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ABSTRACT

Model predictive control of battery systems in a

microgrid

The research is focused on the control of heterogeneous battery storage systems by taking
into account the chemical processes inside a battery which are reflected in variable battery
efficiency and consequently, battery longevity. This is motivated by economic benefits that
stem from more efficient control of microgrid components in microgrid optimal power
flow problems. The control objective is formulated as a model predictive control problem
and the control structure is decomposed into two levels. The higher level is in charge of
microgrid optimal power flows and is based on a high level of abstraction model of storage
system. The lower level is based on a detailed storage system model and is in charge of
delivering the demanded power profiles in the most efficient way. The battery converter
model includes power-dependent efficiency in the form of look-up-tables and the internal
resistor of the battery model is a function of battery states. The parameters are obtained
by model-based identification techniques.

Keywords: battery storage system, microgrid, two level control problem, optimal
power flow, efficient battery charging and discharging, microgrid components, grid
converter control, variable efficiency models, parameter identification, model predictive

control
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SAZETAK

Modelsko prediktivno upravljanje baterijskim

sustavima u mikromrezi

U danasnje vrijeme, mnogo se paznje pridaje mikromrezama. Integracija obnovljivih izvora
energije, koja se u zadnjem desetlje¢u potice kroz razlicite energetske i ekoloske politike,
olaksana je ukljuc¢ivanjem spremnika energije u mikromreze. Time se omogucava vremenski
pomak izmedu proizvodnje i potrosnje elektri¢cne energije Sto doprinosi energetskoj i
cjenovnoj efikasnosti. Ideja mikromreze takoder omogucava napajanje lokalnih tereta, ¢ime
se smanjuju gubitci energije u prijenosu, te povecava pouzdanost i stabilnost (otocni rad
tijekom poremecaja u glavnoj mrezi). Ravnoteza izmedu proizvodnje i potrosnje u svakom
vremenskom trenutku omogucéena je proracunom optimalnih tokova snaga uz minimalne
operativne troskove. Zbog ekoloske i ekonomske koristi mikromreza, odnosno optimalnih
tokova snaga u mikromrezama, javlja se potreba za razvojem razlicitih optimizacijskih
algoritama i efikasnim upravljanjem komponentama mikromreze.

Uzimajuci u obzir cijenu i vijek trajanja, baterije se trenutno smatraju najpriklad-
nijim sustavom skladistenja energije u mikromrezama iz tehno-ekonomske perspektive.
Matematicki modeli baterija preduvjet su za napredne upravljacke algoritme kojima se
postize visoka efikasnost sustava. Jednostavnim modelima ne moze se precizno obuhvatiti
dinamika baterije, a precizni modeli su racunalno zahtjevni §to ogranicava primjenu istih
u upravljanju u stvarnom vremenu.

Najjednostavniji model promatra samo energiju razmijenjenu izmedu mikromreze i
spremnika energije. Ovaj pristup zanemaruje unutarnje procese baterije te rezultira sub-
optimalnim ponaSanjem sustava koji upravlja baterijama (engl. battery management
systems, BMS). Detaljniji modeli dijele se u dvije kategorije: elektrokemijski i elektricni
modeli. Elektrokemijski modeli pomoc¢u parcijalnih diferencijalnih jednadzbi opisuju
elektrokemijske reakcije u baterijama tijekom punjenja/praznjenja. lako su to najprecizniji
modeli, njihova kompleksnost uzrokuje visoke racunalne troskove. Elektri¢ni modeli (engl.
electrical circuit models, ECMs) sastoje se od nadomjesnih naponskih/strujnih izvora,

otpornika, kondenzatora i zavojnica kako bi se opisalo ponaSanje baterije.
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Najcescée koristeni ECM je Theveninov model. Osnovni Theveninov model sastoji
se od konstantnog napona otvorenog kruga te serijskog otpornika. Serijski otpornik
predstavlja unutarnji otpor elektrolita propagaciji iona. Prijelazni odziv napona na
stezaljkama baterije modelira se dodavanjem paralelnih RC krugova osnovnom krugu. lako
model postaje precizniji dodavanjem veceg broja RC krugova sa razli¢itim vremenskim
konstantama, za veé¢inu primjena, dovoljna su dva RC kruga. Nedostatak Theveninovog

modela je Sto se ne moze odrediti vrijeme trajanja baterije.

Hibridni model je jos jedna popularna vrsta ECM-a. Hibridnim modelom modelira
se i vrijeme trajanja baterije i naponski odzivi. Model se smatra vrlo preciznim, a
istovremeno jednostavnijim u usporedbi s elektrokemijskim modelima. Sastoji se od dva
kruga. Prvi se krug sastoji od kondenzatora, koji predstavlja naboj baterije, i strujno-
upravljanog strujnog izvora te se njime modelira baterijsko stanje napunjenosti (engl.
state of charge, SOC). Drugi je krug slican Theveninovom modelu. Najcesée se sastoji
od serijskog otpornika i dva RC kruga koji modeliraju prijelazni odziv napona baterije.
Naponski izvor nije konstantan, ve¢ ovisan o SOC-u, a budué¢i da se radi o nelinearnoj

ovisnosti, model postaje nelinearan.

Jedan od obecavaju¢ih modela, iz perspektive jednostavnosti i povec¢ane preciznosti,
je model s dva kondenzatora tzv. double-capacitor model (DCM). Sastoji se od dva
kondenzatora razlicitih kapaciteta, ¢ime se imitira dinamika povrsine elektrode (koja se
puni brze) i unutrasnjosti elektrode (koja se puni sporije). Ovim modelom oponasa se efekt
oporavka napona (engl. charge recovery effect). Kako bi se postigao precizniji prijelazni

odziv napona baterije moze se dodati RC krug kao i kod Theveninovog modela.

Nakon odabira prigodnog modela, potrebno je identficirati parametre modela baterije.
Identifikacija se najcesce provodi koristenjem velike koli¢ine eksperimentalno dobivenih
podataka te izvodenjem zakljucaka ili na temelju nekog prethodnog empirijskog znanja ili
temeljeno fizikalnim pretpostavkama o sustavu. Metode temeljene na mjerenim podacima
dijelimo na aproksimacijske metode i metode estimacije pomoéu Kalmanovog filtra.
Aproksimacijski problemi veéinom se rjeSavaju pomocu razlicitih metoda najmanjih
kvadrata (engl. least-square, LS), poput LS sa regijama povjerenja ili rekurzivni LS,
genetskih algoritama, neuronskih mreza i metoda potpornih vektora. Razli¢iti Kalmanovi
filtri (KF) koriste se za za online identifikaciju, ukljucujuéi prosireni KF i razlicite tipove

KF sa sigma tockama.

Metode upravljanja postupkom punjenja baterija takoder mozemo podijeliti u skupine
ovisno o tome temelje li se na modelu baterije ili ne. Profili punjenja, metoda kod kojih se
ne koriste modeli baterija, unaprijed su definirani koriste¢i heuristiku i empiricko znanje.
Ovakav nacin upravljanja jednostavan je za implementaciju, medutim ne uzima u obzir
unutarnje procese u baterijama. U takve metode ubrajamo: punjenje konstantnom strujom
(CC), punjenje konstantnim naponom (CV) i pulsno punjenje. Metode temeljene na
modelima ukljucuju razlicite elektrokemijske i elektricne modele, te estimatore stanja.

U takve metode ubrajamo neizrazito upravljanje, vise-kriterijsko upravljanje, linearno
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kvadratno upravljanje i modelsko prediktivno upravljanje (MPC). MPC je najpopularniji
pristup, medutim primijenjuje se ve¢inski na linearnim sustavima. Navedeni pristupi su
ve¢inom usmjereni na o¢uvanje integriteta (SOH) baterije. Modeli baterija na kojima se
temelje upravljacki algoritmi ¢esto su pojednostavljeni i linearizirani.

Baterije su, kao dio sustava skladistenja energije, ¢esto dio optimizacije tokova snaga s
ciljem minimizacije troskova rada u mikromrezama. Strategije usmjerene na optimizaciju
ukljucuju dinamicko programiranje, genetske algoritme, neuronske mreze te modelsko
prediktivno upravljanje. Kod definicije optimizacijskog problema na razini mikromreze,
mogu se primijeniti razli¢iti ciljevi poput: i) ukljuc¢ivanja u trziste "dan unaprijed” ili u
"stvarnom vremenu”, s ciljem minimizacije troskova rada, ii) koristenje spremnika energije
za rezanje vrhova potrosnje (engl. peak-shaving), iii) degradacija baterije.

Medutim, mnogi pristupi koriste jednostavne "modele energija” ili pojednostavljene
i linearizirane Theveninove modele sa konstantnim efikasnostima. U ovoj disertaciji,
istrazivanje se fokusira na upravljanje heterogenim baterijskim sustavima za pohranu,
uzimajuéi u obzir kemijske procese unutar baterija koji se odrazavaju u obliku promjenive
ucinkovitosti, a posljedi¢no i dugotrajnosti sustava. Istrazivanje je motivirano ekonom-
skom koriséu koja proizlazi iz efikasnijeg upravljanja mikromreznim komponentama
prilikom rjesavanja problema optimalnih tokova snaga u mikromrezi. Upravljacki problem
rastavljen je na dvije razine. Visa razina upravlja tokovima snaga u mikromrezi, a temelji
se na pojednostavljenom modelu baterijskog sustava. Niza razina temelji se na detaljnom
modelu, a zaduzena je za ostvarivanje trazenih profila snaga na najefikasniji na¢in. Model
baterijskog pretvaraca ukljucuje promjenjivu efikasnost ovisnu o snazi, a unutarnji otpor
modela baterije funkcija je trenutnog stanja baterije. Vrijednosti parametara dobivaju se

metodama identifikacije temeljenim na metodama najmanjih kvadrata.

Doktorska disertacija podijeljena je u 6 poglavlja. Uvodno, Poglavije 1, donosi pregled

trenutnog stanja te motivaciju za provedeno istrazivanje.

Poglavlje 2 opisuje razlicite vrste baterija i osnovne pojmove vezane uz baterijske
sustave pohrane energije. Budué¢i da se rezultati disertacije temelje na litij-ionskim
baterijama, iste su detaljnije opisane u poglavlju.

Poglavlje 3 opisuje identifikaciju parametara ovisnih o stanju napunjenosti litij-ionske
¢elije. Odabran je Theveninov nadomjesni model kao temelj identifikacije, a identifikacija
se temelji na metodi najmanjih kvadrata. Usporedeni su rezultati identifikacije za tri
modela razli¢ite slozenosti: i) model s unutarnjim otporom (RO model), ii) model s
jednim paralelnim RC krugom (1RC model), te iii) model s dva RC kruga (2RC model).
Na temelju rezultata, 2RC model je odabran za izradu modela efikasnosti. Na kraju
poglavlja, definiran je model efikasnosti baterije ovisan o stanju napunjenosti te struji
punjenja/praznjenja.

Poglavlje 4 fokusirano je na upravljanje strujom punjenja/praznjenja baterijskog
sustava pohrane, temeljeno na prethodno razvijenom nelinearnom modelu. Baterijski

sustav pohrane obuhvaca bateriju te pripadajué¢i energetski pretvarac. Opisane su
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tipicne konfiguracije baterijskih pretvaraca i ucestale upravljacke strukture. Algoritam
upravljanja koristi nelinearno modelno prediktivno upravljanje za izracun sekvence struja
punjenja ili prazenjena, koja ¢e rezultirati razmjenom energije izmedu baterije i ostatka
mikromreze u trazenom iznosu. Algoritam prosiruje prethodni postupak primijenjen na
olovne baterije s konstantnim parametrima, koristenjem varijabilnog modela. Dobiveni
algoritam, temeljen na varijabilnom modelu, rezultira efikasnijim radom u vidu viseg
rezidualnog stanja napunjenosti te nizim amplitudama punjenja/praznjenja koje pozitivno

utjecu na zivotni vijek baterijskog sustava.

Poglavlje 5 daje pregled rada razlicitih komponenti mikromreze. Razumijevanje
pojedinacnih algoritama svake komponente mikromreze bitno je zbog koordinacije svih
komponenata te implementacije optimalnih tokova snaga, proracunatih optimizacijskim
problemom. Ovisno o vrsti komponente i tipu mikromreze, razli¢iti DC/DC i/ili DC/AC
pretvaraci koriste se pri povezivanju jedinica na zajednicku sabirnicu te zatim na glavnu
energetsku mrezu. Pretvaraci snage predstavljaju kontrolne tocke sustava koje osiguravaju
stabilnost i kvalitetnu opskrbu energijom, buduéi da se zZeljeni tokovi snaga, proracunati
nekim optimizacijskim algoritmom, postizu upravljanjem strujama/naponima pretvaraca.
Upravljive komponente mikromreze obuhvacaju obnovljive izvore (fotonaponske panele
i vjetroturbine) te pripadajuée pretvarace. Mrezni pretvara¢ zaduzen je za odrzavanje
napona DC sabirnice. U upravljackom krugu DC napona invertera primijeceni su problemi
s nestabilnos¢u uzrokovani parametarskom nesigurnoséu te odstupanjem od radne tocke.
Prikazan je sistematiéni pristup pri sintetiziranju upravljackog algoritma DC napona,
gdje su u obzir uzete i promjenjivost mrezne impedancije i nelinearnosti DC kruga.
Mrezna impedancija uzeta je u obzir dodavanjem dodatnog seta strujnih senzora na
mjesto spajanja s mrezom. Upravljacki algoritam sintetiziran je koriStenjem modelskog
pristupa - Truxal-Guillemin, uzimajuéi na taj nacin u obzir i nelinearnosti i nestabilnosti.
Provedena je i analiza stabilnosti i robusnosti na promjene parametara te se model
pokazao stabilnim. Model je takoder usporeden s konvencionalnim metodama upravljanja
koje mogu izazvati nestabilnost prilikom veéeg udaljavanja od radne tocke. Dobiveni
regulator je eksperimentalno verificiran. U ovom poglavlju, definiran je i nelinearni
problem optimalnih tokova snaga u mikromrezi temeljen na MPC-u. Upravljacki algoritam
koristi pojednostavljeni, energetski, model baterijskog sustava pohrane te proracunava
optimalnu razmjenu energije baterijskog sustava i mikromreze. Implementiran je model
baterijskog sustava pohrane s promjenjivom efikasnoséu. Prediktivni algoritam nastoji
slijediti tocku maksimalne efikasnosti s ciljem minimiziranja troska razmjene energije.
Provedene su provjere algoritma za jednodnevno i sedmodnevno vrijeme rada, koje
rezultiraju dodatnim ustedama u odnosu na konvencionalno upravljanje. Nadalje, dobiveni
algoritam je prosiren na heterogeni sustav pohrane, pri ¢emu je svaki sustav definiran

svojim promjenjivim modelom.

Disertacija zavrsava zakljuckom u Poglaviju 6, gdje je dan osvrt na rezultate te su

predlozene daljne moguénosti predlozene metodologije.
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[staknut je sljedeéi znanstveni doprinos disertacije:

e Metoda identifikacije modela litij-ionskih baterijskih sustava pohrana s prom-
jenjivom ucinkovitosti pretvaraca i baterije, pogodna za primjenu u modelskom

prediktivnom upravljanju

e Modelsko prediktivno upravljanje strujom punjenja i praznjenja baterije uzimajuci
u obgzir identificirani nelinearni matematicki model baterijskog sustava pohrane s

ciljem postizanja njegove maksimalne ucinkovitosti

e Modelsko prediktivno upravljanje mikromrezom koja sadrzi heterogene baterijske

sustave pohrane s ciljem njenog cjenovno optimalnog rada

Kljuéne rijeci: baterijski spremnici nenergije, mikromreza, upravljacki problem na dvije
razine, optimalni tokovi snaga, efikasno punjenje i praznjenje baterija, komponente
mikromreze, upravljanje mreznim pretvaracem, modeli s promjenjivom efikasnosc¢u,

identifikacija parametara, modelsko prediktivno upravljanje
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CuapTER 1

Introduction

Nowadays, a lot of attention is given to the concept of microgrids. One of the main
advantages of microgrids is enhanced renewables integration. By introducing energy
storages, time shifts between production and consumption towards energy and cost
efficiency, are enabled. Other advantages of microgrids include decreased transmission
losses by powering local loads and increased reliability and stability (islanded mode during
disturbances in the main grid). The operating levels of different microgrid components are
often determined as part of the optimal power flow problem. The objective is to preserve
the balance between power production and consumption, while minimizing operating
costs. Because of overall economic and environmental benefits of microgrids and optimal
power flow, the need for development of different optimization strategies and efficient

control of microgrid components is recognized [1], [2].

