
A geometric approach for generating feasible
configurations of robotic manipulators

Marić, Filip

Doctoral thesis / Disertacija

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:530971

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-07

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:530971
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:10723
https://dabar.srce.hr/islandora/object/fer:10723

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTING

INSTITUTE FOR AEROSPACE
STUDIES

Filip Marić

A Geometric Approach for Generating
Feasible Configurations of Robotic Manipulators

INTERNATIONAL DUAL DOCTORATE

Zagreb, 2023.

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTING

INSTITUTE FOR AEROSPACE
STUDIES

Filip Marić

A Geometric Approach for Generating
Feasible Configurations of Robotic Manipulators

INTERNATIONAL DUAL DOCTORATE

Supervisors: Associate Professor Jonathan Kelly, Academic Professor
Ivan Petrović

Zagreb, 2023.

FAKULTET ELEKTROTEHNIKE I
RAČUNARSTVA

INSTITUTE FOR AEROSPACE
STUDIES

Filip Marić

Geometrijski Pristup Generiranju Ostvarivih
Konfiguracija Robotskih Manipulatora

MEÐUNARODNI DVOJNI DOKTORAT ZNANOSTI

Mentori: izv. prof. dr. sc. Jonathan Kelly, akad. prof. dr. sc. Ivan Petrović

Zagreb, 2023.

Abstract

A Geometric Approach for Generating
Feasible Configurations of Robotic Manipulators

Filip Marić
Doctor of Philosophy

Graduate Department of Institute for Aerospace Studies
University of Toronto

2023

Most robotic manipulators, and especially those designed with autonomous operation in mind, consist of a

series of joints that rotate about a single axis, also known as revolute joints. These mechanisms give robotic

manipulators the degrees of freedom and versatility similar to that of the human arm, which they are de-

signed to outperform. However, this results in a geometry of motion or kinematics that makes all aspects of

robotic manipulation challenging from a computational perspective. A major part of this challenge lies in

the fact that computing joint configurations adhering to a specific set of constraints (i.e., gripper pose) is a

non-trivial problem. The procedure of finding feasible joint configurations and the mathematical problem

associated with it are known as inverse kinematics — a core part of motion planning, trajectory optimiza-

tion, calibration and other important challenges in successfully performing robotic manipulation. In recent

years, the overall decrease of computation time required to perceive and process environmental and pro-

prioceptive information has helped realize the potential of robotic manipulation in dynamic environments.

Concurrently, a new standard in manipulator design has emerged, where additional degrees of freedom are

added in order to increase their overall dexterity and capacity for motion. These two developments have

vastly increased the requirements for inverse kinematics algorithms, which are now expected to deal with

infinite solution spaces and difficult, nonlinear constraints. On the other hand, the addition of degrees of

freedom in recent robot designs has enabled algorithms to search for locally optimal configurations with

respect to some performance criteria in an infinitely large solution space. This property has motivated

approaches that leverage non-Euclidean geometries to replace conventional constraints and optimization

criteria, thereby overcoming computational bottlenecks and common failure modes. The contributions pre-

sented in this thesis propose three such approaches, that aim to develop newways of looking at the problems

associated with inverse kinematics through the use of geometric representations that are not widely utilized

in robotic manipulation.

ii

Prošireni sažetak

Geometrijski Pristup Generiranju Ostvarivih
Konfiguracija Robotskih Manipulatora

Filip Marić
Fakultet Elektrotehnike i Računarstva

Sveučilište u Zagrebu
2023

Većina robotskih manipulatora, a posebno onih dizajniranih za autonomno obavljanje zadataka, sastoji se od
niza zglobova koji se okreću oko jedne osi rotacije. Ovi mehanizmi omogućuju robotskim manipulatorima
stupnjeve slobode slične onima ljudske ruke, što je ujedno i cilj pri njihovom projektiranju. Međutim, ovi
mehanizmi rezultiraju geometrijom gibanja ili kinematikom, koja čini sve aspekte robotske manipulacije
izazovnima iz računske perspektive. Glavni dio ovog izazova leži u činjenici da je izračun konfiguracija
zglobova koje se pridržavaju određenog skupa ograničenja (npr. položaja izvršnog člana) netrivijalan prob-
lem. Postupak pronalaska izvedivih konfiguracija zglobova i matematički problem asociran s tim postup-
kom poznati su kao inverzna kinematika, te čine ključni dio planiranja kretanja, optimizacije putanje, kali-
bracije i drugih važnih izazova pri uspješnom izvođenju robotskemanipulacije. Nedavno smanjenje vremena
izračuna potrebnog za opažanje i obradu okolišnih i proprioceptivnih informacija pomoglo je ostvarenju po-
tencijala robotske manipulacije u dinamičnim okruženjima. Istodobno se postavlja novi standard u dizajnu
manipulatora koji uključuje dodavanje redundantnih stupnjeva slobode sa ciljem povećanja sposobnosti
kretanja. Ova su dva čimbenika uvelike povećala zahtjeve za algoritme inverzne kinematike, od kojih se
sada očekuje operacija pri beskonačnim prostorima rješenja i teškim, nelinearnim ograničenjima. S druge
strane, redundantni stupnjevi slobode omogućuju algoritmima potragu za lokalno optimalnim konfiguraci-
jama s obzirom na specifične kriterije izvedbe u beskonačno velikom prostoru rješenja. Ovo svojstvo je
motiviralo pristupe koji koriste neeuklidsku geometriju za svladavanje konvencionalnih ograničenja i kri-
terija optimizacije, čime se prevladavaju računska uska grla i razni uobičajeni problemi pri optimizaciji.
Doprinosi obrazloženi u ovoj disertaciji predlažu tri takva geometrijska pristupa. Njihov je cilj razvoj novih
načina gledanja na probleme povezane s inverznom kinematikom korištenjem geometrijskih prikaza koji
još nemaju široku upotrebu u robotskoj manipulaciji.

Poglavlje 1 (Uvod) počinje analizom značaja manipulacije za žive organizme, predstavljajući tehnološki
i civilizacijski napredak te povijest pojednostavljivanja i smanjivanja napora uloženih u zadatke manip-
ulacije. Razumijevajući robotsku manipulaciju kao logičan sljedeći korak u civilizacijskom razvoju, dan
je kratak pregled njezine primjene i povijesti. Slijedi diskusija o tome zašto i kako izazovi u autonomnoj
robotici zahtijevaju razvoj robusnih i učinkovitih tehnika inverzne kinematike. Konacno, priložen je pregled
strukture doktorskog rada, zajedno s kratkim opisima sadržaja svakog poglavlja.

Poglavlje 2 (Matematičke osnove) uvodi matematičke koncepte koji služe kao temelji za opisivanje
ključnih problema kojima se bave doprinosi disertacije. Poglavlje počinje uvodom u diferencijalnu ge-
ometriju, utvrđujući temeljne koncepte vezane uz Riemannove mnogostrukosti i Liejeve grupe. Zatim slijedi
opis posebne ortogonalne (SO) i posebne euklidske (SE) grupe i uvod u temeljne koncepte koji se odnose na
geometriju udaljenosti. Na kraju je priložen pregled osnova grafskih neuronskih mreža (GNN).

Poglavlje 3 (Kinematika robota) opisuje temeljne koncepte i algoritme koji se odnose na karakter-
iziranje kretanja i konfiguracija robota, s fokusom na robotske manipulatore koji imaju strukturu kine-
matičkog lanca. Prvi odjeljak ovog poglavlja uvodi koncept prostora konfiguracije i prostora zadataka koji

iii

su ključni za definiranje kinematičkih modela. Nakon toga slijedi detaljan opis najsuvremenijih algoritama
direktne i inverzne kinematike za robotske manipulatore.

Poglavlje 4 (Geometrijski osviješteno izbjegavanje singulariteta) predstavlja mjeru blizine kine-
matičkih singulariteta svojstvenih robotskim manipulatorima, izvedenu iz Riemannove geometrije, što je
ujedno i prvi doprinos ove disertacije. Nakon uvođenja koncepta kinematičkog singulariteta, poglavlje nas-
tavlja s izvođenjem i analizom geometrijskog indeksa singulariteta. Za predloženi indeks se pokazuje da je
robustan na situacije u kojima konvencionalni indeksi ne uspijevaju detektirati singularitet.

Poglavlje 5 (Inverzna kinematika utemeljenja na geometriji udaljenosti) predstavlja drugi dopri-
nos: metodu za rješavanje problema inverzne kinematike korištenjem karakterizacije temeljene na udal-
jenostima, koja omogućuje korištenje novih metoda optimizacije za pronalaženje rješenja u ograničenim
radnim prostorima. Prvo se uvodi geometrijski postupak za konstruiranje modela inverznog kinematičkog
problema temeljenog na udaljenosti. Zatim se prostor Euklidskih udaljenosti koji opisuje robota parametrira
s Riemannovom mnogostrukosti Gramovih matrica fiksnog ranga, što omogućuje korištenje Riemannove
metode optimizacije. Završni dio ovog poglavlja pokazuje da kombinacija predloženog optimizacijskog algo-
ritma i modela temeljenog na udaljenosti postiže veće stope uspjeha od konvencionalnih pristupa inverzne
kinematike na problemima koji uključuju značajna ograničenja radnog prostora.

Poglavlje 6 (Generativna grafska inverznakinematika) predstavljametodu za projektiranje naučenih
modela temeljenih na grafskim neuronskim mrežama za rješavanje problema inverzne kinematike široke
klase robotskih manipulatora. Prvo je prikazan pregled generativne arhitekture naučenog modela temel-
jenog na grafskim neuronskim mrežama. Zatim se struktura podataka grafa problema izvodi na temelju
kinematičkog modela koji proizlazi iz geometrije udaljenosti. Konačno opisuje se proces učenja i evaluacije
modela pri korištenju.

Poglavlje 7 (Zaključci i budući rad) zaključuje rad, sažima doprinose i postignuća te prikazuje moguće
buduće pravce istraživanja.

iv

Epigraph

Let no man ignorant of geometry enter here.

Inscription above Plato’s Academy,
Athens.

v

Acknowledgements

The research presented in this thesis has been made possible by the efforts and support of my family and
friends. I feel indebted to all of you for being in my corner in both the worst and best of times.

Everyone in STARS Lab, past and present, thank you for making me feel welcome when I first visited
the lab and continuing to do so every time I came back. Trevor, Oliver, Brandon, Valentin, Emmet, Lee and
Olivier, thank you for all the formative discussions, intramural football and the late night debates in the
Green Room. Special thanks to Matt — our joint research has been the most rewarding experience of my
PhD and I truly feel fortunate to have worked with you. All my colleagues in LAMOR, especially Antea,
Petki and Marta, thank you for all the laughs and everyday hijinks in C9-09 that made work a joy. Jura
and Luka, thank you for the research discussions, outings, hundreds of football games and everything else.
I would like to thank my DEC committee for providing valuable feedback throughout the program and
helping me present my work in the best possible way.

Finally, I want to thankmy supervisors, Ivan Petrović and Jonathan Kelly, for believing inme andmaking
all of this happen. Organizing a joint PhD involved plenty of effort and flexibility on both sides and I hope
I have made your efforts worthwhile. Hvala!

vi

Contents

1 Introduction 1

2 Mathematical Foundations5
2.1 Differential Geometry. .5
2.2 Spatial Geometry. .10
2.3 Distance Geometry. .13
2.4 Geometric Deep Learning. .15

3 Robot Kinematics 19
3.1 Robot Structure. .19
3.2 Forward Kinematics. .21
3.3 Inverse Kinematics. .23

4 Geometry-Aware Singularity Avoidance26
4.1 Motivation and Related Work. .26
4.2 The Manipulability Ellipsoid. .27
4.3 Singularities. .28
4.4 A Geometry-Aware Singularity Index. .30
4.5 Singularity Avoidance. .34
4.6 Experimental Results. .36
4.7 Summary and Conclusions. .41

5 Distance-Geometric Inverse Kinematics43
5.1 Motivation and Related Work. .43
5.2 Euclidean Distance Matrix Completion. .45
5.3 Distance-Geometric Inverse Kinematics. .48
5.4 Algorithm. .56
5.5 Experimental Results. .58
5.6 Summary and Conclusions. .64

6 Generative Graphical Inverse Kinematics70
6.1 Motivation and Related Work. .70
6.2 Distance-Geometric Graph Representation of Robots. .72
6.3 Learning to Generate Inverse Kinematics Solutions. .73
6.4 E(n) Equivariant Network Architecture. .75
6.5 Experimental Results. .76
6.6 Summary and Conclusions. .78

vii

7 Conclusion 80
7.1 Summary of Contributions. .80
7.2 Future Work. .81

Appendices 84

A Learning 85
A.1 Unsupervised Learning. .85
A.2 Supervised learning. .86
A.3 Deep Generative Models. .86

Bibliography 88

viii

Notation

a : Symbols in this font are real scalars.
a : Symbols in this font are real column vectors.
A : Symbols in this font are real matrices.

N (µ,R) : Normally distributed with mean µ and covarianceR.
E[·] : The expectation operator.
F−→a : A reference frame in three dimensions.
(·)∧ : An operator associated with the Lie algebra for rotations and poses. It produces a

matrix from a column vector.
(·)∨ : The inverse operation of (·)∧.

I : The identity matrix.
0 : The zero matrix.

pb
a : Point b (denoted by the superscript) and expressed in F−→a (denoted by the subscript).

Rab : The 3× 3 rotation matrix that transforms vectors from F−→b to F−→a: pa = Rabpb.
Tab : The 4×4 transformation matrix that transforms homogeneous points fromF−→b toF−→a:

pa = Tabpb.

ix

Chapter 1

Introduction

One is not idle because one is absorbed. There
is both visible and invisible labor. To
contemplate is to toil, to think is to do. The
crossed arms work, the clasped hands act. The
eyes upturned to Heaven are an act of creation.

Victor Hugo

As a starting point for discussing the central problem in this thesis, the reader is invited to consider that
a significant portion of actions performed by living organisms involve some form of manipulation. Studies
of ancient cytoskeletons suggest that flagella1 evolved before eukaryotes, showing that interaction with the
environment had developed prior to the last common ancestor of all plants, animals, and fungi. Further up
the evolutionary tree, familiar insects such as bees, wasps and spiders have inspired countless research and
engineering efforts through their evolved ability to construct intricate dwellings and traps for their prey.
Perhaps even more impressive is the ants’ ability to individually or collectively carry and manipulate objects
whose weight and size is a multiple of their own. Chimpanzees, our close relatives, have demonstrated the
ability of using rudimentary tools to hunt for insects, and gorillas have been observed using sticks tomeasure
the depth of rivers and streams. Eventually, anatomically modern humans specialized in moving or altering
their environments to create shelter, cultivate food and hunt wildlife on unprecedented scales. The humans’
ability to efficientlymanipulate resulted in a surplus of resources, triggering a positive-feedback loop leading
to the first sedentary societies, increase in population and the rise of modern civilization [Harari,2014].

While considering manipulation through an evolutionary lens gives a notion of its importance, it leaves
the meaning of the word vague and context-dependent. In order to discuss the contributions proposed in
this thesis, a working definition of what it means to manipulate is required. For example, an etymological
definition states that manipulation refers to activities performed by hands. This definition is clearly too
narrow when considering that the action itself may be performed by tools and other types of end-effectors
(i.e., pincers, tentacles). The review byMason[2018] discusses a broader definition of manipulation obtained
by observing its ends and means — stating that manipulation is any action that takes place when an agent
moves things other than itself through selective contact. However, even this may be too specific considering
that contact may not always be necessary—a conductor may trigger motions of an entire orchestra just by
moving her arms. Ultimately, we follow [Mason,2018] in borrowing a suitable definition from the NASA
robotics and autonomous systems roadmap effort [Miller,2015], where manipulation is defined as “making
an intentional change to the environment or the objects being manipulated”. In this thesis, we explore
manipulation from the perspective of motion and posture associated with the intentional change taking

1a slender threadlike structure, especially a microscopic appendage that enables many protozoa, bacteria, etc. to swim.

1

2 Chapter 1. Introduction

place, without specifying the means by which it is performed 2. This general viewpoint allows us to develop
tools and perspectives that can be utilized for more than one specific type of manipulation task.

Remark: Robotic Manipulators

Figure 1.1: Left: Depiction of serfdom in medival Europe, c. 1310. Right: a scene from the 1920 play ’Rossum’s
Universal Robots’ by Karel Čapek.

Regardless of the means, it is well-established that difficult and repetitive manipulation tasks have
historically been left to and performed by the lowest rungs of society. In exchange for essential re-
sources such as food and shelter, medieval central European peasantry would perform menial field
work, known as “rabota” in old Slavonic. It is exactly this word that forms the root of the word robot,
introduced in the 1920 play “Rossum’s Universal Robots” [Čapek,1923], written by the Czech novelist
and playwright Karel Čapek (1880-1938). Inspired by the Yiddish legend of the Golem and Mary Shel-
ley’s Frankenstein, the robots in Karel’s play were servant workers created from organic matter, who
resembled humans in every aspect other than the lack of a soul. For better or worse, it seems unlikely
that robots such as those imagined by Karel are to become reality in the near future, as their devel-
opment is barred by the limits of technology and ethical considerations. Despite this, generations of
scientists, inventors and engineers have worked on creating robotic manipulators —machines designed
to facilitate, and eventually eliminate, the modern-day “rabota”.

Robotic manipulators were first utilized in controlled industrial environments, where they performed
simple, repetitive tasks by following predefined joint trajectories [Mandfield,1989]. For example, large in-
dustrial manipulators have completely replaced human workers in performing some of the most arduous
tasks in the automotive industry, such as spray painting, welding and transporting parts. An advantage
of industrial manipulators over traditional heavy machinery lies in their capacity for being reprogrammed
to adapt to changes in task specifications, at higher cost efficiency in comparison to bespoke machines.
Trained operators can manually reprogram these large robots, which generally involves changing key joint
configurations (e.g., grasping or home states) and connecting them with an appropriate trajectory of joint
velocities or accelerations computed offline [Sciavicco and Siciliano,2012]. The fixed nature of these trajec-
tories result in additional workplace safety considerations for human workers, which are usually addressed
by placing robots in closed-off environments such as cages. Consequently, the overall research and engi-
neering efforts in robotic manipulation have been focused on expanding the adaptation capabilities of these
robots in order to enable safe cooperation and working with humans, with the ultimate goal of making them
fully autonomous.

Most robotic manipulators, and especially those designed with autonomous operation in mind, consist
of a series of joints that rotate about a single axis (i.e., revolute) joints. These mechanisms give robotic
manipulators the degrees of freedom and versatility similar to that of the human arm, which they are de-
signed to outperform. However, this results in a geometry of motion or kinematics that makes all aspects of
robotic manipulation challenging from a computational perspective [Lynch and Park,2017]. A major part

2e.g., whether the subject is moving freely or in contact with an object

3

of this challenge lies in the fact that computing joint configurations adhering to a specific set of constraints
(i.e., gripper pose) is a non-trivial problem. The procedure of finding feasible joint configurations and the
mathematical problem associated with it are known as inverse kinematics. Inverse kinematics is a core part
of motion planning, trajectory optimization, calibration and other important challenges in successfully per-
forming robotic manipulation. In recent years, the overall decrease of computation time required to perceive
and process environmental and proprioceptive information has helped realize the potential of robotic ma-
nipulation in dynamic environments. Concurrently, a new standard in manipulator design has emerged,
where additional degrees of freedom are added in order to increase their overall dexterity and capacity for
motion. These two developments have vastly increased the requirements for inverse kinematics algorithms,
which were now expected to deal with infinite solution spaces and difficult workspace constraints. For
example, robots performing manipulation tasks alongside humans must now account for the time-varying
geometry of the environment and agent locations in order to avoid collisions and other accidents. Moreover,
the motion of these robots needs to be predictable and safe, while also ensuring there exists a capacity for
rapid changes in trajectory by avoiding kinematic singularities.

The requirement of real-time environmental awareness and reactivity has introduced additional non-
linear and time-varying constraints and criteria for inverse kinematics algoithms to deal with, making the
problem substantially more difficult. On the other hand, the addition of degrees of freedom in recent robot
designs has enabled algorithms to search for locally optimal configurations with respect to some perfor-
mance criteria in an infinitely large solution space. This property in particular hasmotivated approaches that
leverage non-Euclidean geometries to replace conventional constraints and optimization criteria, thereby
overcoming computational bottlenecks and common failure modes. The non-Euclidean nature of data in
robotics can often be leveraged to improve performance of various algorithms. For example, it has been
shown that using a Kalman filter that accounts for the Lie group geometry of rotation matrices improves
the quality of state estimates for rigid object motion [Solà et al.,2020]. As a more relevant example, Lie
group characterizations of rigid transformations expose an elegant procedure for constructing kinematic
models without the need for bespoke parameterizations [Murray et al.,1994]. It has even been shown that
assigning a Riemannian geometry to learned motion policies in tree-structured manipulation tasks allows
for their seamless combination and transfer to the configuration space [Cheng et al.,2018]. The contribu-
tions presented in this thesis propose three such approaches, that aim to develop new ways of looking at
the problems associated with finding feasible configurations (i.e., solving inverse kinematics) through the
use of geometric representations that are not widely utilized in robotic manipulation.

Structure and Contributions

This dissertation iswrittenwith the goal of describing the proposed contributions in a (largely) self-contained
manner, assuming the reader possess elementary knowledge of linear algebra and calculus. Chapter2pro-
vides an introduction to the mathematical concepts that serve as foundations for describing the core prob-
lems that the contributions proposed in this thesis address. Concepts related to characterizing robot motion
and configurations are introduced in Chapter3, where conventional methods for deriving mathematical
models of robot kinematics are described. Crucially, this chapter also formally defines and categorizes in-
verse kinematics—the problem of finding feasible configurations or configuration changes, that serves as a
thread connecting all proposed contributions.

The first contribution of this thesis is proposed in Chapter4, where we derive an index for maintaining
numerical stability in optimization formulations of inverse kinematics problems. This index relies on Rie-
mannian manfiolds to give a geometric interpretation of numerical stability that helps avoid failure modes
characteristic of conventional approaches. The theme of geometric interpretations is continued in the sec-
ond contribution proposed in Chapter5. We derive an alternative kinematic model applicable to a large

4 Chapter 1. Introduction

class of robotic manipulators using distance geometry, as opposed to the conventionally used joint angles.
Using this model, we are able to define inverse kinematics as low-rank distance matrix completion, allow-
ing the use of Riemannian optimization to outperform standard inverse kinematics approaches in highly
constrained settings. Finally, in Chapter6, we leverage a graphical description of our distance-geometric
robot kinematics model to develop a learned generalizable inverse kinematics solver based on graph neural
networks. Moreover, we use a generative variational autoencoder architecture to model the entire solution
set of a given inverse kinematics problem as a probability distribution.

Remark: Contributions
The three main contributions proposed in this thesis can be formally summarized as follows:

• Ameasure of proximity to kinematic singularities inherent to robotic manipulators, derived from
Riemannian geometry;

• A method for solving the inverse kinematics problem through a distance-based characteriza-
tion that enables the use of novel optimization methods for finding solutions in constrained
workspaces; and

• A method for designing learned models based on graph neural networks for solving the inverse
kinematics problem for a wide class of robotic manipulators.

Chapter 2

Mathematical Foundations

The geometry of the place was all wrong. One
could not be sure that the sea and the ground
were horizontal.

H.P. Lovecraft

This chapter provides an overview the mathematical material required to derive and understand the
contributions of the thesis. The first section gives an introduction to the theory of differential geometry,
which forms the basis for the novel geometric approaches described in later chapters. The second section re-
views spatial geometry that lies at the core of rigid-body kinematics used in modeling the motion of robotic
manipulators. The third section introduces methods for reasoning about spatial configurations using dis-
tances and describes the distance geometry problem. Finally, the fourth section discusses essential concepts
in deep learning that are relevant to the final contribution.

2.1 Differential Geometry

Differential geometry is the mathematical discipline that studies the geometric properties of differentiable
curves and surfaces, otherwise known as differentiable manifolds. In this thesis, we study and employ man-
ifolds that are smooth, meaning that they are infinitely differentiable at all points. Informally, an important
property of smooth manifolds as topological spaces is that they locally (i.e., within the neighbourhood of
each point) ‘look like’ a Euclidean space. An often-cited example of a manifold is the 2-sphere, which re-
sembles a plane from the perspective of a surface-dwelling observer.

2.1.1 Differentiable and Smooth Manifolds

Analysis on manifolds is analogous in some ways to navigation over the surface of the Earth (an oblate
spheroid) and uses similar notions such as charts and atlases, examples of which are shown in Fig.2.1.

Definition 1 (Chart and Atlas). A chart on the d-dimensional manifoldM is a diffeomorphic mapping

ϕ : U → Ũ from an open set U ⊂ M to an open set Ũ ⊆ Rd
. A Ck

-atlas ofM is a family of charts

(ϕi)i=1,··· ,N with ϕi : Ui → Ũi such that

• For each point Σ ∈M there exists i ∈ 1, · · · , N such that Σ ∈ Ui,

5

6 Chapter 2. Mathematical Foundations

Figure 2.1: Visualization of charts ϕi and ϕj on a d-dimensional manifold M. Note that ϕij = ϕi ◦ ϕ−1
j and ϕji =

ϕj ◦ ϕ−1
i .

• For each pair i, j ∈ 1, . . . , N where Ui ∩ Uj ≠ ∅, the composition ϕi ◦ ϕ−1
j : ϕj (Ui ∩ Uj) → Rd

belongs to the class of differentiability Ck
.

Defining a chart over a (sub-)space allows one to locally ‘navigate’ such a space as if it were Euclidean.
This allows us to formally define a d-dimensional differentiable manifoldM of class Ck as a set with at
least one Ck-atlas (ϕi)i=1,··· ,N , where ϕi : Ui → Ũi, Ũi ⊆ Rd. Crucially, this differentiable structure
enables computation of derivatives of curves defined on the manifold itself. Using this definition, we can
also formally define smooth manifolds.

Definition 2 (Smooth Manifold). A d-dimensional smooth manifoldM is a set with at least one C∞
-

atlas (ϕi)i=1,··· ,N , where ϕi : Ui → Ũi, Ũi ⊆ Rd
. In other words, a smooth manifold is a differentiable

manifold of class C∞
.

In this thesis we employ a variety of smooth manifolds to represent sets describing the structure and prop-
erties of robotic manipulators, allowing us to perform calculus in a geometrically appropriate manner.

Tangent Vectors and the Tangent Space

Informally, a tangent vector v at some point Σ on the manifold (Fig.2.2) can be thought of as the velocity

along a curve passing through that point 1. There may be an infinite number of curves with identical
velocities (i.e., tangent vectors) at a point on the manifold, which can be disambiguated by defining a formal
equivalence between them. Specifically, two curves γ1, γ2 : t ∈ [−1, 1] →M with γ1(0) = γ2(0) = Σ ∈
M are said to be equivalent at 0 if and only if d

dt (ϕ ◦ γ1) = d
dt (ϕ ◦ γ2) at 0 for a chart ϕ defined on Σ.

Figure 2.2: An example of a tangent vector v belonging to a tangent space TΣM at Σ on the manifold M.

1Thinking in terms of velocities of time-parameterized curves makes the concepts in this section more intuitive. In general, curve
parameterizations do not need to carry any physical meaning.

2.1. Differential Geometry 7

A tangent vector is formally defined as an equivalence class of curves at a given point on the mani-
fold.

Definition 3 (Tangent vector). A tangent vector v ofM at Σ ∈ M is an equivalence class of curves

initialized at Σ.

Note that tangent vectors are by definition independent of the particular chart used to define the equivalence
class of curves. The set of all tangent vectors to all curves at a given point spans a d-dimensional subspace,
known as a tangent space, that approximatesM to the first order.

Definition 4 (Tangent Space). The tangent space ofM at Σ, denoted by TΣM, is the set of all tangent

vectors at Σ.

Unlike curves in Euclidean space, the vectors tangent to curves on manifolds do not necessarily share a
global frame of reference, and are only meaningful in the context of the particular point on the manifold
they are associated with.

Geodesics

A smooth manifold may be equipped with an affine connection that joins nearby tangent spaces, enabling the
differentiation of tangent vectors with respect to parameterized curves on the manifold. The existence of
an affine connection allows for the parallel transport of tangent vectors along curves such that the vectors
remain parallel with respect to the connection. Crucially, this property makes it possible to find curves,
known as geodesics, that generalize the notion of straight lines to differentiable manifolds. Geodesics are of

Figure 2.3: The red curve on the manifold M is known as a geodesic, as its tangent vetors are parallel with respect to
the affine connection.

special interest because they may2 also define the shortest path between two points on the manifold, much
like straight lines do in Euclidean space.

Exponential and Logarithmic Maps

Let Σ be a point on the manifold and v ∈ TΣM. It can be shown that there exists one and only one
geodesic γ(Σ,v)(t), which is a curve γ on the manifold starting atΣ with the direction γ̇(0) = v. Under the
assumption that the manifold is geodesically complete

3, the vector v can be mapped to a unique point on the
manifold reached after unit time t = 1 by the geodesic γ(Σ,v)(t). This mapping is known as the exponential
map

ExpΣ : TΣM→M . (2.1)
2Going the "long way round" on a great circle between two points on a sphere is a geodesic but not the shortest path between the

points.
3The property where any geodesic on the manifold can be followed indefinitely. For example, a 2-sphere is geodesically complete,

whereas a punctured plane R2 ∖ {0} is not.

8 Chapter 2. Mathematical Foundations

Figure 2.4: The exponential map maps a tangent space vector v ∈ TΣM to Λ = ExpΣv.

In addition, we may also define an inverse mapping, known as the logarithmic map

LogΣ :M→ TΣM (2.2)

that takes a point on the manifold to a tangent vector v ∈ TΣM corresponding to a geodesic that reaches
that point in a unit time t = 1 starting from the point Σ ∈ M. The logarithmic map need not be unique,
since there may be multiple geodesics reaching a given point on a manifold (e.g., geodesics connecting
antipodal points on a 2-sphere.)

Remark: Notation
The exponential and logarithmic maps ExpΣ and LogΣ correspond to the matrix functions exp and
log in some groups. However, this is not always the case (e.g., in Chapter4) and thus the notation
enforces this distinction.

2.1.2 Riemannian Manifolds

Deriving a variety of geometric concepts (e.g., length of a curve) on a smooth manifold requires a particular
type of inner product, known as a Riemannian metric, to be defined on its tangent space. Manifolds equipped
with such a metric are known as Riemannian manifolds.

Definition 5 (Riemannian Manifold [Lee,2018]) . A Riemannian manifoldM is a smooth manifold

equipped with a Riemannian metric, that is, a positive-definite inner product ⟨v1,v2⟩Σ on the tangent

space TΣM at each point Σ ∈M that varies smoothly from point to point.

Notably, every smooth manifold carries multiple Riemannian metrics, which allow the assignment of a
notion of magnitude to the velocity along curves.

Length

A Riemannian metric naturally gives rise to a norm ∥v∥Σ =
√
⟨v,v⟩Σ : TΣM → R. It follows that we

can compute the length of a curve γ(t) on the manifold by integrating the norm of its tangent vectors

L(γ) =
∫ 1

0

∥γ̇(t)∥γ(t)dt =
∫ 1

0

⟨γ̇(t), γ̇(t)⟩
1
2

γ(t)dt . (2.3)

This is analogous to integrating velocities in order to compute the total length of a path through Euclidean
space.

2.1. Differential Geometry 9

Riemannian Distance

The ability to compute the lengths of curves on smooth manifolds also opens the possibility of defining a
measure of distance. Intuitively, the distance between two points Σ,Λ ∈ M is simply the length of the
shortest curve connecting them (e.g., a straight line in Euclidean space)

dist(Σ,Λ) = min
γ(0)=Σ,γ(1)=Λ

L(γ) .

On smoothmanifolds, this is exactly the length of the geodesic with these elements as endpoints, also known
as the Riemannian distance.

The fundamental theorem of Riemannian geometry states that all Riemannian manifolds admit a Levi-
Cvita affine connection, where all geodesics γ are constant velocity curves (i.e., ∇γ̇ γ̇ = 0). Therefore, a
geodesic connecting γ(0) = Σ and γ(1) = Λ on a manifold may be uniquely defined by a tangent vector
γ̇(0) = v ∈ TΣM. This gives us the Riemannian distance

dist(Σ,Λ) =

∫ 1

0

∥γ̇(t)∥γ(t)dt =
∫ 1

0

∥γ̇(0)∥γ(0)dt = ∥v∥Σ, (2.4)

where the norm ∥·∥Σ is derived from the Riemannianmetric and exactlymatches the lenght of the geodesic 4.
Note that Riemannian manifolds are not neccesarily geodesically complete, in which case the exponential
map only locally approximates the manifold near Σ. Consequently, it cannot be assumed that the Rieman-
nian distance in Eq. (2.4) is differentiable with respect to Λ for all Riemannian manifolds.

