (Method 1)

The controller parameters for this method were tuned based on yaw degree of freedom

model parameters which were identified using the IS–O method. Results of the exper-

iment are given in Chapter 7.5 and the algorithm is given with Algorithm 8.6. The

proportional channel of the algorithm was saturated as described in Chapter 8.3.3 so

that the approach angle (with ν̄ = 0) is β̄ = 30◦.
The obtained path is shown in Fig. 8.24(a) and responses during the path in Fig.

8.24(b).

Indirect actuator control (Method 2)

The controller parameters for this method were tuned using the heading closed loop

model parameters which were identified using the IS–O method. As it was already
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Figure 8.24. Direct actuator control (Method 1): (a) U–turn and line following, and (b)
responses.

described in Chapter 7.7, two cases were observed so that Algorithm 8.8 would be

tested on two different inner control loop structures:

• Case 1 includes a P–D heading controller and

• Case 2 an I–PD heading controller.

Results of the self–oscillation experiments for Case 1 are given in Fig. 7.7 and in

Fig. 7.7 for Case 2. The controller output was saturated as described in Chapter 8.3.3

so that the approach angle is β = 30◦.
The paths for cases 1 and 2 are shown in Fig. 8.25(a) and Fig. 8.26(a), respectively.

Corresponding responses are shown in Fig. 8.25(b) and Fig. 8.26(b), respectively. The

results show that the rudder activity in the steady state is sufficiently low and that line

following is performed without error. This proves that design procedure is valid and

can be used regardless of the inner loop structure.
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Figure 8.25. Method 2, Case 1: (a) U–turn and line following, (b) responses.

8.3.5 On Choosing the Model Transfer Function

A model transfer function used in controller design for both methods described before

has to be chosen appropriately. Given the fact that during transient response rudder is

almost always saturated (in order to achieve fast dynamics), the criterion for choosing

the model transfer function is rudder activity during steady state. It is required that

the rudder activity in steady state is low in order to minimize energy consumption and

mechanical stress. Fig. 8.27 clearly demonstrates this issue. First 30s of the response is

obtained with model function in Bessel form with characteristic frequency ωc = 0.5s−1

(”faster” model). The following part of the response is obtained with model Bessel

function with ωc = 0.211s−1 (”slower model”). Since the model function describes

only input–output behavior of the closed loop, internal signals have to be checked a

posteriori. The results were obtained from Charlie USV.
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Figure 8.26. Method 2, Case 2: (a) U–turn and line following, (b) responses.
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Chapter 9

Conclusion

The area of marine robotics is characterized by complex mathematical modeling of

hydrodynamic effects and highly unpredictable environmental influences. The problems

of guidance and control of marine vessels in real life conditions has to address these

issues. Prior to designing control structures, a reasonably accurate model of the vessel

has to be known. Since the dynamics of the vessels may change during operation due to

different payload suites, a need for quick identification method which is feasible in field

conditions is needed. This thesis presents a method for identifying system parameters

based on self–oscillations. The self–oscillations are in fact a usual procedure in the

well known ”zig–zag” experiment used to determine ships manoeuvring capabilities.

However, the proposed methodology is used for identifying nonlinear drag and is applied

to underwater vehicles.

The conclusions have been raised throughout the thesis at the end of each chapter,

summarizing basic ideas which had been presented. The mathematical models for ma-

rine vehicles are given and their simplifications which are appropriate for control design

are derived. These simplifications are given for small surface, rudder–actuated vehicles

and unmanned underwater vehicles. In addition to that, mathematical modeling of

distance keeping and line following for underactuated marine vehicles is presented.

The thesis’ emphasis is on the application of the described algorithms on real ve-

hicles, hence models and technical characteristics of three case study vehicles have

been described: a micro remotely operated underwater vehicle (VideoRay), a small

autonomous underwater vehicle (AutoMarine) and a small unmanned surface vehicle

(Charlie). In addition to that, two vision–based sensor suites are presented: laser

distance module and laboratory apparatus for mathematical model parameters identi-

fication.

In order to make a comparison between the proposed identification method based on

self–oscillations (IS–O), three conventional methods for identification of marine vehicle’s

parameters have been presented with their advantages and disadvantages: the least–

squares algorithm, open loop step response technique and the ”zig–zag” manoeuvre.

