
Extension of dynamic software update model for class
hierarchy changes and run-time phenomena detection

Mlinarić, Danijel

Doctoral thesis / Disertacija

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:087042

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-07

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:087042
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:7378
https://dabar.srce.hr/islandora/object/fer:7378

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Danijel Mlinarić

EXTENSION OF DYNAMIC SOFTWARE UPDATE
MODEL FOR CLASS HIERARCHY CHANGES AND

RUN-TIME PHENOMENA DETECTION

DOCTORAL THESIS

Zagreb, 2020

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Danijel Mlinarić

EXTENSION OF DYNAMIC SOFTWARE UPDATE
MODEL FOR CLASS HIERARCHY CHANGES AND

RUN-TIME PHENOMENA DETECTION

DOCTORAL THESIS

Supervisor: Associate professor Boris Milašinović, PhD

Zagreb, 2020

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Danijel Mlinarić

PROŠIRENJE MODELA DINAMIČKOG
AŽURIRANJA SOFTVERA NA PROMJENU

HIJERARHIJE KLASA I DETEKCIJU FENOMENA
IZVOÐENJA

DOKTORSKI RAD

Mentor: Izv. prof. dr. sc. Boris Milašinović

Zagreb, 2020.

Doctoral thesis has been made at the University of Zagreb, Faculty of Electrical Engineer-

ing and Computing, Department of Applied Computing.

Supervisor: Associate professor Boris Milašinović, PhD

Doctoral thesis has: 150 pages

Number of doctoral thesis.:

About the Supervisor

Boris Milašinović was born in Metković in 1976. He graduated at the Department of Mathe-

matics of the Faculty of Science, University of Zagreb in July 2001. He defended his Master’s

Thesis in 2006 and he defended his PhD thesis in 2010 at the Faculty of Electrical Engineer-

ing and Computing, University of Zagreb. Since October 2002, he has been employed at the

Department of Applied Computing of the Faculty of Electrical Engineering and Computing,

University of Zagreb as a research assistant. From September 2001 to October 2002, he was

employed at the Department of Mathematics of the Faculty of Science, University of Zagreb as

a research and teaching assistant. From June 2000 to September 2001, he worked as a software

developer at Multimedia Lab. He has held the position of Associate Professor at the Faculty

of Electrical Engineering and Computing since February 2019. He has been a supervisor of

more than 20 Bachelor’s and Master’s theses. Within the Department’s external cooperation,

he worked on the design and development of databases and software and as a consultant in

informatization projects for the economy and public administration. He is author or co-author

of more than 20 scientific, professional and educational publications in the area of information

systems and software engineering. Associate Professor Boris Milašinović is a member of IEEE

and a member of several conference international programme committees.

O mentoru

Boris Milašinović rod̄en je u Metkoviću 1976. godine. Diplomirao je 2001. godine na Matem-

atičkom odjelu Prirodoslovno matematičkog fakulteta u Zagrebu (dipl.ing. matematike – smjer

računarstvo) te magistrirao 2006. i doktorirao 2010. godine na Sveučilištu u Zagrebu Fakultetu

elektrotehnike i računarstva (FER). Od listopada 2002. godine zaposlen je na Zavodu za primi-

jenjeno računarstvo FER-a. Prethodno je bio zaposlen kao znanstveni novak na Matematičkom

odjelu PMF-a (2001.-2002.) te kao programer u tvrtki MultimediaLab d.o.o. (2000.-2001.). U

veljači 2019. godine izabran je u zvanje izvanrednog profesora te je bio mentor više od 20 za-

vršnih i diplomskih radova. U okviru vanjske suradnje Zavoda radio je na projektiranju i izradi

baza podataka i programske podrške te kao konzultant u projektima informatizacije za gospo-

darstvo i državnu upravu. Objavio je više od 20 radova u časopisima i zbornicima konferencija

u području informacijskih sustava i programskog inženjerstva. Izv. Prof. Boris Milašinović

član je stručne udruge IEEE i programskih odbora nekoliko med̄unarodnih konferencija.

To my family for their support and inspiration

Thank you mom:

“Keep moving forward”

Abstract

Software maintenance requires a software update that causes unavailability during the update.

Software downtime introduces costs in business processes and can negatively affect critical pro-

cesses, such as the software controlling bank transactions or traffic systems. One of the solu-

tions to provide software updating without interruption is Dynamic Software Updating (DSU).

However, there are several challenges in dynamic software updating. It is necessary to detect

changes between versions of the program, apply them dynamically, and ensure the program’s

correct operation and stable performance. Aspect programming (AOP - Aspect Oriented Pro-

gramming) by cross-cutting concerns allows modification of object-oriented programs, making

it convenient to describe program changes. Furthermore, dynamic AOP (DAOP) allows pro-

gram changes at run time, but currently available solutions contain limitations in the form of

supported changes, such as changing the class hierarchy. Meanwhile, the state correctness of the

dynamically updated program can be compromised, known as the occurrence of runtime phe-

nomena. By detecting runtime phenomena, such program states can be prevented. Furthermore,

a dynamically updated program may cause performance degradation due to an additional layer

that allows dynamic updating. Therefore, dynamic updating implies the need to evaluate and

compare the performance in order to use solutions that minimally affect execution performance.

In object-oriented programming, a class is the main construct and relationship between

classes in the form of inheritance abstracts the software domain. Therefore, changes between

program versions and runtime phenomena are considered from the class hierarchy perspective.

Consequently, an extended DAOP model is proposed that extends the set of supported changes

to class hierarchy and changes related to the class hierarchy. Furthermore, program analysis

is used to detect and estimate runtime phenomena based on the changes between different pro-

gram versions. In addition, the proposed methodology for performance evaluation of the various

approaches is used to detect the impact on computer resources.

The prototype system is developed by implementing the proposed update model with run-

time phenomena detection. Prototype evaluation is performed by several experiments, validat-

ing the proposed approach in terms of efficiency, applicability, and performance. Efficiency

is evaluated by generated trees, whereas open-source programs are used for empirical analysis

of supported changes to evaluate applicability. Moreover, a variant of the Snake game is de-

veloped, with two update versions used as a use case example to validate the model. As for

performance evaluation, the prototype system and currently available approaches are compared

using the proposed methodology implemented as a benchmark tool.

Keywords: dynamic software updating, dynamic AOP, class hierarchy, OOP, runtime phe-

nomena, performance evaluation

Sažetak

Održavanje softvera zahtjeva ažuriranje softvera koje uzrokuje nedostupnost tijekom ažuriranja.

Nedostupnost softvera uvodi troškove u poslovnim procesima i može negativno utjecati na

kritične procese, poput softvera koji kontrolira bankovne transakcije ili sustav koji kontrolira

promet. Dinamičko ažuriranje softvera (engl. Dynamic Software Updating) jedno je od rješenja

za ažuriranje softvera bez prekida rada. Med̄utim, postoji nekoliko izazova u dinamičkom ažuri-

ranju softvera. Potrebno je detektirati promjene izmed̄u verzija programa i primijeniti ih di-

namički. Tijekom i nakon dinamičkog ažuriranja potrebno je osigurati ispravan rad programa i

stabilne performance. Slijedom toga, programiranje pomoću aspekata (AOP – Aspect Oriented

Programming) omogućuje horizontalnu modifikaciju objektno-orijentiranih programa, što ga

čini prikladnim za opisivanje promjena programa. Nadalje, dinamički AOP (DAOP – Dynamic

AOP) omogućuje promjene programa tijekom izvod̄enja, ali trenutno dostupna rješenja sadrže

ograničenja u obliku podržanih promjena, poput promjene hijerarhije klasa. S druge strane,

ispravnost stanja dinamički ažuriranog programa može biti narušena, što je poznato kao nas-

tanak fenomena izvod̄enja. Detektiranjem fenomena izvod̄enja takva stanja se mogu spriječiti.

Nadalje, dinamički ažurirani program može uzrokovati pogoršanje performanci izvod̄enja zbog

dodatnog sloja koji omogućuje dinamičko ažuriranje. Stoga dinamičko ažuriranje podrazu-

mijeva potrebu za evaluacijom i usporedbom performanci, kako bi se koristila rješenja koja

minimalno utječu na performance izvod̄enja.

Postoje različita rješenja za probleme povezane s dinamičkim ažuriranjem, med̄utim trenutno

se niti jedno rješenje ne koristi u produkcijskom okruženju. Glavni motiv ove disertacije je

napraviti korak prema korištenju DSU-a iz razvojnog u produkcijsko okruženje. Odnosno, u

scenarijima u kojima se manje promjene izmed̄u verzija, poput novih funkcionalnosti ili hitnih

popravaka, mogu dinamički primijeniti s minimalnim rizikom i troškovima. Zatim se redovito

ažuriranje programa može izvršiti u vremenskom periodu u kojem je upotreba softvera niska

kako bi se izbjeglo ometanje rada krajnjih korisnika. Kako bi se program mogao dinamički

ažurirati i podržao scenarij glavne motivacije, detektirano je nekoliko ključnih ograničenja u

trenutačno dostupnim rješenjima za dinamičko ažuriranja. Detektirana ograničenja smatraju se

područjima daljnjeg istraživanja: model dinamičkog ažuriranja koji podržava proizvoljne prom-

jene programa, otkrivanje i sprječavanje mogućeg nepravilnog ponašanja programa i evaluacija

performanci različitih pristupa dinamičkog ažuriranja.

U postojećim istraživanjima detektirani su problemi koje uvodi DSU u usporedbi s pos-

tupcima ažuriranja koji zahtijevaju zaustavljanje programa. Ključni problemi su: kada primi-

jeniti ažuriranje na pokrenuti program, kako održati ispravno stanje programa nakon ažuriranja,

kako podržati razne promjene te kako učinkovito detektirati i primijeniti promjene bez utje-

caja na performance izvod̄enja. Predložena rješenja su u obliku različitih koncepata i tehnika.

U ovom doktorskom istraživanju fokus je postavljen na nekoliko karakteristika pristupa DSU-

a: mehanizmi ažuriranja, specifikacija promjena izmed̄u različitih verzija, podržane promjene,

utjecaj na stanje ažuriranog programa i performance izvod̄enja.

U okruženjima viših programskih jezika gdje se koriste virtualni strojevi, postoji nekoliko

koncepata s pristupima koji koriste različite mehanizme za postizanje dinamičkog ažuriranja.

Java je trenutno dominantna u istraživanjima, ali predložena rješenja za odred̄ene probleme di-

namičkog ažuriranja mogu se primijeniti na druga programska okruženja, kao što je Microsoft

CLR. Izmijenjeni Java virtualni stroj odnosno JVM pristupi koriste modificirane interne struk-

ture podataka JVM-a i modificirani sakupljač smeća (engl. garbage collector) za promjenu

referenci na postojeće objekte. Nadalje, okruženje poput JVM sadrži API (engl. Application

Programming Interface) sučelja, npr. JVMTI (engl. Java Virtual Machine Tool Interface), koje

omogućuje kontrolu nad izvršavanjem pokrenutog programa i izmjene prijenosnog program-

skog kôda (bytecode). Java agenti se mogu koristiti kao sloj izmed̄u programa i JVM-a, koji

sa sučeljima poput JVMTI omogućavaju presretanje pristupa objektima i promjenu klasa. As-

pektno orijentirana paradigma (AOP) omogućuje proširenje funkcionalnosti programa na hor-

izontalnoj razini, odnosno uvodi razdvajanje funkcionalnosti. Programski kôd aspekta upliće

se unutar programa tijekom kompilacije ili učitavanja, kao što je to slučaj za AspectJ. Med̄u-

tim, dinamički AOP (DAOP) omogućuje dinamičko uplitanje aspekata što se može koristiti

za dinamičko ažuriranje programa i može implementirati u obliku izmijenjenog JVM-a i JVM

agenta.

Specifikacija promjena izmed̄u različitih verzija programa nije univerzalno definirana, u

postojećim pristupima definirana je u obliku modificiranih klasa programa, vlastito definira-

nog formata i vlastito definiranog programskog jezika. Istraživanja, gdje je koncept DAOP-a

proširen kako bi omogućio DSU, pokazuju kako se dinamički aspekti sa svojom presječnom

odnosno funkcionalnošću izolacije programskog kôda, mogu koristiti kao prikladan format za

opisivanje promjena programa. Nadalje, dinamički aspekti omogućuju fleksibilno dodavanje i

brisanje promjena programa i time mogu omogućiti inkrementalna dinamička ažuriranja.

Za podržane promjena, DAOP je ograničen na promjenu tijela metode. Kako bi se proširio

podržani skup promjena, potrebno je generirati promjene u obliku drugih tipova aspekata (npr.

aspeki za pristupanje polju klase) i dodatnih klasa. U pristupima proširenog DAOP-a, dinamičke

promjene izvode se uz pomoć analize različitih verzija softvera i generiranja dinamičkih as-

pekata. Izmijenjeni JVM i Java agent omogućuju veći skup promjena u usporedbi s proširenim

DAOP-om, koji je ograničen na promjene na razini klase. Cilj istraživanja DAOP-a je omogućiti

što više aspektnih funkcionalnosti podržanih pristupima statičkih aspekata, kao što je AspectJ.

Takvi DAOP pristupi omogućili bi jednostavnu specifikaciju i primjenu proizvoljnih promjena

izmed̄u inačica programa.

Aspektni jezici nisu izgrad̄eni sa svrhom definiranja specifikacije promjena programa i di-

v

namičke evolucije softvera, stoga aspekti ne mogu definirati promjene u hijerarhiji klase. Npr.

AspectJ podržava ograničeno dodavanje sučelja klase i ne podržava brisanje sučelja. Nadalje,

Prose kao DAOP ne podržava pozive metoda iz uplitanog, tj. programskog kôda unutar savjeta

(engl. advice) na metodu definiranu u istom aspektu, niti je moguće pristupiti polju definiranom

u istom aspektu. Uz to, nije moguće pristupiti polju koje je zaštićeno modifikatorima pristupa

(npr. private) i ne podržava zamjenu tijela konstruktora. Navedene funkcionalnosti moguće

je postići deklariranjem promijenjenih članova klasa u dodatnim klasama i proširivanjem posto-

jećih klasa pomoću med̄utipnih deklaracija, ali pristup koji rješava problem dinamičkih med̄u-

tipnih deklaracija ne rješava problem dinamičke promjene hijerarhije klasa.

Nekoliko pristupa u području istraživanja napredovalo je za upotrebu u razvojnim okružen-

jima. Sljedeći korak je korištenje dinamičkog ažuriranja u produkcijskim okruženjima. Izvrša-

vanje programa u razvojnim okruženjima pojednostavljuje uvjete koje bi pristup za dinamičko

ažuriranje trebao ispunjavati. S obzirom na to da je izvršavanje programa kratko, pretvorba

stanja je jednostavna i provodi se statička analiza kako bi se potvrdila ispravnost promjena u

programu. Osim toga, pristupi iz razvojnog okruženja ne uzimaju u obzir inkrementalna ažuri-

ranja. Kao rezultat, s dinamičkim ažuriranjima mogu se pojaviti fenomeni izvod̄enja. Fenomen

izvod̄enja je stanje programa nakon dinamičkog ažuriranja koje nije isto kao što bi bilo nakon

postupka ažuriranja u obliku koraka: zaustavi, ažuriraj i pokreni program. Pojedini radovi raz-

matraju potrebu alata s dinamičkom analizom promjena programa kako bi se utvrdilo mogu li

dinamička ažuriranja dovesti do fenomena izvod̄enja. S druge strane, u proširenom DAOP-

u, analiza programa se koristi za identifikaciju i pretvaranje promjena programa u aspekte.

Nadalje, kod dinamičke evolucije aspektno-orijentiranih programa, analiza izmed̄u različitih

verzija programa koristi se za inkrementalna ažuriranja. Trenutno nedostaju istraživanja s anal-

izom promjena programa povezana s fenomenima izvod̄enja. Detektiranje fenomena izvod̄enja

omogućila bi DSU-u sprječavanje ažuriranja koja mogu uzrokovati fenomene izvod̄enja, odbi-

janjem ili dijeljenjem ažuriranja na manje dijelove kako bi se ažuriranje u konačnici izvršilo.

Performance dinamički ažuriranog softvera mogu biti narušene u odnosu na softver ažuri-

ran procedurom s ponovnim pokretanjem. Kako bi se iskoristila prednost DSU-a, potrebno je

minimizirati utjecaj na računalne resurse. Trenutni DSU pristupi evaluirani su prema brzini

izvod̄enja implementiranih mehanizama koji omogućuju dinamičko ažuriranje. Npr. trajanje

izvršavanja modificiranog sakupljača smeća (engl. garbage collector) ili utjecaj na izvršavanje

programa kada se nisu dogodila dinamička ažuriranja, odnosno u stanju mirovanja (engl. steady

state). Iako pojedini pristupi sadrže evaluaciju koristeći stvarne programe, takva evaluacija ne

može prikazati ukupni utjecaj pojedinog pristupa na performance izvod̄enja jer su mjerenja

ograničena domenom testiranog programa. Kako bi evaluirali pristupe sa stanovišta utjecaja

na računalne resurse i usporedili rezultate, potrebno je razviti alat koji može obaviti različita

mjerenja utjecaja dinamičkog ažuriranja na brzinu izvod̄enja i potrošnju memorije pomoću un-

vi

aprijed pripremljenih testova.

Disertacija je strukturirana kako slijedi:

U prvom, uvodnom poglavlju (1 Introduction) opisani su motivacija, područje i ciljevi is-

traživanja te sadržaj rada. Objašnjen je znanstveni doprinos i njegova struktura.

Zatim slijedi poglavlje (2 Dynamic Software Updating) u kojem su kategorizirani očekivani

zahtjevi koje treba ispuniti prilikom dinamičkog ažuriranja softvera, opisane općenite tehnike

dinamičke promjene i klasični problemi vezani uz dinamičko ažuriranje po pitanju trenutka i

opsega ažuriranja te konzistentnosti podataka. Poglavlje završava pregledom postojećih rješenja

za dinamičko ažuriranje softvera te uočenim problemima i nedostacima postojećih rješenja.

Fokus disertacije je na dinamičkom ažuriranju softvera kao posljedice izmjene hijerarhije

klasa u objektno-orijentiranoj paradigmi, stoga treće poglavlje (3 Object-oriented environment)

opisuje moguće izmjene u hijerarhiji klasa te mogućnosti prikaza hijerarhije klasa u obliku

stabla uz vizualizaciju promjena izmed̄u stabala koji predstavljaju staru i novu verziju programa.

U poglavlju je takod̄er detaljno opisani koncepti objektno-orijentirane paradigme i podrška za

promjene u Javi kao tipičnom predstavniku objektno-orijentiranih programskih jezika, odnosno

u Javinom virtualnom računalu i Javinoj okolini.

Temelj za detekciju izmjena hijerarhije klasa predstavljaju mjere za udaljenosti stabala

definirane u četvrtom poglavlju (4 Tree dissimilarity). Mjere opisuju troškove izmjene med̄u

verzijama softvera, uzimajući u obzir direktne izmjene hijerarhije dodavanjem, brisanjem ili

izmjenom bridova stabla (što odgovara dodavanju novih klasa, brisanju nekih od postojećih,

odnosno promjenama u nasljed̄ivanju), ali i indirektne troškove kao posljedicu izmjene lanca

nadjačavanja metoda u hijerarhiji klasa. Za programsku implementaciju dinamičke izmjene

koristi se aspektno-orijentirana paradigma, odnosno varijanta s dinamičkim aspektima.

Nakon opisa postojećih istraživanja na području dinamičkih aspekata, u petom poglavlju

(5 Extended DAOP model) definiran je algoritam koji omogućava detekciju izmjene hijerarhije

klasa te model temeljen na dinamičkim aspektima za podršku dinamičkom ažuriranju.

Dinamičkom izmjenom softvera moguć je nastanak odred̄enih artefakata korištenih u staroj,

odnosno novoj verziji softvera, što se opisuje kao fenomeni izvod̄enja. Mogući fenomeni su

kategorizirani u šestom poglavlju (6 Runtime phenomena detection) te su moguće promjene u

hijerarhiji klasa uparene s odgovarajućim kategorijama fenomena. Nadogradnjom algoritama iz

5. poglavlja definiran je skup novih algoritama za detekciju mogućih fenomena izvod̄enja usli-

jed dinamičkog ažuriranja korištenjem dinamičkih aspekata definiranih u 6. poglavlju. Sedmo

poglavlje (7 Measurement methodology for performance benchmarking) definira metode, mjere

i arhitekturu za mjerenje performanci dinamičkog ažuriranja temeljem postojećih tehnika s cil-

jem evaluiranja vlastitog rješenja čiji je prototip opisan u osmom poglavlju (8 Prototype system).

Kako bi se evaluacija mogla provesti bilo je potrebno izraditi generator podataka, odnosno

generator hijerarhije klasa, što je opisano u devetom poglavlju (9 Evaluation). Analizom du-

vii

bine i širine hijerarhije klasa nekoliko postojećih programa otvorenog koda utvrd̄ena je uobiča-

jena distribucija čvorova po razinama te su analizirani razmjeri izmjena verzija tih programa.

Temeljem dobivenih podataka oblikovani su parametri za generator stabala korištenih prilikom

evaluacije.

Disertacija završava zaključkom (10 Concluding remarks) i pregledom citirane literature.

Kroz zaključak je dan rezime disertacije i otvoreni problemi za planirana buduća istraživanja.

U ovoj disertaciji promjene izmed̄u inačica programa razmatraju iz perspektive hijerarhije

klasa, što je osnova za prošireni model ažuriranja temeljen na DAOP-u koji podržava promjene

hijerarhije klasa. Razmotreni su fenomeni izvod̄enja koji nastaju nakon dinamičkog ažuriranja

zbog promjena u nasljed̄ivanju klasa te predstavljeni algoritmi za detekciju i procjenu. Nadalje,

metodologija za evaluaciju performanci omogućuje razvoj DSU pristupa s procjenom utjecaja

na performance izvod̄enja. Stoga je implementiran prototipni sustav temeljen na proširenom

modelu, algoritmima otkrivanja fenomena izvod̄enja i metodologiji evaluacije performanci. Ko-

rištenjem prototipnog sustava trenutno pokrenut program može dinamički ažurirati verzijom

programa koja sadrži promjene članova klase i promjene u nasljed̄ivanju klasa s procjenom po-

jave fenomena izvod̄enja i malim utjecajem na performance izvod̄enja.

Znanstveni doprinos je sljedeći:

• Prošireni DAOP model ažuriranja Analiza odnosa izmed̄u klasa omogućuje detektiranje

promjena u hijerarhiji klasa izmed̄u verzija programa i dinamičko ažuriranje tih promjena.

Klase su povezane nasljednim odnosom, formirajući hijerarhiju klasa. DAOP sa svojstvom

presijecanja kao razinom indirektnosti, za dinamičko ažuriranje omogućava promjene u nasljed̄i-

vanju klasa. Kako bi se omogućila promjena hijerarhija klase uvodi se klasa dynamic. Ko-

rištenjem klase dynamic i uzorka klijenta/dobavljač (engl. client/supplier) proširuje se pos-

tojeća hijerarhija klase, čime se omogućuju promjene tipa s obzirom na hijerarhiju. Nadalje,

klase dynamic aspect i diff omogućuje promjene članova klase.

• Algoritmi za detekciju fenomena izvod̄enja Na temelju promjena izmed̄u verzija programa

predloženi su algoritmi za detektiranje i procjenu fenomena izvod̄enja. Fenomeni izvod̄enja

analizirani su iz perspektive promjena u hijerarhiji klasa i ovisnosti o pozivima izmed̄u klasa.

U ovoj disertaciji fokus je na utjecaju promjena u nasljed̄ivanju na fenomene izvod̄enja. Al-

goritam za procjenu fenomena izvod̄enja procjenjuje rizik izvod̄enja dinamičkog ažuriranja.

S druge strane, algoritam za detekciju fenomena izvod̄enja rezultira informacijama o promje-

nama programa koje mogu prouzročiti fenomeni izvod̄enja. Navedene informacije mogu se

koristiti za prilagodbu ažurirane verzije programa za dinamičko ažuriranje bez detektiranih

fenomena izvod̄enja. Nadalje, za ispravno izvod̄enje dinamičkog ažuriranja u modelu, pri-

jenos stanja izvodi se postupkom kojim se inicijalizira novo stanje objekta pomoću trenutnog

stanja.

viii

• Prototipni sustav Prototipni sustav implementiran je na temelju proširenog DAOP modela i

algoritama fenomena izvod̄enja. Sustav se sastoji od offline i online alata. Offline alat analizira

izvorni kôd trenutno pokrenute i ažurirane verzije te izdvaja promjene u obliku Java klasa.

Online alat učitava kreirane klase i koristeći DAOP primjenjuje promjene na pokrenutom

programu. Kako Prose kao DAOP ne omogućava redefiniciju tijela konstruktora, implemen-

tiran je dinamički weaver temeljen na Prose-ovoj definiciji aspekata. Med̄utim, osim Prose-a,

mogu se koristiti i drugi aspektni jezici. Prototipni sustav evaluiran je na testnom primjeru i

empirijskoj studiji. Rezultati pokazuju da se promjene u hijerarhiji klasa i članovima klase

kao posljedica evolucije softvera mogu primijeniti dinamičkim aspektima. Nadalje, proci-

jenjeni fenomeni izvod̄enja, zajedno s evaluacijom performanci, odražavaju primjenjivost i

učinkovitost predloženog pristupa.

• Metodologija mjerenja za evaluaciju performanci Jedan od zahtjeva DSU-a je minimalan

utjecaj implementacije na resurse sustava i performance izvod̄enja programa. Predložena je

metodologija za evaluaciju i usporedbu performanci na temelju koje je implementiran alat

za mjerenje. Metodologija sadrži mjerenje utjecaja DSU-a na performance bez dinamičkih

ažuriranja, s izvedenim dinamičkim ažuriranjem, trajanja dinamičkog ažuriranja i utjecaja

na upotrebu memorije. S implementiranim testnim slučajevima koji predstavlju promjene

u programima, evaluacija pokazuje prednosti i nedostatke evaluiranih pristupa, u skladu s

implementacijom pojedinog pristupa.

Trenutna implementacija prototipa dinamičkog ažuriranja ograničena je na izvršavanje .class

datoteka. Stoga bi budući rad uključivao definiranje promjena programa u .jar datotekama.

Nadalje, u trenutnoj implementaciji nedostaje podrška za promjenu anonimnih (engl. anony-

mous) i unutarnjih (engl. inner) klasa. Posebni slučajevi za takve klase mogu se implementirati

unutar algoritma za detektiranje promjena i biti upravljani DSU manager-om u online alatu. U

slučaju promjena konstruktora u v2, kada u verziji v1 ne postoji podrazumijevani (engl. default)

konstruktor u nadred̄enoj klasi, postupak ažuriranja stvorit će naredbe koje koriste neposto-

jeći konstruktor. Kao rezultat nastat će iznimka ili greška u izvod̄enju. Navedeno ograničenje

može se riješiti zamjenom promijenjenih klasa s dynamic klasama. Implementacija online

alata, općenito, koristi API refleksije (reflection) unutar JVM-a za manipulaciju objektima. U

daljnjem razvoju prototipa, može se koristiti API instrumentacije (engl. instrumentation) za

poboljšanje performanci, jer refleksija isključuje pojedine JVM optimizacije.

Algoritmi detekcije fenomena izvod̄enja detektiraju fenomene povezane s promjenama nasljed̄i-

vanja. Med̄utim, algoritmi se temelje na statičkoj analizi i procjenjuju moguće fenomene

izvod̄enja. Budući rad bi trebao uključivati dinamičku analizu, gdje se online alat može proširiti

analizom gomile kako bi se utvrdili trenutno aktivni objekti. Štoviše, analiza ovisnosti poziva

izmed̄u klasa može se provesti na temelju trenutnog stanja stoga. Stoga, dinamička analiza

može poboljšati detekciju fenomena izvod̄enja, pri čemu se mogu izvesti dinamička ažuriranja

ix

koja mogu uzrokovati fenomene izvod̄enja, ako analiza utvrdi kako objekti detektiranih klasa

nisu aktivni. Nadalje, DSU manager može odgoditi ažuriranje kako bi analizirao trenutno stanje

u unaprijed definiranom vremenskom intervalu i izvršiti ažuriranje kada je to moguće.

Alat za evaluaciju performanci mogao bi koristiti univerzalne testove za mikro mjerenja.

U trenutnoj implementaciji testovi su ručno prilagod̄eni evaluiranom pristupu. Med̄utim, im-

plementacija univerzalnih testova zahtijeva odgovarajuće sučelje za svaki pristup kako bi se

test transformirao iz univerzalnog formata u format prikladan za odred̄eni pristup. Osim toga,

budući rad može uključivati nova mjerenja poput utjecaja dinamičkog ažuriranja na korištenje

memorije u stanju mirovanja (engl. steady state).