Considering price and service life, battery storages are currently the most suitable
system for the microgrids from the techno-economical perspective. Mathematical models of
batteries are pre-requisite for advanced model-based control algorithms that achieve high
efficiency of the system. While simple models fail to capture battery dynamics accurately,
and accurate models are computationally too complex which limits their application in
real-time control. For identification of model parameters, data-based models are validated.
These methods include extensive experiments and the parameters are extracted from
measurement results. The most commonly used methods are data fitting and Kalman
filters (KF). Data fitting problems are solved using different least-squares (LS) methods,
such as trust region nonlinear LS or recursive LS [3], genetic algorithms, neural networks
and support vector machines [4]. A variety of KF solutions are presented in the literature
including extended KF and different types of sigma-point KF [5]. Although most authors,
for simplicity reasons, consider parameters constant, in the proposed research parameters
related to the current battery state are considered. This is similar to the approaches
described in [6] and [3] where LS problem formulations with state of charge (SOC)

dependent internal resistance are introduced.

Microgrid optimal power flow problems (OPF) aiming to minimize the operational
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costs mostly include and utilize batteries, as storage systems [7]. Optimization-based
strategies include dynamic programming, genetic algorithms, neural networks, and model
predictive control [8]. Different optimization goals for microgrid operation are described in
literature such as: i) participating in day-ahead and real-time markets (energy trading) to
minimize operating costs [9], [10], ii) addressing renewable energy sources uncertainty [11]
using a mixed-integer problem formulation, and iii) energy storage scheduling for peak-
shaving applications [12], [13]. In [13] and [14], battery degradation is added to the cost
function. Many approaches use simple battery energy models or simplified or linearized
Thevenin models with constant efficiencies. In [14] both the converter and the battery
variable efficiencies are mentioned. For problem formulation, the converter efficiency is
averaged, and the battery efficiency is approximated with two affine functions over the
whole operating range. The battery storage system model considered in the thesis includes
both the battery and converter energy losses models. Converter losses are modelled using
efficiency curves, variable against charging and discharging energies. The battery model is
based on variable parameters which affect battery efficiency depending on its (SOC) and
the applied charging/discharging current.

The second objective of the thesis is to develop model predictive control (MPC) for
battery storage system charging/discharging based on a battery with variable efficiency
over the prediction horizon. To validate the approach its performance is compared with the
already established MPC with a constant-efficiency model. The MPC approach is utilized
because of its ability to efficiently handle constrained problems and suitability for real-
time applications. Through the performed analysis it is showed that the variable-efficiency
model with the corresponding MPC algorithm achieved additional energy savings and
increased cost efficiency of the battery and microgrid systems and expanded the lifespan
of the battery storage system components.

The thesis is organized in 6 chapters as follows:

e Chapter 2 describes battery fundamental terms and gives an overview of battery

equivalent models.

e In Chapter 3, identification methods for a variable parameter battery model are
described. The methods are compared and the best model is further used for battery
charging and discharging control. Based on this model, battery efficiency curves are

obtained and used in microgrid power flow optimization problems.

e Battery charging and discharging control algorithm based on MPC formulation
is presented in Chapter 4. An existing control algorithm for adherence to energy
exchange commands is supplemented with the variable battery model obtained in
Chapter 3 in order to remove model errors and increase the accuracy and efficiency

of the charging/discharging processes.

e An overview of microgrid components and their optimal control strategies is given

in Chapter 5. After describing each component, a microgrid power flow optimization



problem is formulated. Several simulation scenarios are described. The optimization
problem contains variable battery system efficiency over the prediction horizon
and a sequential-linear-programming (SLP) based microgrid control algorithm is
developed. The developed algorithm is also verified by including heterogeneous

storage systems.

e The thesis is concluded in Chapter 6 by an overview of the results and with final

remarks.






CHAPTER 2

Electrochemical batteries and

equivalent models

Energy storages have an important role in modern power systems. Some applications
include energy management, ancillary services, and integration of renewables. The storage
systems are classified into mechanical, electrical, and electrochemical. The oldest types
are mechanical storages. Pumped hydro and compressed air storages are suitable for
large scale applications because of their large capacity, low operational costs, and long
lifetimes. However, they are limited to appropriate geographic locations. Flywheels are
advantageous in ancillary services because of their quick response times. They have long
life and operational costs. On the other side, it has high self-discharge and low energy
density. Electrical storage systems include super-capacitors and superconducting energy
storages, which store energy in electrical or electromagnetic form. As no additional energy
transformations are needed, they are characterized with high efficiency. Electric storages
have short response times and high-power density, however they also have high self-
discharge. Electrochemical storages include different types of batteries offering modularity
[15,16].

Batteries are energy storages that convert chemical energy into electrical and vice-
versa. They consist of one or more electrochemical cells (connected in series or in parallel)
with external connections. Each cell consists of two electrodes and an electrolyte which
serves as a buffer for internal ion flow between the electrodes (lithium-ion, nickel-cadmium)
or is an active participant in electrochemical reactions as for example in lead-acid batteries.

Batteries are divided into two categories: primary and secondary batteries. Primary
cells are used until all the chemicals that generate power are depleted and then are
discarded. Secondary batteries are rechargeable and are therefore suitable for a variety of
applications including electric vehicles (EVs) and battery storage systems. Specific power
(loading capability, [W/kg]) is the ability to deliver high current. Energy density (specific
energy) is the amount of energy stored in a given system per unit volume. The higher

energy density, the more energy may be stored for the same amount of volume. Depending
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Figure 2.1. Vanadium flow battery [17].

on the materials used for electrodes and electrolyte there are different battery types:
lead-acid, nickel-cadmium, lithium-ion, sodium-ion, redox-flow etc. Lead-acid and nickel-
cadmium batteries are used since the 19th century and are well researched technologies
which contributes to their low costs. Lead-acid batteries have a high cell voltage and
have a good power density, however they have limited energy density and short lifetimes.
Nickel-cadmium batteries can be charged with high current rates and have a long lifetime.
Their disadvantages are the memory effect which causes loss of capacity if it is not fully
discharged periodically and the construction with toxic materials. Flow batteries are
unconventional electrochemical batteries. They consist of two external tanks filled with
electrolytes that contain redox pairs as shown in Fig.2.1. The electrolytes are pumped to
a compartment with electrodes where oxidation and reduction occur. The power depends
on the number and size of the cells and the energy depends on the tank size. Its advantages
are operating safety, long lifetime and deep discharging capability. Its disadvantage is low
energy density [17].

A promising new battery technology is the sodium-ion battery which was originally
developed in 1970s. However, the interest for this technology declined due to lithium-ion
technology which was being developed at the same time. In the last decade its popularity
increased because it operates similar to lithium-ion batteries, replacing the costly lithium
with sodium. This technology is environmentally friendly, has a long lifetime, and can
operate in cold temperatures but has lower cell voltages and energy density, compared to
lithium-ion batteries [15,18].

Lithium-ion batteries are currently mostly used types in electronics, transportation
and power grid applications due to their high charge density, long lifetime and high cell
voltages. On the other hand, their disadvantages are high costs and sensitivity to high
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temperatures and consequently the need for protective circuits [19].

The comparison of the different types of storages, their advantages, and disadvantages,
show the dominance of the pumped hydro storages (PHS) and the lithium-ion batteries.
PHS is the oldest and more mature technology and the best solution for large energy
storage applications storing over 95% of energy storage capacity worldwide, however the
battery storages technologies are developing rapidly. Battery storages, specifically lithium-
ion batteries, are mostly used in ancillary services. However, their utilization in energy
management applications is growing nowadays. This is the result of the decreasing costs
because of the availability of materials and their improving characteristics [16].

The thesis research is focused on lithium-ion batteries, therefore its characteristics are

described in more detail in subsequent sections.

2.1 Lithium-ion battery chemistry and characteristics

Lithium-ion batteries (Li-ion) are lightweight, have high energy density, high efficiency,
rather long life cycle and low self-discharge, compared to other battery types. The negative
electrode is made of carbon (often graphite) and the positive electrode is made of a
metal oxide, such as cobalt oxide (LCO), iron phosphate (LFP) or manganese oxide
(LMO). The electrolyte is non-aqueous because lithium is highly reactive with water.
The electrolyte should have high ionic conductivity, allowing the ions to flow and be
resistant to the flow of electrons. Lithium has the tendency to give up the outer electron.
The migration of ions in the Li-ion battery is depicted in Fig.2.2. During discharge,
at the anode, oxidation reaction produces positively charged lithium ions and negatively
charged electrons. The lithium ions are transported through the electrolyte. The electrons
are transported through an external circuit and recombined at the cathode with the
cathode material in a reduction reaction. During charging, lithium ions combine with
the external electrons and are deposited as atoms between carbon layers. Copper and
aluminum collectors on the anode and the cathode collect and distribute electrons. Both
electrodes allow lithium ions to move in and out of their structure (insertion-intercalation
and extraction-deintercalation) [20,21].

In a typical LCO battery, the anode is graphite (where Lithium is intercalated), and
the cathode is cobalt oxide, C'o**O3~, where the cobalt wants to gain back an electron by

lithium intercalation. The lithium balances the charge build up:

CoOy + Lit + €™ +— LiCoO, (2.1)
LiC, +— C, + Lit + e (2.2)

During charging/discharging, the voltage at the terminals is not equal to the open-
circuit battery voltage (OCV). The OCV is the terminal potential difference when no

current flows and is caused by chemical forces in the battery. The maximal potential
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Figure 2.2. Lithium ion migration during charge or discharge [20].

difference is called electromotive force (EMF) and its value for Li-ion batteries ranges
from 2.4 V to 3.8 V, depending on the electrode types. The dynamics of a Li-ion battery
contains multiple timescales. During charging/discharging the voltage at the terminals has
an instant drop, due to the electrode material resistance and the electrolyte resistance,

and a transient behavior caused by polarization.

2.1.1 Li-ion battery parameters

A battery’s capacity is the amount of electric charge it can deliver at the rated voltage.
The more electrode material contained in the cell, the greater its capacity. The capacity
is usually expressed in Ampere-hours (Ah). For example, the capacity of 1 Ah equals to
1A of current flowing for an hour and is equal to 3600 Coulombs. In energy optimization
problems the capacity is expressed in Watt-hours, defining the amount of energy a battery
can provide. The performance of the battery and the achievable capacity depends on the
operating conditions. The internal processes of the Li-ion battery depend on the current
rate, the state of charge and temperature of the battery.

Current rate (C-rate) is the rate at which a battery is being charged/discharged. It
compares the current through the battery to the theoretical current draw under which the
battery would deliver its nominal rated capacity in one hour. For example, for 500 mAh,
discharge rate of 5000 mA corresponds to a C-rate of 10 (C-rate = 5000 mA /500 mA =
10).

The lithium intercalation and deintercalation are not uniform in the electrode. An ion

concentration gradient is formed within the electrodes which causes the diffusion of ions
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Figure 2.3. Lithium ion rate capacity effect [22].

within the electrodes (solid phase diffusion). The transport of lithium ions to the active
material surface through the electrolyte is called liquid phase diffusion and is quicker than
the solid phase diffusion [21]. At higher C-rates, the active material at the electrode surface
is depleted much quicker resulting in lower usable battery capacity. During relaxation
periods, when no current is applied, the ion concentration reaches equilibrium and capacity

recovery effect occurs due to the diffusion processes in the battery.

The broad usage of batteries nowadays caused the need for battery management
systems which are in charge of monitoring the battery states, such as state of charge (SOC)
and state of health (SOH) and different charging/discharging algorithms. State of charge
is the level of charge of an electric battery relative to its capacity (0% - empty battery,
100% full battery). Depth of discharge (DOD) is the complement of SOC. However, in
energy management systems (EMS), the traditional SOC is replaced with the state of
energy index (SOE), since it incorporates the battery’s internal losses and the effects of
the variable OCV. The SOE is defined as the ratio between the consumed energy during
a time interval and the total available energy and it offers useful information about the

available discharging/charging energy [23].

At lower temperatures, the battery internal resistance increases because of decreased
chemical activity, resulting in a reduced battery capacity. The internal resistance
represents the electrode material and electrolyte resistance which hinder the current flow.
At higher temperatures due to improved electrochemical reactions battery performance is
improved however prolonged exposure shortens the battery life [24]. The internal resistance
is also affected by the battery SOC, increasing at high and low states with a lower, less

variable value in the middle ranges [25].

Battery state of health is the ratio between the current battery capacity and the
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battery nominal capacity. The battery capacity fades with cycling and calendar aging
as a consequence of electrolyte decomposition, active material dissolution and the solid
electrolyte interface (SEI) growth [22]. The SEI is a semi-porous protective layer generated
by the manufacturer to prevent the overexposure of the anode to the electrolyte. High
temperatures and charging currents cause degradation [26,25]. The heat energy causes
more lithium ions to react with the electrolyte leading to SEI growth which increases the
battery internal resistance inhibiting the free flow of electrons. Also, at high temperatures,
side reactions occur, resulting in the evolution of highly flammable gases [27]. Charging
at low temperatures slows down the reaction rate depositing Lithium ions on the surface

of the anode, without intercalation [24].

2.2 Battery equivalent models

Depending on the application, different battery models are consequently developed in
order to simulate battery dynamics. A state-of-energy (SOE) model, described in [28],
observes the energy exchanged with the microgrid and storage but omits internal battery
processes and results in sub-optimal management systems. More detailed models mainly
fall into three categories: mathematical models, electrochemical models, and equivalent
circuit models.

Mathematical models are mostly analytical or data fitting black-box models that rely
on high amount of input/output data to model battery dynamics. These models are not
reliable at different operating conditions and often cannot capture the battery current-
voltage (I-V) characteristics. Peukert’s law is an empirical expression for determining
battery runtime as a function of the discharge rate [29]. Another popular analytical
model is the Kinetic Battery Model (KiBaMo) (Fig.2.4) which describes the chemical
processes by a kinetic process. The charge distribution is modelled via two connected
tanks. The outgoing flow, regulated with a valve, simulates battery discharging and the
height of the fluid inside the corresponding tank represents the available charge. The
second tank represents the charge inside the electrode and the flow between them simulates
the diffusion process inside the electrode, thus imitating current rate effect as well as

capacity recovery [30].

l-¢ | | C
A
4
i
9= .
k' ! I
1
h, | h,
i I
Bound Charge Available Charge

Figure 2.4. Kinetic Battery Model [30].
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Electrochemical models, for example single particle models (SPMs) (Fig.2.5), involve
partial differential equations which describe electrochemical reactions in a battery during
charging/discharging [31]. Although these models accurately simulate battery behavior,
they require physical and chemical characteristics of the batteries and their complexity

induces high computational costs.
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Figure 2.5. Single particle model [31].

2.2.1 Equivalent circuit models

Equivalent circuit models (ECMs) use electric circuits consisting of voltage/current
sources, resistors, capacitances, and inductances in order to replicate the battery behavior
[32]. Impedance based models use ac-equivalent impedance to fit the impedance spectra.
They work for a fixed SOC and are not able to predict battery runtime. Runtime based
models predict battery runtime however, have limited transient behavior accuracy.

Most commonly used model is the Thevenin model. The basic Thevenin’s model
consists of a constant open-circuit voltage and a series resistor. The series resistor
represents the internal resistance of the electrolyte to the propagation of the ions. The

battery terminal voltage transient response is modeled by adding parallel RC circuits
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Figure 2.6. Thevenin equivalent circuit model.

to the basic model. The model becomes more accurate by adding several RC circuits
with different time constants (Figure2.6). However, for most applications one or two
RC circuits are proven to be accurate enough. Thevenin-based models however, fail to

capture battery voltage steady-state variations and runtime information [32], [4]. Another
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Figure 2.7. Hybrid electrical circuit model [32].

popular ECM is the hybrid model which is capable of predicting the battery runtime and
voltage responses. The hybrid model is considered the most precise of the four while it
is still simple in comparison with electrochemical models. It consists of two parts (Fig.
2.7). The first part consists of a capacitor, which represents the batteries charge, and a
current-controlled current source. This part models the battery’s state of charge (SOC).
The second part is similar to a Thevenin-based model. It typically consists of a series
resistor and two RC circuits which capture the transient response. The voltage source

is SOC-dependent and since this dependency is nonlinear, the model becomes nonlinear

32).

