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Monitoring a person's physical activity has a wide range of applications in both sports and 

medicine. With the advancement of technology for measuring human movement, it is possible 

to monitor the performed activity without a need for an expert to directly overlook the trainee. 

Due to the low price, sufficiently accurate measurements, portability, and availability, the 

work of many research groups is especially directed towards wearable systems, i.e. wearable 

devices with inertial and magnetic sensors. While the initial interest was mainly in aerobic 

exercises, research has recently begun to focus on strength exercises as well. To 

independently monitor and evaluate repetitive human movements through this type of 

exercise, a proper form is to classify them into quantitative and qualitative manner. 

Quantitative information will provide an overview of how many movements (i.e. repetitions) 

are done, and qualitative will show whether repetition is being performed correctly. For 

successful counting and assessment of repetition quality it is necessary to first detect and 

separate the repetitions (segmentation), and then determine which exercise they belong to 

(classification). Only after the segmentation and classification of repetitions have been done, 

it is possible to start the quality assessment. The goal is to achieve the highest possible 

accuracy in tracking movement while maintaining low cost and energy autonomy of the 

monitoring system.  

The challenges researchers are facing with are primarily related to the minimization of 

the number and position of wearable devices on individual human body segments and the 

development of algorithms that will provide appropriate assessment and feedback. Taking 

into consideration existing solutions and their limitations, as well as the desire to fulfill the 

requirements of simplicity, generalizability, and reliability a new procedure for quantitative 

and qualitative monitoring of exercise performance is proposed. The procedure is designed so 

that it can be easily applied not only to exercises aimed at activating individual body 

segments, but also to activation of the whole body. For the procedure to meet the set goals, a 
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measurement method of human movement variability and movement execution metrics were 

developed along with it. 

 Successful implementation and validation of the procedure, method, and metrics were 

first done in controlled conditions and on a reduced number of subjects (no. 6), afterward in 

real conditions on a larger scale of subjects (no. 40). Each subject performed one workout 

session which consisted of 9 strength exercises while wearing 3 wearable devices (wrist, 

chest, and thigh).  

Keywords: wearable devices, strength exercises, repetition segmentation, repetition 

classification, quantitative assessment, qualitative assessment, human movement monitoring 

  



 
 

Praćenje fizičke aktivnosti osobe ima širok raspon primjena u sportu i medicini. Zahvaljujući 

napretku tehnologije za praćenje ljudskog pokreta, moguće je pratiti izvedenu aktivnost bez 

potrebe za stručnjakom koji izravno nadgleda polaznika. Zbog niske cijene, dovoljno 

preciznih mjerenja, prenosivosti i dostupnosti, rad mnogih istraživačkih grupa usmjeren je 

posebno prema nosivim sustavima, odnosno nosivim uređajima s inercijskim i magnetskim 

senzorima. Iako je početni interes istraživačkih grupa uglavnom bio usmjeren na aerobne 

vježbe, istraživanja su se nedavno počela usmjeravati i na vježbe snage. Kako bi se neovisno 

pratili i procjenjivali ponavljajući ljudski pokreti kroz ovu vrstu vježbi, prikladno ih je 

klasificirati na kvantitativan i kvalitativan način. Kvantitativne informacije pružaju pregled o 

broju pokreta (odnosno ponavljanja) koji se izvode, a kvalitativne pokazuju jesu li 

ponavljanja izvedena ispravno. Za uspješno brojanje i procjenu kvalitete ponavljanja, 

potrebno je prvo detektirati i odvojiti ponavljanja (segmentacija), a zatim odrediti kojoj vježbi 

pripadaju (klasifikacija). Tek nakon što su segmentacija i klasifikacija ponavljanja odrađene, 

moguće je započeti s procjenom kvalitete. Cilj je postići što veću moguću točnost u praćenju 

pokreta uz održavanje niske cijene i energetske autonomije sustava za praćenje. 

Izazovi s kojima se istraživači suočavaju primarno su vezani uz minimiziranje broja i 

pozicije nosivih uređaja na pojedinačnim dijelovima ljudskog tijela i razvoj algoritama koji će 

pružati odgovarajuću procjenu i povratne informacije. Uzimajući u obzir postojeća rješenja i 

njihova ograničenja, kao i želju za ispunjavanjem zahtjeva jednostavnosti, generaliziranosti i 

pouzdanosti, predlaže se nova procedura za kvantitativno i kvalitativno praćenje izvedbe 

vježbi. Procedura je osmišljena tako da se može lako primijeniti, ne samo na vježbe 

usmjerene na aktivaciju pojedinačnih dijelova tijela, već i na aktivaciju cijelog tijela. Kako bi 
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procedura ispunila postavljene ciljeve, uz nju je razvijena metoda za mjerenja varijabilnosti 

ljudskog pokreta i metrika izvođenja pokreta. 

Uspješna primjena i validacija procedure, metode i metrika prvo su izvršene u 

kontroliranim uvjetima i na smanjenom broju ispitanika (br. 6), a potom u stvarnim uvjetima 

na većem broju ispitanika (br. 40). Svaki ispitanik je izveo jednu tjelovježbu koja se sastojala 

od 9 vježbi snage noseći tri nosiva uređaja, na zapešću, prsima i bedru.  

U prvom, uvodnom poglavlju opisuje se kontekst i ciljevi istraživanja. Redovita i 

umjerena fizička aktivnost ima pozitivan učinak na zdravlje ljudi, smanjuje rizik od bolesti i 

smrti, te se često koristi kao dio rehabilitacije tijekom oporavka od operacije ili ozbiljne 

bolesti. Ova vrsta aktivnosti može se provoditi u teretanama, kod kuće ili na otvorenom, a 

kako bi se maksimizirao pozitivan učinak, preporučuje se provoditi ju uz određeno znanje ili 

u prisutnosti stručnjaka. Najčešće zbog financijske nemoći, ali i ovisnosti o unaprijed 

planiranom rasporedu treninga, ljudi sa nedostatnim znanjem pristupaju vježbanju na vlastitu 

ruku, što često dovodi do gubitka motivacije i odustajanja, neefikasnog treninga ili, u 

najgorem slučaju, do ozljeda. Ako osoba ipak odluči primijeniti neku vrstu nadziranog 

vježbanja, često se odvija u skupinama, umjesto personalizirano, što predstavlja izazov za 

trenere da sistematski nadgledaju pojedinca. Osim toga, postojeći mjerni instrumenti (testovi, 

upitnici, skale procjene) koji se koriste u procjeni vježbanja mogu se poboljšati u smislu 

automatizacije, objektivnosti i pouzdanosti. Brzi razvoj tehnologije u posljednjem desetljeću 

znatno je omogućio i olakšao proces digitalnog snimanja ljudskog pokreta, stoga može 

predstavljati moguće rješenje za razvoj inteligentnih podražavajućih uređaja ili sustava koji bi 

dodatno pomogli stručnjaku ili ih čak mogli zamijeniti u određenim situacijama. S obzirom na 

opremu i tehnologiju potrebnu za snimanje, može se grubo podijeliti u dvije grupe: a) optičke 

sustave i b) nosive sustave. Odabir grupe primarno ovisi o području primjene, vrsti aktivnosti 

i prostoru gdje se aktivnost odvija. Optički sustavi se primarno koriste u zatvorenim 

prostorima i s izuzetno visokom preciznošću (s više kamera i specijaliziranim markerima), 

dok se nosivi sustavi koriste kada sustav treba pružiti veću fleksibilnost bez prostornih 

ograničenja. U sklopu ove doktorske disertacije naglasak je na nosivim sustavima temeljenim 

na inercijskim i magnetskim senzorima koji se postavljaju na određene tjelesne segmente, a 

sastoje se od dva glavna dijela: senzora i pratećeg hardvera za mjerenje akceleracije, kutne 

brzine i magnetskog polja te algoritma za segmentaciju i klasifikaciju pojedinog ljudskog 

pokreta.  



 
 

Poglavlje 2 govori o pretraženoj literaturi relevantnoj za praćenje ljudskog pokreta 

tijekom fizičke aktivnosti pomoću nosivih sustava te njihovim nedostatcima. Različite vrste 

fizičke aktivnosti analiziraju se i vrednuju, ali je naglašeno kako je njihov primarni fokus 

orijentiran upravo na aerobne vježbe i na jednostavnije pokrete unutar rehabilitacije dok su 

vježbe snage zapostavljene. Nadalje, opisana je struktura sustava za vrednovanje repetitivnih 

vježbi snage temeljena na inercijskim i magnetskim senzorima. Glavni dijelovi strukture 

sastoje se od: načina prikupljanja podataka, broja i položaja senzorskih čvorova na ljudskom 

tijelu, segmentacije, klasifikacije i evaluacije pokreta.     

Poglavlje 3 predstavlja i istražuje metode za mjerenje varijabilnosti ljudskog pokreta. 

U kontroliranim laboratorijskim uvjetima i uz smanjeni broj ispitanika, provedena su mjerenja 

prilikom izvođenja niza vježbi snage. Mjerenja pokreta tijekom vježbanja izvedena su 

pomoću tri senzorska čvora, a snimljeni i obrađeni podaci poslužili su kao referenca za odabir 

osjetljivosti senzora, odabir broja i položaja senzora, definiranje modela te odabir podataka 

koji se prate i pohranjuju kroz izvođenje vježbe. Zaključeno je da dostupni podaci iz mjerenja 

akceleracije i kutne brzine daju najznačajniju povratnu informaciju o kretanju. Nakon analize 

podataka prikupljenih senzorskim čvorovima, razvijene su i dvije različite tehnike za brojanje 

i segmentiranje ponavljanja, pri čemu jedna koristi prethodno znanje o specifičnoj vježbi, a 

druga ne. Osim toga, određena je učinkovitost različitih klasifikatora za točno prepoznavanje 

vrste vježbe koja se izvodi, kao i utjecaj pojedinačnih značajki senzora i položaja senzorskih 

čvorova na točnost klasifikacije. 

Poglavlje 4 opisuje kako određenu vježbu odnosno pojedino ponavljanje možemo 

numerički opisati koristeći parametre izvođenja ekstrahirane iz prethodno odabranih veličina. 

Uzimajući u obzir dosadašnja istraživačka dostignuća, osmišljena je i predložena metrika s 

kojom je moguće krenuti u vrednovanje pokreta. Predložena metrika primjenjiva je na većoj 

skupini ispitanika (poglavlje 5), bilo s istim ili različitim obilježjima, podjednako kao i u 

slučaju pojedinca. Metriku izvođenja pokreta tijekom tjelovježbe moguće je podijeliti u dvije 

kategorije, baziranu na pravilima ili baziranu na predlošku. U pristupu temeljenom na 

pravilima, potrebno je definirati neke određene parametre (kao npr. kutovi, brzina, položaj 

zglobova i slično) koji definiraju uzorak. Njihova prednost je mala kompjuterska zahtjevnost 

izvođenja, a mana nedostatak generalizacije i ponovne upotrebljivosti za različite vježbe, što 

može dovesti do velikog skupa podataka pravila. Osim toga, kada se složenost pokreta 

povećava, mapiranje pravila postaje potencijalno narušeno, a samim time i određivanje točne 

procjene pokreta. Nasuprot tome, pristup temeljen na predlošku uključuje snimanje jednog 



 
 

pokreta kao reference za usporedbu s naknadnim ponavljanjima. Iako ovaj pristup nudi 

prednost bržeg vremena definiranja, ograničen je potrebom za unaprijed snimljenim 

predloškom pokreta i možda neće uzeti u obzir individualne razlike u obrascima kretanja. 

Kako bi se riješila ograničenja ovih pristupa i postigla veća generalizacija, u ovom poglavlju 

predložen je novi pristup. Ova metoda uključuje generiranje novostvorenih veličina na 

temelju početne orijentacije pojedinca, a koje se zatim mogu usporediti pomoću nove 

bodovne funkcije. Predloženi pristup omogućuje procjenu pojedinačnih ponavljanja pomoću 

univerzalne metrike, neovisno o orijentaciji IMU na tjelesnom segmentu ili položaju 

pojedinca. Nadalje, predložena metrika može se koristiti ili s osobnim načinom ili općim 

predloškom za usporedbu. 

U 5. poglavlju detaljno je razložen postupak kvantitativnog i kvalitativnog praćenja 

uspješnosti vježbanja. Objašnjeni su pojmovi kvantitete i kvalitete pokreta te je predstavljen 

razvijeni algoritam koji to omogućava. Struktura algoritma sastoji se od: segmentacije 

aktivnosti, segmentacije zasebnog ponavljanja, ekstrakcije značajki, prepoznavanju vježbe i 

ocjene. Ocjena je krajnjem korisniku najzanimljivija informacija koju je moguće promatrati 

na nižoj (pojedina vježba) ili višoj (cjelokupna tjelovježba) razini kroz vrijeme te eventualno 

pravovremeno reagirati kako bi se spriječila loša izvedba, a samim time i mogućnost ozljede. 

U istraživanje je bilo uključeno 40 ispitanika (28 muškaraca i 12 žena). Podaci su prikupljeni 

na isti način i s istom osjetljivošću senzora i položajima kao što je opisano u poglavlju 3. 

Uzimajući u obzir istražene i razvijene metode mjerenja varijabilnosti ljudskog pokreta 

(poglavlje 3) i metrike izvođenja pokreta tijekom tjelovježbe (poglavlje 4) osmišljen je i 

predložen postupak za praćenje uspješnosti vježbanja. Postupak je moguće podijeliti u 3 

načina rada, a odabir rada ovisi direktno o tome gdje se postupak koristi i kakvu povratnu 

informaciju od njega korisnik očekuje. Prvi način rada je najosnovniji, i korisniku pruža 

povratnu informaciju samo o kvantiteti pokreta odnosno koliko ponavljanja je odrađeno. 

Ovakav način rada pogodan je tijekom samostalnog treniranja iskusnijih vježbača za praćenje 

broja odrađenih pokreta tijekom tjelovježbe, neovisno o tome koje vježbe se izvode. Drugi 

način rada osim kvantitete izvedenih pokreta pruža i informaciju o kvaliteti pokreta. Ovakav 

način rada zamišljen je kao virtualni trener za vježbače koji osim broja ponavljanja žele i 

dodatnu informaciju o tome kako izvode pojedinu vježbu. U posljednjem načinu rada 

pretpostavka je da sustav unaprijed zna kojim redoslijedom vježbač izvodi tjelovježbu, poput 

rehabilitacije. Zbog dodatnog prethodnog znanja, sustav korisniku u stvarnom vremenu može 



 
 

pružiti informaciju o izvedenom pokretu što korisniku omogućuje da odmah prilagodi tehniku 

vježbanja. 

Posljednje poglavlje disertacije (6. Zaključak) daje raspravu o postignutim rezultatima 

i sažima zaključke koji proizlaze iz provedenog doktorskog istraživanja i potencijalne buduće 

smjerove daljnjeg istraživanja. 

Ključne riječi: nosivi uređaji, vježbe snage, segmentacija ponavljanja, klasifikacija 

ponavljanja, kvantitativna procjena, kvalitativna procjena, praćenje ljudskog pokreta 
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1.1 Background and Motivation 
Regular and moderate physical activity has a positive effect on human health, reduces the risk 

of illness and death, and is often used as part of rehabilitation during recovery from surgery or 

serious illness [1]. It is defined as the movement of the body that increases energy expenditure 

above the level of rest, and can occur spontaneously (leisure, work or transport) or organized 

(sports, physical training or exercise). Recommendations and strategies for physical activity 

can be found in the publicly available literature [2][3], and it can be briefly concluded that a 

person, in addition to their daily responsibilities (spontaneous activities) during the week, 

should also strive for a balanced organized program of activities or exercise to improve 

aerobic working capacity and muscle strength. This form of activity can be carried out in 

gymnasiums, at home or outdoors, and to maximize the positive effect, it is recommended to 

perform it with some knowledge or in the presence of a professional expert. 

Most often due to financial incapacity, but also dependence on a pre-planned training 

schedule, people with inadequate knowledge approach exercise on their own, which often 

leads to loss of motivation and giving up, ineffective training or, in the worst case, even to 

injuries [4][5][6]. If a person still decides to apply some form of supervised exercise, it is 

often in a group, rather than individualized, which is a challenge for trainers to systematically 

monitor an individual [7]. In addition, the existing measurement instruments (tests, 

questionnaires, assessment scales) used in the evaluation of the exercise [8] can be improved 

in terms of automation, objectivity and reliability [9][10]. 

The rapid development of technology in the last decade has greatly enabled and 

facilitated the process of digital recording of human movement [11]; therefore, it can present a 

possible solution for the development of intelligent supporting devices or systems that would 

additionally help a professional expert or could even replace them in certain situations. 

Considering the equipment and technology needed for recording, it can be roughly divided 

1 INTRODUCTION 
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into two groups: a) optical systems and b) wearable systems. The choice of the group 

primarily depends on the field of application, the type of activity, and the space where the 

activity takes place [12]. Optical systems are primarily used in closed spaces and with 

extremely high accuracy (with multiple cameras and specialized markers), while wearable 

ones are used when the system needs to provide greater flexibility without spatial constrains. 

Different types of physical activity can be monitored with the help of such systems. 

While in the initial research emphasis was mainly on aerobic physical activity [13][14], more 

recently attention has also begun to focus on muscle-strengthening physical activity. Muscle-

strengthening physical activity is referred to as strength training or resistance training and 

most often consists of performing several different exercises that are composed of a series of 

repetitive movements. The existing systems usually deal with automatic counting of these 

repetitions and exercise recognition, but they rarely provide additional information about the 

quality of the performance of these movements or the entire exercise [4][15][16][17]. 

Considering existing research and gaps, throughout this doctoral thesis are presented 

the procedure, method and metrics with which it is possible to realize a closed-loop system 

for human movement monitoring and assessment using wearable devices during exercising. 

The problem of the number and position of wearable devices, the selection of measurable 

quantities, the definition of the model, segmentation, classification, and assessment of the 

performance of individual movements and the entire exercise are defined.  The proposed 

procedure was tested on a group of 40 subjects during a workout session consisting of 9 

strength exercises. 

1.2 Thesis Overview  
The thesis is organized as follows: 

Chapter 1 (Introduction) provides a brief overview of the topic of this doctoral thesis 

and the structure of the work.  

Chapter 2 (Literature review) discusses the literature relevant for human movement 

monitoring and assessment during physical activity and highlights existing research gaps. The 

emphasis is more on wearable systems, i.e. wearable devices with inertial and magnetic 

sensors, during the performance of strength exercises. 

Chapter 3 (Measurement method of human movement variability during exercise using 

sensor nodes with inertial and magnetic sensors) presents and investigates methods for 
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measuring the variability of human movement. Through controlled conditions and a reduced 

number of subjects, measurements were performed and served as a reference for the selection, 

number and position of sensors, model definition and selection of data that are monitored 

through the performance of the exercise.  

Chapter 4 (Movement execution metrics during exercise based on measurements using 

sensor nodes with inertial and magnetic sensors) describes how a particular exercise or 

individual repetition can be described numerically using performance parameters extracted 

from previously selected data. Considering the previous research achievements, a metric was 

designed and proposed. The proposed metric is applicable to a larger group of subjects, either 

with the same or different characteristics, as well as in the case of an individual. 

Chapter 5 (Procedure for quantitative and qualitative monitoring of exercise 

performance using sensor nodes with inertial and magnetic sensors and measurement of heart 

rate) explains in detail the procedure for quantitative and qualitative monitoring of exercise 

performance. The concepts of quantity and quality of motion are explained, and a developed 

algorithm that enables this is presented. The structure of the algorithm consists of: activity 

segmentation, repetition segmentation, feature extraction, exercise recognition, and 

assessment. Assessment is the most interesting information for the end user, which can be 

observed at a lower (individual exercise) or higher (entire workout) level over time and 

possibly react on time to prevent poor performance and thus the possibility of injury. 

Chapter 6 (Conclusion) provides a discussion on the achieved results and summarizes 

conclusions resulting from the conducted doctoral research. 

 

1.3 Summary of Contributions 
Main contributions of this thesis include: 

• Measurement method of human movement variability during exercise using sensor 

nodes with inertial and magnetic sensors. The method is described in Chapter 3. 

• Movement execution metrics during exercise based on measurements using sensor 

nodes with inertial and magnetic sensors. The metrics are described in Chapter 4. 

• Procedure for quantitative and qualitative monitoring of exercise performance using 

sensor nodes with inertial and magnetic sensors and measurement of heart rate. The 

procedure is shown in Chapter 5. 



4 
 

This chapter provides a review of the literature intending to provide background information 

and practice in the field of monitoring and assessment of human movement during physical 

activity. The first part explains terms related to physical activity, its benefits, and presents 

statistics related to activity with strategies for increasing it. Following, the technologies that 

can be used to monitor physical activity are explained, and the chapter ends with the currently 

existing solutions and gaps for monitoring and assessment of human movements using 

wearable systems with an emphasis on muscle-strengthening physical activity. 

2.1 Physical Activity 
Regular physical activity is widely recognized as a protective factor for the prevention and 

management of noncommunicable diseases, such as cardiovascular disease, type-2 diabetes, 

as well as breast and colon cancer. Furthermore, physical activity has been shown to have 

benefits for mental health, delay the onset of dementia, and contribute to the maintenance of 

healthy weight and general well-being [18]. 

In addition to the multiple health benefits of physical activity, more active societies 

can generate additional returns on investment, including reduced use of fossil fuels, cleaner 

air, and less congested and safer roads. These outcomes are interconnected with achieving the 

shared goals, political priorities, and ambitions of the Sustainable Development Agenda 2030 

[19]. 

According to estimates, the global cost of physical inactivity in 2013 was INT$ 54 

billion per year in direct health care, with an additional INT$ 14 billion attributable to lost 

productivity. Inactivity accounts for 1-3% of national health care costs, although this excludes 

costs associated with mental health and musculoskeletal conditions [19]. 

2 LITERATURE REVIEW  
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2.1.1 Physical Activity and the Related Terminology 

Physical activity is a term used to describe any movement of the body that requires energy 

expenditure and is produced by the contraction of skeletal muscles. This encompasses a broad 

range of activities, including, but not limited to, walking, cycling, sports, and various forms of 

recreation such as dance, yoga, and tai chi. Physical activity can also be integrated into work 

tasks or domestic duties such as cleaning, carrying, or care duties. While some physical 

activities may be performed for enjoyment or leisure, others may be mandatory or necessary 

for work or domestic purposes and may not offer the same mental or social health benefits as 

recreational activities. However, regular physical activity, regardless of its nature, has been 

shown to provide numerous health benefits, as long it is of sufficient duration and intensity. In 

2010, the World Health Organization (WHO) released recommendations on the optimal type 

and frequency of physical activity for various age groups, including youth, adults, and elderly 

[2][19][20]. 

