
A deep learning model for estimation of human body
measurements from images

Bartol, Kristijan

Doctoral thesis / Disertacija

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet 
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:965085

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-17

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of 
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:965085
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:11075
https://dabar.srce.hr/islandora/object/fer:11075


FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Kristijan Bartol

A DEEP LEARNING MODEL FOR ESTIMATION OF
HUMAN BODY MEASUREMENTS FROM IMAGES

DOCTORAL THESIS

Zagreb, 2023



FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Kristijan Bartol

A DEEP LEARNING MODEL FOR ESTIMATION OF
HUMAN BODY MEASUREMENTS FROM IMAGES

DOCTORAL THESIS

Supervisor: Professor Tomislav Pribanić, PhD
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Abstract

The understanding of body measurements in and between populations is important and has

many applications in medicine surveying, the fashion industry, fitness, and entertainment. Re-

cent advances in human body measurement and shape estimation have been significantly driven

by statistical models and deep learning, enabling methods that estimate 3D human meshes from

3D point clouds and 2D images - so called mesh regression methods. This thesis builds upon

the state-of-the-art mesh regression approaches from multiple images. The first step is to pro-

pose the simplest method and use it as a baseline. The baseline is a linear regression models

that takes only person’s self-estimated height and weight and estimates the corresponding mesh.

The baseline performs surprisingly well compared to the state-of-the-art methods. The second

contribution is a 3D human pose estimation model from multiple camera views. The novelty of

the model is in the fact that it can take any set of camera views as input, regardless of their rel-

ative arrangement and the number of cameras. The third contribution is a model for estimating

the parameters of human pose, shape, and clothes from a single image. The estimated param-

eters are interpretable and, thus, controllable, which is a significant advantage compared to the

previous approaches and important for many anthropometric applications. The three proposed

models are evaluated in details and compared to the state-of-the-art methods.

Keywords: anthropometry, deep learning, doctoral thesis, human pose estimation, human

shape estimation, statistical body models, computer vision



Prošireni sažetak

Analiza mjera i oblika ljudskog tijela važna je za razumijevanje razlika i sličnosti unutar i

izmed̄u populacija te razvoja i promjena tih populacija kroz vrijeme. Znanost koja se bavi

mjerenjem ljudskog tijela naziva se antropometrija i ima brojne primjene u medicini, istraži-

vanju, modnoj industriji, vježbanju i zabavnoj industriji. Iako antropometrija postoji već stol-

jećima, njen razvoj je značajno ubrzan devedesetih godina s pojavom prvih komercijalnih 3D

skenera. Komercijalni skeneri omogućuju 3D snimanje čovjeka (skeniranje) i spremanje snimke

u obliku oblaka točaka (eng. point cloud) ili mreže (eng. mesh). Snimanje traje od nekoliko

sekundi do nekoliko minuta, što je u usporedbi s ručnim mjerenjem značajno brže. Ipak, ručno

mjerenje od strane stručnog mjeritelja i dalje se smatra zlatnim standardom.

Najnoviji napretci u mjerenju ljudskog tijela i procjeni oblika značajno su potaknuti statis-

tičkim modelima tijela, stvorenih na temelju skupova podataka 3D skeniranih tijela. Statistički

modeli sažimaju informaciju o varijacijama oblika te omogućuju prikaz različitih tjelesnih poza,

npr. stajanje s raširenim rukama, sjedenje, ležanje, itd. Sažimajući informaciju o varijacijama u

obliku tijela, statistički modeli moćan su alat u interpretaciji tih varijacija i omogućuju stvaranje

novih primjeraka tijela na osnovi početne populacije (iz skupa podataka skeniranih tijela) - takav

postupak mogao bi se formalno opisati kao interpolacija unutar dane distribucije oblika tijela.

Konačno, statistički modeli omogućuju procjenu 3D oblika i poze ljudskog tijela iz slika, što je

jedna od glavnih tema ovog doktorskog rada. Procjena 3D oblika i poze može se opisati kao

regresijski problem u kojem se traže parametri oblika i poze tijela koji najbolje opisuju osobu

prikazanu na slici.

Znanstveni doprinosi

Kao prvi doprinos, u doktorskom se radu pokazuje da se statistički modeli mogu koristiti za

procjenu mjera ljudskog tijela koristeći samo informaciju o visini i težini osobe. Štoviše,

pokazuje se da za procjenu antropometrijskih mjera nije potrebna točna informacija o visini

i težini već je dovoljno da ta informcija bude samoprocijenjena. S obzirom da u sklopu dok-

torskog rada nije napravljena studija sa stvarnim osobama koje bi dale procjenu svoje visine i

težine, istraživanje je provedeno na sintetičkim podacima. Pogreške samoprocjene modelirane

su dodavanjem normalne distribucije na podatke o visinama i težinama.

Kako bi se mogle procijeniti mjere tijela za bilo koju osobu za koju se ne zna njihova

samoprocijenja visina i težina, mora se koristiti drugačija strategija. Ostatak doktorskog rada

fokusira se na procjenu parametara iz statističkog modela tijela na temelju slika. Drugi doprinos

je, stoga, vezan uz procjenu karakteristika ljudskog tijela iz slika, točnije predložen je model

učenja procjene položaja na temelju više pogleda iste osobe. Na ulazu se uzimaju 2D poze

koje su dobivene prethodno naučenim modelom. Važno je napomenuti da te poze nisu savršeno



dobro procijenjene, odnosno, da su položaji pojedinih zglobova pomaknuti u odnosu na željeno

središte zgloba. Ranije metode učenja za 3D procjenu poze izrazito su uspješne u filtriranju

pogrešaka iz modela za procjenu 2D poze, ali imale su značajno ograničenje da nisu mogle

biti upotrijebljene na skupovima kamera koje nisu korištene za treniranje. Predloženi model je

nov na način da može uzeti bilo koji kalibrirani skup kamera i procijeniti 3D pozu, a pritom ne

izgubiti značajno na točnosti procjene.

Treći i posljednji doprinos je prijedlog modela procjene parametera poze, oblika tijela i

odjeće iz samo jedne slike. Predloženi model koristi prethodno predstavljene modele za opis

poze, oblika i deformacije odjeće pomoću parametara, a novost je u tome što je po prvi puta

moguće te parametere procijeniti iz slika. Implementacija predloženog modela koristi samo

jedan primjer prethodno predstavljenog parametarskog modela, ali opisana računarska strate-

gija (eng. computational strategy) nije ograničena tim modelom. Uz računarsku strategiju,

predložena su i dva nova skupa podataka - ClothSurreal i ClothAgora, koji predstavljaju in-

ačice postojećih sintetičkih skupova podataka ljudi u minimalnoj odjeći (donjem rublju), uz

dodatak odjeće. Ovakvi skupovi podataka vrlo su važni za učenje predloženog modela, kao i za

učenje budućih modela za procjenu obućenih ljudi iz slika.

Opisana tri modela detaljno su evaluirana i uspored̄ena s najsuvremenijim tehnikama. Kon-

ačno, predloženi pristupi su uspored̄eni i raspravljeni u smislu njihove iskoristivosti za mjerenje

ljudskog tijela iz slika, s ili bez korištenja informacije o visini i težini osobe.

Struktura doktorskog rada

Doktorski rad se sastoji od sedam poglavlja i tri dodatka te je strukturiran na sljedeći način. Prvo

poglavlje pruža sveobuhvatni uvod u antropometriju, proučavanje fizičkih mjerenja i dimenzija

ljudskog tijela. Poglavlje pokriva različite aspekte antropometrije, uključujući tradicionalne i

digitalne metode mjerenja tijela, 3D tehnike skeniranja i statističke modele korištene u stvaranju

3D mreže ljudskog tijela. Poglavlje počinje raspravom o tradicionalnoj antropometriji, koja

uključuje mjerenje ljudskog tijela pomoću konvencionalnih alata. Naglašava se važnost točnih

mjerenja jer ona čine osnovu statističkih modela ljudskog tijela. Sljedeće, poglavlje ulazi u dig-

italnu antropometriju, koja koristi digitalnu tehnologiju za dobivanje preciznijih i učinkovitijih

mjerenja ljudskog tijela. Ističu se prednosti ovog pristupa u odnosu na tradicionalne metode,

posebno u područjima medicinskog istraživanja, ergonomije i virtualnog dizajna. Poglavlje za-

tim istražuje 3D tehnologiju skeniranja, koja se koristi za stvaranje 3D oblaka točaka i mreže

ljudskog tijela. Potom se uvode i opisuju statistički modeli ljudskog tijela, na osnovi kojih

se mogu stvoriti 3D mreže i iz njih izračunati pripadne antropometrijske mjere. Konačno, na

osnovi opisanih tehnika predlažu se koraci za općeniti postupak mjerenja tijela korištenjem

digitalne antropometrije.

U drugom poglavlju ove doktorske disertacije (2. Antropometrija na temelju slika), pred-

iv



stavljen je koncept antropometrije iz slika. Poglavlje raspravlja o različitim metodama koje

postoje za procjenu mjera ljudskog tijela iz slika i stavlja ih u kontekst antropometrije u cjelini.

Jedna od ključnih tema u poglavlju su modeli dubokog učenja koji se koriste za izvlačenje

značajki iz slika kojima se može naučiti procjena 3D mreže ljudskog tijela. Ti su modeli razvi-

jeni kako bi se omogućila točnija procjena 3D položaja, oblika i mjera tijela iz slika. Poglavlje

opisuje razvoj i implementaciju modela dubokog učenja u antropometriji na temelju slika, is-

tičući prednosti i izazove ovog pristupa. Modeli su osmišljeni za analizu slika ljudskog tijela

i izvlačenje značajki koje su korisne za procjenu tjelesnih mjera, poput tjelesne težine, visine

i indeksa tjelesne mase (BMI). Poglavlje pregledava postojeću literaturu o modelima dubokog

učenja za antropometriju na temelju slika i pruža uvid u trenutno stanje u tom području.

U trećem poglavlju ove doktorske disertacije (3. Bazni model procjene mjera tijela) predlaže

se jednostavan linearni regresijski model za procjenu mjera ljudskog tijela na temelju visine i

težine osobe. Model je osmišljen tako da procijeni preostale mjere, poput duljine i opsega tijela,

koristeći samo informacije koje osoba procjenjuje za sebe, posebno visinu i težinu tijela. Da

bi se simulirale realistične procjene visine i težine, šum se iz normalne distribucije dodaje po-

dacima. Predloženi model postiže točnost koja je usporediva s najboljim postojećim metodama

za procjenu mjera ljudskog tijela, a u nekim slučajevima je čak i precizniji od dubokih modela

učenja. Poglavlje opisuje razvoj i primjenu predloženog linearnog regresijskog modela, ističući

njegove prednosti i ograničenja. Model je osmišljen da bude jednostavan i lako se koristi, što ga

čini primjenjivim u različitim postavkama za brzu i preciznu procjenu mjera tijela, bez potrebe

za složenom ili skupom opremom. Ukratko, treće poglavlje daje detaljan opis predloženog

linearnog regresijskog modela za procjenu mjera ljudskog tijela.

Četvrto poglavlje ove doktorske disertacije (4. Učenje procjene položaja tijela iz slika)

predstavlja novu metodu za procjenu 3D položaja tijela koristeći slike dobivene iz više sinkro-

niziranih kamera. Predloženi model je dizajniran da radi u specifičnim uvjetima, odnosno da

postoji samo jedna osoba u sceni i da je osoba vidljiva iz najmanje dva pogleda u svakom

trenutku. Poglavlje pruža detaljan opis predloženog modela, ističući njegove prednosti i ograničenja.

Predloženi model postiže najbolje rezultate u usporedbi s konkurentnim modelima na slikama

koje nisu dobivene istim kamerama kao u skupu za treniranje. Svojstvo predloženog modela da

postigne jednako ili približno dobre rezultate koristeći drugačiji raspored kamera pokazuje ot-

pornost modela i sposobnost generalizacije predložene metode izvan uvjeta iz skupa za učenje.

Predloženi pristup ima potencijal za upotrebu na skupovima podataka snimljenim različitim

brojem kamera i različitom prostornom organizacijom, što s ranijim pristupima nije bilo moguće.

Peto poglavlje ove doktorske disertacije (5. Učenje procjene oblika tijela iz slika) pred-

stavlja novu metodu za procjenu 3D oblika ljudskog tijela iz jedne slike. Predložena metoda

ima nekoliko jedinstvenih značajki u odnosu na postojeće metode za procjenu 3D položaja i

oblika. Jedna od ključnih prednosti predložene metode je njena sposobnost procjene oblika

v



ljudi iz slika u širokoj odjeći. Još jedna važna značajka predložene metode je njena sposobnost

procjene parametara same odjeće. To omogućuje metodi da bolje računa s odjećom povezanim

distorzijama u procijenjenom 3D obliku tijela. Predložena metoda predstavlja značajan korak

prema pojednostavljenju i ubrzanju procjene ljudskih značajki iz slika koje nemaju značajnih

ograničenja.

U šestom poglavlju doktorskog rada pružena je opsežna rasprava koja se bavi cjelokupnim

istraživačkim radom predstavljenim u disertaciji. Konkretno, analizira se performansa pred-

loženih modela u smislu procjene mjera tijela. To uključuje bazni model opisan u poglavlju

3 i model za procjenu oblika opisan u odjeljku 5. Poglavlje pruža kritičku evaluaciju pred-

loženih modela, naglašavajući njihove snage i ograničenja. Nadalje, detaljno se raspravlja o

pretpostavkama korištenim tijekom evaluacije modela. Konačno, navodi se budući rad, koji

sugerira potencijalne smjerove za daljnja istraživanja u području antropometrije i 3D skeni-

ranja. Rasprava pruža vrijedan uvid u doprinose i značaj istraživačkog rada predstavljenog u

doktorskom radu, otvarajući put za daljnje razvoje u polju antropometrije upotrebom računalnog

vida.

Završno poglavlje doktorskog rada daje zaključna razmatranja, sažimajući ključne dopri-

nose istraživačkog rada. Poglavlje ističe važnost predloženih modela za procjenu 3D položaja,

oblika i mjera ljudskog tijela iz slika. Nadalje, poglavlje pruža smjernice za daljnja znanstvena

istraživanja na temu, predlažući potencijalna područja za istraživanje i poboljšanje. Konačno,

završno poglavlje nudi sveobuhvatan sažetak disertacije i njezinih doprinosa u području antropometrije,

3D skeniranja i posebno mjerenja tijela na temelju slike.

Dodatci doktorskom radu

Tri dodatka opisuju detalje koji su logički izvan dosega rada ili služe kao dodatni izvor infor-

macija koji nisu potrebni za razumijevanje predloženih doprinosa.

Prvi dodatak opisuje fizičku implementaciju stereoskopskih zrcala (engl. catadioptric stereo)

kao dodatka na pametne telefone. Stereoskopska zrcala omogućuju da prednja i stražnja kamera

mobilnog telefona budu korištene kao stereoskopski par u svrhu 3D rekonstrukcije, što origi-

nalno nije moguće jer dvije kamere nemaju zajedničko pregledno polje (engl. field-of-view). U

svrhu provedenog istraživanja, dizajniran je i 3D isprintan prototip adaptera za stereoskopska

zrcala. Detaljno su opisane mogućnosti izrad̄enog adaptera u smislu zajedničkog preglednog

polja te veličine preglednog polja s obzirom na stupnjeve slobode koje adapter omogućuje, npr.

razmak izmed̄u zrcala, veličina zrcala te kutevi izmed̄u zrcala i kamera. Konačno, prototip

adaptera za stereoskopska zrcala korišten je za 3D rekonstrukciju poze tijela te su na takvoj 3D

procjeni izračunate mjere tijela i uspored̄ene s ručno dobivenim mjerama. Pokazuje se da je

stereoskopska zrcala moguće koristiti za izračun pojedinih mjera ljudskog tijela.

Drugi dodatak sadrži više detalja o vrstama 3D skenera često korištenih za 3D skeniranje

vi



ljudskog tijela. Skeneri su podijeljeni u skupine s obzirom na različita svojstva. Prvo svo-

jstvo je korištena tehnologija skeniranja, koja može biti fotogrametrija, strukturirano svijetlo i

time-of-flight. Svaka tehnologija ima prednosti i nedostatke, a neke od najvažnijih svojstava su

da je fotogrametrija u pravilu najbrža, a strukturirano svijetlo u pravilu najtočnije. Ipak, pos-

toji mnogo komercijalnih skenera koji koriste kombinaciju različitih tehnologija 3D skeniranja

istovremeno. Drugo svojstvo je veličina skenera. Postoje skeneri u koje osoba ulazi cijela (sta-

cionarni skeneri), skeneri koji se mogu držati u ruci dok traje skeniranje tijela, te skeneri koji

koriste samo tehnologiju pametnog telefona ili tableta. Većina je stacionarnih skenera u pravilu

točnija od ručnih i mobilnih skenera, ali takvi su skeneri manje praktični i skuplji za prosječnog

potrošača. Posebno su zanimljivi skeneri koji koriste samo tehnologiju pametnog telefona jer bi

takva rješenja, uz pretpostavku približno jednake točnosti, potencijalno zamijenila veće skenere

(barem za potrebe antropometrije). Ipak, mobilni skeneri još uvijek nisu dovoljno točni i ko-

riste oslanjaju se na statističke modele tijela. Takvi će modeli raditi bolje za mjerenje ljudi koji

su bliže prosječnoj osobi iz originalne populacije i obrnuto. Ipak, noviji ured̄aji u sebi imaju i

time-of-flight senzore pa u tom smislu mogu ipak biti potencijalno zanimljivi i bez isključivog

oslanjanja na statističke modele. Ostala svojstva 3D skenera opisanih u drugom dodatku su

njihova cijena, brzina, točnost, rezolucija i prilagodba za potrebe antropometrije (ako postoji).

Treći dodatak pruža praktične preporuke za odred̄ene primjene mjerenja ljudskog tijela,

poput medicine, fitnessa i zabavne industrije, te povezuje dane preporuke s prethodno opisanim

tipovima 3D skenera. Dane su preporuke značajne za svaku osobu i organizaciju koja direktno

ili indirektno koristi 3D skenere i mjerenje tijela u svom poslu, a posebno je važno pri eventu-

alnoj odluci o kupnji skenera i prikladnom tipu s obzirom na danu djelatnost. Primjer praktične

preporuke je postupak koji se sastoji od koraka pripreme (označavanje tijela, upute o položaju

tijela te zauzimanje položaja), 3D skeniranja, i izvlačenja mjera tijela iz ručno obrad̄ene 3D

snimke. Ovakav je postupak dovoljno točan za većinu primjena, ali uključuje korake koji za-

htijevaju stručno osoblje i poznavanje programa za obradu snimaka. Preporuka praktičnog pos-

tupka koji zahtijeva manju razinu stručnosti, ali ne garantira visoku razinu točnosti se sastoji

od koraka 3D ili 2D skeniranja (fotografiranja), procjene parametara oblika tijela, te izvlačenje

mjera iz mreže koja odgovara procijenjenim parametrima oblika.

Ključne riječi: antropometrija, duboko učenje, doktorski rad, procjena položaja tijela, proc-

jena oblika tijela, statistički modeli tijela, računalni vid
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Chapter 1

Introduction

Anthropometry is a subfield of applied metrology that studies how to measure the physical

properties of humans. In general, anthropometry includes the complete process of data collec-

tion, documentation, summarization, and analysis [1]. In a more narrow sense, anthropometry

studies body measurement, where lengths, breadths, heights, and circumferences are used to nu-

merically describe body segments and the overall body shape [2]. Body measurement is crucial

in quantifying the correlations in and between populations of different countries, ethnicities,

cultures, and ages [3, 4], and it strongly impacts medicine [5, 6], fitness [7], fashion industry

[1], surveying [1, 8], and entertainment [9].

Human body dimensions may be obtained in various ways, e.g., they can be measured man-

ually using traditional tools such as tape measures and calipers [1] or semi-automatically using

3D scanners. To ensure both repeatability and comparability, body measurements are standard-

ized by the means of postures and body landmarks [10, 11]. Although manual measurement is

the benchmark for anthropometry, several reports suggested that expert measurement assessors

(measurers) and 3D scanners achieve comparable accuracy and that the repeatability is usually

higher when 3D scanners are used [12, 13, 14]. An additional advantage of using 3D scanners

compared to expert assessors is the efficiency in terms of time [15]: the duration of an auto-

matic scan is usually under several seconds, although it goes up to 30 seconds for high-quality

scans*. Therefore, even though the first commercial 3D body scanners appeared in the 1990s

[16] and were expensive, requiring trained personnel and extensive manual postprocessing [17],

the scanning technology is currently mature enough and is comparable in performance to human

assessors [18, 19, 20].

*See Appendix A for more details
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1.1 Manual (Traditional) Anthropometry

Traditional anthropometry involves the use of tools such as tape measures and calipers [1], as

illustrated in Fig. 1.1. Measurements obtained by an expert are considered the benchmark and

are used as ground truth [21]. The public body measurement databases such as ANSUR are

collected by expert measurement assessors. On the other hand, even the measurements taken

by the experts are not absolutely accurate [14]. For that reason, the allowable error values (or

the “expert” errors) [22] for each measurement are defined in the standard ISO:7250 [10, 11].

Figure 1.1: The examples of traditional body measurement tools - calipers and tape measures. The
image is adapted from [1].

1.2 Measurement Standards and Evaluation

Although manual expert measurements are considered to be the benchmark, they will never be

perfect, first of all, because the human body is not rigid, for example, some body measurements

change throughout the day [23]. There are many proposed methods for the analysis of body

measurement errors [24, 25, 26, 27], but the conclusion is that none of the methods are ideal for

manual anthropometry in general. [28]. The most common, and simple to calculate, easily in-

terpretable approach to the body measurement error analysis is proposed by Gordon et al. [22].

They came up with the threshold error values, called the allowable errors (AEs). The aim of

2
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any accurate body measurement technique should be to be as close as possible to the AEs. The

allowable errors are the mean absolute errors (MAEs) made by the expert measurers. The au-

thors of the AE values also took into account many factors that potentially affect measurement

accuracy, such as posture, time of the day (morning, evening), measurement technique and

instrument, etc. We refer to the allowable errors throughout the dissertation.

Table 1.1: The list of human body landmarks according to ISO 7250-1:2017 standard [10]. The numbers
correspond to the numbers in Fig. 1.2a. The letters R and L abbreviate right and left.

Human body landmarks (ISO 7250)

1 tragion 12 axilla pnt. ant. R 23 stylion ulnare R

2 orbitale 13 axilla pnt. ant. L 24 trochanterion R

3 glabella 14 axilla pnt. post. R 25 trochanterion L

4 sellion 15 axilla pnt. post. L 26 tibiale R

5 gnathion 16 iliocristale R 27 sphyrion R

6 cervicale 17 iliocristale L 28 sphyrion fib. R

7 suprasternale 18 iliospinale ant. R 29 supratarsale fib. R

8 front neck 19 acromiale R 30 metatarsale tib. R

9 side neck R 20 acromiale L 31 metatarsale fib. R

10 side neck L 21 radiale R 32 waist level

11 mesosternale 22 stylion R 33 abdom. ext. level

1.2.1 Landmarking, Body Postures, and Standards

To ensure the comparability of measurements between the anthropometric surveys [1] and to be

able to compare the results quantitatively, standardization of body landmarks, measurements,

and postures is required.

The list of body landmarks is shown in Table 1.1 and the list corresponds to the ISO standard

7250-1:2017 [10]. The landmarks are located on the skin to reduce the ambiguity in their

locations between the subjects, i.e., in such a way that they have the same semantics for every

measured body. The landmark locations corresponding to Table 1.1 are shown in Fig. 1.2a.

Before the measurement, markers that represent body landmarks are placed on the surface of

the human skin. Fig. 1.3 shows the procedure of landmarking and marker placing on human

skin. The particular landmark location is first determined and then marked. The dome or a

similar convenient round object is then placed in the marked location. The markers are useful

for feature extraction [29], however, marked placing is a tedious and fallible process. In that

sense, successful markerless systems have been proposed [30, 31].

3
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(a) Standard landmarks. Adapted from [1]. (b) Standard postures (I-pose and A-pose, re-
spectively). Adapted from [1].

Figure 1.2: Standard landmarks and postures.

Figure 1.3: The landmarking process on the human body. The image is taken from [1].

There are several standard standing poses recommended by the ISO 20685-1:2018 [11] (Fig.

1.2b). The person takes one of the standard poses, holds his or her breath during the scanning,

and tries to keep as static as possible [30]. In the I-pose, the subject stands tall with the shoulders

completely relaxed and arms hanging down naturally, holding the feet together. In the A-pose,

the feet are about 20cm (0.7 feet) apart, the elbows are straight and the palms face backward

[1]. The arms form an angle of 20 degrees with the torso. Using the standard postures is not

always required when measuring the body, but usually, it is when recording the datasets that

capture shape variations [18, 19, 20, 32, 33, 34, 35].

Finally, a list of standard body measurements [10] is shown in Table 1.2. The measure-

ments consist of distances (lengths, breadths, depths, and heights), circumferences, and soft

biometrics (weight, height, body mass index (BMI)). In the next subsection, we specify which

of these measurements are used for the comparison between the state-of-the-art anthropometric

methods.

1.2.2 Body Measurements for Evaluation

Even though different anthropometric methods can be compared against standardized body

measurements defined in the ISO 7250-1:2017 [10] standard, authors still tend to report their
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Table 1.2: The list of 44 standardized human body measurements [10].