Ključne riječi: dinamičko ažuriranje softvera, dinamički AOP, hijerarhija klasa, OOP,

fenomeni izvod̄enja, evaluacija performanci

x

Contents

1. Introduction . 1

1.1. Motivation . 1

1.2. Contribution . 4

1.3. Thesis outline . 4

2. Dynamic software updating . 5

2.1. Introduction to dynamic software updating . 5

2.2. Dynamic software updating requirements . 6

2.3. Related problems . 7

2.4. Updating techniques and mechanisms . 8

2.4.1. Level of update . 8

2.4.2. Update of dependent components . 9

2.4.3. Time of update: safe point of update 10

2.4.4. State transfer . 11

2.4.5. Cleaning . 12

2.4.6. Rollback . 12

2.5. Dynamic software updating implementation 12

2.5.1. Programming language . 12

2.5.2. Application type . 13

2.5.3. Runtime environment . 13

2.5.4. Type safety: binary compatibility . 14

2.5.5. Concurrency . 16

2.5.6. Defining the set of changes: the set of differences 16

2.5.7. Coexisting of multiple versions . 17

2.6. Challenges . 17

2.6.1. Runtime phenomena: state artifacts 18

2.6.2. Evaluating dynamic software updating implementation 19

3. Object-oriented environment . 20

3.1. Java approaches . 20

3.1.1. Update timing . 21

3.1.2. Program adaptation . 22

3.1.3. Supported changes . 23

3.2. Hierarchy changes . 24

3.2.1. Type changes . 25

3.2.2. Member changes . 25

3.3. Class hierarchy visualization . 28

4. Tree dissimilarity . 30

4.1. Class hierarchy as tree data structure . 30

4.2. Introduction to trees and dissimilarity measures 31

4.3. Preliminaries . 32

4.3.1. Edge edit operations . 33

4.3.2. Relationship between nodes . 33

4.4. Edge edit distance . 34

4.4.1. Edge extended tree . 34

4.4.2. Set of edit operations . 37

4.4.3. Edit set cost . 38

4.5. Tree inheritance distance . 40

4.5.1. Tree editing impact on the inheritance 41

4.5.2. Detecting inheritance changes . 42

4.5.3. Direct and indirect edit operations . 44

4.5.4. Inheritance edit operations . 45

4.5.5. Inheritance cost . 47

5. Extended DAOP model . 52

5.1. Model properties . 52

5.2. Dynamic aspects (DAOP) . 53

5.2.1. Prose . 55

5.3. Extended model . 56

5.3.1. Program changes detection algorithm 58

5.4. Classes for dynamic update . 61

5.4.1. Type changes . 62

5.4.2. Member changes . 64

6. Runtime phenomena detection . 75

6.1. Runtime phenomena . 75

6.2. Runtime phenomena analysis in update model 77

6.2.1. Call changes dependency . 80

6.2.2. Inheritance change dependencies . 81

6.3. Runtime phenomena detection algorithm . 84

6.4. Discussion of runtime phenomena in extended

DAOP update model . 87

7. Measurement methodology for performance benchmarking 90

7.1. Discussion . 90

7.2. Measurement methodology . 91

7.2.1. Steady state overhead . 91

7.2.2. Update duration . 91

7.2.3. Modified state overhead . 92

7.2.4. Memory usage . 92

7.3. Benchmark architecture . 92

7.3.1. Benchmark tool . 93

7.3.2. DSU interfaces (helper tools) . 94

7.3.3. Microbenchmark test cases . 95

8. Prototype system . 98

8.1. Prototype structure . 98

8.2. Creating version and source info . 99

8.3. Source code analysis . 100

8.4. Changes and runtime phenomena detection 101

8.5. Class generator . 102

8.6. Java agent . 103

8.6.1. Loading changes . 104

8.6.2. DSU manager . 105

8.7. Dynamic aspect (DAOP) weaver . 107

9. Evaluation . 109

9.1. Applicability . 109

9.1.1. Program changes analysis . 109

9.1.2. Runtime phenomena detection . 115

9.1.3. Use case example . 120

9.2. The efficiency of the algorithms . 125

9.2.1. Distribution pattern analysis . 125

9.2.2. Generating class trees by distribution pattern 126

9.2.3. Distort original tree . 126

9.2.4. Evaluation setup . 128

9.2.5. Results . 128

9.3. DSU performance . 130

9.3.1. Methodology . 130

9.3.2. Results . 131

10. Concluding remarks . 136

10.1. Summary of contributions . 136

10.2. Open issues and recommendations for future work 138

Bibliography . 139

Biography . 149

Životopis . 150

Chapter 1

Introduction

1.1 Motivation

Dynamic Software Updating (DSU) is required to update a running program without interrup-

tion. Although there are several solutions to the problems related to dynamic updating, none

of these solutions are currently used in the production environment. The main motivation of

this dissertation is to make a step towards the use of DSU from development to the production

environment in scenarios where smaller changes between versions such as new features or bug

fixes that are urgently needed can be applied dynamically with minimal risk and overhead. A

regular update of the program can then be performed when there is a window of time where

software usage is low to avoid disrupting the end-user’s work. For the program to be dynami-

cally updated and to support the main motivation scenario, several key constraints in the current

available dynamic updating solutions are detected. Detected constraints are seen as areas for

further research: dynamic update model to support as many program changes as possible, de-

tection and prevention of possible incorrect program behavior, and performance evaluation of

the dynamic updating implementation. The detected restrictions are described in the rest of this

section.

Many studies have detected problems introduced by the DSU in comparison to the updating

procedures that require the program to stop [1, 2, 3, 4, 5, 6]. The key problems are: when to

apply an update to an already running program [5, 7, 8], how to preserve the state of the program

after the update [9, 10], how to support arbitrary program changes, and how to effectively

detect and apply changes without distortion on the execution performance [6, 11, 12]. The

proposed solutions are in the form of various concepts and techniques [1], [5], [6], [8], [11],

[13]. For this doctoral research, focus is set on several characteristics of the system with DSU,

as follows: update mechanisms, change specification between different versions, supported

changes, impact on the state of the modified program, and execution performance.

In environments with higher programming languages where virtual machines are used, there

1

Introduction

are several concepts that use different mechanisms to achieve dynamic updating. Java is cur-

rently dominant in research work, but proposed solutions for certain problems of dynamic up-

dating can be applied to other programming environments, such as Microsoft CLR. Modified

Java virtual machine – JVM approaches [14]–[15] use modified internal JVM data structures

and a modified garbage collector to change existing object references. Environment such as

JVM contains API interfaces, such as JVMTI (Java Virtual Machine Tool Interface), that allow

control over the execution of the running program and modifications of portable programming

code (i.e. bytecode). Java agents can be used as a layer between the program and the JVM,

which with interfaces such as JVMTI enable access interception and changes of classes, as in

[12], [16]. The Aspect-Oriented Paradigm (AOP) can extend a program’s functionality on the

horizontal level; that is, it introduces cross-cutting concern [17]. Aspect program code weaves

within the program during the compilation or load, such as with AspectJ [18]. However, Dy-

namic AOP (DAOP) enables dynamic weaving of aspects that can be used for dynamic program

update. DAOP can be implemented using a modified JVM [10, 19, 20] and JVM agent [21, 22].

The specification of the changes between different versions of programs is not universally

defined because it is present in the form of modified program classes [12], [15], custom defined

format [14], [9] or a custom defined programming language [19, 23]. In research work [24],

[25], where the concept of DAOP is extended to enable DSU shows that dynamic aspects, with

its cross-cutting functionality (i.e. program code isolation), can be used as a suitable format to

describe changes. Furthermore, dynamic aspects provide flexible addition and deletion of the

program changes, and thus can enable incremental dynamic updates [25].

For the supported changes, DAOP is limited to a method body change. To expand the sup-

ported change set, it is necessary to generate changes in the form of other types of aspects (e.g.,

accessing class field) and additional classes. In the extended DAOP approaches [24], [25], dy-

namic changes are performed by analyzing different software versions and generating dynamic

aspects. The modified JVM and Java agent provide a greater set of changes in comparison

to extended DAOP, which is limited to changes on the class level. The objective of research

using DAOP is to enable as many aspect-functionalities as are supported by static aspect ap-

proaches, such as AspectJ [18]. These DAOP approaches would allow simple specification and

application of arbitrary changes between program versions.

Aspect languages are not built to define program change specifications and support dynamic

software evolution;; therefore, aspects cannot define changes in the class hierarchy [24]. For

example, AspectJ supports a limited addition of class interfaces and it does not support interface

deletion [26]. Furthermore, Prose [27] as DAOP used in [24], [25] does not support method

calls from the weaved (i.e. advice) code to a method defined in the same aspect, nor is it

possible to access the field defined in the same aspect. In addition, it is not possible to access

a field protected by the access modifiers (e.g. private) and does not support constructor body

2

Introduction

replacement. Although these functionalities may be achieved by declaring changed members

in additional classes and extending existing classes with inter-type declarations, the approach

described in [10] does not address the problem of the class hierarchy change.

Several approaches in the field of research have matured to be used in development envi-

ronments [3], [15], [16]. The next step is to use dynamic updating in production environments.

Program execution in development environments simplifies the conditions that an approach for

dynamic updating should meet. Considering that program execution is short, the state con-

version is simple and static analysis is performed to validate the correctness of the program

changes. In addition, approaches from the development environment do not take into account

incremental updates. Consequently, runtime phenomena can occur with dynamic updates [3],

[28]. Runtime phenomena is the state of the program after the dynamic update that is not the

same as it would be after the standard update procedure, as follows: stop, update and start the

program. Research work from [3], [28] discusses the need for the tool with dynamic analysis of

program changes, to determine whether dynamic updates can lead to the runtime phenomena.

Meanwhile, in the extended DAOP, analysis is used to identify and convert program changes

to aspects. In the dynamic evolution of aspect-oriented programs [25], analysis between differ-

ent versions of programs is used to support incremental updates. Currently, there is a lack of

research on analysis of the program changes concerning the occurrence of the runtime phenom-

ena. Detecting runtime phenomena would enable the DSU to prevent updates that could cause

the runtime phenomena by refusing or by dividing the update into smaller parts to perform the

update.

The performance of the dynamically updated software can be degraded compared to soft-

ware updated with restart procedure [29]. To take advantage of DSU, it is necessary to minimize

impact on computer resources. The current DSU approaches were evaluated according to the

execution of implemented mechanisms that allows dynamic updates; for example, the execu-

tion duration of modified garbage collector in [15], [9] or the impact on the execution of the

program in steady state [9, 14, 15], [19, 27]. Although some approaches contain evaluation by

using real-world programs, such an evaluation cannot show an overall impact on the execution

performance because measurements are limited by the domain of the tested program [14], [10],

[9]. To evaluate the approaches from the point of impact on computer resources and compare

the results, it is necessary to develop a benchmark tool that can perform various measurements

of the impact of dynamic updating on execution duration and memory consumption by using

pre-prepared tests.

3

Introduction

1.2 Contribution

The result of this research is a DSU system based on dynamic aspects (DAOP) and runtime

phenomena detection. The presented model of the DSU is based on dynamic aspects with

support for the class hierarchy modification, where dynamic aspects and additional classes de-

scribe program changes to be applied in the process of DSU. Furthermore, as a consequence of

dynamic updating, dynamically updated programs are exposed to an unwanted or unexpected

program known as runtime phenomena. In this research, algorithms based on program analy-

sis are presented to detect these program state occurrences. The proposed model, algorithms,

and techniques are evaluated using a prototype system and by empirical evaluation of actual

program modifications. Benchmark methods are created to evaluate the performance and to

compare the prototype system to other approaches.

The contributions of this thesis are as follows:

• DAOP update model that enables class hierarchy modification;

• Algorithms to detect runtime phenomena;

• Prototype system based on DAOP update model and detection of the runtime phenomena;

• Benchmark methods for performance evaluation of DSU approaches.

1.3 Thesis outline

This thesis is structured as follows. Chapter 1 introduces the thesis, including the research mo-

tivation, scientific contribution, and thesis outline. Chapter 2 introduces the DSU by describ-

ing its requirements and challenges. Chapter 3 provides a background on the object-oriented

environment, briefly describing current DSU approaches for Java and the class inheritance re-

lationship necessary for the thesis. Chapter 4 introduces tree dissimilarity as the basis to detect

changes between program versions. Chapter 5 presents the extended DAOP model to support

class hierarchy changes and class member changes regarding inheritance. Chapter 6 discusses

runtime phenomena and introduces algorithms to detect and estimate runtime phenomena based

on the class hierarchy changes. Chapter 7 describes the impact of DSU implementation on the

performance and system resources, introducing a methodology to evaluate and compare the

DSU approaches. Chapter 8 presents the prototype system based on the extended DAOP model

and runtime phenomena detection algorithms. Chapter 9 evaluates approach based on the pro-

totype system and defined methodology for evaluation and comparison. Finally, Chapter 10

summarizes the thesis and draws a conclusion.

4

Chapter 2

Dynamic software updating

In this chapter, the DSU is described as the introduction to the dissertation research area. The

presented categorization of existing DSU approaches based on the work from [30] is the result

of DSU requirements and their relationships. The described characteristics of DSU approach

depend on the mechanisms and techniques to achieve given DSU requirements. In addition,

this chapter outlines existing challenges as motivation for further research, where some of the

challenges are addressed the following chapters.

2.1 Introduction to dynamic software updating

Software changes over time because of changes or corrections in its functionalities. As a result

of these changes, new software versions are produced. Software updating replaces the current

software version with a new one. Early distributed software systems, such as the airline reserva-

tion system, required both software availability and functionality changes [2]. However, these

two requirements are contrary to the updating procedure that has the following steps: stop,

update, and software start. The main drawback of this cyclic process is that the program is un-

available during the update. Therefore, it is difficult to balance high availability with frequent

changes.

DSU has been the focus of many research studies. However, there is no agreed definition

of DSU within the research community. Briefly, DSU replaces the software version in runtime,

therefore DSU environments provide high availability and support for changes [11, 31]. Com-

pared to the software updating cycle with restart, dynamic updating consists of two continuous

steps: deploy and change. A wide range of applications and systems could benefit from the

DSU. In embedded systems for mission critical applications availability is highly needed. For

example, in power or traffic lights control, it is necessary to enable the changes with the new

control strategies used for smart control in cities. Cloud systems are required to provide high

availability in Platform as a Service (PaaS) and Software as a Service (Saas) services due to

5

Dynamic software updating

end-user agreements, such as Service Level Agreements (SLA) [32]. In the case of downtime,

the service provider compensates the users for unavailability [33]. There are some solutions to

support availability with changes, such as a rolling update for distributed and cloud systems that

updates the nodes in a distributed system one by one, while redirecting clients to an active node.

However, this can overload an active node with too many client requests, causing unavailabil-

ity. Meanwhile, for operating systems (OSs), a restart of the system can negatively affect the

working process of the end-user. Furthermore, client applications connected to other entities

(e.g. web servers and remote databases) update due to changes in those entities, which can lead

to lost data. In mobile applications, for example, an update of a communication application

disrupts the end-user’s possibility to communicate to other users during the update. In business

web applications, where the application is a part of the business process, non-availability creates

higher costs due to downtime. There is a constant struggle between availability and support for

changes in software applications and systems, which is a key motivation for DSU.

2.2 Dynamic software updating requirements

To date, many different techniques and approaches have been developed using several systems

and applications. However, DSU systems have requirements that are the same regardless of

environment features and constraints. Together with the previously mentioned availability and

change support, they are:

• Availability – performing DSU does not affect the availability of the software, or it is not

noticeable by the end-user [12].

• Correctness – dynamic updateability does not violate correct execution of the software,

before, during or after the update [12].

• Changeability – the set of possible changes between two versions of the software should

be without constraints [12].

• Performance – the possible increase in demand for system resources (e.g. processing

power, memory, and storage) to support DSU should be minimal [12, 29].

• Usability – DSU usage should be simple and transparent [12, 29].

Some of these goals are contrary. It is challenging to provide a very large set of possible

changes and simultaneously provide minimal usage effort for the developer, while minimizing

performance cost. Almost every DSU approach balances between these requirements. Mean-

while, availability and correctness should be viewed together; for example, by considering that

the software is running without disruption, before, during and after the update but the program

execution during or after the update is corrupted. This kind of software behavior is not desirable.

6

Dynamic software updating

Version 1

1 public void hello(){
2 long time = System.currentTimeMillis();
3 System.out.println("Hello world. Current system time in ms: " + time);
4 }

Version 2

1 public void hello(String from){
2 long time = System.currentTimeMillis();
3 System.out.println("Hello world from '" + from + "'. Current system time in ms: " + time);
4 }

Update from v1 to v2 at line 3

Figure 2.1: An example of a failure: argument in new version do not exists in previous version

2.3 Related problems

To achieve the requirements from Section 2.2, DSU is confronted with several problems when

compared to the software update procedure with restart. Updating an active program code at

an unsafe moment can result in unpredicted software behavior. For example, in Figure 2.1

the dynamic updating could be performed in the middle of the function hello at line 3. A

function in a newer version after the point of updating executes a statement comprising the

newly introduced parameter from that is undefined in the previous version, which leads to a

fault state. Another problem is to ensure a smooth end-user experience during the update. DSU

is required to provide transparency in such a way that a component of the previous version

can use a component in the new version. When DSU updates the entire program at once,

this kind of problem is not an issue because the components are upgraded at once. However,

the replacement of the whole program often takes long time, which degrades the availability

requirement (Figure 2.2). Moreover, the whole program replacement often encounters issues of

correctness because the current state of the program can be lost. In contrast, during the running

application update, the DSU is required to preserve the current state to support correctness and

consequently to provide transparency to the end-users. To preserve the program state, multiple

program versions can exist simultaneously. If there are multiple versions of the same program

object in the system (e.g. a class instance in memory), then the demand for resources increases

and this can degrade system performance.

These problems differentiate the DSU update process in comparison to the classic update

process. Other problems arising from the DSU implementation related to various software

environments are described in Section 2.5.

7

Dynamic software updating

Program execution

Update begin

Update end

No response

Figure 2.2: Dynamic update duration

2.4 Updating techniques and mechanisms

The DSU related problems described in Section 2.3 can be resolved with appropriate techniques

divided into the following categories: level of update, update of dependent components, time of

update, state transfer, and cleaning and rollback mechanisms. The level of update determines

which parts of the software will be updated, such as a single component or the whole program.

In dynamic updating, the dependency between components when components are of different

versions is handled with an update of the dependent components. State transfer enables the state

conversion from the previous to the new version in terms of system correctness and end-user

level transparency. One of the questions addressed by the time of the update is when to update

the active program code. Timing techniques determine the time of update in different parts

of the software system. Meanwhile, the system resource requirements increase with dynamic

updating. Therefore, proper cleaning of the unused memory fragments from the previous ver-

sion maintains the system availability and performance. Errors may occur during the process

of the dynamic update, and there is a need to provide the possibility to rollback changes to the

previous version to maintain system availability and correctness.

2.4.1 Level of update

DSU can be designed to replace the whole program at once or to replace a single component

(e.g. class [12, 15], class members [12], method [34, 35]) or instruction [36]. To reduce the

time of update, smaller components of the update are chosen; for example, instruction-level as

presented in DynSec [36]. Such a size of the unit is appropriate for security patches. Changing

a single instruction can fix a bug (e.g. buffer overflow). It is unnecessary to update entire

program because of single instruction change in security patch. To keep the update duration

and performance overhead as minimal as possible compared to the whole program, components

are used as the common level of update in various approaches.

8

Dynamic software updating

v1: hello()
v2: hello(String from)

1 void main(String[] args) {
2 …
3 /* point of update from v1 to v2*/
4 hello();
5 …
6 }

FAILURE: function changed signature

(a) Example of a dynamic update (b) Indirection level between components

Figure 2.3: Dynamic update example requiring indirection logic

2.4.2 Update of dependent components

Fabry in [2] introduced the indirection level for dependent components to resolve problems that

arise when dependent components have different program versions. Indirection level as a com-

ponent connects the dependent component to the components in the different versions (Figure

2.3b). In the example shown in Figure 2.3a, the functions hello and main are in different com-

ponents. A dynamic update is performed before the call to function hello, at line 2. Because

the hello function signature changed in the new version (v2), the caller method in dependent

component from the previous version (v1) cannot invoke the method without parameter in the

calling component in v2, and program execution ends with failure.

The connection between components is in both directions because the components have

both an input and an output. The indirection level has built-in logic for handling the connection

between the previous and the new component version. In the example in Figure 2.3a indi-

rection level handle calls from main function dependent component to component in the new

version. The simple approach is to use a jump or jump-like instruction as in [1, 31]. Frieder

and Segal [31] use a special segment register as indirection level, which contains the address

of the procedures lookup table. However, this approach depends on the CPU architecture.

In the example in Figure 2.3a, register is pointing to method hello in v1, after the dynamic

update it points to method hello(String from) in v2. Other approaches to the indirection

level can include proxies redirecting calls to new versions [12]; wrappers, where a new version

"wraps" the previous [37]; and pointers, which updates pointers from the previous to the new

version objects [11, 15]. The Dynamic Proxification Framework (DCF) [12] uses the byte-code

rewriting technique to insert the code in the previous component version, which then calls the

new version of the component. E.g. in an Object-Oriented environment, methods hello and

hello(String from) from Figure 2.3a are methods belonging to updated class in v1 and v2,

and method main to unchanged class. DCF is rewriting method main body with statements to

invoke method hello defined in v1 or v2 depending on the currently running version. Wrap-

9

Dynamic software updating

per approach also modifies statements of the main method in order to use wrapper classes.

However, wrapper class contains only changed class members between versions. Meanwhile,

pointers in [15] are changed from v1 to the v2 objects by analyzing heap. For the example in

Figure 2.3a virtual method table in the updated class needs to be modified because parameter

for method hello is added in v2. Updated class is reloaded resulting in change of pointers for

existing objects.

Dependent components can be dependent statically [7, 12]; determined in static state (e.g.

in software code); or determined semantically (i.e. in runtime) [31]. Static dependency can

be determined automatically, whereas semantic dependency is defined by the programmer or

detected in a higher-level analysis. Both types of dependency between components are required

to provide the correctness of the DSU. The most common example of both dependency types is

a software system where communication is performed. The communication program consists

of two functions: sending and receiving messages. Changing one function requires changing

another; otherwise, the function for sending the message sends the message in the previous

version but receives the message in the new version. Consequently, the receiving function

cannot receive the message properly due to the change between the versions, which leads to

incorrect behavior of the communication process. These cases are solved with the use of the

programmer’s defined semantic-dependencies list [31].

2.4.3 Time of update: safe point of update

The point in time when it is possible to make an update is important to maintain the correctness

of the running software. In [38], the authors proposed three categories of update timing control

regarding the update of active functions: activeness safety (AS), con-freeness safety (CFS),

and manual identification. AS prevents the update of active functions (i.e. existing on the call

stack). Con-freeness [7] allows updating of an active function when it is type-safe. An update

is type-safe when the block of code after the point of the update is not affected by the update.

To ensure the correctness, both AS and CFS requires code modification by the programmer

[38]. Manual identification relies on the programmer-defined safe points of update [1, 38, 39].

In single-threaded applications with one loop, the point of the update is suggested to be at the

end of the loop when there are no active transactions [15, 29]. Meanwhile, defining the points

of the update is complex in multi-threaded programs. The programmers are required to follow

programming patterns because of synchronisation problems, such as a suggestion for the loops.

Some approaches do not handle update timing [12, 40]. In contrast, other approaches such

as: quiescence [5], tranquility [8], and relaxed synchronisation [41], manage updates with delay.

A brief description for each follows. First, assume that in DSU, depending on the application

and system type, entities of DSU environment affects the correct running and the behavior of the

system; for example, entities are functions in procedural programming languages, nodes in dis-

10

Dynamic software updating

tributed systems, processes in operating systems, transactions in databases and communication

systems.

1. Quiescence [5]. To perform the operation of the dynamic update on an updatable entity,

the entity is required to be inactive. Further on, entities reachable by an updatable entity

are required to be inactive, and other entities that might reach the updatable entity will be

inactive during the update. This concept has been used in [5, 31, 42].

2. Tranquility [8, 43]. As relaxed quiescence, it does not require that the entities that can

reach updatable entity are required to strictly be inactive during the update. Instead, both

the entities connected to the updateable entity and the updateable entity itself are inactive

and will both remain inactive during the update process. Furthermore, the connected

entities will not be active when the updateable entity is inactive.

3. Relaxed synchronisation [23]. There are points of update that are equivalent in the pro-

gram code, which means that it does not matter where the update will occur in the pro-

gram code. The equivalent update points create a block of code where the update does

not affect any of the block statements. If the update request is received in the middle of

the block, then program (thread) execution can continue until the end of the block and the

update will then be executed.

The time of the update is not exactly determined in the First-Class Context [44] approach,

which is called an incremental update. Active transactions and requests run in the previous

version until the end of the transaction or request. After the update, every new transaction or

request runs in the new version. This is a lazy update from the previous to the new version.

2.4.4 State transfer

State loss as a result of a dynamic update can lead to exceptions and end users can experience

missing features or state, similar to a cold restart. A simple prerequisite that is used by some

approaches is to assume that the new version uses the state of the previous version [40], which

mostly induces reduced changeability. There are two basic categories: automatic conversion

and programmer-defined conversion. Automatic conversion [12, 15] copies object data from

the previous to the new version. This includes, in some cases, the conversion of complex types

(e.g., parent class change), and for primitive types, the conversion of an associated value (e.g., a

number to string). Moreover, if some of the structure is changed (e.g., when the field is added to

class), then the default programmer-defined values are used. The manual approach [31, 33, 44]

includes programmer defined transformation functions to transfer the state from the previous

to the new version. This approach extends flexibility when a major change between versions

occurs, but it also disrupts programming transparency. Defining a custom transformation code

often requires the programmer to use new language constructs and follow conventions or design

patterns, related to dynamic updating.

11

Dynamic software updating

Another aspect of transformation is the time when it occurs, either immediately or after the

incoming update request. On-demand is a popular technique for performing state transforma-

tion after receiving the update request [1, 2, 45], which is also called a lazy transformation. The

value of the field is transformed on the first access, as seen in [12, 46]. Lazy transformation is

recommended because it has a good impact on the performance and the duration of the update.

Meanwhile, transformation functions can be bidirectional [1, 44, 45] to maintain synchronisa-

tion between the entities belonging to different versions, which is common in approaches with

multiple versions. The change of entity state in one version affects the entity of another version.

2.4.5 Cleaning

In higher-level languages, DSU relies on the garbage collector mechanism. When the old com-

ponents are no longer used, the garbage collector marks them for cleaning [9, 15]. In [44], when

the old context is not in use, it is finalized. The finalisation process migrates old context objects

to the new context and the old context is then garbage collected.

2.4.6 Rollback

In the case of errors during an update, to support the availability and correctness of DSU, the

system is required to provide a rollback feature [1, 12]. However, rollback cannot be done

in environments without reversible actions. In general, re-executing and rollback are mecha-

nisms where the program execution rolls back to the first point where the previous and the new

software versions are equal [47]. POLUS [1] supports reversible patches that convert the cur-

rently running to the previous version. Rollback may be designed as a part of multiple versions

existence during the update when there is a need for the rollback in case of exceptions.

2.5 Dynamic software updating implementation

Given that DSU implementation largely depends on various environments and usage, there are

different restrictions and features to consider. Programming language defines implementation

platform, type of application and runtime environment determine architecture of DSU, whereas

type safety, defining set of changes, concurrency, and coexisting of multiple versions are imple-

mentation features.

2.5.1 Programming language

Some DSU approaches define a custom programming language to enable a dynamic update ca-

pability, such as in [7, 45, 47]. Custom language DSU requires programmers to learn new pro-

12

Dynamic software updating

gramming languages. Such DSU supports a large set of changes and long-term usage simplicity,

as the programming language is developed with dynamic updating features. Another approach

is to use a programming language popular among developers, such as C, C++, Java [48]; as

in [1, 12, 15]. Using a popular programming language without modifications can increase the

complexity of the DSU implementation because of a lack of dynamic updating features in the

programming language. Meanwhile, a less popular programming language, such as in [2, 44],

is often used when the environment (e.g. legacy or system constraints) does not allow another

solution. The programming platform is defined by the programming language, supported Ap-

plication Programming Interfaces (APIs) and libraries connected to the running environment,

such as the Operating System (OS).

2.5.2 Application type

Implementation depends on the application type because of the environment properties and the

purpose of the system. DSU for an embedded environment [49] has a simpler implementation.

Embedded software has a smaller memory footprint, which means that the state transfer is sim-

pler for handling. Object-oriented programming languages are not often used for embedded

systems as opposed to business applications, which increases the demand for system resources.

Furthermore, current business applications often run on web [1, 7, 38] or cloud systems [33, 50].

These systems can be distributed due to load balancing. The technique for uniformly balancing

load over each node serves a large set of users, which means that the DSU implementation per-

forms synchronisation between multiple nodes [50]. Standardized business applications consist

of three layers: database, server, and client. The dynamic update of a business application on a

three-layer architecture requires a separate update of each layer, such as database [2, 51], with a

synchronisation mechanism between these layers [50]. In Figure 2.4 shows a distributed system

with multiple nodes and separate layers. Furthermore, for DSU handling operating systems, the

time of the update can be simpler to detect because the function in the process can be blocked

instead of inactive [29]. The Linux operating system provides a "hook" (ptrace function) for

easy injection of code into a running application [1]. Built-in mechanisms such as ptrace sim-

plify the implementation of DSU supporting the dynamic update of OS modules. Native (i.e.

client) applications regarding DSU [12, 15, 40] perform updates during an inactive state similar

to OS blocked processes.

2.5.3 Runtime environment

There is a difference between implementing long-term and short-term DSU. Current short-term

DSU approaches are used for development environments, such as IDE (Integrated Develop-

ment Environment) as in [12, 15]. Meanwhile, a long-term DSU would tend to be used in a

13

Dynamic software updating

...

... Database
layer

Servers

Various
clients Multiple

nodes

Development

DSU

Figure 2.4: Distributed software system with dynamic updating

production environment. Although various approaches in the existing research can solve many

DSU runtime challenges, there is no research on a long-term running DSU for the production

environment.

In the development environment, DSU is a tool to aid software debugging activities (e.g.

refactoring or bug correction). Current commercial level available solutions include HotSwap

[34, 40] in Eclipse IDE, and Edit and Continue [35] in the Microsoft Visual Studio IDE. These

IDEs support method body changes without changing the method signatures or type changes,

with limitations for adding the class members in object-oriented languages. The programmer

can change or add an active method statement while debugging using the same method, mainly

to correct bugs. The change immediately affects the functionality of the program and further

execution. In [12, 15] the authors extended the set of changes when compared to available

IDE mechanisms, enabling the change of class hierarchy and adding or deleting members of

classes. In these cases, it is necessary to ensure binary compatibility, described in more detail

in Subsection 2.5.4.

The techniques and methods developed for the debugging environment could be applied in a

production environment, although with modifications due to differences in these environments.

The debugging environment provides simple detection of point of update and simplifies the

state transfer process. The breakpoints in the debug mode are the points of the update, which

are points in a program that can suspend execution to perform dynamic update. Meanwhile,

production environments increase the complexity of the implementation because of continuous

execution.

2.5.4 Type safety: binary compatibility

If the DSU level of the update is smaller than the replacement of the whole program, then the

update of the dependent component handles type safety. This is particularly important in ap-

proaches relying on static programming languages because of the static type checking. Chang-

14

Dynamic software updating

Figure 2.5: Binary compatible and incompatible changes [15]

ing the component interface is a modification of the component interface signature (i.e. type

change). One of the first approaches using a static type checking was DYMOS [39] using Star-

Mod distributed version of the Modula programming language. Approaches that do not support

interface change do not have a requirement to handle type safety [40, 52]. Other approaches

with support for interface change perform a static check [12, 15, 39] or use functions to provide

type safety [1, 11, 45]. In a DSU with a static check, the updates that fail type safety checks are

rejected to maintain the correctness.

DSUs with a convention that updates are required to be type-safe because they rely on the

fact that in the update procedure with restart the programmers compile changes before deploy-

ing the program [12]. Compiling ensures the type safety (i.e. binary compatibility of the new

version). As shown in Figure 2.5, adding new objects such as classes, methods, fields, and

variables into the code is a binary compatible operation. Meanwhile, removing the objects is

considered to be an incompatible binary operation (i.e. type unsafe). Changing the body of

functions or methods is also binary compatible change, and is widely supported in the debug-

ging environments that are described in Subsection 2.5.3. Binary incompatible changes can be

handled with coexisting multiple versions and with the use of predefined behavior, such as in

[15]. The binary incompatible functionalities that are introduced in [15] are:

• Static check – if a deleted object is accessed in further program execution, then the update

is rejected,

• dynamic check – search for reference during runtime, returns an exception on fail.