The measurement of exercise intensity can be expressed in absolute or relative terms. 

Absolute intensity refers to the actual physical work performed, which can be measured in 

units such as Watts (W), kilograms (kg), or metabolic equivalents (MET). Relative intensity, 

on the other hand, is measured relative to the individual's maximum capacity or physiological 

factors such as percentage of maximum heart rate (%HR), rate of perceived exertion (RPE), 

watts per kilogram of body weight (W/kg), or relative oxygen uptake in liters per minute per 

kilogram of body weight (𝑉𝑂2). 

Sedentary behavior is defined as any waking behavior characterized by an energy 

expenditure ≤ 1.5 metabolic equivalents, such as sitting, reclining or lying down. Recent 

evidence indicates that high levels of continuous sedentary behavior (such as sitting for long 

periods) are associated with abnormal glucose metabolism and cardiometabolic morbidity, as 

well as overall mortality. Reducing sedentary behavior through the promotion of incidental 

physical activity (for example, standing, climbing stairs, short walks) can support individuals 

to increase incrementally their levels of physical activity towards achieving the recommended 

levels for optimal health [19][21]. 

According to Malm et al. [3], physical activity can be classified into two categories: 

aerobic physical activity and muscle-strengthening physical activity. The majority of energy 

production during aerobic physical activity occurs via oxygen-dependent pathways, making it 

the type of activity typically associated with stamina, fitness, and the greatest health benefits. 
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Muscle-strengthening physical activity, on the other hand, is often referred to as "strength 

training" and is primarily intended to maintain or improve various forms of muscle strength 

and increase or maintain muscle mass. In addition, a third category, muscle-enhancing 

physical activity, is sometimes defined, which is important for the maintenance or 

improvement of coordination and balance, especially in the elderly. 

2.1.2 Health Effects of Physical Activity 

Human biology necessitates a certain level of physical activity to maintain good health and 

well-being. It would take several generations for humans to biologically adapt to a life with 

reduced physical activity. Therefore, the physical activity requirements of people today are 

more or less the same as they were 40,000 years ago. For example, an average man weighing 

70 kg would need to walk about 19 km every day in addition to everyday physical activity. 

However, daily physical activity has decreased for most people while planned, deliberate 

exercise and training have increased. Unfortunately, the average daily energy intake has 

increased more than the daily energy output, leading to an energy surplus. This is one of the 

reasons for the growing number of overweight individuals, which is a strong contributor to 

many health issues. Insufficient physical activity combined with increased energy intake 

(sedentary living) adversely affects both physical and mental abilities, increasing the risk of 

illness [3][22][23][24]. 

2.1.2.1 Effects on Physical Health 

The health effects of physical activity and exercise can be both acute (during and immediately 

after) and long-lasting. The latter has far-reaching consequences for health and is crucial for 

good health. To achieve the desired long-term effects, physical activity should be performed 

with both progression and continuity. Most physical exercise/training consists of a 

combination of aerobic and muscle-strengthening exercises, and it can be challenging to 

distinguish between their health effects (Table 1). 

Significant improvements in health are observed when individuals transition from a 

completely sedentary lifestyle to engaging in moderate physical activity, even before 

noticeable enhancements in physical performance. While past studies have primarily focused 

on aerobic exercise, there is growing evidence suggesting that strength training can also offer 

valuable mental and physical health benefits, as well as help prevent certain diseases. 
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Table 1 Physiological effects of aerobic and muscle-strengthening physical activity on health. Number 3 
indicates that the activity contributes with an effect, whereas a number 1 indicates that the activity has no 
proven effect. Number 2 indicates that the activity may in some cases be effective [3] 

Effects on the body Health effects Aerobic Strength 

Larger proportion slow-twitch fibers Lower risk for metabolic syndrome with increased exchange 
of gases and nutrition 

3 1 

Larger proportion slow-twitch Increased strength, coordination and balance in elderly and in 
sickness, lower risk for fall 

1 3 

Formation of new capillaries Increased aerobic capacity 3 2 

Improved endothelial function Lower risk for cardiovascular disease, improved function in 
heart disease 

3 2 

Increased mitochondrial volume Increased aerobic capacity 3 2 

Improved glucose transport Lower risk or metabolic syndrome/Type-2 diabetes 3 3 

Improved insulin sensitivity Improved health in people with Type-2 diabetes, prevention 
of Type-2 diabetes 

3 3 

Increased heart capacity Lower risk for cardiovascular disease, fewer depressions, 
also in children 

3 3 

Increased skeletal volume and mineral 
content 

Improved skeletal health 2 3 

Improved body composition Lower risk for metabolic syndrome 3 3 

Improved blood pressure regulation Lower risk for cardiopulmonary disease 3 3 

Improved blood lipid profile Lower risk for cardiopulmonary disease in elderly and 
Alzheimer’s. No effect on blood lipid profiles in children and 
adolescents 

3 3 

Improved peripheral nerve function Better coordination, balance and reaction, especially in 
children and elderly 

3 3 

Enhanced release of signaling substances Better sleep, less anxiety, treatment of depression 3 3 

Improved hippocampus function Improved cognition and memory, less medication 3 2 

Positive effects on mental capacity Counteract brain degeneration by disease, anti-inflammatory 
effects 

3 2 

Improved immune function Decreased overall risk for disease, anti-inflammatory effects 3 2 

Strengthening the connection between 
brain, metabolism and immune function 

Decreased risk for disease, improved metabolism, decreased 
risk for depression 

3 2 

Improved intestinal function Improved health, mitigated metabolic syndrome, obesity, 
liver disease and some cancers 

3 2 

 

Aerobic physical activity has been demonstrated to promote weight maintenance 

following weight loss, decrease the risk of metabolic syndrome, improve blood lipid levels, 

and alleviate cancer and cancer-related side effects (Table 1). However, the effects of aerobic 

exercise on chronic pain remain inconclusive. 
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In contrast, muscle-strengthening physical activity has been shown to prevent muscle 

atrophy, reduce the risk of falling, and mitigate osteoporosis in the elderly. Both men and 

women in the elderly population respond positively to strength training, and it can also 

prevent obesity, improve cognitive performance when combined with aerobic exercise, 

counteract the development of neurodegenerative diseases, reduce the risk of metabolic 

syndrome, alleviate cancer and cancer-related side effects, reduce pain and disability in joint 

diseases, and increase bone density. As the risk of falling increases substantially with age, 

partly due to decreased muscle mass and impaired coordination and balance, there is a strong 

correlation between physical performance, reduced risk of falls, and improved quality of life 

in older individuals. Also, deterioration in muscle strength, but not muscle mass, increases the 

risk of premature death, but this can be counteracted through exercise, with a dose-response 

relationship between strength improvement and age. To enhance overall health, it is advised 

to incorporate muscle strengthening exercises alongside aerobic physical activity. According 

to established guidelines, engaging in high-intensity strength training, specifically performing 

6-8 repetitions at 80% of an individual's one-repetition maximum, is considered the most 

efficacious approach. [3][25]. 

2.1.2.2 Effects on Mental Health 

Mental health is a significant global concern, impacting millions of individuals worldwide. 

Measures of mental ill health include headache, stress, insomnia, fatigue, and anxiety, among 

others, with varying levels of severity. The term "ill health" encompasses several mental 

health issues and symptoms. Recent research has compared the expected health benefits of 

regular physical activity to other treatments, such as medication, for improving mental health. 

Studies have shown that physical activity and exercise, when used as primary or secondary 

interventions, have significant positive effects in preventing or alleviating depressive 

symptoms and have an antidepressant effect in people with neurological diseases. 

Additionally, training and exercise have been found to enhance quality of life, coping 

mechanisms for stress, and self-esteem and social skills. They can also reduce anxiety in 

individuals diagnosed with anxiety- or stress-related conditions, improve creative thinking, 

vocabulary learning and memory [3][26]. 

2.1.3 Current Levels of Physical Activity 

Physical inactivity is defined as not meeting the 2010 Global recommendations on physical 

activity for health and is a leading contributor to global mortality. It is estimated that between 
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four and five million deaths per year could be averted if the global population was more 

active [18]. Global progress to increase physical activity has been slow, largely due to a lack 

of awareness and investment duration and intensity. Worldwide, 1 in 4 adults, and 3 in 4 

adolescents (aged 11–17 years), do not currently meet the global recommendations for 

physical activity set by WHO [19]. The data also highlights that women are less active than 

men in most countries and that there are significant differences in levels of physical activity 

within and between countries and regions. These differences can be explained by inequities in 

access to opportunities to be physically active, further amplifying inequalities in health [18]. 

As countries develop economically, levels of inactivity increase. In some countries, levels of 

inactivity can be as high as 70%, due to changing patterns of transportation, increased use of 

technology and urbanization [19].  

The country physical activity factsheets summarize specific areas of focus in terms of 

monitoring and surveillance based on several core indicators, as well as policies and action in 

the area of health-enhancing physical activity (HEPA) promotion for the European Union 

Member States of the WHO European Region including physical activity levels for adults, 

adolescents and children. As the data for the countries differ, below are presented the statistics 

only for Croatia (Figure 1 Figure 2 Figure 3) [27]. The level of sufficient physical activity 

covered children, adolescents and adults, while the statistics for aerobic and muscle-

strengthening activity, sedentary behavior, and Body Mass Index (BMI) are related 

exclusively to adults. We can see that in the adult population, only 20% of subjects meet a 

sufficient level of physical activity, sedentary behavior is accepted (64%) and more than 65% 

are overweight. 

 

Figure 1 The proportion of the adult population: a) engaged in aerobic physical activity for at least 150 
minutes per week, b) engaged in muscle-strengthening physical activity at least 2 times a week and c) that 

spends too much time sitting or lying down (not including sleeping) [28] 
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Figure 2 Estimated prevalence of sufficient physical activity levels [27] 

 

 

Figure 3 BMI for the adult population– the proportion by gender and total [28] 
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2.1.4 Recommendations and Strategies 

Table 2 provides general recommendations for physical activity, which do not include 

everyday activities. However, it is important to note that meeting the daily physical activity 

recommendations by engaging in brief, high-intensity exercise and remaining physically 

inactive for the remainder of the day may result in a polarization of physical activity. This 

approach involves a high dose of conscious physical training but a low energy expenditure 

during normal daily activities due to high volumes of sedentary time. Such polarization may 

increase the risk of poor health outcomes despite meeting the recommendations for physical 

activity. In most cases, energy expenditure is greater during normal daily activities than 

during sports, physical training, and exercise, except for children and the elderly, for whom 

planned physical activity is especially important. In terms of recommendations to the public, 

Table 2 often describes intensity in subjective terms, such as "making you breathe harder" for 

moderate intensity and "making you puff and pant" for vigorous intensity. In [3], low 

intensity is defined as 1.5–2.9 METs, < 40 %HR and 20% – 39% of 𝑉𝑂2𝑚𝑎𝑥; moderate 

intensity as 3.0–5.9 METs, 60–74 %HR and 40% – 59% of 𝑉𝑂2𝑚𝑎𝑥; and vigorous intensity 

as 6.0–8.9 METs, 75 – 94 %HR and 60% – 89% of 𝑉𝑂2𝑚𝑎𝑥. It is important to note that 

absolute intensity can vary greatly between individuals, with a patient with heart disease 

having a maximal capacity of < 3 METs, and an elite athlete > 20 METs. 
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Table 2 Physical activity guidelines for different target groups [3] 

Target Group Recommendations  Purpose 

Age 6-17 years 

Children and youth 

For children and adolescents, it is recommended to engage in at 
least 60 minutes of daily physical activity, with longer durations 
being even better. The physical activity should be primarily aerobic 
in nature, with moderate (easy/medium pulse increase) to high 
(marked pulse increase) intensity levels. High-intensity aerobic 
physical activity should be performed at least 3 times per week, in 
addition to engaging in muscle-strengthening physical activity 3 
times per week. Weight-bearing activities such as running and 
jumping are beneficial for bone mineral density. It is important to 
gradually adjust the physical activity level to the individual's 
biological and psychosocial maturation. 

Development of muscles and skeletal and 
nervous system.  

Maintain a healthy weight and a good 
mental health. 

Social development, integration, good self-
esteem, and self-confidence. Enhanced 
learning ability. 

Recommendations are universal, but for 
individuals with illness, there may be 
special recommendations. 

Age 18-64 

Adults 

For adults aged 18 years and above, it is recommended to engage 
in at least 150 minutes of moderate-intensity aerobic physical 
activity (with a medium pulse increase) or at least 75 minutes of 
vigorous-intensity aerobic physical activity (with a marked pulse 
increase) per week. These activities should be distributed over at 
least three separate days. Additionally, it is recommended to 
engage in muscle-strengthening physical activity at least twice a 
week. 

Improvements in aerobic work capacity and 
muscle strength. 

Recommendations are universal, but for 
individuals with illness, there may be 
special recommendations. 

Profits from carrying out the activity are 
lower risk of disease, such as disturbed 
metabolism and certain cancers and bone 
fractures. 

Age > 64 

Elderly 

The same physical activity recommendations as those for adults 
should be followed for elderly. It is recommended that muscle-
strengthening exercises be performed at a high velocity, if possible. 
Balance training should be incorporated prior to aerobic and 
muscle-strengthening training. For individuals with impaired 
ability, it is important to perform as much physical activity as 
possible. 

Improvements in aerobic work capacity, 
muscle strength, and balance. 

Recommendations are universal, but for 
individuals with illness, there may be 
special recommendations. 

Medical advice may be required before 
exercise commences. Benefits of carrying 
out the activity are the same as for adults, 
and better functional health and 
independence. 

 

2.1.4.1 Strategies  

The newly introduced global action plan by WHO aims to provide updated guidance and an 

effective policy framework to promote physical activity at all levels. The plan addresses the 

need for global leadership and stronger coordination at regional and national levels, as well as 

the importance of a whole-of-society approach to achieve a paradigm shift towards valuing 

and supporting regular physical activity for all individuals across their lifespan, regardless of 

their ability. 

The plan, along with the ACTIVE policy proposal, highlights a range of policy options 

that can be customized and adapted to local contexts to increase physical activity levels 

worldwide. These options include investing in new technologies, innovation, and research to 

develop cost-effective approaches for increasing physical activity, particularly in low-

resource contexts. Additionally, the plan emphasizes the need for regular surveillance and 

monitoring of physical activity levels and policy implementation [19]. 
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2.1.4.2 Digital Solutions for Promoting Physical Activity  

Digital technologies are increasingly being used to promote physical activity and improve 

health outcomes. The use of mobile and wearable devices, such as smartphones and 

smartwatches, has enabled the monitoring and tracking of physical activity in real-time, 

providing individuals with feedback on their progress and encouraging them to maintain an 

active lifestyle (as depicted in Figure 4, Figure 5 and Figure 6) [29]. Moreover, several studies 

have demonstrated the effectiveness of wearable systems in increasing physical activity and 

improving health outcomes, both in healthy individuals [30][31] and those with chronic 

diseases [32][33]. Therefore, digital solutions have the potential to reach millions of people 

and assist health professionals in providing ongoing monitoring and support to patients.  

 In this context, this doctoral thesis aims to review existing technological solutions for 

physical activity monitoring and identify opportunities for improvement. The thesis will 

examine both optical and wearable motion capture systems and explore the potential of digital 

solutions to improve the accuracy and reliability of physical activity monitoring. Additionally, 

the thesis will consider the challenges and opportunities associated with the use of digital 

technologies in promoting physical activity and improving health outcomes. 

Overall, the use of digital solutions for promoting physical activity has the potential to 

improve health outcomes and reduce the burden of non-communicable diseases. By 

leveraging the power of technology, individuals can monitor and track their physical activity, 

receive feedback and support, and maintain an active and healthy lifestyle. As digital 

technologies continue to evolve, there are significant opportunities to further improve the 

accuracy and effectiveness of physical activity monitoring and promote health and well-being 

for all. 
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Figure 4 Wearables ownership and usage [34] 

 

Figure 5 Reasons to use smartwatches in the United States [34] 
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Figure 6 Usage of health and medical apps among mobile gamers in the United States [34] 

 

2.2 Technological solutions for Physical Activity 
Monitoring 

Motion capture is the process of digital recording of human movement. It is a 

multidisciplinary application field that features the interaction of recently developed 

technology for different areas, such as human ergonomics, entertainment, computer graphics, 

medical applications, sports, and other fields. Motion capture systems are mostly extended 

into two categories: a) optical systems and b) wearable systems [11][35]. In the following 

subchapter, both categories of motion capture systems are reviewed. 

2.2.1 Optical Systems 

Optical sensing encompasses a large and varying collection of technologies assembled into 

single or multiple cameras. By using various image processing techniques, the 3D position of 

the subject being recorded is determined. Data acquisition is traditionally implemented using 

special markers attached on anatomical landmarks in correspondence with the joints involved 

in the analysis, however, more recent systems can generate accurate data without additional 

makers [36][37]. 

2.2.1.1 Marker-based Optical Systems 

Marker-based optical systems determine position by using multiple cameras to track 

predetermined points (markers) on the subject’s body segments, aligned with specific 
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anatomical landmarks. The position is estimated using multiple 2D images of the working 

volume. Stereometric techniques correlate common tracking points on the tracked objects in 

each image and use this information along with knowledge concerning the relationship 

between each of the images and camera parameters to calculate position. The markers can 

either be passive (reflective) or active (light emitting). Reflective systems use infrared (IR) 

LEDs mounted around the camera lens, along with IR pass filters placed over the camera lens 

and measure the light reflected from the markers. Optical systems based on pulsed-LEDs 

measure the infrared light emitted by the LEDs placed on the body segments [11]. The benefit 

of active markers over passive ones is that the measurements are more robust. However, 

active markers do require additional cables and batteries, so the freedom of movement is more 

limited. In addition, the maximum sample frequency is lowered when multiple markers are 

used, as the signal of each individual marker needs to have a distinguishable frequency by 

which it can be identified.  

Marker-based systems are more accurate than the other systems and in literature are 

often regarded as the gold standard, with Vicon system often chosen as a representative of the 

passive systems, and Optotrak as an active one [38][39]. However, marker-based systems 

have several limitations, including long preparation times, soft tissue artifacts, and the 

potential hindrance of specific movements due to marker placement. These systems can be 

costly and require a large space to accommodate all the necessary cameras for analysis. The 

accuracy and reliability of marker-based systems are highly dependent on the expertise and 

precision of the professional responsible for placing the markers on anatomical landmarks. 

However, there is often variability in marker positioning for transverse plane movements 

between different professionals or sessions, which can decrease the reliability of the 

measurements [37]. Additional limitations of the marker-based systems include the 

requirement for line-of-sight between cameras and markers, leading to data interruptions 

when markers are out of view, and high sensitivity to setup alterations, such as accidental 

camera shifting. Furthermore, marker-based systems are mostly used indoors in dark 

environments to avoid interference from bright sunlight, further limiting their practical use 

[39]. 

2.2.1.2 Marker-less Optical Systems 

With the rapid advancement of computer vision research, marker-less capture of human 

movement data has become possible through the use of just optical cameras and computer 

vision algorithms. These methods utilize 2D video data combined with generative or 



17 
 

discriminative algorithms to estimate human pose in 3D (Figure 7) [40]. Generative 

approaches involve fitting a pre-defined model of the subject to 2D visual cues or 3D cues 

with the help of silhouette matching algorithms. In contrast, discriminative algorithms, 

particularly deep neural networks, detect a sparse set of learned features such as joint key 

points that describe a subject's pose [41]. Discriminative algorithms are often called model-

free algorithms because they avoid iteratively tuning the parameters of a body model to fit the 

image. Compared to generative approaches, discriminative algorithms have faster processing 

times, improved robustness, and reduced dependence on an initial guess. However, they may 

have reduced precision and require a large database of training data from which they can learn 

how to infer a result. Therefore, it is not uncommon to combine algorithms, with 

discriminative approaches used as initial guesses for generative approaches [40]. 

 Marker-less optical systems based on computer vision algorithms also have some 

common drawbacks: real-time image recognition can be challenging, and it may require 

expensive high-quality and/or high-speed cameras to capture the necessary data. The accuracy 

of the system is also heavily influenced by the experimental setup, specifically the position of 

the camera in relation to the object's trajectory and the number of cameras used. Additionally, 

increasing the camera resolution can result in a decrease in feasible maximum sampling 

frequencies [39]. 

 

Figure 7 General structure of a marker-less motion capture. Adopted from [40] 
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There is another commonly used type of marker-less system that utilizes depth-sensing 

cameras instead of traditional cameras and complex computer vision algorithms. These 

systems create a depth map, where each pixel represents the distance of a point in space from 

the camera. Depth information helps mitigate issues that affect traditional camera systems, 

such as poor lighting, shadows, reflections, and cluttered backgrounds. Depth-sensing camera 

systems range from narrow-baseline binocular-stereo camera systems (e.g., the PointGrey 

Bumblebee or the Stereolabs Zed camera) to active cameras that project light into the scene to 

sense depth (e.g., Microsoft's Kinect). These active, depth-sensing camera systems, often 

referred to as RGB-D cameras due to their ability to capture both color and depth, have 

demonstrated effectiveness in real-time full-body pose estimation for interactive systems and 

games. While these systems are advantageous due to their simplicity and affordability, they 

are limited by reduced accuracy and reliability compared to marker-based systems, a small 

field of view, and difficulties in detecting dark surfaces that absorb light, shiny surfaces that 

result in specular reflection, and rough surfaces if the angle of incidence of incoming light is 

too large [39][40]. 

2.2.2 Wearable Systems 

Unlike optical systems, wearable systems do not have cameras and, therefore, provide more 

flexibility without spatial constraints [12]. In this case, a system is compounded of different 

wearable devices attached to a subject’s body. Wearable devices are designed using a wide 

range of technologies, the most significant ones are revied below.  

2.2.2.1 Electromagnetic Systems 

According to van der Kruk et al. [39], electromagnetic systems (EMSs) use the time-of-flight 

of electromagnetic waves to determine the unknown positions of measurement transponders. 