Human body measurements

1 eye 12 forearm circum. L 23 weight 34 bicep circum. R

2 cervicale 13 forearm circum. R 24 height 35 shoulder breadth

3 shoulder-elbow L 14 neckbase breadth 25 BMI 36 elbow circum. L

4 shoulder-elbow R 15 thigh clearance 26 neck circum. 37 elbow circum. R

5 crotch height 16 wall-acromion distance 27 chest circum. 38 knee circum. L

6 tibial height 17 grip and forward reach 28 waist circum. 39 knee circum. R

7 chest depth 18 elbow-wrist L 29 thigh circum. L 40 neck base circum.

8 body depth 19 elbow-wrist R 30 thigh circum. R 41 neck circum.

9 thorax depth 20 hip circum. 31 calf circum. R 42 head circum.

10 chest breadth 21 buttock-popliteal 32 calf circum. R 43 trouser waist circum.

11 hip breadth 22 buttock-knee 33 bicep circum. L 44 iliac spine breadth

AA

BB

CC

DD

EE

FF

GG

HH

II

JJ

KK

LL

MM

NN

OO

PP

Measurement Allowable Errors

A Head circum. ± 5 mm

B Neck base circum. ± 11 mm

C Chest circum. ± 15 mm

D Waist circum. ± 12 mm

E Hip circum. ± 12 mm

F Wrist circum. -

G Bicep circum. -

H Forearm circum. -

I Thigh circum. ± 6 mm

J Calf circum. -

K Ankle circum. ± 4 mm

L Shoulder-crotch length -

M Shoulder-wrist length -

N Inside leg length -

O Shoulder breadth ± 8 mm

p Height ± 10 mm

Figure 1.4: A set of body measurements used for evaluation and comparison between the state-of-the-
art along with their corresponding allowable errors. The measurements are abbreviated: C stands for
circumference, L for length and B for breadth. The image is adapted from: [36].
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evaluations for different sets of measurements, which are not always equal [29]. This makes

it difficult to objectively and comprehensively compare between the proposed anthropomet-

ric methods. To somehow bypass these difficulties, a review paper on body measurements

[29] evaluates anthropometric methods on 16 common body measurements. These 16 body

measurements shown specified in Figure 1.4 and specified in the table next to the Figure. In

particular, the table specifies body measurement labels (A-P), names, and their corresponding

allowable errors. The first 15 body measurements are also used for the evaluation of methods

in this dissertation (excluding overall height†).

1.2.3 Evaluation Metric

There are several evaluation metrics concerning reliability, precision, and accuracy [37] that

are commonly reported [38, 39, 40]. The lack of standardized evaluation measures complicates

straightforward comparisons of various anthropometric methods since different error metrics

cannot be converted from one to another. To still be able to compare ourselves against the

state-of-the-art with respect to body measurement estimation, in this dissertation we use only a

single metric, the mean absolute error (MAE) since it is almost always reported in the published

anthropometric approaches. The MAE is a measure of accuracy, and is calculated between the

body measurement method estimation Eest and the ground truth Egt as follows:

MAE =
1
N ∑

N
i=1 | Eest −Egt | (1.1)

for every subject i from the dataset, where N is the total number of subjects. The ground

truth is usually obtained using manual measurement as described in the ISO 20685-1:2018 [11]

standard.

1.3 Digital Anthropometry - 3D Scanning

Over the years, numerous 3D scanning systems have been proposed. Fig. 1.5 highlights three

phases of the development of 3D scanners. The first phase consists of large and fixed 3D

scanners. These scanners still exist nowadays and are usually the most accurate ones. The

downside is their price and size. In many cases, they still require manual postprocessing to

get the best results. The second phase consists of smaller 3D scanning platforms and handheld

scanners, which are more convenient to use and are generally less expensive. Finally, the third

phase consists of smartphone scanners, where the body measurements are extracted either from

images or depth sensors embedded on the back side of the device. A more detailed overview

†The overall height is excluded because estimating height often includes scale estimation which is a particularly
difficult problem, especially for the monocular methods. We additionally discuss these difficulties in relation to
our proposed baseline in Chapter 3
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and comparison between 3D scanners are given in Appendix B. A comprehensive overview is

given in the survey paper [29].

With respect to 3D scanning technologies, three popular techniques can be highlighted,

following the survey paper [29]: passive stereo, structured light, and time-of-flight imaging,

which we now go into greater depth about.

Figure 1.5: The development of 3D body scanning systems over the years. Adapted from [1].

1.3.1 Photogrammetry

Passive stereo is a measuring technique for 3D reconstruction from multiple camera views.

Photogrammetry is the science of measuring objects from photographs. Passive stereo and

photogrammetry are sometimes used interchangeably in the context of 3D scanning [41, 42, 43].

For clarity, we use the passive stereo in the remainder of the dissertation. PS-based 3D scanners

use RGB cameras to obtain color images. The PS assumes that multiple cameras are pointing

7



Introduction

to a person. Under passive stereo, in this Section, we describe the principles of stereo and

monocular reconstruction, as well as motion capture systems.

Stereo. The simplest PS setup is a binocular stereo, which consists of two RGB cameras

that are either horizontally or vertically oriented (see Fig. 1.6). The triangulation and correspon-

dences discovered on the photos provide the foundation for the reconstruction [44]. According

to Fig. 1.6, the point P in the 3D scene projects to pixels p1 in the first image and p2 in the

second image. The corresponding pixel location p2, on the other hand, is not known a priori

given a fixed pixel location p1. An image block at p1 is matched with the most similar block

along the epipolar line l to find the location p2. The discrepancy between the associated pixel

coordinates ‡, |p1 − p2| (called the disparity) is used to calculate the depth of a point P using

triangulation [46]. By coupling particular camera pairs [47] or by utilizing multi-view-stereo

approaches [48], the stereo approach can be expanded to include more than two cameras.

Monocular. Each viewpoint (frame) is treated as a separate camera in a monocular moving-

camera-based 3D reconstruction, which is a specific case of stereo reconstruction. Together,

the general monocular approaches [49, 50, 51] reconstruct a 3D scene and estimate camera

locations for each frame. To locate the correspondences, the keypoints are first found using the

standard algorithms [52, 53, 54, 55] and then they are quickly and accurately matched between

the images. Following bundle adjustment (BA) refinement [56], the correspondences are then

used for the initial 3D reconstruction and camera parameter estimation. In general, human 3D

scanning is easier since camera viewpoints can be known before the reconstruction. This is

implemented in a way that either the person is standing on a revolving platform or the camera is

spinning around them to resemble camera rotation. Keep in mind that the subject must remain

still throughout the quasi-static scanning. Based on timestamps, the relative camera locations

with regard to the subject are retrieved. The above-mentioned stereo reconstruction principles

can be used to acquire a dense 3D reconstruction.

Motion. Motion capture or MoCap is a (semi-) passive stereo technique that uses body

markers visible under standard or near-infra-red light. The MoCap markers are usually small,

round objects with reflective surfaces. MoCap produces sparse 3D reconstructions and is usu-

ally used for motion tracking. The number of body markers is between 30 [35] and 300 [57].

Multiple markers are often used to estimate the location of a single keypoint (joint), as markers

can only be placed on the surface of the body.

For an overview of 3D scanning devices based on photogrammetry, refer to the Appendix

B.
‡Note that the images are usually rectified [45].
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p1p1

p2p2

ll

PP

Figure 1.6: Passive stereo approach. Point p2 is the most similar image pixel to point p1 along the
epipolar line l. The image is adapted from [29].

1.3.2 Structured Light

The standard solution is to project a textured pattern over the scene in order to improve PS’s

poor 3D reconstruction quality in cases when the texture is low or repeats. Active stereo (AS)

[58, 59, 60, 61] upgrades PS by casting a light pattern onto the body to enhance the search for

the corresponding image pixels between viewpoints. Structured light (SL) approaches [62, 63,

64, 65], conversely, look for the correspondences between the camera and the light pattern. The

methodology and technologies used in SL are the main topics of the next paragraphs.

Figure 1.7: Structured light (projector-based) approach. The image is adapted from [29].

Based on SL technology, we separate laser scanners from projector scanners. A laser scan-

ner [58, 66, 67], seen in Fig. 1.8, projects dot or striped patterns across the scene with a laser.

Laser scanners have the accuracy of less than one-millimeter [1, 68, 69] and less complicated

decoding than projector-based scanners [16]. However, because the laser line must traverse the

entire body, laser scanners often have a long scanning time [70]. Generally speaking, projector-

based scanners are quicker than laser scanners [64], since the entire body may be scanned

9
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Figure 1.8: Structured light (laser-based) approach. The image is adapted from [29].

at once from a single view and more sophisticated 2D patterns can be presented. Addition-

ally, compared to laser scanners, projector-based scanners have less safety limitations [71].

Projector-based scanners’ precision range (µm-mm) is adequate for high-quality body measur-

ing even if they are not as accurate as laser scanners (see Sec. 3.4).

The projected light patterns have generally been categorized in a variety of ways, such by

the number of projected patterns (single- or multi-shot), color (achromatic or colored), tran-

sitions (discrete or continuous), or organized form (stripes, grids, dot arrays, gradients, etc.)

[64, 72, 73, 74, 75], as seen in Fig. 1.9a-1.9d. Short-duration achromatic multi-shot patterns

are typically utilized for (quasi-)static human 3D scanning, providing a trade-off between ac-

quisition speed and reconstruction accuracy [64]. Single-shot patterns are more appropriate for

dynamic scenarios where quick capture is required [76].

Depending on the projected pattern and light, the correspondences between the camera and

the light source are discovered. To locate the (monochromatic) light projections in the image,

laser-based techniques mostly use pattern detection algorithms [77, 78]. Visible-light scanners,

on the other hand, have more complex pattern decoding mechanisms [79, 80], especially in the

case of multiple projectors and light interference [80, 81]. We direct readers to the pertinent

survey publications [73] for more information. After the correspondences have been found, the

3D human body can be rebuilt using ray-to-ray or ray-to-plane triangulation [8, 58, 63, 72].

Refer to Appendix B for a summary of structured light-based 3D scanning equipment.

1.3.3 Time-of-Flight

The time it takes for an emitting light signal to travel from the illumination source to the three-

dimensional scene and back to the sensor is what ToF scanners measure, as seen in 1.10. The

time of flight of the light signal directly correlates to the distance information [8, 86, 87, 88].

The light emitter and the photodetector are a ToF scanner’s primary parts [8]. The light
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(a) Discrete achromatic
multi-shot stripe pattern -
Gray Code [82].

(b) Continuous achro-
matic multi-shot stripe
pattern - Phase Shift [83].

(c) Discrete colored
single-shot grid pattern -
M-array [84].

(d) Discrete colored
single-shot stripe pattern
- De Brujin code [85].

Figure 1.9: The examples of different types of structured light patterns. The images are adapted from
[29].

emitter sends a modulated beam of light, often in the NIR range [86], using a laser or an LED.

The light from the emitter is usually dispersed throughout the entire scene using the lens. A

matrix of point-wise sensors is typically used by the photodetector [87]. CCD/CMOS matrix

sensors are typically utilized for 3D scanning of humans.

Pulsed-light (direct) and continuous-wave (indirect) reconstruction techniques can be sep-

arated [8, 87]. The round-trip time of an emitting light pulse is indirectly measured using

continuous-wave (CW) techniques, which also gather data on the signal’s time-dependent in-

tensity [88, 89]. The phase shift of the sent and received light signals is then used to demodulate

(retrieve) the distance of a location [87, 90]. Typically, sine or square waves are used to mod-

ulate the emitted light signal’s amplitude [91]. As a result of the waves’ periodicity, there is

a limit to their scanning range at half of the modulation wavelength, after which an ambiguity

issue develops [92]. While reducing the maximum range, increasing the modulation frequency

improves measurement accuracy [87]. Multiple modulation frequencies can be used to increase

the measurement range [93, 94]. Fortunately, since human bodies are scanned from close range

in anthropometric applications, this rarely poses an issue. Time-to-digital (TDC) or duration-

to-amplitude (TAC) circuitry is used in pulsed-light (PL) technologies to directly detect the

round-trip time of an emitted light pulse [87, 89]. Since light travels at a very high speed, PL

approaches need timing data that is extremely precise—on the order of picoseconds—to deter-

mine a millimeter-to-millimeter distance range [8, 86, 89]. PL is therefore rarely utilized for

3D body scanning.

ToF cameras offer affordable, small, precise, dependable, and low-power-consumption sen-

sors [88, 92, 95]. ToF is texture-independent, with a minimal post-processing time and lower-

light capabilities [96]. The major issue with single ToF camera scanners is a low scanning

resolution, even though fast frame rates that are appropriate for dynamic scanning can be ac-

complished [88, 96]. Utilizing numerous ToF cameras can increase resolution [97], but this

raises complex light interference difficulties that must be resolved [90]. ToF is therefore still
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Figure 1.10: Time-of-flight approach. The black arrow indicates the emanated light signal path. The red
arrow indicates the received light signal path. The image is adapted from [29].

less useful for body measuring and quasi-static scanning.

Refer to Appendix B for a summary of time-of-flight-based 3D scanning equipment.

1.3.4 Comparison Between the Scanning Technologies

Table 1.4 provides a comparison of the three scanning technologies. To triangulate 3D locations

in space, PS and SL rely on establishing correspondences between the views, whereas ToF uses

time-to-distance conversion and hence does not have to rely on the correspondences. Potential

(self-) occlusions between the images pose a typical problem for triangulation techniques and

could lead to gaps in the 3D point cloud [48]. Utilizing several cameras or views (which can

be accomplished by rotating the subject or the scanner) and the T-pose, which reduces self-

occlusions, are two ways to deal with the occlusions.

SL and ToF use light sources. It benefits SL in sections of the body with low texture,

but it also restricts its uses to particular interior lighting scenarios. Light is the cause of the

interference issues for multi-ToF scanners. The light source has a limit on the SL and ToF

scanning ranges. Although the optics theoretically limit the PS scanning range, for 3D human

body scanning the practical limit is usually up to several meters. The entire scanning spectrum

is appropriate for scanning the human body.

PS is the best option for scanning dynamically changing objects due to its quick acquisition

time, strong overall reconstruction performance, and lack of light interference concerns [98, 99].

ToF has a high reconstruction frame rate, making it suitable for dynamic applications. Dynamic

scanning with single-shot patterns is also possible with SL. Note that, compared to multi-shot

patterns, single-shot SL patterns give lesser reconstruction accuracy.

Last but not least, SL is the preferred technique for quasi-static scanning and body mea-

suring because it provides the best resolution and accuracy. The quantity of commercial SL
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Table 1.4: Main properties of the three 3D scanning technologies with respect to human body scanning.

Passive stereo Structured light Time-of-flight

Method triangulation triangulation time-to-distance conver-
sion

Illumination passive (ambient) active (visible, IR)

Scanning range several meters < 5m (illumination source limited)

Dynamic scan-
ning

yes yes (slower movement
only)

yes

Accuracy range mm - cm µm - cm mm - cm

Resolution
range

mm µm - mm mm

Main issues textureless body parts light interference lower resolution, multi-
camera interference

scanners is another indicator of this§. The accuracy and resolution range of PS and ToF are

comparable (see Table 1.4), while ToF often has a lower resolution.

1.3.5 Human Body Scanning

When employing 3D scanners, the human body may be measured either in a stationary position

[32, 33, 100] or while it is moving [101, 102, 103]. In static scanning, the subject is instructed

to strike a fixed stance and maintain stillness for the duration of the scan. Subjects may un-

intentionally move during acquisition for 3D scanners with longer acquisition times, such as

handheld scanners or scanners with moving heads, which increases mistakes; we can distin-

guish such situations as quasi-static scanning. The most accurate body measurements can be

obtained using static scanning, which is frequently used to create reasonably big and varied

public 3D human body datasets [18, 19, 20, 32, 33]. Typically, scanning in motion is done with

PS or ToF technologies. The most popular motion capture (MoCap) systems are PS-based and

use markers affixed to the body to measure movement [34, 101, 102, 104, 105] . Other dynamic

3D scanning technologies [103] record a subject as they are moving and examine the changes

in soft tissue over time [106].

Typically, scanning yields a set of RGB pictures, a 3D point cloud, or one or more depth

maps. In the case of dynamic scanning, so-called 4D scans are obtained [103] (where the fourth

dimension is time). Some or all of these data are used in the processing stage to extract the

measurements.
§See Appendix A for more details.
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1.4 Statistical Human Body Models

Statistical models represent the population of human bodies with regard to pose and shape

variations. The shape variations are usually represented by the principal components (PCs)

of the mesh vertices’ offsets from the 3D mesh that represent an average human body, while

the pose variations represent rotations for the selected subset of human joints. Each scan in a

dataset must undergo the mesh fitting technique in order to generate a statistical model. The

mesh being fitted or deformed to each 3D scan from the scanning dataset is called a template

mesh.

1.4.1 Template Mesh Fitting

Deforming a 3D template mesh that most accurately depicts an input is done using a collection

of techniques called mesh or model fitting. A 3D scan, 2D or 3D keypoints, or a silhouette can

be used as the input(s) to the mesh deforming procedure. When estimating body measurements,

template meshes have the advantage of having a fixed number of vertices and matching vertices

with the same semantics across all registered meshes in the dataset. When body measures have

been determined for one mesh, they can be determined similarly for all the meshes. We differ-

entiate between mesh regression and mesh fitting (registration or deformation) using statistical

models.

More precisely, mesh fitting is an optimization process of deforming an initial, template

mesh to the 3D scan¶. Pose and shape fitting make up mesh fitting [34, 108, 109, 110, 111].

A 3D scan is often subsampled before optimization so that the number of points is equal to

or greater than the number of vertices in the template mesh [34, 40]. First, the 3D scan and

mesh are roughly aligned using the landmarks [112] (pose fitting step). The body skeleton

components of the template mesh are then rigged [113] before surface points are skinned using

linear blend (LBS) [34, 109] or dual quaternion skinning (DQS) [111]. Once the pose satisfies

the convergence criterion, shape fitting is done using a non-rigid registration, minimizing a loss

function that usually consists of three components: a landmark term, a smoothness term, and

a data term. The landmark term minimizes the distance between the corresponding landmarks

of the template mesh and the 3D scan. The smoothness term minimizes the difference between

the spatial transformations of the neighboring vertices. Finally, the data term minimizes the

distances between the corresponding vertices. Note that the correspondence is determined at the

beginning of a shape-fitting phase. Pose and shape fitting are typically performed back-to-back

until final convergence [112]. Some works [19] additionally consider texture, which enhances

fitting. When employing high-quality scanners, the described fitting is the go-to method for 3D

¶For simplicity, we only describe mesh fitting on 3D scans, but similar techniques can be applied to features or
images [107].
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Figure 1.11: A visual summary of the mesh fitting procedure for building statistical models. A neutral
template mesh is registered to each 3D scan in the scanning dataset, creating a dataset of registered
template meshes. PCA can be used to develop the statistical model based on the shape and pose variations
of the registered templates. The pose-shape space can be utilized to create new 3D meshes using the
principle components. The FAUST dataset [19] contains the 3D scans and template models. SMPL-X is
used to create novel 3D meshes [110]. The image is adapted from the review paper [29].

scans that are practically entirely complete. A clean mesh that fills in the gaps in the first, noisy

3D scan is the end result of fitting.

The principal component analysis (PCA) is used to explain shape changes in the collection

of fitted template meshes of the statistical model. Finding the shape principle components

that account for the majority of the dataset’s variance allows PCA to condense the dataset of

registered meshes. The ability of PCs to create innovative template meshes [36, 105, 114,

115] from a shape parameter space is a significant benefit of PCA. By also specifying the joint

rotations of the mesh via pose parameters, a full 3D body mesh can be produced. The CAESAR

[32], Size-UK [33], ScanDB [18], and potentially other datasets containing 3D scans [19, 20,

34, 35, 116] are the datasets that are frequently utilized for creating statistical body models

(SMs).

1.4.2 The Examples of Statistical Body Models

The first SM for pose and shape deformations, as well as pose-dependent shape alterations, is

SCAPE [34] (for example, muscle contractions in different poses). They construct about 150

additional markers using a set of initial physical markers and the correlated correspondence

algorithm [117]. When they want an articulated human model, they use non-rigid registration.

Each body part is rotated independently in SCAPE, which causes artifacts near joints and is one

of its main drawbacks. The artifacts issue is resolved by BlendSCAPE’s [108], which smooths

SCAPE body part segmentations across part boundaries. Triangle deformations are used for

PCA in both BlendSCAPE and SCAPE, which is a drawback. SMPL [109], one of the most
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well-known statistical models, has shown that utilizing vertex transformations rather than trian-

gle transformations enhances the final SM. In order to create models that are more aesthetically

acceptable for animation, SMPL also requires body symmetry. However, maintaining the sym-

metry comes at the expense of realism in some stances. A STAR [111] model that imposes

spatially local and sparse pose corrective blend shapes and is unrelated to the symmetry opti-

mization component is an improvement over SMPL. The fact that STAR was created utilizing

the largest database, a mix of the SizeUSA dataset (5000 scans) and the CAESAR dataset (4000

scans), makes it the most expressive SM (9000 scans).

1.4.3 Mesh Regression from 3D scans

A statistical model can be utilized for mesh regression after it has been constructed. The goal

of mesh regression is to identify the SM’s pose and shape characteristics that best match an

input. Some of the significant prior works on mesh regression from 3D scans are given in the

continuation.

Volumetric-template-fitting, used by Kwok et al. [118] as an illustration of such a method,

entails iteratively choosing the mesh from the statistical pose-shape space and tailoring the

clothing to match the input 3D image. Prokudin et al. [119] provide a deep learning model

for template fitting that is supervised by SMPL templates that were fitted to the dataset prior to

learning (efficient-learning-with-basis-point-sets). The basis point set, a set of 3D scan features,

and the ground truth template mesh are the two points on which the learning is based. The

(slow) rendering step that is required to verify the parameters is omitted when employing the

characteristics to identify optimal parameters.

1.5 Human Body Measurement

1.5.1 Body Measurement from a 3D Scan

The measurements can also be taken directly from a 3D scan after the body has been 3D

scanned. The use of landmarks can aid in measuring circumferences and some distances [120].

The circumferences are estimated from a point cloud using a convex hull polygonal approxima-

tion method in Lu and Wang’s work [30]. Using a perpendicular plane to slice the point cloud,

the circumferential points are obtained. The highest X coordinate point is when the algorithm

begins (Fig. 1.12b). The counterclockwise direction’s next point is chosen as the one with the

smallest angle between the Y-axis and the line connecting the current point X and the following

point (Fig. 1.12b). Up till the polygon is closed, the operation is repeated. The sum of the line

lengths between the chosen locations serves as an approximation of the circumference.

16



Introduction

xx

yy
a)a)

XmaxXmax

xx

yy
b)b)

XmaxXmax

nd edge pointnd edge point

xx

yy
c)c)

Figure 1.12: The convex hull polygonal approximation method. Adapted from [29].

1.5.2 Body Measurement from Template Mesh

Once the template mesh is estimated from either 3D or 2D data, body measurements can be

extracted as illustrated in Fig. 1.13. A detailed description of how to extract specific body

measurements is given in Chapter 3, where the linear regression model for body measurement

estimation is also proposed and described.

F1F1 F2F2

F3F3 F4F4 F5F5 F6F6

F7F7 F8F8 F10F10F9F9

S2S2S1S1

S3S3 S4S4

S7S7 S8S8calf circumferencecalf circumference

thigh circumferenceethigh circumferencee

hip circumferencehip circumference

Figure 1.13: A visualization of body measurement extraction from the template mesh. Adapted from
[29].

1.6 Five Steps of Digital Anthropometry

According to the review paper on digital 3D human body measurement, the body measurement

processing pipeline can be divided into five steps: (1) preparation, (2) scanning, (3) feature

extraction, (4) model fitting, and (5) measurement extraction (Fig. 1.14). Markers that indicate
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Figure 1.14: The five steps for digital anthropometry proposed by [29]: preparation, 3D scanning,
feature extraction, model fitting, and measurement extraction. The image is adapted from [29].

common body landmarks may be applied to the body during preparation (step 1) [19, 32, 120].

The subject is instructed to strike a specific position [10] and remain motionless for the duration

of the scan. If RGB cameras are employed, scanning (step 2) generates a 3D point cloud or depth

map(s) together with the collection of images. Step 3 involves taking 3D scan and picture data

and extracting features like keypoints and silhouettes. In step 4, the ideal human 3D template

mesh is estimated using the characteristics or raw picture data [107]. The main benefit of using

a model as a template and adapting it to a 3D scan is that any measurement can be conveniently

and easily inferred from the semantics of the model. Statistical body models can be created

using mesh fitting techniques, as described in Section 1.4. Direct template mesh regression

from photos and image characteristics is made possible by the statistical models. In step 5, the

data that has been processed (the 3D scan, pictures, features, and template mesh) is used to

extract body measurements.
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Chapter 2

Image-Based Anthropometry

A collection of methods for estimating body measurements using images and image attributes

is known as image-based anthropometry, which is the main focus of the dissertation. Body

measurements can be calculated either directly from photos or indirectly from extracted image

features like keypoints and silhouettes [29] and then regressing the pose and shape parameters

of the statistical body models (Section 1.4).