• Access deleted member – supports the access of an old deleted method or static field,

whereas for deleted instance fields returns an exception.

• Access old members – method in previous version access the old version of the method

instead of the new version (i.e. version consistency).

Furthermore, in databases, type safety consists of a data scheme that compares the previous

and the new version. In [33], scheme comparing is called a safety check, which ensures that

accessing the modified object (in this case, the database table) is always performed on the new

scheme version. There are two cases, presuming that ∆ is a set of all differences in the scheme

15

Dynamic software updating

between versions. The differences are: added, deleted, or modified table attributes. A safety

check before accessing the table T performs the intersection between ∆ and the scheme of table

ST . In the case of the empty intersection ∆∩ST =∅, the table is accessed because there are no

changes. Otherwise, ∆∩ST 6=∅ and access is delayed as long as DSU is performing the migra-

tion of the scheme and the existing data from the previous to the new version, corresponding to

lazy transformation.

Dynamic languages such as PHP, JavaScript, and Ruby do not have explicit type declaration

because types are handled dynamically. This feature can simplify the implementation of DSU

because it does not have to handle type safety as in static programming languages.

2.5.5 Concurrency

Multithreading or concurrency support in DSU is closely connected with the time of update de-

scribed in Subsection 2.4.3. Some approaches [40, 45] do not consider multithreading, even if

their handling of update timing can provide multithreading support [40, 45]. Other approaches

that support multithreading, such as [12], advise programmers to use programming patterns

and practices in multithreaded programs. These are common when developing multithreaded

programs because developing multithreaded applications is often complex due to synchronisa-

tion between threads. DSU that includes multithreading support should avoid the occurrence of

deadlocks. A DSU can be implemented by using proper technique for the time of update and

modifying system calls (e.g. with indirection) used for synchronising threads. In [12], the Java

environment provides wait and notify synchronisation functions. The former is used to block

the execution of the thread and the latter is used to release the waiting thread. A problem arises

when in the previous version of the object, function wait is called, causing thread waiting, and

after the update calling of the notify function is performed on the new version of the object.

The thread in the previous version never ends because it will never receive unblock instruction.

The changes between versions in program code handling synchronisation, such as unblocking

the thread, should be done with caution. Changed functionality in the newer version of such ob-

jects can leave threads waiting, which causes deadlocks [12]. These changes are not compatible

with dynamic updating.

2.5.6 Defining the set of changes: the set of differences

The difference between versions can be determined automatically by static analysis tools on a

code level, defined by the programmer, or determined at the higher level of abstraction or design

level [1, 47, 49]. The code level can be object code, such as byte-code level [52] or source code

level [9, 11]. However, the source code of previous versions is not always available. In such

cases, object code has an advantage over the source code. Furthermore, comparing on the

16

Dynamic software updating

lower level may introduce unnecessary updates of negligible changes. Meanwhile, comparing

small changes in the case of optimisation or bug correction can on a higher level cause update

rejection because no changes are detected [29]. For example, single changed instruction where

the size of an array is defined can be neglected when comparing program versions on the higher

level using, such as Control Flow Graphs (CFG) [49]. Lower level automatic comparing is

simpler to implement than the automatic comparing on a higher level, such as class hierarchy.

Automatic comparing relies on static analysis and is often implemented as a separate tool that

produces differences in a format known in advance. The format can be custom [9] or in existing

format such as XML (eXtensible Markup Language). In [36], the difference is produced by

a special tool to compare the differences of the functions binary code. Furthermore, software

versions can be stored in a repository, such as a database, where an update to a specific version is

determined by repository analysis [24]. From the point of implementation, differences defined

by the programmer as part of an update are the simplest case, but it degrades the simplicity goal.

2.5.7 Coexisting of multiple versions

It is desirable to have multiple versions at the same time, such as in cases of cyclic dependencies,

when in one version the class depends on another, while in the next version the second class

depends on the first [15]. Multiple versions of the same object in memory increases memory

demands and affects the correctness. The correctness may be degraded because DSU provides

version consistency [53], meaning that dependent objects are required to be compatible. If

multiple versions of the same object exist, then it is challenging to ensure state synchronisation

between them. In distributed systems, there can be more than two versions which increases the

complexity of synchronisation between the system entities.

2.6 Challenges

Many software applications in a distributed environment consist of multiple layers and nodes.

Figure 2.4 shows a software system that is based on three layers: database, server and client,

with multiple nodes. Although layers are presented as separate entities, they can be on one

physical place as a single node. In real-world situations, current business applications have

physically separated layers. The database layer can be distributed on multiple servers or it can

consist of a main database server with a secondary failover server. The main application logic

layer often consists of multiple nodes (i.e. servers with load balancing). The clients include

various devices, such as desktop computers, mobile or IoT devices. The client-side of the

application usually resides on the Internet browser but can be the native application. DSU logic

can be placed depending on the implementation: inside the IDE, distributed in each node, or on

17

Dynamic software updating

a single physically separated location.

Having an entire system in mind, several DSU challenges can be considered. Based on

the requirements of the real production systems and related literature, the rest of this section

discusses some of the general challenges. Furthermore, in the following subsections, challenges

related to DSU addressed in this dissertation are discussed.

DSU concepts applied in the debugging environment could also be applied in the produc-

tion environment. However, there is a lack of research on deploying dynamic updates in the

production environment. Further DSU research and new approaches can provide developers in

the development environment Existing DSU with further research and new DSU approaches

can provide developers in the development environment the ability to change code on the fly

when debugging and dynamically deploy a new version to the web, distributed or embedded

distributed system, as shown in Figure 2.4. However, more research is needed to develop fur-

ther DSU enhancements related to connecting development environments to the production

environments.

In the literature, DSU is rarely found for cloud and web applications. Bhattacharya and

Neamtiu [50] considered the problem of each layer separate dynamic update validation and

synchronisation between multiple nodes. However, there is a lack of research beyond problem

discussion related to dynamic updating managing and synchronisation between multiple layers.

DSU is required to consider consistency between nodes and layers, including possibly different

versions in nodes. A situation where the system contains different versions across nodes can

appear temporarily during an update, or intentionally when different groups of nodes serve

different clients. For example, the development system can contain a test instance. Therefore,

before deploying to the production environment, a new version is deployed to the test instance.

Distributed and multilayered systems require an appropriate centralized manager to analyze the

current system state, and to perform dynamic updating across layers and nodes. However, it

is challenging to determine and design parts of such a centralized updating manager handling

different versions in nodes and layers.

2.6.1 Runtime phenomena: state artifacts

In [28], Gregersen et al. discussed runtime phenomena, which is a condition where the system

state after the dynamic update is applied is not equal to a system state when the update pro-

cedure with software restart is applied. The following phenomena is detected [28]: phantom

objects – removed class objects remain in application, absent state – object is missing state in

newer version, lost state – state is lost with type change of the class member, oblivious update

– features introduced in the newer version are missing, broken assumptions – after applying

multiple new versions, state and logic dependency assumption may break objects, transient in-

consistency – application state occurred after the update that will never be reachable by a restart.

18

Dynamic software updating

More research is needed to detect and avoid such conditions. Chapter 6 explains in detail the

problems of runtime phenomena and presents solutions as a result of dissertation research.

2.6.2 Evaluating dynamic software updating implementation

Performance benchmarks from existing research focus on overhead introduced by the DSU

or compare program execution speed before and after performing a dynamic update. Memory

demand comparison influenced by DSU capability is rarely provided. However, this comparison

is needed because current applications are memory demanding. In the case of the DSU approach

that supports the coexisting of multiple versions of the running program, the memory demand

after multiple updates should be in the worst-case equal to a cumulative number of running

versions. Meanwhile, a common situation in the computer systems when there is an advantage

in the speed of software execution, there is higher memory usage, and vice versa. A stable DSU

system is required to balance those two requirements in terms of dynamic updating. Further

development of appropriate DSU benchmarks, similar to [54], considering the demands for

speed and memory resource demands is needed.

Proper benchmarks are needed to evaluate availability across the system in different nodes

and to check the correct behavior of the system. Besides correctness and availability evaluation,

evaluation is also needed for comparing different DSU techniques and methods, and update

failures analysis. The challenge is how to design and perform such an evaluation with different

parts of the complex system in mind.

In order to compare the DSU approach presented in this dissertation with other approaches,

Chapter 7 describes the methodology for evaluating different DSU approaches and benchmark

tool.

19

Chapter 3

Object-oriented environment

Each programming environment contains specific constraints and mechanisms to support dy-

namic software updating. The focus of this dissertation is the hierarchy of classes in Object-

Oriented (OO) programming languages. Consequently, this chapter will give an overview of

DSU approaches in Java because an OO environment is given, and it will describe the current

approaches regarding the Java environment. A brief description of the key requirements from

the previous Chapter 2 is given. Although there are other OO programming environments, such

as C#, the currently available research is based on Java. Therefore, OO concepts in this disser-

tation are explained in the Java environment, although these concepts should be applicable to

similar OO environments. Furthermore, class hierarchy results in inheritance relationship be-

tween classes, introducing mechanisms such as method overriding. Changes between program

versions are described regarding class hierarchy as preliminaries for the extended DAOP model

and runtime phenomena. Class hierarchy changes between program versions (besides statisti-

cal and algorithm comparison) can be observed visually, as described in the last section of this

chapter.

3.1 Java approaches

Figure 3.1: Java environment stack

The placement of the dynamic updating logic is a crucial factor of every DSU approach.

In the Java programming language environment, dynamic updating can be executed at different

20

Object-oriented environment

environment hierarchy levels (Figure 3.1), and therefore using different techniques. The ex-

ecution environment of a higher level programming language such as Java relies on a virtual

machine (i.e. Java Virtual Machine – JVM). JVM is an intermediate level software execution

environment that supports code portability, and is responsible for executing and translating in-

termediate portable code (Java bytecode) to machine code. Concepts involving the modification

of the virtual machine perform the program change with the assistance of modified JVM inter-

nal data structures, class metadata, stack and modified garbage collection mechanisms; as seen

in [9, 15].

Programming environments such as JVM support specific API (Application Programming

Interface) mechanisms (e.g. JVMTI - Java Virtual Machine Tool Interface agent or Java agent).

Those APIs can intercept access, and modify program constructs (e.g. classes) and current

program state. JVM agents also provide bytecode manipulation, which all together can be uti-

lized for dynamic software updating. Concepts utilizing JVM agent often involve intermediate

objects between a previous and a new object version as “proxies” and wrappers in [12, 37]. Ad-

ditionally, to cope with different class versions, different class loaders [12] or class renaming

[37] can be used.

Aspect-oriented programming (AOP) enables the program functionality to be extended on

horizontal hierarchy level (cross-cutting concern) [18], such as for logging or security access.

AOP uses a weaving mechanism to load the program code within an aspect during compile or

load time, as with AspectJ [11]. Dynamic aspect-oriented paradigm (DAOP) enables weaving

during the runtime, which means it can be used for dynamic software updating. It is imple-

mented as a JVM modification [10, 19, 20] or JVM agent [21, 22].

Regarding the architecture, mechanisms, and paradigms found in the currently available

approaches, concepts are classified in the following three categories: modified virtual machine

(modified JVM - mJVM), level between virtual machine and executed program (JVM agent -

JVMa) and concepts based on DAOP. Figure 3.2 shows the Java environment vertical hierarchy

and the proposed categorization.

Besides this categorization, Java concepts can also be compared with the following key

characteristics, as mentioned in Chapter 2: update timing, necessary program adaptation and

supported changes. These characteristics will be described in the following subsections.

3.1.1 Update timing

One of the crucial problems in dynamic software updating is to determine a proper moment

in time to perform a dynamic update. This problem has been extensively discussed in the re-

lated literature [5, 7, 8]. However, Java concepts mainly rely on internal JVM mechanisms.

A dynamic update is executed at JVM safe points [9, 14, 15], with delayed or refused update

when updating active code [9, 14]. At safe points, threads are stopped; for example, to per-

21

Object-oriented environment

Type Level Program
adjustments

mJVM 3 DPR

JVMa 3 DPLR

DAOP (mJVM) 2 DPCLR

DAOP (JVMa) 2 DPCLR

Standard JVM 1 D

Figure 3.2: Java DSU approaches classification

form garbage collection which occurs on loop endings, method calls, endings. In addition to

the approaches relying on JVM defined update points, there are approaches whose points are

manually defined by the programmer, such as [13, 37]. Furthermore, in some cases a safe point

may never be reached (e.g. in methods with a long running loop). These specific cases can

be prevented with appropriate modification at the design time, such as by using the functional

decomposition of code inside a long running loop [6].

Another point to consider is the moment of update completion. Modified JVM often uses

garbage collection mechanism to replace references to the modified objects, which implicitly

performs updates atomically during the garbage collection [9, 15]. In contrast, in lazy update

approaches, objects are updated at the first access of a modified object [12, 14]. Atomic and

lazy approaches can both be found in the modified JVM and JVM agent, while DAOP, due to

join-point activation, atomically performs aspects update [22, 27].

3.1.2 Program adaptation

Several types of program adaptation techniques can be found in the approaches to DSU. Mod-

ified JVM and JVM agents introduce a mechanism to transfer the object state from previous

to new program version. There are also approaches with programmer-provided or automati-

cally generated state transfer functions that the programmer can modify [9, 14], while other

approaches provide mechanisms to copy field values [3, 15]. DAOP concepts, except Dynamic

ITD (Inter-Type Declarations) [10], generally do not provide these mechanisms. Moreover, in

addition to state adaptation, manual program adaptation may be required to comply with con-

ventions introduced by a specific approach, such as programming language extensions presented

in [13].

Current approaches perform program adjustments at compile, load or run-time. In com-

pile and load time, program adjustments are made with bytecode modification; for example, by

inserting bytecode snippets, called “hooks”, to enable runtime join-point activation in DAOP

[20, 23] or to enable proxy or wrapper objects activation in JVM agents [12, 37]. In addition,

Jooflux [22] at load time replaces the static instruction for method invoke with dynamic instruc-

22

Object-oriented environment

tion, which can be altered at runtime. In general, DAOP only provides dynamic method body

modification. To perform incremental dynamic updates and to extend changes supported by

DAOP, extended DAOP approaches such as [24, 55] perform program adaptation in the prepa-

ration steps and use program code analysis to convert changes between versions into aspects.

Meanwhile, besides possible generated transformation functions [9, 14], modified JVMs do not

require program adjustments in the preparation steps. Moreover, compared with JVM agents,

they utilize smaller or negligible program adjustments, which are made during the runtime.

DCEVM [15] is a modified JVM approach that adds dummy fields reduced-size classes to im-

prove garbage collector execution performance. Jvolve [9] inserts a return barrier instruction

on the stack to perform a delayed update, while Javelus [14] generates code validity checks to

enable a lazy update. Furthermore, DAOP approaches Prose [27], and Hotwave [21] when im-

plemented as JVM agents use runtime bytecode inlining, whereas Steamloom [19] and Dynamic

ITD [10] use a bytecode modification that is built as a modified VM.

Therefore, program adjustments are categorized by the program life cycle where DSU is

enabled, as follows: D - design, P - programming, C - compile, L - load and R - run time

(Figure 3.2).

3.1.3 Supported changes

Method body change is a common modification with the HotSwap functionality, which has

become part of Java Hotspot VM since version 1.4 [56]. Modified JVM works on the lower

level of environment hierarchy, inside the JVM, and can handle more complex changes [57] by

extending the existing HotSwap functionality [15]. JVM agent approaches can support unan-

ticipated changes, from adding and deleting class members to class hierarchy modification; as

seen in [12]. DAOP based approaches are limited to class member changes because they operate

at the method level, but there are some DAOP approaches that could provide hierarchy change

using inter-type declarations; as seen in [10].

Therefore, the changes supported by various approaches can be categorized into three basic

levels, where each level supports all changes supported by lower levels, starting with 1, as

follows:

1. Method body change;

2. Addition and deletion of methods, fields, constructors, and classes;

3. Addition and deletion of interfaces including changes in class hierarchy (i.e. change of

the class or interface supertype).

Table 3.1 shows the proposed program change categorization. Changes of types and names

of fields or classes, as well as changes of signatures of methods or constructors, are absent from

the proposed categorization. These type of changes are made by multiple changes performed

in sequence, such as deletion followed by addition, as in [9, 15]. Furthermore, real world

23

Object-oriented environment

changes frequently involve making multiple basic changes at once. Therefore, they can be

categorized as compound changes. DSU approaches support various changes, while Prose [27]

and Jooflux [22] as dynamic aspect approaches (DAOP) support program changes indirectly as

in [24]. However, class hierarchy changes are not supported. DCEVM [15], as a modified VM

(mJVM), supports arbitrary changes; whereas Jvolve [9] does not support supertype change.

The adding and deleting class is a dependent modification (e.g. if the added class is not used,

then it does not affect the running program).

Table 3.1: Categorized supported changes and DSU approaches support

Category DSU

Type Lev. Modification Prose (Cech †) Jooflux (Cech †) DCEVM Jvolve

Basic

1 Method body (MB) • • • •

2

Method (M*) ** ** • •

Constructor (Co*) ** ** • •

Field (F*) ** NA • •

Class (C*) **** **** **** ****

3
Supertype (S*) NA NA • ***

Interface (I*) NA NA • •

Compound
2

M* + MB • • • •

F* + MB • NA • •

Co* + MB • • • •

C* + MB • • • •
† based on Cech [24]
* add and remove modification
** indirectly supported
*** partially supported
**** dependent modification

3.2 Hierarchy changes

Changes in the class hierarchy between two versions of the program can either be the type or

member changes. Meanwhile, hierarchy changes in the form of changes in class members do

not affect the class type, but through the inheritance changes in members do affect the classes

that inherit the class with changes.

24

Object-oriented environment

3.2.1 Type changes

When the relationship between classes in two versions of a program changes, a type change

occurs; for example, if in the new version (v2) of the program another class has been added to

the class as a predecessor, then the class becomes a subtype of the added class. The same is true

for deleting, which is the opposite case because the class is no longer a subtype of the deleted

class. Furthermore, a class that has been added or deleted as a predecessor may be an existing

class that has changed position in the tree; that is, it is not a new class added in the new version

(v2) or an existing one deleted from the current version (v1).

A

B

C

v1 v2

A

B C

Figure 3.3: Hierarchy type change example

In the example in Figure 3.3, a change in inheritance is seen for class C, which in the updated

version (v2) inherits class B, and does not inherit in the current version (v1) . In v2, class C is

a subtype of class B, which results in a change in statements that contains the type comparison

that are shown on left-hand side in Example 3.1. In v1 variable b is not an instance of the class

C, however in v2 statement evaluate as true. Casting the variable b to type of the class C is

causing an exception in v1, and executes without exception in v2 .

Example 3.1: Java statements with type relationship when m2() and f2 are defined in B

B b = new C(); C c = new C();

b instanceof C c.m2();

(C)b c.i2 = 3;

3.2.2 Member changes

Classes in the hierarchy tree inherit class members. Therefore, any changes in the class member

or when the member is added or deleted affect the classes that inherit the changed class. In Ex-

ample 3.1, on the right-hand side are statements that contain access to added class members that

class C inherits from class B. Changes of members, in the case of fields, is the field type change;

25

Object-oriented environment

whereas in the case of methods is the method signature. Meanwhile, private fields and meth-

ods can be used within accessible methods or constructors,; therefore, class indirectly inherits

changes in these members, which are manifested through a change in behavior. Constructors are

changed similarly to the methods by signature; therefore, the class can use a modified construc-

tor of the parent class. Meanwhile, changes in the body of inherited methods and parent class

constructors affect the class that inherits them in the form of behavior changes. Because the

fields contain the state of a class object, and methods and constructors define its behavior, any

changes in class fields are state changes while changes in class methods and constructors are

behavior changes. Moreover, if a class has a change in state or behavior between two program

versions, then these changes are inherited by the child classes.

Overriding methods

Method overriding is related to the inheritance in the OO paradigm and runtime polymorphism.

As already described, descendant classes inherit class members from predecessor classes. A key

property of the OO paradigm is inheritance, where classes are an abstraction of the real-world

and inheritance defines the relationship between classes that represent objects from the real

world. For example, class animal is a parent class of classes cat and dog. Class animal defines

behavior sound because each animal makes a sound. However, each animal sounds differently:

a cat meows, purrs or hisses, whereas dogs bark, howl or growl. Therefore, subclasses of the

class animal can have different implementations of the behavior. In the OO paradigm behavior

is defined over methods, thus in the example method sound would be implemented in cat and

dog classes, overriding the method defined in class animal. Both cats and dogs are animals.

Therefore, if the animal object is initialized, for example as cat, then invoking method sound on

the animal object would invoke the method implemented in class cat, corresponding to runtime

polymorphism.

Changes in the class hierarchy or methods between program versions can result in changes

in overriding methods (i.e. behavior relationship between classes). For example, in Figure 3.4c

class hierarchy in v1 is equal to the v1 hierarchy shown in Figure 3.3; however, in v2, class A

changes parent to class B, instead of class C changing parent to class B. Regarding methods,

class B in v2 implements method m(), and class C inherits method implemented in class A,

instead of method B.m() because the first predecessor class that implements method with the

same signature is class A. Class A in v2 overrides method m() added in class B. Therefore, a

change of class B’s position and implementation of method m() does not affect class C in the

context of changed methods for class C. Similarly, in the opposite case, when the version v2 is

the current version, and version v1 updated version, method m() is removed from class B, and

class B is removed as predecessor of class C. Furthermore, similar to the Figure 3.4b, in Figure

3.4a A implements method m() in the v2 class; however, class B overrides method in class A,

26

Object-oriented environment

B

C

m()

A

v1

B

C

m()

m()

A

v2

(a) Method m() added to class A

B

C

m()

A

v1

A

C

m()

m()

B

v2

m()

(b) Class A and B changed positions

A

B C

A

C

m()

m()

m()

B

v1 v2

(c) Class B with method m() added as parent
to class A

Figure 3.4: Overriding method changes

resulting in no changes for methods of class C. The opposite is the case in Figure 3.4b, classes

A and B change positions in v2. Therefore, for class C, method m() in class A overrides method

in class B.

Constructor changes

Constructors are used to initialize the state of objects. If there is no definition of the constructor,

then a default constructor is implicitly added. Constructor body contains as the first statement

an invocation to the parent constructor or another constructor defined within the same class. If

the such statement is omitted by programmer, then an implicitly call to the parent constructor is

inserted. For example, in Figure 3.5 when the default constructor on class C is invoked, a chain

call of constructors is performed for each predecessor class until class A. Statements defined in

constructor A() are executed, then in B() and finally statements in the invoked constructor C().

A chain invocation of the constructors initializes fields of predecessor classes. The initialization

of predecessor class members first ensures that if the invoked constructor contains statements

with inherited members, it will not cause runtime errors because of uninitialized fields.

Changes regarding the constructor can either be changes in the constructor body, or the

constructor can be added or deleted similar to the methods. The return type for constructors

27

Object-oriented environment

corresponds to a class containing the constructor and cannot be changed. Changes in construc-

tor parameters, type and number, results in deleted and added constructor. Regarding changes

in the first statement, a invocation to the another constructor within the same class or to parent

constructor can be replaced between two program versions. Furthermore, an added constructor

or existing constructor can contain an invocation to the existing or added parent constructor,

also as invocation to the existing or added constructor within the same class. These changes

should be detected and resolved by dynamic software update model to support arbitrary hierar-

chy changes.

A

B

C

B()

C()

A()

Figure 3.5: Constructor invocation in the class hierarchy

3.3 Class hierarchy visualization

To represent trees and graphs, as data structures, adjacency matrices and lists are usually used.

It is intuitive to represent class trees by visual representation to demonstrate differences in the

classes, and also the inheritance relationship between the classes as edges.There are various al-

gorithms for drawing and visual description of trees and graphs [58, 59]. In this dissertation, dot

language is used to describe the tree and dot visual representation is supported by the GraphViz

tool [60]. Although there are other formats such as GML [61] and TGF [62], and various tools

supporting these graph formats, GraphViz and dot are simple to use and are widely supported.

The characteristics of dot representation are planar and symmetrical graphs, where nodes on

the same level are horizontally aligned. This allows us to represent trees by levels, unlike the

adjacency list and matrix. Some visual layouts of trees are better suited to reflect data from the

problem domain than other layouts. To compare changes in the class hierarchy between two

versions of object-oriented programs, represented by trees, it is convenient to use radial render-

ing of nodes per level (i.e. twopi layout). For example, Figure 3.6a shows the class hierarchy of

program NewPipe [63] version 0.9.0, which is one of the open source programs analyzed in this

dissertation. Nodes on the same level are visible in Figure 3.6a, but Figures 3.6b and 3.6c with

radial layout are more suitable to compare two program versions than the default dot layout in

28

Object-oriented environment

Figure 3.6a. In Figures 3.6b and 3.6c, the center is the root (i.e. Object class), which other

classes implicitly inherit. Nodes on the same level are visible as “rings” around the root node.

Nodes filled with a color exist in both trees, where they can be identified by the filled color.

Nodes that are not filled with a color exist in only one of trees. From the transformation point

of view, where the left tree is the source tree transformed to the right as the target tree, it can be

concluded that the no-color nodes in the source tree are deleted and no-color node in the target

tree are nodes that have been added.

f3u5

v5

y

z z3

d1

v3 d3 e1 e6 a6 r5

v

i4 p4g5

z2

a3 m5

g3

a5 h3 b6 xo5

a4

b4 k3

w4

x4

q5 a1

n5 b1 i5u t pl5

Object

m k5 x2 u4 f5 o e3 b s5 o4 j3 s6 x6

n y3v4y2

q6 d6

g6 e4 c3 n6 c t5 w6 o6 c6 r6

(a) Dot layout: NewPipe v0.9.0

f3

u5

v5

y
z

z3

d1
v3

d3

e1

r5

v

i4

w

p4

g5

z2

a3

m5

g3

a5
h3

x
o5

a4

b4

k3

w4

x4

q5a1

n5b1

i5

u

t

e4

c3

p

l5

Object

mk5
x2

u4
f5

o

e3

b
s5
o4
j3

j1

g1s1e2
f1
w3

d

v1
c2
x1

n

y3

v4
y2

c

t5

l1

m1

n1

r1

g2

h2

i2

j2

k1

o1

t1
q2

s2

y1 b2 f2
r2

t2
x3

e

f

g

h

i

j

k

w1

d2

n2

(b) Twopi layout: NewPipe v0.8.9

f3

u5

v5

y
z

z3

d1
v3

d3

e1

e6

a6

r5

v

i4

p4

g5

z2

a3
m5

g3

a5h3b6

x

o5

a4

b4

k3

w4

x4

q5

a1

n5

b1

i5

u

t

p

l5

Object

m

k5

x2

u4

f5

o
e3

b
s5
o4
j3

s6

x6

n

y3

v4

y2

q6

d6

g6

e4 c3

n6

c

t5

w6

o6

c6

r6

(c) Twopi layout: NewPipe v0.9.0

Figure 3.6: Class hierarchy comparison between 0.8.9 and 0.9.0 NewPipe program version

For nodes matched in both trees, red edges connected to the parent node denote deleted

edges in the source tree and green edges denote added edges in the target tree. In Figure 3.6,

because class t is deleted, classes x, u, e4, and c3 have changed parent from class t to class o.

29

Chapter 4

Tree dissimilarity

The class hierarchy of a program version in OO paradigm can be represented as tree data struc-

ture. Class hierarchy (i.e. inheritance relationship) conforms to the relationship between nodes

in the tree, where the root node is the root class (e.g. Object in Java). In the previous chapter,

a tree is used to describe inheritance mechanisms and visualize class structure. Therefore, the

premise is that tree comparisons can inherently be used to detect differences between two pro-

gram versions in OO. However, currently available tree comparison algorithms focus on finding

minimal structural differences between trees, which is (for example) used for computer vision

applications. Therefore, in this chapter, as part of the work in [64], the currently available ap-

proach is analyzed and new algorithms are introduced. The work from [64] with emphasis on

the inheritance relationship between nodes is included for completeness because the presented

algorithms are used as a basis to detect program changes and runtime phenomena between two

program versions in the latter chapters. In addition to detecting changes in the inheritance re-

lationship between classes, it is possible to detect class member changes and assess the risk of

the runtime phenomena.

4.1 Class hierarchy as tree data structure

The class hierarchy can suitably be represented as a tree if multiple inheritance is not sup-

ported. Multiple inheritance enable inheritance from multiple classes and is supported by some

programming languages (e.g. C++). However, it introduces the inheritance diamond problem

[65, 66]. Most of the current object-oriented languages support only single inheritance, where a

class can only inherit a single class. Consequently, this dissertation will only consider the case

of a single inheritance. Meanwhile, Java interfaces define a set of methods that class imple-

ments. Interfaces are organized hierarchically and allow multiple inheritance, while classes can

implement more than one interface. Interface hierarchy is not considered because if the class in

the modified version implements the methods specified in the interface, then the change reflects

30

Tree dissimilarity

Figure 4.1: a) Class declaration b) Class hierarchy represented by a tree

through the implemented methods.

4.2 Introduction to trees and dissimilarity measures

Because trees represent hierarchy organized data, they are widely used in areas such as computer

vision [67], structured documents [68], natural language processing [69], phylogenetic studies

[70], and molecular biology [71, 72]. The main goal in representing data patterns as trees or

generally as graphs is to identify the changes in the data. In this dissertation, the motivation is to

compare class hierarchy between program versions in object-oriented programming languages.

In the related literature [70, 73, 74], trees such as Abstract Syntax Trees (ASTs) are used to

determine the difference between program versions on the syntax level, which can be used

for program analysis on the intraprocedural level. However, ASTs can be used with other tree

representations to compare classes, such as in [75]. In this dissertation, the relationship between

classes is considered in the hierarchy of object-oriented languages. The dissimilarity between

hierarchies can be used for program analysis in various software engineering tasks, such as

detection of code clones [76], regression testing [77], and dynamic software updating [74].

To compare the class hierarchy between two program versions, an unordered labeled tree is

the most suitable hierarchy structure. The unordered tree corresponds to the class hierarchy in

object-oriented languages, where the root node corresponds to the elementary class (e.g., Object

class in the Java programming language), as illustrated in Figure 4.1.

To compare trees, or generally graphs, it is necessary to use a dissimilarity measure. In the

related literature [78, 79], dissimilarity measures usually fall into two elementary categories:

isomorphism [80] and edit distance [81, 82, 83]. Isomorphism represents an exact matching

between two trees or subtrees. In contrast, edit distance provides inexact (i.e. error-tolerant)

matching [79]. Isomorphism attempts to find a bijective function or mapping from one tree to

another tree, or subtree, answering whether or not the tree is equal to another tree or subtree.

Meanwhile, Tree Edit Distance (TED) [84] can compare entirely different trees, measuring

the dissimilarity between them by the amount of modification of nodes and edges required to

transform one tree into another.