EMSs are capable of providing large capture volumes, but they are generally less accurate 

than marker-based optical systems. Unlike marker-based systems, EMSs do not require a line-

of-sight to determine the positions of the transponders, and the human body is transparent to 

the field applied. However, EMSs are sensitive to ferromagnetic materials in the environment, 

which can decrease the accuracy of the data, and they also have lower sample frequencies, 

which can limit their use in fast-moving activities such as sports analysis. 

There are several versions of EMS systems available, including the Global Navigation 

Satellite System (GNSS), Local Position Measurement system (LPM), Wireless Ad-hoc 

System for Positioning (WASP), Radio Frequency IDentification system (RFID), and Ultra-
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Wide Band system (UWB). Among these systems, the GPS-GLONASS dual-frequency 

system of the GNSS shows promise in terms of range-accuracy combination. The GNSS 

system is a satellite navigation system that includes GPS, GLONASS, and GALILEO. The 

system relies on satellite data to determine the location of the receiver, and the accuracy of the 

system depends on its specifications. 

EMS systems, other than GNSS, can be used indoors as they use local base stations 

instead of satellite signals. LPM is a system that consists of base stations positioned 

throughout the area and transponders worn by subjects. The system can determine the 3D 

position of the transponder via time-of-flight, but the accuracy of the system is limited by the 

number of base stations that receive the signal. WASP is a system that uses tags and anchor 

nodes placed at fixed positions to track participants in 2D. The accuracy of WASP is limited 

by the bandwidth of the transmitted radio signal. 

RFID is a wireless non-contact system that uses electromagnetic waves and fields to 

transfer data from a tag attached to an object to an RFID reader. RFID tags can be active or 

passive, with passive tags having a limited range and lifetime due to their reliance on 

magnetic fields for power. The communication between RFID tags and readers can be 

affected by various factors such as attenuation, cross paths of signals, and interference from 

other RFID tags and readers, as well as other RF devices. 

2.2.2.2 Ultrasonic Systems 

Ultrasonic localization systems are commonly utilized in short-range measurements, 

especially in motion capture applications. By utilizing ultrasonic transmitters and receivers, 

these systems are capable of tracking the position of various body parts. The position of an 

object can be estimated using the time-of-flight of an ultrasound wave as it travels through the 

air. These systems are also referred to as acoustic measurement systems since they operate 

using sound waves. The difference between sound and ultrasound is that the latter is inaudible 

to the human ear, making it an advantageous tool for research purposes. One limitation of 

ultrasonic systems is their restricted range compared to sound. Additionally, the directionality 

of ultrasound can pose challenges in dynamic measurement scenarios [39]. 

2.2.2.3 Magnetic Systems 

Magnetic motion capture systems generally consist of a transmitter and various receivers 

placed upon different parts of the body: the transmitter generates a magnetic field, which is 

subsequently intercepted by the receivers. Given that receivers are body-worn, movement of 
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the human body in the presence of the external magnetic field (as generated by the 

transmitter) also changes the position of the receivers. Given the spatial variation of the 

receivers with respect to the transmitter, movement can be detected. More specifically, both 

the transmitter and the receiver(s) of magnetic motion capture systems contain three 

orthogonal coils. Movement leads to change in the relative flux linkage, which, in turn, can be 

captured and post-processed to monitor movement. 

 As any other system, magnetic motion capture systems are associated with their 

advantages and disadvantages. For instance, they are cheaper than optical systems and 

provide similar performance and with relatively less markers on the body, without suffering 

from line-of-sight issues (no occlusions). A disadvantage, however, is brought up in the case 

where receivers are tethered to a control unit. In doing so, subject mobility is restricted. 

Nevertheless, wireless versions of these systems are also available. Another main drawback is 

the sensitivity of magnetic motion capture to the presence of metals in the building or the 

surrounding environment. This is attributed to the generation of eddy currents (in the presence 

of external magnetic fields) and the fields produced by them. Tough algorithms exist to 

compensate for these effects, any related calibration would be only valid for a predefined 

scenario (for instance, a specific metal structure used in the building) [42]. 

2.2.2.4 Inertial Systems 

Inertial systems, also commonly named Inertial Measurement Unit (IMU), are often 

composed of an accelerometer and a gyroscope. The former serves to measure the sum of 

gravitational and inertial linear acceleration, while the latter measures angular velocity. 

Sometimes, they are further combined with a magnetometer which provides information 

about the local magnetic field vector components. 

To capture motion, IMUs are first calibrated and then placed on different parts of the 

human body. The goal is to detect the orientation of diverse body segments and, eventually, 

monitor motion. The process of deriving motion from IMUs is highly complex, and there are 

several methods of doing so. More specifically, IMUs rely strongly on the accelerometer data 

which can be integrated once and twice to obtain velocity and position, respectively. 

Similarly, the gyroscope provides angular velocity, which can be integrated and differentiated 

to obtain angular position and angular acceleration, respectively. Expectedly, the aim is to 

determine the orientation of the rigid body on which the sensor is placed. This can be 

achieved solely by the accelerometer itself; however, a combination of the information 
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obtained by the accelerometer and gyroscope can help in determining the body’s orientation 

more accurately and precisely. Nevertheless, the aforementioned process of integration 

introduces errors, which further cause the sensors to drift. This is one of the biggest 

disadvantages of IMUs, with drift issues increasing linearly (integrated once) or quadratically 

(integrated twice) with time. For mitigation, hardware and/or algorithmic solutions may be 

pursued. Notably, the magnetometer becomes handy here as a hardware solution that provides 

an additional reference (i.e. using the local earth’s magnetic field). But unfortunately, 

magnetometers are susceptible to magnetic interference from the environment and the 

presence of ferromagnetic materials. As an alternative, algorithmic-based or combined 

hardware and algorithmic solutions may be used [42]. 

2.2.3 System Selection 

Van der Kruk et al. [39] have proposed sport categories along with the most plausible 

measurement system categories, which  are also generally applicable to the selection of 

systems for physical activity monitoring (Figure 8).  The selection of a system depends on the 

field of application, the type of activity, and the space where the activity takes place. Two 

main categories are defined: team sports and individual sports. In team sports, systems are 

typically used for tracking the position, distance, velocity, and acceleration of players, where 

occlusions are common, and accuracy is not crucial as for technique analysis. Thus, EMSs are 

the most suitable. On the other hand, individual sports require higher accuracies, and they are 

further divided into larger and smaller volume sports. Smaller volumes can be covered by 

highly accurate marker-based optical systems, while individual sports in larger volumes 

present challenges in measuring kinematics. The most appropriate measurement options are 

marker-less optical systems based on computer vision algorithms and IMU systems, but their 

application often necessitates developing a suitable algorithm, either for tracking (in the case 

of marker-less optical systems) or for fusion filtering (in the case of IMU). 

 Although optical systems belong to the category characterized by high accuracy due to 

the need for highly controlled conditions, the limited volume covered by a large number of 

cameras, the problem of occlusion, expensive and fixed infrastructure where the positions and 

orientation of the cameras must remain unchanged during the measurement, the applicability 

of such systems is limited to specialized laboratories and experts for carrying out 

measurements. Therefore, the application of optical systems is reduced and oriented mostly 

towards specialized requirements for monitoring (e.g. clinical studies) or testing the accuracy 

of other systems. Due to the independent fixed infrastructure, the elimination of occlusion 
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problems, usability and the price, the increasing application is directed specifically towards 

wearable systems [43][44][45]. 

 

Figure 8 Sport categories with measurement system categories. In the figure, IMS is equivalent to a 
marker-less optical system and OMS is equivalent to a maker-based optical system. Adopted from [39] 

 

2.3 Wearable Systems for Physical Activity 
Monitoring and Assessment  

Wearable systems are composed of body-worn devices that can provide mobile and 

continuous monitoring of the human body. Each device, i.e. sensor unit is equipped with 

motion sensors, processing units, and wireless and memory components. The primary 

objective of the system is to acquire raw sensor data and perform signal processing techniques 

to extract meaningful insights. To achieve a high level of user acceptance and adherence, a 

wearable system must not impose any significant restrictions on user mobility and comfort. 
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The main deployment objective of any wearable system is to improve its wearability and the 

ease of use, which has significant implications. Firstly, it necessitates that sensor units are 

powered by a battery. Using a large energy source would hinder mobility and, therefore, is not 

acceptable. Secondly, wearability concerns preclude the use of wired communication 

schemes, which can interfere with natural human movements. Finally, reducing the form 

factor of sensor units is crucial for wearability. It can be done by reducing the size of the 

sensor unit’s components such as the processor, memories, sensors, and the battery. While 

technological advancements have enabled substantial reductions in the size of 

microprocessors, sensors, and memories, battery size reduction has lagged behind, indicating 

that the size of the battery remains the limiting factor in the form factor of wearable sensor 

units. This observation implies that, at present, the form factor of wearable sensor units is 

primarily dictated by the size and weight of the battery. The requirement for extreme battery 

efficiency motivates the need for lightweight and highly efficient signal processing algorithms 

and optimization techniques. The signal processing, however, needs to exhibit sufficient 

reliability and sensitivity in extracting the relevant parameters [46]. 

The utilization of wearable systems is highly sought after due to their ability to 

provide objective and measurable data in non-laboratory settings. Furthermore, depending on 

the number and locations of the sensing units, wearable systems can vary greatly in the scope 

of possible tasks from general action recognition to extracting a very specific detail about a 

movement. This property makes wearable systems extremely useful in physical activity 

monitoring and assessment. 

 The use of wearable systems can be classified into two primary categories: medical 

and non-medical applications. Traditional healthcare practices rely on doctors to observe 

patients and use their personal experience to diagnose symptoms or require patients to 

undergo examinations in a laboratory environment. In contrast, wearable devices enable 

remote and continuous patient monitoring. Additionally, wearable systems are increasingly 

being used in sports training, where the ability to evaluate movement quality and provide 

feedback is crucial. Traditionally, these tasks were performed by human coaches who relied 

on their personal expertise and experience. However, coaching services can be expensive and 

often involve coaching multiple trainees simultaneously, limiting their ability to provide 

detailed feedback for each individual. An automated system that can assess the overall 

performance of an individual and pinpoint problem areas in the individual’s movements 

facilitates performance assessment and increases the effectiveness of unsupervised practice. In 
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addition to sports training, the application of such system is also applicable during additional 

recreation, which is recommended by WHO. Wearable systems can provide more effective 

and safer individual performance of physical activity, as well as additional motivation to 

continue engaging in physical activity [4][5][6][46]. 

Wearable systems have been used to monitor different types of physical activity, both 

aerobic and muscle-strengthening, but still primarily with an emphasis on aerobic (87%). The 

discrepancy may be attributed to the current limited ability of wearable systems to monitor 

functional parameters, such as the muscle strength in the upper and lower extremities or 

movement execution performance. Presently, exercise monitoring wearables primarily focus 

on physiological metrics, such as step count, distance traveled, and cardiometabolic 

parameters (including heart rate, energy expenditure, maximum oxygen consumption, oxygen 

saturation, and blood pressure) [47]. Therefore, the rest of the thesis will be directed towards a 

less researched area, the use of wearable systems through muscle-strengthening physical 

activity, i.e. using wearable devices (IMUs) during strength exercises. 

System of this nature typically consists of two main parts: sensors for data acquisition 

and algorithm that will provide appropriate assessment and feedback (Figure 9).  

 

Figure 9 A flow diagram of the wearable system for physical activity monitoring and assessment 

 

2.3.1 Data Acquisition  

IMU is attached to different locations on the body and provides a continuous time-series of 

data. It is mostly based on multi-axis combination of accelerometers, gyroscopes and 

magnetometers but sometimes also with additional sensors such as GPS and/or Heart Rate 

(HR) monitor. Different sensors produce different types of raw data, which are sampled in a 

multivariate time series depending on sensors’ frequencies. 
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2.3.1.1 Number and Placement of Sensors   

The location and attachment of IMUs are crucial factors that influence the measurement of 

bodily movements. However, the ideal placement of sensors for specific applications remains 

a subject of considerable discussion and debate [48]. IMUs can be positioned on various parts 

of the human body [43][49][50][51]. Common locations for IMUs include wrist, upper arm, 

ankle, thigh, chest/trunk, lower back etc. Generally, it is customary to employ one or several 

IMUs, although the quantity seldom surpasses five units. Multiple IMUs aided in system 

output since conjunctions between feature values at different locations were useful for 

discriminating many activities. However, in some studies [50][52] it has also been shown that 

performance of system is not too compromised if the number of used IMUs is reduced to only 

two, on wrist and thigh. 

2.3.1.2 Sensors Configuration  

Digital accelerometers, gyroscope and magnetometers are configurable, allowing their users 

to tailor the raw data generation to the needs of their application. Different configuration 

options include the number of axes, the range of output data and the sampling frequency. 

Upon reviewing the existing literature [51][52], it seems apparent that there is a lack of 

agreement within the research community regarding the optimal selection of configuration 

parameters for specific types of activities. Range of acceleration is from ±2 g to ±16 g, 

angular velocity from ±500 to ±2000 °/s and magnetic field from ±1 to ±4 G, with sampling 

frequency range up to 100 Hz. Although energy consumption may not represent a significant 

obstacle in controlled environments during data collection, it poses a considerable challenge 

when data is gathered in natural settings, particularly when the duration of the experiment 

surpasses the battery life of the sensor. Consequently, for prolonged experiments where 

battery lifetime is a concern, or when the creation of autonomous systems is desired, it is 

advisable to restrict the sensors' resolution and sampling frequency to a level that is no higher 

than necessary, to conserve energy.   

2.3.2 Algorithm 
2.3.2.1 Data Preprocessing 

Data preprocessing is an essential step in the data mining process, aimed at addressing various 

characteristics of the sensor data, such as sampling rate, units, random noise, or 

malfunctioning. To this end, diverse preprocessing approaches have been proposed in the 

literature [43]. For instance, Fallmann et al. [53] applied a median filter to smooth the signal, 



26 
 

while in [54] a third-order average filter was utilized to reduce random noise. Other 

approaches, such as low- and high-pass filtering, have been used to extract the acceleration 

components due to body movements and gravity and eliminate noise. Notably, in [55] [56], 

the authors highlighted that the low-frequency component of the acceleration reflects gravity, 

while the high-frequency component represents the dynamic motion of a human body. 

Additionally, [57][58] employed a low-pass Butterworth filter to separate these components 

effectively. Nevertheless, it is worth noting that in some investigations (e.g., references 

[59][60]), no preprocessing steps were undertaken, and the raw data were fed directly into a 

convolutional neural network. 

2.3.2.2 Feature Extraction 

To extract features from sensor data, it has become customary to use windowing techniques, 

which involve dividing signals into short time intervals. Three primary windowing techniques 

are typically utilized: a) sliding window, which partitions data into fixed-length windows, b) 

event-defined windows, which entail additional processing to locate specific events that 

further define data partitioning, and c) activity-defined windows, which rely on detecting 

changes in activity levels to partition data (Figure 10). 

The sliding window approach is commonly favored for real-time applications as it 

does not necessitate additional processing treatments [49][61]. However, the appropriate 

selection of window length is critical, and it is essential to consider the trade-off between 

computational complexity and information content [62]. 

To implement event-defined windows, it is necessary to perform additional processing 

(beside filtering 2.3.2.1) to identify particular events, such as beginning or end of human 

movement during exercise. These events are subsequently utilized to define consecutive 

windows, as depicted in Figure 10b. As the time intervals between these events may not be 

consistent, the window sizes cannot be standardized. Various techniques have been proposed 

to detect beginning and end of movement [63][64][65][66][67], and this process is referred to 

in literature by the term “movement (or repetition) segmentation” [68].  

Activity-defined windows rely on identifying the moments when there are changes in 

activity. These points are then used to create windows of sensor data, each representing a 

different activity (as shown in Figure 10c). 
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Figure 10 a) sliding windows, b) event-based windows and c) activity-defined windows 

 

For each time window, feature extraction techniques are utilized to isolate relevant 

information and obtain quantitative measures that enable comparison of the signals. 

Moreover, these techniques serve to convert voluminous input data into a smaller set of 

features, typically referred to as a feature vector [69]. The extracted features can be broadly 

categorized into three groups: time-domain features, frequency-domain features and heuristic 

features [62]. The dimensionality of the feature set is a crucial factor in classification. It is 
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advisable to use feature sets with a size equal to or smaller than the number of observations 

collected, as using larger feature sets can increase the risk of overfitting and result in poor 

classification performance on new data, which is known as the curse of dimensionality [70]. 

2.3.2.3 Classification 

The process of classification in systems for monitoring and assessment can be divided in two 

parts, exercise recognition and exercise assessment. 

2.3.2.3.1 Exercise Recognition  

One commonly employed approach for the classification of exercise for the purpose of 

recognition involves the application of Machine Learning (ML) algorithms to analyze sensor 

data, with the aim of accurately identifying the exercise being performed. To achieve this, 

supervised learning techniques can be employed, whereby a model is trained on labeled 

sensor data and corresponding activities, allowing it to predict the activity being performed 

based on new sensor data. Alternatively, unsupervised learning techniques can be utilized to 

cluster sensor data into distinct activity patterns without prior knowledge of the activities 

being performed [71]. Popular ML algorithms for activity recognition include decision trees, 

Naïve Bayes classifiers, Hidden Markov Models (HMM), Support Vector Machines (SVM) 

[60], K-Nearest Neighbors (KNN) [72], and deep learning approaches, such as convolutional 

neural networks (CNNs) [73]. The process of selecting a ML algorithm that is appropriate for 

a specific dataset can be challenging. It is advisable to test multiple algorithms on a given 

dataset and choose the one that yields the most favorable results. In general, simpler ML 

algorithms may be more suitable due to their increased model transparency and computational 

efficiency. Consequently, if simpler algorithms (such as decision trees or logistic regression) 

exhibit similar performance as more complex algorithms (like random forests or neural 

networks), they may be more suitable for the intended application [50]. 

2.3.2.3.2 Exercise assessment 

The methods for exercise assessment can be broadly classified into three categories: rule-

based approaches, template-based approaches and discrete movement score approaches [68]. 

 Rule-based approaches for exercises rely on a predetermined set of rules that are 

defined by human movement experts to assess the correctness of movements. The rules that 

define the executed movements generally consist of movement descriptors such as relative 

angles, velocities, or distances. For example, in the study by Bo et al. [74], the quality of 

squat exercises was assessed using knee and ankle angles. 
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 Template-based approaches evaluate exercise performance by comparing training 

motion sequences with template motion sequences. The training sequences can be captured 

during a workout, while the template sequences are reference movements performed by either 

experienced subjects, coaches, clinicians, or subjects under the supervision of an expert. The 

metrics used to measure movement similarity in template-based approaches can be divided 

into two categories: distance functions - Euclidean distance, Mahalanobis distance or 

Dynamic Time Warping (DTW) [75] and probability density functions - Gaussian Mixture 

Model (GMM) [73] or HMM [76]. 

 Discrete movement approaches involve classifying individual exercise repetitions into 

distinct categories, usually correct and incorrect movements, resulting in binary class values 

of 0 or 1. ML algorithms such as AdaBoost classifier [77], random forest [7][78], KNN [79], 

Naive Bayes [78], SVM [78], and CNN [80] have been utilized to distinguish between the 

two classes. 

2.3.2.3.3 Performance Validation  

According to research [50][70], ML models developed for classification should be validated 

by testing their performance on unseen data in real-world settings. It is important to avoid 

training and testing the ML model with repetitions from the same individual, as this can lead 

to classification performance inflation. Cross-validation (CV) methods, such as 10-fold CV or 

leave-one-subject-out CV, are recommended for assessing ML model prediction performance, 

particularly for small datasets. Personalized classifiers should follow a similar approach and 

use leave-one-observation-out CV. Model tuning is an important step in the ML model 

development process and should be governed by prediction performance on the training set, 

with hyperparameters and optimal feature subsets selected based on classification 

performance on the validation set. The final ML model should be assessed based on its 

performance on the testing set to provide an unbiased estimation of its classification 

performance. 

2.3.3 Research Gaps 

Movement segmentation involves extracting individual repetitions from a continuous motion 

sequence of an exercise. This is an important step for the monitoring and assessment of 

strength exercises, as most existing evaluation approaches rely on quantifying the quality of 

individual repetitions. Once a subject's movements are recorded using a wearable device, and 

multiple repetitions of the exercise are performed, the motion data must be segmented into 
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instances of individual repetitions before evaluation techniques can be applied to produce 

quality scores. The overall quality of the exercise is typically calculated by averaging over the 

performance scores of individual repetitions [81]. 

Manual segmentation of motion sequences is commonly used in many studies 

[58][82][83], but it is not conducive to fully automated evaluation of strength exercises.  

There are two broad categories of approaches used for automated motion segmentation. The 

first type involves modeling the common characteristics that are shared by segment points, 

while the second type involves learning a segment pattern from a pre-existing library of 

templates [68]. 

Approaches in the first category often rely on domain-specific knowledge of the 

underlying data to select discriminative features for segmentation. For instance, kinematic 

zero-crossing methods are frequently used to perform exercise segmentation, determining 

segments based on zero crossings for the velocity or acceleration of joint trajectories [84][76]. 

Distance functions, such as Euclidean distance [85], Mahalanobis distance [86], and DTW 

distance [87], have also been employed. A deep learning-based approach has been introduced 

for segmentation of time-series data [88], in which an autoencoder network extracts 

representative features from input data, and the peaks in a distance function calculated from 

the features are selected as breakpoints for segmentation. Nonetheless, further post-processing 

is often necessary due to the high incidence of false positives. 

The second category of approaches employs machine learning methodology to 

discover latent patterns from template libraries. Hidden Markov Models (HMM) are often 

used for segmentation of movement data, treating each segment as a hidden state, and 

utilizing the Viterbi algorithm to recover the state sequence [1]. Regression-based techniques 

are also employed, whereby a piecewise linear function is applied to fit the template data, and 

segmentation is performed when the difference between the data and the regression line is 

greater than a given threshold [89]. Traditional classifier methods such as Support Vector 

Machines (SVM) have also been utilized for movement segmentation, classifying all data 

points of motion sequences as either segment points or non-segment points [90]. In addition 

to traditional methods, approaches based on neural networks have also been explored and 

utilized [64]. 

Although there have been numerous studies on the segmentation of repetitive human 

movements, there are still gaps in the research that require attention. The current segmentation 
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algorithms, such as those based on kinematic zero-crossing, HMM, and neural networks, have 

limitations with regards to their accuracy and reliability. Thus, there is a need for the 

development of more robust segmentation algorithms that can accurately and reliably segment 

repetitive human movements. As repetitive human movements often share similar 

characteristics across different exercises and tasks, exploring the potential of transfer learning 

for the segmentation of repetitive human movements is another research gap that could reduce 

the need for extensive training data and improve segmentation accuracy. 