Note that the keypoint detection algorithms and models described in this chapter are specific

to human bodies, i.e., they represent the selected subset of human joints [35, 121]. In contrast,

the standard keypoint detection algorithms [52, 53] find the keypoints which contain distinctive

information compared to the rest of the image, such as edges. The keypoints found using

the latter algorithms struggle more to find the corresponding keypoints across images of the

common scene [122]. The former algorithms know the correspondences in advance, but struggle

with estimating the exact joint location, which degrades the final 3D pose estimation (Chapter

4).

We initially provide a broad overview of the methods and information utilized for image-

based body measurement (Section 2.1). Then, we go over backbone deep learning architectures

used for human body measurement, pose, and shape estimation (Section 2.2). In Section 2.3,

we cover the feature extraction techniques. Finally, in Section 2.4, a summary of the previous

synthetic data used for training and evaluating the suggested models is provided. Note that,

in Section 5.3.2, we propose and describe a novel dataset designed for body measurement and

shape estimation of clothed people.

2.1 The Overview of Image-Based Anthropometry

We categorize image-based anthropometry:

• in the context of other (semi-automatic) body assessment approaches/techniques;

• the surroundings and recording (imaging) conditions, such as the number of views, syn-
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thetic, i.e., real data, the kind of clothing, etc.;

• input features and the pipelines used to estimate each body measurement.

We link certain subjects to the dissertation’s corresponding parts. Note that the three re-

search contributions should be highlighted:

• self-estimation of body measurements using linear regression model;

• pose estimation from multi-view images;

• shape estimation from a single image.

2.1.1 Body Measurement Approaches

Fig. 2.1 shows an overview of anthropometric approaches w.r.t. the input data and the technique

used to extract the body measurements. The upper part of the diagram highlights the techniques

which directly obtain body measurements, while lower part shows techniques that first estimate

the human body model, and then extract the body measurements from it, as will be described in

Section 3.2.1. Body measurements can be obtained either manually (traditional anthropometry

described in Section 1.1), extracted from 3D scans (Section 1.5.1), self-estimated (Chapter 3), or

estimated from images (Chapter 5). We propose two novel approaches, one for self-estimation

of body measurements (Contribution 1 in the Figure) and one for body model (shape) estimation

from images (Contribution 3 in the Figure).

Anthropometry

Self-estimation of
body measurements

Manual body
measurement

Direct body
measurement from

3D scans

Statistical body
models

Body model
estimation from 3D

scans

Body model
estimation from

images

Body measurement
extraction from the

estimated body
model

Section 1.4

Chapter 3

Section 1.1

Subsection 1.5.1

Section 1.4.3

Chapter 5

Section 3.1.1

Section 1
Contribution 1

Contribution 3

Figure 2.1: An overview of anthropometry w.r.t. input data and the technique used for body measure-
ment. In particular, body can be measured manually (traditional anthropometry), and can be measured
from 3D scans and 2D images. Based on the given data, different general techniques can be applied, as
shown highlighted in the diagram.
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2.1.2 Imaging Conditions

Image-based anthropometry can be analyzed with regard to imaging conditions, or the recording

conditions in a more general sense (digital anthropometry and 3D scanning). Body pose, type

of data (actual or synthetic), garments, number of views, and occlusions are five categories of

body recording conditions that are highlighted in Fig. 2.2*.
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Body pose

Occlusions

Clothes

Number of views

Real / Synthetic data

T-pose

Arbitrary pose

Arbitrary pose

No oclussions

Self-oclussion

Tight and
loose clothes

Tight and
loose clothes

Monocular

Multi-view

Chapter 4

3D data

Chapter 3

Chapter 4

Chapter 5

Synthetic and
real data

Synthetic data

Chapter 5

Chapter 3

Chapter 5

Chapter 5

Chapter 4

Chapter 4

Chapter 5

Contribution 1

Contribution 2

Contribution 3

Contribution 2

Contribution 3

Contribution 2

Contribution 2

Contribution 3

Contribution 3

Contribution 1

Real data

Chapter 4

Contribution 2

Contribution 3

Figure 2.2: An overview of anthropometry w.r.t. various types of recording conditions, namely body
pose, real or synthetic data, types of clothes (tight or loose), number of views, and occlusions.

Body pose. In the case of 3D scanning, the body pose is typically fixed and is one of the

standard body poses [29]. On the other hand, the majority of cutting-edge image-based mesh

regression techniques predict shape and posture parameters simultaneously, allowing one to

extract body measurements in any pose using these models (see Chapter 5). Of course, there

*In general, one can also take into account other factors like illumination and image quality, but we emphasize
these five because they are the dissertation’s main topic
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are still several problems with precise joint assessment. Shape-in-a-fixed-position, or T-pose

shape estimation, is the focus of a sizable portion of the dissertation (Chapter 5).

Real / Synthetic data. The identity obfuscation laws (GDPR), the difficulty of obtaining

ground-truth body measurements for the people in the scenes (one would, for example, need

to 3D-scan people and extract their accurate body measurements), and the difficulty of record-

ing people of various shapes and in various poses make realistic datasets with people and their

corresponding ground-truth body measurements particularly difficult compared to general 3D

scene datasets [123, 124]. As a result, synthetic datasets [125, 126, 127] are a crucial tool for

training and assessing models for estimating human pose, shape, and body measurement. We

also dedicate a significant effort in using synthetic datasets for the purposes of this dissertation.

In particular, we describe previous synthetic datasets in Section 2.4, extend previous body mea-

surement dataset for the purpose of fitting our linear regression model in Chapter 3, and propose

a novel synthetic dataset of clothed people for the estimation of shape and clothes in Chapter 5.

Clothes. The quantity and type of clothing a person wears is an important factor to take

into account. Assuming that the clothes do not significantly alter the 3D body shape, it is

nevertheless expected that the subject be either naked (swimsuit) or in tight clothing for the

purpose of estimating shape and body dimensions. Many previous methods are limited to tight

clothes [128, 129, 130, 131]. We go beyond and propose pose (Chapter 4) and shape (Chapter

5) estimation approaches from images of people in either tight or loose clothes.

Number of views. The majority of state-of-the-art mesh regression techniques are monoc-

ular [107, 131, 132, 133]. By utilizing different viewpoints, 3D geometry and geometric tech-

niques like triangulation of the matching keypoints [46, 134, 135] are made possible. This

methodology is particularly useful for 3D human posture estimation [134, 135, 136, 137, 138].

Based on any number of available views, a different collection of probabilistic algorithms esti-

mates the most likely posture and shape parameter hypothesis jointly [129, 130]. We utilize a

probabilistic model for monocular estimation of human shape and several perspectives to enable

the triangulation of the 3D human position (Chapter 4). We contend that by integrating these

two methods, 3D posture and shape estimation would be enhanced in the future (Chapter 6).

Occlusions. The (self-) occlusions are disregarded in a controlled environment, which is

typically a 3D scanning environment or an image recording in a scene without objects because

they are not a significant factor in body measurement estimate. Contrarily, occlusions are a sig-

nificant component of in-the-wild image-based anthropometry, particularly in indoor scenarios

with a lot of 3D objects and in cases with multiple views (the likelihood that some part of the

body will be obstructed in some of the views increases with the number of views). A common

method for dealing with occlusions is to give the model the ability to communicate how con-

fident it is in its predictions, either at the level of 2D keypoint detection [139, 140] or at the

level of body shape and pose parameters [128, 129, 130], where the occluded parts are likely
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to be less confident. We don’t specifically focus on training the shape estimation model to han-

dle occlusions (Chapter 4 and 5), leaving that to future study. We also assume no substantial

occlusions in our 3D pose estimation model (Chapter 4).

2.1.3 Feature Types

Keypoints and silhouettes, two popular types of features [36, 131], can be retrieved from images

and 3D data. A very similar effect is produced by edges [128], which we explore and experiment

with in Chapter 5.
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Shape
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2D / 3D
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Section 5.2 Section 3.1
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Contribution 3

Contribution 2

Chapter 4

Chapter 5

Figure 2.3: The overview of anthropometry w.r.t. to feature types used to estimate the body measure-
ments.

There are several popular pose parameter estimation approaches based on image keypoints

[141, 142, 143, 144]. Once the pose parameters are specified or estimated, the 3D pose coor-

dinates can be easily derived from the corresponding 3D human mesh † (see the upper portion

of Fig. 2.3). In Chapter 4, we propose a straightforward 3D pose estimation technique. Pose

estimation, on the other hand, enables in-the-wild body measurement (arbitrary pose), which

we briefly discuss regarding future approaches in Chapter 6.

In Chapter 5, we propose a deep learning approach for estimating shape parameter from

edges‡. Based on the estimated shape parameters, we derive body measures from the calculated

shape parameters in accordance with the requirements explained in Section 3.2.1.

2.2 Backbone Architectures for Feature Extraction

Convolutional neural networks (CNNs) are the essential and fundamental building blocks for

keypoint and semantic estimation tasks in computer vision. Note that whereas the human sil-

houette is a binary mask (single-class), the semantic segmentation mask is typically a set of

†The non-estimated shape parameters can be set to mean (zero) shape, which corresponds to β = 0.
‡Note that similar approach could be proposed using silhouettes, as suggested and demonstrated in [131].
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binary masks (multi-class).
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Figure 2.4: The typical, generic convolutional network architecture for RGB image processing. Adapted
from [145].

The typical convolutional neural network architecture consists of three types of layers:

• convolutional layer helps to abstract the input image as a feature map via the use of

kernels.

• pooling layer helps to downsample feature maps by summarizing the presence of features

in patches of the feature map.

• fully connected layer connects every neuron in one layer to every neuron in another layer.

2.2.1 Hourglass Models

Figure 2.5: A single block of an hourglass architecture, which consists of several downsampling and
upsampling layers. The downsampling and upsampling layers are concatenated as shown in the image
(the plus (+) signs). Note that the image is adapted from [146].

24



Image-Based Anthropometry

The stacked hourglass architecture [147] and the concept of "hourglass" (see Fig. 2.5) is

the base idea for the dominant approaches [146, 148, 149] on MPII 2D keypoint estimation

benchmark [150]. It consists of a multi-stage architecture with repeated bottom-up, top-down

processing and a skip (residual) layer feature concatenations (see Fig. 2.5 as an example of a

single block).

Figure 2.6: The immediate supervision is used after each hourglass block. The plus (+) signs represent
residual (skip) connections between the layers. The contracting-expanding blocks represent the blocks
of the hourglass architecture, shown in Fig. 2.5. The remaining black rectangles represent other network
layers whose internal structure is not relevant to the overall description. The narrow rectangle shows the
immediate supervision layer, which is one of the key characteristics of the hourglass architecture. The
image is adapted from [147].

Another key feature of the stacked hourglass architecture is the use of immediate supervision

after each hourglass block, as shown in Fig. 2.6. Note that there are usually several hourglass

blocks in the hourglass model. The idea of the immediate supervision strategy is that loss is

applied both on coarse and more refined feature maps, which proved beneficial for the model’s

performance.

2.2.2 Cascaded Pyramid Networks

Cascaded pyramid network (CPN) [151] was the leading method on COCO 2017 keypoint

challenge [152]. Similar to hourglass architecture, CPN also involves skip (residual) layers and

2D keypoint detection step, where the model is expected to detect visible and, in general, "easy"

keypoints. This is called the GlobalNet part of the architecture (see Fig. 2.7). The keypoints

that are occluded and more difficult to detect based on the image appearance features are left to

the RefineNet part of the architecture (Fig. 2.7).

The role of RefineNet is visualize even better in Fig. 2.8. RefineNet takes the heatmaps for

all the keypoints and exploits all these information in order to reason about the "hard" keypoints

that are not distinguishable based on image appearance only. This more abstract reasoning

about the human body and pose is usually called the human pose prior. We specifically analyze

our proposed 3D pose estimation model from Chapter 4 w.r.t. human pose prior.
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Figure 2.7: The Cascaded Pyramid Network (CPN) consists of GlobalNet and RefineNet. Note that the
crossed-out blocks in the GlobalNet part simply point out that there are multiple convolutional layers in
this part of the network, and the plus (+) symbols point out that these layers also contain the residual
(skip) connections. The GlobalNet output is immediately supervised via L2 loss and propagated to
the RefineNet part. The RefineNet is particularly useful to localize "hard" keypoints, which is further
explained in the Fig. 2.8. The image is adapted from [151].

Figure 2.8: The RefineNet part of the CPN architecture is particularly useful for localizing the "hard"
keypoints. In the case of CPN, these keypoints are the ones that require a larger perceptual context from
the image, such as hips. For example, in the image above, the left hip is occluded and not well localized
in the GlobalNet part. In order to improve the localization, the features of lower resolution are upsampled
and then concatenated with the ones of higher resolution in order to finally produce the refined location
of the left hip. Adapted from [151].

2.2.3 Using Deconvolutional Layers

Compared to the stacked hourglass and cascaded pyramid networks, Xiao et al. [139] pro-

posed a much simpler architecture for 2D keypoint detection. Instead of stacking several down-

sampling and upsampling hourglass blocks, i.e., cascading (concatenating) multi-resolution

heatmaps, they propose to use deconvolutional layers (Fig. 2.9) to replace the upsampling parts.

The architecture of their model is similar to the previously described architectures, consisting

of several encoder-decoder blocks with residual layers. Their proposed model demonstrated

state-of-the-art performance for 2D keypoint detection on COCO 2017 challenge [152]. Their

architecture is used as a backbone for both the proposed model in Chapter 4 and 5.
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Figure 2.9: The illustration of deconvolutional layer, which was the main ingredient in the architecture
proposed by Xiao et al. [139]. The image is adapted from the same paper.

2.3 Feature Extraction

Two types of features that are usually extracted from 3D scans and images are keypoints and

silhouettes. The location of keypoints§ can be determined based on markers or can be estimated

automatically from a 3D scan [30, 31]. Silhouettes either represent the points or pixels for the

whole human body, or the body segments.

2.3.1 Keypoint extraction

The majority of keypoint estimation algorithms can identify human joints from images of a

person. The keypoints might be represented as 3D points in the scene or as 2D pixel coordinates

in an image. The accuracy of the estimation can be increased if there is a moving subject

by using temporal smoothness and taking advantage of the time component [153]. Therefore,

keypoint estimation methods can be divided into: single-image [140, 154, 155, 156, 157], multi-

frame [153], and multi-view methods [134, 136, 137] for 2D [140, 154, 155, 156, 158] or 3D

[134, 136, 137, 153, 157] keypoint estimation. As seen in Fig. 2.10, the keypoint estimation

algorithms typically find between 14 and 21 keypoints. Due to the availability of large annotated

datasets, the majority of cutting-edge keypoint estimate techniques are deep learning-based

[35, 116, 125, 159, 160]. Typically, landmark extraction from 3D scans is not integrated with the

extracted 2D and 3D keypoints for mesh fitting [111, 142, 144] (see the following subsection).

Motion capture [101] is a movement tracking method that allows for the direct gathering of

ground truth coordinates for 2D and, in particular, 3D keypoints¶. The majority of the keypoint

§Note that keypoints are called landmarks if they refer to standardized body locations [10].
¶Another way to obtain 2D pose estimation data is to manually label human joints on a large number of images.
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Figure 2.10: The example of keypoint detection in 2D image (left) and on the point cloud scan (right)
corresponding to the person in the image on Human3.6M dataset [35].

estimation algorithms mentioned earlier benefit from the ground truth information obtained

from motion capture. Human3.6M dataset [35], HumanEva [116], and TotalCapture [101] are a

few examples of MoCap datasets. Motion capture systems’ drawback is that they can’t be used

in real-world situations.

2.3.2 Silhouette extraction

Methods for extracting silhouettes separate pixels that depict pixels of interest (a person) from

other pixels in the image [161]. Modern semantic segmentation techniques that are related

to human pose estimation, such as cross-domain multi-person part segmentation [162], self-

correction for human parsing method [163], dense image prediction [164], body part parsing

posture-guided method [165], and joint pose and part segmentation [166], are likewise deep

learning-based. There are body-part-segmented datasets [167, 168] in addition to whole-body

segmentation [121, 169]. Both whole body and body part segmentation methods achieve rela-

tively high accuracy||, even on difficult examples. Therefore, semantic segmentation models are

convenient to be used as part of the body measurement estimation from images pipeline [131].

Note that we do not use semantic segmentation in this dissertation, because edge detection has

proven to be even more beneficial for human pose and shape estimation from images, i.e., edges

[128].

However, this is impractical and unreliable in case of 3D data.
||The accuracy is measured as a mean IoU (intersection over union).

28



Image-Based Anthropometry

2.3.3 Edge Detection in PyTorch

In this subsection, we are going to describe canny edge detector [170], the most popular edge

detector algorithm. We use edge detection in Chapter 5 and use the extracted edge maps as input

features to learn human body shape from images. The canny edge detection algorithm consists

of five steps: applying the Gaussian filter, finding the intensity of the gradients of the image,

applying gradient magnitude thresholding, applying a double threshold to determine potential

edges, finalize the detection.

Gaussian filtering. In order to avoid false detection caused by noise, which can easily

impair any edge detections, the noise in the image must be filtered out. A Gaussian filter kernel

is convolved with the image to smooth it out. In order to lessen the impact of significant noise

on the edge detector, this step will slightly smooth the image. The formula for a size-dependent

Gaussian filter kernel is explicitly given by:

Gi j =
1

2πσ2 exp
(
− (i− (k+1))2 +( j− (k+1))2

2σ2

)
, (2.1)

where the Gaussian filter is of size (2k+1)×(2k+1), 1 ≤ i, and j ≤ (2k+1). The performance

of the canny edge detector depends on the kernel size. In general, the detector’s sensitivity

to noise decreases with increasing the kernel size. However, the edge localization error will

slightly increase with larger kernel sizes.

Intensity of the image gradients. The Canny algorithm employs four filters in order to

identify horizontal, vertical, and diagonal edges in the blurred image because an edge in an

image can point in a number of different directions. The edge detection operator [171] returns

a value for the first derivative in the horizontal direction (Gx) and the vertical direction (Gy).

From these values the edge gradient and direction can be determined:

G =
√

G2
x +G2

y

Θ = arctan(Gy,Gx)

The edge direction angle is rounded to one of four angles representing vertical, horizontal,

and two diagonals.

Gradient magnitude thresholding. To locate the areas with the sharpest change in intensity

value, the algorithm needs to assess how strong the edges of the current pixel are in comparison

to how strong they are in the positive and negative gradient directions. The value will be retained

if the edge strength of the current pixel is greater than that of the other pixels in the mask

pointing in the same direction (for example, a pixel pointing in the y-direction will be compared

to the pixels above and below it in the vertical axis). The value will be suppressed in any other
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case.

Double thresholding. Remaining edge pixels after the use of non-maximum suppression

offer a more realistic representation of actual edges in an image. However, there are still some

edge pixels with noise and color variance. Edge pixels with a low gradient value must be

removed in order to account for these erroneous answers, while edge pixels with a high gradient

value must be kept. By choosing high and low threshold values, this is achieved. A pixel is

designated as a strong edge pixel if its gradient value exceeds the high threshold value. A weak

edge pixel is one whose gradient value is greater than the low threshold value and lower than the

high threshold value. An edge pixel will be suppressed if its gradient value is less than the low

threshold value. The specification of the two threshold values, which are derived empirically, is

based on the input image’s content.

Finalizing the detection. As they have been retrieved from the true edges in the image,

the strong edge pixels should undoubtedly be included in the final edge image. The weak edge

pixels, however, can either be retrieved from the true edge or the noise/color variations. The

latter causes’ weak points should be eliminated to produce an accurate outcome. As opposed

to noise responses, weak edge pixels resulting from real edges are typically coupled to strong

edge pixels. Blob analysis [172] is used to track the edge connection by examining a weak edge

pixel and its eight connected neighboring pixels. That weak edge point can be recognized as

one that needs to be kept as long as the blob contains at least one strong edge pixel.

To implement the above edge detection algorithm in PyTorch [173], the main requirement

is that all of the above steps need to be differentiable so that the gradients can backpropagate.

For efficiency, the pipeline should be written for parallel execution, i.e., for-loops and similar

sequential strategies should be avoided at all costs.

2.3.4 Mesh Regression

The main methodology used in this thesis for image-based body measurements is mesh regres-

sion (see Fig. 2.11). The mesh regression is a learning task that optimizes human pose and

shape parameter estimation, i.e., the estimation of parameters from the statistical human body

population (Chapter 1). The mesh regression can be done using features described in this sec-

tion, such as keypoints, as shown in Fig. 2.11. The Figure highlights one of the first mesh

regression approaches, called SMPL-X [110]. In Chapter 5 we propose and describe in detail a

novel mesh regression approach for pose, shape, and clothes estimation from the features of a

single image.
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Figure 2.11: An illustration of a mesh regression method using SMPL-X that is based on 2D keypoint
estimation [143]. Notably, the hands and face are represented by yellow keypoints, although typically
being modelled independently. The image is adapted from [110].

2.4 Synthetic Data

The main advantage of using synthetic data is that perfectly accurate ground truth is available

along with the images, such as depth, body parts, optical flow, 2D/3D pose, surface normals,

keypoints, etc. For our image-based methods, we only use keypoints obtained from the given 3D

template meshes (SMPL). The keypoint locations are transformed into heatmaps, as described

in Chapter 5, which has proven useful for the performance of deep learning model.

In particular, the advantage of using 3D template meshes in combination with synthetic

data is that the body measurements can be extracted in a standardized way, which guarantees a

standardized measurement (Chapter 3). Another advantage is that synthetic data avoid privacy

issues and approvals. Therefore, the promising future direction is the creation of large, more

realistic, and more diverse synthetic anthropometric benchmarks. The statistical models such as

SMPL are currently the best approximation of the overall population and are likely to be used

as a tool for generating the body measurement benchmarks in the coming years.

2.4.1 SURREAL

SURREAL [125] is the first large-scale synthetic human dataset. It consists of 6M frames. The

images are photo-realistic renderings of people under large variations in shape, texture, view-

point and pose. To ensure realism, the synthetic bodies are created using the SMPL body model,

whose parameters are fit by the MoSh [104] method given raw 3D MoCap marker data. The

backgrounds are 2D images from LSUN dataset [174]. The advantage of SURREAL is that

the renderings are diverse and controllable and that the random backgrounds further improve

the diversity of the final images. Some of the disadvantages are that the body poses w.r.t. to

the background scene are often unrealistic and that the lower quality of the textures further

sacrifice realism. Lack of realism in the synthetic data is particularly limiting when training
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deep learning models for anthropometric application of real people. Finally, the textures are

only applied on top of the SMPL mesh, i.e., no clothes geometry is available. Even though,

SURREAL is still a very popular synthetic human dataset [128, 129, 130, 131]. The example

images from SURREAL are shown in Fig. 2.12.

Figure 2.12: The examples from the SURREAL synthetic dataset.

2.4.2 3DPeople

3DPeople [160] is the first dataset of dressed humans with specific geometry representation

for the clothes. It contains around 2M images with 40 male and 40 female performing 70

actions. The significance of this dataset, compared to SURREAL, is that the actual clothes

geometry is added on top of the body, as shown in Fig. 2.13. This allows direct training of

clothing-geometry-aware models, while still having all the advantages of SURREAL such as

diverse human characters and backgrounds. However, 3DPeople does not use SMPL model,

which prevents straightforward body measurement extraction and makes controllable character

generation more complicated. We tackle some of these limitations in Chapter 5, where we

propose novel synthetic dataset of clothed humans.

2.4.3 AGORA

AGORA is a highly-realistic synthetic human dataset. It consists of 4240 commercially avail-

able, high-quality, textured human scans in diverse poses and natural clothing; this includes 257

scans of children. These scans are rendered in diverse 3D scenes using Unreal Engine [175],

as shown in Fig. 2.14. The dataset contains ground-truth 3D poses and body shapes by fitting

the SMPL-X body model [110] (with expressive face and hands) to the 3D scans, taking into

account clothing. AGORA has around 14K training and 3K test images by rendering between

5 and 15 people per image using either image-based lighting or rendered 3D environments. In

total, AGORA consists of 173K individual person crops. The disadvantage of AGORA is that
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Figure 2.13: The example sequence and ground truth information given with the 3DPeople dataset. The
image is adapted from [160].

the scans are not controllable which puts limits to potentially generate any number of different

people in various poses and with different body measurements. We also tackle this limitation in

Chapter 5.

Figure 2.14: AGORA dataset populates highly realistic 3D scenes with high-quality 3D scans of clothed
people.
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Chapter 3

Body Measurement Estimation Baseline

In this section, we propose and describe a linear regression model that requires only the infor-

mation that any person can self-estimate, such as height and weight [176]. By comparing the

proposed model’s performance to the state-of-the-art for body measurement estimation on two

publicly available datasets, BODY-fit [177] and ANSUR [22], we show that it performs well.

The linear model offers a clear and easy technique to estimate body measures, which makes it

useful for augmented reality and virtual try-on.

3.1 Related Work

In this section, we briefly cover prior works relevant to the proposed body measurement esti-

mation baseline. With respect to the baseline, we divide prior works into three groups: the ones

that also propose linear regression for anthropometry, the nonparametric approaches, and the

parametric approaches. We compare the baseline with each group of methods in the remainder

of the chapter.

Linear Regression for Anthropometry. Based on the public databases, several works

propose linear regression models for the estimation of measurements [178, 179, 180] and other

body characteristics such as skeletal muscle mass [181]. We extend these analyses by focusing

specifically on using self-estimated height and weight as input, as well as on using the statistical

body models.

