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Abstract 

The focus of this thesis was on exploring and developing wake-up sensor interfaces, used in 

two-stage sensor nodes for lowering power consumptions to levels allowing years of energy 

autonomy. The developed interfaces were designed to detect sporadic transient events, 

generating weak signals (around 10 mV on a passive transducer) in the lower acoustic spectrum 

(up to 2.5 kHz), lasting from around half a second up to a few seconds. The passing motor 

vehicle (speedboat) event was chosen as a representative case of this event group. 

An analysis of acoustic signal features was performed, and a set of criteria was developed 

and used to determine the feature’s applicability in low-power interfaces for passing speedboat 

detection. Based on the criteria, the spectro-temporal decomposition and level-crossing rate 

interface architectures were selected and further explored. Two prototype interfaces were 

developed and functionally tested. The results showed both architectures were applicable for 

detection of sporadic transient acoustic events, with true positive event detection rates exceeding 

90%. They also showed that the level-crossing rate architecture was functional with two times 

lower input voltages, required around 40% less area and components to implement and had over 

three times lower power consumption. This emphasized the impact of feature choice on interface 

architecture and demonstrated the potential advantages of the level-crossing rate interface. 

Further examination of the spectro-temporal decomposition architecture pointed to its 

envelope detector limiting the interface’s detection accuracy. To solve this problem, utilization 

of a switched inductor was proposed to increase the energy efficiency of conventional envelope 

detectors. Several envelope detectors were developed and tested, including one using a switched 

inductor. Following this, two feature extractors were developed, one utilizing an electrically and 

the other a mechanically switched inductor. The feature extractors utilizing the electrically and 

mechanically switched inductors achieved 43% and 72% lower power consumptions and had 

four- and two-times lower minimal input voltage, respectively, compared to the conventional 

spectro-temporal decomposition interface, demonstrating the applicability and advantages of the 

switched inductor in low-power sensor interfaces for detection of sporadic acoustic events. 

 

Keywords: always-on wake-up interfaces, interface architectures, acoustic event detection, 

acoustic signal features, switched inductor feature extractor, passive electromechanical feature 

extractor 



Prošireni sažetak 

Sve učestalija upotreba bežičnih senzorskih mreža u detekciji i praćenju pojava i događaja 

od interesa definira nove zahtjeve u dizajnu senzora. Kako bi senzorske mreže bile primjenjive u 

praksi i kako bi mogle svoju funkciju obavljati autonomno, senzori moraju biti jeftini, malih 

težina i dimenzija i imati niske potrošnje. Razine potrošnje koje bi senzorima omogućile 

energetsku autonomiju nisu ostvarive uz kontinuirani rad cijelih senzorskih čvorova. Zato se u 

današnjim senzorima koristi koncept aktivacije, u kojem je većina komponenata senzorskog 

čvora isključena ili u stanju niske potrošnje većinu vremena, a potpuno se aktivira za obavljanje 

zadataka samo u kratkim vremenskim intervalima. 

Takva aktivacija može se izvoditi sinkrono, u unaprijed određenim fiksnim vremenskim 

trenutcima. U konceptu sinkrone aktivacije pojavljuju se problemi propuštenih događaja koji se 

dogode kada je senzor po rasporedu isključen te nepotrebnih aktivacija kada nema događaja od 

interesa, koje dovode do nepotrebne potrošnje energije. Kako bi se riješilo navedene probleme 

aktivacija se može izvoditi asinkrono, kada se pojavi događaj od interesa, koristeći koncept 

“buđenja” (engl. wake-up). 

Istraživanje u sklopu ove doktorske disertacije prvenstveno je bilo usmjereno na uvijek 

uključena senzorska sučelja niske potrošnje namijenjena smanjenju potrošnje senzorskog čvora 

kroz upotrebu koncepta buđenja. U konceptu buđenja senzorski čvor sadrži senzorsko sučelje za 

buđenje, koje je uvijek aktivno, obrađuje senzorske signale, izvlači značajke iz njih i detektira 

događaje od interesa te po potrebi aktivira ostatak senzorskog čvora, koji u pravilu sadrži 

kompleksnije sklopovlje za digitalnu obradu signala i komunikaciju te provodi kompleksniju i 

detaljniju analizu događaja od interesa. Iz željene primjene senzorskih sučelja za buđenje 

proizlazi da su navedenim senzorskim sučeljima najznačajniji parametri točnost detekcije, 

jednostavnost implementacije i potrošnja energije. Točnost detekcije u kontekstu ovih sučelja 

podrazumijeva i razinu točno detektiranih događaja od interesa i razinu lažno pozitivnih 

detekcija. 

U sklopu istraživanja analizirano je stanje tehnologije senzorskih sučelja za buđenje, 

njihovih implementacija i signali koje koriste. Rezultati analize pokazali su da suvremena 

senzorska sučelja za buđenje postižu visoke razine točne detekcije događaja (oko ili preko 90%) 

te da se većina istraživanja bavila mješovitim i analognim senzorskim sučeljima za buđenje. 



Također, iz rezultata analize vidljivo je da potrošnja senzorskih sučelja za buđenje značajno 

varira (od nekoliko nanovata do nekoliko stotina mikrovata) i ovisna je o vrsti signala koje 

sučelje koristi, primjeni i implementaciji sučelja, kao i odabranoj metodi klasifikacije događaja. 

Za daljnji rad odabrana su akustička senzorska sučelja zbog bogatstva lako dobavljivim 

informacijama koje karakterizira akustičke signale, a omogućava izradu jednostavnih sučelja 

niske potrošnje i visoke točnosti detekcije. Analiza suvremenih sučelja za buđenje također je 

pokazala širok raspon primjenjivosti akustičkih sučelja, što je jasno vidljivo i iz činjenice da 

akustička sučelja predstavljaju preko 55% svih suvremenih sučelja za buđenje prikazanih u  

literaturi. 

Namjena razvijanih sučelja bila je detekcija sporadičnih prolaznih akustičkih događaja koji 

generiraju signale niskih naponskih razina (oko 10 mV na pasivnom mjernom pretvorniku) u 

donjem dijelu akustičkog spektra (do 2.5 kHz), trajanja između pola i nekoliko sekundi. Kao 

reprezentativni primjerak ove skupine događaja odabran je prolazaka motornih vozila, 

konkretnije glisera. 

Senzorska sučelja za buđenje detektiraju događaj od interesa prema značajkama 

(karakteristikama) signala koje događaji od interesa stvaraju. Zbog toga značajke signala, koje 

ovise o signalima koje stvaraju događaji od interesa, predstavljaju osnovu za detekciju događaja. 

Sukladno tome, u ovom istraživanju je provedena općenita analiza akustičkih značajki, s 

posebnim naglaskom na značajke iz vremensko-frekvencijske i vremenske skupine, koje su se 

pokazale primjenjivim u senzorskim sučeljima niske potrošnje namijenjenim detekciji 

sporadičnih prolaznih akustičkih događaja. Navedene značajke korištene su u preko 90% svih 

senzorskih sučelja niske potrošnje za detekciju akustičkih događaja. S posebnim interesom 

analiziran je utjecaj odabira značajki na arhitekture senzorskih sučelja. Provedena je i analiza 

arhitektura i njihovih implementacijskih specifičnosti s obzirom na značajke koju koriste za 

detekciju događaja. Razvijen je set kriterija namijenjen raspoznavanju značajki koje 

omogućavaju realizaciju arhitektura senzorskih sučelja za buđenje zadovoljavajućih 

funkcionalnosti i karakteristika. Upotrebom razvijenih kriterija izbor značajki je sužen na one 

koje omogućavaju implementaciju ugradbenih sučelja visokih razina točnosti detekcije, koja su u 

stanju raditi s ulaznim signalima niskih naponskih razina (oko 10 mV), a značajke ekstrahiraju i 

obrađuju u analognoj domeni, bez potrebe za kompleksnim sklopovljem za analogno-digitalnu 

pretvorbu. Primjenom navedenih kriterija izbor značajki sužen je na vremensko-frekvencijsku 



dekompoziciju (anvelopu, snagu, ili energiju signala u vremenu i frekvenciji) i stopu prolazaka 

kroz zadanu razinu (ili nulu). 

Za navedene dvije značajke razvijeni su simulacijski modeli i prototipna sučelja te su 

procijenjene njihove performanse u detekciji prolazećih glisera, s posebnim naglaskom na 

potrošnjama sučelja, kompleksnostima njihove implementacije, minimalnim potrebnim ulaznim 

naponima i radu sa signalima s visokim razinama šuma. Rezultati navedenog istraživanja 

pokazali su da su obje arhitekture upotrebljive za detekciju sporadičnih prolaznih akustičkih 

događaja (prolazaka glisera) te da obje ispravno prepoznaju događaje od interesa s preko 90% 

točnosti. Također su pokazali da arhitektura bazirana na stopi prolazaka kroz zadanu razinu može 

raditi s dvostruko nižim ulaznim naponima (10 mV od vrha do vrha u odnosu na 20 mV od vrha 

do vrha), uz preko tri puta nižu potrošnju (9.1 µW u odnosu na 34.6 µW) te da je za njenu 

implementaciju potrebna 40% manja površina i otprilike 40% manje komponenata. Arhitektura 

bazirana na vremensko-frekvencijskoj dekompoziciji pokazala se uspješnija u radu sa signalima 

s visokom razinom šuma. Ovi rezultati naglasili su prethodno slabo istražen, ali presudan utjecaj 

koji odabir značajki ima na funkcioniranje senzorskog sučelja za detekciju događaja te prikazali 

prednosti arhitekture bazirane na stopi prolaska kroz zadanu razinu. 

Detaljna analiza arhitekture bazirane na vremensko-frekvencijskoj dekompoziciji ukazala je 

na nisku energetsku efikasnost njenog ispravljača, koja ograničava osjetljivost i, posljedično, 

točnost detekcije koju sučelje može ostvariti. Nelinearna prijenosna karakteristika dioda koje se 

koriste u ispravljačima dodatno potiskuje signale niskih naponskih razina s kakvima uobičajeno 

moraju raditi ovakva senzorska sučelja. Kao rješenje navedenog problema predložena je 

upotreba ispravljača s preklapanom zavojnicom. 

Razvijeno je nekoliko aktivnih i pasivnih ispravljača, uključujući i ispravljač s preklapanom 

zavojnicom te su njihove karakteristike uspoređene u detekciji sintetičkih signala u donjem 

akustičkom spektru. Ispravljač s preklapanom zavojnicom pokazao se upotrebljivim u detekciji 

akustičkih signala u donjem dijelu spektra, što je usmjerilo daljnje istraživanje u smjeru 

implementacije i karakterizacije ekstraktora značajki s preklapanom zavojnicom. 

Osmišljen je sklop za ekstrakciju značajki koji upotrebljava preklapanu zavojnicu, a sastoji 

se od sklopke koja zatvara i otvara put struje između zavojnice i izvora, čime se prekida struja 

kroz zavojnicu zbog čega se na zavojnici inducira napon viših razina od ulaznog napona (postiže 

se efekt podizanja ulaznog napona). Osim što podiže napon, sklop s preklapanom zavojnicom se 



također pokazao frekvencijski selektivan. Zbog navedenih svojstava, sklop s preklapanom 

zavojnicom u konvencionalnoj arhitekturi sučelja baziranog na vremensko-frekvencijskoj 

dekompoziciji može zamijeniti ne samo ispravljač, već i filtar. 

Razvijeni su simulacijski modeli i prototipi dva takva sklopa, od kojih je jedan koristio 

električki, a drugi mehanički preklapanu zavojnicu. Koristeći razvijene modele i prototipe 

provedeno je niz simulacija i eksperimenata sa sintetičkim i snimljenim akustičkim signalima u 

donjem dijelu akustičkog spektra (do 2.5 kHz). Rezultati rada dva ekstraktora značajki 

uspoređeni su međusobno, a arhitekture sučelja koje ih koriste uspoređene su s ranije razvijenom 

konvencionalnom arhitekturom baziranom na vremensko-frekvencijskoj dekompoziciji. 

Rezultati međusobne usporedbe rada ekstraktora pokazali su da ekstraktor s mehanički 

preklapanom zavojnicom ima prednosti niže potrošnje (pasivan je), inherentne pojasnopropusne 

frekvencijske karakteristike i elektronički jednostavnije implementacije, dok je preciznija 

kontrola postupka preklapanja i više raspoloživih parametara dizajna omogućilo ekstraktoru s 

električki preklapanom zavojnicom ostvarivanje veće maksimalne osjetljivosti. 

Rezultati usporedbe arhitektura s novim ekstraktorima značajki s našom ranije razvijenom 

konvencionalnom arhitekturom baziranom na vremensko-frekvencijskoj dekompoziciji pokazali 

su da upotreba ekstraktora značajki baziranog na električki, odnosno mehanički preklapanoj 

zavojnici omogućava smanjenje potrošnje od 43%, odnosno 72% i rad s četverostruko, odnosno 

dvostruko nižim minimalnim ulaznim naponom. Time je ne samo demonstrirana primjenjivost 

preklapanih zavojnica u senzorskim sučeljima niske potrošnje za detekciju sporadičnih događaja, 

nego i značajna unaprjeđenja funkcionalnosti koja njena primjena donosi u odnosu na 

konvencionalna vremensko-frekvencijska senzorska sučelja. 

U konačnici, upotrebom pasivnog ekstraktora značajki s mehanički preklapanom 

zavojnicom predloženog u sklopu ove disertacije učinjen je prvi korak prema implementaciji 

potpuno pasivnih senzorskih sučelja za buđenje baziranih na mikroelektromehaničkim 

komponentama, koji predstavljaju budućnost senzorskih sučelja za detekciju događaja od 

interesa. 

Ovaj rad sastoji se od osam radova koji su diseminirani u uglednim međunarodnim 

znanstvenim časopisima i konferencijama. Opisima i rezultatima eksperimenata prikazanih u 

radovima prethodi predstavljanje motivacije i teorijske pozadine istraživanja, bazirano na 

postojećoj literaturi relevantnoj za područje rada. Objedinjeni radovi predstavljaju izvorni 



znanstveni doprinos ove doktorske disertacije koji se sastoji od detaljne analize značajki 

akustičkih signala i njihovog utjecaja na arhitekture sučelja za buđenje, dizajna dviju novih 

arhitektura za detekciju sporadičnih prolaznih akustičkih događaja te novom rješenju za problem 

ograničene funkcionalnosti ispravljača u konvencionalnoj arhitekturi sučelja za buđenje 

baziranoj na vremensko-frekvencijskoj dekompoziciji upotrebom preklapane zavojnice. 

 

Ključne riječi: uvijek aktivna senzorska sučelja za buđenje, arhitekture sučelja, detekcija 

akustičkih događaja, značajke akustičkog signala, ekstraktor značajki s preklapanom zavojnicom, 

pasivni elektromehanički ekstraktor značajki 
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Chapter 1 

Introduction 

1.1 Overview 

The ever-growing desire to understand, evaluate and manage our surroundings leads to an 

increased interest in continuous monitoring of events and processes, utilizing sensor networks 

that consist of large numbers of sensor nodes [1]–[4]. To meet the demands of these applications 

the sensor nodes must be disposable, small and light-weight and the networks they form must be 

operational for long periods of time (on the order of decades) with minimal or ideally no 

maintenance and interventions. The final goal is a wireless sensor network of fully autonomous 

sensor nodes, in terms of their functionality, energy and ways they interact with the world around 

them [2]. 

However, monitoring and detecting events by continuous operation of complex 

power-hungry systems leads to a sensor nodes with high power consumption and short lifetime 

(on the order of days or weeks) that requires frequent interventions [5], [6]. Reducing a sensor 

node’s power consumption to levels that allow sensor node energy autonomy can only be 

achieved if the sensor node (or most of its components) are kept in a low-power (“sleep”) mode 

for most of the time and only fully activate to perform their tasks during limited time windows 

[2], [5], [6]. 

This activation can be done synchronously, at predefined time intervals (duty cycling). 

Alternatively, in detection of sporadic events, a better solution is to utilize the wake-up concept, 

that implies asynchronous event-driven activation [3], [7]. In this concept the sensor node 

consists of an always-on wake-up sensor interface which is used to wake up the main subsystem 

only when an event of interest is detected. These wake-up interfaces determine the presence of 

potential events of interest by performing low-power extraction and analysis of the sensor 

signal’s features [8]–[11]. Therefore, the key emphasis in their design is on low power 

consumption, cheap and simple design, and accurate detection [7], [11]–[14] to ensure low false 



Introduction 

2 
 

detection rates even in the most adverse conditions, as false event detections increase the overall 

system’s power consumption by causing unnecessary activations of the main stage. 

An especially interesting application for such sensor interfaces is power-constrained 

acoustic-based event detection because acoustic signals contain a lot of easily extracted 

information [15]–[17], enabling design of simple and reliable detectors. 

1.2 Thesis scope and scientific contributions 

This thesis was focused on exploration of low-power sensor interfaces applied in acoustic 

wake-up event detectors. The first step was to analyze the literature on wake-up systems in 

general (Pub2), followed by research specifically focused on acoustic wake-up sensor interfaces 

(Pub1) to obtain insight on the wake-up sensor interface state-of-the-art. 

Next it was important to define the events of interest. The primary research interest was 

developing interfaces for detecting sporadic transient events in the lower acoustic range (up to 

2.5 kHz), lasting from around half a second up to a few seconds and generating weak signals 

(around 10 mV) on a passive acoustic transducer. The passing motor vehicle was chosen as a 

representative of this group of events and multiple simulation and experimental studies were 

performed, with synthetic signals modeled after those generated by these events, and with 

real-world prerecorded signals of passing speedboats. The simulation studies were performed 

utilizing Texas Instruments’ simulation programs TINA TI and PSPICE for TI. For all the input 

signal synthesis and both input and output signal preprocessing and conditioning, as well as 

signal acquisition control and result representation the program MATLAB was used. 

After defining the event of interest and its signals, an analysis of the features that could be 

used in detection of the chosen event was performed. The acoustic signal features used in event 

detection were explored and, through literature analysis, the selection of features was narrowed 

down to only those utilized in low-power wake-up event detectors. 

Then the interface architectures stemming from the chosen detection schemes and features 

were analyzed. A set of criteria was defined to further narrow down the list of considered 

features to only those that could be utilized to design architectures appropriate for detection of 

passing motor vehicles. These criteria defined the goal of developing architectures which could 

be designed in embedded implementation, were reliably operational with weak input signals (on 

the order of 10 mV), and extracted and processed features in the analog domain. 
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This led to further analysis of two wake-up interface architectures, the level-crossing rate 

and the spectro-temporal decomposition architecture. Prototypes architectures were developed 

and their applicability in detection of passing motor vehicles was researched by analyzing their 

performances in terms of power consumptions, implementation complexities, input operational 

voltages and signal-to-noise ratios (SNRs). 

Finally, an in-depth analysis of the spectro-temporal decomposition wake-up sensor 

interface was made which pinpointed to its envelope detector as a chokepoint. Inspired by an 

approach utilized in weak vibration energy harvesting, the switched inductor was explored as a 

potential solution for this design chokepoint. Synthetic signals were first utilized to characterize 

and compare the performances of several envelope detectors, including the switched inductor 

envelope detector. This led to developing a switched inductor element which could be used as 

both a filter and an envelope detector, therefore replacing the interface’s entire feature extractor. 

Two feature extractors were developed, one utilizing an electrically and the other a mechanically 

switched inductor and their performances compared to those of the feature extractor of our 

previously developed spectro-temporal decomposition interface, in terms of their measurement 

resolutions, sensitivities, detection accuracies and power consumptions. In these experiments 

both synthetic and prerecorded speedboat passing signals were employed with varied amplitudes 

and SNRs. 

Within this scope two major contributions are presented. First, an analysis of the 

architectures for selected applicable features in sporadic acoustic event detection is performed, 

two embedded prototypes are developed, their functionalities tested, and the importance of 

feature and architecture choice in design and performance of low-power sensor interfaces is 

emphasized. Second, a design problem in the spectro-temporal sensor interface architecture is 

identified, and the switched inductor is presented as an element to improve the envelope 

detector’s efficiency. 

1.3 Thesis organization 

This thesis is a compilation of eight publications addressing the research objectives. Chapter 

2 shows the motivation for low-power acoustic sensor interface research, presents the theoretical 

background and advantages of utilizing wake-up interfaces, emphasizes the importance of signal 

feature choice and subsequentially the interface’s architectures in its performance and presents 
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generalized considerations on two researched low-power wake-up sensor interface architectures. 

Chapter 3 presents an in-depth analysis of the spectro-temporal decomposition-based low-power 

wake-up sensor interface architecture, with emphasis on a novel solution for the architecture’s 

chokepoint, the envelope detectors, which proposes to increase their efficiency through 

utilization of switched inductors. Chapter 4 presents the scientific contributions of the doctoral 

thesis, validated and evaluated through the results of the included publications. In Chapter 5 a list 

of included publications is given and in Chapter 6 the authors contribution to each publication is 

discussed. Finally, the thesis conclusion is presented in Chapter 7. 
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Chapter 2 

Acoustic low-power sensor interfaces 

2.1 Sensor nodes and networks 

Sensors are defined as devices that react to physical stimuli by generating electric signals, 

forming the point of interaction between the real, physical world and electronic systems. They 

are an essential part of an electronic system, enabling it to perceive its surroundings. Therefore, 

sensors represent the basic element and the foundation of event detection, and to a great extent, 

define key event detection parameters, such as accuracy and efficiency. 

Sensors are deployed into the environment in the form of sensor nodes which typically 

consist of a transducer to convert the physical value into an electric signal, a sensor interface to 

condition the raw sensor signal and partially transform it into data usable by the following stages, 

an A/D converter, a digital processing and control unit and communication hardware (Fig. 2.1). 

 

Figure 2.1: A block schematic of a typical sensor node. 

Events of interest can be detected utilizing different sensor modalities, meaning that a sensor 

node can have different transducers, from acoustic, to temperature, pressure, humidity, light, 

vibration and many more. The choice of the transducer can greatly impact the utilized event 

detection scheme and therefore the required signal processing and the sensor interface’s 

architecture. In our research acoustic sensors were chosen because acoustic signals contain a lot 

of easily extracted information [15]–[17]. 
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In most event detection schemes multiple sensor nodes operate together, joined into a 

wireless sensor network, to allow for a more practical implementation and deployment. This 

leads to an ever-increasing need for wireless intelligent low-power sensor nodes and networks 

[2], [3] spanning multiple applications from surveillance and security [5], [18]–[25], speech and 

voice detection [26]–[32], environment [12], [33], biomedical [31], [34]–[40] and structural 

health monitoring, non-destructive testing and machinery diagnosis [31], [41], communication 

channel monitoring [42]–[46] and many others [8], [13], [17], [47]–[52]. 

These applications require inexpensive, easily deployable sensor nodes and networks 

functional for long periods of time with minimal maintenance and intervention, with the final 

goal of developing a wireless sensor network of completely autonomous sensor nodes, in terms 

of their functionality, energy and ways they interact with their environment [2]. 

A necessary prerequisite to achieve this is energy autonomy [53], also called energy autarky 

[22], [54], or neutrality by some authors [12]. This concept proposes a sensor that can stay active 

forever without the need for intervention, from the energy point of view. 

Working towards sensor node energy autonomy, there have been several research fields 

established, focused on improving sensor node power sources, lowering sensor node power 

consumptions and increasing their energy efficiency. 

In terms of sensor node power sources, there is a lot of research focused on improving 

batteries [1], [55], reducing their size, increasing capacity, reducing self-discharge and other 

unwanted effects. Another prominent concept for powering sensor nodes, that could potentially 

replace battery-powered systems altogether [1], is energy harvesting, which entails generating 

electrical energy on the sensor node using the energy of the phenomena in its surroundings, such 

as ambient vibration [41], [56], light [41], [57] and thermal gradients [41], or even microbes 

[58]. 

To reduce a sensor node’s power consumption and increase its energy efficiency to levels 

that allow sensor node energy autonomy, the sensor node (or most of its components) must be 

kept in a low-power (“sleep”) mode for most of the time and only fully activate to perform their 

tasks during limited time windows [2], [5], [6]. 

To achieve sensor node energy autonomy, sufficient lowering of the sensor node’s power 

consumption and increasing of its energy efficiency can only be achieved if the sensor node (or 
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most of its components) are kept in a low-power (“sleep”) mode for most of the time and only 

fully activate to perform their tasks during limited time windows [2], [5], [6]. 

This activation can be done synchronously, at predefined time intervals, utilizing a concept 

called duty cycling. However, considering the sporadic nature of most events, which entails them 

appearing rarely and with no predefined schedule, utilizing duty cycling will sometimes lead to 

wasting energy for unnecessary activations when no event of interest is present and occasionally 

cause the sensor node to miss events, if they occur during a period in which the system is 

scheduled to be in stand-by mode [17]. 

A better solution for this activation, especially when the events of interest are sporadic, is to 

utilize asynchronous event-driven activation [3], [7] and the wake-up concept, in which the 

sensor node consists of an always-on wake-up sensor interface which is used to wake up the 

main subsystem only when an event of interest is detected. These interfaces determine the 

presence of potential events of interest by performing low-power extraction and analysis of the 

sensor signal’s features [8]–[11]. 

This motivates further research of low-power acoustic wake-up sensor interfaces used as 

basis of sporadic event detection, with a focus on their architectures and the signal features they 

use. 

2.2 Wake-up sensor interfaces 

2.2.1 Principle of operation 

As explained previously, sensor nodes are used to detect events, which for many 

applications occur rarely and with no predefined schedule. The event activity, EA, is defined as 

the percentage of time during which events of interest are present. While the whole sensor node 

is in active mode it has a mean power consumption of Pm, that can be reduced by powering down 

most parts of the sensor node and only activating them when necessary. 

This activation can be done synchronously, with a fixed schedule, utilizing duty cycling, 

with a duty cycle of D, which is set to an appropriate value depending on the approximate 

expected event activity. The duty cycled sensor node’s power consumption can be expressed as: 

𝑃𝐷 = 𝐷 ∙ 𝑃𝑚 (1) 



Acoustic low-power sensor interfaces 

 

8 
 

However, due to the contrast between the scheduled (fixed) activation of a duty cycled 

sensor node and the sporadic nature of the events of interest, there will be instances when the 

sensor node activates only to conclude there is no need for activation (no event of interest) and 

then goes back to stand-by mode, only wasting energy for activation. Additionally, such a sensor 

node can miss all events of interest that occur during a period in which the sensor node is 

scheduled to be in stand-by mode [17]. 

To mitigate these problems, a more energy-efficient solution is to asynchronously power-up 

the sensor node utilizing the wake-up concept [3], [7], that proposes a two-stage sensor node 

consisting of two subsystems (Fig. 2.2 a)). 

 

 

a) b) 

Figure 2.2: a) A block schematic of a two-stage sensor node utilizing the wake-up concept. b) Power 

consumption reduction principle of the wake-up concept. 

The first subsystem, called the wake-up sensor interface, or the wake-up detector, is always 

on, has low power consumption of Pw << Pm, acquires the signals, conditions them, extracts 

features from them, and detects feature patterns. Then, if the wake-up interface determines that 

an event of interest occurred, it sends an activation (wake-up) signal to activate the second 

subsystem (or the rest of the sensor node) with a higher power consumption (Pm) that performs a 

more detailed analysis of the event. While the function of the wake-up sensor interface finishes 

with accurate detection and discrimination of events of interest, the detailed analysis performed 

by the second stage is usually the main function of the entire sensor node. This functionality 

provides more data on the event of interest, by utilizing more resources and more complex 

processing techniques or even a different transducer modality, leading to this stage often being 

referred to as the main stage. As an example, a sensor node operating as a vehicle detector can 

utilize an acoustic wake-up sensor interface, which, upon detection of a passing vehicle, powers 
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up a more complex main stage that allows for a higher quality acoustic analysis, or even 

activation of magnetic or seismic sensors to provide a more detailed characterization of the 

detected vehicle (vehicle type, propulsion type, size and so on). 

The wake-up sensor interface correctly recognizes events of interest with a true positive rate 

of TP ([59]) and mistakes other signals for events of interest with a false positive rate of FP [59]. 

The power consumption of a two-stage sensor node with a wake-up sensor interface can be 

expressed as: 

𝑃2𝑆 = 𝑃𝑤 + 𝐸𝐴 ∙ 𝑇𝑃 ∙ 𝑃𝑚 + (1 − 𝐸𝐴) ∙ 𝐹𝑃 ∙ 𝑃𝑚 (2) 

The overall power consumption of a two-stage sensor node with a wake-up sensor interface 

is primarily defined by the wake-up interface’s power consumption, its true and false positive 

rates and the event activity and it should be considerably lower than that of the sensor node’s 

main stage (P2S << Pm). 

A graphical representation of the wake-up concept’s principle of lowering a sensor node’s 

power consumption is shown in Fig 2.2 b). 

2.2.2 Prolonging the sensor node’s lifetime 

After explaining the wake-up concept’s principle of operation, the sensor node lifetime 

extension that utilizing wake-up sensor interfaces can provide is further analyed, by calculations, 

as well as real-world examples. 

A battery-powered sensor node’s lifetime, T, depends on the energy stored within its battery, 

E, and the sensor node’s power consumption, P, and can be approximated as: 

𝑇 =
𝐸

𝑃
∙ 0.7 (3) 

The 0.7 multiplication factor accounts for external factors affecting the battery lifetime 

estimation [60]. 
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2.2.2.1 Example 1 

A sensor node’s lifetime analysis was illustrated through an example battery-powered sensor 

node with a battery energy of E = 100 mWh, the mean power consumption of the sensor node’s 

main stage of Pm = 1 mW. The sensor node can be synchronously activated with a duty cycle of 

D = 5%, or asynchronously activated by a wake-up interface with power consumption ranging 

from Pw = 0.001∙Pm = 1 µW to Pw = 0.1∙Pm = 100 µW. The wake-up interface detects all event of 

interest (TP = 100%) and has false positive detection rates of FP = 0% or FP = 5 %. 

Figure 2.3 illustrates the lifetimes of a battery-powered sensor node without wake-up (sensor 

node’s main stage always active), with synchronous duty cycle activation and with asynchronous 

wake-up sensor interface activation. In these calculations the impact of the power consumption 

caused by the switching action of the main stage is disregarded, as it should be negligible 

compared to other consumptions if the activation system is designed correctly. 

 

Figure 2.3: Lifetimes of a sensor node utilizing duty cycling or a wake-up detector. The red line 

represents the sensor node’s lifetime if its main stage is always active (no wake-up) and the black line 

represents the sensor node’s lifetime utilizing duty cycling with a duty cycle D = 5%. The other lines 

represent the sensor node’s lifetime utilizing a wake-up interface with no missed events (TP = 100%), a 

power consumption and false positive rate of: Pw = 0.001∙Pm and FP = 0% (green), Pw = 0.01∙Pm and 

FP = 0% (purple), Pw = 0.1∙Pm and FP = 0% (blue), Pw = 0.001∙Pm and FP = 5% (orange). 
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From Fig. 2.3 it can be seen that the sensor node utilizing a wake-up sensor interface 

achieves a longer lifetime compared to the duty cycled one if event activity drops below the duty 

cycle (around 1% under the set duty cycle) and the wake-up interface has a low power 

consumption (100 or more times lower than the main stage power consumption, Pw ≤ 0.01 ∙ Pm). 

Additionally, it can be observed that a higher false positive rate (FP = 5%) can significantly 

degrade a wake-up interface’s functionality, drastically reducing or even completely annulling 

the lifetime extension, due to unnecessary activations of the whole sensor node. 

Clearly, decreasing the wake-up interface’s true positive rate increases the sensor node’s 

lifetime, but also leads to a less functional event detector, less able to detect events of interest, so 

in most application scenarios this is not a valid method for extending a sensor node’s lifetime. 

2.2.2.2 Example 2 

The sensor node’s lifetime extension provided by a wake-up interface was also illustrated 

through an example in which the low-power always-on wake-up sensor interfaces presented in 

[12] and [15] are used to wake up an FPGA sound classifier used for acoustic surveillance [19], 

as shown in Fig. 2.2 a) (the interfaces from [12] and [15] function as the wake-up stage and the 

sound classifier from [19] represents the main stage). 

The energy of the sensor node’s battery was set to Eps = 10000 mWh. The sound classifier 

from [19] has a power consumption of Pm = 47 mW. The wake-up sensor interface from [12] has 

a power consumption of Pw = 26.89 µW, a true positive rate of TP = 98.67% and a false positive 

rate of FP = 10% and the wake-up sensor interface from [15] has a power consumption of 

Pw = 26.89 µW, a true positive rate of TP = 100% and a false positive rate of FP = 0%. Event 

activities, EA, considered are 1%, 3% and 5%. The lifetime comparison results are presented in 

Table I. 
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TABLE I – Sensor node lifetime extension by utilizing a wake-up detector 

Event activity [%] 

Sensor node lifetime [days] 

Only [19] [19] using [12] [19] using [15] 

Extension [times] 

by [12] by [15] 

1 8.87 81.00 838.55 9.13 94.54 

3 8.87 69.71 289.98 7.86 32.69 

5 8.87 61.17 175.3 6.90 19.76 

With the results of this example, the sensor node lifetime extension that utilizing a wake-up 

sensor interface can provide was demonstrated, and the importance of wake-up interface design 

was emphasized, as it is clear that parameters like false positive rate can drastically impact the 

wake-up interface efficiency. 

The main topic of this thesis is the design of these low-power wake-up sensor interfaces for 

sporadic event detection. Our first step in this extensive research was performing a detailed 

state-of-the-art (SOTA) wake-up sensor interface analysis, whose results can be seen in [Pub1], 

followed by focused research of acoustic low-power wake-up sensor interfaces, with special 

emphasis on the features they utilize and the consequential architectures they employ. 

2.3 Features 

As our research is focused on the acoustic low-power wake-up sensor interfaces, the first 

step is to examine the acoustic signal features utilized in acoustic event detection. Following an 

analysis of literature on acoustic signal features [61]–[63], an acoustic signal feature 

categorization was devised, grouping features into five major groups, as shown in Table II. 
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Table II Acoustic signal feature categorization 

Temporal Spectral Spectro-temporal Cepstral Other 

Level-crossing 

rate-based 

Spectral 

shape-based 

Spectro-temporal 

decomposition-based 

Mel-frequency 

cepstral 

coefficient-based 

Eigenspace-

based 

Temporal 

amplitude-based 
Brightness-based Hurst parameter-based 

Other cepstral 

coefficient-based 

Acoustic 

environment-

based 

Temporal power-

based 
Tonality-based 

MP-based Gabor 

features 
  

Rhythm-based Chroma-based 
Sparse coding 

tensor-based 
  

Correlation-

based 
    

Next, the features’ applicability in power-constrained acoustic event detection was 

examined. To this end, an analysis of SOTA acoustic wake-up sensor interfaces was perform, 

exploring their implementations, feature extraction domains (analog, digital, or mixed), power 

consumptions and detection accuracies (true and false positive rates). The detector 

implementation is divided into embedded made with commercial-off-the-shelf (COTS) 

components and custom-made integrated, both further divided into analog, digital and 

mixed-signal. 

Table III shows the results of the SOTA acoustic wake-up detector analysis. 
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Table III Acoustic wake-up sensor interfaces 

Feature 

group 

Feature 

subgroup 
Feature Ref. 

Interface 

implementation 

Feature 

extraction 

domain 

Power 

(µW) 

Detection accuracy 

TP (%) FP (%) 

Spectro-

temporal 

Spectro-

temporal 

decomposition 

Spectro- 

temporal 

envelope 

[24, 

64] 
Embedded mixed Analog 

7.33; 

34.92 
90.91 Not stated 

[8, 

15] 
Embedded mixed Analog 26.89 

98.67; 

100 

14; 

0 

[16] Integrated mixed Analog 43 100 0 

Spectro- 

temporal energy 

[65] Integrated mixed Analog 1.01 Not stated Not stated 

[30] Integrated digital Digital ~ 100 96.63 2.33 

Spectro- 

temporal power 
[66] Integrated mixed Mixed 0.142 90 – 91.5 Not stated 

Spectro- 

temporal RMS 
[67] Integrated mixed Analog 6 89 Not stated 

Spectro- 

temporal 

(absolute) 

voltage 

[17] Integrated mixed Digital 0.012 96 – 98 0 

[28] Integrated analog Analog 2.5 Not stated Not stated 

[26], 

[68] 
Integrated mixed Analog 

1; 

27.77 

~ 85; 

~ 80 

Not stated; 

0 

Spectro-temporal 

instant rate of 

change 

[52] Integrated digital Digital 0.148 85 – 99 1 – 18 

Temporal 

Level crossing 

rate 

Zero crossing 

rate 

[13] Embedded analog Analog 34 Not stated Not stated 

[8] Embedded digital Digital ~ 600 Not stated Not stated 

Zero-crossing 

rate with peak 

amplitude 

(ZCPA) 

[69] Integrated digital Digital 
Not 

stated 
98 Not stated 

Zero crossing 

with Short-Time 

Magnitude 

Difference 

[34] Embedded digital Digital 30.71 91 Not stated 

Correlation 

Autocorrelation [29] Integrated digital Digital 24.4 55 – 95 5 – 20 

[70] Integrated mixed Digital 0.835 97 0 

Crosscorrelation [71] Integrated mixed Mixed 1.5 92 7 

Short time 

energy 

Short time 

energy difference 
[29] Integrated digital Digital 8.5 55 – 95 5 – 20 

Multiple 
Rise time, 

min/max, energy 
[72] Embedded mixed Digital 8.7 100 Not stated 

Spectral Spectral shape 
Power spectrum 

density 
[73] Integrated mixed Digital 4.7 Not stated Not stated 

Cepstral 
Cepstral 

coefficients 

Mel-frequency 

CC 

[32], 

[74] 

Integrated digital; 

Integrated mixed 

Digital; 

Mixed 

0.51; 

28.8 

97.3; 

98.2 

2 – 2.3; 

Not stated 
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From Table III we see that most acoustic wake-up sensor interfaces utilize spectro-temporal 

(54% of analyzed interfaces) or temporal features (35% of all interfaces). Within those feature 

groups, interfaces mostly utilize spectro-temporal decomposition (61%), level-crossing rate 

(17%) and correlation (13%). 

With this insight into feature utilization in low-power wake-up sensor interfaces the next 

step is the analysis of their architectures. 

More details regarding feature and architecture utilization in power-constrained event 

detection can be seen in the results of [Pub1] and [Pub2]. 

2.4 Architectures 

As stated previously, the feature an interface uses for event detection defines the interface’s 

architecture details. The SOTA analysis showed several prominent feature subgroups, which 

were further analyzed to determine how they were extracted, processed, and utilized in event 

detection by the interfaces employing them and how the feature choice impacted the interface 

architecture and implementation options. 

The spectro-temporal decomposition interface architectures (Fig. 2.4) filter the input signal 

into sub-bands and continuously extract each sub-band’s feature of interest, be it the envelope, 

energy, power, or root mean square (RMS). After extraction they quantify the feature and 

convert it into a binarized spectro-temporal sequence. A classifier determines this sequence’s 

resemblance to a preset template, defined by the event of interest. These interfaces are usually 

implemented as mixed-signal, extracting and processing the features in the analog domain and 

performing classification in the digital domain. 