Once individual movements have been successfully segmented, evaluations can be 

performed. As mentioned previously (subchapter 2.3.2.3.2), movement assessment techniques 

fall under three categories: rule-based, template-based, and discrete movement score methods, 

each with their own advantages and disadvantages.  

Rule-based methods are less computationally expensive and provide specific 

functional feedback, making them particularly useful in assessment. However, the lack of 

generalization and reusability for different exercises can lead to a large rule data set, difficult 

to synthesize within a workout framework. Additionally, when the complexity of the 

movement increases, it may be difficult to map the rule and obtain accurate movement 

assessment. 

Template-based approaches have the main advantage of an automatic assessment 

process that can be easily generalized to different types of exercise. However, their main 

disadvantage is that they heavily rely on the availability and quality of the template motion 

sequences, making them less suitable for exercises with high variability in performance. 

Creating a template library can also be time-consuming and require significant expertise, 

making it difficult to apply the approach to new exercises or populations. 

The main advantage of machine learning approaches in discrete movement score 

methods is their ability to learn from large amounts of data and adapt to different exercises, 

making them more flexible than rule-based or template-based approaches. Machine learning 

algorithms can also identify new patterns and relationships in the data that may not be 

apparent to human experts. However, a large amount of labeled data is required for training, 

which can be time-consuming and expensive to obtain. The performance of the machine 

learning algorithm also heavily depends on the quality and diversity of the training data, as 

well as the selection of appropriate features and algorithm parameters. Additionally, machine 
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learning models are often considered "black boxes", which makes it difficult for human 

experts to understand and interpret the assessment results. 

This doctoral thesis aims to address the existing research gaps by presenting a 

comprehensive procedure (chapter 5), method (chapter 3), and metrics (chapter 4) for the 

development of a closed-loop system for human movement monitoring and assessment using 

wearable devices during exercising. The proposed approach tackles several challenges, 

including the number and position of wearable devices, the selection of measurable quantities, 

the definition of the model, segmentation, classification, and assessment of the performance 

of individual movements and the entire exercise. By addressing these challenges, the 

proposed approach provides a robust framework for automatic and objective assessment of 

exercise performance. 

To validate the effectiveness of the proposed procedure, the approach was tested on a 

group of 40 subjects during a workout session consisting of 9 strength exercises. The results 

demonstrated the feasibility and accuracy of the proposed approach for the assessment of 

exercise performance. The proposed approach provides a valuable tool for trainers and 

clinicians to monitor and evaluate exercise performance in real-time and to provide immediate 

feedback to the user. Additionally, it has the potential to improve the efficiency and 

effectiveness of rehabilitation programs by providing objective and quantitative measures of 

exercise performance. Overall, the proposed approach has the potential to enhance the quality 

of life and well-being of individuals by promoting physical activity and healthy habits. 
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A measure of human movement variability is a quantitative indicator that describes the degree 

of changes in the performance of movements during physical activity. It provides information 

about the consistency and stability of the movement pattern over time and can be used to 

assess the effectiveness of an exercise intervention or to identify potential risk of injury or 

dysfunction. Various methods and metrics have been proposed to measure human movement 

variability, including time-series analysis, fractal dimension, sample entropy, and coefficient 

of variation. These measures can be applied to different types of movements, such as gait, 

balance, or strength exercises, and can be obtained using different sensor modalities, such as 

inertial and magnetic sensors (IMUs), force plates, or optical motion capture systems. 

This chapter aims to provide an overview of the available tools and methods that can 

be utilized for measuring the variability of human movement during strength exercise by 

employing IMUs. In order to establish a reference for the number and placement of IMUs, 

defining the model, and selecting the relevant data to be monitored during exercise 

performance, controlled measurements were conducted using a limited number of subjects. 

The objective is to identify the most appropriate approach to analyze and quantify the 

variability of human movement during exercise, which is a crucial factor in ensuring optimal 

performance and reducing the risk of injury. 

3 MEASUREMENT METHOD OF HUMAN 
MOVEMENT VARIABILITY DURING EXERCISE 
USING SENSOR NODES WITH INERTIAL AND 
MAGNETIC SENSORS 
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3.1 Movement Variability  
The concept of human movement variability has been extensively studied in the literature and 

has given rise to various definitions [91]. These definitions can be broadly classified into two 

approaches. The first approach defines variability as the degree of variance or deviation from 

the mean and employs standard statistical methods, such as standard deviation and coefficient 

of variation, to quantify the extent of variability. These techniques are commonly referred to 

as linear measures. The second approach regards the fluctuations present throughout the 

movement as having meaning and structure. In this approach, the complexity, predictability, 

divergence, and self-similarity of these fluctuations are measured using various methods, 

collectively known as nonlinear measures. Examples of these measures include Lyapunov 

exponent, detrended fluctuation analysis, and entropy. It is crucial to note that the two 

approaches to variability are conceptually distinct and complementary. Therefore, when 

discussing variability, it is important to make a clear distinction between these two 

approaches.  

According to a research [92], nonlinear analytical tools are useful in characterizing 

variability in terms of its structure, rather than just its magnitude. This concept is 

demonstrated in Figure 11, which features four time series signals with linear measures of 

range and nonlinear measures of Approximate Entropy (ApEn) for each signal. The first and 

second rows of signals appear random and disordered, with the range values reflecting 

differences in amplitude between the two signals. However, despite the differences in 

amplitude, the ApEn values for both signals are equivalent, indicating that the structure of the 

time series is consistent. On the other hand, the third and fourth rows depict sine wave time 

series that exhibit high levels of regularity, with the range values indicating differences in 

amplitude and the ApEn values being similar. Comparing the first signal with the third signal 

(and the second signal with the fourth signal) reveals that the amplitude, quantified by the 

range, is the same, while the structure of the series, described by the nonlinear ApEn value, is 

different. Therefore, the concepts of variability measured by the standard deviation (linear) 

and the structure of variability measured by ApEn (nonlinear) are fundamentally different, 

and they can exhibit an inverse relationship. 

The use of nonlinear analytical tools, such as ApEn, is valuable in assessing the 

structure of variability, which can provide unique insights into complex systems. Higher 

ApEn values indicate a greater level of irregularity, while lower values indicate more regular 

or periodic behavior. Values close to zero represent the highest degree of regularity, while 



35 
 

values close to two indicate the utmost level of irregularity. It is important to note that the 

different facets of variability presented through linear and nonlinear measures can provide 

complementary insights, contributing to a more comprehensive understanding of complex 

systems. 

 

Range ApEn 

10.0 2.02 

50.0 2.02 

10.0 0.18 

50.0 0.18 

Figure 11 Comparison of linear and nonlinear measures. Adopted from [92] 

 

3.1.1 Limitations 

Linear measures, such as mean and standard deviation, are commonly used to quantify 

movement variability. However, they have some limitations when it comes to capturing the 

full extent of variability in movement. One limitation is that linear measures assume that 

variability is normally distributed. In reality, movement variability is often non-normal and 

may exhibit skewed or multi-modal distributions. This means that linear measures may not 

accurately capture the full extent of variability, especially if there are outliers or extreme 

values. Another limitation is that linear measures do not capture the structure or organization 

of variability in movement. Thus, two movements with the same mean and standard deviation 

may have different patterns of variability. Finally, linear measures do not capture the temporal 

dynamics of movement variability. Movement variability can change over time, and certain 

phases or directions of movement can become more or less variable, which linear measures 

may not capture [93][94]. 
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Nonlinear measures present a clear advantage over linear measures for providing a 

comprehensive overview of movement variability. Nonetheless, nonlinear measures have 

their limitations that must be taken into account when examining movement variability. A 

major limitation is that the computation of nonlinear measures often requires lengthy time 

series, which may not be feasible for movements that are extremely limited. Additionally, the 

interpretation of nonlinear measures can be challenging as they require concurrent use of 

linear tools to establish associations and determine meaning. Furthermore, the validity of 

nonlinear measures for studying variability depends on the assumption that the differences 

between repetitions of a task are unpredictable, which is often not the case in practice. Finally, 

the complexity of nonlinear measures can make it challenging to determine which measures 

are most appropriate for a given application, and the outcomes can be sensitive to the choice 

of parameters and the quality of the data [92][95]. 

3.2 Materials and Methods 
Segmenting repetitive human movements can be a useful approach for measuring variability 

in movement patterns. By dividing a repetitive movement into smaller segments, it is possible 

to assess the consistency and variability of each segment across multiple repetitions. This can 

provide valuable insights into how an individual is performing the movement and whether 

there are any areas where improvement is needed. Once the movement has been segmented, 

variability can be measured using various metrics, such as range of motion, joint angles, or 

velocity. These metrics can provide insight into how consistent an individual's movement is 

across different repetitions, as well as identify areas where there may be increased variability. 

Measuring variability in repetitive movements can be valuable for a variety of applications, 

such as assessing movement quality, monitoring rehabilitation progress, or identifying 

potential injury risk factors. By segmenting repetitive movements and measuring variability, 

it is possible to gain a deeper understanding of how individuals perform movements and 

identify areas where further improvement is needed. 

The present study introduces two distinct techniques for counting and segmenting 

repetitions, one of which utilizes prior and domain knowledge [96] while the other does not. 

Moreover, this study also assesses the efficacy of various classifiers for accurately 

recognizing the type of exercise being performed, as well as the extent to which individual 

sensor features and the position of the IMU affect classification accuracy.  



37 
 

 Considering the acknowledged limitations of currently available tools for measuring 

variability, Chapter 4 introduces a novel metric for evaluating the quality of movement. This 

metric is based on variability and is applied to movements that have been previously 

segmented. 

3.2.1 Experimental Protocol 
3.2.1.1 Participants 

Six young healthy subjects aged 27 – 32 (4 males and 2 females, age: 29.7 ± 2.1 years, height: 

178.3 ± 8.02 cm and weight: 75.9 ± 16.1 kg) were recruited for this research. Subjects did not 

have a current or recent musculoskeletal injury that would impair their exercise performance. 

Three subjects have no experience with gym or performing strength exercises, but the 

remaining three are regular gym participants and have extensive experience. Participation was 

completely voluntary, and all subjects gave their informed consent for inclusion before they 

participated in the study. The Human Research Ethics Committee at University of Zagreb, 

Faculty of Electrical Engineering and Computing approved the study protocol and informed 

consent. Verbal explanations were also provided to each subject at the start of the experiment 

session in order to ensure that participants understood what was required of them. 

3.2.1.2 Performed Exercises 

Each subject performed a cycle of exercises (workout) according to a pre-agreed protocol 

(number of repetitions and sets) in the presence of an expert. A complete movement of a 

strength exercise is commonly referred to as a repetition, and several such repetitions 

performed without any rest between them constitute a set. The task of the expert was to 

explain to the subjects how to perform a particular exercise and to keep records of performed 

movements, i.e. repetitions. The workout consisted of 9 strength exercises that focused on 

activating the whole body, not just individual extremities. The workout included: 1) Standing 

Front Dumbbell Raise, 2) Standing Dumbbell Lateral Raise with Arms Straight, 3) Standing 

Side Dumbbell Shrug, 4) Standing Dumbbell Curl with Rotation, 5) Bent-over Dumbbell 

Row, 6) Push-up, 7) Dumbbell Step-up, 8) Box Squat and 9) Heel Touch (Figure 12). The 

pace of exercise execution and breaks between sets and between individual exercises were 

adjusted by the subject in agreement with the expert, and the order of performing the 

exercises was the same for all subjects. Each subject performed the given workout once, 

leading to a total of 6 different sets of data from the measurements. The duration of workout 

of each subject was approximately 30 minutes. 
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Figure 12 Nine strength exercises performed as part of the workout 

 

3.2.1.3 Data Acquisition  

The Shimmer3 IMU was utilized for data acquisition in order to monitor the performance of 

selected exercises. To achieve this, the optimal position for the IMUs was determined. The 

chosen position should enable monitoring of all performed exercises using as few IMUs as 

possible and a single algorithm. Based on previous experience with tracking physical 

activities [97][98][99], it was determined that at least one IMU per body segment primarily 

involved in the performance of the selected exercises should be placed. This resulted in a 

minimum of 3 IMUs, positioned on the wrist of the right hand, right thigh (mid-point, lateral 

surface), and frontally in the middle of the chest above the navel (Figure 13). The 

accelerometer range was set to ± 8 g, gyroscope to ± 500 °/s, and magnetometer to ± 1.3 G. 

The sampling frequency was set to 201.03 Hz. To ensure the highest level of sensor accuracy, 

calibration was carried out using the Shimmer 9DoF Calibration application. To eliminate 

unwanted high-frequency noise during each repetition, the nine signals were low pass filtered 

at 𝑓𝑐 = 10 Hz using a Butterworth filter of order n = 2. 

3.2.1.4 Data Labeling  

During the workout, an expert was present with the subjects and used the Shimmer 

application ConsensysPro to label the beginning and end of each exercise, as well as the 
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associated sets (activity-defined windows 2.3.2.2). Individual repetitions within sets were 

subsequently separated (annotated) manually. 

 

Figure 13 The 3 IMUs positions: 1) right wrist, 2) chest (in middle above the navel)) and 3) right thigh 
(mid-point, lateral surface) 

3.2.2 Signal Preparation and Processing 

The data from the sensors was collected and saved using the software tool ConsensysPro, 

while Matlab was utilized for processing and analysis. The expert marked the beginning and 

end of each set in real-time using an event marker tool (ConsensysPro) during the 

measurement. By way of illustration, Figure 14 displays the raw acceleration signals and 

event markers obtained from the IMU located on the right wrist during the performance of 

three sets of Standing Front Dumbbell Raise exercise. 

The sets were separated using event markers, and the acceleration components were 

subsequently processed. This involved scaling with a factor of g = 9.81 𝑚

𝑠2 and calculating the 

Acceleration Vector Magnitude (AVM) according to expression: 

𝐴𝑉𝑀[𝑖] = √(𝑎𝑥[𝑖])2 + (𝑎𝑦[𝑖])
2

+ (𝑎𝑧[𝑖])2 − 1 

( 1 ) 

where i is the current data sample 𝑎𝑥, 𝑎𝑦 and 𝑎𝑧 represent respectively the acceleration 

signals in the x, y and z axes of the sensor. Acceleration and AVM are expressed in g units, 



40 
 

1 𝑔 = 9.81 
𝑚

𝑠2. In addition to the AVM calculated from the raw acceleration components, the 

Vector Magnitude (VM) was also calculated from the linear acceleration (𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟) and the 

angular velocity (referred to as the Angular Velocity Vector Magnitude, AVVM). The value of 

𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟 is also expressed in g units, while AVVM is expressed in °/s. The expression 

𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟 and AVVM were employed only in the repetition segmentation method described 

in the subchapter 3.2.4.2. However, in the other proposed methods, only AVM was utilized. 

𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟[𝑖] = √(𝑎𝑥𝐿𝑖𝑛𝑒𝑎𝑟[𝑖])2 + (𝑎𝑦𝐿𝑖𝑛𝑒𝑎𝑟[𝑖])2 + (𝑎𝑧𝐿𝑖𝑛𝑒𝑎𝑟[𝑖])2 

( 2 ) 

𝐴𝑉𝑉𝑀[𝑖] = √(𝜔𝑥[𝑖])2 + (𝜔𝑦[𝑖])2 + (𝜔𝑧[𝑖])2 

( 3 ) 

 

Figure 14 Three raw acceleration components and event marker signal during the performance of 3 sets 
of Standing Front Dumbbell Raise exercises. IMU position – wrist 

 

3.2.3 Method with Domain Knowledge 

It should be emphasized that this approach may not be universally applicable to all types of 

exercises, and prior knowledge of the exercise being performed (subchapter 3.2.5) is 

necessary to ensure the success of the algorithm. Furthermore, it is crucial to possess domain 
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knowledge concerning the exercise, such as the selection of the relevant IMU position for 

subsequent signal processing (Table 3), as well as identifying whether the maximum or 

minimum of signal denote the beginning and end of the movement, among other pertinent 

considerations. 

Table 3 The exercise and the IMU utilized to obtain the accelerometer readings 

Exercise IMU placement  

1. Standing Front Dumbbell Raise wrist 

2. Standing Dumbbell Lateral Raise with Arms Straight wrist 

3. Standing Side Dumbbell Shrug wrist 

4. Standing Dumbbell Curl with Rotation wrist 

5. Bent-over Dumbbell Row wrist 

6. Push-up chest 

7. Dumbbell Step-up thigh 

8. Box Squat thigh 

9. Heel Touch chest 

 
3.2.3.1 Repetition Segmentation using Frequency Spectrum 

After extracting the individual set and calculating the AVM, the subsequent step involves the 

segmentation of the repetitions within each set. In order for the algorithm to be efficient in 

terms of energy and applicable to embedded devices, the waveform of the AVM signal should 

be such that it can be segmented easily using simple and quick functions, like those used to 

identify local minima and maxima (Figure 18). 

The first step in the segmentation process is to determine the frequency spectrum of 

the signal and the dominant frequency in the spectrum. Figure 15 shows the flow diagram of 

the algorithm by which individual repetitions are obtained from the set. The dominant 

frequency in the first step of the algorithm is assumed as the frequency of the peak amplitude 

in the spectrum. Figure 16 shows the spectrum of the signal from the 2nd set for the Heel 

Touch exercise. In the spectrum, the peak amplitude is marked with a red circle, and the 

corresponding frequency is 0.4 Hz. 
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Figure 15 The process of repetition segmentation from one set 

 

After calculating the dominant frequency in the spectrum, it is necessary to determine 

whether this frequency is optimal for repetition segmentation. In the case of Figure 16, the 

dominant frequency is also optimal for segmentation. However, if in the frequency spectrum 

of the signal, in addition to the dominant frequency, there is a lower frequency at which the 

signal has a pronounced amplitude (Figure 17), empirically it has been shown that for 

segmentation it is necessary to choose a lower frequency. In Figure 17, this amplitude in the 

spectrum is indicated by a red circle. 

When the optimal frequency is determined, the AVM is filtered. A low-pass 

Chebyshev filter type 2 is used for filtering. The order of the filter depends on the passband 

and stopband frequency at which the signal is filtered. The optimal frequency is taken as the 

passband frequency, and the stopband frequency is twice as high as the passband frequency.  

Minima or maxima of the AVM are used to define boundaries between segments, 

depending on the individual exercise. In exercise 9 (Heel Touch) and exercise 3 (Standing 

Side Dumbbell Shrug), maxima are taken, while in the others, minima are taken as the 

boundaries between the segments. 
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Figure 16 AVM and its spectrum for Heel Touch exercise. In this case, the dominant frequency (red circle) 
is also optimal for segmentation. IMU position - chest 

  

Figure 17 AVM and its spectrum for Standing Dumbbell Lateral Raise with Arms Straight exercise. In 
this case, in addition to the dominant frequency there is a lower frequency (red circle) at which the signal 

has a pronounced amplitude; therefore, the dominant frequency is not optimal for segmentation. IMU 
position - wrist 
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After repetition segmentation, it is necessary to remove the artifacts that most often 

appear before the first and after the last repetition. They are easy to eliminate by considering 

two criteria - the reciprocal value of the segmentation frequency (which roughly represents 

the average repetition time) and the maximum value per amplitude in the set. If any of the 

segments lasts less than half the average repetition time in that set and the maximum 

amplitude of that segment is not in the range determined by 50% of the maximum value in the 

whole set, that segment is discarded. 

 

 

Figure 18 The upper part of the figure shows a low-pass filtered AVM signal for the Heel Touch exercise 
with the optimal frequency. The maxima are used to determine the boundaries between the segments, i.e. 
repetitions (green circle), and the minima (red circle) represent the middle of the performed movement 

within one repetition. At the bottom of the figure, there is an unfiltered AVM signal with crossed-out 
predetermined minima and maxima 

 

The last step in the segmentation process is used only for certain exercises where it is 

necessary to connect adjacent segments. This is because two adjacent segments together 

actually form one repetition. This most commonly occurs with Dumbbell Step-up because of 

the pronounced pause that occurs when a person stands on a bench and pauses before 

returning to the starting position. 
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The current segmentation method, as previously explained, may result in the dominant 

frequency not aligning with the optimal frequency required for filtering, which prolongs the 

performance of the algorithm and also has an impact on the segmentation accuracy. In 

approximately 78.8% of the sets, the dominant frequency is optimal for signal segmentation, 

whereas in the remaining 21.2%, another frequency must be selected as optimal. Figure 19 

shows the frequency ranges by exercises. The figure highlights that the majority of exercises 

have a frequency within the range of 0.3 to 0.9 Hz. This frequency range information can be 

used to expedite the process of determining the optimal frequency, and therefore a novel 

segmentation approach is proposed below. 

 

 

Figure 19 Range of frequencies for a particular exercise 
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3.2.3.2 Improved Repetition Segmentation with Band-pass Filtering 

To further automate the segmentation presented in the previous subsection in terms of 

selecting the optimal frequency, an improved repetition segmentation method has been 

proposed, which includes an additional preprocessing of AVM. Preprocessing AVM consists of 

filtering by a band-pass filter whose cutoff frequencies are 0.25 Hz and 1.2 Hz, determined 

using the knowledge obtained from the previous segmentation method. Figure 20 shows the 

modified flow diagram. 

Filtering with a band-pass filter removes most frequency components that are not 

relevant for repetition segmentation in which it is important to obtain prominent minima or 

maxima that mark the boundaries between repetitions in the sets. 

 

Figure 20 The process of improved repetition segmentation with band-pass filtering from one set 

 

3.2.4 Method without Domain Knowledge 

Aside from the methodology that leverages frequency spectrum and domain knowledge, 

alternative and more universal approaches have also been suggested, which rely on 

autocorrelation or energy as their foundational principles. 
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3.2.4.1 Repetition Segmentation using Autocorrelation  

The proposed approach utilizes the autocorrelation of AVM signal which consists of repetitive 

human movements within the set. According to Box et al. [100], the autocorrelation function 

evaluates the correlation between successive values of a univariate time series 𝑦𝑡, specifically 

the correlation between 𝑦𝑡 and 𝑦𝑡+𝑘, where k = 0,...,K, and 𝑦𝑡 denotes a stochastic process. 