Nonparametric Approaches. With the advances in 3D scanning technology, more auto-

matic approaches to body measurement have been proposed [182, 183, 184]. Most 3D-based

body measurement methods use landmarks to determine distances and calculate measurements

such as arm and leg length, shoulder-to-crotch, etc. Circumferences can be obtained by slic-

ing the point cloud with a vertical plane and summing up distances between the nearest points

[182]. The 3D-based methods are generally the most accurate among the (semi-)automatic body

measurement methods. However, their main drawback is that they require 3D scanning, which
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is cumbersome and relatively expensive.

There are a number of image-based (2D) nonparametric models [107, 185, 186, 187] that

freely deform meshes to best fit the input features. To improve convergence, they start with

the template human mesh. However, the final deformed mesh does not necessarily retain the

original vertex semantics. This property makes current image-based non-parametric models less

suitable for body measurements. On the other hand, compared to their parametric counterparts,

nonparametric models might have the advantage of better fitting out-of-distribution samples.

Parametric Approaches. The first ten principal components (shape parameters) of the

SMPL parametric model are usually used for mesh regression. Tsoli et al. [188] first regis-

ters template meshes to the 3D scans and additionally learns features for body measurement

prediction. BUFF [20] addresses the problem of 3D body shape estimation under clothing by

allowing the mesh to deviate from the template but regularizes the optimization to satisfy the

anthropometric constraints. Similar to non-parametric approaches, 3D parametric approaches

are generally more accurate than image-based approaches, but also require 3D scans as input.

Image-based approaches (2D) can be divided into shape-aware pose estimation methods,

which typically regress pose and shape parameters in-the-wild either from 2D keypoints or

directly from images [107, 132, 133, 142, 143, 144, 189, 190, 191, 192, 193, 194, 195, 196,

197, 198, 199, 200, 201, 202, 203, 204, 205], and shape estimation methods which regress

shape from silhouettes, usually in fixed pose and minimal clothing [21, 177, 206, 207, 208,

209, 210, 211, 212, 213]. We compare the proposed baseline against the state-of-the-art 3D-

and 2D- based approaches for human body measurement estimation and achieve comparable

performance to the best methods, while outperforming several deep learning models (see Sec.

3.3).

3.2 Linear Regression Model

In this section, we go over how to extract body measurements from a template SMPL mesh and

the proposed linear regression model. For males and females, separate regression models were

used. The proposed approach aims to show that body measures may be calculated without tak-

ing any further measurements using only the information that each individual normally knows

about themselves, i.e., height and weight, making it appropriate as a baseline.

The method is shown in Figure 3.1. Each human body sample i is defined by 10 shape

parameters, θSi, and 63 pose parameters, θPi. The height and the 15 body measurements of

the model are extracted from the template mesh. The input to the model consists of height

(h) and weight (w). Weight should be available in the dataset; otherwise, it can be estimated

from the calculated mesh volume. The output consists of the 15 other body measurements

(A–O). The measurement names are listed in Table 3.1, and their extraction is described in
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Section 3.2.1. Then, the linear model for the j-th measurement is described as:

y j = xT a j +b j, j ∈ {1,2, . . . ,15} (3.1)

where xT ∈ R2 is a row vector consisting of the height and weight of the samples (an indepen-

dent variable), a j ∈ R2 is a column vector of the linear coefficients (the slope), b j ∈ R is an

intercept of the regression model, and y j ∈ R is an output measurement (a dependent variable).

These equations can be written more compactly in matrix form as:

Yj = XA j, j ∈ {1,2, . . . ,15} (3.2)

where X ∈ RN×3 are the heights and weights from the N samples from the training dataset and

Yj ∈ RN×1 are their output measurements. Additionally, a column of ones is added to X to

account for b j, which is now included in A j ∈ R3×1, representing all the model parameters.

Therefore, the least-squares closed-form solution is:

A j =
(
XT X

)−1
XTYj, j ∈ {1,2, . . . ,15} (3.3)
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Figure 3.1: An overview of the linear regression model for a single sample from the statistical model.
The sample mesh is defined using the shape and pose parameters, M(θS,θP)i. Both input and output are
extracted from the sample template mesh, Mi. The input consists of height and weight. Weight can be
either available in the dataset or estimated using the calculated mesh volume. The output consists of the
15 body measurements (A–O), which are listed in Table 3.1. To account for the errors in self-reporting
height and weight, we model height and weight as stochastic variables by adding Gaussian noise to the
input. A linear regression model is fitted to each of the 15 body measurements. The image is adapted
from [176].
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The linear regression has four assumptions: linearity, homoscedasticity, independence, and nor-

mality. The linearity assumes that the relationship between X and the mean Y is linear. The ho-

moscedasticity assumes that the variance of residual is the same for any value of X . Inde-

pendence assumes that the observations are independent of each other. Finally, the normality

assumes that for any fixed value of X , Y is normally distributed. The latter three assumptions are

related to residuals, and we verify those in Section 3.4.1. For further details on linear regression,

we refer readers to the relevant literature [214].

Note that we also experiment with the interaction terms (h is height, w is weight): w
h2 (BMI),

wh, w2, h2, and add them to the input vector xT . The model with no interaction terms is called

the baseline, and the models with added interaction terms are called the augmented baselines.

The augmented baselines are marked in the remainder of the chapter as Baseline (I = N), where

N is the number of interaction terms. The interaction terms I = 2 correspond to w
h2 and wh,

and I = 4 corresponds to w
h2 , wh, w2, and h2.

In case that the weight measurement is not available in the dataset, we estimate it using the

extracted volume. The volume is extracted using a standard algorithm [215]. Then, the body

weight (w) is estimated based on the human body density, which is approximately ρ = 1±
0.005 kg/L [21, 216], and the extracted volume (V ). To account for the variation in body density

w.r.t. weight, we model the volume as a normal stochastic variable:

V =Vextracted +N (µV = 0,σV = 5) [L]. (3.4)

Note that the standard deviation of 5 L applied to the extracted volume propagates to the

standard deviation of 5 kg applied to the estimated weight. Additionally, to account for the

variation in self-estimation of height and weight, we model self-estimation using another two

stochastic variables, h = hextracted +N (µh = 0, σh = 1) cm, and w =V ·ρ +N (µw = 0,σw =

1.5) kg.

3.2.1 Extraction of Body Measurements

We use a total of 18 body measurements, 15 of which are a set of measurements that have

been used consistently in previous studies [21, 177, 206, 207, 208, 209, 210, 211, 212, 213],

and 3 of which are used specifically to compare with Virtual Caliper [21] (see Table 3.1). The

measurements, which are calculated using their associated landmarks, are either lengths or cir-

cumferences. We slice the mesh with a horizontal or vertical plane at the designated landmark

location to extract the circumferences, such as the waist or thigh circumference, and then add

the resulting line segments [177, 217]. Table 3.2 displays the whole list of landmarks together

with their appropriate SMPL vertex index. We determine the Euclidean distances between the

two relevant landmarks in order to extract the lengths, such as the arm length and shoulder
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Table 3.1: The list of 15 (+3) body measurements. The 15 measurements (A–O) are used to compare
to the state-of-the-art. The arm length (J) and the three additional measurements are specifically used to
compare with [21].

Measurement Set Measurement Landmark Index

Standard

A Head circumference 14

B Neck circumference 10

C Shoulder to crotch 1, 10

D Chest circumference 4

E Waist circumference 13

F Hip circumference 19

G Wrist circumference 9

H Bicep circumference 20

I Forearm circumference 15

J Arm length 2, 9

K Inside leg length 11, 12

L Thigh circumference 16

M Calf circumference 17

N Ankle circumference 18

O Shoulder breadth 2, 3

Additional [21]

- Arm span 7, 8

- Inseam height 2, 19

- Hip width 5, 6

breadth.

3.3 Evaluation

On the BODY-fit and the ANSUR datasets, we assess the linear baseline. More particular,

weight estimates derived from the collected mesh volumes are added to the BODY-fit dataset.

The extended dataset is known as BODY-fit+W. We compare the baseline on BODY-fit+W with

the aforementioned cutting-edge image-based techniques: SMPLify [142], ExPose [191], and

Yan et al. [177]. Note that because we do not have the original images of CAESAR, we use

the reported results of other works instead [217] datasets. This work references a total of six

datasets, which are mentioned in Table 3.3.
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Table 3.2: The list of 20 landmarks and their corresponding SMPL vertex indices.

Landmark Index Landmark Name Vertex Index

1 Inseam point 3149

2 Left shoulder 3011

3 Right shoulder 6470

4 Left chest 1423

5 Left hip 1229

6 Right hip 4949

7 Left mid finger 2445

8 Right mid finger 5906

9 Left wrist 2241

10 Shoulder top 3068

11 Low left hip 3134

12 Left ankle 3334

13 Lower belly point 1769

14 Forehead point 335

15 Right forearm point 5084

16 Right thigh point 4971

17 Right calf point 4589

18 Right ankle point 6723

19 Mid hip point 3145

20 Right bicep point 6281

Table 3.3: The list of datasets referenced in this work. Note that the baseline is evaluated on the first
three datasets.

Dataset Samples Data Type Availability Approach Reported by

BODY-fit 4149 SMPL mesh Public 2D-based [177], [176]

BODY-fit+W 4149 SMPL mesh Public 2D-based [142, 177, 191], [176]

ANSUR 6068 Tabular Public Regression ISO [22], [176]

CAESAR 3800 Point cloud Proprietary 3D-based
[206, 208, 210, 211, 212]

[18, 188, 205, 207, 218]

NOMO3D 375 Point cloud Public 3D-based [217]

Virtual Caliper 20 Point cloud Private Regression [21]
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3.3.1 Datasets

There are 1474 male and 2675 female SMPL meshes in the BODY-fit collection. The original

3D scans of people, which are not made available to the public, are used to fit the template

meshes. Additionally, weights that are computed from related mesh volumes are included in

the BODY-fit+W dataset. Figure 3.2 displays the distributions of male body measurements on

BODY-fit+W that were derived by measuring the template meshes in accordance with Section

3.2.1. Male and female ranges in height from 145 to 196 cm and 135 to 190 cm, respectively.

Male ranges in weight from 40 to 130 kg, while female ranges are between 30 and 130 kg.

They also fluctuate proportionally to other metrics’ absolute values. Ankle circumferences, for

instance, are often less than waist circumferences, etc. According to Figures 3.2 and 3.3, the

body measures on BODY-fit+W are just as diverse as the body measurements from the ANSUR

dataset. The BODY-fit+W dataset represents the population of SMPL meshes fitted to 3D scans,

whereas the ANSUR dataset represents the true human body population. It should be noted that

ANSUR dataset does not contain all of the body measurements used in the BODY-fit+W dataset.

The ANSUR attributes and expressions used to obtain the corresponding measurements from

BODY-fit+W are listed in Table 3.4.

Table 3.4: The specification of ANSUR attributes and expressions corresponding to the body measure-
ments extracted from the SMPL meshes.

SMPL Mesh (BODY-fit+W) ANSUR Attribute/Expression

A Head circumference headcircumference

B Neck circumference neckcircumference

C Shoulder to crotch sittingheight - (stature - acromialheight)

D Chest circumference chestcircumference

E Waist circumference waistcircumference

F Hip circumference buttockcircumference

G Wrist circumference wristcircumference

H Bicep circumference bicepcircumferenceflexed

I Forearm circumference forearmcircumferenceflexed

J Arm length acromialheight - wristheight

K Inside leg length crotchheight - lateralmalleolusheight

L Thigh circumference thighcircumference

M Calf circumference calfcircumference

N Ankle circumference anklecircumference

O Shoulder breadth biacromialbreadth
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Figure 3.2: The distribution of body measurements for male subjects in the BODY-fit+W dataset.
Adapted from [176].

Figure 3.3: The distribution of body measurements for male subjects in the ANSUR dataset. Adapted
from [176].

3.3.2 Quantitative Evaluation

The methods are compared quantitatively against the 15 standard body measurements and the

three additional measurements to compare the baseline with the Virtual Caliper [21]. The met-

rics used for comparison are as follows:

• Mean absolute error (MAE), E j,MAE = 1
N ∑

N
i yest, j(i)− ygt, j(i), where i is the sample in-

dex, j represents the measurement, and N is the number of samples;

• Mean relative error (MRE), E j,MRE = 1
N ∑

N
i

yest, j(i)−ygt, j(i)
ygt, j(i)

, where i is the sample index, j

represents measurement, and N is the number of samples;

• Expert ratio (%<Expert), %<Expert j =
#<Expert j

N , where j is the measurement and N is

the number of samples. This metric shows the ratio of samples that are within the expert

errors [10, 11, 22]. The expert errors are shown in Tables 3.5 and 3.6 (Expert error rows).

We contrast our linear models with the competing techniques in a number of settings:

• Against the methods that use ground-truth features as input, such as ground truth silhou-
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ettes [206, 207, 208, 210, 211, 212]. In this case, we evaluate the baseline using the

ground truth volume from the original BODY-fit data, i.e., the volume, height, and weight

are modeled as deterministic variables.

• Against the state-of-the-art methods that use estimated or extracted features, including

both 3D-based [188, 217, 218] and 2D-based [142, 143, 177, 191, 205, 206, 207, 208, 210,

211, 212] methods. The volume, height, and weight are modeled as stochastic variables

(see Section 5.2).

• Against other methods such as the Virtual Caliper [21] that estimates body lengths using

a VR headset.

• More detailed comparison with the representative 2D-based [142] and 3D-based meth-

ods [217]. On top of MAE, we also report the mean relative error (MRE) and the percent-

age of the samples within the expert errors (%<Expert).

Ground Truth Methods. We quantitatively compare the baseline with approaches that

incorporate data from the real world. The ground truth silhouettes were used to publish the

findings of a number of earlier silhouette-based body measurement estimate methods [206, 207,

208, 210, 211, 212]. We enter the volume and the BODY-fit information to the linear model to

assess the baseline. By doing this, in addition to using the actual data, we can estimate the

weight. Table 3.5 presents the results. Notably, a number of approaches [206, 207, 208] operate

inside the bounds of professional mistake. All of these techniques, including the baselines,

operate similarly and achieve body measuring errors that are much less than 1 cm for all body

measurements. For practical anthropometric applications, however, adopting body volume or

silhouettes based on ground truth is unfeasible. Following the earlier efforts, we offer these

assessments for the sake of thoroughness.

Table 3.5: Ground truth silhouettes are used in quantitative comparison to image-based body measure-
ment techniques. We also demonstrate the effectiveness of the linear baseline in this instance utilizing the
deterministic variables volume, height, and weight (unrealistic). Because ANSUR lacks volume mea-
surements, we simply show the performance of the BODY-fit model in our demonstration. Four more
interaction terms are used in the baseline (I=4), as explained in Section 5.2. The results of evaluating
methods indicated with a dagger on various, non-public data are presented in [206] (MAEs, in mm).

Measurement Dataset A B C D E F G H I J K L M N O Mean

†Xi ’07 [212] CAESAR 50.0 59.0 119 36.0 55.0 23.0 56.0 146 182 109 19.0 35.0 33.0 61.0 24.0 67.1

†Chen ’10 [211] CAESAR 23.0 27.0 52.0 18.0 37.0 15.0 24.0 59.0 76.0 53.0 9.0 19.0 16.0 28.0 12.0 31.2

†Boisvert ’13 [210] CAESAR 10.0 11.0 4.0 10.0 22.0 11.0 9.0 17.0 16.0 15.0 6.0 9.0 6.0 14.0 6.0 11.1

Expert error [22] ANSUR 5.0 6.0 15.0 12.0 12.0 - - - 6.0 - 4.0 - - - 8.0 8.5

†Dibra ’17 [208] CAESAR 3.2 1.9 4.2 5.6 7.1 6.9 1.6 2.6 2.2 2.3 4.3 5.1 2.7 1.4 2.1 3.6

†Dibra ’16 [207] CAESAR 2.0 2.0 3.0 2.0 7.0 4.0 2.0 2.0 1.0 3.0 9.0 6.0 3.0 2.0 2.0 3.3

†Smith ’19 [206] CAESAR 5.1 3.0 1.5 4.7 4.8 3.0 2.5 2.7 1.9 1.7 1.5 2.4 2.3 2.1 1.9 2.7

Baseline (I = 4) BODY-fit 7.9 1.2 5.6 10.1 9.2 3.6 0.6 1.4 1.3 5.3 8.0 8.4 2.6 1.4 6.6 4.9

State-of-the-Art Methods. The performance of cutting-edge body measurement estimation

techniques is shown in Table 3.6, in comparison to our baselines fitted on the BODY-fit+W

and ANSUR datasets. The volume, height, and weight are modeled as stochastic variables
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in the baseline fitted on the BODY-fit+W dataset. We scale their meshes to match ground

truth height for comparison with SMPLify, and ExPose since otherwise, their mesh estimations

would be considerably compromised by height estimation errors. Our baseline outperforms

numerous well-known deep learning algorithms, including HMR [205], SMPLify, and ExPose,

in comparison to the competing methods. Note that the baseline obtains MAEs for the neck

circumference (B), shoulder-to-crotch (C), and forearm circumference that are within the expert

errors (I). The baseline evaluated on the ANSUR dataset performs competitively while being

on average less accurate. In Section 3.4.3, a more thorough comparison between BODY-fit+W

and ANSUR is provided.

Table 3.6: Comparative analysis of body measurement and shape estimate methods based on images
(MAEs in mm). Self-reported height and weight are used as stochastic variables in this instance to
demonstrate the effectiveness of the linear baseline (more realistic). The baseline performance is pre-
sented using the ANSUR dataset and the BODY-fit+W dataset. The baseline used I = 2 interaction terms,
as described in Section 5.2. The best results are shown in bold.

Method Dataset A B C D E F G H I J K L M N O Mean

HMR [205] CAESAR 16.7 35.7 33.8 92.8 118 68.7 12.2 29.3 20.6 29.9 44.3 38.5 25.8 14.0 26.5 39.8

ExPose [191] BODY-fit 17.4 13.1 31.4 96.0 116.7 54.8 7.7 33.3 15.3 12.3 29.5 37.3 18.2 8.9 23.0 34.3

SMPLify [142] BODY-fit 15.3 7.7 8.7 57.5 74.7 39.7 5.1 21.0 9.5 5.7 11.4 27.2 12.3 6.5 10.4 21.6

Hasler ’09 [18] CAESAR 7.5 17.0 7.5 13.0 19.0 16.2 - - - 10.4 - - - 6.6 - 12.2

Anthroscan [218] CAESAR 7.4 21.1 7.5 12.4 17.0 7.5 - - - 11.7 - - - 7.6 - 11.5

Tsoli ’14 [188] CAESAR 5.9 15.8 5.5 12.7 18.6 12.4 - - - 10.1 - - - 6.2 - 10.9

Yan ’20 [177] BODY-fit 12.0 13.6 8.9 22.2 16.9 14.2 4.8 10.0 8.0 6.8 7.5 13.8 9.1 5.9 8.2 10.8

Dibra ’16 [207] CAESAR 9.3 10.0 6.6 22.8 24.0 20.0 9.9 12.0 7.9 6.4 8.9 15.5 13.2 7.6 6.0 10.7

Expert Error [22] ANSUR 5.0 6.0 15.0 12.0 12.0 - - - 6.0 - 4.0 - - - 8.0 8.5

Yan ’20 [217] NOMO3D - 3.7 - 13.2 12.4 8.9 4.5 5.5 3.0 13.2 - 7.9 3.0 10.6 12.4 8.2

Smith ’19 [206] CAESAR 6.7 8.0 5.1 12.5 15.8 9.3 9.3 8.1 5.7 5.1 6.8 8.8 7.2 5.0 4.5 7.9

Baseline (I = 2) BODY-fit+W 9.1 4.2 6.6 30.3 39.5 28.0 2.7 10.0 4.9 5.7 9.5 16.0 7.3 3.3 9.0 12.4

Baseline (I = 2) ANSUR 11.9 10.7 17.4 29.1 37.9 21.6 4.4 13.2 9.3 17.6 19.6 17.0 12.8 8.7 11.4 16.2

Other Methods. We also make comparisons to the Virtual Caliper [21], which suggests

measuring bodies with a VR headset. The Virtual Caliper performs a more realistic evaluation

of its performance when compared to ours by comparing measurements taken by their expert

to those taken on real subjects. They estimate height but also utilize self-reported weight as

input. As stated in the supplementary section of Table 3.1, we estimate three additional body

measurements, including arm span, inseam height, and hip width, for fair comparison. Table 3.7

contains the results. The measurements made with the Virtual Caliper fall short of the baseline.

The proposed baseline has the important benefit of not requiring a VR headset.

More Detailed Comparison. We calculate MAE, MRE, and %Expert metrics to compare

the representative 2D- and 3D-based methods to the baseline. The representative 2D-based

method is SMPLify [142], even though it does not achieve the best performance among the

2D-based methods (see Table 3.6). However, the best performing method, by Smith et al. [206],

does not provide the source code to evaluate on BODY-fit+W. As shown in Table 3.8, the 3D-

based method by Yan et al. [217], evaluated on the NOMO3D dataset, achieves the best overall

performance, with the exception of wrist (G) and ankle circumference (N). For all body di-

43



Body Measurement Estimation Baseline

mensions, the baseline matched to ANSUR achieves MREs < 5%, which is appropriate and

practical for anthropometric applications. It’s interesting to note that the ratio of samples with

expert mistakes exceeding 50% is found in the shoulder-to-crotch distance (C) and wrist cir-

cumference measurements (G). In general, most ratios for the majority of body dimensions are

higher than 25%.

Table 3.7: Comparison to the Virtual Caliper [21] (MAEs in mm) w.r.t. four body measurements—arm
length (J) and the three additional measurements (arm span, inseam height, and hip width). We present
the baseline evaluated on the same data as in Table 3.6 (BODY-fit+W). Better results are shown in bold.

Measurement Dataset Arm Span Arm Length Inseam Height Hip Width Mean

Virtual Caliper [21] Virtual Caliper 17.2 7.6 24.6 6.5 14.0

Baseline (I = 2) BODY-fit+W 13.1 5.7 8.8 6.7 8.6

Table 3.8: Detailed comparison between 2D-based methods (SMPLify [142]), 3D-based methods
(Yan et al. [217]), and the two linear baselines (with I = 2 interaction terms), one fitted to the BODY-
fit+W dataset, and one fitted to the ANSUR dataset [22]. Note that to fairly compare with Yan et al.,
the expert error values are extended according to [217]. The best results in each row for MAEs and
%<Experts are shown in bold.

2D-Based 3D-Based Baseline (I = 2) Baseline (I = 2)

SMPLify [142] (BODY-fit+W) Yan et al. [217] (NOMO3D) BODY-fit+W ANSUR

MAE [mm] ↓ MRE (%) ↓ %<Expert ↑ MAE MRE %<Expert MAE MRE %<Expert MAE MRE %<Expert

A 15.3 2.3 25.1 - - - 9.1 1.5 43.1 11.9 2.1 27.9

B 7.7 4.4 50.7 3.7 - 87.6 4.2 1.1 74.9 10.7 2.9 34.9

C 8.7 1.4 85.2 - - - 6.6 0.9 94.2 17.4 3.0 50.1

D 57.5 5.5 13.6 13.2 - 67.6 30.3 1.4 23.8 29.1 2.9 27.3

E 74.7 7.0 9.3 12.4 - 58.7 39.5 1.6 19.8 37.9 4.2 20.6

F 39.7 5.9 12.3 8.9 - 72.4 28.0 1.1 23.4 21.6 2.1 35.8

G 5.1 3.3 59.5 4.5 - 66.5 2.7 0.7 87.0 4.4 2.7 63.2

H 21.0 7.5 17.2 5.5 - 65.8 10.0 1.4 33.8 13.2 4.0 28.5

I 9.5 3.8 40.0 3.0 - 74.2 4.9 0.9 63.9 9.3 3.2 40.1

J 5.7 1.6 - 13.2 - - 5.7 1.2 - 17.6 2.3 -

K 11.4 1.7 21.0 - - - 9.5 1.4 26.8 19.6 2.6 13.9

L 27.2 4.5 14.5 7.9 - 47.5 16.0 1.7 23.4 17.0 2.7 25.1

M 12.3 3.4 27.5 3.0 - 82.5 7.3 1.0 40.7 12.8 3.4 25.5

N 6.5 2.9 41.4 10.6 - 26.7 3.3 0.8 60.5 8.7 8.7 28.0

O 10.4 3.2 49.2 12.4 - - 9.0 1.8 56.2 11.4 2.9 43.1

3.4 Discussion

Strong performance on the public datasets is shown by the baseline that is presented. This sec-

tion includes an analysis of the residual hypotheses, emphasizing p-values, and R2 scores (Sec-

tion 3.4.1); a detailed discussion of using height and weight for body measurement estimation

(Section 3.4.2); a detailed comparison of the BODY-fit+W and ANSUR datasets (Section 3.4.3);

and a discussion of previous image-based mesh regression techniques (Section 3.5).
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3.4.1 Residuals, p-Values, and R2 Scores

In this section, we assess the homoscedasticity, independence, and normality assumptions of

linear regression with reference to residuals, as well as the p-values and R2 scores for the re-

gression models of each body measurement. The residuals for the BODY-fit+W and ANSUR

models on train and test splits are shown in Figure 3.4. The homoscedasticity requirement is

satisfied since the variance of the residuals is typically constant for all values of both models.

Since the values are dispersed fairly randomly, the independence assumption is met. Finally,

the residuals’ means are zero and they are regularly distributed, satisfying the requirement for

normalcy, as shown in the right sides of the two figures.