 

Figure 2.4: Spectro-temporal decomposition wake-up sensor interface generalized architecture. 
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The level-crossing rate interface architectures (Fig 2.5) convert the input signal’s crossings 

of a preset level into pulses of fixed length and amplitude, counting those pulses in a defined 

time interval, quantifying the pulse and therefore the level-crossing rate and determining whether 

it is within the bounds of level-crossing rates specific for the events of interest. These interfaces 

are usually implemented as fully digital, but they can also be implemented completely in the 

analog domain. 

 

Figure 2.5: Level-crossing rate wake-up sensor interface generalized architecture. 

The correlation-based interface architectures (Fig. 2.6) compare the input signal to a delayed 

version of itself (autocorrelation) or a preset template representing the event of interest 

(crosscorrelation). Autocorrelation interfaces can estimate the input signal’s spectral content by 

detecting the local maxima of the autocorrelation function, which appear with delay times equal 

to periods of the input signal’s dominant spectral components. While the crosscorrelation 

architecture requires only a single channel compared to the autocorrelation architecture’s 

multiple, the requirement of synchronization significantly complicates its design. These 

interfaces are usually implemented as digital because it is impractical to implement some 

required elements, such as delay lines or memories for storing templates, in the analog domain. 

 

 

a) b) 

Figure 2.6: a) Autocorrelation and b) crosscorrelation wake-up sensor interface generalized architecture 

block schematic. 
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Interface architectures utilizing short-time energy measure the input signal’s energy in short 

time windows and compare it to a preset template. While the SOTA interface utilizing this 

feature subgroup [29] is implemented as digital, a mixed-signal implementation similar to the 

architecture utilizing the spectro-temporal decomposition could also be considered (Fig. 2.7). 

However, it is also clear that this feature provides only a portion of the information compared to, 

for instance, spectro-temporal energy. 

 

Figure 2.7: Short-time energy wake-up sensor interface generalized architecture block schematic. 

Interface architectures using spectral shape (Fig. 2.8) extract the input signal’s spectrum and 

then examine and quantify certain parameters of its shape. These interfaces are implemented as 

digital in order to get a detailed enough spectrum representation required for its shape analysis. 

 

Figure 2.8: Spectral shape-based wake-up sensor interface generalized architecture block schematic. 

Interface architectures utilizing cepstral coefficients entail estimating the signal’s spectrum, 

dividing it into sub-bands, calculating the logarithm of the sub-band amplitudes or powers, and 

then performing discrete cosine transformation on them, generating a cepstrum. The amplitudes 

of the cepstrum peaks represent cepstral coefficients. While interfaces utilizing these features are 

most often implemented as fully digital, mixed-signal implementations are also possible, 

employing analog domain filtering and squaring followed by analog-to-digital (AD) conversion 

and digital domain logarithm calculation and discrete cosine transformation (Fig. 2.9). 
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Figure 2.9: Cepstral coefficient-based mixed-signal wake-up sensor interface generalized architecture 

block schematic. 

Looking further at the results of the SOTA analysis (Table III) it can be seen that acoustic 

wake-up sensor interfaces generally have high detection accuracies (over 90% true positives and 

under 15% false positive, where stated) regardless of their architecture. However, their power 

consumptions vary significantly, from around 10 nW to around 600 µW, greatly depending on 

the interface implementation and the utilized feature, with integrated mixed-signal and digital 

spectro-temporal decomposition interfaces reaching sub-µW power consumptions, contrasted by 

embedded level-crossing rate interfaces reaching tens or even hundreds of µW. 

It is also clear that integrated custom implementations dominate the wake-up sensor 

interface design, accounting for 69% of all analyzed acoustic wake-up sensor interfaces, while 

embedded implementations utilizing COTS components constitute around 31%. 

The number of architectures that extract the features in purely analog or digital domain is 

approximately the same, with only a few detectors extracting features in both domains 

simultaneously (around 10%). 

2.4.1 Architecture selection 

A set of criteria is developed to further narrow down the list of features utilized in acoustic 

wake-up interfaces to just those applicable for the passing motor vehicle detection use-case, with 

the aim of developing a wake-up sensor interface for detection of sporadic, transient acoustic 

events, lasting for several seconds, with the bandwidths spanning up to 2.5 kHz. 

The desired wake-up interface architectures should allow for embedded implementation, 

utilize COTS components, extract and process features in the analog domain, thus avoiding 

power-hungry analog-to-digital (AD) conversion [16]. These interfaces should be directly 
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connected to acoustic sensors, preferably with no need for amplification, and should therefore 

reliably operate with weak electric input signals (on the order of 10 mV). 

Finally, a wake-up sensor interface must have high detection accuracy, which entails both 

high true positive rates, as a detector should not miss events of interest, and low false positive 

rates, because false detections lead to wasting power through unnecessary activations of the 

power-hungry main stage of the sensor node. 

The visual representation of these criteria and the interface selection based on is presented in 

Table IV. 

Table IV Sensor interface selection 

Interfaces 

utilizing 

Criteria 

Applicable for 

signals of interest 

Embedded 

implementation 

No AD 

conversion 

Detection 

accuracy 

Correlation ✓ ✗ ✗ ✓ 

Level-crossing 

rate 
✓ ✓ ✓ ✓ 

Spectro-temporal 

decomposition 
✓ ✓ ✓ ✓ 

Other features ✓ ✗ ✗ ✓ 

As can be seen from Table IV, wake-up sensor interfaces utilizing level-crossing rate and 

spectro-temporal decomposition met all our selection criteria and therefore became the focus 

point of our further research. 

2.5 Spectro-temporal decomposition and level-crossing rate 

wake-up sensor interfaces 

Seeing how the level-crossing rate and spectro-temporal decomposition interfaces met our 

criteria, an embedded implementation of each was developed, utilizing COTS components, and 
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tested their functionality in detecting passing speedboats. The goal of this study was to determine 

and evaluate the importance of the sparsely explored impact of feature choice on the interface’s 

architecture and its functionality, by determining the interface’s power consumption, 

implementation complexity, minimal input voltages and operation with signals of varying SNR. 

2.5.1 Spectro-temporal decomposition detector implementation 

An embedded spectro-temporal decomposition wake-up interface using spectro-temporal 

envelope was developed and characterized in [Pub5] (schematic and photograph shown in 

Fig. 2.10). 

 

 

a) b) 

Figure 2.10: An embedded spectro-temporal decomposition wake-up sensor interface implemented using 

COTS components: a) schematic and b) photograph. 

The developed sensor interface consists of three channels, that decompose the input signal 

into frequency bands using a digitally programmable active bandpass filter in the general 

impedance converter (GIC) topology, implemented with two MCP6142 operational amplifiers. 

The first channel covers the frequency band from 200 Hz to 500 Hz, the second spans the 
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frequency band from 500 Hz to 1 kHz and the third covers the band from 1 kHz to 2.5 kHz. Both 

the central frequency and the pass band width of each filter are digitally programmable (within 

each channel’s limits) in 256 steps using AD5144 digital potentiometers. 

After filtering, an active voltage doubler, consisting of a MCP6141 operational amplifier 

and two diodes, is used to extract the envelope, which is then quantified by a TLV3701 

comparator, with a digitally adjustable threshold, adjusted by an AD5144 potentiometer. 

Quantified envelopes form spectro-temporal binary sequences which are sent to a 3-channel 

digital binary template-matching state-machine classifier implemented on an MSP430F2013 

low-power microcontroller, which also stores a preprogrammed template representing the signal 

of interest. If the spectro-temporal sequences generated by the quantified envelopes match the 

preprogrammed template, a wake-up signal is generated to trigger a more power-hungry digital 

audio signal processing stage. The state-machine compares the comparator outputs in each state 

S0, …, Sk, to the prestored 3-channel template. A more detailed explanation on the basics of the 

state-machine implementation can be found in [9]. 

2.5.2 Level-crossing rate detector implementation 

As part of [Pub2] a novel embedded level-crossing rate detector is developed and presented, 

as an improved adaptation of a detector presented in [13] (schematic and photograph shown in 

Fig. 2.11). 

The level-crossing wake-up sensor interface consists of three main parts. In the first part, 

each time the input signal crosses a preset level, a TLV3701 comparator with an adjustable 

threshold changes its output. Every comparator output change to high state triggers a monostable 

(consisting of two SN74AUP1G02 NOR gates) to generate a pulse of fixed duration and 

amplitude. These pulses are then summed up by a passive RC-circuit, whose output is therefore a 

representation of the number of times the input signal crossed the preset level. 

The second part is a timer consisting of a capacitor connected to a TLV3701 comparator 

with an adjustable threshold. The capacitor is charged by a fixed voltage source over a trimmer 

resistor and its charge time is determined by the trimmer resistor value and comparator threshold. 

Once the capacitor voltage reaches the comparator threshold, the comparator output changes, 

which closes the S1 switch (TMUX1101) propagating the RC-circuit voltage to the quantifier as 

the final interface part. Following this, after an interval determined by the delay line parameters, 
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the reset switches S2 and S3 (TMUX1101) connected to the RC-circuit and timer close, 

connecting their capacitors to the ground and allowing them to fully discharge. During this reset 

the S1 switch opens and disconnects the RC-circuit from the quantifier. After the RC-circuit and 

timer resets are complete, the reset switches S2 and S3 open and a new timer interval starts. 

The final part, the quantifier consists of two TLV3701 comparators with adjustable 

thresholds and an AND logic gate. If the propagated RC-circuit voltage is both higher than the 

lower threshold and lower than the higher one, the level-crossing rate is within the set bounds, an 

event of interest is detected and a wake-up pulse is generated, at the AND gate output. 

 

 

a) b) 

Figure 2.11: Novel level-crossing rate wake-up detector: a) schematic and b) photograph. 

2.5.3 Architecture comparison results 

In the results of [Pub2] both analyzed wake-up sensor interface architectures were shown to 

be applicable in detecting passing motor vehicles. These results also showed that the 

level-crossing rate interface has a significantly lower component count (around 40%) and power 

consumption (over three times), requires a smaller area to implement (around 40%), and is 

operational with two times lower input voltages, while the spectro-temporal interface performs 

slightly better with low-SNR signals. These results proved the importance of feature choice on 

low-power interface architectures and functionalities and presented the level-crossing rate as a 

novel interface architecture solution which shows potential for outperforming the more 

conventionally utilized spectro-temporal decomposition interface in detecting sporadic transient 

acoustic events. 
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The spectro-temporal decomposition interface’s higher architecture complexity and power 

consumption were in no small part due to the fact it required multiple channels to perform the 

same task the level-crossing rate interface did with a single. Considering this disadvantage, the 

spectral signatures of the signals of interest were reconsidered, with the idea of exploring the 

possibility of reducing the number of channels of the spectro-temporal decomposition interface. 

This exploration showed that reducing the number of channels past an application-specific 

minimal number would either lead to reduced detection accuracy due to reduced spectral 

coverage, or increased power consumption from the frequent tuning of the channels’ frequency 

characteristics during the interface operation. 
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Chapter 3 

Spectro-temporal decomposition interface 

The spectro-temporal decomposition interface is the most frequently utilized and most 

researched of acoustic wake-up sensor interfaces, due to its high detection accuracy, low-power 

consumption, relatively simple architecture, multiple implementation options and a broad 

application range. 

Following the basic architecture description presented in subchapter 2.5.1, a 

spectro-temporal decomposition sensor interface was developed and characterized in detail 

(Fig. 3.1 a) – d)). 

  

a) b) 

  

c) d) 

Figure 3.1: Spectro-temporal decomposition wake-up sensor interface prototype characterization: a) filter 

central frequency with potentiometer control word b) filter pass band width with digital potentiometer 

control word, c) filter passband gain with its central frequency, d) envelope detector output headroom 

voltage with frequency. 
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Results of the characterization were divided into two groups, the first showing the adjustable 

ranges of each channel’s programmable parameters, its filter central frequency (Fig. 3.1 a)) and 

bandwidth (Fig. 3.1 b)) and the second showing the effects of nonidealities (Fig. 3.1 c) and d)). 

The programmable parameters and their programming accuracies are of crucial importance 

because they allow the interface to be tuned to different frequency ranges which allows it to 

detect different events of interest. 

Figure 3.1 a) shows the range of filtering channels’ central frequencies fc with values of 

digital potentiometers R2, R12, and R22 (Fig. 2.5 a)). As can be seen, all the channels were 

successfully implemented to have the desired range of adjustable central frequencies as described 

in subchapter 2.5.1, with the central frequency of CH1 being adjustable from 200 to 500 Hz, of 

CH2 from 500 to 1100 Hz, and of CH3 from 1.0 to 2.6 kHz. 

As can be seen from Fig. 3.1 b) the first two channels, CH1 and CH2, are tuned to operate 

with narrow pass band widths of B = 150 – 200 Hz by R1 and R11 respectively (Fig. 2.5), while 

the third channel, CH3, is enabled to operate with broader bands of Bl = 500 – 800 Hz at its 

lower central frequencies and Bh = 200 – 500 Hz at higher ones, set by R21. 

Ideally, the gain of each channel’s filter should be around 2, but seeing how 

higher-frequency signals typically exhibit lower power-spectrum density, the 

frequency-dependent gain of the third channel’s filter was used to increase its outputs at higher 

frequencies, as seen in Fig. 3.1 c). 

Finally, the output headroom voltage of each channel was measured (Fig. 3.1 d)) as the 

ripple-free voltage difference between the envelope detector’s output voltage with no input and 

its lowest steady-state output voltage with a given input, floating around Vref = 0.9 V. The overall 

channel sensitivity was defined as the ratio of the output headroom voltage and the input voltage. 

The envelope detectors play a crucial role in determining the channel’s overall sensitivity, 

limiting an architecture using an active envelope detector to operation with input signals with 

amplitudes of at least 5 mV, while other architectures, that utilize passive envelope detectors 

require even higher input voltages, with amplitudes of at least around 20 mV. Our research was 

therefore focused on improving the envelope detectors to alleviate the chokepoint in this 

spectro-temporal decomposition interface architecture. 
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3.1 Envelope detector 

State-of-the-art spectro-temporal decomposition wake-up sensor interfaces usually 

incorporate envelope detectors or trackers, used to extract the features of interest from the input 

signals. The envelope detector output is usually quantified by the following interface stage to 

evaluate the feature of interest. This quantization depends on the envelope detector output signal, 

which can be defined by its characteristic values of rise time, fall time and headroom voltage 

(Fig. 3.2). 

 

Figure 3.2: An envelope detector’s output signal waveform and characterizing values. Envelope detector 

output signal characterizing values: tr – rise time, tf – fall time, VH – headroom voltage. 

As can be seen from Fig. 3.2, the envelope detector’s output headroom voltage (VH) is the 

ripple-free voltage difference between the envelope detector’s output voltage with no input and 

its lowest steady-state output voltage with a given input. It plays a crucial role in determining the 

whole interface’s detection accuracy, because low headroom voltage values make it impossible 

to set an appropriate threshold that would allow reliable feature quantization in the following 

interface stage. 

Additionally, the timing parameters were also considered through the rise time (tr), defined 

as the time required for the output signal to stably rise from the baseline to half the headroom 

voltage and the fall time (tf), defined as the time it took the output signal to settle back to 

baseline from half the headroom voltage. These parameters define which events the interface can 

detect, because the interface can not detect events shorter than its rise time and can not 

distinguish between two event closer in time than its fall time. 

However, despite their frequent use in spectro-temporal decomposition wake-up sensor 

interfaces, the envelope detectors exhibit low energy efficiency, which drives the sensitivity of 

the entire interface down, lowering one of its crucial parameters, the detection accuracy. 
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A lot of research has therefore been focused on developing efficient envelope detectors. In 

[75] the authors present a passive envelope detector operational with input voltages as low as 

100 mV at frequency ranges from DC to 100 MHz. In [76] a 10 nW low-power envelope 

detector is presented, operational with input voltages of 50 mV at 50 Hz frequency. The authors 

in [77] present a low-power envelope detector with a power consumption of around 100 nW, that 

can operate with input voltages over 100 mV at a frequency of 4 Hz. It should also be noted that 

all these envelope detectors ([75]–[77]) were implemented as custom-made integrated detectors. 

The functionalities of several passive and active envelope detectors utilizing COTS 

components were compared. The examined detectors included three conventional detectors, the 

single-diode passive half-wave detector, the two-diode passive half-wave voltage doubler 

(Greinacher circuit), and the amplifier-based active two-diode half-wave detector (Fig. 3.3 a) –

 c)). Additionally, a novel concept adopted from weak-signal vibration energy harvesting [78]–

[80] was considered, the active full-wave envelope detector with a switched inductor (Fig. 3.3 

d)), not previously utilized in weak-signal estimation or detection. 

  

a) b) 

 
 

c) d) 

Figure 3.3: Envelope detector topologies a) passive single-diode half-wave envelope detector, b) passive 

two-diode half-wave voltage doubler (Greinacher circuit), c) active two-diode half-wave voltage doubler 

utilizing an operational amplifier and d) active full-wave envelope detector utilizing a switched inductor. 
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Even though the comparison results (presented in greater detail in [Pub8]) showed the 

conventional active amplifier-based envelope detector topology performed best, it also pointed to 

the great potential of the novel switched inductor envelope detector, motivating its further 

examination and design improvements. 

3.2 Envelope detector with a switched inductor 

The study of envelope detectors pointed to employing switched inductors as a potential 

solution for the conventional envelope detector’s limited energy efficiency. As can be seen from 

Fig. 3.3 d) the switched inductor consists of a switch connecting and disconnecting an inductor 

to a voltage source, using the inductor’s voltage induction principle to create a voltage boosting 

effect. 

In this way the switched inductor increases the efficiency of the envelope detector, by 

boosting its input voltage, Vin(t), prior to rectification, which allows the input signal to bypass the 

envelope detector’s diodes’ nonlinearity that causes low-voltage signals to be suppressed more. 

While the switch S is closed, the input signal energy is stored in the magnetic field of the 

inductor, L, which changes the inductor’s current by ΔiL: 

∆𝑖𝐿 =
1

𝐿
∫ 𝑉𝑖𝑛(𝑡)𝑑𝑡
𝑡2

𝑡1

 (4) 

where Vin(t) is the input signal voltage and t1 and t2 are the beginning and ending moment of 

storing energy in the inductor’s magnetic field, respectively. 

At the time instant to, when the switch opens, the energy stored in the inductor’s magnetic field 

generates an induced voltage, Vind: 

𝑉𝑖𝑛𝑑 = 𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
|
𝑡=𝑡𝑜

 (5) 

The inductor current time derivation at to can be approximated as: 

diL(t)

dt
|
t=to

=
iL(tO)

∆t
=

1
𝐿 ∫ Vin(t)dt

tO
tC

∆t
 (6) 
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where iL(to) is the inductor current at the switch opening instant, tc is the switch closing time 

instant, and Δt is the time required for the inductor current to fall to zero. 

If the induced voltages on the inductor are high enough to pass over the diodes’ thresholds, they 

charge the output capacitor, reaching a steady state output voltage: 

𝑉𝑜𝑢𝑡_𝑠𝑠 =
∫ 𝑉𝑖𝑛(𝑡)𝑑𝑡
𝑡𝑂
𝑡𝐶

∆𝑡
− 2 ∙ 𝑉𝐷 (7) 

where VD is the diode threshold voltage. 

Neglecting energy losses, the maximal obtainable envelope detector output voltage Vout_max 

depends on the inductance L, capacitance C, and the current through the inductor at the instant 

the switch opens, iL(to) (8) [81]. 

𝑉𝑜𝑢𝑡_𝑚𝑎𝑥 = 𝑖𝐿(𝑡𝑂) ∙ √
𝐿

𝐶
 (8) 

While the output capacitor C is not being charged, it gradually discharges (as seen in 

Fig. 3.4) due to the leakage currents of the reversely polarized diodes and the input impedance of 

the next interface stage. 

In addition to the increased energy efficiency and sensitivity that a switched inductor 

provides the envelope detector, through our research the possibility of using it as filter for the 

input signal was also explored, which would allow it to replace two components of the 

conventional spectro-temporal decomposition detector and further lower its power consumption. 

Authors in [82], [83] presented the switched inductor filter, which was used to electrically 

tune the inverter outputs’ frequency characteristics, by suppressing unwanted harmonics. A 

simulation model of a switched inductor filter was developed and its electrically tunable 

frequency characteristic were explored, with its dependency on the switch control function’s 

duty cycle as its tuning parameter. 

Through several steps, presented in greater detail in [Pub3] and [82], it can be shown that 

the effective value of the filter inductance Lfeff is proportional to: 
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𝐿𝑓𝑒𝑓𝑓 ∝
𝐿𝑓

𝐴0
2 (9) 

where A0 represents the switching function average value (dependent on the switching function's 

duty cycle) and Lf represents the filter’s inductor actual value. This led to the conclusion that the 

switching function’s duty cycle can be used to tune the filter’s frequency characteristic. 

By studying this filter and its frequency characteristics, it was concluded that, with proper 

adjustments, the switched inductor can also be employed as an electrically tunable filter. 

More results concerning both the voltage boosting and filtering characteristics of a switched 

inductor can be found as part of [Pub3]. 

3.2.1 Electrically switched inductor 

Following our exploration of potential advantages of applying a switched inductor to an 

envelope detector, further improvements to our design of the envelope detector with an 

electrically switched inductor used in the experiments in [Pub8] were implemented. 

Using this approach, inspired by the switched inductor bandpass filter [82], [83], and the 

switched inductor energy harvester [80], [84], [85], a novel, low-power, frequency selective, 

voltage boosting feature extractor (Fig. 3.4 a)) is devised, operational with signals under 5 mV 

peak-to-peak in the low acoustic frequency range, from 100 Hz to 1 kHz. In this interface the 

switched inductor acts as both part of the filter and the envelope detector. 

In examining this feature extractor, several of its characteristics were considered, with the 

first being its sensitivity (Fig. 3.4 c)), i.e., the ratio of output headroom voltage and input voltage. 

Next, the stopband sensitivity was considered, because the maximal expected stopband voltage 

defined the lowest passband voltage levels with which the interface could reliably detect events 

(spurious-free range, Fig. 3.4 b). This led to the next considered characteristic, the frequency 

selectivity, i.e., the difference between the interface’s passband and stopband sensitivities 

(Fig. 3.4 b) and c)). The final considered characteristic was the extractor’s power consumption. 



Spectro-temporal decomposition interface 

 

31 
 

 

a) 

 

b) 

 

c) 

Figure 3.4: a) Proposed feature extractor (with marked bandpass filter and envelope detector blocks), b) 

normalized frequency characteristic and c) normalized output headroom voltage with input voltage. 

From the feature extractor’s principles of operation and its desired characteristics, its key 

design parameters were determined and divided in two groups: switch control signal parameters 

and passive component values. 
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The considered switch control signal parameters were the switch control signal frequency, 

duty cycle, and delay between the switch control and input signal (the switch is controlled by an 

independent voltage signal Vosc(t), as shown in Figure 3a). 

The considered passive components were the input capacitor Cin, the inductor L, Q factor of 

the input switched inductor filter, and output capacitors, Cout1 and Cout2, which were analyzed in 

detail in our previous work [86], [87]. The diodes were also chosen based on previous work 

analyzing their influence on weak-signal rectifier performance [88], [89]. 

Both a simulation model and a hardware prototype were developed and all the afore 

mentioned parameters and their interactions were examined, with all the simulation and 

experimental results presented in [Pub3]. 

In addition to the presented results, several other simulations were performed, exploring the 

optimal switching frequency for a given signal of interest (and consequential filter central 

frequency setting) and examining the influence of the inductor’s inductance on the peak 

attainable sensitivity. 

In simulations concerning the switching frequency, it was concluded that the optimal 

number of switch openings per input signal period, from the perspective of sensitivity, is two 

(Fig. 3.6). Seeing how the induced voltage on the inductor is dependent on the integral of the 

input sinusoidal signal, opening the switch less than two times per period would lead to lowering 

of the induced and consequentially the output voltage, as sinusoidal signals have highest integral 

values when integrated over half of their period. Opening the switch more than two times would 

lead to more occurrences of induced voltage, but of proportionally lower induced voltages. 

Seeing how the diodes in the envelope detector are nonlinear, these multiple lower voltages 

would lead to an overall lower output voltage. Additionally, it should be stated that while more 

than two switch openings per input signal period reduces the interface sensitivity, it also lowers 

the interface’s susceptibility to the time delay between the input and switch control signal, as 

more openings mean each contributes less to the overall output voltage, which means that 

optimal positioning of each opening instant is less crucial. 
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Figure 3.5: Output voltage with switch control signal frequency. Switch control signal duty cycle set to 

50%. Input signal frequency set to filter central frequency. Output voltage normalized with regards to 

maximal output voltage (which occurs with switching signal frequency set to twice the filter central 

frequency) and switching signal frequency normalized with regards to filter central frequency. 

In the simulations concerning the switched inductor circuit’s maximal obtainable sensitivity 

an analytical expression of the circuit’s sensitivity in dependance on the input signal frequency ω 

and the values of the output capacitance C, the inductor’s inductance L and parasitic resistance 

RL was established. 

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

=
1

√𝐶𝑜𝑢𝑡
∙

1

√𝐿 ∙ (𝜔 −
𝜔𝑅

2

𝜔
)
2

+
𝑅𝐿

2

𝐿

 

(10) 

As can be seen from Fig. 3.6, these simulations showed that if the input signal frequency is 

set precisely to the resonant frequency of the switched inductor circuit, the switched inductor 

circuit sensitivity constantly increased with inductance. However, if the input signal is not 

precisely tuned to match the switched inductor circuit’s resonant frequency, then there is a finite 

inductance value for which maximal sensitivity is obtained. 
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Figure 3.6: Switched inductor circuit’s maximal obtainable sensitivity with inductance L. Resonant 

frequency set to ωR = 655∙2π Hz, capacitance value Cout = 1 µF and inductor’s resistance RL = 7.1 Ω. 

This study led to the conclusion that the novel interface utilizing the electrically switched 

inductor was not only applicable for detection of passing motor vehicles (speedboats), but also 

outperformed a modified version of our conventional spectro-temporal decomposition wake-up 

sensor interface from [Pub5] being operational with four times lower input voltages, while 

having around 43% lower power consumption, thus enabling life-time extension or improved 

detection accuracy. 

3.2.2 Mechanically switched inductor 

Finally, after the switched inductor was proven applicable in low-power sensor interfaces for 

sporadic acoustic event detection with improvement to their functionality and reduction of their 

power consumption, a novel passive electromechanical acoustic signal feature extractor in low 

acoustic frequency range (200–1000 Hz) was devised, consisting of a piezoelectric vibration 

transducer and an envelope detector utilizing a mechanically switched inductor. 

A simulation model of the novel feature extractor was developed, and with it a simulation 

study was performed, and a proof-of-concept device was developed and experimentally 

characterized. Its applicability in sporadic acoustic event detection was demonstrated through a 

case-study of detecting passing speedboats and its advantages compared to the active electrical 
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feature extractor utilized as part of the interface presented in [Pub5] were shown. At the time, 

this presented one of the first attempts in literature of using passive electromechanical elements 

to further lower the power consumption of low‑power analog wake‑up event detector interface. 

 

Figure 3.7: Schematic of the proposed passive electromechanical feature extractor (PEM FE). Green—

current Iclosed(t)—passing through the PEM FE while the switch S is closed. Red—current Iopen(t) passing 

through the PEM FE when the switch S opens. L—inductor and Cout1, Cout2—rectifier capacitors, D1, D2—

rectifier diodes. RP and CP—parasitic resistance and capacitance of piezoelectric transducer, respectively. 

Vpzt(t)—voltage generated at piezoelectric transducer, Vind(t)—voltage induced at the inductor, Vout(t)——

extractor output voltage. 

The mechanical structure of the proposed passive electromechanical feature extractor (PEM 

FE) (Fig. 3.7) is based on the Random Mechanical Switching Harvester on Inductor (RMSHI) 

[80], [90], developed for vibration energy harvesting utilizing a piezoelectric transducer. The 

motivation of using elements of this energy harvester came from its key advantage of high 

energy conversion efficiency [91], stemming from its non-resonant frequency response and 

utilization of a mechanically switched inductor. 

The mechanical part of the feature extractor consisted of a metal cantilever beam with a 

permanent magnet at its free end, a metal stopper that formed a mechanical switch with the 

cantilever, and a fixed permanent magnet used to modify the elasticity of the vibration driven 

cantilever movement. A piezoelectric transducer was mounted at the base of the cantilever beam 

to transforms input vibrations into an electrical signal. The cantilever movement switches the 

mechanically switched inductor which is connected to an envelope detector that conditions the 

resulting electric signal. 

When no external force was applied to the feature extractor, the repulsive force between its 

pair of magnets placed the beam in contact with the stopper (as shown in Fig. 3.7). While the 
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beam was in contact with the stopper, only its part in front of the stopper moved, while the whole 

beam moved only when the external force overcame the magnetic bias force. This two-part 

movement caused the beam to have a non-resonant, broader frequency characteristic, which was 

further explained in [90], [91]. 

When the beam and the stopper are in contact, the switch S is closed, and the piezoelectric 

transducer signal energy is stored in the inductor’s (L) magnetic field (Fig. 3.7, green details). 

When the switch opens, the energy stored in the inductor's magnetic field, EL, is transferred over 

the rectifier to the energy of the output capacitor's (Cout2) electric field, EC, charging the capacitor 

to Vout (Fig. 3.7, red details). The switching of the inductor induces voltage, Vind(t), higher than 

the voltage generated by the piezoelectric transducer, Vpzt(t), and the diode threshold, making the 

switched inductor a voltage booster. A more detailed description of the process can be found in 

[80], [90], [91]. 

With the presented passive electromechanical feature extractor several sets of simulations 

and measurements were performed. In the first group of measurements the extractor’s transfer 

characteristic were determined, relating its output voltage to input vibration energy. In the 

second group the extractor’s frequency selectivity was evaluated, comparing outputs for in-band 

and out-of-band vibration inputs. In the third group of measurements, the output capacitor choice 

and its influence on the output voltage ripple and rise and fall times was examined. Finally, a 

comparison of this novel feature extractor to a previously developed conventional active feature 

extractor from [Pub5] was performed, using various synthetic sinusoidal signals, as well as 

prerecorded passing speedboat signals. Additional details on the exact physical implementation 

of the extractor used in the study, as well as the experimental setup, procedure and results can be 

found in [Pub4]. 

The experiments in this research showed that the interface with the passive feature extractor 

was operational with two times lower input signals than our conventional spectro-temporal 

decomposition wake-up interface from [Pub5], was more robust in low SNR conditions (around 

10 times less output headroom voltage loss for SNR range from −10 dB to 40 dB) and would 

decrease power consumption of a detector’s channel by over 72%, enabling life-time extension 

and/or increased quality of detection with larger number of channels. 
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3.2.3 Comparing the electrically and mechanically switched inductor 

Comparing the interfaces featuring the electrically and mechanically switched inductor led 

to several conclusions. The most obvious advantage of the mechanically switched inductor is that 

it extracts the envelope or energy of a given frequency band completely passively, using the 

energy of the event of interest, while the electrically switched inductor requires power for the 

switch control oscillator and the electrical switch itself (though this is almost negligible 

compared to the oscillator power consumption). The mechanical switch inherently has a 

bandpass frequency characteristic if designed properly, which makes filter implementation, as 

well as the overall electric circuit design rather straightforward. The permanent magnets can also 

be used to finely tune the frequency around the one determined by the mechanical properties of 

the switch. Additionally, seeing how the switching is driven by the occurrence of the event of 

interest, there is no need for additional synchronization between the input signal and the 

switching action. 

At the added expense of a slightly higher power budget, the electrically switched inductor 

also showed certain advantages. While the circuit was more complex, to attain the bandpass 

characteristic inherent to the mechanically switched inductor, the electrically switched inductor 

had a lot finer control over the switching process, with switch control frequency, state duration 

(duty cycle) and switching instant completely under the control of the system designer. While 

this added complexity it also opened many additional options and design parameters not 

available with the mechanical switch. Additionally, this should allow the electrically switched 

inductor to achieve higher sensitivities than the mechanically switched one, if the optimal 

switching control is implemented. 

It should also be stated that the developed feature extractor with the mechanically switched 

inductor was non-resonant, while the one with the electrically switched inductor was resonant. 

Finally, the mechanically switched inductor interface would also allow easy implementation 

of energy harvesting, potentially enabling the design of zero-power or transient sensor interfaces, 

active only when an event of interest is present, generating enough power for their operation, 

while spending no power when there is no potentially interesting activity [7], [12], [54]. This is 

envisioned as the future of ubiquitous sensing, allowing the development and maintenance-free 

deployment of sensor networks consisting of thousands of small, light-weight and fully 



Spectro-temporal decomposition interface 

 

38 
 

autonomous sensor nodes. In [7] the authors postulate that near-zero-power consumptions in 

sensor interfaces will be achieved through utilization of electromechanical components. 

 



39 
 

Chapter 4 

Main scientific contributions of the thesis 

This thesis has two main scientific contributions: 

1) Architectures of low-power sensor interfaces for selected features of low-frequency signals 

from sporadic events, with results disseminated in [Pub1, Pub2 and Pub5]; and 

2) Analysis of applicability of a switched inductor rectifier for detection of low-level signal, 

with results disseminated in [Pub3, Pub4, Pub6, Pub7 and Pub8]. 

4.1 Architectures of low-power sensor interfaces for selected 

features of low-frequency signals from sporadic events 

For this contribution the implications of feature choice on the interface architecture and 

functionality were examined. An analysis of the SOTA wake-up sensor interfaces was performed 

in [Pub1] and research focus was set towards acoustic signals and their features. 

Through research presented in [Pub2] the optimal feature choice for detecting sporadic 

transient acoustic events was explored and spectro-temporal and temporal feature subsets were 

recognized as the most promising candidates for this application. A set of criteria was developed 

and used to evaluate the features’ applicability in low-power interfaces for detection of sporadic 

transient acoustic events. The set criteria determined that the chosen features must allow 

development of embedded architectures, which were reliably operational with weak input signals 

(on the order of 10 mV), and extracted and processed features in the analog domain, thus 

avoiding power-hungry and complex AD conversion. 

The spectro-temporal decomposition and level-crossing rate features met all the set criteria. 

Through research presented in [Pub5] a novel, tunable 3-channel spectro-temporal 

decomposition-based low-power wake-up sensor interface was developed and characterized, 

providing an improved energy-efficiency with no loss of accuracy compared to similar designs 

of the same architecture. In [Pub2] a novel level-crossing rate architecture was developed and the 

applicability of the two developed architectures in detection of passing speedboats was 
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examined, with emphasis on the interface power consumption, implementation complexity, 

minimal input voltages and operation in conditions of low SNR. 

The results of this research showed that both architectures were applicable for detection of 

sporadic transient acoustic events, with true positive event detection rates exceeding 90%. The 

comparison of architecture performances showed that the level-crossing rate architecture was 

operational with two times lower input voltages, required around 40% less area and components 

for its implementation and had over three times lower power consumption, while the 

spectro-temporal decomposition architecture operated slightly better in conditions of low SNR. 

This thesis contribution emphasized the previously sparsely explored but crucial impact of 

feature choice on interface architecture and its functionality and presented the potential of the 

novel level-crossing rate interface architecture for outperforming the more conventionally 

utilized spectro-temporal decomposition interface in detecting sporadic transient acoustic events. 

Additionally, the results of the detailed analysis of the spectro-temporal decomposition 

wake-up sensor interface architecture pointed to its envelope detector as a design chokepoint and 

led to research for a solution constituting the second contribution of this thesis. 

4.2 Analysis of applicability of a switched inductor rectifier for 

detection of low-level signal 

The research of low-power wake-up sensor interface architectures led to a recognition that 

the low energy-efficiency of the spectro-temporal decomposition interface envelope detector 

presents the architecture’s chokepoint, significantly limiting its sensitivity with a given power 

consumption. Therefore, a solution to increase the envelope detector’s energy-efficiency by 

employing a switched inductor element was proposed, inspired by its previous use for the same 

purpose in weak vibration energy harvesting. 

The switched inductor consists of a switch connecting and disconnecting an inductor to a 

voltage source, using the inductor’s induced voltage to create a voltage boosting effect. While 

the switch is closed, the energy of the voltage source is transferred to the inductor’s magnetic 

field, causing the inductor’s current to raise. Once the switch opens, the change of inductor 

current causes the induction of voltage of significantly higher levels than those of the original 
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source. Additional to its voltage boosting effects, this element also displayed frequency 

selectivity. 

As the first step in analyzing the applicability of the switched inductor in low-power 

interfaces for weak signal detection, in [Pub8], several passive and active envelope detectors, 

including the switched inductor envelope detector were developed, characterized, and compared, 

using synthetic signals in lower acoustic spectrum. Through the results of this study, the 

switched inductor envelope detector was shown to be a viable option in the application of 

interest. 

Following this, a switched inductor feature extractor was devised to replace both the filter 

and the envelope detector of the conventional spectro-temporal decomposition interface. In 

[Pub3] a redesigned envelope detector from [Pub8] was used as basis for developing a feature 

extractor utilizing an electrically switched inductor. Through research presented in [Pub6], 

[Pub7] and [Pub4] a novel, fully passive feature extractor utilizing a mechanically switched 

inductor was developed. 

The two novel feature extractors, utilizing the electrically and mechanically switched 

inductor, allowed for 43% and 72% power consumption reduction, and for a four- and two-times 

reduction of minimal input voltage, respectively, compared to the conventional spectro-temporal 

decomposition detector. 

This thesis contribution and its related research not only proved the applicability of the 

switched inductor in low-power sensor interfaces for continuous detection of sporadic transient 

acoustic events, but also showed the considerable advantages and benefits of its application. This 

research paves the way for completely passive wake-up sensor interface architectures, featuring 

microelectromechanical system (MEMS) components driven by the energy contained within the 

events of interest. Additionally, it emphasizes the importance of the emerging concept of 

utilizing electromechanical solutions in developing near-zero-power wake-up sensor interfaces. 
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Chapter 6 

Author’s contributions to the publications 

The results presented in this thesis are based on the research carried out during the period of 

2017-2022 at the University of Zagreb Faculty of Electrical Engineering and Computing, 

Unska 3, Zagreb, Croatia, as part of the research project "Young Researchers’ Career 

Development Project – Training of New Doctoral Students – SENSIRRIKA – advanced sensor 

systems for precision irrigation in karst landscape", IP-2016-06-8379, which was financially 

supported by the Croatian Science Foundation and a part of the research project “AWAKE – 

ultra low power wake-up interfaces for autonomous robotic sensor networks in sea/subsea 

environments”, ONRG-NICOP-N62909-17-1-2160, which was financially supported by the U.S. 

Office of Naval Research Global. The thesis includes eight publications written in collaboration 

with three coauthors. The author’s contribution to each paper consists of conceptualization and 

performance of the experiments and measurements, as well as methodology development, 

analysis and presentation of the research results and manuscript conceptualization and writing. 