The autocorrelation for lag k is: 

𝑟𝑘 =
𝑐𝑘

𝑐0
 

( 4 ) 

𝑐𝑘 =
1

𝑇
∑(𝑦𝑡 − �̅�)(𝑦𝑡+𝑘 − �̅�)

𝑇−𝑘

𝑡=1

 

( 5 ) 

where 𝑐0 is the sample variance of the time series. Autocorrelation assumes values 

ranging between -1 and 1. A value of 1 signifies perfect positive autocorrelation, indicating a 

strong linear relationship between data points. Conversely, a value of -1 denotes perfect 

negative autocorrelation, signifying a strong inverse relationship. A value close to 0 implies 

no significant autocorrelation, suggesting that the data points are independent of each other. 

To ensure the algorithm's effectiveness, it is crucial to determine the minimum distance 

between peaks, which can be achieved either by empirical methods or by utilizing the optimal 

frequency property discussed in the previous subchapter 3.2.3.2. The total number of 

performed repetitions is calculated by dividing by two the number of detected peaks increased 

by one, (𝑁𝑝 + 1)/2. Additionally, the duration of each individual repetition can be inferred 

from the intervals between these peaks and may be utilized to facilitate the segmentation of 

each repetition. The inadequate detection of repetitions can be observed in Figure 21c, where 

the minimum distance between peaks was not considered, resulting in poor detection.  
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Figure 21 Autocorrelation method for good and bad example. Figure c) and d) shows a difference when 
using distance threshold. Executed 8 repetitions, IMU position – wrist 

 

3.2.4.2 Repetition Segmentation using Energy  

The proposed approach involved testing alternative sources of input data, including those 

from linear acceleration or angular velocity, in addition to the use of raw acceleration data. 

After extracting the individual set and calculating the AVM, 𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟 and AVVM the 

subsequent step involves the segmentation of the repetitions within each set. Energy pattern in 

time series was calculated using method proposed in [101]. The rationale for this method is 

based on the observation that each repetition of an exercise generally comprises a sequence of 

arm movements resulting in a distinctive pattern of accumulated motion energy (Figure 22). 

Specifically, there are four key stages: 1) a rapid increase in accumulated energy from zero as 

the arm moves from an initial position to an ending position; 2) a decrease in accumulated 

energy as the arm briefly pauses at the ending position; 3) a second increase in accumulated 

energy as the arm moves back from the ending position to the initial position; and 4) a sudden 
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drop in accumulated energy as the hand comes to rest at the initial position for a brief period 

of rest. 

 

Figure 22 Accumulated energy pattern for AVM. IMU position – wrist 

 

3.2.5 Classification – Exercise Recognition 

A vector of nine features (standard deviation, variance, mode, median, range, trimmean, 

mean, skewness and kurtosis) was determined for 3-axis acceleration, angular velocity, and 

Euler angles from IMU on wrist, chest and thigh making the overall vector of 243 features. 

Combinations of this features with different locations was tested using SVM classifier on 

whole set (based on event marker, which corresponds to the activity-defined windows in 

subchapter 2.3.2.2) compared with sliding windows with 50% overlapping. For technique 

with sliding windows, three different window lengths were tested: 1, 2 and 4s. To evaluate the 

performance of a models on an independent dataset, 5-fold CV was done. In addition to the 

commonly used SVM algorithm, other machine learning algorithms, including KNN, 

Ensemble, and Naïve Bayes, were employed. 
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3.3 Results 
This chapter outlines the results obtained from the method without domain knowledge. Detail 

results from the method with domain knowledge are documented in our prior publication [96]. 

3.3.1 Counting, Segmentation and Variability 

Utilizing methods based on autocorrelation or energy to extract and count (segment) 

movements, the study initially focused on the IMU on the wrist, with multiple settings tested 

to identify the optimal combination. The autocorrelation method was evaluated on AVM 

signals, in two modes of operation: one that disregards the minimum distance between 

consecutive repetitions and a modified version that considers it. The energy method was 

assessed with three modes of operation, including different signal inputs: AVM, 𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟, 

and AVVM, but with the same algorithm. The F-scores for repetition detection are presented in 

Figure 23, and the difference between the actual number of repetition counts and the number 

of detected counts is expressed through an error count within one set (Figure 24 and Figure 

25). The results indicate that the autocorrelation methods yielded better outcomes for eight 

out of nine exercises, with an advantage observed for the modified version. Further detailed 

results are provided in the Appendix section (Table A 1 - Table A 16).  

 

 
Figure 23 Repetition detection F-scores for all subjects using 5 different modes of operation: 

autocorrelation (Autocor), modified autocorrelation (M Autocor), energy with raw AVM (Raw AVM), 
energy with linear AVM (Lin AVM) and energy with AVVM (AVVM). IMU position – wrist 
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Figure 24 Repetition counting performance when error count is 0 using 5 different modes of operation: 
autocorrelation (Autocor), modified autocorrelation (M Autocor), energy with raw AVM (Raw AVM), 

energy with linear AVM (Lin AVM) and energy with AVVM (AVVM). IMU position – wrist 

 

 

 
Figure 25 Repetition counting performance when error count is 1 using 5 different modes of operation: 
autocorrelation (Autocor), modified autocorrelation (M Autocor), energy with raw AVM (Raw AVM), 

energy with linear AVM (Lin AVM) and energy with AVVM (AVVM). IMU position – wrist 
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In addition to the F-scores for repetition detection and error count for each exercise, 

the segmented repetition durations for the modified autocorrelation method, energy method 

with raw AVM, and the actual repetition duration are presented in the Figure 26. 

   

   

   

Figure 26 Movement duration for 9 exercises using 2 different methods, modified autocorrelation or 
energy, compared with real time duration 

 

Given the comparatively poorer results observed for push-ups, box squats, and heel 

touches, the study also evaluated the modified autocorrelation method on the remaining two 

IMUs (Figure 27, Figure 28 and Figure 29). Regarding push-ups and box squats, both IMU 

locations exhibit better levels of accuracy. In contrast, for heel touches, the chest IMU appears 

to yield marginally superior results. 
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Figure 27 Repetition detection F-scores for all subjects using modified autocorrelation method on 3 
different IMU positions: IMU position - wrist (M Autocor-W), IMU position - chest (M Autocor-C), IMU 

position - thigh (M Autocor-T) 

 

 

 

 

Figure 28 Repetition counting performance when error count is 0 using modified autocorrelation method 
on 3 different IMU positions: IMU position - wrist (M Autocor-W), IMU position - chest (M Autocor-C), 

IMU position - thigh (M Autocor-T) 
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Figure 29 Repetition counting performance when error count is 1 using modified autocorrelation method 
on 3 different IMU positions: IMU position - wrist (M Autocor-W), IMU position - chest (M Autocor-C), 

IMU position - thigh (M Autocor-T) 

 

The peak values of the attained accelerations and angular velocities were calculated on 

the segmented repetitions and are presented in the Figure 30 - Figure 38. Subjects 1, 2, and 3 

possess extensive experience in performing strength exercises, whereas subjects 4, 5, and 6 

have no prior experience. The obtained values and their variability are subject to variations 

based on the specific exercise performed and the individual characteristics of each subject. 

Overall, individuals with prior experience in strength exercises exhibit slightly lower 

variability in their maximum acceleration values. 

  

Figure 30 Maximum AVM and AVVM variability for exercise no. 1 
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Figure 31 Maximum AVM and AVVM variability for exercise no. 2 

  

Figure 32 Maximum AVM and AVVM variability for exercise no. 3 

  

Figure 33 Maximum AVM and AVVM variability for exercise no. 4 
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Figure 34 Maximum AVM and AVVM variability for exercise no. 5 

  

Figure 35 Maximum AVM and AVVM variability for exercise no. 6 

  

Figure 36 Maximum AVM and AVVM variability for exercise no. 7 
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Figure 37 Maximum AVM and AVVM variability for exercise no. 8 

  

Figure 38 Maximum AVM and AVVM variability for exercise no. 9 

 

3.3.2 Classification – Exercise Recognition 

The present study reports the results obtained with respect to the location of the IMU and the 

sliding window technique, as detailed in Table 4, with additional findings related to the 

activity-defined technique presented in Table 5. Notably, the highest level of accuracy is 

achieved when utilizing a combination of all three IMUs. When utilizing a single IMU, the 

highest accuracy is observed with placement located at the wrist. The sliding window 

technique produces slightly better results, around 99%.   
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Table 4 Comparison of overall 5-fold cross validation test accuracy for different combination of IMUs 
based on different sliding window lengths with 50% overlapping. Input data from 3 axis acceleration, 
angular velocity, and Euler angles during workout 

 Wrist Chest Thigh W+C W+T W+C+T 

w = 1s Acc = 95.9% Acc = 94.3% Acc = 93.8%  X X X 

w = 2s Acc = 97.9% Acc = 97.1%  Acc = 95.8% Acc = 98.6% Acc = 99.0% Acc = 99.2% 

w = 4s Acc = 99.1% Acc = 98.1% Acc = 96.2% Acc = 99.2% Acc = 99.4% Acc = 99.4% 

 

Table 5 Comparison of overall 5-fold cross validation test accuracy for different combination of IMUs 
based on Activity Defined Window (ADW). Input data from 3 axis acceleration, angular velocity, and 
Euler angles during workout 

 Wrist Chest Thigh W+C W+T W+C+T 

Event Acc = 96.3% Acc = 88.3% Acc = 84.0% Acc = 98.1% Acc = 98.8%  Acc = 98.8% 

 

Furthermore, the study investigated the impact of various input parameters on the 

classifier's performance, in addition to exploring the influence of location. The findings 

indicate that there is no substantial discrepancy in performance (< 1%) when utilizing 

acceleration, angular velocity, and Euler angles as input data, as opposed to solely utilizing 

acceleration. The overall results are presented in Table 6, with further detailed outcomes 

exhibited in Figure 39 and Figure 40. Nine classes include: 1 - Standing Front Dumbbell 

Raise, 2 - Standing Dumbbell Lateral Raise with Arms Straight, 3 - Standing Side Dumbbell 

Shrug, 4 - Standing Dumbbell Curl with Rotation, 5 - Bent-over Dumbbell Row, 6 - Push-up, 

7 - Dumbbell Step-up, 8 - Box Squat, and 9 - Heel Touch. 
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Table 6 Comparison of overall 5-fold cross validation test accuracy for different combination of input 
data and IMUs.  

Input Data Wrist, w=4s W+C+T, w=4s Wrist, ADW W+C+T, ADW 

Acceleration 

Angular velocity 

Euler angles 

Acc = 99.1% Acc = 99.4% Acc = 96.3% Acc = 98.8% 

Acceleration 

Angular velocity 
Acc = 98.1% Acc = 99.5% Acc = 92.6% Acc = 96.3% 

Acceleration Acc = 98.8% Acc = 99.3% Acc = 95.7% Acc = 98.1% 

Angular velocity Acc = 91.6% Acc = 97.2% Acc = 88.9% Acc = 95.1% 

Euler angles Acc = 96.4% Acc = 99.2% Acc = 95.1% Acc = 93.2% 

AVM Acc = 82.4% Acc = 96.0% Acc = 82.1% Acc = 94.4% 

 

 

  

Figure 39 Exercise classification with SVM, sliding window 4s with 50% overlapping. IMU position – 
wrist, chest and thigh (left); wrist (right). Input data – acceleration, angular velocity, Euler angles 
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Figure 40 Exercise classification with SVM, ADW. IMU position – wrist, chest and thigh (left); wrist 
(right). Input data – acceleration, angular velocity, Euler angles 

 

In addition to the commonly used SVM algorithm, other machine learning algorithms, 

including KNN, Ensemble, and Naïve Bayes, were employed. Figure 41 shows that the SVM 

algorithm consistently produces the highest level of accuracy, irrespective of the windowing 

technique or the placement of the IMU. 

 

Figure 41 Score comparison for different ML model types 
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3.4 Discussion 
Through a controlled experimental setup and a limited number of subjects, measurements 

were conducted to establish a reference point for sensor selection, positioning, model 

definition, and data monitoring during exercise performance. 

The defining characteristic of strength exercises is the repetition of specific 

movements within a certain time interval. Two methods without domain knowledge have 

been proposed for extracting and counting or segmenting individual movements using only 

accelerometer signals. In order to simplify signal processing and eliminate the influence of 

IMU orientation, only one parameter, Acceleration Vector Magnitude (AVM), was observed. 

The first method is based on autocorrelation, while the second is based on energy. The 

autocorrelation-based method achieved an F-score > 98% when data was acquired from the 

wrist IMU only, while a result of > 99% was achieved with data from two IMUs, one on the 

wrist and one on the chest. The energy-based method achieved a slightly lower result with an 

F-score > 95%. An advantage of both methods is that they can be used on a wider range of 

exercises intended for the whole body and do not require previous and domain knowledge of 

the exercise being performed. 

The difference between the actual number of repetition counts and the number of 

detected counts was presented through error count. During the counting of repetitions of an 

individual exercise using only the IMU on the wrist, a repetition performance without a single 

error is 86.4%, or 95.1% if the possibility of one error within the set is included. Smaller 

accuracy occurs with push-ups, squats and heel touches exercises, but by adding the IMU 

sensor on the chest, the accuracy increases to 96.3% without a single error, or to 100% if the 

possibility of one error within the set is included. After successful segmentation, it is easy to 

determine the parameters that are important for measuring movement variability, such as 

movement execution time, maximum acceleration amplitude, angular velocity, and the like. In 

order to further expand the proposed method, a classifier based on machine learning was 

added to recognize the movement or the exercise being performed. A window length of 4 sec 

with an overlap of 50% proved to be the best choice (accuracy > 99%), using the input data 

from the accelerometer and gyroscope from the IMU located on the wrist, chest, and thigh. 

Using the input data only from the accelerometer and the IMU on the wrist, an accuracy of 

98.8% was achieved. 
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With domain knowledge method [96], out of a total of 1656 movements, i.e.  

repetitions, 1652 were successfully segmented, segmentation of 4 repetitions was not 

successful, and 6 signal segments were incorrectly classified as repetitions. An accuracy of 

99.4%, recall 99.7%, precision 99.6% and F-score 99.7% is achieved, which we find 

comparable and better then reported in literature. To the author's knowledge, no research has 

been done so far with the same selection of exercises and position of IMUs, so it cannot be 

directly compared with the existing literature, but we have listed the most relevant ones. In 

their study, Guo et al. [101] compared the repetition segmentation accuracy of two different 

IMUs in two different positions, a smartwatch on the wrist and a smartphone on the upper 

arm. They achieved an average accuracy of 99%. It is necessary to mention that their choice 

of exercises primarily referred to exercises in which the arm represented the dominant body 

segment and they used the data obtained from all three sensors, accelerometer, gyroscope and 

magnetometer. In [4], the authors achieved segmentation recalls a minimum of 84.1% for 

IMU located in the ear to a maximum of 91.6% on the wrist. A wider range of body activation 

was present during workout and only accelerometer signals were used. Pernek et al. [87] in 

their research detected and separated repetitions using a method based on the DTW algorithm. 

They chose a very wide range of exercises with which they managed to activate the whole 

body. The data were obtained from an accelerometer inside a smartphone that was located at 3 

different locations, wrist, ankle, or on the top of the weights, depending on the exercise. The 

average F-score, precision and recall for all exercises and environments was 99.3%, 100% 

and 98.8%. 

When it comes to recognizing segmented repetitions, in [101] was achieved with an 

average accuracy of 95% for a smartwatch on the wrist and 91% for a smartphone on the 

upper arm. A light-weight classifier (Support Vector Machine) was used on 27 features 

extracted from the acceleration in the world coordinate system. In [4] classification mean 

accuracy achieved a minimum of 78.4% for IMU located in the ear to a maximum of 97.2% 

on the chest. The template for the DTW algorithm in the process of classification was chosen 

randomly 50 times to avoid redundancy. O’Reilly et al. [7] implemented a method for 

tracking and recognizing lower-limb exercises with wearable sensors. They placed 5 IMUs on 

subjects (on the thighs, shanks, and lumbar) and achieved 99% accuracy. Furthermore, for a 

single IMU placed on the shank, they obtained 98% accuracy.  

Regardless of the small number of subjects in the proposed research, overall accuracy 

is comparable with the abovementioned studies. Detailed classification results can be 
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analyzed using Figure 39 and Figure 40, and the author's observations can be found in the 

previous subchapter.  

As indicated before, a main disadvantage of the research is a small number of subjects, 

and therefore through future work (Chapter 5), the plan is to implement the proposed 

algorithm on a more natural environment; and to compare the accuracy of our algorithm with 

other common classification methods implemented on larger groups.  
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Movement execution metrics during physical exercise are a set of measurements and 

quantifications that are used to assess and analyze movement patterns and characteristics. 

These metrics comprise various aspects of movement, including velocity, acceleration, joint 

angles, and range of motion, among others. They are employed to evaluate the quality of 

movement execution, identify potential areas for improvement, and track progress over time 

[68][73][78][102][103][104]. 

 The current chapter introduces a novel metric that allows for the numerical description 

of individual movements using data gathered from IMUs.  

4.1 Metrics 
During qualitative analysis, the exercise parameters that are monitored include linear 

acceleration, angle achieved from beginning to the end of the movement, and movement 

duration. These three parameters enable a universal description of every movement in terms 

of time, space, and change of velocity. In a template-based approach, the similarity between 

trajectories for chosen parameters would be measured through model-less or model-based 

metrics, which can lead to the complex calculation or the need to provide a certain size of 

memory to store templates. On the other hand, in a rule-based approach, a small set of rules is 

often determined that is related to a particular exercise, leading to a lack of generalizability. 

Therefore, the proposed metric (Figure 42) combines the good sides of both approaches, with 

low computational complexity from the rule-based approach and a short time of defining new 

references for comparison using the template-based approach. 

4 MOVEMENT EXECUTION METRICS DURING 
EXERCISE BASED ON MEASUREMENTS USING 
SENSOR NODES WITH INERTIAL AND 
MAGNETIC SENSORS 
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Figure 42 Flow diagram for movement execution metric 

 

To establish the metric, linear acceleration, angular velocity, orientation, and duration 

from individual movement are required as input data. From most available off-shelf IMU, the 

output includes: sensor acceleration 𝒂𝑠𝑒𝑛𝑠𝑜𝑟, angular velocity 𝝎𝑆𝑒𝑛𝑠𝑜𝑟 and strength of 

magnetic field 𝒎𝑆𝑒𝑛𝑠𝑜𝑟 as three-dimensional vectors, as well as orientation expressed as a 

four-dimensional vector in quaternions 𝒒𝐸
𝑆 . 𝒒𝐸

𝑆  describes the orientation of frame Earth (E) 

relative to frame Sensor (S). 𝒂𝑠𝑒𝑛𝑠𝑜𝑟 is the sum of two components, linear acceleration 

𝒂𝐿𝑖𝑛𝑒𝑎𝑟 and gravitational acceleration 𝒈𝑆𝑒𝑛𝑠𝑜𝑟. Thus, 𝒂𝐿𝑖𝑛𝑒𝑎𝑟 can be expressed as [55]: 

𝒂𝐿𝑖𝑛𝑒𝑎𝑟 = 𝒂𝑆𝑒𝑛𝑠𝑜𝑟 − 𝒈𝑆𝑒𝑛𝑠𝑜𝑟 

( 6 ) 

The gravity vector in sensor frame 𝒈𝑆𝑒𝑛𝑠𝑜𝑟 is an unknown parameter, but the gravity 

vector in earth frame is known and expressed as:  

𝒈𝐸𝑎𝑟𝑡ℎ = [0 0 1] 

( 7 ) 

Using the orientation vector 𝒒𝐸
𝑆 , or rotation matrix 𝑹𝐸

𝑆 , it is possible to convert 𝒈𝐸𝑎𝑟𝑡ℎ 

in 𝒈𝑆𝑒𝑛𝑠𝑜𝑟 [105]: 
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𝒈𝑆𝑒𝑛𝑠𝑜𝑟 = 𝑹𝐸
𝑆  𝒈𝐸𝑎𝑟𝑡ℎ 

( 8 ) 

where rotation matrix can be represented using orientation in quaternions: 

𝑹𝐸
𝑆 = [

2𝑞0
2 − 1 + 2𝑞1

2 2(𝑞1𝑞2 + 𝑞0𝑞3) 2(𝑞1𝑞3 − 𝑞0𝑞2)

2(𝑞1𝑞2 − 𝑞0𝑞3) 2𝑞0
2 − 1 + 2𝑞2

2 2(𝑞2𝑞3 + 𝑞0𝑞1)

2(𝑞1𝑞3 + 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 2𝑞0
2 − 1 + 2𝑞3

2

] 

( 9 ) 

𝒒𝐸
𝑆 = [𝑞0 𝑞1 𝑞2 𝑞3] 

( 10 ) 

In addition to linear acceleration, an important parameter for the proposed metric is the 

angle (𝜽𝐼𝑛𝑖𝑡𝑖𝑎𝑙) in 3D that the IMU attached on particular body segment makes in relation to 

the start position, i.e. initial position. 𝜽𝐼𝑛𝑖𝑡𝑖𝑎𝑙 can be obtained by integrating the angular 

velocity expressed in initial position frame 𝝎𝐼𝑛𝑖𝑡𝑎𝑙, from the beginning (𝑡𝑏𝑒𝑔) to the end time 

(𝑡𝑒𝑛𝑑) of movement execution: 

𝜽𝐼𝑛𝑖𝑡𝑖𝑎𝑙(𝑡) = ∫ 𝝎𝐼𝑛𝑖𝑡𝑖𝑎𝑙(𝑡)
𝑡𝑒𝑛𝑑

𝑡𝑏𝑒𝑔

𝑑𝑡 

( 11 ) 

𝝎𝐼𝑛𝑖𝑡𝑎𝑙 can be obtained using the orientation vector  𝒒𝑆
𝐼  or rotation matrix 𝑹𝑆

𝐼 : 

𝝎𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑹𝑆
𝐼  𝝎𝑆𝑒𝑛𝑠𝑜𝑟 

( 12 ) 

𝒒∗
𝐼
𝑆 = 𝒒 =𝑆

𝐼 [𝑞0 −𝑞1 −𝑞2 −𝑞3] 

( 13 ) 

𝒒𝐼
𝑆 = 𝒒𝐸

𝑆 ⊗ 𝒒𝐼𝑛𝑖𝑡𝑖𝑎𝑙
∗

𝐸
𝑆  

( 14 ) 

where 𝒒𝐼𝑛𝑖𝑡𝑖𝑎𝑙
∗

𝐸
𝑆  represents the conjugate of the initial orientation and indicates the 

moment at which the IMU is before the start of the execution of the movement of the 

exercise, i.e. initial position. The result of quaternion multiplication (⊗) is a quaternion 𝒒𝐼
𝑆  

that describes the rotation from initial orientation to the current orientation.  
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To obtain a one-dimensional vector and a parameter that does not depend on the 

orientation of the IMU placement, vector magnitude was calculated for linear acceleration 

(𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟) and angle (𝐴𝑛𝑉𝑀𝐼𝑛𝑖𝑡𝑖𝑎𝑙):  

𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟[𝑖] = √(𝑎𝑥𝐿𝑖𝑛𝑒𝑎𝑟[𝑖])2 + (𝑎𝑦𝐿𝑖𝑛𝑒𝑎𝑟[𝑖])2 + (𝑎𝑧𝐿𝑖𝑛𝑒𝑎𝑟[𝑖])2 

( 15 ) 

𝐴𝑛𝑉𝑀𝐼𝑛𝑖𝑡𝑖𝑎𝑙[𝑖] = √(𝜃𝑥𝐼𝑛𝑖𝑡𝑖𝑎𝑙[𝑖])2 + (𝜃𝑦𝐼𝑛𝑖𝑡𝑖𝑎𝑙[𝑖])2 + (𝜃𝑧𝐼𝑛𝑖𝑡𝑖𝑎𝑙[𝑖])2 

( 16 ) 

In cases where the workout routine consists of complex exercises such as squats or 

push-ups, or when the whole body is activated during the workout and not just individual 

muscle groups or body segments, it is recommended that all three wearable devices are used 

for quality measurement, namely the IMU on the wrist, thigh, and chest. To ensure that the 

most important body segment contributes the most to the qualitative assessment, i.e. the 

segment that achieves the highest amplitudes, and to avoid the use of additional algorithms 

for measuring dominant signals, the sum of squares is calculated, and the square root of that 

sum is taken: 

𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟𝑊𝐶𝑇[𝑖] = √(𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟𝑊[𝑖])2 + (𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟𝐶[𝑖])2 + (𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟𝑇[𝑖])2 

( 17 ) 

𝐴𝑛𝑉𝑀𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝐶𝑇[𝑖] = √(𝐴𝑛𝑉𝑀𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊[𝑖])2 + (𝐴𝑛𝑉𝑀𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐶[𝑖])2 + (𝐴𝑛𝑉𝑀𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑇[𝑖])2 

( 18 ) 

where 𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟𝑊, 𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟𝐶 and 𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟𝑇 is 𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟 from wrist, chest and 

thigh, respectively.  