BODY-fit+W ANSUR

Figure 3.4: An analysis of the residuals for hip circumference (F), for BODY-fit+W and ANSUR,
on train and test splits. The image is adapted from [176].

Tables 3.9 and 3.10 show the p-values, R2 scores, MAEs, and RMSEs for male and female

models, on BODY-fit+W and ANSUR, respectively, with two interaction terms (I = 2). We can

observe that the vast majority of p-values are within the <0.05 threshold. For the simplicity of

the analyses, we keep all the input variables that might lead to increased variance in the predic-

tions and hence larger RMSEs [219]. Ideally, the R2 scores should be as high as possible. Most

of the scores for BODY-fit+W datasets are above or close to 0.8, except for head circumference

(A) and shoulder breadth (O). It is reasonable that the head circumference is more difficult to

estimate based only on height and weight and their derivative terms. Note that based on pBMI of

the shoulder breadth, it would make sense to fit the model without the BMI input term, which

may improve the R2 score. The ANSUR model has somewhat lower R2 scores, particularly for

shoulder-to-crotch (C), wrist circumference (G), and ankle circumference (N). In Table 3.4, it

is noted that the shoulder-to-crotch measure was calculated from three manual measurements,

which may have contributed to the lower score. It is more challenging to estimate wrist and an-

kle circumferences because, intuitively, they only slightly match a person’s height and weight.

The most significant finding of these studies is that, despite the linear models’ potential for
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improvement, their current performance is competitive with that of the most advanced 2D- and

3D-based approaches.

Table 3.9: The linear regression statistics for the BODY-fit+W dataset, for males and females (I = 2).
The p-values correspond to the intercept (b), height (h), weight (w), BMI ( w

h2 ), and wh, respectively. In
addition, we report adjusted R2 scores, MAEs (mm), and RMSEs (mm).

MALE FEMALE

pb ph pw pBMI pwh Adj. R2 MAE RMSE pb ph pw pBMI pwh Adj. R2 MAE RMSE

A 0.004 0.000 0.000 0.000 0.000 0.508 8.90 12.36 0.000 0.000 0.000 0.000 0.000 0.442 8.31 12.67

B 0.000 0.255 0.000 0.033 0.000 0.796 4.00 5.04 0.000 0.000 0.000 0.000 0.000 0.795 4.12 5.22

C 0.351 0.000 0.000 0.000 0.000 0.892 6.95 8.77 0.001 0.000 0.000 0.000 0.000 0.903 6.16 7.73

D 0.402 0.000 0.000 0.067 0.000 0.805 26.68 33.81 0.053 0.000 0.000 0.000 0.000 0.808 31.81 40.29

E 0.094 0.000 0.000 0.000 0.000 0.811 38.55 49.18 0.000 0.000 0.000 0.000 0.000 0.819 38.27 48.95

F 0.904 0.000 0.000 0.001 0.000 0.829 22.25 28.50 0.000 0.000 0.000 0.000 0.000 0.833 30.77 39.45

G 0.264 0.000 0.000 0.001 0.000 0.845 2.74 3.46 0.52 0.000 0.000 0.000 0.000 0.85 2.44 3.14

H 0.718 0.005 0.000 0.055 0.000 0.811 8.46 10.76 0.000 0.000 0.000 0.000 0.000 0.825 10.47 13.40

I 0.019 0.000 0.000 0.354 0.000 0.841 4.44 5.71 0.000 0.000 0.000 0.000 0.000 0.848 4.99 6.44

J 0.489 0.000 0.421 0.281 0.359 0.930 5.81 7.81 0.000 0.000 0.055 0.648 0.055 0.923 6.07 8.19

K 0.600 0.000 0.000 0.128 0.001 0.903 10.10 13.26 0.000 0.000 0.007 0.009 0.111 0.920 8.91 11.51

L 0.580 0.000 0.000 0.021 0.002 0.742 14.01 18.70 0.846 0.000 0.000 0.000 0.000 0.790 8.91 21.57

M 0.011 0.000 0.000 0.113 0.000 0.810 7.10 9.29 0.012 0.000 0.000 0.000 0.000 0.835 6.69 8.70

N 0.257 0.000 0.000 0.000 0.000 0.856 2.76 3.49 0.925 0.000 0.000 0.000 0.000 0.848 3.17 4.11

O 0.000 0.034 0.000 0.980 0.015 0.679 8.54 10.78 0.000 0.000 0.000 0.000 0.000 0.689 8.45 10.81

Table 3.10: The linear regression statistics for the ANSUR dataset, for males and females (I = 2). The p-
values correspond to the intercept (b), height (h), weight (w), BMI ( w

h2 ), and wh, respectively. In addition,
we report adjusted R2 scores, MAEs (mm), and RMSEs (mm).

MALE FEMALE

pb ph pw pBMI pwh Adj. R2 MAE RMSE pb ph pw pBMI pwh Adj. R2 MAE RMSE

A 0.000 0.011 0.116 0.014 0.349 0.266 10.50 13.25 0.000 0.370 0.654 0.002 0.642 0.152 13.19 17.02

B 0.000 0.863 0.000 0.030 0.001 0.671 12.01 15.09 0.002 0.374 0.000 0.902 0.028 0.606 9.45 12.14

C 0.262 0.000 0.185 0.312 0.402 0.484 16.90 21.70 0.635 0.000 0.234 0.779 0.263 0.405 17.90 21.96

D 0.000 0.137 0.000 0.000 0.000 0.866 24.46 31.34 0.049 0.632 0.000 0.400 0.001 0.740 33.96 43.56

E 0.000 0.123 0.000 0.080 0.000 0.848 36.50 45.31 0.344 0.804 0.000 0.440 0.000 0.777 39.37 49.78

F 0.000 0.574 0.000 0.000 0.001 0.887 20.79 26.68 0.000 0.892 0.000 0.000 0.026 0.855 22.34 28.38

G 0.140 0.000 0.000 0.548 0.000 0.547 4.90 6.15 0.001 0.020 0.300 0.015 0.826 0.543 3.89 4.90

H 0.000 0.000 0.122 0.000 0.370 0.712 15.26 19.72 0.019 0.625 0.000 0.249 0.001 0.800 11.09 14.11

I 0.000 0.435 0.014 0.000 0.696 0.662 10.65 13.44 0.000 0.779 0.004 0.005 0.182 0.678 8.03 10.15

J 0.592 0.000 0.054 0.209 0.091 0.649 15.59 19.39 0.323 0.000 0.875 0.862 0.830 0.646 14.29 18.05

K 0.017 0.000 0.265 0.440 0.478 0.714 19.60 25.00 0.121 0.000 0.605 0.341 0.644 0.692 19.63 24.11

L 0.000 0.000 0.076 0.000 0.026 0.859 17.12 22.15 0.000 0.000 0.109 0.000 0.402 0.840 16.71 21.59

M 0.000 0.272 0.000 0.000 0.228 0.711 12.28 15.62 0.000 0.063 0.587 0.000 0.381 0.648 13.35 16.62

N 0.000 0.029 0.004 0.000 0.154 0.533 8.07 10.28 0.000 0.494 0.470 0.000 0.210 0.385 9.31 11.61

O 0.072 0.000 0.000 0.808 0.004 0.420 11.26 14.09 0.054 0.000 0.845 0.016 0.883 0.373 11.49 14.50

3.4.2 Height and Weight for Body Measurement Estimation

The substantial correlation between height and weight and the population’s body measures in

the statistical model is not entirely unexpected. The principal components of the SMPL and

SCAPE statistical body models, respectively, are analyzed in previous publications like [109,

112]. They add several standard deviations separately to each principal component of the mean

shape. The resulting explained variance for the first 10 components is shown in Figure 3.5, and

the variation in shapes are shown in Figure 3.6. It can be observed that the first two principal
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components explain most of the variance in body shapes (Figure 3.5), which in turn define the

extreme shape variations visible in Figure 3.6, particularly in terms of height and weight. For

the third and fourth components, there are only slight differences. Body measurements and

shape are not considerably influenced by the other components. Whether or not these linear

relationships hold for the general population, is currently not easy to verify due to a lack of

public data. Still, the statistical models are expected to be made from a diverse set of human

bodies; therefore, we consider this linear relationship relevant.

Figure 3.5: Explained variance for the first 10 principal components of the dataset. The graph is gen-
erated on CAESAR-fits data [112] by applying PCA to the given vertices. As expected, the first two
components, which most significantly correlate to height and weight, explain most of the variance in the
data. Adapted from [176].

Figure 3.6: Explained variance for the first 10 principal components of the dataset. As expected, the first
two components, which highly correlate to height and weight, explain most of the variance in the data.
The image is inspired by [112], originally made using SCAPE model [34]. We have drawn the above
image using SMPL model [109]. Adapted from [176].

3.4.3 Comparing BODY-Fit and ANSUR Models

The synthetic, statistical population (BODY-fit+W) and the realistic population (ANSUR) are

represented by the two datasets that were used to assess the proposed baseline. For some body

dimensions, such as neck circumference (B), shoulder-to-crotch (C), arm length (J), inside-

leg length (K), and ankle circumference (N), the linear models fitted on the BODY-fit+W and

ANSUR datasets perform differently (see Table 3.6).
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Even if the volume, height, and weight are represented as stochastic variables, the differ-

ences can be explained by the fact that these body measurements are less scattered in the height-

weight space, as shown in Figure 3.7. This may indicate that, despite the addition of Gaussian

noise to the input, some body measurements of the bodies from the synthetic population still

exhibit a linear relationship with height and weight. Another explanation could be that the pop-

ulations of human bodies in the two datasets varies significantly with respect to these measures.

In contrast to the initial group of BODY-fit subjects, which is likely different, ANSUR reflects

the population of military members.

At the very least, genuine weight data from BODY-fit participants is needed to confirm these

claims. Unfortunately, there is no weight information. Finally, take notice that because there is

some inherent error in hand measurements that is difficult to quantify, we simplified the study

of ANSUR by ignoring the variation in self-estimation of height and weight.

Figure 3.7: The plots above display the three most severe situations of body measurements with various
dispersions on the ANSUR (first row) and BODY-fit+W (second row) datasets: shoulder-to-crotch (C),
arm length (J), and ankle circumference (N). The fitted planes correspond to the linear model with two
interaction terms (I = 2). Adapted from [176].

3.5 Final Remarks and Future Work

Assumptions. Note that the normal distributions that are added are uncorrelated with other

variables to describe all stochastic variables, which is not realistic for all subgroups of the pop-

ulation. As an illustration, underweight persons frequently overestimate their weight, whereas
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overweight people frequently report inaccurate weights [220].

Future work. Future techniques should be compared against the linear regression based

on self-reported height and weight; in other words, no body measurement estimation method

should ever do worse that the proposed baseline. The results presented in this section primarily

illustrate the approximative relative performances of the baseline and the competing methods

on the publicly accessible benchmarks currently in use, but for future reference and datasets,

we advise fitting the model to more realistic and diverse data, if applicable. The following stage

is to develop more accurate, publicly available benchmarks based on statistical models in order

to further analyze the correlation between height and weight as well as other anthropometric

parameters.
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Chapter 4

Learning Body Pose Estimation from
Images

Human pose estimation is a vision task of detecting the keypoints that represent a standard set

of human joints. In this chapter, we focus on 3D human pose estimation from multiple views in

a single time frame.

Different
camera
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datasets
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Figure 4.1: We propose a stochastic framework for human pose triangulation from multiple views and
demonstrate its successful generalization across different camera arrangements, their number, and dif-
ferent public datasets. The upper two and the lower left image shows different camera arrangements
and their number on CMU Panoptic Studio dataset [221]. The lower right part shows the Human3.6M’s
4-camera arrangement [35]. The image is adapted from [135].

The typical method for multi-view pose estimation is to: (1) use a pretrained pose detector

to find the correspondent 2D keypoints in each view [139, 140, 222], and then (2) triangu-

late [134, 136, 137, 223, 224, 225]. A crude method applies triangulation from all accessible
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perspectives to 2D detections as-is. Some views contain incorrect detections as a result of

the variety of positions and self-occlusions; these views should be disregarded or their impact

should be mitigated throughout the triangulation process. Applying RANSAC [226] and mark-

ing the keypoints with reprojection errors that are higher than a predetermined threshold as

outliers [136, 227] is one technique to ignore the incorrect detections. End-to-end learning is

not possible with vanilla RANSAC since the gradients cannot be back-propagated because it is

non-differentiable. Modern techniques for 3D posture estimation collect 2D picture features,

such as heatmaps, from several viewpoints and combine them for 3D elevation in an end-to-end

process [134, 137, 223]. These techniques are referred to as learnable triangulation approaches

[134, 137, 223].

The learnable triangulation systems are frequently restricted to a single camera layout and

their number due to a generally fixed set of cameras throughout training. The demonstrated

performance on novel views is noticeably worse than using the original (base) views, despite

several works’ attempts to generalize outside the training data [134, 136, 138, 223, 224, 228,

229].

We propose a stochastic framework for human pose triangulation from multiple views and

demonstrate its successful generalization across different camera arrangements, their number,

and different public datasets [135]. In order to obtain 3D poses from multiple views, we assume

the following:

• the images taken from multiple views are synchronized;

• only a single person is visible in the scene;

• the person is visible from at least two views at each given point in time.

4.1 Related Work

We distinguish two types of related work. First, we focus on triangulation-based 3D pose esti-

mation methods and methods that attempt to generalize between the different camera arrange-

ments and datasets. Second, we relate to keypoint correspondence methods and point out how

our problem differs from the standard correspondence problem.

Triangulation. Most of the single-person image-based approaches either use robust trian-

gulation (RANSAC) or apply learnable triangulation. Several methods [227, 230, 231] based

on robust triangulation use RANSAC on many (more than four) views to apply triangulation

only on inlier detection candidates to produce pseudo ground truth data. He et al. [136] exploit

epipolar constraints to find the keypoint matches between multiple images and then apply robust

triangulation.

The standard approach for learnable triangulation using deep learning models [134, 137,

225, 232, 233] is to first extract 2D pose heatmaps, where each heatmap represents the proba-
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bility of a keypoint location. Cross-view fusion [137] builds upon the pictorial structures model

[234] to combine 2D keypoint features from multiple views to estimate a 3D pose. An algebraic

triangulation [134] estimates the confidence for each keypoint detection and applies weighted

triangulation. Their volumetric approach combines the multi-view features and builds the vol-

umetric grid, obtaining the current state-of-the-art for single-frame 3D pose. Finally, [223]

fuses the features into a unified latent representation that is less memory intensive than the vol-

umetric grids. Similar to us, they also attempt to disentangle from the specific spatial camera

arrangement.

Keypoint correspondence. The standard keypoint-based computer vision approaches, such

as structure-from-motion [50], rely on sparse keypoint detections to establish initial 3D geom-

etry. The core problem is to determine the correspondences between the extracted keypoint

detections across images, under various illumination changes, texture-less surfaces, and repeti-

tive structures [48, 122]. The usual approach is to apply keypoint descriptor such as SIFT [52]

and find inlier correspondences using RANSAC [226]. Even though this paradigm is success-

ful in practice, it is not differentiable and, therefore, cannot be used in an end-to-end learning

fashion.

Several works have proposed soft and differentiable versions of RANSAC (DSAC) [235,

236, 237, 238]. The successful soft RANSAC alternative [238] learns to extract both local

features of each data point, as well as retain the global information of the 3D scene. Similar

to us, they also demonstrate convincing generalization capabilities to unseen 3D scenes. On

the other hand, DSAC and its variants [235, 236, 237] propose a probabilistic learning scheme,

i.e. minimizing the error expectation. We follow their approach but also discover that different

strategies work better for our problem (see Sec. 4.3).

In contrast to the standard keypoint matching approaches, we extract keypoints with already

known human joint correspondences between the views. However, our correspondent keypoints

are noisy, oscillating around the centers of the joints, which potentially leads to erroneous tri-

angulation. Our model demonstrates robustness to erroneous keypoint detections.

4.2 3D Pose Estimation Method

We propose a generalizable triangulation of human posture, which is motivated by stochastic

learning [239] and its applications in computer vision [235, 236, 237]. We start by creating a

pool of randomly chosen hypotheses. A 3D pose known as a hypothesis is one in which the

points are created by triangulating a random subset of views for each joint individually. Each

hypothesis that is created is evaluated by a neural network. The loss function is an expectation

of the triangulation error, i.e. E(hi) = ∑i eisi, where ei is the error of the hypothesis hi and si is

the hypothesis score. In order to learn the distribution of hypotheses, the model minimizes the
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Figure 4.2: An overview of our method. Before stochastic learning, 2D keypoints, y, are extracted.
In each frame, the hypothesis pool, hi ∈ H, is generated, and the poses are passed through the scoring
network, fS. The hypothesis ĥi is selected based on the estimated scores si. Finally, the total loss, ltotal,
consists of three components (lstoch, lentropy, lest), and is calculated with respect to the ground truth, h∗.
The image is adapted from [135].

error expectation. The essential concept is to develop the ability to assess 3D pose hypotheses

without taking into account the spatial camera configuration utilized for triangulation.

We initially provide a broad overview of the stochastic framework before focusing on how it

applies to generalizable pose triangulation. The framework consists of multiple phases, which

are depicted in Fig. 4.2:

1. Pre-training. The 2D poses (keypoints) for each image in the collection are extracted

before stochastic learning. We employ the keypoints that were extracted using a baseline

model [139] that was pretrained on the Human3.6M dataset in all of our tests. Therefore,

the only input for the stochastic model is keypoint detections, or y. Keypoints of the form

JxK, where J is the number of joints and K is the number of views, are found in each

frame.

2. Hypothesis generation, H. Only a portion of randomly generated hypotheses are pro-

duced because it is feasible to produce an incredibly vast number of them. We model the

step of hypothesis creation as a stochastic node, following [239] and [235].

3. Hypothesis scoring, fS. Each generated hypothesis hi ∈ H is scored using a scoring

function, fS(hi|y) = si. A multi-layer perceptron (MLP, neural network) serves as the

scoring mechanism. The MLP is the only learnable part of our model. The estimated

scores si, passed through the Gumbel-Softmax, σGS(si) (Eq. 4.3), represent the estimated

probability distribution of the hypotheses H, θH.

4. Hypothesis selection, ĥi. We experiment with several hypothesis selection strategies.

The one that works the best for us is the weighted average of all hypotheses:

ĥweight = ∑
i

sihi, ∑
i

si = 1, hi ∈ H, (4.1)

where the scores si are used as weights. We also try other strategies, such as the stochastic

selection:
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ĥstoch = hi, with i ∼ θH, (4.2)

where hypothesis hi is selected based on the estimated distribution θH. As shown in Sec.

4.3, the stochastic selection performs worse than the weighted, in contrast to [235].

5. Loss calculation, ltotal . The loss function consists of several components:

(a) Stochastic loss. We calculate our stochastic loss as an expectation of error for all

hypotheses in accordance with [235], lstoch = E(eH) = ∑i e(hi,h∗)si, where ei is the

error of the estimated hypothesis with respect to the ground truth, h∗, and si represent

the probability that the error is minimal.

(b) Entropy loss. Score estimations si tend to quickly converge to zero. To stabilize

the estimation values, we follow [236] and minimize an entropy function, lentropy =

−∑i si log(si).

(c) Estimation loss. We define it as the error of the selected hypothesis with respect to

the ground 3D pose, lest = ei(ĥi,h∗). The estimation loss, in the case of generalizable

pose triangulation, is most similar to the standard 3D pose estimation loss, used by

the competing approaches [134, 137, 223, 224, 225].

Finally, the total loss is a sum of the three components, ltotal = α lstoch +β lentropy + γ lest,

where α , β , and γ are fixed hyperparameters that regulate relative values between the

components.

The predicted scores si must have their values normalized into the [0,1] range in order for

them to accurately represent the probabilities. Applying the softmax function is the conven-

tional method for normalizing the output values, σ(si) =
expsi

∑ j exps j
. To avoid early convergence,

we use the Gumbel-Softmax function [240, 241]:

σGS(si) =
exp((logsi +gi)/τ)

∑
k
j=1 exp((logs j +g j)/τ)

, (4.3)

where τ is a temperature parameter, and gi represent samples drawn from Gumbel(0, 1)

[242] distribution. The range of the distribution is controlled by the temperature τ . Lower-

score hypotheses have less of an impact than higher-score hypotheses at lower temperatures

(τ < 1), and vice versa. Gumbel(0, 1) is used to introduce noise to each sample while keeping

the original distribution or distributions intact. This enables the model to be more adaptable in

terms of the choice of hypothesis.

Following is the description of the stochastic framework used specifically for learning hu-

man pose triangulation.

Pose generation. The 3D human pose hypothesis, hi ∈ H, is produced by the subsequent

technique. For each joint k, a subset of views, vk, is selected at random. The detections from

the selected views are triangulated to produce a 3D joint.
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Pose normalization. The input to the pose scoring network, fS,pose, are 3D pose coordi-

nates, p, normalized in the following way — we select three points: left and right shoulder and

the pelvis (between the hips) calculate the rotation between the normal of the plane given by

the three points, and the normal of the xy-plane, and apply that rotation to all coordinates. In

addition to the 16 body part lengths that are provided by all nearby joints, such as the left lower

arm, left upper arm, left shoulder, etc., we additionally extract the 3D posture coordinates. We

next combine the body part lengths and normalized 3D pose coordinates into a 1D vector and

feed it into the network. The result is a scalar, si, which represents the hypothesis’s score, hi.

Pose estimation error. The pose estimation error, ei(ĥi,h∗), is a mean per-joint precision

error (MPJPE) [35] between the estimated 3D pose, p̂i, and the ground truth, p∗:

ei(ĥi,h∗) = ei(p̂i,p∗) =
1
J

J

∑
k
|| p̂ik − p∗k ||2, (4.4)

where pik is the k-th keypoint of the i-th pose.

4.3 Evaluation and Discussion

The Panoptic Studio [221] and Human3.6M [35] datasets are used to assess the proposed

stochastic framework. We use Human3.6M for the quantitative comparison to state-of-the-

art since the majority of the prior 3D pose estimation methods displayed their results on this

benchmark. A significant number of cameras (31) with helpful data annotations are present in

Panoptic Studio (camera parameters, 3D and 2D poses). To assess the effectiveness of gener-

alization across various camera configurations and their number, we make use of the Panoptic

Studio dataset. Additionally, we assess the generalization between the datasets from Panop-

tic Studio and Human3.6M. We employ Panoptic Studio sequences with a single person in the

scene, as described in [243], because studies are based on a one-person position estimation.

4.3.1 Generalization Performance

The proposed model’s ability to generalize effectively to diverse spatial arrangements, number

of views, and datasets is one of its most significant features. This overcomes a key drawback

of the previous models. We used five various camera configurations to assess the generalization

performance across data sets:

1. Cameras 1,2,3,4,6,7,10 (CMU1),

2. Cameras 12,16,18,19,22,23,30 (CMU2),

3. Cameras 10,12,16,18 (CMU3),

4. Cameras 6,7,10,12,16,18,19,22,23,30 (CMU4), and

5. Cameras 0,1,2,3 (H36M).
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Table 4.1: Five data sets with varying geographical camera placements, number of views, and datasets
were used to demonstrate the generalization performance (MPJPE in mm) (CMU Panoptic Studio and
Human3.6M). The performance on five test sets for the given train set is displayed in each row. The
final column displays the largest difference between the scores for specific test sets. While previous rows
display intra-dataset performance, the final row demonstrates inter-dataset generalization performance.

Train CMU1 CMU2 CMU3 CMU4 H36M Max diff. ↓

Test

CMU1 25.8 CMU1 25.8 CMU1 25.6 CMU1 25.2 CMU1 25.6 2.3%

CMU2 25.4 CMU2 26.0 CMU2 25.5 CMU2 25.6 CMU2 25.9 2.4%

CMU3 24.9 CMU3 26.0 CMU3 25.0 CMU3 25.0 CMU3 25.7 4.4%

CMU4 25.1 CMU4 25.6 CMU4 25.3 CMU4 25.1 CMU4 25.5 2.0%

H36M 33.5 H36M 33.4 H36M 31.0 H36M 32.5 H36M 29.1 15.1%

Table 4.2: The evaluation of generalization performance from CMU Panoptic Studio [221] to Hu-
man3.6M dataset [35], compared to the volumetric approach of Iskakov et al. [134]. The proposed
approach achieves 8.8% better performance on H3.6M compared to [134], when trained on a 4-camera
CMU3 dataset (see Table 4.1).

CMU → H3.6M

Ours [135] Iskakov et al. [134] Improvement

31.0 mm 34.0 mm 8.8%

Following training on each of the five camera configurations, the effectiveness of generaliza-

tion is evaluated using the other four configurations. The spatial camera layout and the number

of the five selected sets vary. Additionally, the transfer learning skills between the datasets are

tested using the fifth camera set (H36M).

Our Generalization Performance. Regardless of the chosen training dataset, Table 4.1

shows consistent performance on each of the five test datasets. The Panoptic Studio dataset

in particular shows performance variation between test sets to be within 5%, demonstrating

tolerance to alternative camera setups and their number (intra-dataset). Additionally successful

is the inter-dataset generalization, which we assess against state-of-the-art approaches [134,

223]. Keep in mind that the generalization that has been presented can be used for inference as

well as training.

Table 4.3: The comparison to RANSAC, algebraic triangulation [134], and VoxelPose [138] on Panoptic
Studio (intra-dataset) [mm]. The numbers show the performance on novel camera views. Our number is
obtained as an average over 12 non-diagonal values of Table 4.1.