31

Tree dissimilarity

Figure 4.2: Tree edit distance operations (listed in the box) and nodes mapping (by arrows)

Tree edit distance is more suitable to detect differences in the trees representing the class

hierarchy because various program versions can have an entirely different class hierarchy. How-

ever, existing tree edit distance measures are not appropriate to detect hierarchy changes in trees

such as inheritance changes because their goal is to find similar parts of trees. In this disserta-

tion, unordered tree transformation is discussed from the edge perspective to observe changes

in relationships between nodes. The contribution of this dissertation is that the dissimilarities

between unordered trees are considered based on changes in the edge between node and par-

ent, introducing Edge Edit Distance (EED), and as a major contribution the dissimilarities are

based on changes in inheritance relationships between nodes, introducing Tree Inheritance Dis-

tance (TID). For both distance measures, efficient algorithms are presented and evaluated by

experiments.

4.3 Preliminaries

Tree edit distance evolved from the string comparison [84, 85, 86]. In general, it is based

on finding the lowest transformation cost from one tree to another. Tree transformation is a

sequence of elementary edit operations on nodes and edges such as add, delete and substitute.

Cost is assigned to each edit operation. Consequently, the total cost of transformation from

one tree to another is the sum of the costs of all edit operations in the sequence. Because

there may be several ways to transform a tree into another, resulting in different total costs,

edit distance is defined as the lowest transformation cost [67, 78, 79, 82, 83, 84, 86, 87]. Tree

edit distance algorithms correspond to the process of mapping (i.e. fitting similar parts of two

trees) according to the assigned cost. An example of mapping of the unordered trees is shown

in Figure 4.2.

Edges define the relationship between nodes. Therefore, to detect changes in a tree, both

edge edit operations and node edit operations could be used. Although edge operations in graph

edit distance [79] are represented as the result of node operations, the presented idea to detect

changes can be introduced more intuitively by using edge operations and will be used later to

32

Tree dissimilarity

explain the indirect effect of edge edit operations on trees.

4.3.1 Edge edit operations

Three elementary edge operations are considered: add, delete, and substitute edge. Following

the notation in related literature for edit distance [78, 79], let T1 = (V1,E1) and T2 = (V2,E2) be

trees, where V1 and V2 are sets of nodes, and E1 and E2 are sets of edges. Let e1 be an edge in

E1, e2 in E2, and λ represent empty edge not contained in E1 and E2. Add edge operation is

denoted by λ → e2, delete by e1→ λ , and substitution by e1→ e2.

Let u, v ∈ V , edge e ∈ E is then defined by a pair of nodes u and v such that e = (u,v). In

the next three cases, edge operations and their relation to node operations can be recognised:

1. Edge is substituted: e1→ e2

e1 = (u1,v1) ∈ E1, e2 = (u2,v2) ∈ E2 implies u1→ u2 and v1→ v2

meaning that node u1 is substituted by u2 and node v1 is substituted by v2

2. Edge is added: λ → e2

e2 = (u2,v2) ∈ E2 implies @(u1,v1) ∈ E1 where u1→ u2 and v1→ v2

meaning that nodes u2 and/or v2 are added

3. Edge is deleted: e1→ λ

e1 = (u1,v1) ∈ E1 implies @(u2,v2) ∈ E2 where u1→ u2 and v1→ v2

meaning that nodes u1 and/or v1 are deleted

These three cases are illustrated by Figure 4.3, in which the original tree could be transformed

to one of three other trees depending if one edge is substituted (a), added (b), or deleted (c).

Th edge involved in the operation is marked with the bold connecting line. It should be noted

that because the operation in Figure 4.3 a) is performed on non-leaf nodes, and both nodes

are substituted, it implies additional substitute operations (a,b)→ (c,b), (c,e)→ (a,e), and

(c,d)→ (a,d).

4.3.2 Relationship between nodes

The main motivation is to detect modification in the relationship between nodes from the aspect

of inheritance change. As mentioned earlier, edge operations are the result of nodes operations.

On Figure 4.2, node b is substituted by node d, and node c by node b, and consequently edge

(a,b) is substituted by (a,d), and edge (a,c) by (a,b). However, the edge between nodes a

and b exists in both trees. The relationship between nodes a and b is preserved, making node b

and edge (a,b) substitution unnecessary. Because TED performs operations on preserved edges

between the trees, it is not suitable for observing direct relationship modification and, therefore,

inheritance changes. To detect edge modifications and, based on this, changes in inheritance,

the edge operations and the new dissimilarity measure are presented in Section 4.4.

33

Tree dissimilarity

Figure 4.3: Edge edit operations: a) substitute b) add c) delete

4.4 Edge edit distance

Instead of finding similar parts of a tree, in the case of the inheritance tree [69, 88] the relevant

information is the change in the relationship between nodes. Because every child node in a tree

has only one parent, a child node and corresponding edge to the parent can be observed as a

single operation unit. Therefore, the tree is defined with additional empty node and operations

which reflects modification on relationship between nodes.

4.4.1 Edge extended tree

By considering the node and its edge to its parent as a single unit, edge edit operations could

be divided into three cases. The add operation consists of adding a new node that by a new

edge connects to an existing or in a previous operation added parent node. The delete operation

removes the node and its edge that connects it to its parent. Instead of a substitute operation,

the term move would be used and the operation is the change of only one incident node (i.e. the

parent node).

In this way, if the parent function is defined, then every edge in a tree could be denoted as

pair (parent(u),u), where parent(u) and u are nodes in the tree. However, because the root

node does not contain any edge to the parent, to define the parent function for the complete

node set a dummy or empty node ε /∈ V is introduced in such way that edge e = (ε,r) exists,

where r is the root node.

Definition 1 The Edge Extended Tree (EET) is an unordered tree X = (V ∪{ε},E) where ε /∈V

is an empty node connected only to the root node r with an edge e = (ε,r) ∈ E.

34

Tree dissimilarity

Remark Let n be a number of nodes in V , then the tree X contains n edges. This claim is a

direct consequence of the fact that unordered labeled tree T = (V,E) with n nodes contains

n − 1 edges, and adding an empty node ε and corresponding edge (ε,r), leads to the tree

X = (V ∪{ε},E) containing n edges.

Formally, the parent function for the EET X = (V ∪{ε},E) could be described as:

p : V →V ∪{ε} such that p(v) = u iff ∃u ∈V ∪{ε} | (u,v) ∈ E

By using the parent function, edge edit operations on the EET can be defined as follows:

Definition 2 Let X1 = (V1∪{ε},E1) and X2 = (V2∪{ε},E2) are EET’s with parent functions

p1 in X1 and p2 in X2, edit edge operations are:

1. Edge is moved: e1→ e2

Only one of the nodes incident to edges e1 = (p1(v),v) and e2 = (p2(v),v) is changed

(i.e. the parent node).

This operation can be reduced to the following situation: v ∈V1∩V2 and p1(v) 6= p2(v)

2. Edge is added: λ → e2

As e2 could be defined as (p2(v),v) ∈ E2, this implies @(p1(v),v) ∈ E1

Therefore this operation is reduced to v /∈V1∧ v ∈V2; that is, v ∈V2 \V1

3. Edge is deleted: e1→ λ

Similar to the previous operation, it is reduced to v /∈V2∧ v ∈V1; that is, v ∈V1 \V2

Edge operations are shown in Figure 4.4, where edges involved in operations are given in

bold. Furthermore, child nodes included in the edge operation are marked with the dashed

surrounding ellipse, together with the edge to the parent node - (parent(u),u). Edge move

operation from the edge (a,c) to edge (b,c) is shown in Figure 4.4 a). Move operation performs

the move of the entire subtree rooted at the node c, from the position where the previous parent

node is a to the position where node b is the new parent. Add edge (b, f) operation is shown

in Figure 4.4 b). Adding edge is the result of adding node f to the tree, such that the parent of

the new node is node a. Delete edge (c,d) operation is shown in Figure 4.4 c). Delete edge is

the result of the node delete operation from the tree. Add and delete edge operations are shown

only on leaf nodes because non-leaf add and delete edge operations are followed by at least one

more edge edit operation.

When a non-leaf node is added, at least one child of a node, which becomes a parent to a

new node, becomes a child of a newly added node. In Figure 4.5 a), node f is added as a non-

leaf child node to parent node a, with edge operation λ → (a, f). Node b as the previous child

of the node a is consequently moved to be the child of the added node f , with edge operation

(a,b)→ (f ,b). However, edge (a,c) to another child c of node a is preserved; therefore, only

one child node is moved. Meanwhile, the deletion of the non-leaf node requires that all children

35

Tree dissimilarity

Figure 4.4: Edge edit operations on EET

Figure 4.5: Non-leaf node add (a) and delete (b) edge operations

of the deleted node change their parent to the parent of the deleted node. Figure 4.5 b) shows the

deletion of non-leaf node c, with edge operation (a,c)→ λ , followed by changing the parent

of node d to node a, with edge operation (c,d)→ (a,d). Identical operation is performed on

the node e, with edge operation (c,e)→ (a,e). There is a specific case when the root node

is deleted. In this case, by an arbitrary procedure, one of the child nodes of the previous root

node is promoted to be the new root node, and other siblings of this node are moved to be the

children of the new root. It is mandatory because only one edge can exist from the empty node

ε to the root node. Otherwise, there are a smaller number of edges than nodes, resulting in the

fact that a tree is not EET. Furthermore, the root resolving procedure is arbitrary depending on

the application (e.g. it could be based on specific node properties).

36

Tree dissimilarity

4.4.2 Set of edit operations

Generally, the transformation of tree T1 to another tree T2 can be observed by a sequence

s1,s2, . . . ,sn of edit operations on nodes or edges [67, 78, 82, 83, 86]. For example, sequence

of edge edit operations to transform a source tree in Figure 4.2 on the left-hand side to the

target tree on the right side is: (a,b)→ (a,d), (a,c)→ (a,b), (b,d)→ (d, f), (b,e)→ (d,e),

λ → (e,c), λ → (e,g). Similar is for EETs X1 and X2, where edge edit operations defined by

Definition 2 are add, delete and move. Sequence of EET edge edit operations to transform tree

in Figure 4.2 is: (b,d)→ (a,d), (b,e)→ (d,e), λ → (d, f), (a,c)→ (e,c), λ → (e,g). There is

a smaller number of EETs than TED operations because EET consider edge modifications based

on unchanged node labels, while TED maps similar tree parts by nodes label transformation,

i.e. nodes substitution

The sequence of edit operations influences the intermediate results. If edge edit operations

are applied so that add edge operation is followed by a move and then by the delete opera-

tion, while consecutive add and delete operations are executed from leaf nodes upwards, then

each step in the sequence produces a tree. Otherwise, the intermediate result depending on

the involved edge operations can be tree forest. TED fulfils these conditions in [73, 78, 86]

because edit operations are performed only on leaf nodes. Meanwhile, such conditions do not

produce valid EET in each possible step, such as adding the new root node before moving or

deleting the old root node results in two edges from the empty node. Similar to the [78] the

sequence of edge edit operations that transforms a tree can be written as an ordered relation

R ⊆ (E1 ∪{λ})× (E2 ∪{λ}), where an edge edit operation is represented as a pair of edges

(e1,e2), such that e1 ∈ E1 ∪{λ}, e2 ∈ E2 ∪{λ}. However, only the final result is considered

(i.e. operations between two trees: source and target tree), without intermediate results. There-

fore, instead of edit sequence, where operations order is essential, a set of edge edit operations

Se are used.

Considering that there may be several possible edit sets that perform the same transforma-

tion, let W (X1,X2) denote the set {Se1, . . . ,Sen} of all sets of edit operations to transform X1 to

X2, possibly containing superfluous operations, such as additional subsequent delete and add

edge operations or move edge operation. Furthermore, move edge operation e1 → e2 can be

described as a delete edge operation e1→ λ followed by an add edge operation λ → e2. These

additional operations for TED [78] and Graph Edit Distance (GED) [79] generally increase the

additional cost to the tree transformation. However, a question arises as to how the relationships

(i.e. edges between nodes in the source and target tree) are changed. Accordingly, the cost for

the minimum number of required edge edit operations to transform a tree is calculated, which

implicitly excludes such operations.

37

Tree dissimilarity

4.4.3 Edit set cost

To determine the cost for the set of edit operations Se, a cost function γ : E1∪E2∪{λ}×E1∪
E2∪{λ}→R is assigned for each edge edit operation. The total cost to transform from tree X1

to X2 by applying edge edit operations from the set of edit operations Se is equal to:

c(Se) = ∑
si∈Se

γ(si)

Edge dissimilarity measure between two trees is EED, formally defined as:

Definition 3 EED between trees X1 and X2 is the total cost of the set of edit operations Se that

contains the minimum number of edge edit operations to transform X1 to X2:

de(X1,X2) = c(Se) |Se ∈W (X1,X2) and

|Se| ≤ |S′e| ∀S′e ∈W (X1,X2)

If the cost for all edge edit operations is 1, then the above formulation is equal to finding

the edit set with the minimum cost; although generally the cost of the minimum number of

operations could be greater than the minimum cost. Note that even with the same cost of

operations, this formulation is not equal to the definition of TED [78] or GED [79] because

of the different formulation of edit operations, primarily because the move edge operation is

different from substitution. Furthermore, if the cost of a move operation is greater than the sum

of the cost of add and delete operations, then the set of the minimum number of edit operations

is not changed compared to equal costs.

Because for the move operation a node changes the parent, the cost is equal to the cost of

the parent change. For add and delete operations, the cost is equal to the cost of node adding to

a tree or deleting from a tree. Furthermore, due to Definition 2 of edit operations, because only

the source and the target tree are considered, finding minimal transformation edit set could be

determined by nodes and the cost function could be defined as γ : V1∪V2→ R.

γ(v) =



0, v ∈V1∩V2∧ p1(v) = p2(v)

m, v ∈V1∩V2∧ p1(v) 6= p2(v)

a, v ∈V2 \V1

d v ∈V1 \V2

Here m, a and d are the cost of the move, add and delete edge operations. The costs of these

operations could be a constant number (e.g. equal to 1) but it can be generalised to situations

38

Tree dissimilarity

in which m, a, and d could be cost functions (m(v), a(v), d(v)) of a node v (e.g. based on the

number of node properties or the distance from the root node).

By using cost function defined over a node, the EED between trees X1 and X2 is equal to:

de(X1,X2) = ∑
v∈V1∪V2

γ(v)

Proof Let the set of edge operations Se consists of the following sets of operations: Sa, Sd , and

Sm, where (λ ,e2) ∈ Sa, (e1,λ) ∈ Sd , and (e1,e2) ∈ Sm. Without loss of generality, let the costs

for add, delete, and move edge operations are equal to the constants a, d, and m. According

to Definition 2 edge operations are reduced to nodes, and according to the Definition 3, the

following applies:

de(X1,X2) = c(Se) = ∑
si∈Se

γ(si)

= ∑
s∈Sa

a+ ∑
s∈Sd

d + ∑
s∈Sm

m

= ∑
v∈V1∩V2∧p1(v) 6=p2(v)

m+ ∑
v∈V2\V1

a+ ∑
v∈V1\V2

d

= ∑
v∈V1∪V2

γ(v)

The number of operations is minimal because the number of edge operations is limited by the

number of nodes and the following applies |V1∪V2|= |V1 \V2|+ |V2 \V1|+ |V1∩V2|.

Furthermore, EED by using constants for m, a, and d can be formulated as:

de(X1,X2) = a |V2 \V1|+d |V1 \V2|+ ∑
v∈V1∩V2∧p1(v) 6=p2(v)

m

Considering Definition 2 and Definition 3 Algorithm 1 is proposed to calculate EED. Note

that constants for cost of the edge edit operations could be replaced with functions a(v), d(v),

and m(v) or γ(v).

To determine time complexity of the algorithm, let the n1 be the number of edges in X1,

and n2 be the number of edges in X2. Algorithm time complexity is O(n1 +n2)∗O(contains)

because the algorithm iterates through a set of nodes V1 and V2, and the size of node sets cor-

responds to the size of E1 and E2, equal to n1 and n2. The cost of contains function could be

O(1) if an appropriate hashing is used. Meanwhile, function contains can be implemented by

a simple searching loop with complexity O(n), where n corresponds to n1 in X1 and n2 in X2. In

this case, the time complexity is O(n1 ∗n2). It should also be noted that storing processed nodes

set from the set V1 ∩V2 could be used to reduce time complexity. In the first loop processed

nodes from V1 could be saved to skip comparison of the already processed nodes in the second

39

Tree dissimilarity

Algorithm 1: Edge edit distance algorithm
input : trees X1(V1∪{ε},E1) and X2(V2∪{ε},E2), parent functions

p1 : V1→V1∪{ε}, and p2 : V2→V2∪{ε}, and cost of the edit operations a, d,
and m

output: an edit set Se with the minimum number of operations and an EED di

1 Se←∅, di← 0;
2 foreach node v in V1 do
3 if contains(V2, v) then
4 if p1(v) 6= p2(v) then
5 Se← Se∪{(p1(v),v)→ (p2(v),v)};
6 de← de +m;
7 end
8 else
9 Se← Se∪{(p1(v),v)→ λ};
10 de← de +d;
11 end
12 end
13 foreach node v in V2 do
14 if not contains(V1, v) then
15 Se← Se∪{λ → (p2(v),v)};
16 de← de +a;
17 end
18 end

loop, but space complexity would increase and contains functions should be additionally used

on processed set for each node from V2.

Regarding the number of operations, the upper bound for move edge operations is |V1∩V2|.
In that case, all edges from X1 are moved in X2, therefore all nodes from both trees are matched,

and nodes from X1 changed their parents in X2. In the case when all edges from E1 are deleted,

and all edges from E2 are added because there is an equal number of edges and nodes, the

maximum number of edge operations; that is, the upper bound for edge edit operations nmax can

be stated as:

nmax = |E1|+ |E2|= |V1|+ |V2|> |V1∩V2|

4.5 Tree inheritance distance

Edge edit operations are suitable to describe changes in the direct relationship between nodes.

However, a tree is observed as an inheritance tree [88], where a node is in inheritance relation-

ship to predecessor nodes. Therefore, the node is affected by any changes in its predecessor

nodes. EED defined by appropriate cost function can describe changes in predecessor nodes

only for nodes directly involved in edge edit operations, such as added, deleted and moved

40

Tree dissimilarity

nodes. Meanwhile, indirect effects of edge edit operations on descendant nodes cannot be de-

scribed by EED. Those changes are the consequence of edge edit operations. The following

subsections describe the direct and indirect effects of editing operations on the inheritance re-

lationship between nodes, and they then define the indirect edit operation. Afterwards, the

inheritance operations, the cost function for inheritance operations and tree inheritance distance

are introduced.

4.5.1 Tree editing impact on the inheritance

A suitable example to explain the effects of edge edit operations on the inheritance relationship

between nodes should include add, delete and move edge edit operations. In Figure 4.6, for ex-

ample, delete (Figure 4.6 a) and add (Figure 4.6 b) edge edit operations, performed on non-leaf

nodes, are tagged with number 1 and induce move edge operation, tagged with number 2. From

the inheritance aspect for the added node, all nodes on the path to the empty node are added to

the inheritance relationship; that is, the newly added node can inherit ancestors’ nodes proper-

ties. On the other side, when a node is deleted, inheritance relationship to nodes on the path to

the empty node is deleted; that is, deleted node does not any longer inherit prospective ances-

tors’ properties. Furthermore, the inheritance relationship to ancestor nodes is also changed for

the moved node, involving at least the parent node changed by an edge edit operation. In Figure

4.6 a), node c is deleted, and as a consequence the edge (a,c) is also deleted, inducing move

edge operation (c,e)→ (a,e). Path (ε,a,c) is removed from the tree, meaning that node c loses

inheritance relationship to the node a. Moreover, path (ε,a,c,e) is deleted, and path (ε,a,e) is

added to the tree, meaning that node e loses inheritance relationship to the node c. Figure 4.6

b) shows a similar case where the edge (c, i) and the node i are added, inducing move edge op-

eration (c,e)→ (i,e). Node i obtains an inheritance relationship to the nodes a and c, and node

e obtains an inheritance relationship to the added node i. For example, obtaining inheritance

relationship in this dissertation means that class as node obtained predecessor classes members.

Meanwhile, losing inheritance relationship means that class losses class members implemented

in the predecessor classes that were in the inheritance relationship.

However, if the inheritance relationship is changed for nodes directly involved in edit oper-

ations, then it is indirectly changed for their descendants because the paths from descendants to

the empty node are changed. In Figure 4.6, descendant nodes of a moved node are affected by

move operations. These indirect effects of the edge edit operations are tagged with number 3.

As already observed in Figure 4.6 a), node c is removed from the path to the empty node; that is,

removed from the inheritance relationship for node e. Moreover, node c is also removed from

the inheritance relationship for node e descendants f , g and h. Similarly in Figure 4.6 b), where

node i is added to the inheritance relationship for moved node e but also for its descendants f ,

g, and h.

41

Tree dissimilarity

Figure 4.6: Impact of the move edge edit operation on the inheritance relationship induced by: a) deleted
edge and b) added edge

Similar would happen if the move edge operation is not induced by other edge edit op-

erations. If the tree in Figure 4.6 a) would be modified only by the move edge operation

(c,e)→ (d,e), then node e would lose inheritance to node c and would obtain inheritance to

nodes b and d. Furthermore, the same change in the inheritance relationship would be applied

to the descendants of node e.

4.5.2 Detecting inheritance changes

The previous section describes the change of the inheritance relationship as the consequence

of edge edit operations. To determine changes in the inheritance relationship, it is necessary to

compare nodes on the paths to the empty node from node involved in edge edit operations and

its descendants.

Definition 4 Let path(u,v) be the path from the node u to the node v in the tree X(V ∪{ε},E),
where u ∈ V ∪ {ε} and v ∈ V . Let P(u,v), shortly Pu(v) represents the set of nodes on the

path(u,v) without node v. Pε(v) then contains at least empty node ε for all nodes in V . Fur-

thermore, if v /∈V then Pε(v) is an empty set (∅). Formally:

Pε(v) =


{u ∈V ∪{ε} | u ∈ path(ε,v)∧u 6= v} , v ∈V

∅, v /∈V

Remark Expressing the path(u,v) expressed as path from the node u to the node v is synonym

ti path from the node v to the node u.

42

Tree dissimilarity

Figure 4.7: Move edge operations with equal Pε(c) and Pε(d) node sets

Node set Pε(v) contains a set of predecessor nodes for node v; therefore, condition u 6= v

is required because node v cannot precede itself. Note that for the node set to the empty node

Pε(v), the term predecessor node set will be used. If node sets Pε1(v) and Pε2(v) in EETs X1

and X2 are different for node v from V1∪V2, then there is a change in inheritance relationship

for node v. However, if the node sets Pε1(v) and Pε2(v) are equal, then it does not imply that the

inheritance relationship is not changed for node v. In Figure 4.6, move edge operation implies

a change of the parent node, and consequently different sets Pε1 and Pε2. Meanwhile, in Figure

4.7, as the result of move edge edit operations, nodes a and b switched positions, which for node

c and consequently node d caused different paths in two trees, although the node sets Pε1(v) and

Pε2(v) are equal. There is a change in the inheritance relationship for node c and d in a form

of change in the position between nodes on the path to the empty node. Change in position

between nodes on the path to the empty node can result in a change of inherited properties (e.g.

a node can lose inherited properties).

The change of position or order of predecessor nodes can be observed as the change in

the distance between the nodes; that is, the number of edges on the path between nodes. In

Figure 4.7, the distance between nodes a and d in the source tree is 3, and in the target tree is

2. Furthermore, the distance between nodes b and d is 2 and 3, in the source and the target tree,

respectively. Similar can be observed for node c, where predecessor node sets remain equal but

the distance to nodes a and b changes.

The distance between nodes on the path to the empty nodes is equal to the difference of node

depths. However, to simplify distance comparison between nodes, the node distance is defined

as the cardinality of the set of nodes on the path from the node u to the node v. Formally, a

distance function is defined as:

d : V ×V → R,such that d(u,v) = |Pu(v)|

In the example illustrated by Figure 4.7, d1(a,c) 6= d2(a,c) because d1(a,c)= 2 and d2(a,c)=

43

Tree dissimilarity

1, and d1(b,c) 6= d2(b,c). Note that the distance function defined in this way reflects a struc-

tural change in the tree but the distance function can also reflect modified properties of nodes

or edges. It can be concluded that the inheritance relationship for the node has changed if the

predecessor node sets are different or if there is a node on the path that has changed the distance

relative to the node.

Definition 5 Let X1(V1∪{ε},E1) and X2(V2∪{ε},E2) be EETs. Let Pε1(v) in X1 and Pε2(v) in

X2 for v ∈ V1∪V2 be predecessor node sets. Let d1(u,v) be nodes distance function in X1 and

d2(u,v) in X2, where u ∈ Pε1(v)∪Pε2(v). The inheritance relationship is changed; that is, node

v is edited, if the following applies:

Pε1(v) 6= Pε2(v) or ∃u ∈ Pε1(v)∩Pε2(v) such that

d1(u,v) 6= d2(u,v)

4.5.3 Direct and indirect edit operations

The edge edit operations described by Definition 2 have direct and indirect effects on inheritance

editing. To define indirect effects of edge edit operations on inheritance editing, first, the direct

effects of edge edit operations on the changes in node sets Pε(v) will be determined, and distance

between nodes on the path to the empty node.

Let X1 and X2 be EETs, Pε1(v) in X1 and Pε2(v) in X2 be set of predecessor nodes for v in

V1∪V2. Edge add operation imply empty set Pε1(v) and non-empty set Pε2(v) because the path

for the added node v in X1 is not defined because the added node is not part of X1. Similarly,

for delete edge operation, set Pε1(v) is not empty, and Pε2(v) is empty because the path to the

deleted node v is not defined in X2. Furthermore, move edge edit operation involves a change of

the node v parent, resulting in either different sets Pε1(v) and Pε2(v) or a change in the distance

between nodes in these sets.

By Definition 2 and Definition 5, for edge edit operations the following applies:

1. add: v ∈V2 \V1, implies Pε1(v) =∅∧Pε2(v) 6=∅
2. delete: v ∈V1 \V2, implies Pε1(v) 6=∅∧Pε2(v) =∅
3. move: v ∈ V1∩V2∧ p1(v) 6= p2(v), implies Pε1(v) 6= Pε2(v) or ∃u ∈ Pε1(v)∩Pε2(v) such

that d1(u,v) 6= d2(u,v)

Meanwhile, as an indirect result of edge edit operations, by Definition 5, the path to the

empty node is changed for descendant nodes. Consequently, descendant nodes are involved in

indirect edit operations.

Definition 6 Node v ∈V1∩V2 is indirectly edited if p1(v) = p2(v) and Pε1(v) 6= Pε2(v) or ∃u ∈
Pε1(v)∩Pε2(v) such that d1(u,v) 6= d2(u,v). Edge e = (p(v),v) is indirectly edited if node v is

indirectly edited, as a consequence of a change in inheritance relationship for the node v.

44

Tree dissimilarity

Because add, delete, and move edge edit operations induce changed paths to the empty

node, it can be concluded that indirect operations are an indirect result of the move edge edit

operations, and possibly an indirect result of the add and delete edge edit operations, in order

1-2-3 or 2-3, where the numbers represent operation type, as shown in Figure 4.6 and Figure

4.7 (1: add or delete, 2: move, 3: indirect).

4.5.4 Inheritance edit operations

In the previous subsections, inheritance change is detected by changes in paths to the empty

node. These changes were only observed by detecting whether the inheritance relationship for

a node is changed or not; that is, whether the node is edited directly or indirectly. However, to

compare inheritance changes between two trees, it is necessary to determine how inheritance

has changed for each node. For a single node, one or more nodes can be added, deleted or can

change their position or other properties on the path to the empty node. Each such modifica-

tion on the path to the empty node is a single inheritance operation. Similar to the edge edit

operations, add, delete, and move inheritance operations are defined:

Definition 7 Let X1(V1∪{ε},E1) and X2(V2∪{ε},E2) be EETs, Pε1(v) in X1 and Pε2(v) in X2,

for v∈V1∪V2 be sets of predecessor nodes, d1(u,v) be node distance function in X1 and d2(u,v)

be node distance function in X2, where u ∈ Pε1(v)∪Pε2(v).

Inheritance edit operations on node v ∈V1∪V2 are:

1. add, u ∈ Pε2(v)\Pε1(v),

node u is added to the inheritance relationship for node v

2. delete, u ∈ Pε1(v)\Pε2(v),

node u is deleted from the inheritance relationship for node v

3. move, u ∈ Pε1(v)∩Pε2(v)∧d1(u,v) 6= d2(u,v),

nodes u and v are moved relative to one another

Remark As already shown, edge edit operations implicitly result in inheritance changes for

the involved node. Consequently, inheritance operations occurred by such changes are direct

inheritance operations. Meanwhile, inheritance operations occurred on nodes indirectly are

indirect inheritance operations.

A single edge edit operation could result in multiple inheritance operations. In Figure 4.6

move edge operation (c,e)→ (a,e) results in four delete inheritance operations because node

c is removed from the path for node e and its descendants f , g, and h. Meanwhile, move edge

edit operations in Figure 4.7 resulted in overall six inheritance operations. Node a is added to

the inheritance relationship for node b. Analogously, node a is removed from the inheritance

relationship for node b. Consequently, nodes a and b are relatively moved to nodes c and d.

45

Tree dissimilarity

Figure 4.8: Inheritance edit operations exam-
ple (edge operations: 1 - add/delete, 2 - move,
3 - indirect)

Table 4.1: Inheritance edit operations in
tabular form

v ∈V1∪V2 Va(v) Vd(v) Vm(v)

a {g} ∅ ∅

b ∅ {ε,a} ∅

c {g,e} ∅ {a}

d {g,e} ∅ {a}

e {ε,g,a} ∅ ∅

f {ε,g,a,e,c} ∅ ∅

g {ε} ∅ ∅

In the previous figures, inheritance operations are intuitively observed as sets of added,

deleted, and moved node sets for the edited node, which corresponds to add, delete and move

inheritance operations. By using Definition 7, these sets are defined as:

Definition 8 Let Pε1(v) be set of predecessor nodes for v in X1, Pε2(v) in X2, and d1(u,v) and

d2(u,v) be distance functions in X1 and X2, where u ∈ Pε1(v)∩Pε2(v). Then, set of added nodes

Va(v), deleted nodes Vd(v), and moved nodes Vm(v) on the path from empty node ε to the node

v, for v ∈V1∪V2 are defined as:

Va(v) = Pε2(v)\Pε1(v)

Vd(v) = Pε1(v)\Pε2(v)

Vm(v) = Pε1(v)∩Pε2(v) | d1(u,v) 6= d2(u,v)

Inheritance operations can be conveniently shown in tabular form, where columns represent

node sets Va(v), Vd(v), and Vm(v) for every node v in the table rows, whether or not the node is

edited. In Figure 4.8, for example, inheritance edit operations occur on all nodes. Consequently,

for each node v in X1 and X2, at least one of the node sets Va(v), Vd(v), and Vm(v) is not empty.