As mentioned earlier, to avoid saving the entire movement trajectory, every exercise is 

described by only three parameters, movement duration (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡𝑟𝑖𝑐), and the maximum 

magnitude values determined by the linear acceleration (𝐴𝐶𝐶𝑀𝑒𝑡𝑟𝑖𝑐) and angle (𝐴𝑛𝑔𝑙𝑒𝑀𝑒𝑡𝑟𝑖𝑐): 
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𝐴𝑐𝑐𝑀𝑒𝑡𝑟𝑖𝑐 = max (𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟𝑊𝐶𝑇) 

( 19 ) 

𝐴𝑛𝑔𝑙𝑒𝑀𝑒𝑡𝑟𝑖𝑐 = max (𝐴𝑛𝑉𝑀𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝐶𝑇) 

( 20 ) 

To put the extracted parameters into some context, i.e. to provide a score, it is 

necessary to compare them with some reference value. This comparison can be made with 

either personal or generally defined metrics:  

𝐴𝑐𝑐𝑆𝑐𝑜𝑟𝑒 =
𝐴𝑐𝑐𝑀𝑒𝑡𝑟𝑖𝑐 − 𝐴𝑐𝑐𝑀𝑒𝑡𝑟𝑖𝑐𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙

𝐴𝑐𝑐𝑀𝑒𝑡𝑟𝑖𝑐𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙
 

( 21 ) 

𝐴𝑛𝑔𝑙𝑒𝑆𝑐𝑜𝑟𝑒 =
𝐴𝑛𝑔𝑙𝑒𝑀𝑒𝑡𝑟𝑖𝑐 − 𝐴𝑛𝑔𝑙𝑒𝑀𝑒𝑡𝑟𝑖𝑐𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙

𝐴𝑛𝑔𝑙𝑒𝑀𝑒𝑡𝑟𝑖𝑐𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙
 

( 22 ) 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 =
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡𝑟𝑖𝑐 − 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡𝑟𝑖𝑐𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑡𝑟𝑖𝑐𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙
 

( 23 ) 

In an optimal scenario, the deviations in acceleration, angle, and time should be 

minimized, ideally as close to zero as possible. If we assume that the proposed three 

parameters represent the three dimensions of the new coordinate system, then the distance 

from the center of this coordinate system can be regarded as a measure of the 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒: 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 = √(𝐴𝑐𝑐𝑆𝑐𝑜𝑟𝑒)2 + (𝐴𝑛𝑔𝑙𝑒𝑆𝑐𝑜𝑟𝑒)2 + (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒)2 

( 24 ) 

In addition to qualitative analysis of human movement during strength training 

exercises, it is customary to provide information regarding the number of repetitions 

performed. To that end, a quantitative metric, i.e. 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 is also proposed: 

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 =
𝑅𝑒𝑝𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

𝑅𝑒𝑝𝐴𝑠𝑠𝑖𝑔𝑛
∗ 100% 

( 25 ) 

where 𝑅𝑒𝑝𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 is the number of performed repetitions and 𝑅𝑒𝑝𝐴𝑠𝑠𝑖𝑔𝑛 is the 

number of assigned repetitions by system, expert or user. 
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In Figure 43, an example of the application of the quality score to real data is 

illustrated. During the push-up exercise, it is apparent that three repetitions deviate from the 

others, as observed with both the newly proposed metric and the frequently utilized method of 

comparing trajectories using Dynamic Time Warping (DTW). Therefore, it may not be 

necessary to employ a computationally intensive method that compares the entire trajectory to 

achieve the desired outcome. Rather, the proposed metric alone may be adequate. It has also 

been empirically determined that the proposed metric can be used universally for all exercises 

(Figure 44 - Figure 51). Figure 51 also demonstrates how the proposed metric combines both 

quantities, 𝐴𝑉𝑀𝐿𝑖𝑛𝑒𝑎𝑟𝑊𝐶𝑇 and 𝐴𝑛𝑉𝑀𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝐶𝑇 in one score. 

  

Figure 43 Metrics and repetition outliers for exercise no. 6 

 

  

Figure 44 Metrics and repetition outliers for exercise no. 1 
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Figure 45 Metrics and repetition outliers for exercise no. 2 

  

Figure 46 Metrics and repetition outliers for exercise no. 3 

  

Figure 47 Metrics and repetition outliers for exercise no. 4 
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Figure 48 Metrics and repetition outliers for exercise no. 5 

  

Figure 49 Metrics and repetition outliers for exercise no. 7 

  

Figure 50 Metrics and repetition outliers for exercise no. 8 
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Figure 51 Metrics and repetition outliers for exercise no. 9 
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4.2 Discussion 
Movement execution metrics during exercise can be divided into two categories, rule-based or 

template-based. The rule-based approach requires the identification of specific parameters, 

such as joint positions, angles, and speed, to define a particular movement pattern. This 

method is advantageous in terms of low computational complexity, but it involves a time-

consuming process of determining the parameters for each movement. In contrast, the 

template-based approach involves recording a single movement as a reference for comparison 

with subsequent repetitions. While this approach offers the advantage of quicker definition 

times, it is limited by the need for a pre-recorded movement template and may not account for 

individual differences in movement patterns. To address the limitations of these approaches 

and achieve greater generalization, a novel approach is proposed. This method involves 

generating newly created quantities based on the initial orientation of the individual being 

assessed, which can then be compared using a new score function. This approach allows for 

the assessment of individual repetitions using a universal metric, independent of orientation of 

the IMU placement or the position of the individual. 

Furthermore, the proposed metric can be applied to a larger group of individuals 

(Chapter 5), including those with different characteristics, and can be used with either a 

personal mode or a general mode template for comparison. 
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This chapter introduces the concept of movement quality, which refers to an individual's 

ability to execute fundamental movement patterns during exercise, in a controlled, efficient, 

and safe manner. Movement quality is determined by various factors such as muscular 

coordination, joint alignment, and cognitive ability to understand movement demands. It is 

widely acknowledged that limitations in movement quality can stem from decreased joint 

range of motion (ROM), muscle strength and joint stability, and neuromuscular control. It is 

important to note that movement quality may vary depending on an individual's age and 

developmental status and can also be influenced by suboptimal muscle activation sequencing 

and postural muscle activation [106].  

The performance of strength exercise with poor technique is widely accepted to result 

in the development of muscular imbalances and postural deviations [107], which may lead to 

reduced movement quality. As poor movement quality has been demonstrated to affect joint 

loading, strength and power expression, and the ability to complete movement tasks 

effectively, it is not a desirable training outcome [108]. Conversely, performing strength 

exercise with optimal technique ensures maximal benefits are obtained by loading the joints 

of the body safely and efficiently during exercise, thus enhancing safety and limiting the 

likelihood of imbalances. Furthermore, individuals with higher levels of movement quality 

tend to benefit more from traditional training modalities than those with lower levels [109], 

indicating that movement quality is crucial not only for optimizing training safety but also for 

maximizing performance-related outcomes. 

5 PROCEDURE FOR QUANTITATIVE AND 
QUALITATIVE MONITORING OF EXERCISE 
PERFORMANCE USING SENSOR NODES WITH 
INERTIAL AND MAGNETIC SENSORS AND 
MEASUREMENT OF HEART RATE  
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 Movement quality assessment is commonly performed through visual appraisal of 

movement by experts in occupational, sporting, and clinical settings [110]. Although visual 

appraisal is useful in coaching, data-driven quantitative methods can enhance movement 

assessment by increasing objectivity and reducing errors associated with visual-based 

appraisal. Furthermore, data-driven methods can detect new and important movement features 

that may not be easily visible to the human eye. Movement assessment currently involves a 

subjective, quantitative measure where movements receive a numerical score based on visual 

observations by a rater. In literature, overall scores show strong intra-rater reliability for both 

novice and experienced raters. However, inter-rater reliability for some movements may be 

poor due to the dynamic nature of the movement and the rater's perspective. The rater may 

only see the performance from one vantage point, making it difficult to observe scoring 

criteria that are out of view or occluded by the athlete's body. Furthermore, the literature 

supports the agreement that inter-session (participants tested during two separate sessions) 

reliability of subjective movement assessment is inadequate. To address these limitations, the 

development and implementation of a framework as a data-driven substitute to objectively 

categorize movement quality during exercise is a potential solution [9][111][112].  

5.1 Materials and Methods 
The present study introduces the procedure for quantitative and qualitative monitoring of 

exercise performance using IMU. The procedure can be divided into three distinct modes of 

operation, and the selection of the mode depends on the intended application and desired 

feedback from the user. The first mode is the most fundamental, providing feedback to the 

user solely on the quantity of movement performed, specifically the number of repetitions 

completed (Figure 52 1). This mode is well-suited for experienced individuals engaging in 

independent training, where it is important to track the number of repetitions executed, 

regardless of the type of exercise. In contrast, another mode of operation not only provides 

information on the quantity of repetitions but also evaluates the quality of the movements 

(Figure 52 2). This mode is intended as a virtual trainer for individuals who seek additional 

information on their performance of a particular exercise. In the final mode of the operation, it 

is assumed that prior and domain knowledge of the exercise sequence is available, such as 

during rehabilitation. The mode can provide real-time feedback on the performance of each 

movement as soon as it is completed, enabling the user to make immediate adjustments to 

their exercise technique (Figure 52 3). 
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 In the remaining part of the chapter, the first two modes of operation are explained in 

detail through experimental research, while detail information for the third can be found in 

one of our previous works [98]. In the remaining part of the text, we will refer to the first 

operating mode as the basic assessment mode, and the second as the advanced assessment 

mode. 

 

Figure 52 Proposed procedure for quantitative and qualitative monitoring of exercise performance 

 

Furthermore, alongside the evaluation of quality and quantity utilizing IMUs, the 

monitoring of heart rate (HR) was conducted during exercise sessions.  

 

5.1.1 Experimental Protocol 
5.1.1.1 Participants  

Forty healthy subjects aged 19 – 62 (28 males and 12 females, age: 28.7 ± 6.0 years, height: 

178.7 ± 9.1 cm and weight: 82.7 ± 20.5 kg) were recruited for this research. Subjects did not 

have a current or recent musculoskeletal injury that would impair their exercise performance. 

From 40 subjects, eleven of them do not currently engage any physical activity during the 

week, while three of them engage in it once, six twice, eight three times, seven four times, 

two five times, one six times and two seven times per week. 17 subjects have no experience 
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with gym or performing strength exercises, but the remaining 23 subjects were familiar with 

such a form of activity at some point in their lives. Participation was completely voluntary, 

and all subjects gave their informed consent for inclusion before they participated in the 

study. The Human Research Ethics Committee at University of Zagreb, Faculty of Electrical 

Engineering and Computing approved the study protocol and informed consent. Verbal 

explanations were also provided to each subject at the start of the experiment session in order 

to ensure that participants understood what was required of them.  

5.1.1.2 Performed Exercises 

Each subject performed a workout consisted of 9 strength exercises: 1) Standing Front 

Dumbbell Raise, 2) Standing Dumbbell Lateral Raise with Arms Straight, 3) Standing Side 

Dumbbell Shrug, 4) Standing Dumbbell Curl with Rotation, 5) Bent-over Dumbbell Row, 6) 

Push-up, 7) Dumbbell Step-up, 8) Box Squat and 9) Heel Touch. The exercises performed 

were carried out following the same procedure outlined in the subchapter 3.2.1.2. 

5.1.1.3 Data Acquisition  

Data acquisition was carried out following the same procedure outlined in the subchapter 

3.2.1.3. Furthermore, alongside the accelerometer, gyroscope, and magnetometer sensors, HR 

was also measured using ECG Unit, which is available as an additional sensor on the IMU 

(Shimmer3 ECG) located on the chest. The recommended configuration with four electrodes 

positioned on the right arm (RA), left arm (LA), left leg (LL), and right leg (RL), as stated by 

reference [113], was employed (Figure 53). This electrode arrangement facilitates the 

measurement of three bipolar leads, specifically Lead I (LA-RA) as the ECG vector signal 

from the RA position to the LA position, Lead II (LL-RA) as the ECG vector signal from the 

RA position to the LL position, and Lead III (LL-LA) as the ECG vector signal from the LA 

position to the LL position, with RL serving as the reference electrode. The HR measurement 

was obtained from the most commonly used lead, Lead II, utilizing the Shimmer application 

ConsensysPro. 
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Figure 53 Positioning of the electrodes for ECG measurement 

 

5.1.1.4 Data Labeling 

Throughout the workout sessions, an expert was physically present with the subjects and 

utilized the Shimmer application ConsensysPro to label the beginning and end of each 

exercise, along with the associated sets (activity-defined windows 2.3.2.2). Individual 

repetitions within sets were subsequently separated and annotated manually. Moreover, the 

exercise expert assigned an overall assessment to the workout performance by ranking them 

based on a three-tiered scale, with a score of 3 representing the highest rating, 2 for middle 

rating, and 1 for the lowest rating.  

5.1.2 Signal Preparation and Processing 

The preparation and processing of signals for the accelerometer, gyroscope, and 

magnetometer were executed in accordance with the procedures delineated in subchapter 

3.2.2. Additionally, a moving average filter was implemented to enhance the HR signal by 

reducing high-frequency noise and fluctuations. Furthermore, the total energy expended 

during movement was calculated using accelerometers placed on the wrist, chest, and thigh, 

representing the overall intensity of a specific physical activity. The area under the curve of 

the squared linear acceleration was employed to calculate accelerometer intensity. 

5.1.3 Basic Assessment Mode – 1) 

Figure 54 displays the flow diagram for basic assessment mode. The input of time-series IMU 

sensor readings passes though the activity detection section, where non-workout activities are 

filtered out. The subsequent stage involves the repetition counting and segmentation 
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component, which processes the IMU sensor readings identified to contain workout activities. 

The metrics section then conducts a quantitative analysis of the sensor readings and generates 

an output assessment.     

 

Figure 54 Flow diagram for basic assessment mode 

 

The available data label from the event marker tool, which was utilized by the expert 

to mark the beginning and end of each set, was employed for activity detection. In the absence 

of additional marked data for activity detection, simpler algorithms well-established in the 

literature can be utilized [101]. 

The counting and segmentation process utilized a method without domain knowledge 

(autocorrelation based) presented in subchapter 3.2.4.1. 

The output assessment is presented as a quantitative score, which is expressed using 

the equation ( 25 ) elucidated in subchapter 4.1. 

5.1.4 Advanced Assessment Mode – 2) 

Figure 55 displays the flow diagram for advanced assessment mode, which can yield the same 

output assessment via two distinct signal processing flows. 

 

Figure 55 Flow diagram for advanced assessment mode 

 

5.1.4.1 Advanced Assessment Mode – 2a) 

The first signal processing flow shares a structure similar to that presented for the basic 

assessment mode 5.1.3. The primary differentiation lies in the final step, where in addition to 

quantitative metrics, the qualitative metrics for individual repetition need to be calculated. As 
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the algorithm lacks prior knowledge of the particular exercise being performed, it is necessary 

to recognize it. The classification can be done at either a “high level”, by recognizing the 

entire activity window, or at a “low level”, by recognizing segmented individual movements. 

 For high level classification, exercise recognition is performed using two different 

windows technique (sliding windows and activity-defined windows), SVM algorithm, and a 

vector of 243 features, already detail explained in subchapter 3.2.5. 

 For low level classification, i.e. recognition of individual repetition, a vector of nine 

features, including standard deviation, variance, mode, median, range, trimmean, mean, 

skewness, and kurtosis, was computed for 3-axis acceleration, angular velocity, and Euler 

angles from IMU placed on the wrist, chest, and thigh. In addition to the 3-axis acceleration, 

angular velocity, and Euler angles obtained directly from the IMU output, these quantities 

were also computed with respect to the initial position, as explained in subchapter 4.1, and as 

such are independent of the orientation of the individual IMU placement. This approach 

ensured the overall vector of 567 features. The combinations of these features with different 

IMU locations were tested using various machine learning algorithms. To reduce the number 

of features entering the machine learning algorithm without compromising the accuracy, 

Maximum Relevance Minimum Redundancy (MRMR) characteristic features were selected 

and tested. Validation was performed using 5-fold cross-validation, and the test was 

conducted at a ratio of 70/30.  

    Following the repetition classification stage, the output assessment is presented as a 

qualitative and quantitative score. This score is calculated using the equation ( 24 ) and ( 25 ) 

described in subchapter 4.1.  

5.1.4.2 Advanced Assessment Mode – 2b) 

In the second signal processing flow, the input of time-series IMU sensor readings first pass 

through the classification section, where workout activities are recognized as exercises being 

performed, and non-workout activities are filtered out. Classification is performed using a 

sliding windows technique with 50% overlapping and window length 4s, SVM algorithm, and 

a vector of 243 features, already detail explained in subchapter 3.2.5. 

After classification, repetitions counting and segmentation can be performed using 

either the method with or without domain knowledge. The metrics section then conducts a 

quantitative analysis using equation ( 25 ) and a qualitative analysis using equation ( 24 ) and 

generates an output assessment. 
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5.2 Results 
5.2.1 Counting and Segmentation 

The process of counting and segmentation was accomplished through a method without 

domain knowledge, solely utilizing input data from an accelerometer (AVM). Difference 

between the observed number of repetition counts and the number of detected movement 

counts were quantified by an error count. The impact of the number and placement of nodes 

on the accuracy of the proposed approach was evaluated through experimentation with one 

(Figure 56), two (Figure 57), and three (Figure 58) IMUs. 

 

Figure 56 Repetition counting performance with 1 IMU. Position – wrist 

 

The utilization of an IMU placed on the wrist resulted in an overall repetition counting 

performance of 78.70% for all exercises. The inclusion of the possibility of a single error 

within the set increases the performance to 95.56%. However, accuracy is notably diminished 

during the execution of push ups, box squats, and heel touches. Excluding these three 

exercises, the accuracy without any errors increases to 94.44%, or 99.86% when accounting 

for the possibility of a single error within the set. 
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Figure 57 Repetition counting performance with 2 different IMUs. Position – wrist and chest 

 

The integration of IMUs on both the wrist and chest yielded an overall repetition 

counting performance of 95% for all exercises. When accounting for the possibility of a 

single error within the set, the performance increases to 99.54%. Notably, the exercise 

without a single error accuracy below 95.85% was heel touches, while the accuracy for the 

remaining exercises exceeded this threshold. 

Employing three IMUs, placed on the wrist, chest, and thigh, resulted in a modest 

improvement in repetition counting performance. Without any errors, the performance 

increased to 95.65%. The inclusion of the possibility of a single error within the set resulted in 

a performance of 99.54%. 

The results of segmentation are in a correlation with repetition counting performance, 

as explicated in the previous subchapter 3.2.4.1. 
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Figure 58  Repetition counting performance with 3 different IMUs. Position – wrist, chest and thigh  

 

5.2.2 Classification – Exercise Recognition 

Depending on the chosen procedure for monitoring and evaluating human movements, three 

distinct approaches to exercise recognition can be identified. 

