
A hyper-heuristic approach to achieving long-term
autonomy in a heterogeneous swarm of marine robots

Babić, Anja

Doctoral thesis / Disertacija

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:720208

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-28

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:720208
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:10734
https://dabar.srce.hr/islandora/object/fer:10734

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Anja Babić

A hyper-heuristic approach to achieving
long-term autonomy in a heterogeneous

swarm of marine robots

DOCTORAL THESIS

Zagreb, 2023

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Anja Babić

A hyper-heuristic approach to achieving
long-term autonomy in a heterogeneous

swarm of marine robots

DOCTORAL THESIS

Supervisor: Professor Nikola Mišković, PhD

Zagreb, 2023

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Anja Babić

Hiperheuristički pristup ostvarivanju
dugoročne autonomije u heterogenome

roju pomorskih robota

DOKTORSKI RAD

Mentor: prof. dr. sc. Nikola Mišković

Zagreb, 2023.

DOCTORAL THESIS is written at the University of Zagreb, Faculty of Electrical
Engineering and Computing, Department of Control and Computer Engineering.

Supervisor: Professor Nikola Mišković, PhD

DOCTORAL THESIS has: 142 pages

Dissertation No.:

About the Supervisor

Nikola Mišković is a Full Professor at University of Zagreb, Faculty of Electrical Engi-
neering and Computing where he teaches control engineering related courses. He received
his diploma and Ph.D. degrees in electrical engineering from the University of Zagreb,
Faculty of Electrical Engineering and Computing (FER), Zagreb, Croatia, in 2005 and
2010, respectively.

From July 2005 he is working at the Department of control and computer engineer-
ing at FER. He was a visiting researcher at the Consiglio Nazionale delle Ricerche in
Genoa, Italy (in 2008). In 2016 he was promoted to Associate Professor, and became Full
Professor in 2019. He is the Head of Laboratory for Underwater Systems and Technolo-
gies (LABUST). He participated in 15 European projects (Horizon Europe, H2020, FP7,
DG-ECHO, INTERREG) out of which he coordinated FP7 CADDY, focussing on the
development of the first underwater robot for interaction with divers; H2020 aPad, de-
voted to commercialization of an autonomous surface vehicles developed in LABUST, and
H2020 EXCELLABUST devoted to increasing LABUST excellence in marine robotics. He
also participated in 4 Office of Naval Research Global (ONR-G) projects (coordinated 3),
2 NATO projects, and 7 national projects (coordinated 3). He published more than 70
papers in journals and conference proceedings in the area of navigation, guidance and
control, as well as cooperative control in marine robotics.

Prof. Mišković is a member of IEEE (president of Chapter for Robotics and Au-
tomation of the Croatian Section from 2016 to 2017), IFAC (member of the Technical
Committee on Marine Systems) and Centre for Underwater Systems and Technologies
(vice-president since 2010).

In 2020 Prof Nikola Mišković was awarded IEEE Croatia Section Award for Out-
standing Engineering Contribution for exceptional engineering contribution in the field
of marine robotics, particularly innovative underwater robotic systems and autonomous
surface vehicles. He received the annual State science award for 2015, awarded by the
Croatian Parliament and in 2013 he received the young scientist award "Vera Johanides"
of the Croatian Academy of Engineering (HATZ) for scientific achievements.

O mentoru

Nikola Mišković redoviti je profesor na Fakultetu elektrotehnike i računarstva Sveučil-
išta u Zagrebu gdje predaje kolegije vezane uz automatiku i automatsko upravljanje.
Diplomirao je i doktorirao u polju elektrotehnike na Sveučilištu u Zagrebu Fakultetu
elektrotehnike i računarstva (FER) 2005. odnosno 2010. godine.

Od srpnja 2005. godine radi na Zavodu za automatiku i računalno inženjerstvo FER-
a. Bio je gostujući istraživač na Consiglio Nazionale delle Ricerche u Genovi, Italija
(u 2008. godini). 2016. godine izabran je u zvanje izvanrednog profesora, a 2019. u
zvanje redovitog profesora. Voditelj je Laboratorija za podvodne sustave i tehnologije
(LAPOST). Sudjelovao je u 15 europskih projekata (Horizon Europe, H2020, FP7, DG-
ECHO, INTERREG) od kojih je koordinirao FP7 CADDY, projekt fokusiran na razvoj
prvog podvodnog robota za interakciju s roniocima; H2020 aPad, posvećen komercijal-
izaciji autonomnih površinskih vozila razvijenih u LABUST-u, i H2020 EXCELLABUST
posvećen povećanju LABUST-ove izvrsnosti u pomorskoj robotici. Također je sudjelovao
u 4 projekta Office of Naval Research Global (ONR-G) (od kojih 3 kao koordinator), 2
NATO projekta i 7 nacionalnih projekata (koordinator 3). Objavio je više od 70 radova
u časopisima i zbornicima konferencija u području navigacije, vođenja i upravljanja, te
kooperativnog upravljanja u pomorskoj robotici.

Prof. Mišković član je stručnih udruga IEEE (predsjednik Odjela za robotiku i au-
tomatizaciju Hrvatske sekcije od 2016. do 2017.), IFAC (član Technical Committee on
Marine Systems) i Centra za podvodne sustave i tehnologije (dopredsjednik društva od
2010.).

Godine 2020. dobitnik je Nagrade Hrvatske sekcije IEEE za izniman inženjerski do-
prinos (IEEE Croatia Section Outstanding Engineer Award) za izniman inženjerski do-
prinos u području pomorske robotike, posebice inovativnih podvodnih robotskih sustava
i autonomnih površinskih vozila. Godine 2013. primio je nagradu Hrvatske akademije
tehničkih znanosti „Vera Johanides” mladom znanstveniku za uspjehe u području istraži-
vanja, te je nagrađen godišnjom Državnom nagradom za znanost za 2015. godinu.

ii

...

Acknowledgements

I would like to thank my advisor Prof. Nikola Mišković for always encouraging curiosity
and initiative. Thanks to all my colleagues at LABUST, without whom none of the
numerous field trials that led to so many of the results in this thesis would have been
possible. And last but certainly not least, thanks to my family and my friends for their
enduring patience and support, and to Kruno for everything from late-night brainstorming
to a near-endless supply of tea.

Abstract

For the purpose of enabling long-term autonomy of a heterogeneous swarm of marine
robots, task allocation and sequencing were introduced into the system’s energy man-
agement procedures and agent interactions. In a scenario where the system needs to
autonomously go about its monitoring mission and survive long-term, the available maxi-
mum capacity of five surface vehicles - aPad platforms which represent the charging hubs
of the system - is usually outnumbered by the number of active charging requests by the
sensor node-like aMussel agents, leading to a need for careful planning and optimisation
of robot activities.

In the scope of this thesis, a two-layered system of decision-making algorithms was
developed: a low-level specific solution-focused set of algorithms, and a high-level hyper-
heuristic which selects and seamlessly switches between them, evaluates performance
achieved in each step of agent interaction in the monitoring mission, and employs re-
inforcement learning to enable a level of adaptation to unknown environments, environ-
mental changes, or changes to the agents themselves such as thruster failure. Performance
indices were defined to appropriately represent system capabilities and achieved states,
primarily related to energy-efficient movement, preserving quality coverage of the mon-
itoring area, and collecting the maximum amount of sensor measurements. Finally, a
method of scoring and ranking the performance of the various decision-making methods
present in the system was defined, as well as a benchmark to enable validation during
a variety of relevant scenarios. These metrics were applied during the analysis of both
simulated and field experiment results.

Keywords: hyper-heuristics, heuristics, energy sharing, multi-robot systems, cooper-
ative control, mission planning, autonomous surface vehicles

Hiperheuristički pristup ostvarivanju dugoročne au-
tonomije u heterogenome roju pomorskih robota

U svrhu omogućavanja dugoročne autonomije heterogenog roja morskih robota, u pos-
tupke upravljanja energijom sustava i interakcije među agentima uvode se algoritmi ras-
poređivanja zadataka. U scenariju u kojem višerobotski sustav treba samostalno provoditi
dugoročnu nadzornu misiju, raspoloživi maksimalni kapacitet od pet autonomnih površin-
skih vozila - aPad platformi koje predstavljaju punjače sustava - je obično nadmašen bro-
jem aktivnih zahtjeva za punjenjem, što dovodi do potrebe za pažljivim planiranjem i
optimizacijom robotskih aktivnosti. U okviru ovog istraživanja razvija se dvoslojni sustav
algoritama za donošenje odluka: na nižoj razini je niz algoritama baziranih na različitim
paradigmama strojnog učenja usmjerenih na specifične situacije i rješenja dok je na višoj
razini hiperheuristički algoritam koji odabire između njih.

Predloženi predmet istraživanja i primjene je višeslojno društvo podvodnih i pomorskih
robota razvijeno kao dio Horizon 2020 FET projekta subCULTron. Cilj ovog istraživanja
je postizanje dugoročne autonomije u učećem, samoregulirajućem i samoodrživom roju
pomorskih robota koji izvršava nadzornu i istraživačku misiju u izazovnom pomorskom
okruženju venecijanske lagune. Heterogeni robotski sustav sastoji se od tri zasebne vrste
agenata, od kojih su ovdje dva najznačajnija umjetne školjke (aMussels) koje putuju
između morskog dna (gdje djeluju kao senzorske jedinice) i površine, te umjetni lopoči
(aPads) na površini vode koji omogućuju razmjenu informacije i energije, a sadrže i
mehaničke priključne stanice za punjenje baterija aMussel robota. aPad je preaktuirana
površinska platforma opremljena s četiri potisnika, što mu daje značajnu slobodu gibanja,
dok aMussel nema aktuatora osim sustava za upravljanje uzgonom. Komunikacija je
vrlo važna u distribuiranoj strukturi roja, što znači da se tijekom rada moraju poštovati
ograničenja koja se temelje na dometu dvaju dostupnih primarnih načina komunikacije
(WiFi i akustički signal). Nadalje, roj mora biti sposoban prilagoditi se promjenama u
okolini i stvarnim morskim uvjetima, kako borbom protiv tako i iskorištavanjem utjecaja
pojava kao što su morske struje i vjetar.

Naglasak na nenadziranom radu roja i prilagodbi promjenama okoline sugerira prim-
jenu metoda strojnog učenja. Područje umjetne inteligencije može se podijeliti prema
mnogim kriterijima, no pet paradigmi strojnog učenja uključuju:

∙ spojne metode (neuronske mreže)
∙ genetske algoritme i klasifikatore
∙ empirijske metode za stvaranje pravila i stabla odlučivanja
∙ analitičke metode učenja
∙ pristupe na temelju slučajeva

Predložena struktura sustava za donošenje odluka ima dva glavna sloja: na nižoj
razini nalazi se skup algoritama (heuristika) za dodjelu zadataka temeljenih na aspek-
tima nekoliko od gore navedenih paradigmi strojnog učenja, dok algoritam na višoj razini
(hiperheuristika) odabire između njih.

Hiperheuristika je općenito definirana kao automatizirana metodologija za odabir ili
generiranje heuristike za rješavanje teških računskih problema pretraživanja. Izvorno
nazvana "heuristika za odabir heuristika", ona predstavlja pristup na visokoj razini koji
može odabrati i na konkretan problem primijeniti odgovarajuću heuristiku na nižoj razini,
te to učiniti u svakoj točki odlučivanja. Heurističke i metaheurističke metode uspješne su
u rješavanju problema pretraživanja u stvarnom svijetu, međutim nailaze na poteškoće u
primjeni na nove probleme ili čak na nove slučajeve vrlo sličnih problema. Glavni uzrok tih
poteškoća je širok raspon algoritama i parametara koji su uključeni u rješavanje problema,
kao i nedostatak smjernica o tome kako odabrati između njih i kako ih podesiti. Osim
toga, razina razumijevanja zašto pojedine heuristike rade u određenim situacijama, a ne
u drugima često nije dostatna za jednostavno donošenje izbora, a teškoće u preciznom
modeliranju problema i realnih situacija znače da strogo matematički optimalna rješenja
možda zapravo i nisu najbolja moguća rješenja u primjeni. Cilj korištenja hiperheuristike
jest povećanje razine općenitosti na kojoj optimizacijski sustavi mogu djelovati.

Doktorski rad podijeljen je na uvodni dio ("1. Introduction") u kojem je dan opis glavne
motivacije iza teme istraživanja – autonomnog dugoročnog nadzora izazovnih pomorskih
ekosustava – i uključuje kratki pregled istraživanja umjetnog života i robotskih društava, s
naglaskom na evolucijske algoritme i učenje potkrepljenjem. Poglavlje završava pregledom
strukture rada, temeljnih hipoteza i izvornog znanstvenog doprinosa.

Sam robotski roj korišten u radu opisan je u drugom poglavlju ("2. Heterogeneous
marine swarm agents and interactions"). Poglavlje sadrži pregled robotskih agenata koji
čine heterogeni pomorski roj s naglaskom na agente aPad i aMussel, opisujući hardverska
i softverska rješenja koja su razvijena i korištena kako bi se ispunili svi preduvjeti za
cilj nenadzirane dugoročne misije praćenja i istraživanja okoliša, uključujući modeliranje
agenata koje omogućava testiranje sustava u simulacijama i eksperimentima sa stvarnim
vozilima. Poglavlje također opisuje interakcije agenata s ciljem povećanja autonomije
roja, posebno naglašavajući kako je postignuta razmjena energije između agenata, za-
ključno s eksperimentalnom validacijom razvijenih algoritama za autonomno međusobno
sakupljanje i punjenje agenata.

Treće poglavlje ("3. Multi-robot task assignment and low-level heuristics") fokusira se
na specifični problem raspoređivanja interakcija i zadataka među agentima koji je glavni
predmet rada, kao i na razvijenu strukturu sustava za donošenje odluka. Detaljno se
opisuju metode podjele i klasteriranja koje se koriste za dodjeljivanje početnih područja

iv

odgovornosti agentima i niža razina sustava donošenja odluka koja se sastoji od situaci-
jskih heuristika koje uključuju znanje o okolini. Poglavlje opisuje i pokazatelje učinkovi-
tosti odabrane za evaluaciju željenih aspekata i mogućnosti sustava. Opisane su i rane
simulacije robotskog roja temeljene na diskretnim događajima, kao i početni eksperimenti
za validaciju komunikacije i metode postizanja konsenzusa među agentima u roju.

U svrhu osmišljavanja heuristika niže razine, problem dodjeljivanja zadataka aPadima
može se opisati kao vrsta problema usmjeravanja vozila. Heurističke metode rješavanja
koje su usmjerene na specifične varijante problema usmjeravanja vozila, kao što su problem
usmjeravanja vozila s vremenskim prozorima, kapacitirani problem usmjeravanja vozila,
problem usmjeravanja vozila s više opskrbnih mjesta ili problem usmjeravanja vozila sa
stohastičkim zahtjevima, intenzivno su proučavane, uz razvoj, implementaciju i detaljno
prilagođavanje heuristika kako bi odgovarale određenoj vrsti problema. Budući da se obil-
ježja problema mogu znatno razlikovati, nije nužno uvijek sasvim jasno koja će metoda
dati najbolje rješenje za određeni slučaj problema. Ovdje je cilj osmisliti nekoliko kontek-
stualno specifičnih heuristika s dobrim ponašanjem u određenoj situaciji, a zatim odabirati
između njih i kombinirati pristupe prema potrebi.

Neki od pristupa uključuju korak odvajanja aMussel robota u grupe ili klastere koji
odgovaraju parametrima kao što su ukupna raspoloživa energija, snaga signala ili izve-
diva udaljenost kretanja, a zatim dodjeljivanje aPadova pojedinačnim klasterima kao oblik
određivanja "područja interesa" kako bi se osigurala pokrivenost i u smislu komunikacije i
u smislu punjenja. Klasteriranje je problem prisutan u rudarenju podataka, bazama po-
dataka, kompresiji podataka i strojnom učenju. Ono uključuje podjelu skupova opažanja
u klastere tako da su intra-klasterska opažanja što je moguće sličnija (ili bliža, u odabra-
noj metrici), a inter-klasterska opažanja što različitija (ili dalja). Drugi je cilj klasteri-
ranja smanjiti složenost podataka zamjenom skupine opažanja jednim reprezentativnim
opažanjem, što dovodi do lakšeg i bržeg računanja i analize.

Algoritmi bazirani na particioniranju, kao što je široko korišteni k-means algoritam, su
specifični podtip klasteriranja koji organizira objekte u određeni broj particija, gdje svaka
od njih predstavlja jedan klaster. Klasteri se formiraju na temelju funkcije udaljenosti,
što dovodi do formiranja samo sfernih klastera i dozvoljava utjecaj šuma na rezultate
klasteriranja. Ako se razmatra specifičan problem dodjele zadataka za komunikacijsko
pokrivanje i punjenje robota, ovo svojstvo nije osobito problematično, jer su konveksni
i sferni klasteri zaista željeni rezultat. K-means algoritam zahtijeva da broj klastera
bude unaprijed poznat i zadan, ali se inače može smatrati potpuno nenadziranim ili, u
slučaju uključivanja nekih prethodno poznatih saznanja o željenim ishodima, djelomično
nenadziranim.

Diferencijalna evolucija je još jedan predstavnik heurističkih pristupa niže razine dod-

v

jele zadataka i odlučivanja unutar roja. Izvorno je predložena kao iterativna heuristika za
globalnu optimizaciju u kontinuiranom prostoru temeljena na populaciji, a kasnije je pri-
lagođena za upotrebu u diskretnim prostorima i u problemima sekvenciranja, permutacije
i raspoređivanja, uključujući i problem usmjeravanja vozila. Uvođenjem specifičnog kodi-
ranja gena i populacije i stvaranjem prikladnih funkcija troška, kazni i uvjeta zaustavl-
janja, moguće je predstaviti i uvesti ograničenja u prostoru rješenja. U ovom će se slučaju
kriteriji podudarati s čimbenicima iz stvarnog svijeta kao što su snaga morske struje i
razina napona baterije robota, s genima koji kodiraju nizove zadataka za pojedina vozila.

Razvoj prvog sloja sustava za donošenje odluka uključuje razvoj skupa algoritama za
dodjelu zadataka koji koriste ili kombiniraju različite paradigme strojnog učenja ili ih
koriste na različite načine, s ciljem osmišljavanja rasporeda kretanja i plana izvršavanja
zadataka za dostupna vozila, prvenstveno u smislu punjenja ili premještanja drugih robota
unutar roja. Ovo uključuje metodu klasteriranja, metodu klasteriranja s ograničenjima,
metodu diferencijalne evolucije i hibridne metode. Osim toga, prisutne su vrlo jednostavne
i situacijske heuristike razvijene tijekom rada s robotskim sustavom i koje odgovaraju
na specifične probleme koji su uočeni. To su Greedy heuristika, koja u svakom koraku
odabire najbližu mušulu kako bi se minimiziralo kretanje aPada; Cautious heuristika,
koja u svakom koraku bira mušulu s najpraznijom baterijom kojoj je hitno potrebno
punjenje; Rescue heuristika, koja bira mušulu najudaljeniju od centroida klastera kako bi
se izbjegao gubitak robota i očuvali outlieri roja, te Rush heuristika, koja bira mušulu s
najviše baterije, a koja je još uvijek kandidat za punjenje, kako bi se minimiziralo gubljenje
korisnog vremena rada mušula. Posebna se pozornost posvećuje rubnim slučajevima u
kojima se pojedine metode u određenim uvjetima ponašaju veoma dobro, a u drugima
veoma loše (uključujući i uopće ne ostvarivanje konvergencije na valjano rješenje) jer će
to biti vrijedan budući pokazatelj uspješnosti za hiperheuristički dio biranja algoritama.

Drugi sloj sadrži hiperheuristički algoritam koji odabire između heuristika implemen-
tiranih u donjem sloju ovisno o situaciji u okolini i unutar roja, s krajnjim ciljem au-
tonomnog i nenadziranog planiranja zadataka i istovremenog optimiranja potrošnje i dis-
tribucije energije. Pokazatelji učinkovitosti kojima se ocjenjuje rad sustava uključuju
broj aktivnih i prisutnih agenata, prostornu raspodjelu agenata unutar roja, te praćenje
ukupne količine vremena koje su agenti proveli radeći "koristan" posao, kao i raspodjelu
tog vremena.

Viša razina sustava odlučivanja - drugi sloj - opisana je u četvrtom poglavlju ("4.
High-level heuristics - hyper-heuristics"). Poglavlje počinje pregledom hiperheuristike
u literaturi, uključujući klasifikaciju i općeprihvaćene oblike izvedbe. Zatim se opisuje
odabrana i implementirana viša razina strukture odlučivanja, uključujući detaljni opis
metode odabira, donošenja odluka i učenja potkrepljenjem koji se koriste kako bi se

vi

sustavu dala prilagodljivost i autonomija. Definirane su metode vrednovanja rješenja
koje koriste bodovanje i rangiranje, a u poglavlju su opisane i analizirane i simulirane i
eksperimentalne varijante validacijskog referentnog scenarija.

Hiperheuristike se dijele na tri kategorije ovisno o tome uče li tijekom pretraživanja ili
prije pretraživanja, ili uopće ne dobivaju povratne informacije iz prostora pretraživanja:
hiperheuristika s on-line učenjem, s off-line učenjem i bez učenja. Mogu biti klasificirane
i kao selekcijske ili generacijske hiperheuristike, ovisno o tome odabiru li heuristiku iz
skupa postojećih heuristika ili generiraju nove heuristike iz komponenti postojećih heuris-
tika niže razine. Hiperheuristika korištena u ovom radu je selekcijska hiperheuristika s
online učenjem. Selekcijska hiperheuristika bavi se problemima neizravno, pregledavan-
jem skupa dostupnih heuristika za svaki korak pretraživanja i odabirom one metode koju
će se primijeniti na problem na temelju statistike prethodnih performansi svih metoda
prema danom skupu metrika i pokazatelja.

Strategija odabira ruletom često se koristi u evolucijskim algoritmima. Primijenjeno
na hiperheuristički okvir, rulet odabire heuristiku s vjerojatnošću proporcionalnom njezi-
noj sposobnosti. Modificiranjem parametara sposobnosti metoda na temelju povratnih
informacija primljenih iz prostora problema korištenjem više pokazatelja učinkovitosti, on-
line učenje s potkrepljenjem uvodi se u sustav donošenja odluka. Nakon svake primjene
heuristike niže razine, ona se ocjenjuje na temelju odabranih pokazatelja. Ako je heuris-
tika imala bolju učinkovitost od dotadašnjeg prosjeka s obzirom na određeni pokazatelj,
ona se pozitivno ocjenjuje za taj pokazatelj i njezina se sposobnost povećava za svaki takav
"uspjeh". U suprotnom, ako heuristika ima lošiju učinkovitost, smatra se da nije uspjela i
dobiva fiksnu "kaznu" koja umanjuje njezinu sposobnost i time joj smanjuje vjerojatnost
ponovnog odabira.

Hiperheuristička struktura znači rad odvojen od problemske domene, sa svim aspek-
tima stvarnog svijeta apstrahiranim u pokazatelje koji se nakon implementacije i evaluacije
vraćaju hiperheuristici. Ako, na primjer, tijekom eksperimenta struja, vjetar ili kvar na
vozilu otežaju aPadu da se pomakne i dosegne aMussele odabrane u predloženom rješenju,
trošak kretanja bit će znatno veći nego ranije u eksperimentu, a heuristika niže razine koja
je proizvela ovo rješenje bit će kažnjena, dok će ona metoda koja predloži rješenje koje
može na bilo koji način zaobići ili kompenzirati ovu smetnju i smanjiti troškove kretanja
biti nagrađena, čime se postiže postupna adaptacija čitavog sustava.

Zbog prirode sustava na koji se primjenjuje, učenje s potkrepljenjem mora biti u
stanju donositi zaključke i odgovarajuće prilagodbe sposobnosti na temelju relativno os-
kudnih i rijetkih povratnih informacija. Budući da optimalno rješenje ovdje nije poznato
i računalno ga je previše zahtjevno pronaći, kako bi se ocijenila izvedba implementirane
hiperheuristike, usporedbe se rade pomoću najboljeg postignutog rješenja. Hiperheuris-

vii

tički odabir s učenjem s potkrepljenjem trebao bi biti bolji od jednostavnog odabira jedne
od heuristika i njezine kontinuirane upotrebe ili nasumične primjene dostupnih heuristika.

Učinkovitost se procjenjuje na temelju četiri odabrana pokazatelja: vrijeme rada
aMussel robota, troškovi kretanja aPada, očuvanje outliera među aMussel robotima i
(ne)uravnoteženost distribucije rada aMussela. U slučaju neravnoteže troškova kretanja i
vremena rada, niža ocjena je bolja (što implicira da su kretanje i potrošnja energije aPada
minimizirani, a koristan rad i vrijeme rada bili su ravnomjernije raspoređeni među svim
agentima), dok je viša ocjena bolja za očuvanje outliera i postignuto ukupno vrijeme rada
aMussela (što znači da su mjerenja konzistentno dobivana i od udaljenih agenata).

Različiti eksperimenti ocjenjuju se korištenjem metoda rangiranja. Metoda koja pronalazi
najbolje rješenje u skupu eksperimenata koji se ocjenjuju dobiva najnižu vrijednost, dok
metoda s najlošijom izvedbom dobiva najveću vrijednost, a sve ostale se nalaze između.
Metoda s ukupnim najnižim rangom stoga se može smatrati metodom s najboljim ost-
varenim uspjehom. Tako su predstavljena i vrednovana četiri simulirana eksperimenta/s-
cenarija: osnovna simulacija roja bez smetnji ili ekstrema, dvije instance u kojima se
smetnja javlja u tijeku eksperimenta što dovodi do promjene u sposobnostima agenata, a
time i ponašanja cjelokupnog roja, i jedna instanca u kojoj postoji jedan aMussel agent
postavljen na znatnoj udaljenosti od ostatka roja. Eksperimentalni scenarij ekvivalentan
osnovnoj simulaciji bez smetnji izveden je i sa stvarnim aPad vozilom.

Rezultati simulacija i eksperimenata potvrđuju hipotezu da je moguće kontinuirano
generirati nizove jednostavnih i računski nezahtjevnih heuristika koje su po definiranim
pokazateljima učinkovitosti uspješnije od opetovane primjene svake pojedinačne heuris-
tike, kao i njihove nasumične primjene. Kao hiperheuristička struktura s čvrsto postavl-
jenom domenskom barijerom, sustav može generalizirati na različite nove situacije koje
se pojavljuju u problemskom prostoru, npr. promjene u vrstama, broju i mogućnostima
agenata roja, promjene u uvjetima u okolini roja i rad u različitim okolinama općenito.

Temeljem upravljačkih algoritama i metodologija za validaciju algoritama razvijenih
unutar doktorata izdvojena su tri znanstvena doprinosa:

∙ Metoda dodjele i nizanja zadataka za više robota koji osiguravaju dugoročnu au-
tonomiju heterogenog roja pomorskih robota uzimajući u obzir ograničenja okoline.

∙ Hiperheuristička metoda za donošenje odluka unutar heterogenog roja pomorskih
robota temeljena na nenadziranom odabiru između metoda dodjele i nizanja za-
dataka.

∙ Metoda vrednovanja rješenja i definicija pokazatelja učinkovitosti i referentnog sce-
narija za procjenu valjanosti metoda donošenja odluka i dodjele zadataka primijen-
jenih na heterogenom roju pomorskih robota.

Doktorski rad završava pregledom hipoteza i gore navedenih doprinosa te sažetkom

viii

najvažnijih točaka disertacije. Na temelju prezentiranog sadržaja ponovno se postavl-
jaju te detaljnije razrađuju hipoteze i kao dokaz inovativnosti istraživanja nudi se popis
publiciranih znanstvenih radova.

Ključne riječi: hiperheuristika, heuristika, dijeljenje energije, višerobotski sustavi,
kooperativno upravljanje, planiranje misije, autonomna površinska vozila

ix

Contents

1. Introduction . 1
1.1. Thesis Contribution and Overview .10

2. Heterogeneous marine swarm agents and interactions 12
2.1. Introduction .12
2.2. The aPad robotic agent type .15

2.2.1. aPad guidance and control .18
2.3. The aMussel robotic agent type .20
2.4. Software architecture and simulation .22

2.4.1. Software architecture .22
2.4.2. Battery modelling and simulation25

2.5. Autonomous docking and energy exchange29
2.5.1. Docking algorithm .29
2.5.2. Image processing .33
2.5.3. IR-only intensity thresholding .34
2.5.4. Hue-based thresholding .35
2.5.5. Neural networks for object detection37
2.5.6. Tracking filter .39

2.6. Experimental validation of autonomous docking43
2.6.1. Indoor pool experiments .43
2.6.2. Initial outdoor experiments .45
2.6.3. Structured docking experiment .47
2.6.4. Challenging environment test .50

3. Multi-robot task assignment and low-level heuristics 54
3.1. Introduction .54
3.2. Problem scenario and decision-making system structure55
3.3. aMussel partitioning and assignment .59

3.3.1. Differential evolution .59

3.3.2. Clustering .62
3.3.3. Combined approach .63

3.4. Performance indices and situational collection/redeployment strategies . .65
3.5. Discrete event simulation .69
3.6. Decision-making proof-of-concept experiment74

4. High-level heuristics - hyper-heuristics . 81
4.1. Introduction .81
4.2. Heuristic selection, scoring, and evaluation84

4.2.1. Performance evaluation .85
4.3. Hyper-heuristic decision-making simulations88

4.3.1. Venice baseline simulation .88
4.3.2. Thruster failure/disturbance one third through mission93
4.3.3. Thruster failure/disturbance halfway through mission97
4.3.4. Simulation with one outlier aMussel101

4.4. Hyper-heuristic vehicle-in-the-loop experiments106
4.4.1. Proof-of-concept experimental scenario106
4.4.2. Vehicle-in-the-loop experiment with roulette wheel selection112

5. Conclusion . 118

Bibliography . 119

Acronyms . 130

Biography . 138

Životopis . 142

Chapter 1

Introduction

The Lagoon of Venice, Italy is a very particular ecosystem, highly relevant in a scientific,
environmental, cultural, and socio-economic context and a critical subject of study. It is
also an area undergoing significant shifts, severely impacted by both global climate change-
related effects as well as site-specific phenomena [1] [2]. With such environmental factors
as abundant spring rains and intense summer heatwaves, along with eutrophication and
the effect of intense human activity on various types of sediment and soils present in the
lagoon, notable phenomena include degradation of zooplankton, abnormal proliferation
of certain species of macroalgae such as Ulva rigida, and hypoxic and anoxic events in
the form of rapid localised (usually overnight) drops in the concentration of oxygen in
the water. Hypoxic and anoxic events are becoming more frequent and more spatially
widespread, and have been tied to fish mortality and biomass shifts [3] [4] [5] [6].

The Horizon 2020 Future and Emerging Technologies project subCULTron (subma-
rine CULTures perform long-term robotic exploration of unconventional environmental
niches) [7] was conceptualised as a novel answer to the demand for long-term environ-
mental monitoring in the waters of Venice. The goal of the project was superseding the
need for boats and personnel periodically deploying and collecting probes at sea and at
a variety of inaccessible locations (such as extreme shallows, marshes, areas with traffic-
related limitations, or remote areas) by developing an autonomous heterogeneous swarm
of marine robots, shown in Figure 1.1. In effect, creating a topologically reconfigurable
underwater acoustic sensor network with surface access points [8], as well as an unsuper-
vised multi-layer learning, self-regulating, self-sustaining underwater robot society. The
main motivation of this thesis is achieving long-term sustainability and survival of this
robotic swarm, both to ensure environmental monitoring mission success, and to enable
the study of emergent phenomena within this artificial ecosystem, or robotic behaviours
on a "societal" scale.

Starting in the mid-1980s, the scientific approach to the field of artificial life has been

1

Introduction

Figure 1.1: subCULTron heterogeneous marine robot swarm concept illustration highlighting
interactions between different agent types.

to study living systems using a synthetic "bridge": building life, as hardware or software
or even wetware, in order to reach a better understanding of it. While intensely interdis-
ciplinary, artificial life research can be classified into fourteen main themes: origins of life,
autonomy, self-organization, adaptation (including evolution, development, and learning),
ecology, artificial societies, behaviour, computational biology, artificial chemistries, infor-
mation, living technology, art, and philosophy [9].

Reinforcement learning is a common form of machine learning inspired by behaviourist
psychology, and includes adaptation occurring through agents interacting with their en-
vironment. Standing apart from the classic paradigm of learning from a set or sequence
of examples, reinforcement learning instead opts for a trial and error approach, featuring
a reward provided by an interpreter evaluating these agent-environment, and potentially,
in multi-agent systems, agent-agent interactions [10].

Early steps towards an increasingly behavioural approach to robotics and viewing be-
haviour as emerging from the robot-environment interaction, while relying on a grade of
autonomy that makes micromanaging all aspects of a system unnecessary (and undesir-
able), were made in [11]. Explicitly encouraging behavioural diversity using behavioural
distance/diversity mechanisms has been empirically shown to lead to substantial per-
formance improvements in several typical evolutionary robotics experiments [12]. The
evolution of cooperation, frequently based on game theory, is an increasingly popular
research topic [13].

2

Introduction

Several novel frameworks for studying cognitive systems have arisen from devising
and implementing distributed approaches to the problem. Swarm cognition is one such
framework, and it promotes the study of cognition as an emergent collective phenomenon,
and as something that can be recognised in the behaviour of entire collectives, including
complex societies [14].

A useful way of classifying robot societies is according to modes of interaction between
their members. The most common and relevant forms these interactions take are:

∙ collective, where the robot entities are not aware of each other, although they share
goals and their actions benefit each other and the team as a whole. An example of
this type of interaction in multi-robot systems is a robotic swarm. An individual
robot in this kind of society likely has a very simple controller and structure, but
by interacting with others a global goal (some sort of flocking, formation-keeping,
or foraging and similar) is achieved, often as an emergent property of these many
smaller local interactions.

∙ cooperative, where all members of a team of robots that is trying to accomplish
a common goal are aware of each other, and their actions are mutually beneficial.
Robots in a society that functions this way may work together and reason about
each other’s capability to contribute to the completion of a given task. At times, the
individual robots may be working on different parts of the higher goal, and so need to
ensure that they don’t interfere with each other’s work. Optimal task allocation and
coordination are very important, even while the majority of the robots’ operation
is focused on working together towards the common goal.

∙ collaborative, where robots have individual goals, but are aware of the other robots
on their team, and their actions advance both their own and others’ goals. Each
member of a group of robots of this type has its own agenda, all agendas are com-
patible with each other, and the robotic agents might be heterogeneous with regards
to sensor/actuator setups and related properties. In this kind of society, focus is
on how the unique expertise of the individual can contribute to another individual
achieving its goal and thus the ultimate goal of the team as a whole, by bring-
ing together agents with complementary skills and assets. Coalition formation is a
notable type of collaboration.

∙ coordinative, where all robotic entities are aware of each other, but do not share
a common goal, and their actions are not helpful to the rest of the team. Typ-
ically this implies several robots sharing a common workspace, and thus needing
to coordinate among themselves to avoid interference and mitigate any potential
negative outcomes of intra-robot interaction. Multi-robot path planning techniques
and collision avoidance are a good example of this.

3

Introduction

Additionally, the interaction between robots can be adversarial, i.e. the goals of some
agents may have a negative effect on others. Two rival teams of robots attempting to
accomplish the same task while hindering each other’s progress would fall under this
category, a popular example of which is robotic soccer [15].