Vs

- R R,
Lpat !
\I R c ibat
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Figure 2.8. Nonlinear double-capacitor equivalent circuit model.



2.2.  Battery equivalent models 13

The double-capacitor model is recently proved as a promising approach from the
perspective of model simplicity and increased accuracy [33]. The capacitors differ in
capacitance thus imitating the electrode surface (which charges more quickly) and its bulk
inner part (charging slowly). The surface capacitor voltage rises/declines more quickly at
high currents thus simulating the current rate effect. The capacitor recovery is the result of
the charge migration from one capacitor to the other, during relaxation period. However,
this model cannot describe the battery’s nonlinear behaviour. This is improved in [6]
where a nonlinear double-capacitor model (NDC) is presented. This model consists of two
parts as depicted in Fig.2.8. The first part models the electrode behaviour, simulating
the distribution and migration of the charge and the second part models the voltage
transients. The choice of the model for control application is a trade-off between accuracy
and complexity.

Although all the described models have their advantages and disadvantages, the
Thevenin model is chosen for control aglorithm design, as a good trade off between model
complexity and accuracy.






CHAPTER o

Identification of a nonlinear

battery model

3.1 Battery model parameter identification methods

Different battery states and parameters identification methods are found in literature.
The common methods of estimating the battery state of charge (SOC) include coulomb
counting, open-circuit voltage (OCV) method and different Kalman filters (KFs). The
coulomb counting method measures the battery current and integrates over time. This is
the simplest method for SOC estimation, but its accuracy highly depends on the sensor
accuracy and accurate initial SOC. The OCV method consists of measuring the battery
voltage in steady-state and reading the SOC from the OCV-SOC curve. This method isn’t
applicable in online estimation because it’s accuracy depends on the battery relaxation
time which is several hours. The most popular method are different Kalman filters such
as extended KF and sigma-point KF [5,34,35]. The state of energy (SOE) estimation

is similarly categorized into three methods: direct methods, model-based methods and
data-driven methods. The power integration method is the simplest. However, like the
coulomb counting method it is prone to error accumulation due to sensor accuracy. Model
based approaches consist of different Kalman filters while data-driven methods rely on
artificial intelligence [23,36,37]. Parameter estimation is divided into online and offline

estimation. Offline estimation is based on already collected data. The parameters can
be read off the voltage curves obtained from pulse tests [38,39]. Also, different artificial
intelligence and standard least square (LS) are common examples of offline identification.
The drawback of these methods is its inability to adapt to different operating conditions.
Joint and dual KFs are often used with SOC estimation [40,41]. Another widely used

method is the LS method and variations for online identification. In [42] moving horizon LS
is presented, where during a time interval the SOC is presumed to be constant, parameter
identification is performed. Then, after a new measurement is available, the first data

sample is replaced with it and identification is performed again. This procedure is repeated

15
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every time instant. Recursive LS with forgetting factor is described in [34,43] where
a more weight is put on new incoming data in order to avoid data saturation. A LS
and extended Kalman filter (EKF) combination is used in [44], where temperature and
SOC dependencies are observed. Repeated tests are performed to obtain data sets for
different SOC and temperatures and identification is performed for each data set to obtain
an accurate model which is then used for SOC estimation with EKF. The obtained LS
problem for parameter estimation is solved using Simulink Design Optimization toolbox.

In the following sections, parameter identification method based on LS is presented.
Different complexity Thevenin models are used for the identification: i) internal resistance
model (RO model), ii) one RC circuit model (1RC model), and iii) two RC circuit model
(2RC model). The results are compared and advantages and disadvantages of each model
are discussed. The 2RC model showed best results and is the base for the battery efficiency
model developed at the end of this chapter.

3.2 Battery model identification procedure using Linear

least-squares (LLS) method

The battery and microgrid control algorithms require a known variable battery model.
Therefore, offline identification is preferred for this work. The goal is to obtain parameters
that depend on SOC. The environment temperature is assumed constant and current rate
effects are incorporated via power losses over the identified parameters. A 2RC Thevenin
model, depicted in Fig.3.1is chosen for the battery equivalent model because it models

the fast and the slow transients. The state space model is given with following equations:
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Figure 3.1. Two RC circuit Thevenin model.
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ubat (1) = OCV (1) — urc(t), (3-3)
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where U, and iy are the battery terminal voltage and current, urc(t) is the voltage drop
over the internal resistance Ry and the two RC circuits, and x encompasses model states:
fast transient RC circuit voltage v.;, slow transient RC circuit voltage v.e, and battery
state of charge SOC. The discharging current in this model is positive. The LS methods
are the most common offline solution in literature for the parameter identification process,
however all the aforementioned methods neglect battery hysteresis in order to simplify the
model. In order to increase the accuracy of the model, which is further used in control
algorithms, a LS method described in [45] is chosen for identification. The method is
based on the detrended battery voltage and standard LS method. The parameters are
divided into several SOC intervals and considered constant within each interval. In [45],
both the OCV curve and the SOC dependent parameters are determined using one set
of measurements - one full charging/discharging cycle is performed with a noisy current
profile, removing the need for separate identification procedure for the OCV-SOC curve
identification. The measured voltage is into intervals and detrended. Detrending removes
polynomial trends from data. An example of removing a linear trend from a dataset is
shown in Fig.3.2. The blue line represents the original data and the orange line is the

data obtained by removing the linear trend (yellow line) from the original data. The same
procedure is applied to voltage measurements assuming a linear OCV trend in smaller

time intervals.

25 T T T T T T

data
linear trend
detrended data

_5 | 1 ! | 1 ! | 1 !

0 2 4 6 8 10 12 14 16 18 20
X

Figure 3.2. Example of removing a linear trend from a dataset.

In this way the OCV curve and the contribution of the gain of the model are removed.

The accuracy of the detrending increases by increasing the number of intervals, however, in
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this way the complexity of the model is also increased. The data obtained after detrending,
Aubat (t), 1s:

Upat (£) = OCV(t) — Kinae(t) — Aurc(t)  —  Aupae = Aurc(t) = G(8)Adpar(t), (3.4)

G(S) . URC(t) . R0T182 + (RUTl + R()TQ + RQTl =+ R1T2>S + K (3 5)
ibat(t) T1T282 + (Tl + TQ)S +1 ’ ’
where K = Ry+ R; + Ry is the model gain and T} = R,C, Ty, = RyC5 are the RC circuits

time constants. The identification procedure is performed on a 4.8 Ah Li-ion battery

with a 0.2C current. The sample time is set to Ty = 1 s, an order of magnitude smaller
than the expected time constant of the fast RC circle T;. However, the identification
of the time constant of the slower RC circuit, which is several magnitudes higher than
the chosen sample time, was not successful in every time interval because its effect is
less visible in the data in small time intervals and with such a small sampling time.
The problem can be solved by using a different current profile, higher sampling time
and bigger time intervals, however without any knowledge about the magnitude of the
considered battery parameters the identification procedure becomes less general. Also, by
reducing the number of intervals, the accuracy of the model is also reduced, which affects
the control algorithm. Therefore, the order of the ECM is reduced, and previous data is
resampled to Ty = 10 s which is deemed big enough to capture the slow RC circuit effect

and still small enough to capture the fast voltage transients. The previous model then

becomes:
URC(S) ROT18 + K
G pu— pu— 3-6
(5) Tat () Tis+1 (3:6)
K - R[) -+ Rl, T1 - ClRl. (37)
The first order continuous transfer function in the discrete domain is:
o AUbat(Z) . b1z + by o b1 + boZil
G(Z) N A]bat(z> a zZ + ao N 1 + Z_l ) (38>
The discrete transfer function (3.8) can be written in form of difference equations:
AUbat(k) = —CLOAUbat(kf — 1) + blA-[bat(k:) ‘I— bOAIbat(k — ]_), (39)

where Uy, (k) is the detrended measurement data at the k-th time instant and Ip.¢(k) is

the detrended current at the k-th time instant. The model written in vector form is:

dx =U, x=][ag by bo]" (3.10)

S =[-Upy I L], (3.11)

U = [AUpat(2) - - - AUpai(n)] 7, (3.12)
Ujot = [AUbu(1) -+ AUa(n = 1], (3.13)
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I = [ALpat(2) - - Alyae ()] 7, (3.14)
Loy = [ALae(1) -+ Al (n — 1)]7, (3.15)

where n is the number of samples in one SOC interval. The coefficients are then calculated
using the expression:

dx=U — x =(®'®)\o'U. (3.16)

After calculating the coefficients of the discrete function, inverse zero-order-hold (ZOH)
method is used in order to obtain the parameters Ry, Ry and T} of the continuous transfer
function from (3.6). The parameters with respect to SOC are shown in Fig.3.3, where
the battery SOC is divided into 10 intervals, resulting in a 10% ASOC between each
interval. The parameters are a combination of the slow and fast dynamics which is
visible in the 7) fluctuations. The OCV curves are obtained from (3.4) by calculating
the charging/discharging gain in each SOC interval and then fitting the curve to a 5th
order polynomial as suggested in [45]. The hysteresis is observed in all results, however a
more distinct difference in OCV curves was expected, especially in the lower SOC ranges.
Simulation of the identified model is shown in Fig.3.4. The model is simulated with the
same current with which the identification is performed and the comparison of the initial
voltages and the voltages obtained from the model is shown in the second subfigure. The
error between the voltages is shown in the third subfigure. The error is more prominent
at lower SOC values, which is expected since the parameters are higher in this interval,
resulting in higher errors from the simplified model.

The same identification procedure is performed with 20 and 40 SOC intervals which
correspond to 5% ASOC and 2.5% ASOC (Figs.3.5-3.7). The accuracy of the model
is improved with more SOC intervals which is observed from the voltage comparison
subfigure for every case. The models, obtained with more SOC intervals, show the
hysteresis effect in the OCV-SOC curves as well as the parameters. A comparison of
the mean-square errors (MSE) for all three identified models and the algorithm execution
times are presented in Table3.1. The best result is, as expected, obtained with 40 SOC
intervals. The execution time is the longest in this case, however, the calculation is under

one 1 s for all the three identification models.

Table 3.1. Comparison of the MSE and execution times for the LLS algorithm of the 1RC
model.

ASOC | 10% 5% 2.5%
MSE | 0.0051 0.0024 6.4205e-4
lex 0.06s 0.11s 0.22 s

Using the same procedure, a simple model with only the internal resistance is also
identified and compared to the 1RC model in order to see how the model accuracy is
affected by this model simplification. The results are shown in Figs.3.9and3.10. The

internal resistance values are similar in both models, for all SOC intervals.
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However, the OCV charging and discharging curves are different than the previous
model. The algorithm achieved a good model accuracy by adjusting these curves, resulting
in MSE = 5.3455e-4. Since this is a better result than the model with the RC circuit, both
models are validated on a different current profile (Figs.3.11and3.12). The 1RC model
matches better with the validation dataset!, especially during periods with transients as
shown in Fig.3.13. The MSE of the RO model is 0.0017 while the MSE of the 1RC circuit
model is 6.8217e-4, showing that the added RC circuit is more accurate.

The described algorithm successfully identifies the basic and the first order Thevenin
model and offers insight into how model simplification deteriorates the remaining
parameters in order to achieve a good fit to the measurement data. Since the slow
time constant cannot be successfully identified with this algorithm, another identification

procedure is proposed in the subsequent section.
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Figure 3.9. Parameters of the RO model dependent on the SOC, ASOC = 2.5%.

IExperimental data from the battery cell are obtained from the company Rimac Technology d.o.o. as
part of cooperation of FER with the company Rimac Technology d.o.o. on the project EVBattPredtect
— Dynamic Predictive Health Protection of an Electric Vehicle Battery, co-financed from the European
Regional Development Fund via Operative Programme Competence and Cohesion 2014-2020 (project no.
KK.01.1.1.07.0029).
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3.3 Constrained combined least-square parameter identifi-

cation

In this section, the identification is performed on the 2RC model, using a constrained

least-square optimization formulation as follows:

min [|Ubat — Ubat,mjl|2;
x=[C OCV Ry Ry Ty Ry T3 u,(0) ues(0) SOC(0)]T,
OCV = [0OCV4y, OCVq4]T,
Ro = [Rodan Roan',
Ri=[Rian Rial',
T1 = [Traen Tie]',
[
[

3.18
3.19
3.20
3.21
3.22
3.23
3.24

R2 == R2,dch RQ,ch]Ta
Ty = [Toaan Toen] -

~~ I~~~ N I~ —~
~— — ~— S S ~—  ~—

Several constraints are added to assure an applicable solution:

OCVya(k) <= OCVyu(k +1), k=1---n, (3.25)
OCVg (k) <=OCVa(k+1), k=1---n, (3.26)
OCVau(k) <= OCVy(k), k=1---n, (3.27)
Ry (k Ro(k), k=1---2n, (3.28)
(3.29)

(3.30)

(3.31)

(k) < k
Ry(k) <= Ro(k), k=1---2n,
2T5(k) <=Ty(k), k=1---2n,
Ti(k) <=Tpax, k=1---2n.

I
~

The problem is solved using a MATLAB built-in function which uses an interior-point
algorithm. The model parameters are divided into 40 intervals with ASOC = 2.5%, and
bounded from below to zero. The OCV is added to the problem as an additional parameter
in every time instant. The initial point is set randomly to a feasible value: Ry = R; = Ry =
10 m$, 77 = 150 s, T» = 171/2. The initial parameters are constant over the whole SOC
range and the initial OCV curve is linear OCV = (OCV 0 — OCV i, )SOC 4+ OCV .

The parameters are identified using one week voltage measurement data with no
specific charging/discharging scenario. Since the data contains over 6 000 000 data
samples, two training sets are extracted! - one consisting of approximately 40 hours of data,
(where two deepest discharging/charging cycles are included) and the other consisting of
80 hours of data (Figs.3.14-3.17). The obtained model is then simulated using the whole
1-week current profile consisting of the training data and the validation data. The accuracy

of the model on only the training data and on the whole data set as well as execution
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times of the algorithm are summarized in Table3.2. Both models show high accuracy at

the expense of execution times which increased significantly. Also, the shape of the OCV-

SOC curve in both cases is less accurate since the hysteresis effect should be expressed,

especially at low SOC. An advantage of this method is that no specific experiment scenario

needs to be performed. However, the data must contain enough samples from every SOC

interval in order to identify the model accurately.

Table 3.2. Comparison of the MSE and execution times for the LLS algorithm based on

the 2RC model.

No. samples 2RC 0.5e6 2RC 1e6
MSE train 4.5497e-5 1.502e-4
MSE all 3.708e-4 2.0266e-4
tex 1.4011ed s ~ 3.89h 288e4s~8h
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Figure 3.14. Parameters of the battery 2RC model dependent on the SOC, based on the

constrained LS optimization problem.
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Figure 3.16. Parameters of the battery 2RC model dependent on the SOC, based on the

constrained LS optimization problem and a bigger training dataset.
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Figure 3.17. Simulation of the identified 2RC battery model, based on the constrained LS
optimization problem and a bigger training dataset!.

3.3.1 Constrained least-square parameter identification with a known
OCYV curve

The results shown in Fig.3.17show high accuracy, however we observe that the parameters

(except the internal resistance) do not show a falling or rising trend with respect to

SOC. Also, the charging and discharging OCV curves should be noticeably different at

lower SOCs, which is not obtained with this optimization procedure. In order to obtain

more realistic results, some adjustments were made. First, the OCV curve is determined
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separately, using measurements while charging and discharging with a small current, thus
ensuring the approximation up,, =~ OCV (Fig.3.18). Second, the parameters are expected
to have a convex-like shape which is obtained by adding additional constraints. In order
to ensure the desired shape the second derivation of the parameters as functions of SOC

is constrained to non-negative values:

0*f(x)
0x?

f(@) =kox® + kyz + kO = =2k = -k <0. (3.32)

The coefficent k5 can be expressed for each interval using three adjacent parameter values:

_mRo(kH (ASOlC(k) + Asocl(k+1))Ro(k+l) m}%(wrm <0, (3.33)

‘m&(’“) - (Asolcug) ASOCl(k 1 ) (k+1) ASOCl(k Tk +2) <0, (3:34)

_mmk) * (ASOlC(k;) ASOCl(k: +1 )Tl (k1) ASOCl(k: Ttk +2) <0, (335)

*mﬁb(k) - (AS(;C(]{J) ASOCl(k +1 )R2 (F+1) Asocl(k Tyl <0 (3:30)

ASOlC( j R (ASOIC( ) ASOCl(k 1 )T2 (k1) ASOCl(k Ty ek +2) <0, (3.37)
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Figure 3.18. OCV-SOC curves for the 4.8 Ah battery.
where k = 1,...,n — 2. The identification is performed on 1 week measurement data

obtained with high current charging/discharging profiles!. The identification is performed
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for different number of intervals and the model accuracy comparison is summarized in
Table3.3and depicted in Fig.3.19. The accuracy of the model increases until 20 intervals.
After that, the accuracy does not improve significantly with additional intervals resulting
in the choice of the 20 SOC interval model as the best solution.