2.1.3 Matrix Lie Groups

Spatial transforms used to describe rigid-body motions are commonly represented as elements of several
key Matrix Lie groups.

Definition 6 (Matrix Lie group). A matrix Lie group is a differentiable manifoldM with an operation ·
that satisfies the four group axioms:

• Closure: (Σ ·Λ) ∈M ∀Σ, Λ ∈M

• Associativity: (Σ ·Λ) ·Υ = Σ · (Λ ·Υ) ∀Σ, Λ, Υ ∈M

• Identity: ∃ I ∈M : Σ · I = I ·Σ = Σ ∀Σ ∈M

• Invertibility: ∀Σ ∃Σ−1 : Σ ·Σ−1 = Σ−1 ·Σ = I

Each matrix Lie group has an associated Lie algebra; a vector space whose elements are identified with
vectors in Rm, where m is the number of degrees of freedom of the differentiable manifoldM.

Definition 7 (Lie algebra). The tangent space at the identity TIM of the Lie groupM is known as the

Lie algebra m ≜ TIM.

A member of the tangent space at any element in the group may be transformed to the tangent space at the
identity element using a linear map known as the adjoint. The resulting Lie algebra elements can then be
exactly converted to elements of the Lie group using the exponential map Exp : m→M. The structure of
the tangent space of multiplicative Lie groups (e.g., rotation matrices) is revealed by the identity

Σ−1Σ̇ = − ˙Σ−1Σ , (2.5)
4Intuitively, moving at a constant velocity for a unit time traces a line with a lenght equal to that velocity.

10 Chapter 2. Mathematical Foundations

which follows from taking the time derivative of the invertability property of groups.

2.2 Spatial Geometry

The position and orientation of a rigid body is defined using at least two coordinate frames, such as those
shown in Fig.2.5. Following the naming convention in [Lynch and Park,2017], the space frame F−→s is
attached to a stationary reference point in the operating area and serves as a reference frame. The body

frame F−→b is stationary relative to the rigid body and it usually coincides with some important point, such
as the center of mass. In robotics applications it is generally assumed both frames are right-handed.

Figure 2.5: The space and body coordinate frames. The vectors x̂∗, ŷ∗ , ẑ∗ of each frame form the basis (e∗
1 , e

∗
2 , e

∗
3)

of the frames denoted by the superscripts s and b.

Any point p in F−→b can be expressed in F−→s using the linear identity

ps =
[
x̂b
s ŷb

s ẑbs

]
︸ ︷︷ ︸

Rsb

pb + pb
s , (2.6)

where x̂b
s, ŷ

b
s, ẑ

b
s are the axes of F−→b expressed in F−→s, as denoted by the subscript. Together with the trans-

lation vector pb
s that represents the position of the origin of F−→b, the 3× 3 rotation matrix Rsb completes a

full description of the pose (i.e., position and orientation) of F−→b relative to F−→s.

Remark: Notation
In the remainder of this thesis, when the frame or point label is not relevant, the related subscript
and/or superscript will be dropped. For example, in Eq. (2.6), ps and pb have no superscript, implying
that they refer to the same point. On the other hand, the superscript in pb

s refers to the root of the
coordinate frame F−→b, with the subscript denoting that it is expressed in F−→s.

From Eq. (2.6) it follows that vectors in a third coordinate frame F−→c defined in F−→b can be expressed in
F−→s using the translation and rotation matrices obtained using a pair of linear identities

pc
s = Rsbp

c
b + pb

s ,

Rsc = Rsb

[
x̂c
b ŷc

b ẑcb

]
︸ ︷︷ ︸

Rbc

. (2.7)

Generally, any pair (R,p) can represent both the pose of a coordinate frame in space and an arbitrary spatial
transformation of points expressed in that frame to a parent frame. Moreover, any pair (R,p) also admits

2.2. Spatial Geometry 11

a matrix representation, whereby Eq. (2.7) can be compactly written as[
Rsc pc

s

0⊺ 1

]
︸ ︷︷ ︸

Tsc

=

[
Rsb pb

s

0⊺ 1

]
︸ ︷︷ ︸

Tsb

[
Rbc pc

b

0⊺ 1

]
︸ ︷︷ ︸

Tbc

, (2.8)

where Tbc,Tsb,Tsc are known as homogeneous transformation matrices. This representation is often used
in robotics due to its convenient properties.

2.2.1 Rotations

Rotation matrices are elements of the special orthogonal group SO(3), a matrix Lie group defined as

SO(3) =
{
R ∈ R3×3| R⊺ R = I, det (R) = 1

}
, (2.9)

with the standard matrix product as the group operation. The time derivative of the group invertability
property in Eq. (2.5) for rotations shows that the tangent space of SO(3) consists of matrices with a skew
symmetric structure

ω∧ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (2.10)

associated with the vector space of angular velocitiesω ∈ R3 via the linear ∧ (wedge) operator. The tangent
space at the identity elementR = I is also the Lie algebra so(3) ≜ TISO(3) associated with SO(3).

Exponential Map

Generalized so(3) Lie algebra elements are identified with rotation vectors ϕ ≜ ωt, associated with rotations
achieved by moving at an angular velocity ω for a time t. From Eq. (2.5) it follows that ω∧ = R−1Ṙ =

− ˙R−1R. By solving the differential equation Ṙ = Rω∧, we arrive at the mapping

R(ϕ) = Exp(ϕ) = exp
(
ϕ∧) = ∞∑

n=0

ϕ∧n 1

n!
∈ SO(3) , (2.11)

which is the surjective exponential map Exp : so(3) → SO(3) of Lie algebra elements to the manifold of
rotation matrices, whereby the standard matrix exponential denoted by exp.

Alternatively, the rotation vector ϕ ≜ ŝθ can be parameterized as a rotation by an angle θ ∈ R about
an axis ŝ =

{
ŝ ∈ R3| ∥ŝ∥ = 1

}
. The exponential map in Eq. (2.11) then simplifies to

R(θ, ŝ) = Exp(θŝ) = I+ sin θŝ∧ + (1− cos θ)(ŝ∧)
2 ∈ SO(3) , (2.12)

which is also known as Rodrigues’ rotation formula. This angle-axis parameterization of rotations is often
used in robotics due to its relative simplicity and interpretability.

Logarithmic Map

For a rotation matrix generated by rotating about some axis by an angle θ ∈ [0, π), the associated rotation
vector can be retrieved using the logarithmic map,

ϕ∧ = Log(R)
∧
=

R− R⊺

2 sin θ
, (2.13)

12 Chapter 2. Mathematical Foundations

where the angle θ is obtained by taking

θ = arccos
tr (R)− 1

2
. (2.14)

Note that the logarithmic map is not an inverse of the exponential map for angles larger than π, as it will
not return a rotation vector representing the minimal rotation to the identity.

2.2.2 Transforms and Twists

Homogeneous transformation matrices or transforms are elements of the Special Euclidean Group SE(3), a
matrix Lie group defined as

SE(3) =

{[
R p

0⊺ 1

]
∈ R4×4

∣∣∣∣∣R ∈ SO(3),p ∈ R3

}
. (2.15)

The properties of SE(3) are derived by combining properties of the Euclidean element p with those of
SO(3) special orthogonal group. Observing the time derivative identity in Eq. (2.5) for this Lie group, it can
be shown that the tangent space of SE(3) consists of matrices with a fixed structure

ξ̇
∧
=

[
ω∧ v − ω × p

0⊺ 0

]
, (2.16)

also known as twists. Twists identify with the vector space of generalized velocities ξ̇ =
[
ω ⊺ ρ̇⊺

]⊺
∈ R6

through the linear ∧ operator 5. The tangent space at the identity element T = I4 is also the Lie algebra
se(3) ≜ TISE(3) associated with SE(3).

Exponential Map

Lie algebra elements ξ∧ ∈ se(3) are identified with exponential coordinates ξ ≜
[
ϕ⊺ ρ⊺

]⊺
. Interpreting

these vectors as representations of transforms resulting from movement at a constant generalized velocity
ξ̇, we arrive at

T = Exp(ξ) =

[
Exp(ϕ) Jl(ϕ)ρ

0⊺ 1

]
∈ SE(3) (2.17)

which is the surjective exponential map Exp : se(3) → SE(3) of Lie algebra elements to the manifold of
homogeneous transformation matrices. Note that Jl is the SO(3) left-Jacobian matrix

Jl(ϕ) =

(
I3 +

1− cos θ

θ2
ŝ∧ +

θ − sin θ

θ3
(ŝ∧)

2
)

, (2.18)

where the axis ŝ and angle θ correspond to the rotation vector ϕ.
The Mozzi-Chasels theorem states that any transform may be parameterized as a rotation about and

translation along a screw axis

S =

[
ŝ

−ŝ× q+ hŝ

]
, (2.19)

at position q with a direction R and pitch h [Selig,2005]. Analogously to the angle-axis parameterization
of rotations, exponential coordinates may also be parameterized with ξ ≜ Sθ representing a screw motion

5Note that ρ̇ = v − ω × p corresponds to the velocity of a point at the space frame origin on an infinitely large moving body,
expressed in the space frame. Further, ω is the angular velocity expressed in the space frame.

2.3. Distance Geometry 13

by an angle θ about this axis. The exponential map in Eq. (2.17) is then expressed as

T(θ,S) = Exp(Sθ) =

[
Exp(ŝθ) Jl(ϕ)(−ŝ× q+ hŝ)

0⊺ 1

]
. (2.20)

This identity will be important when modeling degrees of freedom of robotic mechanisms.

Logarithmic Map

For θ ∈ [0, π), exponential coordinates ξ can be recovered using the logarithmic map

ξ∧ = Log(T)
∧
=

[
ϕ∧ Jl

−1(ϕ)p

0⊺ 0

]
, (2.21)

where ϕ∧ is computed via Eq. (2.13) and Eq. (2.14).

Adjoint

Control and estimation applications often require exponential coordinates to be represented in different
frames. This equates to transporting tangent space vectors to a different point on the manifold using the
adjoint operator. For elements of SE(3) this is a linear operation

Ad (T) =

[
R 0

p∧R R

]
∈ R6×6 (2.22)

that transforms exponential coordinates ξ to a frame T

ξa = Ad (Tab) ξb .

This identity can also be used to transform generalized velocities.

Linear and Angular Velocities

In some cases, it is necessary to transform twists ξ̇ into the more intuitive angular and linear velocitiesω,v.
From Eq. (2.16) it follows that these velocities are related in the space frame F−→s via the identity

[
ω

v

]
=

[
I3 03×3

p∧ I3

]−1

ξ̇ . (2.23)

where t is the position of the body frame F−→b origin. This transformation is useful in cases where velocities
are defined by an external source for applications such as teleoperation or control.

2.3 Distance Geometry

The theory of distance geometry plays an important role in the development of computational methods
for analyzing problems defined using inter-point distances [Liberti et al.,2014]. This elegant theoretical
framework is often applied to solve a diverse set of problems spanning computational chemistry [Havel,
2002], signal processing [Ding et al.,2010], and acoustics [Dokmanic et al.,2015]. Liberti et al. [Liberti
et al.,2014] present a detailed taxonomy of distance geometry problems, which can be collectively stated as
follows:

14 Chapter 2. Mathematical Foundations

Problem 1 (Distance Geometry Problem). Given an integer K > 0, a set of vertices V , and a simple

undirected graphG = (V,E)whose edges {u, v} ∈ E (where u, v ∈ V) are assigned nonnegative weights

{u, v} 7→ du,v ∈ R+ ,

find a function p : V → RK
such that the Euclidean distances between pairs match the assigned weights

∀ {u, v} ∈ E , ∥p(u)− p(v)∥ = du,v. (2.24)

The function p : V → RK is also known as a realization of the graph G. Any realization p of G maps all
the vertices in V to a collection of points P ∈ R|V |×K , where each row is the position pu = p(u) ∈ RK of
the point corresponding to vertex u ∈ V .

In some cases, we may wish to reduce the number of possible realizations by constraining a subset of
inter-point distances (i.e., edge weights) to some interval. Consequently, we can extend Problem1such that
the edges in E are weighted by positive intervals, resulting in the more general interval distance geometry

problem [Liberti et al.,2014]:

Problem 2 (Interval Distance Geometry Problem). Given an integer K > 0 and a simple undirected

graph G = (V,E) whose edges {u, v} ∈ E are weighted by intervals

{u, v} 7→ [d−u,v, d
+
u,v] ⊆ R+,

find a realization in RK
such that Euclidean distances between pairs belong to the edge intervals

∀ {u, v} ∈ E , ∥p(u)− p(v)∥ ∈ [d−u,v, d
+
u,v]. (2.25)

Note that for all e = {u, v} ∈ E, the notation for Problem2supports unconstrained or missing distances
(d−e = 0, d+e →∞), as well as the equality constraints found in Problem1(d−e = d+e).

In this thesis, we refer to both Problem1and2as the DGP, where the specific formulation can be inferred
from the presence or absence of distance intervals on the edge weights ofG. If a realization that satisfies an
instance of theDGP exists, the corresponding collection of pointsP can be arbitrarily translated, rotated, and
reflected such that the distance constraints still hold [Dokmanic et al.,2015]. This defines the equivalence
class [P] of Eq. (5.8). Additionally, there may exist a set (finite or infinite) of equivalence classes [P] that
correspond to distinct solutions to Problem1or2— a distinction crucial for the contribution proposed
in Chapter5.

2.3.1 Euclidean Distance Matrices

Figure 2.6: A visualization of how the Euclidean distance matrix (EDM) is constructed for a set of four points {p}41.
Note that the identity in Eq. (2.27) populates the EDM with squared distances, as it is linear in the Gram matrix, but
quadratic in positions.

2.4. Geometric Deep Learning 15

Consider a realization of a graphG, obtained by solving Problem1. By arranging the resulting points in a
matrixP = [p0,p1, . . . ,pN−1]

T ∈ RN×K , all interpoint distances du,v can be determined via the Euclidean
norm:

du,v = ∥pu − pv∥ .

Inner products xu,v ≜ pu (pv)
⊺ can be arranged into a Gram matrix X ≜ PPT, which belongs to the set

of N × N symmetric positive semidefinite matrices SN+ . Elements of the Gram matrix can conveniently
express squared interpoint distances

d2u,v = xu,u − 2xu,v + xv,v , (2.26)

and the full set of squared interpoint distances in Eq. (2.26) can be efficiently calculated using the matrix
identity [

d2u,v
]
= K(X) = diag(X)1T + 1diag(X)

T − 2X, (2.27)

where diag(X) is the vector formed by the main diagonal of the Gram matrix [Dokmanic et al.,2015], and
1 is a column vector of ones. The resulting matrix D = K(X) is known as a Euclidean Distance Matrix

(EDM). We use K (X) to denote the linear operator mapping X toD as defined by Eq. (2.27).

Recovering Points

Consider the problem of recovering the original collection of points P from squared inter-point distances
in the matrix D. Necessary and sufficient conditions for a matrix to be an EDM can be found in [Sippl and
Scheraga,1986]. If D is an EDM, a Gram matrix that satisfies Eq. (2.27) can be recovered by taking

X = −1

2
JDJ, (2.28)

where J = I − 1
N 11T is the so-called geometric centering matrix [Dokmanic et al.,2015]. Once X has

been recovered, a collection of points P̂ ∈ RN×K can be obtained through the eigenvalue decomposition
X = UΛUT by taking the first K eigenvalues λi

6:

P̂T =
[
diag

√
λ0,
√
λ1, . . . ,

√
λK−1,0K×N−K

]
UT. (2.29)

While the squared distances of points in P̂ recovered using this procedure match those defined inD exactly,
they are in general not equal to the originalP. This is due to the fact that inter-point distances are preserved
under rigid transformations. In order to recover the absolute positions of the points, at least K points,
known as anchors, need to have their positions defined a priori. These anchors are used to formulate the
orthogonal Procrustes problem [Dokmanic et al.,2015], whose solution is the rotation (or reflection) R ∈
O(K) and translation p ∈ RK that transform the positions of anchors in P̂ to their predefined positions.
This transformation can then be applied to all the points in P̂ to yield the desired set of points P.

2.4 Geometric Deep Learning

Deep learning is a subset of machine learning where multiple connected layers of data representations are
built in an automated manner. Most deep learning models are based on artificial neural networks (ANNs),
whose parameters are modified according to some performance criteria, resulting in better data representa-
tions for a given task. Owing to themajority of input data being high dimensional at first glance (e.g., images,
point clouds), estimating parameters of deep learning models presents a significant challenge. Moreover,

6Assuming the recovered realization is K-dimensional, only the first K eigenvalues are nonzero.

16 Chapter 2. Mathematical Foundations

most tasks based in the physical world induce regularities in data that drastically reduce their dimensional-
ity. The concept of geometric deep learning [Bronstein et al.,2017] refers to the endavor of exposing such
regularities through a set of common geometric principles. These principles can be used to incorporate
prior physical knowledge into neural architectures and provide a principled and unified way for construct-
ing models.

This section will provide a brief overview of deep learning concepts pertaining to the final contribution
presented in this doctoral thesis, where we use a generative model to obtain a distribution over inverse
kinematics solutions. Further, graph neural networks (GNNs) described in this section are representative of
the geometric deep learning paradigm, and are used to imbue our IK architecture with relational inductive
biases characteristic of geometric problems.

2.4.1 Feedforward Neural Networks

Neural networks are mathematical models composed of connected artificial neurons. Each artificial neuron
takes a sum of multiple inputs scaled by weights together with a bias term, which is then passed through a
nonlinear activation function to produce an output. Neurons are typically composed into layers that map an
input vector x ∈ RNx on to a latent representation

z = f(x) = ϕ(Wx+ b) ,

whereW ∈ RNz×Nx is the matrix of weights, b ∈ RNz are the bias terms and ϕ is the activation function.

Layers of neurons are typically composed in series such that the vectorized outputs

zi+1 = f i(z) = ϕi(Wizi + bi) , (2.30)

of each neuron in the previous layer have directed connections to each neuron in the subsequent layer, form-
ing an acyclic computation graph. This architecture is known as a feedforward neural network ormultilayer

perceptron (MLP), which parameterizes a model composed of L layers of neurons

y = NN(x;α) = f1 ◦ f2 ◦ · · · ◦ fL , (2.31)

whose outputs y are determined by parametersα, where ◦ denotes a composition operation f ◦h ≜ f(h(·)).
The overall number of layers L is also known as the depth, while the number of neurons in a given layer is
its width. The universal approximation theorem for neural networks states that every continuous function
can be approximated arbitrarily closely with just one hidden layer (i.e., L = 3).

2.4.2 Learning

Training or learning of a neural network involves changing the weightsW and biasesb after each data point
is processed, with the goal of reducing the error of the output compared to the expected result. The learning
error is expressed via a loss function L, which makes it possible to formulate learning as a numerical opti-
mization problem. Crucially, a neural network may be trained efficiently using variants of gradient descent,
where the gradient of the loss with respect to the weights and biases is computed using the backpropagation
algorithm. Learning over large amounts of data is made tractable by using stochastic gradient descent algo-
rithms that use a gradient estimation based on a subset of the available data. A distinction is made between
supervised and unsupervised learning, which is explained in more detail in SectionA.1and SectionA.2.

2.4. Geometric Deep Learning 17

2.4.3 Graph Neural Networks

Neural networks that operate on graphs instead of vectors, and structure their computations accordingly,
are known as graph neural networks (GNNs). The relational inductive biases induced by the specific archi-
tectural assumptions of such networks have shown to result in better generalization compared to classical
feedforward neural networks described in Section2.4.1.

Remark: Graph Networks
In discussing GNN architectures, this dissertation adopts the formalism of graph networks introduced
byBattaglia et al.[2018b]. This framework provides the theory and notation required to describe a
wide variety of GNN architectures, including the EGNN architecture used in Chapter6.

Attributes

vi
ek

<latexit sha1_base64="4ton1cC0/WpHTbJYOP5RCFkc+ww=">AAAB83icbVDLSsNAFL3xWeur6tLNYBG6KokIuiy4cVnBPqAJZTK9aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIphh2WiET1Q6pRcIkdw43AfqqQxqHAXji9K/zeEyrNE/loZikGMR1LHnFGjZV8P6ZmEkY5zofTYa3uNt0FyDrxSlKHEu1h7csfJSyLURomqNYDz01NkFNlOBM4r/qZxpSyKR3jwFJJY9RBvsg8J5dWGZEoUfZJQxbq742cxlrP4tBOFhn1qleI/3mDzES3Qc5lmhmUbHkoygQxCSkKICOukBkxs4QyxW1WwiZUUWZsTVVbgrf65XXSvWp6btN7uK63GmUdFTiHC2iABzfQgntoQwcYpPAMr/DmZM6L8+58LEc3nHLnDP7A+fwBXXGRzQ==</latexit><latexit sha1_base64="4ton1cC0/WpHTbJYOP5RCFkc+ww=">AAAB83icbVDLSsNAFL3xWeur6tLNYBG6KokIuiy4cVnBPqAJZTK9aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIphh2WiET1Q6pRcIkdw43AfqqQxqHAXji9K/zeEyrNE/loZikGMR1LHnFGjZV8P6ZmEkY5zofTYa3uNt0FyDrxSlKHEu1h7csfJSyLURomqNYDz01NkFNlOBM4r/qZxpSyKR3jwFJJY9RBvsg8J5dWGZEoUfZJQxbq742cxlrP4tBOFhn1qleI/3mDzES3Qc5lmhmUbHkoygQxCSkKICOukBkxs4QyxW1WwiZUUWZsTVVbgrf65XXSvWp6btN7uK63GmUdFTiHC2iABzfQgntoQwcYpPAMr/DmZM6L8+58LEc3nHLnDP7A+fwBXXGRzQ==</latexit><latexit sha1_base64="4ton1cC0/WpHTbJYOP5RCFkc+ww=">AAAB83icbVDLSsNAFL3xWeur6tLNYBG6KokIuiy4cVnBPqAJZTK9aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIphh2WiET1Q6pRcIkdw43AfqqQxqHAXji9K/zeEyrNE/loZikGMR1LHnFGjZV8P6ZmEkY5zofTYa3uNt0FyDrxSlKHEu1h7csfJSyLURomqNYDz01NkFNlOBM4r/qZxpSyKR3jwFJJY9RBvsg8J5dWGZEoUfZJQxbq742cxlrP4tBOFhn1qleI/3mDzES3Qc5lmhmUbHkoygQxCSkKICOukBkxs4QyxW1WwiZUUWZsTVVbgrf65XXSvWp6btN7uK63GmUdFTiHC2iABzfQgntoQwcYpPAMr/DmZM6L8+58LEc3nHLnDP7A+fwBXXGRzQ==</latexit><latexit sha1_base64="4ton1cC0/WpHTbJYOP5RCFkc+ww=">AAAB83icbVDLSsNAFL3xWeur6tLNYBG6KokIuiy4cVnBPqAJZTK9aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIphh2WiET1Q6pRcIkdw43AfqqQxqHAXji9K/zeEyrNE/loZikGMR1LHnFGjZV8P6ZmEkY5zofTYa3uNt0FyDrxSlKHEu1h7csfJSyLURomqNYDz01NkFNlOBM4r/qZxpSyKR3jwFJJY9RBvsg8J5dWGZEoUfZJQxbq742cxlrP4tBOFhn1qleI/3mDzES3Qc5lmhmUbHkoygQxCSkKICOukBkxs4QyxW1WwiZUUWZsTVVbgrf65XXSvWp6btN7uK63GmUdFTiHC2iABzfQgntoQwcYpPAMr/DmZM6L8+58LEc3nHLnDP7A+fwBXXGRzQ==</latexit>

u

vsk vrk

u

vi

ek

Figure 2.7: Visualization of the graph network formalism, image curtesy of Battaglia et al..

The working definition of graph in this thesis is therefore (unless otherwise specified), a directed,
attributed graph with a global attribute. In this terminology, a node is denoted as vi, an edge as ek , and
the global attributes as u. Further, sk and rk to indicate the indices of the sender and receiver nodes
(see below), respectively, for edge k.

Graph neural networks require the data to be structured as a graph defined by the tuple G = (u, V, E)

The vector u is a global attribute containing data that is somehow representative of the graph globally. The
set V = {vi}Nv

1 is the set of nodes (of cardinality Nv), where each vector vi is an attribute associated with
that node. The set E = {(ek, rk, sk)}Ne

1 is the set of edges (of cardinality Ne), where each vector ek is the
attribute of an edge, rk is the index of the receiver node, and sk is the index of the sender node. The GNN
modifies input graphs using the generalized propagation equations

e′k = NNe (ek,vrk ,vsk ,u)

v′
i = NNv (ē′i,vi,u)

u′ = NNu (ē′, v̄′,u)

ē′i = ρe→v (E′
i)

ē′ = ρe→u (E′)

v̄′ = ρv→u (V ′)

(2.32)

where feedforward neural networks NNe,NNv,NNu and aggregation operations ρe→v, ρe→u, ρv→u (e.g.,
summation, maximum, minimum) update the node, edge and global attributes as shown in Algorithm1.
Note that E′

i = {(e′k, rk, sk)}rk=i, k=1:Ne , V ′ = {v′
i}i=1:Nv , and E′ =

⋃
i E

′
i = {(e′k, rk, sk)}k=1:Ne

are sets of all or neighbouring nodes and edges used in particular attribute updates. The resulting updated
node, edge and global attributes form the graph G′ = (E′, V ′,u′), which now contains information on the
neighborhoods of each node and edge. This process may be repeated multiple times such that the data from
more distant nodes and edges is propagated fully.

18 Chapter 2. Mathematical Foundations

Algorithm 1: Graph Neural Network (GNN)
Input: E, V , u
Parameters : NNv,NNe,NNu, ρe→v, ρe→u, ρv→u

for k ∈ {1 . . . Ne} do
e′k ← NNe (ek,vrk ,vsk ,u) ▷ 1. Compute updated edge attributes

end
for i ∈ {1 . . . Nn} do

let E′
i = {(e′k, rk, sk)}rk=i, k=1:Ne

ē′i ← ρe→v (E′
i) ▷ 2. Aggregate edge attributes per node

v′
i ← NNv (ē′i,vi,u) ▷ 3. Compute updated node attributes

end
let V ′ = {v′}i=1:Nv

let E′ = {(e′k, rk, sk)}k=1:Ne

ē′ ← ρe→u (E′) ▷ 4. Aggregate edge attributes globally
v̄′ ← ρv→u (V ′) ▷ 5. Aggregate node attributes globally
u′ ← NNu (ē′, v̄′,u) ▷ 6. Compute updated global attribute
return (E′, V ′,u′)

Chapter 3

Robot Kinematics

We’re functioning automatic
And we are dancing mechanic
We are the robots

Kraftwerk - The Robots

The contributions of this thesis are based on analyzing robotic manipulators from the perspective of
kinematics, a subfield of classical mechanics that deals with motions of objects in space without considering
the forces that cause their movement. Kinematic analysis provides insight into the underlying geometry of
a robot’s motion, allowing for statements to be made regarding the robot’s dexterity, accuracy and over-
all posture in the workspace. These insights are a crucial part of motion planning, control, and trajectory
optimization algorithms that are ubiquitous in most robotic manipulation applications. This chapter intro-
duces concepts and problems in robot kinematics that are key to understanding the challenges faced by
practitioners and researchers when designing robotic systems for real-world applications.

Remark: Associated literature
The notation and structure of this chapter is inherited from the excellent introductory textbook byLynch
and Park[2017]. A more advanced treatment from a group-theoretic perspective may be found in the
textbook bySelig[2005], whileSciavicco and Siciliano[2012] give a practical overview with an em-
phasis on control and planning applications.

3.1 Robot Structure

We focus on a particular subset of robots that includes most common commercial manipulators designed to
operate (semi-)autonomously. These robotic manipulators are comprised of a series ofN joints with a single
axis of rotation (i.e., revolute joints) connected by N − 1 rigid links, with an end-effector (i.e., gripper or a
tool) represented as an additional link attached to the final joint. As the example in Fig.3.1aand Fig.3.1b
illustrates, the coordinate frame F−→i−1 is attached to the i-th joint, which is the parent of the link Li. The
space frame F−→s may be placed anywhere, but it is often positioned such that one of its axes coincides with
the rotation axis of the first joint (in this case it is referred to as the base frame). Finally, the end-effector

is often modeled as an additional child link of the final joint, with the body frame F−→b attached to some
relevant point (e.g., the middle of the gripper).

19

20 Chapter 3. Robot Kinematics

(a) (b)

Figure 3.1: a) Simplified sketch of the robot structure, with links denoted by L and joints denoted by θ. The yellow
sphere represents an end-effector (such as a tool or a gripper). b) Sketch of the coordinate systems commonly defined
and used in computations related to manipulation tasks.

3.1.1 Configuration Space

As a starting point for kinematic analysis, it is important to find away to express the positions of all points on
the robot, also known as the robot configuration. Instead of keeping track of all such points, the configuration
of a robot can be specified using coordinates θi arranged into a vector θ ∈ C, where C is the configuration
space or C-space. The minimum number of coordinates required to represent the configuration of the robot
is equal to its degrees of freedom (DOF). Given that robots are constructed using a large variety of different
joint and link types specialized for particular tasks, the geometry of their configuration spaces can vary
significantly and therefore require careful analysis.

The configuration space of robotic manipulators of the type shown in Fig.3.1badmits a relatively simple
characterization. Given their unchanging joint and link geometry, the configuration of such robots can be
fully represented in a vector space joint angles θi ∈ [−π, π) arranged in a vector θ. Note that this is a
simplification, since removing the angle range constraints (i.e. joint limits) and adding 2π to all angles
results in the same robot posture, meaning that these two configurations define the same point in C-space.
This observation reveals that the true shape of the configuration space is that of an N -dimensional torus.
While this characterization is inconsequential for the methods and approaches discussed in the thesis, the
underlying geometry of the configuration spaces needs to be kept in mind when discussing the proximity
of different configurations.

3.1.2 Task Space

A class of tasks performed by the robot is generally parameterized using coordinates τi arranged into a
vector τ ∈ T , where T is the task space defined by this parameterization. The task space is specified by the
user and generally coincides with the pose or position of the end-effector (e.g., a gripper used to manipulate
objects), but may also be learned (e.g., from demonstration data).

A point in the task space may be reachable by multiple distinct robot configurations. Moreover, if the
number of degrees of freedom of a robot exceeds the dimension of the task space (i.e., m = dim(C) −
dim(T) > 0), any τ may be reachable by an m-dimensional set of configurations. Such sets are often
more accurately defined as algebraic varieties — sets of solutions to systems of polynomial equations. For
example, robots with five degrees of freedommay reach any end-effector position with an infinite number of
configurations on a two-dimensional variety, while robots with seven degrees of freedom can reach any end-
effector pose with a one-dimensional variety of configurations. These robots are often said to be redundant

3.2. Forward Kinematics 21

in the context of a given task space.

3.2 Forward Kinematics

Having fully defined the spaces and coordinates specifying the robot’s configuration and task, the next step
required for most applications involves finding a mapping between the two. The procedure of mapping a
robot’s configuration to the associated task space coordinates is known as forward kinematics.

Definition 8 (Forward kinematics). The mapping FK : C → T of a configuration θ ∈ C to a vector of
task space coordinates τ ∈ T is known as the forward kinematic mapping. The procedure for computing

this mapping is known as the robot’s forward kinematics.

Generally, FK is a nonlinear function defined by the robots structural properties (e.g., link geometry, joint
types, etc.). Further, FK is commonly defined to be injective, meaning that every configuration θ maps
to a single point in the task space (e.g., one configuration cannot map to two different end-effector poses).
For clarity, a distinction is made between the standard forward kinematics in Definition8and differential

forward kinematics, which relates velocities the configuration space to those in the task space.

Remark: End-effector Poses and Velocities
The contributions of this thesis pertain to tasks involving either:

• tracking reference end-effector velocities

• reaching a reference end-effector pose

In both of these cases, the task space corresponds to elements T ∈ SE(3) of the special Euclidean
group representing the space of poses. As discussed in Section2.2.2, transforms T can be represented
by the more compact task space of six-dimensional exponential coordinates ξ, associated with Lie
algebra elements ξ∧ ∈ se(3). Likewise, the time derivatives ξ̇ of these coordinates give a compact
representation of generalized end-effector velocities.