The key to successfully performing advanced tasks in complex modern-day environ-
ments is the emergence of cooperative abilities among robots forming a society. Two
types of robot societies can be considered when evaluating group cooperation ability: in-
tegrating and differentiating. Integrating robot societies consist of a smaller number of
heterogeneous individuals with highly specialised skills. Examples of biological equiva-
lents include wolf packs and bird colonies. Differentiating robot societies, on the other
hand, consist of a large number of homogenous individuals with relatively limited abili-
ties. A biological equivalent to this type of society would be insect colonies such as those
of bees and ants. Notably, both types of societies require individuals to have well-defined
roles and the ability to dynamically modify their behaviour while the group is performing
an assigned task [16].

While the field of evolutionary robotics typically studies the use of evolutionary algo-
rithms in an offline fashion - i.e. running a set of algorithms and optimising the robots’
controllers in simulation software before any transfer to actual robotic hardware, use, and
deployment, and without any additional adaptation as the robots operate - the concept of
embodied evolution, espoused by the embodied evolutionary robotics subfield, focuses on
implementing evolutionary algorithms on the hardware itself and having them run during
the robots’ operational period - an online approach. A marked advantage to this is giving
the robotic system a chance to acquire beneficial behaviours as it functions, without a
human in the loop, thus giving it an ability to adapt to previously unknown environments
or environmental conditions that change through time [17].

The field of robotics has been the most active in the development of embodied evolu-
tion algorithms mainly due to the fact that the intrinsically adaptive and self-organising
properties of the algorithms make them highly appropriate for use in real-time autonomous
systems that a group of robots presents. There are two main approaches that have arisen
in the study of embodied evolution: encapsulated embodied evolution algorithms, where
each individual agent carries an entire population of controllers upon which an inde-
pendent evolutionary algorithm is run; and distributed embodied evolution algorithms,
where each individual agent in the population carries only its own genotype, necessitating
extensive interaction between agents.

Distributed embodied evolution algorithms offer a much bigger potential when it comes
to the emergence of a variety of self-adaptive and cooperative behaviours, due to the
complex interactions that can occur within the population. Their drawback is that they

4

Introduction

converge less easily and require larger populations of robots to do so at all. They are also
very sensitive to their configuration parameters, requiring close task-dependent regulation
to ensure that a valid solution is reached [18]. Embodied evolution can also be described
as taking place in a population of robots where selection, evaluation, and reproduction,
the main mechanisms of evolutionary algorithms, are carried out by and between the
robots, all in a distributed, asynchronous, and autonomous manner [19].

Thus, this approach seems naturally suited for work with multi-agent systems at-
tempting to solve complex but structured problems via decentralised collaboration, as
there exists a need in multiagent systems to coordinate local policies of each agent with
their restricted capabilities to achieve a system-wide goal. The presence of innate uncer-
tainty in this type of system adds to the complexity of this task, as agents need to learn
unknown environment parameters while forming these local policies in an online fashion
[20].

Although the agents in a system can be pre-programmed with a set of behaviours
designed in advance, the learning of new behaviours online is often necessary to ensure
the gradual improvement of the entire system’s performance [21]. Once again, the main
issues that arise when considering a more offline approach are a dynamically changing,
complex, and not entirely known environment, making it a very real possibility that a
hardwired behaviour may at one point become inappropriate or even outright negatively
affect performance. The benefits of multiagent reinforcement learning arise primarily from
the distributed nature of the multiagent system, and include a certain computational
speedup made possible by parallel computation, and positive effects of sharing experience
between multiple agents taking the form of communication, teaching, and imitation.

Beyond challenges that are inherited from classical single-agent reinforcement learning,
such as the problem of dimensionality and the need to strike a balance between exploration
and exploitation (or task completion) by careful reward selection, a multiagent approach
also engenders difficulties in the form of a need for coordination and the challenge of spec-
ifying a learning goal. The presence of multiple agents in the same environment, learning
in parallel, complicates matters considerably, as the action space scales exponentially
with the number of agents. A notable consequence of this is that some standard learning
techniques that store a reward value for every possible state-action combination become
unfeasible. Another issue is that the behaviour of one agent influences the outcomes of
other agents’ individually selected actions, thus incurring change in the environment and
possibly compromising convergence [22][23].

The design of the reward function is a critical part of achieving a real-world task by
using reinforcement learning and, although it may appear straightforward, it can demand
careful tuning when multiple rewards are present. An evolutionary approach to mul-

5

Introduction

tiagent reinforcement learning includes the so-called intrinsically motivated framework,
based upon several psychological theories of motivation, in which agents themselves find
appropriate intrinsic rewards that implicitly help task success or affect the fitness of
the agent (while striking a balance between rewarding exploration and task completion,
the previously mentioned common problem in reinforcement learning design). Evolu-
tionary algorithms also optimise meta-properties in reinforcement learning by influencing
the selection of behaviours, modulating the efficiency of learning by affecting learning
meta-parameters, or changing an forming entirely new reward signals that guide the re-
inforcement learning process [24][25][26][27].

Designing an online evolutionary algorithm distributed among a fixed population of
autonomous robots for the purposes of long-term survival and operation in a given environ-
ment greatly depends on the chosen fitness function for the environment-driven distributed
evolutionary adaptation. The implicit nature of this fitness function is the consequence
of two complementary or conflicting motivations that are present in agents:

∙ extrinsic motivation, which arises purely from the interaction between an agent
and its environment (with or without other agents) and states that an agent must
maximise its chances of survival while working within environmental constraints and
overcoming environmental challenges

∙ intrinsic motivation, which arises from the agent itself, and which states that, in
keeping with the evolutionary process, a certain set of parameters (or genomes,
as they are understood here) must spread across the agent population in order to
survive, meaning the genomes promote maximising the number of agents met and
interacted with (thus maximising their own opportunities for proliferation).

In a situation where the motivations are well-balanced and the environment-driven
distributed evolutionary adaptation algorithm is an efficient one, a state of equilibrium
should be achieved in which the genome that can be considered optimal reaches maximum
spread while preserving maximum possible survival efficiency. While there would appear
to be inherent conflict between these two motivations, it is possible for them to correlate
enough so that they can be treated as one motivation, greatly reducing the complexity
of the problem. The application of these motivations and a focus on the effect of the
environment on the evolutionary adaptation process in embodied evolution is an important
concern, since embodied evolution concerns itself primarily with a fixed number of physical
agents meant to operate in real-world environments - meaning their most basic operation
can be severely impacted by obstacles or energy constraints [28].

An important thing to note is that the study of the development of robot controllers
or robot morphologies via the use of artificial evolution does imply a certain need to rely
on simulation environments during development, since the duration of a single experiment

6

Introduction

can be impractically long, and the necessity of trial-and-error interactions with the envi-
ronment during attempts at reinforcement learning can lead to damage of actual physical
robotic platforms [29].

However, caution needs to be exercised while working within simulated environments,
as the generation of simulators introduces a strong bias into the system by way of using
symbols and models to represent real phenomena the way they are perceived by the per-
son developing the simulation platform. Additionally, simulating the interaction between
the robots and their environment can be very computationally demanding, especially
in the case of multiagent systems, thus necessitating considerable simplification to start
with. This clashes with some of the fundamental attributes of the evolutionary approach,
specifically that it encourages the autonomous generation of robotic systems while leav-
ing out a considerable amount of designer bias, and presents, theoretically, an open-ended
approach, while allowing the generation of controllers that are optimally suited for a
given operational environment. In any case, the reality gap, or the substantial differ-
ence between simulation and reality, persists, and needs to be taken into account when
considering robotic behaviour generation.

Closing the reality gap would mean that there exists no difference between simulation
and reality, from the viewpoint both of the internal agent - the robot controller - and
the external observer - the experimenter evaluating the generated behaviour. This is not
possible to completely achieve when doing real-world experiments, so care must be taken
to ensure algorithms and desired behaviours are robust with regards to the reality gap, for
example by modifying experimental setups to compensate for the reduction in stability
that occurs with a decrease in population (as a population of physical robots will almost
always be smaller than a simulated one) [30].

Since it is hard to arrive at a satisfactorily encompassing definition, the term emergent
is frequently described as something that is "more than the sum of its parts". In a robotic
context, emergence is taken to mean that a robot’s behaviour has become something not
explicitly defined in its controllers, but something that has arisen as a consequence of its
interaction with its environment.

The term reactive control refers to the coupling of perception and action in a way
that ensures robots respond in a timely manner to moving and working in dynamic, un-
structured, and at least partially unknown environments. It also represents a behavioural
approach to robotic applications, which is more suited to the complex online context than
the classical hierarchical and decision-based approach [31].

A group of robots can be seen as embodying the "more than the sum of its parts"
concept when it becomes a robotic team: once it shows some degree of specialised aptitude
of performing a task cooperatively, in the sense that the group provides better performance

7

Introduction

Figure 1.2: Agents of the subCULTron artificial ecosystem on display in Venice.

than its individual components would, by taking advantage of its distributed sensing and
acting capability to carry out complex tasks while also taking into consideration increased
fault tolerance thanks to agent redundancy and group cohesion obtained from formation-
keeping algorithms and related trajectory calculations and motion planning. Another
emergent phenomenon is collective intelligence, the result of two or more agents engaged
in global behaviours - meaning an intelligent multi-robot system arises from a group
of mobile robots that cooperate, communicate, and dynamically reconfigure their group
during their attempts to solve a complex task [32][16].

The concepts of embodied evolution, multiagent reinforcement learning, and dis-
tributed control interact and even overlap in a myriad of interesting ways. Furthermore, an
empirical approach using the tenets of embodied evolution is considered highly promising,
as testing on actual physical systems provides valuable insight into the simulation-reality
differences present in a robot society, as well as an opportunity to study novel behaviours
that might potentially emerge from a combination of agent-agent and agent-environment
interactions.

The heterogeneous robotic system which is the main subject of study within this thesis
consists of three separate agent types, of which two are particularly significant: artificial
mussels (aMussels, 120 in swarm) which travel between the seafloor (where they act as
sensor hubs) and the surface, and artificial lily pads (aPads, 5 in swarm) on the surface of
the water, enabling an exchange of information, while also providing mechanical docking
stations for aMussels to attach to in order to recharge their batteries or be transported
to another location. The different types of robotic agents are shown in Figure 1.2.

Communication is very important in the distributed structure of a swarm, meaning
that constraints based on communication range for the two primary modes of communi-
cation employed (Wi-Fi and acoustic) need to be taken into account during operation.
Additionally, the swarm needs to be able to adapt to a changing realistic marine environ-
ment (Figure 1.3), both combating and taking advantage of the influence of phenomena
such as water currents and wind, or dealing with ongoing disturbances such as thruster

8

Introduction

Figure 1.3: subCULTron swarm agents in outdoor testbed pool (left) and in realistic conditions
in the Venice Arsenale (right).

failure. One of the energy-efficient aPad behaviours being explored in the system, adapt-
ing to changes in their environment even when in a mostly idle state (i.e. not actively
performing tasks), is outlined in ([33]).

In a scenario where the system needs to autonomously go about its monitoring mission
and survive long-term, the available maximum of five aPads is usually outnumbered by
the number of active aMussels and their charging or transportation requests, leading to a
need for careful planning and optimisation of their activities. For the purpose of enabling
long-term persistence of the subCULTron system, the concept of aPad task allocation and
sequencing was introduced into the energy management procedures of the swarm.

The emphasis on unsupervised functioning of the robotic swarm and adapting swarm
behaviours to changing environmental factors and situations suggests the application of
machine learning. While the field of artificial intelligence can be divided according to
many criteria, the five paradigms for machine learning, as given in [34], include:

1.connectionist methods (neural networks)
2.genetic algorithms and classifier systems
3.empirical methods for inducing rules and decision trees
4.analytic learning methods
5.case-based approaches
The proposed decision-making structure for the swarm has two main layers: a lower-

level collection of task allocation and sequencing algorithms based on aspects of several of
the aforementioned machine learning paradigms, and a higher-level algorithm that selects
between them, evaluating the state of the swarm at every step and adapting and learning
all the while - a hyper-heuristic. Performance indices need to be carefully selected in order
to abstract swarm agent behaviour into simple numerical scores for the hyper-heuristic
to handle, evaluate, reward, and base decisions upon. Finally, defining representative
benchmark scenarios to test the swarm’s decision-making capabilities is crucial, both in
a simulated environment and in real-world conditions.

9

Introduction

1.1 Thesis Contribution and Overview

The objective of the thesis is to establish long-term autonomous, unsupervised, energy-
efficient, and environmentally adaptive collective decision-making of a heterogeneous
swarm of marine robots. The stated hypotheses are as follows:

∙ Unsupervised decision-making algorithms with incorporated knowledge of the envi-
ronment can significantly extend autonomous functioning of a heterogeneous marine
robot swarm.

∙ Possible negative impacts of environmental factors such as water currents and wind,
as well as vehicle faults and disturbances, can be minimised and adapted to during
continuous operation of a robotic swarm.

∙ Interaction within a heterogeneous marine robot swarm can lead to enhanced explo-
ration and monitoring capabilities as well as extended autonomy.

∙ It is possible to devise a benchmark scenario and quantitative metrics to compare
various (hyper-)heuristic decision-making algorithms.

In the scope of this thesis, a two-layered system of decision-making algorithms was
developed: a low-level specific solution-focused set of algorithms, and a high-level hyper-
heuristic which selects and seamlessly switches between them, evaluates performance
achieved in each step of agent interaction in the monitoring mission, and employs re-
inforcement learning to enable a level of adaptation to unknown environments, environ-
mental changes, or changes to the agents themselves such as thruster failure. Performance
indices were defined to appropriately represent system capabilities and achieved states,
primarily related to energy-efficient movement, preserving quality coverage of the mon-
itoring area, and collecting the maximum amount of sensor measurements. Finally, a
method of scoring and ranking the performance of the various decision-making methods
present in the system was defined, as well as a benchmark to enable validation during
a variety of relevant scenarios. These metrics were applied during the analysis of both
simulated and field experiment results.

Therefore, the scientific contribution of this thesis is summarized as follows:
1. A method for multi-robot task assignment and sequencing ensuring long-

term autonomy of a heterogeneous swarm of marine robots while taking
into account environmental constraints.

2. A hyper-heuristic decision-making method for a heterogeneous swarm of
marine robots based on unsupervised switching between multiple task
assignment and sequencing methods.

3. A solution evaluation method and definition of performance indices and a
benchmark validation scenario for decision-making and task assignment
methods implemented on a heterogeneous swarm of marine robots.

10

Introduction

The thesis is organized as follows. In Chapter 2, an overview of the robotic agents
within the heterogeneous marine swarm is given, including hardware and software solu-
tions that were employed in order to meet all the prerequisites for the goal of an unsuper-
vised long-term monitoring mission, including agent interactions aimed at extending the
swarm’s autonomy. Chapter 3 outlines the problem being studied, as well as the structure
of the decision-making system being developed. It details the lower level of the system,
including the situational heuristics which incorporate knowledge of the environment, and
presents performance indices chosen to evaluate desired aspects and capabilities of the
system. Chapter 4 describes the higher level of the decision-making structure, including a
full examination of the selection method and reinforcement learning employed to give the
system adaptability and autonomy. Benchmark methods using scoring and ranking are
defined, and simulated and experimental variants of the validation scenario are described.
The thesis is concluded with Chapter 5 where a summary of the most important points
from the dissertation is given.

11

Chapter 2

Heterogeneous marine swarm agents
and interactions

2.1 Introduction

This thesis includes investigation and validation of various algorithms applied to a hetero-
geneous swarm of marine robots, and includes implementation as one of its contributions.
A key requirement is thus a suitable fleet of marine vehicles.

The subCULTron multi-agent system was envisioned as an artificial marine ecosystem
consisting of three agent types. Within the scope of this thesis, the focus is on the use
cases, interactions, and interfaces of the aPads and aMussels (Figure 2.1). A detailed
description of the functionalities and agent interactions featuring the aMussel and aPad
robots, as well as the subCULTron system as a whole, is given in [35]. An overview is
provided here for context. An example of a fully implemented monitoring mission scenario
for the swarm, demonstrating a variety of interactions between same and different agent
types, is described in [36].

The subCULTron swarm can in many ways be characterised as an Underwater Acous-
tic Sensor Network (UASN). In recent decades, deployment and use of USANs has been
growing in popularity [37, 38, 39, 40, 41, 42]. Where traditional underwater monitoring
systems utilise expensive and complex individual agents and subsystems for data collec-
tion, UASNs replace these individual monitoring systems with smaller and less expensive
underwater sensor nodes housing a wide variety of sensors - temperature, pressure, turbid-
ity, and salinity sensors, among others. Additionally, these underwater nodes use acoustic
methods of communication and localisation.

In [43] the authors demonstrated an underwater swarm system consisting of heteroge-
neous robots used for ocean exploration. Underwater sensor nodes use buoyancy control
for depth control, while underwater localisation is aided by acoustic-capable surface buoys.

12

Heterogeneous marine swarm agents and interactions

While the swarm described in [43] passively explores the environment relying exclusively
on ocean currents, the approach to the subCULTron swarm places greater focus on the
ability to dynamically relocate the swarm for planned exploration. Furthermore, the
subCULTron system is capable of collective decision making enabled by underwater com-
munication. Due to energy sharing between surface and underwater robots, deployment
can be prolonged.

In project Argo [44] a system for ocean profiling was developed, with underwater
robots capable of depth control using a variable buoyancy system. The robots have the
capability of acquiring underwater measurements while drifting in the ocean, while final
data transfer to a remote data hub is done through satellite communication, allowing
wide deployment coverage. Each robot is a standalone unit with no planned interaction
between the agents or demonstrable swarm behaviours.

Among the several possible interactions between robotic agents in the subCULTron
swarm, hardware and software has been developed to enable agents to conserve and share
energy [45]. Actively prolonging the operational time of the swarm is done by having an
over-actuated autonomous surface platform dock up to four floating sensor nodes at a
time and replenish their batteries using wireless inductive charging.

Energy management in robotic swarms is generally addressed by implementing energy-
efficient behaviours and providing some method of recharging to prolong swarm autonomy
while not adversely impacting the mission in progress [46]. In [47] and [48] the authors
aim to achieve arbitrary operating times and continuous energy (re)supply by modifying
the operating environment of the mobile ground robot swarms. More applicable to the
subCULTron swarm, several approaches have been proposed which focus on energy ex-
change between members of the swarm, with specialised agents serving as the starting
points of energy supply chains [49] or navigating within the swarm while offering use of
their multiple charging stations, monitoring other agents’ location and battery levels, and
responding to charging requests [50].

A self-adaptive algorithm developed to ensure that important swarm properties, such
as formation and provided coverage, are preserved during energy-aware behaviours of a
group of robots dealing with a limited power source and seeking to continuously recharge
is presented in [46]. The robots use only locally available information such as range and
bearing with regards to other nearby robots, and very limited communication, making
the algorithm suitable for consideration in challenging environments.

Authors in [49] address the potential bottleneck of charging stations serving multiple
robots by introducing collaborative behaviours focused on energy sharing between the
swarm agents. Some of the robots in rely on charging stations for energy resupply, while
others receive energy from peers in their proximity, leading to efficient energy supply

13

Heterogeneous marine swarm agents and interactions

chains. The robots do not spend time recharging, but physically exchange battery mod-
ules, and a controller making rendezvous behaviour required to achieve this possible is
developed.

As opposed to more traditional docking/charging stations, [50] proposes an autonomous
mobile charger robot which acts within the swarm, monitors the other agents’ location
and battery level, and seeks out low-powered agents to respond to their charging requests.
Robots in need of charging approach the charging robot and dock to one of its several
charging stations. It also contains algorithms developed for cooperation between robots
in need of charging and the robot carrying the charging stations.

Working in the marine environment poses unique challenges. In [51], the authors
aim to achieve an energy-efficient underwater swarm by having swarm members adjust
their behaviour depending on their energy levels and needs. Similarly to the subCULTron
swarm, acoustic communication is used for relaying information from agents on the surface
to those that are submerged, as well as for underwater localisation. In turn, [52] proposes
an underwater wireless charging system consisting of a station which vehicles navigate to
in order to recharge their batteries.

Figure 2.1: The aPad platform and four aMussel underwater sensor nodes.

Due to the logistically demanding nature of experiments in the field, especially in
marine environments and with a great number of robots, simulated environments and
agents have been created which enable initial testing and validation. Evaluating the
performance of different approaches and tuning the many parameters present in the system
to improve its longevity is a challenging task and requires being able to repeat experiments
several times. Hence, a desire to create an experimental framework in which simulated

14

Heterogeneous marine swarm agents and interactions

agents interact with real ones, in the spirit of the Hardware–In–the–Loop (HIL) approach
(or in this case vessel or Vehicle–In–the–Loop (VIL) [53] [54]). While there have been some
attempts at standardisation, existing simulators focusing on underwater environments and
aspects relevant to marine vehicle development are not widely available and have some
VIL capabilities [55] [56], with the more common approach being partial HIL, such as
featuring the main electronics boards of the vehicle and one or more real sensors, with the
rest simulated [57]. The simulator that is part of the system proposed in this thesis does
not feature a dedicated visualisation component, instead being compatible with existing
command and control frameworks. It also aims to simulate underwater agents in their
entirety, with seamless switching between simulated and real agents.

The simulations were made in Python using the SciPy library and the functionalities
of the Robot Operating System (ROS) distributed runtime environment [58], widely used
in the robotics community. The method of implementation used allows for a very simple
transfer onto real hardware and initial validation by hardware-in-the-loop simulations.
It also makes it possible to mix real and simulated vehicles during experiments – for
example, a single aPad is relatively simple to deploy, compared to 24 aMussels: therefore,
experiments with actual aPad vehicles "charging" many simulated aMussel agents are very
useful for algorithm validation. Simulated aMussels can be run on a dedicated surface
station computer, or can be run on the on-board computer of a "host" aPad. Low-level
control and navigation of the aPad vehicles is readily available, as are their kinematic and
dynamic models, whereas the aMussel agents required additional modelling, in particular
with regards to battery charging and discharging.

This chapter gives an overview of the main two agents studied in this thesis from
both a hardware and software standpoint as well as their representation in developed
simulated and VIL environments, with a particular emphasis on subsystems enabling the
newly developed agent interaction of autonomous docking and charging, a prerequisite for
all algorithms described in this thesis.

2.2 The aPad robotic agent type

The aPad is a highly manoeuvrable modular robotic platform with powerful batteries
and the highest computational power in the swarm. Equipped with mechanical docking
stations and inductive charging coils, one of the aPad’s main roles and most important
abilities is to transport and wirelessly charge up to four other swarm agents at a time
(Figure 2.2). The aPads each act as an energy and information sharing hub, as well as a
bridge between the swarm and a potential human observer. They also serve as anchors
in the process of acoustic underwater localisation of other agents.

15

Heterogeneous marine swarm agents and interactions

Figure 2.2: Final version of the aPad platform ready for deployment on-site (left) and an aPad
fully loaded with four docked aMussels (right).

Figure 2.3: X-shaped thruster configuration present on the aPad, enabling omnidirectional
motion in the horizontal plane, [59].

The vehicle is 0.385 m high, 0.756 m wide and long, and weighs approximately 25 kg.
It has four thrusters in a specific X-shaped configuration (Figure 2.3) which make it over-
actuated and omnidirectional. It can return to a home position and be charged while
deployed, without the need for recovery and redeployment, thanks to a waterproof charg-
ing jack on its hull. For surface communication purposes, the aPads are equipped with
a mesh-capable wireless router which operates on two different frequency bands using a
separate antenna for each, providing WiFi access points for aMussels and surface sta-
tions and a mesh network for the aPads themselves. For underwater communication and
localisation purposes, the aPads use miniaturised acoustic modems called nanomodems,
while for localisation and positioning, each platform has an Inertial Measurement Unit
(IMU) and a Global Positioning System (GPS) module with the capability of using the
Real-Time Kinematic (RTK) positioning technique for greater precision.

In addition to the exchange of information, the aPads also have the ability to exchange
energy with other types of agents via the use of specially designed mechanical docking
stations and an autonomous docking algorithm. The aPad seeks the recognisable top cap

16

Heterogeneous marine swarm agents and interactions

of a floating aMussel using a visual sensor, approaches it using a control algorithm based
around visual servoing, moving so the aMussel docking section is aligned with the aPad
docking mechanism, then finally activates the docking mechanism to secure the aMussel
in place so wireless charging using inductive coils can take place, or so the aMussel can
be transported to another location.

The aPad visual sensor is a Microsoft Kinect Infra-Red (IR) and Red-Green-Blue
(RGB) combination sensor encased in a watertight plexiglass tube, mounted on a specially
designed motorised pan mechanism which allows it to turn and look down over each of
the four docking mechanisms (Figure 2.4). A sun protection sticker was applied to the
plexiglass tube in order to prevent the sensor overheating during prolonged deployment
and operation in direct sunlight. The platform’s GPS antenna is additionally mounted
on top of the tube in order to ensure the best signal reception possible.

Figure 2.4: Final setup of the Microsoft Kinect sensor sideways within a watertight tube,
mounted on top of the aPad platform with a motorised pan mechanism.

The charging dock on the aPad contains three charging coils encapsulated in water-
proof resin which provide wireless energy transfer, and is shaped in a way to provide
tolerance in aMussel angle at approach, as well as mechanical locking once the aMussel
is in the slot. Two immovable delrin levers are mounted on the aPad which act as a
guiding rail funnelling the aMussel towards the charging dock, while a motorized shutter
pushes on the aMussel while closing. The docking principle is purely mechanical, designed
to have quite high tolerances to offsets with the approaching aMussel, including vertical
shift tolerance of ±50𝑚𝑚, and horizontal shift tolerance of ±130𝑚𝑚.

After several field and stress tests, the docking mechanism was modified to keep the
servo motor moving the arm well above water (as its water resistance rating proved not

17

Heterogeneous marine swarm agents and interactions

high enough to tolerate repeated complete submersion). This also reduced the force it
needed to exert during closing by ensuring better leverage, thus avoiding excess mechanical
wear and increasing the longevity of the motor as well as the entire mechanical system.
The design of the dock itself was modified and streamlined by thinning and lengthening
its two prongs for more horizontal tolerance during docking, as can be seen in Figure 2.5.

Figure 2.5: aPad-mounted docking mechanism comparison, initial design (left) and final design
(right).

2.2.1 aPad guidance and control

A detailed examination and explanation of the dynamic and kinematic models of the
platform, as well as developed low-level control structures, are given in ([59]). A brief
overview is given here for completeness.

As a surface vehicle, of primary interest is the aPad’s movement in a horizontal plane.
The dynamic model can be described using a velocity vector alongside a vector of actuating
forces and moments acting on the platform.

The velocity vector is given by ν =
[︃
𝑢 𝑣 𝑟

]︃T

where 𝑢, 𝑣 and 𝑟 are the surge, sway,

and yaw speeds, respectively.
The vector of actuating forces and moments acting on the platform is given by τ =[︃
𝑋 𝑌 𝑁

]︃T

where 𝑋, 𝑌 are surge and sway forces and 𝑁 is yaw moment. Both of

these vectors are defined in the body–fixed (mobile) coordinate frame.
The platform is designed to be symmetrical with respect to the 𝑥 and 𝑦 axes in

the body-fixed frame. Thus, the uncoupled dynamic model in the horizontal plane is
given with (2.1) where M is a diagonal matrix with mass and added mass terms for

each component expressed with M = 𝑑𝑖𝑎𝑔

(︃
𝛼𝑢, 𝛼𝑢, 𝛼𝑟

)︃
, and D (ν) is a diagonal

matrix consisting of nonlinear hydrodynamic damping terms, component-wise D (ν) =

18

Heterogeneous marine swarm agents and interactions

𝑑𝑖𝑎𝑔

(︃
𝛽𝑢 (𝑢) , 𝛽𝑢 (𝑣) , 𝛽𝑟 (𝑟)

)︃
.

Mν̇ = −D (ν) + τ (2.1)

The kinematic translational equations for the platform motion in the horizontal plane
on the sea surface are given with (2.2).

⎡⎢⎢⎢⎣ 𝑥̇

𝑦̇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣ cos𝜓 − sin𝜓

sin𝜓 cos𝜓

⎤⎥⎥⎥⎦
⏟ ⏞

R(𝜓)

⎡⎢⎢⎢⎣ 𝑢

𝑣

⎤⎥⎥⎥⎦ (2.2)

Here 𝑥 and 𝑦 are the position and 𝜓 is the orientation of the platform in the Earth–fixed
coordinate frame, and R (𝜓) is the rotation matrix.

An additional equation present in the kinematic model is 𝜓̇ = 𝑟. The platform is
over-actuated, i.e., it can move in any direction in the horizontal plane by modifying its
surge and sway speed, while attaining arbitrary orientation.

The low–level speed controller on the aPad is a PI controller was chosen, given with
(2.3).

τ = KPν (ν* − ν̃) + KIν

∫︁
(ν* − ν̃) d𝑡+ τF (2.3)

where ν* =
[︃
𝑢* 𝑣* 𝑟*

]︃T

are the desired linear and angular speeds of the plat-

form, and KPν = 𝑑𝑖𝑎𝑔

(︃
𝐾𝑃𝑢, 𝐾𝑃𝑣, 𝐾𝑃𝑟

)︃
and KIν = 𝑑𝑖𝑎𝑔

(︃
𝐾𝐼𝑢, 𝐾𝐼𝑣, 𝐾𝐼𝑟

)︃
are

diagonal matrices with proportional and integral gains for individual degrees of freedom.
The values of the vehicle’s speeds are often estimated (marked by a tilde sign in the

equations), as they are either difficult to measure at all, or any available measurements
are unreliable. The τF term represents additional action introduced in the controller to
improve the closed loop behaviour, as described in [60]. This action can be in the form
τF = D (ν)ν which results in the feedback linearisation procedure, in which measured
or estimated speeds are used to compensate for the nonlinearity inherent in the process.
It is more usual and convenient to use the feedforward term τF = D (ν*)ν*. Controller
parameters KPν and KIν can be calculated based on the desired closed loop characteristic
equation as shown in [60].

Notable higher-level control primitives make use of the controllers described above.
Primitives available on the aPads include a go-to-point manoeuvre, line following, dynamic
positioning for station keeping, and a docking manoeuvre for collecting aMussels.

19

Heterogeneous marine swarm agents and interactions

2.3 The aMussel robotic agent type

The aMussel (Figure 2.6) carries on it a wide selection of sensors, including temperature,
pressure, turbidity, ambient light, and dissolved oxygen concentration. It has very lim-
ited movement capabilities, equipped only with a variable buoyancy system consisting of
a piston and diaphragm which allows it to float to the water’s surface, sink to the sea
bed, or stay hovering at a set depth. For deployment and relocation to specific points in
its environment, the aMussel requires the help of the aPad. Once deployed, the numerous
aMussels use the miniaturised acoustic modems mounted on their top caps to function as
an underwater acoustic sensor network (UASN) on a mission of long-term data collection
and environmental observation. The aMussels employ acoustic communication with ded-
icated timeslots for each agent when underwater, and have WiFi, Bluetooth, and GSM
capabilities when on the surface.

Figure 2.6: The aMussel underwater robot and sensor node. Note the inductive charging coils
on the narrow neck below the top cap segment.

Initial deployment of the aMussel underwater sensor nodes within a chosen area of
interest is also executed with the help of the aPad surface vehicles. Once released in the
proper location, the aMussels will sink to the seabed, where they remain stationary while
collecting data and occasionally communicate their findings to the surface, as well as
amongst themselves. A variety of scenarios and behaviours is being developed and tested
for the swarm agents, including trust and consensus-based decision making, deciding
when to surface and request relocation, and how to determine and further explore points

20

Heterogeneous marine swarm agents and interactions

of particular interest.
In order to make long-term autonomy possible, the aMussel was developed with low

energy consumption in mind. Its main electronic board - called the MU (Measurement
Unit) board - contains a Cypress PSoC4 microcontroller and is capable of deep hiber-
nation, minimising energy consumption. The rest of its modules were developed and
connected to the central board in a way that makes it possible to disable the power sup-
ply of each individual module and sensor as needed. The modules can be woken up by
the main board, or by an acoustic signal received by the specialised miniature acoustic
modem on their top cap. These configurable sleep cycles enable a considerable degree of
adjustment - primarily reduction - of the robot’s power consumption.

A lack of computational power is the downside of the designed aMussel main board
and processing unit. As a potential workaround, each aMussel was also equipped with a
Raspberry Pi unit with a custom-made adapter board and camera, making it possible to
perform more complex and demanding calculations, image and on-line data processing,
and store large amounts of data. The Pi board is only powered on in short intervals on
rare occasions where its particular abilities are needed.

To further enhance autonomy, the aMussels are equipped with three inductive charg-
ing coils which enable battery recharging during mission execution. Each aPad has four
matching mechanical docking stations housing inductive transmitter coils and guarantee-
ing good coil alignment, which allows it to charge up to four aMussels at a time. Energy
exchange and deployment/relocation are among the key cooperative behaviours of the
aMussel and aPad agents.

Wireless energy transfer is realised using a system based on inductive charging [61, 62],
consisting of a power supply on the transmitter side, a set for wireless energy transfer,
a battery charger, and a battery. The used wireless charging set is shown in Figure 2.7.
It consists of a transmitter coil, connected to the the appropriate printed circuit board
(PCB), which is connected to the power supply and receiver coil connected to the PCB,
which is connected to the aMussel battery charger. Charging stops automatically when
the wireless receiver stops transferring energy to the chargers or when batteries are full.

The aMussel itself houses two lithium polymer batteries and two independent battery
chargers. Both batteries are charged simultaneously when in the charging dock: the
primary battery is charged from two wireless receiver coils, while the secondary battery
is charged from only one. The batteries are otherwise equivalent and equally capable and
can be switched between at will using the power board of the aMussel, but in standard
operation the primary battery powers the main board and all other operational boards
and modules, while the secondary battery remains in standby and serves as backup.
Monitoring of the charging process is accomplished by tracking the voltages and the

21

Heterogeneous marine swarm agents and interactions

Figure 2.7: Wireless charging set present on each aMussel and aPad agent.

currents of the batteries, as well as the digital status pins of each battery.
The aMussel is passive agent during the docking process, conserving its battery and

also easing unit production. Its top cap is covered with reflective tape which is saturated
red when viewed using a normal RGB camera, and brightly reflective when viewed through
an IR filter. Once it sends out its docking request and gets a confirmation of reception, an
aMussel no longer has to keep any of its system powered, leading to energy conservation
and fewer concerns about maintaining battery level above a certain threshold, as an
aMussel can still be picked up by an aPad without issue even if its battery completely
runs out. The aPad is the only active agent in the docking process, as both the IR emitter
and receiver are entirely on its end.

2.4 Software architecture and simulation

2.4.1 Software architecture

The aPad’s on-board vehicle software and the aMussel simulator software architecture
is based on the Robot Operating System (ROS) middleware and its structure of nodes,
services, and messages, realised using Python and C++. The overall structure can be
seen in Fig. 2.8.

The simulation run on the surface station or on an aPad vehicle includes a ROS
node containing a class representing a selected predefined number of aMussel agents with
unique agent ID numbers. In its several modules it implements communication protocols,
tracks agent positions and battery status, and provides simulated or dummy sensor data,
depending on experimental scenario demands. The modules are all connected to the
singular comms module and use the same simulation clock, but are otherwise unaffected
by each other.

22

Heterogeneous marine swarm agents and interactions

Surface station

Simulated aMussel 1... N

Deployed aPad platform

WiFi/UDP

Decision-making/mission planner

Low-level controllers
Thrust allocation, velocity control, servo control,

odometry and status

Scripting API

Vehicle ROS interfaces

Mission primitives
Go to point, Hold position,

(Un)docking
Navigation filter

Mission replay
& analysis

Logging

Logging

Energy
module

Position
module

Sensors
module

Comms
module

Figure 2.8: System software and communication structure - simulated aMussel agents and real
aPad platforms.