From the Table 4.1, it can be detected that there are indirect inheritance operations. Node c and

d have equal node sets, because direct inheritance changes on node c are propagated to the node

d.

From node sets Va(v), Vd(v), and Vm(v), the connection can be observed between edge edit

operations and inheritance operations. For some nodes v, sets Va(v) and Vd(v) contain empty

node ε , which means that these nodes are added or deleted. In Table 4.1, set Va(g) contains

only node ε because node g is added as the new root node. In contrast, nodes v without empty

46

Tree dissimilarity

node ε in node sets Va(v) and Vd(v), are edited by move edge operations. By Definition 2 and

Definition 7, three cases can be observed for how inheritance edit operations affect Va(v), Vd(v),

and Vm(v) node sets:

1. add, Pε1(v) =∅∧Pε2(v) 6=∅ implies Va(v) 6=∅∧Vd(v) =∅∧Vm(v) =∅
2. delete, Pε1(v) 6=∅∧Pε2(v) =∅ implies Va(v) =∅∧Vd(v) 6=∅∧Vm(v) =∅
3. move, Pε1(v) 6=Pε2(v) or d1(u,v) 6= d2(u,v) implies Va(v) 6=∅ or Vd(v) 6=∅ or Vm(v) 6=∅
These cases are similar to the observation of edge edit operations impact on the predecessor

node set Pε in the previous section. The main difference is in the first case, where both direct

and indirect edit operations are included; that is, cases where p1(v) 6= p2(v) or p1(v) = p2(v).

4.5.5 Inheritance cost

Inheritance operations describe inheritance changes between trees. To define inheritance dis-

similarity measure, it is necessary to determine the cost of inheritance changes between trees,

which is equal to the total cost of inheritance operations. In the previous subsection, it was

determined how inheritance edit operation corresponds to nodes contained in sets Va(v), Vd(v),

and Vm(v). Let Vi(v) contain all nodes involved in the inheritance operation for node v such that

Vi(v) =Va(v)∪Vd(v)∪Vm(v). Accordingly, to determine inheritance cost of nodes contained in

Vi(v) on node v, cost function ϕ is defined for the inheritance edit operation.

Definition 9 Let ϕ : (V1∪V2)× (V1∪V2)→R be the cost function of the inheritance operation

of node u ∈Vi(v) on node v ∈V1∪V2.

In the case of add operation, both node u from Va(v) and node v are contained in V2. Similar

to the delete operation, where both node u from Vd(v) and node v are in V1. For move operation,

node u from Vm(v), and v are in V1 ∩V2. Furthermore, such arguments are associated with

the symmetry property of the function ϕ , which ensures that adding and deleting the same

node on the path to the empty node is complementary. Similar applies to complementary move

inheritance operations, involving the same nodes u and v, where nodes repeatedly exchange

their relative positions, resulting in the preserved distance.

Function ϕ can be as simple as ϕ(va,vb) = c for all va, vb ∈ V1∪V2, where c is a constant

number or function ϕ can be dependent on the distance between involved nodes: ϕ(va,vb) =

c ∗ d(va,vb)
k , or alternatively, ϕ(va,vb) = c ∗ e−

d(va,vb)
k , where d(va,vb) is the distance function

between nodes va and vb, and k is the constant to control inheritance range and strength of the

edit operation. Namely, in the context of edge operation nodes closer to the edge operation are

more influenced by the inheritance change than leaf nodes.

Inheritance editing of a single node has previously been shown by the set of nodes Vi(v),

which corresponds to the set of inheritance edit operations performed on the node v. Conse-

quently, the inheritance cost for a single node v is defined by the sum of inheritance operations

47

Tree dissimilarity

costs on the node v; that is, by the sum calculated by using a function ϕ over nodes from set

Vi(v).

Definition 10 Let Vi(v) = Va(v)∪Vd(v)∪Vm(v) are node sets containing nodes involved in

inheritance operations on node v. Inheritance cost function for node v is δ : V1 ∪V2 → R,

defined as:

δ (v) = ∑
ua∈Va(v)

ϕ(ua,v) + ∑
ud∈Vd(v)

ϕ(ud,v) + ∑
um∈Vm(v)

ϕ(um,v)

= ∑
u∈Vi(v)

ϕ(u,v)

where ϕ is an inheritance operation cost function (V1∪V2)× (V1∪V2)→ R.

If function ϕ is constant number 1 for all nodes, then the inheritance cost for node f in

Figure 4.8 is 5, because set Va(f) contains five nodes ε , g, a, e, and c. If the source and

target trees exchange places, then set Vd(f) contains nodes ε , g, a, e, and c, while set Va(f)

is empty, which results in inheritance cost that is again equal to 5. It can be observed how

function δ inherits symmetry property from function ϕ , because adding and deleting node are

complementary operations regarding inheritance operations. The same applies to moved and,

indirectly edited nodes.

The inheritance cost between trees is determined by the total cost of inheritance editing of all

nodes. Let Si be the set of edited nodes between trees X1 and X2, where Si = {v1, . . . ,vi, . . . ,vn},
such that according to Definition 5, ∀vi ∈ V1 ∪V2 implies that Pε1(vi) 6= Pε2(vi) or d1(u,vi) 6=
d2(u,vi). Now, inheritance tree distance can be defined as follows:

Definition 11 Tree Inheritance Distance (TID) between EETs X1 and X2 is the total cost of the

edited nodes Si = {v1, . . . ,vi, . . . ,vn} between X1 and X2:

di(X1,X2) = ∑
vi∈Si

δ (vi)

It can be observed that set of inheritance edited nodes Si is an extension of the set of edge

edit operations Se with added indirect operations. Because Si is an extension of Se, the main

difference of inheritance distance algorithm shown in Algorithm 2, from EED Algorithm 1 is

in detecting indirect operations. Therefore, the condition at line 4 in Algorithm 1 where parent

nodes are compared is replaced by detection of inheritance operations in Algorithm 2 by using

Algorithm 3 (procedure detectInheritanceChanges). Algorithm 3 detects inheritance oper-

ations between source and target trees by detecting changes in predecessor nodes. In Algorithm

2, procedure detectInheritanceChanges is used to detect inheritance operations occurred

on nodes which are equal in both trees. However, Algorithm 3 could be used to detect direct

48

Tree dissimilarity

Algorithm 2: Tree Inheritance Distance algorithm
input : trees X1(V1∪{ε},E1) and X2(V2∪{ε},E2), distance functions

d1 : V1×V1→ R, and d2 : V2×V2→ R, and cost function
δ ′ : V1∪V2×V1∪V2→ R

output: an inheritance edit distance di and set of edited nodes Si

1 Si←∅, di← 0;
2 foreach node v in V1 do
3 Vi←∅;
4 Pε1← getPreds(X1, v);
5 if contains(V2, v) then
6 Pε2← getPreds(X2, v);
7 Vi← detectInheritanceChanges(v, Pε2, Pε1, d1, d2)

8 else
9 Vi← Pε1;
10 end
11 if Vi 6=∅ then
12 Si← Si∪{v};
13 di← di +δ (v,Vi);
14 end
15 end
16 foreach node v in V2 do
17 Vi←∅;
18 if not contains(V1, v) then
19 Vi← getPreds(X2, v);
20 Si← Si∪{v};
21 di← di + δ (v, Vi);
22 end
23 end

inheritance operations caused by add and delete edge edit operations, but such operations are

straightforwardly detected over predecessor nodes. To detect predecessor nodes for a given

node, by traversing the path to the empty node, function getPreds is used. Note that the result

of function getPreds is used as input for Algorithm 3, where function getPreds is used to

obtain predecessor node sets for nodes equal in both trees (line 4 and 6 in Algorithm 2). In Al-

gorithm 2, cost function δ ′ is used to calculate inheritance operations cost. Input parameters to

cost function δ ′ are node and its inheritance operations, as a set of changed predecessor nodes

Vi.

Algorithm 3 is similar to Algorithm 1 because add and delete inheritance operations are

determined by the difference between node sets, in this case by predecessor node sets. How-

ever, instead of parent functions, move inheritance operation is determined by given distance

functions d1 and d2.

To determine the time complexity of the algorithm to calculate tree inheritance distance,

49

Tree dissimilarity

Algorithm 3: Procedure detectInheritanceChanges(v, Pε1, Pε2, d1, d2)

1 procedure detectInheritanceChanges(v, Pε1, Pε2, d1, d2)

2 Vi←∅;
3 foreach node u in Pε1 do
4 if contains(Pε2, u) then
5 if d1(u,v) 6= d2(u,v) then
6 Vi←Vi∪{u};
7 end
8 else
9 Vi←Vi∪{u};
10 end
11 end
12 foreach node u in Pε2 do
13 if not contains(Pε1, u) then
14 Vi←Vi∪{u};
15 end
16 end
17 return Vi;

let the n1 be the number of edges in X1, and n2 be the number of nodes in X2. Let k1 and k2

denote the average distance from a node to the empty node; that is, average node depth in X1

and X2, respectively. The time complexity of the tree inheritance distance algorithm (Algorithm

2) is O(n1 ∗ k1 +n2 ∗ k2). It is assumed that an appropriate contains function is used with the

complexity O(1), e.g., hash function. Similar to Algorithm 1, this algorithm iterates through a

set of nodes V1 and V2, searching for matching nodes by using the lookup function contains.

This function determines predecessor nodes, with path traversal complexity O(k).

First, let us consider the case discussed in Section 4.4 with a maximum number of edge

operations; that is, when all nodes are deleted in the source tree, and all nodes are added to the

target tree. For each of n1 deleted nodes in X1, the algorithm determines its predecessor’s nodes

by using function getPreds, where traversal complexity to the empty node is k1. Analogous is

for added nodes, where traversal to the empty node is performed n2 times, where average node

depth is k2. Therefore, the complexity is O(n1 ∗ k1 +n2 ∗ k2).

Furthermore, let us consider the case when all nodes are moved. In this case n = n1 = n2.

The traversing of paths in both trees is performed only for matched nodes, thus n times, with

the complexity O(k1) in the first tree and O(k2) in the second tree. Therefore, the complexity is

O(n∗ (k1 + k2)).

Procedure detectInheritanceChanges (Algorithm 3) additionally compares paths to the

empty node for each matched node in both trees with the complexity O(k1+k2), if an appropri-

ate (O(1)) function contains is used. Furthermore, the complexity of Algorithm 3, O(k1 + k2),

is valid if the complexity of distance functions d1 and d2 is O(1). If the complexity of distance

50

Tree dissimilarity

functions is greater than O(1), then it would increase the algorithm complexity. To calculate

the tree inheritance distance, for each node the traversing of predecessor nodes is performed

twice: once in Algorithm 2, and once in Algorithm 3. However, the time complexity is not

increased; for example, in the case when all nodes are moved (n = n1 = n2), the complexity is

O(n∗ (k1 + k2))+n∗O(k1 + k2) = O(2∗n∗ (k1 + k2))≈ O(n∗ (k1 + k2)).

51

Chapter 5

Extended DAOP model

In this chapter, the identification of dynamic update model properties to support class hierar-

chy changes is performed, with an emphasis on efficiency and functionality. According to the

DSU requirements and the existing specifications of program changes, it is determined that

differences between versions can be described with aspects. Although existing dynamic as-

pect weaving approaches are limited with dynamic aspect functionality, by providing additional

classes they can be used for dynamic updating. Changing the hierarchy of classes is analyzed as

part of the main topic of the dissertation. Therefore, based on the identified properties and algo-

rithms defined in Chapter 4, a dynamic software update model that supports the class hierarchy

change by using dynamic aspects is presented and described.

5.1 Model properties

Chapter 2 describes the main requirements for a DSU, as follows: availability, changeabil-

ity, performance, and usability. However, to achieve a functional dynamic update based on

these requirements, the dynamic update model should consist of several components. The first

component requires two versions of the comparison program as source code. The conversion

of program versions into a suitable data structure is performed for program analysis to detect

differences between versions. The differences are produced in a suitable descriptive format

of changes for dynamic updating. The executable environment then accepts and applies any

differences to the running version. This conceptual update model is given in Figure 5.1.

The following steps define the required model properties:

1. receiving different versions of the program

• receives two different program versions as program code: the currently running

program version - v1, and the program version to which the running program needs

to be updated v2

2. program version preparation

52

Extended DAOP model

Analysis (3)

Preparation (2)Program
code (1)

Generating (4)

Applying (5)

v1 v2

Figure 5.1: Conceptual dynamic update model

• program version code is converted to a suitable data structure for comparison

3. detecting the differences between versions

• data structures from two program versions are compared, and any differences be-

tween them are detected

4. generating differences in a suitable format

• detected differences between versions are stored in a suitable format

5. applying the changes

• detected differences (introduced by the updated program version) are applied to the

running program

The dynamic updating process in [9, 24] is similar to the such model. The dynamic aspects

are interesting as a specification of changes because there is no specified format to describe the

changes. However, an aspect paradigm as cross cutting concern is suitable for this use.

5.2 Dynamic aspects (DAOP)

The Aspect-Oriented Paradigm (AOP) introduces separation of cross-cutting concerns as as-

pects to retain the modularity and code reuse [17]. Aspects enable extending the program func-

tionality on different hierarchy levels. Program code in the form of aspects is weaved into the

program during compile or load time, as with AspectJ [18]. It is used, for example, to introduce

logging or access control to objects belonging to different classes. For example, in Figure 5.2,

to enable logging for methods in classes in the Object-Oriented Paradigm (OOP), it is necessary

to change every method in all classes. An aspect can be used to easily define a set of methods;

for example, to enable logging, called pointcut, and program code to execute at those pointcuts

called advice.

To show how weaving works, in Figure 5.3 an example aspect is defined in AspectJ [18].

The advice in the example contains the printing hello statement and is weaved after the call

defined by pointcut to method print(). When method run() is executed, the console will

53

Extended DAOP model

Figure 5.2: Program changes to enable logging OOP vs AOP

then print “Hello world”.

1 void print() {
2 System.out.println("Hello");
3 }

1 void run() {
2 print();
3 }

1 pointcut c() : call(void *.print());
2
3 after() : c() {
4 System.out.print(" world")
5 }

> Hello world

Figure 5.3: "Hello world" aspect example in AspectJ

Meanwhile, Dynamic AOP (DAOP) enables aspect code weaving during the runtime, which

can be used for dynamic updating [10, 19, 20, 21, 22]. The general objective of research using

DAOP is to enable as many aspect-functionalities as static approaches support, such as AspectJ

[18]. With their separation characteristics, the aspects provide a suitable update specification

unit. Dynamic aspects also provide a simple way to add or remove aspects, consequently dy-

namic changes can be applied and reversed. It has been shown that DAOP [54] introduces less

overhead in steady-state, thus having less impact on performance.

The downside is that dynamic aspects only support method body modification. To expand

the supported set of changes, it is necessary to generate changes in the form of other types of

aspects and possible additional classes by using offline code analysis performed on different

software versions, as described in DSU approaches based on DAOP [24, 25]. These approaches

analyze code to extract program changes in the form of additional classes, static and dynamic

aspects to extend the supported changes. They correspond to the conceptual model shown in

Figure 5.1, where the program code is prepared for analysis and produces an update specifica-

tion in the form of aspects. These aspects are then used as input to dynamic aspect system to

perform an update.

54

Extended DAOP model

Example 5.1: Prose method redefinition dynamic aspect
1 public class MethodDynamicAspect extends DefaultAspect {

2 public Crosscut c1 = new MethodRedefineCut (){

3

4 /* advice */

5 public String METHOD_ARGS(A target , int arg1) {

6 /* new body statements */

7 }

8

9 /* pointcut */

10 protected PointCutter pointCutter () {

11 return Within.method("m").AND(Within.type("A"));

12 }

13 };

14

15 public Crosscut c2 = new MethodRedefineCut (){

16 public String METHOD_ARGS(ANY target , REST params) {

17 ...

18 }

5.2.1 Prose

Several systems have been developed to support dynamic aspects. For example, Hotwave [21]

is one of the latest systems and it supports the AspectJ language for defining aspects; however,

it does not directly support the around advice used to replace method body and cross-cutting

for inter-type declarations that affect class hierarchy. Additionally, as for most of the existing

dynamic aspect systems, the source code is not available. Meanwhile, Prose [27] in its third

version is based on JVM hot-swap feature. Prose enables method redefinition, which can be

used for dynamic updates, and its source code is available. However, the constructor redefinition

is not supported because the constructor aspects behave as before advice. Furthermore, Prose

defines the custom format to define aspects in the form of Java classes and methods. In this

dissertation, the Prose definition of aspects is used to redefine the method bodies with around

advice and constructor advice to redefine the constructor body.

An aspect in Prose is defined as a Java class that inherits DefaultAspect class defined

by the Prose library. The aspect class contains one or more crosscuts, where each crosscut

defines advice and pointcut, shown in Example 5.1 as c1 and c2. Crosscuts are defined as

classes depending on the crosscut type. In addition to MethodRedefineCut for redefining

the method body there is crosscut MethodCut used in methods for before and after advice.

Furthermore, GetCut and SetCut are used to intercept reading and writing to a class field. The

advice in a crosscut is identified by method METHOD_ARGS. The first parameter is the object

on which method has been invoked, where the joinpoint is activated. Additional arguments

correspond to the matched method arguments that the statements contained in the advice can

access. Furthermore, as parameters, the type ANY can be used to denote any class for advice

55

Extended DAOP model

Example 5.2: Prose constructor dynamic aspect
1 public class ConstructorDynamicAspect extends DefaultAspect {

2 public Crosscut c = new ConstructorCut (){

3

4 public void METHOD_ARGS(A target , int arg1) {

5 /* new body statements */

6 }

7

8 protected PointCutter pointCutter () {

9 return Within.type("A");

10 }

11 };

12 }

activation, and REST for any additional method parameters. Joinpoint is defined by pointcut,

where method Within.method determines the name of the method to activate joinpoint, and

method Within.type determines the class for joinpoint activation. Furthermore, methods AND

and OR can be used for various joinpoint combinations. Prose enables joinpoint definition as

pointcut in combination with advice method arguments. In Example 5.1, the advice method

contains an argument with integer type. Therefore joinpoint is activated for method m, with one

parameter of type integer, which is defined in class A. There are other possible pointcut and

advice combinations, but they are out of the scope for this dissertation.

The dynamic aspect for the constructor is similarly defined as the dynamic aspect for method

redefinition, as shown in Example 5.2. However, crosscut is defined as ConstructorCut, and

pointcut is only defined over the type. To determine the joinpoint for the target constructor,

a combination of advice method arguments and pointcut is used. In the example, joinpoint is

activated for constructor of class A with one parameter of integer type.

5.3 Extended model

The specification of changes between different versions of programs is often given in the form

of modified program classes [12, 15], custom defined format [9, 14], or a custom defined pro-

gramming language [19, 23]. The program version can be represented as a data structure, such

as a tree. Meanwhile, aspects with its cross-cutting concern functionality can be used as a suit-

able format for program changes description. Dynamic aspects provide flexible addition and

deletion of the program changes. Existing research [24, 25] on extending the DAOP shows the

feasibility of such a model.

Dynamic aspects approaches currently support class member changes only because the class

hierarchy changes are not supported. Static aspects, such as in AspectJ, support some limited

type changes with intertype declarations mechanism, but currently none of the dynamic aspect

approaches include class hierarchy changes. Cech [24] conclude that there is a need for dynamic

56

Extended DAOP model

aspect system that can perform class hierarchy changes. Consequently, in this dissertation the

DAOP model for dynamic updates is extended to support class hierarchy changes.

Version 1

classA {

m();

}

classB : A {

}

classC : A {

}

Version 2

class A {
m();

}

class B : A {
m();

}

class C : B {
}

A

B

C

v1 v2

Analysis

VM

aspect C {
declare parents:

C remove A;
C implements B;

}

A

B C

Update/StateProgram code Preparation

G
e
n
e
ra

to
r

Figure 5.4: Extended DAOP update model

The extended DAOP update model that supports class hierarchy changes and runtime phe-

nomena detection is shown in Figure 5.4. Object-oriented program code is converted to an

abstract structure, such as abstract tree, to detect and extract program differences. The program

differences are then used for analysis, for two different purposes: update specification and pro-

gram state. Program state is related with runtime phenomena described in Chapter 6. Update

specification is generated in the form of dynamic aspects.

aspect C { aspect B {
declare parents: m();

C remove A; }
C implements B;

}

Generator

Program

code

A

B C

A

B

C

m()

m()

m()

update

VM

v1 v2

Figure 5.5: Extended DAOP model with hierarchy change support

The Extended DAOP update model shown in Figure 5.5 accepts two versions of Object-

Oriented program. Program code is converted to a tree, where each class represents one node

in the tree. Analysis performed on two trees determine changes in class hierarchy between

57

Extended DAOP model

versions. By using the generator, changes between versions are produced in the form of aspects.

For example, in Figure 5.5 classes B and C in version v1 inherit class A, whereas class C in

version v2 inherit class B. In version v2, class B implements method m() with the same signature

as the method implemented in class A. Consequently, class C in v2 inherits method m() from

class B instead from class A as in the v1. In the update model, such changes are detected

by analysis, and the generator creates the aspects with additional classes to support dynamic

updating. Figure 5.6 shows a program code snippet executed in v1. The call to method m()

of class C is a call to method m() implemented in class A because class C does not override

the method. In v2, it is necessary to redirect the call from A.m() to B.m(). With DAOP, this

is achieved with the aspect defined on the right-hand side in Figure 5.6. The aspect with the

around advice replaces the call to A.m() with statements defined in the advice body, containing

the call to method B.m(). To achieve this behavior, the advice body does not contain a call

to method proceed, which is usually called in the around advice. The following subsection

describes algorithms for detecting changes in the class hierarchy between program versions.

Figure 5.6: Replacing the call to method A.m() in v1 to B.m() in v2

5.3.1 Program changes detection algorithm

In the context of the behavior, class in Object-Oriented paradigm is identified with its inter-

face to other classes in the form of accessible methods. Hierarchy is determined in the runtime

environment, such as Java Virtual Machine (JVM) that executes intermediate program code

(i.e. bytecode). Existing dynamic updating solutions regarding changes in the class hierarchy

rely on the modifications in the executing environment, such as modifying data structures con-

taining information about parent classes (JVM), intervening compiled code or calls. By using

dynamic aspects (i.e. DAOP) to redirect method calls, the program’s behavior can be altered

during the runtime, as shown by Cech [24]. To modify a running program to match the pro-

gram running in the updated version, it is necessary to determine changed relationship between

classes and changed class members in the updated version. In the previous section, in Figure

5.5, class C changed the parent, instead of class A in v1, class B is the parent class in v2. Con-

sequently, there is a change in type, which is reflected as change in the class hierarchy. To

support type changes, Algorithm 2 from Chapter 4 is used. Type changes for each class are

detected as changes on the path to the root class for classes matched in both versions. Besides

58

Extended DAOP model

the type changes, inheritance member changes (as described in the previous section) also affect

the descendant classes. Therefore, it is necessary to determine changes in class members. Ac-

cordingly, the Tree Inheritance Distance (TID) algorithm is modified by detection of changes

in class members for matched classes, as shown by procedure detectMatchedChanges in Al-

gorithm 4. Meanwhile, in the previous section, in Figure 5.5 class C contains method B.m()

instead of method A.m(). In the v2 method overriding occurs as described in Chapter 3. To

apply dynamic update regarding method overriding, it is necessary to detect such methods by

procedure getOverridingMethods. Moreover, instead of detecting added and deleted prede-

cessor nodes, similar to the Extended Edge Distance (EED) algorithm shown in Algorithm 1,

added and deleted classes are detected. Furthermore, in comparison to the Algorithm 2, distance

calculation is omitted, and the input trees T1 and T2 represents class hierarchy from versions v1

and v2. The algorithm to detect changes between two program versions is shown in Algorithm

4.

Algorithm 4: Program changes detection algorithm
input : class inheritance trees T1 in v1 and T2 in v2
output: set of type changed classes Ct , changed members Cm for matched classes and

overriding methods Co

1 A,D,←∅;
2 Ct ,Cm,Co←∅;
3 foreach class c in T1 do
4 Vi←∅;
5 Pε1← getPreds(T1, c);
6 if contains(T2, c) then
7 Pε2← getPreds(T2, c);
8 Vi← detectInheritanceChanges(c, Pε1, Pε2);
9 Cm(c)← detectClassChanges(c, T1, T2);
10 Co← Co ∪ getOverridingMethods(Pε1, Pε2, Cm(c));
11 if Vi 6=∅ then
12 Ct ←Ct ∪{c};
13 end
14 else
15 D← D∪{c};
16 end
17 end

18 foreach class c in T2 do
19 if not contains(T1, c) then
20 A← A∪{c};
21 end
22 end

The algorithm to detect program changes is based on the Algorithm 2 to detect inheri-

tance changes, where procedure detectMatchedChanges is introduced to detect class member

59

Extended DAOP model

changes for matched classes, and procedure getOverridinMethods is used to detect overrid-

ing methods. The algorithm to detect member changes for matched class is shown in Algorithm

5. Member changes are detected based on the class in versions v1 and v2 obtained by method

getClass for the given class trees T1 and T2. A comparison is performed on the set of meth-

ods and fields in c1 and c2, where constructor changes are detected as special kind of methods.

Changes are detected as difference between set of members of the same kind (e.g. fields) in both

versions. Members that exist in v1 and that do not exist in v2 are deleted (md and fd). In contrast,

members that exist in v2 and do not exist in v1 are added (ma and fa). Member type changes are

detected as member deletion and addition. Furthermore, for methods and constructors with the

same signature, body comparison is performed. The difference between statements of matched

methods or constructors is detected as member body change (mb).

Method overriding is detected separately based on the hierarchy tree. Methods detected as

changed class member are candidates for changed overriding methods. Detection of changed

overriding methods is a prerequisite for creating classes and statements to support dynamic

changes related to method overriding mechanism. Changes in overriding method are detected

as changes in overriding method implementation, or if the overriding method is added or deleted

regarding inheritance relationship. For example, in Figure 5.5 method m() is added to class B.

Because method m() with the same signature is implemented in class A, method in B over-

rides method in A. Furthermore if one of the overriding method implementations is changed,

deleted or added, then every method in the inheritance relationship is collected for the further

steps. The algorithm to collect methods in overriding relationship where changes occur between

two program versions is given in Algorithm 6. For each class with changed method members,

predecessor classes are traversed in both v1 and v2. First, methods with body changes mb are

compared by signature (contains method) with methods in predecessor class from Pε2 in v2. If

a method with an equal signature exists, then an overriding mechanism is detected, and because

there is a change in the method implementation in one of the classes, both methods override

and overridden are added as changed overriding methods (O). A similar process is used with

added methods, where the added method is compared by signature with methods in predecessor

classes. Method overriding in v1 might not exist, but method added in v2 of the same signature

as method defined in the predecessor classes results in method overriding in v2. Meanwhile, if

overriding exists, then the added method overrides one of the predecessor method implemen-

tation. Therefore, both method of the same signature in predecessor classes and added method

are added as changed overriding methods. Contrary to the added methods, deleted methods are

compared to the methods of predecessor classes Pε1 in v1. By deleting the overriding method,

the method in the predecessor class is used for the class where the method is deleted, or the over-

riding mechanism is removed if all methods of the same signature are removed. Therefore, if a

method with the same signature as the deleted method is found in the predecessor classes, then

60

Extended DAOP model

Algorithm 5: Procedure detectClassChanges(c, T1, T2)

1 procedure detectClassChanges(c, T1, T2)

2 c1← getClass(c, T1);
3 c2← getClass(c, T2);
4 Mc,Fc←∅;

5 ma,md,mb←∅;
6 foreach method m in c1 do
7 if contains(c2, m) then
8 if compareBody(m, c1, c2) then
9 mb← mb∪{m};
10 end
11 else
12 md ← md ∪{m};
13 end
14 end
15 foreach method m in c2 do
16 if not contains(c1, m) then
17 ma← ma∪{m};
18 end
19 end
20 Mc← (ma,md,mb);

21 fa, fd ←∅;
22 foreach field f in c1 do
23 if not contains(c2, f) then
24 fd ← fd ∪{ f};
25 end
26 end
27 foreach field f in c2 do
28 if not contains(c1, f) then
29 fa← fa∪{ f};
30 end
31 end
32 Fc← (fa, fd);

33 return (Mc,Fc);

both methods, deleted and predecessor method, are added as the changed overriding methods.

5.4 Classes for dynamic update

To perform a dynamic update, classes are created that reflect changes between program versions,

as follows: dynamic, difference (diff) and dynamic aspect classes. Dynamic classes are classes

with relationship change in the class hierarchy tree, created to support type changes regarding

hierarchy. Difference classes are classes with members changes such as added, deleted or type

61

Extended DAOP model

Algorithm 6: Procedure getOverridingMethods(c, Pε1, Pε2)

1 procedure getOverridingMethods(Pε1, Pε2, mc)

2 O←∅;
3 (ma,md,mb)← mc;
4 foreach class p in Pε2 do
5 foreach method m in mb do
6 if contains(p, m) then
7 O← O ∪ getMethod(p, m);
8 O← O ∪ {m};
9 end
10 end
11 foreach method m in ma do
12 if contains(p, m) then
13 O← O ∪ getMethod(p, m);
14 O← O ∪ {m};
15 end
16 end
17 end

18 foreach class p in Pε1 do
19 foreach method m in md do
20 if contains(p, m) then
21 O← O ∪ getMethod(p, m);
22 O← O ∪ {m};
23 end
24 end
25 end
26 return O;

changes. Dynamic aspect classes are created to replace method and constructor bodies; that

is, statements to use created dynamic and difference classes. Furthermore, dynamic aspects are

used to enable method and constructor body changes.

5.4.1 Type changes

An example of a class inheritance tree change shown in Figure 5.7 induces type change; how-

ever, this change cannot be performed dynamically as current VM does not support superclass

change during runtime. To provide a dynamic update with type change, inheritance tree in the

currently running version (v1) is modified by differences in the relationships between classes.

Difference is reflected with dynamic classes, identical to classes defined in v2 with changed

name, such that suffix "Dynamic" is added. Suffix "Dynamic" is abbreviated with "dyn" in fur-

ther text. By changing the name, the classloader in the VM can load the class with a changed

parent that exists in the currently running version. For example, in Figure 5.7 the relationship

62

Extended DAOP model

is changed for class C in v1, where the parent is class B instead of class A in v1. However, class

A is a parent of class B, therefore class C still inherits from class A in v2 through class B. The

parent change for class C is reflected by creating dynamic class Cdyn. Because class C in v2

defines class B as parent, class Cdyn also defines class B as parent instead of class A.