3.2.1 Motion of Rigid Links

Figure 3.2: Sketch of the parameterization of link motions for revolute joints using screws. The vector ŝ is the joint’s
rotation axis, while q is the position of some point on the rotation axis in the robot’s home configuration (i.e., θ = 0).

The motion of links, as governed by joint rotations, can be described using a variety of different param-
eterizations. From the Mozzi-Chasels theorem in Section2.2.2it follows that the actuation of a rigid link by
its parent joint may be described as a screw motion. By taking Eq. (2.19) and setting the pitch to h = 0 in

22 Chapter 3. Robot Kinematics

order to reflect a lack of translation along the rotation axis, the screw axis for revolute joints is expressed as

S =

[
ŝ

−ŝ× q

]
, (3.1)

where ŝ is the rotation axis of a particular joint and q is the position of the joint in F−→s at θ = 0, as shown
in Fig.3.2. Multiplying these screws with joint angles results in exponential coordinates describing the pose
change of the body frame F−→b attached to the end-effector

ξ = Sθ =

[
ŝθ

−ŝθ × q

]
. (3.2)

Finally, the exponential map in Eq. (2.17) gives the SE(3) transform

Tsb = Exp(Sθ)M , (3.3)

describing how F−→b with the pose M = Tsb|θ=0 at a zero configuration is positioned and oriented after
rotating its parent joint to by an angle θ.

3.2.2 Pose Forward Kinematics

Once the basic relationship of joint rotations to link movement is specified in the form of parameterized
SE(3) transforms, the full motion manifold of the robot may be obtained by composition. Specifically, the
pose of a frame whose motion is determined by multiple revolute joints connected by rigid links is given by
composing Eq. (3.3) through left multiplication. This results in the forward kinematic mapping

FK(θ) =

n∏
i=1

Exp(Siθi)M , (3.4)

where Si is the screw axis of joint i expressed in F−→s and the matrix M = Tsb|θ=0 is the pose of the
end-effector (i.e., body) frame F−→b when the configuration θ is set to zero (i.e., the robot is in a “home”
configuration).

This product of exponentials formulation of forward kinematics was introduced byMurray et al.[1994]
and uses a non-minimal parameterization of structure based on joint screws. An important advantage of
this approach is that the mapping in Eq. (3.4) may be differentiated using Lie algebra in a computationally
efficient manner. Note that there exist minimal parameterizations such as the one introduced byHartenberg
and Denavit[1955], which are often used in applications such as kinematic calibration. The coordinate
systems generated by these parameterization may not directly correspond to the physical locations of joints
and links.

3.2.3 Differential Forward Kinematics

Other than knowing where the end-effector is, many applications require a characterization of its velocity.
The relationship between joint velocities and end-effector twists1 takes the form of a locally linear mapping

ξ̇ = J (θ) θ̇ , (3.5)

1Technically, twists are the Lie algebra elements ˆ̇ξ, but the term is often used for the associated vector of generalized velocities as
well.

3.3. Inverse Kinematics 23

where J is the Jacobian of forward kinematic mapping in Eq. (3.4) with respect to configuration space
coordinates

J (θ) =
∂ FK

∂ θ
∈ R6×n (3.6)

for n = dim(C). To simplify notation, we drop the θ as the argument of J in the remainder of this text. For
the forward kinematics parameterization in Eq. (3.4) we have

J =
[
JS1

... JSn

]
, (3.7)

where each column represents the contribution of the corresponding joint to the motion of the target frame
and ξ̇ is resulting twist. This contribution is computed by representing each screw in F−→s using

JSi = Ad

i−1∏
j=1

Exp(Sjθj)

Si (3.8)

where Ad : SE(3) 7→ R6×6 is the adjoint operator defined in Eq. (2.22). Similar expressions can be found
for higher order derivatives (e.g, acceleration) by further differentiating the forward kinematic mapping
[Müller,2021].

As a consequence of the definition of forward kinematics in Eq. (3.4), the Jacobian defined by Eq. (3.7)
and Eq. (3.8) relates joint velocities to twists in the space frame F−→s. This twist can be expressed in the body
frame F−→b via

Jb = Ad (Tbs)J , (3.9)

whereTbs = Tsb
−1 is the pose ofF−→s inF−→b. This identity is useful in many practical cases where velocities

are defined in the body frame.

Linear and Angular Velocities

By definition, twists entangle rotational and linear velocities. This may present difficulties when controlling
or interpreting the end-effector velocity in applications such as teleoperation or visual servoing. In such
cases, the Jacobian in Eq. (3.7) can be transformed via the identity

Jl =

[
I3 03×3

p∧ I3

]−1

J , (3.10)

where p is the position of the coordinate frame the velocities are expressed in. This separates the angular
and linear velocities ω and v such that [

ω

v

]
= Jlθ̇ . (3.11)

This is often refered to as the geometric or analytical Jacobian. In addition to the above identity, the geometric
Jacobian may also be computed using a geometric constructive procedure [Sciavicco and Siciliano,2012].

3.3 Inverse Kinematics

Most applications of robotic manipulation in the real world, such as grasping objects or interacting with the
environment, are difficult to define solely in terms of joint angles (i.e., in the configuration space). Instead,
most tasks are defined in terms of end-effector poses relative to a static coordinate frame (i.e. in the task
space). In order to compute the joint configurations and velocities necessary to achieve a desired motion in

24 Chapter 3. Robot Kinematics

the task space, an inverse of Eq. (3.4) or Eq. (3.5) needs to be found. The procedure of mapping a vector of
task space coordinates to a robot’s joint configurations is known as inverse kinematics.

Definition 9 (Inverse Kinematics). The mapping IK : T → C of a task space coordinates τ ∈ T to a

set of joint configurations IK(τ) = {θ ∈ C |FK(θ) = τ} is known as the inverse kinematic mapping.

The procedure for fully or partially computing this mapping is known as a robot’s inverse kinematics.

Unlike forward kinematics, IK is generally not unique. In other words, IK is not injective and thereforemul-
tiple feasible configurations exist for a single set of task coordinates τ . Consequently, there is no single best
approach to solving the inverse kinematics problem, and many solution approaches have been developed
for particular applications.

Owing to its widespread use in robotics [Angeles et al.,2013] and computer graphics [Aristidou et al.,
2018], IK remains and active research area with an abundance of relevant literature. However, it is important
to note that the difficulty of the IK problem varies depending on the underlying assumptions imposed by a
given application (e.g., mechanism, task space . . .) and that these assumptions are often not explicitly stated.
To avoid this ambiguity, this thesis focuses on and stresses a distinction between two instances of the IK
problem common to robotics applications: differential inverse kinematics and pose inverse kinematics.

3.3.1 Differential Inverse Kinematics

Differential inverse kinematics is the problem of finding joint velocities that generate a desired twist2 of
the end-effector. This instance of IK also occurs in task space control, where the goal end-effector pose is
defined in terms of an incremental motion of the end-effector and carries the assumption of the solution
being close to the starting configuration.

When dim(C) = dim(T), joint velocities can be computed by simply inverting the linear Jacobian iden-
tity in Eq. (3.5). However this does not generally hold for T ≜ SE(3), since many commercial manipulators
have dim(C) > 6. In this case Eq. (3.5) is solved for θ̇ as

θ̇ = J†ξ̇ , (3.12)

where J† = J⊺ (J J⊺)
−1 is the Moore-Penrose pseudoinverse. Note that Eq. (3.12) is the least-squares

solution to the optimization problem

min
θ̇

1

2
θ̇
T
Wθ̇ + c⊺ θ̇

s.t. Aθ̇ = b

, (3.13)

where W = I , c = 0 ,A = J and b = ξ̇. Crucially, a solution to any such quadratic program [Boyd and
Vandenberghe,2004] reduces to solving a linear system.

Redundancy Resolution

Aside from reaching a goal pose, redundant degrees of freedom may be used to track reference velocities τ̇ s

in a secondary task space by setting the cost function of Eq. (3.13) to ∥J†
sτ̇ s− θ̇∥2. The closed-form solution

then becomes
θ̇ = J†ξ̇ +

(
J†J− I

)
J†
sτ̇ s . (3.14)

These redundancy resolution techniques [Nakamura et al.,1987] demonstrate the utility of redundant degrees
of freedom, for they make it possible to choose solutions that fit a certain criteria. With some modification,

2or linear and angular velocity.

3.3. Inverse Kinematics 25

this framework can be extended to multi-level task hierarchies [Siciliano and Slotine,1991] and to non-
Euclidean [Jaquier et al.,2020] or learned [Cheng et al.,2018] task spaces.

3.3.2 Pose Inverse Kinematics

The problem of pose inverse kinematics exactly fits Definition9in that no assumptions exist regarding the
proximity of the solution manifold to the initial configuration, making solutions difficult to find using the
first-order approximation in Eq. (3.12). This problem is instead formulated as a nonlinear program of the
form

θ∗ = min
θ

f(θ)

s.t. hi(θ) = 0 , i = 1, . . . , Nh ,

gj(θ) ≤ 0 , j = 1, . . . , Ng ,

(3.15)

where an error e(θ,Tgoal) between the current and goal end-effector poses, or its norm, is encoded as
an objective f or as the (in)equality constraints hi , gj . While this formulation admits a more general set
of constraints and optimality criteria, it usually requires the use of optimization approaches with more
computational overhead.

Closed-Loop IK

A straightforward formulation of the problem in Eq. (3.15) involves setting the objective to the squared
magnitude of the space frame transform between the current and goal poses

f(θ) =
∥∥∥Log(T(θ)T−1

goal)
∥∥∥2 ,

where Log(·) is the SE(3) logarithmic map in Eq. (2.21). When no additional constraints are added, the
iteration of the Gauss-Newton method is exactly equal to Eq. (3.12) with∆θ = αθ̇, where the step size α is
chosen using a line search algorithm.

Some literature refers to this first-order approach as closed-loop IK (CLIK) [Siciliano et al.,2010], as
it emulates a feedback control problem [Sciavicco and Siciliano,1986]. Major advantages of CLIK meth-
ods include their ease of implementation relative to other nonlinear optimization algortihms. Owing to
the connection of IK with control literature, there also exist a variety of extensions providing numerical
robustness [Buss and Kim,2005] and efficient incorporation of secondary objectives through redundancy
resolution [Nakamura et al.,1987]. However, alongside the convergence issues commonly encountered with
first-order local optimization, CLIK methods will often trade numerical stability for accuracy [Spong et al.,
2005].

Nonlinear Programming

It has been shown that variants of Eq. (3.15) may be solved with a higher success rate using a variety of un-
constrained or bounded nonlinear programmingmethods such as L-BFGS-B [Zhu et al.,1997] or SQP [Schul-
man et al.,2014]. These methods have robust theoretical underpinnings [Boyd and Vandenberghe,2004] and
can approximately support a wide range of constraints through the addition of penalties to the cost func-
tion [Beeson and Ames,2015]. However, the highly nonlinear nature of the problemmakes them susceptible
to local minima, often requiring multiple initial guesses before returning a global minimum, if at all.

Chapter 4

Geometry-Aware Singularity
Avoidance

Success depends upon previous preparation,
and without such preparation there is sure to
be failure.

Confucius

Articulated robots such as manipulators increasingly must operate in uncertain and dynamic environ-
ments where interaction (with human coworkers, for example) is necessary. In these situations, the capacity
to quickly adapt to unexpected changes in task space constraints is essential. At certain points in a manipu-
lator’s configuration space, termed singularities, a robot loses one or more degrees of freedom (DoF) and is
unable to move in specific task space directions. The inability to move in arbitrary directions compromises
adaptivity and, potentially, safety. In this chapter we introduce a geometry-aware singularity index, defined
using a Riemannian metric on the manifold of symmetric positive definite matrices, to provide a measure of
proximity to singular configurations. We demonstrate that our index avoids some of the failure modes and
difficulties inherent to other indices previously introduced in literature. Further, we show that our index
can be differentiated easily, making it compatible with local optimization approaches for task space control.
Our experimental results establish that, for reaching and path following tasks, optimization based on our
index achieves a higher degree of numerical stability compared to a common manipulability maximization
technique and ensures singularity-robust motions.

4.1 Motivation and Related Work

Articulated robots are often required to perform tasks in which workspace movement is constrained, due
to safety considerations or for other reasons. The constraints may also be altered during task execution
as a result of unexpected changes in the environment (such as a human coworker pushing the robot, for
example). Depending on the link and joint geometry, certain joint configurations can lead to a loss of
task space mobility or to hazardous joint movements, potentially resulting in task failure or worse. Such
configurations are known as singularities [Duffy,1980] and singularity avoidance is an important part of
most control and motion planning algorithms for articulated robots. Identifying and avoiding singularities
has thus been the focus of significant research efforts within the robotics community [Tourassis and Ang Jr,
1992]. Moreover, geometrically intuitive optimization criteria that encode the proximity of a configuration
to one or more singular or near-singular regions have found a variety of applications, ranging from control

26

4.2. The Manipulability Ellipsoid 27

and motion planning to kinematic synthesis.

Amajority of robot manipulators are comprised of revolute joints, and nearly all relevant tasks can be de-
scribed in terms of sets of nonlinear constraints that are functions of the joint configurations. When these
constraints are defined in task space, robots are especially vulnerable to kinematic singularities [Beiner,
1992,1997,Buss,2004]. Kinematic singularities inhibit the robot’s ability to generate end-effector velocities
in certain directions in the task space. These singularities can be identified by observing the conditioning of
the Jacobian matrix of the robot, which maps configuration space velocities to task space velocities [Sciav-
icco and Siciliano,2012]. This relationship forms the basis of several kinematic sensitivity indices proposed
in literature [Cardou et al.,2010,Patel and Sobh,2015]. Many such indices can be interpreted geometrically
through the notion of the manipulability ellipsoid [Yoshikawa,1985], whose axis lengths correspond to the
singular values of the Jacobian matrix and indicate the overall sensitivity of actuators to link displacements.
Perhaps the most common index is the manipulability index [Yoshikawa,1985] proposed by Yoshikawa in
1985, which is proportional to the volume of the manipulability ellipsoid [Maciejewski and Klein,1989].
Salisbury and Craig suggest a dexterity index in [Salisbury and Craig,1982] that provides an upper bound
for the relative error amplification, which is a function of the ratio between the longest and shortest ma-
nipulability ellipsoid axes. A geometry-aware similarity measure between two manipulability ellipsoids is
formulated byRozo et al.[2017] using the Stein divergence—a statistical divergence between two probability
measures.

In this chapter, we introduce a geometry-aware singularity index based on a differential geometric char-
acterization of the manipulability ellipsoid described byJaquier et al.[2020], which can be made robust to
the failure modes of the manipulability and dexterity indices. We base our index on the Riemannian met-
ric in [Pennec et al.,2006], enabling us to compute the length of the geodesic between the manipulability
ellipsoid and a sufficiently “non-singular” reference ellipsoid. By determining the gradient of this length
with respect to the joint values, we are able to augment common pose and differential IK methods with an
effective singularity avoidance criterion.

Most task space reference tracking schemes for robotic manipulators are closed-loop IK formulations
described in Section3.3.1, that use a linearized kinematic model. This approach has been successfully ap-
plied for both control and planning [Sciavicco and Siciliano,2012], where the local mapping of joint motions
to spatial displacements (i.e., the Jacobian) of the robot is used to produce the desired end-effector move-
ment [Xian et al.,2004,Pham et al.,2010]. Redundancy resolution schemes based on null-space optimization
techniqes [Nakamura et al.,1987,Marani et al.,2002] have long been relied upon for singularity avoidance,
however they are themselves subject to algorithmic singularities [Chiaverini,1997] caused by contradictory
objectives and hence are commonly used only for simple task hierarchies. Alternatively, methods based
on nonlinear programming can easily be extended to include a variety of additional constraints and objec-
tives [Cheng et al.,1993,Schulman et al.,2013]. Recently, quadratic programming (QP) [Frank et al.,1956]
formulations have been explored as an efficient method for singularity avoidance in constrained inverse
kinematics solvers [Zhang et al.,2012,Dufour and Suleiman,2017,Jin et al.,2017].

4.2 The Manipulability Ellipsoid

Consider an n-dimensional unit sphere in the space of configuration velocities ∥θ̇∥2 = 1. Observing that
τ̇ = Jθ̇, we obtain a mapping of this sphere to velocities in the p-dimensional task space

θ̇
⊺
θ̇ = τ̇ ⊺ (J J⊺)

−1
τ̇ . (4.1)

28 Chapter 4. Geometry-Aware Singularity Avoidance

Figure 4.1: A three DoF manipulator and the manipulability ellipsoid associated with a task space defined by the end-
effector position. Note that the axes of the ellipsoid correspond to the singular values σ and vectors u of the Jacobian
J. If we were to include the end-effector orientation, the ellipsoid would be six-dimensional.

Given the task and configuration characterizations discussed in Chapter3, the identity in Eq. (4.1) shows
that the scaling of end-effector velocities to the configurations space is reflected by the matrix

M (θ) = J J⊺ , (4.2)

whose eigenvalues correspond to the squared singular values σ2 of the Jacobian matrix J. Consequently,
configurations in which one or more eigenvalues ofM become zero correspond to cases where the Jacobian
matrix is poorly conditioned and non-invertible. That is, for any configuration θ, we can use Eq. (4.2)
to compute a symmetric positive semidefinite matrix M that contains information about the task space
mobility of the manipulator.

Notably, there exists an isomorphism between the set of p × p symmetric positive semidefinite ma-
trices and the set of ellipsoids of dimension ≤ p centred at the origin. For this reason, the matrix M

is also known as the manipulability ellipsoid of the end-effector [Yoshikawa,1985]. The principal axes
σ0u0, σ1u1, . . . , σp−1up−1 of this ellipsoid can be determined through singular value decomposition of
J = UΣVT . The lengths and orientations of these axes indicate directions in which larger task space ve-
locities can be generated, as illustrated in Fig.4.1, where the task space consists of the end-effector position
of a three DoF manipulator. Conversely, directions admitting higher mobility are also directions in which
the manipulator is more sensitive to perturbations.

4.3 Singularities

Using the manipulability ellipsoid to geometrically interpret the Jacobian, we can conclude that τ̇ = Jθ̇

has a numerically unstable solution for all configurations associated with one or more degenerate (i.e., zero-
length or near zero-length) axes. The detection and avoidance of these configurations, known as singulari-
ties, requires careful interpretation of the Jacobian’s singular values. Moreover, end-effector movements that
begin from configurations in close proximity to singularities also tend to result in high joint velocities and
undesirable dynamic characteristics [Cardou et al.,2010,Patel and Sobh,2015]. Consequently, many indi-
cators have been developed that are used for singularity avoidance and to improve the kinematic sensitivity
of task space control and inverse kinematics algorithms.

4.3. Singularities 29

(a) (b)

Figure 4.2: An example of failure modes for common singularity indices. (a) The manipulability index fails for config-
urations involving elongated ellipsoids with one or more axes of near zero length. (b) The dexterity index fails when
the ellipsoids are of uniformly small scale.

4.3.1 Manipulability index

A common indicator used to detect the proximity of a configuration to a singularity is known as themanip-

ulability index, expressed as
m =

√
det(J J⊺) . (4.3)

The manipulability index also admits a geometric interpretation, since the index value is proportional to the
volume of the manipulability ellipsoid. Because singularities involve manipulability ellipsoids with one or
more axes of zero length, and therefore zero volume, themanipulability index can be used to detect such con-
figurations. Moreover, the differentiability of Eq. (4.3) has resulted in many singularity avoidance methods
that maximize the volume of the manipulability ellipsoid by optimizing the manipulability index [Dufour
and Suleiman,2017,Marić et al.,2016].

The manipulability index is not as effective in detecting configurations that are in close proximity to
singularities. The scenario in Fig.4.2ashows an ellipsoid of relatively large volume with an axis length close
to zero. This also presents a challenge for singularity avoidancemethods, since optimizing for configurations
with a highermanipulability ellipsoid volume does not guarantee that they are further from singular regions.

4.3.2 Dexterity index

Another common index used to detect and avoid singularities is the dexterity index [Salisbury and Craig,
1982],

κ =
σmax

σmin
, (4.4)

where σmax and σmin are the maximal and minimal singular values of the Jacobian, also known as the
condition number. The value of the dexterity index for a given configuration is associated with the distortion
of task space sensitivity. This value can be interpreted geometrically as a ratio between the longest and
shortest axis lengths of the manipulability ellipsoid.

The geometric interpretation again reveals that an important drawback of this approach lies in the in-
ability to encode the scale of the manipulability ellipsoid. Since the ratio of axis lengths becomes infinite
only when the configuration is exactly singular and gives no information about the ellipsoid size, it is im-
possible to use the dexterity index to provide a measure of proximity to a singularity, as shown in Fig.4.2b.
Similarly, optimizing for configurations with a dexterity index close to one results in homogeneous task
space sensitivity, without providing any idea of its magnitude. Note that there exist other measures of
kinematic sensitivity used in singularity avoidance that are tailored for specific problem instances such as
parallel manipulators or walking robots [Cardou et al.,2010].

30 Chapter 4. Geometry-Aware Singularity Avoidance

Figure 4.3: Visualization of the convex cone formed by the set S2
++ of matrices of the form

(
α β
β γ

)
. The matricesΣ

andΛ lie inside the cone, and the matrix L = LogΣ(Λ) lies in the tangent space ofΣ. The shortest path connectingΣ
and Λ is the geodesic shown in red. Note that the length of the geodesic differs from the length of the dashed straight
line in Euclidean space.

4.4 A Geometry-Aware Singularity Index

The manipulability and dexterity indices described in Section4.3are commonly used for detecting and
avoiding singular configurations. In this section, we show that the differential-geometric characterization
of manipulability ellipsoids introduced in [Jaquier et al.,2020] induces a Riemannian metric that naturally
defines a distance between manipulability ellipsoids. We use this distance to specify a family of geometri-
cally intuitive singularity indices, parameterized by a choice of a specific reference ellipsoid.

4.4.1 The Riemannian Manifold of SPD Matrices

Manipulability ellipsoids of non-singular configurations correspond to the set of symmetric matrices with
strictly positive eigenvalues. This set is known as the set of symmetric positive definite (SPD) matrices,

Sp++ = {Σ |Σ = ΣT , xTΣx > 0 ∀x ∈ Rp \ {0}} , (4.5)

which forms a convex cone in RK , where K = p (p + 1)/2. As shown in Fig.4.3, a straight line in RK

does not represent the shortest path between points on the Sp++ manifold. This means that we cannot
rely on the Euclidean metric to induce a distance that is useful when reasoning about the similarity of
ellipsoids. Fortunately, Riemannian geometry equips us with the tools necessary to establish an alternative,
Riemannian metric on the set Sp++, forming a Riemannian manifold (as described in Section2.1.2). This
manifold characterization makes it possible to define a geometrically-appropriate distance on this manifold.

As shown in Fig.4.3, the tangent space of elements in M ≡ Sp++ is the space of symmetric matrices
TΣM ≡ Symp, which is a vector space in RK . A Riemannian metric on TΣM with a particular set of
properties can then be chosen.

Definition 10 (Riemannian metric on Sp++ [Pennec et al.,2006]) . For someΣ ∈M, a positive-definite

inner product of two elements Z1,Z2 ∈ TΣM can be defined as

⟨Z1,Z2⟩Σ = Tr(Σ− 1
2Z1 Σ

−1 Z2 Σ
− 1

2) , (4.6)

and is called the Riemannian metric onM.

This Riemannian metric is invariant to affine transformations [Pennec et al.,2006]: for any element of the
degree-p general linear group A ∈ GLp with the group action A ◦ Σ = AΣAT on the space Symp, we
have

⟨A ◦ Z1,A ◦ Z2⟩A◦Σ = ⟨Z1,Z2⟩Σ. (4.7)

4.4. A Geometry-Aware Singularity Index 31

This property will be useful when considering how the manipulability ellipsoid varies depending on con-
figuration.

The Riemannian metric defined in Eq. (4.6) allows us to determine the lengths of curves on Sp++. Of par-
ticular interest is the length of geodesics connecting two points on the manifold, known as the Riemannian
distance.

Definition 11 (Riemannian distance on Sp++ [Pennec et al.,2006]) . ForM equipped with the Rieman-

nian metric of Eq. (5.11), the Riemannian distance between Σ,Λ ∈M is defined as

d(Σ,Λ) = ∥LogΣ(Λ)∥F , (4.8)

where F denotes the Frobenius norm and

LogΣ(Λ) = Σ
1
2 log

(
Σ− 1

2ΛΣ− 1
2

)
Σ

1
2 (4.9)

is the logarithmic map on defined on the Sp++ manifold.

In fact, this is the length of the geodesic connecting two non-singular manipulability ellipsoids [Jaquier
et al.,2020]. It is important to note that the exponential map covering Sp++ is uniquely defined everywhere
on the manifold, meaning that the logarithmic map can always be computed.

4.4.2 The Riemannian Distance as a Singularity Index

The Riemannian distance in Eq. (4.8) gives an affine-invariant distance between the manipulability ellipsoid
M associated with some configuration and a reference ellipsoidΣ. By choosing a geometrically appropriate
Σ, this distance can be used to retrieve a measure of proximity of a given configuration to a singularity.

Consider the manipulability ellipsoid M (θ) = J J⊺ of a robot in some configuration θ ∈ C and some
reference ellipsoid Σ. We define the squared length of the geodesic (i.e., the squared Riemannian distance)
connectingM and Σ as

λ = ∥LogΣ(M)∥2F , (4.10)

which follows directly from Eq. (4.8). In the context of singularity detection and avoidance, we refer to the
scalar λ in Eq. (4.10) as the geometry-aware singularity index.

As a robot moves and changes its configuration, the manipulability ellipsoid varies in shape, size, and
orientation. In Section4.3we noted that conventional indices such as dexterity andmanipulability generally
represent only one particular property of the manipulability ellipsoid (i.e., volume or axis length ratio). In
contrast, λ is a function of all axis lengths, as well as the ellipsoids’ shape and orientation. This presents
an opportunity to avoid many of the issues that are common when applying the conventional indices; the
problems arise because one property (e.g., the ellipsoid volume) may remain constant while the ellipsoid
itself changes. Importantly, the affine-invariance property of the underlying Riemannian metric described
in Eq. (5.11) guarantees that the value of our index is always determined by the relative difference between
two ellipsoids.

4.4.3 Choosing the Reference Ellipsoid Σ

The utility of the geometry-aware singularity index in Eq. (4.10) clearly depends on an appropriate choice
of the reference ellipsoid Σ, which must be selected with the goal of singularity avoidance in mind. In this
section, we propose two possible choices that help to avoid some of the degeneracies that may occur when
using other common indices.

32 Chapter 4. Geometry-Aware Singularity Avoidance

Figure 4.4: Singularity avoidance formulation s-IK, in which the distance between a sphere Σ = k I and the manipu-
lability ellipsoid M is minimized. Note that both M0 and M1 are the same distance from Σ, since the squared metric
λ is independent of orientation.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

k

Va
lu
e

√
λ

m
κ

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

k

Va
lu
e

√
λ

m
κ

Figure 4.5: Performance of our geometry-aware singularity index λ forΣ = Tr(M) I in cases where themanipulability
index m (left) and dexterity index κ (right) are ambiguous. The left plot corresponds to the constant volume scenario
shown in Fig.4.2a, while the right plot represents the constant shape scenario from Fig.4.2b.

Choosing Σ = k I

Consider selecting a reference ellipsoid Σ that has a spherical shape with a radius greater or equal to the
length of the longest possible axis of the manipulability ellipsoid M, as shown in Fig.4.4. Formally, this
class of ellipsoids can be expressed as

Σ = kI, k ≥ σ2
max , (4.11)

where σmax is the largest eigenvalue ofM. The scaling factor k in Eq. (4.11) is chosen to be larger than the
largest manipulability ellipsoid eigenvalue, forming a sphere that encapsulates the ellipsoid. By choosing

k ≥ Tr (M(θ)) , ∀θ ∈ C, (4.12)

we ensure that the geometry-aware singularity index (denoted by λ) decreases with the increase of the sin-
gular values of the Jacobian, since the manipulability ellipsoid will always be contained within the reference
ellipsoid Σ. Because the maximum volume of the manipulability ellipsoid for any manipulator is bounded,
k can also be found empirically by moving the robot and increasing k whenever Eq. (4.12) fails to hold.

Since the sphere is symmetric, λ is invariant to the orientation of the manipulability ellipsoid. This result
follows directly from the affine-invariance property described in Section4.4.2and can be proven easily by
insertingΣ = k I into Eq. (4.7). Such a property is desirable in a singularity avoidance context because the
orientation of the manipulability ellipsoid does not change the singular values of the Jacobian.

We can study the behavior of the geometry-aware singularity index with this choice of Σ in scenarios
where the more common manipulability and dexterity indices fail, as shown in Fig.4.2aand Fig.4.2b. We
begin with an arbitrary ellipse that has two axes of equal length; the two axes are then progressively scaled
by the factors k and 1/k, respectively, effectively ‘squeezing’ the ellipse in a way that maintains the overall

4.4. A Geometry-Aware Singularity Index 33

Figure 4.6: Singularity avoidance formulation s-IK2, in which the reference ellipsoidΣ produced at each iteration is a
scaled variant of the original.

area. In the top plot of Fig.4.5, we see that the manipulability index remains unchanged because the area
is constant, making it impossible to differentiate between the nearly singular ‘squeezed’ ellipse and a circle.
The dexterity index increases with k and reaches a value of 1 for the circular shape. Our geometry-aware
singularity index decreases as k → 1, since the ellipse moves closer to the circular Σ on the manifold.
Next, we again consider an arbitrary ellipse with axes of equal length that are both progressively scaled
by k, uniformly inflating the ellipse. The bottom of plot of Fig.4.5shows that the dexterity index does
not differentiate between the smaller and larger ellipses because the ratio of the maximal and minimal axis
lengths remains unchanged. The manipulability index is proportional to the area of the ellipse and thus
increases as k → 1, while our geometry-aware singularity index decreases as the ellipse expands towards
a circle of radius of 1. These results demonstrate that our proposed index avoids some notable ‘blind spots’
of the two commonly-used indices.

Choosing Σ = kM

As described in Section3.3.1, control and planning algorithms of the form in Eq. (3.13) commonly integrate
criteria such as singularity avoidance by directly making use of the gradient of the relevant indices. This
reveals an interesting instance of our proposed index, where the reference ellipsoid is a scaled version of
the manipulability ellipsoid at the current configuration of the robot. We begin by choosing

Σ = kM0, k ≥ 1, (4.13)

whereM0 is the manipulability ellipsoid evaluated at each time step of the tracking algorithm. InsertingΣ
into Eq. (4.10), the inside of the matrix logarithm evaluates to

(kM0)
− 1

2 M (kM0)
− 1

2

∣∣∣
M=M0

= k−1I (4.14)

at each operating point. While it is clear that this instance of the index evaluates identically at every oper-
ating point, we can gain additional insight by considering the gradient of the index.

In Section4.5.1, we explain that computing the gradient analytically for our index is generally nontriv-
ial because of the requirement that the element-wise derivative of Σ− 1

2MΣ− 1
2 be commutative with its

inverse. However, it follows from Eq. (4.14) that the identity in Eq. (4.20) holds at the operating point, and
we are able to obtain the partial derivative

∂λ

∂θi
= −2 log(k) Tr

(
∂J

∂θi
J†
)

, (4.15)

where J† is the Jacobian pseudo-inverse. As shown in Fig.4.6, this gradient, constructed from partial deriva-

34 Chapter 4. Geometry-Aware Singularity Avoidance

tives in Eq. (4.15), gives a direction in whichM expands along all of its axes. Interestingly, Eq. (4.15) is pro-
portional to the gradient of the manipulability index [Marić et al.,2019], revealing a differential-geometric
generalization of manipulability maximization approaches. In fact, our results in Section4.6.1confirm that
this instance of the proposed index performs similarly to manipulability maximization in compatible task
space tracking algorithms. Performance for this choice of Σ hinges on the rate at which M0 is updated, as
all the above properties are lost outside the neighborhood of the operating point.

4.5 Singularity Avoidance

This section describes how the geometry-aware singularity index defined by Eq. (4.8) can be used for sin-
gularity avoidance in a common family of task space control algorithms. We achieve this by integrating
the proposed index into velocity inverse kinematics problem described in Section3.3.2as well as the pose
inverse kinematics problem described in Section3.3.1. The formulation applied herein can be seen as an
extension of that in [Jaquier et al.,2020], where a Jacobian-based approach is employed to follow reference
directions in the tangent space of SPD matrices in order to reach a specific, desired ellipsoid.