[Pub1] In the paper “Always-on sparse event wake-up detectors: A Review” the author 

presented the first all-encompassing review of wake-up sensor interfaces, to serve as both a 

starting point for this thesis’ research, as well as potential guidelines to other researchers in this 

field. The paper explains the principle of operation of low-power wake-up sensor interfaces and 

the advantages of their utilization, presents a taxonomy for wake-up sensor interfaces and shows 

their sensor modalities, implementations and applications, key parameters and design space 

limits (in terms of achievable detection accuracies and power consumptions). The author 

compiled the review material through four years of research, wrote the entire text of the paper 

and made all the illustrations and data representation, guided by the coauthor. The author also 

wrote all the code for simulations used in explaining the advantages of the wake-up concept, in 

MATLAB programming language. 

[Pub2] In the paper “Features and always-on wake-up detectors for sparse acoustic event 

detection” the author expanded on the review presented in [Pub1] with a focus on the most 

frequently utilized wake-up sensor interfaces, the acoustic ones. In this paper an in-depth 
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analysis of acoustic signal features applicable for low-power event detection is presented and 

wake-up sensor interface architectures stemming from feature choices are analyzed. Two 

features, spectro-temporal envelope and level-crossing rate, and wake-up sensor interface 

architectures applicable for motor vehicle passing detection are identified and developed and 

general conclusions on their application are presented. The author designed a novel hardware 

prototype and an improved version of a previously developed prototype (developed by the first 

coauthor) for testing and created the experimental methodology, performed all the tests and 

experiments, wrote all the text and developed all figures and supporting material for the paper, 

guided by the second coauthor and with inputs from the first coauthor. 

[Pub3] In the paper “Low-Power Sensor Interface with a Switched Inductor Frequency 

Selective Envelope Detector” the author presented the electrically switched inductor as a novel 

solution for improving the efficiency of the envelope detector, as a recognized chokepoint of 

wake-up interface design. The proposed switched inductor envelope detector was shown to be 

more energy efficient than amplifier-based active envelope detectors and allowed for greater 

sensitivity than passive envelope detectors. The author made the simulation models and 

performed the simulations in PSpice for TI SPICE program and developed all the MATLAB 

coding for measurement acquisition and processing. The author also designed the test hardware, 

created the measurement setup and methodology, performed the measurements, characterized the 

circuit, wrote all the text of the paper and made all the figures and other data representation, 

guided by the coauthor. 

[Pub4] In the paper “Passive Extraction of Signal Feature Using a Rectifier with a 

Mechanically Switched Inductor for Low Power Acoustic Event Detection” the author 

presented the mechanically switched inductor as a novel solution for improving the efficiency of 

both the filter and the envelope detector (a recognized chokepoint of wake-up interface design) 

of low-power wake-up sensor interfaces. The proposed envelope detector featuring the 

mechanically switched inductor represents a major achievement in low-power wake-up sensor 

interface design as it allows for completely passive feature extraction, while achieving sensitivity 

levels comparable to active envelope detectors. The author helped the second coauthor in 

determining parameters for the simulation model, developed all the MATLAB coding for 

processing the simulation results and prepared the simulation results visualizations. The author 
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also created the measurement setup and methodology, performed the measurements, wrote all the 

text of the paper and made all the figures and other data representation, guided by the first and 

the third coauthor. 

[Pub5] In the paper “A Programmable 3-Channel Acoustic Wake-Up Interface Enabling 

Always-On Detection of Underwater Events Within 20 µA” the authors developed and 

characterized the novel 3-channel spectro-temporal decomposition-based low-power wake-up 

sensor interface architecture. The developed interface architecture achieved over 90% true 

positive event detection with a power consumption of around 35 µW, surpassing most other 

state-of-the-art embedded wake-up sensor interfaces. The author performed the state-of-the-art 

wake-up sensor interface literature analysis, performed a portion of measurements related to 

event detection and designed the prototype hardware (following a design previously developed 

by the first author). The author also gave council on a few final details in the writing of the 

original paper draft. 

[Pub6] In the paper “Measurement of Weak Signal Energy at Acoustic Frequencies by using 

RMSHI as a Passive Conditioning Circuit” the author presented the first attempts of replacing 

a conventional diode-based envelope detector by an envelope detector featuring the Random 

Mechanical Switching Harvester on Inductor (RMSHI). This work, together with [Pub7] was the 

basis for later more extensive work presented in [Pub3] and [Pub4] and presented the initial 

proof-of-concept research. The author devised the measurement setup and procedure, performed 

and processed all the measurements, presented all the data and wrote all the text of the paper, in 

consultation with the coauthors. 

[Pub7] In the paper “Weak Signal Detection Utilizing a Mechanically Switched Inductor” the 

author presented the first attempts of utilizing a mechanically switched inductor in weak signal 

detection. This work, together with [Pub6] was the basis for later more extensive work presented 

in [Pub3] and [Pub4] and presented the initial proof-of-concept research. The author devised the 

measurement setup and procedure, performed and processed all the measurements, presented all 

the data and wrote all the text of the paper, in consultation with the coauthors. 

[Pub8] In the paper “Characterization and Comparison of Envelope Detectors for Wake-up 

Sensor Interfaces at Audio Frequencies” the author addressed the envelope detectors as a 

commonly examined chokepoint of wake-up sensor interfaces. In this work several different 
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envelope detector designs were examined (both active and passive) and this work presents the 

first research into characteristics of an envelope detector featuring an electrically switched 

inductor. The envelope detector featuring the electrically switched inductor achieved higher 

sensitivity than passive envelope detectors, but had both a higher power consumption and lower 

sensitivity than a conventional amplifier-based active envelope detector. This work served as 

proof-of-concept research for the envelope detector with an electrically switched inductor and as 

a starting point for the later improved envelope detector design and a more detailed study 

presented in [Pub3]. The author developed the simulation model of the novel envelope detector 

with an electrically switched inductor in TINA-TI (a SPICE program developed by Texas 

Instruments) and performed the simulation study and processing of the simulation results. The 

author also designed and developed the novel envelope detector with the electrically switched 

inductor and devised the measurement procedure and setup. The author performed and processed 

the measurements, presented all the data and wrote the text of the paper, in consultation with the 

coauthors. 
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Chapter 7 

Conclusions and future research 

7.1 Conclusions 

The research presented in this thesis was focused on always-on low-power wake-up 

interfaces, utilized in two-stage sensor nodes for lowering power consumption via asynchronous 

event-driven activation of the sensor node’s main stage. Stemming from the intended 

applications of these interfaces, detection accuracy, implementation complexity and power 

consumption were recognized as their key design parameters, playing a crucial role in 

determining a sensor node’s overall power consumption and applicability. 

An analysis of the SOTA wake-up sensor interfaces was performed, with emphasis on their 

implementations and utilized sensor modalities and further focus was set towards research of 

acoustic sensor interfaces, because their signals allowed the design of energy efficient interfaces 

capable of highly accurate event detection, with minimal power consumptions. This SOTA 

analysis also pointed to the wide application area of acoustic wake-up sensor interfaces, which 

constituted over 55% of all SOTA wake-up sensor interfaces presented in literature. 

The developed interfaces intended application was detection of sporadic transient acoustic 

events, generating weak signals (around 10 mV on a passive transducer) in the lower acoustic 

spectrum (up to 2.5 kHz), lasting from around half a second up to a few seconds. The passing 

motor vehicle (speedboat) event was chosen as a representative case of this event group. 

The acoustic signal features were analyzed, with emphasis on spectro-temporal and temporal 

features as subgroups applicable in low-power sensor interfaces for sporadic acoustic event 

detection. The previously sparsely analyzed influence of feature choice on the interface 

architecture and performance was analyzed in more detail. A set of criteria were developed for 

selecting features applicable in low-power interfaces for detection of passing speedboats. The set 

criteria were used to ensure the selected features allowed the development of embedded interface 

architectures, which were reliably operational with weak input signals (on the order of 10 mV), 

and extracted and processed features in the analog domain, thus avoiding complex and 
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power-hungry AD conversion components. Based on these criteria, the spectro-temporal 

decomposition and level-crossing rate interface architectures were selected and further explored. 

Two prototype interfaces were developed and their functionality in detection of passing 

speedboats was examined, with emphasis on their power consumptions, implementation 

complexities, minimal input voltages and operation with varying signal-to-noise ratios. The 

experiments were performed with prerecorded speedboat passing signals with varied levels of 

added white noise for obtaining varied SNRs. The results of this research showed both 

architectures were applicable for detection of sporadic transient acoustic events, with true 

positive event detection rates exceeding 90%. The architecture comparison showed that the 

level-crossing rate architecture was operational with two times lower input voltages, required 

around 40% less area and components to implement and had over three times lower power 

consumption. This emphasized the previously sparsely explored but crucial impact of feature 

choice on interface architecture and its functionality and presented the potential of the novel 

level-crossing rate interface architecture for outperforming the more conventionally utilized 

spectro-temporal decomposition interface in detecting sporadic transient acoustic events. 

Considering the operational disadvantage of the increased architecture complexity and 

power consumption of the spectro-temporal decomposition interface, the spectral signatures of 

the signals of interest was reconsidered, with the idea of exploring the possibility of reducing the 

interface’s number of channels. This exploration showed that reducing the number of channels 

past an application-specific minimal number would either lead to reduced detection accuracy due 

to reduced spectral coverage, or increased power consumption from the frequent tuning of the 

channels’ frequency characteristics during the interface operation. 

Further exploration of the spectro-temporal decomposition wake-up interface architecture 

pointed to its envelope detector as the architecture’s chokepoint, limiting the interface’s 

detection accuracy with a given power budget. The nonlinear characteristics of the envelope 

detector’s diodes further attenuated the weak signals characteristic for operation of these 

interfaces. To alleviate this problem, a solution utilizing a switched inductor was proposed to 

increase the energy efficiency of conventional envelope detectors. The switched inductor 

consisted of a switch connecting and disconnecting an inductor to a voltage source, using the 

inductor’s induced voltage to create a voltage boosting effect. While the switch is closed, the 

energy of the voltage source is transferred to the inductor’s magnetic field, causing the inductor’s 
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current to raise. Once the switch opens, the change of inductor current causes the induction of 

voltage of significantly higher levels than those of the original source. Additional to its voltage 

boosting effects, this element also displayed frequency selectivity. 

Several active and passive envelope detectors were developed, including one utilizing an 

electrically switched inductor and their performances in detection of synthetic signals in lower 

acoustic spectrum were compared. Their key operational parameters of headroom voltage and 

rise and fall times were evaluated. While the switched inductor envelope detector outperformed 

the two passive envelope detectors, the active operational-amplifier-based one generated higher 

headroom voltages (better sensitivity) with a lower power consumption. 

Following this, a switched inductor feature extractor was devised to replace both the filter 

and the envelope detector of the conventional spectro-temporal decomposition interface. 

Simulation models and prototypes of the two feature extractors were developed, one utilizing an 

electrically and the other a mechanically switched inductor. Using these, multiple simulation and 

experimental studies were carried out, with both synthetic and real-world signals in the lower 

acoustic spectrum (up to 2.5 kHz) lasting around a few seconds. The feature extractors utilizing 

the electrically and mechanically switched inductor allowed for 43% and 72% power 

consumption reduction, and for a four- and two-times reduction of minimal input voltage, 

respectively, compared to the conventional spectro-temporal decomposition detector. This not 

only proved the applicability of the switched inductor in low-power sensor interfaces for 

continuous detection of sporadic acoustic events, but also showed the considerable advantages 

and benefits of its application. 

7.2 Future research 

Three tracks were considered for future research. The first considered research track 

envisions expanding the applicability studies of developed wake-up interface architectures to 

other signals of the same sporadic transient acoustic group, such as, for example, diver detection. 

The other two tracks focus on further lowering the power consumptions of the developed 

interface architectures. One way of further reducing power consumption is using the developed 

embedded prototypes as the basis for developing integrated interfaces with the same architecture. 

The other track for further reducing power consumption entails development of MEMS solutions 

for the mechanically switched inductors enabling the design of fully passive electromechanical 
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wake-up sensor interfaces driven by the energy of the events of interest. This research track 

shows great promise as it follows the emerging concept of utilizing electromechanical solutions 

for development of near-zero-power wake-up sensor interfaces. 
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Abstract— Recently there has been a significant increase 
in demand for wireless sensor networks, as their field of 
application is rapidly expanding, driven mostly by the 
growing importance and prevalence of the Internet of Things 
concept. To enable practical application of wireless sensor 
networks, sensor nodes must be inexpensive, small, 
light-weight, intelligent and autonomous. This paper 
presents a review of low-power always-on wake-up detectors 
used to reduce a sensor node’s power consumption and 
enable continuous detection of sparse events. We describe 
the wake-up concept, discuss its advantages and present the 
wake-up detector’s power consumption, detection accuracy 
and false positive rate as parameters of interest. We present 
a state-of-the-art analysis of wake-up detectors, grouping 
them based on their power consumption into zero-power and 
near-zero-power detectors and active detectors, which we 
further separate based on their implementation into digital detectors and mixed-signal and analog detectors. This 
analysis shows state-of-the-art wake-up detectors operate with detection accuracy over 90% and a wide range of power 
consumptions, spanning from a few nW to few tens of µW, because of their diverse applications and sensor modalities. 
Additionally, it shows that active mixed-signal wake-up detectors are currently the most utilized implementation, with 
emphasis on acoustic transducer modality. It also shows potential trends for future detector design utilizing more 
MEMS and NEMS to further lower detector power consumption. We also show techniques and ideas not yet integrated 
in the wake-up concept, to potentially improve the wake-up detector concept and present the wake-up detectors’ 
common applications and their specifics. 

 
Index Terms— detection and classification based on sensor data, energy consumption, sensor applications, sensor 

electronic circuits, sensor readout circuits, smart sensor systems, sensor testing and evaluation 

 

 

I.  Introduction 

Driven by the ever-growing interest in the Internet of Things 
(IoT), in recent times there has been a rapid increase in demand 
for intelligent low-power sensor nodes and networks [1], [2] for 
multiple applications from continuous surveillance and security 
[3]–[5], environmental monitoring [6], [7], speech or voice 
detection [8]–[10], biomedical and health monitoring [11]–
[13], structural health monitoring, non-destructive testing and 
machinery diagnosis [14], [15], communication channel 
monitoring [16], [17] and many others [18]–[20]. 
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These applications require the sensor nodes to be 
inexpensive, small and light-weight and the networks formed 
by these nodes to be functional for long periods of time with 
minimal maintenance and intervention. The final goal is a 
wireless sensor network of fully autonomous sensor nodes, in 
terms of their functionality, energy and ways they interact with 
the world around them [1]. A necessary prerequisite for this is 
energy autonomy [21], also called energy autarky [22], [23], or 
energy neutrality by some authors [6]. This concept envisions a 
circuit, or in this case a sensor that can, from an energy point of 
view, stay active forever without the need for intervention. 
Working towards the goal of achieving sensor node energy 
autonomy, research fields have been established focused on 
improving sensor node power sources, lowering sensor node 
power consumption, and increasing their energy efficiency. 

Considering the sensor node power sources, there is a lot of 
research focused on improving batteries [24], [25], reducing 
their size, increasing energy capacity, reducing self-discharge 
and other unwanted effects. Another prominent concept for 
powering sensor nodes, that could potentially replace 
battery-powered systems [25], is energy harvesting, which 
implies generating electrical energy on the sensor node using 
the energy from its surroundings, such as ambient vibration 
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[15], [26], light [15], [27] and thermal gradients [15], or even 
microbes [28]. By utilizing energy harvesting, the sensor node 
generates electrical energy required for its operation, which 
potentially allows the sensor node to achieve full energy 
autonomy, if there is sufficient ambient energy to convert.  

To achieve sensor node energy autonomy, sufficient 
reduction of the sensor node’s power consumption and increase 
of its energy efficiency can only be achieved if the sensor node 
(or most of its components) is kept in a low-power (“sleep”) 
mode for most of the time and only fully activated to perform 
its tasks during limited time windows [1], [4], [29]. This 
activation can be done synchronously, at fixed time intervals, 
utilizing a concept called duty cycling. However, due to the 
sporadic nature of most events of interest, it is potentially more 
advantageous to perform this activation asynchronously, using 
event-driven activation [2], [30] and the wake-up concept, in 
which the sensor node consists of an always-on wake-up 
detector which is used to wake up the main subsystem. 

The wake-up concept originated in communication 
hardware because of its high contribution to the sensor node’s 
overall power consumption. Wake-up receivers were developed 
to allow asynchronous activation of communication hardware, 
only when communication is requested [31]–[33]. 

Additional modifications and restrictions can be imposed to 
wake-up detectors by their application, from size and weight 
restrictions, detection accuracy, safety standards, design 
complexity, production and deployment price, and so on. 

In this paper we present a review of low-power always-on 
wake-up detectors for continuous detection of sparse events 
(occurring rarely and with no predefined schedule) and present 
several contributions. To the best of the authors’ knowledge, we 
present the first analysis of state-of-the-art (SOTA) wake-up 
detectors (for sensor activation) from the perspective of power 
consumption and implementation. We derive conclusions on 
detector parameters, implementations, transducer modalities, 
features and detector schemes. In addition to showing the state 
of wake-up detector technology, this work also shows potential 
guidelines for advancing the wake-up concept itself by showing 
new techniques and ideas not yet integrated in the wake-up 
concept. We also show an analysis of common applications of 
wake-up detectors and point to specifics stemming from those 
applications. 

The rest of this paper is organized as follows: Section II 

demonstrates the wake-up concept, parameters of a wake-up 

detector and its advantages. Section III presents the analysis of 

SOTA wake-up detectors. In Section IV wake-up detector 

application fields are presented, and Section V concludes the 

paper.  

II. WAKE-UP CONCEPT AND ITS ADVANTAGES 

A. Wake-up Concept 

A typical battery-powered sensor node (Fig. 1) consists of a 
power source (1), a transducer (2), a sensor interface (3) that 
conditions the transducer signal and converts the raw signal into 
data, a microcontroller (4) (or another form of node control) to 
regulate the node behavior, and communication hardware (5) to 
connect the sensor node to other elements of its network. 

 

Fig. 1. A typical sensor node’s block diagram, with marked key 
components: (1) power supply, (2) transducer, (3) sensor interface, 
(4) node control, (5) communication 

This sensor node is used to detect sparse events, occurring 
rarely and with no predefined schedule, during the percentage 
of time defined as the event activity, EA. While the whole 
sensor node is active it has a mean power consumption of Pm. 
To reduce this power consumption, most parts of the sensor 
node can be powered down and only activated when necessary. 

This can be done synchronously, with a fixed schedule, 
utilizing duty cycling, with a duty cycle of D. An appropriate 
duty cycle can be set once an approximate event activity is 
known. The power consumption of a sensor node utilizing duty 
cycling can be approximated as: 

𝑃𝐷 = 𝐷 ∙ 𝑃𝑚 (1) 

This approximation, as well as those in the following 
equations, does not account for the influence of the sensor 
node’s inactive state power consumption and the additional 
power expended during the on and off switching of the sensor 
node’s main stage.  

Seeing how duty cycling is done with a fixed schedule, there 
will be times when the sensor node activates only to conclude 
there is no need for activation (no event of interest) and goes 
back to stand-by mode, only wasting energy for activation. 
Additionally, events of interest can be missed if they occur 
during periods when the sensor node is in stand-by mode [34]. 

To mitigate these problems, especially if the events of 
interest occur sparsely, a more energy-efficient alternative to 
duty cycling is to activate the sensor node asynchronously 
utilizing the wake-up concept [2], [30], which envisions a 
two-stage sensor node consisting of two subsystems (Fig. 2 a)). 
The first subsystem, the wake-up detector, is always on, has a 
low average power consumption of Pw << Pm, detects the 
signals of interest, conditions them, extracts features, and 
detects patterns. Then, if an event of interest is detected, it sends 
an activation (wake-up) signal to activate the second subsystem 
(or the rest of the sensor node), which has higher power 
consumption (Pm) but performs a more detailed analysis of the 
event. The reason for considering a wake-up detector’s average 
power consumption is that, while power consumption profiles 
vary with each detector implementation, in general, most 
detectors experience a slight increase in their power 
consumption when processing a potential event of interest. 

While the wake-up detector must be able to accurately 
detect and recognize events of interest, the detailed analysis 
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performed by the second stage usually constitutes the sensor 
node’s main function, providing further data on the event of 
interest, by utilizing more resources, more complex processing 
techniques or even a different transducer modality. As an 
example of this, an artificial cochlea can have a voice activity 
wake-up detector, which, upon voice detection, activates a more 
complex main stage which allows high quality sound analysis 
when required. 

The wake-up detector has a detection accuracy of DA (the 
percentage of correctly recognized events of interest, also 
referred to as true positive [35]) and a false positive rate of FP 
(the percentage of detections when no event of interest are 
present [35]). The average power consumption of such a 
two-stage sensor node utilizing a wake-up detector can be 
expressed as: 

𝑃2𝑆 = 𝑃𝑤 + 𝐸𝐴 ∙ 𝐷𝐴 ∙ 𝑃𝑚 + (1 − 𝐸𝐴) ∙ 𝐹𝑃 ∙ 𝑃𝑚 (2) 

where Pw and Pm represent the average power consumption of 
the wake-up detector and the main stage respectively and EA 
represents the event activity. 

The power consumption of a two-stage sensor node utilizing 
a wake-up detector is defined by the wake-up detector’s average 
power consumption, its detection accuracy, and its false 
positive rate, but also by the event activity. It is expected to be 
considerably lower than that of the sensor node’s main stage 
(P2S << Pm). 

 
a) 

 

b) 

Fig. 2. a) Two-stage sensor node block schematic. The sensor node 
can be implemented with each stage utilizing their own transducer 
(1), or with both stages utilizing the same transducer (2). b) Power 
consumption of a two-stage sensor node utilizing the wake-up 
concept. ton and toff denote the time intervals in which the main stage 
is active and in sleep mode, respectively. 

B. Sensor Node Lifetime Estimation 

A battery-powered sensor node’s lifetime, T, will depend on 
the energy stored within its power supply, E, and its average 
power consumption, P, and can be approximated as: 

𝑇 =
𝐸

𝑃
∙ 0.7 (3) 

The factor of 0.7 accounts for factors such as temperature, 
ageing, charge and discharge current, depth of discharge, that 
affect the battery cycle life and effective capacity [36], [37]. 

To illustrate the analysis of a sensor node’s lifetime we 
consider a sensor node with a battery energy of E = 100 mWh, 
the mean power consumption of the sensor node’s main stage 
of Pm = 1 mW, the duty cycle of D = 5%, and the wake-up 
detector’s average power consumption ranging from 
Pw = Pm / 1000 = 1 µW to Pw = Pm / 10 = 100 µW. The detector 
misses no event of interest (DA = 100%) and has false positive 
detection rates spanning from FP = 0% to FP = 10 %. 

In Fig. 3 we illustrate the lifetimes of a battery-powered 
sensor node without wake-up (sensor node’s main stage is 
always active), with synchronous duty cycle activation, and 
with asynchronous wake-up detector activation. 

 
a) 

 
b) 

Fig. 3. Lifetimes of a sensor node utilizing duty cycling or a wake-up 
detector. The red lines in a) and b) represent the sensor node’s 
lifetime if the main stage of the sensor node is active all the time (no 
wake-up) and the black line represents the sensor node’s lifetime 
utilizing duty cycling with a duty cycle D = 5%. a) Wake-up detector 
with a power consumption of Pw = 0.001∙Pm (green), Pw = 0.01∙Pm 
(purple), and Pw = 0.1∙Pm (blue), with no missed events (DA = 100%) 
and no false positive detection (FP = 0%). b) Wake-up detector with 
a power consumption of PW = 0.001∙Pm, and false positive rates of 
0% (green), 5% (purple) and 10% (blue) and no missed events 
(DA = 100%). 

In addition to mitigating the problem of missed events, as 
we can see from Fig. 3 a), the system utilizing the wake-up 
detector can also achieve a longer lifetime compared to the duty 
cycled one, if event activity drops below the duty cycle (to 
around 4%) and the wake-up detector’s power consumption is 
low enough (100 or more times lower than the main stage power 
consumption, Pw ≤ 0.01 ∙ Pm). 
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From Fig. 3 b) we can see that higher false positive rates 
(FP ≥ 5%) can considerably degrade a wake-up detector’s 
functionality, severely reducing or even completely negating 
the provided lifetime extension, due to unnecessary activations 
of the whole sensor node. Decreasing detection accuracy would 
increase the sensor node’s lifetime but would also lead to a 
detector with a lower ability to detect events of interest, so this 
would not present a valid method for extending a sensor node’s 
lifetime. 

Additionally, we present another example showing the 
sensor node’s lifetime extension provided by utilizing a 
wake-up detector, in which the low-power always-on wake-up 
detector presented in [38] is used to wake up an FPGA sound 
classifier used for acoustic surveillance [39], as shown in Fig. 4. 

 

Fig. 4. The example two-stage sensor node consisting of a wake-up 
detector presented in [38] and a main stage sound classifier 
presented in [39]. 

We will consider the energy of the sensor node’s battery to 
be Eps = 10000 mWh. The sound classifier presented in [39] has 
a power consumption of Pm = 47 mW. The wake-up detector 
presented in [38] has a power consumption of Pw = 26.89 µW, 
a detection accuracy of DA = 100% and a false positive rate of 
FP = 0%. Considered event activities, EA, are 1%, 3% and 5%. 
The lifetime comparison results are presented in Table I. 

TABLE I – Sensor node lifetime extension by utilizing a wake-up detector 

Event 

activity 

Sensor node lifetime [days] 

Only [39] [39] utilizing [38] Extension 

1% 8.87 838.55 94.54 times 

3% 8.87 289.98 32.69 times 

5% 8.87 175.3 19.76 times 

Following the steps presented in these examples, any sensor 
node’s lifetime can be analyzed and evaluated, with necessary 
data on the power consumption of its main stage and wake-up 
detector, its detector’s detection accuracy and approximate 
event activity. 

It should be noted that the sensor node’s power source 
lifetime is just a part of its overall reliability. A sensor node’s 
reliability also includes hardware and software faults, data 
reliability, communication reliability and so on [40]–[42]. 
Seeing how a sensor node malfunctions when any of its 
subsystems fail [42], adding a subsystem such as a wake-up 
detector increases the overall sensor node failure probability. 
However, since power source lifetime represents the basic 
requirement of reliability, and a wake-up subsystem greatly 
extends power source lifetime, adding a wake-up subsystem 
generally increases the sensor node’s reliability. While a 
detailed sensor node’s reliability study is beyond the scope of 
this paper, readers can find more information on sensor node 
reliability in literature [40]–[42]. 

III. STATE-OF-THE-ART WAKE-UP DETECTOR ANALYSIS 

In this SOTA analysis we grouped the wake-up detectors 
with regards to their power consumption and implementation. 
Considering their power consumption, we grouped them into: 
A) Zero-power and near-zero-power detectors (with power 
consumption under 10 nW) and B) Active wake-up detectors 
(with a power consumption over 10 nW). Considering 
implementation, zero-power and near-zero-power detectors 
were implemented as custom-made MEMS or NEMS circuits, 
while active detectors were grouped into: 1) digital and 2) 
analog and mixed-signal detectors, all implemented utilizing 
either commercially available components or 
application-specific custom-made ones. Detectors that perform 
all (or a great majority) of their feature extraction and 
classification in the digital domain and/or utilize only simple 
analog preprocessing (amplification or prefiltering) are 
considered digital wake-up detectors and the rest are considered 
analog or mixed-signal detectors. Additionally, we examine the 
detectors from the perspective of their application and the 
energy domain which they use for event detection, grouping the 
detectors into mechanical (acoustic, vibrational), chemical, 
thermal, optical, and magnetic. For each wake-up detector we 
show its sensor (energy) modality, power consumption, 
detection accuracy, and, where available, false positive rate and 
reliability details. 

A. Zero-power and Near-zero-power Wake-up Detectors 

Zero-power and near-zero-power wake-up detectors are 
fully passive or ultra-low-power (under 10 nW) detectors that 
employ MEMS and NEMS circuits powered by the energy of 
the events of interest to generate and process the electrical 
signal and activate more complex systems upon event detection. 

The amount of research of these detectors is still modest, but 
they are interesting from the perspective of power consumption, 
as they represent the peak of wake-up concept development. 

It should also be noted here that, when considering 
zero-power and near-zero-power wake-up detector design, the 
electric circuit design is replaced by micro-electromechanical 
design, entailing manipulations with element dimensions, 
materials, and their interactions. 

In [22] a zero-power binary sensor design is proposed to 
gate the power supply for the rest of the system, only when a 
potential event of interest is detected. The wake-up sensor is 
completely passive and utilizes a hydrogel transducer whose 
volume changes depending on the humidity or pH value of its 
surrounding. This volume change closes a switch, used for 
power-gating the more complex part of the system (Fig. 5). The 
utilized mechanical element is pre-stressed to allow nearly 
instantaneous switching action upon reaching a threshold value. 

 

Fig. 5. Concept of the wake-up detector from [22]. Ambient humidity 
or pH levels change the hydrogel’s volume, opening and closing the 
switch and power-gating the main sensor node stage. 
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Another zero-power wake-up sensor is reported in [43]. The 
system utilizes spectrally selective plasmonically enhanced 
MEMS photoswitches to mechanically create conducting 
channels upon detection of a specific infra-red spectral 
signature associated with the target of interest, thus triggering a 
wake-up. The utilized switches also have a dynamically tunable 
detection threshold, enabling the system to be utilized in 
multiple different applications (plant water content monitoring, 
human presence sensing, and flame detection). Utilizing this 
wake-up a near-zero-power sensor node with a power 
consumption of around 2.6 nW was developed. The zero-power 
wake-up is used to trigger a microcontroller which transmits 
data to alert a remote gateway. 

In [44] a zero-power MEMS wake-up sensor is reported for 
vibration detection. The system utilizes a charged electret 
MEMS capacitor consisting of a fixed and a movable electrode. 
The capacitor’s movable electrode is attached to a 
spring-loaded proof mass which vibrates with external 
stimulation. While the ambient vibrations are below a set 
threshold (determined by the sensor’s mechanical design) the 
changing of the capacitor’s inter-electrode gap causes induced 
charge, generating an alternating voltage (Q = UC) which is 
then rectified and stored. If vibrations exceed the preset 
threshold, a direct contact between the movable and fixed 
electrode is established and a wake-up pulse is generated. This 
makes this system both a wake-up sensor and an energy 
harvester when no event of interest is present. 

A near-zero-power wake-up detector is presented in [45]. 
The system utilizes a custom-made zero-power piezoelectric 
transducer combined with near-zero-power NEMS switches 
(Fig. 6), to detect predefined patterns in the acceleration, 
rotation, and magnetic field signals and produce a wake-up 
signal if a template match is detected. To detect the magnetic 
field, permanent magnets are added to the piezoelectric beam to 
cause strain on it when exposed to a magnetic field. The 
piezoelectric transducer also acts as a filter because its 
geometry, mass and material define the signal frequencies to 
which it is sensitive. The reported power consumption of the 
system is under 5 nW, mainly due to biasing of the NEMS 
switches. 

In [5] a near-zero-power tunable wake-up detector featuring 
a zero-power microphone and a 6 nW sub-threshold CMOS 
classifier for detection of sparse acoustic events (electric 
generator, passing truck) is reported. The system has a tunable 
resonant frequency, set by a tuning weight on the microphone 
and an adjustable sensitivity, set by the tunable load. The 
classifier is an ultra-low-power CMOS comparator. The 
achieved detection accuracy is 100% with a false positive rate 
of 1 per hour. 

A very similar near-zero-power wake-up detector is 
reported in [46], where a piezoelectric MEMS accelerometer is 
coupled with a sub-threshold CMOS comparator to achieve a 
wake-up acceleration sensor with a power consumption of 
5.4 nW. The comparator consists of a differential pair with a 
current mirror feeding into a common source amplifier and its 
output connects to a latch. The bias cell employs a bootstrap 
configuration with a startup circuit that only consumes power 
during the initial power-up. The threshold voltage is generated 
by mirroring a 1 nA current through a resistor, with a capacitor 
in parallel for reducing noise. 

Another near-zero-power acceleration detector and a similar 
acoustic wake-up detector are reported in [47] and [48], 
respectively. In both detectors, MEMS design through 
manipulation of physical dimensions and materials is used to 
achieve the desired characteristics, such as frequency 
selectivity, DC input annulation, self-calibration and so on. 

 

Fig. 6. Generalized schematic of wake-up detectors from [47] and 
[48]. The onset of vibration or an acoustic wave of interest closes a 
MEMS switch S, beginning a charging cycle of a capacitor. When the 
capacitor voltage reaches a preset level (1 V) a transistor pulls the 
output voltage low, generating a wake-up signal. 

Both detectors report a power consumption under 1 nW 
without the signal of interest and below 10 nW when the signal 
of interest is present. Also, both detectors report no false alarms 
and the detector in [48] reports a detection accuracy of 100% 
(while true positive detection rate is not separately considered 
in [47]). 

While this analysis shows the extremely low power 

consumption of zero-power and near-zero-power detectors, it 

should be noted that many of these detectors achieve their 

passive or ultra-low-power operation at the expense of lower 

sensitivity and detection accuracy, which can considerably 

increase the sensor node’s power consumption due to 

unnecessary activations caused by false detections. 

B. Active Wake-up Detectors 

This subsection presents the active wake-up detectors (those 

with a power consumption exceeding 10 nW), their power 

consumption and detection accuracy, but also explores different 

techniques and ideas authors employed to further reduce the 

wake-up detector’s power consumption. 

1) Digital active wake-up detectors 

The system reported in [49] utilizes a digital 
application-specific integrated circuit (ASIC) voice activity 
detector (VAD) to wake up a more complex speech recognizer 
(Fig. 7). The VAD can detect voice by comparing the 
short-time energy of input signal sections (voice and noise carry 
different energy levels), by evaluating periodicity using 
autocorrelation (voice is periodic to an extent, unlike noise), or 
by decomposing the input signal into its spectral components 
(voice and noise differ in spectrum). 

 

Fig. 7. Block schematic of the wake-up detector presented in [49]. 

The VAD’s power consumption and voice detection 
accuracy vary depending on the used algorithm, the target voice 
and background noise (power varying from around 8.5 µW to 
around 24.4 µW and detection accuracy from 55% to 95%). 
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Similarly, another CMOS ASIC VAD utilized for waking 
up a more complex speech processing unit is presented in [50]. 
The VAD performs a fast Fourier transform (FFT) and 
estimates noise energy comparing it to the input signal energy. 
If the input signal energy exceeds noise energy, there is an 
additional signal besides noise, pointing to voice activity. The 
VAD’s overall power consumption consists of the power 
consumptions of the core, memory, and peripheral parts, and is, 
at its lowest setting, around 100 µW. The VAD’s detection 
accuracy is over 90%.  

In [51] an FPGA wake-up detector is developed which 
allows asynchronous sensors, modeled after the human brain, 
using the AER (address-event representation) spike to interface 
to the synchronous microcontrollers. Using this detector, a time 
stamp is added to the AER spike, turning it into an 
address-event-time representation (AETR) spike. This way the 
information on the time difference between two spikes is 
preserved and the spikes can be stored in a buffer, which means 
that the microcontroller can be powered down into standby 
mode, significantly reducing power consumption, only to be 
woken up when the buffer fills up with AETR spikes. The 

detector has a power consumption between 50 W, when there 
are no events, and 4.5 mW for a data rate of 550 kiloevents/s. 

In [52] a CMOS ASIC wake-up detector is reported, 
implementing an improved autocorrelation algorithm, 
consuming 835 nW. The detector determines the presence of 
certain predefined harmonics, characteristic for the event of 
interest and has a detection accuracy exceeding 90%. 

An ultra-low-power acoustic event detector was developed 
in [34] (Fig. 8). The detector acquires the signal via a MEMS 
microphone and amplifies it using an audio amplifier consisting 
of a low-noise amplifier (LNA) and a variable gain amplifier. 
The amplified signal is converted to digital domain using an 
8-bit SAR ADC, features are digitally extracted and used for 
classification by a DSP. 

 

Fig. 8. Block schematic of the wake-up detector presented in [34]. 

The DSP uses the targeted events’ frequency sparsity to 
replace the conventionally used FFT by a reduced DFT 
algorithm to further reduce power consumption. The detector 
operates with a power consumption of 12 nW, successfully 
detecting events with SNR as low as 3 dB. 

A wearable digital always-on camera wake-up detector is 
presented in [53]. It wakes up a more complex wearable system 
for video recording upon detecting aggressive stance or 
behavior of a human The detector is a restricted Boltzmann 
machine-based artificial neural network implemented on a 
commercial FPGA platform, with a power consumption of 
19.18 mW and an 85% detection accuracy. The input is 
acquired by a low-power camera, converted into raw pixel data, 
then the silhouette is extracted through background subtraction, 
and finally the posture is classified, and potentially aggressive 
posture is determined. 

In [54] a reconfigurable general-purpose multi-stage digital 
CMOS ASIC wake-up detector is presented (Fig. 9). The input 
signal is converted to digital domain by a level-crossing ADC. 

The feature extractor extracts the spectro-temporal instant rate 
of change (integral of input signal derivation) and evaluates the 
input signal’s amplitude and duration. If the amplitude and 
duration point to an event of interest, a feature memory chip is 
activated to store the feature extractor’s data. Finally, a 
convolutional neural network classifier uses the data from the 
feature memory to classify the event. 

 

Fig. 9. Block schematic of the wake-up detector presented in [54].  

The wake-up detector has a power consumption of 148 nW 
and its detection accuracy and false positive rate vary with 
application. 

A digital CMOS ASIC keyword-spotting wake-up detector 
is presented in [10]. It consists of a serial FFT-based 
Mel-frequency cepstral coefficients (MFCC) feature extractor 
and a binarized depth-wise separable convolutional neural 
network. Utilizing serial FFT significantly reduces the required 
system memory and power consumption compared to 
conventional parallel FFT. The detector has a power 
consumption of 510 nW and a detection accuracy of 97.3%. 

In [55] a multi-level digital ASIC wake-up detector for 
wearable motion sensors is proposed. The system features a 
tiered (or hierarchical) scheme where a higher precision and 
higher power consumption event detection block is activated 
only if the previous lower level determines the potential 
presence of an event of interest. This means that only the initial 
level, with lowest precision and lowest power consumption is 
always active. Each level preforms cross correlation template 
matching, utilizing a template stored in a memory, a multiplier, 
an adder, an accumulator, and a comparator, with a predefined 
threshold (defining the comparison precision). To enable each 
sequentially activated stage to operate with the same signal, an 
input buffer is employed. The authors also consider optimal 
sequences of level activations, depending on previous level 
activity to further lower power consumption by potentially 
skipping unnecessary comparisons. This leads to a power 
consumption ranging from 0.64 nW to 1.02 nW with true 
positive detection rate of 94.3%. 