A

B

C

v1 v2

A

B C

Cdyn

v1’ (v1 -> v2)

A

B C

m()

m()
K

m()

Kasp

f()

K

f()

K

f()

m()

X

Figure 5.7: Dynamic class Cdyn example

In Figure 5.7 differences between class inheritance trees in v1 and v2 are shown in the form

of changed parent classes for class C. To reflect type change, dynamic class Cdyn is loaded in

version v1. However, to load dynamic class in the currently running version, it is necessary

to redefine usage of the class C in v1 by changing the statements that declare class C with the

statements that declare class Cdyn. Class usage redefinition is supported by creating dynamic

aspect classes. Consequently, type change is loaded into the running version conforming to the

client-supplier pattern introduced in [24], where dynamic aspect and dynamic classes represent

supplier and class using dynamic class represent client. In Example 5.3, class K contains method

f (), which defines variable b of type B and returns value returned by method m() defined in class

B. Class K is the client because method f() contains definition of variable with changed type

in v2 (line 4 Example 5.3). Executing method f() from K in version v2 with classes from v1

would raise exception of incompatible types. Therefore dynamic aspect class KDynamicAspect

is created to replace method m() with method containing dynamic class CDynamic instead of

class C. The aspect method contains statements in the method m() with changes in line 4,

where type CDynamic is instantiated; that is, B b = new CDynamic(). KDynamicApect class

as Prose [27] dynamic aspect is shown in Example 5.4. Similar would be found with the other

type related statements shown in Example 3.1, where the class C identifier would be replaced

with dynamic class CDynamic.

If the field or the constructor contains dynamic class invocation, additionally to dynamic

aspect and dynamic classes, then difference classes are created. Difference classes contains

difference between classes in two program version, such as added or deleted class members

(e.g. methods). Difference classes are named with added suffix "diff" to the name of the class

63

Extended DAOP model

Example 5.3: Type changed class usage example
1 /* v1 */ /* v2 */

2 public class K { public class K {

3 public String f() { public String f() {

4 B b = new B(); B b = new C();

5 return b.m(); return b.m();

6 } }

7 } }

Example 5.4: Prose dynamic aspect containing type change example in Figure 5.7
public class KDynamicAspect extends DefaultAspect {

public Crosscut c = new MethodRedefineCut (){

public String METHOD_ARGS(K target) {

B b = new CDynamic ();

return b.m();

}

protected PointCutter pointCutter () {

return Within.method("f").AND(Within.type("K"));

}

};

}

with differences between versions. Difference class is abbreviated with "diff" in further text.

Cases when diff classes are created are described in the following subsection.

5.4.2 Member changes

Beside type changes as the result of changes in the class inheritance tree, classes in the inher-

itance tree can also be affected by changes in predecessor classes members. In the previous

subsection, method is replaced with dynamic aspect to support type change; however, the same

procedure is applied when class method body is changed. Dynamic aspect class is created for

changed class containing method with statements from version v2, when dynamic class is not

necessary because there is no type change. Furthermore, if the class members are changed,

added or deleted, then the diff class is created, containing changed class members. When the

class is candidate for dynamic and diff class, a dynamic class is created. In the rest of this

subsection, each of the class member changes are described by creating classes for a dynamic

update.

Methods

The introduction mentions that the changed method body results in dynamic aspect class for

container class. However, signature change, added and deleted methods, require a diff class to

64

Extended DAOP model

Example 5.5: Added method usage example
1 /* v1 */ /* v2 */

2 public class K { public class K {

3 public String f() { public String f() {

4 B b = new B(); B b = new B();

5 return b.m(); return b.m2();

6 } }

7 } }

Example 5.6: Diff class example with added method
public class BDiff {

B target = null;

public BDiff(B target) {

this.target = target;

}

public String m2() {

return "B.m2()";

}

}

be created for the changed class to support a dynamic update. For example, if the method is

added, then the method definition is extracted as member of diff class. Each diff class contains

"target" reference to the modified object similar to the Cech [24] "that" to access modified object

members. In the Example 5.5, in v2 method m() from class B returns value of method m2()

added in v2.

To support a dynamic update, diff class Bdi f f is created (Example 5.6), containing definition

for method m2() defined in v2. Furthermore, target object is not used to access class members

because the new method does not access any of the changed class members. The constructor

of diff class contains class B object to which diff class belongs. Pairing and access to diff class

objects is handled by DSU manager described in Chapter 8.

A

B

C

v1

m()
A

B

C

v2

m()
m2()

A

B

C

v1’

m()

Bdiff

m2()

Kasp

K

f()

K

f()

K

f()

X

Figure 5.8: Added method for class B and corresponding diff class Bdi f f and Kasp classes relationship

65

Extended DAOP model

Example 5.7: Dynamic aspect class for class K in Figure 5.8
public class KDynamicAspect extends DefaultAspect {

public Crosscut c0 = new MethodRedefineCut (){

public String METHOD_ARGS(K target) {

B b = new B();

return ((BDiff)DSUManager.Diff((Object)b)).m2();

}

protected PointCutter pointCutter () {

return Within.method("f").AND(Within.type("K"));

}

};

}

Example 5.8: Added method with overriding example
1 /* v1 */ /* v2 */

2 public class K { public class K {

3 public String f() { public String f() {

4 B b = new B(); B b = new C();

5 return b.m(); return b.m2();

6 } }

7 } }

Figure 5.8 shows the class hierarchy in v1 and v2, together with changes for class B in the

form of an added method m2(). Furthermore, classes Kasp (Example 5.7) and Bdi f f (Example

5.6) are dynamic aspect and diff classes for class K and B respectively. The slashed lines

indicate calls to methods, whereas the dotted lines indicate aspect pointcut. Kasp class replace

class K method f() with statement invoking method m_2() defined in class Bdi f f . Dynamic

aspect class Kasp applies new method introduced in class B in v2 to class K. If there were more

matched classes that use the new method in the v2, then the number of dynamic aspect classes

would increase according to the number of such classes.

The method deleted in v2 results in a dynamic aspect class that replaces the method body

with a statement throwing an exception. It is expected that methods deleted in v2 are not used,

therefore statements containing invocation to deleted methods are changed in v2. Statements

are changed by dynamic aspect, diff and dynamic classes depending on the context of change.

Inherited and overriding methods

Considering the overriding method mechanism described in Chapter 3, in Example 5.5, a call

to method m2() can be performed directly on diff class. However, the method m() in class K is

changed as shown in Example 5.8 on line 4, where variable b is instantiated as object of class

C. Since class C does not implement m2() method, method is inherited from class B.

In this case, dynamic aspect class Kasp can invoke method m2() defined in class Bdi f f similar

66

Extended DAOP model

to the process described for added method in the this subsection. However, in this case object

of class Bdi f f is created for object of class C. Class Bdi f f contains differences for class B

because in this case class C is only changed through added inherited method m2, while class

Cdi f f is not created. Constructor of Bdi f f accepts object of class C as target because class C is

descendant (i.e. subtype of class B). Therefore, diff classes are created only for classes with

changed members, and these changes are reflected to descendant classes by creating and pairing

the predecessor diff class object to the descendant class objects.

Meanwhile, if class C in v2 implements method m2 in Example 5.5, overriding mechanism

is used. Although variable b is declared as object of class B, method defined in class C is used

because class C overrides method m2() defined in class B. As in the case of inheritance, the

dynamic aspect class cannot directly invoke method m() defined in class Bdi f f . Because of sub-

type relationship, VM performs dynamic method dispatching to invoke correct method based

on the object type in runtime. Therefore, to support dynamic update in the case of inherited

and overriding method, altering of dynamic method dispatch is required. Altered dispatch is

handled by DSU manager with algorithm given in Algorithm 7. Altered dispatch is performed

in DSU manager, where methods detected as overriding methods in Chapter 3, are invoked by

DSU manager. The algorithm first searches for diff class and the corresponding method ac-

cording to method name, number and type of parameters. If the corresponding diff class does

not exist or the method is not defined in the diff class, then the method is searched in the object

class. At the end of each step, for the next search step, the parent of the current class is selected.

This process is iterative until the method is found.

For Example 5.8, current classes and diff class are shown in Figure 5.9. In the example, the

algorithm for altered dynamic dispatch retrieves the Cdi f f class and then method m2() defined

in the diff class. Meanwhile, if the method m2() is only defined in class A, then the algorithm

iteratively searches in the diff and classes of C and B in the running version, until method m2()

is finally found in class Adi f f .

A

B

C

v1’

m()

Bdiff

Cdiff

m2()

m2()

A

B

C

v1

m()
A

B

C

v2

m()
m2()

m2()

Figure 5.9: Overriding method m2() by class C

67

Extended DAOP model

Algorithm 7: Altered dynamic dispatch procedure
input : Current object (ob j), method name and arguments (args)

1 m←∅;
2 invOb j← ob j;
3 par← getPars(args);

4 for c← getClass(ob j); c 6=∅∧ m 6=∅; c← getParentClass(c) do
5 d← getDiff(c);
6 if d 6=∅ then
7 m← getMethod(d, name, par);
8 end
9 if m 6=∅ then
10 if isDeleted(m) then
11 continue;
12 end
13 invOb j← diff(ob j, c, d);
14 else
15 m← getMethod(c, name, par);
16 end
17 end

18 if m 6=∅ then
19 invoke(invOb j, m, args)
20 end

Fields

Field changes regarding dynamic update are reflected through diff and dynamic aspect classes

similar to the changes in methods. Added and type changed fields are added to the correspond-

ing diff class as members. In Example 5.9, class B method m1() in v2 use field f2 which does

not exist in v1. To support dynamic update, diff class Bdi f f is created, containing field f2 as a

member, and dynamic aspect class Basp replaces the method m1() to use the field f 2 defined in

Bdi f f .

Meanwhile, fields are inherited in the class inheritance tree. As described in Chapter 3, if

the accessible field is changed in predecessor class it is changed for class inheriting from prede-

cessor class. Similar to the methods, objects of descendant classes are paired with diff objects

of predecessor classes containing changed field. For example, if the class B from Example 5.9

is inherited by class C, added field f2 is added to class C by class Bdi f f . Figure 5.10 shows the

case where method m2() defined in class C uses the field f2 defined in class B. Therefore, class

Casp (Example 5.10) is created to replace m2() body in order to use f 2 defined in Bdi f f . DSU

manager resolves pairing of C and Bdi f f objects. Moreover, if the class B in v2 contains added

methods, then class C inherits both methods and fields over the same Bdi f f class.

Deleted fields or fields with changed type are set to null value for reference types. Dynamic

68

Extended DAOP model

Example 5.9: Added field inheritance example
1 /* v1 */ /* v2 */

2 public class B { public class B {

3 int f1; int f1, f2;

4

5 public String m1() { public String m1() {

6 return "B.m1()" + f1; return "B.m1()" + f2;

7 } }

8 }

9

10 public class C extends B { public class C extends B {

11 public String m2() { public String m2() {

12 return "C.m2()" + f1; return "C.m2()" + f2;

13 } }

14 } }

Example 5.10: Dynamic aspect class for class C in Figure 5.10
public class CDynamicAspect extends DefaultAspect {

public Crosscut c0 = new MethodRedefineCut (){

public String METHOD_ARGS(C target) {

return "C.m2() " + ((BDiff)DSUManager.Diff((Object)target).f2;

}

protected PointCutter pointCutter () {

return Within.method("m2").AND(Within.type("C"));

}

};

}

69

Extended DAOP model

aspects to intercept read or write to such fields can be created to raise an exception. However,

it is expected that statements using such fields in v2 are changed with corresponding dynamic

aspect, diff and dynamic classes, depending on the context.

A

B

C

v1

A

B

C

v2

f1 f1, f2

m2()

K

f()

K

f()

A

B

C

v1’

f1

m2()

K

f()

Bdiff

f2

Casp
m2()

Figure 5.10: Added field inheritance example

State transfer and initialization

In Section 3.2, the method and constructor changes are classified as behavior changes and fields

changes as state changes. If the class in v2 changes type relationship, as described in Subsection

5.4.1, then the corresponding dynamic class is created. Therefore, it is necessary to transfer the

state from the existing object to the object as an instance of dynamic class. If the class deter-

mined as dynamic class does not contain any changes between fields in two program versions,

then the state transfer copies the field values from the existing object to dynamic object. How-

ever, if the class contains field changes in v2, then a value copy is not possible. Furthermore, the

subsection Fields (20) shows how field changes result in the creation of a diff class to support

the dynamic field changes. The state of changed fields in diff and fields in dynamic classes

should be initialized, otherwise (as aforementioned) runtime phenomena could occur. For ex-

ample, for integer type, default value of 0, if used in the calculation could introduce divide by

zero error, or for reference type uninitialized object, null reference error. Instead of a straight-

forward value copy, the most common solution is to use default values or provide programmer

defined transfer function. However, the former may introduce runtime errors and the latter

reduces programmer transparency requirement described in Chapter 2. To reduce errors and

programmer involvement, the algorithm to initialize changed fields is presented in Algorithm 8.

To set the field value, an algorithm search for field initialization in class from v2. If the

initialization exists in both v1 and v2, then it is used to initialize the field, otherwise the default

value for specific type is used (e.g. for integer value of 0). Meanwhile, for the reference type

70

Extended DAOP model

Algorithm 8: Field initialization procedure
input : Field f1 defined in v1, and f2 defined in v2, initializations inits in class for field

f2 defined in v2
output: Field initialization init

1 init←∅;

2 if isValueType(f2) then
3 if getInit(inits, f2) 6=∅ then
4 init← getInit(inits, f2);
5 else
6 init← getDefaultValue(f2);
7 end
8 else
9 const← getDefConstr(f2);
10 if const 6=∅ then
11 init← getDefConstr(f2);
12 else
13 sortInitsByMatchingPars(f1, f2, inits);
14 foreach i in inits do
15 if matched(i, f1, f2) then
16 init← i;
17 break;
18 end
19 end
20 foreach i in inits do
21 if canAddDefVal(i, f1, f2) then
22 init← addDefValues(i, f1, f2);
23 break;
24 end
25 end
26 end
27 if init =∅ then
28 init← null;
29 end
30 return init;
31 end

field, if any, the default constructor is used to initialize the object. In the case when there

is no default constructor, the algorithm searches between constructors used in v2. If there is

a constructor invocation with fields that exist in v1 and v2, or constant values as arguments,

then the field is initialized with such a constructor. Otherwise, the field is initialized with the

constructor invoked with the largest number of arguments available, in the form of fields that

exist in v1 and constant or default values. If no constructor with defined criteria is found, then

the object value is set to null value, where programmer should ensure proper field initialization

in the constructor of the diff class.

71

Extended DAOP model

Example 5.11: Added constructor example
1 /* v1 */ /* v2 */

2 public class C { public class C {

3 int f1 = 1; int f1 = 10;

4 public C() {} public C() {}

5 public C(int i1) {

6 f1 = i1;

7 }

8 public String m() { public String m() {

9 return "C.m()" + f1; return "C.m()" + f1;

10 } }

11 } }

Constructors

Constructor body changes are similar to the method body changes. The constructor body change

results in dynamic aspect class that replaces the body during execution. Statements of construc-

tor defined in v1 are replaced with statements defined in v2. Meanwhile, the added constructor is

similar to the added method, it is added to the corresponding diff class. Because the constructor

cannot be defined in another class, the constructors in diff classes are defined as diff class con-

structors. Statements from the added constructor are copied to the diff constructor. In Chapter

3, it is described that in the class hierarchy a default constructor is implicitly invoked as the first

statement. If the class does not contain a constructor definition, then a default constructor is

implicitly created. Furthermore, the first statement in the constructor can be an invocation of

another constructor defined in the class, or an invocation to super class constructor. Therefore,

the first statement in the constructor defined in diff class initializes the target object. Conse-

quently, there are several cases to consider: when the first statement is an invocation to the

parent default constructor, another constructor defined within the same class, and invocation to

the parent constructor.

In Example 5.11, a constructor with argument of integer type is added in v2 for class C.

Cdi f f class is created containing Cdi f f (int) constructor. As the first statement, instead of the

implicit invocation to the parent (class B) default constructor, target is initialized with the class

C default constructor. The rest of the statements are a copy from new constructor body. In the

case of class C from Example 5.11, single statement (line 6) is copied.

Figure 5.11 shows class hierarchy for Example 5.11, where constructor is added in class C.

Class K is the client with method m() that invokes the default constructor C() in v1, whereas

the added constructor C(int) is invoked in v2. Dynamic aspect class Kasp is created to replace

the method K.m() body with a body containing the initialization of class C object with added

constructor Cdi f f (int).

Meanwhile, if the first statement in the added constructor is an invocation of another con-

structor within the same class, then there are two possible cases: an invoked constructor exists

72

Extended DAOP model

A

B

C

v1

B()

C()

A()

A

B

C

v2

B()

C()
C(int)

A()

A

B

C

v1’

B()

C()

A()

Cdiff

Cdiff(int)

K

m()

K

m()

K

m() Kasp

Figure 5.11: Added constructor example

in v1 or it is added in v2. For the former case, instead of an invocation of default construc-

tor to initialize target object as in the previous example, target is initialized with the invoked

constructor. For the latter case, target is initialized with the corresponding added constructor

defined in diff class (Cdi f f). Therefore, the statement (this()) to invoke constructor within the

same class remains unchanged.

A

B

C

v1

B()

C()

A()

A

B

C

v2

C()
C(int)

A()

A

B

C

v1’

B()

C()

A()

Cdiff

Cdiff(int)

K

m()

K

m()

K

m() Kasp

Bdiff

Bdiff(int)
B()
B(int)

Figure 5.12: Added constructor inheritance example

Regarding inheritance, if the first statement in the added constructor is an invocation to the

parent class constructor, then there are two cases identical to the case of another constructor

invocation within the same class. The parent constructor can be defined in v1 or added in v2.

If the parent constructor does not exist in v1, then it is added to the parent diff class. The first

statement is replaced by a statement initializing the target with the default constructor, and

then the constructor defined in the parent diff class is invoked. Figure 5.12 shows an added

constructor to classes B and C in v2. As a result, classes Bdi f f and Cdi f f are created, where the

constructor defined in Cdi f f invokes the constructor defined in Bdi f f .

Meanwhile, if the invoked parent class constructor exist in v1, then it is not possible to invoke

parent constructor, such as B(int) from the Bdi f f (int) constructor. Therefore dynamic class

BDynamic is created that contains the added constructor with invocation to the parent constructor.

73

Extended DAOP model

Furthermore, any necessary dynamic aspect classes are created for client classes that use B

class.

For deleted constructors, similar to the deleted methods, a dynamic aspect class is created

to replace the constructor body with a statement to raise an exception on constructor execution.

It is expected that statements from v1 that use deleted constructors are changed in v2 with the

corresponding dynamic classes (dynamic aspect, diff, and dynamic), depending on the context

of change.

74

Chapter 6

Runtime phenomena detection

State artifacts in program execution that occur after the dynamic update are referred to as run-

time phenomena. In this dissertation, the focus is placed on Object-Oriented languages; there-

fore, runtime phenomena caused by constructs of Object-Oriented languages are observed. In

this chapter, runtime phenomena are described through identified changes between program

versions. Furthermore, the characteristics of the update model presented in Chapter 5 related

to runtime phenomena are analyzed. According to the update model, the focus in detecting

runtime phenomena is placed on changes in the class hierarchy. Therefore, the TID algorithm

presented in Chapter 4 is modified to detect and estimate the risk of these state artifacts.

6.1 Runtime phenomena

Runtime phenomena are an invalid state of the program after dynamic update that would not

be in the update procedure with the restart [28, 89]. These program states are a side effect of

the particular dynamic update procedure and environment features. For example, depending

on how state transfer is handled or the used programming language. Because the focus of this

dissertation is on Object-Oriented languages, the effect of the dynamic update procedure on the

program state is related to the supported changes of the dynamic update model described in

Chapter 5.

Figure 6.1 shows an example of a breakout game in [28] with dynamic change to the previ-

ous version. The runtime phenomenon that occur is the lost state because in the updated version

on the right-hand side, the class describing the block in the game no longer contains the color

and gift information that can be found in the initial version on the left-hand side.

In the related literature [3, 28, 89, 90], runtime phenomena are categorized by changes in

program versions, such as adding or removing fields from class. Table 6.1 contains currently

known runtime phenomena caused by program code changes.

After a class is removed in a running program, the existing objects of class remain as phan-

75

Runtime phenomena detection

Figure 6.1: Runtime phenomena example (lost state and phantom objects) [28]

tom objects because they are not used in the updated version. Phantom objects can also occur

when the class is modified to an abstract class or replaced with the interface. In general, phan-

tom objects are objects that would not exist in the updated version. The absent state is related

to the state that is missing in the updated version, when classes introduce new functionality.

Occurs when added fields are not properly initialized during a dynamic update. Adding a class

in the class hierarchy introduces an absent state when objects are compared by type. This com-

parison could fail because existing objects do not inherit the added class. Furthermore, for an

added predecessor class, the introduced fields for existing objects can be uninitialized. Related

to the Java programming language, when the static modifier is removed from the inner class,

the inner class object belongs to the outer class object. In an updated version, field in inner class

pointing to outer class can be uninitialized, introducing an absent state. The absent state is re-

lated to missing the state in the updated version, whereas the lost state is related to the missing

state from the current version. The state is lost by changing the field type or when the field is

removed from the class. When a field type is changed, the field’s value in existing objects is

lost due to the initialization of the new type’s value to the default value. However, the lost state

is related to the state transfer of the dynamic update system. By using the state transformation

functions, lost state can be avoided, at least to some extent. Meanwhile, the oblivious update

is related to the missing functionality introduced in the updated version, when the added fields

are initialized in the changed constructor, or there is a change in static initialization of the class.

It is a result of changed implementation of constructor or when static initialization cannot be

executed for existing objects after the dynamic update because the objects are already initial-

ized. Broken assumptions occur in the updated version as invalid dependency between state

and method maintaining state of objects. For example, in [28] the field as a class member is

depending on another constant field, where the constant value or method that maintains fields

dependency changes. Furthermore, if the broken assumptions do not cause runtime exceptions,

then an updated program is temporary in the runtime state that would not be reachable if the

76

Runtime phenomena detection

Table 6.1: Runtime phenomena categorized by program changes

Runtime phenomena Program code change

Phantom objects

Class removed

Class renamed*

Modifier abstract added to class

Class replaced by interface

Absent state

Class added

Predecessor of class changed

Instance/static field added to class

Removed static modifier from inner class

Lost state

Instance/static field type changed in class

Class renamed*

Instance/static field removed from class*

Oblivious update
Static initialization implementation changed in class

Constructor body changed in class

Broken assumption
Static field value changed

Instance/static method body changed*

Transient inconsistency Instance/static method implementation changed*

* involve multiple runtime phenomena

program was started in the updated version. This is observed as a transient inconsistency run-

time phenomena. Transient inconsistency is related to the program semantics changed by the

modifications of methods. If such program state is not temporary, then the program is in an in-

valid state. Variants of the transient inconsistency are transient state inconsistency regarding the

invalid state of fields and delayed effect when the update changes are not visible immediately.

Both transient inconsistency and broken assumptions are related to the program semantics,

which needs to be determined by a detailed analysis of the programs behavior in both current

and the updated version during the prolonged execution of the program. This makes such anal-

ysis extensive and challenging.

6.2 Runtime phenomena analysis in update model

Runtime phenomena can frequently occur with the long running applications after continuous

updates, therefore detection and handling of such a state is required to achieve correctness DSU

77

Runtime phenomena detection

requirement from Chapter 2. Figure 6.2 shows part of DAOP model from Chapter 5. Runtime

phenomena analysis is performed based on the detected changes between the program versions

v1 and v2. To detect changes, an abstract data structure is created from the program code in

each version. In addition to generating dynamic aspects, changes are used as input for runtime

phenomena analysis. Runtime phenomena analysis is performed in the Detect component con-

nected to the dynamic updating component (update/state). Based on the analysis, a decision

is made to execute a dynamic update. If the analysis detects program changes that introduce

runtime phenomena, update component can defer or reject the dynamic update or require the

user’s decision to proceed. Furthermore, analysis can be connected to the runtime environment

to observe current program state; for example, to detect if the objects of the changed class ex-

ists that can cause the runtime phenomena. Therefore, in Figure 6.2 the arrow is shown from

update/state to the detect analysis component.

A

B C

A

B

C

v1

Detect

update/state

v2

Program
code

detected changes

Figure 6.2: Runtime phenomena detection in dynamic update model

In Chapter 3, program changes are categorized as basic and compound. Runtime phenomena

in the related literature are categorized over basic changes; however, the dynamic update model

described in Chapter 5 uses dynamic aspects to apply compound changes. Compound changes

are more suitable for runtime phenomena analysis because if the method is added but it is not

called from any other method in the updated version, then it cannot create potential runtime

phenomena states. Furthermore, in [28] the authors identify runtime phenomena according

to code refactoring and proposes solutions for code changes to avoid runtime phenomena. In

[89, 90], runtime phenomena are categorized by the results of queries executed during runtime,

where the current program state is analyzed to detect runtime phenomena. To detect runtime

phenomena by program changes between versions detected in extended DAOP model from

Chapter 5, runtime phenomena are categorized by compound program changes and analyzed

by changes dependency. Program changes dependency can be call and inheritance dependency.

Compound changes are simplified variants of call dependency changes.

Table 6.2 shows compound changes from Chapter 3, and possible runtime phenomena which

may result from these changes. Method body change depending on the changed program se-

78

Runtime phenomena detection

Table 6.2: Possible runtime phenomena categorized by compound program changes

Compound change Possible runtime phenomena

Added/Removed method + Method body change *

Added field + Method body change

Absent state

Lost state**

Oblivious update

*

Removed field + Method body change
Lost state**

*

Added/Removed constructor + Method
body change

Oblivious update

*

Added class + Method body change

Oblivious update

Absent state

*

Removed class + Method body change

Phantom objects

Lost state

*

* Broken assumption and Transient inconsistency
** Type change

mantic and program state at the time of dynamic update, in general can result with broken

assumption or transient inconsistency. Added or deleted method affects caller’s method body,

resulting in possible permanent (broken assumption) or temporary (transient inconsistency) in-

valid state of the objects. When a field is added in the updated version, in general this results

in a missing state because the existing objects are already initialized and added field contains

default values. An introduced field initialized with the dynamic update procedure can result in

an oblivious update. Furthermore, combination of added and deleted fields, when field type is

changed results in lost state. Removed field introduce lost state of the existing objects. Similar

to the added method, an added constructor in classes of existing objects can result in improper

object initialization, which would not occur in the updated version. An added class in the class

hierarchy for existing objects results in absent state or oblivious update. Meanwhile, removed

class implies phantom objects and lost state.

Because the broken assumption and transient inconsistency can occur as the result of changed

program semantic, it requires analysis of changes in call dependency and the current state of the

running program. Furthermore, changes in class hierarchy require analysis of changes in the

79

Runtime phenomena detection

inheritance relationship. The following two subsections describe changes in call dependency

and inheritance.

6.2.1 Call changes dependency

constructor body

method body

field

constructor or
method

constructor body or
method body

Figure 6.3: Program changes call dependency (slashed arrow – multiple instances)

The impact of program changes on call dependency is shown in Figure 6.3. An added and

deleted field affect the existing method or constructor body that uses the field. If the field is

deleted, then the method or constructor body in the updated version does not contain state-

ments with the deleted field. The opposite is found with an added field, where the method or

constructor body is changed because the updated version contains statements with the added

field. Field type and modifiers can be changed, which affect the body statements. Depending

on the change, modifiers can produce similar effect as the deleting and adding field, whereas

type changes may involve changes in statements using the field. Furthermore, the program can

be changed by adding or deleting method, which affects method or constructor body that calls

method. Similar to the field, statements that contains calls to deleted method are deleted in the

updated version, whereas for added method the call statements are added. Changes in modifiers

of method and method return type are similar to field modifiers and type change. Adding and

removing constructor corresponds to the adding and removing methods. Meanwhile, calls can

be nested forming a chain of calls, slashed arrows in Figure 6.3 denote nested calls. As a result

of the chain of calls and changes in the program, a chain of changes is formed. For example,

when a field is added, a method that use added field is added, and then the added method can

be called from another added or changed method or constructor. Constructor, method and field

changes can form an atomic unit as as a changed class. However, program changes can occur

in different class, where each changed member belongs to another class, forming dependency

of program changes between classes.

Changes in call dependency can be analysed to detect chain of runtime phenomena and con-

sequently changes in semantics required to detect phenomena, such as broken assumptions and

transient inconsistency. In Figure 6.3 direct dependency changes are shown based on static anal-

ysis. However, an entire call stack can be analyzed to the root method in the running program.

80

Runtime phenomena detection

Consequently, it can be determined during program execution whether runtime phenomena will

occur based on the current program state. For example, if the changed constructor is not ex-

ecuted in the running program, then a dynamic update can be performed, otherwise oblivious

update can occur.

6.2.2 Inheritance change dependencies

Inheritance change dependencies are a direct result of the changes in the class hierarchy. An

added or removed class can impact other classes in the hierarchy through the inheritance rela-

tionship between classes. In addition to the added or removed class, changes in fields, methods

and constructors of the matched classes can affect the descendant classes by inheritance. The

inheritance relationship between classes and changes in inheritance results in runtime phenom-

ena, which is analysed for each case.

A

B C

v1 v2

A

B C

D

(a) Class D added as child to class C

A

B C

v1 v2

A

B C

D

(b) Class D added as parent to class A

A

B C

v1 v2

A

B D

C

(c) Class D added as parent to class C and as
child of class A

Figure 6.4: Examples of added classes in class hierarchy that cause runtime phenomena

Depending on where the class is added, removed or moved in the hierarchy, various runtime

phenomena occur. Class can be added in the class hierarchy as descendant class and predecessor

class. Figure 6.4 shows the addition of class D in the class hierarchy. Class D is added as only

child class (Figure 6.4a). Existing objects of classes A and C created in the version v1 are not

of the same type as the objects created in the version v2. Objects of class A and C created in

the version v2 are type comparable with objects of class D. The relationship between types is

missing for the objects of classes A and C in v1 to the class D added in v2, therefore such objects

81

Runtime phenomena detection

are missing the proper state which corresponds to the absent state. The case where class D is

added as a root class is shown in Figure 6.4b. Class D is the parent of the previous root class A.

Objects of classes A, B and C created in v1, are missing state and behavior introduced by class

D in v2. In general, existing objects of descendant classes for the newly added root class are

missing introduced state in the form of class fields. Therefore, as a consequence of adding the

predecessor class, an absent state occurs. Meanwhile, missing functionality is the result of the

class C constructors that have not been executed, introducing the oblivious update. In Figure

6.4c, class D in v2 is added as predecessor of class C and descendant of class A, replacing the

class C as the child of class A. This example corresponds to the combination of basic examples

shown in Figure 6.4a and Figure 6.4b. Oblivious update and absent state occur on objects of

class C created in v1 because class D constructor has not been executed and class D fields are

uninitialized. Furthermore, absent state occurs on objects of class A created in v1 because class

D in v1 is not descendant of class A. Consequently, existing objects of class A are missing the

information for the type comparison with class D.