The proposed IS–O method is based on self–oscillations, so the theory of harmonic

172
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linearization is briefly presented. Three theorems and two lemmas which are relevant to

application of the method on marine vehicles are given and proved. The IS–O method is

described in detail, for a class of nonlinear systems, and a generalized matrix algorithm

is given for static (Type 0) systems. The modifications of the proposed methodology for

discrete–time systems, systems with delays and astatic (Type k) systems enable the use

of the IS–O method on marine vehicles. This application is described on case studies of

identifying yaw, surge and heave models, together with identifying closed loop heading

systems.

The basis of the thesis are the experiments which have been performed on real

vehicles in order to prove that the proposed methodology is applicable on real marine

vehicles. Extensive experimental results are presented for

• identifying yaw DOF of VideoRay ROV (comparison with the least–squares method

is given),

• identifying yaw DOF of AutoMarine AUV (comparison with the open loop step

response method is given), and

• identifying yaw DOF of Charlie USV (comparison of two day trial results with

the least–squares method is given).

These results have proven that the IS–O method gives sufficiently accurate identifica-

tion results, with significantly lower experiment duration time. As a consequence, the

method is advised to be used in situations where quick in the field identification is

necessary. The experimental results which have been obtained solely for control design

purposes are

• identifying surge DOF of VideoRay ROV (used for distance controller tuning)

and

• identifying heading closed loop of Charlie USV (used for line following controller

tuning).

Having said that, the reason for identification of mathematical model parameters lies in

the necessity for tuning controllers. The thesis presents low level controllers which are

tuned on the basis of the IS–O method. Stability analysis resulted in slight modifications

to the conventional controllers, which ensure robust and structural stability of the

closed loop systems. In the thesis, two methods for design and tuning of line following

controllers is presented, based on the available actuation signals. To sum up, the IS–O

method results have been used for:

• tuning of heading controllers (applied to Charlie USV),

• tuning of the Kalman filter parameters (applied to VideoRay ROV) which is used

to estimate unmeasurable states or unavailable measurements,
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• tuning of distance keeping controllers (applied to VideoRay ROV), and

• tuning of line following controllers in the cases when direct actuator control is

available and when it is not (applied to Charlie USV).

The dissertation includes 10 descriptive examples which should help the interested

reader in understanding the matter.

The original scientific contributions of the thesis are:

1. Identification of the hydrodynamic drag, mass and inertia of the nonlinear marine

vessel mathematical model on the basis of transient response.

2. Matrix based algorithm for determining parameters of linear time invariant static

(Type 0) and astatic (Type k) systems, discrete–time systems and systems with

delays by the use of self–oscillations.

3. Experimentally verified procedure for parameter identification of a class of affine

nonlinear models by the use of self–oscillations and its application on marine

vehicles (surface and underwater).

4. Design of nonlinear autopilots by the use of self–oscillations and ensuring struc-

tural stability of marine vehicles’ control system.

5. Design of the line following controllers by the use of self–oscillations.

6. Design of the distance–keeping controllers by the use of self–oscillations.

7. Experimental accuracy analysis of the identification method based on the use of

self–oscillations.
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Nomenclature

¯ logical negation or mean value

• variables regarding some conventional identification method

·calib calibration parameters for the vision–based laser distance module

◦ variables regarding the novel IS–O identification method

˜ identified parameter or an estimate

∧ logical AND operator

· ref reference value

ˆ the predicted value

A(k) the extended Kalman filter state matrix

B buoyancy

{B} body–fixed coordinate frame

C output value of the relay

CA(ν) the added–mass Coriolis and centripetal matrix

CRB rigid–body Coriolis and centripetal matrix

CG center of gravity

CP centre of pressure

CT constant parameter

D forward distance of from the flat surface (in distance keeping ap-

plications)

D(ν) total hydrodynamic damping matrix

Ê the vector of prediction errors

{E} Earth–fixed coordinate frame

F (x) function describing a static nonlinear element

Fd nonlinear characteristic acting on the falling input signal

Fu nonlinear characteristic acting on the rising input signal

GL(p) transfer function of the linear part of the process

GN the describing function of the nonlinear element

H(k) the Kalman filter measurement matrix

I0 inertia tensor with respect to {B}
Inxn identity matrix of size n

Ii moment of inertia about arbitrary axis i

Iij product of inertia

J, J1, J2 matrices used in the kinematic model

J
(

θ̂
)

the least–squares criterion function

K roll moment

KI·, KP ·, KD· integral, proportional and derivative controller gains

Kss the steady–state value

L distance from the rudder to the center of mass
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LL, LR distances from the left and right laser beam to the flat surface