In Table II an overview of digital wake-up systems is given, 
considering power consumption, detection accuracy, 
implementation, and application. 
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TABLE II – Overview of digital wake-up systems 

Ref. 
Power 

(W) 

Detection 

accuracy 

(%) 

Impl. 
Feature 

extraction 
Application 

[34] 0.012 96 – 98 
CMOS 

ASIC 

spectro-

temporal power 

acoustic 

event 
recognition 

(car, truck 

generator) 

[54] 0.148 85 – 99 
CMOS 
ASIC 

spectro-

temporal 

derivation 

multi-
purpose 

[10] 0.510 97.3 
CMOS 

ASIC 

spectro-
temporal 

MFCC 

keyword 

spotting 

[52] 0.835 > 90 
CMOS 

ASIC 
autocorrelation 

acoustic 
surveillance 

(vehicle 

detection) 

[49] 
8.5 – 

24.4 
55 – 95 

CMOS 

ASIC 

autocorrelation 

and spectro-

temporal energy  

voice 

activity 

detector 

[50] ~100 > 90 
CMOS 

ASIC 

spectro-

temporal energy 

voice 
activity 

detector 

[51] 
50 – 
4500 

not 
specified 

FPGA 
spectro-
temporal energy 

multi-
purpose 

[53] 19180 85 FPGA 
silhouette 

recognition 

posture 

recognition 

As there are no universally applicable sensor nodes or 

wake-up detectors, the power consumption greatly varies (as 

seen in Table II), depending on the sensor modality. However, 

it is also clear form Table II that detectors implemented as 

ASICs have significantly lower power consumption than those 

utilizing commercial off-the-shelf (COTS) components (as 

much as several orders of magnitude). 

2) Mixed-signal and analog active wake-up detectors 

In [56]–[58] embedded low-power wake-up detectors are 
developed utilizing COTS components (Fig. 10). They detect 
the event of interest by performing frequency decomposition 
and extracting the envelope in each frequency band of interest 
and matching the activity of each frequency band to a 
predefined template. The detector presented in [56] acquires the 
acoustic signal using a microphone (or hydrophone), filters it 
using an analog second order general impedance converter 
(GIC) bandpass filter with adjustable central frequency and 
bandwidth, and extracts the frequency band’s envelope using an 
active voltage doubler (consisting of an operational amplifier 
and two diodes). After the envelope is digitized using a 
comparator, the pattern of comparator output high states is 
compared to a predefined template to determine the presence of 
an event of interest. The systems presented in [57], [58] perform 
the same set of operations, just replacing the active filter and 
envelope detector of [56] with an envelope detector (also acting 
as a filter) utilizing either a mechanically [58] or electrically 
switched inductor [57]. The detector presented in [58] utilizes 
zero-power feature extraction. 

 

Fig. 10. Generalized block schematic of the spectro-temporal 
decomposition-based wake-up detector. The input signal is 
(optionally) preprocessed, filtered, a feature of interest is extracted 
(envelope, power, energy), quantified and the detected event is 
classified. This principle, with minor variations, is utilized in multiple 
reported circuits. 

In [6], [38] similar wake-up detectors based on frequency 
decomposition are presented (Fig. 10). The detectors also 
perform frequency decomposition using an active adjustable 
second order GIC bandpass filter, an active envelope detector 
and a comparator. The reported power consumption of the 
detectors is 26.89 µW with detection accuracy ranging from 
98.67% to 100%, while the false positive rate is 14% for the 
detector from [6] and 0% for the one from [38]. 

Frequency decomposition is again employed in the analog 
ASIC wake-up detector presented in [59] (Fig. 10). The 
detector consists of two 8-channel filter banks which can be 
used separately (even combining different sensing modalities, 
like acoustic and seismic) or jointly, on a single input sensor. 
After filtering, magnitude detectors consisting of a peak 
detector and a smoothing filter are utilized to determine each 
frequency band’s magnitude. The magnitude detector outputs 
are connected to two comparators, allowing multi-level 
quantization of each band. The comparator outputs are fed into 
a programmable logic array that performs template matching 
and generates a wake-up signal. The detector consumes 
46.67 µW with a detection accuracy between 70% and 90%. 

An ultrasonic wake-up plant drought detector is presented 
in [60] (Fig. 11). The detector conditions the transducer 
impedance, amplifies the input signal, and converts it into 
differential. After conditioning, the signal is sent to a triggering 
circuit consisting of a comparator and a monostable, that 
generates a wake-up signal for the microcontroller when an 
ultrasonic emission is detected. The power consumption of the 
wake-up detector is around 2.575 mW (with an additional 
2.2 mW for the microcontroller and ADC in sleep mode). 

 

Fig. 11. Block schematic of the wake-up detector presented in [60]. 

In [61] the authors present an ASIC low-power wake-up 
voice detector (Fig. 10). The system operates with a power 
consumption of 6 µW detecting in-band energy of up to 16 
frequency bands and has an average detection accuracy of 89% 
at 12 dB SNR. This system incorporates two interesting 
concepts. Firstly, it is a two-stage hierarchical wake-up 
detector, in which the microphone signal is sensed by a 
comparator and only when activity over a certain level is 
detected is the analog feature extraction activated. The features 
are extracted, sent to a mixed-signal classifier and, if the 
classifier recognizes the event as voice, it wakes up a 
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microcontroller for more sophisticated operation. Secondly, it 
features context-aware sensing, meaning that, depending on the 
context (noise level or target event) this system can adjust the 
number of active channels (up to a maximum of 16) that it 
utilizes to classify the event, greatly increasing detection 
accuracy, while only increasing power consumption when 
necessary. 

A mixed-signal wake-up detector based on a custom-made 
field-programmable analog array (FPAA) is presented in [62]. 
The 10-stage FPAA consists of a set of computational analog 
blocks, analog switches, digital look-up tables and flip flops, all 
interconnected by an internal serial peripheral interface. The 
analog blocks include bandpass filters, peak detectors, 
adaptive-time-constant filters and operational transconductance 
amplifiers. The connections between the functional blocks are 
programable, so the FPAA functionality can be adjusted 
according to the use scenario. The authors declare that the 
detector operates with a power consumption of 43 µW and a 
vehicle detection accuracy of 100%. Upon complete detection 
and classification, the detector wakes up a microcontroller to 
perform a more detailed and less resource-constrained 
classification. 

In [3] a multi-purpose low-power acoustic event detection 
system is developed, featuring low-power always-on control 
circuits that activate more power-hungry components only 
when there is activity on the microphone. This system combines 
scheduled duty cycling and wake-up functionalities into a 
two-level hierarchical power-up, by having the microphone 
amplifier, which provides input for the wake-up circuit, active 
only 1% of the time (1 ms in each 100 ms) and then having the 
wake-up circuit power up the phase-locked loop and power 
amplifier only if an event is detected. The wake-up circuitry has 
a power consumption around 58 µW. 

An embedded analog wake-up detector featuring COTS 
components and based on frequency detection is presented in 
[18] (Fig. 12). The input signal passes through a hysteresis 
comparator. Each time a predefined level is crossed, the change 
of comparator output triggers a monostable, which drives a 
current mirror to charge a capacitor. This means that the 
capacitor is charged depending on the number of level 
crossings, i.e., the frequency spectrum of the input signal. After 
a predefined interval, the capacitor voltage is passed over to a 
set of comparator pairs to determine if the voltage level is 
within certain bounds (and thus determining the input signal 
frequency). The capacitor is afterwards discharged and the 
whole process starts again. 

 

Fig. 12. Block schematic of the wake-up detector presented in [18]. 

The detector’s power consumption is 34 µW, which is a 
fraction of the 600 µW power consumption of the same concept 
implemented digitally by the same authors in [63]. A similar 
analog embedded detector which uses COTS components was 
developed and presented in [64], with a detection accuracy of 
100% (at SNR > 5 dB) and a power consumption of 9.1 µW. 

In [65] authors report a mixed-signal event-triggered 
acoustic emission wake-up detector (Fig. 13). The three-part 
system consists of an acoustic sensor interface, which consumes 

1.2 W in standby mode and 38.5 W in active mode, an 

acoustic event characterization part, which consumes 2.5 W in 

standby mode and 150.8 W in active mode and a multi-hop 
event dissemination part which has a power consumption of 

52.8 W in standby mode and 3.6 mW in active mode. 

 

Fig. 13. Block schematic of the wake-up detector presented in [65]. 

The system was implemented as an analog acoustic 
front-end followed by two processors, one for event 
characterization and the other for communication. The input 
signal is compared to a preset threshold by a comparator and if 
it surpasses the threshold, a latch is activated to maintain power 
supply to the analog amplification and filtering stage and ensure 
the input signal for the ADC. Then, after a digital feature 
extraction and classification, if an event is detected a signal is 
sent to wake up communication hardware. 

In [8] the authors present a 16-channel mixed-signal ASIC 
wake-up VAD with a 1 µW power consumption and a detection 
accuracy of 84.4%/85.4% (speech/non-speech) (Fig. 14). 

 

Fig. 14. Block schematic of the wake-up detector presented in [8]. 

The system preforms analog feature extraction and digital 
event classification. The signal is acquired by a microphone, 
amplified by an LNA, filtered by a second order 
super-source-follower bandpass filter, rectified by a full-wave 
rectifier and converted to the digital domain by the 
integrate-and-fire encoder. The encoder integrates its input until 
a threshold is reached and then generates a pulse, allowing 
overall power consumption reduction utilizing the so-called 
event-driven AD conversion (an ADC operating only when 
input signal is present). The information on each passband 
envelope is stored in the pulse frequency. The detector utilizes 
a 143-neuron deep neural network classifier to classify the 
detected event as speech/non-speech. A previous 128-channel 
version of this detector was used as basis for an event-driven 
silicon cochlea, with a 55 µW power consumption [66]. 

An ASIC mixed-signal wake-up detector presented in [67] 
utilizes analog amplification by an LNA and a programmable 
gain amplifier, frequency down-conversion (from 4 kHz to 
< 500 Hz) and digital spectro-temporal power extraction and 

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2022.3162319

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



Marko Gazivoda et al.: Always-on sparse event wake-up detectors: A Review 5 

 

voice activity detection by a neural network classifier. The 
detector features an 8-bit SAR ADC. In addition to the 
ultra-low-power (ULP) channel described above, the detector 
also uses a high-power (HP) channel, which does not use 
frequency down-conversion (Fig. 15). 

 

Fig. 15. Block schematic of the wake-up detector presented in [67]. 

The power consumption of the ULP is 142 nW and 
speech/non-speech detection accuracy is 91.5%/90% with 
10 dB SNR. Upon speech recognition, the active channel wakes 
up a microcontroller to record the audio signal. 

An ultra-low-power human body motion detector is 
presented in [68] (Fig. 16), as a wake-up circuit for a more 
power-hungry motion sensor system. 

 

Fig. 16. Block schematic of the wake-up detector presented in [68]. 

The detector relies on the capacitive coupling between the 
human body and its surroundings, measuring the voltage across 
a capacitor whose one side is connected to the body and the 
other is a small local ground plane on the sensor board. The 
voltage sensed on the body is amplified so that the full-scale 
range of motions observed for normal actions generate voltages 
from rail to rail. Then an active Sallen-Key third order 
Butterworth lowpass filter with a 10 Hz corner frequency is 
used to filter out the 60 Hz the power lines noise. Finally, the 
filtered signal is sent to two comparators to determine if it is 
within the predefined bounds and, if so, a wake-up signal is 
generated. The wake-up detector has a detection accuracy of 
around 90% and a power consumption of 9.3 µW. 

In [69] an analog low-power wake-up event detector is 
proposed, used to wake up a more power-hungry 
microcontroller upon detecting seismic signals from footsteps 
(Fig. 10). The input signal is filtered using a capacitively 
coupled current conveyor (C4) bandpass filter and then passed 
through an operational transconductance amplifier-based 
envelope detector, consisting of a full wave rectifier followed 
by a peak detector. A comparator is then used to detect whether 
a certain threshold has been passed. If the voltage peaks from 
both bands are higher than a threshold, a wake-up signal is 
generated. To avoid background noise triggering the detector, a 
subtractor, divider and an averaging circuit are added to 
compare the voltage amplitude and background noise. The final 
circuit was not physically implemented in this work, but 
simulation results showed a power consumption of 7.8 nW. 

An ultrasonic wake-up detector for proximity detection is 
presented in [70]. The system features a relatively simple 

wake-up circuit which uses a piezoelectric transducer (sensitive 
in ultrasonic frequency range) to acquire the input signal, 
followed by an operational amplifier (with a gain of 1000), a 
comparator and an integrator (Fig. 17). If the amplified signal 
from the transducer is over a predefined level, the comparator 
charges the integrator. Once the integrator output reaches a 
certain level, the microcontroller is woken up. 

 

Fig. 17. Block schematic of the wake-up detector presented in [70]. 

These detectors are used for detecting the presence of other 
nodes and estimating the distance between them. To be able to 
emit the pulses used in mutual sensor node detection, the input 
transducer also functions as an ultrasonic pulse emitter, with the 
input and output functionality determined by a predefined 
schedule. The system has a power consumption of 19 µW and 
the wake-up system detection accuracy is not stated (only the 
95% accuracy of distance estimation). 

An ASIC analog wake-up detector based on envelope 
periodicity detection was presented in [71] (Fig. 18). It detects 
voice or engine activity based on their periodic components. Its 
input is a preamplified and prefiltered microphone signal. The 
detector extracts the signal’s envelope using a peak detector, 
and a spike generator produces voltage spikes at the envelope 
peaks. Next, the inter-spike intervals are linearly converted to 
voltage by the interval-to-voltage stage, using a controlled 
voltage ramp. This voltage is then sampled and compared to the 
previous one (stored in an analog memory). If three or five 
consecutive voltages (and therefore inter-peak intervals) are the 
same, envelope periodicity is established, and an event of 
interest is detected. If two consecutive voltages are not 
sufficiently alike, the counter resets. Additionally, an interval 
limiter circuit is employed, which confines the detection to 
signals of interest. 

 

Fig. 18. Block schematic of the wake-up detector presented in [71]. 

All sections of the presented detector are custom made and 
the detector’s power consumption is around 1.8 µW. The 
authors state that with appropriate threshold settings 100% 
detection accuracy with no false alarms can be achieved. 

A complex disaster event detection system featuring 
multiple wake-up sensor modalities is presented in [23]. The 
system envisions a sensor network of upper and lower sensor 
nodes placed on the ceilings and floors of subway tunnels, 
featuring hydrostatic pressure sensors for water ingress 
detection, a combination of temperature and photoelectric gas 
sensors for detecting fire and passive acoustic sensors for 
explosion detection. The upper nodes consist of temperature, 
gas and acoustic sensors and consume 7.8 µW and the lower 
nodes use hydrostatic pressure sensors and consume 35.9 µW. 
The sensor nodes communicate regular status information 
during train passing, while exceptional communication, not 
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synchronized with train passing, is a wake-up signal if one of 
the nodes detects one of the described disaster events. 

In [72] an energy-efficient gas recognition system is 
reported, which employs the wake-up concept to power up the 
power-hungry gas sensors only when an analog wake-up circuit 
detects activity on the transducer. The paper does not present 
specifics on the event-driven wake-up circuit. 

Table III gives an overview of analog and mixed-signal 
wake-up systems, showing power consumption, detection 
accuracy, implementation, extracted feature, and application. 

TABLE III – Overview of analog and mixed-signal wake-up detectors 

Ref. 
Power 

(µW) 

Detection 

accuracy 

(%) 

Impl. 
Feature 

extraction 
Application 

[62] 43 100 

custom

-made 

FPAA 

spectro-

temporal 

envelope 

acoustic 

vehicle 

detection 

[71] 1.8 100 ASIC 
envelope 

periodicity 

voice or 

acoustic 

engine 
detection 

[64] 9.1 100 COTS 
frequency 
detection 

acoustic 

vehicle 

detection 

[6], 

[38] 
62.86 

98.67 – 

100 
COTS 

spectro-
temporal 

envelope 

multiple 

acoustic 

events 
detection 

[67] 0.142 90 – 91.5 ASIC 

spectro-

temporal 

power 

voice 
detection 

[56], 
[58], 

[57] 

3.2 – 

34.92 
90.91 

custom 

made 

& 
COTS 

spectro-
temporal 

envelope 

acoustic 
vehicle 

detection 

[68] 9.3 90 COTS 

capacitive 

coupling 
estimation 

human motion 

detection 

[59] 46.67 70 – 90 ASIC 

spectro-

temporal 

envelope 

acoustic 

vehicle 

detection 

[61] 6 89 ASIC 

spectro-

temporal 

envelope 

voice 
detection 

[8] 1 
84.4 – 

85.4 
ASIC 

spectro-

temporal 
envelope 

multiple 
acoustic 

events 

detection 

[3] 58 
not 

specified 
ASIC 

threshold 

detection 

multiple 

acoustic 

events 
detection 

[18] 34 
not 

specified 
COTS 

frequency 

detection 

multiple 

acoustic 

events 
detection 

[65] 1.2 
not 

specified 
COTS 

threshold 

detection 

acoustic 

emissions in 
rock walls 

[60] 2575 
not 

specified 
COTS 

threshold 
detection 

ultrasonic 

plant drought 

detection 

[69] 0.0078 
not 

specified 

ASIC 

model 

spectro-

temporal 

peak 
voltage 

seismic 
activity 

detection 

[70] 19 
not 

specified 
COTS 

threshold 

detection 

ultrasonic 

proximity 
detection 

3) Summary 

In this subsection we present a summary of the SOTA 
wake-up detector analysis, emphasizing the conclusions on 
trends and ideas regarding implementations and functionalities 
to serve as guidelines for future wake-up detector developers. 

The data presented in Tables II, III and IV is shown in a 
visualization of a design plane defined by the detector’s power 
consumption and its accuracy (Fig. 19). The detectors are 
separated into four groups, depending on their signal processing 
domain (digital and analog) and their implementation (utilizing 
COTS or custom-made components). 

 

Fig. 19. A visual representation of the wake-up detector design plane 
defined by detectors’ power consumption and detection accuracy. 

The visualization in Fig. 19 points to several conclusions. 
There are more mixed-signal and analog than digital wake-up 
detectors. While wake-up detectors utilizing COTS 
components are cheaper to develop and produce, they generally 
have higher power consumptions than custom-made ones. A 
typical wake-up detector has a detection accuracy around or 
over 90%. Seeing how each detector’s power consumption is 
defined by its application, events of interest and applicable 
transducers the power consumption range for typical wake-up 
detectors is broad and spans from around a few hundreds of nW 
to around few tens of µW. 

Table IV presents the power consumptions of the three 
commonly used wake-up detector functional blocks (Fig. 2 a). 

TABLE IV – Power consumption breakdown for the analog and 

mixed-signal wake-up detectors 

Ref. 
Power consumption (W) 

Preprocessing 
(per channel) 

Feature extraction 
(per channel) Classification 

[56] not utilized 11.52 0.36 
[57] not utilized 6.97 0.36 
[58] not utilized 3.24 0.36 

[6], [38] not utilized 22.59 0.036 

[59] 2.168 0.093 1.643 

[60] 2533 45 2286 

[61] 0.96 ~0.105 1.05 – 3.8 

[62] 5.375 9.45 

[18] not utilized 29.7 4.422 

[65] 5.87 2.5 

[8] 0.088 0.017 0.63 

[67] 0.073 0.069 

[68] 3.3 6 

As we can see from Table IV, a considerable amount of a 

wake-up detector’s power consumption is used for 
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preprocessing (around 30% – 50%) and classification (usually 

over 30%). 

The SOTA analysis also shows that the majority of wake-up 

detectors utilize acoustic transducers, because acoustic signals 

contain a lot of easily extractable information [34], [38], [62], 

making them ideal for simple, low-power detectors. 

Furthermore, these detectors predominantly detect events 

utilizing spectro-temporal decomposition and features like 

spectro-temporal envelope, magnitude, or energy. 

4) Guidelines 

Following the summary, a set of guidelines for wake-up 

detector design is presented. 

• If the event of interest can be detected using multiple 

sensor modalities, carefully chose the sensor modality 

to optimize detection accuracy and energy efficiency – 

mechanical (acoustic and vibrational) sensors present a 

favorable choice due to high detection accuracy and 

energy efficiency 

• Chose appropriate features of the signal to be used for 

events recognition – some features allow for simpler, 

more efficient and accurate event detection 

• If possible, with regards to price and deployment 

specifics for a given application, use custom integrated 

design to achieve lower power consumption and higher 

(or at least the same) detection accuracy 

• Put special emphasis on the classification scheme, as 

this could allow for a significant power consumption 

reduction 

Finally, the SOTA also pointed to several techniques and 

ideas that could serve as potential guidelines to improve the 

very concept of wake-up detectors. 

• Multi-level hierarchical wake-up with tiered activation 

[34], [55] 

• Context- and cost-aware wake-up which selects 

features based on knowledge of current operating 

conditions and available resources [61] 

• Combination of scheduled duty cycling and a wake-up 

detector [3] 

IV. WAKE-UP DETECTOR APPLICATIONS 

A. Wake-up in Speech and Voice Activity Detection 

Most complex voice and speech analysis systems (be it 
voice control systems, artificial cochlea, or others) feature 
always-on wake-up detectors [8], [10], [49], [50], [73] that 
power the rest of the system up only upon detecting potential 
voice or speech patterns in the audio signal, making this one of 
the most utilized wake-up detector applications. 

The fact that voice activity can relatively easily be 

distinguished from background noise, either by its caried 

energy or spectrum, allows these wake-up systems to be simple, 

and accurate while operating with a low power consumption. 

B. Wake-up in Surveillance and Monitoring Systems 

Another frequent application of wake-up detectors is in 
surveillance and monitoring systems [3], [23], [53], [56], [69], 
[74], because these systems must be continuously active to 
detect any unauthorized entry or violation, and have a high 
detection accuracy because of the potentially high price of 
missed events (people safety, material price and so on). This 
also presents a fitting application for wake-up detectors because 
of the clear distinction between the regular environment state 
and the onset of events of interest, allowing simple detector 
design. Finally, the events of interest should be rare compared 
to a regular system state. All of this contributes to these being 
among the simplest and most reliable wake-up detectors that 
can continuously and reliably monitor and detect events of 
interest with low power consumption. 

There are many different monitoring scenarios and targets 
of interest for these detectors, from human or animal step 
detection [69], [74], vehicle detection [56], [74], detection of 
aggressive behavior [53], to detection of disasters, such as 
explosions, floods or terrorist attacks [23]. While these 
detectors most often employ some form of acoustic transducers 
[3], [23], [56], [74] due to the density of easily accessible 
information in acoustic signals, other transducer modalities 
such as seismic [69], gas, temperature, pressure [23], magnetic, 
infrared [74], or even video [53] are also utilized. 

Stemming from the interest to understand and preserve our 

surroundings, a special subgroup of these monitoring wake-up 

detectors is emerging, meant to observe the natural environment 

[7], with a goal to protect it from pollution, illegal activities and 

so on. 

C. Wake-up in Biomedicine and Health Monitoring 

A somewhat surprisingly well developed wake-up detector 
field of application is in biomedical and health monitoring 
devices [12], [55], [60], [68]. This area of wake-up detectors is 
very broad and encompasses multiple transducer modalities. 
Applications vary from asthmatic wheeze detection [12] 
utilizing acoustic transducers, plant drought detection [60] 
utilizing ultrasonic transducers, to body position and movement 
detection utilizing capacitive transducers [68] and 
accelerometers, gyroscopes and magnetometers [55]. 

Stemming from a more complex manifestation of the event 
of interest, these detectors generally have higher power 
consumptions than other wake-up detectors as they require 
more signal processing and a more complex feature extraction 
scheme. Also, seeing how they interact with living beings, 
special care must be taken in their design to make them safe for 
their subjects and additional restrictions might be imposed on 
their design (limited weight, size, dissipated heat, special shape 
and so on). In certain biomedical applications missed events can 
also be life-threatening, meaning that these systems must 
provide very consistent and reliable event detection. 

D. Other Wake-up Applications 

There are several other wake-up detector utilizations, which 
showcase the currently sparsely explored potential application 
fields where wake-up detectors can improve performance and 
sensor applicability. 
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In [70] an on-demand localization application of the 
wake-up detector is explored, providing a low-power wearable  
solution, requiring no additional infrastructure, making the 
whole system a lot more practical and portable. 

In [72] a wake-up detector is added to a usually 
power-hungry task of gas detection and recognition, enabling 
continuous low-power gas sensing. A zero-power piezoelectric 
flow velocity wake-up detector was developed in [75]. In [45] 
a multi-purpose near-zero-power piezoelectric wake-up 
detector was developed for detecting predefined patterns in 
acceleration, rotation and magnetic field signals. 

Additionally, some authors develop multi-purpose wake-up 
detectors applicable in multiple event detection scenarios [18], 
[34], [51], [54], [63]. 

E. Wake-up Applications Summary 

The visual summary of wake-up detector applications shown 
in Fig. 20 presents comments regarding detector power 
consumption, design complexity and implementation. 

 

Fig. 20. Wake-up detector application overview. 

V. CONCLUSION 

In this paper we presented a review of the wake-up detectors 

applied for sensor node activation. We explained the wake-up 

concept and presented its advantages of increased 

responsiveness (less missed events) and greater prolongation of 

sensor node lifetime compared to duty cycling. We determined 

the power consumption, detection accuracy and false positive 

rate as parameters of interest for wake-up detectors. We 

presented a SOTA analysis, grouping the detectors based on 

their power consumption and implementation. The analysis 

shows that SOTA wake-up detectors achieve detection 

accuracies over 90%. The detectors’ power consumptions vary 

greatly from a few nW to few tens of µW, due to their 

application, events of interest and transducer modalities. The 

analysis also shows that SOTA wake-up detectors most 

frequently utilize acoustic transducers, because the information 

rich acoustic signals allow for simple detector design utilizing 

spectro-temporal features. The analysis also points to future 

trends in wake-up detector design going towards custom-made 

mixed-signal circuits, employing MEMS and NEMS, allowing 

further lowering of the power consumption, while maintaining 

high detection accuracies. Additionally, in the SOTA analysis, 

several techniques and ideas are presented, like hierarchical 

wake-up, context-aware detection, or combination of wake-up 

with duty cycling, which could be used to further improve the 

wake-up detector concept. The presented application analysis 

pointed to surveillance, security, voice detection, biomedical 

and health monitoring as the most common wake-up detector 

applications. The volume of research focusing on wake-up 

detectors presented in this review confirms the wake-up 

detectors’ position as a ubiquitous component in future 

low-power sensor node design. 
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Abstract: The need to understand and manage our surroundings has led to increased interest in 
sensor networks for the continuous monitoring of events and processes of interest. To reduce the 
power consumption required for continuous monitoring, dedicated always-on wake-up detectors 
have been designed, with an emphasis on their low power consumption, simple and robust design, 
and reliable and accurate detection. An especially interesting application of these wake-up detectors 
is in detecting acoustic signals. In this paper, we present a study on the features and detectors ap-
plicable for the detection of sporadic acoustic events. We perform a state-of-the-art acoustic detector 
analysis, grouping the detectors based on the features they utilize and their implementations. This 
analysis shows that acoustic wake-up detectors predominantly utilize spectro-temporal (56%) and 
temporal features (36%). Following the state-of-the-art analysis, we select two detector architecture 
candidates for a case study on passing motor vehicle detection. We utilize our previously developed 
spectro-temporal decomposition detector and develop a novel level-crossing rate detector. The re-
sults of the case study shows that the proposed level-crossing rate detector has lower component 
count (44 compared to 70) and power consumption (9.1 µW compared to 34.6 µW) and is an optimal 
solution for SNRs over 0 dB. 

Keywords: low power; state-of-the-art analysis; wake-up detector architecture; embedded electron-
ics; case study; motor vehicle detection 
 

1. Introduction 
The growing need to better understand and manage our surroundings has led to 

increased interest in the continuous monitoring of events and processes, utilizing sensor 
networks consisting of hundreds or thousands of small, robust sensor nodes [1–4]. How-
ever, having a complex system continuously monitoring for events of interest consumes 
a lot of power [5,6]. To reduce this power consumption, dedicated always-on low-power 
wake-up detectors have been designed that wake up the more complex circuits with 
higher power consumption only when an event of interest is detected [3,7]. Such detectors 
determine the presence of event candidates by performing low-power extraction and 
analysis of the sensor signal’s features [8–11]. 

The key emphasis in the design of wake-up detectors is on low power consumption, 
cheap, simple design, and accurate detection [7,11–14] to ensure low false detection rates, 
even in the most adverse conditions, as false event detections increase the overall system’s 
power consumption by causing unnecessary activations of the main stage. 

Wake-up detectors are often employed in acoustic event recognition because acoustic 
signals contain a lot of easily extracted information [15–17]. Because of this, they have 
been utilized in many fields, including safety and security [5,18–21], biomedical and 
health monitoring [22–24], environmental monitoring [12,25–27], Internet of Things (IoT) 
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applications [2,8], structural health monitoring, non-destructive testing and machinery di-
agnosis [24], speech or voice activity detection [24,28–33], and others. 

In this paper, we present a study on the signal features and wake-up detector archi-
tectures applicable for the detection of sporadic, rarely occurring transient acoustic events 
that appear in the lower end of the acoustic spectrum (up to a few kHz), such as passing 
motor vehicles. 

Our contributions include a review of the state-of-the-art (SOTA) acoustic detectors, 
the selection of detector architectures of interest, and a comparison of their performance 
in a case study of motor vehicle (speedboat) detection. A dditionally, we develop a novel 
implementation of a level-crossing rate acoustic wake-up detector and analyze its perfor-
mance. 

The rest of the paper is organized as follows. Section 2 details the SOTA acoustic 
wake-up detector analysis. Stemming from the SOTA analysis, in Section 3, the detector 
selection is performed, and the principles of operation and generalized block schematics 
of the selected detectors are presented. In Section 4, a case study experiment is presented 
to evaluate the performance of the selected detectors in the detection of passing motor 
vehicles. Section 5 concludes the paper and presents future work. 

2. State-of-the-Art Acoustic Wake-Up Detector Analysis 
2.1. Methodology 

To select the applicable detectors, we perform an analysis of SOTA acoustic wake-up 
detectors. We explore detector implementations, feature extraction domains (analog, dig-
ital, or mixed), power consumptions, and detection accuracies (true and false positive 
rates). The detector implementation is divided into embedded and integrated, and both 
are further divided into analog, digital, and mixed-signal detectors. The embedded im-
plementations utilize commercial off-the-shelf (COTS) components, while the integrated 
implementations are custom-made. 

In this analysis, we group the detectors by the acoustic signal features they utilize. 
To enable this grouping, we devise a feature categorization (Table 1) by analyzing the 
literature on acoustic signal features [34–36]. While a detailed description of each feature 
used in acoustic event detection would go beyond the scope of this paper, readers inter-
ested in a more detailed explanation of any mentioned feature can find detailed explana-
tions in the literature focused on acoustic feature analysis [34–36]. 

Table 1. Acoustic signal feature categorization. 

Temporal Spectral Spectro-Temporal Cepstral Other 
Level-crossing 

rate-based 
Spectral 

shape-based 
Spectro-temporal 

decomposition-based 
Mel-frequency cepstral 

coefficient-based Eigenspace-based 

Temporal amplitude-
based 

Brightness-based Hurst parameter-based Other cepstral 
coefficient-based 

Acoustic 
environment-based 

Temporal power-based Tonality-based MP-based Gabor features - - 

Rhythm-based Chroma-based 
Sparse coding 
tensor-based  - 

Correlation-based - - - - 

2.2. Results 
As we can see from the results of the SOTA acoustic wake-up detector analysis (pre-

sented in Table 2), six of the categorized acoustic feature subgroups are used in 
power-constrained wake-up detector event detection. 

The spectro-temporal decomposition feature subgroup implies the filtering of the in-
put signals into sub-bands, and the continuous extraction of each sub-band’s feature of 
interest (envelope, energy, power, root mean square (RMS)). After extraction, the feature 
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values are quantified and converted into a binarized spectro-temporal template. A classi-
fier determines this template’s resemblance to a preset template, defined by the event of 
interest. These detectors are usually implemented as mixed-signal detectors, with feature 
extraction and processing performed in the analog and classification in the digital domain. 

The level-crossing rate feature subgroup entails converting the input signal’s cross-
ings of a predefined level into pulses of fixed length and amplitude, estimating the num-
ber of those pulses in a defined time interval, quantifying it and, therefore, quantifying 
the level crossing rate and determining if it is within the bounds of level-crossing rates 
specific for the event of interest. These detectors are usually implemented fully digitally, 
but they can also be implemented completely in the analog domain. 

The correlation subgroup requires the input signal to be compared to a delayed ver-
sion of itself (autocorrelation) or to a preset template representing the event of interest 
(cross-correlation). Autocorrelation can also be employed to estimate the input signal’s 
spectral content by examining and locating the local maxima of the autocorrelation func-
tion, which appear at delay times equal to periods of the input signal’s dominant spectral 
components. These detectors are usually implemented as digital, because of the impracti-
cality of the analog implementation of some required elements, such as delay lines or 
memories for storing templates. 

The short-time energy feature subgroup implies measuring the input signal’s energy 
in short time windows and comparing it to a preset template. While the SOTA detector 
utilizing this feature subgroup ([31]) is implemented as digital, a mixed-signal implemen-
tation similar to the spectro-temporal decomposition could also be considered. 

The spectral shape feature subgroup requires the signal spectrum to be determined, 
and then for certain parameters of its shape to be examined and quantified. To obtain a 
detailed enough spectrum representation, these detectors must be implemented as digital. 

The cepstral coefficients entail estimating the signal’s spectrum, calculating the loga-
rithm of the spectral amplitude, and then performing the discrete cosine transformation 
on it, generating a cepstrum. The amplitudes of the cepstrum peaks represent cepstral 
coefficients. Detectors utilizing these features can be implemented as mixed-signal detec-
tors, employing analog domain filtering specific for the cepstral coefficients of interest, 
followed by digital domain cepstral coefficient estimation. 

Table 2. Acoustic wake-up detectors. 

Feature 
group 

Feature subgroup Feature Ref. 
Detector 

Implementation 

Feature 
Extraction 

Domain 

Power 
(µW) 

Detection 
Accuracy 

TP (%) FP (%) 

Spectro-
temporal 

Spectro-temporal 
decomposition 

Spectro-temporal 
envelope 

[37,38
] 

Embedded 
mixed Analog 7.33; 

34.92 90.91 Not 
stated 

[8,15] Embedded 
mixed 

Analog 26.89 98.67; 
100 

14; 
0 

[16] Integrated mixed Analog 43 100 0 

Spectro-temporal energy 
[39] Integrated mixed Analog 1.01 Not 

stated 
Not 

stated 

[32] Integrated 
digital 

Digital ~ 100 96.63 2.33 

Spectro-temporal power [40] Integrated mixed Mixed 0.142 90–91.5 Not 
stated 

Spectro-temporal RMS [41] Integrated mixed Analog 6 89 Not 
stated 

Spectro-temporal 
(absolute) voltage 

[17] Integrated mixed Digital 0.012 96 – 98  0 

[30] 
Integrated 

analog Analog 2.5 
Not 

stated 
Not 

stated 
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[28,42
] Integrated mixed Analog 1; 

27.77 
~85; 
~80  

Not 
stated; 

0 
Spectro-temporal instant 

rate of change [43] 
Integrated 

digital Digital 0.148 85 – 99 1 – 18 

Temporal 

Level-crossing rate 

Zero-crossing rate 
[13] 

Embedded 
analog Analog 34 

Not 
stated 

Not 
stated 

[8] 
Embedded 

digital Digital ~ 600 
Not 

stated 
Not 

stated 
Zero-crossing rate with 
peak amplitude (ZCPA) [44] 

Integrated 
digital Digital 

Not 
stated 98 

Not 
stated 

Zero-crossing with short-
time magnitude 

difference 
[45] Embedded 

digital 
Digital 30.71 91 Not 

stated 

Correlation 
Autocorrelation 

[31] 
Integrated 

digital Digital 24.4 55 – 95 5 – 20  

[46] Integrated mixed Digital 0.835 97 0 
Cross-correlation [47] Integrated mixed Mixed 1.5 92 7 

Short-time energy Short-time energy 
difference [31] Integrated 

digital Digital 8.5 55 – 95 5 – 20 

Multiple Rise time, min/max, 
energy [48] Embedded 

mixed Digital 8.7 100 Not 
stated 

Spectral Spectral shape Power spectrum density [49] Integrated mixed Digital 4.7 Not 
stated 

Not 
stated 

Cepstral 
Cepstral 

coefficients Mel-frequency CC [33] Integrated 
digital 

Digital 0.51 97.3 2 – 2.3 

2.3. Discussion 
As can be seen from Table 2, most acoustic wake-up detectors utilize spectro-tem-

poral (56% of all analyzed detectors) and, to a lesser extent, temporal features (36% of all 
analyzed detectors). Furthermore, of those detectors, spectro-temporal-decomposi-
tion-based (61%), level-crossing rate-based (17%) and correlation-based (13%) detectors 
constitute the majority. 

Next, we can see that the integrated custom designs account for 68% of all analyzed 
wake-up detector designs, while embedded implementations utilizing COTS components 
constitute around 32%. 

There is approximately the same number of detectors that extract the features in the 
analog and digital domains, with only a few detectors extracting features in both domains 
simultaneously (8%). 

Acoustic wake-up detectors have high detection accuracies (over 90% true positives 
and under 15% false positives, where stated) and their power consumptions vary from 
around 10 nW to around 600 µW, greatly depending on the detector implementation and 
utilized feature. Integrated mixed-signal and digital spectro-temporal decomposition de-
tectors can reach sub-µW power consumptions, while embedded level-crossing rate de-
tectors reach tens or even hundreds of µW. 

3. Wake-Up Detector Selection 
3.1. Criteria 

Motivated by the passing motor vehicle use case scenario, we aim to develop a wake-
up detector of sporadic, transient acoustic events, lasting for several seconds, with the 
bandwidth spanning up to 2 kHz.  
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We focus on wake-up detector architectures implementable with COTS components, 
operating on analog-domain signals, designed for direct interfacing with acoustic sensors 
with little or no amplification, and avoiding power-hungry analog-to-digital (AD) con-
version [16]. Hence, the detector should be able to reliably operate with weak electric in-
put signals (on the order of 10 mV). 

Finally, a wake-up detector must have high detection accuracy, both in terms of high 
true positive rates, as a detector should not miss events, and low false positive rates, as 
false detections lead to wasting power due to unnecessary activations of the power-hun-
gry main stage. 

3.2. Results 

As we can see from Table 3, wake-up detectors utilizing level-crossing rate and spec-
tro-temporal decomposition meet all our selection criteria. 

Table 3. Detector Selection. 

Detectors 
Utilizing 

Criteria 
Applicable for 

Signals of Interest 
Embedded 

Implementation 
No AD 

Conversion 
Detection 
Accuracy 

Autocorrelation / 
cross-correlation ✓ ✗ ✗ ✓ 

Level-crossing 
rate ✓ ✓ ✓ ✓ 

Spectro-temporal 
decomposition ✓ ✓ ✓ ✓ 

Other features ✓ ✗ ✗ ✓ 

3.3. Selected Detectors 
3.3.1. Spectro-Temporal Decomposition 

The generalized architecture of the spectro-temporal decomposition wake-up detec-
tor is shown in Figure 1. 