A

B C

v1 v2

A

B D

D E

E

(a) Class C is deleted

A

B C

v1 v2

D E

A

B F

D E

(b) Class F replaced class C

Figure 6.5: Examples of deleted classes in class hierarchy that cause runtime phenomena

When a class is deleted, the existing objects of the deleted class are phantom objects. How-

ever, if the class is deleted from the class hierarchy, objects of the deleted and descendant classes

are phantom objects. Objects of classes that are descendants of the deleted predecessor class

do not exist in v2, therefore such objects are phantom objects. Figure 6.5a shows that class C

has been deleted from the class hierarchy in v2. Objects of class C in version v2 are phantom

objects together with objects of class D and E created in v1. Meanwhile, in contrast to the ab-

sent state, when the predecessor class is added, deleted predecessor class introduce lost state.

When converting the state of class D and E objects to the v2, the current information in class

C fields may be lost. However, if the existing objects of descendant classes are not converted,

broken assumption may occur. For example, assuming that class C in v1 contains fields and

methods used by class D and E to maintain objects state in v1, objects of class D and E in v2

do not contain these members, which may break the expected state and logic dependency in the

existing objects.

In Figure 6.5b class F in v2 replaced class C in v1, as a result of deleting class C and adding

class F . As previously described, several runtime phenomena occurs on objects of classes with

82

Runtime phenomena detection

changed predecessor classes. Objects of class C, D, and E created in v1 are phantom objects,

because class C is deleted. Furthermore, as a result of adding class F , objects of class D and E

created in v1 are missing proper state of class F fields as constructor of class F is not executed,

introducing absent state and oblivious update. Moreover, existing objects of class D and E

depending on dynamic update procedure can introduce lost state for fields of class C or broken

assumption because of changed initialization in v2.

M1(A)

C1(A)

F1(A)

A

B C

v1 v2

D E

A

B C

D E

M2(A)

C2(A)

F2(A)

Figure 6.6: Runtime phenomena as the result of changed class members

Changes of class members affects descendant classes in the class hierarchy, which may

result in runtime phenomena for the existing objects created in v1. In Figure 6.6, a set of

class A methods, constructors and fields is represented as M1(A), C1(A), and F1(A) in v1 and

M2(A), C2(A), and F2(A) in v2, respectively. Changes between versions is denoted as difference

between sets in v1 and v2, e.g. for methods M1(A) 6= M2(A).

If method m ∈ M1(A)∩M2(A) body is changed, then the existing objects of descendant

classes are also affected. As a result of the dynamic update, broken assumption and transient

inconsistency can occur on existing objects of class and descendant classes, whether or not the

method due to modifier is accessible by descendant classes. If the method is not accessible

by the descendant class, then it can affect the fields of the changed class. Furthermore, if the

method is used to initialize the fields, then it can introduce oblivious update for existing objects

of changed class and descendant classes. In Figure 6.6 if method m changed body in v2, classes

(B, C, D, and E) that are descendant classes of class A are affected by the change. However, call

dependency analysis is required to determine semantic change to detect such runtime phenom-

ena. Similarly, adding method to predecessor class, depending on the semantics, can introduce

broken assumption and transient inconsistency for existing objects of the changed class and

descendant classes. For example, method me2 of class E (me2 ∈ M2(E)) calls added method

ma2 of class A, and ma2 changes the value of fields from A. Furthermore, deleting method can

require changing caller methods body, resulting in runtime phenomena, which can be detected

by call dependency analysis. For example, method me ∈M1(E)∩M2(E) changes body because

in v1 it contained call to the method ma of class A, deleted in v2.

Changing the constructor body, such as for constructor c ∈ C1(A)∩C2(A) in Figure 6.6,

83

Runtime phenomena detection

introduces an oblivious update. It is similar to the changed body of method used for object ini-

tialization. Objects of class A and its descendant classes created in v1 are missing initialization

from v2. Similar is found for adding a constructor C2(A) in v2, existing objects are possibly

missing initialization introduced in v2. Deleting a constructor C1(A) can introduce broken as-

sumption and transient inconsistency for existing objects of class A and its descendant classes.

Similarly to the methods, adding the constructor and changing the constructor body can also in-

troduce such runtime phenomena, which depends on the program semantics and can be detected

by call dependency analysis.

Field changes introduce an absent state and lost state for descendant classes. In the case of

adding and deleting a class in the class hierarchy, these runtime phenomena are related to type

comparison. However, in the case of fields as described in Section 6.1 are related to the state of

objects. For example, in Figure 6.6 field fa2 ∈ F2(A) added in v2 (fa2 /∈ F1(A)) is missing state

for objects of class A created in v1, and for objects of class A descendant classes B, C, D, and

E. Meanwhile, by deleting the field fa1 ∈ F1(A) in v2 introduces a lost state for objects of class

A and objects of descendant classes created in v1. Existing objects contain information that can

be lost in the v2 because deleted fields may be replaced with added fields initialized with default

values, rather than by copying values from the deleted fields. Furthermore, field type change

can be observed as delete and add field change, which introduces absent state and lost state in

the descendant classes.

6.3 Runtime phenomena detection algorithm

To detect possible runtime phenomena, based on the static analysis of changes in the class hier-

archy, Algorithm 2 is adapted. In the runtime phenomena usage scenario, instead of calculating

the cost of transforming from one class tree to another, it is necessary to estimate the risk of a

runtime phenomena. Using runtime phenomena estimation, a decision can be made on whether

or not to proceed with the dynamic update. This can be used as a guide for dynamic update

operator.

The algorithm to estimate runtime phenomena occurrence is given in Algorithm 9. This

algorithm is based on Algorithm 2 and Algorithm 4. The algorithm detects changes in pre-

decessor classes Cp related to the runtime phenomena, according to the cases described in the

previous section. Furthermore, identical to Algorithm 4, it detects changes in class members

Cm for the matched class by using procedure detectClassChanges.

Cost function δRP is used to estimate runtime phenomena based on the detected changes.

The input data of the cost function are: class with runtime phenomena c, predecessor classes

with changes associated with runtime phenomena Cp for class c and changes of members Cm.

The function implementation is arbitrary. The function can be implemented for different sce-

84

Runtime phenomena detection

Algorithm 9: Runtime phenomena estimation algorithm
input : class inheritance trees T1 in v1 and T2 in v2, cost function δRP
output: runtime phenomena estimation dRP based on the cost function δRP

1 dRP← 0;
2 foreach class c in T1 do
3 Cp← (∅,∅,∅);
4 Cm←∅;
5 Pε1← getPreds(T1, c);
6 if contains(T2, c) then
7 Pε2← getPreds(T2, c);
8 Cp← detectRPInheritanceChanges(c, Pε1, Pε2, T1, T2);
9 Cm← detectClassChanges(c, T1, T2);
10 else
11 Cp← (∅,Pε1,∅);
12 end
13 if Cm 6=∅ ∨ Cp 6= (∅,∅,∅) then
14 dRP← dRP +δRP(c,Cp,Cm);
15 end
16 end

17 foreach class c in T2 do
18 Pε2← getPreds(T2, c);
19 if not contains(T1, c) then
20 Cp← (Pε2,∅,∅);
21 dRP← dRP +δRP(c,Cp,∅);
22 end
23 end

narios, where the emphasis of cost can be on specific runtime phenomena or changes in the

relationship between classes, therefore it is set as the algorithm input. For example, runtime

phenomena absent and lost state that occur due to field changes can be calculated based on

the number of changed fields. Furthermore, the cost function can differentiate runtime phe-

nomena related to class local and inherited changes. Inherited changes may be considered less

significant if the changed member is less accessible by a restrictive modifier (e.g. private).

The algorithm uses several procedures, which are described as follows. Procedure detect-

ClassChanges returns class member changes as a tuple (Cm). The first value in the tuple is

set of changed methods and constructors, whereas the second, set of changed fields. While

the detectRPInheritanceChanges procedure returns the inherited changes Cp as a triplet

(3-tuple), which contains added, deleted, and moved predecessor classes. Added and deleted

predecessor classes, detected at lines 11 and 20 in Algorithm 9, are used to estimate possible

absent state due to changed type relationship between classes. Meanwhile, at line 8 the detected

added, deleted and moved predecessor classes are related to estimation of absent state related

to fields, oblivious update, lost state and phantom objects. In this dissertation call dependency

85

Runtime phenomena detection

Algorithm 10: Procedure detectRPInheritanceChanges(c, Pε1, Pε2, T1, T2)

1 procedure detectRPInheritanceChanges(c, Pε1, Pε2, T1, T2)

2 (Ca,Cd,Cm)← (∅,∅,∅);
3 foreach class c in Pε1 do
4 if contains(Pε2, c) then
5 if detectClassChanges(c, T1, T2) then
6 Cm←Cm∪{c};
7 end
8 else
9 Ca←Ca∪{c};
10 end
11 end
12 foreach class c in Pε2 do
13 if not contains(Pε1, c) then
14 Cd ←Cd ∪{c};
15 end
16 end
17 return (Ca,Cd,Cm);

analysis is not performed, and therefore broken assumptions and transient inconsistency are not

considered. Furthermore, procedure getPreds returns predecessors and corresponds to the pro-

cedure used in the TID algorithm (Algorithm 2), with a difference that classes are used instead

of nodes.

Procedure detectRPInheritanceChanges is used to detect changes in predecessor classes

related to the runtime phenomena. The difference to the procedure detectInheritanceChanges

in TID algorithm (Algorithm 3) is in the detection of moved classes. Regarding runtime phe-

nomena in the inheritance relationship, as mentioned in Chapter 5 and the previous section, the

distance between classes in the class hierarchy is not important as the changes in class members.

Therefore, the move operation is detected as change in class members for predecessor class.

Procedure detectRPInheritanceChanges is shown in Algorithm 10. The changes in added

and deleted predecessors correspond to the procedure detectInheritanceChanges. However,

to detect moved classes by changes in the class members, procedure detectClassChanges is

used. The return value is triplet where the values are: set of added (Ca), deleted (Cd), and moved

(Cm) predecessor classes.

As already mentioned, runtime phenomena are detected over changed predecessor classes

and changed members. According to the runtime phenomena in the class hierarchy described

in Section 6.2.2, added predecessor class can result in absent state and oblivious update. Mean-

while, the deleted predecessor class is found in phantom objects and the lost state. Changes in

class members or members of predecessor class can cause absent state if the fields are added,

lost state if the fields are deleted, and oblivious update in the case of constructors changes. This

86

Runtime phenomena detection

process to determine runtime phenomena can be used in the δRP function, and it can also be

used to determine classes with risk of runtime phenomena.

The algorithm to detect classes in the class hierarchy classified by the possible runtime phe-

nomena is shown in Algorithm 11. Changes in predecessors are obtained by the procedure

detectRPInheritanceChanges as triplet (Pa,Pd,Pm). If there is deleted predecessor for the

class c, then it is added as the phantom object class to Ph at line 11. In contrary, if a class is

added as predecessor to the class c, it is added as the oblivious update class to Ob. Similarly,

if class c or its predecessor class from Pm contains constructors changes, then class c is added

to Ob. Furthermore, class c is added as the absent state class to As f , if the predecessor class is

added (Pa 6=∅). The same is true for for cases when the field is added to class c (set Cm) or to

the predecessor class from Pm (line 17). Classes are added as lost state classes Ls if predecessor

is deleted, or a field is removed from classes c or Pm. Classes related to the absent state for type

comparison are straightforwardly detected as added and deleted predecessor classes of class c at

lines 29 and 23. As a result, Algorithm 11 provides a classification of classes involved in possi-

ble runtime phenomena after the dynamic update. To detect a particular runtime phenomenon,

the algorithm can be enhanced by additional constraints to classify phenomena. For example,

detection of absent state can be constrained by the existence of a class field, and lost state by

detecting a change in field type.

6.4 Discussion of runtime phenomena in extended

DAOP update model

In the introduction to runtime phenomena, Section 6.2.2 describes that runtime phenomena de-

pends on the dynamic update procedure. For example, in the presented DAOP model in Subsec-

tion 5.4.2 in Chapter 5, state transfer procedure copies field values from the object in the current

program version to the updated version. The described procedure avoids the occurrence of lost

state phenomena in cases when dynamic class is used. Furthermore, the state transfer procedure

provides the initialization of changed field with the current field value or constant value. Ini-

tialization of the added field with constant value can avoid an absent state for fields. Similarly,

initialization of field with a changed type (e.g. integer to string) using the current value can

prevent a lost state. Moreover, if the constructors are changed to accommodate initialization of

the added field and the field value is correctly initialized by the state transfer procedure, then

an oblivious update is prevented. By introducing dynamic classes to handle type relationship

changes in the class hierarchy, an absent state regarding type changes is avoided. Furthermore,

dynamic aspect classes are created to replace statements that contain type comparison, there-

fore in these cases an absent state regarding type relationship cannot occur. Phantom objects

are handled by DAOP model with the DSU manager and virtual machine (VM). DSU manager

87

Runtime phenomena detection

Algorithm 11: Runtime phenomena classes detection algorithm
input : class inheritance trees T1 in v1 and T2 in v2
output: classes with changes that results in possible runtime phenomena, Ph - phantom,

Ob - oblivious, Ast - absent state type, As f - absent state fields, Ls - lost state

1 Ph,Ob,Ast ,As f ,Ls←∅;
2 foreach class c in T1 do
3 Pa,Pd,Pm←∅;
4 Cm←∅;
5 Pε1← getPreds(T1, c);
6 if contains(T2, c) then
7 Pε2← getPreds(T2, c);
8 (Pa,Pd,Pm)← detectRPInheritanceChanges(c, Pε1, Pε2);
9 Cm← detectClassChanges(c, T1, T2);
10 if Pd 6=∅ then
11 Ph← Ph∪{c};
12 end
13 if Pa 6=∅ ∨ constrChange(Pm) ∨ constrChange(Cm) then
14 Ob← Ob∪{c};
15 end
16 if Pa 6=∅ ∨ addFieldChange(Pm) ∨ addFieldChange(Cm) then
17 As f ← As f ∪{c};
18 end
19 if Pd 6=∅ ∨ removeFieldChange(Pm) ∨ removeFieldChange(Cm) then
20 Ls← Ls∪{c};
21 end
22 else
23 Ast ← Ast ∪Pε1;
24 end
25 end

26 foreach class c in T2 do
27 Pε2← getPreds(T2, c);
28 if not contains(T1, c) then
29 Ast ← Ast ∪Pε2;
30 end
31 end

sets unused fields of reference type to null value. In the current prototype implementation, when

the dynamic class objects are created. Any object from previous version that is not referenced,

VM marks for garbage collection.

The presented model cannot handle cases that require the intervention of a programmer to

transfer the state. For example, if the changed field is an array or collection of reference type.

Because of runtime polymorphism, the automatic state transfer procedure cannot predict correct

initialization in updated version. Objects contained in the array can be of different types that

require runtime analysis to resolve objects with dynamic changes. Such cases requires higher

88

Runtime phenomena detection

risk in the estimation by appropriate cost function. Moreover, Algorithm 11 detects changes

in classes with runtime phenomena related to field changes, whether one or multiple fields

change. However, multiple field changes pose higher risk of runtime phenomena. Chapter 9

further discusses runtime phenomena detection regarding the presented update model and cost

function δPR implementation for the model.

89

Chapter 7

Measurement methodology for
performance benchmarking

Although there are many studies and solutions to various problems in dynamic software updat-

ing, there is a lack of research that compares various approaches concerning supported changes

and demands on resources. This chapter describes the benchmark methodology regarding the

computer resources to compare DSU approaches in Java. Based on the given methodology, the

design of the benchmark tool is described.

7.1 Discussion

There are currently several approaches for Java programming language that use techniques

which differ in dynamic updating logic [12, 15, 21, 22, 27]. Some of these approaches can

be found in development environments [3, 11], which grows the acceptance of dynamic updat-

ing. However, there is a lack of comparison of different approaches. Existing approaches are

categorized in this chapter and the impact of DSU on computer resources is measured in the

Chapter 9.

Seifzadeh et al. in [29] introduce various environment independent evaluation metrics of

the DSU, which are a generalization of certain metrics used in this dissertation, such as update

timing and supported changes. However, in this dissertation the focus is on Java-based ap-

proaches because of the OO paradigm, which is additionally categorized by used mechanisms

and necessary program adaptations.

In the related literature [3, 9, 14, 15, 27] the steady state is measured on a specific DSU

approach, while it is necessary to compare various DSU approaches. In [9, 14, 15], modi-

fied JVM approaches are evaluated by comparing the duration of modified garbage collection,

measured by microbenchmark tests that perform class field changes. In contrast, to compare

and evaluate different approaches various tests are necessary. DAOP approaches, [21, 22, 27]

90

Measurement methodology for performance benchmarking

evaluate dynamic aspect weaving and woven code performance, because they are dynamic as-

pect systems, where DSU requires the performance comparison of program before and after the

dynamic changes.

In [91], the authors introduce a quantitative cost-benefit model to estimate gain when using

the dynamic updating approaches compared to other updating techniques. This comparison

is expressed by a single revenue value calculated based on the estimated model parameters.

This estimation differs because the parameters significantly differ across various application

domains.

7.2 Measurement methodology

Software performance in DSU environments is inherently lower when compared to environ-

ments without DSU functionality [29]. The time required to perform dynamic updates should

be as minimal as possible as well as demands on resources before and after the update [1, 11,

12, 20]. To compare DSU approaches, focus is on several measurements: steady state overhead,

time duration necessary to perform the dynamic update, modified state overhead, and impact on

memory usage.

7.2.1 Steady state overhead

Dynamic updating logic should not affect program execution when there are no dynamic up-

dates, in steady state. To measure the impact of dynamic updating logic on program execu-

tion in steady state, it is necessary to compare program execution time in the unmodified en-

vironment to execution time in an environment that enables dynamic updating; as found in

[9, 14, 15, 15, 19, 27]. These environments differ only in dynamic updating logic. Execution

overhead is calculated as the difference in percentage between execution time in an environment

with and without dynamic updating.

7.2.2 Update duration

Dynamic update duration is one of the performance characteristics that is used in DSU evalu-

ation [1, 11]. It consists of preparation time and time to perform an update. Preparation time,

for example, can include the time waiting for a safe point to occur and the time to load class

files into memory. Update duration may also include the time to restore the program to nor-

mal execution. In more detail, DSU approach to apply a dynamic update may discard JVM

optimizations, such as previously optimized compiled code. Consequently, the program exe-

cutes more slowly because JVM requires some time to adapt to a current update, as shown by

Würthinger et al. in [15]. The duration of the performance-related transient state is affected not

91

Measurement methodology for performance benchmarking

only by dynamic update implementation but also by internal JVM mechanisms (e.g. JIT, OSR).

Therefore, it is complex to measure, and it is also out of the scope of this dissertation. Update

duration is measured as time elapsed between the moment when the dynamic update is invoked

and the moment when dynamic update logic resumes normal program execution, as shown in

Figure 2.2.

7.2.3 Modified state overhead

DSU can introduce performance overhead in method executions after the dynamic update [3,

20]. Depending on the approach, overhead can be persistent or temporary. Overhead can be

persistent in approaches with inserted code snippets, such as join-point activation in DAOP

[20, 23] and proxy calls in JVM agents [3, 37]. Temporary execution performance degradation

is a characteristic of some modified virtual machine approaches [9, 14, 15]. Optimizations are

invalidated after the update and gradually recovered. As stated in the previous subsection, the

time between invalidated optimization and recovery is denoted as transient time. To compare

approaches by execution overhead, it is necessary to measure the execution time for the dy-

namically updated method and method updated with the restart procedure. Furthermore, two

separate measurements are performed: short and long term. Short term execution refers to the

first method call after the update. Long term execution involves multiple calls of the same

method in a sequence. These two cases differ because VM perform optimizations in the case of

methods with multiple calls.

7.2.4 Memory usage

Using a DSU can increase the risk of excessive memory usage, especially in approaches that

allow different program version coexistence, such as [1, 9, 15]. Memory usage can be monitored

before the dynamic update, during the dynamic update, immediately after the dynamic update

and when modified code resumes execution. However, there is a lack of research which includes

this type of measurements for Java approaches. To determine dynamic updating impact on

the memory usage, the difference in memory usage is measured before and after the update.

Furthermore, difference in memory usage can be measured running a method on updated and

unmodified class.

7.3 Benchmark architecture

Although many dynamic updating approaches rely on the HotSwap mechanism interface [16,

21, 23, 27], a standard dynamic updating management interface across different approaches

currently does not exist. Each approach has a specific implementation and interface. Figure

92

Measurement methodology for performance benchmarking

Helper #1 Helper #n...

Benchmark tool

Micro benchmark tests

Macro

benchmark

tool

DSU JVM

Figure 7.1: Benchmark architecture

7.1 shows a benchmark architecture that consists of several tools to perform performance eval-

uation. A benchmark tool is developed to perform micro and macro benchmark tests. Macro

benchmark tests are part of existing benchmark tools, such as [92], which are usually used

to evaluate system performance by typical software usage scenarios as they simulate real-world

applications (e.g. scientific computation, text processing). In the context of DSU [3, 15, 22, 27],

macrobenchmark tests are used to evaluate steady state overhead of DSU on program execution.

Macrobenchmark tests are performed on the environment without DSU and the results are com-

pared to the results of the environment with DSU support. Meanwhile, microbenchmark tests

evaluate DSU implementation by various program change test cases. Evaluation is performed

by measuring dynamic update duration, program execution speed before and after the dynamic

update, and memory overhead. Furthermore, to perform measurements, additional helper tools

for each approach are required. Helper tools are used as interfaces to invoke dynamic update

on a specific approach, which contain microbenchmark tests that are supported by the approach

and contain shared logic to perform measures. Microbenchmark tests are manually adapted for

each approach to achieve the same program change across approaches. For example, DAOP

approaches require program adjustments similar to those described in [24].

7.3.1 Benchmark tool

The benchmark tool that is developed to evaluate performance consists of components: mac-

robenchmark, runner and result. Each component implements interfaces to support various

benchmarks and DSU approaches. The steady state measurement described in the previous sec-

tion can be measured with existing macrobenchmark tools as standard performance evaluation

tools. Therefore, a benchmark tool uses an interface Macrobenchmark, which each used mac-

robenchmark component should implement. The interface consists of run method that receives

options to select tests that the macrobenchmark tool supports and options to adjust the testing

environment (e.g. heap size). Meanwhile, microbenchmark tests, in contrast to the existing

macrobenchmark tests, are used to evaluate DSU performance. The runner component shown

in Figure 7.2 implements an interface with methods for executing selected microbenchmark

93

Measurement methodology for performance benchmarking

Figure 7.2: Benchmark tool components

tests on a particular approach. Component defines supported microbenchmark tests and ini-

tialize environment for the approach (e.g. Java version). Furthermore, method run in runner

component, executes tests with the helper tool (DSUHelper). Helper tool is developed for the

specific DSU approach, and is used as interface to approach. DSU approach performance is

measured with helper tool, while VM performance is measured as a reference for comparison.

Furthermore, the result component manages measured values and perform statistical calculation

on the values, such as mean, standard deviation, error and confidence intervals.

7.3.2 DSU interfaces (helper tools)

To achieve “write once” tests for every tested approach, a universal format is required for

the description of changes. However, the universal format does not currently exist. Therefore,

for each tested DSU approach helper tool contains microbenchmark tests and interface to run

selected tests. Helper tool is used by the runner component of benchmark tool as described in

the previous subsection. Each test extends RunTest component (Figure 7.3), with functionality

to perform measurement for DSU approach. RunTest component based on the arguments from

the benchmark tool measures dynamic update duration, memory usage, and execution time of

the test method. Furthermore, RunTest component provides a warmup phase by running the

provided warmup method and by cleaning the memory before proceeding the measurement.

Warmup methods are used to achieve state of the VM after the VM start up phase, when the

execution of the program code is at an optimal level. Memory cleaning is performed to avoid

the influence of garbage collection phase to measure only dynamic changes. To prevent the

garbage collection phase being measured, the memory is cleaned by performing garbage col-

lection before the change duration test. Therefore, RunTest component is connected to the

running environment (i.e. VM), as shown by benchmark architecture in Figure 7.1. The Runtest

component can run tests in multiple times on a single VM instance or by running a separate VM

94

Measurement methodology for performance benchmarking

Example 7.1: Fact test class example
1 public class Fact implements TestClass {

2 /** Recursive fact function implementation

3 * @param n

4 * @return

5 */

6 public int calculate(int n) {

7 if(n <= 1) {

8 return 1;

9 } else {

10 return calculate(n - 1) * n;

11 }

12 }

13

14 @Override

15 public Object warmupMethod(Object ... args) {

16 return this.calculate(args [0]);

17 }

18

19

20 @Override

21 public Object measureMethod(Object ... args) {

22 return this.calculate(args [0]);

23 }

24 }

instance for each iteration. To perform change from the initial to the modified version of the

program code within the test, each test extends RunTest component by implementing change

method. Furthermore, the tests contain test classes with changes in program code. The test class

implements TestClass interface, which defines warmup method and method used for execu-

tion time measurement, before and after the update. An example of test class Fact is shown in

Example 7.1.

7.3.3 Microbenchmark test cases

Microbenchmark tests are developed in accordance to the program changes classifications given

in Chapter 3 and shown in Table 7.1. Manual adaptation of tests is performed for evaluated DSU

approach, and tests are part of the corresponding helper tool. In extended DAOP approaches,

as a consequence of client/supplier architecture, changes in class members that are not used

in program code are neglected. Therefore, basic tests are omitted for DAOP. However, basic

changes are supported by the presented benchmark tool because modified VM and Java agent

detect such changes. The emphasis is on the compound changes, as the DSU approach presented

in this dissertation is based on DAOP. For compound changes, microbenchmark test is created as

a member change and method body change, where the method with changed body uses changed

members. The created tests are based on changes in Fact class members. For example, multiple

test (Example 7.2) consists of several changes: removed field (RF), removed constructor (RCo),

95

Measurement methodology for performance benchmarking

change

RunTest

method

exec change

memory

selfTest

single

multiple

TestClass

warmup measure

init/
prepare

measurement

ru
n

ty
p
e

warmup misc

methods

update

duration

m
e
a
s.

 t
y
p
e

clean

Figure 7.3: RunTest and ClassTest component

Table 7.1: Microbenchmark tests by classification

Type Level Test/Modification

Basic

1 Method body (MB)

2

Add/Remove Method (AM/RM)

Add/Remove Constructor (ACo/RCo)

Add/Remove Field (AF/RF)

Add/Remove Class (AC/RC)

3
Add/Remove supertype (AS/RS)

Add/Remove Interface (AI/RI)

Compound
2

AM/RM + MB

AF/RF + MB

ACo/RCo + MB

AC/RC + MB

3 Multiple

method body change (MB), added field (AF), added constructor (ACo), added method (AM),

added class (AC), and hierarchy change as added supertype (AS). Such a change in one class

is not likely in actual scenarios, but as a microbenchmark test, it can provide insight into how a

particular DSU approach performs multiple changes.

In the multiple test case, class Fact changes the implementation of method calculate

from recursive to iterative algorithm. Furthermore, fields count and counter are deleted to-

gether with method getCallsCount, which returns the value of the removed field counter.

The abstract class Algorithm is added as a parent to class Factcontaining the field name. Fur-

96

Measurement methodology for performance benchmarking

Example 7.2: Program changes for Multiple microbenchmark test
1 / * o r i g i n a l * / / * m o d i f i e d * /
2 p u b l i c c l a s s F a c t { p u b l i c c l a s s F a c t ex tends Algor i t hm { / * (AS) * /
3 p r i v a t e i n t c o u n t e r = 0 ; / * (RF) * / p r i v a t e i n t r e s u l t ; / * (AF) * /
4 p r i v a t e boolean c o u n t = f a l s e ;
5
6 p u b l i c F a c t (boolean c o u n t) { / * (RCo) * / p u b l i c F a c t () { / * (ACo) * /
7 t h i s . c o u n t = c o u n t ; t h i s . name = " f a c t " ;
8 } }
9

10 p u b l i c i n t c a l c u l a t e (i n t n) { p u b l i c i n t c a l c u l a t e (i n t n) {
11 i f (c o u n t) c o u n t e r ++; / * (MB) * / i n t r e s = 1 ; / * (MB) * /
12 i f (n > 1) {
13 i f (n <= 1) { f o r (i n t i = 1 ; i <= n ; i ++)
14 re turn 1 ; r e s *= i ;
15 } e l s e { }
16 re turn c a l c u l a t e (n − 1) * n ; re turn r e s u l t = r e s ;
17 } }
18 }
19 p u b l i c i n t g e t C a l l s C o u n t () { / * (RM) * / p u b l i c vo id g e t L a s t R e s u l t () { / * (AM) * /
20 re turn c o u n t e r ; re turn r e s u l t ;
21 } }
22 } }
23
24 p u b l i c a b s t r a c t c l a s s Algor i t hm { / * (AC) * /
25 p r o t e c t e d S t r i n g name ;
26 }

thermore, the constructor that uses the deleted fields is removed and a new constructor is added

that initializes the inherited field name. The field (result) containing the last calculated result

is added along with the method that returns the value of the field (getLastResult).

97

Chapter 8

Prototype system

The prototype system consists of several components implemented in two tools: offline tool

and online. The offline tool as standalone application contains analysis of program versions,

and a generator that produces classes to perform dynamic updates. Whereas, the online tool

starts with a program that is dynamically updated and is responsible for loading changes and

managing objects to perform dynamic updating. This chapter describes each component as a

part of prototype system in relation to the process of the dynamic updating.

8.1 Prototype structure

The offline tool analyzes program versions source code and produce change specifications in

the form of aspect and Java classes. Analysis is in the form of previously described algorithms

for detecting changes between versions and for detecting runtime phenomena. The online tool

is implemented as a Java agent. The online tool loads dynamic update classes, manages the

update process and performs updates by dynamically inserting (i.e. weaving) aspects.

The steps of dynamic update process are described by Algorithm 12. The offline tool loads

source code of currently running version v1, and dynamically updated version v2. Furthermore,

the offline tool uses the Java compiler to compile source code and to access information about

versions to create trees T1 and T2 representing class hierarchy in versions v1 and v2. Algorithms

to detect program changes presented in Chapter 5 and runtime phenomena in Chapter 6 are ex-

ecuted on the created trees. The user performing the update is notified about the results of these

algorithms. If the user approves the update, then the classes to perform the dynamic update are

generated. After generating update classes, the online tool loads aspects and wove advice code

at the required join point. Finally, the online tool manages the update process by performing

object conversion to updated version and allowing access to restricted class members in the

currently running version.