M pitch moment

MA the added-mass matrix

MRB rigid–body inertia matrix

N yaw moment

P, Q vectors of real and imaginary parts of the describing function ob-

tained during experiments

PN real part of the describing function

QKF , P0, R the Kalman filter covariance matrices

QN imaginary part of the describing function

R(t) reference value

S(t) step input (the Heaviside function)

TL linear system equivalent time constant

TN nonlinear system equivalent time constant

TS sampling time

Td time delay

U absolute speed of the vessel

W weight

X surge force

Xm magnitude of self–oscillations

Y sway force

Y the vector of measurements

Y0, YPk, YQk Fourier series decomposition coefficients of the output of the non-

linear element

Z heave force

∆ disturbance acting at the input of the process (or constant signal

at the output of the nonlinear element)

Φ angle of the vessel with regard to the flat surface (in distance

keeping applications)

Φ the matrix of regressors

Θ vectors of unknown parameters

θ(k) the vector of unknown parameters

ΘK vector containing controller parameters

αν single degree of freedom generalized inertia parameter

β(ν(t)) single degree of freedom generalized drag parameter

βν single degree of freedom constant drag parameter

βνν single degree of freedom linear drag parameter

δ rudder angle

δa attack angle

δf angle of the flow in the body–fixed reference frame

δs stall angle



Nomenclature 184

ε̂(k) prediction error

ε number of experiments

εv the velocity error

η 6–by–1 vector of positions and orientations

η1 3–by–1 vector of positions

η2 3–by–1 vector of orientations

η(t) single degree of freedom position or orientation variable

γ orientation of the straight line in the line following model

λ robustness parameter in the model decision making process

ν 6–by–1 vector of linear and angular velocities

ν1 3–by–1 vector of linear velocities

ν2 3–by–1 vector of angular velocities

ν(t) single degree of freedom velocity variable

ω frequency of self–oscillations

ω vector of frequencies of self–oscillations obtained during experi-

ments

φ roll angle

ϕ(k) the regression vector

ϕ angle with regard to a flat surface (in the distance keeping model)

or with regard to a line (in the line following model)

ψ yaw angle (heading)

ρA the mass density of the body

σ·% standard deviation

τRB the generalized vector of forces and moments

τ 6–by–1 vector of forces and moments acting on the rigid body

τi vector consisting of commanded thrusts for each actuator

τ(t) single degree of freedom force or moment variable

τ i thrust generated by the i–th actuator

τ·E single degree of freedom external disturbance

τmin, τmax upper and lower saturation limit of the input signal

θ pitch angle

af , ab, bf , bb thruster coefficients

ai,bi linear process transfer function parameters

ai· parameters of the model transfer function

aiψ, biψ heading closed loop transfer function parameters

athruster, bthruster thruster coefficients

au,n, ad,n Taylor series coefficients of the nonlinear function

cF rudder coefficient

d distance from a flat surface (in the distance keeping model) or from

a line (in the line following model)

dDM distance between the left and the right laser



Nomenclature 185

f(·) general nonlinear process

f0(·),fR(·),fI(·) coefficients of the general nonlinear process development into Fourier

series

g (η) vector of restoring forces

kr1, kr2 constant parameters used for modeling the thrust exerted by the

rudder

m mass

ni vector consisting of commanded inputs for each actuator

ni commanded input for the i–th actuator

p roll speed and the differential operator

px relative error between the real and the identified parameter x

q pitch speed

qi moment generated by the i–th actuator

q−1 backward discrete operator

r yaw speed

rG centre of gravity with respect to {B}
u surge speed

u̇⋄ integral of measured speed

ua ambient water velocity

ur constant surge speed in the line following model

uwake wake speed

v sway speed

vd, vϕ disturbances in the distance keeping model

vl disturbance perpendicular to the line in the line following model

vav average flow passing through the rudder

w heave speed

x absolute position with regard to the N–axis of the {E} frame

x(t) signal at the input of the nonlinear element

x∗ monoharmonic component of the signal x(t)

x0 biased component of the signal x(t)

xL, xR distances of the left and the right laser dot from the central vertex

within the acquired image

xa width of the hysteresis

x∗a modified hysteresis width

y absolute position with regard to the E–axis of the {E} frame

y(t) process output

yN (t) output from the nonlinear element

z depth

IS–O identification by use of self–oscillations

L–S least–squares

SR step response



Abstract

Use of Self–Oscillations in Guidance and Control of Marine Vessels

This dissertation presents an identification method based on self–oscillations (IS–O)