Reaching a specific orientation of the manipulability ellipsoid is generally not important for ensuring
singularity avoidance, which is the task of maintaining sufficient numerical conditioning of the Jacobian.
Therefore, we directly optimize the squared affine-invariant distance between the current manipulability
ellipsoid M and a reference ellipsoid Σ, with the overall goal of changing the ellipsoid’s shape to extend
“sensitive” axes. This distance is reflected in the geometry-aware singularity index λ, which can be added
to the cost function of a common nonlinear programming formulation of the inverse kinematics problem

min
θ

(θ − θ0)
TW(θ − θ0) + αλ(θ)

s.t. f(θ) = Tgoal ∈ SE(3) ,
(4.16)

whereW is a weightingmatrix used to prioritize certain joints,Tgoal is the goal end-effector pose, andα is a
gain parameter. A solution to Eq. (4.16) can be found by iteratively solving a sequence of quadratic programs
obtained by linearizing the cost and constraints. This sequential quadratic programming (SQP) approach
has previously been shown to be effective when designing singularity-robust kinematic controllers [Dufour
and Suleiman,2017,Zhang et al.,2016]. By adding a velocity-minimizing term to the cost and joint velocity
constraints, we arrive at the following QP

min
θ̇

θ̇
T
Wθ̇ + α(∇λ(θ0)) θ̇

s.t. Jθ̇ = ξ̇

θ̇min ≤ θ̇ ≤ θ̇max ,

(4.17)

which is exactly the task space tracking formulation shown in Eq. (3.13) for c = α(∇λ(θ0)) ,A = J

and b = ξ̇, with an added inequality constraint limiting the joint velocities. In both control and inverse
kinematics applications, this QP is redefined at each time instance or iteration and new ∇λ and J are
calculated to reflect the current configuration. The joint velocity limits serve the additional purpose of
enforcing joint position limits, since the velocity limits can be changed at each iteration to reflect the space
of locally feasible joint motions. Depending on the choice of the gain parameter α, the robot will be guided
in a direction in which the overall distance from singularities increases or decreases.

Problems of the form in Eq. (4.17) have been shown to allow for a wide variety of additional constraints,
such as collision avoidance [Schulman et al.,2013] and manipulability maximization [Dufour and Suleiman,
2017]. Similarly, the minimization of the geometry-aware singularity index can be integrated as a secondary

4.5. Singularity Avoidance 35

task in the redundancy resolution framework from Eq. (3.14). This can be done by setting the cost function
to ∥(∇λ)†λ̇− θ̇∥2, where (∇λ)† is the left pseudoinverse of the geometry aware singularity index gradient
and λ̇ is the desired rate of change of the index. However, we have empirically found that Eq. (4.17) gives
better performance in observed tracking tasks.

4.5.1 Gradient Computation

Optimization methods used in control and kinematic synthesis require the gradient∇λ to produce joint dis-
placements that avoid singularities. The gradient can be expressed as a concatenation of partial derivatives
of λ with respect to the joint positions θi,

∇λ =

[
∂λ

∂θ0
. . .

∂λ

∂θn

]
∈ Rn .

These partial derivatives can be obtained using elementary matrix calculus as

∂λ

∂θi
= 2Tr

(
∂ log (ϖ)

∂θi
log (ϖ)

⊺
)

, (4.18)

where
ϖ = Σ− 1

2MΣ− 1
2 . (4.19)

The partial derivative of log (ϖ) admits the closed form solution

∂ log (ϖ)

∂θi
= ϖ−1 ∂ϖ

∂θi
(4.20)

only if the matrices ϖ−1 and ∂ϖ
∂θi

commute. Unfortunately, the matrices in Eq. (4.20) are generally not
commutative and the identity is therefore invalid when considering Σ of an arbitrary shape.

Instead of finding the partial derivatives analytically, we can evaluate them numerically by leveraging a
result from computational matrix analysis. We begin with a lemma showing that Eq. (4.20) can be expressed
using directional derivatives.

Lemma 1 ([Dattorro,2005]) . The partial derivatives of log (ϖ) with respect to individual elements of θ

can be defined as

∂ log (ϖ)

∂θi
= ∇ ∂ϖ

∂θi

log (ϖ) , (4.21)

where ∇Ef(g) is the directional (Fréchet
a
) derivative of f at g in the direction E.

Proof. Using the chain rule for matrix-valued functions, the partial derivative of f(g(θ)) : Rn →
RK×K with respect to θ ∈ Rn is expressed as

∂f

∂θi
= ∇f(g) · ∂g

∂θi
. (4.22)

The product definition of directional derivative of f at g in the E direction is given by

∇Ef(g) = ∇f(g) ·E . (4.23)

The equivalence of Eq. (4.22) and Eq. (4.23) is self-evident.
aGeneralization of the directional derivative to vector-valued functions.

From Lemma1, it follows that the partial derivative of the logarithm in Eq. (4.18) can be computed using

36 Chapter 4. Geometry-Aware Singularity Avoidance

Eq. (4.21). We first compute the direction ∂ϖ
∂θi

, which is a derivative with a closed form expression

∂ϖ

∂θi
= Σ− 1

2

(
∂J

∂θi
JT + J

∂J

∂θi

T
)
Σ− 1

2 . (4.24)

Once the direction is obtained, the directional derivative in Eq. (4.18) can be accurately and efficiently com-
puted using the identity introduced in [Higham,2008], whichwe formalize in the following proposition:

Proposition 1. The partial derivatives of log (ϖ) with respect to individual elements of θ can be com-

puted using the identity

log

([
ϖ ∂ϖ

∂θi

0 ϖ

])
=

[
log (ϖ) ∂ log (ϖ)

∂θi

0 log (ϖ)

]
. (4.25)

Proof. (Theorem 3.6 in [Higham,2008]) Let f be a differentiable matrix function and g ∈ Rn×n be a
symmetric matrix differentiable at t = 0. Let

g(t) = g + tE ,

and we have the identity

f

([
g E

0 g

])
=

[
f(g) ∇Ef(g)

0 f(τ)

]
,

where ∇Ef(g) is the directional derivative of f at g in direction E. From Eq. (4.19) and Eq. (4.24) it is
clear that for g = ϖ and E = ∂ϖ

∂θi
the symmetry assumptions hold, completing the proof.

Since the size of the matrix representing the manipulability ellipsoid is generally at most 6 × 6, computing
the matrix in Eq. (4.25) remains computationally tractable and the overall computation time negligible. This
result allows us to explore arbitrary choices of the reference ellipsoidΣ in Eq. (4.19), enabling the adaptation
of λ to both the structure of the robot and the task.

4.6 Experimental Results

In this sectionwe present experimental results for the proposed geometry-aware singularity avoidance index
when implemented within the QP-based task space control formulation defined by Eq. (4.17). Specifically,
we consider the two index variants with reference ellipsoids Σ defined in Section4.4.3(labeled s-IK and
s-IK2). In order to validate the benefits of using a Riemannian metric, we also evaluate a singularity index
derived from the standard Euclidean metric

λE = ∥M−Σ∥2F , (4.26)

where a sphericalΣ is selected as described in Section4.4.3. As part of our proposed approach, the gradient
of this index is integrated into the cost Eq. (4.17) in place of the linear term; the resulting formulation
is labeled e-IK. We also compare our index to the manipulability maximization method fromDufour and
Suleiman[2017], where a manipulability gradient term is again added as the linear component of the cost
in Eq. (4.17); the resulting formulation is labeled m-IK. As a baseline, we use a standard approach to task
space control obtained by setting α = 0 in Eq. (4.17); this last formulation is simply labelled IK.

In our evaluation, we perform two benchmark experiments involving a pair of common tasks: reaching
and path following. First, in Section4.6.1we demonstrate how our method performs in a simple reaching

4.6. Experimental Results 37

s-IK s-IK2 m-IK IK e-IK

0.5

1

σ
m
in

3 DOF

s-IK s-IK2 m-IK IK e-IK

1

2

σ
m
in

6 DOF

s-IK s-IK2 m-IK IK e-IK

2

4

σ
m
in

9 DOF

s-IK s-IK2 m-IK IK e-IK

2

3

σ
m
ax

s-IK s-IK2 m-IK IK e-IK

3

5

σ
m
ax

s-IK s-IK2 m-IK IK e-IK

6

10

σ
m
ax

Figure 4.7: Results of solving 200 random inverse kinematics (IK) problems; each column corresponds to IK solutions
for a planar manipulator with a different number of DoF. The plots in the top row show the minimal singular values σmin
of the manipulator Jacobian in the final configuration, while the plots in the bottom row show the maximal singular
values σmax. The two leftmost boxes in each plot, labeled s-IK and s-IK2, represent our method with for different choices
ofΣ. The box labeled m-IK corresponds to the method inDufour and Suleiman[2017], while the box labeled IK shows
the results without optimizing for singularity avoidance. Finally, the box labeled e-IK shows the results obtained when
using a Euclidean metric.

task, where a goal end-effector position must be attained while maximizing the overall distance from sin-
gular regions. Next, in Section4.6.2we demonstrate how our method can be used to guide the manipulator
away from singularities while following a circular end-effector path. All experiments were performed on a
laptop computer with an Intel i7-8750H CPU running at 2.20 GHz and with 16 GB of RAM.

4.6.1 Reaching Task

We begin by examining how the formulation given in Eq. (4.17) can be used to solve reaching tasks, where
the end-effector needs to reach a desired goal position. In our analysis, we consider the class of planar kine-
matic chains with an increasing number of DoF, as well as three robotic manipulators commonly used in
collaborative, assistive, and research robotics. We purposely avoid specifying a goal orientation in order to
induce kinematic redundancy that can be used to optimize the singularity avoidance indices being tested.
The overall performance is determined by comparing the minimal and maximal singular values of the Ja-
cobian in the final configuration, as these values provide a definitive indicator of singularity robustness for
a given configuration. We make the assumption that the joint limits and dynamic effects are accounted for
by the velocity constraints at each iteration, making this problem similar to a standard inverse kinemat-
ics problem. The experiment consists of performing 200 random (and randomly initialized) reaching tasks,
while respecting upper and lower limits on joint velocities.

First, we examine the results for three, six, and nine DoF planar kinematic chains with joint velocities
limited to π

8 rad/s(22.5◦); the results are summarized by the box plots in Fig.4.7. For methods s-IK, s-IK2,
and m-IK, we chose α = 1, since it produced satisfactory singularity avoidance results with a similar num-
ber of successes across the board. The gradient of Eq. (4.26), used in the e-IK formulation, generally has a
larger magnitude and so we use α = 0.1 to ensure numerical stability. Examining the top row of Fig.4.7, we
see that the method labeled s-IK, corresponding to the reference ellipsoid Σ = kI with k = Tr(M) ≥ σmax

38 Chapter 4. Geometry-Aware Singularity Avoidance

s-IK s-IK2 m-IK IK e-IK

0.2

0.4

σ
m
in

UR-10

s-IK s-IK2 m-IK IK e-IK

0.1

0.2

σ
m
in

Kinova Jaco

s-IK s-IK2 m-IK IK e-IK

0.1

0.2

σ
m
in

KUKA IIWA

s-IK s-IK2 m-IK IK e-IK

0.7

1.4

σ
m
ax

s-IK s-IK2 m-IK IK e-IK

0.5

1
σ
m
ax

s-IK s-IK2 m-IK IK e-IK

0.5

1

σ
m
ax

Figure 4.8: Results of solving 200 random inverse kinematics (IK) problems; each column corresponds to IK solutions
for a different common manipulator. The plots in the top row show the minimal singular values σmin of the manipulator
Jacobian in the final configuration, while the plots in the bottom row show the maximal singular values σmax. The two
leftmost boxes in each plot, labeled s-IK and s-IK2, represent our method with for different choices ofΣ. The box labeled
m-IK corresponds to the method inDufour and Suleiman[2017], while the box labeled IK shows the results without
optimizing for singularity avoidance. Finally, the box labeled e-IK shows the results obtained when using a Euclidean
metric.

(updated at each iteration), achieves the highest median minimal singular value σmin. Moreover, increasing
the number of DoF further amplifies this effect, as there is a larger space of solutions that can be explored
due to the higher degree of redundancy. This result is highly desirable from the perspective of singularity
avoidance, since we are trying to avoid situations where the Jacobian is not invertible. However, minimizing
λ in this case also results in M adopting a more spherical shape. This can be seen in the bottom row of
Fig.4.7, where s-IK produces a lower median maximal singular value σmax than s-IK2 or m-IK, reflecting
the spherical shape of the reference ellipsoid. We posit that the spherical shape results in a more uniform
mobility profile for the end-effector, while not affecting the proximity to singular configurations. Alter-
natively, by choosing Σ = kM with k = 2 (s-IK2), we achieve an overall increase of both the minimal
and maximal singular values, very similar to that of m-IK. Intuitively, choosing k = 2 means that, at every
iteration, we attempt to reach an ellipsoid that is twice the size of the current ellipsoid. The results can
be interpreted by observing that the gradient in this case has the form of Eq. (4.15), which is very similar
to the manipulability-based gradientMarić et al.[2019] used in trajectory optimization. The m-IK method
fromDufour and Suleiman[2017] maximizes det (M), which translates to maximizing the overall volume of
the manipulability ellipsoid. While this method outperforms the baseline IK approach, the median minimal
singular value obtained using this method is noticeably smaller than that of s-IK. Finally, the e-IK method
outperforms only the baseline in terms of the minimal singular value, as it appears to prioritize maximizing
the largest singular value.

We have also performed the same experiment using common six and seven DoF robots: the Universal
Robots UR10, the Kinova Jaco manipulator, and the KUKA IIWA 14. All joint velocities were again limited
to at most π

8 rad/s in either direction and the gain value was increased to α = 10 for s-IK, s-IK2, e-IK, and
m-IK. Examining the results in Fig.4.8, we note that the overall singular values are lower than that of the
planar case. This is because the movement of these robots is more constrained in three dimensions than
the movement of the planar mechanisms in two dimensions. Moreover, the majority of the translational

4.6. Experimental Results 39

(a) (b)

Figure 4.9: (a) Following a circular pathwith the UR10manipulatorwithout attempting to avoid singular configurations.
Note the large change in the wrist configuration when the manipulator reaches the top of the circle. (b) Following a
circular path with the UR10 manipulator while using the singularity avoidance formulation s-IK. Note that the wrist
and base configurations change more slowly, improving the conditioning of the Jacobian.

0 0.5 10

0.1

0.2

0.3

Parametric Distance

σ
m
in

UR-10

0 0.5 1
0

0.1

0.2

0.3

0.4

Parametric Distance

σ
m
in

Kinova Jaco

0 0.5 1
0.1

0.2

0.3

Parametric Distance

σ
m
in

KUKA IIWA

0 0.5 10.4

0.6

0.8

1.0

Parametric Distance

σ
m
ax

s-IK
m-IK
e-IK
IK

0 0.5 1

0.5

0.6

Parametric Distance

σ
m
ax

0 0.5 1
0.3

0.4

0.5

0.6

0.7

Parametric Distance

σ
m
ax

Figure 4.10: Jacobian conditioning throughout the circular trajectory, parameterized by t = [0, 1]. Minimal singular
values σmin are displayed in the top row and maximal singular value σmax are displayed in the bottom row.

mobility in these robots is produced by the first three joints, further exacerbating this phenomenon. The
top row of Fig.4.8again shows that the s-IK method, using a spherical reference ellipsoid, produces superior
results, with s-IK2 coming in as a close second. In the bottom row, we see that the maximum singular values
are similar in all scenarios for all robots.

4.6.2 Circular Path Tracking

In this experiment, we evaluated the performance of our singularity avoidance formulation in an task space
control scenario for several different manipulators by tracking a circular path with the end-effector. All
manipulators used in this experiment have six or more DoF, while the task required only the position of the
end-effector to remain on the defined path at all times. We are able to use the available kinematic redundancy
to optimize the movement of each manipulator such that singular and near-singular configurations are
avoided. Again, the formulation in Eq. (4.17) is used to produce a locally optimal joint displacement at each
iteration, and we compare the s-IK, m-IK, e-IK, and IK methods.

40 Chapter 4. Geometry-Aware Singularity Avoidance

Figure 4.11: Visualization of the circular path followed by the KUKA IIWA 14manipulator. The end effector orientation
is constrained to remain constant throughout the task.

In Fig.4.10we see that the maximal and minimal singular values of the Jacobian vary throughout the
trajectory (as executed by the chosen methods). In the leftmost column, the regular IK method produces
two nearly-singular configurations for the UR10, whereas all other methods avoid these singularities. The
singularities are indicated by two dips in σmin for the IK method, corresponding to the top and bottom of
the circular path shown in Fig.4.9a. At these points, the wrist configuration of the manipulator in Fig.4.9a
shifts significantly in order to continue to follow the position reference—this is a clear indicator that the
arm is passing near a singularity. The m-IK method produces a trajectory closer to the first singularity
than for s-IK or IK, since the m-IK maximizes the overall manipulability ellipsoid volume by prioritizing
the increase of the two larger singular values. Our method outperforms both the IK and m-IK methods by
maintaining a σmin that is approximately two times larger than that produced by m-IK. The trade-off can
be seen by observing the bottom row, where it is clear that the σmax achieved by s-IK is somewhat lower
than by m-IK or e-IK, while still outperforming IK. The e-IK method performs surprisingly very well in this
scenario, maintaining a σmin that is only slightly lower than that produced by s-IK, while achieving higher
σmax. Fig.4.9bshows the trajectories generated by s-IK; note the smaller variations in wrist movement,
which suggests a better joint-to-task space mapping in terms of end-effector position change compared to
Fig.4.9a.

Results for the same task performed by the Kinova Jaco arm are shown in the middle column of Fig.4.10
and offer a contrasting example. The performance of e-IK no longer matches s-IK in terms of singularity
avoidance, as our method maintains a significantly higher σmin throughout the trajectory. Interestingly,
σmin and σmax reach a similar value for s-IK, which corresponds to the spherical shape of the reference
ellipsoid used by this method. The rightmost column of Fig.4.10shows that results for the KUKA-IIWA
confirm the observed trend. For all the robots, the baseline IK method is outperformed by all other methods,
demonstrating that even using a ‘geometrically improper’ criterion based on the Euclidean metric helps to
avoid singularities. Surprisingly, the performance of m-IK and e-IK is similar across all examples.

Finally, we have evaluated how all four methods perform when the path-following task also requires the
end-effector orientation to remain fixed. We perform this task with the seven DoF KUKA IIWA 14 robot,
since it has the redundancy needed to optimize for singularity avoidance when tracking the full end-effector
pose reference. A visualization of the task can be seen in Fig.4.11, while the changes of all Jacobian singular
values are shown in Fig.4.12. Our results indicate that using the baseline IK method results in a significant
drop in σmin around t = 0.6, signaling that the robot is near a singularity. This singularity is avoided
by the s-IK and m-IK methods, which produce similar changes of the lowest singular value. On the other
hand, the performance of e-IK is arguably worse than that of the baseline IK method, with the manipulator
configuration remaining nearly singular from t = 0.3 to t = 0.55. We see that s-IK also results in larger

4.7. Summary and Conclusions 41

0 0.5 1

1.75

1.8

Parametric Distance

σ
1

0 0.5 1

1.5

1.6

1.7

1.8

Parametric Distance

σ
2

0 0.5 1

1

1.2

1.4

Parametric Distance

σ
3

0 0.5 1
0.3

0.35

0.4

0.45

Parametric Distance

σ
4

s-IK
m-IK
e-IK
IK

0 0.5 1

0.25

0.3

0.35

Parametric Distance

σ
5

0 0.5 1

0.2

0.25

Parametric Distance

σ
6

Figure 4.12: Jacobian conditioning throughout the execution of a circular trajectory with constant end-effector orien-
tation for the KUKA IIWA 14 robot. The trajectory is parameterized by t = [0, 1]. Plots show how the Jacobian singular
values σi change as the robot follows the path. Singular values are indexed as follows" σ1 ≥ σ2 ≥ . . . ≥ σ6.

σmax = σ1 and σ2 than all the other methods.

4.7 Summary and Conclusions

In this chapter, we described a novel method for singularity avoidance that uses a well-known Riemannian
metric on the manifold of SPD matrices to formulate a computationally tractable optimization criterion
based on geodesic length. We proved that our geometry-aware singularity index can be differentiated by
computing directional derivatives using an identity from computational matrix analysis. Moreover, we
showed that various and geometrically distinct criteria can be derived from this formulation by changing
a single parameter (i.e., reference ellipsoid) and that some choices result in robustness to failure modes
that are common for other indices. We demonstrated that the proposed index can be integrated into a
common optimization formulation of task space reference tracking. The experimental results indicate that
our index consistently achieves the largest minimal singular values among all of the methods compared.
Moreover, we justified the use of the Riemannian metric by performing a comparison to an instance of our
index that uses the standard Euclidean metric, which yields less consistent results and worse performance
in terms of singularity avoidance. Finally, it is important to note that there may be other choices of the
reference ellipsoid suitable for singularity avoidance, as well as choices specifically tailored to a given task
or kinematic structure. We consider this one of the key advantages of our approach—our method can be
tailored to a specific task to a greater degree than other indices such a the manipulability index.

As an avenue for future work, we note that the formulation presented herein can easily be integrated into
existing control and planning pipelines and that it would be interesting to benchmark their performance. We
have previously integrated a manipulability maximization term into the trajectory optimization framework
of [Marić et al.,2019] and this work was followed up by integrating the proposed index into a similar
formulation that is better suited for nonlinear objectives [Petrović et al.,2020,2021]. From a theoretical
point of view, we are exploring possible equivalences between certain choices for the reference ellipsoid
and existing singularity avoidance criteria. Furthermore, determining how a reference ellipsoid should be
selected for a specific task may elucidate further advantages over more conventional methods.

42 Chapter 4. Geometry-Aware Singularity Avoidance

4.7.1 Limitations

There are several limitations that should be considered when using the approach presented herein for sin-
gularity avoidance. First, it is crucial that the reference ellipsoidΣ encapsulates all manipulability ellipsoids
that can be reached by the robot. This can be accomplished by defining a large ellipsoid beforehand, either
empirically or analytically, as described for the spherical reference ellipsoid in Section4.4.3. In Section4.4.3
we have shown that the reference ellipsoid can also be redefined at each iteration and its lengths modified
to ensure it remains larger than the manipulability ellipsoid. This option may provide greater numerical sta-
bility, assuming that the Σ is updated at an adequate rate. Another problematic scenario may occur when
the initial manipulator configuration is itself singular, since the manifold geometry described in Section4.4
holds only for non-singular ellipsoids. This situation is easily detected either by directly observing the sin-
gular values of the Jacobian or noting that matrix logarithm has failed—a small perturbation can be applied
to the joint configuration to leave the singular region.

4.7.2 Associated Publications

Our research in singularity avoidance was initially set in the context of trajectory optimization, where
several discrete states were interpolated with a continuous time-parameterized trajectory optimized for
locally maximum manipulability.

1.Maric, F., Limoyo, O., Petrović, L., Petrović, I., Kelly, J. ManipulabilityMaximizationUsingContinuous-
Time Gaussian Processes. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS) Towards Robots that Exhibit Manipulation Intelligence Workshop

2.Marić, F., Limoyo, O., Petrović, L., Ablett, T., Petrović, I., Kelly, J. (2019, November). Fast manipula-
bility maximization using continuous-time trajectory optimization. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (pp. 8258-8264).

This research project elucidated some fundamental drawbacks of using the manipulability index and led
us to develop a novel singularity avoidance criterion based on a differential-geometric characterization of
elliposids. The geometry-aware singularity index presented in this chapter is compatible with both instances
of the inverse kinematics problem described in Section3.3.

3.Marić, F., Petrović, L., Guberina, M., Kelly, J., Petrović, I. (2021). A Riemannian metric for geometry-
aware singularity avoidance by articulated robots. Robotics and Autonomous Systems, 145, 103865.

In later work, we showed that this index can be used in trajectory optimization applications in place of the
conventional manipulability index.

4.Petrović, L., Marić, F., Marković, I., Kelly, J., Petrović, I. (2021, October). Trajectory Optimization
with Geometry-Aware Singularity Avoidance for Robot Motion Planning. In 2021 21st International
Conference on Control, Automation and Systems (ICCAS) (pp. 1760-1765). IEEE.

Chapter 5

Distance-Geometric Inverse
Kinematics

One geometry cannot be more true than
another; it can only be more convenient.
Geometry is not true, it is advantageous.

Robert M. Pirsig

Solving the inverse kinematics problem is a fundamental challenge in motion planning, control, and
calibration for articulated robots. Kinematic models for these robots are typically parametrized by joint
angles, generating a complicated mapping between the robot configuration and the end-effector pose. Al-
ternatively, the kinematic model and task constraints can be represented using invariant distances between
points attached to the robot. In the contribution described in this chapter, we formalize the equivalence of
distance-based inverse kinematics and the distance geometry problem for a large class of articulated robots
and task constraints. Unlike previous approaches, we use the connection between distance geometry and
low-rank matrix completion to find inverse kinematics solutions by completing a partial Euclidean distance
matrix through local optimization. Furthermore, we parametrize the space of Euclidean distance matrices
with the Riemannian manifold of fixed-rank Grammatrices, allowing us to leverage a variety of mature Rie-
mannian optimization methods. Finally, we show that bound smoothing can be used to generate informed
initializations without significant computational overhead, improving convergence. We demonstrate that
our inverse kinematics solver achieves higher success rates than traditional techniques, and substantially
outperforms them on problems that involve many workspace constraints.

5.1 Motivation and Related Work

Various problems of a geometric nature can be expressed using points and their relative distances [Dokmanic
et al.,2015]. In the case of actuated mechanisms such as robots, a geometrically intuitive alternative to joint
angle parameters is obtained by considering points attached to the robot’s structure [de Jalón,2007]. The
positions of these points on the robot and their relative distances can be used to describe the kinematic
model of the robot [Blanchini et al.,2017,Le Naour et al.,2019b]. This approach unifies the configuration
and task spaces of the kinematic model, eliminating nonlinearities that originate from forward kinematics
in a variety of common workspace constraints. In contrast to a joint angle-based parametrization, searching
over point positions is not restricted to feasible configurations of the robot, but to arbitrary “conformations”
in Euclidean space.

43

44 Chapter 5. Distance-Geometric Inverse Kinematics

A more compact representation is obtained by modelling the robot using distances as variables. Motion
constraints of individual joint-link pairs can be modeled by defining distances between key points in the
structure of the robot in a manner similar to [Porta et al.,2005b,Han and Rudolph,2006]. Adopting this
perspective allows us to set constraints on end-effector poses and joint angles by limiting the associated
distances to a predetermined range. We use the distance geometry problem (DGP) described in Section2.3
as a mathematical basis for our approach and derive simple and inclusive criteria for the compatibility of
a robot mechanism with our method. Finally, we provide a free and open-source Python implementation
of our algorithms and simulation experiments, which empirically show the effectiveness of our approach
on a variety of robot models. Compared to typical IK formulations based on joint angles, experimental
results indicate that ourmethod often achieves higher success rates and faster convergence, and outperforms
benchmark algorithms when many workspace constraints are present.

5.1.1 Distance Geometry

As stated in Section2.3, the problem of distance geometry can be described as completing a partially-
connected graph of interpoint distances. When a high degree of connectivity is present (i.e., most distances
are known), the classical multidimensional scaling (MDS) algorithm [Cox and Cox,2008] is often used. The
EMBED algorithmmodels the problem of molecular conformation using distances, providing bounds on un-
known distances using bound smoothing [Havel,2002] and iteratively finding solutions for smaller problem
instances. Larger problem instances that satisfy some additional assumptions can be solved with a branch-
and-prune strategy [Liberti et al.,2008]. Convex relaxations of the DGP have been coupled with semidefinite
programming methods in both chemistry and sensor network localization [Biswas et al.,2006,Leung and
Toh,2010].

Known distances can be arranged in an incomplete Euclidean distance matrix (EDM) [Dokmanic et al.,
2015] of rank at most K + 2, where K is the dimension of the Euclidean space. In many applications,
the DGP can be solved by determining the unknown EDM entries using a low-rank matrix completion ap-
proach [Nguyen et al.,2019b]. Recently, numerical optimization methods based on results from Riemannian
geometry have been utilized to efficiently perform EDM completion [Vandereycken,2012]. Mishra et al.
solve the EDM completion problem using a Riemannian trust-region method by parametrizing the EDM
with elements of a quotient manifold invariant to orthogonal transformations [Mishra et al.,2011]. Nguyen
et al. present a similar approach in [Nguyen et al.,2019a] that finds solutions to the problem of sensor net-
work localization using a Riemannian conjugate gradient method on a manifold representation of EDMs.

5.1.2 Euclidean Inverse Kinematics

Recently, several optimization approaches have been introduced that forgo the standard joint angle parametriza-
tion in favour of models based on Cartesian coordinates (also known as natural coordinates [de Jalón,2007]).
The authors of [Dai et al.,2019] use a piecewise-convex relaxation of the SO(3) group together with a set
of points on the robot to formulate the constrained IK problem as a mixed-integer linear program (MILP).
Their formulation can detect infeasible problems and provide approximate solutions to feasible problems,
at the cost of a computationally intensive solution method. Yenamandra et al. [Yenamandra et al.,2019]
use a similar relaxation to formulate IK as a semidefinite program. Blanchini et al. [Blanchini et al.,2015,
2017] treat points on a rigid manipulator as virtual masses in a potential field, leading to “minimum en-
ergy” solutions to convex formulations of planar and spherical inverse kinematics. Naour et al. [Le Naour
et al.,2019b] formulate IK as a nonlinear program over inter-point distances, showing that solutions can be
recovered for unconstrained articulated bodies. However, the convergence of such approaches is hindered
by a large and highly redundant search space, in part because the point set can be rotated and translated
without affecting the distance constraints defining the IK problem. While our kinematic model is based on

5.2. Euclidean Distance Matrix Completion 45

inter-point distances, our approach differs from previous work by encompassing a larger class of robots
and allowing for constraints such as symmetric joint limits and spherical obstacle avoidance. Moreover, we
provide a comparison with both heuristic and nonlinear optimization approaches, demonstrating that our
proposed solution method provides a benchmark for IK problems.

Active structures such as robots also admit purely distance-based descriptions [Porta et al.,2018]. Porta
et al. relate the IK problem to EDM completion [Porta et al.,2005b] for several common classes of manip-
ulators and leverage an algebraic approach to find configurations reaching a desired end-effector pose. For
general systems of kinematic and geometric constraints, Porta et al. apply a complete but computationally
expensive branch-and-prune solver that iteratively eliminates regions of the solution space using geometric
techniques [Porta et al.,2005a]. Our recent work [Marić et al.,2020] applies a convex sum-of-squares (SOS)
relaxation [Parrilo,2003,Lasserre,2001] to a distance-geometric formulation of inverse kinematics, exploit-
ing theoretical properties that guarantee a globally optimal solution for many problem instances. Moreover,
we previously showed that kinematic constraints induce an inherently sparse structure that can be used to
significantly reduce the computational burden usually associated with the SOS approach (and other convex
relaxation-based methods).

In this chapter, we explore IK from a distance geometry perspective, revealing an equivalence between
IK as defined in Section3.3and the general DGP defined in Section2.3. By formalizing this equivalence
for a large class of robots comprised of planar (i.e., two-dimensional), spherical, and revolute joints, we
are able to connect IK to a rich literature of DGP solutions based on low-rank matrix completion [Nguyen
et al.,2019b]. We find solutions using the method introduced by Mishra et. al. [Mishra et al.,2011], where
a Euclidean distance matrix [Dokmanic et al.,2015] is parametrized with the manifold of fixed-rank Gram
matrices [Journée et al.,2010], maintaining the advantages of a relaxed search space with fixed dimension-
ality and reduced redundancy. Furthermore, we show that bound smoothing [Havel,2002] can be used as an
effective initialization method that significantly improves convergence. In contrast to [Porta et al.,2005b],
the use of a numerical optimization approachmakes our algorithm suitable for a more general class of robots
with redundant DOF, as well as the inclusion of workspace constraints.

5.2 Euclidean Distance Matrix Completion

As discussed in Section2.3, a collection of points can be described using a graph G = (V,E) that is weighted
by interpoint distances. If all interpoint distances are known, the graph is complete, meaning that all of its
edges and corresponding weights are prescribed. This graph can be compactly represented by the EDM
whose elements are

∀ {u, v} ∈ E, Du,v ≜ d2u,v , (5.1)

and a realization of the graph can be obtained simply by taking the collection of points recovered via
Eq. (2.28) and Eq. (2.29). It follows that the recovered collection of points is in fact a solution of the DGP
defined by Problem1. Conversely, many DGP instances are represented by graphs that only have a subset
of edges defined a priori, resulting in an EDM with missing elements.