 
Figure 1. Spectro-temporal decomposition wake-up detector generalized architecture. 

The spectro-temporal decomposition detector consists of a filter for spectral decom-
position, a feature extractor, a quantifier for quantifying the extracted features, and a clas-
sifier to determine if the input signal is from an event of interest. It is usually implemented 
with multiple channels. 

3.3.2. Level-Crossing Rate 
The level-crossing rate wake-up detector general architecture is shown in Figure 2. 
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Figure 2. Level-crossing rate wake-up detector generalized architecture. 

The level-crossing rate detector consists of a level-to-pulse converter that detects level 
crossings and converts them into pulses, a pulse rate estimator for estimating the 
level-crossing rate, and a quantifier for quantifying the level-crossing rate. It is usually 
implemented as a single-channel detector. 

4. Motor Vehicle Passing Detection 
In this section, we present a case study in which we evaluate the performance of the 

two selected detectors in the detection of passing motor vehicles through the analysis of 
their power consumption, minimal input voltage, detection accuracy, and component 
count (estimate of hardware complexity). 

4.1. Motor Vehicle Passing Event and Signal 
For our dataset, we used 11 prerecorded signals of a twin-engine speedboat passing 

over a hydrophone submerged approximately 1 m under the surface in shallow water 
[50]. A representative signal and its spectrogram are shown in Figure 3a and 3b, respec-
tively. 

 
(a) 

 
(b) 

Figure 3. (a) Speedboat passing signal and (b) its spectrogram. 
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In case of the wake-up detector utilizing spectro-temporal decomposition, the pas-
sage of the speedboat can be detected by detecting and tracking the duration of the pres-
ence of the signal in the characteristic frequency band (e.g., 100 Hz to 1 kHz for typically 
0.5 s – 5 s). On the other hand, a similar type of information is obtained by the level-cross-
ing wake-up detector by tracking the rate at which the signal passes a predefined level in 
a set time interval. 

4.2. Detector Implementations 
4.2.1. Spectro-Temporal Decomposition Detector Implementation 

We utilize an embedded spectro-temporal decomposition detector that we first pre-
sented in [38] (schematic and photograph shown in Figure 4). 

 

 

(a) (b) 

Figure 4. Spectro-temporal decomposition wake-up detector from [38]: (a) schematic and (b) pho-
tograph. 

As can be seen from Figure 4a, the implemented detector consists of three channels. 
Each channel extracts information on signal presence within its frequency band. Each 
channel filters the input signal by a digitally programmable active bandpass filter in the 
general impedance converter (GIC) topology, implemented with two MCP6142 opera-
tional amplifiers. The first channel spans the frequency range from 200 Hz to 500 Hz, the 
second from 500 Hz to 1 kHz, and the third from 1 kHz to 2.5 kHz. The central frequency 
and bandpass are programmable (within set limits) in 256 steps by digitally adjustable 
AD5144 potentiometers. 

After filtering, the envelope is extracted utilizing an active voltage doubler, consist-
ing of an MCP6141 operational amplifier and two diodes. The envelope is then quantified 
using a TLV3701 comparator, with a digitally adjustable threshold, adjusted by another 
AD5144 potentiometer. 

Classification is implemented by binary template matching. A template representing 
the signal of interest is programed into an MSP430F2013 low-power microcontroller, 
which also implements a three-channel digital sequence recognition state machine. If the 
spectro-temporal envelopes’ relations match the predefined template, a wake-up signal 
triggers a more power-hungry digital audio signal processing stage. To achieve this, the 
microcontroller implements a state machine, which in each state S0, …, Sk compares the 
binary outputs of the three comparators to the prestored three-channel template. The 
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change from S0 to S1 is asynchronous, and occurs upon the first change of comparator state 
(started by an interrupt), while S1 to Sk each last 0.5 s up to the maximal sequence length. 
A more detailed explanation on the basics of the state machine implementation can be 
found in [9]. For this experiment, the sequence either ends without a wake-up after 7 sec-
onds (in S14) if there is no template match, or with a wake-up signal if all three channels’ 
comparators are simultaneously in a high state for a duration between 0.5 s and 4 s (preset 
template). This sequence description leads to the state machine implementation with 
states S0 to S14. The state machine functionality is also illustrated in Figure 5. 

 
(a) 

 

(b) 

Figure 5. Microcontroller state machine implementation and event detection scheme. Ch1 to Ch3 and 
the three colored lines (green, blue and red) represent each channel’s comparator output, and S0 to 
Sk are the state machine states, each lasting 0.5 s. (a) Event detected: at least 2 and no more than 9 
consecutive states have all 3 comparator outputs in a high state, and a wake-up signal is generated. 
(b) No event detected: the total S0 to S14 sequence passes without meeting the detection condition, 
no wake-up signal is generated. 

4.2.2. Level-Crossing Rate Detector Implementation 
We developed and utilized a novel embedded level-crossing rate detector, which is 

an adapted version of a similar detector presented in [13] (schematic and photograph 
shown in Figure 6). 

The level-crossing detector consists of three main parts. In the first part, each 
level-crossing is detected with a TLV3701 comparator. The level is set by adjusting the 
comparator threshold and, for this experiment, it is set to 2.2 mV. Every time the compar-
ator output changes to a high state, a monostable (consisting of two SN74AUP1G02 NOR 
gates) is triggered to generate a fixed-length pulse. These pulses are summed by a passive 
RC circuit, whose output, thus, represents the number of level crossings. 
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The second part is the timer that consists of a capacitor connected to a TLV3701 com-
parator with an adjustable threshold. The capacitor is charged by a fixed voltage source 
over a trimmer resistor. The trimmer resistor and comparator threshold values determine 
the capacitor charge time, which is set to around 600 ms for this experiment. When the 
capacitor voltage reaches the comparator threshold, the comparator output changes and 
closes the S1 switch (TMUX1101) to propagate the RC circuit voltage to the final detector 
part. After an interval determined by the delay line, the reset switches S2 and S3 
(TMUX1101) of the RC circuit and the timer close, allowing their capacitors to discharge 
to the ground. During the reset, the switch S1 opens, disconnecting the RC circuit from 
the final detector part. After the RC circuit and timer resets are complete, the reset 
switches open, and a new level crossing counting interval starts. For this experiment, the 
delay of the reset signal is set to around 5 ms. 

 

 

(a) (b) 

Figure 6. Novel level-crossing rate wake-up detector: (a) schematic and (b) photograph. 

The final part consists of two TLV3701 comparators with adjustable thresholds and 
an AND logic gate. If the RC circuit voltage is both higher than the lower threshold and 
lower than the higher one, the level-crossing rate is within the set bounds, an event of 
interest is detected, and a wake-up pulse is generated at the AND gate output. For this 
experiment, the lower and upper bounds are set to 100 mV and 625 mV, respectively. 

4.3. Experimental Setup and Procedure 
4.3.1. Experimental Setup 

The experimental setup utilized in this case study is shown in Figure 7. 

 
Figure 7. Experimental setup, with marked components: (1) power source, (2) waveform generator, 
(3) tested detector PCB, (4) data acquisition card, and (5) multimeter. 
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The experimental setup (Figure 7) consists of a GW INSTEK GPD-4303S power 
source (1), a Keysight 33500B waveform generator (2), the tested detector PCBs (spec-
tro-temporal decomposition or level-crossing rate detector) (3), a National Instruments 
USB-6211 data acquisition card (4), and a Fluke 45 multimeter (5). 

4.3.2. Experimental Procedure 
The prerecorded speedboat signals were processed in MATLAB, cropped to a dura-

tion of 7 s, and then attenuated to determine the lowest input signal with which each de-
tector is operational. Then, for the detection accuracy test, the input signals are scaled to 
10 mV and 20 mV peak-to-peak for the level-crossing and spectro-temporal detector, re-
spectively. This voltage scaling adjusts the input signal peak-to-peak voltages to ade-
quately represent the signals generated by passing speedboats on passive hydrophones. 
Additionally, both detectors are operational with higher voltage levels, with threshold 
adjustments. However, if the approximate expected voltage levels are not known for a 
given application, or the input signal dynamic range would expectedly exceed around 
40 dB, an additional automatic gain control (AGC) amplifier would have to be added to 
each detector’s input to ensure correct operation. 

To compare the performance of the two wake-up detectors, different levels of white 
noise were added to each signal to achieve signal-to-noise ratio (SNR) levels from −15 dB 
to 15 dB with a 5 dB step. Such signals were then stored in the waveform generator used 
as a signal source for the detectors. The detector outputs are recorded by a data acquisition 
card, and the recordings are processed using MATLAB. 

For the spectro-temporal detector, a successful wake-up was recorded when its com-
parator outputs matched the predefined binary template and the detector generated a 
wake-up signal. On the other hand, for the level-crossing rate detector, successful detec-
tion is recorded if the RC circuit capacitor voltage was within predefined bounds, gener-
ating a wake-up signal. 

The detector’s power consumption was assessed by measuring its supply current 
(using a multimeter) and multiplying it with the detector’s supply voltage, consumed in 
the steady state, while listening for the acoustic event. 

4.4. Results 
In Table 4 and Figure 8, we present the case study results, showing each detector’s 

power consumption, minimal input voltage, component count, and detection accuracy. 

Table 4. Wake-up detector’s power consumption, minimal input voltage and component count. 

Detector 
Power 
(µW) 

Minimal Input 
Voltage (mVpp) 

Number of Components 
Active Passive Diode Total 

Spectro-temporal 
envelope detector 34.6 20 12 + µC 51 6 70 

Level-crossing rate 
detector 9.1 10 7 35 2 44 



Electronics 2022, 11, 478 11 of 14 
 

 

 
Figure 8. Comparison of speedboat passing detections at given SNR with selected detectors. 

As we can see from Table 4 and Figure 8, the level-crossing rate detector has a signif-
icantly lower component count and would require around a 40% smaller area to imple-
ment (hardware complexity), has lower power consumption, and is operational with 
lower input voltages, while the spectro-temporal detector has slightly better performance 
with low-SNR signals, being operational even with −5 dB SNR, as opposed to the 
level-crossing rate one, which requires at least an SNR of 0 dB for the examined imple-
mentation. 

5. Conclusions 
In this paper, we presented a study on low-power always-on sporadic acoustic event 

wake-up detector designs. To determine the employable detectors and features for this 
application, we performed a SOTA acoustic wake-up detector analysis, which showed 
that most acoustic wake-up detectors utilize spectro-temporal (56%) and temporal fea-
tures (36%), and that the dominant detector implementation is integrated custom-made 
detectors (68%). Following the SOTA analysis, we presented criteria and selected spectro-
temporal decomposition and level-crossing rate as features that allow for the design of a 
low-power, embedded, always-on wake-up detector operating in the analog domain. 
These two wake-up detector designs were compared on a case study on passing marine 
motor vehicle detection. This case study showed that the level-crossing rate detector can 
be made with a significantly lower component count (44 compared to 70) and power con-
sumption (9.1 µW compared to 34.6 µW), but a slightly narrower SNR range of operation 
(minimum of 0 dB SNR compared to -5 dB) than the spectro-temporal detector. In future 
work, the possibilities of utilizing features not utilized previously in wake-up detectors 
will be examined, and a more detailed study of the novel level-crossing rate detector will 
be performed. 

Author Contributions: Conceptualization, M.G., D.O., and V.B.; data curation, M.G.; funding ac-
quisition, V.B.; investigation, M.G.; methodology, M.G. and V.B.; project administration, V.B.; su-
pervision, V.B.; validation, M.G.; visualization, M.G.; writing—original draft, M.G., D.O., and V.B. 
All authors have read and agreed to the published version of the manuscript. 

Funding: Croatian Science Foundation, project: IP-2016-06-8379, SENSIRRIKA. Office of Naval Re-
search Global, project: ONRG-NICOP-N62909-17-1-2160. The work of the doctoral student Marko 
Gazivoda has been supported in part by the “Young researchers’ career development project—train-
ing of doctoral students” of the Croatian Science Foundation, funded by the European Union from 
the European Social Fund. This research has been supported in part by the U.S. Office of Naval 
Research Global under the project ONRG-NICOP-N62909-17-1-2160, AWAKE—ultra-low-power 



Electronics 2022, 11, 478 12 of 14 
 

 

wake-up interfaces for autonomous robotic sensor networks in sea/subsea environments, and par-
tially by Croatian Science Foundation under the project IP-2016-06-8379, SENSIRRIKA—advanced 
sensor systems for precision irrigation in karst landscape. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script, or in the decision to publish the results. 

References 
1. Alioto, M. From Less Batteries to Battery-Less Alert Systems with Wide Power Adaptation down to nWs—Toward a Smarter, 

Greener World. IEEE Des. Test 2021, 38, 90–133. https://doi.org/10.1109/MDAT.2021.3069087. 
2. Alioto, M. IoT: Bird’s Eye View, Megatrends and Perspectives. In Enabling the Internet of Things; Alioto, M., Ed.; Springer Inter-

national Publishing: Cham, Switzerland, 2017; pp. 1–45, ISBN 978-3-319-51480-2. 
3. Goux, N.; Badets, F. Review on event-driven wake-up sensors for ultra-low power time-domain design. Midwest Symp. Circuits 

Syst. 2018, 2018, 554–557. https://doi.org/10.1109/MWSCAS.2018.8623935. 
4. Zikria, Y.B.; Ali, R.; Afzal, M.K.; Kim, S.W. Next-Generation Internet of Things (IoT): Opportunities, Challenges, and Solutions. 

Sensors 2021, 21, 1174. https://doi.org/10.3390/s21041174. 
5. Thoen, B.; Ottoy, G.; Rosas, F.; Lauwereins, S.; Rajendran, S.; De Strycker, L.; Pollin, S.; Verhelst, M. Saving energy in WSNs for 

acoustic surveillance applications while maintaining QoS. In Proceedings of the 2017 IEEE Sensors Applications Symposium, 
Glassboro, NJ, USA, 13–15 March 2017; pp. 1–6. https://doi.org/10.1109/SAS.2017.7894109. 

6. Rovere, G.; Fateh, S.; Benini, L. A 2.2-µW Cognitive Always-On Wake-Up Circuit for Event-Driven Duty-Cycling of IoT Sensor 
Nodes. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 543–554. https://doi.org/10.1109/jetcas.2018.2828505. 

7. Olsson, R.H.; Bogoslovov, R.B.; Gordon, C. Event driven persistent sensing: Overcoming the energy and lifetime limitations in 
unattended wireless sensors. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 
1–3. https://doi.org/10.1109/ICSENS.2016.7808398. 

8. Fourniol, M.; Gies, V.; Barchasz, V.; Kussener, E. Low-Power Wake-Up System based on Frequency Analysis for Environmental 
Internet of Things. In Proceedings of the 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Sys-
tems and Applications (MESA), Oulu, Finland, 2–4 July 2018; pp. 1–6. https://doi.org/10.1109/MESA.2018.8449164. 

9. Oletic, D.; Korman, L.; Magno, M.; Bilas, V. Time-frequency pattern wake-up detector for low-power always-on sensing of 
acoustic events. In Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference 
(I2MTC), Houston, TX, USA, 14–17 May 2018; pp. 1–6. https://doi.org/10.1109/I2MTC.2018.8409577. 

10. Anastasopoulos, A.A. Signal Processing and Pattern Recognition of Ae Signatures. In Experimental Analysis of Nano and Engi-
neering Materials and Structures; Springer: Dordrecht, The Netherlands, 2007; pp. 929–930. https://doi.org/10.1007/978-1-4020-
6239-1_462. 

11. Jensen, U.; Kugler, P.; Ring, M.; Eskofier, B.M. Approaching the accuracy–cost conflict in embedded classification system design. 
Pattern Anal. Appl. 2016, 19, 839–855. https://doi.org/10.1007/s10044-015-0503-1. 

12. Mayer, P.; Magno, M.; Benini, L. Self-Sustaining Acoustic Sensor with Programmable Pattern Recognition for Underwater Mon-
itoring. IEEE Trans. Instrum. Meas. 2019, 68, 2346–2355. https://doi.org/10.1109/TIM.2018.2890187. 

13. Fourniol, M.; Gies, V.; Barchasz, V.; Kussener, E.; Barthelemy, H.; Vauche, R.; Glotin, H. Analog Ultra Low-Power Acoustic 
Wake-Up System Based on Frequency Detection. In Proceedings of the 2018 IEEE International Conference on Internet of Things 
and Intelligence System (IOTAIS), Bali, Indonesia, 1–3 November 2018; pp. 109–115. https://doi.org/10.1109/IO-
TAIS.2018.8600849. 

14. Astapov, S.; Preden, J.S.; Ehala, J.; Riid, A. Object detection for military surveillance using distributed multimodal smart sensors. 
In Proceedings of the 2014 19th International Conference on Digital Signal Processing, Hong Kong, China, 20–23 August 2014; 
pp. 366–371. https://doi.org/10.1109/ICDSP.2014.6900688. 

15. Mayer, P.; Magno, M.; Benini, L. A2Event: A Micro-Watt Programmable Frequency-Time Detector for Always-On Energy-Neu-
tral Sensing. Sustain. Comput. Inform. Syst. 2019, 25, 100368. https://doi.org/10.1016/j.suscom.2019.100368. 

16. Bhattacharyya, S.; Andryzcik, S.; Graham, D.W. An Acoustic Vehicle Detector and Classifier Using a Reconfigurable Ana-
log/Mixed-Signal Platform. J. Low Power Electron. Appl. 2020, 10, 6. https://doi.org/10.3390/jlpea10010006. 

17. Jeong, S.; Chen, Y.; Jang, T.; Tsai, J.M.L.; Blaauw, D.; Kim, H.S.; Sylvester, D. Always-On 12-nW Acoustic Sensing and Object 
Recognition Microsystem for Unattended Ground Sensor Nodes. IEEE J. Solid-State Circuits 2018, 53, 261–274. 
https://doi.org/10.1109/JSSC.2017.2728787. 

18. Wang, Y.; Zhou, R.; Liu, Z.; Yan, B. A Low-Power CMOS Wireless Acoustic Sensing Platform for Remote Surveillance Applica-
tions. Sensors 2020, 20, 178. https://doi.org/10.3390/s20010178. 

19. Kucukbay, S.E.; Sert, M.; Yazici, A. Use of Acoustic and Vibration Sensor Data to Detect Objects in Surveillance Wireless Sensor 
Networks. In Proceedings of the 2017 21st International Conference on Control Systems and Computer Science (CSCS), Bucha-
rest, Romania, 29–31 May 2017; pp. 207–212. https://doi.org/10.1109/CSCS.2017.35. 



Electronics 2022, 11, 478 13 of 14 
 

 

20. Salazar-García, C.; Castro-González, R.; Chacón-Rodríguez, A. RISC-V based sound classifier intended for acoustic surveillance 
in protected natural environments. In Proceedings of the 2017 IEEE 8th Latin American Symposium on Circuits & Systems 
(LASCAS), Bariloche, Argentina, 20–23 February 2017; pp. 1–4. https://doi.org/10.1109/LASCAS.2017.7948070. 

21. Delgado Prieto, M.; Zurita Millan, D.; Wang, W.; Machado Ortiz, A.; Ortega Redondo, J.A.; Romeral Martinez, L. Self-powered 
wireless sensor applied to gear diagnosis based on acoustic emission. IEEE Trans. Instrum. Meas. 2016, 65, 15–24. 
https://doi.org/10.1109/TIM.2015.2476278. 

22. Oletic, D.; Bilas, V. Asthmatic Wheeze Detection from Compressively Sensed Respiratory Sound Spectra. IEEE J. Biomed. Health 
Inform. 2018, 22, 1406–1414. https://doi.org/10.1109/JBHI.2017.2781135. 

23. Oletic, D.; Bilas, V. Energy-efficient respiratory sounds sensing for personal mobile asthma monitoring. IEEE Sens. J. 2016, 16, 
8295–8303. https://doi.org/10.1109/JSEN.2016.2585039. 

24. Tschope, C.; Duckhorn, F.; Richter, C.; Bl, P.; Wolff, M. An Embedded System for Acoustic Pattern Recognition. In Proceedings 
of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. https://doi.org/10.1109/ICSENS.2017.8234380. 

25. Mois, G.; Folea, S.; Sanislav, T. Analysis of Three IoT-Based Wireless Sensors for Environmental Monitoring. IEEE Trans. In-
strum. Meas. 2017, 66, 2056–2064. https://doi.org/10.1109/TIM.2017.2677619. 

26. Luo, L.; Qin, H.; Song, X.; Wang, M.; Qiu, H.; Zhou, Z. Wireless Sensor Networks for Noise Measurement and Acoustic Event 
Recognitions in Urban Environments. Sensors 2020, 20, 2093–2113. https://doi.org/10.3390/s20072093. 

27. Peckens, C.; Porter, C.; Rink, T. Wireless Sensor Networks for Long-Term Monitoring of Urban Noise. Sensors 2018, 18, 3161. 
https://doi.org/10.3390/s18093161. 

28. Yang, M.; Yeh, C.H.; Zhou, Y.; Cerqueira, J.P.; Lazar, A.A.; Seok, M. Design of an Always-On Deep Neural Network-Based 1-µ 
W Voice Activity Detector Aided with a Customized Software Model for Analog Feature Extraction. IEEE J. Solid-State Circuits 
2019, 54, 1764–1777. https://doi.org/10.1109/JSSC.2019.2894360. 

29. Lauwereins, S.; Meert, W.; Gemmeke, J.; Verhelst, M. Ultra-low-power voice-activity-detector through context- and resource-
cost-aware feature selection in decision trees. In Proceedings of the 2014 IEEE International Workshop on Machine Learning for 
Signal Processing (MLSP), Reims, France, 21–24 September 2014; pp. 1–6. https://doi.org/10.1109/MLSP.2014.6958918. 

30. Medeiros, J.E.G.; Chrisostomó, L.A.P.; Meira, G.; Toledo, Y.C.R.; Pimenta, M.; Haddad, S.A.P. A fully analog low-power wave-
let-based Hearing Aid Front-end. In Proceedings of the 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), Rot-
terdam, The Netherlands, 31 October–2 November 2013; pp. 242–245. https://doi.org/10.1109/BioCAS.2013.6679684. 

31. Price, M.; Glass, J.; Chandrakasan, A.P. A Low-Power Speech Recognizer and Voice Activity Detector Using Deep Neural Net-
works. IEEE J. Solid-State Circuits 2018, 53, 66–75. https://doi.org/10.1109/JSSC.2017.2752838. 

32. Raychowdhury, A.; Tokunaga, C.; Beltman, W.; Deisher, M.; Tschanz, J.W.; De, V. A 2.3 nJ/Frame Voice Activity Detector-Based 
Audio Front-End for Context-Aware System-On-Chip Applications in 32-nm CMOS. IEEE J. Solid-State Circuits 2013, 48, 1963–
1969. https://doi.org/10.1109/JSSC.2013.2258827. 

33. Shan, W.; Yang, M.; Wang, T.; Lu, Y.; Cai, H.; Zhu, L.; Xu, J.; Wu, C.; Shi, L.; Yang, J. A 510-nW Wake-Up Keyword-Spotting 
Chip Using Serial-FFT-Based MFCC and Binarized Depthwise Separable CNN in 28-nm CMOS. IEEE J. Solid-State Circuits 2021, 
56, 151–164. https://doi.org/10.1109/JSSC.2020.3029097. 

34. Alías, F.; Socoró, J.C.; Sevillano, X. A review of physical and perceptual feature extraction techniques for speech, music and 
environmental sounds. Appl. Sci. 2016, 6, 143. https://doi.org/10.3390/app6050143. 

35. Serizel, R.; Bisot, V.; Essid, S.; Richard, G. Acoustic Features for Environmental Sound Analysis. In Computational Analysis of 
Sound Scenes and Events; Springer International Publishing: Cham, Switzerland, 2018; pp. 71–101. https://doi.org/10.1007/978-3-
319-63450-0_4. 

36. Chu, S.; Narayanan, S.; Kuo, C.J. Environmental Sound Recognition with Time–Frequency Audio Features. IEEE Trans. Audio 
Speech. Lang. Processing 2009, 17, 1142–1158. https://doi.org/10.1109/TASL.2009.2017438. 

37. Gazivoda, M.; Bilas, V. Low-Power Sensor Interface with a Switched Inductor Frequency Selective Envelope Detector. Sensors 
2021, 21, 2124. https://doi.org/10.3390/s21062124. 

38. Oletic, D.; Gazivoda, M.; Bilas, V. A programmable 3-channel acoustic wake-up interface enabling always-on detection of un-
derwater events within 20 µA. In Proceedings of the Eurosensors 2018 Conference, Graz, Austria, 9–12 September 2018; pp. 1–
7. https://doi.org/10.3390/proceedings2130768. 

39. Gutierrez, E.; Perez, C.; Hernandez, F.; Hernandez, L. VCO-based Feature Extraction Architecture for Low Power Speech Recog-
nition Applications. In Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWS-
CAS), Dallas, TX, USA, 4–7 August 2019; pp. 1175–1178. https://doi.org/10.1109/MWSCAS.2019.8885088. 

40. Oh, S.; Kim, H.-S.; Sylvester, D.; Cho, M.; Shi, Z.; Lim, J.; Kim, Y.; Jeong, S.; Chen, Y.; Rothe, R.; et al. An Acoustic Signal Pro-
cessing Chip With 142-nW Voice Activity Detection Using Mixer-Based Sequential Frequency Scanning and Neural Network 
Classification. IEEE J. Solid-State Circuits 2019, 54, 3005–3016. https://doi.org/10.1109/JSSC.2019.2936756. 

41. Badami, K.M.H.; Lauwereins, S.; Meert, W.; Verhelst, M. A 90 nm CMOS, 6 µW power-proportional acoustic sensing frontend 
for voice activity detection. IEEE J. Solid-State Circuits 2016, 51, 291–302. https://doi.org/10.1109/JSSC.2015.2487276. 

42. Rumberg, B.; Graham, D.W.; Kulathumani, V. A low-power, programmable analog event detector for resource-constrained 
sensing systems. In Proceedings of the 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), 
Boise, ID, USA, 5–8 August 2012; pp. 338–341. https://doi.org/10.1109/MWSCAS.2012.6292026. 



Electronics 2022, 11, 478 14 of 14 
 

 

43. Wang, Z.; Liu, Y.; Zhou, P.; Tan, Z.; Fan, H.; Zhang, Y.; Shen, L.; Ru, J.; Wang, Y.; Ye, L.; et al. A 148-nW Reconfigurable Event-
Driven Intelligent Wake-Up System for AIoT Nodes Using an Asynchronous Pulse-Based Feature Extractor and a Convolu-
tional Neural Network. IEEE J. Solid-State Circuits 2021, 56, 3274–3288. https://doi.org/10.1109/JSSC.2021.3113257. 

44. Kim, C.M.; Lee, S.Y. A digital chip for robust speech recognition in noisy environment. In Proceedings of the 2001 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), Salt Lake City, UT, USA, 
7–11 May 2001; Volume 2, pp. 1089–1092. https://doi.org/10.1109/ICASSP.2001.941109. 

45. He, F. A Portable Low-Power Electronic Adherence Monitoring System for Cystic Fibrosis; University of Sheffield: Sheffield, UK, 2019. 
46. Goldberg, D.H.; Andreou, A.G.; Julián, P.; Pouliquen, P.O.; Riddle, L.; Rosasco, R. VLSI implementation of an energy-aware 

wake-up detector for an acoustic surveillance sensor network. ACM Trans. Sens. Netw. 2006, 2, 594–611. 
https://doi.org/10.1145/1218556.1218562. 

47. Habibi, M.; Shakarami, M.; Khoddami, A.A. A low power mixed signal correlator for power efficient sound signature detection 
and template matching. Sens. Rev. 2017, 37, 213–222. https://doi.org/10.1108/SR-06-2016-0098. 

48. Sutton, F.; Forno, R.D.; Gschwend, D.; Gsell, T.; Lim, R.; Beutel, J.; Thiele, L. The Design of a Responsive and Energy-efficient 
Event-triggered Wireless Sensing System. In Proceedings of the 14th International Conference on Embedded Wireless Systems 
and Networks (EWSN 2017), Uppsala, Sweden, 20–22 February 2017; pp. 144–155. https://doi.org/10.5555/3108009.3108028. 

49. Cho, M.; Oh, S.; Jeong, S.; Zhang, Y.; Lee, I.; Kim, Y.; Chuo, L.-X.; Kim, D.; Dong, Q.; Chen, Y.-P.; et al. A 6 × 5 × 4 mm3 general 
purpose audio sensor node with a 4.7 µW audio processing IC. In Proceedings of the 2017 Symposium on VLSI Circuits, Kyoto, 
Japan, 5–8 June 2017; pp. C312–C313. https://doi.org/10.23919/VLSIC.2017.8008521. 

50. Underwater Video of Twin Engine Boat Props High Speed. Available online: https://www.youtube.com/watch?v=6uQ7IDqb-
mAE (accessed on 7 June 2018). 



Publications 

92 

 

 

 

 

 

 

Publication 3 

Gazivoda, M., Bilas, V., “Low-Power Sensor Interface with a Switched Inductor Frequency 

Selective Envelope Detector”, Sensors, Vol. 21, Issue 6, pp 21, 2021, doi:10.3390/s21062124 

 



sensors

Article

Low-Power Sensor Interface with a Switched Inductor
Frequency Selective Envelope Detector

Marko Gazivoda * and Vedran Bilas

����������
�������

Citation: Gazivoda, M.; Bilas, V.

Low-Power Sensor Interface with a

Switched Inductor Frequency

Selective Envelope Detector. Sensors

2021, 21, 2124. https://doi.org/

10.3390/s21062124

Academic Editor: Fabian Khateb

Received: 17 February 2021

Accepted: 16 March 2021

Published: 18 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia;
vedran.bilas@fer.hr
* Correspondence: marko.gazivoda@fer.hr

Abstract: With the growing need to understand our surroundings and improved means of sensor
manufacturing, the concept of Internet of Things (IoT) is becoming more interesting. To enable
continuous monitoring and event detection by IoT, the development of low power sensors and
interfaces is required. In this work we present a novel, switched inductor based acoustic sensor
interface featuring a bandpass filter and envelope detector, perform a sensitivity, frequency selectivity,
and power consumption analysis of the circuit, and present its design parameters and their qualitative
influence on circuit characteristics. We develop a prototype and present experimental characterization
of the interface and its operation with input signals up to 20 mV peak-to-peak, at low acoustic
frequencies from 100 Hz to 1 kHz. The prototype achieves a sensitivity of approximately 2 mV/mV
in the passband, a four times lower sensitivity in the stopband, and a power consumption of
approximately 3.31 µW. We compare the prototype interface to an interface consisting of an active
bandpass filter and a passive voltage doubler using a prerecorded speedboat signal.

Keywords: sensor signal conditioning circuit; event detection application; switched inductor filter;
weak signal detection

1. Introduction

The growing need to understand and manage our surroundings, coupled with ad-
vances in sensor technologies and manufacturing processes [1], has led to an increased
interest in the concept of Internet of Things (IoT), which envisions sensor networks con-
sisting of hundreds of thousands of small, robust sensor nodes utilized to continuously
monitor real-world events and processes [2–4]. Continuous monitoring and event detection
emphasize the need for low-power sensors and sensor signal conditioning circuits which
enable the node to achieve long life-times, even when powered by small batteries [3–5].

Acoustic sensors present an attractive choice for IoT applications because they gen-
erate signals that are rich in information and can be processed using relatively simple
hardware [6–8] that powers up the rest of the sensor node only upon detection of an event
of interest [4,5], thereby reducing the power consumption of an acoustic sensor node. These
wake-up sensor interfaces utilize bandpass filtering, envelope detection, quantization, and
some rudimentary form of classification to determine if an event of interest occurred. Imple-
mentations of the wake-up interface with an active bandpass filter, diode envelope detector,
and microcontroller-based classification are presented in [9,10]. The power consumption of
the bandpass filter and the envelope detector is reported as 8.25 µW in [9] and 20.74 µW
in [10].

The envelope detector is one of the critical elements in the weak signal front ends
in various applications (sensing, communications, energy harvesting) due to its power-
consumption to sensitivity trade-off [11–16]. In [17] we studied the impact of the envelope
detector on sensitivity and power consumption of the wake-up sensor interface in the lower
audio frequency range. Based on the mechanically switched inductor energy harvester [16],
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in [18] we demonstrated that a piezoelectric energy harvester can be used as a vibration
sensor utilizing a mechanically switched inductor driven by the sensed vibrations.

In order to increase the sensitivity of low-power acoustic wake-up sensor interfaces,
and at the same time lower their power consumption, in this work we propose a novel
approach, utilizing an electrically switched inductor as a replacement for conventionally
used bandpass filter and envelope detector functional blocks. Using this approach, in-
spired by the switched inductor bandpass filter [19,20], and the switched inductor energy
harvester [12,13,16], we devise a novel, low-power wake-up sensor interface, operational
with weak input signals (around 5 mV) in the low acoustic frequency range (100 Hz–1 kHz)
and applicable in low-power always-on acoustic event detectors.

With this work we present several contributions: a novel, frequency-selective, voltage-
boosting, low-power, weak-signal acoustic sensor interface; a sensitivity, frequency se-
lectivity and power consumption analysis of the circuit; design parameter selection, and
their influence on interface characteristics; experimental characterization of a prototype,
and its comparison to an interface consisting of an active bandpass filter and a passive
voltage doubler.

The rest of this paper is organized as follows: Section 2 presents related circuits and
principles of operation. Section 3 shows the proposed interface characteristics and design
parameters. Section 4 presents a simulation study of the sensor interface, determining its
key design parameters and desired functionality. Section 5 shows the developed prototype
and its experimental characterization. In Section 6 a set of design recommendations for
interface synthesis are given. Section 7 presents a comparison of the novel sensor interface
and interface presented in [9,18] and Section 8 states the concluding remarks of the paper
and presents future work.

2. Related Circuits and Principles of Operation

The proposed sensor interface utilizes the switched inductor for filtering the sensor
signal and extracting and boosting its envelope. This concept was inspired by two previous
lines of work, the switched inductor filter and the switched inductor energy harvester.

2.1. Switched Inductor Filter

The switched inductor filter (shown in Figure 1a) consisting of a capacitor, Cf, inductor,
Lf, and two switches Sf1 and Sf2, is used in power electronics to electrically tune the
frequency characteristic of inverter outputs, suppressing unwanted harmonics [19,20].
Figure 1b shows the electrically tunable frequency characteristic of such a filter and the
impact of the switch control function duty cycle as its tuning parameter. The input signal
frequency was normalized with regards to the filter central frequency and the output
voltage root mean square (RMS) was normalized with regards to the maximal filter output
RMS voltage (obtained with the 90% duty cycle when the input signal frequency was equal
to the filter central frequency).

Figure 1. Cont.
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normalized with regards to the filter’s central frequency.

The passive LC filter has a resonant frequency, fres:

fres =
1

2π
√

L f C f

(1)

where Lf and Cf are the values of inductance and capacitance, respectively. By switching
the inductor on and off, its effective value, Lfeff, seen at the circuit input, is changed, which
changes the filter’s frequency characteristics. The two switches, Sf1 and Sf2, (Figure 1a)
are driven by two antiparallel square signals, with switch Sf2 closing when Sf1 opens to
provide a discharge current path for the inductor. The switching function F1(t) of the switch
S1 is given as [20]:

F1(t) = A0 + 2
∞

∑
n=1

sin
(

nω d
2

)
nπ

cos(nωt− nθ) (2)

where t denotes time, d and θ are the pulse duration and the phase delay of the switch
control function, respectively, ω is the angular frequency of the switch control signal, n is a
positive integer, and A0 is the average value of the switching function on its single period
T. The average value of the switching function is determined by its duty cycle, i.e., the ratio
of the duration of the function’s high state and its period, A0 = d/T. The switching function
takes on the value of 1 when the switch is closed and 0 when it is open.

The authors of [19,20] do not analyze the influence of the switch control function
frequency on the filter functionality. They only state that it should be higher than input
signal frequency fin.
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The filter output voltage, Vfo(t), is determined by the voltage of the node between the
filter capacitor Cf and switch Sf1, Vc-s(t), and the switching function F1(t):

Vf o(t) = F1(t)·Vc−s(t) (3)

From Equations (2) and (3) and a few steps presented in [20], it can be determined
that the effective value of the filter inductance Lfeff is proportional to:

L f e f f ∝
L f

A02 (4)

and therefore, dependent on the average value of the switching function, which is, as
shown previously, determined by the switching function’s duty cycle that can be used to
tune the filter’s frequency characteristic, as shown in Figure 1b.

2.2. Switched Harvester on Inductor

The switched harvester on inductor (one version shown in Figure 2a) is used to
increase the efficiency in energy harvesting, by boosting the harvester’s transducer voltage,
Vtr(t), prior to rectification (as shown in Figure 2b) [12,13,16].
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(purple) with the switch closed and opened, respectively. (b) Switched harvester on inductor out-
put signal waveform (red) compared to a rectifier without the switched inductor (blue). Input sig-
nal (yellow): 500 ms of sinusoidal signal, 20 mV peak-to-peak, 100 Hz, followed by a 1.5 s pause. 
Cr1 = Cr2 = 1 µF, Lr = 100 mH, switch control frequency fswitch = 256 Hz, duty cycle 50%. 
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Figure 2. (a) Switched harvester on inductor with marked inductor current, iLcl(t) (green) and
iLo(t) (purple) with the switch closed and opened, respectively. (b) Switched harvester on inductor
output signal waveform (red) compared to a rectifier without the switched inductor (blue). Input
signal (yellow): 500 ms of sinusoidal signal, 20 mV peak-to-peak, 100 Hz, followed by a 1.5 s pause.
Cr1 = Cr2 = 1 µF, Lr = 100 mH, switch control frequency fswitch = 256 Hz, duty cycle 50%.
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While the switch Sr is closed, the energy of the harvester’s transducer signal is stored
in the magnetic field of the inductor, Lr, changing the inductor’s current by ∆iL with:

∆iL =
1
Lr

∫ t2

t1

Vtr(t)dt (5)

where t1 and t2 are, respectively, the beginning and ending moment of observing the storing
of energy in the inductor’s magnetic field, and Vtr(t) is the harvester’s transducer voltage.

At the moment to, when the switch opens, the energy stored in the inductor generates
an induced voltage, Vind:

Vind = Lr
diL(t)

dt

∣∣∣∣
t=to

(6)

We can approximate the time derivation of the inductor current at the moment to as:

diL(t)
dt

∣∣∣∣
t=to

=
iL(tO)

∆t
=

1
Lr

∫ tO
tC

Vtr(t)dt

∆t
(7)

where iL(to) is the inductor current at the instant of the switch opening, tc the time instant
when the switch is closed, and ∆t is the time required for the inductor current to fall to zero.

If the voltages induced on the inductor are high enough to pass over the diodes, they
will charge the output capacitor to the steady state voltage:

Vro_ss = 2·

∫ tO
tC

Vtr(t)dt

∆t
−VD

 (8)

where VD is the diode threshold voltage.
Neglecting energy losses, the maximal obtainable rectifier output voltage Vro_max

depends on the inductance Lr, capacitance Cr1,2, and the current through the inductor at
the instant the switch opens, iL(to) (9) [21].