The comms module subscribes to and parses messages received from aPads, and pub-
lishes aMussel sensor, position, and battery data at a fixed rate, using the same data
structures and serialisation defined and used for real agents. The simulated aMussels can
communicate with the aPads via WiFi (as if they are on the surface), while an interface
for acoustic communication queuing exists, using either the “host" aPad’s nanomodem, or
a separate physical nanomodem unit attached to the surface station computer via serial
port. It is possible to intermix both real and simulated aMussels in one experiment, as
long as care is taken to ensure no agent ID overlap.

The position module either generates a random uniform distribution of aMussels within
a preset polygon representing the experimental area, or loads starting aMussel configu-
rations from a file saved during a previous run, ensuring repeatability. A water current
vector field map can be overlaid on the experimental area, causing agents to drift over time
by translating their position each time step depending on the current vector. Depending
on aPad status messages, the position simulation can switch between the free-floating
mode and a charging mode in which aPad position is forwarded to the aMussel position

23

Heterogeneous marine swarm agents and interactions

topic to represent the aMussel in question being docked.
The models used in the simulated battery module are described in detail in Subsection

2.4.2. Starting battery states can be randomly generated or loaded from a configuration
file. The simulator charges and discharges all simulated aMussel batteries every fixed time
step depending on charging status data received from the aPad via the comms module (i.e.
responding to an alert once a certain aMussel has been “docked" by the aPad reaching its
position and closing the designated docking mechanism, or “released" and thus no longer
being charged).

Mission primitives implemented and used in the long-term monitoring mission include
Go To Point for moving the aPad to a certain location, Hold Position for dynamic posi-
tioning, and Docking/Undocking for collecting and redeploying aMussels (described and
discussed in detail later in this chapter). They are realised in the form of services that
can be called manually or from within a mission script, accepting a set of parameters such
as vehicle speed, victory radius, or docking mechanism selection. Controller parameters
for all low-level controllers (e.g. yaw rate and surge speed for the docking procedure) can
also be adjusted if needed.

As part of the overall system development, an Application Programming Interface
(API) was developed to simplify high-level mission design and implementation. It is
realised in the Python programming language and enables the creation (and automation
thereof) of both extremely simple and linear task sequences as well as complex missions
and behaviours, while removing the need for compilation before runtime. The API also
contains definitions for all aPad- and aMussel-specific data structures. An example of
a simple sequential aPad mission consisting of going to the last received position of the
aMussel with the designated agent ID 24, then, once in position, initiating docking the
mussel to the second docking mechanism, is given in Listing 2.1.

Listing 2.1: Example of scripting a simple aPad mission.

l a t = api . ge t_locat i on (2 4) . l a t
lon = api . ge t_locat i on (2 4) . lon
api . go_to ([l a t , lon])
whi l e (api . goto_status (i d _ s e l f) == 1) :
p r i n t ("GoTo in p rog r e s s . ")
time . s l e e p (1)
p r i n t (" Goal reached . Docking s t a r t . ")
ap i . docking (True , 2 , 24)

The mission planner is realised using this scripting API. It contains a selection of
strategies for collection and deployment which use a universal solution encoding format

24

Heterogeneous marine swarm agents and interactions

in order to make it easy to swap between approaches and add new ones if desired. The
mission planner also contains cost calculation modules with adjustable scale factors, mak-
ing it possible to produce a variety of behaviours and observe their effects on aPad task
sequencing. Solution representation takes the form of sequences of aMussel indexes, with
the character "0" serving as a delimiter.

Data logging is realised in a redundant way: it takes place both locally on each aPad
and on the surface station (if present). In an ideal case, the logs are equivalent and
should loss of certain messages or data occur in any of them, the others can be used
to fill in the gaps. The mission replay and analysis interface is realised in MATLAB
based on the gathered rosbag format data logs (an example of the mission replay screen is
given in Section 4.4). The Neptus C4I Framework [63] can also be used for aPad mission
supervision, replay, and control, with aMussel data being relayed by connected aPads and
displayed on the map overlay.

2.4.2 Battery modelling and simulation

During the fairly extensive subCULTron field tests, it was empirically determined that an
aMussel was fully operational - meaning it could reliably turn on and use all of its modules
at least once - in battery voltage ranges from a fully charged 4200 mV to a minimum of
3600 mV. For safety reasons, an aMussel should never be allowed to drop below this lower
voltage limit, as this could mean it loses the ability to activate its buoyancy system motors
and surface for recovery, leading to robot loss. The Raspberry Pi and the buoyancy system
motors were additionally identified as the two largest power sinks present on the aMussel.

Fig. 2.9 (a) shows a realistic example of 20 hours of an aMussel operating overnight
recorded in situ during one field experiment in Venice. The aMussel in this scenario sleeps
and wakes up in regular intervals for several minutes in order to gather measurements,
do some minor data processing, and await its designated acoustic timeslot, upon which it
transmits an acoustic data packet - note the clearly visible voltage drops indicating brief
hourly periods of increased activity interrupting low-power sleep mode. As contrast, the
figure also shows an example of operation with unrealistically high power consumption,
where an aMussel’s Pi board was kept on, and its buoyancy motors ran every 10 minutes,
leading to full battery discharge within 3 hours. For reference and comparison, recorded
battery data of an aPad running its on-board computer and Kinect camera, activating all
of its thrusters for 3 seconds every 30 seconds is shown in Fig. 2.9 (b).

In order to not only gather data for simulation design, but also test the long-term
operating potential of the final developed aMussel system in a more structured manner,
aMussel robots were placed on a laboratory table and left to discharge and then charged
using aPad charging mechanisms at room temperature all while engaging in a variety of

25

Heterogeneous marine swarm agents and interactions

0 5 10 15 20
Time [hour]

0

0.2

0.4

0.6

0.8

1
V

o
lt
a
g
e

n
o
rm

a
lis

e
d

Regular operation

Heavy load

0 3 6 9 12 15 18 21 24 27
Time [hour]

0

0.2

0.4

0.6

0.8

1

V
o

lt
a

g
e

n
o

rm
a

lis
e

d

Figure 2.9: aMussel battery discharge data in two different modes of operation (a). aPad
battery discharge scaled to operating range [16, 10.5]𝑉 (b).

operating behaviours. Their battery voltage was measured, after which the data segment
representing the previously determined permitted operational area of [3600, 4200] was
scaled to an interval of [0, 1] to represent permitted operational limits.

The cases of particular interest for examining the discharging behaviour included a
single aMussel battery discharging with the MU board turned on but idle (approximately
16 hours needed for full discharge) and the aMussel battery discharging with MU board in
sleep, but waking up once every hour for about 10 seconds in order to record measurements
from all sensors (approximately 9.8 days needed for full discharge).

Note that while discharging behaviours will be the same for both primary and sec-
ondary batteries under the same load, the charging will not due to the differing number
of coils, so an additional charging use-case scenario was recorded. For the charging be-
haviours, of interest was the aMussel primary battery charging with the MU board turned
on but idle (approximately 9.5 hours needed for full charge), the aMussel primary battery
charging with sleep, waking up briefly in regular intervals to record sensor data (approxi-
mately 6.5 hours needed for full charge), and the aMussel secondary battery charging with
the same sleep behaviour, with the MU powered by the primary battery (approximately
8 hours needed for full charge). The differences in durations of charging the primary and
secondary battery are smaller than might be expected. For ease of comparison, recorded
charging and discharging times are shown in Table 2.1.

The gathered data confirmed the long-term potential and viability of several aMussel
use-cases that were established during the project. A sleeping aMussel waking up once
an hour for a few seconds has enough time to retrieve measurements from all sensors, and
the data it is monitoring consists of very slow-changing variables so sparse sampling is
appropriate. Additionally, this awake period can be timed precisely to correspond to the
aMussel’s scheduled acoustic timeslot. In case of an emergency an aMussel that is asleep
can be woken up by an acoustic ping addressed to it and receive whatever instruction is

26

Heterogeneous marine swarm agents and interactions

Table 2.1: Times to full aMussel battery discharge and charge.

Discharging, MU board turned on but idle 962 min

Discharging, MU board in sleep, waking up once an hour 14057 min

Charging, primary battery, MU board turned on but idle 575 min

Charging, primary battery, waking up once an hour 398 min

Charging, secondary battery 485 min

necessary. Furthermore, while an aMussel is charging on the surface it is not in active
use and can be asleep, speeding up the charging process. While taking into account
the batteries’ ageing and ability to hold charge [64], switching to and actively using the
secondary battery should effectively double an aMussel’s total deployment time.

These representative discharge and charge cycle datasets, as well as the simulation
models of two specific behaviours that were chosen for the proof-of-concept experimental
scenarios, are shown in Fig. 2.10 (discharging) and Fig. 2.11 (charging).

0 5000 10000 15000

Time [min]

0

0.2

0.4

0.6

0.8

1

V
o

lt
a

g
e

n
o

rm
a

lis
e

d

Primary battery discharging while idle

Linear fit

Simulation model

Primary battery discharging with sleep

Linear fit

Figure 2.10: aMussel battery discharge data and implemented simulation model.

Least squares fitting was applied to the recorded data in order to get a simple discrete
simulation model-suitable representation. A linear fit function was used for the discharg-
ing and an exponential represented using a piecewise-linear function for the charging.
The equations were then implemented in a ROS node working at a rate of 1 Hz which

27

Heterogeneous marine swarm agents and interactions

0 100 200 300 400 500 600

Time [min]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
o

lt
a

g
e

n
o

rm
a

lis
e

d
Primary battery charging with sleep

Exponential fit

Secondary battery charging with sleep

Exponential fit

Simulation model

Primary battery charging while idle

Exponential fit

Figure 2.11: aMussel battery charge data and implemented simulation model.

updates and publishes current battery levels of an arbitrarily large group of aMussels,
based on the last previously recorded battery levels and received charging status inputs
for each simulated agent. Note that only voltage information was used in the simulation,
as during simulation development remaining run-time indication was considered more
important than any accurate state-of-charge modelling [65], and of primary concern was
being able to make relative simulated aMussel battery state and charge/discharge time
comparisons during high-level decision making. A time scaling factor was also introduced
into the simulation, allowing for simulations where one unit of real time represents min-
utes or even hours in simulated time. The final selected simulation models used in the
proof-of-concept scenario are, for discharging:

𝑢𝑘 = 𝑢𝑘−1 − 0.0010427134𝜃 · Δ𝑡 (2.4)

and for charging:

𝑢𝑘 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑢𝑘−1 + 0.001045𝜃 · Δ𝑡 𝑢𝑘−1 ≤ 0.16197

𝑢𝑘−1 + 0.00223𝜃 · Δ𝑡 0.16197 < 𝑢𝑘−1 ≤ 0.5634

𝑢𝑘−1 + 0.002911𝜃 · Δ𝑡 0.5634 < 𝑢𝑘−1

(2.5)

Where 𝑢 is voltage, 𝑘 represents the simulation step and 𝜃 is the simulated time scaling
factor. In this case with a 1 Hz sampling time, in real time the step is Δ𝑡 = 1𝑠 = 1

60𝑚𝑖𝑛.

28

Heterogeneous marine swarm agents and interactions

Final simulated voltage is clamped to [0, 1].

2.5 Autonomous docking and energy exchange

The docking algorithm implemented in the marine robot swarm is an image-based visual
servoing variant (IBVS) with end-point closed-loop control, since the visual sensor moves
together with the effector towards the target, while itself integrated into the control loop
of the system. The information about various offsets within the image acquired from
the image processing segments of the algorithm is used directly in the control algorithm
to calculate reference signals, as opposed to being used as a basis for estimating the
real-world 3D space position or pose of the target. This is a classical, well-established
and well-documented approach, as seen in [66], [67], [68]. More recently, applications of
various implementations of visual servoing in the field of marine robotics can be seen in
[69], where a visual servo control approach was successfully transferred from an industrial
manufacturing context to underwater robotics tasks autonomously performed by a subsea
hydraulic manipulator mounted on a work-class Remotely Operated underwater Vehicle
(ROV). In [70], visual servoing is used as a method of achieving station-keeping in an
underwater environment, with unmarked natural features acting as targets for the image
tracking algorithm and enabling an unmanned underwater vehicle (UUV) to hover above
planar targets on the sea bed. In [71], a more complex hierarchical control structure
featuring visual servoing is introduced in order to achieve dynamic positioning of a fully
actuated underwater vehicle.

2.5.1 Docking algorithm

The control structure of the systems involved in the docking algorithm consists of the
following components: Docking phases that contain a state machine that implements
the highest level of control present in this system; Guidance and control algorithms for
generating references for the aPad’s low-level speed controllers; and Image processing,
which provides information and feedback from the aPad’s visual sensors necessary for the
functioning of the docking algorithm by employing traditional computer vision methods
and neural network object detection, then fusing them using an Extended Kalman filter.
This structure is shown in Figure 2.12.

Details of the dynamic and kinematic models of the platform, as well as developed
high- and low-level control structures, are given in [59].

A state machine representation of the high-level control of the aPad docking algorithm
is given in Figure 2.13.

The aPad docking control algorithm loop consists of three active phases:

29

Heterogeneous marine swarm agents and interactions

Docking
phases

Guidance
and

control

aPad
systems

Hue
thresh-
olding

Neural
network

Tracking
filter

Image processing

𝑢𝑟𝑒𝑓

𝑟𝑟𝑒𝑓

𝑠𝑠𝑡𝑎𝑡𝑒 𝑖𝑚𝑔

𝑒ℎ𝑢𝑒

𝑒𝑛𝑛

𝑒𝑥, 𝑒𝑦

𝑒𝑥, 𝑒𝑦

Figure 2.12: Control structure for autonomous docking implemented on each aPad.

Figure 2.13: State machine representation of the high-level aPad controller running the docking
algorithm.

∙ Search - The aPad rotates at a set rate until it registers a camera frame in which
the top cap of an aMussel is visible.

∙ Approach - The aPad moves towards the detected aMussel, turning in order to
keep it centred in view and thus properly aligned with the mechanism for docking.
Should the aMussel be lost from view during this phase, the aPad will recommence
Search.

∙ Grasp - The aPad closes the servo-actuated gripper on its docking mechanism
once the reported position of the aMussel is close enough, i.e. below the set height
threshold. Charging is started.

An Idle state is also present to account for the times when the aPad is holding its

30

Heterogeneous marine swarm agents and interactions

position and allowing the docked aMussel to charge and/or transmit data. Before each
docking attempt starts (launching into the Search state), the pan mechanism rotates the
Kinect sensor to face the chosen dock.

The gripper on the docking mechanism is closed once the 𝑦 coordinate of the located
aMussel top cap falls below a vertical threshold, indicating that the mussel is close to
the camera as well as the docking mechanism it is pointing towards. This value has been
calibrated with regards to the camera angle and the buoyancy and height of the fully
surfaced aMussel in order to ensure a timely closing, and is currently set to 25% of the
full image height.

During the Approach phase of the docking algorithm, the aPad moves towards the
detected aMussel, regulating its surge speed (and thus the speed of its forward approach
to the aMussel) using the curve given in Figure 2.14 - the closer the position of the
aMussel is to the centre of the image, the faster the aPad will approach it. Yaw rate is
regulated using the curve shown in Figure 2.15. Thus, if the aMussel is far off to the side
of the aPad’s current view, the emphasis will be on yaw movement as opposed to surge
movement, and the aMussel will be kept aligned with the docking mechanism.

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

𝑒𝑥

𝑢
𝑟
𝑒𝑓

(𝑒
𝑥
)

Calm
Turbulent

Figure 2.14: Surge speed curve used during autonomous docking. 𝑒𝑥 is the estimate of the 𝑥
or horizontal image coordinate of the aMussel.

The equation used for generating references for surge speed control is:

𝑢𝑟𝑒𝑓 (𝑒𝑥) = 𝑘1𝑒
− 𝑒2

𝑥
2𝜎2 (2.6)

and the equation used for yaw rate control is:

𝑟𝑟𝑒𝑓 (𝑒𝑥) = 𝑘2 tanh(𝑎𝑒𝑥) (2.7)

31

Heterogeneous marine swarm agents and interactions

−1 −0.5 0 0.5 1

−0.2

0

0.2

𝑒𝑥

𝑟 𝑟
𝑒𝑓

(𝑒
𝑥
)

Calm
Turbulent

Figure 2.15: Yaw speed curve used during autonomous docking. 𝑒𝑥 is the estimate of the 𝑥 or
horizontal image coordinate of the aMussel.

Table 2.2: Regulator parameters

Parameter Value - calm Value - turbulent

𝑘1 0.25 0.3

𝑘2 0.35 0.4

𝜎 0.245 0.35

a 1 1

𝑟𝑟𝑒𝑓,𝑠𝑒𝑎𝑟𝑐ℎ 0.3 0.4

where the input 𝑒𝑥 represents the estimate of the horizontal image coordinate of the
aMussel scaled to an interval of [-1,1], received from the filter node. A fixed yaw rate
𝑟𝑟𝑒𝑓,𝑠𝑒𝑎𝑟𝑐ℎ is set for the search phase of the docking process. Values chosen for regulator
parameters for working in calm water conditions and for working in a more turbulent
environment are given in Table 2.2.

Depending on which of the four aPad docks the aMussel is being docked to (or un-
docked from), the surge reference needs further transformation. A rotation matrix is
applied to the generated surge reference from (2.6):

𝑢′
𝑟𝑒𝑓 =

[︃
𝑢′
𝑟𝑒𝑓,𝑥

𝑢′
𝑟𝑒𝑓,𝑦

]︃
=
[︃
𝑐𝑜𝑠(𝛼) −𝑠𝑖𝑛(𝛼)
𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛼)

]︃
𝑢𝑟𝑒𝑓,0 (2.8)

where 𝑢𝑟𝑒𝑓,0 represents the reference for the default front-facing dock which is used to

32

Heterogeneous marine swarm agents and interactions

determine the vehicle’s heading:

𝑢𝑟𝑒𝑓,0 =
[︃
𝑢𝑟𝑒𝑓

0

]︃
(2.9)

Angle 𝛼 is simply determined using 𝛼 = 𝑖𝑑𝑜𝑐𝑘
𝜋
2 , with 𝑖𝑑𝑜𝑐𝑘 as the index of the chosen

dock, as shown in Figure 2.16.

Figure 2.16: aPad vehicle viewed from above with docks marked in indexing order. Example
angle 𝛼 highlighted for dock with index 1.

2.5.2 Image processing

Achieving a good degree of accuracy in image processing - especially when it is used as one
of the main methods of robot perception - is key in real-world applications. The image
processing approaches used for locating the aMussel and correctly navigating towards it
evolved through several stages that roughly correspond to the evolution of the system
hardware. These include:

∙ IR-only intensity thresholding
∙ Hue-based thresholding

33

Heterogeneous marine swarm agents and interactions

∙ Neural network detection
Despite the evolution of the system, the option to use each of the approaches indi-

vidually remains. The ability to switch between (“legacy") IR mode and the more recent
full RGB image modes is of practical significance, as this duality means swarm work in
dark or night-time conditions can still proceed. The capability of the Kinect sensor to
switch between infrared and regular camera is one of the main reasons it was chosen. This
section describes the implementation of the three image processing variants.

Note that although the Kinect sensor is mounted sideways, all images are processed
without rotation. Rotation is done later in coordinate calculations before feeding informa-
tion to the parts of the system which formulate aPad movement references, which saves
time in potentially costly image processing operations. For ease of viewing and reading,
the images here presented as examples have been rotated.

2.5.3 IR-only intensity thresholding

To begin the infrared based detection, a greyscale image is retrieved from either the
initially used analog camera or the Kinect’s infrared sensor, and a mild low-pass Gaussian
blur filter is applied to it in order to reduce noise. The position of the pixel with the
highest value found in the image is determined (as higher value means lighter pixels,
which is convenient for locating light sources in images).

After this, the image is thresholded so that only the brightest cluster of pixels remains
in it - the adaptive threshold applied to the image is set using the maximum pixel value
determined in the previous step. Next, a bounding box is placed around the largest cluster
of pixels remaining in the image after thresholding. Visual servoing is done by passing the
coordinates of this bounding box to the controller, with the assumption that the origin
of the coordinate system is in the centre of the image, both vertically and horizontally.
Coordinates are scaled to a range of [-1,1] for control purposes, with -1 corresponding to
the left edge and bottom of the image, and 1 being the right edge and top.

An example comparison of raw camera input and processed image taken during one
of the indoor pool tests (with the coordinate system overlaid for reference) is given in
Figure 2.17.

This approach to visual servoing was used as the primary method during indoor testing
of the system and the initial docking experiments, as outlined in [45]. Its range proved
limited, however, and certain components such as the IR LEDs in the aMussel which
served as beacons for detection were removed from the system after the initial prototyping
stages.

34

Heterogeneous marine swarm agents and interactions

Figure 2.17: Original analog camera image (left) and processed image with coordinate system
(right), showing a view of the experiment testbed with present IR LED in aMussel cap. The
green rectangle overlaid on the left camera image represents a bounding box around the final
derived position of the IR LED used to control the aPad’s approach.

2.5.4 Hue-based thresholding

The original implementation of the hue-based thresholding method for detecting and
locating aMussels in an image was described in [45].

The algorithm first crops the RGB image received from the Kinect sensor to a region
of interest representing a fixed distance in front of the camera in which an aMussel might
actually be located. This serves to both minimise the chances of false positive detections
and not waste processing time on a region of image that is likely to contain only sky.
Currently the crop disregards the upper 25% of the 640 pixels high image. The cropped
image is then converted into the HSV (Hue Saturation Value) colour space, and Contrast-
limited Adaptive Histogram Equalization (CLAHE) is applied to it in order to improve
robustness of detection in varying weather conditions (for examples of using CLAHE to
improve visibility in noisy conditions and poor lighting, see [72] and [73]). Finally, a
threshold based on hue values for the colour red is applied to the image.

Similar to the IR thresholding method, a bounding box is placed around the largest
cluster of pixels remaining in the image after thresholding. Visual servoing is again done by
passing the coordinates of this bounding box to the controller, with the same assumptions
about the image coordinate system. Two examples of aMussels detected in the processed
camera image are given in Figure 2.18.

Several heuristics to improve detection have been implemented. There is a minimum
blob size requirement for detection in order to remove noisy false positive detections of
reflections, floating debris or similar. Primarily, the size of the pixel blob and its position
in the image are considered: for example, if a very large blob is positioned higher in the
image, it is highly unlikely to be an aMussel, and will be disregarded.

As noted in [45] and included here briefly for completion, an analysis of image data
collected on-site and processed with the developed hue-based aMussel detection algorithm
was compared to manually annotated data in order to achieve a benchmark. The results
are shown in Table 2.3 and Table 2.4.

35

Heterogeneous marine swarm agents and interactions

Figure 2.18: Two examples of aMussel cap detection - original images shown left and processed
images shown right. The green rectangle on the camera image represents a bounding box around
the derived position of the cap used to control the aPad’s approach.

Table 2.3: Comparison of frame counts with and without aMussels present.

Manually annotated data
No mussel 1723

Mussel present 1098

Automatically processed data
No mussel 1847

Mussel present 974

Table 2.4: Frame count breakdown for aMussel detection algorithm.

Correctly detected empty frames 1700

False positive frames 23

Missed frames 147

Correctly detected non-empty frames 951

Total frames processed 2821

Success rate 86.61202%

36

Heterogeneous marine swarm agents and interactions

2.5.5 Neural networks for object detection

In an attempt to make the aMussel detector more universal, less reliant on lighting con-
ditions and needing fewer hue threshold adjustments before deployment, as well as to
increase maximum detection distance and generally increase robustness, the decision was
made to use artificial neural networks trained for object detection and recognition.

The neural network training was done on a PC with two Nvidia GTX 1080 Ti graphical
processing units, running the Nvidia CUDA toolkit to achieve parallel computing. The
training process was further sped up using the OpenCL framework which enabled the
learning to also be executed on the CPU - in this case an Intel Core i9 9900k with 8 cores
and 16 threads running at frequencies up to 5 GHz.

A dataset consisting of 3105 images containing an aMussel was constructed from a
mixture of data collected in several locations and under varying conditions at Jarun
lake in Zagreb, Croatia, the seaside at Biograd na Moru, Croatia, and the Arsenale and
lagoon of Venice, Italy. Object detection and recognition networks were trained with one
detection class in mind - the 𝑎𝑚𝑢𝑠𝑠𝑒𝑙 class, using the Tensorflow library [74]. Dataset
annotation in the form of labelled bounding boxes was done manually using the open
source LabelImg tool [75].

Several popular object recognition models were trained and tested, in the interest of
finding the best one for the specific application. The selected models are the Single Shot
Detector with MobileNet version 2 (SSD MobileNetV2) [76] trained in two instances for
two different input image sizes (a small and fast 300x300 resized version, and a 640x480
version without resizing), and the Fast Region-based Convolutional Network method (FR-
CNN) [77]. Additionally, a You Only Look Once version 3 detector (YOLOv3) was trained
on the data using its own specific training pipeline [78]. An example comparison of the
neural network output compared to the labelled “ground truth" it is learning from can be
seen in Figure 2.19.

Figure 2.19: Detection (left) vs ground truth (right) mid-training example for the SSD Mo-
bilenet V2 model.

37

Heterogeneous marine swarm agents and interactions

On the dataset of 3105 images, a 90/10 train/test split was used, and validation
was later additionally run on an entirely fresh unseen dataset. Testing the final frozen
graphs on both train and test data yielded only a marginal decrease of accuracy on
the previously unseen test-exclusive split of the dataset, implying that no significant
overtraining occurred and the networks were appropriate for further testing and use.
Some examples of detection in challenging circumstances are shown in Figure 2.20.

Figure 2.20: Difficult detection examples (output aMussel bounding boxes shown in blue)
which neural networks were extremely helpful in resolving - including cases with larger dis-
tances, partial visibility, occlusion, wave splashes/partial submersion, bad lighting and weather
conditions, and sunlight glare.

Striking a balance between detection reliability and framerate on the limited computer
running within the aPad was a significant part of the task. Framerates were tested on
the Intel NUC i5 on-board computer on the marine platform, running in parallel with
the control structures of the aPad, as these are the operating conditions relevant to the

38

Heterogeneous marine swarm agents and interactions

Table 2.5: Comparison of mean average precision in single-class object detection and single
image frame processing time on on-board computer (bold is best, italic is final choice).

Model mAP Seconds per frame (average)

SSD Mobilenet v2 300x300 0.6452 0.1

SSD Mobilenet v2 640x480 0.7064 0.2

Faster R-CNN 0.7375 1.6

YOLOv3 0.9352 2.7

application. Performance results are shown in Table 2.5, where mean average precision
(commonly known as mAP) was used as a measure of model reliability and object detection
quality [79].

YOLOv3 offered excellent accuracy, but was significantly computationally demanding
(especially since there is no dedicated GPU present on the aPad) and thus too slow
when running in real time. After testing and benchmarking, as the best compromise
between detection quality and reliability and framerate, the SSDN MobileNet V2 with
no additional image resizing was chosen, but a ROI crop was applied to the input image,
same as in the hue thresholding method.

Running in parallel, the original hue thresholding algorithm is capable of outputting
processed images at a rate of 10 FPS, meaning the neural network will be made to process
only the latest image it has in its input queue, potentially skipping some older enqueued
image frames in order to not lag behind significantly enough to affect the docking process.
The outputs of the hue thresholding and the neural network detection are then fused
together using a filter, which determines the final aMussel position estimate.

The neural networks can easily find multiple aMussels in a single frame. Traditional
processing could be made to manage this too, but it would impact reliability of results.
Of course, only one aMussel at a time can be in the process of being docked, so this does
not impact the docking procedure in a major way.

2.5.6 Tracking filter

In order to combine the output of the classical hue thresholding approach (which had
proven quite reliable in close quarters) and the neural network approach to image pro-
cessing, and to use the benefits of both while compensating for the drawbacks of each,
an extended Kalman filter (EKF) was introduced into the system. The filter operates in
the image coordinate space, and fuses together aMussel position measurements. It also
acts as a tracking filter, using previously acquired information about the speed of the
aMussel’s movement in the image to ensure more accurate state predictions.

39

Heterogeneous marine swarm agents and interactions

The filter operates at a fixed rate of 10Hz, so a time step of Δ𝑡 = 0.1s is used in all
internal calculations.

The state vector of the filter is given with

x =
[︁
𝑒𝑥 𝑒𝑦 𝑣𝑥 𝑣𝑦

]︁𝑇
(2.10)

where 𝑣𝑥 and 𝑣𝑦 are speeds, and 𝑒𝑥 and 𝑒𝑦 are position estimates based on mea-
surements fused from the two sources. The state model used can be expressed with
˙̂e =

[︁
𝑣𝑥 𝑣𝑦 0 0

]︁𝑇
.

The measurement vector of the filter is given with

y =
[︁
𝑒𝑥 𝑒𝑦

]︁𝑇
+
[︁
𝑟𝑥 𝑟𝑦

]︁𝑇
(2.11)

where 𝑒𝑥 and 𝑒𝑦 represent (𝑥, 𝑦) image coordinate pairs calculated using measurement
fusion and scaled from pixel values to a [-1,1] range.

Results received from the two measurement sources are represented with enn =
[︁
𝑒𝑛𝑛,𝑥 𝑒𝑛𝑛,𝑦

]︁𝑇
containing the results of neural net processing and ehue =

[︁
𝑒ℎ𝑢𝑒,𝑥 𝑒ℎ𝑢𝑒,𝑦

]︁𝑇
containing the

results of hue-based image thresholding.
Meanwhile, 𝑟𝑥 and 𝑟𝑦 are the respective measurement variances used in order to take

into account measurement quality and reliability along each axis. These are defined as:

𝑟𝑥 ∼ 𝒩 (0, 𝜁𝑥) (2.12)

𝑟𝑦 ∼ 𝒩 (0, 𝜁𝑦) (2.13)

The values of 𝜁𝑥 and 𝜁𝑦 are determined using values for each measurement source,
𝜁nn =

[︁
𝜁𝑛𝑛,𝑥 𝜁𝑛𝑛,𝑦

]︁𝑇
for neural net processing and 𝜁hue =

[︁
𝜁ℎ𝑢𝑒,𝑥 𝜁ℎ𝑢𝑒,𝑦

]︁𝑇
for hue-based image thresholding.

For neural network data, the values of 𝜁𝑛𝑛 are set to a constant:

𝜁𝑛𝑛,𝑥 = 𝜁𝑛𝑛,𝑦 = 0.075 (2.14)

Whereas for the hue thresholded data, the 𝜁ℎ𝑢𝑒 values were defined as depending on
the vertical position of the detected pixel blob in the image. The further away on the y-
axis the detected blob is, the higher the variance of the hue-based detector, i.e. hue-based
detection is less trusted. It is set with:

𝜁ℎ𝑢𝑒,𝑥 = 𝜁ℎ𝑢𝑒,𝑦 = 1 − 𝑒ℎ𝑢𝑒,𝑦 + 0.2
2 (2.15)

40

Heterogeneous marine swarm agents and interactions

Considering the image y-coordinate ranges from -1 at the top of the image, and 1 at
the bottom, the variance values used in the filter achieve a range of [0.1, 1.1], which is
always higher than any concurrently available neural network detector value.

Thus, using methods explained in [80] and [81], the fusion of measurements from two
sources is done with:

𝑒𝑥 = 𝜁ℎ𝑢𝑒,𝑥𝑒𝑛𝑛,𝑥 + 𝜁𝑛𝑛,𝑥𝑒ℎ𝑢𝑒,𝑥
𝜁ℎ𝑢𝑒,𝑥 + 𝜁𝑛𝑛,𝑥

(2.16)

𝑒𝑦 = 𝜁ℎ𝑢𝑒,𝑦𝑒𝑛𝑛,𝑦 + 𝜁𝑛𝑛,𝑦𝑒ℎ𝑢𝑒,𝑦
𝜁ℎ𝑢𝑒,𝑦 + 𝜁𝑛𝑛,𝑦

(2.17)

𝜁𝑥 = 𝜁ℎ𝑢𝑒,𝑥𝜁𝑛𝑛,𝑥
𝜁ℎ𝑢𝑒,𝑥 + 𝜁𝑛𝑛,𝑥

(2.18)

𝜁𝑦 = 𝜁ℎ𝑢𝑒,𝑦𝜁𝑛𝑛,𝑦
𝜁ℎ𝑢𝑒,𝑦 + 𝜁𝑛𝑛,𝑦

(2.19)

Implementation-wise, three distinct cases exist. If hue-based detection has produced a
result, but no detection data has been received from the neural net, 𝜁𝑛𝑛 values will both
become zero, while 𝜁ℎ𝑢𝑒 will be calculated using (2.15). The fused measurements 𝑒𝑥 and
𝑒𝑦 will simply become 𝑒ℎ𝑢𝑒,𝑥 and 𝑒ℎ𝑢𝑒,𝑦, respectively, while 𝜁𝑥 and 𝜁𝑦 will become 𝜁ℎ𝑢𝑒,𝑥
and 𝜁ℎ𝑢𝑒,𝑦.

Likewise, if no detection data has been received from the hue processing node while
a valid result has been given by the neural net, 𝜁ℎ𝑢𝑒 will be a zero-vector and 𝜁𝑛𝑛 will
be calculated using (2.14), with the fused measurements 𝑒𝑥 and 𝑒𝑦 respectively becoming
𝑒𝑛𝑛,𝑥 and 𝑒𝑛𝑛,𝑦, and 𝜁𝑥 and 𝜁𝑦 becoming 𝜁𝑛𝑛,𝑥 and 𝜁𝑛𝑛,𝑦.

Finally, if both nodes have sent valid object detection data, their respective variances
and fused measurements are calculated as has been described above in (2.14), (2.15),
(2.16), (2.17), (2.18), and (2.19).

Figure 2.21 shows a comparison of the hue thresholding result, the neural network
result, and the final filter output during one segment of a successful docking experiment.
Docking occurs around 130s, undocking around 145s. Note the way the hue thresholding
comes into play as the aMussel approaches the camera, and the filter seamlessly segueing
between the two sources.

In addition to distance-based variance calculation, the filter node contains several
heuristics aimed at improving data fusion and detector behaviour:

∙ Kinect pan movement flagging. The filter will not take into account measurements
acquired while the Kinect sensor was actively rotating, and will only react once a
valid docking mechanism-aligned position has been reached.

41

Heterogeneous marine swarm agents and interactions

115 120 125 130 135 140 145 150 155 160 165

Time (s)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H

o
ri
z
o
n
ta

l
a
M

u
s
s
e
l
im

a
g
e
 c

o
o
rd

in
a
te

Filter output

Hue thresholding output

Neural net output

115 120 125 130 135 140 145 150 155 160 165

Time (s)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

V
e

rt
ic

a
l
a

M
u

s
s
e

l
im

a
g

e
 c

o
o

rd
in

a
te

Filter output

Hue thresholding output

Neural net output

Figure 2.21: Example of filter inputs and output during a single docking, with markers denot-
ing individual measurements where received, horizontal (above) and vertical (below).

∙ Region of interest crop. As the filter converges, any filter outputs outside of the
designated realistic “region of interest" (-1 to 1) are discarded.

∙ Continuous detection requirement. The filter will only output fused measurements
after a preset number of consecutive frames have been determined to contain an
aMussel, by any of the two detectors. This acts as a sort of outlier rejection for
brief usually single-frame false-positive detections.

∙ Measurement discontinuation detection. If more than 3 seconds have passed without
fresh measurements from either detector, the filter will stop feeding measurements
into the docking controller, and the filter will be flushed and reinitialised. This en-

42

Heterogeneous marine swarm agents and interactions

sures no action is taken based on outdated information. If the aPad was approaching
an aMussel and lost it from view this long, as per the previously described state
machine the docking algorithm will return to the Search state.