used for the purpose of guidance and control of marine vessels (underwater and sur-

face). The proposed method is described for a general class of nonlinear systems and

a general, matrix based algorithm is given for static (Type 0) linear time invariant

systems with its modification for discrete–time systems, astatic systems (Type k) and

systems with delays. Special attention is devoted to a class of affine nonlinear system

models which are used to describe the dynamics of marine vehicle. The main advan-

tage of the proposed method is its applicability during in the field operation and time

parsimony. The IS–O method is experimentally tested on two unmanned underwater

vehicles and an unmanned surface marine vessel, and comparison to conventional iden-

tification methods is given, proving the accuracy of the proposed method on real marine

vehicles operating in the field conditions. The identification results are used for the de-

sign of heading controllers, distance keeping controllers and line following controllers.

Experimental results obtained from real marine vehicles are presented in the thesis.

Keywords: marine vessels, unmanned underwater vehicles, unmanned surface vehi-

cles, nonlinear systems, identification, self–oscillations, control and guid-

ance of marine vehicles, line following, distance keeping
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Sažetak

Primjena vlastitih oscilacija u vo�enju i upravljanju plovilima

Ova disertacija predstavlja identifikacijsku metodu temeljenu na vlastitim oscilacijama

(IVO) koja se koristi u svrhu vo�enja i upravljanja plovilima (podvodnim i površin-

skim). Predloženi postupak je opisan za opću klasu nelinearnih sustava i dan je opći

algoritam, temeljen na matričnom zapisu, za statičke linearne vremenski nepromjenjive

sustave uz modifikacije za diskretne sustave, astatičke sustave i sustave s transportnim

kašnjenjem. Posebna je pažnja posvećena klasi afinih nelinearnih modela sustavâ koji se

koriste za opis dinamike plovila. Glavna prednost predložene metode je primjenjivost ti-

jekom rada na terenu i vremenska štedljivost. IVO postupak je eksperimentalno ispitan

na dvije bespilotne ronilice i bespilotnom površinskom plovilu, i dana je usporedba sa

konvencionalnim identifikacijskim postupcima, koja dokazuje točnost predloženog po-

stupka na stvarnim plovilima koja rade u terenskim uvjetima. Rezultati identifikacije

su iskorǐsteni za projektiranje regulatorâ kursa, regulatorâ udaljenosti i regulatorâ za

praćenje linije. Eksperimentalni rezultati dobiveni na stvarnim plovilima su prezenti-

rani u disertaciji.

Ključne riječi: plovila, bespilotne ronilice, bespilotna površinska plovila, nelinearni

sustavi, identifikacija, vlastite oscilacije, vo�enje i upravljanje plovil-

ima, praćenje linije, držanje udaljenosti
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recognitions Josip Lončar for the second, third and fourth year of my diploma studies.

From January until April 2008, I was doing research at the Consiglio Nazionale delle

Ricerche in Genoa, Italy funded by a scholarship by the Governments of the Republic

of Italy and the Republic of Croatia. In 2008 I was awarded with the scholarship for

excellent postgraduate students from the ”prof. Zlata Bartl” foundation (founded by

the ”Podravka” company). In the Workshop on Navigation, Guidance and Control of

Underwater Vehicles held in Limerick, Ireland in 2008 I was awarded with the best

student paper presentation award. In March 2009 I received a grant for attending the

HYCON-EECI Graduate School on Control in Paris, France.

During my doctoral studies, I was a teaching assistant in the following FER–I and

FER–II courses: Nonlinear and Optimal Control Systems, Digital and Nonlinear Con-

trol Systems, Adaptive and Robust Control, Digital Control Systems, Automatic Con-

trol, Nonlinear Control Systems, Guidance and Control of Marine Vehicles, Laboratory

and Skills – Matlab, Synthesis of Linear Control Systems, and Laboratory of Automat-

ics 1 and 2.

I am a member of the Centre for Underwater Systems and Technologies (CUST),

IEEE Oceanic Engineering Society (IEEE–OES), European Embedded Control Insti-

tute (EECI) and Amnesty International Croatia.

The main areas of my scientific interest are control theory, nonlinear systems, iden-

tification procedures, autonomous marine surface and underwater vehicles, navigation,

guidance and control of marine vehicles.

188
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