The first approach entails the application of a low-pass filter to the IMU data obtained 

during the workout, which must subsequently be segmented into labeled time intervals to 

enable further signal processing. Activities performed during the workout are classified into 

ten distinct categories utilizing a support vector machine (SVM) and a sliding window 

technique with a window length of 4 seconds and a 50% overlap. These categories include: 0 

- other, 1 - Standing Front Dumbbell Raise, 2 - Standing Dumbbell Lateral Raise with Arms 

Straight, 3 - Standing Side Dumbbell Shrug, 4 - Standing Dumbbell Curl with Rotation, 5 - 

Bent-over Dumbbell Row, 6 - Push-up, 7 - Dumbbell Step-up, 8 - Box Squat, and 9 - Heel 

Touch. The overall results are presented in Table 7 (with the label All Activity – AA), and 

more detail results in Figure 59 and Figure 60. Results indicate that there is no notable 

difference, approximately 1%, in utilizing one or three IMUs, or solely utilizing input data 

from the accelerometer. 
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Table 7 Comparison of overall 5-fold cross validation test accuracy for different combination of input 
data and IMUs. AA – All Activity (pause between sets included), AD – Activity Detection (pause between 
sets excluded), ADW – Activity Defined Window  

Input Data 
Wrist, 

w=4s (AA) 

W+C+T, 

w=4s (AA) 

Wrist, 

w=4s (AD) 

W+C+T, 

w=4s (AD) 

Wrist, 

ADW (AD) 
W+C+T, 

ADW (AD) 

Acceleration 

Angular 
velocity 

Euler angles 

Acc = 95.9% Acc = 96.1% Acc=99.4% Acc=99.4% Acc =98.6% Acc = 99.7% 

Acceleration Acc = 94.7% Acc = 95.3% Acc=98.0% Acc=99.2% Acc = 97.3% Acc = 99.4% 

 

  

Figure 59 Activity classification with SVM, sliding window 4s with 50% overlapping (AA). IMU position – 
wrist. Input data – acceleration, angular velocity, Euler angles (left); acceleration (right) 

 

  

Figure 60 Activity classification with SVM, sliding window 4s with 50% overlapping (AA). IMU position – 
wrist, chest and thigh. Input data – acceleration, angular velocity, Euler angles (left); acceleration (right) 
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The second approach assumes that the segmentation of activities and non-activities has 

been performed by an expert beforehand, as described in section 5.1.1.4. In this scenario, nine 

distinct classes are presented, excluding the "other" class. Exercise classification is executed 

using a SVM in combination with two different windowing techniques: sliding window (with 

a window length of 4 seconds and a 50% overlap) and activity-defined window. The overall 

results are presented in Table 7 (labeled as Activity Detection – AD), with further detailed 

outcomes exhibited in Figure 61, Figure 62, Figure 63 and Figure 64. Higher accuracy 

outcomes were achieved compared to the first approach, around 99%, but there is no 

significant difference between utilizing one or three IMUs, nor is there a significant difference 

in performance when utilizing acceleration, angular velocity, and Euler angles as input data 

versus solely utilizing acceleration. 

 

  

Figure 61 Exercise classification with SVM, sliding window 4s with 50% overlapping (AD). IMU position 
– wrist. Input data – acceleration, angular velocity, Euler angles (left); acceleration (right) 
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Figure 62 Exercise classification with SVM, sliding window 4s with 50% overlapping (AD). IMU position 
– wrist, chest and thigh. Input data – acceleration, angular velocity, Euler angles (left); acceleration(right) 

  

Figure 63 Exercise classification with SVM, ADW (AD). IMU position – wrist. Input data – acceleration, 
angular velocity, Euler angles (left); acceleration (right) 

  

Figure 64 Exercise classification with SVM, ADW (AD). IMU position – wrist, chest and thigh. Input data 
– acceleration, angular velocity, Euler angles (left); acceleration (right) 
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The third approach assumes that individual human movements have been segmented 

utilizing a method without domain knowledge based on autocorrelation, as presented in 

subchapter 3.2.4.1. Multiple commonly utilized machine learning algorithms, such as SVM, 

KNN, Ensemble, and Naïve Bayes, were employed to determine the exercise to which a given 

movement corresponds. Additionally, to reduce the number of features that enter the machine 

learning algorithm the use of Maximum Relevance Minimum Redundancy (MRMR) was also 

explored, along with the influence of IMU position on classification accuracy (Figure 65 - 

Figure 71). When utilizing all features, the classification accuracy consistently exhibited a 

high level, nearly reaching 100%. However, as the number of features decreased, the 

classification accuracy also experienced a noticeable decline, except in the case of IMU 

position on the wrist, where accuracy remained high, around 99%. Further detailed results 

with the impact of reduction are provided in the Appendix section through Receiver 

Operating Characteristic (ROC) curves (Figure A 1 - Figure A 6). Furthermore, a list of the 

chosen features and their respective rankings can be found in Figure A 7 - Figure A 12. 

 

 
Figure 65 Score comparison for different ML model types and number of selected features. IMU position 

– wrist 
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Figure 66 Score comparison for different ML model types and number of selected features. IMU position 

– chest 

 

 
Figure 67 Score comparison for different ML model types and number of selected features. IMU position 

– thigh 
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Figure 68 Score comparison for different ML model types and number of selected features. IMU position 

– wrist and chest 

 

 
Figure 69 Score comparison for different ML model types and number of selected features. IMU position 

– wrist and thigh 
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Figure 70 Score comparison for different ML model types and number of selected features. IMU position 

– wrist, chest and thigh 

 

 
Figure 71 Score comparison for SVM and maximum features. IMU position – all combination 
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5.2.3 Assessment 

The evaluation of workout performance is presented using either quantitative ( 25 ) or 

qualitative ( 24 ) metrics. In this study, a personal metric was utilized for each subject, which 

is further detailed in subchapter 4.1. The exercises in the workout were predominantly 

executed in three sets of eight repetitions each, and thus, the personal metric was calculated as 

the median value obtained from the eight repetitions in the initial set and then extended to the 

repetitions in the subsequent two sets. Poor repetitions can be easily identified as outliers, as 

depicted in Figure 72.  

 

Figure 72 Quality score for all subjects and 9 exercises 

Furthermore, the utilization of non-parametric statistical method exposed a 

pronounced discrepancy in the attained quality scores of inexperienced and experienced 

subjects (Table 8). The predetermined level of statistical significance was set at 5%, 

employing the Wilcoxon rank sum test. In the Wilcoxon rank sum test, the p-value is a 

measure of the strength of evidence against the null hypothesis of no difference between the 

two populations being compared. If the p-value is less than the predetermined level of 
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significance, then the null hypothesis is rejected and the difference between the populations is 

statistically significant.  

Table 8 Wilcoxon rank sum test for quality score for 9 exercises between experienced and inexperienced 
subjects 

 Ex.1 Ex.2 Ex.3 Ex.4 Ex.5 Ex.6 Ex.7 Ex.8 Ex.9 

p 0.2081 0.0383 <0.0001 0.0228 0.0204 0.0126 0.0010 <0.0001 0.3774 

h 0 1 1 1 1 1 1 1 0 

 

The performance of the algorithm was further assessed by comparison with the 

comprehensive evaluation conducted by the exercise expert who was physically present 

during the workout sessions. The evaluation was categorized into three scores, representing 

the highest performance rating (score 3), middle (score 2), and lowest (score 1). According to 

the results of the Wilcoxon rank sum test, a substantial variation was observed for most 

exercises in the quality scores associated with the highest rating when compared with those of 

the middle (Table 9) or lowest ratings (Table 10). However, no statistically significant 

differences were identified between the middle and lowest ratings (Table 11). 

Table 9 Wilcoxon rank sum test for quality score for 9 exercises between subjects with assessment score 3 
and 2 (score given by expert) 

 Ex.1 Ex.2 Ex.3 Ex.4 Ex.5 Ex.6 Ex.7 Ex.8 Ex.9 

p 0.0071 0.0071 0.0002 0.0406 0.6265 0.0433 0.3406 0.0220 0.0002 

h 1 1 1 1 0 1 0 1 1 

 

Table 10 Wilcoxon rank sum test for quality score for 9 exercises between subjects with assessment score 
3 and 1 (score given by expert) 

 Ex.1 Ex.2 Ex.3 Ex.4 Ex.5 Ex.6 Ex.7 Ex.8 Ex.9 

p 0.1645 0.1226 0.0082 0.0197 0.9929 0.0099 0.0284 0.0022 0.0130 

h 0 0 1 1 0 1 1 1 1 
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Table 11 Wilcoxon rank sum test for quality score for 9 exercises between subjects with assessment score 
2 and 1 (score given by expert) 

 Ex.1 Ex.2 Ex.3 Ex.4 Ex.5 Ex.6 Ex.7 Ex.8 Ex.9 

p 0.1549 0.1602 0.2270 0.8050 0.5745 0.3678 0.0014 0.4504 0.2545 

h 0 0 0 0 0 0 1 0 0 

 

In addition to assessing quality and quantity through IMU sensors, heart rate (HR) 

monitoring was conducted during exercising. The movement and behavior of HR during 

exercise can be observed in the accompanying Figure 73 and Figure 74. HR parameters 

typically monitored during workouts, such as maximum HR (𝐻𝑅𝑚𝑎𝑥), HR at the beginning 

(𝐻𝑅𝑏𝑒𝑔) and end (𝐻𝑅𝑒𝑛𝑑) of the workout, were compared between two groups of subjects - 

active and inactive (Figure 75). Using the Wilcoxon rank sum test (Table 12), it was 

established that there is a significant distinction in HR levels between physically active and 

inactive individuals for both, 𝐻𝑅𝑏𝑒𝑔 and 𝐻𝑅𝑚𝑎𝑥, while no significant difference was observed 

in the ratio  (𝐻𝑅𝑚𝑎𝑥−𝐻𝑅𝑒𝑛𝑑)

𝐻𝑅𝑚𝑎𝑥
 and (𝐻𝑅𝑚𝑎𝑥−𝐻𝑅𝑏𝑒𝑔)

𝐻𝑅𝑚𝑎𝑥
. 

 

Figure 73 Heart rate during workout with accelerometer intensity for every exercise 
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Figure 74 Cumulative distribution of heart rate for all subject 

 

Table 12 Wilcoxon rank sum test for different heart rate parameters between physical active and inactive 
subjects 

 𝐻𝑅𝑏𝑒𝑔 𝐻𝑅𝑚𝑎𝑥 𝐻𝑅𝑒𝑛𝑑 
(𝐻𝑅𝑚𝑎𝑥 − 𝐻𝑅𝑒𝑛𝑑)

𝐻𝑅𝑚𝑎𝑥
 

(𝐻𝑅𝑚𝑎𝑥 − 𝐻𝑅𝑏𝑒𝑔)

𝐻𝑅𝑚𝑎𝑥
 

p 0.0002 0.0009 0.0523 0.5095 0.1178 

h 1 1 0 0 0 
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Figure 75 Heart rate differences between physical active and inactive subjects   
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5.3 Discussion 
With the aim to develop a wearable system that would make it easier for professional expert 

to monitor a person who performs exercise or enable people to train independently with good 

form quality and motivation, it is necessary that the system has satisfactory feedback to the 

user [3][6][7][101][114]. In the development of a system feedback, where workout consists 

primarily of strength exercises, it is possible to take advantage of the fact that human 

movements are repetitive. The form of feedback in this case should contain two important 

parameters, quantitative and qualitative, i.e. the number of performed repetitions of a 

particular exercise and the quality of the performed repetitions [98][102]. For successful 

counting and assessment of repetition quality, repetition must first be detected and isolated 

(segmented), and then identified (classified) to which exercise it belongs [81]. Only after the 

segmentation and classification of repetitions has been done, it is possible to start the quality 

assessment [115].  

The main objective of this research was to proposed detail procedure for quantitative 

and qualitative monitoring of exercise performance. The concepts of quantity and quality of 

motion are explained, and a developed algorithm that enables this is presented. The structure 

of the algorithm consists of: activity segmentation, repetition detection and segmentation, 

feature extraction, exercise recognition, and assessment. Assessment is the most interesting 

information for the end user, which can be observed at a lower (individual exercise) or higher 

(entire workout) level over time and possibly react in a timely manner to prevent poor 

performance and thus the possibility of injury. The number of subjects who were included in 

the research as volunteers was 40 (28 men and 12 women). The data was acquired in the same 

way and same sensors sensitivity and positions as described in Chapter 3. 

During the counting of repetitions of an individual exercise using only the IMU on the 

wrist, a repetition performance without a single error is 78.70%, or 95.56% if the possibility 

of one error within the set is included. Smaller accuracy occurs with push-ups, squats and heel 

touches exercises, but by adding the IMU sensor on the chest, the accuracy increases to 95% 

without a single error, or to 99.54% if the possibility of one error within the set is included. 

By including the third IMU (thigh), a repetition performance increased slightly, without a 

single error is 95.65%, or 99.54% if the possibility of one error within the set is included. 

The recognition of exercises performed was carried out using SVM classifier, 

employing a 4 sec sliding window with a 50% overlap. By utilizing input data from the 
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accelerometer, gyroscope, and magnetometer of the IMU positioned on the wrist, chest, and 

thigh, an accuracy of 99.4% is achieved, which is comparable to using only the wrist IMU. 

Furthermore, using input data solely from the accelerometer resulted in accuracy of 99.2%, 

and 98%, respectively. The SVM classifier was also applied to windows determined based on 

activities, yielding higher accuracy on a larger dataset compared to Chapter 3. The obtained 

data are comparable with the sliding window approach. Utilizing input data from the 

accelerometer, gyroscope, and magnetometer of the IMU positioned on the wrist, chest, and 

thigh resulted in accuracies of 99.7% and 98.6% using only the wrist IMU. Moreover, using 

input data solely from the accelerometer resulted in accuracy of 99.4%, and 97.3%, 

respectively. 

In addition to the recognition of the entire exercise, the classification of the segmented 

individual movement of each exercise was also done. Validation was done using 5-fold, and 

the test was done in a ratio of 70/30. Using the SVM method with IMU data from: a) the wrist 

- validation accuracy is 98.85% and test accuracy is 99.73%, b) for IMU combination of wrist 

and thigh - validation accuracy is 99.95% and test accuracy is 100%, and c) for IMUs from 

wrist, chest, and thigh - validation accuracy is 100% and test accuracy is 100%. To reduce the 

number of features that enter the machine learning algorithm without significantly affecting 

accuracy, using Maximum Relevance Minimum Redundancy (MRMR) characteristic features 

were selected and tested. 

At the level of performing the entire workout, in addition to the processed data from 

the IMU sensors, the change in heart rate was also monitored. Although the heart rate is 

mostly associated with cardio exercises, it also proved to be a useful parameter when 

performing strength exercises and determining the rhythm of execution depending on the 

current physical fitness level of the individual. An uncontrolled and large increase in heart 

rate can put the exerciser in a situation where, due to excessive efforts, he cannot influence 

the quality of the movement i.e. the performed exercise. Using Wilcoxon rank sum test for 

different heart rate parameters the results showed that there is a significant difference between 

people who are physically active and inactive for the HR at the beginning of the exercise 

(𝐻𝑅𝑏𝑒𝑔) as well as the maximum HR (𝐻𝑅𝑚𝑎𝑥), while there is not a significant difference in 

ratio between 𝐻𝑅𝑏𝑒𝑔 and 𝐻𝑅𝑚𝑎𝑥, or 𝐻𝑅𝑒𝑛𝑑 and 𝐻𝑅𝑚𝑎𝑥. 

The metric proposed in Chapter 4 was applied to all subjects. Using Wilcoxon rank 

sum test results showed that there is a significant difference in achieved score between 

experienced and inexperienced subjects. Also, the achieved results of the algorithm were 
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compared with the overall assessment of the performance of the expert who was with the 

subjects during the workout session. The Wilcoxon rank sum test results indicated a 

significant difference for most exercises between the highest performance rating (score 3) and 

the middle (score 2) or lowest rating (score 1). Conversely, no statistically significant 

differences were observed between the middle and lowest ratings. 
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Wearable devices equipped with inertial and magnetic sensors are increasingly being 

employed for the monitoring and assessment of physical activity. The affordability, accuracy, 

and portability of such devices enable real-time monitoring of human movement during 

exercise, without requiring direct supervision by a trained professional. Furthermore, the data 

collected by these devices can be analyzed over time, providing valuable insights into an 

individual's patterns of physical activity and progress. The advent of such technology has the 

potential to revolutionize the field of physical activity monitoring and assessment and may 

play a crucial role in promoting health and well-being. 

The use of wearable devices especially for monitoring and assessment during strength 

exercises involves several key steps. Firstly, the wearable devices must be properly positioned 

on the body of the individual performing the exercises, in order to obtain accurate and reliable 

data. Next, the signals from the sensors are processed to detect and separate the individual 

repetitions of the exercise (segmentation), as well as to recognize which exercise is being 

performed based on the sensor data (classification). Once the repetitions have been segmented 

and classified, quantitative information such as the number of repetitions performed can be 

obtained.  In addition to obtaining quantitative data, there is often a need to analyze the 

quality of each individual repetition. This can be achieved by calculating various parameters 

such as linear acceleration, angle, and duration, which describe the movement trajectory. 

Finally, the qualitative and quantitative information is combined to generate an overall 

assessment of the exercise performance, which can be used to monitor progress and identify 

areas for improvement. 

This doctoral thesis presents a comprehensive procedure for quantitative and 

qualitative monitoring of exercise performance using wearable sensor nodes with inertial and 

magnetic sensors, along with a measurement method for assessing human movement 

variability during exercise and movement execution metrics. The procedure was developed to 

6 CONCLUSIONS 
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achieve high accuracy in tracking movement while maintaining low cost and energy 

autonomy of the monitoring system. Validation of the procedure, method, and metrics was 

first done in controlled conditions and on a reduced number of subjects, followed by 

validation in real conditions on a larger scale of subjects. 

The proposed method for measuring the variability of human movement during 

strength exercises was developed to detect, count, and segment repetitive movements without 

domain knowledge of the exercise being performed. The method was tested on a smaller 

group of subjects using one, two, or three IMUs (chapter 3). The results demonstrated that for 

workouts that include whole body activation and a wider range of exercises, an accuracy of 

approximately 99% in exercise recognition can be achieved using only accelerometer data 

from the IMU located on the wrist. However, for accurate repetition counting and 

segmentation, a minimum of two IMUs, one on the wrist and one on the chest, is needed. 

When only IMU on the wrist was used, the largest errors in repetition counting and 

segmentation were observed in exercises such as push-ups, squats, and heel touches. 

Chapter 5 of the thesis present research conducted on a larger group of subjects using 

sensor nodes equipped with inertial and magnetic sensors, alongside heart rate measurements. 

The study aims to design a procedure for monitoring exercise performance through the 

selection of significant features from the obtained data and testing various machine learning 

algorithms with different IMU locations. Results indicate that the support vector machine 

algorithm has the most favorable characteristics for the given conditions. Furthermore, in 

addition to detecting incorrect repetitions during strength training exercises, the newly 

developed movement execution metric is also capable of distinguishing between experienced 

and inexperienced subjects. The proposed metric enables the generation of an overall 

performance assessment utilizing data from all three IMUs, located on the wrist, chest, and 

thigh. 

6.1 Limitations and future work 
Several limitations have been identified at the conclusion of this research work that warrant 

attention in future research.  

Firstly, a more extensive dataset encompassing a wider range of subjects would 

enhance variability and allow for a more comprehensive analysis. This should include 

individuals with current or recent musculoskeletal injuries that may impede their exercise 

performance. 
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Moreover, it would be valuable to validate the assumptions stated in this research 

across diverse environments and real-world scenarios. Rigorous testing under such conditions 

would provide further insights and enhance the applicability of the findings. 

Regarding quality assessment, a more detailed annotation process is essential, 

encompassing individual movements rather than providing a general rating for specific 

exercises. This would facilitate a thorough examination of metrics and algorithms, potentially 

enabling the recognition of multiple classes rather than solely distinguishing between 

experienced and inexperienced subjects. 

In terms of heart rate analysis, additional information beyond measurements taken 

during the workout session is required. It would be advantageous to gather data on resting 

heart rate, commonly known as baseline heart rate, as well as the time required for the heart 

rate to return to baseline after exercise. 