2.6 Experimental validation of autonomous docking

The subCULTron swarm has in the four and a half years of the project’s runtime been
through many tests and demonstrations, including numerous field deployments and ex-
perimental trials. The docking segment in its various incarnations has been included and
tested throughout. Presented in this section is a detailed writeup of three particular ex-
periments: initial indoor pool experiments performed in Brodarski Institute in Zagreb; a
structured experiment to determine the capability of and validate the final docking pro-
cedure undertaken at lake Jarun in Zagreb, Croatia; and a “stress test" in a challenging
environment on-site near the island of Sant’Angelo della Polvere in the lagoon of Venice,
Italy.

2.6.1 Indoor pool experiments

In [45] the indoor experiments which served as proof of concept for the wireless charging
are described, as well as initial outdoor experiments aimed at testing the capabilities of
the aMussel and aPad positioning systems in the interest of combining them and including
them in the docking procedure.

Initial indoor experiments were done at the large circular pool of the Brodarski In-
stitute in Zagreb. The testbed is shown in Figure 2.22. The aPad used in these early
experiments had only one docking mechanism mounted and the infra-red mode of detec-
tion was used.

The experiment procedure was as follows:
1.aMussel floating on the surface requests charging.
2.Nearby aPad autonomously searches for aMussel using camera.
3.Once located based on image data, aPad approaches the aMussel.
4.Once close to the aMussel, the aPad grabs it and charging starts.
5.aMussel reads charging status from its power board at 1Hz and broadcasts received

data via WiFi.
6.Data is displayed and logged on the surface station.
7.Once the aMussel has been released and the charging status has returned to 0 (no

charging occurring), it shuts off data broadcasting after a timeout and sinks to the
bottom.

43

Heterogeneous marine swarm agents and interactions

Figure 2.22: Top-down view of pool used for initial indoor experiments.

A short video overview of indoor autonomous docking experiments can be found at
the following link: https://www.youtube.com/watch?v=fgZDF3tGIVY.

Due to the lack of an indoor localisation system, before the start of each experiment
run the aPad was manually positioned to be within 2-3 metres of the aMussel. Starting
distances above 3.5 metres made the docking procedure unreliable since they proved
challenging for the visual servoing system due to the small size of the target.

The starting rotation of the aPad relative to the aMussel was changed in each ex-
perimental run, including edge cases such as the aMussel being very close to the aPad
but on the opposite side from the camera. Starting rotation variations did not prove to
have a noticeable effect on the reliability of the autonomous docking, with one noticeable
difference between the cases being the length of the first search phase. Charging status
and current measured from both the batteries present in the aMussel for the duration of
one docking experiment are shown in Figure 2.23.

Negative measured current signifies that the battery is receiving charge, making the
start and end of charging easily visible in the resulting plots. Charging status is an
indicator which is reported as 0 when there is no charging, and 1 when charging is hap-
pening. As expected, the measured current jumps into positive values as soon as charging
is stopped. As noted earlier, primary battery A receives more charge than backup battery
B (its current measurements reach larger negative values: -750mA average as opposed to
-300mA average), since it is connected to two of the three inductive coils.

44

https://www.youtube.com/watch?v=fgZDF3tGIVY

Heterogeneous marine swarm agents and interactions

Figure 2.23: Battery current and charging status of batteries A (a) and B (b).

2.6.2 Initial outdoor experiments

Initial outdoor experiments were conducted in Venice, Italy and in Biograd na Moru,
Croatia. The goal was to test both the visual servoing and the entire previously described
docking procedure, including WiFi communication between the two types of agents, in
varying real-world conditions, including strong wind and current (Figure 2.24).

Figure 2.24: aPad with pan mechanism and Kinect sensor docking an aMussel (red cap, left,
partially submerged) during outdoor tests.

A short video overview of outdoor autonomous docking experiments can be found at
the following link: https://www.youtube.com/watch?v=0Ao92MF0HDo.

45

https://www.youtube.com/watch?v=0Ao92MF0HDo

Heterogeneous marine swarm agents and interactions

Figure 2.25 shows the course of one run of the docking procedure experiment. The
position and heading of the aPad are visible. Green segments represent the aPad moving
from point to point. Red segments denote the aPad going through the search and approach
docking phases, or, if there a mussel already docked in the chosen unit, going through the
undocking motion (opening the arm of the docking unit and moving backwards for several
seconds in order to release the aMussel). Blue segments denote that no phase is currently
active and the aPad is waiting to receive data from the aMussel or is in a timeout/idle
state. The magenta X marks the GPS location the aMussel last reported.

Figure 2.25: Full run of one docking mission with phases and key points shown.

A video showing the replay of processed data of the same search, docking, and un-
docking mission can be found at the following link: https://www.youtube.com/watch?

v=LCPmYnDt7z8.
A factor which assists with increasing the probability of convergence of the docking

procedure is the fact that the mussel’s GPS fix improves over time. Rough analysis of
aMussel GPS data showed that after an interval of approximately 10 minutes measure-
ments displayed a significant improvement, with errors reducing from an initial 20+ metre
offset to under 10, allowing for far more successful docking attempts by the aPad.

Analysis of the visual servoing attempts shows that, while a great degree of tolerance
to different lighting and weather conditions has been achieved, the glare caused by at-
tempting docking while directly facing the sun is still an issue for the image processing
algorithm. This is helped by the aPad attempting approach from different sides of the
aMussel.

46

https://www.youtube.com/watch?v=LCPmYnDt7z8
https://www.youtube.com/watch?v=LCPmYnDt7z8

Heterogeneous marine swarm agents and interactions

2.6.3 Structured docking experiment

The structured docking experiment took place at lake Jarun in Zagreb in June 2019, with
the goal of validating the final developed system. The experiment location and a shot of
the experiment in progress can be seen in Figure 2.26.

Figure 2.26: Structured docking experiment at lake Jarun. Experimental environment (left)
and experiment in progress (right).

In order to test the docking algorithm in a controlled and verifiable setup, an aMussel
was anchored using rope and metal weights and its position was measured using the
aPad’s high-precision GPS. This measurement was then used as a ground truth reference
for aMussel position throughout the experiment and provided information about position
offsets and distances of the aPad from its goal.

After setting up the anchored aMussel, four primary aPad starting positions were
chosen along a circle with a radius corresponding to an empirically established maximum
distance of consistently reliable docking. This maximum distance was determined to be
between 4 and 5 metres of distance from the aMussel - note that docking from further
away is possible (with “lucky" cases of successes from as much as 15 metres away), but is
not necessarily consistent and thus not considered reliable or suitable for an autonomous
system. The starting positions were then distributed along the circle as seen in Figure
2.27 so that the four major approach directions were included, in order for the effects
of sunlight and glare to be accounted for during the experiment. The starting point to
anchor point distances reported by Neptus were, starting form the northernmost point
and continuing clockwise: 4.18m, 5.11m, 4.13m, and 4.16m. Note that during the final
run of the experiment presented here, it was run twice from the direction of the first
starting point and thus five docking attempts are shown.

The aPad would be manually sent to each of the marked starting points and turned
so the aMussel was not immediately in view, after which the docking algorithm would
be started. After each successful docking, the aMussel would be released and the aPad
sent to the next point. The experiment was concluded once a continuous run of docking
attempts from all directions was achieved.

47

Heterogeneous marine swarm agents and interactions

Figure 2.27: Starting positions for docking attempts around an anchored aMussel as envisioned
(left) and marked as goalpoints in the Neptus C4I Framework used for aPad mission supervision
and control (right) [82].

Figure 2.28 presents the trajectory of the aPad during the experiment, with denoted
colour-coded segments during which each of the mission primitives (docking/undocking,
going to next point, and no mission selected) were active. The blue circle marker repre-
sents the position of the anchored aMussel, while the aPad’s heading is denoted by a red
arrow.

During the experiment, horizontal, vertical, and total offset data was recorded. The
horizontal and vertical offsets refer to the position of the aMussel relative to the center of
the image frame, as output by the EKF. The aMussel total offset refers to the calculated
distance between the current position of the aPad and the saved position of the anchored
aMussel. These are all shown in Figure 2.29, where the five docking attempts are all
evident: the distance from the aMussel decreases, and it simultaneously moves towards
the bottom of the image while being kept horizontally centred.

Note that for about three minutes between the fourth and fifth docking attempt the
aPad was not actively performing the docking experiment, but rather having minor main-
tenance performed and entangled lily pads and debris removed from its hull and docks.
This data was left included for consistency as it was recorded during the experiment, but
it has been greyed out in plots as it is not relevant or informative.

During the fifth docking attempt shown (starting at 510s on the graphs in Figure 2.29)
it can be seen how the aPad briefly loses sight of the aMussel, returning to the Search
state, then finds it once again after some rotation, continuing and concluding the docking
attempt successfully.

The anchoring of the aMussel and the aPad’s position estimate are both imperfect, and
continued docking attempts nudged the anchor slightly from its original noted position,

48

Heterogeneous marine swarm agents and interactions

Figure 2.28: Structured docking experiment full mission trajectory. The blue circle marker
represents the position of the anchored aMussel.

Figure 2.29: Offsets during the docking experiment. Five separate successful docking attempt
completions marked in red.

so the distance between the aPad and the aMussel can be seen approaching zero but still
having a slight offset. Due to the length of the rope used for anchoring, the aPad also

49

Heterogeneous marine swarm agents and interactions

had some leeway to move with the aMussel while holding it docked, but upon release
the aMussel moved back towards its original position - hence the small rise and fall in
distance just after each docking concluded.

The jagged quality of the lines representing the trajectory of the aPad during the
experiment and the small jumps in position are a result of the aPad’s navigation filter
updating with GPS measurement corrections received in fixed time intervals.

The previously described implemented filter heuristics turned out to be very helpful
in dealing with brief flashes of false positive detections, eliminating problematic reaction
to them all but entirely. The aPad was able to successfully dock the aMussel from each
direction, and was able to resume and successfully conclude a docking attempt after losing
sight of its target.

2.6.4 Challenging environment test

The realistic environment docking experiment took place during a prolonged set of field
trials for the subCULTron project in Venice in July 2019, on a particularly windy day with
rough, choppy waves making for challenging conditions but providing a good opportunity
to test the operational limits of the docking system (see Figure 2.30).

Figure 2.30: Wind speed and direction during the 2019 field trials, as collected by the Malam-
occo weather station. The docking experiment taking place during July 4th is shown in red.
Note all other wind peaks occurred during night, with a storm taking place the evening of July
3rd.

The subCULTron robots were deployed off a pontoon, with a designated open sea
workspace next to a relatively low-traffic water route.

A video including visual feeds from the Kinect, image processing and EKF data, and
a mission replay constructed from the aPad mission data logs for the autonomous docking
field experiment can be seen at at the following link: https://www.youtube.com/watch?

v=Agky3vv6Mh4.

50

https://www.youtube.com/watch?v=Agky3vv6Mh4
https://www.youtube.com/watch?v=Agky3vv6Mh4

Heterogeneous marine swarm agents and interactions

Figure 2.31: On-site experiments in the Venice lagoon. The pontoon off which robots were
deployed (left) and field trials in progress (right).

Unlike the structured experiment, no data about the aMussel’s position was available.
Image-derived data and information about when each of the docking attempts started
and concluded were collected.

Figure 2.32 presents the full trajectory of the aPad during the experiment, with colour-
coded segments showing when each of the mission primitives were active and markers
showing the moment of each docking and undocking. The aPad’s heading is denoted
by a red arrow. The X markers designate successful docking attempts, while the black
diamond markers signify undockings. The aMussel was drifting in currents of varying
strengths towards the northwest of the given image, leading to noticeable differences in
position between where the aPad leaves it after undocking and where it is later caught
(i.e. the black markers on the trajectory plot).

Figure 2.32: Full mission trajectory of the Venice docking experiment in challenging conditions.

Figure 2.33 gives a timeline of the image offsets detected by the hue thresholding and

51

Heterogeneous marine swarm agents and interactions

the neural network, as well as the final filter output for a sequence of six successful docking
and undocking attempts. Both docking attempts and undockings can be clearly seen, as
the offsets reflect how the aPad approaches the target and captures it, then, after holding
it for a while, releases it and moves away.

-1

-0.5

0

0.5

1

V
e
rt

ic
a
l
o
ff
s
e
t

Filter output

Hue thresholding output

Neural net output

Docking concluded

0 100 200 300 400 500 600 700
Time (s)

-1

-0.5

0

0.5

1

H
o
ri
z
o
n
ta

l
o
ff
s
e
t

Figure 2.33: aMussel image offsets during the docking experiment in the field. Triangular
markers denote where each separate docking attempt ended.

As noted in Section 2.5.1, experiments in real conditions in the lagoon led to a tuned
increase in all regulator parameters, as the ones previously used made for an aMussel-
catching approach that was very slow and tentative in the presence of waves and wind
and sea currents. To accommodate the aMussel bobbing up and down on the waves and
briefly being lost from the aPad’s view, the parameter for the tracking filter heuristic that
ensures continuous measurements and rejects fleeting outlier detections was set to only
require 3 consecutive frames of detection as opposed to the original 6.

The experiment showed that the mechanical design of the docking system with vertical
offset tolerance was sound, as even with waves causing considerable displacement, the
aMussel was successfully caught. The plexiglass-encased vision system also proved robust
to these conditions, working even with the casing being sprayed and splashed with water
as can be seen in Figure 2.34. Note the neural network output being a frame behind the
hue thresholding, and both the result images demonstrating ROI cropping.

The algorithm and implementation proposed for the autonomous docking and charging
have proven to fit their intended use in the subCULTron heterogeneous robotic swarm
quite well, enabling surface platforms to dock smaller floating sensor nodes using a visual
servoing approach, successfully starting wireless energy transfer in a variety of testing
conditions with very simple changes in parameter tuning. The mechanical design of the

52

Heterogeneous marine swarm agents and interactions

Figure 2.34: Two examples of image processing on the aPad during docking experiments in
a realistic environment. From left to right: original image, hue thresholding output, neural
network detection output.

aPad’s docking unit and aMussel top cap ensured appropriate transmitter and receiver coil
alignment and proximity, and thus a consistent and satisfactory efficiency during energy
transfer. The developed system has regularly been used to charge aMussels during field
trials.

The autonomous docking and wireless charging capabilities of the swarm represent a
beneficial cooperative interaction among agents improving the functioning of the swarm
as a whole, and were also a prerequisite for the implementation of various decision-making
algorithms aimed at scheduling aMussel pickups by aPads and examining the cumulative
effects of energy transfer systems on the longevity of the subCULTron swarm, in the
interest of maximising it and ensuring satisfactory environmental monitoring.

53

Chapter 3

Multi-robot task assignment and
low-level heuristics

3.1 Introduction

This chapter presents an overview of the proposed layered structure of the decision-making
algorithms in the system, as well as a more detailed examination of the problem scenario
that is being studied. Chosen methods of initial division and assignment of aMussels to
aPads are described - primarily differential evolution and k-means clustering. A descrip-
tion is given of the collection of methods belonging to the bottom layer of the proposed
hyper-heuristic decision-making and task allocation approach - the situational low-level
heuristics, or the methods making up the heuristic selection pool. Performance indices
meant for scoring the performance of individual heuristics and evaluating various swarm
state parameters are discussed. Finally, some conclusions are drawn from results achieved
in a simulated marine environment and early experiments performed on real vehicles.

For the purposes of devising low-level heuristics, the aPad task allocation problem can
be described as a type of vehicle routing problem. Heuristic solution methods target-
ing specific variants of the vehicle routing problem such as the vehicle routing problem
with time windows, the capacitated vehicle routing problem, the multi-depot vehicle rout-
ing problem, or the vehicle routing problem with stochastic demand have been studied
extensively, with each heuristic being designed, implemented, and fine-tuned to fit one
particular problem type [83], [84]. Since problem characteristics can vary considerably,
it may not always be entirely obvious which method will yield the best solution for a
particular instance of the problem [85] [86]. Here the aim is to devise several context-
specific heuristics with good situational behaviour, then select between them and combine
approaches as appropriate.

The decision-making process includes a step of separating aMussels into clusters cor-

54

Multi-robot task assignment and low-level heuristics

responding to parameters such as real-world signal strength or viable travel distance, then
assigning aPads to individual clusters as a form of “region of interest” in order to ensure
both communication and charging coverage. Clustering is a problem present in data min-
ing, database systems, data compression, and machine learning. It involves partitioning
a set of observations into clusters such that the intra-cluster observations are as similar
(or close, in the chosen metric) as possible and the inter-cluster observations as dissimilar
(or distant) as possible. The other objective of clustering is to reduce the complexity of
the data by replacing a group of observations with a single representative observation,
leading to easier and faster computation and analysis [87], [88].

Partitioning-based clustering algorithms such as the widely-used k-means algorithm
are a specific subtype which organise objects into some number of partitions, where each
partition represents a single cluster. The clusters are formed based on a distance function,
leading to the formation of only spherical clusters and allowing the clustering results to
be influenced by noise. If the specific coverage and charging sequence task assignment
problem is being considered, this issue is not particularly problematic, as convex and
spherical clusters are indeed the desired result. The k-means algorithm also requires the
number of clusters to be known and specified in advance, but can otherwise be completely
unsupervised [89] or, in the case of incorporation of some prior knowledge of outcome
measures, semi-supervised [90]. Enforcing constraints in partitioning-based clustering
algorithms is introducing a form of prior knowledge and has been studied [91], [92]. These
constraints frequently take the form of “must-link” and “cannot-link” clauses, though more
complex combinations and formulations can be used [93], [94], [95].

Differential evolution is another approach to task assignment and decision making
within the swarm. It is a population-based iterative heuristic originally proposed in [96]
for global optimization over continuous spaces, later adapted for use in discrete spaces and
on sequencing, permutation, and scheduling optimisation problems [97], [98], including the
vehicle routing problem [99], [100]. By introducing specific population and gene encoding
and devising suitable costs, penalties, and stopping criteria, it is possible to represent a
variety of constraints in the solution space [101].

3.2 Problem scenario and decision-making system struc-
ture

The decision-making scenario studied in this thesis is a representation of the main use-case
of the subCULTron swarm - a long-term environmental monitoring mission. The studied
problem involves a number of aMussels deployed and collecting data from their environ-
ment and broadcasting their sensor measurements, and, should they find themselves in

55

Multi-robot task assignment and low-level heuristics

need of battery charging, charging requests including their estimated global position and
battery status. One or several aPads are in the vicinity to receive these broadcasts via
Wi-Fi (in the rare cases the aMussels are on the surface) or acoustic communication (if
the aMussels remain on the seabed). The aPads communicate with each other via Wi-Fi
and keep track of their own global position, as well as the position of all other aPads
within communication distance - thus, all relative distances and eventual movement costs
are considered known to all aPad agents in the system. Extra checks and communication
requests before starting any task planning exist so the agents are working with the latest
and most relevant information available. The aPads divide aMussels amongst themselves,
collect charging requests from them, and run one from a set of proposed task allocation
and planning algorithms before moving to and collecting (via autonomous docking) the
chosen sequence of aMussels, while communicating with aMussels and letting them know
when it is "safe" to surface for charging, as an aPad is ready nearby.

A graphical outline of the proposed decision-making scenario is shown in Figure 3.1.

Figure 3.1: Concept of the decision-making scenario within a long-term environmental moni-
toring mission.

The main steps the scenario is broken into are as follows:
1.A large number of aMussels performs environmental monitoring, communicating via

acoustics or Wi-Fi.
2.aPads keep track of aMussel positions and states, splitting the swarm into “patrol

areas” by collective decision, depending on the dispersion and required and available
energy of the agents.

3.Each aPad evaluates available approaches for charging its own set of mussels using a
hyper-heuristic algorithm which selects and scores scheduling methods from a low-
level heuristic pool. A record of performance quality scores of each method used in
the past is kept.

4.Selected methods create a schedule for collecting up to four mussels. The aPads
begin their individual missions and inform any aMussels still at the seabed when
they are required to emerge for docking. After all collected aMussels have been
charged and redeployed, the aPads return to step 3.

56

Multi-robot task assignment and low-level heuristics

The task allocation system employed in steps 3 and 4 consists of two main decision-
making layers and one control layer. The proposed system structure is shown in Figure
3.2. The bottommost layer represents control structures present on the aPad vehicle,
many of which are detailed in ([59]). The lower decision-making layer represents the
pool of solution-focused and situation-specific heuristic approaches developed to solve
the energy exchange-related aPad task allocation problem. The second and higher-level
layer contains the hyper-heuristic, an algorithm that selects and switches between the
heuristics implemented in the lower layer as the situation demands, with the end goal
of autonomous and unsupervised mission planning while optimising energy consumption
and distribution. This topmost layer is described in detail in Chapter 4.

Figure 3.2: Proposed layers of control and decision-making algorithms in the system.

Realisation of the lower decision-making layer includes developing a set of task as-
signment and sequencing algorithms which use or combine different machine learning
paradigms or use them in different ways in order to devise a movement and task/ac-
tion plan for the available vehicles, primarily concerning charging or moving other robots
within the swarm. This includes the clustering method, the differential evolution method,
and a variety of situational heuristics. Special attention needs to be paid to outlier or
edge cases of particular methods performing very well in certain cases and very badly
in others (including potentially not converging upon a valid solution at all), for instance
behaving differently in the event of a vehicle failure type disturbance, or needing to deal

57

Multi-robot task assignment and low-level heuristics

with outliers in the physical distribution of the swarm, as this will be a valuable future
indicator of performance for the hyper-heuristic part of the implemented decision-making
algorithms.

Parameters of the system include (but are not limited to) the number of agents active
and present, spatial distribution of agents within the swarm, battery levels of all robots,
wind, water current and other sea state data, and aPad thruster health. The relative
distances of agents (aMussel to aMussel; aPad to aPad and aMussel) are stored in matrices
on each aPad and are regularly updated to reflect the latest known state of the swarm.
Thruster failure is a possibility, and each aPad has a so-called thruster health matrix
indicating the status of all four of its thrusters which is taken into account during task
allocation.

The effects of distributed implementation and working in parallel to exploit the strengths
of working in a swarm are interesting to observe. Each aPad can independently run any
part of the algorithm, possibly leading to interesting diversity or deliberate specialisation
of aPads into certain roles. On the lower level, various approaches to achieving consensus
about the solution and achieving convergence can be tested - which is necessary since the
algorithm is run on all aPads at the same time, based on the same collected information,
but each aPad executes its own search and shares very little information during the pro-
cess in the interest of minimising communication overhead. Once the best valid solution
(in the majority of cases the lowest overall energy cost converged upon by the individual
aPads) has been found it is given to all the aPads as the final task allocation they should
begin performing.

As all active aPads run the decision-making algorithms individually, once method
selection has been completed, and once at least one solution in the shape of aPad task
allocation has been reached, there are three main options to consider when it comes to
the selection of a single final solution to begin executing:

1.interrupt the search on all aPads as soon as one of them has converged upon a valid
solution, then distribute this solution to all agents and begin the allocated tasks

2.wait until all aPads have converged upon a solution, interrupting the wait only after
a set longer timeout period in case some fail to converge, then find the best solution
among those presented

3.wait for a set timeout period after the first reported solution, and use the best
solution that is reported within that time

For the final implementation in this thesis, option 3 was chosen, as it presents a
good compromise between ensuring timely convergence for the initial decision, while still
allowing for delayed solution improvement as a contribution from another agent in the
swarm (and the increased possibility of avoiding potential local minima via diversifying

58

Multi-robot task assignment and low-level heuristics

the search outcomes).
As discussed in Section 2.3, an aMussel draws the most power when it is using its

buoyancy system motors, leading to the assumption that surfacing and going down needs
to be kept to a minimum during operation. Surface time is undesirable in general as not
only does it mean the agent is considered inactive, but while freely floating there is also
a risk of the mussels drifting away from desired positions or the experimental area in
general, leading to loss of equipment which needs to be avoided. Thus, once an aMussel
is docked, it will remain charging until it is fully charged - no partial charging sessions
are allowed. aMussels that are charging candidates enter the charging selection pool,
the upper threshold for which was set to a battery level of 80%. An aPad will also not
begin planning a pickup and charging session until there are at least four aMussels in the
charging selection pool, in the interest of minimising movement.

After charging, the aMussels must be returned to their erstwhile positions due to the
assumption that they were deliberately and purposefully placed there, on points selected in
relation to known anomalous points of interest and study. This was done either manually,
using a preplanned mission based on historic data, or as a result of one or more exploration
algorithms. The aMussels might also differ slightly from one another and have different
sensor modules installed, so their spatial distribution must be respected and preserved.
Relocation procedures are a separate and important part of exploration paradigms also
investigated within the subCULTron project [36].

3.3 aMussel partitioning and assignment

The second step of the described decision-making scenario, assigning "patrol zones" and
aMussels to aPads, means effectively moving from a Vehicle Routing Problem (VRP) -
analogous to a Travelling Salesman Problem (TSP) -analogous problem after consensus
has been achieved. Two primary methods of partitioning were explored.

3.3.1 Differential evolution

Differential Evolution (DE) is used primarily for the purpose of aMussel cluster assign-
ment, but was also the first task sequencing method implemented on the aPads. If an aPad
is assigned a very small amount of aMussels, DE can be used to perform task sequencing
within the cluster. Here the algorithm criteria is made to correspond to real-world factors
such as water movement and robot battery charge levels, with the genes encoding task
sequences for specific vehicles.

The solution candidates are encoded as a vector of ordered integers of length

59

Multi-robot task assignment and low-level heuristics

𝑙𝑒𝑛 = 𝑛𝑀 + 𝑛𝑃 − 1 (3.1)

where 𝑛𝑀 is the number of aMussels and 𝑛𝑃 the number of aPads being considered.
For one run of the algorithm, each aPad is assigned a route of maximum length 4 (as each
aPad can only hold and charge 4 aMussels at a time) or until all aMussels are distributed
among the available aPads. The integer zero is used as a delimiter between encoded
routes. Available aPads and aMussels are all represented using individual integer IDs.
Thus, an example of a valid solution vector 𝑠 with 3 aPads working to collect 7 aMussels
would be 𝑆 = [620175304], meaning that in this case aPad 1 will move to collect aMussel
6, then aMussel 2; aPad 2 will move to collect aMussel 1, followed by aMussel 7, aMussel
5, and finally aMussel 3; and aPad 3 will collect aMussel 4. This example result of the
algorithm is shown in Figure 3.3.

Figure 3.3: Example aPad routing solution using differential evolution.

The cost function for the search algorithm is formulated around energy efficiency,
meaning that using up aPad energy to traverse bigger distances is penalised, whereas

60

Multi-robot task assignment and low-level heuristics

transferring more energy to aMussels that need it is rewarded. The energy sum function
used is (3.2):

𝑓𝑐𝑜𝑠𝑡 = 𝐾𝑖𝑑𝑙𝑒𝐸𝑖𝑑𝑙𝑒 +𝐾𝑐ℎ𝑎𝑟𝑔𝑒𝐸𝑐ℎ𝑎𝑟𝑔𝑒 +𝐾𝑚𝑜𝑣𝑒𝐸𝑚𝑜𝑣𝑒,

𝐾𝑖𝑑𝑙𝑒 ≥ 0,

𝐾𝑐ℎ𝑎𝑟𝑔𝑒 ≤ 0,

𝐾𝑚𝑜𝑣𝑒 ≥ 0

(3.2)

Where 𝐾𝑖𝑑𝑙𝑒, 𝐾𝑐ℎ𝑎𝑟𝑔𝑒, and 𝐾𝑚𝑜𝑣𝑒 represent weight factors for tuning the optimisation,
𝐸𝑖𝑑𝑙𝑒 represents basic idle energy used up by the aPads, 𝐸𝑐ℎ𝑎𝑟𝑔𝑒 is the energy transferred
from the aPads to the aMussels (calculated from battery state information), and 𝐸𝑚𝑜𝑣𝑒

is the energy spent on aPad movement (calculated from distance matrices). Penalties
are also in place to ensure only valid routes are generated in the final solution (such as
no aMussels being assigned twice, no aPads given tasks that are beyond their battery
capacity). Requests for transport without charging enter the algorithm as charging re-
quests with lower priority, since they will provide no contribution to the cost function in
the form of transferred energy. For the example used above, the trend of minimisation
of aPad movement energy costs (expressed in abstract units that can be correlated with
real-life battery voltage/state of charge estimation) is shown in Figure 3.4.

Figure 3.4: aPad movement energy trends over iterations of the differential evolution algorithm.
Energy is here given in abstract units.

61

Multi-robot task assignment and low-level heuristics

A significant issue with the differential evolution approach is the length of execution,
as well as scaling issues with the solution space vector. As the number of agents increases,
convergence upon a valid solution becomes increasingly slow, as well as unlikely to happen
at all. Thus, a need for at least one method of partitioning the pool of charging candidates.

3.3.2 Clustering

The method of k-means clustering is used to split the aMussels into groups, and then assign
groups to individual aPads. The size of the final aMussel clusters can be modified, leading
to several possible implementations and achieving different behaviours. By splitting the
map into a number of clusters equal to the number of aPads, each aPad can be assigned
a certain "region of interest" - the region where it will operate and charge aMussels. An
example of the clustering algorithm is shown in Figure 3.5. It is here assumed that each
aPad will simply attend to the cluster whose centroid it is closest to.

Figure 3.5: Clustering example with 120 aMussels split into 5 clusters, to be assigned to 5
present aPads.

Average clustering execution time was 0.9361 seconds when run on 40000 sets of 120
aMussel positions randomly generated from the same interval (Figure 3.6), clearly demon-
strating no execution time or convergence issues like those present with the differential
evolution algorithm.

62

Multi-robot task assignment and low-level heuristics

Figure 3.6: Clustering algorithm execution times over a large amount of generated samples.

3.3.3 Combined approach

In a combined approach, the previously described differential evolution optimisation can
be used to initially assign aPads to regions by assigning aPads to cluster centroids, then to
assign aMussel pickup sequence routes to aPads within each single region. A flowchart of
this combined approach can be shown in Figure 3.7. The output cluster regions given by
the k-means algorithm serve as limits for evolution algorithm searches, greatly affecting
search speed and convergence, and "charging requests" taken into account are the energy
demands of the entire aMussel cluster.

For work in real-world conditions, it is necessary to consider the effects of disturbances
such as water current and wind. In the current implementation, this is handled by the
introduction of a simple 2D vector that affects position and distance matrix calculation
(3.3):

𝑣⃗𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐶𝑥𝑖+ 𝐶𝑦 𝑗⃗ (3.3)

With 𝐶𝑥 and 𝐶𝑦 defining the strength of each directional component. Should these
effects drive the agents in directions that might be considered useful, the cost function
will be affected appropriately, and so the movement related to them will be harnessed in
a positive sense. An example output of aPad to cluster assignment can be seen in Figure
3.8. Current strength and direction is represented by the overlaid arrow. In the example
without current, after clustering, aPad 1 was assigned to cluster 5, aPad 2 was assigned
to cluster 1, aPad 3 was assigned to cluster 2, aPad 4 was assigned to cluster 3, and aPad

63

Multi-robot task assignment and low-level heuristics

Figure 3.7: Combined clustering and differential evolution approach to aPad task allocation.

5 was assigned to cluster 4. When a current is present, the assignment changes, and now
aPad 1 is instead assigned to cluster 2, aPad 2 to cluster 5, and aPad 3 to cluster 1. The
total cost function of the aPad assignment has also increased.

Figure 3.8: Output of combined approach to aPad task allocation, aPads assigned to clusters
using differential evolution. Comparison of case with no current (left) and current present
(right).

64

Multi-robot task assignment and low-level heuristics

3.4 Performance indices and situational collection/re-
deployment strategies

As the subCULTron swarm developed and went through testing in a variety of environ-
ments, a number of requirements for its behaviours and capabilities emerged. Preventing
critically drained aMussel agent batteries from running out and stopping monitoring op-
eration by going into a low-power sleep mode is one of the main goals of the charging
system. Since the number of aPads is very small compared to the number of aMussels,
rationally using aPad energy becomes crucial, meaning aPad movement should be opti-
mised. Due to the fact most of the aMussel’s sensors are on its top cap, an aMussel is
inactive while on the surface, meaning that it cannot perform its function while being
charged - hence the need to minimise aMussel charging time. aMussels deployed at the
edges of the swarm are at higher risk from floating away if, for example, stronger cur-
rents or marine vessel-related disturbances manifested at the borders of the testing area,
leading to potential robot loss. It is also important that, in a usual monitoring scenario,
aMussels have been deliberately deployed over a certain area and at specific measurement
locations for a purpose, hence the need to preserve aMussel positions and the limits of
the monitored area, keeping the desired measurement and observation points covered by
active agents as much as possible.

All of these observations led both to the choice of relevant swarm performance indices,
as well as the definition of the situational low-level heuristic methods of task sequencing
present in the heuristic selection pool.

The Cautious heuristic does not consider aPad movement at all during planning,
instead focusing on collecting the aMussel with the currently lowest battery state in each
step, i.e. the aMussel that could be said to be most in need of charging, aiming to prevent
complete depletion and potential loss of any agent (Figure 3.9(a)).

Greedy means the aPad moves to collect the closest available aMussel in each planning
step. This heuristic aims to reduce aPad movement in a very simple way - there is no
guarantee of global movement minimum being achieved, but the planning time required
for it is very low (Figure 3.9(b)).

Random represents a purely stochastic element in the system, using a random uniform
distribution to select which aMussels in the charging pool to collect (Figure 3.9(c)).

In Rescue the aPad collects aMussels furthest away from the cluster centroid, with the
idea of preserving area coverage and outliers, while also avoiding local minima caused by
selecting for near-optimality with regards to aPad movement (Figure 3.9(d)).

Rush is a method that is uptime-focused, in which the aPad aims to charge in short
bursts those aMussels with the highest battery level that are still in the charging pool as

65

Multi-robot task assignment and low-level heuristics

(a) Cautious (b) Greedy

(c) Random

(d) Rescue (e) Rush

Figure 3.9: Examples of aPad trajectories using each of the low-level heuristics from the pool.

candidates, and in doing so aims to “waste" minimal time on charging (Figure 3.9(e)).
After charging of a full load of four aMussels is completed, aMussel redeployment is

done using Greedy Redeploy. During Greedy Redeploy, the aPad uses dynamic positioning
to stay at the position of the last of the four aMussels it has collected for charging, then,
once all aMussels are charged, it moves to redeploy them in order of current proximity to
their initial positions. This redeploy sequence minimises aPad movement and will be the
exact reverse of the sequence generated during Greedy collection planning, whereas for
other low-level heuristics this will not be the case.

Due to the nature of the end goal of the swarm being a long-term monitoring mission of
slow-changing variables, aMussel uptime, defined as the percentage of total mission time

66

Multi-robot task assignment and low-level heuristics

during which the aMussel was actively performing useful work and capable of collecting
relevant data, was chosen as the main performance criterion and benchmark.

As aMussels have most of their sensors mounted on their top caps, they must be fully
submerged to properly collect measurements - meaning they are useless for this purpose
during charging, and time spent charging is thus not part of the total aMussel uptime. Of
course, an aMussel is also not considered active and contributing to its uptime while its
battery is depleted below the lower operational threshold. Each aMussel’s activity state
is logged every time step for the entire duration of the experiment as a simple binary
value - it is either active or inactive. Total uptime for each individual aMussel is then
calculated as (3.4):

𝑇𝑢𝑝,𝑖[%] = 100 ·
∑︀𝑁𝑠𝑡𝑒𝑝

𝑘=1 𝑎𝑖,𝑘Δ𝑡
𝑡𝑚𝑎𝑥

= 100 ·
∑︀𝑁𝑠𝑡𝑒𝑝

𝑘=1 𝑎𝑖,𝑘
𝑁𝑠𝑡𝑒𝑝

(3.4)

where 𝑎𝑖,𝑘 ∈ {0, 1} represents activity of aMussel 𝑖 during time step 𝑘, Δ𝑡 is the time
step, 𝑡𝑚𝑎𝑥 is total mission duration, and 𝑁𝑠𝑡𝑒𝑝 is the total number of time steps recorded.