Vro_max = iL(tO)·
√

Lr

Cr1,2
(9)

The output capacitor Cr2 gradually discharges when no signal is coming from the
harvester’s transducer (as seen in Figure 2b) because of the leakage currents of the reversely
polarized diodes, or the input impedance of the next interface stage.

3. Proposed Sensor Interface Characteristics and Design Parameters

Combining the two functionalities explored in the literature, in this work we devise
a low-power, frequency selective, voltage boosting sensor interface (Figure 3a), capable
of operating with signals under 5 mV peak-to-peak and in the low acoustic frequency
range, from 100 Hz to 1 kHz. For the interface to meet these demands, several of its
characteristics should be considered. The first is the interface’s sensitivity (Figure 3c), the
ratio of output headroom voltage and input voltage, with the headroom voltage defined as
the voltage difference between the interface output voltage with no input and the interface
lowest steady-state output voltage with a given input, as shown in Figure 3b. The stopband
sensitivity should also be considered, as the maximal expected stopband voltage defines the
lowest passband voltage levels with which the interface can operate (spurious-free range,
Figure 3c). This leads to the next characteristic, the frequency selectivity, i.e., the difference
between its passband and stopband sensitivities (Figure 3c,d). The final characteristic is
the power consumption.
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From the presented principles of operation and the desired characteristics of the
proposed interface, we determined its key design parameters that can be divided in two
groups: switch control signal parameters and passive component values.

The switch control signal parameters of interest are: switch control signal frequency,
duty cycle, and delay between the switch control and input signal (the switch is controlled
by an independent voltage signal Vosc(t), as shown in Figure 3a).

The passive components of interest are: input capacitor Cin, inductor L, Q factor of the
input switched inductor filter, and output capacitors, Cout1 and Cout2, which we analyzed
in detail in our previous work [17,18]. The diodes were also chosen based on previous
work analyzing their influence on weak-signal rectifier performance [14,22].

4. Proposed Sensor Interface Simulation Study
4.1. Simulation Model

In order to both characterize the proposed sensor interface and narrow the parameter
selection for the prototype realization, a SPICE model has been implemented and simulated
in Texas Instruments’ PSpice (Dallas, Texas, TX, USA) following the schematic shown in
Figure 3a. The obtained simulation results were further processed and presented using
MathWorks’ MATLAB® (Natick, Massachusetts, MA, USA).

The following parameters were varied to determine their influence on the output
voltage characteristics and power consumption: switch control signal frequency and
duty cycle, delay between the switch control signal and input signal, input capacitor, Cin,
inductor, L, and resistance, RL, filter quality factor, Q, defined as:

Q =
1

RL
·

√
L

Cin
(10)

The output capacitors, Cou1 and Cout2 were both 1 µF, following previous research
conclusions and the diodes chosen for the simulation model were the HSMS-282x (Agilent
Technologies, Santa Clara, California, CA, USA), because of their low forward voltage,
low reverse current, and high saturation current. For simulation analyses showing the
frequency characteristics, the input, Vin(t), was a sinusoidal signal with frequency varied
from 50 Hz to 2000 Hz, with a 50 Hz step and 20 mV peak-to-peak, while the simulation
analyses showing the sensitivity were done with an input sinusoidal signal of a fixed
frequency in the range from 100 Hz to 600 Hz and voltage from 1 mV to 20 mV peak-to-
peak with a 1 mV step.

4.2. Simulation Results
4.2.1. Switch Control Signal Parameters—Duty Cycle and Frequency

Figure 4a,b show the interface frequency characteristic and the relation of output
headroom voltage and input voltage with switch control signal duty cycle. The filter
central frequency was 512 Hz (Cin = 1 µF, L = 100 mH, RL = 66.6 Ω (Q = 4.8335)). The switch
control signal frequency was 1024 Hz and duty cycles were 25%, 33%, 50%, 66%, and 75%.

From Figure 4a,b we see that increasing the switch control signal duty cycle leads
to an increased sensitivity and a narrower frequency characteristic, both of which are
desired traits. It also increases the central frequency of the interface passband towards the
one of a fixed passive LC filter. These results adhere to the theoretical switched inductor
filter performance presented in Section 2.1 and Figure 1b. We can also conclude that
duty cycles under 50% should not be utilized, as they lead to low sensitivity and poorer
frequency selectivity.
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Hz. 

From Figure 4a,b we see that increasing the switch control signal duty cycle leads to 
an increased sensitivity and a narrower frequency characteristic, both of which are desired 
traits. It also increases the central frequency of the interface passband towards the one of 
a fixed passive LC filter. These results adhere to the theoretical switched inductor filter 
performance presented in Section 2.1 and Figure 1b. We can also conclude that duty cycles 
under 50% should not be utilized, as they lead to low sensitivity and poorer frequency 
selectivity. 

However, increasing the duty cycle leads to longer periods of time in which the sen-
sor drives the interface, leading to an increased sensor current. This is shown in Figure 5, 
which depicts the inductor current with switch control signal duty cycle. The simulation 

Figure 4. (a) Frequency characteristic and (b) output headroom voltage to input voltage relation of
the sensor interface with switch control signal duty cycle. Filter central frequency 512 Hz (L = 100 mH,
Cin = 1 µF, RL = 66.6 Ω). Switch control signal frequency fswitch = 1024 Hz and duty cycle from 25% to
75%. (a) Input voltage 20 mV peak-to-peak and frequency from 50 Hz to 2000 Hz with a 50 Hz step.
(b) Input signal voltage from 1 mV to 20 mV with a 1 mV step. Input signal frequency 450 Hz.

However, increasing the duty cycle leads to longer periods of time in which the sensor
drives the interface, leading to an increased sensor current. This is shown in Figure 5,
which depicts the inductor current with switch control signal duty cycle. The simulation
model was the same as for Figure 4a,b, and the switch control signal duty cycle was 25%,
50%, and 75%.
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Figure 5. Inductor current of the sensor interface with switch control signal duty cycle. Filter
central frequency 512 Hz (L = 100 mH, Cin = 1 µF, RL = 66.6 Ω). Switch control signal frequency
fswitch = 1024 Hz and duty cycle 25%, 50%, and 75%. Input signal voltage 20 mV peak-to-peak and
frequency 450 Hz.

As we can see from Figure 5, both peak and mean inductor currents are determined
by the switch control signal duty cycle. The peak and mean currents were around 23 µA
peak and 2.88 µA mean for 25% duty cycle, 42 µA peak, and 10.5 µA mean for 50% duty
cycle, and 70 µA peak and 26.25 µA mean for 75% duty cycle.

Figure 6 shows the interface frequency characteristics with switch control signal fre-
quency, fswitch. The filter central frequency was 512 Hz (Cin = 1 µF, L = 100 mH, RL = 66.6 Ω
(Q = 4.8335)). The switch control frequency was 256 Hz, 512 Hz, 1024 Hz, and 2048 Hz. The
switch control signal duty cycle was 75%.
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Looking at Figure 6 we see that there is a switch control signal frequency that, with a
given filter central frequency and Q factor, leads to the most frequency selective interface,
with the highest sensitivity (in this case it is 1024 Hz, i.e., double the filter central frequency).

The dependency of the frequency characteristic and sensitivity on the switch control fre-
quency can be explained by energy transfer from the input LC circuit to the output capacitors.

The maximal energy transfer occurs if the switch opens twice per inductor current
period, precisely at maximal positive and negative inductor current values. The switch
control signal frequency should be set slightly above double the frequency of the input
signal of interest, to avoid the influence of time delay between the input and switch control
signal on the output voltage (explained in the following text).

More than two switch openings per inductor current period cause more generations
of induced voltage, but of lower value, which reduces the overall energy transfer effi-
ciency, because of the exponential dependency of the diode current on the voltage on it,
i.e., the induced voltage. Having more than two openings per input signal period also
leads to a broader frequency characteristic (output voltage less dependent on the switch
opening instant).

Finally, when considering the switch control signal parameters, it should be mentioned
that the proposed sensor interface output voltage can also be influenced by the time
delay between the input signal onset and the switch control signal. This effect explains
the small discontinuities, like the one visible in Figure 6 at 500 Hz, on the red curve.
However, this delay can substantially influence the interface output voltage only if the
input signal frequency matches the switch control signal frequency or one of its specific
rational multipliers (1/4, 1/2, 2, 3 . . . ). For all other input signals, this time delay can
change the output voltage by no more than 10%. Therefore, this effect will not substantially
impact the device’s application and performance with transducer inputs (which consist of
frequencies of interest, other frequencies, noise, and interference).

4.2.2. Passive Component Selection—Capacitor and Inductor

From Equation (1) it is clear that the same central frequency can be obtained with
different values of inductance, L, and capacitance, C. This is shown in Figure 7a,b, which
present the frequency characteristics and the relation of the output headroom voltage and
input voltage of interfaces with different inductance and capacitance. The filter central
frequency was 512 Hz, the switch control frequency was 1080 Hz, and the duty cycle
was 75%. L were 100 mH, 350 mH, and 590 mH, and Cin, were 1 µF, 276 nF, and 164 nF,
respectively. The Q factor was kept constant (Q = 267.3) by setting the resistance, RL, to
1.2 Ω, 4.2 Ω, and 7.1 Ω, respectively.

From Figure 7a,b we see that interfaces with filters set to the same central fre-
quency, have lower sensitivity the higher their inductance is. Furthermore, if we
compare the results from Figure 4b with the results from Figure 7b we can see that an
interface with a significantly lower Q factor (Figure 4b, Q = 4.8335) still has higher sen-
sitivity than the two interfaces with higher inductances and higher Q factor (Figure 7b,
Q = 267.3).
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Figure 7. (a) Sensor interface frequency characteristic and (b) the relation of output headroom voltage and input voltage
with L. The switch control frequency, fswitch, 1080 Hz and duty cycle 75%, Q = 267.3. (a) Input signal voltage 20 mV
peak-to-peak, frequency from 50 Hz to 2000 Hz with a 50 Hz step. (b) Input signal frequency 500 Hz and voltage from 1 mV
to 20 mV peak-to-peak with a 1 mV step.

5. Proposed Sensor Interface Experimental Characterization

The goal of these measurements was to provide experimental verification of the
simulation results and characterize the proposed sensor interface prototype in terms of
frequency selectivity, sensitivity, and power consumption.

5.1. Measurement Setup

Figure 8a shows a photograph of the measurement setup. The measurement setup
consisted of a Keysight 33500B waveform generator (Keysight Technologies, Santa Rosa,
California, CA, USA) for generating the input and switch control signal, the prototype
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sensor interface (shown in Figure 8b), and an NI USB-6211 (National Instruments, Austin,
Texas, TX, USA) data acquisition card connected to a PC for recording the output voltage.
The power consumption of the interface was measured using a Fluke 45 multimeter (Fluke
Corporation, Everett, Washington, WA, USA). The interface was powered by a DP832
power source from RIGOL (RIGOL Technologies, Beijing, China).
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Figure 8. (a) A photograph of the measurement setup. (1) Keysight 33500B waveform generator, (2)
sensor interface prototype, (3) NI USB-6211 data acquisition card. (4) Power supply (RIGOL DP832)
and a multimeter for supply current measurement (Fluke 45). (b) Proposed frequency-selective
voltage-boosting sensor interface prototype.

The prototype of the proposed frequency-selective voltage-boosting sensor interface
was designed according to the schematic in Figure 3a, with components shown in Table 1.

Table 1. Prototype components.

Integrated Components

Component Manufacturer Supply Voltage Supply Current
(Typical)

Transition Times
(Typical)

switch TMUX1101 Texas Instruments 1.8 V 3 nA 12 ns

oscillator SiT1569 SiTime 1.8 V 1.7 µA–3.3 µA 200 ns

Discrete Semiconductor Components

Component Manufacturer Reverse Current (at 1V) Saturation Current Forward Voltage
(Maximal)

diodes HSMS-282x Agilent 100 nA 22 nA 0.34 V

Discreet Passive Components

Component Value Type

Output capacitors Cout1 = Cout2 = 1 µF Multilayer ceramic

Input capacitors Cin1 = 100 nF, Cin2 = 1 µF, Cin3 = 2.2 µF Multilayer ceramic

Inductors
L1 = 100 mH, RL1 = 66.6 Ω Air-core

L2 = 590 mH, RL2 = 7.1 Ω Ferrite-core

5.2. Measurement Procedure and Results

The measurement results were recorded by a National Instruments NI USB-6211 data
acquisition card. The data acquisition control, data processing, and presentation were
implemented using MathWorks’ MATLAB® (Natick, Massachusetts, MA, USA).
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5.2.1. Frequency Selectivity

The goal was to characterize the sensor interface frequency selectivity with different
input capacitors, Cin, inductors, L, and switch control signal frequencies.

The filter central frequencies were: 139 Hz (Cin3, L2), 211 Hz (Cin2, L2), 512 Hz (Cin2,
L1), and 655 Hz (Cin1, L2). The switch control signal duty cycle was 50% and the frequency
was 256 Hz, 278 Hz, 422 Hz, 512 Hz, 1024 Hz, and 1310 Hz. The input signal voltage
was 20 mV peak-to-peak and the frequency was ranging from 50 Hz to 2000 Hz, with a
50 Hz step.

Figure 9 shows the frequency characteristics of the interface with four filter central
frequencies and Figure 10 shows the frequency characteristics of an interface with a filter
central frequency of 512 Hz and three different switch control signal frequencies. In
addition to the measurement results, both figures show the simulation results for the
same setups.
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Figure 9. Frequency characteristic of the sensor interface prototype with different Cin, L and RL. The
switch control duty cycle 50%. The switch control frequencies were 278 Hz (blue), 422 Hz (purple),
1024 Hz (green), and 1310 Hz (red). The dashed lines show simulation results, paired with the
experimental results by color and same markers.
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Comparing the experimental and simulation results shown in Figures 9 and 10, we see the
frequency characteristics of the prototype interface match those of the simulated interfaces.

In [6,23] the authors presented the idea of reducing power consumption of wake-
up interfaces and increasing their flexibility with reconfigurability, while in [10] digital
setting of the filter central frequency was presented as an interesting feature for a wake-up
interface. From the results in Figure 9, the filter central frequency of this interface can be
digitally set by simultaneously selecting the input capacitor and switch control frequency.
The settling time of the reconfigurable switched inductor circuit can be shorter than of that
of a circuit utilizing an operational amplifier-based active bandpass filters.

5.2.2. Sensitivity

The goal was to determine the sensor interface sensitivity with different filter central fre-
quencies (different input capacitors, Cin, and inductors, L) and switch control signal frequencies.

The prototype setup was identical to the one described for frequency selectivity
measurement. The input signal frequency was 100 Hz, 200 Hz, 450 Hz, and 650 Hz and,
the voltage was ranging from 2 mV peak-to-peak to 20 mV peak-to-peak with a 2 mV step.

Figure 11 shows the measured and simulated output headroom voltage with input
voltage of the interface whose frequency characteristics are shown in Figure 9, while
Figure 12 shows the measured passband and stopband output-to-input voltage relation of
two setups of the interface, with an input signal frequency of 200 Hz and 500 Hz for the
211 Hz filter central frequency setup, and 450 Hz and 1200 Hz for the 512 Hz filter central
frequency setup.
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From Figure 11 we can see that the sensitivity of the proposed sensor interface 
reaches up to approximately 2 mV/mV and it can be adjusted by choosing the input ca-
pacitor, Cin, inductor, L, and switch control signal frequency. Comparing the experimental 
and simulation results shown in Figure 11, we see that the sensitivities and their trends of 
the developed prototype match those of the simulated interfaces. 

From Figure 12 we can see that when the interface filter is set to 512 Hz, the interface 
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(around 1.38 mV/mV), but also, due to the lower Q factor, it leads to a higher stopband 

Figure 11. Sensor interface output headroom voltage to input voltage relation with different Cin, and L. Switch control
frequency 278 Hz (blue), 422 Hz (purple), 1024 Hz (green), and 1310 Hz (red), and duty cycle 50%. Input signal frequency
100 Hz (blue), 200 Hz (purple), 450 Hz (green) and 650 Hz (red), and voltage from 2 mV to 20 mV peak-to-peak with a 2 mV
step. The dashed lines show simulation results, paired with the experimental results by color and same markers.
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voltage from 2 mV to 20 mV peak-to-peak with a 2 mV step.

From Figure 11 we can see that the sensitivity of the proposed sensor interface reaches
up to approximately 2 mV/mV and it can be adjusted by choosing the input capacitor,
Cin, inductor, L, and switch control signal frequency. Comparing the experimental and
simulation results shown in Figure 11, we see that the sensitivities and their trends of the
developed prototype match those of the simulated interfaces.

From Figure 12 we can see that when the interface filter is set to 512 Hz, the interface
has a higher passband sensitivity (around 1.66 mV/mV) than when it is set to 211 Hz
(around 1.38 mV/mV), but also, due to the lower Q factor, it leads to a higher stopband
sensitivity (0.87 mV/mV compared to around 0.3 mV/mV), making the 211 Hz interface
setting more than twice more frequency selective than the 512 Hz one.

5.2.3. Power Consumption

The goal was to determine the power consumption of the proposed sensor interface
prototype with selected components: the 1024 Hz SiT1569 oscillator, the input capacitor
Cin2 and inductor L1. The power consumption was determined by multiplying the interface
supply voltage of 1.8 V with its supply current, measured by a Fluke 45 multimeter.

The measured interface current consumption, consisting of the oscillator and switch
current consumptions, was 1.84 µA, with a 1.8 V power supply, resulting in a power
consumption of 3.31 µW.

The overall power consumption was predominantly defined by the oscillator, further
emphasizing the crucial role of the switch control signal generator selection in achieving
low power consumption.

6. Design Recommendations

Following the numerical and experimental analyses of the interface’s functionality and
design parameters, this section presents a set of recommendations for interface synthesis.

The interface synthesis is performed in a series of steps:

1. Choosing the output capacitors Cout1 and Cout2 to ensure the desired output signal
waveform and its key parameters (more details in [17,18]).
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2. Determining the wanted frequency characteristic of the interface, by choosing its
resonant frequency, fres, (and angular frequency ωres = 2π fres) and Q factor. This
choice is made considering the frequency characteristic of the input signal of interest.

3. Setting the desired sensitivity at the resonant frequency.

When considering Equation (9) for determining the maximal obtainable output voltage
of the proposed interface, the inductor current can be expressed using the input voltage
and input circuit impedance, Zin:

Vout =
Vin
|Zin|

√
Lr

Cout1,2
(11)

with Zin given as:

|Zin| =

√(
ωin·L−

1
ωin·Cin

)2
− RL2 (12)

where ωin is the input signal angular frequency.
From this, we can get an expression for the maximal sensitivity (at the resonant frequency):

Vout

Vin
=

1√
L
· Q
ωres·

√
Cout1,2

(13)

where ωres is the input circuit resonant angular frequency, and Q the quality factor, given
in Equation (10).

From Equation (13), it is clear that, with a chosen output capacitance, input circuit
resonant frequency and Q factor, the interface sensitivity at the resonant frequency is set by
choosing the appropriate inductance value.

4. Setting the switch control signal duty cycle to 50%, as this provides a suitable sensitiv-
ity, frequency selectivity and power consumption. Small increases of the duty cycle
can be considered for slight central frequency tuning, despite of increasing the design
complexity, but not over 60%, due to increased power consumption.

5. Setting the switch control signal frequency, fswitch, to around 2% to 5% higher than
double of the frequency of the input signal of interest.

fswitch = (1.02 ∼ 1.05)·2 fin (14)

To conclude this set of design guidelines, an exemplary evaluation of the maximal
obtainable sensitivity is shown for one interface setup utilized in the experiments and
simulations. With a filter central frequency of fres = 512 Hz, a Q factor of around 4.8, an
inductor of L = 100 mH, and output capacitors of Cout1,2 = 1 µF, we get a maximal obtainable
interface sensitivity of around 4.7 mV/mV.

7. Functional Test and Comparison
7.1. Measurement Setup

The measurement setup for comparison of the proposed interface and one consisting
of an active bandpass filter and a passive voltage doubler [9] was the same as for the
experimental characterization of the proposed sensor interface (Figure 8a).

The proposed sensor interface’s (Figure 3a) filter central frequency was 512 Hz with
a 400 Hz bandwidth (Cin = 1 µF, L = 100 mH, RL = 66.6 Ω). Its switch control signal duty
cycle was 50% and the frequency was 1024 Hz. The output capacitors, Cout1 and Cout2, were
1 µF, and the HSMS-282x diodes, the TMUX1101 switch, and the SiT1569 1024 Hz oscillator
were used.

It was compared to a sensor interface consisting of an active general impedance
converter (GIC) bandpass filter and a passive two-diode voltage doubler, as shown in
Figure 13 [9,18]. The filter central frequency was 500 Hz, with a passband bandwidth of
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around 300 Hz. The rectifier capacitors Cr1 and Cr2 were 22 nF, to allow the capacitor to
fully charge and achieve maximal headroom voltage during each event of interest [17,18].
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Figure 13. Schematic of the sensor interface consisting of an active GIC bandpass filter and a passive
two-diode voltage doubler [9,18].

7.2. Measurement Procedure

The two compared interfaces consist of the same two functional blocks (bandpass
filter and envelope detector) and perform the same function of frequency signal decompo-
sition and envelope extraction. To establish if the previously developed interface can be
replaced by the one proposed in this work, a comparison of their output headroom volt-
ages (Figure 3b) was performed, using a prerecorded speedboat signal input (twin-engine
speedboat passing over a hydrophone submerged approximately 1 m under the surface in
shallow water) [24].

The signal waveform with normalized amplitudes and its spectrogram are shown
in Figure 14a,b, respectively. The input signal is periodical, each period consisting of
approximately 3 seconds of the passing speedboat, followed by around 3seconds of pause.
The maximal input signal voltage was scaled from 2 mV to 20 mV peak-to-peak, in steps of
2 mV.

7.3. Results

The two sensor interfaces’ comparison with the prerecorded speedboat signal input is
shown in Figure 15.

The results show that the proposed sensor interface outperforms the previously
developed one, being able to operate with signals around 5 mV peak-to-peak, while the
previously developed one required over 20 mV peak-to-peak. The 1.5 mV/mV sensitivity
of the proposed interface stems from the increased rectification efficiency provided by the
switched inductor.

In addition to the mentioned improvements, it should also be noted that the proposed
sensor interface has a power consumption of 3.31 µW compared to 8.25 µW consumed by
the previously developed one, which represents a reduction of around 60%. This means
that replacing the previously developed interface with the interface proposed in this work,
would either extend the sensor node life-time, or allow for more sensors with the same
power budget, leading to increased event detection accuracy.

To conclude the demonstration of applicability of the proposed interface in low-power
analog acoustic event detection, Table 2 shows a comparison of its functionality and power
consumption to state-of-the-art similar interfaces.
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Table 2. Per channel power consumption comparison of state-of-the-art acoustic event detector sensor interfaces with the
proposed interface.

Reference Technology Functionality Power Consumption (µW)

This work Embedded design, COTSC frequency decomposition and envelope detection 3.31

[10] Embedded design, COTSC frequency decomposition, envelope detection,
1-bit quantization (adjustable) 22.59

[9] Embedded design, COTSC frequency decomposition, envelope detection,
1-bit quantization (adjustable) 11.52

[25] Embedded design, COTSC frequency decomposition, amplification,
template matching (adjustable) 9.32

[6] Custom FPAA
frequency decomposition, amplification, peak

detection, quantization, pattern recognition
(programmable)

5.38

[26] ASIC
energy threshold detection, 16 feature extraction

based on amplification, filtering and absolute
value detection, and classification

6

[27] ASIC frequency decomposition, magnitude detection,
quantization, template matching 2.92

COTSC—commercial of-the-shelf components; FPAA—field-programmable analog array; ASIC—application specific integrated circuit.

8. Conclusions

Low-power analog sensors and interfaces present a necessity in IoT development.
Following previous research on switched inductor filters and energy harvesters, a novel
switched inductor frequency selective sensor interface is proposed. A simulation study was
done to determine the key design parameters and characterize the interface performance
with input signals up to 20 mV peak-to-peak, at low acoustic frequencies from 100 Hz to
1 kHz. A prototype interface was developed and characterized, achieving the maximal
sensitivity of approximately 2 mV/mV in the passband, four times lower sensitivity in
the stopband, and a power consumption of approximately 3.31 µW. The novel sensor
interface can operate with inputs around 5 mV compared to over 20 mV needed for
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the one consisting of an active bandpass filter and a passive voltage doubler, having
around 60% lower power consumption (3.31 µW compared to 8.25 µW), thus enabling
life-time extension or improved detection. The future work will focus on reconfigurable
switched inductor sensor interfaces and lowering the power consumption of the switch
control oscillator.
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Abstract: Analog hardware used for signal envelope extraction in low-power interfaces for acoustic
event detection, owing to its low complexity and power consumption, suffers from low sensitivity and
performs poorly under low signal to noise ratios (SNR) found in undersea environments. To overcome
those problems, in this paper, we propose a novel passive electromechanical solution for the signal
feature extraction in low frequency acoustic range (200–1000 Hz), in the form of a piezoelectric vibration
transducer, and a rectifier with a mechanically switched inductor. A simulation study of the novel
solution is presented, and a proof-of-concept device is developed and experimentally characterized.
We demonstrate its applicability and show the advantages of the passive electromechanical device
in comparison to the active electrical solution in terms of operation with lower input signals (<20
mV compared to 40 mV), and higher robustness in low SNR conditions (output voltage loss for −10
dB ≤ SNR < 40 dB of 1 mV, compared to 10 mV). In addition to the signal processing performance
improvements, compared to our previous work, the utilization of the presented novel passive feature
extractor would also decrease power consumption of a detector’s channel by over 76%, enabling
life-time extension and/or increased quality of detection with larger number of channels. To the
best of our knowledge, this is the first solution presented in the literature that demonstrates the
possibility of using a passive electromechanical feature extractor in a low-power analog wake-up
event detector interface.

Keywords: wake-up interface; acoustic vibrations; pattern recognition; low SNR; passive
electromechanical transducer

1. Introduction

The recognition of infrequent events is of interest in many fields (environmental monitoring [1–5],
safety and security [6–13], communication [14–16], agriculture, health monitoring [17]). It requires
continuous operation of an electronic system comprising sensing, detection and recognition functions,
which are power-hungry tasks [7,18]. The power consumption can be reduced by introduction of
always-on low-power interfaces that wake up the main processing stage upon detection of an event of
interest [19,20].

Many acoustic events can be recognized based on their time-frequency pattern [5], which can be
approximated by an ordered sequence of discrete time-frequency states (Figure 1a). The extraction of
these patterns in wake-up systems is usually performed by processing in the time domain utilizing a
low-power multichannel analog detector [21]. The event detector consists of multiple channels to allow
for simultaneous analog frequency decomposition, with each channel requiring a feature extractor to
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extract features from a designated frequency band from the signal of interest. To make the detector
simple and efficient it is crucial to choose an appropriate feature and its extraction method. Features
that can be used in these detectors can either be instantaneous ones (envelope) or related to the signal
integral (root mean square (RMS), power, energy) [22–24]. Most of low-power event detection systems
use instantaneous signal features because of their simple extraction (shown in Figure 1b). In our
previous work [25], we developed such a system, with a power consumption of 11.52 µW per channel.
In this work, we will focus on the feature extraction part of the acoustic event detection system.
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Figure 1. (a) An example of a spectrogram of a signal of interest. T1, T2, T3, represent durations, fb1,
fb2, fb3 frequency bands and E1, E2, E3 energy (feature) of states within the time-frequency pattern.
(b) Block diagram of an analog multichannel pattern recognition-based event detection system. The
marked part of the system is the active electrical feature extractor (in this case the feature is signal
envelope in a set frequency band). (c) A schematic of the active electrical feature extractor (AE FE). (d)
Characteristic signals of the detector—at transducer (Vin), after filter (Vfilt) and at output (Vout). The
values of interest in the feature extractor’s output voltage are marked—headroom voltage, rise and
fall time.

Despite the envelope having the advantage of being one of the simplest features to extract in
terms of hardware complexity and power consumption, a serious drawback of the envelope is its
poorer performance in low signal to noise ratios (SNR) conditions [26].

Following an idea of using electromechanical components to improve low-power event detector
functionality [20], our goal in this work was to evaluate a passive electromechanical feature extractor
that utilizes a piezoelectric transducer and a rectifier with a mechanically switched inductor, inspired
by the Random Mechanical Switching Harvester on Inductor (RMSHI) [27–29], as an alternative for
active electrical feature extractor (Figure 1c), consisting of an active bandpass filter and a passive
rectifier used for detecting slowly evolving acoustic events in low SNR conditions in frequency range
from 200 Hz to 1 kHz.

In [30], we analyzed the applicability of a rectifier with a mechanically switched inductor (part of
RMSHI) used with an active bandpass filter forming an active feature extractor. The goal of this work
was to develop and characterize a novel, fully passive electromechanical feature extractor (PEM FE)
implementing a transducer, a mechanical filter and a rectifier with a mechanically switched inductor,
to be utilized in an acoustic event detection.

In this paper we make several contributions. We present a simulation model of the passive
electromechanical feature extractor as part of an acoustic event detector and present simulation
results. We develop a proof-of-concept extractor and, with it, provide experimental verification of
the simulation results. We demonstrate applicability and advantages of the extractor in extraction
of features under low SNR. To the best of our knowledge, this is the first solution presented in the
literature that shows a low-power acoustic event detector utilizing a passive electromechanical feature
extractor. This work represents a step towards a fully passive, or self-sustaining, infrequent acoustic
event detector.

The rest of the paper is organized as follows: Section 2 shows an event detector architecture,
describing the passive electromechanical feature extractor. Section 3 shows the simulation model and
simulation results of the passive electromechanical feature extractor. Section 4 shows experimental
results and characterization of the developed extractor. Section 5 presents comparison of an active
electrical and passive electromechanical feature extractor. Section 6 concludes the paper and shows
future research.



Sensors 2020, 20, 5445 4 of 19

2. Event Detector Architecture

2.1. Time-Frequency Signal Pattern and Event Detection System

A spectrogram of a passing ship with marked time-frequency states and a pattern recognition-based
event detector are shown in Figure 1a,b, respectively [25]. The detector entails three analog-domain
filtering channels decomposing the transducer’s signal (Vin) into arbitrary frequency bands. Intervals
of signal presence within individual filtering channels (Vfilt) are localized in time by extracting features
of filtered signals, and then performing single-bit quantization using comparators. Temporal relations
between comparator responses are finally analyzed by a 3-channel digital sequence recognition
state-machine, which wakes-up the digital signal processor DSP [21]. A schematic of detector’s active
electrical feature extractor (AE FE) is shown in Figure 1c.

Detailed characterization of this detector utilizing an active general impedance converter
(GIC)-based dual operational amplifier bandpass filter was performed in [25] and a study on rectifier
topologies for envelope extraction was presented in [31]. Such a combination of an active bandpass filter
and passive diode rectifier developed in previous work showed several constraints on this detector’s
feature extractor performance and output signal (Figure 1d). The rise and fall times determine the
detector’s ability to distinguish two consecutive time-frequency states. Based on our previous study,
rise and fall times around 1 s are acceptable for slow-evolving acoustic events of interest. The output
headroom voltage of the envelope extractor shows variations in the feature of interest. The headroom
voltage required for event detection is dependent on the selected comparator. In this work, we consider
a level of 1 mV to be acceptable.

In this work, we intend to replace the active electrical feature extractor (AE FE), consisting of
an active bandpass filter and a passive rectifier (Figure 1c), with a passive electromechanical feature
extractor (PEM FE) that features a rectifier with a mechanically switched inductor (Figure 3), to reduce
power consumption and improve performance in high background noise environments.

2.2. Passive Electromechanical Feature Extractor

The mechanical structure of the proposed passive electromechanical feature extractor (PEM FE)
(Figure 2) is based on Random Mechanical Switching Harvester on Inductor (RMSHI). The RMSHI
was developed for vibration energy harvesting utilizing a piezoelectric transducer. Its key advantage
is high efficiency of converting vibration into electrical energy, which is 0.622%, compared to the
0.022% for resonant harvesters with single-frequency excitation, and 0.126% compared to 0.001% for
broad frequency excitation [32]. The greater energy conversion efficiency of the RMSHI stems from:
non-resonant frequency response and utilization of a mechanically switched inductor.
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Figure 2. Block diagram of the passive electromechanical feature extractor (PEM FE). S—switch,
m—magnet at the beam end, mf—fixed magnet, L—inductor, Cr1, Cr2—rectifier capacitors, D1,
D2—rectifier diodes. Vpzt(t)—voltage generated at piezoelectric transducer, Vind(t)—voltage induced at
the inductor L, Vout(t)—extractor output voltage.
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The RMSHI consists of a metal cantilever beam having a permanent magnet at its free end, a
metal stopper that forms a mechanical switch with the cantilever, and a fixed permanent magnet
that modifies elasticity of vibration driven movement of the cantilever. A piezoelectric transducer is
mounted on a metal cantilever beam that transforms input vibrations into an electrical signal. An
inductor is switched by the cantilever movement and connected to a rectifier that conditions the electric
signal (a mechanically switched inductor).

Due to the RMSHI featuring a stopper and a pair of magnets exerting repulsive force on each other
(as shown in Figure 2), the movement of the RMSHI cantilever beam can be considered a movement of
two beams attached to one another, with an initial magnetic force bias placing the beam in contact with
the stopper when no external force is applied. While the beam is in contact with the stopper, only its
part in front of the stopper moves. Once the overall external force on beam overcomes the magnetic
force bias, the beam detaches from the stopper and the entire beam moves. This two-part movement
causes the beam to have a non-resonant, broader frequency characteristic. Further explanation on this
can be found in [27,32].

The utilization of the mechanically switched inductor provides further increase in harvester
efficiency in conditions of weak vibrations, generating signals under the diode threshold.

When the beam and the stopper are in contact, the switch S is closed, and the energy of the
signal generated by the piezoelectric transducer is stored in the inductor’s magnetic field (Figure 3,
red details). When the switch opens, the energy stored in the inductor’s (L) magnetic field, EL, is
transferred over the rectifier to the capacitor’s (Cr2) electric field energy, EC, charging the capacitor to
Vout (Figure 3, blue details). Neglecting energy losses, voltage Vout depends on the current through the
inductor at that instant of time, Iopen, and the values of inductance L and capacitance Cr1−2 (1) [33]

Vout = Iopen·

√
L

Cr1−2
(1)
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Figure 3. Schematic of the proposed passive electromechanical feature extractor (PEM FE). Red—current
Iclosed(t)—passing through the PEM FE while the switch S is closed. Blue—current Iopen(t) passing
through the PEM FE when the switch S opens. L—inductor and Cr1, Cr2—rectifier capacitors, D1,
D2—rectifier diodes. RP and CP—parasitic resistance and capacitance of piezoelectric transducer,
respectively. Vpzt(t)—voltage generated at piezoelectric transducer, Vind(t)—voltage induced at the
inductor, Vout(t)—extractor output voltage.

The switching of the inductor induces voltage, Vind(t), higher than the voltage generated by the
piezoelectric transducer, Vpzt(t), and the diode threshold, making the switched inductor a voltage
booster. A detailed description of the process is presented in [27,28,32].

The exact physical implementation of the extractor used in this study, with transducer and switch
parameters will be presented in the Measurement Setup subsection in Section 4.
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3. Passive Electromechanical Feature Extractor Simulation Model and Simulation Results

3.1. Simulation Model

In order to evaluate the use of the passive electromechanical feature extractor (PEM FE) in a set
frequency band, an analytical model has been implemented and simulated in MathWorks’ MATLAB®

Simulink (Natick, MA, USA).
The mechanics of the PEM FE can be modeled by a second order non-linear differential equation:

mx·· + dx· +
∂UT

∂x
= F(t)

∣∣∣∣∣
UT=δx4

(2)

where m is the mass of the beam with the magnet and d is its damping coefficient. Term x is the
displacement of the tip of the beam and the dotted terms represent the first and second derivate
of the displacement (velocity and acceleration of the cantilever, respectively). UT is the potential
energy function, which is non-linear due to the stopper and permanent magnet positions, which act as
adjustable factors, allowing fine adjustments within ranges determined by the physical dimensions of
the device (beam length, l and mass, m). The magnet’s contribution is expressed with the term δ.

The voltage generated on the piezoelectric transducer (Vpzt(t)) on the cantilever beam, is:

Vpzt(t) =
∫

(Π
.
x−Vpzt(t)/τ)dt (3)

where
∏

is the coupling constant and τ is the time constant of the piezoelectric material. In detail,
all parameters describing the previous equations are listed and their values, originated by the model,
experiments and the literature, are indicated in Table 1.

Table 1. List of used parameters.

Parameter Unit Value Method of Estimation

m kg 0.00082 Model
d kg/s 0.001 Experiment
δ kg m−2 s−2 300,000 Model∏

V/m 1.13 Experiment
τ s 162 Literature [27]

The analytical considerations presented by Equations (2) and (3) constitute the basis for the
development of the simulation model (simplified version is shown in Figure 4). The topology of
the electric circuit used in the model is the same as shown in Figure 3. The inductor L used for the
simulation model was 1 mH and the diodes were modeled to fit the D1N4148 diode characteristics.
The rectifier capacitances, Cr1−2, used in the simulations were: 33 nF, 100 nF, 470 nF and 1 µF. The
physical parameters of the PEM FE models, beam length (l), beam and magnet mass (m) and magnet
position (δ) were varied to achieve different frequency characteristics, while the parameters concerning
the piezoelectric transducer (

∏
and τ) were fixed to simulate the behavior of the used piezoelectric

transducer as closely as possible.
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Figure 4. Simplified simulation model of the passive electromechanical feature extractor (PEM
FE). It consists of simulation models of the piezoelectric transducer, the mechanical switch and the
electric circuit.

Using the simulation model, the following analyses were done: the relation between the
input energy (Ein) and the RMS value of the output voltage (Vout) (transfer characteristic of the
passive electromechanical feature extractor), the frequency selectivity of the extractor and the rectifier
capacitances’ (Cr1−2) influence on the output voltage (Vout) waveform.

3.2. Simulation Results

The simulation analysis of PEM FE frequency selectivity shows that its frequency characteristic
can be adjusted to fit a selected band within the lower acoustic frequencies of interest (up to around
1 kHz) by changing its physical parameters explained in Section 3.1 and shown in Figure 4. The results
in Figure 5. show three feature extractors for different selected frequency bands. Rectifier capacitances
were set to Cr1−2 = 33 nF and an inductor of L = 1 mH was used. Input vibration frequency changed by
5 Hz from 270 Hz to 350 Hz, from 400 Hz to 495 Hz and from 880 Hz to 1060 Hz for each extractor,
respectively. Input vibration energy was set to 1.6 nJ.
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Figure 5. Frequency selectivity of passive electromechanical feature extractor (PEM FE) obtained by
change of its physical dimensions (beam length (l), beam and magnet mass (m), magnet position (δ)).
The output voltage was normalized with regards to maximal value. Rectifier capacitances Cr1−2 = 33
nF. Inductor L = 1 mH. Input vibration frequency changed by 5 Hz from 270 Hz to 350 Hz, from 400 Hz
to 495 Hz and from 880 Hz to 1060 Hz for each PEM FE setting, respectively. Input vibration energy set
to 1.6 nJ.