The problem of finding the missing elements in a partially defined EDM is known as the EDM completion

problem [Dokmanic et al.,2015], which is strongly NP-hard in general [Liberti et al.,2014]. By defining the
symmetric binary matrix Ω with elements

Ωu,v ≜

{
1 if {u, v} ∈ E,

0 otherwise,
(5.2)

46 Chapter 5. Distance-Geometric Inverse Kinematics

we arrive at a common statement of the EDM completion problem as low-rank matrix completion:

min
X∈X

f(X) ≜
1

2

∥∥∥Ω⊙ (D̃−K (X))
∥∥∥2
F
, (5.3)

where ⊙ is the Hadamard (element-wise) matrix product, K is the distance matrix operator defined in
Eq. (2.27), and D̃ is the incomplete distance matrix. Since the workspace dimension K of the robot is
known, the Gram matrix X defined in Eq. (2.26) is constrained to the manifold

X =
{
PPT : P ∈ RN×K

∗

}
, (5.4)

where RN×K
∗ is the manifold of full-rank N × K matrices (i.e., the points in P don’t describe a plane,

straight line or a single point). It follows that X is the manifold of rank-K positive-semidefinite matrices.
The NP-hardness of this problem originates from the non-convex constraint on the rank of X, which can
be relaxed in order to obtain a solution using Euclidean local search or semidefinite programming [Alfakih
et al.,1999]. From Eq. (5.4), we see that relaxing the rank constraint expands the search space to collections
of points with dimension greater than K . This is fundamentally incompatible with physical problems, for
which the embedding dimension of points attached to bodies is at most 3. In fact, many interior point
methods that solve the resulting convex semidefinite program tend to return a max-rank (and therefore
potentially non-physical) solution [So and Ye,2007].

We can avoid explicit rank constraints in Eq. (5.3) by using the Burer-Monteiro factorization [Burer and
Monteiro,2004] to define the cost function directly in terms of the points P ∈ RN×K . This results in a
non-convex optimization problem

f∗ = min
P∈RN×K

f(PPT), (5.5)

which reduces the number of variables without changing the global minimum [Fang and O’Leary,2012].
Following the derivation in [Mishra et al.,2011], the Euclidean gradient of Eq. (5.3) with respect to P is
defined as

∇f = 4
(
S− diag (S1)

)
P, (5.6)

where S = Ω⊙ (D̃−K (X)) and diag (S1) is a diagonal matrix formed by the product S1.

Second-order optimization methods benefit from an exact analytical expression of the Hessian H(f).
In [Chu et al.,2003], an analytic expression for the full Hessian of Eq. (5.5) is obtained in an element-wise
fashion. However, this expensive computation can be avoided by observing that many optimizationmethods
only require the Hessian-vector product [Pearlmutter,1994] and by making use of the identity

∇Z(∇f) ≜ H(f) · Z ,

where∇Z(∇f) =
d∇f((P+tZ)(P+tZ)T)

dt is the directional derivative 1 of the gradient in the direction Z. We
then obtain

H(f) · Z =4∇Z

(
S− diag (S1)

)
P

+4
(
S− diag (S1)

)
Z .

(5.7)

Unlike gradient descent, second-order optimization methods feature a superlinear convergence rate, which
is useful when highly accurate solutions of Eq. (5.5) are required.

1Denoted by∇Z.

5.2. Euclidean Distance Matrix Completion 47

5.2.1 Optimization on the Manifold

As stated in Section2.3.1, inter-point distances are invariant to rigid transformations of the underlying
point set. It follows that the problem in Eq. (5.5) is invariant to right-multiplication of the variable P with
orthogonal matrices Q ∈ O(K). This results in nonisolated minima, which have been shown to cause
step evaluation issues for second-order methods [Absil et al.,2009] when close to a solution, rendering
the classical result of superlinear convergence void. This issue is circumvented in [Journée et al.,2010] by
considering the set of all equivalence classes of the form

[P] =
{
PQ|Q ∈ RK×K ,QTQ = I

}
. (5.8)

Elements of this set constitute a manifoldM which is the quotient of the set of full-rank N ×K matrices
by the orthogonal group O(K):

M ≜ RN×K
∗ /O(K). (5.9)

It follows that the overall search space is reduced by reformulating Eq. (5.5) on the manifoldM as

ϕ∗ = min
[P]∈M

ϕ([P]), (5.10)

where ϕ([P]) = f(PPT). Moreover, it can be shown that the quotient manifoldM has the structure of a
Riemannian manifold [Absil et al.,2009] as defined in Section2.1.2. Next, we provide an overview of how
the EDM completion problem in Eq. (5.10) can be adapted to the Riemannian setting, as described by Mishra
et. al. [Mishra et al.,2011]. We refer the reader to [Absil et al.,2009] for a detailed treatment of quotient
manifolds and their geometry.

Formally, the tangent space TPM of a point P inM is the space of all tangent vectors γ′(0) to curves
γ : R→M, where γ(0) = P. The tangent space TPM is endowed with the inner product, also known as
the Riemannian metric

gP(Z1,Z2) = Tr(ZT
1Z2), Z1,Z2 ∈ TPM, (5.11)

which is the usualmetric onRN×K . We can divide the tangent space into two orthogonal subspaces [Journée
et al.,2010]

TPM = VPM⊕HPM ,

where the tangent space to the equivalence classes in Eq. (5.8) is known as the vertical subspace

VPM =
{
PQ|Q ∈ RK×K ,QT +Q = 0

}
, (5.12)

and the orthogonal complement of VPM in TPM is known as the horizontal subspace

HPM =
{
Z ∈ TPRN×K

∗ |ZTP = PTZ
}
. (5.13)

Given a tangent vector Z ∈ TPM at a point P ∈ M, we can recover the horizontal component from
Eq. (5.13) using the horizontal projection operator.

Definition 12 (Horizontal projection). The horizontal projection PHPM : TPM→HPM, that recov-

ers the horizontal lift ZH of the tangent vector Z ∈ TPM corresponding to the horizontal subspace in

Eq. (5.13) is defined as
PHPM(Z) = Z−PC , (5.14)

48 Chapter 5. Distance-Geometric Inverse Kinematics

where C is a skew-symmetric matrix solving the Sylvester equation:

CPTP+PTPC = PTZ− ZTP.

Using the projection operator PHPM, derivatives of the function ϕ (defined on the manifold) are computed
from the derivatives of the function f (defined in Euclidean space) [Absil et al.,2009] by producing the
horizontal lift of the Euclidean gradient of f at point P:

∇ϕ = PHPM(∇f). (5.15)

Similarly, by projecting the directional derivative of the gradient defined in Eq. (5.7), we compute the
Hessian-vector product of ϕ from that of f as

H(ϕ) [Z] = PHPM(∇Z(∇ϕ)). (5.16)

Once the geometrically-correct derivatives have been produced, the step size is calculated and the point is
moved along a descent direction on the manifold. To ensure the resulting point remains on the manifold,
we use the retraction operator.

Definition 13 (Retraction). In order to apply a direction of movement in HPM while staying on the

manifoldM, we use the retraction operator, which is defined as

RP(W) = P+W. (5.17)

The projection and retraction operators allow for the adaptation of classic local optimization algorithms to
the Riemannian setting [Boumal and Absil,2015,Wei et al.,2016].

5.3 Distance-Geometric Inverse Kinematics

Unlikemost approaches that attempt to directly solve IK as stated in Definition9in terms of joint variables θ,
we adopt an alternative formulation based on inter-point distances [Porta et al.,2005b,Le Naour et al.,2019a,
Marić et al.,2020]. Our approach, which allows us to trivially recover θ from our distance-based solution,
is developed in detail in Sections5.3.1to5.3.3and summarized in Fig.5.1. In Section5.3.4, we prove that
our formulation of IK is equivalent to the distance geometry problem (DGP) defined in Section2.3for a
broad class of manipulators. Finally, in Section5.3.5we show how robots with planar and spherical joints
constitute special cases for which our formulation can be trivially simplified.

5.3.1 Kinematic Model

Articulated robots are comprised of a series of single-axis revolute joints oriented to provide a useful range of
poses in their task spaces. Our goal in this section is to construct a graph representation of such mechanisms
that is compatible with the DGP formulation in Problem2. We achieve this by rigidly attaching a pair of
points to the rotation axis of each joint in a manner similar to [Porta et al.,2005b]. As the example in Fig.5.2
illustrates, the distances between points corresponding to neighbouring joints are invariant to changes in
their angles during movement. These distances are key to describing the degrees of freedom of the robot.

Consider the points attached to the rotation axes of neighbouring joints, shown in Fig.5.2and labelled
u and v. We denote the positions of these points and the orientations of their respective coordinate frames
in F−→s as pu

s , pv
s , Rsu, and Rsv , respectively. Further, pv

u and Ruv denote the position and orientation of
the fixed coordinate frame at v in the rotating coordinate frame at u. The matrixRz(θu) rotates pv

u and the

5.3. Distance-Geometric Inverse Kinematics 49

Figure 5.1: Overview of the proposed algorithm. A goal end-effector position p6 is defined for a 3-DOF robotic manip-
ulator (top); the inverse kinematics problem is to find the corresponding joint angles Θ. Our method uses the matrix
D̃ of distances between points P common to all feasible IK solutions to define an incomplete graph whose edges are
weighted by known distances. Then, we apply Euclidean distance matrix completion with the known distance selection
matrixΩ to recover the weights corresponding to the unknown edges, solving the IK problem.

associated child joints about the ẑ axis by the joint angle θu. Given the joint angles Θ, these positions and
orientations can be computed recursively as:

Rsv = Rsu Rz(θu)Ruv ,

pv
s = pu

s +Rsu Rz(θu)p
v
u

∀ (u, v) : v ≻ u, (5.18)

where ≻ indicates that the joint indexed by u is the parent of the joint indexed by v in the directed graph
describing the robot structure.2 For neighbouring joints, pv

u and Ruv are determined by the robot model
parametrization (e.g., the DH convention [Hartenberg and Denavit,1955] or Lie groups [Lynch and Park,
2017]). The second pair of points, labelled by ũ and ṽ, are obtained by translation along axis of rotation of
each joint:

pũ
s = pu

s +Rsuẑ ,

pṽ
s = pv

s +Rsvẑ .
(5.19)

Together, these four points describe the relative position and orientation of the joints’ rotation axes. For a
given robot, we index the points obtained using Eq. (5.18) and Eq. (5.19) with the set of vertices Vs ⊂ V

of an incomplete graph G = (V,E), where the set of edges E is weighted by interpoint distances that are
known a priori. These distances describe the overall geometry and degrees of freedom of the robot, and
they are invariant to the feasible motions of the robot (i.e., they remain constant in spite of changes to the

2We assume that the graph is a tree whose root is the fixed robot base and whose leaves are the end-effectors; we leave extensions
of our formulation to parallel manipulators, which contain loops, for future work.

50 Chapter 5. Distance-Geometric Inverse Kinematics

Tr
an

sf
or

m
s

P
oi
nt
s

G
ra
ph

Figure 5.2: Visualization of the point placement used to describe a generic linkage of revolute joints and the correspond-
ing graph representation. The top graphic shows the transformations used to obtain the poses of the joint coordinate
frames. The middle graphic shows how pairs of points indexed by (u, ũ), (v, ṽ), and (w, w̃) are placed along the rotation
axis of their respective joints. The bottom graphic shows how the corresponding vertex representations form a graph
whose edges are weighted by the known inter-point distances defined by link geometry in Eq. (5.20).

5.3. Distance-Geometric Inverse Kinematics 51

(a) (b)

(c) (d)

Figure 5.3: Visualization of the procedure in Section5.3for a 3-DOF revolute manipulator with joint limits. a) The
solid black lines represent fixed distances between neighbouring joints and between base vertices. b) The dashed lines
correspond to the distances constrained to some interval [d−, d+] determined by symmetric limits on the joint angle
θv . c) The solid black lines represent the distances fixed by setting a desired end-effector pose. d) Spherical obstacles
are represented as vertices in the graph whose position is fixed by defining the distances to the base nodes. The lines
drawn in red represent some distances whose lower bounds can be set in order to achieve obstacle avoidance.

52 Chapter 5. Distance-Geometric Inverse Kinematics

configuration θ):

du,ũ = dv,ṽ = 1,

du,v = ∥pv
u∥,

du,ṽ = ∥pv
u +Ruvẑ∥,

dũ,v = ∥pv
u − ẑ∥,

dũ,ṽ = ∥pv
u − ẑ+Ruvẑ∥ .

∀ (u, v) ∈ Vs . (5.20)

Depending on the specific link geometry, some identities in Eq. (5.20) may vanish, allowing us to merge
identical points and reduce the overall size of the graph.

5.3.2 Constraints

In addition to describing the rigid structure of a robot using the distances in Eq. (5.20), we also need to
introduce distance constraints that encode features of specific IK problem instances. To that end, this section
describes how additional vertices and distances may be used to constrain the end-effector(s) of a robot,
implement obstacle avoidance, and enforce joint limits.

Base Structure

In order to uniquely specify points with known positions (i.e., end-effectors) in terms of distances, we define
the “base vertices" of a robot as Vb = {o, x, y, z} ⊂ V , where o is the root or base joint. The elements of Vb

are used to form a coordinate frame with vertex o at the origin, as shown in Fig.5.3a. We achieve this by
defining the following edge weights:

do,x = do,y = do,z = 1,

dx,y = dx,z = dy,z =
√
2.

(5.21)

This base structure is used in the remainder of the section to specify, in terms of distance constraints, end-
effector poses and joint limit constraints for links starting at the root. Note that the vertices x and y may
be dropped in cases where the root joint angle is not limited to some interval, as this makes the solution
set depend only on the distances from the goal points to the root o and to each other. Moreover, we may
trivially reduce the graph size by using the points po and põ attached to the base joint axis instead of the
vertices o and z [Porta et al.,2005b].

End-Effector Pose

We consider two types of task space goals for an end-effector:

1.a 3-DOF position goal (Tp = R3), and

2.a 5-DOF “direction goal" defined by the position of two distinct points (Td = Tp × Tp).3

In both cases, w ∈ T is encoded as a set of points fixed to the end-effector. These points are indexed by
vertices Ve ⊂ V , and their positions are completely determined by the goal w. Thus, an end-effector goal
can be enforced by weighting the relevant edges with distances

du,v = ∥pu − pv∥ , u ∈ Ve , v ∈ Vb . (5.22)
3A full 6-DOF pose goal is not supported, as purely distance-geometric constraints cannot prevent reflections of the tool frame: this

is equivalent to the assumption that the final joint has no angle limits when that axis is aligned with the final joint (e.g., for a common
spherical wrist).

5.3. Distance-Geometric Inverse Kinematics 53

Joint Limits

Depending on the kinematic structure of the robot, symmetric joint limits can be represented by using
distance intervals. In Fig.5.3b, we see that a given joint angle can be represented (up to sign) using up to
four distinct distances:

d−u,w =
√
d2u,v + d2v,w − 2du,vdv,w cos(θlimv) ,

d+u,w = du,v + dv,w .

It follows that joint values can be restricted to symmetric intervals by constraining the distances between
vertices assigned to the parent and child of a particular joint. Generally, limiting one of the aforementioned
distances to an interval results in a distinct set of joint angle limits, depending on the particular distance
chosen. However, it is important to note that the nature of the distance-based representation may make it
difficult to implement arbitrary joint limits, as undesired symmetries may occur in certain ranges.

Obstacle Avoidance

We extend our model to incorporate spherical obstacles whose centers are indexed with the set of vertices
Vo ⊂ V . The radius of each obstacle is given by the function ρ : Vo → R+. Much like the elementary basis
vectors in Vb, we can fix each center pc, ∀ c ∈ Vo, in the global reference frame and augment G to include
the constant interpoint distances for edges in Vo × Vo and Vo × Vb:

∥pi − pj∥ = di,j ∀ (i, j) ∈ Vo × Vo ∪ Vo × Vb. (5.23)

Finally, points attached to the joints of a robot (i.e., those indexed by Vs) can be constrained to lie outside
of each obstacle:

∥pu − pc∥ ≥ ρ(c) ∀(u, c) ∈ Vs × Vo. (5.24)

The radii given by ρ can be inflated to account for the shape and size of the robot’s joints or as a conservative
safety measure. For robots with long links, auxiliary points indexed by Vs′ can be easily added between
points in Vs for higher precision collision avoidance.

5.3.3 Solution Recovery

The remaining edge weights can be determined by completing the resulting partial EDM and a canonical
realization P∗ can be recovered. This result is achieved by identifying the points indexed by Vb with the
origin andK elementary basis vectors in RK , which act as anchors in the solution of the Procrustes proce-
dure [Dokmanic et al.,2015] discussed in Section2.3.1. For K = 3, since the anchors form a right-handed
frame that fully specifies a 6-DOF pose, P∗ is unique. In Proposition2, we prove that P∗ will correspond
to a unique feasible configuration θ ∈ C if the successive joint axes of our robot are coplanar. Once P∗ is
obtained, we can iteratively recover all the joint values by solving

θu = min
θ
∥RsuRz(θ)p

v
u − (pv

s − pu
s)∥2

+∥RsuRz(θ)p
v
u +Rvẑ− (pṽ

s − pu
s)∥2 .

(5.25)

This problem can be reduced to finding the roots of a quartic polynomial and therefore admits a fast closed-
form solution. Alternatively, θ can be recovered from Eq. (5.18) and Eq. (5.19) with inverse trigonometric
functions. Notably, the optimization formulation of Eq. (5.25) is robust to numerical errors in the calculation
of P∗ by Algorithm2.

54 Chapter 5. Distance-Geometric Inverse Kinematics

5.3.4 Equivalence to Distance Geometry

In this section, we prove that the robot models (i.e., the proposed graph descriptions) discussed thus far
allow us to solve inverse kinematics (Definition9) by means of the DGP (Problem1). The main result is as
follows:

Proposition 2 (IK ≡ DGP). Suppose that the kinematic model of Section5.3.1describes a robot whose

successive joint axes are coplanar. Then, the solutions to Problem1correspond one-to-one with the solutions

to Definition9. More precisely, if pu,pũ,pv
, and pṽ

are coplanar for all v ≻ u, then for any end-effector

target w ∈ T , we have a corresponding DGP encoded in G and there exists a bijection

Q : Cw → G, (5.26)

where Cw ⊂ C is the set of configurations achieving w, and G is the space of all realizations (up to an

arbitrary Euclidean transformation) of G.

Proof. We begin by recalling that the presence of base structure constraints (Eq. (5.21)) in our model allows
us to identify “equivalent" realizations of a completion G with a canonical point assignment P∗. We will
assumeK = 3 for the entire proof: K = 2 is a special case which can be simplified by noting that all joints
share the same axis of rotation and by removing the “auxiliary" points defined by Eq. (5.19).

For a given robot andw ∈ T , the preceding sections described a set of DGP constraints which we write
as the incomplete graph G = (V,E). We will now proceed to prove that there is a bijection between Cw
and the equivalence classes representing distinct solutions toG (each equivalence class is represented by its
canonical solution P∗). It suffices to construct a map Q that is injective and surjective, where Q is simply
the iterative procedure described by Eq. (5.18) and Eq. (5.19).

Injective: We will use a proof by contradiction. Suppose ∃θ1 ≠ θ2 ∈ Cw such that Q(θ1) = P∗ =

Q(θ2). Let u be the vertex label for a joint whose corresponding angle θu
1 = θu1 ≠ θu2 = θu

2 , but has
θs1 = θs2 for all ancestors s of u. At least one such u is guaranteed to exist because Eq. (5.18) and Eq. (5.19)
tell us that the axis points pv and pṽ of joint v ≻ u only depend on θu and the positions of all its ancestor
joints’ points. This gives us:

pu
s +RsuRz(θu1)p

v
u = pu

s +RsuRz(θu2)p
v
u, (5.27)

=⇒ Rz(θu1)
TRz(θu2) = I,

=⇒ θu1
= θu2

,

where we have assumed without loss of generality that pv
u ≠ c ẑ for some c ∈ R.4 This contradicts our

premise that θu1 ≠ θu2 and proves that the mapping is injective.
Surjective: We will show that for each P∗ ∈ G there exists θ ∈ Cw such that Q(θ) = P∗ ∈ G. By the

definition of G, ∥P∗
v − P∗

u∥ = ∥pv
u∥ and ∥P∗

v − P∗
ũ∥ = ∥pv

u − ẑ∥ for all v ≻ u, therefore we can always
find θu such that

P∗
v = P∗

u +Rsu Rz(θu)p
v
u, (5.28)

as required by Eq. (5.18). Since we have assumed that the pointspu
s ,p

ũ
s ,p

v
s , andpṽ

s are coplanar, the position
ofP∗

ṽ is uniquely determined by the other three points and thereforemust take the form specified byQ and
given by θu in Eq. (5.19):

P∗
ṽ = P∗

v +Rvẑ = P∗
u +Rsu Rz(θu)p

v
u +Rsvẑ. (5.29)

4In the special case where pv
u = c ẑ, injectivity can be proved with pṽ

s instead of pv
s . If pṽ

s is collinear with pv
s , pu

s , and pũ
s , then

joint v is a rotation around the same axis as joint u and they can be effectively combined into a single joint.

5.3. Distance-Geometric Inverse Kinematics 55

Figure 5.4: Illustration of the chirality or handedness issue that arises for non-coplanar pairs of joint axes v ≻ u.
If pu,pũ,pv , and pṽ are coplanar, our distance-geometric approach cannot introduce spurious solutions based on
reflections of the true robot geometry. If pṽ were replaced with pṽ1 as shown, the spurious point pṽ2 would also satisfy
the distance constraints in Eq. (5.18) because it is a reflection of pṽ1 across the plane containing pu,pũ and pv .

If the points were not coplanar, the six distance constraints in Eq. (5.20) would only specify their relative
positions up to a reflection ambiguity (i.e., there would be two feasible tetrahedra with opposite “chirality"
or “handedness"). This situation is illustrated in Fig.5.4.

Finally, we address the interval constraints inGwhich correspond to joint angle limits of C and obstacle
avoidance in T . We have established the desired bijection Q : Cw → G for IK problems defined only by
equality constraints. Including interval constraints simply limits the space of DGP solutions to G′ ⊂ G.
Since the inverse of a bijection is a bijection, and a subset of the domain of a bijection induces a bijection,
we have the desired Q′ : Cw → G′ and the proof is complete.

Proposition2establishes that the IK problem for a large class of robots can be formulated as a DGP.
Our experiments in Section5.5demonstrate that the requirement of coplanar neighbouring axes is satis-
fied by many popular commercial manipulators. Additionally, it is worth noting that planar and spherical
manipulators satisfy this requirement by definition.

5.3.5 Special Cases

In many cases, the generic DGP formulation of the IK problem presented in this section will result in kine-
matically redundant points in Vs. One example is pointspu, pv that can be selected to coincide (i.e., pu = pv

for all values of θ) because they lie on joint axes u ≻ v that intersect. While finding a generic strategy for
generating DGP representations with minimal graph sizes is beyond the scope of our research, we can iden-
tify two cases of practical importance where this reduction is both trivial and significant.

(a) (b)

Figure 5.5: Visualization of planar and spherical mechanisms. These are two common examples of models for which
our IK formulation uses a reduced number of variables.

56 Chapter 5. Distance-Geometric Inverse Kinematics

By reducing the point dimensionality to K = 2, we can represent planar mechanisms using a single
point per joint, as shown in Fig.5.5a. Without loss of generality, this significantly reduces both the number
of points and distances used to describe the IK problem, resulting in lower overall computation times. For a
detailed derivation of this simplified planar problem formulation, see [Marić et al.,2020].

A similar simplification can be obtained for a class of robots with joints allowing full or partial spherical
motion, such as those of the human shoulder and hip. In addition to humanoids, these spherical joints
can be found in highly redundant snake-like robots used in applications that include pipe inspection and
surgery [Ananthanarayanan and Ordóñez,2015]. As shown in Fig.5.5b, the joints can be represented as
two orthogonal revolute joints in the same position, which again allows us to drop the points used to define
the rotation axes, while still allowing us to limit the elevation angle and thereby restricting link motions to
a spherical cone. The remaining constraints can be trivially derived from those presented for the general
case.

5.4 Algorithm

To summarize so far, in Section5.3.1we derived distance geometric IK formulations for a variety of different
robot types. In Section5.2and Section5.2.1we showed how a Riemannian optimization approach to low-
rank matrix completion can be used to efficiently solve instances of the DGP. In this section, we propose an
extension to the optimization problem in Section5.2.1, making it compatible with the distance-geometric
IK formulation.

Modifying the matrix Ω from Eq. (5.2) to select only those EDM elements corresponding to known
invariant distances in D̃, we introduce the matricesΨ− andΨ+ that select interpoint distances with lower
or upper bounds defined by joint limits or obstacle avoidance constraints (i.e., the known elements of D̃−

and D̃+). We can now formulate the DGP as the Riemannian optimization problem

min
[P]∈M

ϕ([P]) ≜
1

2

∥∥∥Ω⊙ (D̃−K
(
PPT

)
)
∥∥∥2
F

+
1

2

∥∥∥max
{
Ψ± ⊙ (±D̃± ∓K(PPT)), 0

}∥∥∥2
F
.

(5.30)

The first term in this cost serves to enforce equality constraints on the distance matrix K(X), representing
the constant set of distances defined by robot and task geometry. The second term enforces joint limits and
obstacle avoidance constraints by setting either a lower or upper bound on a set of distances related to the
joint rotation angle or distances from the obstacle center, with the element-wisemax operator producing a
nonzero value when these bounds are violated. Assuming that the joint limits are symmetric, the lower or
upper bound on the distances will be implicitly enforced by the link length constraints, meaning that only
one bound needs to be explicitly included in Eq. (5.30).

5.4.1 The Riemannian Trust-Region Algorithm

The quality of the configuration recovered by the reconstruction step outlined in Section5.3.3depends on
highly accurate solutions to Eq. (5.30). As mentioned in Section5.2, the superlinear convergence guarantee
of second-order optimizationmethods helps to quickly obtain accurate solutions. Tomaintain this guarantee
for the non-isolated minima of Eq. (5.30), we use the second-order Riemannian trust region (RTR) algorithm
introduced inAbsil et al.[2007]. Briefly, the trust region algorithm focuses on sequentially solving the

5.4. Algorithm 57

Algorithm 2: Riemannian Trust-Region (RTR)
Input: Initial point P0

Data: Cost function ϕ
Parameters : ∆̄ > 0, ∆0 ∈ [0, ∆̄], ρ′ ∈ [0, 1

4)
Result: Solution PN

for k = 0, 1, . . . N do
Zk ← Eq. (5.31) and Eq. (5.32) ▷ Compute step
ρ← Eq. (5.33)
if ρ < 1

4 then ▷ Update TR radius
∆k+1 ← 1

4∆k

else if ρ > 3
4 and ∥Zk∥ = ∆k then

∆k+1 ← min(2∆k, ∆̄)
else

∆k+1 ← ∆k

end
if ρ > ρ′ then ▷ Accept or reject step

Pk+1 ← RP(Zk) ▷ Retraction (Eq. (5.17))
else

Pk+1 ← Pk

end
end

problem

min
Z∈HPM

mP(Z) ,

s.t. gP(Z,Z) ≤ ∆2 ,
(5.31)

where
mP(Z) ≜ ϕ(P) + gP(Z,∇ϕ) +

1

2
gP(Z,H(ϕ) [Z]). (5.32)

In other words, a quadratic approximation of the model constructed at point P informs a search for the
optimal descent direction Z within a trust region of radius ∆. Accepting or rejecting a candidate descent
direction and updating the trust region radius is based on the quotient

ρ =
ϕ(P)− ϕ(RP(Z))

mP(0)−mP(Z)
. (5.33)

A basic variant of this procedure is formalized in Algorithm2, where the subproblem in Eq. (5.31) is approx-
imately solved using the truncated conjugate gradient method introduced in [Absil et al.,2007]. The numer-
ical cost per iteration of this approach was shown in [Mishra et al.,2011] to be O(dK+NK+NK2+K3),
where d is the number of known entries in the EDM. Since K ∈ [2, 3] for IK problems, the complexity of
Algorithm2is linear with respect to the number of points and known distances. Similarly to conventional
trust region methods, the dominant computational bottleneck of RTR is the Hessian calculation, making the
additional overhead added by the horizontal projection in Eq. (5.14) comparatively insignificant.

5.4.2 Bound Smoothing

It is well established that the convergence of local optimization methods depends on the choice of start-
ing point. The distance-based parametrization of the IK problem has the unique advantage of admitting
informed initializations generated via a procedure known as bound smoothing [Havel,2002]. First, we take
the known set of distance bounds generated by the robot structure and problem constraints as described in
Section5.3and form the graph G. Next, a bipartite graph is formed with two copies of G, with the vertices

58 Chapter 5. Distance-Geometric Inverse Kinematics

Algorithm 3: Inverse Kinematics
Input: Incomplete graph G, Initial point P0

Result: Configuration Θ
Define ϕ from G via Eq. (5.30)
if not P0 then

Get P0 using bound smoothing (Section5.4.2)
end
P∗ ← RTR(P0;ϕ)
P← OrthogonalProcrustes(P∗)
Obtain Θ from P using Eq. (5.25)

of the two graphs connected by edges weighted by their negative respective distance. Finally, the resulting
all-pairs shortest path problem is solved using the Floyd-Warshall algorithm in O(|V |3) time. For the IK
problems analyzed in herein, the computation time of this search is on the order of 1 ms for a simple Python
implementation on a laptop computer. The lower bounds on the distances between vertices can now be
obtained by taking the shortest path between their representations in different subgraphs, with the upper
bounds being the shortest path within one subgraph. An initial guess for the distance matrix, known as a
pre-EDM, can then be generated by sampling individual elements within these bounds. Note that this pro-
cedure can be applied iteratively to produce even better approximations. Moreover, the computation time
can be further reduced through the use of parallelization.

The full algorithm is described in Algorithm3. We assume that an incomplete graph G describing the
IK problem and an initializing conformation P0 are provided as input. Alternatively, we may also generate
an initialization using the bound smoothing procedure described in the previous section. Next, we solve
the local optimization problem using Algorithm2and transform the resulting configuration back to the
canonical coordinate system. Finally, we recover the joint angle variables using Eq. (5.25).

5.5 Experimental Results

In this section, we present an analysis of the performance of our method relative to multiple benchmark
algorithms in a series of simulation studies. A variety of 2D and 3D kinematic models, including com-
mercial manipulators and hyper-redundant kinematic chains and trees, were tested with and without joint
angle limits and spherical obstacles. All Python code used in our experiments is freely available in our Git
repository.5

5.5.1 Experimental Methodology

The results for each experiment were obtained with the following procedure:

1.generate a kinematic model (e.g., a planar robot with links arranged in a perfect binary tree with
randomly generated symmetric joint angle limits);

2.randomly sample an angle configuration θg ∈ C for this model from a uniform distribution over the
joint angle limits;

3.determine the target position(s) or pose(s) w ∈ T of the end-effector(s) using θg and the model’s
forward kinematics (i.e., w = F (θg));

4.run each IK algorithm on the problem instance defined by the kinematic model and the goal w using
θ0 = 0 as the initial configuration;

5https://github.com/utiasSTARS/GraphIK

https://github.com/utiasSTARS/GraphIK

5.5. Experimental Results 59

5.record statistics for each algorithm, including the number of iterations required until convergence,
runtime, end-effector error(s), and joint angle limit violations;

6.repeat steps 2-5 above N times and summarize the statistics.

In all tables and figures, the success rate of an algorithm for a particular experiment was determined as the
portion of runs where the solution satisfied all of the following criteria:

• joint angle limits were obeyed to within a tolerance of 1% of the bound magnitude;

• obstacle avoidance constraints were obeyed to within a tolerance of 0.01 m;

• the sum of the position errors of the end-effectors was less than 0.01 m; and

• the sum of the rotation errors of the end-effectors was less than 0.01 rad.

The success rates of experiments reported in the tables and waterfall curves correspond to 95% Jeffreys
confidence intervals [Tony Cai,2005]. The statistics on solution error, runtime, and the number of iterations
required for convergence that appear in various tables and figures are computed using the entire set of
N runs (not just the successful portions). We denote joint angle-limited variants of experiments with a
+ symbol (e.g., results labelled “6-DOF+” use the same robot as those labelled “6-DOF” but additionally
enforce randomly generated joint angle limits).