Table 3.3. Comparison of the MSE and execution times for the LLS algorithm based on
the 2RC circuit model with different number of SOC intervals.

No. intervals 12 16 20 24 28
MSE all 3.104-107* 3.005-107% 2.957-10"* 2.980-10~*% 2.982.10~*
tex 7.96 11.52 17.06 19.28 23.77
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Figure 3.19. Comparison of MSE and execution times for different SOC intervals.

In Figs.3.20and3.21the obtained model parameters, for 20 SOC intervals, and the
system simulation are shown. We observe that the ohmic resistances have much higher
values at low SOC, while they are mostly flat in the middle range. The time constants,
however show a higher dependency on the SOC, ranging from 300 s to around 20 s (fast
response) and from 150 s to around 1 s (slower time constant). The results show expected
results, respecting the second derivation constraint, and are considered the closest to
the expected real parameter behavior. Figure3.21shows a comparison of the measured
voltage, training and validation data, and the data obtained with the obtained battery

model. The voltage error is shown in the third subplot. The error noticeably increases in



3.3. Constrained combined least-square parameter identification 33

two time intervals. When comparing these time intervals with the SOC values shown in
the last plot, it is observed that they coincide with lower SOC values. This is expected
since there is only one deep discharge in the training data. The accuracy of the model at
lower SOC values is affected by the lack of training data leading to the conclusion that the

data for the identification should contain a more uniform charging/discharging pattern.

4
2. OCV dch
53 OCV ch
S
2 1 1 1 1 ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SOC
02 — R, dch
=3 Ry ch
;:E 0.1
O T t t t T T i —1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SOC
0.1~
J— R1 dCh
=3 0.05L R, ch
g |\
| S—
0 1 1 1 1 1 I I I 1 ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SOC
300
T, dch
@ 200 T, ch
£ 100}
0 L L L L L L L L L |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SOC
0.1
o R, dch
E.0.05 \( R ch
I~
\ | I
0 I I 1 i i i .. ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SOC
150
T, dch
= 100 T, ch
£ 50
O 1 ! i 1
0.7 0.8 0.9 1

Figure 3.20. Obtained battery 2RC model parameters for 20 SOC intervals.
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Figure 3.21. Comparison of simulated voltage response with the measured voltage, training
and validation data!.

The first presented identification method is the simplest of the three and with the
shortest execution times. Its accuracy greatly depends on the number of SOC intervals
resulting in a more complex model. Also, the inability to obtain a higher order model
affects the overall accuracy. However, this algorithm is suitable for online identification
because there is an explicit solution. The second method successfully identifies the second
order parameters and the OCV-SOC curve, but the resulting parameter variations do not

correspond to expected trends. This is fixed by adding additional constraints, however
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this does not solve the problem with the OCV curve. Finally, identification of parameters
with a known OCV curve, which is obtained from separate measurements and then used
in the LS optimization problem, is presented. The results obtained with this method (Fig.
3.20) are the closest to the expected and used in the battery model.

3.4 Variable battery efficiency model

Since the identification is performed on a 4.8 Ah battery cell, in order to obtain the
capacity and voltage levels appropriate for the microgrid topology, the final model is
scaled by connecting the cell in several parallel and series connections. Battery parallel
connection, shown in Fig.3.22increases battery capacity while conserving the voltage

levels:

R, VW
— V] Cin
i R,
.batn
‘\ Lpat

| | : .
.
+ ‘I)I _ RO,l J\/\/\/\_'..

(Docvn (soc) ocvisoc) o vers — Ubat

Figure 3.22. Battery cells parallel connection.

n

lbat = ibat,l +.ooo+ Z.ba,t,n = Zibat,ia (338>
=1

Upbat = Ubat,1 = - - = Ubat,n (339)

Upat = OCVy — Ro,libat,l — Vel,1

(3.40)
= OCVn - RO,nibat,n — VUcln
1 OCV; Ry & i1 Vel
Upg = ==L 270 -0 Thati — M (3.41)
n Py n
In Eq (3.41) we assumed Ry = Ry; = ... = Ry, because cells of the same type are being

connected. Also, > ; OCV,;/n = OCV,, again, under assumption that the cells have the

same OCV-SOC curves. The total internal resistance of the module can be deduced from
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(3.41) as:
Ry

Roor = —, 3.42
oo = (342)
and the remaining parameters are extracted from the RC circuit voltage expressions. The
RC circuit voltage of the module is equal to:

E?:l @cl,i . 1 Rl,tot

= e —ibat- 3.43
n T tot T tot bat ( )

The left side of Eq. (3.43) is substituted with:

n Ve 1, . :
@ = *</Ucl,1 Tt Ucl,n) =
n n
T I 1 CLLY RO N
1 7/Uc . 7/UC n - 7/[/ e 7’1/ n =
n\T, h T, " n\Ty TR
1 v Vel i R 1 & ]
__7@4_—1— Ubat,i - (34
Ty n n 1Ty i=1
— ~—

Ve,tot i
bat

Then, by combining (3.44) with (3.43) we obtain:

R
Tl,tot = Tla Rl,tot = ?1 (345)

The total capacity of the parallel connection is calculated from:

SOC; = SOC; = ... =SOC,, (3.46)
) 1
SOC; = —Tap@bat,ia (3-47)
noo. 1 )
;= —  bat.i = ——pat- 4
; SOC,L Ccap ; Zbat,l — SOCtOt nccap Tphat (3 8)

The total capacity is then Ceap ot = nCeap and n is the number of parallel connections

needed to obtain the desired capacity. The series connection of battery cells is depicted

Rl,l RI,Z
Ry, J\/\/\/\_ Roz V VYV
: QW—
L N
I I OCV2(S0C) I I
OCVI(SOC) + Ver1 — +  Ver2 —

I
Upar T :bat |

Figure 3.23. Battery cells series connection.

in Fig.3.23. With this connection the terminal voltage is increased while the battery
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capacity is not affected:

Upat = OCVi + Ry 1ibat + Ve1q + - .. + OCV, 4+ Ry pivat + Vern =

=nOCV + nRoibat + Z Velyis (349)
i=1
. N 1 & Ry |
Vel tot = Z Vel,i = —? Zvcu + %nlbm (3-50)
i=1 1,21 1

where it is assumed, as in the parallel connection example, that all cells are equal. From

(3.49) and (3.50) the expressions for the scaled parameters are determined:
Rotot = nRy, Ritor = nly, Tiier = 11 (3.51)

The combined expressions for series and parallel connections are then:

C’cap,tot - npccap> (352)

OCVtot = TLSOCV, (353)
R

RO,tot = nsioy (354)
np

Ripos =m0, (355)
np

T ot = T, (3.56)

where ng and n, are the number of series and parallel connections. In order to obtain a 100
Ah battery with approximately 12 V terminal voltage, 3 series and 20 parallel connections

are necessary and the parameters are scaled using (3.52)-(3.56).

3.4.1 Efficiency of the second order ECM

The efficiency of the battery depends on the SOC and on the discharging/charging battery
current. The efficiency is calculated with:

Upat (SOC;) = OCV(SOC;) — (Ro(SOC;) + R1(SOC;) + Ra(SOC,) )ibar. (3.57)
Pch - Ploss . 9
Tlch = T» Pch = ubat(soci)lbata -Ploss - _<RO(SOC1) + R1<SOCz) + RQ(SOCi»@bata
(3.58)
o Pdch - -Ploss . . o .2
Ndch = Pi, Pdch = OCV(SOCi)Zbat, Ploss = (Ro(SOCJ + Rl(SOCZ) + RZ(SOCi))Zbat-
dch

(3.59)
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The parameters obtained in Section3.2(Fig.3.20) are scaled and the resulting battery
model is depicted in Fig.3.24.
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Figure 3.24. Scaled parameters of the 2RC battery model.

The efficiency depending on SOC and the charging/discharging power is shown in
Fig.3.25. We can see that for increasing power and decreasing SOC the efficiency has
a falling trend. Since the parameters, while discharging, are mostly higher than while
charging, especially at low SOC, the discharging efficiency graph is deeper than the
charging efficiency graph. The voltage at battery terminals depends on the current and
the SOC, therefore a graph of achievable charging and discharging powers for different
combinations of currents and corresponding battery voltages is shown in Fig.3.26. The
graph shows that the maximal battery power changes with the battery SOC.

The efficiency curves for a given SOC, over a power span from zero to nominal power,
are shown in Fig.3.27. The discharging efficiency is higher than the charging efficiency
for 20% and 90% SOC and vice versa for 50% SOC which is the result of higher charging
resistances than discharging, in the first case and higher discharging resistances than the

charging, in the second case.
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CuapTer 4

Model predictive control of
battery charging and

discharging current

The battery storage system consists of a battery and a power converter as depicted in
Figure4.1. The power converter enables connection to the microgrid bus by adjusting

its voltage. Depending on the type of the microgrid, the converters are either AC/DC or
DC/DC, however they are always bidirectional to enable energy flow in both directions.
Additionally, the configurations are divided into single-stage and double-stage conversions.

Buck converters are used when the output voltage should be lower than the input voltage,

@Ech Edchﬁ
‘ W]ch 1]dTh ‘

BUCK

BOOST

ipat
C, T

ocvsoc) T ver — + vy, — Ubar <ﬁ>

t
— Ebat :Itouballbatdt

(

Figure 4.1. Battery storage system model and energy flow.

boost converters increase the output voltage. The third type, buck-boost converters, can

adjust the output voltage to both higher and lower level than the input voltage [46].

41
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Depending on the battery and microgrid possible voltage values, one of these three types
of converters is used. The converter is also the control point of the system because it
realizes the control actions demanded from a higher-level controller. And for that reason,
it is important to understand how to control the converter and what control input it

should receive.

4.1 Storage system converter model and efficiency

Modeling of the DC/DC converters includes switched models and averaged models.
Averaged models omit high-frequency ripple in the current and voltage waveforms [47,48].
Some converters accept power as the control input however, conventional control mode
of the DC/DC converters is voltage control mode [49] whereas current control mode
introduces improvements such as inherent current limiting and easier control system design
[50,51,52]. Some converters can operate in voltage and current control mode. In voltage
control operation different scenarios of microgrid operation in terms of distributed and
centralized voltage control configuration are possible which offers flexibility of system
configuration and operation [53,54].

In [55], an averaged model of a double-half bridge buck-boost DC-DC converter for
microgrid storages is shown. The converter is a bidirectional buck-boost type that consists
of two mirrored bidirectional buck topology converters and a common higher voltage DC
bus (Fig.4.2). This topology is popular because of its simplicity and superior fault isolation
at the expense of an increased component count [46]. The converter from [55] can either
control the storage side current or operate as master and control the microgrid voltage.
Since both sides are bidirectional, they can operate in buck or boost mode, depending
on the current flow. This way, both Vi and V5 are flexible and able to ensure the voltage

of up to the value V.. In this topology, V; is considered as a storage-side voltage for

STORAGE SIDE MICROGRID SIDE
Isl |52
.+
4,1\’ s,/ ld, -
: it Ll iLl RLl _)\: :'/(_ RLZ iL2 I—z i :
g S T Y e Y ——AaaaNE N
T - Vi, +F 7 Tt + Vi, - t
Vl -1 Cl Vxl 53 S4 Vx2 OUTPUT CZ:: V2

Figure 4.2. Bidirectional DC/DC converter topology.
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controlling the charge/discharge process of a battery. Voltage V5 is the microgrid voltage
rated value. If the reference current directions of both sides are defined as in Fig.4.2,
both the microgrid-side and the storage side are modeled as buck converters. This model

thereby offers understanding of the basic converter topology as well.

VLj

djT'

Figure 4.3. Inductor voltage and current.

In an ideal buck converter, the inductor voltage and current are represented as in
Fig.4.3, where the voltage wvr; represents the voltage drop on the inductor L; and its
corresponding resistance Ry ;. By controlling the average value of the inductor current the
storage current is set to the requested value. Since the averaged values of the inductor
voltage and current depend on the duty cycle the differential equation of the output loop

of a buck converter is given by:

dng
Todt

where bar notation represents average values, and the index j indicates that the same

Unj = L + Ryji; +05, j =12, (4.1)

expression is used for both the microgrid and the storage side of the converter (see Fig.
4.2). Since the converter is connected to a microgrid, no load is modelled in the output
loop, but it is replaced with a constant voltage value (microgrid voltage). The same
approach was used on the storage side. The average switch voltage, v,; is shown in Fig.

4.4and its value is calculated by integrating over one period:
77:)3]' - dj’ljbc. (42)
The voltage v,; from (4.1) is then substituted by (4.2):

diy,

labcdj = L] ?

+ Rpjir; + v, j=1,2. (4.3)
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Figure 4.4. Switches S35 or S, voltage and switches S7 or Sy current over one period.

Both the DC link voltage and the duty cycle are variable, which is denoted by lower-
case letters. The equation (4.3) is linearized around the operating point value Vo and a

transfer function between the duty cycle and the inductor current is:

G . — J:Lj(s) _ Vbeo
P2 Di(s)  sLj+ Ry’

j=1,2. (4.4)

where 1, r; and D; are Laplace transforms of small changes of the mean inductor current
and the duty cycle, with respect to their values in the operating point. The transfer

function from (4.4) is suitable for design of the current controller.

2

R —
Vbe | i per L2 reg PWM2
Vi ref Vbe reg
i
v L1
—2— [ ity s i1 reg PWM1
Vs ref V2 reg ——o—Llref

IL1 ref

Figure 4.5. Converter control scheme. Variable ¢ denotes the control signal that switches
between the current control mode and microgrid voltage control mode.

The DC bus voltage control is then enforced through a cascade control form as an outer

control loop (see Fig.4.5). In Fig.4.5, PWM1 denotes the driving block for generating
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pulse width modulation (PWM) switching signals for switches S; and S3, while PWM2
generates signals for switches Sy and Sy. Signals with index 'ref’ denote reference values
for controllers of the respective variables. Following from this, a relation that connects the
inductor current with DC bus voltage is required. The DC bus voltage dynamics is given
below:

beﬁz’c = ig — ls2- (4.5)
The average switch current is shown in Fig.4.4and equals to:

iy =djig;, j=1,2. (4.6)
By substituting the currents in (4.5), a nonlinear model is obtained:

dvp. ~ -
ObcT_i = —dyip1 — daipa. (4.7)

Negative sign in (4.7) is added to ir; because its reference direction is opposite to the
reference direction of the switch current as in Fig.4.2. Since only the grid side inductor
current iz is included in the DC link control, a relation between this current and the DC

voltage is derived, after linearization around a steady state duty cycle:

‘:/bc(S) _ Dy
[LQ(S) 501)07

where Dy is the value of ds in the operating point. These equations describe the converter

(4.8)

p,dec —

model in current control. The current reference ir;,.s from Figure4.5is obtained from a
battery control algorithm.
The model for the microgrid voltage control operation is of lesser importance for this

work, but it is also derived in [55].

4.2 Battery charging and discharging approaches

Battery charging control approaches are be divided into model-free and model-based
approaches. The charging profiles of model-free strategies are predefined using heuristics
and empirical knowledge. These models are easy to implement but are unable to reflect
the battery’s dynamics. Model-free approaches include constant-current (CC), constant-
voltage (CV) and pulse charging. Model-based approaches use physics-based models,
mostly different electrochemical and ECMs, state estimators and model-based controllers.
These include fuzzy control, multi-objective optimization, linear quadratic control and
model predictive control (MPC). MPC is the most popular strategy, however it is
mostly applied to linear systems [56], [57]. Model-based approaches are mostly concerned
with health-aware charging approaches. An MPC tracking problem is described in [56].