During mission replay and analysis, uptime is calculated for every individual aMussel
using the total inactive and active time step counts compared to the total time step count
of the mission. For performance scoring during mission execution, cumulative uptime is
calculated over each charging cycle, then scaled with the length of the charging interval.

Also calculated are the average, minimum, and maximum of uptime for all aMussels
present in the experiment, as well as the balance of the aMussel uptime distribution with
regards to individual agents by calculating the standard deviation of uptime. The number
of currently active aMussels during each time step is also recorded and considered, as in a
case without any charging taking place and for a sufficiently short mission time, aMussels
could show "good" (if perhaps front-loaded) uptime as there is no loss of activity due to
periods of charging, but this would ultimately leave the area completely unsupervised as
all agents deplete their batteries and become inactive, which is unacceptable. A loss of
active aMussels in the experimental area represents severe loss of monitoring capability
and thus of valuable data.

Charging-based cost is a representation of charging demand from the aMussel side,
i.e. an abstracted battery percentage difference from a fully charged state. In the current
interpretation, base charging energy cost is always the same no matter which heuristic is
used, since the algorithm requires all aMussels within a cluster to be charged.

The other goal to be achieved is minimising aPad energy used for purposes other than
charging aMussels, primarily meaning minimising powering its thrusters for movement.
The aPad movement cost used by the decision-making algorithms is a simple calculation of
Euclidean distance between the current aPad position and the GoTo mission primitive goal

67

Multi-robot task assignment and low-level heuristics

setpoint, meaning the spatial distribution of aMussels (i.e. the scatter of their collective
cluster) greatly affects movement costs during a mission. While this useful abstraction can
be expected to roughly correspond to aPad battery depletion and a smaller distance to
travel will imply less energy expenditure, real world effects and disturbances such as wind
and current speeds, as well as the amount of aMussels being carried, affect the vehicle.
Vehicle-in-the-loop tests enable the study of these effects, among others. Additionally, in
order to reflect the above-mentioned effects, "real" movement cost is tracked, by means of
counting every time tick an aPad is moving (1s), effectively representing the total amount
of time aPad thrusters were active - a measure of aPad power consumption happening
due to movement (3.5):

𝑇𝑚𝑜𝑣𝑒,𝑖 =
𝑁𝑠𝑡𝑒𝑝∑︁
𝑘=1

𝑝𝑖,𝑘Δ𝑡 (3.5)

where 𝑝𝑖,𝑘 ∈ {0, 1} represents whether aPad 𝑖 is actively moving using its thrusters
during time step 𝑘 derived from its actuating matrix τ, Δ𝑡 is the time step, and 𝑁𝑠𝑡𝑒𝑝

is the total number of time steps recorded. If an aPad is moving more slowly for any
reason, an increased energy expense will thus be reflected in the score. The aPad’s thrust
allocation does not change during a mission, meaning that if it is encountering difficulty
moving, it will not increase thrust or speed and thus consume more power, but will take
a longer time to reach its destination.

A value considered during partitioning and task allocation is the Sum of Squared Error
(SSE) of the aMussel cluster - which, as scatter, could be considered an expression of
physical distances. All aMussel positions 𝑥𝑖 are assigned to 𝑐 clusters 𝐺𝑗, where 𝑗 ∈ [1, 𝑐],
with centroids 𝐶𝑗 = 𝑥𝑖, 𝑥𝑖 ∈ 𝐺𝑗. SSE for cluster 𝐺𝑗 consisting of 𝑛 aMussels is calculated
as (3.6):

𝑆𝑆𝐸𝑗 =
𝑛∑︁
𝑖=1

𝑥𝑖∈𝐺𝑗

(‖𝑥𝑖 − 𝐶𝑗‖)2 (3.6)

Coverage-based cost, or the outlier preservation score, serves to evaluate how well the
most scattered and distant parts of an aMussel cluster are preserved. It is calculated as
the maximum distance between the cluster centroid and a currently active aMussel (3.7):

𝑟𝑘 = max(‖𝐶𝑗,x𝑗,𝑘‖) (3.7)

where 𝑥𝑗 contains all aMussels in cluster 𝐺𝑗 active in step 𝑘.

68

Multi-robot task assignment and low-level heuristics

Figure 3.10: Distance cost plot for 500 experiment iterations performed on 5 aPads. Includes
120 aMussels and all 5 low-level heuristics.

3.5 Discrete event simulation

SimPy [102], a process-based discrete-event simulation framework based on standard
Python, was used to construct an initial system simulation. The aPads are modelled
as shared resources of aMussel processes containing 4 charging stations/docks each. Each
aMussel requests docking, and is docked as soon as its turn is up on the scheduled list,
and there is a dock available on the aPad it has been assigned to. The charging rate of
each aMussel is initially set to one battery "percentage" per unit of time.

The main outline of the simulated experiment was to generate one set of aMussel
and aPad locations, then run repeated simulations, repeating initial clustering, scatter
calculation, and outputting results of each of the low-level heuristics in order to enable
comparison. Running the same heuristic repeatedly (excepting Random) on the same
clusters produces the same results as there is no stochastic or local search component.

It is of interest to plot cluster SSE versus costs to see how the values correspond and
behave, as it is expected that the scatter measure of a cluster of aMussels will influence
the cost of any task allocation solutions applied to it. More aPads lead to more different
clusterings and thus a greater variety of SSE scores in the sample of repeated experiments.

A plot of distance-based costs calculated during 500 simulations of each heuristic for
5 aPads and 120 aMussels is shown in Figure 3.10. A comparison of these costs and the
SSE values of the generated clusters are shown in Figure 3.11. Charging costs are shown
in Figure 3.12.

As expected, in simulations with a number of different generated aMussel clusters,

69

Multi-robot task assignment and low-level heuristics

Figure 3.11: Distance cost vs SSE plot for 500 experiment iterations on 5 aPads with 120
aMussels. Simple linear regression is applied to the data.

Figure 3.12: Charging cost for all methods - all demand every aMussel be fully charged,
meaning charging costs are consistent across all instances.

aPad movement cost was consistently smaller for the Greedy method as opposed to the
Cautious method. Noticeably, the Cautious approach solution cost seems to vary more
based on SSE than the Greedy approach solution cost (though no strict correspondence
seems to be present). Greedy takes distance-related costs into account and minimises

70

Multi-robot task assignment and low-level heuristics

travel, whereas Cautious does not, leading to a more pronounced effect of SSE - which,
as scatter, is in fact an expression of physical distances.

One of the roles of the Random heuristic in the system is to provide a baseline, i.e. a
successful heuristic "should" be able to perform better than a selection happening com-
pletely at random, without any coherent criteria. Distance-cost-wise, it behaves similarly
to the Cautious approach, which makes sense, as aMussels and battery levels are initially
distributed at random. It is to be expected that this similarity will not be present once a
measure of aMussel uptime is introduced.

Each one of its "turns" the Rescue heuristic selects the aMussel furthest from the
cluster centroid to be picked up, and, distance-cost-wise, it is by far the worst performing
method, with considerable spikes in outlier cases visible in the dataset. The Rush heuristic
behaves similarly to the Cautious approach.

The primary, most important and most informative performance index of the complete
subCULTron system is aMussel uptime. To simulate this, time needs to be added to
all simulations. General time units are used, allowing for flexible simulation and easier
application in real-life experimental scenarios.

Travel time was the next addition to the simulation, as a distance-between-agents-
based value calculated using a fixed aPad speed of 0.3 distance units divided by time
units. This abstraction neglects the impact of currents on aPad speed, as well as the
effect of an aPad travelling while carrying aMussels, as opposed to while empty. Travel
time from agent with ID 𝑖 to agent with ID 𝑗 is thus calculated as (3.8):

𝑡𝑡𝑟𝑎𝑣𝑒𝑙,𝑖,𝑗 = 𝑑𝑖,𝑗
0.3 (3.8)

Where 𝑑𝑖,𝑗 is the distance from agent 𝑖 to agent 𝑗. Travel to the next scheduled aMussel
was in its initial implementation a simple blocking delay, meaning charging processes could
not be updated during it, i.e. charging could not take place during it (an acceptable
approximation to start with, as travel time is in reality very short compared to charging
time). Revised and with travel capability modelled as a separate resource of its own type,
the aPad travels to an aMussel while charging others that it has already docked, and is so
prepared to collect it as soon as one of the docked aMussels is fully charged and undocked.
In this implementation, charged aMussels will be undocked in various places, sometimes
where they were picked up (if no mussels are to be docked after them), sometimes near
where another mussel was picked up.

aMussel battery charging and depletion rates are variables that can be set separately.
An aPad has 4 docking stations to charge 4 aMussels in parallel (docks - a resource with
capacity 4), however, it can only be physically travelling to one aMussel at a time (travel
ability - resource with capacity 1). aMussels have to request one of the docking stations

71

Multi-robot task assignment and low-level heuristics

and the aPad has to reach them - the travel process is 𝑡𝑡𝑟𝑎𝑣𝑒𝑙 long.
Once docked, the charging processes can be started, and the aPad is possibly travelling

in the meantime. The charging process takes an amount of time calculated based on
aMussel battery levels at the moment of docking (3.9):

𝑡𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,𝑖 = (100 − 𝑏𝑎𝑡𝑖) · 𝑟𝑐ℎ𝑎𝑟𝑔𝑒 (3.9)

Where 𝑏𝑎𝑡𝑖 is the current battery state of the aMussel with ID 𝑖, and 𝑟𝑐ℎ𝑎𝑟𝑔𝑒 is the
current rate at which the aMussel battery gains charge.

During the length of the simulation, all aMussel battery levels and charging states are
logged (Figure 3.13). Charging state is 0 when not charging, 1 when charging - scaled to
[0, 100] for data display purposes. This data will factor into the uptime calculation as,
again, aMussels cannot count as active while they are being charged on the surface. The
charge/discharge/request pickup/schedule-decision/dock cycle can be repeated. Here the
aMussels were set to start at a random depleted battery state from the [20, 40] interval,
and only one cycle is shown - the aMussels were left to completely deplete their batteries
afterwards.

Figure 3.13: 500 time units long simulation of a 3 aPad and 15 aMussel pickup and charging
cycle, discharge and charge rate parameters both set to 0.5.

Visualising the states of all aMussels in the system can be difficult to parse and
follow (as obvious in Figure 3.13), so two individual aMussels (1 and 3) will be observed
separately (Figure 3.14). During the decision making process, aMussel 1 was assigned to

72

Multi-robot task assignment and low-level heuristics

aPad 2 as the second mussel on its pickup route, while aMussel 3 was assigned to aPad 1
as the first mussel on its pickup route.

Figure 3.14: 300 time units of simulation of a 3 aPad and 15 aMussel pickup and charging
cycle, (dis)charge rate parameters both set to 0.5 - aMussels 1 and 3 shown separately (left),
with aMussel 3 uptime overlay (right).

Looking more closely at aMussel 3 in the above example, green signifies an interval
where the aMussel is active, while pink means inactive. In the first interval shown in the
image, [0 - 10.42], it is possible for the aMussel to be either of the two, as it has requested
charging and is waiting for an aPad to come pick it up. It could have sent this request
from underwater, acoustically, where it is still active, or via Wi-Fi from the surface, where
it is counted as inactive. The aMussel is charging in the [10.41 - 99.16] interval, and is
therefore not active in any experiment as it is necessarily on the surface. The aMussel is
then undocked at 99.16 and allowed to sink back to the bottom, meaning in the interval
[99.16 - 199] it is counted as active - until its battery reaches zero and it presumably
shuts down. In a full cycling simulation, at some point before this it would have sent out
another charging request and been picked up by an available aPad.

Analysis of the scores and properties of the starting aMussel cluster such as SSE
implies the potential of pre-biasing the heuristic selection algorithm in order to start off
with some amount of adaptedness to the situation. Depending on the configuration of the
swarm (positions, distances, battery states, scatter, etc.), Greedy might be emphasised
for its prioritising movement optimisation if the swarm is very scattered, for instance.

An example discrete event simulation output of a single discharge/charge cycle for
each aMussel in the system, with a list of events and timestamps as they happen, is given
in Listing 3.1.

73

Multi-robot task assignment and low-level heuristics

Listing 3.1: Discrete event simulation log example

1 ~ STARTING CHARGING SCENARIO ~

2 All docking requests received

3 aMussel 2 docked at 0.00

4 aMussel 17 docked at 0.00

5 aMussel 1 docked at 0.00

6 aMussel 3 docked at 0.00

7 aMussel 6 docked at 0.00

8 aMussel 12 docked at 0.00

9 aMussel 8 docked at 0.00

10 aMussel 7 docked at 0.00

11 aMussel 14 docked at 0.00

12 aMussel 18 docked at 0.00

13 Charged aMussel 8 at 63.46

14 aMussel 8 undocked at 63.46

15 aMussel 5 docked at 63.46

16 Charged aMussel 12 at 65.07

17 aMussel 12 undocked at 65.07

18 Charged aMussel 6 at 68.30

19 aMussel 6 undocked at 68.31

20 Charged aMussel 1 at 68.40

21 aMussel 1 undocked at 68.40

22 aMussel 20 docked at 68.40

23 Charged aMussel 17 at 69.96

24 aMussel 17 undocked at 69.96

25 Charged aMussel 7 at 70.48

26 aMussel 7 undocked at 70.49

27 aMussel 4 docked at 70.49

28 Charged aMussel 3 at 72.09

29 aMussel 3 undocked at 72.10

30 Charged aMussel 18 at 77.21

31 aMussel 18 undocked at 77.22

32 aMussel 19 docked at 77.22

33 Charged aMussel 2 at 77.42

34 aMussel 2 undocked at 77.42

35 Charged aMussel 14 at 77.94

36 aMussel 14 undocked at 77.94

37 aMussel 13 docked at 77.94

38 Charged aMussel 5 at 125.25

39 aMussel 5 undocked at 125.25

40 aMussel 11 docked at 125.25

41 Charged aMussel 4 at 132.98

42 aMussel 4 undocked at 132.98

43 aMussel 10 docked at 132.98

44 Charged aMussel 20 at 133.02

45 aMussel 20 undocked at 133.02

46 Charged aMussel 19 at 138.44

47 aMussel 19 undocked at 138.45

48 aMussel 15 docked at 138.45

49 Charged aMussel 13 at 148.68

50 aMussel 13 undocked at 148.68

51 aMussel 16 docked at 148.68

52 Charged aMussel 11 at 196.02

53 aMussel 11 undocked at 196.02

54 aMussel 9 docked at 196.02

55 Charged aMussel 15 at 201.34

56 aMussel 15 undocked at 201.35

57 Charged aMussel 10 at 201.80

58 aMussel 10 undocked at 201.81

59 Charged aMussel 16 at 222.23

60 aMussel 16 undocked at 222.23

61 Charged aMussel 9 at 262.73

62 aMussel 9 undocked at 262.74

63 All docking requests handled

64 ~ SCENARIO OVER~

This pure discrete time event simulation proved a useful stepping stone for conceptualising
the system, but it needed to be expanded beyond the capabilities of the tools in order to
better represent the heterogeneous robotic system and evaluate its behaviours. For that
purpose a ROS-based agent simulation with a vehicle-in-the-loop option was designed and
implemented.

3.6 Decision-making proof-of-concept experiment

Experiments were conducted in Biograd na Moru (Figure 3.15) in order to test some of the
initial decision-making and agent assignment concepts in development and validate imple-
mentation details on actual aPad vehicles. The scenario was designed to include testing
mesh network communication, the decision-making and mission execution frameworks,

74

Multi-robot task assignment and low-level heuristics

GPS positioning capabilities, interactions with virtual aMussels, result reporting, and
seamless autonomous operation. Trials were first run with five stationary aPad vehicles
on land, then with two vehicles in the pool in full movement (Figure 3.16).

Figure 3.15: Google Earth image (Image data: c○2022 CNES/Airbus, Maxar Technologies,
image acquired 24/3/2022) showing the Biograd na Moru experiment area - pool and bay.

Figure 3.16: Five aPads performing initial communication and decision-making tests on land
(left). Two aPads performing decision-making experiment in pool (right).

The aPads conducted autonomous mission planning combining clustering, DE, and two
low-level heuristics. To enable an arbitrary number of aMussels in the experiment with lit-
tle logistical issue, the aMussels were entirely virtual. aPads patrolled and moved around
the simulated broadcast positions as if the aMussels were real, while their battery con-
sumption and all processing/calculating/execution times, amount of movement, distance
travelled were logged on board the vehicles. One of the main goals of these trials was to see
all elements of the aPad system perform in realistic conditions, with such requirements
as communication consistency and reliability, and ensuring all aMussels were regularly
visited and in the correct order. The full test run procedure is illustrated in Figure 3.17.

75

Multi-robot task assignment and low-level heuristics

Figure 3.17: Flowchart of the 2018 experiment decision-making scenario.

76

Multi-robot task assignment and low-level heuristics

The aMussel generator node is run first, broadcasting via User Datagram Protocol (UDP)
the same JavaScript Object Notation (JSON) packets containing aMussel sensor data as
real aMussels, only the position values are randomly generated from within the preset
operational area. The aPads collect the generated aMussel charging requests - all data
is continuously shared using a UDP bridge unicast between all combinations of pairs of
aPads, so there is a smaller chance of one of the aPads being denied certain information
packets or some of the aMussels going unheard and uncollected.
Once all the data has been collected, i.e. the aPads have at least an initial matrix of
aMussel data and states, the aPads start their mission which includes several steps of
decision-making:

∙ Each aPad considers the initial cluster of present aMussels and forms a solution
suggestion which it shares with all other aPads via the payload in its own status
message (encoded)

∙ aPads wait until they have collected solution suggestions from all other involved
aPads, or until the predefined timeout happens

∙ The aPads take (agree upon) the initial solution with the lowest 𝑓𝑘𝑟𝑖𝑡 attached (the
"best" solution any of the aPads found) and begin work on their own individual
segment of it

∙ Depending on the number of aMussels compared to aPads, the initial solution can
be a division into clusters, or a set of routes for each aPad calculated using DE

∙ If the accepted initial solution was a DE route, each aPad takes the route assigned
to it and carries it out

∙ If the accepted initial solution is a set of clusters, centroids, and aPad-to-cluster
assignments, each aPad takes the cluster assigned to it, considers its shape and size,
and then proceeds to carry out its patrol within it, choosing from 3 approaches

∙ aPads execute all required GoTo maneuvers to visit the aMussels in the order they
decided upon (for experiments with non-virtual aMussels, they also execute docking
and charging procedures)

After the aPads have agreed on an initial solution, i.e. the best solution proposed among
them, they work independently within their own assigned clusters in a TSP-like problem
set. To aid in the decision-making process, the sizes and shapes of all clusters need to be
considered - both the initial "cluster" containing all active aMussels, as well as the clus-
ters calculated during the decision-making steps if the number of aMussels suggests this
approach. Depending on the properties of the cluster they have been assigned, the aPads
choose between two methods that prioritised different aspects of the swarm - distance and
battery state, also known as the Greedy and Cautious heuristics. If the cluster contains
fewer than 5 aMussels, DE is applied directly.

77

Multi-robot task assignment and low-level heuristics

DE parameters are tuned as follows. The optimisation equation for the DE algorithm
is given in (3.2). A higher 𝐾𝑐ℎ𝑎𝑟𝑔𝑒 gives more weight to the charging/energy transfer
component, whereas a higher 𝐾𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 prioritises travel energy expenditure and gives
more weight to the distance-related calculations. For the experiments, a very simple
relation was used (3.10):

𝐾𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝑆𝑆𝐸 (3.10)

𝐾𝑐ℎ𝑎𝑟𝑔𝑒 = −1
𝑆𝑆𝐸

𝐾𝑐ℎ𝑎𝑟𝑔𝑒 moving towards zero will cause the aPad to disregard battery states and prioritise
movement optimisation. 𝐾𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 going towards zero will cause the aPad to disregard
distance optimisation and instead prioritise aMussels in greatest need of charge. The
worst case scenario would be all aPad energy used up on movement, none on aMussel
charge, whereas the best case scenario is no energy used up on movement, yet all on
aMussel charge. All realistically possible cases asymptotically move towards one of the
two extremes.
A structure for aPad message payloads containing encoded solution suggestions was
constructed in order to enable efficient communication and consensus during collective
decision-making. Initially, all five aPads were used in simulated test runs on land - the
only difference being stopping the experiment before the actual movement stage. The
result of one such experimental run is shown in Figure 3.18, highlighting the messages
exchanged between the aPads and showing how fast consensus on a DE solution was
achieved - the total time elapsed from the first solution suggestion to the last of the
aPads moving to execute was 1 minute and 5.216 seconds.
It was assumed that both the number of active aMussels and aPads in the system was
known in advance. The operational area is always known and fixed and corresponds to
the outdoor pool used for field trials. While aMussels reported their coordinates in global
latitude/longitude, the distances considered are very small (all significantly smaller than
1 km), so calculations were done using Euclidean distances and simplifications with the
assumption of a locally flat Earth.
Two aPads were used in pool tests for the complete experiment run, with an example start-
ing state and completed trajectory shown in Figure 3.19. The communication between
agents was successful, and all aMussels were approached and "collected" as planned, with
the aPads operating fully autonomously. Some interference was present with the GPS lo-
calisation on the platforms, leading to oscillation during the start of the aMussel collection
step, but this did not noticeably impact algorithm performance.

78

Multi-robot task assignment and low-level heuristics

[2018-10-11 12:43:07.349]

aPad 1 suggesting:

[0, 0, 0, 4, 1, 3, 0, 2, 5]

Cost: -8.057555

aPad 1

[2018-10-11 12:43:36.610]

aPad 2 suggesting:

[4, 1, 3, 0, 0, 2, 5, 0, 0]

Cost: -8.043867

aPad 2

[2018-10-11 12:43:50.147]

aPad 3 suggesting:

[2, 0, 0, 5, 0, 0, 4, 1, 3]

Cost: -7.503373

aPad 3

[2018-10-11 12:44:12.512]

aPad 4 suggesting:

[2, 0, 0, 4, 1, 3, 0, 0, 5]

Cost: -7.528265

aPad 4

[2018-10-11 12:43:39.443]

aPad 5 suggesting:

[1, 3, 0, 4, 0, 2, 5, 0, 0]

Cost: -7.395091

aPad 5

[2018-10-11 12:44:12.533]

aPad 1 reports chosen

solution from aPad 1:

[0, 0, 0, 4, 1, 3, 0, 2, 5]

[2018-10-11 12:44:12.563]

aPad 2 reports chosen

solution from aPad 1:

[0, 0, 0, 4, 1, 3, 0, 2, 5]

[2018-10-11 12:44:12.532]

aPad 3 reports chosen

solution from aPad 1:

[0, 0, 0, 4, 1, 3, 0, 2, 5]

[2018-10-11 12:44:12.520]

aPad 4 reports chosen

solution from aPad 1:

[0, 0, 0, 4, 1, 3, 0, 2, 5]

[2018-10-11 12:44:12.557]

aPad 5 reports chosen

solution from aPad 1:

[0, 0, 0, 4, 1, 3, 0, 2, 5]

[2018-10-11 12:43:36.641]

Received solution from aPad 2

[2018-10-11 12:43:39.497]

Received solution from aPad 5

[2018-10-11 12:43:50.206]

Received solution from aPad 3

[2018-10-11 12:44:12.533]

Received solution from aPad 4

[2018-10-11 12:43:36.612]

Received solution from aPad 1

[2018-10-11 12:43:39.501]

Received solution from aPad 5

[2018-10-11 12:43:50.186]

Received solution from aPad 3

[2018-10-11 12:44:12.563]

Received solution from aPad 4

[2018-10-11 12:43:50.150]

Received solution from aPad 1

[2018-10-11 12:43:50.150]

Received solution from aPad 2

[2018-10-11 12:43:50.151]

Received solution from aPad 5

[2018-10-11 12:44:12.532]

Received solution from aPad 4

[2018-10-11 12:44:12.516]

Received solution from aPad 1

[2018-10-11 12:44:12.516]

Received solution from aPad 2

[2018-10-11 12:44:12.517]

Received solution from aPad 3

[2018-10-11 12:44:12.520]

Received solution from aPad 5

[2018-10-11 12:43:39.450]

Received solution from aPad 1

[2018-10-11 12:43:39.450]

Received solution from aPad 2

[2018-10-11 12:43:50.182]

Received solution from aPad 3

[2018-10-11 12:44:12.556]

Received solution from aPad 4

[2018-10-11 12:44:12.534]

aPad 1 implementing

solution: []

[2018-10-11 12:44:12.565]

aPad 2 implementing

solution: []

[2018-10-11 12:44:12.533]

aPad 3 implementing

solution: []

[2018-10-11 12:44:12.521]

aPad 4 implementing

solution: [4, 1, 3]

[2018-10-11 12:44:12.558]

aPad 5 implementing

solution: [2, 5]

Figure 3.18: Messages exchanged during aPad decision-making in the 2018 proof-of-concept
communication-focused experiment.

Two approaches to collecting aMussels within assigned patrol clusters were implemented,
corresponding to cluster evaluation based on SSE values: the Greedy and Cautious ap-
proaches. In the Greedy approach, the patrolling aPad selects in each step the aMussel
closest to the position of the last aMussel it came to collect. The assumption here is
that the distances are significant and the aMussels are very scattered. In the Cautious
approach, the patrolling aPad selects in each step the aMussel with the lowest battery.
The assumption here is that the aMussels are very close together - close enough that
optimising based on distances wouldn’t give a significant benefit, hence the priority is to
charge aMussels that need it most as quickly as possible. Experiments done in a relatively
small pool led to aPads most often choosing the Cautious approach to selecting aMussels
within their assigned clusters.
In these experiments an initial variant of the decision-making system was used in which
one set and final solution for an aPad within its assigned cluster was selected. The next
implementation step after this is a step by step approach with the option of fluidly chang-
ing between methods, in which a new heuristic/priority is chosen after every step. The
step can be after collecting one aMussel, or after every 4 aMussels collected (representing
a full "charging cycle" with full aPad capacity), and after each of these steps an analysis
is performed in order to evaluate and potentially re-evaluate system performance and
decisions.

79

Multi-robot task assignment and low-level heuristics

Figure 3.19: An experimental run with two aPads charging 10 aMussels in a small operational
area. Initial agent positions with aMussel battery states (top). Final mission execution showing
aMussel clustering (blue and magenta) and aPad trajectories (bottom).

Once initial assignment of aMussels to aPads has been achieved and a pool of available
heuristics has been established, the next development step includes constructing a valida-
tion and evaluation system for solutions and methods which will enable objective grading
and aid selection done by the hyper-heuristic decision-making layer.

80

Chapter 4

High-level heuristics -
hyper-heuristics

4.1 Introduction

A general definition of a hyper-heuristic is given in [103] where it is described as an au-
tomated methodology for selecting or generating heuristics to solve hard computational
search problems. Originally referred to as "heuristics to choose heuristics" [104], it rep-
resents a high-level approach that can select and apply to a particular problem instance
an appropriate low-level heuristic from a selection pool, and do so at each decision point
[105]. Heuristic and metaheuristic methods have been successful in solving real-world
computational search problems, however they encounter difficulties in terms of applica-
tion to newly encountered problems or even new instances of very similar problems. The
main cause of these difficulties is the wide range of both algorithm and parameter choices
involved in the problem-solving, as well as the lack of guidance as to how to select be-
tween them. Additionally, the level of understanding of why various heuristics work in
certain situations and not in others may not be adequate to easily and simply make these
choices, and difficulty in accurately modelling problems and situations means that strictly
mathematically optimal solutions may not actually be the best possible solutions in prac-
tice. One of the main goals of using hyper-heuristics is to raise the level of generality
at which optimisation systems can operate, leading to the same system being able to
address diverse problems such as nurse rostering, university course timetabling, and bin
packing [106], [107]. Methods of evaluation have been developed to express how well a
hyper-heuristic has generalised (rather than optimised) over a set of problem instances
[108].
The framework initially proposed in [104] leads to hyper-heuristics that require very lim-
ited information, such as the total number of low-level heuristics present in the system,

81

High-level heuristics - hyper-heuristics

whether the problem requires maximisation or minimisation, and the objective or cost
function value of the solution being evaluated. In fact, the domain barrier (Figure 4.1)
present in the concept of a hyper-heuristic framework prevents the high-level heuristic
from ever directly retrieving any information specific to the problem domain, which leads
to increased generality of the entire search process. This modular model separates the
functionalities of a given problem from the functionalities of the algorithm optimization
process [109] [110] [111].

Figure 4.1: General hyper-heuristic framework.

More about hyper-heuristics and specific approaches related to levels of abstraction and
problem domain knowledge is given in [112], [113], [114], [115], [116]. An introduction to
applying hyper-heuristics to multi-objective optimisation is given in [117].
Hyper-heuristics are commonly divided into three categories based on whether they learn
while searching or prior to searching, or if no feedback at all is acquired from the search
space: on-line learning, off-line learning, and no learning. They can also be classified
as selection or generation hyper-heuristics, depending on whether they select a heuristic
among a set of existing heuristics or generate new heuristics from components of the
existing low-level heuristics [118] [119]. A visual overview of this classification is shown
in Figure 4.2.
The hyper-heuristic employed in this thesis is, according to the above classification, an

82

High-level heuristics - hyper-heuristics

Figure 4.2: Classification of hyper-heuristic approaches.

online learning selection hyper-heuristic. Selection hyper-heuristics deal with problems
indirectly, by browsing through a set of available heuristics each search step and choosing
which one to apply to the problem at hand based on a history of performance statistics
according to a given set of metrics. Two key phases exist in the hyper-heuristic: heuristic
selection and move acceptance. The former is the specific method or strategy used for
performing the selection from the available pool, while the latter is a binary choice of
whether to accept and implement or discard the solution generated by the chosen heuristic,
frequently taking the form of All Moves (AM), Only Improving (OI) or Great Deluge (GD)
acceptance strategies [120] [121] [122]. In the hyper-heuristic structure in this thesis,
changes resulting from the application of a particular heuristic are always accepted (AM)
and focus is placed on heuristic selection.
In [123], a hyper-heuristic is presented which starts with random selection, but gradually
learns which low-level heuristics perform better and increases their chances to be selected
again. This method can produce better solutions than some bespoke metaheuristics, but
with far less tuning and oversight and manual adaptation of systems to specific prob-
lem instances. A similar approach has been used to create the selection hyper-heuristic
implemented in this thesis, based on classical roulette wheel selection.

83

High-level heuristics - hyper-heuristics

Low-level heuristics used in hyper-heuristic decision-making structures are often simple
operators, but can also be (meta)heuristics themselves. In [124], the authors focus on
multi-objective optimisation problems which they seek to address with such metaheuristic
selection, and notably include experiments on real world problems and datasets instead
of purely abstract function benchmarks in order to evaluate cross-domain performance.

4.2 Heuristic selection, scoring, and evaluation

The roulette wheel selection strategy is frequently used in evolutionary algorithms. Ap-
plied to the hyper-heuristic framework, it chooses each heuristic with probability propor-
tional to its weight, or fitness. By modifying these weights based on feedback received
from the problem space using several performance indices, online reinforcement learning
is introduced into the decision-making system.
After every application of a low-level heuristic, it is scored based on the chosen perfor-
mance indices. If the heuristic has performed better than the Cumulative Moving Average
(CMA) with regards to a certain performance index, it is positively evaluated for that
index and its fitness is increased for each success. Otherwise, if a heuristic performs worse
with regards to every evaluated performance index, it is considered to have failed and it
receives a fixed-step penalty to its fitness.
Hyper-heuristic usage means working separate from the problem domain, with all aspects
of the real world abstracted into costs reported back to the hyper-heuristic after imple-
mentation and evaluation. If, for example, partway through an experiment a current,
wind, or vehicle fault make it difficult for an aPad to move and reach the aMussels chosen
in the proposed solution, the movement cost will trend noticeably higher than earlier in
the experiment, and the low-level heuristic which produced this solution will be penalised
as a result, while one proposing a solution that can work around this disturbance and
keep the costs down will be rewarded.
Establishing consistent initialisation for the decision-making system is both important and
challenging [125] [126]. During the first iteration, all low-level heuristics have the same
fitness value and thus the same chance of being chosen. As an initialisation strategy,
for the first four iterations of the decision-making, each of the heuristics will be applied
exactly once, in random order, without any scoring or learning taking place. After this step
(which also serves to initialise the performance index values and averages), the roulette
wheel selection will take over.
Importantly, if the search stagnates and the system enters a local optimum, a selection
hyper-heuristic needs to have the ability to select an appropriate low-level heuristic to
diversify the search and move to another area of the solution space, even if this causes a

84

High-level heuristics - hyper-heuristics

temporary decline in performance. Here it is achieved by enforcing a minimum selection
probability threshold for all heuristics, no matter how badly they may have performed in
the past. Thus, heuristics that have scored well in the past are more likely to be chosen
in the future, while a purely stochastic element remains preserved at all times.
Building on approaches used in [126] and [127], the framework of the implemented re-
inforcement learning hyper-heuristic can be said to consist of a finite set of states 𝒮,
an objective or evaluation function 𝑓 : 𝒮 → R mapping states to real numbers, a set
𝐻 := {ℎ1, . . . , ℎ𝑛} of 𝑛 low-level heuristics, and an adaptation scheme 𝐴 : 𝒮 × 𝐻 → R.
Reinforcement learning mechanisms assign a positive weight or fitness to each low-level
heuristic 𝑖 ∈ [𝑛], so 𝑤

(𝑡)
𝑖 denotes the weight of heuristic 𝑖 in iteration 𝑡. As stated ear-

lier, all heuristics are equally likely to be selected at the start, meaning that initially
𝑤

(0)
𝑖 = 𝑤

(0)
𝑗 for all 𝑖, 𝑗 ∈ [𝑛]. The weight of each heuristic is restricted to be within a

user-defined interval [𝑤min, 𝑤max] such that 𝑤(𝑡)
𝑖 ∈ [𝑤min, 𝑤max] for all 𝑖 ∈ [𝑛] and 𝑡 ≥ 0.

At each iteration 𝑡, a heuristic selection strategy is used to decide which heuristic to
apply based on a distribution p(𝑡) :=

(︁
𝑝

(𝑡)
1 , . . . , 𝑝(𝑡)

𝑛

)︁
. For the roulette wheel selection, the

probability can be expressed as (4.1):

𝑝
(𝑡)
𝑖 := 𝑤

(𝑡)
𝑖∑︀𝑛

𝑗=1 𝑤
(𝑡)
𝑗

(4.1)

The full reinforcement learning hyper-heuristic is given in Algorithm 1. The adaptation
rates 𝛼 and 𝛽 are fixed in this implementation, though they can also be variable and
functions of current heuristic performance, length of the learning process, or similar.
Due to the nature of the system it is being applied to, the reinforcement learning needs to
be able to make conclusions and appropriate fitness adjustments based on relatively sparse
feedback, as only once an entire charging solution has been implemented by collecting,
charging, and then redeploying the aMussels is useful information about the new state of
the system received. There is also no definition of the reward for each possible state of
the system proportional to how beneficial that state is to reaching the desired goals [128].
This makes the learning and adjustment process fairly slow, and each full adjustment step
more impactful.

4.2.1 Performance evaluation

Wherever possible, calculating the gap between the performance of a method and the
known optimal solution is the standard approach to heuristic evaluation [127]. Since an
optimal solution is not known here and is computationally too demanding to find, in order
to evaluate the performance of the implemented hyper-heuristic, comparisons are done
using the best achieved solution.