Intra-dataset (CMU Panoptic Studio)

RANSAC Algebraic VoxelPose Ours

39.5 33.4 25.5 25.4

Volumetric Triangulation. Table 4.2 compares our proposed method to the state-of-the-art
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Table 4.4: The evaluation of generalization performance compared to Remelli et al. [223] (lower is
better). We measure the performance drop between the base test set and the novel test set for intra-dataset
and inter-dataset configurations. Note that we do not compare on the same datasets, so we only measure
the relative drop in percentages. Still, our approach demonstrates a significantly smaller performance
drop compared to the competing method in all setups. The † presents the canonical fusion, and the ‡
presents the baseline approach in [223].

Intra-dataset

Method (train dataset) Base test Novel test Diff. ↓

Remelli et al. [223] (TC1)† 27.5 mm 38.2 mm 38.9%

Remelli et al. [223] (TC1)‡ 39.3 mm 48.2 mm 22.6%

Ours (CMU1) 24.9 mm 25.8 mm 3.6%

Ours (CMU3) 25.0 mm 25.6 mm 2.4%

Ours (CMU4) 25.0 mm 25.6 mm 2.4%

Ours (CMU2) 25.6 mm 26.0 mm 1.6%

Inter-dataset

Method (train dataset) H36M CMU1 Diff. ↓

Ours (H36M) 29.1 mm 33.5 mm 15.1%

3D pose estimation approach [134]. Iskakov et al. reported an average 34.0 mm error on Hu-

man3.6M test set when they trained on CMU Panoptic Studio (4-camera arrangement). Com-

pared to them, we achieve 31.0 mm on our 4-camera arrangement (CMU3), demonstrating an

improvement in inter-dataset generalization (see Table 4.1 for the comprehensive results).

Remelli et al. Our approach is compared with the approach by Remelli et al. [223] in Table

4.4. They explicitly address the generalization to novel views, just like us. They compare the

test performances on cameras (1, 3, 5, 7) as a basic arrangement (TC1) and testing it on cameras

(2, 4, 6, 8), as a novel arrangement, to show their intra-dataset generalization performance on

Total Capture (TC2). Our model is not evaluated using Total Capture. Instead, to contrast

with Remelli et al., we assess relative score differences and compare the performance of the

CMU camera test sets. For intra-dataset configuration, our model performs consistently with

a variety of camera configurations. Additionally, our inter-dataset performance between CMU

Panoptic Studio and Human3.6M is 15.1%, which is still superior to the top score of Remelli

et al. The inter-dataset experiment is the most challenging because it involves changing the

camera configuration.

RANSAC. On Panoptic Studio, we outperform RANSAC by a significant margin. This can

be explained by the fact that most cameras do not give the CMU dataset a complete image of

a person, resulting in heavy occlusions and missing sections. In contrast to our model, which

learns human pose prior (see Sec. 4.3.4), RANSAC is unable to evaluate the predicted 3D
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Table 4.5: No additional training data setup. Overall comparison to the state-of-the-art on Human3.6M
dataset. The proposed method outperforms most of the state-of-the-art methods. All values are showing
MPJPE scores (mm).

Protocol 1, abs. Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg ↓

Tome et al. [225] 43.3 49.6 42.0 48.8 51.1 64.3 40.3 43.3 66.0 95.2 50.2 52.2 51.1 43.9 45.3 52.8

Kadkh. et al. [224] 39.4 46.9 41.0 42.7 53.6 54.8 41.4 50.0 59.9 78.8 49.8 46.2 51.1 40.5 41.0 49.1

Cross-view [137] 28.9 32.5 26.6 28.1 28.3 29.3 28.0 36.8 41.0 30.5 35.6 30.0 28.3 30.0 30.5 31.2

Remelli et al. [223] 27.3 32.1 25.0 26.5 29.3 35.4 28.8 31.6 36.4 31.7 31.2 29.9 26.9 33.7 30.4 30.2

Epipolar [136] 25.7 27.7 23.7 24.8 26.9 31.4 24.9 26.5 28.8 31.7 28.2 26.4 23.6 28.3 23.5 26.9

Volumetric [134] 18.8 20.0 19.3 18.7 20.2 19.3 18.7 22.3 23.3 29.1 21.2 20.3 19.3 21.6 19.8 20.8

Ours [135] (hweight) 27.5 28.4 29.3 27.5 30.1 28.1 27.9 30.8 32.9 32.5 30.8 29.4 28.5 30.5 30.1 29.1

posture as a whole because it uses only reprojection errors of individual 3D joints as an inlier

selection criterion.

Algebraic Triangulation. Originally, the algebraic triangulation [134] was recommended

as an enhancement to RANSAC, and it estimates the weight for every joint location. The

weight-based model does certainly perform better on Human3.6M and Panoptic Studio than

RANSAC does. However, it has a number of shortcomings. Each view is first processed inde-

pendently, and then each joint is separately triangulated. Because it ignores the entirety of the

pose, the weight-based algebraic model shares the same flaw as RANSAC. On the other hand,

our model successfully picks up on human position previous, allowing it to choose more real-

istic poses and making it more resistant to occlusions and missing body parts. You should be

aware that algebraic triangulation does not test their weighted model on using camera locations

other than the ones in the training set. As a result, Table 4.3 displays the outcome of the model

without weights because this model is reliable when used with various camera systems. The

actual result of the weighted model might differ, but it is hard to estimate by how much.

VoxelPose. In contrast to our 25.42 mm, VoxelPose [138] claims a 25.51mm MPJPE score

on their intra-dataset experiment. We did not pretrain our 2D backbone on the Panoptic Studio

dataset, which would have likely further improved our 2D keypoint estimation and, as a result,

our final 3D pose predictions, even if we attain equivalent performances.

4.3.2 3D Pose Estimation on Base Dataset

Table 4.5 displays the comparison to the state-of-the-art. Notably, the volumetric triangulation

approach [134] is not included since the Table only displays the methods that use Human3.6M

for training and testing, with no additional training data. We acquire a 2.2 mm poorer MPJPE

than the single-frame method with the highest performance, Epipolar Transformers [136], but

we outperform the majority of other recent techniques.

Other than the evaluation of our best result (ĥweight), we also compare between different

hypotheses:

• Weighted average hypothesis, ĥweight,
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Table 4.6: Overall quantitative comparison between the hypotheses. The values are showing MPJPE
scores in mm (the lower is better).

Hypothesis Human3.6M ↓ Panoptic Studio ↓

ĥweight 29.1 24.9

ĥavg 31.2 +2.1 25.9 +1.0

ĥmost 41.3 +12.2 25.0 +0.1

ĥleast 74.5 +45.4 29.8 +3.9

ĥstoch 41.3 +12.2 26.5 +1.6

ĥrandom 45.0 +15.9 26.1 +1.2

hbest 22.3 -6.8 24.4 -0.5

hworst 98.9 +69.8 31.0 +6.1

RANSAC 27.4 -1.7 39.5 +14.6

• Average hypothesis, ĥavg, obtained as an average of all hypotheses,

• Most and least probable hypotheses, ĥmost and ĥleast, the hypotheses with maximal and

minimal estimated score, smax and smin,

• Stochastic hypothesis, ĥstoch, selected randomly, based on the estimated distribution θH,

• Random hypothesis, ĥrandom, selected randomly from an uniform distribution,

• Best and worst hypotheses*, hbest and hworst, with the lowest and the highest errors, emin

and emax.

Additionally, we also compare ourselves with RANSAC as reported in [134] (see Subsec.

3.3.2).

Figure 4.3: Qualitative comparison between four 3D pose hypotheses compared to ground truth (gt), on
Human3.6M. The image is adapted from [135].

*Note that the best and the worst hypotheses are not available in inference (missing ^ sign), because they are
determined using ground truth.
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As published in [134], Table 4.6 compares the MPJPE scores of all previously described

pose hypotheses on the two datasets to the RANSAC result. Although the RANSAC strategy

outperforms our weighted average hypothesis, ĥweight, on Human3.6M, we demonstrate a con-

siderable improvement on Panoptic Studio. Also keep in mind that RANSAC can compete with

the majority of cutting-edge methods on Human3.6M, previously listed in Table 4.5.

Regarding other results, the average hypothesis, ĥavg performs better than the stochastic,

ĥstoch. The stochastic performs even worse than the random hypothesis on Panoptic Studio.

The most probable hypothesis, ĥmost, outperforms the average on Panoptic Studio. Note that

the difference between best and worst hypothesis (hbest, hworst) is significantly different on the

two datasets. This suggests that the hypotheses generated on Panoptic Studio are more similar

to each other and the distribution is less broad. The difference between the most and the least

probable hypotheses (ĥmost, ĥleast) is reasonable on both datasets, which confirms that our model

learned to differentiate between the poses.

4.3.3 Qualitative Results

Fig. 4.3 shows the qualitative performance comparison between several hypotheses. The least

probable hypothesis, hleast, does not have visually plausible pose reconstruction, while the ran-

dom hypothesis, ĥrandom, has some obvious errors in the upper body. The most probable hy-

pothesis, ĥmost has minor reconstruction errors on the right arm and shoulder. The weighted

hypothesis, ĥweight, is visually comparable to ground truth.

4.3.4 Human Pose Prior

In this subsection, we give an additional explanation of our pose estimation results in the light

of human pose prior, i.e., the information about the human body based on which (part of) the

decisions about the 3D pose hypothesis selection are made.

We demonstrate the successful pose prior learning of the pose scoring network, fS,pose.

There are previous works that attempt to learn human pose prior [234, 244, 245], but they do

not quantitatively evaluate their methods. The idea of learning pose prior is to differentiate

between the 3D poses that are more plausible and the poses that are less plausible with respect

to several human body properties. The properties that can be extracted from the 3D pose are

based on the body part lengths and between-joint angles. In this work, we focus on body part

lengths, i.e. left-right body symmetry.

The body symmetry is measured for six different body left-right part pairs: upper arms,

lower arms, shoulders, hips, upper legs, and lower legs. For each pair, l, we calculate the ratio,

ril between the left and right part, in each time frame, i. The final pose prior metric is a variance

of the ratios over time:
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S2 =
∑i(ril − rl)

2

T −1
, (4.5)

where rl is the mean ratio for the pair l, and T is the number of frames. The reason for

using ratios instead of the differences between the body parts is that some people are naturally

asymmetric, so the idea is only to measure the consistency over time.
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Figure 4.4: Evaluation of the human pose prior metric for different hypotheses, and six body part pairs
(lower is better). The image is adapted from [135].

Fig. 4.4 shows the pose prior metrics for the subject 9 of the Human3.6M dataset, for

different hypotheses. As expected, the values are generally the lowest for our best performing

hypothesis, ĥweight, followed by the average hypothesis, ĥavg. The difference between the most

probable and the least probable hypothesis (ĥmost, ĥleast) suggests that we successfully learned

body pose prior, i.e. differentiate between the plausible poses with respect to the body symmetry

consistency over time. Note that the best hypothesis, hbest, is comparable to ĥweight.

4.4 Final Remarks and Future Work

The proposed generalizable approach is a promising novel direction for 3D human pose estima-

tion, as well as other related computer vision problems, such as the camera pose estimation. The

results show convincing generalization capabilities between camera arrangements and datasets,

outperforming previous methods. Using the proposed generalizable triangulation approach,
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it is now possible to transfer the performance of the base dataset to any novel multi-camera

dataset, in inference. The model requires relatively little training data, which makes training

faster and more convenient for smaller datasets. The overall performance is competitive with

respect to human pose triangulation when evaluated on the same camera arrangement as the

one in the training dataset. The next reasonable step is to exploit image features in an end-to-

end learning fashion, which should further improve the performance and possibly outperform

the state-of-the-art even on the base dataset. The current model supports only a single-person

pose triangulation. To extend to multi-person, we need to solve the keypoint correspondence

problem between the people.
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Chapter 5

Learning Body Shape Estimation from
Images

Capturing detailed human appearance and mesh regression are very active research topics. To

solve for accurate human shape models, given in-the-wild visual observations, not only shape

and pose must be taken into account, but also clothing. Estimating accurate human pose, shape,

and clothing from 2D images is challenging due to (self-) occlusions, variety of body poses,

shapes, and garments, all on top of the classical challenges such as 2D-to-3D scale ambiguity.

Moreover, de-coupling human body from the garment geometry is particularly difficult and, in

this dissertation, we focus on jointly estimating the parameters of pose, shape, and clothing

style.

Remarkable progress has been made for estimating unclothed humans from images [128,

131, 186, 191, 201, 246, 247], recovering accurate parameters for body shape and pose in chal-

lenging examples. Also, several methods have been proposed for the reconstruction of humans

in clothing [248, 249, 250, 251]. Although highly detailed on full-body images, these methods

are still not robust on the examples with significant occlusions. Only recently, ClothWild has

been proposed [252] for estimation of pose, shape, and clothing in challenging examples. They

estimate body and pose using fixed, pretrained model [201], while garment displacements are

calculated as an offset from the body based on DensePose semantic segmentation predictions

[253]. We go a step further by learning to estimate pose, shape, and clothing style parameters

from scratch, thus jointly taking all the parameters into account during training.

To learn a fully-parametric model, accurate training data for pose, shape, and clothes is

required. Obtaining accurate body shapes is difficult as it requires 3D scanning of each subject,

fitting a parametric human body model mesh on top of the scan, and then retargeting the mesh to

each image frame of the corresponding subject. An example of such a dataset is 3DPW [254],

which provides ground truth shapes for 18 different subjects throughout 62 video sequences.

An alternative to obtaining accurate ground truth is using synthetic datasets [114, 125, 126,
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Figure 5.1: (Left). The ClothAGORA dataset consists of controllable characters with garment geometry
in realistic 3D scenes. (Right). The proposed method recovers pose, shape, and clothing style parameters,
which fully define the mesh geometry. Note that the right part is manually created and not estimated using
our method.

127, 255, 256, 257], whose main challenge is to achieve realism in order to close or mitigate

the synthetic-to-real gap in inference. SURREAL [125] renders textured SMPL meshes on

random 2D background. Even though the textures mimic the clothes, the geometry of the

mesh still corresponds to unclothed body. Recently, AGORA has been proposed [127], placing

highly realistic commercial human scans into 3D scenes. AGORA contains diverse clothing

and identities and has perfectly accurate ground truth. The main disadvantage is that the 3D

scans are not controllable, i.e., their pose, shape, and clothes are fixed.

We propose two synthetic datasets populated by controllable characters - ClothSURREAL

and ClothAGORA. Both image datasets consist of 2D renders of parametric clothed meshes.

The garment displacements for the clothed meshes are estimated using TailorNet [115]. Cloth-

SURREAL images consist of images of meshes [109] with clothing geometry displacements,

rendered in front of random 2D backgrounds. ClothAGORA goes beyond by placing con-

trollable clothed characters in 3D scenes (see Fig. 5.1, left, as an example). We propose

ClothAGORA as a dataset, as well as the toolbox for creating a possibly infinite number of

parametric characters. We also publish the tools to generate novel controllable characters that

can then be used for training and evaluation of image-based estimation models. The two pro-

posed datasets are used to train our model and demonstrate a state-of-the-art performance on a

public benchmark.

Our model trains on synthetic data and generalizes to in-the-wild examples. This is achieved

by learning from derived image features only - edges [170] and 2D keypoints [139, 258, 259],

which has proven useful to mitigate synthetic-to-real gap in previous works [128, 131]. The

features are passed through ResNet50 and the output are pose, shape, and clothing style param-

eters. The model is supervised using the parameters instead of directly using mesh geometry,

which simplifies our architecture and makes our model the fastest among the state-of-the-art

(inference time). Using the estimated parameters, the corresponding clothed 3D meshes can
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then be produced, using SMPL for the body and TailorNet for clothing displacements.

Our model achieves the best performance for estimating garment displacements from the

body, i.e., compared to the recent previous work [252], although they do not jointly estimate

all the parameters of pose, shape, and clothing style. Our method is the fastest in inference

compared to other methods that estimate clothed humans (also the ones that estimate a single

mesh for body and clothes), which we demonstrate on 3DPW test set and in-the-wild examples.

In summary:

1. We propose Garmentor, the first model to jointly estimate pose, shape, and garment style

parameters from in-the-wild images, trained on image features - the model achieves the

state-of-the-art performance for estimating clothed people;

2. We create two synthetic datasets containing controllable clothed characters - ClothSUR-

REAL and ClothAGORA, along with providing the tools for extending and generating

novel data.

5.1 Related Work

Recently, several clothed human estimation approaches are proposed. Most of the proposed

approaches use SMPL, either as a final result or as a part of the estimation pipeline. We dis-

tinguish between the methods that: estimate pose and shape parameters of the SMPL model,

recover clothed humans as a single mesh, and recover clothed humans as multiple meshes.

Finally, we overview existing synthetic human datasets.

Estimation of minimally-clothed meshes. The most recent human pose and shape esti-

mation methods [191, 192, 247, 260, 261] are able to estimate body meshes in-the-wild, under

diverse and loose clothing in-the-wild, along with expressive hands and faces. Even though

these results are remarkable and particularly visually plausible, accurate body shape estimation

has been tackled in a separate group of methods done by Sengupta et al. [128, 129, 131]. The

success of these methods is in part achieved by training on diverse and even extreme set of input

poses, shapes, global orientations, and occlusions. Inspired by their strategies, we extend their

architecture to support clothing style estimation. Other than the parametric approaches, there

are also many successful approaches that estimate 3D vertices directly [107, 185, 186, 246],

some of which we compare to in Section 5.4.

Recovering clothed characters as single meshes. To add clothes on top of the body, many

methods model clothing geometry as 3D offsets from corresponding body vertices [262, 263,

264, 265, 266, 267, 268]. They can be easily animated, but cannot model more complex gar-

ments such as skirts. The implicit methods such as PiFU [249, 250] have, in general, more

details in their reconstructions. However, even the most recent methods [248, 251, 269] do not

generalize well in-the-wild and usually require full-body images. In Section 5.4, we quantita-
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tively compare with the most successful method in this group, ICON [248], and qualitatively

also with PiFU-HD [250].

Using parametric clothing models for estimation. Only one previous approach, Cloth-

Wild, [252] uses the parametric clothing model [270] to estimate clothed people from images.

The advantage of using the parametric clothing model is that it is specified only by the given,

low-dimensional parameters. ClothWild estimates the pose and shape of the underlying body

using the pretrained pose-shape model [201] and estimates human sex, visible clothing types,

and garment displacements. The key to their success is in the fact that the displacements are

determined by DensePose [253] semantic segmentation, which aligns the garment displacement

vertices in 3D to the segmentation in 2D. Therefore, they do not directly estimate the style pa-

rameters. We propose a more straightforward computational strategy, where the estimation of

all the parameters of the clothing model are done jointly and learned from scratch, making the

strategy simpler, faster, and more successful on the test.

Synthetic human datasets. SURREAL is a synthetic human dataset that consists of ren-

dered SMPL meshes in front of an images from LSUN dataset [174] that are used as random 2D

backgrounds. The texture is applied on top of the meshes to mimic the clothes, but the geometry

is unchanged. 3DPeople [160] addresses the problem of clothing geometry by creating a large

synthetic dataset of dressed people in motion, using a similar 2D background strategy. Their

models, however, are not parametric and, therefore, cannot be easily controllable. AGORA is

a recent attempt to create highly realistic 3D synthetic human dataset. It contains several thou-

sand different identities and poses, and it contains particularly diverse clothing. AGORA then

fits SMPL-X meshes to each of these 3D scans and thus obtains the corresponding pose and

shape parameter ground truth, which is useful both for training and evaluation. The 3D scans

of people used by AGORA are commercially available through 3DPeople* [271], AXYZ [272],

HumanAlloy [273], and RenderPeople [274] platforms. Our aim is to propose the first step to-

wards tackling this issue by offering a dataset of free parametric clothed people populating the

same realistic 3D scenes as the people from AGORA, while not being restricted by particular

pose, shape, and clothes parameters. Compared to SURREAL, the proposed ClothSURREAL

dataset also contains cloth geometry on top of the SMPL bodies.

5.2 Shape and Clothes Estimation Method

We propose a novel computational strategy for learning to estimate the parameters of human

pose, shape, and clothing style from images (θ ,β ,γ). The main novelty is adding the clothing

style parameters, γest , as output, as well as using the style parameters, γgt , to generate input data.

By using the parameters both to generate input and to supervise output estimations, we have a

*Note that 3DPeople in this context is not the same as 3DPeople approach and dataset [160]
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Figure 5.2: An overview of Garmentor. For training, we randomly sample pose, shape, and style pa-
rameters, (θgt,βgt,γgt), and pass the parameters to the TailorNet model to generate the clothing mesh.
The mesh is rendered and the image is augmented. Based on the image, the edge map and keypoint
heatmaps are created and used as an input to ResNet50. The network estimates the pose, shape, and
style parameters, (θest,βest,γest). The ground truth set of parameters is used for supervision (see the loss
function). In inference, an in-the-wild image is taken as input, and off-the-shelft feature extractors are
applied to obtain input features for the network. Again, the parameters are estimated as output and the
corresponding clothed mesh can be created for visual evidence.

complete control over the supervision of the estimation model, while being able to generate

various pose, shape, and clothing style combinations.

The parameters (θgt ,βgt ,γgt) are given to TailorNet to estimate garment displacements,

D(θgt ,βgt ,γgt), while the underlying body, B(θgt ,βgt), is calculated using SMPL. The input

to ResNet50 [275] are derived image features - 2D heatmaps and an edge map extracted us-

ing a canny edge detector [170]. The network produces pose, shape, and style estimates,

(θest ,βest ,γest), which are then supervised using known ground truth, (θgt ,βgt ,γgt).

In inference, an off-the-shelf 2D keypoint detector [139, 258, 259] and the same canny edge

detector is used to obtain input features. The network outputs the parameters, (θest ,βest ,γest)

which are then given to SMPL and TailorNet to produce the corresponding body, B(θest ,βest),

and garment displacements, D(θest ,βest ,γest), which define the final clothed mesh, M(θest ,βest).

The high-level architecture consists of the following components (see Fig. 5.2 for visual ref-

erence): input features, deep learning network, loss components, and a backbone parametric

model.

Input Features. The input features consist of 17 keypoint maps (COCO mapping), where

each keypoint map is a synthetic heatmap that represents 2D normal distribution with a center

in 2D joint location and a standard deviation as a dispersion around the center. The keypoints

outside the image or occluded by the body are removed. In addition, an edge map is used instead

of RGB image directly to mitigate the gap between the synthetic and real data. The example of
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input is shown in the upper left part of Fig. 5.2.

Deep Learning Network. The network is ResNet50 [275]. It is trained from scratch using

described input features. The output from the network consists of pose, shape, and clothing

style parameters, (θest ,βest ,γest). It is important to note that the style parameters, γ , have one

additional dimension compared to vectors of pose and shape, (θ ,β ), because γ is a matrix

consisting of style parameters for each of the four different garment types: T-shirt, shirt, pants,

and short pants. Only two garment types are used for each example, such as T-shirt and pants,

and the remaining values are ignored. Otherwise, the garment types that are not present in the

current sample, such as a long-sleeve shirt or short pants, would unfairly increase the loss.

Loss Components. Our loss function is the following:

floss = Lθ +Lβ +Lγ +LJ2D +LJ3D +LR, (5.1)

where the loss components represents pose parameters’, shape parameters’, clothing style pa-

rameters’, 2D joints’, 3D joints’, and global orientation’s losses, respectively. Note that we

omit the hyperparameter weights next to each of the loss components, which are specified at

the end of the Chapter (Table 5.7). The LJ2D , LJ3D , and LR loss components are calculated as

mean squared errors (MSEs). The Lθ , Lβ , and Lγ are calculated using negative log-likelihood.

In particular, pose loss uses the matrix-Fisher distribution [276] over relative 3D joints rotations

as described in [128]. The clothing style loss, Lγ , produces four loss sub-components for the

corresponding garment types (T-shirt, shirt, short pants, and pants), but masks the ones that are

not used in the current sample to avoid backpropagation through these branches.

Parametric Clothing Model. We use TailorNet as our parametric clothing model. Garment

displacement vertices D are modeled as a function of the underlying SMPL body vertices, B.

For a given pose, shape, and style parameters, (θ ,β ,γ), the garment vertices deform using the

following function:

T G(θ ,β ,γ) = I(B(θ ,β )+D(θ ,β ,γc)), (5.2)

followed by skinning. The indicator matrix, I, is 1 for the corresponding body and garment

vertices, (Bi,D j). The displacement function, D(θ ,β ,γc), is learned for each separate garment

type. The problem with this kind of modeling is that there are C models for each of C garment

classes. We mitigate this problem by training all of the garment classes at once, as described in

this section.
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Figure 5.3: A few augmented samples of the augmented ClothSURREAL training data. Based on a
small probability, significant parts of the images are removed.

5.3 Datasets

One of the main advantages of synthetic compared to real data is that accurate ground truth

information is available and infinitely large datasets can be generated. The crucially useful

information for learning accurate pose, shape, and clothes estimation, that are difficult to obtain

on large real datasets, are the ground truth parameters of the characters shown in images. Even

though there are synthetic datasets like SURREAL, 3DPeople, and AGORA, which contain

useful information such as depth, normals, keypoints, silhouettes, and even pose and shape

parameters, we propose novel datasets that also contain clothing information (see Sec. 5.3

for the description of ClothSURREAL used for training). Additionally, the characters in our

datasets are parameterized which allows to generate infinite combinations of poses, shapes, and

styles. We highlight this advantage in Figure 5.4.