The battery models on which the control algorithms are based are often simplified
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and linearized. Nonlinear multi-objective optimizations are described in [58], [31]. The
proposed algorithms offer a trade off between battery degradation and charging times. In
[59], an explicit-MPC real-time health-aware charging control is described based on the
nonlinear double-capacitor model (NDC). The nonlinear problem is simplified by piecewise
linear approximation.

In [60], a control algorithm for efficient adherence to energy exchange commands is
presented. The authors proposed an algorithm which offers information about the available
charging/discharging energies, while respecting the system constraints. The optimization
problem is formulated aiming to maximize the residual SOC thus achieving maximal
efficiency during demanded energy exchange. In this work, the energy exchange of the
battery storage system (BSS) is defined at a higher stage, namely the microgrid energy
flow optimization and the BSS control algorithm is in charge of achieving the demanded
battery energy. The previously described algorithm offers valuable information about the
system states and is therefore a starting point for the control of a variable battery storage

system model.

4.3 Variable battery storage system model control

In this section, the 2RC model obtained in section 3.3, subsection 3.3.1. of the third
chapter, is used. The charging and discharging energies obtained as solutions of the
microgrid power flow optimization problem are transferred to the battery side by taking

into account the converter efficiency:

B (MBS i B £ 0
By = 1 dch . rdch (4.9)
T Edch)E if & #0

The converter efficiency is variable and depends on the converter energy. The obtained
energy at the battery side of the power converters is the input for the battery storage

system control algorithm. The battery energy is defined as:

t
Ehpat :/t ubat(T)ibat(T)dT- (410)
0

The BSS control algorithm is in charge of injecting/extracting energy demanded from the
microgrid MPC algorithm. In order to charge and discharge the battery in the most
efficient way, while respecting the system constraints, the BSS MPC optimization is

formulated as in [60]:

max = SOC(N), (4.11)
bat
st. Il HIpy 4+ 2(0)" F Thay = Fpa, (4.12)

Ibat,max Z Ibat(k) Z _Ibat,maxa k= 07 s 7Nbs - ]-7 (413>
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Ubat,min S Ubat(k) U bat,max k= 07 ey Nbs - 17 (414)
Ubat,min S Ul;at( ) S bat,max k= 17 s 7Nb87 (415>
SOcmin < SOC( ) maxa k= 17"'7Nbs7 (416>

where Ny is the prediction horizon of the BSS control, Ipatmax is the maximal
allowed charging/discharging current, Upat min; Ubat max are the battery voltage limits and
SOCin, SOChax are the minimal and maximal allowed SOC. The voltage Uy, (k) is the

voltage at time instant k, before the next current value is applied and is defined as:

Upas (k) = 1im Upa(t) = OCV (k) — Var (k) — Vea(k) — Rolpar (k). (4.17)

t—kT—

The objective of the control algorithm is maximizing SOC at the end of the prediction

horizon and can be rewritten as:

max = SOC(N) = SOC(0) + Cplvat, Co = [~Tbs/Chaty -+ » —Tbs/Chat), (4.18)

Ibat

where T} is the sample time of the BSS and C},,; is the battery capacity. Matrices H and
F from the energy equality constraint (4.12) are obtained from (4.10) by substituting the
battery voltage as follows [60]:

ocv]l o o 0 |[ocv o
i=|va |=(0 —gg O va | | & | fhas (4.19)
() 0 0 R2102 F) C%
———
A B
OCV
Y=t = |1 =1 —1] | va | = Ro ibar- (4.20)
< ~~
C Ue2 D
‘ t
x(t) = x(inS)eA(t*ZTbs) + BeA(t*T)ibat(T)dT, (4.21)
1Ths
NTyg ’L+1 Tba
Ebat :/0 ubat( Zbat dt Z /T ubat t Zbat( )dt ==
bs
4.22
N- (7’+1)Tbs . i ( )
=> / (Cx(t) + D (1) i ().
i=0 7 Tbs
Then, x(t) is substituted with (4.21) and we obtain:
N-1 ('L+1)Tbs A .
By =Y / Ca(iThe)e M= Tos)2 (1) dt+ (4.23)
i=0 \ 7 iTbs
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(i+1)Tbs

t
+ . C( . BeA(t_T)ibat(T)d7'> ipat (T)dt +
11lbs 1lbs

(i41)Thos

Di%at(t)dt> . (4.24)

1Ths

The battery energy equation can be rewritten so its depends only on the initial states and

the battery vector:

N—-1
Erat = > [iw(0)iba (1) 4 Riirag (8) + i jivac (i), (4.25)
=0
(i4+1) Tps
fi= Y cetat, (4.26)
1Ths
(i4+1)Ths t
hi = / ’ C( / eA(t_T)BdT—i—D)dt, (4.27)
1T 1Ths
(i+1)Ths (+1)Ths
hij = ’ C(/ ’ eA<”>Bz'bat(j)dr>dt, j=0,...,i—1. (4.28)
T JTbs
i hy h1,0/2 h2,0/2 hNbs—l,O/Q_ [ fl ]
h1’0/2 hg h2’1/2 hNbs*1,1/2 f2
h2,0/2 h2,1/2 hs hNbs*172/2 ) F= (4-29)
ivge—1,0/2 Avi-11/2 0 hiv—12/2 A1 1]

The algorithm tests if the initial battery state is inside a constrained set based on
battery constraints and Lagrange multipliers. If the initial state is within boundaries
of this set, minimal and maximal Lagrange energies are computed and compared with
the commanded battery energy. The solution of the Lagrange optimization problem with
equality constraint can be explicitly calculated, maximizing the objective function i.e.
residual SOC. If the commanded energy is not within this energy interval, minimal
and maximal attainable energies are calculated using sequential linear program (SLP)
and quadratic program (QP). Then an initial solution is calculated and the objective is
maximized by iterative sliding along the ellipsoid of the commanded energy. The detailed

procedure and algorithm description is described in [60].

The continuous battery model defined with (4.19) and (4.20) is defined with constant
battery parameter values. Since the parameters are SOC dependent, their values change
over the charging/discharging horizon. The above mentioned algorithm is modified in
order to include a variable battery model over the prediction horizon. First, an initial
solution is found with the original algorithm and then using the obtained current vector,
the SOC values over the horizon are calculated. Then, a set of continuous SOC-dependent
state-space matrices is calculated using the corresponding model parameter values. Since

the parameters are constant within SOC intervals, additional constraints are added:

SOCy,(k) < SOC(k) <SOCy(k), k=1,...,N—1, (4.30)
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where k is the time instant and subscripts /b and ub denote lower and upper bound of the
SOC interval. In order to write the system inequality constraints in vector form, the system

is written in the discrete form, which is obtained using zero-order-hold discretization:

10 0 T
Ts TS
A(SOCy) = |0 eTisoen 0 |, Ba(SOCK) = |Ry(SOC))(1 — eTE0e) | | (4.31)
0 0  emcom Ra(SOC,)(1 — eT60m)

Cs=C, Dy(SOCk) =D(SOCy).
The discrete model is then stacked over the prediction horizon:

Y = C,A07(0) + (C;Byo + D) lbat, Y = [Upat(0), .. ., Upay(Nps — 1)]7 (4.32)

Y =C,A2(0)+ (CBy+D)lat, Y = [Upae(1), ..., Upat (Nis)]7, (4.33)
i} . .
A4(SOCy)
ASO - ) (434)

|A4(SOCH)A4(SOC) - ... - Ag(SOCx_1)]

0 0 .0
B4(SOCy)
BSO - )
| A4(SOC1)A4(SOCy) - ... - By(SOCy) A4(SOCs) - ... By(SOC) 0
(4.35)
[ A,4(SOCy) ]
A, = , (4.36)
| A4(SOCp)A4(SOCy) - ... - Ay(SOCy)|
[ Bd(SOCo) 0 .. 0
B A 4(SOC1)B4(SOCy) B4(SOCy)
|A4(SOC1)A4(SOCy) - ... - Ba(SOCy) A4(SOCy) - ... By(SOC;) -+ Ba(SOCy 1)

(4.37)




50 Chapter 4. Model predictive control of battery charging and discharging current

Algorithm 1 BSS control algorithm with variable model parameters

x(0), SOC(0), Epas

Solve MPC Battery optimization (4.11), with A(SOC(0)),B(SOC(0)),D(SOC(0))

while condition
Calculate SOC = C,,1;,.;

Determine SOC interval boundaries ¥V SOC(k) and add to the constraints vector.

Calculate A(SOC(k)),B(SOC(k)),D(SOC(k)), k =0,...,N —1
Calculate (4.39) - (4.44)

Solve MPC Battery optimization (4.11)

if

2 lmax
OR
SOCavg,i -
break

end if
end while

SOCan;L',l S g, SOCavgﬂ' = (SOCl + SOCZ;l + SOCZ,2>/3

C, = diag(Cy), D, = diag(Dy).

The constraints (4.13) - (4.16) are then defined:

I Ibat max
Au = ) u = ’ ) AuIbat < Bu7
-1 Ibat,max
- CSBS +Ds __U at,min + CsAs (0
y ( ’ ) 3 By = bat " ( ) ) Abeat S By7
(CSBSO + Ds) L Ubat,max - CSASOx(O)
- CsBs + Ds __U at,min + CsAsx O
;: ( ) ) By_: et <) ) A;IbatSB;a
(CSBS + Ds) L Ubat,max - CsAs-T(O)
__Tbs/Cbat 0 |
_Tbs / C’bat _Tbs / Cbat e 0
Cooc = . . . . )
__Tbs / Cbat _Tbs / Cbat_
—Coc —SOC,,i, + SOC(0)
Asoc - ) soc — ) Asochat S Bsoc-
Caoe SOC, e — SOC(0)
—S0OCy, + SOC(0)
BASOC = ) Asochat < BASOC~
SOC,;, — SOC(0)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

The pseudocode of the proposed changes to the original control algorithm are described

in Algorithm1. The initial state space matrices are calculated using the current SOC.

After obtaining the initial solution and calculating the SOC values over the horizon, the

problem formulation is repeated using the variable battery model. Then, the optimization
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problem is iteratively solved as long as the SOC values over the horizon change intervals

and the residual SOC improves. After convergence is detected, the algorithm ends.

4.3.1 Open-loop simulation of a variable BSS control

The proposed algorithm is implemented in MATLAB and two scenarios are simulated.
The scaled parameters from subsection 3.3.1. are used for the problem formulation. The
BSS sampling time is set to 1 min and the horizon length is N = 10. The battery capacity
is, for the algorithm verification, scaled to 50 Ah in order to achieve more SOC interval

changes over the horizon. In both scenarios, three cases are observed:

e Case 1: Constant model over the horizon, with model parameters around the
SOC ~ 0.5

e Case 2: Constant model over the horizon, with model parameters around the

SOC ~ SOC(0)

e Case 3: Variable model over the horizon, using the procedure described in
Algorithm1

The SOC interval for the first case is chosen because the parameter curves are mostly
flat in the middle SOC ranges, resulting in smaller model errors for a broad range of
SOC. In the first scenario, the battery is charged for 10 minutes from 20%. The charging
energy Fi,, = —80 Wh is chosen to be high, however still from the Lagrange interval.
The results of all three simulation cases are shown in Fig.4.6. Comparing the results of
the constant parameter models (blue dotted and green dashed lines), the improvement of
the residual SOC is evident, showing that just by pairing the model with the initial state,
better results are obtained. The variable model and the constant model paired with the
initial state show similar SOC at the end of the simulation horizon. Another indicator of
the algorithm performance is the actual amount of charging energy. Table4.1compares

the charging energies and the residual SOC for this scenario. Comparing the energies we
observe that in the first case the battery is slightly overcharged and in the second case

slightly undercharged which is expected since the battery resistances are in the range of
mS).

Table 4.1. Comparison of the achieved energies and residual SOC, in a 10 min charging
period with SOC(0) = 0.2 and FE},,; = -80 Wh.

Case 1 Case2 Case3
SOC(N) | 0.3441 0.4085 0.4095
Eg [WhH] | -80.53 -79.8  -80

In the second scenario, a battery is discharged for 10 min, from (0) = 0.9 with E},, = 87

Wh and the results are shown in Table4.2and Fig.4.7. Again, an evident improvement
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Figure 4.6. Simulation of a 10 min charging period with SOC(0) = 0.2 and FEj,; = -80 Wh.

in results is achieved by pairing the model with the initial SOC. The resulting discharging
energies are again higher or lower than the requested energy when a constant model is
used. In this scenario, the residual SOC is higher with the model, which is constant around
the initial state, than with the variable model. However, the total energy discharged with

this solution is lower than the requested energy, thus contributing to the obtained result.

Table 4.2. Comparison of the achieved energies and residual SOC, in a 10 min discharging
period with SOC(0) = 0.9 and Ej,; = 87 Wh.

Casel Case 2 Case 3
SOC(N) | 0.7185 0.7342 0.7278
Eqa [Wh] | 90.77  84.21 87

The results of the two scenarios show improvements in the control algorithm by adding
the variable battery model to the problem formulation. The improvements are present even

with a constant model over the horizon, with parameters corresponding to the initial state.
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Figure 4.7. Simulation of a 10 min charging period with SOC(0) = 0.9 and FEy,,, = 87 Wh.






CHAPTER 9

Model predictive control of a
microgrid with heterogeneous

battery storage systems

A grid-connected DC microgrid is depicted in Fig.5.1. consisting of renewables production
(photovoltaics E¥V and wind EWT energy generation), load EL and battery storage is
considered, as depicted in Fig.5.1The grid energy exchange is denoted with E¢ and Edh
and E" are the battery system discharging and charging energies.

A DC microgrid is connected to the utility grid via a bidirectional AC/DC converter.
The grid converter is the master on the microgrid DC bus and maintains the DC bus
voltage, and all other devices can freely operate by injecting/drawing power on the
microgrid bus. Depending on the type of components and the type of microgrid, various
DC/DC and/or AC/DC converters are used to connect the components to the common
bus. Power converters represent control points in a microgrid that assure system stability
and quality of power supply since the desired flows are ultimately achieved by converter
current or voltage control. Therefore, it is important to understand the individual control
algorithms for each of the microgrid components in order to enable the coordination of
all the components and to implement requested power flows that are calculated from
the optimization problem. In this chapter an overview of microgrid components, such as
converters and renewables, as well as a control algorithm for the microgrid are described.
The battery storage system and the optimal control algorithm are described in the previous

chapters.

5.1 Photovoltaics and wind turbine control

Controllable microgrid components include renewables: photovoltaics and wind turbine
and their corresponding converters. Converters are mostly modeled using the averaged

model to omit high-frequency ripple in the current and voltage waveforms. The PV

95
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Figure 5.1. The considered microgrid topology.



5.1. Photovoltaics and wind turbine control 57

converters are mainly buck or boost converters, depending on the required voltage levels

while wind turbines (WTs) demand for more complex converter topologies.

5.1.1 Wind turbine model

Wind turbines with horizontal axis have two operating regions. Below rated wind speed
all the available wind power is captured and transferred to electricity. Above rated wind
speed, power production is saturated at the rated power with passive control or active
pitch control. Wind turbine power production model in the below rated speed region is
given with [61] [62]:

1
Pyyr = ipairRQﬂ'CP<)\a B)(W*)?, (5.1)

where p,;; is the air density, R is the radius of blade disc, Cp is the power coefficient that
reflects the aerodynamical property, dependent of blade aerodynamical property 5 and of
the tip-speed-ratio A. The speed v is determined from meteorological data and predictions.
In Fig.5.2the power coefficient curves with respect to the coefficients [ and A are shown.

It is evident that all the curves have a maximal value for a specific tip-speed-ratio.
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Figure 5.2. Power coefficient Cp curve [62].

Therefore, in order to optimize the power production in this operation region, the
control aim is to achieve the optimal value of A [61]. Tip-speed-ratio is defined as the
ratio between the tip speed of a blade and the wind speed:

_wR

A= 2 (5.2)
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where w is the rotor speed in [rad/s]. Originally, wind turbines were fixed speed, where
the speed was determined by the utility grid. By introducing a power converter between
the wind turbine and the grid, the turbine can operate with variable speed thus enabling
optimal power production. The frequency of the generated AC voltage is not constant but

can be adjusted to the desired frequency via the power converter.