In all relevant figures, the results from our algorithm are labelled RTR for “Riemannian Trust Region.”
When the bound smoothing procedure of Section5.4.2is used, -B is appended to the label (i.e., RTR-B). For
each experiment, we compare our approach with a variety of benchmark algorithms from the optimization
and IK literature. Whilewe report runtime statistics formany of our experiments, we stress that our selection
of baseline algorithms is designed to illustrate a variety of techniques and highlight the unique advantages
of our novel distance-geometric formulation. Therefore, we did not choose particularly fast or industrially-
proven implementations and opted for Python variants of all algorithms. Finally, all experiments were
performed on a laptop computer with a 2.9 GHz Dual-Core Intel Core i5 processor.

5.5.2 Benchmark Algorithms

As discussed in Section3.3, generalized approaches to solving the IK problem most often resort to numer-
ical methods that search for a joint configuration θ ∈ C satisfying the defined constraints. Among the
large variety of such approaches, local nonlinear programming is perhaps the most common and versatile.
Therefore, we primarily compare our algorithm to the formulation

min
θ∈C

∥e (F (θ),w)∥2 (5.34)

s.t. ∥pi(θ)− cj∥2 ≥ l2j ∀ i ∈ Vs, ∀ j ∈ Vo,

θmin ≤ θ ≤ θmax,

where F (θ) is the forward kinematic mapping and w is the goal, as defined in Definition9. The vector-
valued function e in the objective represents an appropriate error for the task space, while inequality con-
straints serve to enforce obstacle avoidance and joint limits. In cases where some exact tolerance ϵ on e is

60 Chapter 5. Distance-Geometric Inverse Kinematics

Table 5.1: Results for planar chain manipulators over 1,000 random experiments with pose goals. The+ indicates joint
angle limits. Bolded values indicate significantly higher sucess rates.

Method trust-exact/constr FABRIK RTR RTR-B

Success (%) Iter. µ (σ) Success (%) Iter. µ (σ) Success (%) Iter. µ (σ) Runtime [ms] µ (σ) Success (%) Iter. µ (σ) Runtime [ms] µ (σ)

6-DOF 100.0± 0.1 26 (5) 100.0± 0.1 10 (19) 100.0± 0.1 16 (2) 2.28 (0.39) 100.0± 0.1 9 (2) 1.54 (0.37)
6-DOF+ 72.0± 2.8 35 (14) 36.0± 3.0 1333 (916) 91.0± 1.7 32 (22) 5.24 (2.83) 98.0± 0.9 24 (17) 5.02 (3.01)
10-DOF 100.0± 0.1 28 (2) 100.0± 0.1 9 (13) 100.0± 0.1 20 (2) 3.27 (0.53) 100.0± 0.1 10 (2) 2.25 (0.43)
10-DOF+ 97.0± 1.0 43 (54) 59.0± 3.0 856 (971) 88.0± 2.0 74 (101) 14.6 (1.15) 98.0± 0.8 23 (46) 5.47 (3.85)

Table 5.2: Results for planar tree manipulators over 1,000 random experiments with pose goals. The + indicates joint
angle limits.

Method trust-exact/constr FABRIK RTR RTR-B

Success (%) Iter. µ (σ) Success (%) Iter. µ (σ) Success (%) Iter. µ (σ) Runtime [ms] µ (σ) Success (%) Iter. µ (σ) Runtime [ms] µ (σ)

14-DOF 54.0± 3.1 14 (4) 56.0± 3.1 949 (964) 64.0± 3.0 20 (4) 4.39 (1.00) 67.0± 2.9 9 (3) 4.12 (1.11)
14-DOF+ 90.0± 1.9 189 (423) 85.0± 2.2 463 (716) 96.0± 1.2 18 (4) 4.98 (1.40) 96.0± 1.2 8 (2) 4.79 (1.76)
30-DOF 16.0± 2.3 23 (7) 12.0± 2.0 1848 (479) 20.0± 2.5 34 (10) 20.75 (8.52) 18.0± 2.4 18 (10) 45.25 (32.38)
30-DOF+ 49.0± 3.1 818 (830) 0.0± 0.3 2000 (0) 85.0± 2.2 36 (19) 31.64 (17.95) 85.0± 2.2 20 (15) 43.98 (32.62)

defined, the error can also be encoded using an (in-)equality constraint such as

min
θ∈C

∥θ − θ0∥2

s.t. e (F (θ),w) ≤ ϵ

∥pi(θ)− cj∥2 ≥ l2j ∀ i ∈ Vs, ∀ j ∈ Vo,

θmin ≤ θ ≤ θmax.

However, we have empirically found that incorporating the error in an objective function (Eq. (5.34)) results
in higher success rates—this phenomenon is also reported in [Beeson and Ames,2015].

5.5.3 Hyper-Redundant and Tree-Like Robots

We begin by analyzing the performance of our algorithm for hyper-redundant and tree-like planar robots.
This approach helps to avoid introducing confounding factors in the analysis, as the choice of any particular
revolute manipulator opaquely affects the difficulty of IK problems. More importantly, these mechanisms
allow us to systematically scale the size and number of constraints of the IK problem by adding joints and
introducing multiple end-effectors, while minimizing the number of redundant points and fixed distances
as noted in Section5.3.5. Since the full pose of a planar end-effector is determined by its position and the
position of its parent joint, the error e in the cost function of the joint angle-based approach in Eq. (5.34) can
simply be defined as the difference between the end-effectors’ and their parent joints’ positions and their
goal positions in w. We solve Eq. (5.34) using second-order trust region methods with similar convergence
guarantees to those provided by our algorithm, referring to the unconstrained method as trust-exact
and the joint angle-constrained method as trust-constr. Our open source code provides an interface
for testing this problem formulation with other solvers provided byscipy.optimize. In addition to the
formulation in Eq. (5.34), we implemented the FABRIK [Aristidou and Lasenby,2011] heuristic IK solver
in Python as an additional benchmark for our experiments. In contrast to generic nonlinear solvers, this is
an IK-specific heuristic method tailored to planar and spherical robots.

For the experiments in this section, all algorithms were allowed a total of 2,000 iterations and used a
numerical tolerance of 10−9 for all stopping criteria. Where applicable, the magnitude of the gradient of
the cost function or Lagrangian was used as the stopping criterion. Otherwise, the magnitude of the cost
function or norm of the variable change in one iteration was used. All other parameters were assigned
their default values as provided by the pymanopt [Townsend et al.,2016] and scipy.optimize li-
braries [Virtanen et al.,2020b]. Since the implementations of these benchmark algorithms were not exten-

5.5. Experimental Results 61

−14
−12
−10
−8
−6
−4
−2
0

2

lo
g
1
0
Po

s.
Er
ro
r

trust-constr
FABRIK
RTR
RTR-B

(a) 14-DOF+

−14
−12
−10
−8
−6
−4
−2
0

2

lo
g
1
0
Po

s.
Er
ro
r

(b) 30-DOF+

Figure 5.6: Box-and-whiskers plots summarizing end-effector position error over 1,000 experiments with planar binary
tree robots with joint angle limits.

−6 −5 −4 −3 −2 −1 0 1

0

0.5

1

log10 Pos. Error Tolerance (m)

Su
cc
es
sR

at
e

trust-constr
FABRIK
RTR
RTR-B

(a) 14-DOF+

−6 −5 −4 −3 −2 −1 0 1

0

0.5

1

log10 Pos. Error Tolerance (m)

Su
cc
es
sR

at
e

(b) 30-DOF+

Figure 5.7: Waterfall curves of success rate versus position error tolerance for 1,000 experiments with planar tree robots
with joint angle limits. The shaded regions are 95% Jeffreys confidence intervals centered on the solid lines. The rotation
error tolerance is fixed at 0.01 rad.

sively tuned for performance, we place greater emphasis on the number of iterations taken by each algorithm
as a more meaningful statistic than runtime in the results to follow. FABRIK was allowed a maximum of
2,000 full forward and backward iterations per problem instance.

Table5.1summarizes our results for 6- and 10-DOF planar manipulators of the type shown in Fig.5.5a,
with and without joint angle limits. Unsurprisingly, all four algorithms achieve a 100% success rate when
no joint angle limits are present. When joint angle limits are introduced, FABRIK performs far worse,
while the RTR algorithm performs similarly to trust-constr in terms of success rate and iterations
required. Initializing the problem using bound smoothing reduces the number of iterations needed while
increasing the success rate of our RTR-B algorithm compared to a naive initialization. Curiously, both
trust-constr and FABRIK’s performance improve as the number of DOF increases. We suspect that
the additional DOF give the heuristic approach of FABRIKmore time to “steer” away from a difficult initial
configuration induced by pose goals. The trust-constr algorithm may benefit from more DOF that
can be used to “escape” from local minima or extremely flat regions of the cost function landscape. While
we only report on experiments involving pose goals, we found that when joint angle limits were introduced,
FABRIK was much better suited to position goals (i.e., without a specified orientation) for the robot end-
effector(s).

Table5.2contains results for experiments involving binary tree-like robots, such as the 6-DOF example
with a height of two shown in Fig.5.8. The 14- and 30-DOF results correspond to robots with a perfect binary
tree kinematic structure of height three and four, respectively. While not as practical as chain-like robots
or the revolute manipulators of Section5.5.4, these experiments serve to showcase the performance of IK
methods on highly kinematically-constrained mechanisms, while also scaling naturally to a higher number

62 Chapter 5. Distance-Geometric Inverse Kinematics

of DOF. In all cases, the RTR and RTR-B algorithms outperform the three benchmark approaches in terms
of success rate. When no joint limits are present, the overall difference in success rates is relatively small,
with RTR and trust-exact having a similar number of outer iterations. When joint limits are intro-
duced, the experimental procedure in Section5.5.1generates problems within a tighter range around a naive
initialization, resulting in higher success rates for all approaches. Owing to a high number of constraints,
the number of outer iterations for trust-constr increases more than ten-fold, significantly degrading
performance. In contrast, this effect does not occur for RTR and RTR-B, where the number of iterations
remains considerably lower while a similar increase in success rate is observed. The box-and-whiskers plots
in Fig.5.6summarize the position error statistics for each algorithm over all runs in the constrained case,
including those runs that did not qualify as a success. The waterfall curves in Fig.5.7display the success
rate as a function of an increasing position error tolerance, demonstrating that the higher success rate of
our algorithm is maintained for different accuracy requirements.

Mean runtimes of both RTR and RTR-B across all planar experiments remain below 0.1 s, with the 30-
DOF tree-like robot unsurprisingly resulting in the most computationally-intensive problems. The runtime
for FABRIK across all planar experiments was 3.4 s, while the local solvers had a mean runtime of 10.2
s. Both of these sets of runtime statistics are influenced by the large proportion of unsuccessful runs that
required all 2,000 allowed iterations before terminating. However, since we cannot guarantee that the local
algorithms were provided with equally well-tuned implementations of core subroutines (e.g., Hessian com-
putations for the second-order trust region solvers), we urge our readers to treat the statistics on iterations
reported in Table5.1and Table5.2as more qualitative indicators of performance.

To illustrate the optimization procedure and help elucidate the relatively superior performance of our
method on branching tree-like robots, we conducted a simple empirical analysis on one of the many problem
instances where RTR outperformed the benchmark algorithms. Fig.5.8shows the convergence of four
solvers with the same initial condition on a sample low-dimensional IK problem involving a 6-DOF binary
planar tree robot with symmetric joint angle limits and end-effector position goals. Only our algorithm,
RTR, is able to find the global minimum. The algorithms all perform similarly for the first eight iterations,
but the three competitors are unable to escape from the same local minimum. The difference in behaviour is
explained by Fig.5.9, which compares contour maps of different cost function terms used by the algorithms,
overlaid with the progress of each algorithm across iterations. Fig.5.9aillustrates the Euclidean distance
of the end-effector controlled by θ1 and θ3 and its goal position, which is used in the cost function of
L-BFGS-B and trust-constr. In contrast, the contour map in Fig.5.9bis the logarithm of the quartic
function containing the terms in the distance-geometric cost function of Eq. (5.3) involving the position of
the joint actuated by θ1. The angular cost function is ill-conditioned, leading the algorithms that minimize it
to converge to the local minimum of Fig.5.8, whereas RTRminimizes the distance-geometric cost of Fig.5.9b
and quickly converges to the global minimum, which has a large and well-conditioned basin of convergence.
In spite of its simplicity, this toy problem illustrates the behavioural differences of the algorithms in a state
space with low enough dimension to visualize clearly.

5.5.4 Revolute Manipulators

Next, Table5.3compares the performance of our algorithm and the trust region benchmark algorithms
on 3D robots with revolute joints and within an unconstrained workspace. These problems are of greater
practical interest than the planar results in Section5.5.3and showcase the expressiveness of our problem
formulation. All experiments are conducted for the Universal Robots UR10, KUKA IIWA, Schunk LWA4D,
and Schunk LWA4Pmanipulators shown in Fig.5.10. For these robots, the distance-geometric IK formulation
derived using the procedure described in Section5.3.1results in points that always overlap (i.e., have a fixed
distance of zero). While these points could be “merged” to reduce the graph size—thereby improving overall

5.5. Experimental Results 63

Table 5.3: Results for revolute chain manipulators over 2,000 random experiments with pose goals. The + indicates
joint angle limits.

Method trust-exact/constr RTR RTR-B

Success (%) Iter. µ (σ) Success (%) Iter. µ (σ) Runtime [ms] µ (σ) Success (%) Iter. µ (σ) Runtime [ms] µ (σ)

UR10 90.0± 1.3 12 (7) 87± 1.0 364 (523) 205.8 (264.1) 95.0± 1.0 319 (493) 198.4 (239.3)
UR10+ 63.0± 2.1 36 (19) 77.0± 1.8 364 (523) 206.6 (264.2) 66.0± 2.0 251 (457) 138.2 (193.0)
KUKA 100.0± 0.1 20 (6) 100.0± 0.2 317 (373) 242.8 (211.1) 100.0± 0.1 315 (386) 268.3 (220.0)
KUKA+ 87.0± 1.5 48 (18) 82.0± 1.7 734 (771) 432.4 (395.1) 89± 1.3 506 (660) 386.8 (374.8)
LWA4P 100.0± 0.2 20 (17) 89.0± 1.4 513 (624) 416.6 (542.4) 90.0± 1.3 503 (614) 290.0 (330.1)
LWA4P+ 77.0± 1.8 46 (25) 87.0± 1.5 435 (569) 246.7 (282.2) 81± 1.7 324 (482) 201.1 (219.7)
LWA4D 100.0± 0.1 24 (17) 99.0± 0.5 868 (747) 969.9 (878.0) 97.0± 0.7 713 (699) 895.6 (897.1)
LWA4D+ 96.0± 0.8 47 (17) 91.0± 1.3 867 (769) 900.2 (874.1) 90.0± 1.3 825 (758) 991.2 (943.8)

performance—we used the generic models for transparency.
In terms of success rate, our algorithm outperforms trust-exact and trust-constr on the

UR10 and KUKA IIWA manipulators with and without joint angle limits, as well as on the Schunk LWA4P
with joint limits. The bound smoothing procedure used to initialize RTR-B reduces the overall number
of iterations in all cases, but has a variable effect on the success rate. Both RTR and RTR-B require a
significantly larger number of iterations to converge compared to the planar case, while trust-* remains
in a similar range to that observed in Table5.1. We can partially attribute this to the iteration complexity
discussed in Section5.4, which is increased by the unfavourably high ratio of points to DOF in the kinematic
models of these mechanisms. Again, this effect could be mitigated in future work by removing overlapping
points from the kinematic models, reducing the overall number of variables.

The box-and-whiskers plots in Fig.5.11summarize the position error statistics for each algorithm over
all runs with the UR10 manipulator, with and without joint limits. In both cases the trust-* algorithms
converge to significantly lower cost function values. This suggests that the highly variable magnitudes of
known distances may cause numerical issues in the gradient for our algorithms, causing early termination.
We suspect this issue can be avoided by using a weighting matrix to regularize elements of the cost function,
as shown in [Nguyen et al.,2019a]. The waterfall curves in Fig.5.12corroborate these findings, showing
that the success rate of our algorithm drops as the position error tolerance decreases, and suggesting that
decreasing the gradient termination criteria may increase accuracy at the cost of increased computation
time.

The mean runtime of both RTR and RTR-B remains below 1.0 s for all robot models, reaching the
lowest mean runtimes of less than 0.2 s on the UR10. In the same instance, the trust-* algorithms have
a slightly higher mean runtime of 0.3 s. We observe the highest computation times for our algorithms with
the 7-DOF Schunk LWA4D, with mean runtimes slightly below 1.0 s. While the trust-*methods exhibit
similarly worse performance with a mean runtime of 0.5 s, the overall increase in runtime is smaller due to
the number of variables only increasing from six to seven.

5.5.5 Obstacle Avoidance

Finally, we analyze the performance of our algorithm on revolute manipulators in environments with a
varying number of spherical obstacles, as shown in Fig.5.13. For each environment and robot pair, 3,000
IK problems were randomly generated, some of which may not be solvable (i.e., no collision-free solutions
exist). For experiments performed in this section we chose e = log(T(θ)−1Tgoal) as the error in Eq. (5.34),
which is the vector of exponential coordinates describing the screw motion between the current pose and
goal pose of the end-effector. Further, the FK and Jacobian computations are carried out using the popular
product of exponentials approach [Lynch and Park,2017], avoiding trigonometric identities inherent to the
DHparametrization. We solve the problem in Eq. (5.34) using sequential quadratic programming, namely the
SLSQP solver implemented in the scipy library. Due to its speed and accuracy, this method is a popular

64 Chapter 5. Distance-Geometric Inverse Kinematics

choice for nonlinear programming solutions to IK [Beeson and Ames,2015]. We empirically determined
that a maximum of 200 iterations and an objective function value of 10−7 were effective stopping criteria
for our experiments.

The results of our evaluation are shown in Fig.5.14. Each column represents a different fixed set of
obstacles in the manipulators’ environment. The first column contains results for obstacle-free problems,
while the remaining columns use spherical obstacles placed on the vertices of an octahedron, cube, and
icosahedron, respectively. The top row compares the success rate of RTR-B and SLSQP, with dashed lines
indicating the portion of problems that are known to be feasible (i.e., the configuration used to generate the
problem is not in collision). The box-and-whiskers plots in the middle two rows describe the distribution
of position and rotation errors, with the thresholds for success (0.01 m and 0.01 rad) drawn as dashed lines.
Finally, the bottom row compares the distribution of solution times.

In terms of success rate, our algorithm outperformsSLSQP in all experiments. The position and rotation
error distributions displayed in the box-and-whiskers plots reveal that this is due to RTR-B providing
solutions with lower position and rotation error on average. The performance gap is particularly large
for the UR10, which both algorithms struggled most with in all environments. Finally, the runtime for
our Riemannian solver is expectedly higher than for SLSQP in the obstacle-free case, as seen in previous
experiments. However, the addition of obstacles leads to significantly faster relative performance forRTR-B
on all the manipulators tested. More importantly, we note that the runtime of SLSQP exhibits a more
significant relative increase than RTR-B when obstacles are introduced. We suspect that this is due to the
nonlinear mapping between joint angles and obstacle locations that makes the problem significantly more
difficult to solve in configuration space. In contrast, the effect is avoided by our distance-based approach
because collision avoidance constraints are treated in the same way as structural and joint limit constrains.

5.6 Summary and Conclusions

This chapter describes a novel and elegant procedure for formulating many inverse kinematics problems in
the language of distance geometry. The distance-geometric perspective on IK allows us to leverage powerful
low-rank matrix completion methods, resulting in an algorithm (RTR-*) that can efficiently compute IK
solutions for a variety of robots using Riemannian optimization. Our experiments show that RTR-* out-
performs competing algorithms in terms of success rate and number of iterations on IK problems for robots
with multiple end-effectors, both with and without the inclusion of joint limits. We have also demonstrated
the feasibility of this approach to solve IK for commercial manipulators, achieving success rates competitive
with both comparable [Erleben and Andrews,2019] and conventional [Lynch and Park,2017] angle-based
methods. Notably, we observe that our algorithm performs significantly better than a conventional method,
both in terms of success rate and runtime, when the IK problem requires finding configurations that are not
in collision with obstacles (modelled as spheres). Overall, these experimental results indicate that a distance-
geometric approach is particularly advantageous when a large number of workspace constraints are present.
We believe our algorithm provides a valuable benchmark for IK solvers, as well as a good starting point for
future research into distance-geometric formulations of this problem.

We have identified several exciting research directions for the distance-geometric IK formulation pre-
sented herein. Our algorithm utilizes a Riemannian optimization-based solution because it is fast, can easily
be extended (e.g., to include obstacles or other cost terms), and avoids problems associated with redundant
degrees of freedom. However, we believe a thorough exploration of the vast body of literature on distance
geometry may yield other effective approaches or insights into our particular problem structure. This will
permit us to compare the runtime of our algorithm against a greater variety of IK solvers, including complex
algorithms like TRAC-IK that utilize multiple methods in parallel [Beeson and Ames,2015]. Additionally,

5.6. Summary and Conclusions 65

we are eager to develop an optimized version of our algorithm in a fast compiled language such as C. We
believe that the distance-geometric IK formulation described herein provides a strong mathematical basis
for future research in kinematics, motion planning, and control.

5.6.1 Limitations

Avoiding reflections in the solution set of certain problems remains a core challenge when using a purely
distance-based IK approach. As noted in Proposition2, this spells out an important limitation of our formu-
lation: its inability to handle revolute manipulators with non-coplanar consecutive axes of rotation. This
also restricts the capacity of our formulation to represent joint angle limits to those that are symmetrical
about θ0 = 0 (i.e., of the form [−θlim, θlim]). At the cost of some of the theoretical foundations laid out
in Section5.3.4, it is possible to address these ambiguities by extending our formulation to include cross
products (allowing “handedness” to be expressed). For example, solutions that include reflections for non-
coplanar joints u and v in Fig.5.2could be removed by taking c = (pũ − pu)× (pṽ − pv) and constraining
the sign of the dot product c · (pv − pu), thereby only allowing one of the two possible relative orienta-
tions satisfying distance constraints. Similarly, a nonsymmetric joint limit on v can be obtained by taking
a = (pv − pu)× (pṽ − pv), b = (pw − pu)× (pṽ − pv) and constraining the sign of a · b. Since adding
these constraints would require a lengthy and detailed deviation from the purely distance-geometric view
of IK developed herein, we leave their characterization as future work.

5.6.2 Associated Publications

This section features a method for solving the inverse kinematics problem through a distance-based charac-
terization that enables the use of novel optimizationmethods for finding solutions in constrainedworkspace.
This contributionwas published alongside the particular method for solving IK using local optimization over
a Riemannian quotient manifold described herein.

1.Marić, F., Giamou, M., Hall, A.W., Khoubyarian, S., Petrović, I. and Kelly, J., 2022. Riemannian Opti-
mization for Distance-Geometric Inverse Kinematics. In IEEE Transactions on Robotics, vol. 38, no.
3, (pp. 1703-1722), doi: 10.1109/TRO.2021.3123841.

It is important to mention that this work is also associated with our previously published IK approach based
on sum-of-squares optimization, which will not be described in this thesis.

2.Marić, F., Giamou, M., Khoubyarian, S., Petrović, I. and Kelly, J., 2020, May. Inverse kinematics for
serial kinematic chains via sum of squares optimization. In 2020 IEEE International Conference on
Robotics and Automation (ICRA) (pp. 7101-7107).

Finally, this work was followed by an important result describing a convex relaxation of the IK problem.

3.Giamou, M., Maric, F., Rosen, D., Peretroukhin, V., Roy, N., Petrovic, I. and Kelly, J., 2022. Convex
Iteration for Distance-Geometric Inverse Kinematics. IEEE Robotics and Automation Letters, vol. 7,
no. 2, (pp. 1952-1959), doi: 10.1109/LRA.2022.3141763.

66 Chapter 5. Distance-Geometric Inverse Kinematics

−
2

0
2

0 1 2

L-BFGS-B
y (m)

−
2

0
2

0 1 2

−
2

0
2

0 1 2

−
2

0
2

0 1 2

−
2

0
2

0 1 2

−
2

0
2

0 1 2

trust-constr
y (m)

−
2

0
2

0 1 2

−
2

0
2

0 1 2

−
2

0
2

0 1 2

−
2

0
2

0 1 2

−
2

0
2

0 1 2

FABRIK
y (m)

−
2

0
2

0 1 2

−
2

0
2

0 1 2

−
2

0
2

0 1 2

−
2

0
2

0 1 2

−
2

0
2

x
(m

)
0

Iteration
s

0 1 2

Riem. TR
y (m)

−
2

0
2

x
(m

)
2

Iteration
s

0 1 2

−
2

0
2

x
(m

)
4

Iteration
s

0 1 2

−
2

0
2

x
(m

)
8

Iteration
s

0 1 2

−
2

0
2

x
(m

)
32

Iteration
s

0 1 2

Figure
5.8:Convergenceofvariousalgorithm

son
a6-D

O
F
binary

treerobotsw
ith

jointanglelim
its.F

A
B
R
I
K
and

theangle-param
etrized

L
-
B
F
G
S
-
B
and

t
r
u
s
t
-
c
o
n
s
t
r
allconvergeto

alocalm
inim

um
,w

hereasR
i
e
m
.
T
R
isableto

convergeto
thetheglobalm

inim
um

from
thesam

einitialcondition
(θ

=
0).N

otethatF
A
B
R
I
K
quickly

convergesbutisunableto
accurately

reach
any

ofthe
fourend-effectortargets.The

red
link

in
the

R
T
R
solution

afterfouriterationsindicatesthatthe
link’sparentjointisviolating

itsjointangle
lim

its.

5.6. Summary and Conclusions 67

(a) L2 error for the end-effector actuated by θ1 and θ3.
(b) Base-10 logarithm of distance-geometric cost involving the
joint position which is actuated by θ1.

Figure 5.9: Contour maps of different cost function components overlaid with solver trajectories for the IK problem
instance depicted in Fig.5.8. The angle θ1 is the angle of the joint connected to the root and pointing towards the top
left of corner of the plot of Riem. TR after 32 iterations in Fig.5.8. Angles θ3 and θ4 are the angles of the two child
links of the link actuated by θ1. In Fig.5.9b, x1 = cos θ1 and y1 = sin θ1 are the coordinates of the point actuated by θ1,
and the cost function is the quartic terms of Eq. (5.3) involving x1 and y1. This distance-geometric cost function is very
well posed, and the Riemannian solver follows its contours to the global minimum. The other three methods attempt to
minimize the ill-conditioned cost function in Fig.5.9aand return a suboptimal solution.

(a) UR10 (b) KUKA-IIWA (c) Schunk-LWA4D (d) Schunk-LWA4P

Figure 5.10: Points in the distance-based models of the commercial manipulators used in our experiments. Note that
the distances between pairs of points on individual rotation axes have been reduced for clarity.

−16
−14
−12
−10
−8
−6
−4
−2

lo
g
1
0
Po

s.
Er
ro
r

trust-exact/constr
RTR
RTR-B

(a) UR10

−10

−8

−6

−4

−2

0

lo
g
1
0
Po

s.
Er
ro
r

(b) UR10+

Figure 5.11: Box-and-whiskers plots summarizing end-effector position error over 2,000 experiments with the UR10
manipulator, (a) without and (b) with joint angle limits.

68 Chapter 5. Distance-Geometric Inverse Kinematics

−6 −5 −4 −3 −2 −1 0 1

0

0.5

1

log10 Pos. Error Tolerance (m)

Su
cc
es
sR

at
e

trust-exact/constr
RTR
RTR-B

(a) UR10

−6 −5 −4 −3 −2 −1 0 1

0

0.5

1

log10 Pos. Error Tolerance (m)
Su

cc
es
sR

at
e

(b) UR10+

Figure 5.12: Waterfall curves of success rate versus position error tolerance for 2,000 experiments with the UR10
manipulator, without (a) and with (b) joint angle limits. The shaded regions are 95% Jeffreys confidence intervals
centered on the solid lines. The rotation error tolerance is fixed at 0.01 rad.

(a) Universal Robotics UR10 (octahedron) (b) Schunk LWA4D (cube) (c) KUKA-IIWA (icosahedron)

Figure 5.13: A selection of robot and environment combinations used to generate IK problems in Section5.5.5.

5.6. Summary and Conclusions 69

UR10 KUKA-IIWA Schunk-LWA4D
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
sR

at
e

Environment = Free

j-SLSQP
RTR-B

UR10 KUKA-IIWA Schunk-LWA4D

Environment = Octahedron

UR10 KUKA-IIWA Schunk-LWA4D

Environment = Cube

UR10 KUKA-IIWA Schunk-LWA4D

Environment = Icosahedron

UR10 KUKA-IIWA Schunk-LWA4D

10−7

10−5

10−3

10−1

Po
s.
Er
ro
r[
m
]

UR10 KUKA-IIWA Schunk-LWA4D UR10 KUKA-IIWA Schunk-LWA4D UR10 KUKA-IIWA Schunk-LWA4D

UR10 KUKA-IIWA Schunk-LWA4D
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Ro
t.
Er
ro
r[
ra
d]

UR10 KUKA-IIWA Schunk-LWA4D UR10 KUKA-IIWA Schunk-LWA4D UR10 KUKA-IIWA Schunk-LWA4D

UR10 KUKA-IIWA Schunk-LWA4D

0

1

2

3

So
l.
Ti
m
e
[s
]

UR10 KUKA-IIWA Schunk-LWA4D UR10 KUKA-IIWA Schunk-LWA4D UR10 KUKA-IIWA Schunk-LWA4D

Figure 5.14: Experimental results comparing our method with local optimization. Each column contains the success
rates, position errors, rotation errors, and solution times for 3,000 randomly generated problems in the titular environ-
ment. The success rate in the top row is measured relative to the total number of generated problems, many of which
are infeasible. The upper bound defining success in each box-and-whiskers plot is shown as a dashed line. The dashed
lines in the top row indicate the lower bound on the number of feasible problems for each robot-environment pair.

Chapter 6

Generative Graphical Inverse
Kinematics

There is no royal road to geometry.

Euclid

Quickly and reliably finding accurate inverse kinematics (IK) solutions remains a challenging problem.
IK is even more difficult when hard constraints, such as obstacle avoidance, or soft constraints, such as
“natural-looking" poses and motions, must be considered. Existing numerical solvers are broadly applica-
ble, but rely on local search techniques to manage highly nonconvex objective functions. Recently, learning-
based approaches have shown promise as a means to generate fast and accurate IK results; learned solvers
can easily be integrated with other learning algorithms in end-to-end systems. However, learning-based
methods have an Achilles’ heel: each robot of interest requires a specialized model which must be trained
from scratch. To address this key shortcoming, in this chapter we investigate a novel distance-geometric
robot representation coupled with a graph structure that allows us to leverage the flexibility of graph neural
networks (GNNs). We use this approach to train the first learned generative graphical inverse kinematics
(GGIK) solver that is, crucially, “robot-agnostic”— a single model is able to provide IK solutions for a va-
riety of different robots. In addition, the generative nature of GGIK allows the solver to produce a large
number of diverse solutions in parallel with minimal additional computation time, making it appropriate
for applications such as sampling-based motion planning. Finally, GGIK can complement local IK solvers by
providing reliable initializations. These advantages, as well as the ability to use task-relevant priors and to
continuously improve with new data, suggest that GGIK has the potential to be a key component of flexible,
learning-based robotic manipulation systems.

6.1 Motivation and Related Work

In terms of success rate, learned models that output individual solutions to IK are able to compete with the
best numerical IK solvers when high accuracy is not required [von Oehsen et al.,2020]. Data-drivenmethods
have proven useful for integrating abstract criteria such as “human-like” poses or motions [Aristidou et al.,
2018]. Generative approaches [Ren and Ben-Tzvi,2020,Ho and King,2022] have demonstrated the ability to
rapidly produce a large number of approximate IK solutions and even model the entire solution set [Ames
et al.,2021] for specific robots. Access to large number of configurations fitting desired constraints has
proven beneficial in motion planning applications [Lembono et al.,2021]. Unfortunately, the configurations
and end-effector poses used as input-output vector pairs of deep neural networks (DNNs) associated with

70

6.1. Motivation and Related Work 71

these architectures make it impossible to transfer learned solutions to robots that vary in link geometry and
DOF. This ultimately limits the utility of learning for IK over well-established numerical methods [Beeson
and Ames,2015] that are easier to implement and generalize.