The simulation analysis of the relation between input vibration energy and output voltage shows
(Figure 6) that a PEM FE can operate with sufficiently high sensitivity of 2 mV/nJ in a frequency band
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around 325 Hz, and with input vibration levels of interest (from 0.1 nJ to 1.6 nJ), proving it can be used
as a feature extractor in an acoustic event detector channel. The measurement resolution of ±1 nJ can
be achieved. The analysis also shows the sensitivity with different input vibration frequencies, around
the passband central frequency of 325 Hz (dashed lines in Figure 6). Rectifier capacitances were set to
Cr1−2 = 33 nF and the inductor was set to L = 1 mH.
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Figure 6. Extractor output voltage (Vout) with input signal energy, Ein. Rectifier capacitance Cr1−2= 33
nF. Inductor L = 1 mH. Input vibration energy was set to 0.1 nJ, 0.4 nJ, 0.9 nJ and 1.6 nJ, respectively. The
black line with pluses represents the simulation results, the black dashed line the linear approximation
and the red lines represent the error margins (explained in more detail in the experimental part) for 325
Hz input vibration frequency. The green, blue and purple dashed lines represent linear approximations
for 300 Hz, 350 Hz and 375 Hz input vibration frequency, respectively.

The simulation analysis concerning rectifier capacitances shows the influence the rectifier
capacitance has on PEM FE’s output voltage waveform. For higher values of the rectifier capacitances
a decrement in output voltage (Vout) ripple can be observed from around ± 33 mV to around ± 2.5 mV
(Figure 7b), increasing the headroom voltage (Figure 1d), but this is counterbalanced with an increment
in rise and fall times (Figure 1d) from around 1 s to around 10 s (Figure 7a).
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Figure 7. Waveform of the output voltage, Vout, for several values of rectifier capacitances: 33 nF, 100
nF, 470 nF, 1 µF. Input vibrations at 325 Hz generate 50 mV peak-to-peak at the piezoelectric transducer.
Inductor L = 1 mH. (a) At beginning of capacitor charging, (b) In stationary conditions.

4. Experimental Characterization of Passive Electromechanical Feature Extractor

4.1. Measurement Setup

The goal of these measurements was to provide experimental verification of the simulation results
and characterize the passive electromechanical feature extractor in terms of selectivity and sensitivity
and to confirm design parameters.

A photograph of the measurement setup can be seen in Figure 8a. The measurement setup
consisted of a waveform generator (Keysight 33500B) that drives the shaker (Smart Material Energy
Harvesting Kit 1.2.) used both to generate the voltage on a piezoelectric transducer and to open and
close the switch in the extractor. The output voltage was acquired by a National Instruments data
acquisition card (NI USB-6211) connected to a PC.
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Figure 8. (a) A photograph of the measurement setup. (1) Keysight 33500B waveform generator, (2)
PEM FE,(3) Smart Material Energy Harvesting Kit 1.2. shaker, (4) NI USB-6211 data acquisition card.
(b) Physical realization of the PEM FE (without the rectifier). (1) Piezoelectric transducer, (2) stopper,
(3) cantilever beam, (4) fixed magnet (right) and adjustable magnet (left). The mass of the beam (m) is
approximated by the mass of the magnet at its end. δ is the magnet position adjustment parameter.
Length of the beam is marked by l.

Figure 8b shows the physical realization of the PEM FE used in this study. The piezoelectric
element was bonded to the cantilever in part of the beam where maximal strain was measured. The
piezoelectric material used in this study is a 7BB-12-9 piezoelectric diaphragm (Murata), with an
external diameter of 12 mm and thickness of 0.22 mm, [34]. The electromechanical switch used in
this study is composed of a brass beam with a length (l) of about 55 mm, width of about 8.3 mm and
thickness of about 0.2 mm, with the distance (l1) between the anchor of the cantilever and the stopper
of about 28 mm. This choice is correlated with an optimization process as shown in [35].

4.2. Measurement Procedure

4.2.1. Transfer Characteristics

The goal was to characterize the PEM FE’s output voltage sensitivity to input vibration energy.
Rectifier capacitors, Cr1−2, are set to 33 nF. The inductor, L, of 100 mH was chosen. The extractor
was adjusted to have the highest output voltage at frequency of 315 Hz. The frequency of the input
signal was 315 Hz, and its energy was set to 0.05 nJ, 0.1 nJ, 0.4 nJ, 0.9 nJ and 1.6 nJ, respectively. The
energy level is estimated as external applied force (mass of the extractor multiplied by its acceleration)
multiplied by the displacement of the beam [32]. For each input energy level, 10 measurements were
done, in duration of 5 s each, and output voltage Vout RMS value was averaged for each energy level.
The measurement error ε was calculated as:

ε = 3A = 3

√
std2(RMS1, RMS2, . . . , RMS10)

10
(4)

where A is the uncertainty and std is the standard deviation of the voltage values of the 10 measurements.

4.2.2. Frequency Selectivity

The goal was to determine the relation of output voltage and input vibration frequency, within the
selected frequency band. Rectifier capacitors, Cr1−2, are set to 33 nF. Inductor, L, of 100 mH is chosen.
The frequency of the input signal was swept from 150 Hz to 210 Hz with increment of 10 Hz for one
developed extractor and from 290 Hz to 330 Hz with increment of 5 Hz for the other. For each input
signal frequency, the output voltage was recorded in duration of 20 s. The recorded waveforms were
processed in MATLAB® to obtain normalized RMS values of output voltage for each frequency.
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4.2.3. Design Parameters

The goal was to select the rectifier capacitors Cr1−2 considering output voltage ripple and response
times. The frequency of the input signal was set for maximal output voltage (to 315 Hz), and to
generate a voltage on the piezoelectric transducer of 100 mV peak-to-peak. Input vibrations were
gated, with 0.75 s of signal, followed by 4 s of pause. The output voltage was measured for capacitors
of 33 nF, 100 nF, 470 nF and 1 µF. The inductor, L, of 100 mH was used for the experiment.

4.3. Measurement Results

The experimental characterization of the passive electromechanical feature extractor verifies the
simulation results shown in Section 3. Figure 9 shows the transfer characteristic of the PEM FE. The
sensitivity of the proposed device is around 2 mV/nJ. As can be seen from the maximal measurement
error, the measurement resolution is around ±1 nJ.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 18 

 

for one developed extractor and from 290 Hz to 330 Hz with increment of 5 Hz for the other. For each 
input signal frequency, the output voltage was recorded in duration of 20 s. The recorded waveforms 
were processed in MATLAB® to obtain normalized RMS values of output voltage for each frequency. 

4.2.3. Design Parameters 

The goal was to select the rectifier capacitors Cr1−2 considering output voltage ripple and 
response times. The frequency of the input signal was set for maximal output voltage (to 315 Hz), 
and to generate a voltage on the piezoelectric transducer of 100 mV peak-to-peak. Input vibrations 
were gated, with 0.75 s of signal, followed by 4 s of pause. The output voltage was measured for 
capacitors of 33 nF, 100 nF, 470 nF and 1 µF. The inductor, L, of 100 mH was used for the experiment. 

4.3. Measurement Results 

The experimental characterization of the passive electromechanical feature extractor verifies the 
simulation results shown in Section 3. Figure 9 shows the transfer characteristic of the PEM FE. The 
sensitivity of the proposed device is around 2 mV/nJ. As can be seen from the maximal measurement 
error, the measurement resolution is around ±1 nJ. 

Figure 10 shows frequency characteristics of two developed PEM FEs with central frequencies 
in two different frequency bands of interest for the application in an acoustic detector. This provides 
verification of the simulation results shown in Figure 5 for three different frequency bands of interest. 
The number of points in the measured frequency characteristics is lower than in the simulated 
characteristics for practical reason, and the difference in shapes of the two sets of frequency 
characteristics is most likely a consequence of the numerical inaccuracies of the simulated model at 
transitions from the out-of-band to passband frequencies. 

It is clear from the waveforms shown in Figure 11 that increasing rectifier capacitances decreases 
output voltage ripple, but prolongs rise and fall times. 

 
Figure 9. Relation of extractor output voltage (Vout) and input signal energy, Ein. Rectifier capacitances 
Cr1−2 = 33 nF. Inductor L = 100 mH. Black pluses—measurement data, blue line—linear interpolation, 
red lines—error margins. 

Figure 9. Relation of extractor output voltage (Vout) and input signal energy, Ein. Rectifier capacitances
Cr1−2 = 33 nF. Inductor L = 100 mH. Black pluses—measurement data, blue line—linear interpolation,
red lines—error margins.

Figure 10 shows frequency characteristics of two developed PEM FEs with central frequencies in
two different frequency bands of interest for the application in an acoustic detector. This provides
verification of the simulation results shown in Figure 5 for three different frequency bands of interest. The
number of points in the measured frequency characteristics is lower than in the simulated characteristics
for practical reason, and the difference in shapes of the two sets of frequency characteristics is most
likely a consequence of the numerical inaccuracies of the simulated model at transitions from the
out-of-band to passband frequencies.
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Figure 10. Frequency selectivity of passive electromechanical feature extractor (PEM FE) obtained by
change of physical dimensions (beam length (l), beam and magnet mass (m), magnet position (δ)).
The output voltage was normalized with regards to maximal value. Input vibrations generate 50 mV
peak-to-peak at piezoelectric transducer, input vibration frequency changed by 10 Hz from 150 Hz
to 210 Hz and by 5 Hz from 290 Hz to 330 Hz for each developed PEM FE, respectively. Rectifier
capacitance Cr1−2 = 33 nF, inductor L = 100 mH.

It is clear from the waveforms shown in Figure 11 that increasing rectifier capacitances decreases
output voltage ripple, but prolongs rise and fall times.
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Figure 11. Waveform of the output voltage for different values of rectifier capacitances Cr1−2. Voltage
generated at the piezoelectric transducer, Vpzt(t), is 100 mV peak-to-peak, frequency 315 Hz. Input
vibrations are gated, 0.75 s of signal followed by 4 s of pause. Inductor L = 100 mH.

5. Comparison of Active Electrical and Passive Electromechanical Feature Extractor

The feature extractors comparison was done using two types of signal: synthetic gated sinusoidal
signals with added white noise and a prerecorded speedboat signal.
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5.1. Measurement Setup

The measurement setups for passive electromechanical and active electrical feature extractors are
shown in Figures 8a and 12, respectively.Sensors 2020, 20, x FOR PEER REVIEW 12 of 18 
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Figure 12. A photograph of the measurement setup for active electrical feature extractor [25,31]
measurements. (1) Keysight 33500B waveform generator, (2) active electrical feature extractor, (3)
National Instruments (NI) USB-6211 data acquisition card, (4) Rigol DP832 power supply.

The passive electromechanical feature extractor (PEM FE), shown in Figure 3, was adjusted to
generate the highest output voltages at input vibration frequency of 180 Hz. The rectifier capacitors,
Cr1 and Cr2, were both set to 1 µF. The inductor, L, was set to 100 mH.

The active electrical feature extractor (AE FE) consisted of an active GIC bandpass filter and a
passive two-diode voltage doubler, as shown in Figure 1c. The filter central frequency was set to 200
Hz (by R1, Cf1 and Cf2), with a pass bandwidth of 200 Hz (set by R2, R3, Cf1 and Cf2). The rectifier
capacitors Cr1 and Cr2 were both set to 22 nF, to allow the capacitor to fully charge and achieve maximal
headroom voltage during each event of interest [25,31].

The measurement setup consisted of the input signal generator (Keysight 33500B), the feature
extractor and a data acquisition card (National Instruments NI USB-6211) connected to a PC. The
vibrations for the passive electromechanical feature extractor operation were generated by a shaker
(Smart Material Energy Harvesting Kit 1.2.) driven by the waveform generator.

5.2. Measurement Procedure

The goal of these measurements was to compare the headroom voltages of the active electrical
(AE FE) and passive electromechanical feature extractor (PEM FE) in two steps. In the first step, a
characterization with synthetic signals of varying amplitudes and signal to noise ratios (SNRs) was
performed, while the second step provided verification using a prerecorded speedboat signal.

The vibrations driving the passive electromechanical feature extractor were set to generate
peak-to-peak voltage at the piezoelectric transducer, Vpzt, equal to the peak-to-peak voltage at the
output of the filter, Vfilt, of the active electrical feature extractor, for the same input signal waveform.
The voltage amplitudes ranged from 10 mV to 70 mV peak-to-peak, in steps of 10 mV.

5.2.1. Synthetic Signal

The synthetic signal was a gated 180 Hz sinusoidal signal of varying amplitude lasting for 3 s,
followed by 5 s of pause. White noise was added to the signal to achieve SNRs of −10 dB, 0 dB and 10
dB. The 0 dB SNR signal waveform with normalized amplitudes and its spectrogram are shown in
Figure 13a,b, respectively.
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is approximately 3 s, followed by around 3 s of pause. 

Figure 13. (a) Waveform of the synthetic input signal, Vin, 3 s of 180 Hz sinus, followed by 5 s pause, 0
dB signal to noise ratio (SNR). The voltage shown was normalized with regards to maximal value. (b)
Spectrogram of the synthetic input signal.

5.2.2. Prerecorded Signal

The prerecorded signal was a signal of a twin-engine speedboat passing over a hydrophone
submerged approximately 1 m under the surface in shallow water [36]. The signal waveform with
normalized amplitudes and its spectrogram are shown in Figure 14a,b, respectively. Signal duration is
approximately 3 s, followed by around 3 s of pause.
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Figure 14. (a) Waveform of the prerecorded input signal, Vin, with a duration of approximately 3 s,
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(b) Spectrogram of the prerecorded input signal.

5.3. Results

The obtained comparison for synthetic signals and prerecorded speedboat signal are shown in
Figure 15a,b, respectively.
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prerecorded speedboat signal inputs. 

The higher headroom voltages of the PEM FE stem from the increase of rectifier efficiency 
provided by utilization of the mechanically switched inductor. This increased sensitivity allows a 
detector utilizing the PEM FE to detect events generating signals under 20 mV peak-to-peak, while a 
detector using the AE FE could only detect events generating signals of more than 40 mV peak-to-
peak. 

The results also show that the PEM FE is far more resistant to noise than AE FE, as for the input 
signal SNR ranging from signal with no noise down to an SNR of −10 dB the PEM FE loses less than 
1 mV of headroom voltage, while the AE FE loses more than 10 mV of headroom voltage in the same 
SNR range. 

Figure 15. Comparison of outputs of a passive electromechanical feature extractor (PEM FE) and an
active electrical feature extractor (AE FE). Rectifier capacitances for AE FE Cr1−2 = 22 nF, for PEM FE
Cr1−2 = 1 µF. PEM FE inductor L = 100 mH. (a) Synthetic input signals, 3 s of sinus, 180 Hz, 5 s of
pause, filter and piezoelectric transducer output, Vfilt, Vpzt—10–70 mV peak-to-peak, (b) Prerecorded
speedboat signal, 3 s of signal, 3 s of pause, filter and piezoelectric transducer output, Vfilt, Vpzt—10–70
mV peak-to-peak.

The results show that the passive electromechanical feature extractor (PEM FE) outperforms the
active electrical feature extractor (AE FE), with inputs up to 70 mV, for both synthetic and prerecorded
speedboat signal inputs.

The higher headroom voltages of the PEM FE stem from the increase of rectifier efficiency provided
by utilization of the mechanically switched inductor. This increased sensitivity allows a detector
utilizing the PEM FE to detect events generating signals under 20 mV peak-to-peak, while a detector
using the AE FE could only detect events generating signals of more than 40 mV peak-to-peak.

The results also show that the PEM FE is far more resistant to noise than AE FE, as for the input
signal SNR ranging from signal with no noise down to an SNR of −10 dB the PEM FE loses less than 1
mV of headroom voltage, while the AE FE loses more than 10 mV of headroom voltage in the same
SNR range.
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In addition to the mentioned performance improvements, it should also be emphasized that,
unlike the previously developed AE FE, the novel feature extractor is fully passive. The previously
developed AE FE consists of an adjustable bandpass filter and an envelope tracker, and consumes 8.25
µW of the total 11.52 µW consumed by each channel [25], meaning that replacing it with a fully passive
feature extractor, as proposed in this work, would reduce each channel’s power consumption by around
72%, proving that utilizing this method would either greatly extend the detector’s life-time, or allow
us to put in more channels with the same power budget, further increasing the detection accuracy.

6. Conclusions

Acoustic infrequent events can be recognized from an ordered sequence of discrete time-frequency
states obtained from a low-power multichannel detector comprising filtering, envelope extraction
and single bit quantization. The envelope is simple to extract in terms of hardware complexity and
power consumption, but the extractor has poor performance in low SNR conditions that are common
in undersea environments. The goal of this work was to present and characterize a novel passive
electromechanical feature extractor utilizing a mechanically switched inductor, based on RMSHI, as an
alternative solution for feature extraction in an acoustic event detector in frequency range from 200 Hz
to 1 kHz. Through presented simulation and experimental characterization of the passive extractor
we confirmed its applicability for the signals of interest and determined the key design parameters.
We demonstrated advantages of the passive electromechanical extractor in comparison to the active
electrical version in terms of operation with lower input signal levels (under 20 mV, compared to 40
mV), and higher robustness in low SNR conditions (1 mV output voltage loss compared to 10 mV).
In addition to outperforming the signal processing performances, compared to our previous work,
utilization of the passive extractor would also decrease the power consumption of a detector’s channel
by 72%, enabling life-time extension and/or increased quality of detection with larger number of
channels. This work represents the basis for future research towards a fully passive, or self-sustaining
infrequent acoustic event detector channel design utilizing an electromechanical device with an
emphasized threshold.
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Abstract: We present an always-on acoustic wake-up sensor interface, designed for prolonging the 
autonomy of energy-hungry hardware for underwater acoustic surveillance. Proposed design 
enables the detection of a passing ship by simultaneous listening up to three arbitrarily defined 
frequency-bands within the 2.5 kHz range, and generates a wake-up signal upon finding a match 
with a digitally preset template describing signal’s discriminatory time-frequency features. In this 
paper, we propose the architecture of such fully programmable, multichannel, mixed-signal wake- 
up circuit. We show the implementation of a PCB prototype, characterize its sensitivity, analyze its 
current consumption, and verify its response on real-world hydrophone recordings. It is 
demonstrated that the design consumes only 6.4 µA per channel (in total <20 µA) with ultra-low- 
power COTS components, while listening. 

Keywords: acoustic event detection; underwater surveillance; always-on sensor interface; DSP 
 

1. Introduction 

In a variety of underwater passive acoustic surveillance applications (security, marine-biology, 
environmental science etc.), bandwidth of signals of interest often spans up to 100 kHz. This requires 
continuous, high-fidelity signal acquisition, at sample rates as high as 100–200 kHz, real-time digital 
processing, and storage of terabytes of data. State-of-the-art underwater acoustic surveillance 
equipment typically requires 10–100 mW of power for such tasks [1,2], consequently suffering from 
either limited autonomy, or requiring bulky energy-storage units (batteries). 

In order to miniaturize the passive acoustic surveillance equipment, prolong its autonomy, and 
lower the required data-storage capacity, an ultra-low-power always-on “wake-up” circuitry can be 
used [3] to trigger the signal acquisition and storage only in the presence of potential acoustic events 
of interest. In spite of significant research of always-on acoustic wake-up interfaces for terrestrial 
applications [4–6], limited work has been done in the context of detection of underwater acoustic 
events. Even then, most of the research efforts address asynchronous underwater communications 
by acoustic modems [2]. 
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Here we demonstrate a design of an ultra-low-power acoustic wake-up interface for underwater 
detection of passing naval vessels (boats, ships) by analyzing the time-frequency signatures [7] of 
ship’s engine and propeller noise. Our key contributions w.r.t. the previous work [7] include the end- 
to-end design of a fully-programmable multichannel mixed-signal wake-up circuit, its 
implementation with state-of-the-art COTS components yielding minimal power consumption, 
characterization of circuit’s design parameters, and verification of its detection performance on 
hydrophone recordings of passing ships [8]. 

2. Materials and Methods 

The design entails three analog-domain filtering channels decomposing the hydrophone’s signal 
(Vin) into arbitrary frequency bands (Figure 1a). Each channel consists of a digitally programmable 
active band pass filter. Each filter is designed in general impedance convertor (GIC) topology, and 
implemented using a pair of single-supply, CMOS, 100 kHz gain-bandwidth, 600 nA amplifiers 
(MCP6142, Figure 1b). Channel CH1 is designed to cover 200–500 Hz, CH2 for range between 500–
1000 Hz, and CH3 1.0–2.5 kHz. Within these limits, each channel’s central frequency (fc), and pass-
band bandwidth (B), are digitally programmable in 256 steps using I2C potentiometers Rfc, Rb 
(AD5144). 

Intervals of signal presence within individual filtering channels (Vfilt) are localized in time first 
by extracting the envelopes (Venv) of filtered signals with active envelope trackers (MCP6141), and 
then performing single-bit quantization using comparators (TLV3701). Each channel’s comparator 
threshold voltage (Vcomp) is set by a digital potentiometer Rtr (AD5144). 

Temporal relations between comparator responses (Vout) are finally analyzed by a 3-channel 
digital sequence recognition state-machine [7] (MSP430F2013), which wakes-up the DSP. Event’s 
template—an ordered sequence of discrete spectro-temporal states describing the vessel’s acoustic 
signature, is programmed into the MSP430F2013 by I2C as well. Consumption of MSP430F2013 is 
minimized by aggressive frequency scaling (11 kHz) and extensive use of low-power modes (LPM4, 
LPM3). 

A PCB prototype implementation of the described wake-up circuit with proposed COTS 
components (Figure 2a) was used for experimental characterization of design parameters, testing of 
detection performance, and power consumption measurements. 

  

(a) (b) 

Figure 1. The 3-channel always-on wake-up interface. (a) Architecture; (b) Design of an individual 
analog channel (GIC filter, active envelope tracker, comparator). 
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(a) (b) 

  
(c) (d) 

 
 

(e) (f) 
 

Figure 2. Design characterization. (a) PCB; (b) Range of filters central frequencies (adjusted by Rfc), (c) 
bandwidths (set by Rb), and (d) span of comparators thresholds (Rtr); (e) Filters’ gains (Vfilt/Vin); (f) 
Envelope trackers’ sensitivities (Venv). 

3. Results 

Results of characterization of the PCB prototype are summarized in Figure 2. First, adjustable 
ranges of each channel’s programmable parameters are shown in Figure 2b–d. Range of filtering 
channels’ central frequencies fc against digital potentiometers Rfc are verified in Figure 2b: CH1 200–
500 Hz, CH2 500–1100 Hz, and CH3 1.0–2.6 kHz. RB’s are tuned for narrow, 150–200 Hz pass-
bandwidths B at low and mid-frequency channels CH1 and CH2 (Figure 2c), and CH3 is enables 
extraction of broader bands of 500–800 Hz at the fc = 1.0 kHz, and 200–500 Hz at the maximal fc = 2.6 
kHz. Rtr enables setting the comparator’s threshold voltage within approximately 50 mV (Figure 2d) 
around the envelope detector’s output voltage baseline (Venv), sitting on Vref = 0.9 V. 
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Ideally, gains of GIC filtering stages is 2 (Figure 2e). Frequency-dependent gain increase at the 
CH3 helps detection of high-frequency signal, typically exhibiting lower power-spectrum density 
(amplitude) than the signals at low frequencies (CH1, CH2). Sensitivity of the complete analog signal 
chain was measured at the envelope detector’s output, as a ripple-free headroom between the Venv 
and the signal’s baseline, floating around Vref (Figure 2f). Venv ripple affects the sensitivity at low 
frequencies at most. Sensitivity to input signals as low as Vin < 5 mV, enables direct coupling of the 
wake-up circuit to the sensor. 

Event detection performance was tested on underwater recordings of 12 passes of an identical 
speedboat over an acoustic sensor submerged approx. 1 m under the surface in shallow water [8]. 
Signals were rescaled to yield max. Vin = {20…5} mV amplitude at pass-over. For each Vin, thresholds 
Rtr were trained on a single signal, and then tested on the remaining 11. A spectrogram of a training-
pass is shown in Figure 3a. The associated circuit response, including a successful wake-up upon the 
simultaneous detection of uninterrupted 500 ms signal within all three arbitrarily set bands of interest 
(CH1 200–350 Hz, CH2 580–720 Hz, and CH3 1460–1920 Hz) is shown in Figure 3b. In the testing-
phase, circuit was able to detect 8/11 speedboat passes with the Vin amplitude = 10 mV. 

 
(a) 

 
(b) 

Figure 3. An acoustic event detection with the always-on wake-up circuit. (a) A typical underwater 
spectrogram signature of a passing speedboat [8]; (b) The associated wake-up circuit response (Vin = 
20 mV). DSP processing may be initiated on the rising edge of the wake-up signal. 

Current consumption was measured at 1.8 V. GIC filtering within 2.5 kHz implemented with 
MCP6142, costs 3.5 µA/channel. Each active envelope tracker contributes by 0.8 µA. Full-
programmability, implemented with three digital potentiometers per channel (AD5144), adds 0.3 µA. 
Each comparator costs 1.8 µA, mostly due to the current flowing through the programmable resistor-
divider network defining the Vcomp. Digital state machine implemented in MSP430F2013 consumes 
only 0.2 µA in listening [7]. This totals 6.4 µA/channel, or 19.4 µA for the three-channel prototype. 
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4. Discussion 

Comparison with functionally and architecturally related state-of-the-art acoustic wake-up designs 
is given in Table 1. Consuming only 20 µA, the presented design (Figure 2a) achieves the best tradeoff 
between functionality (signal analysis capabilities), bandwidth and programmability, among COTS 
designs [3–5] (Table 1). An analogous ASIC design [6] shows potential for 100-fold power reduction.
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Table 1. Current consumption breakdown (VCC = 1.8 V), and comparison to the related acoustic wake-up designs. (Legend: - feature not present;  feature present, 

but consumption not reported). 

Ref. Techn. Functionality Band-Width Filter/ch. 
Envelope 

Tracking/ch. 
1-bit 

Digitizer/ch. 
Program 

Mability/ch. 
Classifi-
Cation 

Single 
Channel 

Total (all 
ch.) 

[3] COTS 
Fixed, single ch. Acoustic modem 

with address decoding 
150 kHz    - - 4.5 µA - 

this COTS 
dig. programmable 3 ch. filtering, 1-

bit envelope digit., time-freq. 
template matching 

2.5 kHz 3.5 µA 0.8 µA 1.8 µA 0.3 µA 0.2 µA 6.4 µA 19.4 µA 

[4] COTS 
fixed, single-ch., 1-bit digit., 

periodicity detection in FPGA 
380 Hz 4.2 µA - 1.1 µA - 20 µA - 85 µA 

[5] COTS 
Fixed, single ch., detection by 

amplitude thresholding 
20 kHz - - 3.2 µA - - 3.2 µA - 

[6] ASIC 
multi-ch. filtering, env. Peak detect vs 

amb. noise 
100 Hz 0.34 nA   - - 4.3 nA - 
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5. Conclusions 

We demonstrated a prototype of an always-on, multichannel, mixed-signal, fully-programmable 
wake-up sensor interface, consuming less than 20 µA, while listening for time-frequency signature 
of the acoustic event. Usage of the proposed circuit for on-demand triggering of the conventional 
underwater acoustic surveillance equipment [1,2], may reduce its average power consumption for 
more than two orders of magnitude. Apart from underwater security, diver safety, and marine 
biology, the circuit is applicable in many terrestrial event detection applications, including acoustic 
emission monitoring in industry and agriculture. 
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Abstract—To enable low-power recognition of slowly 
evolving acoustic events generated by weak acoustic sources, 
we investigate always-on  circuit architectures for extraction of 
signal energy at arbitrarily selected bands of acoustic 
frequencies. To improve sensitivity and power consumption of 
existing always-on low-power acoustic event detectors, we 
consider the application of passive electromechanical systems. 
In this paper we investigate the Random Mechanical Switching 
Harvester on Inductor (RMSHI) for rectification of the weak 
sensor signal and measurement of its energy. The proof-of-
concept system has been realized, functionally tested and 
characterized in terms of sensitivity and resolution. The 
sensitivity of the presented circuit is around 3 mV/nJ and the 
resolution is ±0.66 nJ. The active part of the system consumes 
6.3 μW. The validity of the approach encourages us towards an 
integrated weak sensor signal measurement device, using a 
MEMS switch driven by the acoustic energy. 

Keywords—weak signal energy measurement, low-power, 
acoustic event, frequency selective, wake-up, RMSHI 

I. INTRODUCTION

Recognition of infrequent acoustic events is of interest in 
many fields (environmental monitoring [1], safety and 
security [2]–[4], agriculture, health monitoring [5]). 
However, this is a power-hungry task as it requires 
continuous operation of the wireless embedded system [2]. 
Power consumption can be lowered by adding an always-on 
frontend which wakes up a wireless embedded system only 
upon detection of some specific signature [6]–[9].  

Many acoustic events can be recognized based on their 
time-frequency signature [1], which can be approximated by 
an ordered sequence of discrete time-frequency states 
(Fig 1.a). Each state is defined by an arbitrarily chosen time 
interval, frequency band, and some feature, which quantifies 
the signal within it [6]. In our previous work we investigated 
instantaneous envelope as a feature quantifying the signal 
[10]. However, it is shown in [11] that for very slow 
evolving acoustic events from weak signal sources, integral 
signal features may be more suitable. Hence, here we explore 
energy as a feature quantifying the signal within each time-
frequency state. 

Always-on wake-up frontends for acoustic event 
recognition typically incorporate weak sensor signal 
amplification, filtering, rectification, quantization and 
rudimentary classification [10]. To lower power 
consumption of these processing blocks, research has been 
done towards implementing them as zero-power 
electromechanical systems [12]. 

To improve sensitivity and power consumption of our 
current always-on low-power acoustic event detector [11], 
we look for application of an electromechanical system in 
rectification of the weak input signals. It should be noted that 
the diode bridge rectifier works only in presence of input 
waveforms having higher amplitude in respect the diode 
threshold. Furthermore, active rectifiers increase and affect 
the total budget of the entire converter [13]. A promising 
approach, applied for the similar problem in energy 
harvesting, is Random Mechanical Switching Harvester on 
Inductor (RMSHI).  There, energy from a weak vibration 
source drives a magnetically biased electromechanical 
switch. Its random switching action boosts the inductor’s 
voltage over the diodes rectifier’s threshold, enabling the 
rectification of very weak signals with a fully passive 
architecture. Also, being non-resonant, the RMSHI has a 
broad frequency range of operation [14], [15].  

In this paper we investigate the application of the RMSHI 
for rectification of such weak sensor signals and 
measurement of their energy, at arbitrarily selected bands of 
frequencies within the acoustic frequency spectrum. The 
presented system consists of a preamplifier, a band-pass filter 
and a macro model of an electromechanical switch operating 
at the same frequency band, an inductor and a rectifier.  

The proof-of-concept system has been realized, 
functionally tested and characterized, and the validity of the 
approach has been shown. To the best of our knowledge, this 
is the first solution presented in the literature, which 
demonstrates the possibility of using the RMSHI as a low-
power passive conditioning circuit for weak signals. This 
paves the road to the realization of a micromechanical 
measurement structure able to continuously listen for 
surrounding acoustic sources and recognize them based on 
the time-frequency distribution of signal’s energy. 

The paper is organized as follows: Section II describes the 
proposed solution. Section III reports the experimental setup 
and the measurement method. The results are presented in 
Section IV, while the concluding remarks are given in 
Section V. 
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II. PROPOSED CIRCUIT DESCRIPTION

The proposed circuit has to be able to extract selected 
frequency bands from the input signal and then measure the 
energy contained in them. The circuit consists of three main 
processing blocks, as can be seen in Fig. 1. A more detailed 
schematic of each processing block is given in Fig. 2. 

a) Spectrogram 

b) Block diagram 

Fig. 1. a) Example of a spectrogram of a signal of interest. T represents the 
duration, fb the frequency band and E the energy of each state within the 
time-frequency pattern. b) Block diagram of the presented approach. The 
energy measurement circuit consists of a band pass filter, an RMSHI and a 
diode rectifier. 

The frequency band of interest is extracted from the input 
signal by a low-power programmable active analog band 
pass filter, see Fig. 2.a. The filter has been developed in the 
general impedance converter (GIC) topology, using a dual 
low-power operational amplifier (MCP6142). This topology 
enables independent tuning of the central frequency and 
bandwidth of the filter spanning between 200 Hz and 
2.5 kHz. The current consumption of the filter is 3.5 μA, 
making it suitable for use in a low power circuit. A more 
detailed description and characterization of this filter can be 
found in [11].  

The energy contained in the extracted band is measured 
by using a passive architecture featuring Random 
Mechanical Switching Harvester on Inductor (RMSHI) [14]. 
It consists of an electromechanical switch, an inductor, a 
diode bridge and a load capacitor (see Fig. 2.a). 

The electromechanical switch is composed of a cantilever 
beam having a stopper on the upper part and a tunable 
magnetic system able to modify the elastic factor and, as 
consequence, the spectral response of the system as function 
of the input signal, as shown in Fig. 2.b and Fig. 2.c. 
Mathematically, this transducer can be modeled using a 
second order nonlinear differential equation that can be 
written as follows: 

(1) 

Where m and d are the mass and the damping coefficient 
respectively. The term x is the displacement of the tip of the 
beam and the dotted terms represent the first and the second 
derivate of the displacement (velocity and acceleration of the 
cantilever respectively). UT is the potential energy function 
which is nonlinear taking into the account the stopper and the 
external magnet which acts as tunable factor. This latter 
contribution is expressed with the term �. In presence of 
external vibration source the beam will move and two main 
conditions will appear: 1) when the beam touches the stopper 
Ss, all the current provided by the low power filter flows 
through the inductor L, (see Fig. 2.a); 2) when the contact 
between both is open, the residual current cannot be 
instantaneously canceled, so it generates an overvoltage peak 
across the inductor that overcomes the thresholds of the 
diodes. In this case it is possible to convert the low level 
signals into a DC voltage across the load capacitor CL in 
order to give the information of the input signal energy. 

In particular the electromechanical switch used in this 
study is composed of a brass beam with a length (l) of about 
55 mm, width of about 8.3 mm and thickness of about 
0.2 mm, with the distance (l1) between the anchor of the 
cantilever and the stopper of about 28 mm, as shown in 
Fig. 2.c. 

a) Proposed circuit schematic 

b) Random mechanical switch
principle 

c) Random mechanical switch
photograph 

Fig. 2. a) A detailed schematic of the energy measurement circuit. It 
consists of an active programmable analog band pass filter, an RMSHI part, 
a full bridge rectifier and a load capacitor CL. b) Principle of the random 
mechanical switch used as part of the conditioning circuit for 
measurements of very weak input sources. c) A photograph of the random 
mechanical switch. 1) Stopper, 2) Cantilever beam, 3) Movable magnet. 

III. MEASUREMENT SETUP AND PROCEDURE

The goal of these measurements was to perform a 
functional test of the proposed circuit, to select design 
parameters and to characterize its sensitivity and resolution. 

A. Measurement Setup
For all the following measurements the circuit was

adjusted in the following way. The central frequency of the 

Authorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on February 25,2022 at 18:51:55 UTC from IEEE Xplore.  Restrictions apply. 



filter was tuned to 300 Hz by setting the values of the 
trimmer resistors Rfc1 and Rfc2 (as shown in Section II, 
Fig. 2.a) and its pass band width was set to 200 Hz using the 
trimmer resistor Rb. The magnet opposite to the switch’s 
cantilever beam, Fig. 2.b, was used to set the frequency at 
which the switch has the highest output voltage to match the 
central frequency of the filter. 

The block diagram and a photograph of the measurement 
setup can be seen in Fig. 3. and Fig. 4. respectively. The 
measurement setup consisted of a function generator 
(Voltcraft FG-506) connected to the input of the circuit. The 
energy measurement part of the circuit was positioned on a 
shaker (Smart Material Energy Harvesting Kit 1.2.). In order 
to decouple the input signal used for the characterization and 
the RMSHI, we have used a second function generator 
(Agilent 33250 A) to drive the shaker and to move the 
mechanical transducer operating with the same waveform 
and frequency. The output voltage was acquired by a digital 
oscilloscope (Rigol MSO4014) in duration from 5 s to 20 s. 

 

Fig. 3. Block diagram of the measurement setup which consists of the 
proposed circuit, a pair of function generators, a shaker and a digital 
oscilloscope. 

 

Fig. 4. A photograph of the measurement setup. 1) Voltcraft FG-506 
function generator, 2) Agilent 33250 A function generator, 3) Smart 
Material Energy Harvesting Kit 1.2. shaker, 4) Proposed circuit, 5) Rigol 
MSO4014 oscilloscope. 

B. Measurement Procedure 
1) Design parameter selection 
The goal was to select the load capacitor CL in regards to 

output signal ripple and response time. A higher capacitance 
means reduction of ripple, but it also causes longer response 
time. Frequency of the input signal was set for maximal 
output voltage (to 315 Hz) and peak-to-peak input voltage 
was set to 50 mV. The output voltage was measured for 
capacitors of 10 nF, 33 nF, 100 nF, 470 nF and 1 μF. 

2) Sensitivity of circuit to input signal frequency within 
the selected frequency band 
The goal was to determine the relation of output signal 

voltage to change of input signal frequency, within the 
selected frequency band. The load capacitor of 33 nF was 
chosen. The frequency of the input signal was swept from 
290 Hz to 330 Hz with increment of 5 Hz. The input signal 
peak-to-peak voltage was set to 5 mV, 10 mV, 20 mV, 
30 mV, 40 mV and 50 mV. For each combination of input 
signal frequency and voltage, output voltage was recorded in 
duration of 20 s. The recorded waveforms were processed in 
MATLAB to obtain the RMS value of the output voltage. 

3) Energy measurement characterization 
The goal was determination of the proposed circuit’s 

energy measurement performance. The frequency of the 
input signal was 315 Hz, at which the RMSHI has the 
maximal output voltage. The peak-to-peak values of the 
input voltage were set at 5 mV, 10 mV, 20 mV, 30 mV and 
40 mV respectively. For each input voltage value, 10 
measurements in duration of 5 s were done. After acquisition 
the measurement data was processed in MATLAB. The 
output of the energy measurement circuit was given as the 
maximal output voltage during the 5 s period, averaged over 
10 consecutive measurements. The measurement error � was 
calculated as: 

(2) 

Where A is the uncertainty and std is the standard 
deviation of the maximal voltage values of the 10 
measurements. 

The input signal energy E in nJ was calculated from 
peak-to-peak value of the input signal voltage Vin, circuit 
input resistance Rin and measurement duration Tm, as shown 
in (3). 

� �
���

�

���

	
  
 

(3) 

IV. RESULTS 
The obtained results are organized in two sections. First 

section covers functional tests and the second 
characterization of the proposed circuit. 