5.1.2 Wind turbine generator converter model

For the generator side converter, only the AC current control loop is needed. The generator
side aims to achieve specific generator torque dictated by the aerodynamic torque. Namely,
aerodynamic torque is set so that the captured power is at its maximum and the generator
torque needs to follow it. The torque reference is given by [63]:

1

* 2 _ 5
Tg = K)\Ldg7 K)\ = Tgptpair'ﬂ—R CPmaX' (53)

The speed is set to optimal value by a speed controller and executed by pitch control.
This torque reference is then achieved with FOC by shaping the stator currents with
variable amplitude and frequency to place the generator at the required operating point.
The currents are formed, similarly to the currents on the grid side, by proper switching
of the power converter transistors. The output of the converter is series of voltage pulses
with fundamental harmonic of the required reference voltage. Rotor flux-based FOC is
used. The control scheme depends on the generator type, for instance for a squirrel-cage

induction machine the model is given by [63]:

disg 1

el E(Usd — ksisa + Auga), (5.4)
dé;q _ zlmsq — King + Atiyy), (5.5)
dgj’“ — %(isd ), (5.6)
jlf = Kynpimrisg- (5.7)

And the decoupling voltages are:

1 L2 .
Augg = ifrzmr + Liweisg, (5.8)
L2
Augy = —weL—mimT — Ljweisg. (5.9)

Reference current i, is calculated from torque reference and reference current iy is set

to the rated value in normal operation or calculated to maintain constant power in the
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above-rated-speed operation [63]:

Ty

-S == . 9 510
v q kmzm'r ( )
. wgn

= Lo 5.11
fsa =7, (5.11)

Both current components, magnetizing current and the angle are estimated with unscented
Kalman filter (UKF) and then used in control scheme (Fig.5.3). Other machine type
models can be found in [64] and [65].

angle
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Figure 5.3. Field-oriented control loop [63].

5.2 Photovoltaic array

Power production of a photovoltaic system (PV) is given with the expression:

P =UpvIpy (Upv, Ecior, T) = f(Upv, Ector, T), (5.12)
oP

>0, f Upv < Upv max, 5.13

Upy ) or PV PV, ( )
oP

<0, f Upv > Upv max, 5.14

Upy ) or PV PV, ( )

where 0 is the partial derivative, E.;y is the total irradiance and 7" is the temperature.
Photovoltaic systems are described with a power voltage (P-V) characteristic that changes
with temperature and irradiance of the system, where every curve has a distinct maximum
(Fig.5.4).

The goal is to keep the PV system at the maximum power point. From (5.12), it is
evident that, since the current depends on the voltage, in order to control the power,
control of the PV output voltage is needed. The conventional MPPT algorithms are

Incremental conductance perturb and observe (P&Q0) shown in Algorithm2. It includes
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Normalized PV Power

Figure 5.4. P-V characteristic of a photovoltaic system, depending on the irradiance [66].

Algorithm 2 P&O algorithm [67]

P11 = Upvi-1Ipvi—
if (Poo1 < Py—o && Upy—1 < Upvg—2) || (Pi—1 > Pi—o && Upyp—1 > Upy—2) then
UPV,k = UPV,k—l + AU, AU >0
else
if (Proy < Pyo && Upvji—1 > UPV,k72) || (Prio1 > Pr—o && Upvi—1 < UPV,k72)
then

Upvi = Upvi—1 — AU, AU >0
end if
end if

a perturbation in the voltage causing power variation of the PV array. The PV output is
compared with the previous power. If the power increases the same process is repeated
otherwise the perturbation is reversed. If a positive perturbation causes an increase in
power, the operating point is left of the MPP and vice versa. The P&O algorithm is
the most widely used. Other MPPT algorithms are based for example on fuzzy logic
controllers, genetic algorithms, particle swarm optimization [68,69].

The MPPT algorithms calculate the reference voltage, which is then forwarded to the
converter. Photovoltaics are connected through a DC/DC converter to the DC microgrid.
Often, the PV output voltage is several times greater than the DC bus voltage, therefore
buck converters are used [70]. The topology of a buck converter is presented in Fig.4.2,
denoted with dashed blue lines (microgrid side of the buck-boost converter). For the
control circuit, equations (4.1)-(4.8) derived in Section4.lcan be applied. In (4.8) the

storage side current —dyip, is replaced with the PV output current ipy.

5.3 Grid converter control

In this section the grid DC/AC converter topology and averaged model are shown. This
converter operates as the master and is in charge of maintaining the DC link voltage level.

After reviewing the conventional control algorithm implementations of the grid converter
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topology, a problem with the DC link stability is observed however, this problem is scarcely
investigated in the literature. Since the grid converter is in charge of evacuating/injecting
the calculated optimal energy flows, its stable operation is critical to the whole system.
In succeeding sections, a stability analysis is performed and a robust controller design
procedure is proposed. The proposed controller is robust to parameter inaccuracy which
is important due to varying operating conditions in a microgrid.

Conventional converter control relies on proportional integral (PI) or proportional
resonant (PR) controllers, for current control. Voltage control is designed using a
cascaded structure. Control loops performance is significantly affected by the parameter
accuracy, mainly contributed by the grid impedance [71,72], which varies with the load
characteristics and overall grid conditions [73,74]. In order to increase the robustness,
damping techniques are considered and different control algorithms, specifically designed
to achieve robustness against parameter inaccuracy and/or harmonics attenuation, are
developed [75,76,77]. All the aforementioned mostly concerns with current control loops
while DC link control is less investigated. The PI controllers are the most common choice
for DC link voltage control due to simplicity and easy implementation as presented in
[78,79] The nonlinearities present in the DC link, however, deteriorate the performance
of the PI controller when it deviates from the operating point. Sophisticated algorithms
such as adaptive control [80], feedback linearization [81], neural networks and fuzzy logic
[82,83,84], model predictive control (MPC) [85,86] and sliding-mode control (SMC)
[87,88] are also found in literature however, deeper and systematic modeling of a DC link
and corresponding controller design is scarcely present. Most of the approaches imply a
single capacitor in a DC link. In [89], a stability analysis is performed. In [90], similar
conclusions are drawn with an added additional DC link filter. In the listed literature, the
authors unanimously identify and highlight the need for robust controllers and usually
rely on parameter tuning experience.

A systematic approach for DC link voltage control is proposed, further relied on the
inner current control loops in order to reduce approximations and neglected components.
The unstable pole of the DC link is respected and system is stabilized by using an
analytical approach. The controller parameters are defined by the inner control loop and
the model function. There is only a single degree of freedom, that adjusts the speed
of the closed loop and the overshoot. The method based on Truxal-Guillemin approach
[91] introduces proportionate settling times but with a somewhat larger overshoot when

compared with conventional approaches, however the approach is:

e robust to operating point changes regardless of only a single one chosen for

linearization
e based on the real model of the system

e robust to DC link or grid filter and grid impedance parameter variations.
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5.4 Current control
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In a typical voltage control mode, the current control loop is responsible for setting the
converter voltage reference value. The first step in modeling is to obtain the voltage to
current transfer function. In Fig.5.5, considered back-to-back configuration scheme is

shown. The complex DC link topology is introduced by connecting two motor drives via
the common DC link, thus adding additional inductances and capacitances (filter) into
the DC link. The grid side of the configuration consists of an inverter and an LC filter.
The grid impedance effects are taken into account by adding additional current sensors
at the point-of-connection (PCC) and synchronizing the control system to the voltage
at the capacitance terminals of the filter. The grid impedance is therefore excluded from
the derived model. Variables ¢;, and i, denote the converter and grid currents. Variable u
denotes the converter phase voltage and e represents the phase voltage at the connection
point to the grid. The current dynamics is separated into a cascade. The inner loop controls
the converter current and sets the converter voltage reference while the outer loop controls

the grid current as shown in Fig.5.5[92].

5.4.1 Converter current control

A step-by-step modelling of the current control loops is presented in [92] in detail. A
concise version is given in the sequel for the reader’s convenience. The differential equation
of the inductive part of the filter Ly, with its corresponding resistance Ry ¢, is for the three
phases given by:
dizg .
Lfﬁ“i_RLflek = U — €, k:a,b,c, (515)
and transferred to (d,q) coordinate system rotating with frequency w and aligned with

the grid voltage vector. The derived L filter transfer functions are:

Iq 1 I,
— Give = —L = G- 5.16
AU;  sL;+ Ry’ a (5.16)

Gidd = iqq — AU
q

Note that the derived model is tied to the voltage difference AU; = Uy — Ejy,
AU, = U, — E, rather than the grid voltage, which makes it more independent of the
grid impedance.

The control algorithm is implemented in discrete-time domain and the effect of

discretization is taken into account together with converter delay. The inner open transfer

function is therefore:

[L . ST]’m +1 1
I =1, " Ty M 4 (T + Taw/2)

Go,in = (5.17)

where Ty and Ty, are controller sample time and converter switching period [93]. Both
transfer functions are first-order lag type with a clear dominant time constant suitable

for applying a proportional-integral (PI) controller based on a magnitude optimum (MO)
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approach [94]. The inner loop controller parameters are chosen:

_ Ly 1 Ly
TI,zn ~ Rpp’ KR,m T 20.5T5w T s (518)

The process transfer functions G,44 and G, are equivalent and therefore (5.17) and (5.18)

are applied to both axes.

5.4.2 Grid current control
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Figure 5.6. Root locus curves tuning the grid current (middle) control loop.

For the grid current control loop, the capacitor part of the filter is modeled by following
the same procedure as for the inductive part in order to relate ¢z, and 44, and the following

coupled relations are obtained:

[gd = [Ld — chdEd + chqu, — T = 1, (519)
Ld
1,
ng = [Lq — chqEq + chqu — qu = 1. (520)
Lq

The corresponding transfer and decoupling functions are derived in [92]. Open loop

transfer function of the outer loop is:

Ig § + TIlout
I — 7 - GR,outh,in - KR,outf’Gc,in, (521)
g g9

GO,out -

where G, is the closed loop transfer function of the converter current loop, G, =
Go.in/(1 4+ Goin), and Gy, is the open loop transfer function obtained in (5.17).
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The outer loop controller G'r o, is of the PI type and its parameters are chosen by using
a root locus approach [95] in order to achieve at least two times slower dynamics than
the converter current loop, which is necessary to respect the cascaded control and avoid
the control loops interference. First, the controller integrator gain is varied while keeping
the proportional unity gain. The root locus curves for 77, = [1,0.1,0.01,0.001,0.0001]
are shown in Fig.5.6. The objective is to place the zero further away from the imaginary
axis, which would make its effect on the closed-loop dynamics negligible. However, from
the root locus curves, it is concluded that by increasing the zeros, the curves approach
the imaginary axis and even cross it for 77 ,,; = 0.0001 (blue dot-dashed line). The
integral gains 17 ,; = [0.01,0.001] are chosen as a good trade-off and are used in the gain
analysis. Figureb.7shows open loop and closed loop Bode plots, and the step response for
Kprour = [10,100, 1000]. Increase of the gain also increases the bandwidth of the system.
The phase characteristic of the system with 77, = 0.001 is more uniform over a wide
range of frequencies with steady phase margin for different gains. The main objective of
this controller design is to have a fast and robust response while respecting the inner loop
dynamics. Comparing with the inner control loop time constant (approximately 0.0012
s) and looking at the shape of the transient response (Fig.5.7(c)), the light blue line
(T7out = 0.001, Kpg o = 100) is chosen as a starting point for further tuning. Controller
parameters are further tuned until a satisfying result is found (green full line): Kpg ,u =
371.76, T7 our = 0.00035. The block scheme of the current control loops is shown in Fig.
5.8, where red denotes measured variables and dashed lines denote coupled variables. The

coupling and decoupling transfer functions of the current control loops are defined in [92].
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5.5 Voltage control loop

The DC voltage control loop maintains the balance between the machine power (generated
or consumed) and the power delivered to the grid. The DC link topology is shown in Fig.
5.5. In [92], the grid side of the DC link is modelled (blue part) while neglecting the
machine part of the DC link (red side). This, however, proved as unjustified decoupling,
confirmed also by simulation and experimental results, as will be described later.
Following the same procedure as in [92], the full state space model of the DC link is

given by:

[~ 0 G 5= 0] [0 0]

0 _IL%Z 0 2L1dc _21:10,0 0 0
x=|-g O 0 0 0 |x+] 0 Z|u (5.22)

Aok 00 o 0 0

0 Ci 0 0 0 | _—Cic 0

where x = [z Ls,de UL.de Us Ude uc} ! and u = {Z.c,dc isvdc]T. Two additional states in the form
of inductance current iz, 4. and capacitor voltage u. on the machine-side are added. The
DC converter current from (5.22) is substituted by grid power P, in order to relate the
model with the AC side of the converter model. The source side current i 4. is substituted

by source AC power thus describing the model using two comparable variables:

P,
Z-c,dcuc = 797 Z.s,dcus = nsP& (523>
Tlg

where 7 is the converter efficiency. After the substitution, the model from (5.22) becomes

nonlinear and the linearization is performed:

. 1 Leded
Aiege = AP, — S A,

Tgtteo et (5.24)
Aigge = AP, — 0Ny
Uso Us0

The dependence between the DC link voltage and the inputs is obtained by solving
the set of linear equations from (5.22) and (5.24), and is given by:

AUge = Gp, AP, + Gp, AP, (5.25)

Go — — n2p952 + NipgS + Nopg
Fo s° + d4$4 + d3$3 + d282 + dls + do

AP, (5.26)
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2
N2psS” + N1psS + Nops
Gp, = L t r AP;. 5.27

P 85 + d4S4 + d383 + d282 + d18 + do ( )

where ngp, — Napg, Nops — N2ps and dy — dy are the transfer function coefficients. The AC
power P is considered as a disturbance and only the transfer function G'p, is used in the
DC voltage control loop, shown in Fig.5.8:

Ui _ g Uie _ g, don Pa Ui

GO de —
U;lkc - UdC gd ;]kd Igd Pg

- GR,chc,outGpcGPg- (528)

A power to current conversion is added: P, = G,clyq and G, = %Edp is introduced to

relate DC link voltage transfer functions with the current controllers. It is assumed that
PLL forces E, to 0.

The open loop transfer function from (5.28) results with an unstable pole. For the
design of a DC link controller, Truxal-Guillemin (TG) approach is chosen[91]. The method
is well established, systematic model-based approach, also known to be highly sensitive
to model parameters variation, which is here avoided by introducing AU dependency in
(5.16), rather than E. The model discrepancy that arises from variations in resistances,
capacitances, and inductances, but mostly deviation from chosen linearization operating
point (5.24), is compensated by robust PI controllers of the inner loops, which is also
examined in the experimental results. The current closed loop from (5.21) has three poles:
two complex and one real pole, and is simplified to a first order lag system. The time
constant is calculated by minimizing the mean squared error between the real and the
approximated function [92]. In the TG approach, first the desired closed loop transfer
function is modelled. The pole excess of the model function is chosen equal or greater to
the pole excess of the process function. The pole excess of the open loop process function
is 4. The denominator is chosen to be a n-order polynomial with fixed coefficients while
coefficients of the numerator are adjustable. This finally enables pole stabilization. The

desired model function is written in form of:

OZ(S) GR7chc,out Gppo

G, (5) = — . 5.29
( ) 6(3) 1+ GR,chc,outGppo ( )
Following from (5.29), the controller is defined as:
1
GRdec = - (5.30)

Gc,outGppo 6 -« .

The expression  — a contains the unstable pole since the objective of this approach is
to relocate it and not to cancel it with the controller zero. This condition is mathematically
written as: f —a = (s — s,)P(s), where P(s) is an auxiliary polynomial and s, is the
unstable pole. Since the order of «a(s) and [(s) is not specified (only the ratio is), the
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following possibility is considered as a starting point:

Bust + B3s3+Bos® + P15 + By — ag = (s — sp)(P333 + Pys® + Pis+ Py). (5.31)

Following from (5.31), a set of equations is obtained, where the f; coefficients are
defined by the choice of the numerator polynomial type and ay = Sy is chosen in order
to ensure a unity gain. Since the system from (5.31) has no real roots, the numerator and
denominator order is increased by one and the approach is repeated until a solution is
found. The final model function for the considered DC link is:

Q1S +w2
(s +wp)®’

ar =(5wy + 10s,ws + 10s2w? 4 5siwy + 5,),

Gm(s) = (5.32)

where the parameter w, determines the closed loop dynamics. The controller is obtained
by putting (5.32) into (5.30):

CLGSG + CL5S5 + (1484 + (1383 + CL282 + a8 + ag
86 + b585 —|— b484 + b383 —f- b282 + b18 + b()

GRrde = — (5.33)

The root locus of the open loop with the controller from5.33is shown in Fig.5.9.