85

High-level heuristics - hyper-heuristics

Algorithm 1 Reinforcement learning hyper-heuristic with roulette wheel selection
1: Given a finite set 𝒮 in the solution space
2: Let 𝐻 := {ℎ1, . . . , ℎ𝑛} be a set of 𝑛 low-level heuristics, where ℎ𝑖 : 𝒮 → 𝒮.
3: Let 𝐸 := {𝑓𝑒,1, . . . , 𝑓𝑒,𝑘} be a set of evaluation functions for 𝑘 performance indices,

where 𝑓𝑒,𝑗 : 𝒮 → R.
4: Fix 𝑤min and 𝑤max such that 𝑤min, 𝑤max ≥ 0.
5: Let 𝛼 and 𝛽 ∈ [0, 𝑤max] be a rewarding and punishing rate respectively.
6: For all 𝑖 ∈ [𝑛], set 𝑤(0)

𝑖 ≥ 𝑤min.
7: Select initial heuristic 𝑖 ∈ [𝑛], with probability 𝑝(𝑡)

0 := 1
𝑛

8: Let 𝑠(0) be the initial solution generated by chosen heuristic 𝑖, with 𝐶𝑀𝐴
(0)
𝑗 =

𝑓𝑒,𝑗(𝑠(0)).
9: for 𝑡 = 1, . . . , 𝑛 do

10: Select 𝑖 from remaining unused heuristics, with probability 𝑝(𝑡)
𝑖 := 1

𝑛−𝑡
11: 𝑠′ := ℎ𝑖(𝑠)
12: for 𝑗 = 1, . . . , 𝑘 do
13: 𝐶𝑀𝐴

(𝑡)
𝑗 = 𝐶𝑀𝐴

(𝑡−1)
𝑗 +𝑓𝑒,𝑗(𝑠𝑡′)

𝑡

14: end for
15: end for
16: Let 𝜏 be the maximum number of steps in the desired mission length.
17: for 𝑡 = 𝑛, . . . , 𝜏 do
18: Select heuristic 𝑖 ∈ [𝑛], with probability 𝑝(𝑡)

𝑖 := 𝑤
(𝑡)
𝑖∑︀𝑛

𝑙=1 𝑤
(𝑡)
𝑙

19: 𝑠′ := ℎ𝑖(𝑠)
20: for 𝑗 = 1, . . . , 𝑘 do
21: 𝐶𝑀𝐴

(𝑡)
𝑗 = 𝐶𝑀𝐴

(𝑡−1)
𝑗 +𝑓𝑒,𝑗(𝑠𝑡′)

𝑡

22: 𝑤
(𝑡+1)′

𝑖 := min
(︁
𝑤

(𝑡)
𝑖 + 𝛼,𝑤max

)︁
if 𝑓𝑒,𝑗(𝑠𝑡

′) ≥ 𝐶𝑀𝐴𝑡−1
𝑗 (𝑓𝑒,𝑗(𝑠𝑡−1))

23: end for
24: 𝑤

(𝑡+1)′

𝑖 := max
(︁
𝑤

(𝑡)
𝑖 − 𝛽, 𝑤min

)︁
if 𝑓𝑒,𝑗(𝑠𝑡

′) < 𝐶𝑀𝐴𝑡−1
𝑗 (𝑓𝑒,𝑗(𝑠𝑡−1))for all𝑓𝑒,𝑗 ∈ 𝐸

25: 𝑤
(𝑡+1)
𝑖 = 𝑤

(𝑡+1)′

𝑖

26: end for

86

High-level heuristics - hyper-heuristics

The first benchmark is the most naive baseline - purely random selection, applying a
heuristic chosen using a random uniform distribution each step of the experiment. The
other comparison benchmarks used are experimental runs in which each of the low-level
heuristics present in the system is applied consecutively by itself throughout the duration
of the run. The hyper-heuristic selection with reinforcement learning should perform
better than simply selecting one of the heuristics and using it continually, or applying the
available low-level heuristics at random.
Performance is evaluated based on the four indices presented in Section 3.4: aMussel
uptime, aPad movement costs, aMussel coverage/outlier preservation, and uptime distri-
bution (im)balance. In the case of movement cost and uptime imbalance, a lower score is
better (implying the movement and energy expenditure of the aPad were minimised, and
useful work and uptime were more evenly distributed between all agents), while a higher
score is better for outlier preservation and achieved aMussel uptime (meaning measure-
ments were acquired more consistently from distant agents, and aMussels managed to
perform more useful work in total).
The various experimental runs are evaluated using ranking methods [129]. The method
that finds the best solution in the set of experimental runs being evaluated gets the lowest
value, while the worst performing method gets the highest value, with all others placed
in between. The method with the overall lowest rank can thus be considered the best
performing method [123].
Differential (percent) ranking for heuristic ℎ𝑖 with score 𝑣𝑖 with regards to the chosen
performance index 𝑒𝑗 is calculated as (4.2):

𝑑𝑖,𝑗[%] = 100 · ‖𝑣𝑟𝑚𝑖𝑛,𝑗 − 𝑣𝑖,𝑗‖
𝑣𝑟𝑏𝑒𝑠𝑡,𝑗

(4.2)

Where 𝑣𝑖,𝑗 is the mean value of the scores heuristic ℎ𝑖 achieved in performance index
𝑒𝑗 throughout the length of the experiment, and 𝑣𝑟𝑏𝑒𝑠𝑡

is the mean score value the best-
scoring heuristic achieved (minimum rank 𝑟𝑚𝑖𝑛 is the equivalent of best rank 𝑟𝑏𝑒𝑠𝑡). Thus,
this score represents the distance of each heuristic score from the best score achieved in
the experiment. The best achievable rank is 1, while the best achievable differential rank
is 0.
Total score ranking for each heuristic is done by scaling the 𝑣𝑖,𝑗 means to a [0, 100] interval
for each heuristic ℎ𝑖 and performance index 𝑒𝑗 of 𝑁𝑖𝑛𝑑𝑒𝑥 indices, then calculating a sum
of scores achieved for each index, (4.3):

𝑆𝑡𝑜𝑡𝑎𝑙,𝑖 =
𝑁𝑖𝑛𝑑𝑒𝑥∑︁
𝑗=1

𝑣𝑖,𝑗,𝑠𝑐𝑎𝑙𝑒𝑑 (4.3)

For performance indices where a lower score is better, an inverse of the 𝑣𝑖,𝑗 mean is passed

87

High-level heuristics - hyper-heuristics

to the scaling step. As there are four performance indices taken into account, the highest
achievable total score is 400.

4.3 Hyper-heuristic decision-making simulations

Four simulated experiments/benchmark scenarios are presented in the following subsec-
tions: a baseline simulation of a swarm with no disturbances or outliers, two instances in
which a disturbance occurs partway through the experiment leading to a change in agent
capabilities and thus behaviours, and one in which an aMussel is deployed a considerable
distance away from the rest of the swarm and is thus a location-based outlier. Simulated
mission length for all experiments is 129600 seconds, which, with the employed time scale
of 30, is the equivalent of 45 days of aMussel operation. The window size for CMA cal-
culation is set to 50. The Random low-level heuristic was not present in the heuristics
pool for these simulations, due to the fact the roulette wheel selection itself provides the
desired stochastic component.
All runs of the same experiment case have the same starting conditions (aPad position,
aMussel positions, aMussel battery states). Thus, all runs that use a single low-level
heuristic are essentially deterministic. The roulette wheel and random selection runs
were performed multiple times and the results presented here were selected on a "best of
five" basis. In these examples all scores are equally weighted: all performance indices are
considered of equal importance. This can be modified - for example, if preserving outliers
is considered a more important feature to reward, or if there is a need for the system to
primarily focus on the aPad’s energy expenditure.

4.3.1 Venice baseline simulation

The aMussels are distributed as shown in 4.3 in a simulated Venice lagoon locale. Both
aMussel positions and battery states were initially determined using a random uniform
distribution. No disturbance occurs during the entire length of the mission and there are
no adverse environmental effects present, allowing the swarm to operate in an ideal state.
Figure 4.4 shows the CMA values of the four performance indices for each of the experi-
mental runs throughout the length of the experiment. This represents the historical data
to which the hyper-heuristic compares the latest performance of each selected heuristic
during the evaluation and scoring step of the process. The strengths and weaknesses of
each method present in the system are already clearly indicated in the trends. The fourth
performance index, uptime distribution imbalance, is calculated based on data on the
total achieved aMussel uptime per agent and by heuristic, as shown in Figure 4.5.
For the purposes of ranking, means of the achieved scores for all methods are calculated.

88

High-level heuristics - hyper-heuristics

Figure 4.3: Google Earth image (Image data: c○2022 CNES/Airbus, Maxar Technologies,
image acquired 30/07/2022) showing the aMussels in the simulated Venice experiment area.

Figure 4.4: Comparison of scores during experimental runs in baseline scenario using only one
heuristic, versus roulette wheel selection and random selection.

Figure 4.6 shows a comparison of the results with the best- and worst- performing in-
stances for each performance index highlighted in green and red, respectively. Figure
4.7 shows the final ranking results, as well as a comparison of differences between scores
achieved by each heuristic and the best achieved score, with an overview provided in Table

89

High-level heuristics - hyper-heuristics

Figure 4.5: Distribution of aMussel uptime in baseline scenario by agent ID in each of the
experimental runs.

4.1.

Figure 4.6: Comparison of means of scores achieved by each heuristic in baseline scenario
using only one heuristic, versus roulette wheel selection and random selection. Worst-performing
heuristic shown in red, best-performing shown in green.

A spider chart breakdown of scores achieved by each heuristic as well as the two heuristic

90

High-level heuristics - hyper-heuristics

Figure 4.7: Comparison of ranks (left) and differential percentage ranks (right) achieved by
each heuristic and roulette wheel selection in baseline scenario.

Table 4.1: Scores and ranking - Venice baseline simulation.

Method Median [%] Min [%] Max [%] Average Rank Total score

Cautious 59.062 3.7023 170.297 4 125.35

Greedy 8.4816 0 166.8188 2 221.78

Random 26.1115 6.5864 96.3252 3 191.82

Rescue 87.1974 5.9036 357.3709 6 68.55

Rush 67.1207 0 313.9039 5 130.58

Roulette 9.1858 0 88.263 2.5 233.79

selection methods and ranking of total scores in descending order are given in Figure
4.8, highlighting the strengths and weaknesses of each approach. The Greedy heuristic
is, as expected, superior when it comes to optimising for movement efficiency, while the
Rescue method’s primary strength is outlier preservation. The two runs in which multiple
heuristics are applied (roulette wheel and random selection) have both shown they provide
a more even distribution of uptime over all aMussels in the system, while Greedy, Rush,
and Rescue heuristics instead focus on a limited group of agents.
A closer look at the roulette wheel selection hyper-heuristic run follows, with the total
count of times each low-level heuristic was chosen and applied shown in Figure 4.9. It
also shows how these choices were distributed over the scenario’s duration, as well as how
the fitness values for each method changed over time. The fitness scores are displayed
as probabilities which are equal to 1 in sum and represent the relative sizes of the slices
of the roulette wheel in each time step of the experiment. This means it is possible for

91

High-level heuristics - hyper-heuristics

Figure 4.8: Comparison of scores achieved (top) and total score ranking (bottom) for baseline
scenario.

a method’s fitness to go down even when it is not being evaluated, as another method
being rewarded increases its share of the roulette wheel and reduces all others.
In the experiment presented, the Greedy method was used the most and offered good
performance judging by its consistently high evaluation and rising fitness, while Rescue

92

High-level heuristics - hyper-heuristics

Figure 4.9: Occurrence numbers of each heuristic in the roulette wheel selection (left) and
heuristic fitness (right) over time for baseline scenario.

was used the least. Its presence did, however, visibly serve to ensure better outlier coverage
than if only the otherwise excellent-performing Greedy method had been used alone,
highlighting one of the original motivations behind the hyper-heuristic roulette wheel
approach.

4.3.2 Thruster failure/disturbance one third through mission

In this scenario, the aMussels are distributed as shown in 4.3 in a simulated Venice lagoon
locale. Once one third of the total mission time has elapsed, a disturbance happens in
the form of aPad "thruster failure", resulting in movement speed dropping considerably
(10 times) and all movement times and costs proportionately rising. The effects of this
disturbance on swarm performance are studied in order to demonstrate the benefits of
online reinforcement learning and show the adaptability the learning selection hyper-
heuristic gives the system.
Figure 4.10 shows the values of the performance indices for all heuristics throughout the
length of the experiment, clearly displaying the universal effects of the disturbance on
system performance by any criteria. The total achieved aMussel uptime per agent is
shown in Figure 4.11. The Greedy method is most noticeably impacted, which is to be
expected since it doesn’t work with any system state information other than physical
distances and thus has no mechanism of addressing its movement-caused deteriorating
performance in any way.
Figure 4.12 shows the final means of achieved scores for all methods, with the best- and
worst- performing instances highlighted. Figure 4.13 shows a comparison of differences
between scores achieved by each heuristic and the best achieved score, with an overview

93

High-level heuristics - hyper-heuristics

Figure 4.10: Comparison of scores during experimental runs in disturbance scenario using only
one heuristic, versus roulette wheel selection and random selection.

Figure 4.11: Distribution of aMussel uptime in disturbance scenario by agent ID in each of
the experimental runs.

provided in Table 4.2.
A spider chart breakdown of total scores achieved by each heuristic as well as the two se-
lection methods is shown in Figure 4.14, followed by a ranking of total scores in descending
order in Figure 4.15. Once again, the specific strengths and weaknesses of each low-level
heuristic can be clearly seen, as well as the benefits of combining different heuristics in a
single run. The Cautious method’s focus on keeping all aMussels charged, no matter how

94

High-level heuristics - hyper-heuristics

Figure 4.12: Comparison of means of scores achieved by each heuristic in disturbance scenario
using only one heuristic, versus roulette wheel selection and random selection. Worst-performing
heuristic shown in red, best-performing shown in green.

Figure 4.13: Comparison of ranks (left) and differential percentage ranks (right) achieved by
each heuristic and roulette wheel selection in disturbance scenario.

distant, is visible in how well it performs with regards to total achieved uptime, as well
as achieving the best uptime balance score of all the low-level heuristics.
Looking more closely at the roulette wheel experiment, the total count of times each
low-level heuristic was chosen and applied by the roulette wheel selection hyper-heuristic
is shown in Figure 4.16. Also shown is the distribution of these choices in the scenario’s
duration, as well as how the fitness values for each method changed. The moment of
disturbance is clearly indicated.

95

High-level heuristics - hyper-heuristics

Table 4.2: Scores and ranking - Venice disturbance simulation.

Method Median [%] Min [%] Max [%] Average Rank Total score

Cautious 24.3356 0 65.9361 3.5 212.75

Greedy 10.7833 0 76.9925 3 198.05

Random 11.6429 7.0316 49.189 3 219.71

Rescue 46.2947 3.202 96.8368 5.5 88.63

Rush 41.3683 0 103.3228 4.5 117.67

Roulette 5.187 0 60.705 3 256.17

Figure 4.14: Comparison of total scores achieved in the disturbance scenario.

In this specific scenario, Rescue is the only method that achieves an upward trend in
fitness post-disturbance - with the aPad’s movement severely impeded, it is impossible
to achieve an improvement in total uptime or movement cost reduction, and so the aPad
resorts to maintaining the edges of the swarm, since it is still possible to successfully
preserve outliers. Greedy is extremely efficient with regards to movement and provides a
good boost to uptime in the aMussels it picks up - however, it represents a type of local

96

High-level heuristics - hyper-heuristics

Figure 4.15: Total score ranking for disturbance scenario.

minimum and rarely moves beyond one group of agents, leading to the previously noted
pronounced impact post-disturbance.

Figure 4.16: Occurrence numbers of each heuristic in the roulette wheel selection (left) and
heuristic fitness (right) over time for disturbance scenario.

4.3.3 Thruster failure/disturbance halfway through mission

This experiment uses the same map as the previous simulation, however the disturbance
happens later in the run. This, combined with the reduced speed of the aPad, means
the system has a much shorter time to adapt to the new conditions, and even fewer

97

High-level heuristics - hyper-heuristics

chances to evaluate the performance of each heuristic. Figure 4.17 shows the values of
the performance indices for all heuristics throughout the length of the experiment, once
again clearly displaying the universal effects of the disturbance on system performance by
any criteria. The total achieved aMussel uptime per agent is shown in Figure 4.18. The
Greedy method remains the most noticeably impacted.

Figure 4.17: Comparison of scores during experimental runs in late disturbance scenario using
only one heuristic, versus roulette wheel selection and random selection.

Figure 4.18: Distribution of aMussel uptime in late disturbance scenario by agent ID in each
of the experimental runs.

Figure 4.19 shows the final means of achieved scores for all methods, with the best- and

98

High-level heuristics - hyper-heuristics

worst- performing instances highlighted. Figure 4.20 shows a comparison of differences
between scores achieved by each heuristic and the best achieved score, with an overview
provided in Table 4.3.

Figure 4.19: Comparison of means of scores achieved by each heuristic in late disturbance
scenario using only one heuristic, versus roulette wheel selection and random selection. Worst-
performing heuristic shown in red, best-performing shown in green.

Figure 4.20: Comparison of ranks (left) and differential percentage ranks (right) achieved by
each heuristic and roulette wheel selection in late disturbance scenario.

A spider chart breakdown of total scores achieved by each heuristic and the two selec-
tion methods, along with a corresponding ranking of all the methods by total scores in
descending order is given in Figure 4.21 and Figure 4.22.

99

High-level heuristics - hyper-heuristics

Table 4.3: Scores and ranking - Venice late disturbance simulation.

Method Median [%] Min [%] Max [%] Average Rank Total score

Cautious 10.6181 1.6314 62.8506 2.5 255.71

Greedy 9.9719 0 27.576 2.5 253.95

Random 8.3243 4.1726 51.5476 3.5 231.89

Rescue 46.9772 4.5187 79.2593 5.5 86.84

Rush 41.9042 0 83.4551 5 125.13

Roulette 6.2476 0 49.3032 2.5 263.67

Figure 4.21: Comparison of total scores achieved in the late disturbance scenario.

A total count of times each low-level heuristic was chosen and applied by the roulette
wheel selection hyper-heuristic is shown in Figure 4.23, along with how these choices were
distributed in the scenario’s duration, as well as how the fitness values for each method
changed. In this scenario, the performance of methods chosen before the disturbance
carries more weight, however similar trends post-disturbance as in the earlier disturbance

100

High-level heuristics - hyper-heuristics

Figure 4.22: Total score ranking for late disturbance scenario.

scenario are visible.

Figure 4.23: Occurrence numbers of each heuristic in the roulette wheel selection (left) and
heuristic fitness (right) over time for late disturbance scenario.

4.3.4 Simulation with one outlier aMussel

The aMussels are distributed as shown in 4.24 in a simulated Venice lagoon locale, with
one prominent outlier aMussel deployed further away, and operating without disturbance
the full length of the mission.
Figure 4.25 shows the values of the performance indices for all heuristics throughout

101

High-level heuristics - hyper-heuristics

Figure 4.24: Google Earth image (Image data: c○2022 CNES/Airbus, Maxar Technologies,
image acquired 30/07/2022) showing the aMussels in the simulated Venice experiment area.
outlier aMussel shown in red.

the length of the experiment. The total achieved aMussel uptime per agent is shown in
Figure 4.26. Figure 4.27 shows the final means of achieved scores for all methods, with
the best- and worst- performing instances highlighted. Figure 4.28 shows a comparison
of differences between scores achieved by each heuristic and the best achieved score, with
an overview provided in Table 4.4.

Table 4.4: Scores and ranking - Venice outlier simulation.

Method Median [%] Min [%] Max [%] Average Rank Total score

Cautious 30.2912 7.9755 305.3553 3 208.84

Greedy 36.0013 0 83.7288 2.5 230.58

Random 34.0845 8.8779 254.4713 3.5 182.02

Rescue 95.6695 0 370.0055 6 103.00

Rush 92.6978 15.9863 115.8786 4.5 94.44

Roulette 11.6744 0 204.1342 2.5 251.33

Several interesting aspects of the outlier’s effect on system behaviour are immediately
visible. The impact of Greedy and Rush methods never including the outlier aMussel in
their charging schedules is clear, both in the very low movement costs they exhibit, but
also by the outlier preservation score being extremely low. Since the outlier is only one

102

High-level heuristics - hyper-heuristics

Figure 4.25: Comparison of scores during experimental runs in outlier scenario using only one
heuristic, versus roulette wheel selection and random selection.

Figure 4.26: Distribution of aMussel uptime in outlier scenario by agent ID in each of the
experimental runs.

agent, the overall uptime score is not severely negatively impacted in the case of these two
heuristics, however Rescue shows the lowest total uptime score, as it seems to "sacrifice"
the uptime of other, closer, aMussels, in order to travel far and keep the outlier charged.
Figure 4.29 shows a spider chart breakdown of scores achieved by each heuristic and
selection method, with Figure 4.30 showing the ranking of total scores in descending

103

High-level heuristics - hyper-heuristics

Figure 4.27: Comparison of means of scores achieved by each heuristic in outlier scenario
using only one heuristic, versus roulette wheel selection and random selection. Worst-performing
heuristic shown in red, best-performing shown in green.

Figure 4.28: Comparison of ranks (left) and differential percentage ranks (right) achieved by
each heuristic and roulette wheel selection in outlier scenario.

order.
Figure 4.31 shows when each low-level heuristic was chosen and applied by the roulette
wheel selection hyper-heuristic during the scenario, as well as how the fitness values for
each method changed. This specific scenario demonstrates the value in combining different
heuristics and having their various strengths and weaknesses make up for each other in
order to achieve better performance overall and adapt to a specific deployment situation,
even without any dramatic changes occurring within the mission duration.

104

High-level heuristics - hyper-heuristics

Figure 4.29: Comparison of total scores achieved in the outlier scenario.

Figure 4.30: Total score ranking for outlier scenario.

105

High-level heuristics - hyper-heuristics

Figure 4.31: Occurrence numbers of each heuristic in the roulette wheel selection (left) and
heuristic fitness (right) over time for outlier scenario.

A variety of simulated scenarios successfully demonstrated different behaviours the system
is capable of and the adaptability of the hyper-heuristic decision-making to different swarm
states and changes over time.

4.4 Hyper-heuristic vehicle-in-the-loop experiments

4.4.1 Proof-of-concept experimental scenario

In Chapter 3, the general outline and early simulated implementations of the aPad
decision-making approach were described, in particular the use of k-means clustering
to divide the aMussels among several available aPads. One aPad platform at a time is
used in the experiment presented here, under the assumption that basic clustering has
already happened and the aPads have reached a consensus on which aMussels belong
under whose jurisdiction.
The full energy sharing scenario loop for a single aPad is shown in Figure 4.32 and begins
after the aPads have been deployed, reached the vicinity of the experimental area, and
achieved clustering consensus, meaning all active aPads have their designated patrol areas
defined by IDs of aMussels they are responsible for overseeing and maintaining.
The loop itself consists of the following:

∙ Idle wait - The aPad waits, holding its current position using the dynamic posi-
tioning mission primitive, until at least four aMussels are present in the charging
pool (meaning their battery levels have fallen under a certain predefined threshold).

∙ Route planner (collection) - The aPad plans a route to collect four aMussels
chosen from the candidates in the charging pool using one of several heuristics.

106

High-level heuristics - hyper-heuristics

Figure 4.32: Energy exchange scenario loop.

∙ Collect - Four instances of the Go To aMussel position - Dock routine are car-
ried out, until four aMussels have been successfully docked and the aPad is at full
docking/charging capacity. Each time the aPad moves to the position of the next
aMussel on its collection schedule, it sends it an acoustic message instructing it to
surface for collection. This is done so the aMussels spend a minimal amount of
time floating on the water surface and also reduces inaccuracies in aMussel position
information (as their last localisation is assumed to have happened underwater).
For safety reasons, aMussels will never surface without an aPad present in acoustic
range giving permission, minimising the risk of losing them to floating away in a
current or similar.

∙ Charging wait - The aPad holds position at the location of the last aMussel it
picked up, until all four docked and inactive agents report battery levels above 99%.

∙ Route planner (deployment) - The aPad plans a redeployment route using the
Greedy redeploy heuristic, bearing in mind all aMussels must be returned to their
original positions, starting from the last aMussel it collected.

∙ Redeploy - The aPad alternates between going to the position of the next aMussel
to deploy, and undocking (opening the docking mechanism and activating thrusters
to back away, freeing the aMussel). Once an aMussel is released, it detects a falling
edge on its charging state, and reacts to this by using its buoyancy motors to sink
to the bottom of the water and resume collecting measurements - for a simulated

107

High-level heuristics - hyper-heuristics

agent, this means transitioning to a discharging battery behaviour and becoming
active. The aPad also sends a Wi-Fi data packet with a specific payload to let the
aMussel know it can sink without interference.

The scenario can be interrupted by an override from a human operator, or it can be set
to end once a certain predefined mission time has been achieved. Another termination
condition available is aPad batteries reaching a certain threshold.
The scenario chosen tackles the "worst case scenario" of the aMussel only actively using
power from one battery and keeping the other as an emergency backup, while charging
assumes the need to charge the slower-charging of the batteries (i.e. using only one
charging coil). Concerning the discharge model used, it is assumed there will be no
sleep periods allowed during operation, guaranteeing an active aMussel is truly actively
performing work in every time step. In normal swarm operation, sleep intervals can be
used to spread total aMussel uptime over a longer period (which can be significant for
data collection as slow-changing variables are being measured).

Figure 4.33: The two experimental areas: initial generated aMussel positions used in all
experiments, overlaid on map with satellite image.

Either 24 (the actual ratio of aMussel to aPad-type agents in the final subCULTron swarm)
or 12 (in the pool experiments due to covering a smaller area) aMussel positions were
randomly generated with a uniform distribution within a preset polygon representing the
experimental area. Two areas were chosen for initial testing: an outdoor pool (essentially

108

High-level heuristics - hyper-heuristics

a walled-off portion of the sea) and a bay next to it that opens up into the Adriatic
sea. These generated aMussel positions are shown in Figure 4.33 (located in the same
area shown in Figure 3.16). A random drift of 𝒰(−0.5, 0.5) centimetres every second was
introduced to simulated aMussel positions to account for them moving and drifting while
sinking to or rising from the seabed, or localisation noise. Starting aMussel battery levels
were generated from an interval of [0.6, 1]. All experiments described were run using the
same aMussel configurations for their respective total agent number.
A timescale factor of 𝜃 = 30 was used in the experiments, meaning a mission length
of 40 minutes represents approximately 20 simulated hours. The node representing and
simulating all active aMussels was run on a laptop on the shore connected to the aPad
Wi-Fi access point, ensuring realistic communication issues were possible.
The heuristics contrasted in the scenario include collection using the so-called Greedy and
Cautious methods, and redeployment using the Greedy Redeploy method.
The vehicle-in-the-loop framework was tested in several experiments in Biograd na Moru,
Croatia. Two examples of experiments in progress are shown in Figure 4.34.

Figure 4.34: aPad autonomously carrying out decision-making experiment in pool (left). Ex-
periment outside pool, in nearby bay (right).

Table 4.5 shows a comparison of two experiments done in the pool with 12 mussels and
one done outside with 24, as well as a baseline case with no aMussels being charged
during the experiment. Each experiment lasted 40 minutes and included four full sets of
collections and redeployments. The values being compared are average aMussel uptime,
maximum and minimum uptime achieved by any of the aMussels, cumulative movement
costs of the aPad, and the average number of aMussels active at a time throughout the
experiment.
Figure 4.35 shows an example of the mission replay screen. aMussel locations are dis-
played, as well as aPad location and a trace of recent trajectory. aMussel markers change
colour to indicate status: green for charged above charging pool inclusion threshold, red
for charging pool candidates, and purple for currently undergoing charging. Estimated
aPad movement cost for each active segment is displayed (replaced by cumulative move-
ment cost at the end of the replay), as well as the currently active mission primitive.

109

High-level heuristics - hyper-heuristics

Table 4.5: aMussel uptime, activity, and total aPad movement cost

Avg % Max % Min % Movement Active

Cautious 74.37 87.38 59.88 307.1746 8.9243

Greedy (pool) 72.27 87.16 42.84 247.8026 8.9495

Greedy (bay) 71.98 90.31 31.18 186.4318 16.2368

No charging 67.36 79.56 56.64 0 8.0837

Figure 4.35: Example mission replay screen showing aPad using the Greedy heuristic, working
in pool with 12 aMussels.

Battery states of all aMussels are plotted, as is uptime for each agent, updated every
simulation step based on known total mission length and current aMussel activity. The
number of active aMussels over time is shown in Figure 4.36.
The Greedy method shows less aPad movement overall but more time "wasted" waiting
for the lowest battery aMussels to recharge, with some fully charged aMussels needlessly
inactive - Cautious has better balancing in that regard, as it makes decisions based on
aMussel battery states. Various alternate redeployment solutions are possible to address
this, though potentially at the cost of increased aPad movement. aMussel selection with
the Greedy method is very affected by the aPad starting position, while with Cautious it
is not, beyond the initial movement cost to reach the first docking position.
Due to the fact the aMussels have simulated accelerated time while the aPad doesn’t,
the aPad seems to move very slowly, relatively (the fairly frequent 30-second bursts of

110

High-level heuristics - hyper-heuristics

0 500 1000 1500 2000
Time[s]

0

5

10

15

20

25
N

o
.
o
f
a
c
ti
v
e
 a

M
u
s
s
e
ls

Greedy (Pool)

Cautious

Greedy (Bay)

No charging

Figure 4.36: Number of currently active aMussels during the experiments.

movement corresponding to 15 minutes in simulated time). This can be interpreted as
the aPad travelling over longer distances, however it will of course not be reflected in the
actual aPad battery consumption and state. While the mission ended before this could
fully come into effect, it can be seen that the aPad is becoming "overwhelmed" by the
larger number of aMussels in the example taking place in the bay, leading to the number of
active aMussels declining, and highlighting questions of aMussel-per-aPad maintenance
capacity. The number of charging cycles a single aPad can feasibly provide is another
useful variable to study, for which the developed framework is very helpful, especially in
a sense of "rapid prototyping" of behaviours. A video showing two examples of mission
replays (one for each collection heuristic) is available at https://youtu.be/nYiZD0lhF9s.
The developed vehicle-in-the-loop setup can be used to test a variety of specific use-cases
of the subCULTron heterogeneous marine robot swarm in a logistically feasible way. The
development process resulted in a twofold benefit: collected preliminary data confirmed
the long-term operating potential of the aMussel agents themselves, while also providing
several different stock behaviour variants for simulation models which will be useful for
all future studies of the swarm’s agent interactions.
The undertaken proof-of-concept experiments showed variations in aMussels covering two
different experimental areas by actively contributing to data collection efforts and required
environmental monitoring, while being supported by an aPad platform autonomously
engaging in energy sharing using two different heuristic approaches to its task sequencing.
These early experiments already provided valuable insights, and reinforced the need for
more complex selection and acceptance criteria during the decision-making process to
ensure the correct behaviours are rewarded, ultimately leading to long-term sustainable
and beneficial swarm behaviours.

111

https://youtu.be/nYiZD0lhF9s

High-level heuristics - hyper-heuristics

4.4.2 Vehicle-in-the-loop experiment with roulette wheel selec-
tion

This set of experiments expands upon the initial proof-of-concept VIL setup described
above. All runs were performed in the seaside pool in Biograd na Moru using the 12
aMussel pool positions shown in Figure 4.33, with the same parameters and conditions
applied with regards to duration, charging pool thresholds, and redeployment. However,
here the system used hyper-heuristic roulette wheel selection to pick between a full set of
low-level heuristics: Cautious, Greedy, Random, Rescue, and Rush. As was the case with
the Venice Lagoon simulations, in order to provide useful data for comparison, experi-
mental runs using only one of each of the low-level heuristics were performed, followed
by roulette wheel and random selection runs. The set mission length of 7000s with a
timescale of 30 is the equivalent of the swarm operating for 2.5 days.
Figure 4.37 shows the values of the performance indices for all heuristics and both heuris-
tic selection methods throughout the length of the experiment, while the total achieved
aMussel uptime per agent is shown in Figure 4.38. Figure 4.39 shows the final means
of achieved scores for all methods, with the best- and worst- performing instances high-
lighted.

Figure 4.37: Comparison of scores in the VIL experiments using only one heuristic, versus
roulette wheel selection and random selection.

Based on the scores shown above, Figure 4.40 shows a comparison of differences between
scores achieved by each heuristic and the overall best achieved score, with an overview
provided in Table 4.6.

112

High-level heuristics - hyper-heuristics

Figure 4.38: Distribution of aMussel uptime in the VIL experiments by agent ID in each of
the experimental runs.

Figure 4.39: Comparison of means of scores achieved by each heuristic in the VIL experiments
using only one heuristic, versus roulette wheel selection and random selection. Worst-performing
heuristic shown in red, best-performing shown in green.

A spider chart breakdown of total scores achieved by each heuristic as well as the two
selection methods is given in Figure 4.41, highlighting the strengths and weaknesses of
each approach. A ranking of total scores in descending order are shown in Figure 4.42.
A total count of times each low-level heuristic was chosen and applied by the roulette
wheel selection hyper-heuristic is shown in Figure 4.43. Figure 4.23 shows how these

113

High-level heuristics - hyper-heuristics

Figure 4.40: Comparison of ranks (left) and differential percentage ranks (right) achieved by
each heuristic and roulette wheel selection in the VIL experiments.

Table 4.6: Scores and ranking - Biograd VIL experiment.

Method Median [%] Min [%] Max [%] Average Rank Total score

Cautious 7.9364 0 62.5026 2 263.80

Greedy 15.2571 0 348.1128 4 164.14.95

Random 83.5881 15.5706 330.9366 4 48.5354

Rescue 111.7443 15.2543 855.2184 5.5 13.03

Rush 60.9051 5.0895 771.7804 4 97.48

Roulette 35.8229 0 102.1949 1.5 278.93

choices were distributed in the scenario’s duration, as well as how the fitness values for
each method changed. Due to the relatively short length of the experiments, far fewer
selections and evaluations were performed.
A highly pronounced effect of only applying a single heuristic is visible here in the case of
Rescue achieving very low scores, especially in outlier preservation, which it is supposed
to address. The reason for this is that by constantly focusing on and charging the most
distant aMussels and outliers, their active uptime is actually detrimentally impacted. In
comparison, using it combined with other heuristics leads to excellent scores, especially
in this specific case where a smaller number of aMussels is positioned relatively close
together.
A playlist of videos of mission replays of the roulette wheel and single heuristic experiments
is available at https://www.youtube.com/playlist?list=PL9hXWi5RIHgRjql-Tkh_

SNQfCoSpwVSsA.

114

https://www.youtube.com/playlist?list=PL9hXWi5RIHgRjql-Tkh_SNQfCoSpwVSsA
https://www.youtube.com/playlist?list=PL9hXWi5RIHgRjql-Tkh_SNQfCoSpwVSsA

High-level heuristics - hyper-heuristics

Figure 4.41: Comparison of total scores achieved in the VIL experiments.

Figure 4.42: Total score ranking for the VIL experiments.

115

High-level heuristics - hyper-heuristics

Figure 4.43: Distribution of low-level heuristics selected by roulette wheel in the VIL experi-
ments.

Figure 4.44: Occurrence numbers of each heuristic in the roulette wheel selection (left) and
heuristic fitness (right) over time for the VIL experiments.