5.3.1 ClothSURREAL Dataset

The proposed ClothSURREAL training dataset consists of 120000 male characters and 120000

female characters, having 30000 samples for each garment type (T-shirt, shirt, pants, and short

pants). The poses, θ , are randomly sampled from AMASS dataset†. The shape and style pa-

rameters, (β ,γ) are randomly sampled from normal distributions, N (0,1.25) and N (0,0.75).

Using the specified parameters, TailorNet meshes are produced and rendered on an black back-

ground. Then, a random 2D background image is added around the rendered clothed body.

Note that the background does not add additional semantic meaning to the image, but is instead

used as a simple augmentation strategy to avoid overfitting on empty backgrounds.

ClothSURREAL images are additionally augmented. First, the body is randomly moved

along (x,y) axes of the image, to mimic random camera movements. Then, we remove a signif-

icant part of the body (either upper, lower, right, or left) with a probability of 0.1, following the

strategy in [128]. Finally, random background from LSUN dataset is added, following original

†Note that the global orientation of the body is contained within the first three out of 72 pose parameters,
Rglob = θ(0,1,2), given in angle-axis representation.

69



Learning Body Shape Estimation from Images

Figure 5.4: A highlight of our ClothAGORA dataset. Our meshes are fully controllable in terms of pose,
shape, and clothing style.

SURREAL. It has been shown that these augmentation strategies improve the robustness on

challenging in-the-wild examples for the estimation of undressed people [128, 129, 131]. The

examples of our augmented training examples are shown in Fig. 5.3.

5.3.2 ClothAGORA Dataset

The ClothAGORA dataset consists of five 3D environments, one indoor and four outdoor, spec-

ified on AGORA’s downloads website [277]. The environments are commercially available‡ for

use in Unreal Engine [175]. For each of the five environments, we generate 30 different scenes

of 8 clothed characters. The pose, shape, and style of the characters are randomly sampled,

resulting in 240 different characters for each of the 5 environments, which is 1200 characters

in total, i.e., 150 scenes in total. To populate the scenes (assign global translations to each

character), we use AGORA’s parameters on each of the subjects’ locations.

For each of the 150 scenes, we render an image from 10 different viewpoints, which makes

1500 high-quality renders. The renders can be used for the evaluation of our model by cropping

each individual character as shown in Fig. 5.6 and resizing the image to (256, 256). The total

number of cropped images in our dataset in 12000. For convenience, we provide a summary of

the dataset in Table 5.1.

The textures for the clothed meshes are obtained from MGN dataset [278]. The original

textures are made for SMPL mesh topology. In order to apply the textures to any given garment

type, the area on the body where the skin is revealed, due to short sleeves or pants, is painted

‡One of the scenes is free (ArchViz Interior).
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Table 5.1: A summary of our ClothAGORA dataset.

# Number Description

5 3D environments (1 indoor, 4 outdoor)

30 3D scenes with specific characters

10 Camera viewpoints for particular scene

8 Different characters for particular scene

12000 Total number of single-image crops

Figure 5.5: The examples of three indoor and outdoor scenes from our ClothAGORA dataset from four
different viewpoints.

in skin color. We determine the skin color by sampling pixels from the texture maps in the area

around the nose, where the skin colors is usually persistent.

Along with the images, we publish the corresponding parameters and metadata, and the

tools and instructions on how to extend the dataset. We believe that releasing such a tool is

useful for the community and opens possibilities towards accurate and controllable characters
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Figure 5.6: An example of a single input sample on ClothAGORA (non-textured). From a single render,
we crop each person into images of size (256, 256); resize is applied if required. The person is specified
using the set of parameters: pose θ , shape β , clothing styles γ , global orientation R, and global translation
t. Using the crop, we prepare edges and keypoint heatmaps as derived image features.

in realistic 3D environments.

More examples of the ClothAGORA dataset are shown in Fig. 5.5.

5.3.3 Training and Inference

The model is first trained for 60 epochs on ClothSURREAL images and supervised using the

corresponding pose, shape, and clothing style parameters, (θgt ,βgt ,γgt). Additionally, the model

also uses 2D keypoint supervision, which has proven useful for improving pose estimation, es-

pecially in the first few epochs where the predictions tend to be converge to simple solutions

and remain in the local optimum. After 60 epochs, the model is fine-tuned on ClothAGORA.

The bounding boxes, such as the ones shown in Fig. 5.6, are used as input, i.e., the edges

and keypoints are first extracted and then provided directly as input to the ResNet model. For

supervision, the ground truth data also consist of pose, shape, and clothing style parameters,

(θgt ,βgt ,γgt). We also experimented with using RGB images directly along with the cloth seg-

mentation maps, but the results did not improve compared to using edges and keypoints only.

In inference, we take any in-the-wild image as input. Using off-the-shelf 2D keypoint de-

tector and canny edge detector, we produce image features for ResNet50. The pose, shape,
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Table 5.2: The comparison to the recent state-of-the-art method for the estimation of clothed people
from images - Cloth-Wild on 3DPW test set [mm].

Method CD ↓ CD-T ↓

Cloth-Wild [252] 76.6 34.8

Ours 98.9 16.2

and clothing style parameters, (θest ,βest ,γest), are estimated. The parameters are passed to the

TailorNet model, which produces clothed mesh for visual evidence. More specifically, three

individual components are produced: the unclothed body mesh, B(θest ,βest), upper garment

displacements, Dup(θ ,β ,γup), and lower garment displacements, Dlow(θ ,β ,γlow). In some

cases, the clothing displacements intersect the body mesh, so we apply the intersection removal

algorithm given by TailorNet. The intersection removal is applied three times: for body-lower

garment, body-upper garment, and then combined lower garment and body with upper garment.

The final mesh is a merge of the three processed components.

5.4 Experiments

5.4.1 Quantitative Evaluation

Evaluation metrics. For the underlying body shape evaluation, we use the per-vertex error on

the Procrustes-aligned predictions (PVE-PA) and Procrustes-aligned per-vertex error in T-pose

(PVE-T-PA). The per-vertex error is the average Euclidean distance between the corresponding

vertices of the SMPL meshes. For the clothed meshes (upper and lower garment mesh and the

body mesh), we do not know the correspondences between the predictions and ground truth.

Therefore, we have to use a different distance measure. Following previous works [248, 252],

we calculate the Chamfer distance measure (CD). In particular, we calculate Chamfer distance

(CD) for posed predictions, and Chamfer in T-pose (CD-T) for unposed predictions. For 3D

joint estimations, we use the standard mean per-joint precision error (MPJPE).

Estimation of clothed people. We use 3DPW [254] test set as an evaluation dataset. By

following previous works [128, 131, 252], we sample each 25th frame for evaluation. We

compare against Cloth-Wild, a method that relies on the parametric clothing model similar to

us [252], and has previously demonstrated state-of-the-art performance for clothing geometry

estimation. Table 5.2 shows that they are very competitive in terms of Chamfer distance (CD)

on posed subjects, but are significantly outperformed when the subjects are in T-pose (CD-T).

Shape and pose estimation (undressed). The evaluation of shape estimation of the un-

dressed bodies (by using the metrics on T-pose meshes) compared to ClothWild [252] and

Sengupta et al. [128] is shown in Table 5.3. Our model performs comparable to Sengupta et al.,
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Table 5.3: The comparison between the methods for the estimation of unclothed people from images on
3DPW test set [254] [mm].

Method PVE-T-PA ↓ Chamfer-T-PA ↓

ClothWild [252] 21.5 24.8

HierProb3D [128] 10.7 14.9

Ours 12.1 16.2

Table 5.4: Body measurement estimation evaluation on 3DPW test set [mm].

A B C D E F G H I J K L M N O Mean

Ours 9.7 14.8 17.4 44.2 69.4 69.9 4.5 16.1 8.4 21.6 56.6 37.8 15.1 8.7 13.9 27.2

a strong competitor in the area of pose and shape estimation in-the-wild, while outperforming

ClothWild. This results shows that our method is able to accurately estimate the underlying

body shape of clothed people on a public benchmark, while also estimating the clothes ge-

ometry. Our estimations of body pose and global orientation still need additional training and

augmentation in order to achieve more competitive performance, so we omit the comparisons

for posed mesh estimates.

Body measurement estimation. Table 5.4 shows body measurement estimation results of

Garmentor method on 3DPW test set. The body measurements are extracted from the estimated

and ground truth SMPL meshes as described in Section 3.2.1. The error metric is mean absolute

error (MAE) between the predicted and ground-truth measures.

Execution time.§ In total, our method runs close to two seconds in inference on a consumer

hardware, which is the fastest execution time compared to the most recent state-of-the-art meth-

ods, as shown in Table 5.5. Our execution time consists of several components, as highlighted

in Table 5.6. The longest time it takes to resolve interpenetrations between the meshes. Sec-

ondly, edge detection takes almost half a second. Note that several components, such as Tailor-

§Note that our measured execution time for the previous method [252] is lower than the one reported in their
paper (6.5s instead of 10.2s).

Table 5.5: The comparison between the methods that estimate a single clothed mesh and our method
w.r.t. Chamfer distance between the predictions and ground truth on AGORA test set [127].

Method Running time ↓

SMPLicit fit [270] 105.4s

ICON [248] 87.9s

PiFU-HD [250] 20.4s

Cloth-Wild [252] 6.5s

Ours 1.7s
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Figure 5.7: Qualitative comparison with ClothWild method in T-pose on 3DPW image examples.

Net, bounding box and keypoint detection run in real-time, while SMPL mesh generation and

ResNet50 run close to real-time (∼25FPS).

5.4.2 Qualitative evaluation

In Fig. 4.3, we compare with ClothWild. Most notably, our garment meshes generally fit tighter

to the body, i.e., ClothWild’s meshes tend to be somewhat bulky. This is a consequence of using

TailorNet [115] compared to SMPLicit [270] (used by ClothWild) as a clothing parametric

model. Having tighter or bulkier clothes is not an advantage of none of the two methods in

general. However, characteristic disadvantages of their meshes is that the pants are usually

significantly shorter than average long pants, their meshes generic boots, and their shirts usually

have larger displacements on the lower back part. All these details result in our final estimates

being significantly more successful w.r.t. Chamfer-T distance, as shown by the quantitative

evaluation. An advantage of ClothWild is that they do not differentiate between T-shirts and

shirts in terms of garment classes (types); instead, their sleeve length is determined by the

semantic segmentation predictions [253].

5.5 Discussion

5.5.1 Implementation Details

Network Architecture. ResNet18 does not have sufficient capacity to train the estimation

of pose, shape, and clothing style parameters together. We notice that, after we include the

clothing style parameters estimation, while using ResNet18, the PVE-PA error jumps four times
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Table 5.6: The execution times of the particular components of our inference pipeline.

Component Running time

Resolving interpenetrations 1.01s

Edge detection 0.49s

ResNet50 0.08s

SMPL mesh generation 0.07s

Keypoint detection 0.03s

Bounding box detection 0.02s

TailorNet (x2) 0.01s

Total time 1.71s

on validation set, comparing the first epochs between the models trained for pose-shape only

and the ones trained for style also. However, when comparing the models trained for pose and

shape estimation only, the performance on the test set is not significantly better using ResNet50

(up to 10%). In overall, we recommend ResNet50 as the backbone architecture of choice for

the proposed task.

Calculating Chamfer distance. Note that our calculated mean Chamfer distance measure

(CD) for the Cloth-Wild method is higher than the one reported in their paper [252]. We use the

publicly available implementation of Chamfer distance [279], applied on the Procrustes-aligned

meshes, without additional processing.

Training time. A single epoch (training and validation) using ResNet50 takes around 20

minutes on our NVidia Titan Xp. From our experience, it takes 100 or more epochs (>33 hours)

to train the model that performs as good as possible on the test set. Our plan for future work is

to continue training our final, representative model, which was trained for only 95 epochs.

Software packages and hyperparameters. Our learning model is written in PyTorch [173]

and we use other Python libraries to generate ClothSURREAL, on Linux. For ClothAGORA,

we additionally use Blender [280] and Unreal Engine [175], on Windows, to semi-automate the

rendering and scene population. Our training requires 9GB of GPU memory (Titan Xp) for

the batch size of 128 in case of ResNet18, i.e., around 6 GB for the batch size of 32 in case of

ResNet50. We use around 6 GB of RAM on average for the training. A list of hyperparameters

and additional implementation details are specified in the Appendix.

Texture application algorithm. The textures are obtained from the MGN dataset. In the

original MGN work, the textures are applied directly to the SMPL body meshes [109]. To apply

the same textures to our clothed SMPL models, we use given UV maps and textures from the

dataset. We directly apply the given texture maps to our garments using the UV maps, since

the topology of our garments correspond to the topology of the MGN garments (SMPL body
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displacements). To texture the body, however, we create an additional texture map, that replaces

all the garments from the original texture map with an approximation of the skin color. We do

so, to mitigate the problems of having visible cloth textures on the SMPL body mesh. We

approximate the skin color of each texture map by averaging the color of a few sampled pixels

located around the nose of the subject.

Interpenetration resolution algorithm. The interpenetration resolution algorithm is adapted

from the one provided with the TailorNet’s [115] public source code. The original algorithm

resolves interpenetration between body and clothes by deforming the clothes mesh so that the

vertices that are inside of the body end up at the nearest point on the surface of the body. We

extend the procedure to resolve interpenetrations between the three meshes: upper garment,

lower garment, and body mesh. First, an interpenetration resolution algorithm is applied to the

lower garment and body mesh. Second, the algorithm is applied to the upper garment and the

body. The body and lower garment meshes are then merged and, finally, the interpenetrations

are solved between the merged lower-garment-plus-body mesh and the upper garment mesh.

However, in some cases, the interpenetrations are not completely solved, which we have to

investigate in future work.

5.6 Final Remarks and Future Work

Garmentor, the method for joint pose, shape, and clothes parameter estimation from images,

is a promising approach towards complete human appearance understanding from single-view

RGB images. The method is able to estimate the underlying body shape and pose, as well as the

upper and lower garment on top of the body. We see body-from-clothes-separation approach

as an interesting future research direction. In that sense, we propose the tools for automatic

generation of novel poses, shapes, and clothes in realistic, synthetic 3D scenes, which can be

used for training. We fully open source the tools to enhance further research.

Limitations and future work. While Garmentor is a high-level framework for learning

any parametric human model, our current implementation depends on TailorNet, which brings

some limitations. Garmentor does not support layered garments and the diversity of clothing

is limited to four garment classes. Secondly, the current implementation of Garmetric depends

on the performance of the pretrained feature extractors in inference, i.e., is not trained end-to-

end. Except from end-to-end training, SMPLicit could be used as the parametric body model

to compare to TailorNet. Also, TailorNet can be extended to support more garment classes.

Extending the proposed datasets, especially ClothAGORA, is particularly exciting as it brings

more realistic and free data to the community.

Potential negative societal impacts. Moving towards more realistic and controllable gen-

eration and reconstruction of people from images might have potential societal risks, such as
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Table 5.7: The table of hyperparameters for training and inference of the Garmentor model. The Train
data column specifies the hyperparameters used to generate ClothSURREAL data, and Augm. specifies
augmentation.

Hyperparameter Value Type Description

M
od

el

# Input channels 18 Int Total # channels for input features (edges x 1, keypoints x 17)

# ResNet layers 50 Int Size of ResNet architecture (ResNet50)

Embed. dim. 256 Int The dimension of ResNet output before the final FCN

# SMPL betas 10 Int The number of shape principal components (10 out of 300)

# Style params 4 Int The number of style parameters (following TailorNet)

# Garment types 4 Int The number of different garment classes (types)

Tr
ai

n

Max. # Epochs 300 Int The maximal number of training epochs

Batch size 32 Int Batch size in case of ResNet50 (∼ 6GB GPU RAM)

Learning rate 10e−4 Float Fixed learning rate

Pin memory True Bool PyTorch option; speeds up host-to-device data transfer

# Workers 2 Int PyTorch option; # subprocesses used for data loading

L
os

s

wθ 80.0 Float The weight next to Lθ loss component

wβ 50.0 Float The weight next to Lβ loss component

wγ 50.0 Float The weight next to Lγ loss component

w2D 5.0e3 Float The weight next to L2D loss component

wR 5.0e3 Float The weight next to LR loss component

w3D 5.0e3 Float The weight next to L3D loss component

Tr
ai

n
da

ta

Focal length 300.0 Float Focal length for the weak-perspective camera projection

µ cam. trans. [0.0,−0.2,2.5] Float Mean camera translation

Shape (µβ ,σβ ) (0.0,1.25) Float Mean and standard deviation of the shape parameters, N (µβ ,σβ )

Style (µγ ,σγ ) (0.0,0.75) Float Mean and standard deviation of the style parameters, N (µγ ,σγ )

Cam. XY σ 0.05 Float The standard deviation of the XY camera offset

∆ Z-range (−0.4,0.1) Float The depth-range from which the camera location is sampled

A
ug

m
. Occlude bottom prob. 0.02 Float The probability of occluding the bottom part of the image

Occlude top prob. 0.005 Float The probability of occluding the top part of the image

Occlude mid. prob. 0.05 Float The probability of occluding the middle part of the image

Pr
ox

y
fe

at
ur

es

Bbox. threshold 0.95 Float The confidence threshold for the bounding box detection model

Features size (256, 256) Int The size of input features’ map (edges and heatmaps)

σheatmaps 4.0 Float The standard deviation of the keypoint heatmaps, in pixels

Non-max. supp. True Bool Whether to apply non-maximum suppression on the edge detections

Edge σ 1.0 Float The stddev of Gaussian filter used for smoothness (edge)

Edge Gauss. size 5.0 Float The size of Gaussian filter, in pixels (edge)
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creating convincing replicas of other people, which is already present for facial reconstruction.

Until more clear regulations are established, we publish our source code and materials under an

appropriate license.
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Chapter 6

Discussion

This chapter discusses the overall dissertation. In particular, it comments on the performances

of the proposed models w.r.t. body measurement estimation (the baseline described in Chapter

3 and the shape estimation model described in Chapter 5), it points out general limitations and

the assumptions used during the evaluation of the proposed models, and, finally, future work is

discussed. Note that the propose 3D pose estimation model from Chapter 4 does not directly

measure the body, but can instead be used to improve the pose estimation for future work, in

case shape estimation method from Chapter 5 would work from multiple views. We discuss

these possibilities in Section 6.3.

Table 6.1: The comparison between the image-based model for shape estimation from images of clothed
people (Chapter 5) and a linear regression baseline (Chapter 3) for the task of body measurement esti-
mation of 15 standard body measurements defined in Chapter 1. The values are shown in millimeters.

A B C D E F G H I J K L M N O Mean

Image-based 9.7 14.8 17.4 44.2 69.4 69.9 4.5 16.1 8.4 21.6 56.6 37.8 15.1 8.7 13.9 27.2

Linear base. 11.9 10.7 17.4 29.1 37.9 21.6 4.4 13.2 9.3 17.6 19.6 17.0 12.8 8.7 11.4 16.2

6.1 Comparing the Proposed Methods

Table 6.1 gathers the results previously reported in Table 3.6 and Table 5.4. It compares the

shape estimation model evaluated on 3DPW dataset (image-based) with the linear baseline

model evaluated on ANSUR dataset (estimating 15 body measurements using self-estimated

body height and weight). The baseline model performs significantly better in overall, as well as

for most of the individual body measurements, except for head (A) and forearm (I) circumfer-

ence and shoulder-to-crotch (C) and ankle circumference (N), which are comparable.

These results show that a simple linear regression model which takes only the self-estimated

height and weight as input outperforms the deep learning model trained for the estimation of

body shape and clothes from images. The linear model thus poses a very challenging baseline,
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which is in accordance with Chapter 3, where other competitive deep learning approaches were

also outperformed. On the other hand, the conditions in which the image-based model estimates

body shape, i.e., body measurements, are very challenging due to variations in human pose,

shape, clothing, and occlusions.

6.2 Limitations and Assumptions

There are several limitations and assumptions that apply to all the experiments demonstrated in

the dissertation. In this Section, we briefly comment on the limitations and assumptions.

The lack of significant, accessible, and realistic benchmarks is the main drawback of body

measurement estimates generally. Based on BODY-fit [177], the public benchmark employed

in this study includes 3D template meshes matched to 3D scans. The SMPL fits are still an

approximate representation of the original scans even though the fitted meshes represent the

scanning dataset. Furthermore, the 3D scanning method is not flawless [29], thus the scans do

not always accurately depict the original physical human bodies.

Therefore, the first assumption is that the manual body measurements are comparable to the

body measurements obtained from the 3D scan, i.e., from the SMPL template mesh. In addition,

all ANSUR body measurements do not necessarily physically correspond to the measurements

from the SMPL model, such as shoulder-to-crotch or waist circumference, as specified in Sec-

tion 3.3.1, but we assume they are highly linearly correlated and thus comparable. The height

is measured as the difference between the top head point and the heel point on the y (height)

axis. However, most of the datasets’ subjects are expected to take approximately the A-pose,

which is not fully erect. This might result in height being incorrectly estimated in some cases.

We also assume that people wear simple or restrictive clothing and that hair artifacts won’t have

a substantial impact on bodily measurements like height and head circumference. For females,

the issue with hair artifacts is particularly significant.

6.3 Future Work

In the future work, the models proposed in Chapters 3, 4, and 5 can be combined to further im-

prove the performance of the final model. In this Section, we briefly discuss these possibilities.

Combining linear baseline and shape estimation model. Following on the performance

of the baseline compared to the image-based shape estimation model, one might be tempted

to combine the two approaches - estimate body measurements from images while also taking

the self-estimated height and weight as additional input. This is actually possible and quite

convenient using synthetic data. In fact, both ClothSURREAL and ClothAGORA datasets

proposed in Chapter 5 can be extended in a way that they also contain information about the
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(self-estimation) body height and weight. However, testing such a model requires obtaining

self-estimations for all of the subjects, as well as having their corresponding images. Note that

no such public dataset exists so the method would either have to be tested on synthetic data as

well, or only on a few subjects, otherwise, it would require significant dedication and time to

gather more realistic test data.

Table 6.2: The comparison between the state-of-the-art monocular (upper part) and multi-view (lower
part) 3D human pose estimation approaches on Human3.6M dataset. Even though the best monocu-
lar method performs comparably to the best multi-view method, note that the monocular method uses
known 2D joint locations, which significantly improves its performance (see the performance of the
same method in the first row while no ground-truth information is used). When comparing the monocular
method that also estimate 2D joint locations and the best multi-view method, the difference is significant.
The values are shown in millimeters.

Method MPJPE Using 2D ground-truth joints Year

MixSTE [281] 39.8 No 2022

DiffPhy [282] 33.4 No 2022

PoseFormer [283] 31.3 Yes 2021

CrossFormer [284] 28.3 Yes 2022

MixSTE [281] 21.6 Yes 2022

Ours (Chapter 4) 29.1 No 2022

Epipolar Transformers [136] 19.0 No 2020

TesseTrack [285] 18.7 No 2021

Volumetric triangulation [134] 17.7 No 2019

Combining shape and pose estimation (multi-view). Another reasonable combination of

approaches can be done with the presented model for 3D pose estimation from multiple views

(Chapter 4) and shape estimation (Chapter 5). As expected, multi-view 3D pose estimation

methods generally perform significantly better than monocular pose estimation due to the avail-

ability of information from different views at the same time, which helps to resolve ambiguities

in 3D joint locations [44] (see Table 6.2 for the comparison of the state-of-the-art methods on

a public benchmark [35]). Note that some monocular methods exploit 2D ground-truth joint

location for their 3D pose estimations which helps them to significantly improve the result.

Compared to the best monocular method that does exploit 2D ground truth, the generalizable

approach, proposed and described in Chapter 4, still achieves better performance. Thus, it

makes sense to combine the proposed pose estimation approach with the proposed shape esti-

mation approach in a multi-view setting.
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Chapter 7

Conclusion

The final chapter first provides separate conclusions on the three proposed approaches, and then

the overall conclusion is given.

Linear regression baseline. The proposed regression approach is a straightforward but re-

markably accurate tool for the quick and automatic estimate of body dimensions, without the

need to take off clothing or take pictures. It shows that self-reported height and weight can pre-

dict body dimensions just as well as or even better than cutting-edge deep learning techniques.

The baseline is ideal for a variety of applications, including virtual reality, ergonomics, and

virtual try-on.

Human pose estimation method. The proposed generalizable approach is a promising

novel direction for 3D human pose estimation. In particular, the demonstrated results show

convincing generalization capabilities between different camera arrangements and datasets, out-

performing previous methods. This allows the model to be trained on one or more camera ar-

rangements and then be used in inference on different camera arrangements, which was not

possible before or it was rather degraded compared to the performance on training data-like

camera arrangement. The model requires relatively little training data, which makes training

faster and more convenient for smaller datasets. The overall performance is competitive for 3D

human pose estimation. By combining these two steps, it is possible to transfer the performance

of the base dataset to any novel multi-camera dataset, in inference.