Root Locus

Imaginary Axis (seconds'1)

-200 1 1 ! | |
-250 -200 -150 -100 -50 0

Real Axis (seconds™)

Figure 5.9. Root locus curves for the DC link voltage open loop transfer function.
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5.6 Robustness analysis

The robustness of the proposed controllers is studied in this section. Figure5.10shows
the change of the Bode plot of the open-loop system when grid filter, grid impedance and
DC link filter parameters change. In Fig.5.10(a), Bode plot for the grid current open loop
from (5.21) is shown for LC grid filter parameter changes of £25% and +50%. The phase
and gain margins (PM and GM) of the original system are 23.7 dB and 74.4°. The gain
margin barely changes with parameter variations. The phase margin varies between 85.8°
for -50% (red line) and 65.1° for 50% (green line), while providing a safe distance from the
edge of stability for all cases and thus the high robustness of the approach. Figure5.10(b)
shows the Bode plot for grid impedance changes from a stiff grid (Z, = 0.003 Q) to a
weak grid without and with the reactive component. For all the cases the current loop
remains stable with phase margin between 77° and 82°. In Fig.5.10(c), Bode plot of the
DC voltage open loop from (5.28) for DC link filter parameter changes of +10% and +20%
is shown. The GM and PM of the original system are 8.19 dB and 33.8°. The GM changes
from 9.84 dB for +20% (green line) to 6.14 dB for -20% (red line). The PM changes
between 36° (green line) and 29.2° (red line). The system remains stable, with similar
stability margins despite the significant changes of the parameters.

The robustness to the operating point variation (linearization) is shown in Fig.5.11.
The Bode plots are given for the DC link voltage open loop from (5.28). Figure5.11(a)
shows £2.5%, £5% changes from Uy, . The stability margins change approximately +5.5%
for GM and +2.5% for PM. In Figure5.11, deviations of the disturbance current i g,
from the operating point are shown. The gain margin stays in the same span as in
the former example. The phase margin changes £22% from the original system. The
last example shows converter efficiency variations (Fig.5.11(c)). The changes have little
or no impact on the phase margin while the gain margin changes in the range +3%.
According to the analysis, the designed control algorithm is able to operate in a broad
range of operating points without becoming unstable. The proposed algorithm is also
compared with conventional control methods. The outer loop controller is substituted
by a PI controller with parameters of the outer loop controller chosen according to the
symmetric optimum approach [94] and uses a simplification of the DC link process function
—#Udo Cy = C,+ Cy + C,. For

the inner loop, three control structures are observed: i) the cascaded current control loop

(the additional components are neglected): Gpg. =

proposed in this paper, i) current control loop consisting only of the L filter function
while neglecting the capacitance (common method [90,96]) with a PI controller, i)
current control loop from previous example with the PR controller. The PR controller
is designed using the gains of the inner loop PI controller described in the paper and
choosing w. = 1 rad/s in order to avoid the infinite gain problems with the ideal PR
controller [97,98]. In Fig.5.12a, Bode plots of the DC link voltage open loop for all

three examples are shown. The GM is approximately 25.8 dB for all examples and the
PM changes between 67.7° and 75.5°. In Fig.5.12(b), Bode plots for different values
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of the parameter a are shown for the PI4+PI topology. The parameter a (parameter of
symmetric optimum design) determines the speed of the system. However, simulations
show problems with the DC-link PI controller when deviating from the operating point
while the control loop becomes unstable. By increasing a, the phase margin also increases.
The tuning process is repeated several times in order to achieve an acceptable response
(Fig.5.12(c)). The same problem occurs with the PI+PI4-PI topology. As a conclusion,

conventional controllers show larger robustness (higher margins) for a particular linearized
model and selected grid impedance but are more sensitive when system deviates from the

initial assumptions, which is expected to occur regularly in normal operation.
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5.7 Experimental results

The experimental setup consists of an induction machine and a permanent magnet
synchronous machine with coupled shafts, where one acts as a wind turbine emulator and
the other is used as a generator with corresponding generator and grid side converters, i.e.
back-to-back converter. Both converters on the generator side are Danfoss FC302 motor
drives of rated power and current of 7.5 kW and 16 A, respectively, connected to the
common DC-link bus to form a back-to-back converter topology with complex DC link
(Fig.5.5). The rated DC link voltage is 600 V. Control boards are replaced by custom-
designed boards for achieving controllable IGBTs. The developed control algorithm is
implemented on a real-time dSPACE 1103 controller. The switching frequency of the
converters used in experiments is fy,= 8 kHz with sample time of Ty,= 0.4 ms.

The setup is installed in the laboratory with a large share of renewables where
voltage conditions are highly dependable on the loads of the rest of the building. The
experiments are performed during high and low load conditions: "low grid impedance
scenario” and "high grid impedance scenario”. The grid impedance is determined by the
method described in [99], and presented in Table5.1as well as grid converter parameters
and controller parameters for all three controllers. The DC controller coefficients are
obtained for w,, = 90 rad/s. Simulation results are obtained by using the co-simulation
of MATLAB/Simulink and PLECS. Figure5.13shows a comparison of simulation and
experimental results for a step increase in DC link voltage from 570 V to 630 V. For the
case of controllers design, while taking into account partial DC link model (as in [92]),
there is a clear discrepancy between simulation and experimental results as shown in Fig.
5.13. Response "full model” depicts the results with the full DC link model (5.22) and
the controller from (5.30). Since PI controllers are robust, the system is still stable but
underperformed and the decoupling is therefore not justified. Results obtained with the
controller from (5.30) show matching simulation and experimental results in terms of rise
time, overshoot and settling times, as shown in Fig.5.14.

Figureb.15shows DC link voltage and d, g grid currents responses for a DC link voltage
reference step change of 60 V in high and low grid impedance scenarios. The disturbance is
compensated after 0.14 s transient for the chosen w,, = 90 rad/s in (5.30). The figure also
shows coinciding results for the case of high and low grid impedance, which confirms the
robustness of the proposed control structure. Introduction of additional pre-filter would
eliminate the overshoot but would also introduce significant delay in the response, which
is not favorable in the current application.

The experiment is also performed for a step increase in generator power from 3.15 kW
to 3.75 kW. The experiments are conducted for high and low grid impedance scenarios,
which is shown in Fig.5.16as a barely noticeable difference in responses. Increased current
in the DC link causes a temporary increase of the DC link voltage, which is compensated
by larger current injected to the grid. The proposed control structure compensates the

disturbance with 1% DC link voltage deviation.
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Figure 5.13. Comparison between experimental and simulation results with the controller

from [92].
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Table 5.1. Parameters used for results

Parameter Value Parameter Value
High Z,  0.059-j1.366 €2 ag 6.175-10'?
Low Z, 0.345-j0.92 2 ay 4.159-10%
Ly 53.1 mH as 1.162-10°
Ry 0.32 Q2 as 6.278-10°
Cy 10 pF ay 1246.0
Cle 100 nF as 8.993-107°
C. 500 pF ag 1.413-1077
de 1.135 mH b() 0
Ry 0.15 Q by 6.918-10'2
Kprin 57.4054 ba 7.509-101°
Trin 0.1713 s b3 4.213-108
Kgout 0.1301 by 1.025-106
T7 out 0.00035 s bs 588.8
700 ;
E 650
v 600
§ uge (low grid impedance)
0T et )

0.96 0.98 1 1.02 1.04

1.06  1.08 1.1 1.12 1.14

=
=
S igq (low grid impedance)
5 ¢ 144 (high grid impedance)
I I I I I T T T tgdef
0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 112 1.14
| I I | | igq (low grid impedance)
5 igq (high grid impedance)
=
o>
>
)
5L i
1 1 1 1 1 1 1 ] 1 1
0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 112 1.14
t [s]

Figure 5.15. Experimental results with respect to ugc . step change from 570 V to 630 V.

The three-phase grid current is shown in Fig.5.17. Total harmonic distortion (THD)
of the currents in case of low grid impedance is approximately 6.01%, while for high
grid impedance THD is 6.41%. The THD is further significantly reduced by the utility
grid transformer (55.1 mH, 10/0.4 kV, 8 MVA) resulting in satisfying the grid codes
and keeping the THD below 5%. The THD increase for approximately 40% higher grid
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Figure 5.16. Experimental results with respect to P, change from 3.15 kW to 3.75 kW.
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Figure 5.17. Three phase grid current.

impedance is very low, and mainly due to basic phase-locked loop (PLL) used [100]. Basic
PLL topology is designed to capture a single voltage harmonic, which is enough for stiff
grid conditions. In the current example of different grid impedances and highly expressed

third harmonic, the basic PLL topology is not able to respect this for transformation of
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Figure 5.18. DC link response with respect to w, changes.
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Figure 5.19. DC link response with respect to parameters changes.

(a,b,c) to (d,q) coordinate system. Deteriorated PLL performance therefore also causes
errors in the feedback (d,q) components, and as a consequence this is finally reflected as
a higher THD. Application of a more elaborated PLL structure is expected to further

improve the overall control performance, as discussed in [101,102].

Figureb.18shows the DC link step responses for various cases of chosen  w, that
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determine the controller dynamic. The increase of w, also increases system dynamics at
the cost of larger overshoot/undershoot.

The robustness of the controller is also tested with respect to DC link parameters
variation. This is performed by designing the controller based on the "wrong” DC
link model parameters. Although the parameters are significantly changed, the system
performance remains similar as shown in Fig.5.19.

The results show high robustness to grid conditions and + 20% parameter inaccuracy
for the proposed cascaded control with total harmonic distortion increase of only 0.4% at

the grid connection point for 40% increase of the grid impedance.

5.8 Control of a battery system with variable efficiency

In the previous sections, microgrid components and their control algorithms are described.
The goal of each component control is to achieve stable and efficient operation. In this
section a control algorithm for microgrid optimal power flow problem is proposed, with

emphasis on a variable battery storage system (BSS) efficiency.

____________________ n

EG
Energy flow
<:> optimization

EL

-
%

ST

e
[T
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>

Figure 5.20. Microgrid topology with heterogeneous battery storage systems.
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Most of developed advanced control approaches use models with constant battery
efficiency and neglect energy losses of power conversions. However, converter efficiency is
affected by conducting and switching losses of the electronic switches but also of normal
operation requirements such as motherboard power consumption or cooling system with
fans. Therefore, the converters efficiency curve is usually characterized with a distinct
maximum [103]. In [104], constant converter efficiency is included in the optimization
model. Power losses are estimated within a control loop with proportional-integral
controller in [105], comparing reference power and the total power from renewable energy
sources and storage units from the previous time step. In [14], the variable converter
efficiency is averaged and respected by control as such. The variable converter efficiency
is modelled in [106], and a genetic algorithm is used. However, the authors omit a more
detailed description of the algorithm. The authors in [107] present a mixed-integer linear
program (MILP) problem formulation for optimal power flow, which includes the variable
converter efficiency. At each time step, the converter efficiency is updated by using the
current measurements and is considered constant over the prediction horizon.

The microgrid power flow is depicted in Fig.5.20. In the microgrid model, production
and load powers are used as known measured disturbances and the energy exchanged with
the utility grid is determined by MPC. Battery storage system includes the battery and
its corresponding power converter, and its dynamics is modelled via the state-of-energy
(SOE), denoted with x. Variable efficiencies 1 of the storage system are included in order

to achieve a more accurate model:

t t

o(t) = xlto) = & | dech(T)dT =& [P 5
where C' denotes the storage capacity in [Wh] and P denotes battery converter power at
the microgrid side as shown in Fig.5.20. Powers and efficiencies are split into discharging
and charging components, denoted respectively with 'dch’ and 'ch’ subscripts, since the
observed system has separate discharging and charging converters. However, the same
formulation applies for a bi-directional converter, thus avoiding the integer formulation of
the problem [108]. Charging powers have a negative sign and discharging powers have a

positive sign.

5.8.1 Linearization

The discrete-time model is obtained by describing the state of the continuous-time system
at time instances ty, k € Z*, where ty,1 = t; + T, and Ty is the sampling time. After the
substitutions ty = t; and t = ¢, in (5.34) the discrete-time model of the battery storage
system is formed:

1 [te+r 1

dch 1 bt ch\ pch
T(tpt1) = x(te) — C mp (Te)dT — C/tk Nen (P P (T )dT. (5.35)
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This model is further simplified by assuming mean powers during the sampling interval
P, = P(ty) = P(t),Vt € [t,tr+1) and the notations xpy1 = x(trr1), xx = x(tx) are

introduced:
1 1

 C gen (P3N

The converter efficiency (ncony) curve is imported in the form of a look-up-table (LUT)

1
Pl — 6nch(P,;*l)P,gl”*Ts. (5.36)

Tk+1 = Tk

from the chosen converter datasheet (depicted with orange and green circles in Fig.
5.21). Two converters, a XP Power QSB40024548 boost converter and a Delta Electronics
Q48SC12042NRDH buck converter (Table5.2), are used in order to achieve a bidirectional
energy flow. The battery efficiency is defined as power loss over the battery internal
resistance for the nominal range of converter currents (first subfigure in Fig.5.21) and
combined with the converter efficiency data. The considered battery model with internal

resistance value of Ry, = 10 m{2 is taken from [37].

Table 5.2. Converter parameters.

Converter type Vi Vout Pout
XP Power QSB40024548 9-36 V. 48V 400 W
Delta Electronics Q48SC12042NRDH | 36-75 V.  8-13 V500 W

Both curves are adjusted for the normalized input power range. The resulting data has a
distinct maximum, and is fitted to an exponential curve (Fig.5.21) which has proved to be

more accurate than the higher order polynomials, and less complex than spline functions:

n(Pnorm) = apnebp“Pmrm + Cpnedpﬂpnorm’
o (5.37)

aP — apnbpnebpn})norm + Cpndpnedpnpnorm‘
norm

In the lower power ranges the switching losses are more prominent and greatly affect
the efficiency. Therefore, for the power range below maximal efficiency, the mean power
(given by the SLP control algorithm) is further modulated within the sampling period.
The battery is charged/discharged with the maximal efficiency power during a shorter
period, achieving maximal efficiency and the converter switches are inactive for the rest
of the period. This is reflected in the implemented efficiency curve by holding maximal
efficiency in the lower power range. The final curve is depicted with blue line in the
lower two subfigures (Fig.5.21) and it corresponds to the battery storage system overall
efficiency in charging and discharging 7c, pss and 74ch Bss, With taken into account the
possibility of modulation of power converter operation within the sampling interval.

In both cases, the maximum of the approximated curve is between 40 % and 50 %
of the nominal power, which corresponds to power ranges 160 W - 200 W for the boost
converter and to power range 200 W - 250 W for the buck converter.

The model from (5.34) is rewritten with the substitution EY® = PAhT, peh = phT,

S . dch,0  7ach,0
and then linearized around the point E, ", E;":
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OTpsn 11 1 B o
= —— - E )
OB gm0~ Oy(B) o) 3%
k
3$k+1 1 ch,0 ch,0 . / ~ch,0
—_ E’ ) E ’ E )
DB | o~ C n(E) + B0 (E) ) (5.39)
k
ox ox
A =A — AFdh AEM ) k=0,..,N—1
Tp41 Ty + ( 8Eg‘3h 0 T 6E}§h e k| LIRS ) (540)
k k

where E{h Eh are the mean discharging and charging energies within the sampling time

and k is the time step. Using (5.40), and by introducing the vector Auy, = [AE{® AESH]T

0 0

and notation with the operator V., := [55a 55m
k k

w) = [EL™ B0 is defined:

| the linearized model around the point

0
Axpy = Axy, + Vukx|u2Auk, Auy, = up — uy,
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0 0
ATy = Ty — Ty — Tyl = Tpyq + ATpyr. (5.41)

The vector 7, ; is the SoE achieved by implementing the control input uy.

5.8.2 Problem formulation

The objective of the considered microgrid operation is to achieve maximum economic

gain:

J = mu}cn NE? e EY = min cE, (5.42)
k=0
s.t.

Ej™ >0, Ef" <0, (5.43)

EY = B} — B — 1y, (5.44)
Tmin < T < Tmax, (5.45)

Umin < Uk < Umax, (5.46)
Pg.T. < Ef < P.T., (5.47)

where ¢;, is the energy price at each sampling interval, the maximum grid converter power
is denoted with PS¢ and PS

max min

and Upay and unyi, represent the maximum battery converter
energy. The maximum and minimum SoE of the battery are represented with x,,, and
Tmin- For MPC implementation, the constraints are written in a matrix form over the

horizon N. The linearized model (5.41) over the horizon N thus becomes:

Ax = AgAxy + BgAu, (5.48)
Az | AN
Axy JANTA
X = , Au = ;
| Axy ] | Aun_ |
1
Ag= ;
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Vi@l 0 0
Vu0$‘u8 vu1$|u(1) to 0

Be=| ,
_VU0$|u8 e o qu_1x|u%71_

where x and u are the state and input vectors stacked over the prediction horizon.