The results of the simulations and VIL experiments confirm the hypothesis that it is
possible to continuously generate sequences of simple and computationally undemanding
heuristics that perform better than repeatedly applying each of the individual heuris-
tics, as well as applying them randomly. As a hyper-heuristic structure with a firmly
established domain barrier, the system can generalise to various types of instances and
novel situations arising in the problem space, e.g. changes in the types, numbers, and
capabilities of swarm agents, environmental conditions, and deployment in different envi-
ronments in general. However, an ideal use-case would be training the hyper-heuristic on

116

High-level heuristics - hyper-heuristics

a simulated or recorded instance with similar features to the desired planned deployment
configuration, then employing a pre-weighted roulette wheel selection, whilst still keeping
the reinforcement learning active and thus enabling further adaptation, if necessary.
The simulated aMussel structure can also be run on the aPads themselves during missions
with real sensor nodes, serving as a model for the aPads to estimate aMussel status and
fill in any potential information gaps without needing to receive communication packets
from the real agents who might be asleep, out of range, or subject to some other cause of
interference and data loss. This way, aPads can pre-emptively make decisions and plan
their missions, adjusting to incoming data in real time as they work.

117

Chapter 5

Conclusion

For the purpose of enabling long-term autonomy of a heterogeneous swarm of marine
robots, task allocation and sequencing were introduced into the system’s energy man-
agement procedures and agent interactions. In a scenario where the system needs to
autonomously go about its monitoring mission and survive long-term, the available maxi-
mum capacity of five surface vehicles - aPad platforms which represent the charging hubs
of the system - is usually outnumbered by the number of active charging requests by the
sensor node-like aMussel agents, leading to a need for careful planning and optimisation
of robot activities. In the scope of this thesis, a two-layered system of decision-making
algorithms was developed: a low-level specific solution-focused set of algorithms, and a
high-level hyper-heuristic which selects between them, evaluates performance achieved
in each step of the monitoring mission, and employs reinforcement learning to enable a
level of adaptation to unknown environments, environmental changes, or changes to the
agents themselves. The thesis stated several hypotheses and three major contributions in
Section 1.1. These contributions are restated and reviewed in the context of the presented
work.
The first contribution stated:

∙ A method for multi-robot task assignment and sequencing ensuring long-term au-
tonomy of a heterogeneous swarm of marine robots while taking into account envi-
ronmental constraints.

In Chapter 3 a detailed description was given of the structure of the decision-making
system applied to the heterogeneous swarm of marine robots, with an overview of the
studied problem of the long-term monitoring mission. Methods of initial patrol zone
assignment and task partitioning, including a combination of differential evolution and
k-means clustering, along with the influence of water currents as a primary example of
environmental constraints, were described in 3.3. Initial discrete event-based simulations
of a multi-robot system were given in Section 3.5, whereas experimental validation of

118

Conclusion

the realised task assignment system, demonstrating full communication, decision-making,
and consensus-reaching abilities between several robotic agents, was shown in Section
3.6. Examples of the system reacting to and adapting to a disturbance were given in
Sections 4.3.2 and 4.3.3, while Section4.3.4 showed how the system adapted to a specific
experimental area and agent distribution featuring a geographical outlier.
The second contribution stated:

∙ A hyper-heuristic decision-making method for a heterogeneous swarm of marine
robots based on unsupervised switching between multiple task assignment and se-
quencing methods.

The framework developed for a hyper-heuristic decision-making structure was given in
detail in Chapter 4. The method described in this thesis featured selecting between an
array of situational low-level heuristic methods of task sequencing described in Section 3.4.
It also employed online reinforcement learning based on rewarding or punishing certain
methods to encourage or discourage their use, using performance indices for solution
evaluation after each decision-making and energy exchange cycle performed by the agents.
This enabled fully autonomous and unsupervised functioning of the heterogeneous robotic
swarm.
The third contribution stated:

∙ A solution evaluation method and definition of performance indices and a benchmark
validation scenario for decision-making and task assignment methods implemented
on a heterogeneous swarm of marine robots.

Chapter 2 presented the heterogeneous swarm of marine robots and both hardware and
software implementation details related to achieving behaviours enabling the success of
a long-term environmental monitoring mission, from autonomous docking and energy
exchange between swarm agents, to a VIL setup which made prototyping and testing
on real vehicles viable. Individual solution performance evaluation for the purpose of
adjusting fitness during the learning process spanning the length of every scenario was
based on the four indices presented in Section 3.4, while a method of ranking, scoring,
and benchmarking the performance of various decision-making methods was given in
Section 4.2. The defined benchmark validation was then applied to a series of simulated
scenarios. These scenarios and their results showing the successful use of autonomous
decision-making and task assignment methods in a variety of situations were described in
Section 4.3, with experimental validation given in Section 4.4.

119

Bibliography

[1]Tagliapietra, D., Aloui Bejaoui, N., Bellafiore, D., De Wit, R., Ferrarin, C., Gamito,
S., Lasserre, P., Magni, P., Mistri, M., Pérez Ruzafa, A. et al., “The ecological
implications of climate change on the Lagoon of Venice”, UNESCO Digital Library,
2011.

[2]Ferrighi, A., Flooding and environmental challenges for Venice and its lagoon: state
of knowledge. Cambridge University Press, 2005.

[3]Sorokin, Y. I., Sorokin, P. Y., Giovanardi, O., Dalla Venezia, L., “Study of
the ecosystem of the lagoon of Venice, with emphasis on anthropogenic impact”,
Marine Ecology Progress Series, Vol. 141, No. 1-3, 1996, pages 247–261, available
at: 10.3354/meps141247

[4]Argese, E., Cogoni, G., Zaggia, L., Zonta, R., Pini, R., “Study on redox state
and grain size of sediments in a mud flat of the Venice Lagoon”, Environmental
Geology and Water Sciences, Vol. 20, No. 1, jul 1992, pages 35–42, available at:
10.1007/BF01736108

[5]Solidoro, C., Pecenik, G., Pastres, R., Franco, D., Dejak, C., “Modelling
macroalgae (Ulva rigida) in the Venice lagoon: Model structure identification and
first parameters estimation”, Ecological Modelling, Vol. 94, No. 2-3, jan 1997,
pages 191–206, available at: 10.1016/S0304-3800(96)00025-7

[6]Lang, F., von der Lippe, M., Schimpel, S., Scozzafava-Jaeger, T., Straub,
W., “Topsoil morphology indicates bio-effective redox conditions in Venice salt
marshes”, Estuarine, Coastal and Shelf Science, Vol. 87, No. 1, mar 2010, pages
11–20, available at: 10.1016/j.ecss.2009.12.002

[7]Thenius, R., Moser, D., Varughese, J. C., Kernbach, S., Kuksin, I., Kernbach,
O., Kuksina, E., Mišković, N., Bogdan, S., Petrović, T., Babić, A., Boyer, F.,
Lebastard, V., Bazeille, S., Ferrari, G. W., Donati, E., Pelliccia, R., Romano,
D., van Vuuren, G. J., Stefanini, C., Morgantin, M., Campo, A., Schmickl,
T., “subCULTron - Cultural development as a tool in underwater robotics”, in
Communications in Computer and Information Science, Vol. 732, 2018, pages
27–41, available at: 10.1007/978-3-319-90418-4_3

[8]Tuna, G., Gungor, V. C., “A survey on deployment techniques, localization
algorithms, and research challenges for underwater acoustic sensor networks”,
International Journal of Communication Systems, Vol. 30, No. 17, nov 2017, page
e3350, available at: 10.1002/dac.3350

[9]Aguilar, W., Santamaría-Bonfil, G., Froese, T., Gershenson, C., “The past, present,
and future of artificial life”, Frontiers in Robotics and AI, Vol. 1, oct 2014, page 8,
available at: 10.3389/frobt.2014.00008

[10]Canese, L., Cardarilli, G. C., Di Nunzio, L., Fazzolari, R., Giardino, D., Re,
M., Spanò, S., “Multi-agent reinforcement learning: A review of challenges and

120

10.3354/meps141247
10.1007/BF01736108
10.1016/S0304-3800(96)00025-7
10.1016/j.ecss.2009.12.002
10.1007/978-3-319-90418-4_3
10.1002/dac.3350
10.3389/frobt.2014.00008

Bibliography

applications”, available at: 10.3390/app11114948 2021.
[11]Brooks, R. A., “Intelligence without representation”, Artificial Intelligence, Vol. 47,

No. 1-3, jan 1991, pages 139–159, available at: 10.1016/0004-3702(91)90053-M
[12]Mouret, J. B., Doncieux, S., “Encouraging behavioral diversity in evolutionary

robotics: An empirical study”, Evolutionary Computation, Vol. 20, No. 1, 2012,
pages 91–133, available at: 10.1162/EVCO_a_00048

[13]Burtsev, M., Turchin, P., “Evolution of cooperative strategies from first
principles”, Nature, Vol. 440, No. 7087, 2006, pages 1041–1044, available at:
10.1038/nature04470

[14]Trianni, V., Tuci, E., Passino, K. M., Marshall, J. A., “Swarm Cognition: An
interdisciplinary approach to the study of self-organising biological collectives”,
Swarm Intelligence, Vol. 5, No. 1, 2011, pages 3–18, available at: 10.1007/
s11721-010-0050-8

[15]Parker, L. E., “Distributed Intelligence: Overview of the Field and its Application
in Multi-Robot Systems”, Journal of Physical Agents, Vol. 2, No. 1, 2008, pages
5–14, available at: 10.14198/JoPha.2008.2.1.02

[16]Pagello, E., D’Angelo, A., Ferrari, C., Polesel, R., Rosati, R., Speranzon,
A., “Emergent behaviors of a robot team performing cooperative tasks”,
Advanced Robotics, Vol. 17, No. 1, jan 2003, pages 3–19, available at:
10.1163/156855303321125596

[17]Haasdijk, E., Bredeche, N., Eiben, A. E., “Combining environment-driven
adaptation and task-driven optimisation in evolutionary robotics”, PLoS ONE,
Vol. 9, No. 6, jun 2014, page e98466, available at: 10.1371/journal.pone.0098466

[18]Trueba, P., Prieto, A., Bellas, F., “Distributed embodied evolution for collective
tasks: Parametric analysis of a canonical algorithm”, in GECCO 2013 -
Proceedings of the 2013 Genetic and Evolutionary Computation Conference
Companion. New York, NY, USA: ACM, jul 2013, pages 37–38, available at:
10.1145/2464576.2464595

[19]Ficici, S. G., Watson, R. A., Pollack, J. B., “Embodied Evolution: A Response to
Challenges in Evolutionary Robotics”, Proceedings of the Eighth European Work-
shop on Learning Robots, 1999, pages 14–22, available at: www.demo.cs.brandeis.
edu

[20]Teacy, W. T., Chalkiadakis, G., Farinelli, A., Rogers, A., Jennings, N. R.,
McClean, S., Parr, G., “Decentralized Bayesian reinforcement learning for online
agent collaboration”, in 11th International Conference on Autonomous Agents
and Multiagent Systems 2012, AAMAS 2012: Innovative Applications Track,
Vol. 1, 2012, pages 312–319, available at: https://www.semanticscholar.org/
paper/Decentralized-Bayesian-reinforcement-learning-for-Teacy-Chalkiadakis/
32ca77bfcb87d7894f5601590ea49bc7d9b07122

[21]Weiss, G., Multiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence, 1999, Vol. 3, No. 2, available at: http://books.google.com/books?hl=nl&
lr=&id=JYcznFCN3xcC&pgis=1

[22]Buşoniu, L., Babuška, R., De Schutter, B., “A comprehensive survey of multiagent
reinforcement learning”, pages 156–172, available at: 10.1109/TSMCC.2007.913919
mar 2008.

[23]Kok, J. R., Vlassis, N., “Collaborative multiagent reinforcement learning by payoff
propagation”, Journal of Machine Learning Research, Vol. 7, 2006, pages 1789–1828,

121

10.3390/app11114948
10.1016/0004-3702(91)90053-M
10.1162/EVCO_a_00048
10.1038/nature04470
10.1007/s11721-010-0050-8
10.1007/s11721-010-0050-8
10.14198/JoPha.2008.2.1.02
10.1163/156855303321125596
10.1371/journal.pone.0098466
10.1145/2464576.2464595
www.demo.cs.brandeis.edu
www.demo.cs.brandeis.edu
https://www.semanticscholar.org/paper/Decentralized-Bayesian-reinforcement-learning-for-Teacy-Chalkiadakis/32ca77bfcb87d7894f5601590ea49bc7d9b07122
https://www.semanticscholar.org/paper/Decentralized-Bayesian-reinforcement-learning-for-Teacy-Chalkiadakis/32ca77bfcb87d7894f5601590ea49bc7d9b07122
https://www.semanticscholar.org/paper/Decentralized-Bayesian-reinforcement-learning-for-Teacy-Chalkiadakis/32ca77bfcb87d7894f5601590ea49bc7d9b07122
http://books.google.com/books?hl=nl&lr=&id=JYcznFCN3xcC&pgis=1
http://books.google.com/books?hl=nl&lr=&id=JYcznFCN3xcC&pgis=1
10.1109/TSMCC.2007.913919

Bibliography

available at: https://www.jmlr.org/papers/volume7/kok06a/kok06a.pdf
[24]Uchibe, E., Doya, K., “Finding intrinsic rewards by embodied evolution and

constrained reinforcement learning”, Neural Networks, Vol. 21, No. 10, dec 2008,
pages 1447–1455, available at: 10.1016/j.neunet.2008.09.013

[25]Schembri, M., Mirolli, M., Baldassarre, G., “Evolving internal reinforcers for
an intrinsically motivated reinforcement-learning robot”, in 2007 IEEE 6th
International Conference on Development and Learning, ICDL. IEEE, jul 2007,
pages 282–287, available at: 10.1109/DEVLRN.2007.4354052

[26]Singh, S., Barto, A. G., Chentanez, N., “Intrinsically motivated rein-
forcement learning”, in Advances in Neural Information Processing Sys-
tems, 2005, available at: https://proceedings.neurips.cc/paper/2004/file/
4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf

[27]Elfwing, S., Uchibe, E., Doya, K., Christensen, H. I., “Darwinian embodied
evolution of the learning ability for survival”, Adaptive Behavior, Vol. 19, No. 2,
apr 2011, pages 101–120, available at: 10.1177/1059712310397633

[28]Bredeche, N., Montanier, J. M., Liu, W., Winfield, A. F., “Environment-driven
distributed evolutionary adaptation in a population of autonomous robotic agents”,
Mathematical and Computer Modelling of Dynamical Systems, Vol. 18, No. 1, feb
2012, pages 101–129, available at: 10.1080/13873954.2011.601425

[29]Jakobi, N., Husbands, P., Harvey, I., “Noise and the reality gap: The
use of simulation in evolutionary robotics”, in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Vol. 929, 1995, pages 704–720, available at:
10.1007/3-540-59496-5_337

[30]Zagal, J. C., Ruiz-Del-Solar, J., Vallejos, P., “Back to reality: Crossing the
reality gap in evolutionary robotics”, in IFAC Proceedings Volumes (IFAC-
PapersOnline), Vol. 37, No. 8. Elsevier, jul 2004, pages 834–839, available at:
10.1016/s1474-6670(17)32084-0

[31]Billing, E. A., “Cognitive perspectives on robot behavior”, in ICAART 2010 - 2nd
International Conference on Agents and Artificial Intelligence, Proceedings, Vol. 2,
2010, pages 373–382, available at: 10.5220/0002782103730382

[32]Kurabayashi, D., “Toward realization of collective intelligence and emergent
robotics”, in Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, Vol. 4. IEEE, 1999, pages 748–753, available at:
10.1109/icsmc.1999.812498

[33]Babić, A., Lončar, I., Mišković, N., Vukić, Z., “Energy-efficient environmentally
adaptive consensus-based formation control with collision avoidance for multi-
vehicle systems”, IFAC-PapersOnLine, Vol. 49, No. 23, jan 2016, pages 361–366,
available at: 10.1016/j.ifacol.2016.10.431

[34]Schlimmer, J. C., Langley, P., “Paradigms for machine learning”, Vol. 40, 1991,
pages 1–9, available at: https://ntrs.nasa.gov/search.jsp?R=19920016857http://
hdl.handle.net/2060/19920016857

[35]Lončar, I., Babić, A., Arbanas, B., Vasiljević, G., Petrović, T., Bogdan, S.,
Mišković, N., “A Heterogeneous Robotic Swarm for Long-Term Monitoring of
Marine Environments”, Applied Sciences, Vol. 9, No. 7, apr 2019, page 1388,
available at: 10.3390/app9071388

[36]Babić, A., Lončar, I., Arbanas, B., Vasiljević, G., Petrović, T., Bogdan, S.,

122

https://www.jmlr.org/papers/volume7/kok06a/kok06a.pdf
10.1016/j.neunet.2008.09.013
10.1109/DEVLRN.2007.4354052
https://proceedings.neurips.cc/paper/2004/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf
10.1177/1059712310397633
10.1080/13873954.2011.601425
10.1007/3-540-59496-5_337
10.1016/s1474-6670(17)32084-0
10.5220/0002782103730382
10.1109/icsmc.1999.812498
10.1016/j.ifacol.2016.10.431
https://ntrs.nasa.gov/search.jsp?R=19920016857 http://hdl.handle.net/2060/19920016857
https://ntrs.nasa.gov/search.jsp?R=19920016857 http://hdl.handle.net/2060/19920016857
10.3390/app9071388

Bibliography

Mišković, N., “A novel paradigm for underwater monitoring using mobile sensor
networks”, Sensors (Switzerland), Vol. 20, No. 16, aug 2020, pages 1–23, available
at: 10.3390/s20164615

[37]Akyildiz, I. F., Pompili, D., Melodia, T., “Underwater acoustic sensor networks:
research challenges”, Ad Hoc Networks, Vol. 3, No. 3, 2005, pages 257–279,
available at: https://doi.org/10.1016/j.adhoc.2005.01.004

[38]Akyildiz, I. F., Pompili, D., Melodia, T., “State-of-the-art in protocol research for
underwater acoustic sensor networks”, in Proceedings of the 1st ACM International
Workshop on Underwater Networks, ser. WUWNet ’06. New York, NY, USA:
ACM, 2006, pages 7–16, available at: 10.1145/1161039.1161043

[39]Tan, H.-P., Diamant, R., Seah, W. K., Waldmeyer, M., “A survey of techniques and
challenges in underwater localization”, Ocean Engineering, Vol. 38, No. 14, 2011,
pages 1663–1676, available at: https://doi.org/10.1016/j.oceaneng.2011.07.017

[40]Tuna, G., Gungor, V. C., “A survey on deployment techniques, localization
algorithms, and research challenges for underwater acoustic sensor networks”,
International Journal of Communication Systems, Vol. 30, No. 17, page e3350,
e3350 IJCS-16-0556.R1, available at: 10.1002/dac.3350

[41]Bian, T., Venkatesan, R., Li, C., “Design and evaluation of a new localization
scheme for underwater acoustic sensor networks”, in GLOBECOM 2009 - 2009
IEEE Global Telecommunications Conference, Nov 2009, pages 1–5, available at:
10.1109/GLOCOM.2009.5425366

[42]Liu, B., Chen, H., Zhong, Z., Poor, H. V., “Asymmetrical round trip based
synchronization-free localization in large-scale underwater sensor networks”, IEEE
Transactions on Wireless Communications, Vol. 9, No. 11, November 2010, pages
3532–3542, available at: 10.1109/TWC.2010.090210.100146

[43]Jaffe, J. S., Franks, P. J. S., Roberts, P. L. D., Mirza, D., Schurgers, C., Kastner,
R., Boch, A., “A swarm of autonomous miniature underwater robot drifters for
exploring submesoscale ocean dynamics”, Nature Communications, Vol. 8, jan
2017, page 14189, available at: 10.1038/ncomms14189

[44]Roemmich, D., Owens, W. B., “The argo project: Global ocean observations for
understanding and prediction of climate variability”, Oceanography, Vol. 13, No. 2,
2000, pages 45–50, available at: http://www.jstor.org/stable/43925483

[45]Babić, A., Mandić, F., Vasiljević, G., Mišković, N., “Autonomous docking and
energy sharing between two types of robotic agents”, IFAC-PapersOnLine, Vol. 51,
No. 29, 2018, pages 406–411, 11th IFAC Conference on Control Applications in
Marine Systems, Robotics, and Vehicles CAMS 2018.

[46]Li, G., Svogor, I., Beltrame, G., “Self-Adaptive pattern formation with
battery-powered robot swarms”, in 2017 NASA/ESA Conference on Adaptive
Hardware and Systems, AHS 2017. IEEE, jul 2017, pages 253–260, available at:
10.1109/AHS.2017.8046386

[47]Arvin, F., Watson, S., Turgut, A. E., Espinosa, J., Krajník, T., Lennox,
B., “Perpetual Robot Swarm: Long-Term Autonomy of Mobile Robots Using
On-the-fly Inductive Charging”, Journal of Intelligent and Robotic Systems:
Theory and Applications, Vol. 92, No. 3-4, dec 2018, pages 395–412, available at:
10.1007/s10846-017-0673-8

[48]Deyle, T., Reynolds, M., “Surface based wireless power transmission and
bidirectional communication for autonomous robot swarms”, in Proceedings -

123

10.3390/s20164615
https://doi.org/10.1016/j.adhoc.2005.01.004
10.1145/1161039.1161043
https://doi.org/10.1016/j.oceaneng.2011.07.017
10.1002/dac.3350
10.1109/GLOCOM.2009.5425366
10.1109/TWC.2010.090210.100146
10.1038/ncomms14189
http://www.jstor.org/stable/43925483
10.1109/AHS.2017.8046386
10.1007/s10846-017-0673-8

Bibliography

IEEE International Conference on Robotics and Automation. IEEE, may 2008,
pages 1036–1041, available at: 10.1109/ROBOT.2008.4543341

[49]Schioler, H., Ngo, T. D., “Trophallaxis in robotic swarms - beyond energy
autonomy”, in 2008 10th International Conference on Control, Automation,
Robotics and Vision, ICARCV 2008. IEEE, dec 2008, pages 1526–1533, available
at: 10.1109/ICARCV.2008.4795751

[50]Arvin, F., Samsudin, K., Ramli, A. R., “Swarm robots long term autonomy
using moveable charger”, in Proceedings - 2009 International Conference on Future
Computer and Communication, ICFCC 2009. IEEE, apr 2009, pages 127–130,
available at: 10.1109/ICFCC.2009.48

[51]Amory, A., Tosik, T., Maehle, E., “A load balancing behavior for underwater
robot swarms to increase mission time and fault tolerance”, in Proceedings of the
International Parallel and Distributed Processing Symposium, IPDPS. IEEE, may
2014, pages 1306–1313, available at: 10.1109/IPDPSW.2014.146

[52]Manikandan, J., Vishwanath, A., Korulla, M., “Design of a 1kW Underwater
Wireless Charging Station for Underwater Data Gathering Systems”, in 2018
International Conference on Advances in Computing, Communications and
Informatics, ICACCI 2018. IEEE, sep 2018, pages 211–216, available at:
10.1109/ICACCI.2018.8554936

[53]Bokc, T., Maurer, M., Farber, G., “Validation of the vehicle in the loop (VIL); a
milestone for the simulation of driver assistance systems”, in 2007 IEEE Intelligent
vehicles symposium. IEEE, 2007, pages 612–617.

[54]Brinkmann, M., Abdelaal, M., Hahn, A., “Vessel-in-the-loop architecture for testing
highly automated maritime systems”, in Proceedings of the 17th Conference on
Computer and IT Applications in the Maritime Industries, 2018.

[55]Tosik, T., Maehle, E., “MARS: A simulation environment for marine robotics”, in
2014 Oceans - St. John’s, OCEANS 2014. IEEE, sep 2015, pages 1–7, available at:
10.1109/OCEANS.2014.7003008

[56]Ridao, P., Batlle, E., Ribas, D., Carreras, M., “NEPTUNE: A HIL simulator for
multiple UUVs”, in Ocean ’04 - MTS/IEEE Techno-Ocean ’04: Bridges across the
Oceans - Conference Proceedings, Vol. 1. IEEE, 2004, pages 524–531, available at:
10.1109/oceans.2004.1402970

[57]Kaliappan, V. K., Budiyono, A., Min, D., Muljowidodo, K., Nugroho, S. A.,
“Hardware-In-the-Loop simulation platform for the design, testing and validation
of autonomous control system for unmanned underwater vehicle”, Indian Journal
of Marine Sciences, Vol. 41, No. 6, 2012, pages 575–580, available at:
10.21535/ProICIUS.2011.v7.380

[58]Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A. Y., “ROS: an open-source Robot Operating System”, in ICRA workshop on
open source software, Vol. 3, No. 3.2. Kobe, Japan, 2009, page 5.

[59]Ðula Nađ, Mišković, N., Mandić, F., “Navigation, guidance and control of an over-
actuated marine surface vehicle”, Annual Reviews in Control, Vol. 40, 2015, pages
172–181.

[60]Caccia, M., Bibuli, M., Bono, R., Bruzzone., G., “Basic navigation, guidance and
control of an Unmanned Surface Vehicle”, Autonomous Robots, Vol. 25, No. 4,
2008, pages 349–365.

[61]Kan, T., Mai, R., Mercier, P. P., Mi, C., “Design and Analysis of a Three-Phase

124

10.1109/ROBOT.2008.4543341
10.1109/ICARCV.2008.4795751
10.1109/ICFCC.2009.48
10.1109/IPDPSW.2014.146
10.1109/ICACCI.2018.8554936
10.1109/OCEANS.2014.7003008
10.1109/oceans.2004.1402970
10.21535/ProICIUS.2011.v7.380

Bibliography

Wireless Charging System for Lightweight Autonomous Underwater Vehicles”,
pages 1–1, available at: 10.1109/TPEL.2017.2757015 2017.

[62]McGinnis, T., Henze, C. P., Conroy, K., “Inductive Power System for Autonomous
Underwater Vehicles”, in Proceedings of OCEANS’07 MTS/IEEE Conference.
IEEE, sep 2007, pages 1–5, available at: 10.1109/OCEANS.2007.4449219

[63]Pinto, J., Dias, P. S., Gonçalves, R., Marques, E., Gonçalves, G., Sousa, J. B.,
Pereira, F. L., “NEPTUS – A Framework to Support the Mission Life Cycle”, in
7th IFAC Conference on Manoeuvring and Control of Marine Craft, 2006.

[64]Barcellona, S., Brenna, M., Foiadelli, F., Longo, M., Piegari, L., “Analysis of ageing
effect on li-polymer batteries”, The Scientific World Journal, Vol. 2015, 2015.

[65]Pop, V., Bergveld, H. J., Op Het Veld, J. H., Regtien, P. P., Danilov, D., Notten,
P. H., “Modeling battery behavior for accurate state-of-charge indication”, Journal
of the Electrochemical Society, Vol. 153, No. 11, nov 2006, page A2013, available
at: 10.1149/1.2335951

[66]Weiss, L. E., Sanderson, A. C., Neuman, C. P., “Dynamic visual servo
control of robots: An adaptive image-based approach”, in Proceedings -
IEEE International Conference on Robotics and Automation, Vol. 2. Institute
of Electrical and Electronics Engineers, 1985, pages 662–668, available at:
10.1109/ROBOT.1985.1087296

[67]Weiss, L. E., Sanderson, A. C., Neuman, C. P., “Dynamic Sensor-Based Control of
Robots with Visual Feedback”, IEEE Journal on Robotics and Automation, Vol. 3,
No. 5, oct 1987, pages 404–417, available at: 10.1109/JRA.1987.1087115

[68]Espiau, B., Chaumette, F., Rives, P., “A new approach to visual servoing in
robotics”, in Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 708 LNCS P,
No. 3, jun 1993, pages 106–136, available at: 10.1007/3-540-57132-9_8

[69]Sivčev, S., Rossi, M., Coleman, J., Dooly, G., Omerdić, E., Toal, D., “Fully
automatic visual servoing control for work-class marine intervention ROVs”,
Control Engineering Practice, Vol. 74, may 2018, pages 153–167, available at:
10.1016/j.conengprac.2018.03.005

[70]Lots, J.-F., Lane, D., Trucco, E., Chaumette, F., “A 2-D Visual Servoing Technique
for Underwater Vehicle Station Keeping”, IFAC Proceedings Volumes, Vol. 34,
No. 7, jul 2017, pages 143–148, available at: 10.1016/s1474-6670(17)35073-5

[71]Gao, J., Proctor, A. A., Shi, Y., Bradley, C., “Hierarchical Model Predictive
Image-Based Visual Servoing of Underwater Vehicles with Adaptive Neural
Network Dynamic Control”, IEEE Transactions on Cybernetics, Vol. 46, No. 10,
oct 2016, pages 2323–2334, available at: 10.1109/TCYB.2015.2475376

[72]Pisano, E. D., Zong, S., Hemminger, B. M., DeLuca, M., Johnston, R. E.,
Muller, K., Braeuning, M. P., Pizer, S. M., “Contrast Limited Adaptive Histogram
Equalization image processing to improve the detection of simulated spiculations
in dense mammograms”, Journal of Digital Imaging, Vol. 11, No. 4, 1998, page
193, available at: 10.1007/BF03178082

[73]Reza, A. M., “Realization of the Contrast Limited Adaptive Histogram Equalization
(CLAHE) for Real-Time Image Enhancement”, Journal of VLSI signal processing
systems for signal, image and video technology, Vol. 38, No. 1, 2004, pages 35–44,
available at: 10.1023/B:VLSI.0000028532.53893.82

[74]Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

125

10.1109/TPEL.2017.2757015
10.1109/OCEANS.2007.4449219
10.1149/1.2335951
10.1109/ROBOT.1985.1087296
10.1109/JRA.1987.1087115
10.1007/3-540-57132-9_8
10.1016/j.conengprac.2018.03.005
10.1016/s1474-6670(17)35073-5
10.1109/TCYB.2015.2475376
10.1007/BF03178082
10.1023/B:VLSI.0000028532.53893.82

Bibliography

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., “Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Distributed Systems”, mar
2016.

[75]Tzutalin, “Labelimg”, Free Software: MIT License, available at: https://github.
com/tzutalin/labelImg 2015.

[76]Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L. C., “MobileNetV2:
Inverted Residuals and Linear Bottlenecks”, in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, jan 2018, pages
4510–4520, available at: 10.1109/CVPR.2018.00474

[77]Girshick, R., “Fast R-CNN”, in Proceedings of the IEEE International Conference
on Computer Vision, Vol. 2015 Inter, apr 2015, pages 1440–1448, available at:
10.1109/ICCV.2015.169

[78]Redmon, J., Farhadi, A., “YOLO v.3: An Incremental Improvement”, Tech report,
2018, pages 1–6.

[79]Agrawal, P., Girshick, R., Malik, J., “Analyzing the performance of multilayer
neural networks for object recognition”, in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 8695 LNCS, No. PART 7. Springer, Cham, 2014, pages
329–344, available at: 10.1007/978-3-319-10584-0_22

[80]Rojas, R., “The Kalman filter”, The Mathematical Intelligencer, Vol. 1, No. 2,
1978, pages 90–92, available at: 10.1007/BF03023070

[81]Ting Goh, S., Reza Zekavat, S. A., Abdelkhalik, O., “An Introduction to
Kalman Filtering Implementation for Localization and Tracking Applications”, in
Handbook of Position Location. Wiley, jan 2019, pages 143–195, available at:
10.1002/9781119434610.ch5

[82]Pinto, J., Dias, P. S., Gonçalves, R., Marques, E., Gonçalves, G., Sousa, J. B.,
Pereira, F. L., “NEPTUS – A Framework to Support the Mission Life Cycle”, in
7th IFAC Conference on Manoeuvring and Control of Marine Craft, 2006.

[83]Pisinger, D., Ropke, S., “A general heuristic for vehicle routing problems”,
Computers and Operations Research, Vol. 34, No. 8, 2007, pages 2403–2435,
available at: 10.1016/j.cor.2005.09.012

[84]Berhan, E., Krömer, P., Kitaw, D., Abraham, A., Snášel, V., “Solving Stochastic
Vehicle Routing Problem with Real Simultaneous Pickup and Delivery Using
Differential Evolution”, Advances in Intelligent Systems and Computing, Vol. 237,
2014, pages 187–200, available at: 10.1007/978-3-319-01781-5

[85]Tuzun, D., Magnet, M. A., Burke, L. I., “Selection of vehicle routing heuristic using
neural networks”, pages 211–221, 1997.

[86]Gutierrez-Rodríguez, A. E., Conant-Pablos, S. E., Ortiz-Bayliss, J. C., Terashima-
Marín, H., “Selecting meta-heuristics for solving vehicle routing problems with
time windows via meta-learning”, Expert Systems with Applications, Vol. 118, No.
October, 2019, pages 470–481, available at: 10.1016/j.eswa.2018.10.036

[87]Ghesmoune, M., Lebbah, M., Azzag, H., “State-of-the-art on clustering data
streams”, Big Data Analytics, Vol. 1, No. 1, dec 2016, page 13, available at:

126

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
10.1109/CVPR.2018.00474
10.1109/ICCV.2015.169
10.1007/978-3-319-10584-0_22
10.1007/BF03023070
10.1002/9781119434610.ch5
10.1016/j.cor.2005.09.012
10.1007/978-3-319-01781-5
10.1016/j.eswa.2018.10.036

Bibliography

10.1186/s41044-016-0011-3
[88]Wong, K.-C., “A Short Survey on Data Clustering Algorithms”, in 2015 Second

International Conference on Soft Computing and Machine Intelligence (ISCMI),
2015, pages 64–68, available at: 10.1109/ISCMI.2015.10

[89]Jain, A. K., “Data clustering: 50 years beyond K-means”, Pattern Recognition
Letters, Vol. 31, 2009, pages 651–666, available at: 10.1016/j.patrec.2009.09.011

[90]Bair, E., “Semi-supervised clustering methods”, 2013, pages 1–28, available at:
10.1002/wics.1270

[91]Bradley, P. S., Bennett, K. P., Demiriz, A., “Constrained k-means clustering”,
Tech. Rep., 2000, available at: 10.1016/S0025-7753(14)70064-8

[92]Zhi, W., Wang, X., Qian, B., Butler, P., Ramakrishnan, N., Davidson, I., “Clus-
tering with Complex Constraints - Algorithms and Applications”, Proceedings of
the 27th AAAI Conference on Artificial Intelligence, July 14-18, 2013, Washington,
USA, 2013, pages 1056–1062.

[93]Basu, S., Banerjee, A., Mooney, R. J., “Active Semi-Supervision for Pairwise Con-
strained Clustering”, 2004, pages 333–344, available at: http://www.cs.utexas.edu/
{~}ml/papers/semi-sdm-04.pdf

[94]Hsu, Y.-C., Kira, Z., “Neural network-based clustering using pairwise constraints”,
2015, pages 1–12, available at: http://arxiv.org/abs/1511.06321

[95]Sandeep, D. N., Kumar, V., “Review on Clustering, Coverage and Connectivity in
Underwater Wireless Sensor Networks: A Communication Techniques Perspective”,
pages 11 176–11 199, available at: 10.1109/ACCESS.2017.2713640 2017.