In contrast with existing DNN-based approaches [Ren and Ben-Tzvi,2020,Lembono et al.,2021,von
Oehsen et al.,2020,Ho and King,2022,Ames et al.,2021], we explore a new pathway towards learning a gen-
eralized IKmapping by adopting a graphicalmodel of robot kinematics [Porta et al.,2005a,Maric et al.,2021].
This description allows us to make use of graph neural networks (GNNs) described in Section2.4.3, which
we imbue with relational inductive biases in the form of specific architectural assumptions [Battaglia et al.,
2018a] that capture varying robot geometries and different configuration space dimensionalities. GNNs have
been successfully employed to learn object manipulation policies that generalize to taskswith a greater num-
ber of objects than seen during training [Li et al.,2019] and to varying agent structures [Wang et al.,2018,
Whitman et al.,2021]. Motivated by the performance of generative models, our architecture leverages the
proven capacity of Conditional Variational Autoencoders (CVAEs) to represent diverse solution sets [Kruse
et al.,2021]. We describe our novel method, a generative graphical inverse kinematics (GGIK) model, and
explain its capacity for representing general (i.e., not tied to a single robot model or environment) IK map-
pings. Our results show that, even when trained on a sparse and completely randomized dataset, our model
is able to provide reasonable approximations of IK solutions for a multitude of robot manipulators.

6.1.1 Learning Inverse Kinematics

Jordan and Rumelhart [Jordan and Rumelhart,1992] showed that the nonuniqueness of IK solutions presents
a major difficulty for learning algorithms, which learn an average of the nonconvex solution set. D’Souza
et al. [D’Souza et al.,2001] address this problem for differential IK by observing that the set of solution
angle changes is locally convex around particular configurations. Bocsi et al. [Bócsi et al.,2011] use an
support vector machine to model a quadratic program cost, whose solutions match those of position-only
IK in particular workspace regions. In computer graphics, Villegas et al. [Villegas et al.,2018] use an RNN
to solve a highly constrained IK instance of transferring motion between identical skeletons with different
bone lengths. We show that a GNN-based model allows a higher degree of generalization that captures not
only different link lengths, but also different numbers of DOF.

Recently, generative models have shown potential in capturing the full set of IK solutions. A number
of invertible architectures [Ardizzone et al.,2018,Kruse et al.,2021] have been able to successfully capture
the IK solution set for a multi-jointed 2D kinematic chain. Generative Adversarial Networks (GANs) have
been used to learn inverse kinematics and dynamics of an 8-DOF robot [Ren and Ben-Tzvi,2020] and im-
prove motion planning performance by sampling configurations constrained by link positions and (partial)
orientations [Lembono et al.,2021]. Recently, Ho et al. [Ho and King,2022] proposed a model that retrives
configurations reaching a target position by decoding posture indices for the closest position in the database.
Finally, Ames et al. [Ames et al.,2021] use a model based on normalizing flows to generate a distribution
of IK solutions for a desired end-effector pose. Our architecture differs from previous work by allowing the
learned distribution to be generalized to a large class of robots, removing the requirement of training a new
model for specific robots.

6.1.2 Learning for Motion Planning

A significant amount of recent work has investigated the use of learning for classical motion planning
problems. Prior applications of learning include warm-starting optimization-based methods [Ichnowski
et al.,2020], learning sampling distributions for sample-based methods [Khan et al.,2020,Ichter et al.,2018],
and directly learning a motion planner [Qureshi et al.,2020]. GNNs have been leveraged for their ability to
efficiently encode the topology of planning problems in a permutation invariant manner [Khan et al.,2020].

72 Chapter 6. Generative Graphical Inverse Kinematics

Robot model

(a)

Distance geometry

(b)

Structure graph

(c)

Pose goal

(d)

Figure 6.1: The process of defining an IK problem as an incomplete or partial graph G̃ of inter-point distances.

The authors of [Ichter et al.,2018] and [Khan et al.,2020] explored the use of generative models to learn
distributions of motion planning solutions. While the learning methodology of our work is partially similar
to the aforementioned papers, we are interested in the inverse kinematics problem and not the motion
planning problem. The inverse kinematics problem introduces additional interesting challenges from the
perspective of learning: capturing multiple solutions and having to handle multiple manipulator classes.

6.2 Distance-Geometric Graph Representation of Robots

We eschew the common angle-based representation of the configuration space in favour of a distance-

geometric model of robotic manipulators comprised of revolute joints based on [Porta et al.,2005a] and
further developed in [Maric et al.,2021] as part of the contribution previously described in Chapter5. This
approach allows us to represent configurations θ of robotic manipulators as complete graphs G = (V,E).
The graph edges E are weighted by distances d between a collection ofN points with position coordinates
p = {pi}Ni=1 ∈ RN×D indexed by vertices V , where D ∈ {2, 3} is the workspace dimension. The coordi-
nates of points associated with a particular set of distances are recovered by solving the distance geometry
problem (DGP) defined in Section2.3.

Our research [Maric et al.,2021] presented in the previous chapter has shown that any solution p ∈
DGP (G) may be mapped to a unique1 corresponding configuration θ. Moreover, we have shown that the
set of configurations IK(T) reaching a particular end-effector poseTmay be represented by a partial graph
G̃ = (V, Ẽ). The partial graph G̃ can be constructed by defining weights for edges Ẽ ⊂ E corresponding
to distances defined by the end-effector pose and the robot’s structure (i.e., those shared by IK(T)) where
all p ∈ DGP (G̃) correspond to particular IK solutions θ ∈ IK(T).

6.2.1 Partial Graph Construction

The generic procedure for constructing G̃ as presented in [Maric et al.,2021] and Chapter5is demonstrated
for a simple manipulator in Fig.6.1. First, the structure graph Gs = (Vs, Es) shown in Fig.6.1cis built by
attaching two pairs of points labeled by vertices u, ũ and v, ṽ to the rotation axes of neighbouring joints
at a unit distance, as shown in Fig.6.1b. The edges associated with every combination of points are then
weighted by their respective distance, which is determined solely by the link geometry, and the process
is repeated for every pair of neighbouring joints. The resulting set of vertices Vs and edges Es, shown in
Fig.6.1c, describe the overall geometry and DOF of the robot and are invariant to feasible motions of the
robot (i.e., they remain constant in spite of changes to the configuration θ).

In order to uniquely specify points with known positions (i.e., end-effectors) in terms of distances, we
1Up to any Euclidean transformation of p, since distances remain unchanged.

6.3. Learning to Generate Inverse Kinematics Solutions 73

Figure 6.2: Our GGIK solver is based on the CVAE framework. The encoder GNNenc (green) encodes a complete
graph representation of a manipulator into a latent graph representation and GNNdec (blue) “reconstructs" it. The
prior network, GNNprior (red), encodes the partial graph into a latent embedding that is optimized to remain near the
embedding of the full graph using a KL divergence term in the loss. At test time, we decode the latent embedding of a
partial graph into a complete graph to generate a solution.

define the “base vertices” Vb = {o, x, y, z}, where o, z are the vertices in Vs associated with the base joint.
Setting the distances weighting the edgesEb such that they form a coordinate frame with o as the origin, we
specify edges Ep weighted by distances between vertices in Vp ⊂ Vs associated with the end-effector and
the base vertices Vb. The resulting subgraph Ge(Vb ∪ Vp, Eb ∪ Ep), shown in Fig.6.1d, uniquely specifies
an end-effector pose under the assumption of unconstrained rotation of the final joint, while G̃ = Gs ∪Ge

is the partial graph that uniquely specifies the associated IK problem.

6.2.2 Dataset

To train our GGIK model, we require a dataset of partial graphs G̃ representing IK problems associated with
configurations θ represented by complete graphsG. Conveniently, acquiring training data is fast and simple
as any valid configuration can be used for training. This enables us to generate arbitrarily large datasets
by sampling joint angles of various manipulators and using forward kinematics to obtain the end-effector
pose. From the known robot geometry, end-effector pose, and joint angles, we are able to produce undirected
partial and complete graphs G̃ = (V, Ẽ) and G = (V,E) using the procedure outlined in Section6.2.1.

For a complete graph G, we define node features as a combination of point positions p = {pi}Ni=1 ∈
RN×D and general features h = {hi}Ni=1, where each hi is a feature vector containing extra information
about each node. In GGIK, we use a three-dimensional one-hot-encoding, hi ∈ {0, 1}3 and

∑3
j=1 hi,j = 1,

that indicates whether the node defines the base coordinate system, a general joint or link, or the end-
effector. Similarly, we can define the M known positions of points corresponding to the end-effector and
base nodes in the partial graph G̃ as p̃ = {p̃i}Mi=1 ∈ RM×D , and set the remaining unknown N −M node
positions to zero. The partial graph shares the same general features h = {hi}Ni=1 as the complete graph,
given that we know which part of the robot each node belongs to in advance. However, the parital graph
contains only a subset of edges defined in the complete graph, due to only certain inter-point distances
being defined a priori by the structure and problem definition.

6.3 Learning to Generate Inverse Kinematics Solutions

We consider the problem of modelling complete graphs corresponding to IK solutions given partial graphs
that define the problem instance (i.e., the robot’s geometric information and the task space goal pose). Intu-
itively, we would like our network to map or “complete" partial graphs G̃ into full graphsG. Since multiple

74 Chapter 6. Generative Graphical Inverse Kinematics

or infinite joint configuration solutions may exist for a single task space goal T and robot architecture, a
single partial graph may be associated with multiple or even infinite valid complete graphs corresponding
to the entire solution set IK(T). Having said this, we interpret the learning problem through the lens
of generative modelling and treat the solution space as a multimodal distribution conditioned on a single
problem instance. By sampling this distribution, we can generate diverse solutions to a given IK problem.

At its core, GGIK is a CVAEmodel [Sohn et al.,2015], a type of deep generative model that parameterizes
a distribution conditioned by given inputs (see SectionA.3). Crucially, GGIK parameterizes the conditional
distribution p(G | G̃) using GNNs using stochastic latent node embeddings z, resulting in the generative
distribution

pα(G | G̃) =

∫
pα(G | G̃, z) pα(z | G̃) dz, (6.1)

where pα(G | G̃, z) is the likelihood of the full graph, pα(z | G̃) is the prior, andα are the learnable generative
parameters. The likelihood of the full graph is given by

pα(G | G̃, z) =

N∏
i=1

pα(pi | G̃, zi), with pα(pi | G̃, zi) = N (pi |µi, I), (6.2)

wherep = {pi}Ni=i are the positions of allN nodes, z = {zi}Ni=i are the latent embeddings of each node, and
µ = {µi}Ni=i are the predicted means of the distribution of node positions. We parametrize the likelihood
distribution with a GNN decoder, in other words, µ is the output of GNNdec(G̃, z). The GNN decoder
propagates messages and updates the nodes at each intermediate layer and outputs the predicted means of
all node positions at the final layer. In practice, for the input of GNNdec(·), we concatenate each latent node
with the respective position node features p̃ of the original partial graph G̃ when avialable. For positions
of nodes that are unknown a priori, we concatenate the latent node embeddings with the initialized point
positions set to zero. We follow the common practice of only learning the mean of the decoded Gaussian
likelihood distribution and use a fixed diagonal covariance matrix I [Doersch,2016]. The prior distribution
is given by

pα(z | G̃) =

N∏
i=1

pα(zi | G̃), with pα(zi | G̃) =

K∑
k=1

πk,iN
(
zi |µk,i, diag(σ2

k,i)
)
. (6.3)

Here, we parameterize the prior as a Gaussian mixture model with K components. Each Gaussian is
in turn parameterized by a mean µk = {µk,i}Ni=1, diagonal covariance σk = {σk,i}Ni=1, and a mixing
coefficient πk = {πk,i}Ni=1, where

∑K
k=1 πk,i = 1, ∀ i = 1, ..., N . We chose a mixture model as an

expressive prior, capable of capturing the latent distribution representing multiple IK solutions. We pa-
rameterize the prior distribution with a multi-headed GNN encoder GNNprior(G̃) that outputs parameters
{µk,σk,πk}Kk=1.

The goal of learning is to maximize the marginal likelihood or evidence of the data as shown in Eq. (A.9).
As commonly done in the variational inference literature [Kingma andWelling,2014], we instead maximize
a tractable evidence lower bound (ELBO):

L = Eqϕ(z |G)[log pα(G | G̃, z)]−KL(qϕ(z |G)||pα(z | G̃)). (6.4)

Finally, the inference model qϕ(z |G) with learnable parameters ϕ is defined as:

qϕ(z |G) =

N∏
i=1

qϕ(zi |G), with qϕ(zi |G) = N (zi |µi, diag(σ2
i)). (6.5)

6.4. E(n) Equivariant Network Architecture 75

Figure 6.3: At test time, our GGIK solver uses the prior network GNNprior (blue) to encode the partial graph into a
multimodel latent distribution shown in Eq. (6.3). This distribution is then sampled an passed to the decoder GNNdec

that outputs a Gaussian distribution over node positions that approximates an IK solution.

Aswith the prior distribution, we parameterize the inference distributionwith amulti-headed GNN encoder,
GNNenc(G), that outputs parameters µ = {µi}Ni=1 and σ = {σi}Ni=1. The inference model is an approx-
imation of the intractable true posterior p(z |G). We note that the resulting ELBO objective in Eq. (6.4) is
based on an expectation with respect to the inference distribution qϕ(z |G), which itself is based on the
parameters ϕ. Since we restrict qϕ(z |G) to be a Gaussian variational approximation, we can use stochastic
gradient descent (i.e., Monte Carlo gradient estimates) via the reparameterization trick [Kingma andWelling,
2014] to optimize the lower bound with respect to parameters α and ϕ.

At test time, given a goal pose and the manipulator’s geometric information encapsulated in a partial
graph G̃, we can use the prior network, GNNprior , to encode the partial graph into a latent distribution
pα(z | G̃). During training, the distribution pα(z | G̃) is optimized to be simultaneously near multiple en-
codings of valid solutions contained in the inference distribution qϕ(z |G) by way of the KL divergence term
in Eq. (6.4). We can sample this multimodal distribution z ∼ pα(z | G̃) as many times as needed, and subse-
quently decode all of the samples with the decoder network GNNdec to generate IK solutions represented
as complete graphs. This procedure is demonstrated in Fig.6.3, and can be done quickly and in parallel on
the GPU.

6.4 E(n) Equivariant Network Architecture

In this section, we discuss the choice of architecture for networks GNNdec, GNNenc, and GNNprior . Recall
that we are interested in mapping partial graphs G̃ into full graphsG. Once trained, our model maps partial
point sets to full point sets f : RM×D → RN×D , where f is a combination of networks GNNprior and
GNNdec applied sequentially. The point positions (i.e., p and p̃) assigned to each node and the distances
weighting the associated edges in the distance geometry problem contain underlying geometric relation-
ships that we would like to preserve in our choice of architecture. Crucially, the point sets are equivariant to
the Euclidean groupE(n) of rotations, translations, and reflections. Let S : RM×D → RM×D be a transfor-
mation consisting of some combination of rotations, translations and reflections on the initial partial point
set p̃. Then, there exists an equivalent transformation T : RN×D → RN×D on the complete point set p
such that:

f(S(p̃)) = T (f(p̃)). (6.6)

To leverage this structure or geometric prior in the data, we use E(n)-equivariant graph neural networks
(EGNNs) [Satorras et al.,2021] for GNN dec, GNNenc, and GNNprior .

76 Chapter 6. Generative Graphical Inverse Kinematics

The EGNN layer splits up the node features into an equivariant coordinate or position-based part and a
nonequivariant part. We treat the positions p and p̃ as the equivariant portion and the general features h as
nonequivariant. Using the graph network formalism for describing generic GNNs defined in Section2.4.3,
we can state the EGNN update equations used in GNNenc, GNNdec and GNNprior . First, the MLP NNe

generates a generalized edge feature embedding

e′ij = NNe
(
hl
i,h

l
j , ∥pl

i − pl
j∥2, di,j

)
(6.7)

for every node pair, where di,j is their relative distance, and p and h are the equivariant and general features
of each node, respectively. Next, each node’s equivariant feature p is updated by

p′
i = pi +NNp

∑
j≠i

(pl
i − pl

j)e
′
ij

 , (6.8)

computing a forward pass of the MLP NNp. Finally, each node’s general (nonequivariant) feature h is
updated by

h′
i = NNh

hi,
∑

j∈N(i)

e′ij

 , (6.9)

where NNh is the MLP dedicated to this particular set of features.
Together, the EGNN identities in Eq. (6.7), Eq. (6.8) and Eq. (6.9) form a forward pass of a single GNN

layer that updates a graph G as
G′(p′,h′) = GNN(G(p,h)) . (6.10)

Note that GNNenc, GNNdec and GNNprior are comprised of multiple (generally two or three) EGNN layers,
each parameterized by its own set of MLPs. Alternatively, the forward pass of one layer can be repeated
multiple times, but we have empirically found this to produce worse results overall. For more details about
the model and a proof of the equivariance property, we refer readers to [Satorras et al.,2021]. We present
ablation studies on the use of the EGNN network architecture in Section6.5.

6.5 Experimental Results

In this section, we (i) evaluate GGIK’s capability to learn accurate solutions and generalize across common
manipulators, (ii) determine whether GGIK can be used effectively to initialize local numerical IK solvers,
and (iii) investigate the importance of our choice of learning architecture.

6.5.1 Accuracy and Generalization of GGIK Across Manipulators

In our first experiment, we evaluate the accuracy and generalization capacity of GGIK by training a single
model on a dataset comprised of a variety of manipulators featuring different structures and numbers of
joints. All experiments were performed on a laptop computer with a six-core 2.20 GHz Intel i7-8750H CPU
and an NVIDIA GeForce GTX 1050 Ti Mobile GPU.

We evaluate a model trained on a total of 256,000 data points uniformly distributed over five different
commercial manipulators. The success rates in Table6.1, obtained by selecting the lowest-error sample
from the learned distribution, suggest that this approach is feasible for directly generating solutions in a
variety of practical applications. Moreover, the position and orientation error percentiles indicate that the
majority of sampled configurations correspond to end-effector poses in close proximity to the goal pose.
Consequently, samples from the learned distributions such as those shown in Fig.6.4can be refined to

6.5. Experimental Results 77

Table 6.1: Performance of GGIK on 2,000 randomly generated IK problems for five different robotic manipulators.
Taking 50 samples from the learned distribution, the error statistics are presented as the mean and mean minimum
error per problem, as well as the percentage of “successes," defined as solutions with a position error lower than 1
cm and rotation error lower than 1 degree. The mean MMD score measures how different GGIK’s samples are from
a uniform distribution approximated by rejection sampling with error tolerances of 8 cm and 8 degrees. Note that all
solutions were produced by a single model.

Robot Err. Pos. [mm] Err. Rot. [deg] Success [%] MMD
mean min 25% 50% 75% mean min 25% 50% 75%

kuka 15.1 2.7 7.1 10.2 15.4 2.0 0.5 1.1 1.5 2.1 99.0 0.06
lwa4d 13.9 2.3 6.5 9.7 14.6 2.3 0.7 1.4 1.8 2.5 99.0 0.06
lwa4p 6.6 2.3 4.6 6.3 8.3 1.8 1.0 1.4 1.7 2.1 98.2 0.21
panda 36.5 3.8 13.7 24.4 43.7 3.6 0.4 1.4 2.4 4.3 97.5 0.08
ur10 17.0 5.1 9.9 14.3 20.7 1.7 0.8 1.2 1.5 1.9 90.0 0.21

Table 6.2: Comparison of random samples and GGIK samples as initializations for local optimization on the same
problems as in Table6.1. GGIK significantly reduces the number of iterations needed for convergence.

Initialization Err. Pos. [mm] Err. Rot. [deg] Success [%] Num. Iter.
mean min 25% 50% 75% mean min 25% 50% 75%

Random 3.8 0.0 0.2 1.4 6.3 0.04 0.0 0.0 0.0 0.04 99.9 28.7
GGIK 1.0 0.0 0.3 0.7 1.4 0.0 0.0 0.0 0.0 0.0 99.9 11.1

arbitrary accuracy with only a few iterations of a local optimizer. The maximum mean discrepancy (MMD)
score [Gretton et al.,2012] between GGIK’s samples and a uniform distribution computed with rejection
sampling is reported for each robot as the mean over 50 goal poses with 50 sample solutions for each goal
pose. The MMD attains a minimum value of zero for identical distributions; a lowMMD indicates that GGIK
has learned a distribution that is close to uniform over the solution set for each goal pose [Ames et al.,2021].
Interestingly, while Fig.6.4indicates that GGIK successfully captures both the continuous solution sets of
the redundant robots and the discrete solution sets characteristic of the 6-DOF Schunk LWA4P and UR10,
the MMD scores for the two 6-DOF manipulators are significantly greater.

6.5.2 Initializing a Local Numerical IK Solver with GGIK

GGIK learns a sampling distribution capable of producing multiple approximate solutions in parallel, which
may be used as initializations for optimization-based methods. Table6.2shows the results of repeating
the experiment in Section6.5.1using an IK solver based on the SLSQP algortihm implemented in the
scipy.optimize package [Virtanen et al.,2020a], setting a maximum of 100 iterations and keeping
other termination criteria at their default values. We compare the solver’s accuracy and number of iter-
ations required before convergence when initialized with 32 random configurations per problem and 32
samples from our learned distribution. We average the results over all problems and all robots. While
both approaches achieve a high degree of success and accuracy on these unconstrained problems, the re-
sults clearly show that using our model to initialize the optimization produces better overall performance.
Specifically, themean number of iterations required compared to random initializations is almost three times
lower, and the accuracy of the solutions is notably higher as well. Our model could be used as a fallback
approach for difficult or highly constrained instances of IK, or as a general initializer ensuring accurate final
results.

78 Chapter 6. Generative Graphical Inverse Kinematics

Table 6.3: Comparison of different network architectures. EGNN outperforms existing architectures that are not equiv-
ariant in terms of overall accuracy and test ELBO.

Model Name Err. Pos. [mm] Err. Rot. [deg] Test ELBO Success [%]
mean min 25% 50% 75% mean min 25% 50% 75%

EGNN 18.4 6.4 14.1 16.5 17.1 1.7 0.8 1.1 1.6 1.7 -3.8 96.3
MPNN 143.2 48.9 114.6 174.8 175.9 17.7 15.3 15.4 17.5 19.4 -8.3 13.1
GAT - - - - - - - - - - -12.41 0.0
GCN - - - - - - - - - - -12.42 0.0
GRAPHsage - - - - - - - - - - -10.5 0.0

Figure 6.4: Sampled conditional distributions for various robotic manipulators. From left to right: KUKA IIWA,
Franka Emika Panda, Schunk LWA4D, Schunk LWA4P, and Universal Robots UR10.

6.5.3 Ablation Study on the Equivariant Network Architecture

We conduct an ablation experiment to evaluate the importance of capturing the underlying E(n) equivari-
ance of the distance geometry problem (Problem1) in our learning architecture. We compare the use of the
EGNN network [Satorras et al.,2021] to four common and popular GNN layers that are not E(n) equivari-
ant: GRAPHsage [Hamilton et al.,2017], GAT [Velickovic et al.,2018], GCN [Kipf and Welling,2017] and
MPNN [Gilmer et al.,2017]. We match the number of parameters for each GNN architecture as closely as
possible and keep all other experimental parameters fixed. Our dataset is the same one used in Section6.5.1,
however the results are averaged over all manipulators as shown in Table6.3. Out of the five different ar-
chitectures that we compare, only the EGNN and MPNN output point sets that can be successfully mapped
to valid joint configurations. Point sets that are too far from those representing a valid joint configuration
result in the configuration reconstruction procedure diverging. The equivariant EGNN model outperforms
all other models in terms of the ELBO value attained on a held-out test set from our original training data.
Our ablation results emphasize the importance of choosing a learning architecture that properly captures
the representation utilized in the distance-geometric IK problem formulation.

6.6 Summary and Conclusions

We have presented GGIK, a generative graphical IK solver that is able to produce multiple diverse and
accurate solutions in parallel across many different manipulator types. This capability is achieved through
a distance-geometric representation of the IK problem in concert with GNNs. The accuracy of the generated
solutions points to the potential of GGIK both as an approximate standalone solver and as an initialization
method for local approaches. To our knowledge, this is the first approach that allows the generation of
multiple solutions for multiple different robots using only a single model. More important, because GGIK
is fully differentiable, it can be incorporated as a flexible IK solver as part of an end-to-end learning-based
robotic manipulation framework.

In future work, we would like to learn constrained distributions of robot configurations that account for
obstacles in the task space; obstacles can be easily incorporated in the distance-geometric representation of
IK [Maric et al.,2021,Giamou et al.,2022]. Learning an obstacle-aware distribution would yield a solver that

6.6. Summary and Conclusions 79

implements obstacle avoidance byway ofmessage passing betweenmanipulator and obstacle nodes. Having
access to such distributions would be highly useful in motion planning applications, where configurations
could be sampled within regions that satisfy some set of task space constraints, likely speeding up many
existing motion planning ealgorithms.

6.6.1 Limitations

While our proposed architecture demonstrates a high capacity for generalization, generated solutions may
require post-processing by local optimization methods in certain applications in order to adhere to con-
straints more tightly. Moreover, the underlying distance-geometric model is subject to ambiguities in cases
where the rotation axes of consecutive joints are not co-planar, as explained in Section5.3.5. The learned
architecture has the capacity to resolve this ambiguity by only observing feasible configurations in the train-
ing set, however the model does generally require more training samples of such robots to achieve baseline
reasults.

6.6.2 Associated Publications

This research extends the work presented in Chapter5, making it the final contribution of this thesis both
semantically and chronologically. While these results have not yet been published, the initial idea was
presented in an invited talk at the 2021 Robotics: Science and Systems conference, titled “Of Ellipsoids
and Distances: Reconsidering Robot Kinematics”. We have also recently compiled this work in a shared-
authorship preprint

• Limoyo O., Marić F., Giamou M., Alexson P., Petrović, I., Kelly, J. (2022). One Model, Many Robots:
Generative Graphical Inverse Kinematics

submitted to the 2022 Conference on Robot Learning (CoRL).

Chapter 7

Conclusion

If you know the way broadly you will see it in
everything.

Miyamoto Musashi

In this thesis, we explored a variety of novel geometric formulations of problems involving the identifi-
cation and optimization of feasible robotic manipulator configurations. The primary motivation behind this
endeavour was to examine the idea that the alternative, geometric perspective reveals important, common
‘structural’ properties within these problems. These properties can then be exploited to improve the per-
formance of existing algorithms, improving their robustness by circumventing failure modes, for example,
or by increasing their overall success rate.

7.1 Summary of Contributions

In our first contribution, we have demonstrated that the important problem of singularity avoidance admits
a geometrically-interpretable singularity index that helps detect and avoid the common failure modes of
existing indices used for singularity avoidance. Crucially, we have found that this index can be differenti-
ated with respect to joint angles using a result from computational matrix analysis. We have shown that
optimizing the geometry-aware singularity index improves singularity avoidance performance of task space
control (as well as differential and pose IK) algorithms with little to no additional computational cost.

Next, we developed a detailed and algorithmic approach for constructing distance-based models of ma-
nipulator kinematics, unifying the configuration and task spaces. This systematic approach has enabled us
to draw a formal equivalence between the distance geometry problem and inverse kinematics, thereby link-
ing inverse kinematics to a plethora of diverse and previously unused solution methods. We have shown
that taking on this geometric perspective enables the development of robust solution formulations that are
able to handle problems with a high number of spatial constraints. The particular Riemannian formulation
presented in this thesis has shown superior performance in terms of success rate compared to traditional
angle-based solvers.

Finally, we explored the potential of using our distance-geometric model to structure and transform
robot configuration data into a distance geometric graph, revealing an intuitive and robot-agnostic inverse
kinematics generative model architecture. Remarkably, we have found that our generative model surpasses
the capabilities of many existing learning approaches to inverse kinematics problem, not only by provid-
ing highly accurate solutions, but by generalizing to different robots. Moreover, we have also shown that
this generative architecture may serve as an efficient initializer for optimization-based solution methods,
increasing the success rate and reducing the number of iterations required to reach a solution.

80

7.2. Future Work 81

Here we include a summary of the contributions in this thesis:
• a measure of proximity to kinematic singularities inherent to robotic manipulators, derived from Rie-
mannian geometry;

• a closed-form expression for computing the geometry-aware singularity index Jacobian;
• a fully algorithmic approach to modeling inverse kinematics problems as an instance of the distance
geometry problem;

• a formal proof of equivalence between inverse kinematics and the distance gometry problem;
• a method for solving IK of the distance-based kinematic model using Riemannian geometry and a
distance matrix completion method;

• a way to exploit the inherent graph structure of the distance-based kinematic model to formulate
inverse kinematics as a learning problem for graph neural networks (GNNs); and

• a learned model of an inverse kinematics solver capable of generalizing to a variety of different robots
using GNNs and graph-structured data

Overall, we hope that the contributions in this thesis insipire other authors by proving that there is untapped
potential in exploiting the known geometry of various elements in robotic manipulation for developing new
and more efficient planning and control algortihms.

7.2 Future Work

The research presented in this thesis has been focused on unlocking the potential for applying novel tools
to existing problems, opening many potential avenues for future work. The geometry-aware singularity
avoidance index presented in Chapter4may be integrated in many existing motion planning and control
pipelines for manipulation to provide more dexterous and stable configurations than baseline approaches.
More importantly, we expect that developing methods for choosing appropriate reference elliposids for
particular tasks may provide an even more significant improvement.

The distance-distance geometric model in Chapter5holds promise for applications in motion plan-
ning due to its unification of the task and configuration spaces. For example, motion planning in cluttered
environments would be improved by using this more robust approach to identify key collision-free config-
urations that are to be interpolated using a trajectory optimization algortihm. Further, the distance-based
model opens up possibilities for using solution methods from other related fields, such as the one explored
in [Giamou et al.,2022]. Working in a single space of inter-point distances (as opposed to the twin con-
figuration and task spaces), these methods hold promise for providing higher success rates in difficult IK
problem instances contatining a large number of spatial constraints. Overall we see this approach as a basis
for a new generation of “heavy-duty” IK solvers.

Finally, the contribution in Chapter6has demonstrated the potential of learning approaches for prob-
lems in kinematics where access to a large variety of solutions is beneficial. In future work, we hope to
further develop this approach to find the first truly general learned IK solver that accounts for constraints
such as obstacle avoidance. Sampling-basedmotion plannerswould benefit from access to spatially-localized
samples that repsect elements of workspaces geometry. We believe that the overall GNN-based generative
architecture may be extended to other geometrc representations, such as the more common matrix Lie
groups.

Biography

FilipMarić is a scientist in the field of artificial intelligence. He completed his PhD jointlywith the University
of Toronto Institute for Aerospace Studies and University of Zagreb Faculty of Electrical Engineering and
Computing. He joined the PhD program in 2018, focusing his research on the topic of kinematics andmotion
planning of robotic manipulators. Completed his master’s degree in Electrical Engineering and Information
Technology at the University of Zagreb Faculty of Electrical Engineering and Computing in 2017. In 2017,
he was awarded with the Dr. Jasna Šimunić-Hrvoić scholarship for completing his research thesis at the
University of Toronto. In 2016, Filip received a Rector’s award for his research thesis titled “An Intuitive
System for Teleoperation of a Robotic Manipulator using and RGB-depth Camera”. In 2015, he obtained a
bachelor’s degree in Electrical Engineering and Information Technology at the University of Zagreb Faculty
of Electrical Engineering and Computing. He has published numerous research papers in international
peer-reviewed journals and presented his work in multiple international conferences.

82

Životopis

FilipMarić je znanstvenik u području umjetne inteligencije. Doktorirao u sklopuCotutelle programa Sveučil-
išta u Torontu i Fakulteta Elektrotehnike i Računarstva Sveučilišta u Zagrebu. Pridružio se doktorskom pro-
gramu 2018. godine, fokusirajući svoje istraživanje na temu kinematike i planiranja kretanja robotskih ma-
nipulatora. Godine 2017. završio diplomski studij elektrotehnike i informacijskih tehnologija na Fakultetu
Elektrotehnike i Računarstva Sveučilišta u Zagrebu. Iste godine primio stipendiju dr. Jasna Šimunić-Hrvoić
za izradu diplomskog rada na Sveučilištu u Torontu. Godine 2016. osvojio Rektorovu nagradu za znanstveni
rad pod nazivom „Intuitivni sustav za teleoperaciju robotskih manipulatora pomoću RGB dubinske kamere“.
Filip je 2015. godine stekao diplomu prvostupnika elektrotehnike i informacijskih tehnologija na Fakultetu
Elektrotehnike i Računarstva Sveučilišta u Zagrebu. Objavio je brojne istraživačke radove u međunarodnim
recenziranim časopisima i prezentirao svoj rad na više međunarodnih konferencija.