Furthermore, it is recommended to conduct a more comprehensive assessment of the 

subjects' fitness and activity levels prior to their participation in the research. This can be 

accomplished by employing adapted questionnaires or, preferably, integrating specific 

activity monitoring techniques to gather precise and accurate data. 
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Table A 1 Repetition detection performance metrics for 6 subjects using autocorrelation method, IMU 
position – wrist 

Exercise Method Position Sensitivity Precision F-score 

Front db. raises Autocor Wrist 1.0000 1.0000 1.0000 

Lateral db. raises Autocor Wrist 1.0000 1.0000 1.0000 

Db. shrugs Autocor Wrist 0.9722 1.0000 0.9859 

Db. bicep curls Autocor Wrist 1.0000 0.9931 0.9965 

Bentover db. 
rows 

Autocor Wrist 1.0000 0.9931 0.9965 

Push ups Autocor Wrist 0.7639 0.9910 0.8627 

Db. step ups Autocor Wrist 1.0000 0.9114 0.9536 

Box squats Autocor Wrist 1.0000 0.9730 0.9863 

Heel touches Autocor Wrist 0.9236 0.9852 0.9534 

 

APPENDIX 



115 
 

Table A 2 Repetition detection performance metrics for 6 subjects using modified autocorrelation method, 
IMU position – wrist 

Exercise Method Position Sensitivity Precision F-score 

Front db. raises M Autocor Wrist 1.0000 1.0000 1.0000 

Lateral db. raises M Autocor Wrist 1.0000 1.0000 1.0000 

Db. shrugs M Autocor Wrist 1.0000 1.0000 1.0000 

Db. bicep curls M Autocor Wrist 
1.0000 1.0000 1.0000 

Bentover db. 
rows 

M Autocor Wrist 
1.0000 0.9931 0.9965 

Push ups M Autocor Wrist 0.8056 1.0000 0.8923 

Db. step ups M Autocor Wrist 1.0000 1.0000 1.0000 

Box squats M Autocor Wrist 1.0000 0.9730 0.9863 

Heel touches M Autocor Wrist 0.9444 0.9927 0.9680 

 

Table A 3 Repetition detection performance metrics for 6 subjects using energy method with raw AVM, 
IMU position – wrist 

Exercise Method Position Sensitivity Precision F-score 

Front db. raises Raw AVM Wrist 
0.9861 0.9861 0.9861 

Lateral db. raises Raw AVM Wrist 0.9861 1.0000 0.9930 

Db. shrugs Raw AVM Wrist 0.9028 1.0000 0.9489 

Db. bicep curls Raw AVM Wrist 0.9792 0.9463 0.9625 

Bentover db. 
rows 

Raw AVM Wrist 
0.9653 1.0000 0.9823 

Push ups Raw AVM Wrist 
0.8750 0.9265 0.9000 

Db. step ups Raw AVM Wrist 0.9861 1.0000 0.9930 

Box squats Raw AVM Wrist 0.9028 0.9924 0.9455 

Heel touches Raw AVM Wrist 0.8264 0.9917 0.9015 
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Table A 4 Repetition detection performance metrics for 6 subjects using energy method with linear AVM, 
IMU position – wrist 

Exercise Method Position Sensitivity Precision F-score 

Front db. raises Lin AVM Wrist 0.9861 0.9861 0.9861 

Lateral db. raises Lin AVM Wrist 0.9931 0.9795 0.9862 

Db. shrugs Lin AVM Wrist 0.8889 1.0000 0.9412 

Db. bicep curls Lin AVM Wrist 
0.9931 0.9470 0.9695 

Bentover db. 
rows 

Lin AVM Wrist 
0.9722 1.0000 0.9859 

Push ups Lin AVM Wrist 0.8611 0.9612 0.9084 

Db. step ups Lin AVM Wrist 0.9861 1.0000 0.9930 

Box squats Lin AVM Wrist 0.8750 0.9921 0.9299 

Heel touches Lin AVM Wrist 0.7986 0.9664 0.8745 

 

Table A 5 Repetition detection performance metrics for 6 subjects using energy method with AVVM. IMU 
position – wrist 

Exercise Method Position Sensitivity Precision F-score 

Front db. raises AVVM Wrist 
1.0000 0.9931 0.9965 

Lateral db. raises AVVM Wrist 0.9792 1.0000 0.9895 

Db. shrugs AVVM Wrist 0.7708 0.9823 0.8638 

Db. bicep curls AVVM Wrist 0.9861 0.9404 0.9627 

Bentover db. 
rows 

AVVM Wrist 
0.9444 0.9927 0.9680 

Push ups AVVM Wrist 
0.9931 1.0000 0.9965 

Db. step ups AVVM Wrist 0.8264 1.0000 0.9049 

Box squats AVVM Wrist 0.8611 0.9841 0.9185 

Heel touches AVVM Wrist 0.8264 0.9917 0.9015 
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Table A 6 Repetition detection performance metrics for 6 subjects using autocorrelation method, IMU 
position – chest 

Exercise Method Position Sensitivity Precision F-score 

Front db. raises Autocor Chest 0.9861 1.0000 0.9930 

Lateral db. raises Autocor Chest 0.9444 1.0000 0.9714 

Db. shrugs Autocor Chest 0.8958 1.0000 0.9451 

Db. bicep curls Autocor Chest 
0.9097 0.9357 0.9225 

Bentover db. 
rows 

Autocor Chest 
0.8750 0.9618 0.9164 

Push ups Autocor Chest 1.0000 1.0000 1.0000 

Db. step ups Autocor Chest 0.9792 0.9038 0.9400 

Box squats Autocor Chest 1.0000 1.0000 1.0000 

Heel touches Autocor Chest 0.9931 0.9108 0.9502 

 

Table A 7 Repetition detection performance metrics for 6 subjects using modified autocorrelation method, 
IMU position – chest 

Exercise Method Position Sensitivity Precision F-score 

Front db. raises M Autocor Chest 
0.9583 1.0000 0.9787 

Lateral db. raises M Autocor Chest 0.9931 1.0000 0.9965 

Db. shrugs M Autocor Chest 0.9861 1.0000 0.9930 

Db. bicep curls M Autocor Chest 0.9444 0.9927 0.9680 

Bentover db. 
rows 

M Autocor Chest 
0.9792 0.9930 0.9860 

Push ups M Autocor Chest 
1.0000 1.0000 1.0000 

Db. step ups M Autocor Chest 0.9792 1.0000 0.9895 

Box squats M Autocor Chest 1.0000 1.0000 1.0000 

Heel touches M Autocor Chest 0.9653 1.0000 0.9823 
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Table A 8 Repetition detection performance metrics for 6 subjects using autocorrelation method, IMU 
position – thigh 

Exercise Method Position Sensitivity Precision F-score 

Front db. raises Autocor Thigh 0.9444 0.9577 0.9510 

Lateral db. raises Autocor Thigh 0.7847 0.8496 0.8159 

Db. shrugs Autocor Thigh 0.7569 0.8258 0.7899 

Db. bicep curls Autocor Thigh 
0.8750 0.8129 0.8428 

Bentover db. 
rows 

Autocor Thigh 
0.8264 0.9225 0.8718 

Push ups Autocor Thigh 1.0000 1.0000 1.0000 

Db. step ups Autocor Thigh 0.9653 1.0000 0.9823 

Box squats Autocor Thigh 1.0000 0.9730 0.9863 

Heel touches Autocor Thigh 0.9167 0.9103 0.9135 

 

Table A 9 Repetition detection performance metrics for 6 subjects using modified autocorrelation method, 
IMU position – thigh 

Exercise Method Position Sensitivity Precision F-score 

Front db. raises M Autocor Thigh 
0.9236 0.9925 0.9568 

Lateral db. raises M Autocor Thigh 0.8611 0.9688 0.9118 

Db. shrugs M Autocor Thigh 0.8611 0.9688 0.9118 

Db. bicep curls M Autocor Thigh 0.9236 0.9779 0.9500 

Bentover db. 
rows 

M Autocor Thigh 
0.8889 0.9922 0.9377 

Push ups M Autocor Thigh 
1.0000 1.0000 1.0000 

Db. step ups M Autocor Thigh 0.9653 1.0000 0.9823 

Box squats M Autocor Thigh 1.0000 1.0000 1.0000 

Heel touches M Autocor Thigh 0.9514 0.9856 0.9682 
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Table A 10 Repetition counting performance using autocorrelation method. IMU position – wrist 

Exercise Total set 
no. 

Error count 

|e| = 0 [%] |e| = 1 [%] |e| = 2 [%] |e| > 2 [%] 

Front db. raises 18 18 100.00 0 0.00 0 0.00 0 0.00 

Lateral db. raises 18 18 100.00 0 0.00 0 0.00 0 0.00 

Db. shrugs 18 17 94.44 0 0.00 0 0.00 1 5.56 

Db. bicep curls 18 17 94.44 1 5.56 0 0.00 0 0.00 

Bentover db. rows 18 17 94.44 1 5.56 0 0.00 0 0.00 

Push ups 18 7 38.89 6 33.33 0 0.00 5 27.78 

Db. step ups 18 16 88.89 0 0.00 0 0.00 2 11.11 

Box squats 18 14 77.78 4 22.22 0 0.00 0 0.00 

Heel touches 18 12 66.67 3 16.67 1 5.56 2 11.11 

 

Table A 11 Repetition counting performance using modified autocorrelation method. IMU position – wrist 

Exercise Total set 
no. 

Error count 

|e| = 0 [%] |e| = 1 [%] |e| = 2 [%] |e| > 2 [%] 

Front db. raises 18 18 100.00 0 0.00 0 0.00 0 0.00 

Lateral db. raises 18 18 100.00 0 0.00 0 0.00 0 0.00 

Db. shrugs 18 18 100.00 0 0.00 0 0.00 0 0.00 

Db. bicep curls 18 18 100.00 0 0.00 0 0.00 0 0.00 

Bentover db. rows 18 17 94.44 1 5.56 0 0.00 0 0.00 

Push ups 18 8 44.44 4 22.22 4 22.22 2 11.11 

Db. step ups 18 18 100.00 0 0.00 0 0.00 0 0.00 

Box squats 18 14 77.78 4 22.22 0 0.00 0 0.00 

Heel touches 18 11 61.11 5 27.78 2 11.11 0 0.00 
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Table A 12 Repetition counting performance using energy method with raw AVM. IMU position – wrist 

Exercise Total set 
no. 

Error count 

|e| = 0 [%] |e| = 1 [%] |e| = 2 [%] |e| > 2 [%] 

Front db. raises 18 14 77.78 4 22.22 0 0.00 0 0.00 

Lateral db. raises 18 16 88.89 2 11.11 0 0.00 0 0.00 

Db. shrugs 18 8 44.44 8 44.44 0 0.00 2 11.11 

Db. bicep curls 18 8 44.44 9 50.00 1 5.56 0 0.00 

Bentover db. rows 18 13 72.22 5 27.78 0 0.00 0 0.00 

Push ups 18 4 22.22 8 44.44 2 11.11 4 22.22 

Db. step ups 18 16 88.89 2 11.11 0 0.00 0 0.00 

Box squats 18 10 55.56 5 27.78 2 11.11 1 5.56 

Heel touches 18 3 16.67 8 44.44 4 22.22 3 16.67 

 

Table A 13 Repetition counting performance using energy method with linear AVM. IMU position – wrist 

Exercise Total set 
no. 

Error count 

|e| = 0 [%] |e| = 1 [%] |e| = 2 [%] |e| > 2 [%] 

Front db. raises 18 14 77.78 4 22.22 0 0.00 0 0.00 

Lateral db. raises 18 14 77.78 4 22.22 0 0.00 0 0.00 

Db. shrugs 18 8 44.44 6 33.33 2 11.11 2 11.11 

Db. bicep curls 18 10 55.56 7 38.89 1 5.56 0 0.00 

Bentover db. rows 18 15 83.33 2 11.11 1 5.56 0 0.00 

Push ups 18 5 27.78 6 33.33 5 27.78 2 11.11 

Db. step ups 18 16 88.89 2 11.11 0 0.00 0 0.00 

Box squats 18 10 55.56 3 16.67 3 16.67 2 11.11 

Heel touches 18 0 0.00 7 38.89 8 44.44 3 16.67 
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Table A 14 Repetition counting performance using energy method with AVVM. IMU position – wrist 

Exercise Total set 
no. 

Error count 

|e| = 0 [%] |e| = 1 [%] |e| = 2 [%] |e| > 2 [%] 

Front db. raises 18 17 94.44 1 5.56 0 0.00 0 0.00 

Lateral db. raises 18 15 83.33 3 16.67 0 0.00 0 0.00 

Db. shrugs 18 0 0.00 6 33.33 9 50.00 3 16.67 

Db. bicep curls 18 8 44.44 9 50.00 1 5.56 0 0.00 

Bentover db. rows 18 9 50.00 9 50.00 0 0.00 0 0.00 

Push ups 18 17 94.44 1 5.56 0 0.00 0 0.00 

Db. step ups 18 3 16.67 9 50.00 2 11.11 4 22.22 

Box squats 18 5 27.78 7 38.89 4 22.22 2 11.11 

Heel touches 18 7 38.89 4 22.22 3 16.67 4 22.22 

 

Table A 15 Repetition counting performance using modified autocorrelation method. IMU position – chest 

Exercise Total set 
no. 

Error count 

|e| = 0 [%] |e| = 1 [%] |e| = 2 [%] |e| > 2 [%] 

Front db. raises 18 12 66.67 6 33.33 0 0.00 0 0.00 

Lateral db. raises 18 17 94.44 1 5.56 0 0.00 0 0.00 

Db. shrugs 18 16 88.89 2 11.11 0 0.00 0 0.00 

Db. bicep curls 18 10 55.56 7 38.89 1 5.56 0 0.00 

Bentover db. rows 18 14 77.78 4 22.22 0 0.00 0 0.00 

Push ups 18 18 100.00 0 0.00 0 0.00 0 0.00 

Db. step ups 18 15 83.33 3 16.67 0 0.00 0 0.00 

Box squats 18 18 100.00 0 0.00 0 0.00 0 0.00 

Heel touches 18 13 72.22 5 27.78 0 0.00 0 0.00 
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Table A 16 Repetition counting performance using modified autocorrelation method. IMU position – 
thigh 

Exercise Total set 
no. 

Error count 

|e| = 0 [%] |e| = 1 [%] |e| = 2 [%] |e| > 2 [%] 

Front db. raises 18 8 44.44 8 44.44 2 11.11 0 0.00 

Lateral db. raises 18 6 33.33 6 33.33 4 22.22 2 11.11 

Db. shrugs 18 7 38.89 6 33.33 2 11.11 3 16.67 

Db. bicep curls 18 8 44.44 7 38.89 2 11.11 1 5.56 

Bentover db. rows 18 5 27.78 10 55.56 2 11.11 1 5.56 

Push ups 18 18 100.00 0 0.00 0 0.00 0 0.00 

Db. step ups 18 13 72.22 5 27.78 0 0.00 0 0.00 

Box squats 18 18 100.00 0 0.00 0 0.00 0 0.00 

Heel touches 18 11 61.11 5 27.78 2 11.11 0 0.00 
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Table A 17 Score comparison for different model types and number of selected features. IMU position – 
wrist  

Model Type 
Accuracy % 

(Validation) 

Accuracy % 

(Test) 

Prediction 

Speed 

(obs/sec) 

Training Time 

(sec) 

Selected 

Features 

Feature 

Ranking 

Algorithm 

SVM 99.85 99.73 2774.01 84.96 189/189 None 

KNN 99.29 99.42 632.00 158.68 189/189 None 

Ensemble 98.83 98.11 8184.12 218.39 189/189 None 

Naive Bayes 93.28 93.55 44.72 855.81 189/189 None 

SVM 99.04 98.73 7420.11 65.63 20/189 MRMR 

KNN 94.92 92.97 16125.79 20.62 20/189 MRMR 

Ensemble 97.49 97.18 13722.54 36.79 20/189 MRMR 

Naive Bayes 96.00 95.68 391.45 99.01 20/189 MRMR 

SVM 94.04 94.59 9152.18 51.25 10/189 MRMR 

KNN 84.25 83.98 9440.72 47.84 10/189 MRMR 

Ensemble 93.86 94.48 10622.97 58.75 10/189 MRMR 

Naive Bayes 91.89 92.39 577.64 81.75 10/189 MRMR 

SVM 67.57 71.74 20110.23 396.25 3/189 MRMR 

KNN 67.92 70.19 18104.65 33.59 3/189 MRMR 

Ensemble 78.47 84.83 12159.83 33.84 3/189 MRMR 

Naive Bayes 78.64 83.59 2804.01 43.21 3/189 MRMR 
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Table A 18 Score comparison for different model types and number of selected features. IMU position – 
thigh 

Model Type 
Accuracy % 

(Validation) 

Accuracy % 

(Test) 

Prediction 

Speed 

(obs/sec) 

Training 

Time (sec) 

Selected 

Features 

Feature 

Ranking 

Algorithm 

SVM 99.85 99.73 2774.01 84.96 189/189 None 

KNN 99.29 99.42 632.00 158.68 189/189 None 

Ensemble 98.83 98.11 8184.12 218.39 189/189 None 

Naive Bayes 93.28 93.55 44.72 855.81 189/189 None 

SVM 99.04 98.73 7420.11 65.63 20/189 MRMR 

KNN 94.92 92.97 16125.79 20.62 20/189 MRMR 

Ensemble 97.49 97.18 13722.54 36.79 20/189 MRMR 

Naive Bayes 96.00 95.68 391.45 99.01 20/189 MRMR 

SVM 94.04 94.59 9152.18 51.25 10/189 MRMR 

KNN 84.25 83.98 9440.72 47.84 10/189 MRMR 

Ensemble 93.86 94.48 10622.97 58.75 10/189 MRMR 

Naive Bayes 91.89 92.39 577.64 81.75 10/189 MRMR 

SVM 67.57 71.74 20110.23 396.25 3/189 MRMR 

KNN 67.92 70.19 18104.65 33.59 3/189 MRMR 

Ensemble 78.47 84.83 12159.83 33.84 3/189 MRMR 

Naive Bayes 78.64 83.59 2804.01 43.21 3/189 MRMR 
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Table A 19 Score comparison for different model types and number of selected features. IMU position – 
chest 

Model Type 
Accuracy % 

(Validation) 

Accuracy %  

(Test) 

Prediction 

Speed 

(obs/sec) 

Training 

Time (sec) 

Selected 

Features 

Feature 

Ranking 

Algorithm 

SVM 96.16 96.72 3124.35 25.36 189/189 None 

KNN 84.00 83.09 1533.45 19.90 189/189 None 

Ensemble 92.27 93.13 12358.53 91.51 189/189 None 

Naive Bayes 74.21 75.91 46.98 578.24 189/189 None 

SVM 84.07 88.26 6614.01 53.72 20/189 MRMR 

KNN 84.22 88.19 7767.45 97.94 20/189 MRMR 

Ensemble 84.55 87.61 8028.98 85.35 20/189 MRMR 

Naive Bayes 80.36 81.97 266.18 139.48 20/189 MRMR 

SVM 68.30 67.34 6403.45 130.38 10/189 MRMR 

KNN 57.56 58.80 12825.73 120.91 10/189 MRMR 

Ensemble 70.67 70.54 7097.04 81.70 10/189 MRMR 

Naive Bayes 68.91 68.07 472.49 95.22 10/189 MRMR 

SVM 66.55 67.61 18618.41 306.55 6/189 MRMR 

KNN 56.22 57.92 18066.03 91.40 6/189 MRMR 

Ensemble 69.74 68.19 9392.61 62.43 6/189 MRMR 

Naive Bayes 67.26 68.19 725.91 70.41 6/189 MRMR 

SVM 59.25 59.73 12943.02 555.73 3/189 MRMR 

KNN 48.74 49.85 15302.08 92.55 3/189 MRMR 

Ensemble 65.39 65.06 8379.60 104.94 3/189 MRMR 

Naive Bayes 65.30 65.87 2090.71 67.00 3/189 MRMR 
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Table A 20 Score comparison for different model types and number of selected features. IMU position – 
wrist and thigh 

Model Type 
Accuracy % 

(Validation) 

Accuracy % 

(Test) 

Prediction 

Speed 

(obs/sec) 

Training 

Time (sec) 

Selected 

Features 

Feature 

Ranking 

Algorithm 

SVM 99.95 100.00 1462.88 247.32 378/378 None 

KNN 99.69 99.96 385.23 253.26 378/378 None 

Ensemble 99.37 99.50 5199.28 566.74 378/378 None 

Naive Bayes 93.65 94.05 18.01 1558.41 378/378 None 

SVM 97.53 98.80 4207.92 575.40 20/378 MRMR 

KNN 92.39 93.28 5906.22 327.87 20/378 MRMR 

Ensemble 97.53 98.53 4145.60 513.12 20/378 MRMR 

Naive Bayes 95.76 97.37 285.24 419.53 20/378 MRMR 

SVM 92.22 92.78 4384.10 653.47 10/378 MRMR 

KNN 85.14 85.79 4268.33 682.62 10/378 MRMR 

Ensemble 93.75 94.21 3360.95 857.74 10/378 MRMR 

Naive Bayes 91.21 91.39 555.52 676.65 10/378 MRMR 

SVM 88.85 84.05 5410.08 969.23 4/378 MRMR 

KNN 87.01 85.91 4989.21 987.87 4/378 MRMR 

Ensemble 92.74 90.81 3773.67 998.44 4/378 MRMR 

Naive Bayes 88.60 88.73 1412.76 821.52 4/378 MRMR 
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Table A 21 Score comparison for different model types and number of selected features. IMU position – 
wrist and chest 

Model Type Accuracy % 

(Validation) 

Accuracy % 

(Test) 

Prediction 

Speed 

(obs/sec) 

Training 

Time (sec) 

Selected 

Features 

Feature 

Ranking 

Algorithm 

SVM 100.00 99.96 1933.63 35.94 378/378 None 

KNN 99.80 99.88 1016.24 31.09 378/378 None 

Ensemble 99.27 99.54 8034.50 139.26 378/378 None 

Naive Bayes 84.25 86.25 20.63 1241.76 378/378 None 

SVM 96.33 96.25 6180.80 192.44 20/378 MRMR 

KNN 86.61 90.62 5317.60 176.29 20/378 MRMR 

Ensemble 96.23 95.95 7374.08 349.39 20/378 MRMR 

Naive Bayes 94.16 93.78 251.97 264.33 20/378 MRMR 

SVM 88.70 92.86 6830.85 281.40 10/378 MRMR 

KNN 74.34 84.59 7241.85 374.77 10/378 MRMR 

Ensemble 91.55 94.21 7420.98 455.44 10/378 MRMR 

Naive Bayes 89.10 92.59 549.61 277.33 10/378 MRMR 

SVM 87.74 90.12 7285.18 590.24 4/378 MRMR 

KNN 82.26 85.87 9258.78 481.39 4/378 MRMR 

Ensemble 90.01 91.70 6068.21 516.73 4/378 MRMR 

Naive Bayes 86.93 88.19 1804.33 354.89 4/378 MRMR 
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Table A 22 Score comparison for different model types and number of selected features. IMU position – 
wrist, thigh and chest 

Model Type Accuracy % 

(Validation) 

Accuracy % 

(Test) 

Prediction 

Speed 

(obs/sec) 

Training 

Time (sec) 

Selected 

Features 

Feature 

Ranking 

Algorithm 

SVM 100 100 0 0 567/567 None 

KNN 99.66909 99.80695 0 0 567/567 None 

Ensemble 99.17273 99.42085 0 0 567/567 None 

Naive Bayes 82.97485 84.59459 0 0 567/567 None 

SVM 94.8544 96.64093 0 0 20/567 MRMR 

KNN 84.11648 85.44402 0 0 20/567 MRMR 

Ensemble 95.20185 96.79537 0 0 20/567 MRMR 

Naive Bayes 93.69623 95.05792 0 0 20/567 MRMR 

SVM 92.68696 89.6139 0 0 10/567 MRMR 

KNN 83.35539 78.72587 0 0 10/567 MRMR 

Ensemble 94.01059 91.38996 0 0 10/567 MRMR 

Naive Bayes 92.02515 89.11197 0 0 10/567 MRMR 

SVM 93.23296 89.45946 0 0 5/567 MRMR 

KNN 89.80807 84.78764 0 0 5/567 MRMR 

Ensemble 94.58968 91.38996 0 0 5/567 MRMR 

Naive Bayes 92.15751 88.4556 0 0 5/567 MRMR 
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Figure A 1 ROC curve: 20 features (upper left), 10 features (upper right) and 3 features (down). IMU 
position – wrist 

 



130 
 

  

 

 

Figure A 2 ROC curve: 20 features (upper left), 10 features (upper right) and 6 features (down). IMU 
position – chest 
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Figure A 3 ROC curve: 20 features (upper left), 10 features (upper right) and 3 features (down). IMU 
position – thigh 
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Figure A 4 ROC curve: 20 features (upper left), 10 features (upper right) and 4 features (down). IMU 
position – wrist and chest 
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Figure A 5 ROC curve: 20 features (upper left), 10 features (upper right) and 4 features (down). IMU 
position – wrist and thigh 
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Figure A 6 ROC curve: 20 features (upper left), 10 features (upper right) and 5 features (down). IMU 
position – wrist, chest and thigh 
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Figure A 7 MRMR feature ranking. IMU position – wrist 

 

Figure A 8 MRMR feature ranking. IMU position – chest 
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Figure A 9 MRMR feature ranking. IMU position – thigh 

 

Figure A 10 MRMR feature ranking. IMU position – wrist and chest 
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Figure A 11 MRMR feature ranking. IMU position – wrist and thigh 

 

Figure A 12 MRMR feature ranking. IMU position – wrist, chest and thigh 
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