A. Functional Test 
The result of the functional test in Fig. 5. shows the 

waveform of the proposed circuit’s output voltage with and 
without use of the RMSHI. It can be seen that using the 
RMSHI increases the output voltage of the proposed circuit, 
which validates the principle and indicates its usefulness in 
low-power devices for energy measurement. Also, as the 
RMSHI adds no additional active components to the circuit, 
the only active part of the circuit remains the band-pass filter. 
Thus the overall power consumption of the proposed circuit 
is 6.3 μW (3.5 μA at 1.8 V supply). 
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Fig. 5. The waveform of the output voltage with (blue) and without (red) 
the mechanical switch operational. Input signal voltage peak-to-peak 
50 mV, frequency 315 Hz, load capacitance CL = 33 nF. 

B. Circuit Characterization 
1) Design parameter selection 
As described in Section III, analyses in terms of load 

capacitors have been pursued. It is clear from the waveforms 
shown in Fig. 6. that the 33 nF load capacitor works well for 
our application in both terms of output voltage ripple and 
response time. 

 

Fig. 6. The waveform of the output voltage for different values of load 
capacitance CL. Input signal voltage peak-to-peak 50 mV, frequency 
315 Hz. 

2) Sensitivity of circuit to input signal frequency within 
the selected frequency band 
Fig. 7. shows that the electromechanical switch has the 

maximal output voltage for the excitation vibration 
frequency of around 315 Hz, this result is a consequence of a 
tuning procedure of � (see Section II, eq.1). That motivates 
us to use this as the central frequency for the other sets of 
measurements. 

 

Fig. 7. Sensitivity of circuit to input signal frequency within the selected 
frequency band. The output RMS voltage is shown. Input signal voltage 
peak-to-peak from 5 mV to 50 mV, frequency changed by 5 Hz from 
290 Hz to 330 Hz, load capacitance CL = 33 nF. 

3) Energy measurement characterization 
In Fig. 8. the relation between the input energy and 

output voltage is shown. It can be seen that the maximum 
measurement error (deviation from the linear interpolation) is 
around -2 mV, measured at input energy of 0.4 nJ. 

 

Fig. 8. Output voltage maximum value versus input signal energy. Input 
signal frequency 315 Hz, load capacitance CL = 33 nF. The dots and the 
blue line represent actual measurement data. The red line represents a linear 
interpolation. 

Fig. 9. shows the calibration curve of the proposed 
circuit. The sensitivity of the measurement circuit is around 
3 mV/nJ and the resolution is around ±0.66 nJ. 

 

Fig. 9. The calibration curve of the energy measurement circuit. The black 
squares are the measurements. The blue line represents the linear 
interpolation. The two red lines represent the maximum measurement error. 

V. CONCLUSION 
In this paper a proof-of-concept system featuring the 

RMSHI as a passive conditioning circuit for rectification and 
measurement of weak signal energy was presented. Using 
energy as a feature enhances detection of very slow evolving 
acoustic phenomena. The advantage of the proposed 
approach is that the single mechanical structure can be tuned 
to various frequency bands within acoustic frequency 
spectrum. Thanks to utilization of the RMSHI, we 
accomplished sensitivity of the presented circuit is around 3 
mV/nJ. With the maximum measurement error in mind, the 
resolution is around ±0.66 nJ. The active part of the system 
consumes around 6.3 μW. 

This work represents the first step towards an integrated 
weak sensor signal measurement device, using a MEMS 
switch driven by the acoustic energy. The results presented 
here shall be used in modeling and development of the future 
integrated device. 
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Abstract— These days an increasing number of applications 
have a need for always-on sensor interfaces for processing and 
analysis of sensor signals. One function most of these interfaces 
have in common is signal rectification. Seeing how these 
interfaces are always on, their parts should have low power 
consumption. This leads us to the idea of an electromechanical 
rectifier for weak signal rectification that could increase the 
rectified voltage levels with no additional power consumption, 
as it would get the energy needed for its operation from the 
very phenomenon that is observed. Motivated by this 
application scenario, an electrical analysis of the weak signal 
detection utilizing a mechanically switched inductor was done, 
considering a low-impedance weak signal source. After the 
theoretical analysis, simulations of the proposed 
electromechanical topology were presented. Finally, an 
experimental demonstration was done utilizing an RMSHI 
circuit corroborating the applicability of this concept in weak 
signal detector for an always-on interface. The experimental 
results show that it is possible to detect a minimal input voltage 
between 40 mV and 50 mV peak-to-peak for the macroscopic 
RMSHI device. 

Keywords— weak sensor signal, low-impedance source, 
electromechanical detector, rectifier, switching control, RMSHI 

I. INTRODUCTION 

These days the number of systems used for recognition 
and detection of infrequent events is increasing at a high 
pace. This has therefore become a topic of interest in many 
fields (environmental monitoring [1], safety and security [2], 
[3], agriculture, health monitoring [4]). However, this is a 
power-hungry task which requires continuous operation of 
the wireless embedded system [2]. Power consumption can 
be lowered by adding a low-power always-on frontend to 
wake up a more power hungry wireless embedded system 
only upon detection of some specific signature [5]–[7]. 

These always-on frontends typically incorporate signal 
processing blocks, such as amplification, filtering, 
rectification, quantization and rudimentary classification [8]. 
To lower power consumption of these processing blocks, 
extensive research is being done towards implementing them 
as near-zero-power electromechanical systems [9]. 

To improve sensitivity and power consumption of our 
always-on low-power interface, reported in [10], we consider 

using an electromechanical detector comprised of a 
mechanically switched inductor, a diode rectifier bridge and 
a parallel of a capacitor and resistor. Utilizing a mechanically 
switch inductor provides voltage levels that can be rectified 
using a passive diode bridge rectifier. The mechanical switch 
would get the energy required for its operation from the very 
phenomenon (vibrations) that the always-on frontend 
interface observes. This is the key advantage of this topology 
compared to active rectifiers [11], [12]. 

Motivated by this application scenario, in this paper we 
present an analysis and experimental demonstration of 
detection of weak signals from low-impedance sources, 
utilizing a mechanically switched inductor. A similar 
problem was analyzed in detail in previous works regarding 
energy harvesting [13], with a difference that those works 
dealt with high-impedance sources [14]. 

This paper is organized as follows: Section II presents the 
application of the detector in an always-on interface. 
Section III presents the theoretical analysis of the 
mechanically switched inductor. Section IV presents 
simulations of the detector operation. The experimental 
demonstration is presented in Section V. The concluding 
remarks are given in Section VI. 

II. DETECTOR APPLICATION IN AN ALWAYS-ON INTERFACE 

The structure of the always-on interface with the 
proposed switched inductor detector can be seen in Fig. 1. 

 

Fig. 1. Structure of the always-on interface with the switched inductor 
detector 

In the always-on interface, the proposed detector is 
connected to an active bandpass filter. This means that the 
filter amplifier should be capable of driving the inductor of 
the proposed detector. 

The detector’s output is connected to a low-power 
comparator. The comparator input voltage limits define the 
required detector output. 

A detailed description of the always-on interface can be 
found in [5], [10]. 

III. PRINCIPLE OF OPERATION 

The proposed weak signal electromechanical detector, 
shown in Fig. 2., consists of three main elements: a parallel 
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mechanically switched inductor, a diode bridge full wave 
rectifier and a parallel of a capacitor and a resistor. 

 

Fig. 2. The schematic of the proposed signal detector used for theoretical 
analysis 

A. Circuit Operation with the Switch Closed 

As this is a weak signal detector, the input voltage Vin is 
low (up to tens of millivolts) and under the threshold voltage 
of the diode bridge. This means that while the switch is 
closed, current iL given by (1) flows only through the 
inductor. 

 
(1) 

tC is the moment when the switch is closed and tO the moment 
the switch is opened. 

B. Circuit Operation with the Switch Opened 

At the moment tO when the switch opens a voltage VL is 
induced across the inductor: 

 
(2) 

We can consider the time derivation of the current at to to be: 

 
(3) 

with iL(tO) being the current at the instant of opening of the 
switch and Δt the time required for the switch to open and the 
current through the inductor to fall to zero. 

If the voltage induced on the inductor is high enough to 
pass over the diode bridge, it will charge the capacitor. The 
output voltage of the detector Vout is given with (4) when the 
capacitor is being charged and (5) while the voltage level is 
stable: 

(4) 

 
(5) 

With VD being the diode threshold voltage and τC being the 
charging time constant, defined as: 

 (6) 
with Rd being the resistance of the conducting diodes. It 
should also be noted that the capacitor must be allowed time 
to fully discharge for the previously detected event not to 
affect the next event detection. The discharge time constant, 
τD is: 

 (7) 

with Rs being the combined resistance of the capacitor and 
the wires. 

IV. SIMULATIONS 

The presented simulations were done using TINA-TI, a 
Texas Instruments SPICE-based analog simulator, with the 
simulation model shown in Fig. 3. 

 

Fig. 3. Switched inductor detector simulation model 

Some simulation results were further processed using 
MATLAB. The following text presents simulations related to 
output capacitor, switch operation and influence of input 
interference and noise. The simulations were done for a 
sinusoidal input voltage with amplitude from 1 mV to 20 mV 
peak-to-peak and frequency 200 Hz, with inductance of 
100 µH and output resistance of 25 kΩ. 

A. Selection of Output Capacitor 

The output circuit time constant should be set to such a 
value that an acceptable charge and discharge time and 
output voltage ripple is achieved. The output voltage 
waveform for two different time constants can be seen in 
Fig. 4. The switch was opened for a very short time (20 µs), 
twice per period, at peak values of inductor current. A time 
constant around 25 ms fulfils the requirements of application 
of this detector in an always-on interface. 

 

a) Output capacitance 1 µF, resistance 25 kΩ 

 

b) Output capacitance 100 nF, resistance 25 kΩ 

Fig. 4. Detector input voltage (blue) and output voltage (red) waveforms 
for time constant of τ1=25 ms and τ2=2.5 ms 
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B. Switch Operation 

The voltage induced on the inductor depends on the 
integral of the input voltage during the time the switch was 
closed. We simulated the induced voltage for different switch 
opening instants, while keeping the same duration of the 
switch closed state. Results are presented in Fig. 5. The 
closed state duration was T/16 with the opening instants set 
from 0 to T/4, with a step of T/16. The opening of the switch 
lasts around 5.5 µs. 

 

Fig. 5. Inductor induced voltage depending on the switch opening instant 
for the same switch closed state duration. (Input signal amplitudes 5 mV,  
10 mV and 20 mV peak-to-peak). 

Fig. 6 presents the induced inductor voltage at the 
opening instant (T/2-0.02) ms for switch closed state 
duration from T/16 to T/2, with a step of T/16. 

 

Fig. 6. Inductor induced voltage at the opening instant pi for switch closed 
state duration from pi/16 to pi/2, with a step of pi/16 (Input signal 
amplitudes from 5 mV, 10 mV and 20 mV peak-to-peak) 

Fig. 6. shows that, if the moment of the switch opening is 
kept the same, while changing the time it was closed prior to 
that opening we get a change in the output voltage, which is 
easily explained by looking at equation (5). If we change the 
time the switch is in a closed state, we change the time we 
spend integrating the input signal, meaning the integral is 
different and therefore so is the output voltage. 

C. Influence of Noise and Interference 

Thanks to the integral dependence between the induced 
voltage and the input voltage the influence of the 
high-frequency harmonic interference and noise can be 
reduced as shown in Fig. 7. 

 

a) 

 

b) 

Fig. 7. Input voltage (black), inductor current (blue), output voltage 
(green) for: a) input signal 200 Hz, 10 mV peak-to-peak and b) added 
interference of 2 kHz, 5 mV peak-to-peak. 

V. EXPERIMENTAL DEMONSTRATION 

A. Measurement Setup 

The block diagram and a photograph of the measurement 
setup can be seen in Fig. 8. and Fig. 9. respectively. The 
measurement setup consisted of a waveform generator 
(Keysight 33500B) with one channel connected to the input 
of the rectifier and the other used to drive the shaker (Smart 
Material Energy Harvesting Kit 1.2.) that was used to open 
and close the switch in the Random Mechanical Switching 
Harvester on Inductor (RMSHI) circuit. The output voltage 
was acquired by a National Instruments data acquisition card 
(NI USB-6211) connected to a PC. 

 

Fig. 8. Block diagram of the measurement setup which consists of a 
function generator (1), the RMSHI circuit (2), a shaker (3) and a data 
acquisition card (4) connected to a PC (5). 
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Fig. 9. A photograph of the measurement setup. 1) Keysight 33500B 
waveform generator, 2) RMSHI circuit, 3) Smart Material Energy 
Harvesting Kit 1.2. shaker, 4) NI USB-6211 data acquisition card. 

The RMSHI circuit consists of an electromechanical 
switch, an inductor, a diode bridge and a load capacitor. The 
electromechanical switch is composed of a cantilever beam 
having a stopper on the upper part and a tunable magnetic 
system able to modify the elastic factor and, as consequence, 
the spectral response of the system as function of the input 
signal, as shown in Fig. 10. Mathematically, this transducer 
can be modeled using a second order nonlinear differential 
equation that can be written as follows: 

 

(8) 

where m and d are the mass and the damping coefficient 
respectively. The term x is the displacement of the tip of the 
beam and the dotted terms represent the first and the second 
derivate of the displacement (velocity and acceleration of the 
cantilever respectively). UT is the potential energy function 
which is nonlinear taking into the account the stopper and the 
external magnet which acts as tunable factor. This latter 
contribution is expressed with the term δ. 

The electromechanical switch used in this study is 
composed of a brass beam with a length (l) of about 55 mm, 
width of about 8.3 mm and thickness of about 0.2 mm, with 
the distance (l1) between the anchor of the cantilever and the 
stopper of about 28 mm, as shown in Fig. 10.a. Further 
information about the RMSHI can be found in [13], [15] and 
[16]. The vibrations generated by the shaker bend the beam, 
opening and closing the contact between the beam and the 
stopper and therefore opening and closing the switch. 

 

 

a) Random mechanical switch 
principle 

b) Random mechanical switch 
photograph 

Fig. 10. a) Principle of the random mechanical switch used as part of the 
conditioning circuit for measurements of weak input sources. b) A 
photograph of the random mechanical switch. 1) Stopper, 2) Cantilever 
beam, 3) Movable magnet. 

B. Measurement Procedure 

The goal of these measurements was to demonstrate the 
use of RMSHI in weak signal detection and potentially in the 
always-on interface. The measurements were done in the 
following three sets. 

1) Switch behaviour 
The goal was to record the used RMSHI switch timing 

parameters. A 50 mV signal was connected to the switch 
input. Voltage at the switch input was measured. The shaker 
(speaker) was driven by a 212 Hz, 3.5 V peak-to-peak square 
wave. 

2) Design parameter selection 
The goal was to select the load capacitor Cout with 

regards to output signal ripple and response time. The input 
signal was a square waveform of 50 mV high state (lasting 
800 ms) and 0 mV low state (lasting 1.2 s). The output 
voltage was measured for ceramic capacitors of 2 nF, 10 nF, 
22 nF, 68 nF, 100 nF and 400 nF. 

3) Input voltage detection 
The goal was determination of the proposed circuit’s 

voltage detection. The input signal was set to a square 
waveform with the high state lasting 800 ms and the low 
state lasting 1.2 s. The values of the input voltage high states 
were set at 10 mV, 20 mV, 30 mV, 40 mV and 50 mV 
respectively, while the low state was always 0 mV. For each 
input voltage value, the output voltage waveform was 
recorded. 

C. Results 

The obtained results are organized in three sections. First 
section shows the RMSHI switch operation, the second 
covers design parameter selection and the third shows the 
applicability of the proposed detector topology utilizing an 
RMSHI switch in the always-on interface. 

1) RMSHI switch operation 
The used RMSHI switch operation is shown in Fig. 11. 

The complexity of such a system’s operation can be seen 
from the changing duration of switch open and closed states. 

 

Fig. 11. RMSHI switch operation under the drive conditions used for the 
rest of the experiments. 

2) Design parameter selection 
As described in Section IV, analysis in terms of load 

capacitors has been pursued. As Fig. 12. shows a higher 
capacitance means reduction of ripple, but causes longer 
response time. The waveforms shown in Fig. 12. show that 
the 10 nF load capacitor (τ = 6.65 ms) works well for this 
setup. 
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Fig. 12. The waveform of the output voltage for different values of load 
capacitance Cout. (Input signal square wave, voltage 50 mV peak-to-peak, 
25 mV offset, 800 ms high state, 1200 ms low state.) 

3) Input voltage detection 
Fig. 13. shows the detector output voltage utilizing an 

RMSHI circuit as its switch. The lowest output voltage value 
of 28 mV and 128 mV were measured for the input voltages 
of 40 mV and 50 mV peak-to-peak respectively, with a time 
constant of 6.65 ms. The RMSHI circuit used in this 
experiment represents a highly complex system, which 
cannot easily be described by a simple model and the basic 
concepts described in previous sections. However, from a 
phenomenological point of view it is clear that such a 
detector can be used in an always-on interface, warranting 
further research in the subject. 

 

Fig. 13. Output voltage waveform for input voltage Vin 40 mV peak-to-peak 
(blue) and 50 mV peak-to-peak (red).Output capacitance 10 nF, detector 
inductance 1.2 mH. 

4) Comparison to current solutions 
Table I. shows a comparison of our proposed system with 

current solutions for active envelope detectors used in signal 
processing. 

TABLE I.  PROPOSED DETECTOR COMPARED TO CURRENT SOLUTIONS 

Reference Power consumption Minimal input voltage 

[10] 1.44 µW ~20 mVpp 

[17] 100 nW ~140 mVpp 

[18] 2.365 nW ~2 mVpp 

[19] 1 – 10 nW ~150 mVpp (1.5 V bias) 

this work – ~40 mVpp 

VI. CONCLUSION 

In this paper we studied the application of a mechanically 
switched inductor detector in an always-on weak sensor 
signal interface. We have shown the importance of switch 
operation timing. We’ve done a preliminary simulation study 
and experimental demonstration of the detector with a 
random mechanically switched inductor. 

The experimental results show that it is possible to detect 
a minimal input voltage between 40 mV and 50 mV 
peak-to-peak for the macroscopic RMSHI device. 

Further work will be focused on a better understanding of 
switch operation and optimization of the detector sensitivity. 

REFERENCES 

[1] M. Fourniol, V. Gies, V. Barchasz, and E. Kussener, “Low-Power 
Wake-Up System based on Frequency Analysis for Environmental 
Internet of Things,” in 2018 14th IEEE/ASME International 
Conference on Mechatronic and Embedded Systems and Applications 
(MESA), pp. 1–6, 2018. 

[2] B. Thoen et al., “Saving energy in WSNs for acoustic surveillance 
applications while maintaining QoS,” SAS 2017 - 2017 IEEE Sensors 
Appl. Symp. Proc., pp. 1–6, 2017. 

[3] S. E. Kucukbay, M. Sert, and A. Yazici, “Use of Acoustic and 
Vibration Sensor Data to Detect Objects in Surveillance Wireless 
Sensor Networks,” Proc. - 2017 21st Int. Conf. Control Syst. Comput. 
CSCS 2017, pp. 207–212, 2017. 

[4] D. Oletic and V. Bilas, “Energy-efficient respiratory sounds sensing 
for personal mobile asthma monitoring,” IEEE Sens. J., vol. 16, no. 
23, pp. 8295–8303, 2016. 

[5] D. Oletic, L. Korman, M. Magno, and V. Bilas, “Time-frequency 
pattern wake-up detector for low-power always-on sensing of acoustic 
events,” I2MTC 2018 - 2018 IEEE Int. Instrum. Meas. Technol. Conf. 
Discov. New Horizons Instrum. Meas. Proc., pp. 1–6, 2018. 

[6] C. Tschope, F. Duckhorn, C. Richter, P. Bl, and M. Wolff, “An 
Embedded System for Acoustic Pattern Recognition,” in 2017 IEEE 
SENSORS, pp. 1–3, 2017. 

[7] S. Chu, S. Narayanan, and C. J. Kuo, “Environmental Sound 
Recognition With Time–Frequency Audio Features,” IEEE Trans. 
Audio. Speech. Lang. Processing, vol. 17, no. 6, pp. 1142–1158, 
2009. 

[8] D. Oletic, V. Bilas, M. Magno, N. Felber, and L. Benini, “Low-power 
multichannel spectro-temporal feature extraction circuit for audio 
pattern wake-up,” 2016 Des. Autom. Test Eur. Conf. Exhib., pp. 355–
360, 2016. 

[9] R. H. Olsson, R. B. Bogoslovov, and C. Gordon, “Event driven 
persistent sensing: Overcoming the energy and lifetime limitations in 
unattended wireless sensors,” Proc. IEEE Sensors, pp. 1–3, 2016. 

[10] D. Oletic, M. Gazivoda, and V. Bilas, “A programmable 3-channel 
acoustic wake-up interface enabling always-on detection of 
underwater events within 20 µA,” in Eurosensors 2018, 32nd 
Conference, pp. 1–7, 2018. 

[11] A. S. Herbawi, O. Paul, and T. Galchev, “An ultra-low-power active 
AC-DC CMOS converter for sub-1V integrated energy harvesting 
applications,” Proc. IEEE Sensors, pp. 1–4, 2013. 

[12] K. G. Sun, K. Choi, and T. N. Jackson, “Low-power double-gate ZnO 
TFT active rectifier,” IEEE Electron Device Lett., vol. 37, no. 4, pp. 
426–428, 2016. 

[13] F. Giusa, A. Giuffrida, C. Trigona, B. Andò, A. R. Bulsara, and S. 
Baglio, “‘Random mechanical switching harvesting on inductor’: A 
novel approach to collect and store energy from weak random 
vibrations with zero voltage threshold,” Sensors Actuators, A Phys., 
vol. 198, pp. 35–45, 2013. 

[14] N. Krihely and S. Ben-Yaakov, “Self-contained resonant rectifier for 
piezoelectric sources under variable mechanical excitation,” IEEE 
Trans. Power Electron., 2011. 

[15] S. Bradai, S. Naifar, C. Trigona, S. Baglio, and O. Kanoun, 
“Electromagnetic transducer with bistable-RMSHI for energy 
harvesting from very weak kinetic sources,” I2MTC 2018 - 2018 

219
Authorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on February 25,2022 at 18:54:07 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Int. Instrum. Meas. Technol. Conf. Discov. New Horizons 
Instrum. Meas. Proc., pp. 1–5, 2018. 

[16] M. Gazivoda, D. Oletic, C. Trigona, and V. Bilas, “Measurement of 
Weak Signal Energy at Acoustic Frequencies by using RMSHI as a 
Passive Conditioning Circuit,” I2MTC 2018 - 2018 IEEE Int. Instrum. 
Meas. Technol. Conf. Proc., (in press), 2019. 

[17] K. M. H. Badami, S. Lauwereins, W. Meert, and M. Verhelst, “A 90 
nm CMOS, 6 μW power-proportional acoustic sensing frontend for 
voice activity detection,” IEEE J. Solid-State Circuits, vol. 51, no. 1, 
pp. 291–302, 2016. 

[18] U. Antao, J. Choma, A. Dibazar, and T. Berger, “40nW subthreshold 
event detector chip for seismic sensors,” 2015 IEEE Int. Symp. 
Technol. Homel. Secur. HST 2015, pp. 1–6, 2015. 

[19] B. Rumberg, D. W. Graham, V. Kulathumani, and R. Fernandez, 
“Hibernets: Energy-efficient sensor networks using analog signal 
processing,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 1, no. 3, pp. 
321–334, 2011. 

 

220
Authorized licensed use limited to: University of Zagreb: Faculty of Electrical Engineering and Computing. Downloaded on February 25,2022 at 18:54:07 UTC from IEEE Xplore.  Restrictions apply. 



Publications 

155 

 

 

 

 

 

 

Publication 8 

Gazivoda, M., Oletić, D., Bilas, V., “Characterization and Comparison of Envelope Detectors for 

Wake-up Sensor Interfaces at Audio Frequencies”, Proceedings of the 2020 IEEE International 

Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, pp. 1–

6., 2020, doi:10.1109/I2MTC43012.2020.9128810 

 



Marko Gazivoda 
Faculty of Electrical Engineering and 

Computing, University of Zagreb 
Zagreb, Croatia 

marko.gazivoda@fer.hr 

Dinko Oletić 
Faculty of Electrical Engineering and 

Computing, University of Zagreb 
Zagreb, Croatia 

dinko.oletic@fer.hr 

Vedran Bilas 
Faculty of Electrical Engineering and 

Computing, University of Zagreb 
Zagreb, Croatia 

vedran.bilas@fer.hr 

Abstract— Ultra-low-power analog hardware interfaces are 
becoming often used for continuous monitoring of weak, rarely 
and randomly occurring (spurious) acoustic events. Detection 
often requires interfaces for analog-domain time-frequency 
decomposition. These interfaces most often have a generic 
structure incorporating the same processing blocks, such as 
amplification, filtering, rectification, quantization and 
rudimentary classification. A critical processing block of the 
wake-up sensor interface is the envelope detector. In this paper 
we select four envelope detector topologies and show 
simulation and measurement results of their key parameters 
for their application in wake-up sensor interfaces. The selected 
envelope detectors must have short transient times (< 100 ms), 
used to rectify weak input signals (under 10 mV) in the lower 
audio frequency range and have a low power consumption to 
make them applicable in wake-up sensor interfaces. 

Keywords— passive envelope detector, switched inductor 
envelope detector, weak-signal envelope detection 

I. INTRODUCTION

The research of low-power circuits is becoming more 
prominent because of their wide range of applications from 
IoT [1], communication systems [2], wake-up systems [3], 
detectors and monitoring systems [4], wearable and 
biomedical electronics [5] and many others. One of the most 
interesting applications of low-power circuits, that is 
providing solutions in many fields, are low-power wireless 
sensor networks. These networks require specific low-power, 
weak-signal embedded sensors most often used for 
continuous monitoring of spurious events, occurring 
randomly and rarely throughout the monitoring time. 

Detection of spurious events based on time-frequency 
pattern recognition requires a set of signal processing 
operations and most sensor interfaces for this application 
have a structure incorporating processing blocks, such as 
amplification, filtering, rectification, quantization and 
rudimentary classification [6], [7]. The block schematic of 
the structure is shown in Fig. 1. 

Fig. 1. An always-on wake-up sensor interface for spurious event 
detection based on time-frequency signal decomposition 

A critical processing block of the wake-up sensor 
interface is the envelope detector, which is connected to the 
comparator input. The comparator must be able to respond 
quickly to the event and distinguish two events close in time. 
Therefore, the envelope detector must have a short rise and 
fall times (Fig. 2), estimated under 100 ms for the wanted 
application [7]. 

The comparator should also be able to distinguish as low 
levels of voltage as possible. So, the output headroom 
voltage (Fig. 2.) of the envelope detector should be at least 
5 mV for the wake-up sensor interface application [7]. 

Fig. 2. A graphic representation of the values of interest in simulation and 
measurement – headroom voltage, rise and fall time 

There are several other demands on wake-up sensor 
interface envelope detectors stemming from their application 
– working with input voltages under the diode threshold and
having a low power consumption.

In this paper we will focus on envelope detectors 
operating in the lower audio frequency range, as this 
frequency range is rich in easily extracted useful information 
about the phenomena of interest. A lot of work has recently 
been done in development of appropriate envelope detection 
solutions. In [8] the authors present a fully passive envelope 
detector that works with input signals as low as 100 mV at 
frequencies from DC to 100 MHz. In [9] a low-power 
envelope detector is presented with power consumption of 
just 10 nW, operational with an input as low as 50 mV at 
50 Hz. In [10] an envelope detector with around 100 nW 
power consumption is presented, that can work with input 
signals over 100 mV at a low frequency of only 4 Hz. It 
should be noted that the envelope detectors presented in [8]–
[10] are integrated, unlike the prototypes in this paper, which
are made of commercially available components.

In vibration energy harvesting the problem of low 
generated voltages (under the diode threshold) is solved by 
utilizing the concept of envelope detectors with a switched 
inductor, such as SSHI (synchronous switched harvester on 
inductor) to increase the envelope detector’s efficiency [11], 
[12]. 
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In this paper we characterize and compare four envelope 
detector topologies and show simulation and experimental 
results of key parameters for their application in low-power 
embedded wake-up sensor interfaces. The selected envelope 
detector topologies are: passive single-diode half-wave 
envelope detector, passive two-diode half-wave voltage 
doubler (Greinacher circuit), active two-diode half-wave 
voltage doubler utilizing an operational amplifier and an 
active full-wave envelope detector utilizing a switched 
inductor (switched by an electrical switch driven by an 
oscillator). 

This paper is organized as follows: Section II presents a 
simulation study of the envelope detectors, showing the 
simulation models and results, Section III presents the 
experimental setup and results measured using the developed 
prototypes, Section IV presents a summary comparison of 
the envelope detectors and Section V presents the concluding 
remarks of the paper, along with possible future work. 

II. SIMULATION STUDY

The goals of the simulation study were the selection of 
passive and active components for envelope detector 
realization and preliminary insight into parameters of interest 
(headroom voltage, rise and fall time). The presented 
simulations were done using TINA-TI, a Texas Instruments 
SPICE-based analog simulator. 

A. Simulation models and setup

The simulation models are shown in Fig 3. a) through d).

a) b) 

c) 

d) 
Fig. 3. Envelope detector topologies: a) passive single-diode half-wave 
envelope detector, b) passive two-diode half-wave voltage doubler 
(Greinacher circuit), c) active two-diode half-wave voltage doubler 
utilizing an operational amplifier and d) active full-wave envelope detector 
utilizing a switched inductor 

The envelope detector input signal was a gated sinusoidal 
signal because that allows both transient times to be 
measured. The duration of the sinusoidal signal was set to 
1.5 s. The set input voltages for all envelope detectors were 
1 mV, 2 mV, 3 mV, 5 mV, 7 mV and 10 mV and the input 
frequencies 128 Hz, 256 Hz and 512 Hz for the switched 
inductor envelope detector and 200 Hz, 500 Hz and 1000 Hz 
for the other three topologies. In the simulation model for the 
switched inductor envelope detector, the electrical switch is 
triggered by a 256 Hz oscillator (not synchronized with the 
input signal). The input signals and the oscillator signal 
(Fig. 3.d)) are made in MATLAB and imported to the 
TINA-TI simulator. 

The load capacitor values were set to 3.3 nF, 6.8 nF, 
10 nF, 15 nF, 22 nF, 33 nF, 100 nF, 350 nF and 1 µF. In all 
the simulations several diodes’ performances were 
compared. In addition, for the active envelope detector with 
the operational amplifier two amplifiers were compared – the 
Texas Instruments’ OPA379 and Microchip’s MCP6141 and 
for the active envelope detector with the switched inductor 
the three switches were compared – TPS22916, TPS22976 
and TPS22860 from Texas Instruments. 

For the active envelope detector utilizing an operational 
amplifier several values of resistors were tested. Simulations 
of the switched inductor envelope detector were done with 
three inductor values: 1 mH, 10 mH and 100 mH. 

B. Simulation results

Table I. shows the simulation results for the headroom
voltages, rise and fall times of the four proposed envelope 
detector topologies (for the full range of load capacitor 
values). Simulation results were processed using MATLAB. 

From the simulation results Avago Technology’s 
HSMS-282x diodes were chosen for all the envelope 
detectors as they allowed for the best headroom voltages and 
a relatively flat frequency response in the frequency range of 
interest. For the active envelope detector utilizing the 
operational amplifier the MCP6141 amplifier was chosen 
because of its slightly higher headroom voltages and shorter 
transient times (and lower declared power consumption). For 
the switched inductor envelope detector, the TPS22860 
switch was chosen as it gave a far higher headroom voltage. 
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TABLE I. SELECTED ENVELOPE DETECTORS SUMMARY COMPARISON 

single-diode passive envelope detector 

Input signal 
frequency (Hz) 

Headroom (mV) Rise time (ms) Fall time (ms) 

200 < 2.84 14.86 – 50.29 13.30 – 41.01 

500 < 3.16 7.95 – 47.87 6.35 – 33.85 

1000 < 2.82 6.05 – 36.12 5.08 – 34.86 

two-diode passive voltage doubler 

Input signal 
frequency (Hz) 

Headroom (mV) Rise time (ms) Fall time (ms) 

200 < 5.25 19.66 – 79.87 16.41 – 89.92 

500 < 5.98 11.83 – 52.03 10.77 – 77.28 

1000 < 5.46 9.96 – 45.75 8.69 – 73.11 

active voltage doubler utilizing an operational amplifier 

Input signal 
frequency (Hz) 

Headroom (mV) Rise time (ms) Fall time (ms) 

200 < 80.69 2.50 – 5.33 2.67 – 7.61 

500 < 78.32 1.20 – 3.62 2.33 – 6.15 

1000 < 70.23 1.60 – 4.4 1.61 – 14.23 

active envelope detector utilizing a switched inductor 

Input signal 
frequency (Hz) 

Headroom (mV) Rise time (ms) Fall time (ms) 

128 < 8.53 20.07 – 238.95 27.32 – 251.34 

256 < 8.17 20.09 – 238.80 27.36 – 246.80 

512 – – – 

The simulation results also pointed to the fact that larger 
load capacitor values (100 nF, 350 nF and 1 µF) should be 
used for the switched inductor envelope detector to reduce 
the ripple caused by its impulse operation (high pulse values 
of currents charging the capacitor), which leads to this 
topology having longer transient times. The remaining 
topologies should use the lower capacitor values (< 100 nF). 

The chosen values for the resistors in the active topology 
utilizing the operational amplifier were R1 = 200 kΩ, R2 = 
1 MΩ and R3 = 100 kΩ and the 100 mH inductor value was 
chosen in the switched inductor topology, because it gave the 
highest output voltages with the same input current. 

Simulation results have also shown some envelope 
detectors to be unusable at certain input voltages (passive 
single-diode envelope detector with lower input voltages), or 
frequencies (switched inductor envelope detector at 512 Hz). 

III. EXPERIMENTAL STUDY

Prototypes of each envelope detector were made in order 
to acquire experimental measurement data. In the following 
subsections the measurement setup and procedure are 
described, and experimental results presented. 

The goal of these measurements was to characterize and 
compare the four proposed envelope detector topologies 
from the aspects of headroom voltage, rise time, fall time and 
power consumption, in order to determine their applicability 
in a wake-up sensor interface. 

A. Experimental setup

The block diagram and a photograph of the measurement
setup can be seen in Fig. 8. and Fig. 9. respectively. The 
measurement setup consisted of a waveform generator 
(Keysight 33500B) connected to the input of the prototype 
envelope detector. The output voltage was acquired by a 

National Instruments data acquisition card (NI USB-6211) 
connected to a PC. The switches were powered by a DC 
power supply (Rigol DP832) and the supply current 
measured by a multimeter (Fluke 45). 

Fig. 4. Block diagram of the measurement setup: a function generator (1), 
the envelope detector PCB (2) a data acquisition card (3) connected to a PC 
(4). 

Fig. 5. A photograph of the measurement setup. 1) Keysight 33500B 
waveform generator, 2) envelope detector prototype, 3) NI USB-6211 data 
acquisition card, *) Power supply (Rigol DP832) and a multimeter for 
supply current measurement (Fluke 45). 

B. Experimental procedure

The power consumption of the envelope detectors, with a
set supply voltage of 1.8 V, was measured by measuring the 
supply current using a multimeter (Fluke 45). The remaining 
three parameters were measured simultaneously, by setting 
the input voltage at the envelope detector input using a 
waveform generator and measuring the characteristics of the 
output voltage (Fig. 2.) acquired by a data acquisition card. 

The measurements done at three frequencies: 128 Hz, 
256 Hz and 512 Hz for the switched inductor envelope 
detector (switching was controlled by a 256 Hz oscillator) 
and 200 Hz, 500 Hz and 1000 Hz for the remaining three 
envelope detectors. For all frequencies six input signal 
peak-to-peak voltages were set: 1 mV, 2 mv, 3 mV, 5 mV, 
7 mV and 10 mV. 

The measurements for the switched inductor envelope 
detector were done with three capacitors: 100 nF, 350 nF and 
1 µF. The measurements for the two passive envelope 
detectors were also done with three capacitors: 10 nF, 15 nF 
and 33 nF. The measurements for the active envelope 
detector with an operational amplifier were done with four 
capacitors: 3.3 nF, 6.8 nF, 10 nF and 15 nF. 

C. Experimental results

The obtained experimental results are shown in Fig. 6-9.,
one for each of the selected envelope detectors, showing the 
headroom voltage (a), rise time (b) and fall time (c). The 
results were processed and presented using MATLAB. 
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a) 

b) 

c) 
Fig. 6. Experimental results for the passive single diode half-wave 
envelope detector: a) headroom voltage, b) rise time c) fall time 

a) 

b) 

c) 
Fig. 7. Experimental results for the passive two-diode half-wave voltage 
doubler (Greinacher circuit): a) headroom voltage, b) rise time c) fall time 
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a) 

 

b) 

 

c) 
Fig. 8. Experimental results for the active two-diode half-wave voltage 
doubler utilizing an MCP6141 operational amplifier: a) headroom voltage, 
b) rise time c) fall time 

Measurement results for the passive single-diode 
envelope detector confirm the simulation results and show 
the headroom voltage to be too low (<2 mV). 

 

 

a) 

 

b) 

 

c) 
Fig. 9. Experimental results for the active full-wave envelope detector 
utilizing a 100 mH switched inductor: a) headroom voltage, b) rise time c) 
fall time 

The results for the passive voltage doubler show that the 
headroom voltage is high enough (>5 mV). However, this 
envelope detector exhibits longer fall times (> 100 ms). 
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This active envelope detector with the MCP6141 
operational amplifier achieves very high headroom voltages 
(> 70 mV) and short transient times (~10 ms). Its power 
consumption of 1.44 µW stems from its operational 
amplifier. 

The switched inductor envelope detector utilizing a 
TPS22860 switch and SiT1569 oscillator shows high enough 
headroom voltage (> 5 mV), but long rise and fall times 
(around 250 ms). The relatively high power consumption of 
3.42 µW of this envelope detector stems from the oscillator 
and electrical switch. 

Table II. shows a summary comparison of the four 
selected envelope detectors. 

TABLE II. PROPOSED ENVELOPE DETECTORS SUMMARY COMPARISON 

Topology 
Power 

consumption 
Headroom 

voltage 
Transition 

times 

one-diode passive – < 2 mV med., < 50 ms 

two-diode passive – ~5.5 mV long, > 100 ms 

active, op. amp. 1.44 µW ~70 mV short, < 10 ms 

active, switched L 3.42 µW ~5.5 mV long, > 200 ms 

IV. CONCLUSION

In this paper we presented a characterization and 
comparison of four candidate envelope detector topologies 
for application in wake-up sensor interfaces for lower audio 
frequencies. From the presented simulation and experimental 
characterization and comparison data the active half wave 
voltage doubler utilizing an MCP6141 operational amplifier 
can be used for application in a wake-up sensor interface and 
outperforms the switched inductor envelope detector in the 
selected topology with the selected components. 

In future work the switched inductor envelope detector 
topology will be explored further to devise ways of reducing 
its power consumption and shortening its transient times. 
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