Human shape estimation method. The method for shape and clothes parameter estimation

from images of clothed people, is a promising approach towards complete human appearance

understanding from single-view RGB images. The method is able to estimate the underlying

body shape and pose, as well as the upper and lower garment on top of the body. The body-

from-clothes-separation approach is an interesting future research direction. In that sense, the

tools for the automatic generation of novel poses, shapes, and clothes in realistic, synthetic 3D

scenes, are proposed. As the approach is using the statistical body model (SMPL), the body

measurements can be directly extracted from the estimated shapes.
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The presented methods for human pose, shape, and body measurement estimation are signif-

icant steps toward automatic body measurement from images, without constraints. In particular,

the person can wear loose clothes, take arbitrary body poses, and have various shapes and body

measurements. The methods and their possible combinations (Chapter 6) open many possi-

bilities toward accurate body measurements and understanding and analysis of the body from

sensor data such as RGB camera. These results are important because the RGB cameras are

omnipresent which allows to gather various data more easily.
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Appendix A

Mobile Implementations

A.1 Catadioptric Adapter for Smartphones

We present a 3D printed adapter with planar mirrors for stereo reconstruction using front and

back smartphone camera [286]. The adapter presents a practical and low-cost solution for

enabling any smartphone to be used as a stereo camera, which is currently only possible using

high-end phones with expensive 3D sensors. Using the prototype version of the adapter, we

experiment with parameters like the angles between cameras and mirrors and the distance to

each camera (the stereo baseline). We find the most convenient configuration and calibrate the

stereo pair. Based on the presented preliminary analysis, we identify possible improvements

in the current design. To demostrate the working prototype, we reconstruct a 3D human pose

using 2D keypoint detections from the stereo pair and evaluate extracted body lengths. The

result shows that the adapter can be used for anthropometric measurement of several body

segments.

Stereo vision is a well-known approach for 3D reconstruction. It is a popular as it only re-

quires two cameras and imposes relatively few constraints, such as textured scene and reasonably-

wide baseline, compared to other 3D reconstruction techniques [29]. Stereo is important for

numerous applications, such as 3D scanning [29], cultural heritage replications [287], SLAM

[288], etc.

Regarding smartphones, 3D reconstruction is becoming more and more accessible with em-

bedded ToF sensors on Androids and iPhones, but these technologies are still not affordable

for the mass. Alternatively, an attempt towards stereo was made on a smartphone equipped

with multiple back cameras [289]; however, the baseline between these cameras is very small,

which degrades the reconstruction performance. Finally, there are works which take advantage

of built-in video projectors [290, 291]; still, most smartphones and tablets are not equipped with

them. We therefore present a low-cost solution for stereo on a smartphone — proposing a novel

design of a 3D printed adapter with mirrors (catadioptric stereo) depicted in Fig. A.4, front and
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back camera, on standard smartphone into common field-of-view (FOV).

A.1.1 Catadioptric Stereo

In general, catadioptric systems consist of mirrors and lenses [292]. By using mirrors, a com-

mon part of the scene can be imaged from multiple views, which allows 3D reconstruction [44].

Most of the previously presented catadioptric systems use a single camera with multiple planar

mirrors [293, 294, 295, 296, 297, 298]. Several works use prisms in combination with planar

mirrors [299, 300]. The remaining works analyze the use of hyperbolic [301] and parabolic

mirrors [298, 302].
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Figure A.1: Four previously proposed planar-mirror catadioptric configurations. The Figure shows real
(black) and corresponding virtual (red) cameras, mirror placement, baselines, and three areas, A, B, and
C, for each setup. Letter B represents a common area, visible by the stereo pair, while A and C are
unused areas. Adapted from [286].

Regarding planar mirrors, Fig. A.1 shows four different catadioptric stereo configurations,
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previously described by Gluckman and Nayar [292]. All four systems use a single camera.

The simplest configuration (Fig. A.1a) creates a single virtual camera, using the reflection in

the mirror. A stereo pair consists of a real and a virtual camera. By moving a camera from

the mirror, the baseline increases, but the common FOV between the images proportionally

decreases. A two-mirror configuration (Fig. A.1b) produces two virtual cameras and these

cameras comprise a stereo pair. The third configuration ((Fig. A.1c) uses four mirrors, as

shown in a lower part of Fig. A.1. The advantage of third configuration over the second is

that symmetric mirror setup produces virtual cameras without relative rotation, which is more

suitable for stereo reconstruction, i.e. it does not require rectification [44]. However, the third

configuration is not practical for 3D reconstruction of nearby objects, as the common FOV is

relatively far from the virtual cameras. The fourth configuration (Fig. A.1d) fixes the above

issue. Our system uses two planar mirrors and two cameras.

To the best of our knowledge, no peer-reviewed work* has been dedicated to extending

multi-camera systems with mirrors or prisms to enable stereo on a standard smartphone. The

analysis of such catadioptric systems makes sense today, with the advent of high-resolution

front-back smartphone camera configurations.

In the remainder of Appendix A, we describe previous work on using mirrors for enabling

stereo, then we present our adapter and its parameters. In the experimental section, we analyze

the effect of the parameters to the FOV, calibration procedure, and reconstruction results.

A.1.2 Catadioptric Adapter

The 3D printed adapter consists of two mirrors to enable two cameras to record a common part

of the scene (see Fig. A.4). To accomodate for different camera placements and to be able to

experiment with different baselines and FOVs, we have several degrees of freedom:

• baseline (Fig. A.3),

• mirror angle (Fig. A.2 and A.3),

• vertical and horizontal tuning (Fig. A.3).

Horizontal and vertical tuning allow moving the mirrors to compensate for various camera

positions on different smartphones. Baseline and angular tuning affect the common FOV of

the virtual cameras (see the remainder of the section). The current version of phone cadle is

designed specifically for Xiaomi Mi A2 smartphone, based on its dimensions, to perfectly sit

into the mask and stay fixed during reconstruction for multiple experiments.

Baseline and Angular Tuning. When building catadioptric stereo, some parts of the images

are unusable, on two levels. First, the mirror of each individual camera does not cover the whole

FOV, and, second, the common FOV of the virtual cameras is smaller than the original, single-

*Note that there exist a webpage where multi-camera catadioptric systems are described [303].
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Figure A.2: The adapter design in a regular 3D view. The Figure features front and back mirrors and
a smartphone mask, to keep the device fixed. The smartphone is almost normally usable for image
recording, as the buttons on the side are available. Adapted from [286].
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Figure A.3: The adapter design in forward and side view. The Figure features the parameters for adjust-
ing mirror position (vertical, horizontal, and angular). Adapted from [286].

Figure A.4: The 3D printed adapter, pointing out front and back mirrors and baseline tuning. Adapted
from [286].

camera FOV. In this Section, we analyze how the baseline, angles, and mirror sizes affect the

common FOV of the virtual cameras. More specifically, we derive two quantities:

• the percentage of the common FOV, %FOV, retained compared to the original, single-
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Figure A.5: The designed catadioptric stereo using front and back smartphone camera. Letter B shows
the common FOV of the two virtual cameras. To adjust for the desired stereo pair properties and for
different real camera positions, the mirrors can be moved in all three axes. Adapted from [286].

camera FOV, and

• the minimal distance between the virtual camera and the person, dmin, needed to fit the

average person (havg = 1.8m) into the common FOV.

First, we derive the angle αvirtual for a single camera (Fig. A.6). Then, we use the angle

αvirtual to calculate the minimal distance, dmin, needed to record a person, and the retained

common FOV, %FOV. We take into account the following parameters (see Fig. A.5):

• distance bm between the mirror and the camera,

• mirror length lm,

• angle of the mirror β .

Note that changing the distance bm directly affects the baseline b (see Fig A.5). Mirror

length lm, for squared mirrors such ours, results in a P = l2
m cm surface.

Individual FOV analysis. The FOV of the virtual camera, αvirtual, can be derived as a sum

of left and right angles, αvirtual = αL +αR, as shown in Fig. A.6. The left angle, αL, spans

between the middle of mirror and its left end, i.e. right end in case of the right angle, αR. The

angles can be calculated using the tangent function, as follows:

tanαL =
lm_proj

2bm_down
(A.1)
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Figure A.6: The analysis of the virtual camera FOV with respect to the distance between the real camera
and the mirror, dm, mirror length lm, and mirror angle β . Note that β = 45° is shown for simplicity, so
that the optical axis of the virtual camera is perpendicular to the real. Adapted from [286].

tanαR =
lm_proj

2bm_up
(A.2)

The lm_proj is the mirror length projected on the line perpendicular to the optical axis of the

real camera. The values bm_up and bm_down are the distances of the upper and the lower corner

of the mirror. The mirror projection length is simply lm_proj = lm cosβ , and the distances are

bm_up = bm − hm
2 and bm_down = bm + hm

2 . Mirror height hm can be calculated as hm = lm sinβ .

Virtual camera angle is therefore:

αvirtual = tan−1
(

lm cosβ

2bm + lm sinβ

)
+ tan−1

(
lm cosβ

2bm − lm sinβ

)
(A.3)

The percentage of the retained FOV for an individual camera is %FOV = αvirtual
αreal

.

Common FOV analysis. In the second part, we analyze what happens when mirror angle

β > 45° with respect to the common FOV (similar analysis can be done for β < 45◦). We also

find the minimal distance needed to record an average-height person. For simplicity, we assume

that mirror angles β for both mirrors are the same (therefore, αin = α ′
in, as seen in Fig. A.7).

We also assume that the real cameras are one beneath the other with respect to the smartphone,

even though the physical cameras are not. The latter assumption does not significantly change

the analysis, as the distances between the cameras are relatively small compared to the distance

to the object, as will be shown in the remainder of the section.

Fig. A.7 shows a virtual camera configuration. The angle αin can be calculated as αin =

180◦ − β − δ . (see Fig. A.7, right). The unknown angle is δ = 180◦ −αR − γ , where γ =

90◦−β . Finally, the inner angle is αin = 90◦+αR −2β .

The minimal distance between the virtual camera and the person is:
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Figure A.7: The analysis of virtual cameras and their common FOV, assuming mirror angle to be β >
45◦. Adapted from [286].

dmin = d1 +d2 =
b+havg

2tanαin
. (A.4)

The height visible from the single, real camera can be calculated as hFOV = 2dmin tan αreal
2 .

Assuming that original single-camera FOV is αreal = 80◦ and havg = 1.8 m, then the percentage

of the retained, the percentage of common FOV between the virtual cameras is:

Selecting parameters. Based on the analysis and our empirical observations, we decided

to set both mirrors to (roughly) β = 55°, bm = 2.5 cm apart from the device, and use a 3 cm x

3 cm (lm = 3cm) mirror surfaces. Based on the equations in the previous section, each virtual

camera FOV is reduced to αvirtual = 47.08◦ (59%), where αR = 34.09◦. The inner angle is

αin = 14.08◦. For the given parameters, we expect that the baseline is b ≈ 5cm. Therefore, the

minimal distance for recording an average-height person, havg = 1.8m, is dmin = 3.69 m, and

the retained common FOV is %FOV = 29.4%. The main reason for such a small common FOV

are the small mirror sizes.

A.1.3 Evaluation

We describe and evaluate virtual stereo pair calibration and demonstrate 3D human pose recon-

struction.

Calibration. For stereo pair calibration of two virtual cameras, we use a standard Zhang’s

calibration [304] in MATLAB. An example of a calibration pair of views is shown in Fig. A.8.

Before the calibration, we flip and rotate the images so that both virtual cameras are upright and

horizontally aligned.

We record 14 different pairs of views for the calibration. During and after the calibration,
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Figure A.8: Example of the original calibration chessboard pair of views (before image flipping and
rotation), recorded using back and front camera, respectively. Adapted from [286].

Table A.1: Average distances (mm) between the reconstructed planes and the calibration planes, for
each of the 14 views.

Axis/Plane 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Mean

X 3.06 2.34 3.98 2.69 2.07 2.26 2.13 4.05 3.72 2.86 4.20 4.92 5.08 5.53 3.49

Y 3.11 2.37 3.98 2.72 2.07 2.27 2.13 4.07 3.72 2.86 4.21 4.96 5.11 5.54 3.51

Z 4.23 3.67 4.58 2.66 1.67 2.12 1.60 3.29 4.64 3.68 4.98 4.50 5.06 6.31 3.79

the automatic adjustments done by the smartphone, such as autofocus, are turned off. The in-

ternal parameters are verified by comparing focal lengths to device’s specifications. Qualitative

calibration results are shown in Fig. A.9. Regarding extrinsics, there is a slight relative rotation

between the mirrors, because the angles are not perfectly set to 45°. The distance between the

virtual camera centers is 5.4 cm, as expected based on the analyses in Sec. A.1.2.

For quantitative evaluation, we calculate the distances between the reconstructed points of

the calibration plate and the ideal calibration planes (Table A.1). Average distances are within

few millimeters, which is reasonable. Mean reprojections errors per each image are shown in

Fig. A.10. The overall mean error is 1.23 pixels. The calibration might be further improved by

using more input pairs for the calibration.

3D Human Pose Reconstruction. To demonstrate the working prototype, we reconstruct a

3D human pose. To detect keypoints (human joints), we use OpenPose [140]. OpenPose detects

25 corresponding 2D keypoints on both front and back images, as shown in left and right part of

Fig. A.11. The keypoints are then triangulated to produce the 3D skeleton shown in the middle

of Fig. A.11.

To evaluate the reconstruction, we compare several body lengths of the skeleton with our

manual measurements: lower arm, upper arm, shoulder width, hips width, upper leg, and lower

leg. The measurements, differences and average error are shown in Table A.2. The average error

is around 2 cm, which is an acceptable error for many applications, including anthropometry
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Figure A.9: Qualitative evaluation of the calibration. Red and blue cameras represent back and front
camera, respectively. The planes on the left represent 14 pairs of views used for the calibration. Most of
the views were recorded closer to the calibration chessboard, while others are about 1 m further. Adapted
from [286].

Figure A.10: Quantitative evaluation of the calibration. Camera 1 and 2 are back and front camera,
respectively. Adapted from [286].

[29]. Notably, most of the measurements have an error below or around 1 cm, while shoulder

width and lower leg length is much higher. The error in lower leg length might appear due to an

error in knee keypoint reconstruction, seen in the middle of Fig. A.11. Similar reconstruction

failure appears in the right shoulder and elbow, but the error did not propagate to the upper arm

segment.
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Table A.2: Quantitative reconstruction results for the recorded person. Six body measurements are
evaluated: lower and upper arm, shoulders and hips width, upper and lower leg, respectively. The first
row shows the reconstructed value, the second shows our manual measurement, and the third is the
difference between the two. All numbers are shown in cm.

L.arm U.arm Should. Hips U.leg L.leg Mean

3D 21.3 24.1 26.1 21.3 38.3 48.6 -

Meas. 21.2 24.7 31.0 22.1 38.9 43.5 -

Diff. 0.1 0.6 4.9 1.2 0.6 5.1 2.1

We attribute most of the reconstruction errors to the fact that the baseline between the virtual

cameras is relatively small compared to the distance from which the subject is recorded. Small

baseline results in large depth deviations for each correspondent pixel location error.

Back camera Front camera
Triangulated 3D

keypoints

Figure A.11: Qualitative reconstruction results. Back and front images, along with the OpenPose key-
points, are shown in the left and right part of the Figure. In the middle, the triangulated 3D skeleton is
shown in blue. Adapted from [286].

Conclusion. The design, analysis, and reconstruction using a prototype catadioptric stereo

adapter for front and back smartphone camera is presented. The front-back camera stereo design

is compared to previously proposed planar-mirror catadioptric system designs and the analysis

of virtual camera FOV based on several degrees-of-freedom is described. The system is suc-

cessfully calibrated and evaluated based on 3D human pose reconstruction. Taking into account

the reconstruction results, we conclude that the reconstruction is successful and the adapter can
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be used for anthropometric measurements of body lengths. For future work, we propose using

wider baseline between the virtual cameras, which requires proportionally larger mirror sur-

faces, as shown in the analysis. By using a wider baseline, 3D reconstructions should be further

improved.

95



Appendix B

3D Scanners

B.1 ToF Scanners

Most of the commercial human body scanners, such as the SizeStream SS20, Styku S100, and

TC2-30R, are based on indirect ToF methods. In general, ToF as a standalone solution is unable

to provide high-quality 3D human body scans due to its lower resolution. Hence, it is usually

used in combination with RGB cameras. Noticeably, a bigger percentage of stationary scanners,

such as the TC2-19R, Naked scanner, and BodyGee Orbiter, come with a turntable on which

subjects take a standard scanning position. This alleviates the problem of light interference

caused by having multiple cameras. Note that all mini scanners are ToF-based and therefore

used for 3D data acquisition in mobile applications (see Appendix B).

Figure B.1: Three types of 3D scanners in terms of mobility and size: stationary (a), handheld (b) and
mini-scanners (c). Adapted from [29].
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B.2 Structured Light Scanners

Commercial SL scanners either rotate around a person or have a fixed multi-sensor configuration

that surrounds them. Stationary scanners, such as the HP Pro S3, 4DDynamics EOS, TC2-105,

or Hexagon Aicon Primescan, rotate around the body to obtain a whole 3D scan. Another

way to move around the body is to use handheld scanners, such as the Artec Eva, TechMed3D

BodyScan Scanner, Mantis Vision F6 Smart or ScanTech Axe B17. Stationary scanners with

fixed sensor positions, such as the Artec Shapify Booth, botscan Neo, botscan OptaONE+, TC2-

105, and 4D Dynamics IIID Body Scan, showcase a booth filled with cameras and projectors

in fixed positions that surround the scanned subject. Solutions to avoid light interference [305]

from multiple projectors have been proposed, but in practice, every projector illuminates the

subject in its designated time interval. Hence, the acquisition time is prolonged and proportional

to the number of scanners.

B.3 Photogrammetry-Based Scanners

Commercial 3D scanners use either a rotating monocular system or multiple fixed cameras.

For example, Texel Portal MX, Fit3D, and BodyGee Orbiter rotate a person that is standing

on a platform, while Texel Portal BX circles around a static body. A few examples of fixed-

camera scanning systems are Bootscan Neo, TC2-21B, and 3IOSK by Mantis Vision, which

uses from several to more than 50 RGB cameras to obtain the reconstruction. There are several

advantages of fixed multi-camera over single-camera scanners. The first advantage is reduced

scanning time, because neither the cameras nor the person need to move. The second advantage

is the ability to scan people in motion over a period of time, also called 4D scanning (Move4D

scanner by IBV). Thirdly, it is possible to reconstruct multiple people at once, if the scanning

area is large enough to avoid occlusions, for example, as in Panoptic Studio [306].

Based on the images and the reconstruction described in this section, a mobile device camera

can be considered a special case of a monocular PS-based scanner, where a camera is moved

around a person to record a video or take individual images.

The following is the discussion based on the Appendix of a detailed report on 3D commer-

cial scanners [29].

The work presents an overview of the commercial 3D scanners that have the ability to scan

human bodies, excluding scanners that are not fit for the task, such as the Revopoint Tanso

S1 [307], used to reconstruct smaller objects. We provide more than 80 currently available

3D scanners manufactured by more than 50 companies, as well as their taxonomy regarding

several key characteristics: their mobility, method of reconstruction, price, resolution, accuracy,

number of sensors, dimensions, provided texture, scanning time and provided anthropometric
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software. Additionally, we comment on their effect on human body scanning.

We observe an equal amount of stationary (booth-like) and handheld scanners, whereas

only a few mini scanners are on the market. While handheld scanners offer a quicker scan-

ning setup time in new environments, stationary scanners are more ideal for fixed scenarios,

omitting (almost) entirely the setup process. Naturally, the mobility of a scanner is correlated

with its dimensions. Stationary scanners are large and bulky, while mini scanners are com-

pact and portable. Hence, mini and handheld scanners offer better applicability to the task of

the distributed data collection process [1] since they present higher portability. On the other

hand, stationary scanners offer faster scanning times, in the range of seconds, while handheld

scanners offer scanning times in the range of minutes, presenting a trade-off between their di-

mensions and applicability. Since breathing and fidgeting causes human bodies to move during

the scanning process, faster scanning times are more desirable. Nevertheless, the performance

of handheld scanners does not seem to lag behind stationary 3D scanners, as seen by their

accuracy.

The mobility and scanning time of a scanner seem to mostly drive its price. Smaller scanners

tend to be cheaper, while scanners offering faster scanning times tend to be pricier, indicating

that the market is still more appreciative towards stationary scanners. Most of the scanners

use structured light (SL) to reconstruct the human body since it offers the best reconstruction

accuracy compared to other two popular technologies - photogrammetry and time-of-flight.

Additionally, they present the lowest resolution, followed by passive stereo (PS) and time-of-

flight (ToF), respectively. Hence, they allow dense 3D human body reconstructions, appropriate

for the anthropometric application. To this end, we additionally report if the scanner comes with

an anthropometry software that can automatically extract body measurements from a 3D scan.

While texture does not directly impact the scanning process, arguments have been made in favor

of the greater usecase for textured 3D human body models [308].

The market is moving towards handheld and mini scanners. Mini scanners are particularly

important for the future of tablet and smartphone scanning, because they can be attached to or

even embedded into devices. For example, the Occipital sensors can be attached to a smartphone

device, while the Apple iPhone 12 has an embedded LIDAR sensor (see Appendix B). Mini

scanners are usually ToF-based [29]. As the computing capabilities of mobile devices improve

further and ToF-based mini scanners increase their resolution, we expect that mobile devices

will become more reliable and accurate 3D scanners.
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Practical Recommendations

Based on the presented technologies, the proposed measurement framework, and the previous

discussion, we finally provide practical recommendations for body measurement, as shown in

Fig. C.1. First, the scanner classification is introduced. Next, specific pipelines are proposed

with respect to their input. Finally, the requirements for the applications are described along

with the introduced scanner types and pipeline recommendations.

Preparation 3D scanning Measur.
extraction

3D scanning

Feature
extraction

Mesh fitting

Measur.
extractionAND / OR

2D RGB
images

Medicine

Surveying

Entertainment

Fitness

Fashion
industry

Stationary
scanners

Handheld
scanners

Mini
scanners

Mobile
camera

SCANNER
TYPES

APPLICATIONS PIPELINES

1

2

3

Figure C.1: The diagram of practical body measurement recommendations. Adapted from [29].
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C.1 Scanner types

We classify scanners based on their mobility/size, into: (a) stationary; (b) handheld; (c) mini;

and (d) mobile camera*. Stationary scanners (see Fig. B.1a) are usually installed in a fixed

location, e.g. a lab or a medical facility. They are usually SL or PS based. Compared to other

scanner types they are the most accurate and reliable and are therefore typically used to ob-

tain ground truth data, e.g. stationary scanners were used to create 3D body scanning datasets

like CAESAR [32], SIZE-UK [33], Scan DB [18], and FAUST [19]. Handheld scanners (see

Fig. B.1b) are designed to be moved around the imaged body area by hand. Most of the ex-

isting handheld 3D scanners are SL based. Mini-scanners (see Fig. B.1c) are embedded in or

attached to mobile devices like smartphones and tablets to enable 3D data acquisition. Most

mini-scanners are ToF or SL based. Finally, we distinguish mobile RGB cameras as a sepa-

rate scanner type, because they are wide-spread and convenient for non-demanding users, and

usually rely simply on monocular measurement estimation techniques†. The four scanner types

represent the data acquisition techniques for body measurement, as shown in Fig. C.1.

C.2 Measurement Pipelines

We propose and distinguish three possible pipelines for body measurement, as shown in the

right part of Fig. C.1. The first pipeline, sufficient for majority of applications, consists of:

preparation, 3D scanning, and measurement extraction. The second pipeline is more flexible

and consists of: 3D scanning (without prior subject preparation), feature extraction along with

or without mesh fitting, and measurement extraction. In both pipelines 2D images acquired

using RGB cameras are often useful for improving the reconstruction [309]. Finally, the third

and usually the least precise pipeline only takes 2D RGB images as input. These images are

then used for feature extraction, mesh fitting, and measurement extraction.

C.3 Body Measurement Applications

We recommend specific measurement pipelines and scanner types for different anthropometric

applications: medicine, surveying, fashion industry, fitness, and entertainment.

For medical applications [5, 6], it is usually desirable that high-quality body measurements

are obtained. Therefore, 3D scanning using stationary or handheld scanners, along with the

preparation stage (marker placement), is recommended (see the first pipeline in Fig. C.1). The

measurements can then be directly extracted from the 3D scan (as decribed in Sec. 3.2.1).

*For more details on the currently available scanners on the market see Appendix A.
†For more details on mobile devices and applications for body measurement assessment, see Appendix B.

100



Practical Recommendations

The second application is surveying, a systematical measurement of a population sample for

the purpose of analyzing and tracking the properties of human bodies over time [1, 8]. High-

quality surveys sometimes release their data publicly [32, 33], which serves for the creation and

improvement of statistical models [31, 34, 108, 109, 111, 112]. Surveying is usually done using

stationary scanners and the markers are sometimes placed on the body to improve and simplify

the measurement [8].

For fashion industry applications (garment and clothing design), all of the four data acqui-

sition techniques are used. For individually designed garments, stationary scanners are prefer-

able [1]. For less reliable measurements and mass-produced clothes, other data acquisition

techniques are sufficient.

For fitness and entertainment applications (gaming, AR, VR, etc.), low-budget solutions us-

ing mini scanners and mobile cameras are ideal for individual users. For fitness applications, the

body measurements are used for tracking physical progress over time. As seen in the Appendix

B, there are a few fitness-based mobile applications that estimate body measurements. Most of

them use one or two RGB images from different views. For gyms or fitness centers, stationary

3D scanners might be more convenient. Regarding entertainment, 3D human pose [134, 153]

in an AR setup allows the creation of a rigged character [113]; therefore only a rough estimate

of body measurements is needed.
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body measurement using 3D scanning. IEEE Access. 2021. str. 67281-67301, doi:

10.1109/ACCESS.2021.3076595
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