83

Appendices

84

Appendix A

Learning

This appendix to the thesis brifly introduces two types of learning tasks and a particular learning archi-
tecture relevant to our contributions. We begin by introducing the concepts of unsupervised learning and
supervised learning, which gives more insight into the “placement” of the contribution in Chapter6in the
overall body of research. We follow this up by introducing deep generativemodels, that lie at the intersection
of the two learning types and serve as a bases for our final contribution.

A.1 Unsupervised Learning

In unsupervised learning involves capturing patterns in unlabeled training data D ≜ {(xi)}N1 with the goal
of finding lower-dimensional representations or models that are able to produce new data similar to the
training set. Examples of unsupervised learning include tasks such as synthesizingwriting or images, as well
as generating motion plans for robots. Here, the learned model then defines a likelihood pα(x) = p(x;α),
which can be maximized by minimizing the negative log-likelihood −Ex log pα(x). This identity can be
used to find an estimated parameter valueα usingmaximum likelihood (ML) ormaximum a posteriori (MAP)
estimation, representing a frequentist or Bayesian approach.

We can apply the principle of maximum likelihood to findα by directly solving the optimization problem

αML = max
α

Expα(x) = min
α
−Exlog pα(x) , (A.1)

For example, assuming that pα(x) = N (NN(x;α), I), we arrive at

LML(x,α) = −Ex log pα(x) =
1

2
Ex ∥x−NN(x;α)∥2 + const , (A.2)

which is simply the mean-squared error (MSE) loss.
Unlike the ML approach, which assumes the true set of parameters α is unknown but fixed, MAP esti-

mation assigns them a prior distribution p(α). From the Bayes’ rule we have p(α|x) ∝ p(x|α)p(α), where
p(x|α) = pα(x). This allows us to estimate the parameters α by solving the optimization problem

αMAP = max
α

Exp(x|α)p(α) = min
α
−Ex (log pα(x) + log p(α)) . (A.3)

Assuming that pα(x) = N (NN(x;α), I) and p(α) = N (0, λ−2I) results in

LMAP (x,α) =
1

2
Ex ∥x−NN(x;α)∥2 + λα α⊺ + const . (A.4)

Which is equivalent to an MSE with an added regularizing weight decay penalty.

85

86 Appendix A. Learning

A.2 Supervised learning

In supervised learning, the goal is to learn a function based on N input-output pairs found in the training
data D ≜ {(xi,yi)}N1 . Examples of supervised learning tasks include time-series prediction, handwriting
recognition and spam detection. Here, the learned model then defines a distribution pα(y|x) = p(y|x;α).
Again, this identity can be used to find an estimated parameter value α using maximum likelihood (ML) or
maximum a posteriori (MAP) estimation.

We can apply the principle of maximum likelihood to find an appropriate α by directly solving the
optimization problem

αML = max
α

Ex,ypα(y|x) = min
α
−Ex,ylog pα(y|x) . (A.5)

Assuming that pα(y|x) = N (NN(x;α), I), we arrive at

LML(y,x,α) = −Ex,y log pα(y|x) =
1

2
Ex,y ∥y −NN(x;α)∥2 + const , (A.6)

which is simply the mean-squared error (MSE) loss. Note that pα(y|x) may be defined differently for tasks
such as binary classification, where the output labels have only two discrete categories (e.g., hot dog or not
hot dog).

For the MAP estimator, the Bayes’ rule gives p(α|x,y) ∝ p(y|x,α)p(α), where p(y|x,α) = pα(y|x).
This allows us to estimate the parameters α by solving the optimization problem

αMAP = min
α
−Ex,y(log pα(y|x) + log p(α)) . (A.7)

Assuming that pα(y|x) = N (NN(x;α), I) and p(α) = N (0, λ−2I) results in

LMAP (x,y,α) =
1

2
Ex,y ∥y −NN(x;α)∥2 + λα α⊺ + const . (A.8)

This again equates to an MSE with a weight decay penalty.

A.3 Deep Generative Models

Unlike conventional feedforward neural networks, generative models are designed to output a probability
distribution that is used for generating novel examples resembling those in the training set. Depending on
the task, these models may be used for either supervised or unsupervised learning.

A.3.1 Variational Autoencoder

The variational autoencoder (VAE) [Rezende et al.,2014,Kingma and Welling,2013] uses learned approx-
imate inference and can be trained using standard gradient-based methods. The goal of this network is to
generate a sample from a distribution p(x) of unlabeled data D ≜ {(xi)}N1 by sampling a latent variable
z from a prior distribution p(z) and passing it through a decoder networks associated with the conditional
distribution pα(x|z). However, at training time z is generated from the distribution qα(z|x) associated with
the encoder network.

Crucially, by introducing a stochastic latent variable z, the data distribution may be modeled as

pα(x) =

∫
pα(x|z)p(z)dz, (A.9)

A.3. Deep Generative Models 87

where pα(x|z) is the likelihood ofx, pα(z) is the true prior distribution of z, andα are the learnable encoder
and decoder parameters. The goal of learning is to maximize the maximum likelihood of the data pα(x).
However, instead of maximizing pα(x), it is possible to maximize a tractable evidence lower bound (ELBO):

L = Ex

(
Eqα(z)[log pα(x|z)]−KL(qα(z|x)||p(z))

)
≤ Ex (log pα(x)) , (A.10)

where qα(z|x) is the encoder model

qα(z|x) = N (µ, diag(σ2)). (A.11)

generally defined as a Gaussian or some other tractable distribution. Since qα(z) is restricted to be a Gaus-
sian variational approximation, we can use stochastic gradient descent (i.e., using Monte Carlo estimates of
the gradient) via the reparameterization trick to optimize the lower bound in Eq. (A.10) w.r.t parameters α.

A.3.2 Conditional Variational Autoencoder

The conditional variational autoencoder (CVAE) [Sohn et al.,2015] learns the conditional distribution pα(y|x),
given a training set of correlated input and output data D ≜ {(xi,yi)}N1 . At test time, the prior encoder
encodes the input information x into a distribution pα(z|x) in the latent space. During training, the distri-
bution pα(z|x) was optimized to be simultaneously near multiple encodings of valid outputs y by way of
the KL divergence term in Eq. (A.14).

By introducing a stochastic latent variable z, the conditional distribution may be modeled as

pα(y|x) =
∫

pα(y|x, z)pα(z|x)dxz, (A.12)

where pα(y|x, z) is the likelihood of y, pα(z|x) is the prior distribution of z given x, andα are the learnable
encoder and decoder parameters. The prior distribution of z given x is often chosen to be Gaussian

pα(z|x) = N (µ, diag(σ2)) , (A.13)

with the mean µ and covariance σ being outputs of an encoder with learnable parameters α. This allows
the sampling of inferred outputs y from the generative distribution pα(y|x, z) modeled by a decoder that
takes x and a sampled z as inputs.

The goal of learning is to maximize the marginal likelihood or evidence of the data defined in Eq. (A.12).
However, instead of maximizing p(y|x), it is possible to maximize a tractable evidence lower bound:

L = Ex,y

(
Eqα(z|G)[log p(y|x, z)]−KL(qα(z|y)||pα(z|x))

)
≤ Ex,y (log pα(y|x)) , (A.14)

where qα(z|y) is the inference model, with learnable parameters α, defined as:

qα(z|y) = N (z|µ, diag(σ2)). (A.15)

The inference model is an approximation of the intractable true posterior p(z|y). Similarly to the prior
distribution, the inference model consists of an encoder network that outputs inference distribution param-
eters µ and σ. The resulting objective, as denoted by Eq. (A.14), is based on an expectation with respect to
the inference distribution qα(z|y), which itself is based on the parameters α. The latent variables z allow
for modeling multiple modes in the conditional distribution of output variables y, making CVAEs suitable
for representing one-to-many mappings such as inverse kinematics.

Bibliography

P.-A. Absil, C. G. Baker, and K. A. Gallivan. Trust-region methods on Riemannian manifolds. Found. Comput.

Math., 7(3):303–330, 2007. doi: 10.1007/s10208-005-0179-9.

P-AAbsil, RobertMahony, and Rodolphe Sepulchre. Optimization Algorithms onMatrixManifolds. Princeton
University Press, 2009.

Abdo Y Alfakih, Amir Khandani, and Henry Wolkowicz. Solving euclidean distance matrix completion
problems via semidefinite programming. Comput. Optim. Appl., 12(1-3):13–30, 1999.

Barrett Ames, Jeremy Morgan, and George Konidaris. Ikflow: Generating diverse inverse kinematics solu-
tions. arXiv preprint arXiv:2111.08933, 2021.

Hariharan Ananthanarayanan and Raúl Ordóñez. Real-time inverse kinematics of (2n+1) DOF hyper-
redundant manipulator arm via a combined numerical and analytical approach. Mech. Mach. Theory,
91:209–226, September 2015.

Jorge Angeles, Günter Hommel, and Peter Kovács. Computational Kinematics, volume 28. Springer Science
& Business Media, 2013.

Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Analyzing inverse problems with in-
vertible neural networks. In International Conference on Learning Representations, 2018.

A. Aristidou, J. Lasenby, Y. Chrysanthou, and A. Shamir. Inverse Kinematics Techniques in Computer Graph-
ics: A Survey. Comput. Graph. Forum., 37(6):35–58, September 2018. ISSN 01677055. doi: 10.1111/cgf.13310.

Andreas Aristidou and Joan Lasenby. FABRIK: A fast, iterative solver for the inverse kinematics problem.
Graph. Models, 73(5):243–260, September 2011. ISSN 1524-0703.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis
Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria
Langston, Chris Dyer, Nicolas Heess, DaanWierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia
Li, and Razvan Pascanu. Relational inductive biases, deep learning, and graph networks. ArXiv180601261
Cs Stat, October 2018a.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018b.

Patrick Beeson and Barrett Ames. Trac-ik: An open-source library for improved solving of generic inverse
kinematics. In IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages 928–935,
2015.

88

BIBLIOGRAPHY 89

Leon Beiner. Singularity avoidance for Scara robots. Robotics and autonomous systems, 10(1):63–69, 1992.

Leon Beiner. Singularity avoidance for articulated robots. Robotics and autonomous systems, 20(1):39–47,
1997.

Pratik Biswas, Tzu-Chen Lian, Ta-ChungWang, and Yinyu Ye. Semidefinite programming based algorithms
for sensor network localization. ACM Trans. Sensor Networks (TOSN), 2(2):188–220, 2006.

Franco Blanchini, Gianfranco Fenu, Giulia Giordano, and Felice Andrea Pellegrino. Inverse kinematics by
means of convex programming: Some developments. In IEEE Int. Conf. Autom. Sci. Eng. (CASE), pages
515–520, August 2015.

Franco Blanchini, Gianfranco Fenu, Giulia Giordano, and Felice Andrea Pellegrino. A convex programming
approach to the inverse kinematics problem for manipulators under constraints. Eur. J. Control, 33:11–23,
January 2017.

Botond Bócsi, Duy Nguyen-Tuong, Lehel Csató, Bernhard Schoelkopf, and Jan Peters. Learning inverse
kinematics with structured prediction. In 2011 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 698–703. IEEE, 2011.

N. Boumal and P.-A. Absil. Low-rank matrix completion via preconditioned optimization on the Grassmann
manifold. Linear Algebra Appl., 475:200–239, 2015. doi: 10.1016/j.laa.2015.02.027.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

Samuel Burer and Renato D.C. Monteiro. Local minima and convergence in low-rank semidefinite program-
ming. Mathematical Programming, 103(3):427–444, December 2004. ISSN 1436-4646.

Samuel R Buss. Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped
least squares methods. IEEE Journal of Robotics and Automation, 17(1-19):16, 2004.

Samuel R Buss and Jin-Su Kim. Selectively damped least squares for inverse kinematics. J. Graphics Tools,
10:37–49, 2005.

Karel Čapek. RUR (Rossum’s universal robots): a fantastic melodrama. Garden City, NY: Doubleday, Page,
1923.

Philippe Cardou, Samuel Bouchard, and Clément Gosselin. Kinematic-sensitivity indices for dimensionally
nonhomogeneous Jacobian matrices. IEEE Transactions on Robotics, 26(1):166–173, 2010.

Ching-An Cheng, Mustafa Mukadam, Jan Issac, Stan Birchfield, Dieter Fox, Byron Boots, and Nathan Ratliff.
Rmpflow: A computational graph for automatic motion policy generation. In International Workshop on

the Algorithmic Foundations of Robotics, pages 441–457. Springer, 2018.

F-T Cheng, T-H Chen, Y-S Wang, and Y-Y Sun. Obstacle avoidance for redundant manipulators using the
compact QP method. In IEEE International Conference on Robotics and Automation, pages 262–269, 1993.

Stefano Chiaverini. Singularity-robust task-priority redundancy resolution for real-time kinematic control
of robot manipulators. IEEE Transactions on Robotics and Automation, 13(3):398–410, 1997.

David I Chu, Hunter C Brown, and Moody T Chu. On Least Squares Euclidean Distance Matrix Approxi-
mation and Completion. Technical report, Department of Mathematics, North Carolina State University,
2003.

90 BIBLIOGRAPHY

Michael AA Cox and Trevor F Cox. Multidimensional scaling. In Handbook of Data Visualization, pages
315–347. Springer, 2008.

Hongkai Dai, Gregory Izatt, and Russ Tedrake. Global inverse kinematics via mixed-integer convex opti-
mization. Int. J. Rob. Res., 38(12-13):1420–1441, October 2019.

Jon Dattorro. Convex optimization & Euclidean distance geometry, 2005.

Javier García de Jalón. Twenty-five years of natural coordinates. Multibody Sys. Dyn., 18(1):15–33, Aug.
2007. ISSN 1573-272X. doi: 10.1007/s11044-007-9068-0.

Yichuan Ding, Nathan Krislock, Jiawei Qian, and HenryWolkowicz. Sensor network localization, Euclidean
distance matrix completions, and graph realization. Optim. Eng., 11(1):45–66, February 2010. ISSN 1389-
4420, 1573-2924. doi: 10.1007/s11081-008-9072-0.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

Ivan Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. Euclidean Distance Matrices: Essential
Theory, Algorithms and Applications. IEEE Signal Process. Mag., 32(6):12–30, November 2015.

Aaron D’Souza, Sethu Vijayakumar, and Stefan Schaal. Learning inverse kinematics. In Proceedings 2001

IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics

in the the Next Millennium (Cat. No. 01CH37180), volume 1, pages 298–303. IEEE, 2001.

Joseph Duffy. Analysis of mechanisms and robot manipulators. Edward Arnold London, 1980.

Kévin Dufour and Wael Suleiman. On integrating manipulability index into inverse kinematics solver. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 6967–6972, 2017.

Kenny Erleben and Sheldon Andrews. Solving inverse kinematics using exact Hessian matrices. Comput.

Graph., 78:1–11, February 2019.

Hawren Fang and Dianne P. O’Leary. Euclidean distance matrix completion problems. Optim. Methods

Softw., 27(4-5):695–717, October 2012. ISSN 1055-6788, 1029-4937. doi: 10.1080/10556788.2011.643888.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research logistics

quarterly, 3(1-2):95–110, 1956.

Matthew Giamou, Filip Maric, David M. Rosen, Valentin Peretroukhin, Nicholas Roy, Ivan Petrovic, and
Jonathan Kelly. Convex iteration for distance-geometric inverse kinematics. IEEE Robotics and Automation

Letters, 2022. doi: 10.1109/LRA.2022.3141763. URL https://arxiv.org/abs/2109.03374. To Appear.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. pages 1263–1272. PMLR, 2017.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. 30, 2017.

Li Han and Lee Rudolph. Inverse kinematics for a serial chain with joints under distance constraints. 2006.

Yuval Noah Harari. Sapiens: A brief history of humankind. Random House, 2014.

Richard S Hartenberg and Jacques Denavit. A kinematic notation for lower pair mechanisms based on
matrices. J. Appl. Mech., 77(2):215–221, 1955.

https://arxiv.org/abs/2109.03374

BIBLIOGRAPHY 91

Timothy F. Havel. Distance Geometry: Theory, Algorithms, and Chemical Applications. In Encyclopedia of

Computational Chemistry, pages 723–742. John Wiley & Sons, Ltd, April 2002. ISBN 978-0-470-84501-1.
doi: 10.1002/0470845015.cda018.

Nicholas J Higham. Functions of matrices: theory and computation, volume 104. Siam, 2008.

Chi-Kai Ho and Chung-Ta King. Selective inverse kinematics: A novel approach to findingmultiple solutions
fast for high-dof robotic. arXiv preprint arXiv:2202.07869, 2022.

Jeffrey Ichnowski, Yahav Avigal, Vishal Satish, and Ken Goldberg. Deep learning can accelerate grasp-
optimized motion planning. Science Robotics, 5(48):eabd7710, 2020. doi: 10.1126/scirobotics.abd7710. URL
https://www.science.org/doi/abs/10.1126/scirobotics.abd7710.

Brian Ichter, James Harrison, andMarco Pavone. Learning sampling distributions for robot motion planning.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 7087–7094. IEEE, 2018.

Noémie Jaquier, Leonel Rozo, Darwin G Caldwell, and Sylvain Calinon. Geometry-aware manipulabil-
ity learning, tracking, and transfer. The International Journal of Robotics Research, 2020. doi: 10.1177/
0278364920946815.

Long Jin, Shuai Li, Hung Manh La, and Xin Luo. Manipulability optimization of redundant manipulators
using dynamic neural networks. IEEE Transactions on Industrial Electronics, 64(6):4710–4720, 2017.

Michael I Jordan and David E Rumelhart. Forward models: Supervised learning with a distal teacher. Cog-
nitive science, 16(3):307–354, 1992.

M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre. Low-rank optimization on the cone of positive semidefinite
matrices. 20(5):2327–2351, January 2010. ISSN 1095-7189.

Arbaaz Khan, Alejandro Ribeiro, Vijay Kumar, and Anthony G Francis. Graph neural networks for motion
planning. arXiv preprint arXiv:2006.06248, 2020.

Diederik P Kingma and MaxWelling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. 2014. URL http://arxiv.org/

abs/1312.6114.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks.
2017.

Jakob Kruse, Lynton Ardizzone, Carsten Rother, and Ullrich Köthe. Benchmarking invertible architectures
on inverse problems. arXiv preprint arXiv:2101.10763, 2021.

Jean B. Lasserre. Global Optimizationwith Polynomials and the Problem ofMoments. 11(3):796–817, January
2001.

Thibaut Le Naour, Nicolas Courty, and Sylvie Gibet. Kinematics in the metric space. Comput. Graph., 84:
13–23, November 2019a. ISSN 0097-8493.

Thibaut Le Naour, Nicolas Courty, and Sylvie Gibet. Kinematics in the metric space. Comput. Graph., 84:
13–23, 2019b.

John M Lee. Introduction to Riemannian manifolds. Graduate texts in mathematics. Springer, 2018. doi:
10.1007/978-3-319-91755-9.

https://www.science.org/doi/abs/10.1126/scirobotics.abd7710
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114

92 BIBLIOGRAPHY

Teguh Santoso Lembono, Emmanuel Pignat, Julius Jankowski, and Sylvain Calinon. Learning constrained
distributions of robot configurations with generative adversarial network. IEEE Robotics and Automation

Letters, 6(2):4233–4240, 2021.

Ngai-Hang Z Leung and Kim-Chuan Toh. An SDP-based divide-and-conquer algorithm for large-scale noisy
anchor-free graph realization. 31(6):4351–4372, 2010.

Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. Towards Practical Multi-Object Manipulation
using Relational Reinforcement Learning. arXiv:1912.11032 [cs], December 2019.

Leo Liberti, Carlile Lavor, and Nelson Maculan. A branch-and-prune algorithm for the molecular distance
geometry problem. Int. Trans. Oper. Res., 2008.

Leo Liberti, Carlile Lavor, Nelson Maculan, and Antonio Mucherino. Euclidean Distance Geometry and
Applications. SIAM Rev., 56(1):3–69, January 2014. ISSN 0036-1445, 1095-7200. doi: 10.1137/120875909.

Kevin M Lynch and Frank C Park. Modern Robotics. Cambridge University Press, 2017.

Anthony A Maciejewski and Charles A Klein. The singular value decomposition: Computation and appli-
cations to robotics. The International journal of robotics research, 8(6):63–79, 1989.

Edwin Mandfield. The diffusion of industrial robots in japan and the united states. Research Policy, 18(4):
183–192, 1989.

Giacomo Marani, Jinhyun Kim, Junku Yuh, and Wan Kyun Chung. A real-time approach for singularity
avoidance in resolved motion rate control of robotic manipulators. In IEEE International Conference on

Robotics and Automation, volume 2, pages 1973–1978, 2002.

FilipMarić, Ivan Jurin, IvanMarković, Zoran Kalafatić, and Ivan Petrović. Robot arm teleoperation via RGBD
sensor palm tracking. In 39th International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO), pages 1093–1098. IEEE, 2016.

Filip Marić, Oliver Limoyo, Luka Petrović, Trevor Ablett, Ivan Petrović, and Jonathan Kelly. Fast manipula-
bility maximization using continuous-time trajectory optimization. In IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 8258–8264. IEEE, 2019.

Filip Marić, Matthew Giamou, Soroush Khoubyarian, Ivan Petrović, and Jonathan Kelly. Inverse kinematics
for serial kinematic chains via sum of squares optimization. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 7101–7107, August 2020.

Filip Maric, Matthew Giamou, Adam W. Hall, Soroush Khoubyarian, Ivan Petrovic, and Jonathan Kelly.
Riemannian optimization for distance-geometric inverse kinematics. IEEE Transactions on Robotics, 2021.
doi: 10.1109/TRO.2021.3123841. URL https://arxiv.org/abs/2108.13720.

Matthew T Mason. Toward robotic manipulation. Annual Review of Control, Robotics, and Autonomous

Systems, 1(1), 2018.

D. Miller. 2015 NASA technology roadmaps: TA4: robotics and autonomous systems. 2015.

B. Mishra, G. Meyer, and R. Sepulchre. Low-rank optimization for distance matrix completion. In Proc. IEEE

Conf. Decision and Control and Eur. Control Conf., pages 4455–4460, Dec 2011. doi: 10.1109/CDC.2011.
6160810.

https://arxiv.org/abs/2108.13720

BIBLIOGRAPHY 93

A.Müller. AnO(n)-Algorithm for theHigher-Order Kinematics and Inverse Dynamics of SerialManipulators
Using Spatial Representation of Twists. IEEE Robot. Autom. Lett., 6(2):397–404, April 2021. ISSN 2377-3766.
doi: 10.1109/LRA.2020.3044028.

Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical introduction to robotic manipulation.
CRC press, 1994.

Yoshihiko Nakamura, Hideo Hanafusa, and Tsuneo Yoshikawa. Task-priority based redundancy control of
robot manipulators. The International Journal of Robotics Research, 6(2):3–15, 1987.

Luong Trung Nguyen, Junhan Kim, Sangtae Kim, and Byonghyo Shim. Localization of IoT Networks via
Low-Rank Matrix Completion. IEEE Trans. Commun., 67(8):5833–5847, August 2019a. ISSN 0090-6778,
1558-0857. doi: 10.1109/TCOMM.2019.2915226.

Luong Trung Nguyen, Junhan Kim, and Byonghyo Shim. Low-rank matrix completion: A contemporary
survey. IEEE Access, 7:94215–94237, 2019b.

Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Math. Program., 96(2):
293–320, May 2003.

Sarosh Patel and Tarek Sobh. Manipulator performance measures-a comprehensive literature survey. Jour-
nal of Intelligent & Robotic Systems, 77(3-4):547–570, 2015.

Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Comput., 6(1):147–160, January 1994.
ISSN 1530-888X.

Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework for tensor computing. Inter-
national Journal of computer vision, 66(1):41–66, 2006.

Luka Petrović, Juraj Peršić, Marija Seder, and Ivan Marković. Cross-entropy based stochastic optimization
of robot trajectories using heteroscedastic continuous-time Gaussian processes. Robotics and Autonomous

Systems, 133:103618, 2020.

Luka Petrović, Filip Marić, Ivan Marković, Jonathan Kelly, and Ivan Petrović. Trajectory optimization with
geometry-aware singularity avoidance for robot motion planning. In 2021 21st International Conference

on Control, Automation and Systems (ICCAS), pages 1760–1765. IEEE, 2021.

Hoang-Lan Pham, Véronique Perdereau, Bruno Vilhena Adorno, and Philippe Fraisse. Position and orienta-
tion control of robot manipulators using dual quaternion feedback. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 658–663, 2010.

J.M. Porta, L. Ros, F. Thomas, and C. Torras. A branch-and-prune solver for distance constraints. IEEE Trans.
Robot., 21:176–187, April 2005a.

Josep M Porta, Lluís Ros, and Federico Thomas. Inverse kinematics by distance matrix completion. In Proc.

12th Int. Workshop Computational Kinematics. Elsevier, 2005b.

JosepM. Porta, Nicolás Rojas, and Federico Thomas. Distance geometry in active structures. InMechatronics

for Cultural Heritage and Civil Engineering, volume 92, pages 115–136. 2018. ISBN 978-3-319-68645-5 978-
3-319-68646-2. doi: 10.1007/978-3-319-68646-2_5.

AhmedHussainQureshi, YinglongMiao, Anthony Simeonov, andMichael C Yip. Motion planning networks:
Bridging the gap between learning-based and classical motion planners. IEEE Transactions on Robotics,
37(1):48–66, 2020.

94 BIBLIOGRAPHY

Hailin Ren and Pinhas Ben-Tzvi. Learning inverse kinematics and dynamics of a robotic manipulator using
generative adversarial networks. Robotics and Autonomous Systems, 124:103386, 2020.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approxi-
mate inference in deep generative models. In International conference on machine learning, pages 1278–
1286. PMLR, 2014.

Leonel Rozo, Noémie Jaquier, Sylvain Calinon, and Darwin G Caldwell. Learning manipulability ellipsoids
for task compatibility in robot manipulation. In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 3183–3189, 2017.

J Kenneth Salisbury and John J Craig. Articulated hands: Force control and kinematic issues. The Interna-
tional journal of Robotics research, 1(1):4–17, 1982.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks. In
International Conference on Machine Learning, pages 9323–9332. PMLR, 2021.

John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and Pieter Abbeel. Finding
locally optimal, collision-free trajectories with sequential convex optimization. In Robotics: Science and

Systems, volume 9, pages 1–10, 2013.

John Schulman, YanDuan, JonathanHo, Alex Lee, IbrahimAwwal, Henry Bradlow, Jia Pan, Sachin Patil, Ken
Goldberg, and Pieter Abbeel. Motion planning with sequential convex optimization and convex collision
checking. Int. J. Rob. Res., 2014.

Lorenzo Sciavicco and Bruno Siciliano. Coordinate transformation: A solution algorithm for one class of
robots. 16(4):550–559, 1986.

Lorenzo Sciavicco and Bruno Siciliano. Modelling and Control of Robot Manipulators. Advanced Textbooks
in Control and Signal Processing. Springer, 2012.

Jon M Selig. Geometric fundamentals of robotics, volume 128. Springer, 2005.

Bruno Siciliano and Jean-Jacques Slotine. A general framework for managing multiple tasks in highly re-
dundant robotic systems. Advanced Robotics, pages 1211–1216, 1991.

Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: Modelling, Planning and

Control. Springer Science & Business Media, 2010.

M. J. Sippl and H. A. Scheraga. Cayley-menger coordinates. Proc. Natl. Acad. Sci., 83(8):2283–2287, April
1986. ISSN 1091-6490.

Anthony Man-Cho So and Yinyu Ye. Theory of semidefinite programming for Sensor Network Localization.
Math. Program., 109(2-3):367–384, January 2007.

Kihyuk Sohn, Xinchen Yan, and Honglak Lee. Learning structured output representation using deep con-
ditional generative models. In Proceedings of the 28th International Conference on Neural Information

Processing Systems - Volume 2, NeurIPS’15, pages 3483–3491, Cambridge, MA, USA, 2015. MIT Press.

Joan Solà, Jeremie Deray, and Dinesh Atchuthan. A micro Lie theory for state estimation in robotics.
ArXiv181201537 Cs, November 2020.

Mark W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot Modeling and Control. John Wiley
& Sons, 2005.

BIBLIOGRAPHY 95

T. Tony Cai. One-sided confidence intervals in discrete distributions. J. Stat. Plan. Inference, 131(1):63–88,
April 2005.

Vassilios D Tourassis and Marcelo H Ang Jr. Identification and analysis of robot manipulator singularities.
The International Journal of Robotics Research, 11(3):248–259, 1992.

James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A Python toolbox for optimization on
manifolds using automatic differentiation. J. Mach. Learn. Res., 17(1):4755–4759, 2016.

Bart Vandereycken. Low-rank matrix completion by Riemannian optimization—extended version. 23(2):
1214–1236, September 2012.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. 2018.

Ruben Villegas, Jimei Yang, Duygu Ceylan, and Honglak Lee. Neural Kinematic Networks for Unsupervised
Motion Retargetting. ArXiv180405653 Cs, April 2018.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, IanHenriksen, E. A. Quintero, Charles R. Harris, AnneM.Archibald, AntônioH. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272, 2020a. doi: 10.1038/s41592-019-0686-2.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental algorithms
for scientific computing in Python. Nat. Methods, 17(3):261–272, 2020b.

Tim von Oehsen, Alexander Fabisch, Shivesh Kumar, and Frank Kirchner. Comparison of Distal Teacher
Learning with Numerical and Analytical Methods to Solve Inverse Kinematics for Rigid-Body Mecha-
nisms. arXiv:2003.00225 [cs], February 2020.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with graph
neural networks. In International Conference on Learning Representations, 2018.

Ke Wei, Jian-Feng Cai, Tony F. Chan, and Shingyu Leung. Guarantees of Riemannian Optimization for Low
Rank Matrix Recovery. SIAM J. Matrix Anal. Appl., 37(3), April 2016.

Julian Whitman, Matthew Travers, and Howie Choset. Learning modular robot control policies. arXiv

preprint arXiv:2105.10049, 2021.

Bin Xian, Marcio S de Queiroz, D Dawson, and I Walker. Task-space tracking control of robot manipulators
via quaternion feedback. IEEE Transactions on Robotics and Automation, 20(1):160–167, 2004.

Tarun Yenamandra, Florian Bernard, Jiayi Wang, Franziska Mueller, and Christian Theobalt. Convex Opti-
misation for Inverse Kinematics. Proc. Int. Conf. 3D Vision (3DV), pages 318–327, September 2019.

Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The International Journal of Robotics Research, 4
(2):3–9, 1985.

Yunong Zhang, Dongsheng Guo, Kene Li, and Jun Li. Manipulability-maximizing self-motion planning
and control of redundant manipulators with experimental validation. In IEEE International Conference on

Mechatronics and Automation, pages 1829–1834, 2012.

96 BIBLIOGRAPHY

Yunong Zhang, Xiaogang Yan, Dechao Chen, Dongsheng Guo, and Weibing Li. QP-based refined
manipulability-maximizing scheme for coordinated motion planning and control of physically con-
strained wheeled mobile redundant manipulators. Nonlinear Dynamics, 85(1):245–261, 2016.

Ciyou Zhu, RichardH. Byrd, Peihuang Lu, and JorgeNocedal. Algorithm 778: L-BFGS-B: Fortran subroutines
for large-scale bound-constrained optimization. ACM Trans. Math. Softw., 23(4):550–560, December 1997.

	Introduction
	Mathematical Foundations
	Differential Geometry
	Spatial Geometry
	Distance Geometry
	Geometric Deep Learning

	Robot Kinematics
	Robot Structure
	Forward Kinematics
	Inverse Kinematics

	Geometry-Aware Singularity Avoidance
	Motivation and Related Work
	The Manipulability Ellipsoid
	Singularities
	A Geometry-Aware Singularity Index
	Singularity Avoidance
	Experimental Results
	Summary and Conclusions

	Distance-Geometric Inverse Kinematics
	Motivation and Related Work
	Euclidean Distance Matrix Completion
	Distance-Geometric Inverse Kinematics
	Algorithm
	Experimental Results
	Summary and Conclusions

	Generative Graphical Inverse Kinematics
	Motivation and Related Work
	Distance-Geometric Graph Representation of Robots
	Learning to Generate Inverse Kinematics Solutions
	E(n) Equivariant Network Architecture
	Experimental Results
	Summary and Conclusions

	Conclusion
	Summary of Contributions
	Future Work

	Appendices
	Learning
	Unsupervised Learning
	Supervised learning
	Deep Generative Models

	Bibliography