[96]Storn, R., Price, K., “Differential Evolution – A Simple and Efficient Heuristic
for global Optimization over Continuous Spaces”, Journal of Global Optimization,
Vol. 11, No. 4, 1997, pages 341–359, available at: 10.1023/A:1008202821328

[97]Nearchou, A. C., Omirou, S. L., “Differential evolution for sequencing and
scheduling optimization”, Journal of Heuristics, Vol. 12, No. 6, dec 2006, pages
395–411, available at: 10.1007/10732-006-3750-x

[98]Onwubolu, G. C., Davendra, D., Differential evoluiton: A handbook
for global permutation-ased combinatorial optimization, 2009, available at:
10.1007/978-3-540-92151-6

[99]Kromer, P., Abraham, A., Snasel, V., Berhan, E., Kitaw, D., “On the differential
evolution for vehicle routing problem”, 2013 International Conference on Soft
Computing and Pattern Recognition (SoCPaR), 2013, pages 384–389, available at:
10.1109/SOCPAR.2013.7054163

[100]Mingyong, L., Erbao, C., “An improved differential evolution algorithm for vehicle
routing problem with simultaneous pickups and deliveries and time windows”,
Engineering Applications of Artificial Intelligence, Vol. 23, No. 2, 2010, pages
188–195, available at: 10.1016/j.engappai.2009.09.001

[101]Mezura-Montes, E., Velazquez-Reyes, J., Coello Coello, C., “Modified Differential
Evolution for Constrained Optimization”, IEEE International Conference on
Evolutionary Computation, No. 70771037, 2006, pages 25–32, available at:
10.1109/CEC.2006.1688286

[102]Müller, K., Vignaux, T., Lünsdorf, O., Scherfke, S., “SimPy Documentation”, 2018,
page 373, available at: https://simpy.readthedocs.io/en/latest/

[103]Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J. R.,
“A Classification of Hyper-heuristics Approaches”, Handbook of Metaheuristics,

127

10.1186/s41044-016-0011-3
10.1109/ISCMI.2015.10
10.1016/j.patrec.2009.09.011
10.1002/wics.1270
10.1016/S0025-7753(14)70064-8
http://www.cs.utexas.edu/{~}ml/papers/semi-sdm-04.pdf
http://www.cs.utexas.edu/{~}ml/papers/semi-sdm-04.pdf
http://arxiv.org/abs/1511.06321
10.1109/ACCESS.2017.2713640
10.1023/A:1008202821328
10.1007/10732-006-3750-x
10.1007/978-3-540-92151-6
10.1109/SOCPAR.2013.7054163
10.1016/j.engappai.2009.09.001
10.1109/CEC.2006.1688286
https://simpy.readthedocs.io/en/latest/

Bibliography

Vol. 57, 2010, pages 449–468, available at: doi:10.1007/978-1-4419-1665-5_15
[104]Cowling, P., Kendall, G., Soubeiga, E., “A Hyperheuristic Approach to Scheduling

a Sales Summit”. Springer, Berlin, Heidelberg, 2001, pages 176–190, available at:
10.1007/3-540-44629-X_11

[105]Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.,
“Hyper-Heuristics: An Emerging Direction in Modern Search Technology”, in
Handbook of Metaheuristics. Boston: Kluwer Academic Publishers, 2003, pages
457–474, available at: 10.1007/0-306-48056-5_16

[106]Chakhlevitch, K., Cowling, P., “Hyperheuristics: Recent developments”, Berlin,
Heidelberg, pages 3–29, available at: 10.1007/978-3-540-79438-7_1 2008.

[107]Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.,
“Hyper-heuristics: a survey of the state of the art”, Journal of the Operational
Research Society, Vol. 64, No. 12, dec 2013, pages 1695–1724, available at:
10.1057/jors.2013.71

[108]Pillay, N., Qu, R., “Assessing Hyper-Heuristic Performance”, Journal of the
Operational Research Society, Vol. 72, No. 11, nov 2021, pages 2503–2516, available
at: 10.1080/01605682.2020.1796538

[109]Ryser-Welch, P., Miller, J., “A review of hyper-heuristic frameworks”, 04 2014.
[110]Drake, J. H., Kheiri, A., Özcan, E., Burke, E. K., “Recent Advances in Selection

Hyper-heuristics”, European Journal of Operational Research, Vol. 285, No. 2, aug
2019, pages 405–428, available at: 10.1016/J.EJOR.2019.07.073

[111]Zhang, C., Zhao, Y., Leng, L., “A hyper-heuristic algorithm for time-dependent
green location routing problem with time windows”, IEEE Access, Vol. 8, 2020,
pages 83 092–83 104, available at: 10.1109/ACCESS.2020.2991411

[112]Burke, E., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S.,
Vazquez-Rodriguez, J., “HyFlex: A flexible framework for the design and
analysis of hyper-heuristics”, in Multidisciplinary International Schedul-
ing Conference (MISTA 2009), 2009, pages 790–797, available at: https:
//pdfs.semanticscholar.org/c456/64487c419c52fb72f77382f1c912478975a6.pdfhttp:
//www.mistaconference.org/2009/abstracts/790-797-112-A.pdf

[113]Asta, S., Ozcan, E., “An apprenticeship learning hyper-heuristic for vehicle routing
in HyFlex”, in IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational
Intelligence - EALS 2014: 2014 IEEE Symposium on Evolving and Autonomous
Learning Systems, Proceedings. IEEE, dec 2014, pages 65–72, available at:
10.1109/EALS.2014.7009505

[114]Pierreval, H., “Neural Network to Select Dynamic Scheduling Heuristics”, Journal
of Decision Systems, Vol. 2, No. 2, jan 1993, pages 173–190, available at:
10.1080/12460125.1993.10511572

[115]Ortiz-Bayliss, J. C., Terashima-Mar??n, H., Conant-Pablos, S. E., “Neural networks
to guide the selection of heuristics within constraint satisfaction problems”, in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Vol. 6718 LNCS, 2011, pages
250–259, available at: 10.1007/978-3-642-21587-2_27

[116]Tyasnurita, R., Ozcan, E., John, R., “Learning heuristic selection using a Time
Delay Neural Network for Open Vehicle Routing”, in 2017 IEEE Congress on
Evolutionary Computation, CEC 2017 - Proceedings. IEEE, jun 2017, pages
1474–1481, available at: 10.1109/CEC.2017.7969477

128

doi:10.1007/978-1-4419-1665-5_15
10.1007/3-540-44629-X_11
10.1007/0-306-48056-5_16
10.1007/978-3-540-79438-7_1
10.1057/jors.2013.71
10.1080/01605682.2020.1796538
10.1016/J.EJOR.2019.07.073
10.1109/ACCESS.2020.2991411
https://pdfs.semanticscholar.org/c456/64487c419c52fb72f77382f1c912478975a6.pdf http://www.mistaconference.org/2009/abstracts/790-797-112-A.pdf
https://pdfs.semanticscholar.org/c456/64487c419c52fb72f77382f1c912478975a6.pdf http://www.mistaconference.org/2009/abstracts/790-797-112-A.pdf
https://pdfs.semanticscholar.org/c456/64487c419c52fb72f77382f1c912478975a6.pdf http://www.mistaconference.org/2009/abstracts/790-797-112-A.pdf
10.1109/EALS.2014.7009505
10.1080/12460125.1993.10511572
10.1007/978-3-642-21587-2_27
10.1109/CEC.2017.7969477

Bibliography

[117]Maashi, M. S., “Multi-Objective Hyper-Heuristics”, in Heuristics and Hyper-
Heuristics - Principles and Applications, 2017, available at: 10.5772/intechopen.
69222

[118]Asta, S., Ozcan, E., Parkes, A. J., Ima Etaner-Uyar, A., “Generalizing Hyper-
heuristics via Apprenticeship Learning”, 2013, available at: http://cs.nott.ac.uk/
http://web.itu.edu.tr/http://cs.nott.ac.uk/{%}0Ahttp://web.itu.edu.tr/

[119]Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J. R., “A
classification of hyper-heuristic approaches: Revisited”, in International Series in
Operations Research and Management Science. Springer International Publishing
AG, 2019, Vol. 272, pages 453–477, available at: 10.1007/978-3-319-91086-4_14

[120]Sánchez-Díaz, X., Ortiz-Bayliss, J. C., Amaya, I., Cruz-Duarte, J. M., Conant-
Pablos, S. E., Terashima-Marin, H., “A feature-independent hyper-heuristic
approach for solving the knapsack problem”, Applied Sciences (Switzerland),
Vol. 11, No. 21, 2021, page 10209, available at: 10.3390/app112110209

[121]Kheiri, A., Mısır, M., Özcan, E., “Ensemble move acceptance in selection
hyper-heuristics”, in Communications in Computer and Information Science, Vol.
659, 2016, pages 21–29, available at: 10.1007/978-3-319-47217-1_3

[122]Drake, J. H., Özcan, E., Burke, E. K., “An improved choice function heuristic
selection for cross domain heuristic search”, in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 7492 LNCS, No. PART 2, 2012, pages 307–316, available at:
10.1007/978-3-642-32964-7_31

[123]Demeester, P., Bilgin, B., De Causmaecker, P., Van Den Berghe, G., “A
hyperheuristic approach to examination timetabling problems: Benchmarks and a
new problem from practice”, Journal of Scheduling, Vol. 15, No. 1, 2012, pages
83–103, available at: 10.1007/s10951-011-0258-5

[124]de Carvalho, V. R., Özcan, E., Sichman, J. S., “Comparative analysis of selection
hyper-heuristics for real-world multi-objective optimization problems”, Applied
Sciences (Switzerland), Vol. 11, No. 19, 2021, available at: 10.3390/app11199153

[125]de Santiago Júnior, V. A., Özcan, E., de Carvalho, V. R., “Hyper-Heuristics based
on Reinforcement Learning, Balanced Heuristic Selection and Group Decision
Acceptance”, Applied Soft Computing Journal, Vol. 97, 2020, available at:
10.1016/j.asoc.2020.106760

[126]Alanazi, F., Lehre, K. P., “Limits to learning in reinforcement learning
hyper-heuristics”, Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9595,
2016, pages 170–185, available at: 10.1007/978-3-319-30698-8_12

[127]Qin, W., Zhuang, Z., Huang, Z., Huang, H., “A novel reinforcement learning-based
hyper-heuristic for heterogeneous vehicle routing problem”, Computers and
Industrial Engineering, Vol. 156, No. March, jun 2021, page 107252, available at:
10.1016/j.cie.2021.107252

[128]Paolo, G., “Learning in Sparse Rewards settings through Quality-Diversity algo-
rithms”, PhD thesis, Sorbonne Université, 2022, available at: http://arxiv.org/
abs/2203.01027

[129]Kalender, M., Kheiri, A., Özcan, E., Burke, E. K., “A greedy gradient-simulated
annealing selection hyper-heuristic”, Soft Computing, Vol. 17, No. 12, 2013, pages
2279–2292, available at: 10.1007/s00500-013-1096-5

129

10.5772/intechopen.69222
10.5772/intechopen.69222
http://cs.nott.ac.uk/ http://web.itu.edu.tr/ http://cs.nott.ac.uk/{%}0Ahttp://web.itu.edu.tr/
http://cs.nott.ac.uk/ http://web.itu.edu.tr/ http://cs.nott.ac.uk/{%}0Ahttp://web.itu.edu.tr/
10.1007/978-3-319-91086-4_14
10.3390/app112110209
10.1007/978-3-319-47217-1_3
10.1007/978-3-642-32964-7_31
10.1007/s10951-011-0258-5
10.3390/app11199153
10.1016/j.asoc.2020.106760
10.1007/978-3-319-30698-8_12
10.1016/j.cie.2021.107252
http://arxiv.org/abs/2203.01027
http://arxiv.org/abs/2203.01027
10.1007/s00500-013-1096-5

Acronyms

API Application Programming Interface 24
CMA Cumulative Moving Average 84
DE Differential Evolution 59
GPS Global Positioning System 16
HIL Hardware–In–the–Loop 15
IMU Inertial Measurement Unit 16
IR Infra-Red 17
JSON JavaScript Object Notation 77
PCB printed circuit board 21
RGB Red-Green-Blue 17
ROS Robot Operating System 22
ROV Remotely Operated underwater Vehicle 29
RTK Real-Time Kinematic 16
SSE Sum of Squared Error 68
UASN Underwater Acoustic Sensor Network 12
UDP User Datagram Protocol 77
VIL Vehicle–In–the–Loop 15

130

Acronyms

131

List of Figures

1.1. subCULTron heterogeneous marine robot swarm concept illustration high-
lighting interactions between different agent types.2

1.2. Agents of the subCULTron artificial ecosystem on display in Venice.8
1.3. subCULTron swarm agents in outdoor testbed pool (left) and in realistic

conditions in the Venice Arsenale (right).9

2.1. The aPad platform and four aMussel underwater sensor nodes.14
2.2. Final version of the aPad platform ready for deployment on-site (left) and

an aPad fully loaded with four docked aMussels (right).16
2.3. X-shaped thruster configuration present on the aPad, enabling omnidirec-

tional motion in the horizontal plane, [59].16
2.4. Final setup of the Microsoft Kinect sensor sideways within a watertight

tube, mounted on top of the aPad platform with a motorised pan mechanism.17
2.5. aPad-mounted docking mechanism comparison, initial design (left) and fi-

nal design (right). .18
2.6. The aMussel underwater robot and sensor node. Note the inductive charg-

ing coils on the narrow neck below the top cap segment.20
2.7. Wireless charging set present on each aMussel and aPad agent.22
2.8. System software and communication structure - simulated aMussel agents

and real aPad platforms. .23
2.9. aMussel battery discharge data in two different modes of operation (a).

aPad battery discharge scaled to operating range [16, 10.5]𝑉 (b).26
2.10. aMussel battery discharge data and implemented simulation model.27
2.11. aMussel battery charge data and implemented simulation model.28
2.12. Control structure for autonomous docking implemented on each aPad. . . .30
2.13. State machine representation of the high-level aPad controller running the

docking algorithm. .30
2.14. Surge speed curve used during autonomous docking. 𝑒𝑥 is the estimate of

the 𝑥 or horizontal image coordinate of the aMussel.31
2.15. Yaw speed curve used during autonomous docking. 𝑒𝑥 is the estimate of

the 𝑥 or horizontal image coordinate of the aMussel.32
2.16. aPad vehicle viewed from above with docks marked in indexing order. Ex-

ample angle 𝛼 highlighted for dock with index 1.33
2.17. Original analog camera image (left) and processed image with coordinate

system (right), showing a view of the experiment testbed with present IR
LED in aMussel cap. The green rectangle overlaid on the left camera image
represents a bounding box around the final derived position of the IR LED
used to control the aPad’s approach. .35

132

List of Figures

2.18. Two examples of aMussel cap detection - original images shown left and
processed images shown right. The green rectangle on the camera image
represents a bounding box around the derived position of the cap used to
control the aPad’s approach. .36

2.19. Detection (left) vs ground truth (right) mid-training example for the SSD
Mobilenet V2 model. .37

2.20. Difficult detection examples (output aMussel bounding boxes shown in
blue) which neural networks were extremely helpful in resolving - including
cases with larger distances, partial visibility, occlusion, wave splashes/par-
tial submersion, bad lighting and weather conditions, and sunlight glare. .38

2.21. Example of filter inputs and output during a single docking, with markers
denoting individual measurements where received, horizontal (above) and
vertical (below). .42

2.22. Top-down view of pool used for initial indoor experiments.44
2.23. Battery current and charging status of batteries A (a) and B (b).45
2.24. aPad with pan mechanism and Kinect sensor docking an aMussel (red cap,

left, partially submerged) during outdoor tests.45
2.25. Full run of one docking mission with phases and key points shown.46
2.26. Structured docking experiment at lake Jarun. Experimental environment

(left) and experiment in progress (right).47
2.27. Starting positions for docking attempts around an anchored aMussel as

envisioned (left) and marked as goalpoints in the Neptus C4I Framework
used for aPad mission supervision and control (right) [82].48

2.28. Structured docking experiment full mission trajectory. The blue circle
marker represents the position of the anchored aMussel.49

2.29. Offsets during the docking experiment. Five separate successful docking
attempt completions marked in red. .49

2.30. Wind speed and direction during the 2019 field trials, as collected by the
Malamocco weather station. The docking experiment taking place during
July 4th is shown in red. Note all other wind peaks occurred during night,
with a storm taking place the evening of July 3rd.50

2.31. On-site experiments in the Venice lagoon. The pontoon off which robots
were deployed (left) and field trials in progress (right).51

2.32. Full mission trajectory of the Venice docking experiment in challenging
conditions. .51

2.33. aMussel image offsets during the docking experiment in the field. Triangu-
lar markers denote where each separate docking attempt ended.52

2.34. Two examples of image processing on the aPad during docking experiments
in a realistic environment. From left to right: original image, hue thresh-
olding output, neural network detection output.53

3.1. Concept of the decision-making scenario within a long-term environmental
monitoring mission. .56

3.2. Proposed layers of control and decision-making algorithms in the system. .57
3.3. Example aPad routing solution using differential evolution.60
3.4. aPad movement energy trends over iterations of the differential evolution

algorithm. Energy is here given in abstract units.61

133

List of Figures

3.5. Clustering example with 120 aMussels split into 5 clusters, to be assigned
to 5 present aPads. .62

3.6. Clustering algorithm execution times over a large amount of generated
samples. .63

3.7. Combined clustering and differential evolution approach to aPad task allo-
cation. .64

3.8. Output of combined approach to aPad task allocation, aPads assigned to
clusters using differential evolution. Comparison of case with no current
(left) and current present (right). .64

3.9. Examples of aPad trajectories using each of the low-level heuristics from
the pool. .66

3.10. Distance cost plot for 500 experiment iterations performed on 5 aPads.
Includes 120 aMussels and all 5 low-level heuristics.69

3.11. Distance cost vs SSE plot for 500 experiment iterations on 5 aPads with
120 aMussels. Simple linear regression is applied to the data.70

3.12. Charging cost for all methods - all demand every aMussel be fully charged,
meaning charging costs are consistent across all instances.70

3.13. 500 time units long simulation of a 3 aPad and 15 aMussel pickup and
charging cycle, discharge and charge rate parameters both set to 0.5. . . .72

3.14. 300 time units of simulation of a 3 aPad and 15 aMussel pickup and charging
cycle, (dis)charge rate parameters both set to 0.5 - aMussels 1 and 3 shown
separately (left), with aMussel 3 uptime overlay (right).73

3.15. Google Earth image (Image data: c○2022 CNES/Airbus, Maxar Technolo-
gies, image acquired 24/3/2022) showing the Biograd na Moru experiment
area - pool and bay. .75

3.16. Five aPads performing initial communication and decision-making tests
on land (left). Two aPads performing decision-making experiment in pool
(right). .75

3.17. Flowchart of the 2018 experiment decision-making scenario.76
3.18. Messages exchanged during aPad decision-making in the 2018 proof-of-

concept communication-focused experiment.79
3.19. An experimental run with two aPads charging 10 aMussels in a small op-

erational area. Initial agent positions with aMussel battery states (top).
Final mission execution showing aMussel clustering (blue and magenta)
and aPad trajectories (bottom). .80

4.1. General hyper-heuristic framework. .82
4.2. Classification of hyper-heuristic approaches.83
4.3. Google Earth image (Image data: c○2022 CNES/Airbus, Maxar Technolo-

gies, image acquired 30/07/2022) showing the aMussels in the simulated
Venice experiment area. .89

4.4. Comparison of scores during experimental runs in baseline scenario using
only one heuristic, versus roulette wheel selection and random selection. . .89

4.5. Distribution of aMussel uptime in baseline scenario by agent ID in each of
the experimental runs. .90

134

List of Figures

4.6. Comparison of means of scores achieved by each heuristic in baseline sce-
nario using only one heuristic, versus roulette wheel selection and random
selection. Worst-performing heuristic shown in red, best-performing shown
in green. .90

4.7. Comparison of ranks (left) and differential percentage ranks (right)
achieved by each heuristic and roulette wheel selection in baseline scenario.91

4.8. Comparison of scores achieved (top) and total score ranking (bottom) for
baseline scenario. .92

4.9. Occurrence numbers of each heuristic in the roulette wheel selection (left)
and heuristic fitness (right) over time for baseline scenario.93

4.10. Comparison of scores during experimental runs in disturbance scenario us-
ing only one heuristic, versus roulette wheel selection and random selection.94

4.11. Distribution of aMussel uptime in disturbance scenario by agent ID in each
of the experimental runs. .94

4.12. Comparison of means of scores achieved by each heuristic in disturbance
scenario using only one heuristic, versus roulette wheel selection and ran-
dom selection. Worst-performing heuristic shown in red, best-performing
shown in green. .95

4.13. Comparison of ranks (left) and differential percentage ranks (right)
achieved by each heuristic and roulette wheel selection in disturbance sce-
nario. .95

4.14. Comparison of total scores achieved in the disturbance scenario.96
4.15. Total score ranking for disturbance scenario.97
4.16. Occurrence numbers of each heuristic in the roulette wheel selection (left)

and heuristic fitness (right) over time for disturbance scenario.97
4.17. Comparison of scores during experimental runs in late disturbance scenario

using only one heuristic, versus roulette wheel selection and random selection.98
4.18. Distribution of aMussel uptime in late disturbance scenario by agent ID in

each of the experimental runs. .98
4.19. Comparison of means of scores achieved by each heuristic in late distur-

bance scenario using only one heuristic, versus roulette wheel selection
and random selection. Worst-performing heuristic shown in red, best-
performing shown in green. .99

4.20. Comparison of ranks (left) and differential percentage ranks (right)
achieved by each heuristic and roulette wheel selection in late disturbance
scenario. .99

4.21. Comparison of total scores achieved in the late disturbance scenario.100
4.22. Total score ranking for late disturbance scenario.101
4.23. Occurrence numbers of each heuristic in the roulette wheel selection (left)

and heuristic fitness (right) over time for late disturbance scenario.101
4.24. Google Earth image (Image data: c○2022 CNES/Airbus, Maxar Technolo-

gies, image acquired 30/07/2022) showing the aMussels in the simulated
Venice experiment area. outlier aMussel shown in red.102

4.25. Comparison of scores during experimental runs in outlier scenario using
only one heuristic, versus roulette wheel selection and random selection. . .103

4.26. Distribution of aMussel uptime in outlier scenario by agent ID in each of
the experimental runs. .103

135

List of Figures

4.27. Comparison of means of scores achieved by each heuristic in outlier sce-
nario using only one heuristic, versus roulette wheel selection and random
selection. Worst-performing heuristic shown in red, best-performing shown
in green. .104

4.28. Comparison of ranks (left) and differential percentage ranks (right)
achieved by each heuristic and roulette wheel selection in outlier scenario. .104

4.29. Comparison of total scores achieved in the outlier scenario.105
4.30. Total score ranking for outlier scenario. .105
4.31. Occurrence numbers of each heuristic in the roulette wheel selection (left)

and heuristic fitness (right) over time for outlier scenario.106
4.32. Energy exchange scenario loop. .107
4.33. The two experimental areas: initial generated aMussel positions used in all

experiments, overlaid on map with satellite image.108
4.34. aPad autonomously carrying out decision-making experiment in pool (left).

Experiment outside pool, in nearby bay (right).109
4.35. Example mission replay screen showing aPad using the Greedy heuristic,

working in pool with 12 aMussels. .110
4.36. Number of currently active aMussels during the experiments.111
4.37. Comparison of scores in the VIL experiments using only one heuristic,

versus roulette wheel selection and random selection.112
4.38. Distribution of aMussel uptime in the VIL experiments by agent ID in each

of the experimental runs. .113
4.39. Comparison of means of scores achieved by each heuristic in the VIL exper-

iments using only one heuristic, versus roulette wheel selection and random
selection. Worst-performing heuristic shown in red, best-performing shown
in green. .113

4.40. Comparison of ranks (left) and differential percentage ranks (right)
achieved by each heuristic and roulette wheel selection in the VIL experi-
ments. .114

4.41. Comparison of total scores achieved in the VIL experiments.115
4.42. Total score ranking for the VIL experiments.115
4.43. Distribution of low-level heuristics selected by roulette wheel in the VIL

experiments. .116
4.44. Occurrence numbers of each heuristic in the roulette wheel selection (left)

and heuristic fitness (right) over time for the VIL experiments.116

136

List of Tables

2.1. Times to full aMussel battery discharge and charge.27
2.2. Regulator parameters .32
2.3. Comparison of frame counts with and without aMussels present.36
2.4. Frame count breakdown for aMussel detection algorithm.36
2.5. Comparison of mean average precision in single-class object detection and

single image frame processing time on on-board computer (bold is best,
italic is final choice). .39

4.1. Scores and ranking - Venice baseline simulation.91
4.2. Scores and ranking - Venice disturbance simulation.96
4.3. Scores and ranking - Venice late disturbance simulation.100
4.4. Scores and ranking - Venice outlier simulation.102
4.5. aMussel uptime, activity, and total aPad movement cost110
4.6. Scores and ranking - Biograd VIL experiment.114

137

Biography

Anja Babić was born on June 22, 1991 in Zagreb, Croatia. In 2014 she graduated from
the University of Zagreb, Faculty of Electrical Engineering and Computing (FER) with
a master thesis entitled "Autonomous Task Execution within NAO Robot Scouting Mis-
sion Framework". Since 2015 she has been a researcher and PhD student at FER and
a member of the Laboratory for Underwater Systems and Technologies (LABUST). In
2017 she was a visiting researcher at the Consiglio Nazionale delle Ricerche in Genoa,
Italy. She is a senior researcher in the project "Multifunctional Smart Buoys" and was
previously involved in EU H2020 projects subCULTron - Submarine Cultures Perform
Long-term Robotic Exploration of Unconventional Environmental Niches and H2020 EX-
CELLABUST. She participated in developing diver-focused sensing, data processing, and
underwater communication as part of the FP7 project CADDY – Cognitive Autonomous
Diving Buddy, as well as implementing tasks for a robot-assisted autism spectrum dis-
order diagnostic protocol using the humanoid robot NAO. Her research interests include
evolutionary and bio-inspired robotics, emergent behaviour, task allocation and schedul-
ing, and communication between both heterogeneous agents and members of a swarm,
as applied to marine robotic platforms. Since 2019 she has been the Chair of the IEEE
Oceanic Engineering Society Student Branch Chapter of the University of Zagreb.

138

List of publications (Anja Babić)

Journal papers
[1]Babić, A., Mandić, F., Mišković, N., “Development of visual servoing-based

autonomous docking capabilities in a heterogeneous swarm of marine robots”,
Applied Sciences (Switzerland), Vol. 10, No. 20, 2020, pages 1–26, available at:
10.3390/app10207124

[2]Babić, A., Lončar, I., Arbanas, B., Vasiljević, G., Petrović, T., Bogdan, S.,
Mišković, N., “A novel paradigm for underwater monitoring using mobile sensor
networks”, Sensors (Switzerland), Vol. 20, No. 16, aug 2020, pages 1–23, available at:
10.3390/s20164615

[3]Babić, A., Vasiljević, G., Mišković, N., “Vehicle-in-the-Loop Framework for Testing
Long-Term Autonomy in a Heterogeneous Marine Robot Swarm”, IEEE Robotics
and Automation Letters, Vol. 5, No. 3, jul 2020, pages 4439–4446, available at:
10.1109/LRA.2020.3000426

[4]Lončar, I., Babić, A., Arbanas, B., Vasiljević, G., Petrović, T., Bogdan, S.,
Mišković, N., “A Heterogeneous Robotic Swarm for Long-Term Monitoring of Marine
Environments”, Applied Sciences, Vol. 9, No. 7, apr 2019, page 1388, available at:
10.3390/app9071388

[5]Gomez Chavez, A., Ranieri, A., Chiarella, D., Zereik, E., Babić, A., Birk, A.,
“CADDY Underwater Stereo-Vision Dataset for Human–Robot Interaction (HRI) in
the Context of Diver Activities”, Journal of Marine Science and Engineering, Vol. 7,
No. 1, jan 2019, page 16, available at: 10.3390/jmse7010016

10.3390/app10207124
10.3390/s20164615
10.1109/LRA.2020.3000426
10.3390/app9071388
10.3390/jmse7010016

Conference papers
[1]Babić, A., Ferreira, F., Kapetanović, N., Mišković, N., Bibuli, M., Corrado, M.,

Ferretti, R., Odetti, A., Caccia, M., Aracri, S., De Pascalis, F., “Cooperative marine
litter detection and environmental monitoring using heterogeneous robotic agents”,
in OCEANS 2023 Limerick, 2023, accepted for publication.

[2]Ferreira, F., Babić, A., Oreč, M., Mišković, N., Motta, C., Ferretti, R., Odetti,
A., Aracri, S., Bruzzone, G., Caccia, M., Braga, F., Manfè, G., Lorenzetti, G.,
Scarpa, G., De Pascalis, F., “Heterogeneous marine robotic system for environmental
monitoring missions”, in 2023 IEEE Underwater Technology (UT), 2023, accepted
for publication.

[3]Babić, A., Oreč, M., Mišković, N., “Developing the concept of multifunctional smart
buoys”, OCEANS 2021: San Diego – Porto, sep 2021, pages 1–6, available at:
10.23919/OCEANS44145.2021.9705916

[4]Borković, G., Fabijanić, M., Magdalenić, M., Malobabić, A., Vuković, J., Zielinski,
I., Kapetanović, N., Kvasić, I., Babić, A., Mišković, N., “Underwater ROV Software
for Fish Cage Inspection”, in 2021 44th International Convention on Information,
Communication and Electronic Technology, MIPRO 2021 - Proceedings. IEEE, sep
2021, pages 1747–1752, available at: 10.23919/MIPRO52101.2021.9596823

[5]Babić, A., Mandić, F., Vasiljević, G., Mišković, N., “Autonomous docking and energy
sharing between two types of robotic agents”, IFAC-PapersOnLine, Vol. 51, No. 29,
2018, pages 406 - 411, 11th IFAC Conference on Control Applications in Marine
Systems, Robotics, and Vehicles CAMS 2018.

[6]Babić, A., Mišković, N., Vukić, Z., “Heuristics pool for hyper-heuristic
selection during task allocation in a heterogeneous swarm of marine robots”,
IFAC-PapersOnLine, Vol. 51, No. 29, jan 2018, pages 412–417, available at:
10.1016/j.ifacol.2018.09.452

[7]Thenius, R., Moser, D., Varughese, J. C., Kernbach, S., Kuksin, I., Kernbach, O.,
Kuksina, E., Mišković, N., Bogdan, S., Petrović, T., Babić, A., Boyer, F., Lebastard,
V., Bazeille, S., Ferrari, G. W., Donati, E., Pelliccia, R., Romano, D., van Vuuren,
G. J., Stefanini, C., Morgantin, M., Campo, A., Schmickl, T., “subCULTron -
Cultural development as a tool in underwater robotics”, in Communications in
Computer and Information Science, Vol. 732, 2018, pages 27–41, available at:
10.1007/978-3-319-90418-4_3

[8]Chavez, A. G., Mueller, C. A., Birk, A., Babić, A., Mišković, N., “Stereo-vision
based diver pose estimation using LSTM recurrent neural networks for AUV
navigation guidance”, in OCEANS 2017 - Aberdeen, Vol. 2017-Octob, 2017, pages
1–7, available at: 10.1109/OCEANSE.2017.8085020

[9]Babić, A., Jagodin, N., Kovačić, Z., “Autonomous task execution within NAO
robot scouting mission framework”, in 2017 European Conference on Mobile
Robots (ECMR). Paris, France: IEEE, sep 2017, pages 1–7, available at:
10.1109/ECMR.2017.8098705

[10]Babić, A., Lončar, I., Mišković, N., Vukić, Z., “Energy-efficient environmentally
adaptive consensus-based formation control with collision avoidance for multi-vehicle
systems”, IFAC-PapersOnLine, Vol. 49, No. 23, jan 2016, pages 361–366, available
at: 10.1016/j.ifacol.2016.10.431

[11]Mišković, N., Vukić, Z., Bogdan, S., Babić, A., “subSULTron: Submarine cultures
perform long-term robotic exploration of unconventional environmental niches”, in

10.23919/OCEANS44145.2021.9705916
10.23919/MIPRO52101.2021.9596823
10.1016/j.ifacol.2018.09.452
10.1007/978-3-319-90418-4_3
10.1109/OCEANSE.2017.8085020
10.1109/ECMR.2017.8098705
10.1016/j.ifacol.2016.10.431

Životopis

Proceedings of the 6th Conference on Marine Technology in memory of Academician
Zlatko Winkler. Rijeka, Croatia: 6th Conference on Marine Technology in memory of
Academician Zlatko Winkler, 2015, available at: http://bib.irb.hr/prikazi-rad?rad=
788247

[12]Petrić, F., Hrvatinić, K., Babić, A., Malovan, L., Miklić, D., Kovačić, Z., Cepanec,
M., Stošić, J., Šimleša, S., “Four tasks of a robot-assisted autism spectrum disorder
diagnostic protocol: First clinical tests”, in Proceedings of the 4th IEEE Global
Humanitarian Technology Conference, GHTC 2014. IEEE, oct 2014, pages 510–517,
available at: 10.1109/GHTC.2014.6970331

141

http://bib.irb.hr/prikazi-rad?rad=788247
http://bib.irb.hr/prikazi-rad?rad=788247
10.1109/GHTC.2014.6970331

Životopis

Anja Babić rođena je 22. lipnja 1991. u Zagrebu. 2014. godine diplomirala je na
Sveučilištu u Zagrebu, Fakultetu elektrotehnike i računarstva (FER) s diplomskim radom
pod naslovom „Autonomno izvršavanje zadataka u okviru izviđačke misije NAO rob-
ota“. Od 2015. istraživačica je i doktorandica na FER-u te članica Laboratorija za
podvodne sustave i tehnologije (LAPOST). Godine 2017. bila je gostujući istraživač
na Consiglio Nazionale delle Ricerche u Genovi, Italija. Viša je istraživačica na pro-
jektu “Multifunkcionalne pametne bove”, a prethodno je bila uključena u EU H2020
projekte subCULTron - Submarine Cultures Perform Long-term Robotic Exploration of
Unconventional Environmental Niches i H2020 EXCELLABUST. Sudjelovala je u razvoju
senzorskih sustava, obradi podataka i ostvarenju podvodne komunikacije usmjerenih na
ronioce u sklopu FP7 projekta CADDY – Cognitive Autonomous Diving Buddy, kao
i implementaciji zadataka za robotski potpomognuti dijagnostički protokol poremećaja
iz autističnog spektra pomoću humanoidnog robota NAO. Njezini istraživački interesi
uključuju evolucijsku i bio-inspiriranu robotiku, planiranje misija, dodjeljivanje i raspod-
jelu zadataka te komunikaciju između heterogenih agenata kao i članova roja, uz naglasak
na primjenu na morske robotske platforme. Od 2019. predsjednica je studentskog odjela
IEEE Oceanic Engineering Society Sveučilišta u Zagrebu.

142

	Introduction
	Thesis Contribution and Overview

	Heterogeneous marine swarm agents and interactions
	Introduction
	The aPad robotic agent type
	aPad guidance and control

	The aMussel robotic agent type
	Software architecture and simulation
	Software architecture
	Battery modelling and simulation

	Autonomous docking and energy exchange
	Docking algorithm
	Image processing
	IR-only intensity thresholding
	Hue-based thresholding
	Neural networks for object detection
	Tracking filter

	Experimental validation of autonomous docking
	Indoor pool experiments
	Initial outdoor experiments
	Structured docking experiment
	Challenging environment test

	Multi-robot task assignment and low-level heuristics
	Introduction
	Problem scenario and decision-making system structure
	aMussel partitioning and assignment
	Differential evolution
	Clustering
	Combined approach

	Performance indices and situational collection/redeployment strategies
	Discrete event simulation
	Decision-making proof-of-concept experiment

	High-level heuristics - hyper-heuristics
	Introduction
	Heuristic selection, scoring, and evaluation
	Performance evaluation

	Hyper-heuristic decision-making simulations
	Venice baseline simulation
	Thruster failure/disturbance one third through mission
	Thruster failure/disturbance halfway through mission
	Simulation with one outlier aMussel

	Hyper-heuristic vehicle-in-the-loop experiments
	Proof-of-concept experimental scenario
	Vehicle-in-the-loop experiment with roulette wheel selection

	Conclusion
	Bibliography
	Acronyms
	Biography
	Životopis