The constraints from (5.43), rewritten in matrix form become:

I.u < B., (5.49)
[i. 0 0]
10 0 i, --- 0
i, = . - , (5.50)
0 1 Dot e,
[UNEEEIEE. N
b,
b 0 B : (5.51)
e O 9 e . . .
b

The energy balance equation from (5.44) is rewritten as:

~1E“ + A,u< B, (5.52)

A, =-1,, B,=(E*-E"), (5.53)
i, 0 0]
0 i, --- 0

w=[1 1], L= (5.54)
_0 Ly |

where E™ and EY are the renewables production and load stacked vectors. The SoE

constraint from (5.45) becomes:

A< B, (5.55)

Xmax — X° + Bqu®

, (5.56)

—Xpin + X0 — Bqu®
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where u’ is the initial input vector and x° is the vector of SoE, achieved by implementing

u’. The grid and battery converter constraints from (5.46) and (5.47) are rewritten as

follows:

A,u<B,, (5.57)

I Wppax
A, = , B, = , (5.58)

_I —Unin
A,u<B,, (5.59)
A= B ProwsTs ~ B + B (5.60)

1 Iu ) p —PgaXTs + EL _ Eres ’

where Pﬁax, Upax and Uy, denote the maximum grid converter power and the maximum

battery converter current over the prediction horizon. An additional constraint is added

to ensure that the SLP algorithm stays in the neighbourhood of the initial point in every

iteration:
~A<u—u’<A = Aju< By, (5.61)
I 0 u’ + A
Ap = , Ba = , (5.62)
0 —-I —u’+ A

where A determines the maximum deviation of the solution vector from the initial point
at each iteration.

The SLP algorithm is shown in Fig.5.22. At each time step, a control vector u{ is
chosen as an initial point and the problem is linearized. The algorithm solves the problem
from (5.42) and then replaces, at each iteration, the control vector u{ with the current
problem solution u; and linearizes around it, until the exit condition is reached. For
this implementation, the comparison of average cost function values is chosen as the exit
condition. The algorithm calculates the average value of the cost function in the last three
iterations and compares it to the average calculated in the previous iteration in order
to determine if the exit condition Jayg; — Javgi—1 < € is reached, where ¢ is the chosen

convergence tolerance.

5.8.3 Simulation results

The control algorithm is implemented in MATLAB and several 7-day period simulations
are performed. The battery system model, depicted in Fig.5.1, is a combination of two
converters: XP POWER DC/DC boost converter and Delta Electronics buck converter
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Figure 5.22. Derived SLP algorithm.

(Table5.2) in order to achieve a bidirectional energy storage topology. The efficiency

curves include battery and converter variable efficiency as shown in Fig.5.21.

The proposed model is compared to a common approach with constant charging and
discharging efficiencies, i.e. n(P") = nga, n(P®) = 7. The efficiency curves from
Fig.5.21are approximated with a constant and the best approximation (using least-
square-error) is chosen: Ngen, = 87.83%, nen = 94.49% (dashed red lines in Fig.5.21).
Therefore, charging equation (5.34) takes the linear form.

The discretization time is T = 10 min which corresponds to the production and load
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Figure 5.23. Comparison of MPCs 7-day operation with constant (linear) and variable

efficiencies (SLP).

energy data acquisition period. The p

rediction horizon for both models is N = 144 in order

to capture both tariffs of the considered two-tariff energy pricing model. In simulations,
receding horizon control (RHC) is implemented, where the optimization problem from
(5.42) is solved every 10 min and only the first control input is applied to the nonlinear

storage system model. In Fig.5.23, grid energy exchange, battery charging/discharging
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energies and the battery SoE are shown over a 7-day period. The orange dashed line
denotes the responses obtained by MPC that uses a linear model and the blue line
represents the responses obtained with MPC that uses the introduced model with variable
efficiency. The control inputs obtained with the latter control strategy clearly follow the
efficiency curve since all the charging/discharging energies are lower than the nominal.
Moreover, the charging and discharging mean powers are mostly kept between 0.4 —0.5P,,
which is around the maximum of the approximated curve. All the simulations were done
with the full nonlinear model and the results are summarized in Table5.3. The table

compares the total cost and the total charging/discharging battery energies over the 7-
day period. The initial condition xg is the same for both models. At the end of the observed
simulation time, both models charge the batteries to maximum allowed percentage (90%).
In all three categories, the SLP algorithm shows better results with higher profit, less
energy used for charging, and more energy discharged and injected into the grid. The
savings achieved with the variable efficiency are approximately 7% over a 7-day period,
however these savings come with higher computational cost since the average computation
time of a time step k is 0.03 s for the linear model and 0.78 s for the SLP model on a 3.40
GHz machine with 8 GB RAM. The savings would increase more in such conditions where
the storage system is frequently charged/discharged, especially if higher /nominal powers
are thereby demanded. Systems with older batteries (higher internal resistance) would also
benefit from the SLP algorithm because of a higher efficiency drop with higher currents
(powers) as is shown in Fig.5.24. The internal resistance is increased to Ry, = 20 mQ and
the same simulation scenario is repeated. The SLP algorithm again follows the maximum
of the approximated curve (Fig.5.25) which results in approximately 11% savings over

the 7-day period. The results of this model are summarized in Table5.4.

Table 5.3. Charging and discharging energies and profit.

MPC algorithm | 3> Eq, [kWh] > Egen [kWh] Y cost [€]
Linear, 7 days -12.71 9.72 -1.56
SLP, 7 days -12.53 10.63 -1.69

Table 5.4. Charging and discharging energies and profit for storage system with battery
internal resistance R,z = 20 mf2.

MPC algorithm | 3> Eq, [kWh] X Eqen [kWh] 3 cost [€]
Linear, 7 days -12.96 9.17 -1.47
SLP, 7 days -12.64 10.55 -1.67
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5.9 MPC of a microgrid with n battery storage systems

In this section, the microgrid power flow optimization algorithm is modified in order to

include more than one battery storage system (Fig.5.26). The cost function and the

constraints are defined as in (5.47):

___________________ e

a 7
y ’ i E E fl gEEsssisssin
. nergy flow
] 7V — EZEESass==scst
- <ﬁ> optimization :> %%I
i]dch &
Ll L T
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Figure 5.26. Microgrid topology with heterogeneous battery storage systems.

N-1
J = min Z By —mlncE
Yi k=0

s.t.
E;}ZhZO, ch}i <0, j7=1,...,ny,
ES = EF — B — 1,18,
Tmin < Thp < Traxs
Umin < UF < Umax,
—A <uf <A,
P T, < B < P T,

min max
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where ¢ = [T14,. ., Tn,)’ and uf = [uig,...,Un, ]  are augmented state and
control vectors and n; is the number of battery storage systems in the observed microgrid.
The j-th control vector contains the discharging and the discharging energies u;;, =
[E%h Ejd}f]T as defined in section 5.9. The storage systems energy model from The

constraints from (5.48) and the constraints from (5.49) are rewritten as:

Ay, - 0 By - O
Aj=1|: . |, Bi=|: . . (5.70)
0 Adn 0 Ban
I 0 B.
L= . |, Bi=]1], (5.71)
0 L B.

A=Ay o A (5.72)

The SOE and battery and grid converter constraints from Egs. (5.55) - (5.59) are also

augmented:

A 0 By
Az=|: |, BE=| |, (5.73)
0 An Bin
A, 0 Bu
A= . |, Ba=| |, (5.74)
0 --- A, Bun
By
Ap=[A, - Ayl By=| i |, (5.75)
Bon

The constraint on the control input change (5.62) for the SLP algorithm is rewritten as:

Ar - O Ba:
AA=1|: . |, Ba=|: |. (5.76)
0 --- Aa Ban
The algorithm was tested on the same microgrid topology from Section 5.8. with

additional battery systems. In the simulation scenario, the microgrid consists of six BSSs

- three storage systems with a "new” battery and three with an "old” battery. The new



5.9. MPC of a microgrid with n battery storage systems 95

) ld new old
0.9 —'_I ngg;z‘ T]((;(:h O ndch}ma,.r O ndzzh,mm.z

0.85F O i i
<
<
08} il
0.75 1 | | | | | 1 | =
0 01 02 03 04 05 06 07 08 09 1
P/P,
- " I T ) S—
0.95 i
O
< Y
= o9k i -
0.85 1 1 i | 1 1 1 1 | 1
0 01 02 03 04 05 06 07 08 09 1

|P|/ Py

Figure 5.27. Heterogeneous battery storage system efficiency curves, variable battery
model.

battery efficiency curve is obtained from the model identified in Chapter 3. For simplicity
reasons, at this point, the efficiency curve is considered constant with respect to SOC and
the curve for SOC = 100% is used in this simulation scenario. Battery ageing is reflected
in the capacity fade and internal resistance rise, therefore the old BSS is modelled with
50 % less capacity and 10 times higher internal resistance. The drastic difference in ohmic
resistances is chosen in order to achieve a noticeable difference in efficiency curves, which
would simplify the evaluation of the optimization results. The charging and discharging
efficiencies are depicted in Fig.5.27. The maximum of the discharging curve for the new
BSS is achieved at around 0.425F,, and for the old BSS at 0.354P,,. The difference between
charging curves is even bigger, decreasing from 0.47F, to 0.34F,. A 1-day operation of
a microgrid with heterogeneous BSSs is shown in Figs.5.28and5.29. At the beginning
of simulation, all batteries are at 90% SOE which is the upper constraint. From the
cumulative BSS energy exchange subfigure and the charging energy subfigure (Subfigures
1 and 3 on Fig.5.29) we observe that all the BSSs are charging at the same time while the
energy price is low and discharging during high energy price period. The control algorithm
charges the batteries for a longer time with lower energies, as expected. In this scenario,
with heterogeneous battery systems, we observe that the charging and discharging energies
of the old battery systems (BSS4-BSS6) are lower corresponding with their efficiency
curves. Also, they are charged /discharged more quickly than the new BSSs, as depicted in
the SoE subfigure of Fig.5.29). These results show that the algorithm successfully tracks
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the maximum eficiency of each BSS. The profit of the 1-day heterogeneous BSS microgrid

operation is approximately 0.9 €, and the average time step execution time is 12.17 s.
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Figure 5.28. Microgrid 1-day operation with 6 BSS, part 1.

The same system is simulated over a 7-day period achieving the profit of 5.1 €. The
average execution time of the algorithm at each time step is 12.53 s, which is slightly
longer than the execution time in the 1-day scenario, it is still significantly smaller than
10 minutes which is the sample time of the system. The system behavior is consistent

throughout the whole simulation.



5.9. MPC of a microgrid with n battery storage systems 97

Edch Ech

bss bss

¥ Epss [kWh]
(=}
T

Y
-0.2 1 1
8 16 24
Time [h]
dch dch dch dch dch dch dch
***** Bl g — — —Biy ——— By Elars — — — Bhats Efars
<o0667——mm-w———————— —— [
=
24,
< 0031 R Tin Tyt
1 | [J gty ‘:‘l‘x,‘,, S E—
8 16
Time [h]
h h h h h h h
’ 77777 Evcm'n Elfal 1 - Elfat 2 T E;at,!i Eljat 4 - Elgat 5 Elgat 6 ‘
3 g p——
£ 0031 TG
24, Lt minn
B 00833 |
Il Il |
8 16 24
Time [h]
77777 SOEmaa: . SOEmin I SoEbat,l - = SOEbat.Z - SOEbat,3 SOEbat,A - = SOEbat,S SOEbat,ﬁ

Time [h]

Figure 5.29. Microgrid 1-day operation with 6 BSS, part 2.
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CHAPTER 0

Conclusion

In this thesis, a control algorithm of a microgrid battery storage system (BSS) is
proposed. The control algorithm is separated into two levels, microgrid and BSS, with
the mutual goal of efficient system operation. Microgrid components and their optimal
control strategies are described offering insight into how each component contributes to
the operation of the whole system. A stability problem with the grid converter, the
key component in charge of the stability of the whole microgrid, was detected. The
conventional and modern DC link controllers may become unstable due to varying grid
conditions. Also, the varying operating point of the converter may also be the cause of
instability. Therefore, effort was invested into designing a controller robust to varying
operating conditions. A thorough robustness analysis as well as experimental verification
proved the efficacy of the proposed controller design method. Further research of the
microgrid components showed continuous neglecting of the battery and converter variable
efficiencies in control algorithms. At the BSS level, a variable parameter battery model
was introduced in order to achieve efficient battery charging or discharging. The model in
the form of state of charge (SOC) interval dependent look-up-tables (LUTS) was obtained
using least-square parameter identification. This representation was chosen because it
offers enough information for the control algorithm without adding complexity. Three
variations of the least-square method were used during the identification process, each
having their advantages and disadvantages. On both levels, the inclusion of the variable
battery model resulted in improved system operation. The results of the BSS control
algorithm with the variable model compared with the constant model algorithm show
improvement in model accuracy and residual SOC. At the microgrid level, the power
flow optimization problem is solved. The BSS model combines power dependent converter
efficiency and the battery efficiency obtained from the variable model. This model is
included in the microgrid optimization flow and compared to the conventional constant
efficiency control. In order to achieve the maximum profit, the algorithm tracks the BSS
maximal power point which results in more efficient system operation and decreased stress

on the components. Future work will be focused on accurate SOC and SOE estimation,

101
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as a prerequisite for closed loop BSS control. At the microgrid level, with the SOC and
SOE information, the whole SOC-dependent efficiency model could be included leading
to even more profitable microgrid operation.

The following scientific contributions are the result of the thesis:

e Method for model identification of lithium-ion battery storage systems with variable
converter and battery efficiencies, suitable for application in model predictive

control.

e Model predictive control of battery charging and discharging current considering the
identified nonlinear mathematical model of a battery storage system for achieving

its maximum efficiency.

e Model predictive control of a microgrid with heterogeneous battery storage systems

for achieving its cost-optimal operation.
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Mateja Car rodena je u Zagrebu 1992. godine. Zavrsila je diplomski studij na Sveucil-
istu u Zagrebu Fakultetu elektrotehnike i racunarstva (UNIZG-FER) 2016. godine u
polju elektrotehnike, modul Elektroenergetika, medu 10% najuspjesnijih studenata u
generaciji (Cum Laude). Dobitnica je stipendije za izvrsnost Sveucilista u Zagrebu za
akademske godine 2014/2015 i 2015/2016. Tijekom studija kombinira teme dvaju modula:
Elektroenergetika i Automatika te se usmjerava na upravljanje obnovljivim izvorima
energije. Tijekom preddiplomskog studija uze se bavi energijom vjetra i upravljanjem
vjetroagregatima dok se na diplomskom studiju fokusira na upravljanje ucinskim pret-
vara¢ima u mikromrezi za povezivanje obnovljivih izvora energije s elektroenergetskom
mrezom. Nakon zavrSenog studija, zaposljava se na Zavodu za automatiku i rac¢unalno
inzenjerstvo UNIZG-FER-a u sklopu Laboratorija za sustave obnovljivih izvora energije
(LARES). Tijekom rada na FER-u sudjelovala je na projektu "POC-DAWN — Proof of
Concept for Damping Generator Vibrations and Large Wind Turbine Noise by Advanced
Power Converter Control” koji se fokusira na primjenu estimacijskih metoda iz podrucja
teorije upravljanja s ciljem smanjenja vibracija u generatoru te na gospodarskom projektu
s inozemnim ulagac¢em United Technologies Research Centre Ireland Ltd. Od sijecnja
2021. radi na projektu ”Distribuirano upravlijanje za dinamicko gospodarenje energijom
u slozenim sustavima - DECIDE”. Istrazivacki interesi usmjereni su na estimacijske
metode te modelsko prediktivno upravljanje s primjenom u obnovljivim izvorima i
frekvencijskim pretvaracima unutar mikromreze s ciljem poboljSsanja njihovog rada te
naprednog gospodarenja baterijama te je autor je jednog Casopisnog i 4 konferencijska

rada iz navedenih podrucja.
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