Figure 8.1 shows both the offline and online tool, and also the main components. The offline

98

Prototype system

Algorithm 12: Prototype system dynamic update process steps

1 load source code v1 and v2;
2 compile source code to get object code;
3 create class hierarchy trees T1 and T2;
4 detect hierarchy and class members differences;
5 detect runtime phenomena;
6 notify user and ask for proceeding;
7 if user approves update then
8 generate dynamic update classes;
9 perform update by DAOP;
10 end

Figure 8.1: Prototype system tools

tool consists of: version info manager, program changes and runtime phenomena analysis, and

dynamic update class generator. The online tool contains dynamic changes loader, dynamic

update manager and dynamic weaver. These components are described in more detail in the

following sections.

8.2 Creating version and source info

The version manager provides analysis of local and remote repositories. Remote repositories

are obtained from online source code repositories, such as GitHub. The version manager de-

termines the version details based on the release tag (e.g. whether version is major, minor or

pre-release). The version manager enables evolution analysis by obtaining version information

based on the version tag. In Chapter 9, it is used to compare versions in a sequence of releases

or to compare major version and the corresponding minor versions and revisions.

The version manager contains information about the source for each version obtained by

source code analysis. The process of creating source information in the info component is pre-

sented in Figure 8.2. The version manager obtains versions from local or remote repositories.

It analyzes version tags and locates source files for each version. Retrieved source code is

compiled using the Java compiler to create source code information based on the information

99

Prototype system

about classes. Source code information consists of metadata objects about packages, classes,

and class members (i.e. fields, methods, and constructors).

local

Java Compiler
• elements
• trees (AST)

analyzeparse

v1 info

Version manager

remote

Source
code

re
p

o
s
it
o

ry

vn info…

Class

Fields Methods S
o

u
rc

e
in

fo
 v

n

…

Element

visitor

Figure 8.2: Version info manager and source info creation process (info component)

8.3 Source code analysis

Source code analysis is performed in different steps as part of the offline tool. Because the Java

compiler API is used to obtain the version information and to generate classes, in this section

the visitor pattern is described.

The Java compiler internally uses the visitor design pattern to generate the class files from

the given source files. Two types of the visitor pattern can be used to analyze program from

source through javac API. First, ElementVisitor (Figure 8.2) enables access to program ele-

ments, such as methods and constructors (also referred to as executables), packages, and vari-

ables. Second, TreeVisitor enables access to various program Abstract Syntax Trees (AST),

such as blocks, loops, assignments. The first can be used for structural and the second can be

used for intraprocedural and interprocedural analysis of the program. The Version manager in

Figure 8.2 uses the visitType method in the element visitor to create information about classes

for the program version. Element visitor is used to compare classes and class members as struc-

tural analysis, but it cannot be used to detect constructor or method body changes. Therefore,

AST MethodTree is used to obtain executable statements, conforming to the intraprocedural

analysis. Meanwhile, tree visitor is also used to generate classes for the dynamic update. In

prototype implementation, tree visitor is used to extract detected changes as ASTs and to per-

form statement adjustments for dynamic update.

Tree visitor is used to generate classes instead of using the bytecode manipulation frame-

work, such as ASM [93] or Javassist [94]. Because the Java compiler provide both element

and visitor pattern, in a single invocation to the compile process, elements and trees (ASTs)

can be obtained to perform both program analysis and adjustments. Consequently, when us-

100

Prototype system

ing the standard Java compiler there is no need for additional frameworks and program analy-

sis. Adjustments are not performed on the bytecode but are instead performed on the AST as

higher level of abstraction, which simplifies implementation. To create statements as AST, the

TreeMaker class provided by Javac compiler is used and extended, similar to the NetBeans IDE

[95].

8.4 Changes and runtime phenomena detection

The algorithms presented in Chapters 5 and 6 are implemented in the analysis component of the

offline tool. As described, both algorithms as input receive class trees T1 and T2 representing two

program versions. The class trees are created based on the source code information obtained in

the info component. Information about the structure of the source code in the form of parent for

each class is used to create a class hierarchy.

Figure 8.3: Analysis component process

An analysis process is shown in Figure 8.3. Based on the source information in v1 and v2,

trees T1 and T2 are created as input for algorithms. Algorithm 4 detects changes between two

program versions, and Algorithms 9 and 11 detect runtime phenomena. The changes detection

algorithm results in a list of changes in: hierarchy of classes (i.e. type change), members and

overriding methods. The produced lists are used as an input for the class generator component.

The runtime phenomena algorithms estimate the runtime phenomena between two program

versions and provide list of the potential runtime phenomena. The results of the runtime phe-

nomena analysis are available to the dynamic update operator. Based on the given information,

101

Prototype system

the operator can decide whether to proceed with dynamic update or to make additional adjust-

ments. For example, the operator can make source code adjustments to the dynamic update

classes and restart the analysis, or add appropriate state transfer logic based on the program

semantics and analysis results.

8.5 Class generator

Chapter 5 describes how several classes are generated to enable dynamic updating, as follows:

dynamic, diff and dynamic aspect classes. Generating classes relies on the standard Java com-

piler (javac) API. AST trees are used to modify statements and generate classes for update

(Figure 8.4). The Java compiler consists of several phases, where in the parse phase, AST

trees are generated from the input source code (Figure 8.2). However, to obtain statements in

methods and constructors, it is necessary to obtain ASTs after the analyze phase.

Classes detected as type changed classes, as a result of Algorithm 4, are used to create ASTs

of dynamic classes. AST of dynamic class is copy of AST of the changed class in v2, where the

class name is modified by adding the suffix "Dynamic". Created AST of dynamic class is added

to the list for the dynamic class. Furthermore, classes detected as type changed classes, are used

to detect statements in v2 that use these classes as types. Every statement containing a changed

class as type is changed to use dynamic class. Change is performed by the tree visitor, where

on each visit the AST containing changed class is replaced by the AST containing introduced

dynamic class. Furthermore, each class member containing changed class as type is added to

the diff class. Therefore, methods and constructors with parameters of changed type result

in adding their AST to the list for the diff class. Similarly, AST of fields containing changed

classes as type are also added to the list for the diff class. Meanwhile, dynamic aspect classes are

created to replace usage of these class members in the methods and constructors, conforming to

the client-supplier pattern described in Chapter 5. Also statements with changed class as type in

the constructor and method body are replaced by dynamic aspect. Therefore, ASTs of affected

methods and constructors are added to the list for dynamic aspect classes.

Figure 8.4: Generator component steps

102

Prototype system

Based on the detected changed class members as a result of Algorithm 4, methods with

changed body are added to the aspect method list, whereas added and deleted methods are

added to the list for the diff class list. Because constructors are detected as a special kind of

method, the same applies to the constructors. Furthermore, added and deleted fields are added

to the list for the diff classes.

Before creating AST for dynamic update classes based on the lists defined in the previous

steps, it is necessary to process the statements in methods and constructors added for diff and

dynamic aspect classes. Such statements are detected by Tree visitor (Figure 8.4) and modified

by Tree maker. Statement processing copies and modifies statements that access class members

to allow access within the created diff and dynamic aspect classes. There are two particular

cases: when accessing local members and when the access modifier is restrictive. In the first

case, statement is modified by replacing the keyword this with target, or by adding the

keyword target if this is not used. In second case, the statement is replaced by the invocation

to method provided by DSU manager to enable access to the restricted class member. For

example, statement in the diff class accesses private members of the paired class. The method

of DSU manager for accessing a restricted member is described in Section 8.6.2. Furthermore,

overriding methods detected by Algorithm 4 are used to modify the invocation of such methods.

Similar to the restricted member access, the invocation statement is replaced by the invocation

to a method defined by the DSU manager, which handles the dynamic dispatch for changed

overriding methods. The altered dynamic dispatch Algorithm 7 is described in Chapter 5 and

the implementation is described in Section 8.6.2.

After the modification of statements it is necessary to generate dynamic update classes. The

classes for dynamic update are created based on the ASTs lists and by using Tree maker. Then,

ASTs of dynamic, diff, and dynamic aspect classes as compilation unit trees are converted to

the source code. In the last step, the v2 source code with the source code of generated classes is

compiled to bytecode, creating the .class files that are loaded by the online tool described in

Section 8.6.

8.6 Java agent

To instrument JVM and execute together with the program, the online tool is implemented as

a Java agent. The online tool loads changes in the form of classes generated for dynamic up-

date, activate dynamic aspects by using DAOP and manages updated program execution. These

functionalities are implemented as components described in this section. Furthermore, in order

to perform a dynamic update using the DAOP model, it is necessary to use a DAOP imple-

mentation. In this dissertation two implementations of the DAOP are used for prototype: Prose

and dynamic weaver built in the online tool. The implemented dynamic weaver is intended for

103

Prototype system

dynamic updating, while Prose is intended to support dynamic aspects and does not support

constructor redefinition. Figure 8.5 shows the Java environment stack where online tool and

DAOP as Java agents are on the top of the virtual machine. Therefore, presented architecture of

online tool is flexible regarding used DAOP implementation.

JVM

DSU tool

Program

DAOP

Figure 8.5: Online DSU tool and DAOP in Java environment stack

8.6.1 Loading changes

The online tool loads changes in the form of generated bytecode files (.class) by instantiating

dynamic aspects. The online tool component for loading changes consists of a file watcher, as-

pect manager and weaver. The file watcher monitors the folder containing the running program

class files, whereas the aspect manager manages changes by inserting or withdrawing dynamic

aspects. To dynamically insert aspects, the aspect manager uses dynamic weaver.

File

watcher
Weaver

C

Aspect

manager

create

insert/
withdraw

Class loader

Reflection

J
V
MCC

Figure 8.6: Dynamic aspects loading and weaving process

Figure 8.6 shows the process of loading changes. When dynamic aspect file is added to the

monitored folder, the file watcher detects a change and invokes the aspect manager. The aspect

manager instantiates a dynamic aspect class using the JVM reflection API, stores the aspect

object in the register of created aspects, and then inserts the aspect into the running program

using the weaver. In the case of a deleted dynamic aspect file, aspect manager retrieves the

dynamic aspect object from the register and uses the weaver to withdraw the aspect from the

104

Prototype system

running program. After inserting dynamic aspects, the statements in the aspect advices use

dynamic update classes. These classes include generated diff, dynamic and standard Java classes

that are defined in the updated program version. Therefore, when JVM executes statements that

use these classes, the class loader in JVM loads the classes by searching the folder containing

the running program.

8.6.2 DSU manager

Statements in the generated classes, as described in Section 8.5, contain invocation of meth-

ods defined in DSU Manager. The DSU Manager is implemented as a class containing static

methods to provide dynamic changes of objects. Several methods can be used for executable

members invocation and field access, a list is given in Example 8.3. A detailed functional

description and algorithms implemented in these methods are described in Chapter 5.

Access handling

Object mapper

Instrumenation

Reflection

JVM

DSU Manager

Figure 8.7: Dynamic object managing based on the Java instrumentation and reflection API

Figure 8.7 shows the two main components of the DSU Manager: Object mapper and Ac-

cess handling. Both components in the implementation use methods provided by reflection and

instrumentation API of JVM. Object mapper is used to pair objects of initially running version

to the corresponding diff objects. When statements access class members defined in the diff

class, then the DSU Manager on the first access instantiates a diff class object and stores the

diff and initial version (v1) object as a pair using the Object mapper. On subsequent access,

the DSU Manager retrieves the corresponding diff object from Object mapper, based on the

given initial version object. Object mapper is implemented in method Diff. In Example 8.1,

Diff method is used to invoke the method m() from the updated version implemented in the

diff class. Therefore, to invoke method m() on the existing object obj, Diff method is used to

obtain the diff object. Furthermore, as part of the Object mapper, copyState is implemented

105

Prototype system

as state transfer method; as described in Subsection 20. In Example 8.2, it is assumed that the

Board class contains a field of type Food, which is a dynamic class. Therefore, according to

the Section 8.5, the diff class BoardDiff is created. Method copyState is used to transfer the

state when instantiating the diff object, by copying fields values from an existing object of the

class Food to the object of dynamic class FoodDynamic.

Example 8.1: DSU Manager Diff method invocation usage example

/* original */ /* dynamic */

obj.m(); DSUManager.Diff((Object)obj).m();

Example 8.2: Use of method copyState in diff class to convert dynamic class field food

public BoardDiff(Board target) {

this.target = target;

this.food = new FoodDynamic(target , target.elementSize);

Food oldfood = target.food;

DSUManager.copyState(oldfood , food);

}

Access handling is implemented as methods providing access to fields and methods with

restricted access modifiers and enables changes in the constructors and overriding methods.

Regarding executable members, there are methods to invoke constructor, parent constructor,

method, and overriding method. Handling constructor invocation is required for constructor

changes when constructor is defined in the diff classes. Meanwhile, method invocation is used

by statements in the diff and dynamic aspect classes that invoke methods with restricted ac-

cess. Furthermore, changes regarding overriding methods are handled by the dynamic dispatch

algorithm defined in Algorithm 7, implemented as a method in the DSU Manager. As afore-

mentioned, invocation statements to the changed overriding methods are replaced as invocation

to the dynamic dispatch method. Meanwhile, regarding access to the fields, two methods are

provided for reading from (getField) and writing to (setField) a field. Therefore, statements

in diff and dynamic aspect classes that read or write to a field with restricted access modifier,

are replaced with the statement invoking methods getField and setField. Both methods

for accessing restricted fields and methods (invMethod) are implemented by using method

setAccessible from the reflection API.

Example 8.3: DSU Manager methods prototype

Object DiffConstr(Class objClass , Object ... args);

Object DiffConstrSuper(Object obj , Object ... args);

Object invMethod(Object target , String method , Object ... args);

106

Prototype system

Object invMethodOver(Object target , String method , Object ... args);

Object Diff(Object key , Class objClass , Class diffClass);

Diff(Object key);

Object getField(Object target , String field);

setField(Object target , String field , Object value);

void copyState(Object src , Object dst);

8.7 Dynamic aspect (DAOP) weaver

In the prototype system Prose is used as one of the implementations of DAOP. However, Prose

does not support redefinition of constructor body. To provide dynamic updates of constructor

body by Prose, in [24] constructor body is copied to special init method inserted in the initial

program version (v1). A built in dynamic weaver is implemented to support constructor changes

without modification on the initial program version. Since a built-in dynamic weaver is intended

for dynamic updating, both implementations are used in evaluation for comparison. However,

Prose is considered for dynamic update cases without constructor modification.

To implement DSU based on dynamic aspects, around advice is used only; therefore, it

is not necessary to support other advice types. Furthermore, because only the method and

constructor bodies are replaced, DAOP for DSU can be considered as a single join point single

advice DAOP. For example, in Figure 8.8, the CFG graph show how executing a statement with

invocation of method m() is followed by executing the statements contained in the method body.

In the case where multiple aspects define join-point for the same method, a dynamic aspect

system is required to execute advice from the aspects in the correct order. In the case of DSU,

only single aspect is processed to redefine body, which simplifies the DAOP implementation.

m();

stmt 1;

stmt n;

m() body

…
asp 1

asp n

…

Figure 8.8: Multiple aspects applied on single join point example

For the builtin weaver, similar to the Prose [27], the HotSwap feature of the JVM is used.

HotSwap enables redefinition of the running program method. Figure 8.9 shows the imple-

mented weaver structure. Component Interpreter analyzes the dynamic aspect structure. Prose

107

Prototype system

API is used to determine join point from the crosscut defined in the Prose dynamic aspect. The

first step is to determine the type of aspect: constructor or method. Then the Prose API is used

to determine the join point and to extract the advice body as bytecode statements. Furthermore,

to insert dynamic aspect, component Transformer is used. The Transformer component based

on the determined join point replaces the body with the bytecode extracted from the advice.

To replace the body, Javassist [94] bytecode manipulation framework is used. Finally, to per-

form weaving, the Transformer component redefines the changed classes by using the JVM

instrumentation API.

The described weaver structure allows the use of another aspect language (e.g. AspectJ

instead of Prose) if the appropriate library and aspect analysis is implemented. Furthermore,

bytecode manipulation is not restricted to Javassist, solutions such as BCEL [96] or ASM [97]

can also be used.

Instrumenation

JVM

Javassist

Prose

DAOP weaver

Transformer

Interpreter

Library API

Dynamic aspects

Figure 8.9: Weaver structure

108

Chapter 9

Evaluation

In this chapter the algorithms to detect program changes and runtime phenomena presented in

Chapter 5 and Chapter 6 are evaluated according to efficiency and applicability. Efficiency is

evaluated as a comparison of the algorithm’s execution time on the generated trees, where the

generated trees corresponds to the class trees with the distribution of nodes observed in several

open-source programs. Applicability is demonstrated by an empirical study conducted with

the algorithms on two open-source programs. Furthermore, the motivation to perform changes

in production environment is demonstrated by the implementation of a simple game, and by

examples of update versions. Meanwhile, measurement methodology is used on the various

DSU approaches and prototype system for comparison. The results are discussed to deter-

mine whether the presented approach conforms to the main requirements of the DSU system

described in Chapter 2.

9.1 Applicability

The ability of the algorithms to detect program changes and runtime phenomena is evaluated

by an empirical study on the source code in versions of two open-source programs. Program

changes are analyzed by Algorithm 4 and possible runtime phenomena are analyzed by Algo-

rithm 11. Furthermore, prototype applicability is evaluated by the implemented Snake game

with dynamic updates to two different versions.

9.1.1 Program changes analysis

Algorithms to detect program changes (Algorithm 4) and runtime phenomena (Algorithm 11)

are executed on program versions of two publicly available Java programs: Pinpoint* and New-

Pipe†. Pinpoint is Application Performance Management (APM) tool with about 4000 classes

*https://github.com/pinpoint-apm/pinpoint
†https://github.com/TeamNewPipe/NewPipe

109

Evaluation

in the latest version [93]. NewPipe is a streaming Android application with about 350 classes

in the latest version [63].

The class hierarchy of each version of the program is used as input for algorithms. Further-

more, for each program, there are two setups. In the first setup, algorithms are executed on trees

created from subsequent program versions; for example, the first pair is the first and second ver-

sion, the second pair is the second and third version, and so on until the last version pair. In the

second experiment setup, each program version (i.e. revision) is compared to its corresponding

minor version. For example, in PinPoint revision 1.7.3 is compared to minor version 1.7.0.

Given that some minor versions are unavailable, corresponding prerelease versions are used as

minor versions instead: release candidate (RC) in Pinpoint, and beta version in NewPipe. A

comparison to the major version could not be made because the major versions are unavailable

for the evaluated programs. Changes between program versions are detected in the form of

class, member, and inherited member changes. The results are shown in the following tables.

The first column in the tables denotes the program version. Changes analysis is performed on

all currently available versions, but the results shown in the tables are from the last 14 versions

for Pinpoint and the last 15 versions of NewPipe.

Table 9.1: Pinpoint class changes

Version NOC NOCH added deleted matched changed type changed members

p/m p/m p/m p/m p/m

1.7.0-RC1 3848 928 */* */* */* */* */*

1.7.0-RC2 3854 931 7/* 1/* 3848/* 2/* 74/*

1.7.0 3854 931 0/* 0/* 3855/* 0/* 74/*

1.7.1 3854 931 0/0 0/0 3855/3855 0/0 66/66

1.7.2 3899 911 181/181 136/136 3719/3719 6/6 326/326

1.7.3-RC1 3901 909 4/183 2/136 3898/3719 2/7 68/328

1.7.3 3901 909 0/183 0/136 3902/3719 0/7 62/328

1.8.0-RC1 4339 959 522/701 84/216 3818/3639 10/16 453/630

1.8.0 4347 961 8/709 0/216 4340/3639 0/16 80/632

1.8.1-RC1 4563 970 386/386 170/170 4178/4179 17/17 406/406

1.8.1 4563 970 0/386 0/170 4564/4178 0/17 80/421

1.8.2-RC1 4567 968 6/390 2/170 4562/4178 2/17 90/428

1.8.2 4568 969 3/392 2/171 4566/4177 0/17 70/430

1.8.3 4569 969 2/394 1/172 4568/4176 0/17 68/432

* results from previous versions are excluded

110

Evaluation

Table 9.2: NewPipe class changes

Version NOC NOCH added deleted matched changed type changed members

p/m p/m p/m p/m p/m

0.13.0-b 280 170 */* */* */* */* */*

0.13.1 280 170 0/0 0/0 281/281 0/0 32/32

0.13.2 287 174 9/9 2/2 279/279 0/0 48/51

0.13.3 274 162 49/58 62/64 226/217 0/0 45/53

0.13.4 272 163 1/59 3/67 272/214 0/0 39/60

0.13.5 271 163 0/59 1/68 272/213 0/0 34/65

0.13.6 276 166 5/64 0/68 272/213 2/2 58/70

0.13.7 276 166 0/64 0/68 277/213 0/2 24/70

0.14.0 296 180 23/87 3/71 274/210 0/2 56/77

0.14.1 296 18 0/0 0/0 297/297 0/0 25/25

0.14.2 303 187 7/7 0/0 297/297 0/0 91/91

0.15.0 350 207 59/66 12/12 292/285 4/4 44/91

0.15.1 349 206 4/4 5/5 346/346 0/0 38/38

0.16.0 359 215 10/14 0/5 350/346 0/0 45/57

0.16.1 359 215 0/0 0/0 360/360 0/0 26/58

* Results from previous versions are excluded

In Table 9.1 and Table 9.2, the number of classes is denoted as the total number of classes

(NOC) and the number of classes in hierarchy (NOCH) with a depth greater than 1. NOC

includes classes that explicitly do not inherit any other class, and neither they are inherited by

any class. These classes introduce a new behavior into the program, but the behavior is not

further propagated through the hierarchy. As these are single classes in terms of inheritance,

they are in a hierarchy with a depth equal to 1. Meanwhile, classes that form a hierarchy with

a depth greater than 1 introduce program behavior that propagates through the class hierarchy.

Other columns in the tables, show the results of the comparison with the previous version; that

is, revision and previous minor version (p/m). Minor versions that are used for comparison

are highlighted in bold in the first column. The values as a result of the comparison are various

changes in classes. Column added corresponds to the number of added classes in comparison to

the previous versions. Similarly, columns deleted, changed type, changed members corresponds

to the number of deleted, changed type, and classes with changed members. Matched is the

number of matched classes that is classes that exist in both compared versions of the program.

111

Evaluation

Although Pinpoint is larger than NewPipe in the number of classes (NOC), the results for

class changes shown in Table 9.1 and Table 9.2 are similar. There is a smaller number of changes

between subsequent versions in the form of added and deleted classes. As expected, these

changes are greater when the revision is compared with the minor version. It is noticeable that

there is a smaller number of classes with a type change. Classes with type change exist in both

compared versions (matched); however, there is a change in predecessor classes, which results

in type changes between versions. Most changes in matched classes are related to member

changes. Therefore, the approach presented in this dissertation in real-world scenarios would

mostly generate dynamic aspect and diff classes with several dynamic classes to perform the

dynamic update.

The class members changes are analyzed separately by the results shown in Table 9.3 and

Table 9.4. The results are shown for subsequent program version changes because it is expected

that a comparison with minor versions would result in a greater number of changes with a

similar tendency as shown for the type change. Fields are analyzed by the number of added

(A), deleted (D), and matched fields (M). In comparison to matched (i.e. unchanged) fields

for both evaluated programs, the number of added fields is not large, besides in some cases

of comparison with minor versions. Meanwhile, deleted fields occur rarely. In the case of

NewPipe, there are no deleted fields between the shown subsequent versions. As described in

Chapter 2, this scenario conforms to the binary compatibility resulting in a feasible dynamic

update. Column executables includes the results of constructors and methods. Executables

are analyzed by added (A), deleted (D), matched (M), and executables with body changes (B).

Similar to the fields, the number of added executables is not large compared to the number of

unchanged executables (M), besides in minor versions with an overall large number of changes.

At the same time, there is a similar number of deleted executables. However, class member

changes are mostly in executable bodies, which simplifies dynamic updating. Dynamic updates

for body changes are performed with dynamic aspect classes, without other dynamic update

classes.

112

E
valuationTable 9.3: Pinpoint class members changes

Version
fields executables

A D M A D B M

1.7.0-RC1 584 33 3263 847 627 1852 6704

1.7.0-RC2 16 0 193 4 3 122 560

1.7.0 9 0 205 0 0 124 611

1.7.1 9 0 170 0 0 116 527

1.7.2 174 1 1344 181 194 510 2432

1.7.3-RC1 10 0 174 1 0 121 535

1.7.3 9 0 156 0 0 113 499

1.8.0-RC1 352 22 1949 472 596 700 3341

1.8.0 20 0 203 11 15 140 584

1.8.1-RC1 215 16 1427 353 355 526 2746

1.8.1 11 0 237 7 3 130 643

1.8.2-RC1 35 0 234 12 5 140 611

1.8.2 13 0 280 13 2 116 655

1.8.3 15 0 181 38 0 110 545

* Results from previous versions are excluded

Table 9.4: NewPipe class members changes

Version
fields executables

A D M A D B M

0.13.1 0 0 222 1 0 95 560

0.13.2 22 0 417 46 33 160 904

0.13.2 22 0 417 46 33 160 904

0.13.3 21 0 344 72 68 90 801

0.13.4 4 0 273 10 4 97 595

0.13.5 3 0 209 24 12 90 590

0.13.6 59 0 550 71 47 224 1103

0.13.7 0 0 165 0 0 77 424

0.14.0 42 0 472 44 19 153 1075

0.14.1 0 0 166 0 0 81 438

0.14.2 82 0 747 54 21 155 1363

0.15.0 62 0 328 53 32 132 806

0.15.1 7 0 301 10 5 129 610

0.16.0 12 0 337 21 13 139 833

0.16.1 0 0 163 0 0 97 457

0.16.1 13 0 504 34 23 144 1107

113

E
valuationTable 9.5: Pinpoint inherited class members changes

Version
inh. fields inh. executables

A D A D B

1.7.0-RC1 114 2 335 155 472

1.7.0-RC2 2 0 9 0 393

1.7.0 0 0 0 0 397

1.7.1 0 0 0 0 393

1.7.2 1 0 9 36 364

1.7.3-RC1 0 0 0 0 343

1.7.3 0 0 0 0 343

1.8.0-RC1 12 0 24 25 353

1.8.0 0 0 0 0 362

1.8.1-RC1 96 0 80 67 372

1.8.1 0 0 0 0 397

1.8.2-RC1 0 0 8 0 413

1.8.2 0 0 0 0 395

1.8.3 0 0 0 0 393

* Results from previous versions are ex-
cluded

Table 9.6: NewPipe inherited class members changes

Version
inh. fields inh. executables

A D A D B

0.13.1 0 0 0 0 92

0.13.2 16 0 26 22 150

0.13.3 16 0 47 38 56

0.13.4 0 0 0 0 77

0.13.5 0 0 0 0 80

0.13.6 47 0 52 40 239

0.13.7 0 0 0 0 70

0.14.0 44 0 59 17 130

0.14.1 0 0 0 0 98

0.14.2 65 0 50 2 136

0.15.0 8 0 4 0 122

0.15.1 3 0 6 4 157

0.16.0 0 0 0 0 159

0.16.1 0 0 0 0 163

114

Evaluation

Since the focus in this dissertation is on inheritance, class changes are also analyzed through

changes in the inherited member. The results are shown in Table 9.5 and Table 9.6. There

are mostly no inherited member changes for Pinpoint, besides in some cases related to the

comparison with minor versions with a large set of changes. The only significant changes are

executable (i.e. method) body changes. However, the results for NewPipe as the program with

fewer classes compared to the Pinpoint, show changes in inherited class members. In addition

to body changes, the results also show the addition and deletion of fields and methods. These

results show that changes in inherited member are related to the program domain and should be

considered for dynamic updating.

The results of the two open-source programs show that the algorithms presented in Chap-

ter 5 are applicable and useful to the analysis of program changes. Change analysis includes

both class member changes and type (i.e. class hierarchy) changes. Detection of both type of

changes is necessary to allow dynamic updates with arbitrary changes between program ver-

sions. Therefore, Algorithm 4 can be used to detect differences between program versions in a

format that divides changes by type for applying dynamic updates.

9.1.2 Runtime phenomena detection

Runtime phenomena detection is evaluated by Algorithm 9 and Algorithm 11. These algorithms

are executed on versions of Pinpoint and NewPipe open-source programs, as described in the

previous subsection. The algorithm to detect runtime phenomena (Algorithm 11) is used to

obtain total number of classes with possible runtime phenomena: phantom objects, oblivious

update, absent state, and lost state. Possible runtime phenomena as the result of class changes

are shown in Tables 9.7 and 9.8. The results include possible runtime phenomena on objects of

class as a result of class member changes and changes in predecessor classes; as described in

Chapter 6. For comparison, the results for runtime phenomena without the impact of inheritance

are shown separately as an oblivious update, and absent and lost state on fields, which are

denoted with suffix (m). Meanwhile, the results of the algorithm to estimate runtime phenomena

(Algorithm 9) are presented as a single value denoting the estimation as a cost calculated by the

function costRP, implemented as shown in Algorithm 13. Function costRP corresponds to

function δRP described in Chapter 6. As described in Chapter 6, the input for the function is

the class with possible runtime phenomena c, changed predecessor classes Cp, and member

changes Cm for class c. The estimation algorithm (Algorithm 9) is generic in the way that it can

use any cost function with defined parameters. The cost function implemented as Algorithm 13

is appropriate for the prototype system in this dissertation. Runtime phenomena that can occur

in the prototype are calculated according to changes in class members, with each change in

class member equally contributing to the cost. However, various implementations can be used

covering specific cases. For example, the case of changing a field that contains a collection of

115

Evaluation

Algorithm 13: Procedure costRT(c, Cp, Cm) as implementation of δRP cost function

1 procedure costRT(c, Cp, Cm)

2 (Ca,Cd,Cmp)←Cp;
3 r← 0;

4 foreach class pa in Ca do
5 r← r + getNoOfFields(pa);
6 r← r + getNoOfConstructors(pa);
7 end
8 foreach class pd in Cd do
9 r← r + getNoOfFields(pd);
10 end
11 foreach class pm in Cmp do
12 r← r + getNoOfAddedFields(pm);
13 r← r + getNoOfDeletedFields(pm);
14 r← r + getNoOfBodyChangedConstructors(pm) +

getNoOfAddedConstructors(pm) + getNoOfDeletedConstructors(pm);
15 end

16 foreach class cm in Cm do
17 r← r + getNoOfAddedFields(cm);
18 r← r + getNoOfDeletedFields(cm);
19 r← r + getNoOfBodyChangedConstructors(cm) +

getNoOfAddedConstructors(cm) + getNoOfDeletedConstructors(cm);
20 end
21 return r;

objects, the state transformation mechanism described in this dissertation cannot automatically

convert state of such a field. Therefore, these cases could contribute to a higher cost of the

runtime phenomena. In the previous example, the cost of runtime phenomena on a collection

field would be higher than on a field containing a single object.

Procedure costRT implemented as shown in Algorithm 13 calculates the estimate of run-

time phenomena as cost based on the number of class members. Each changed class member is

valued as constant cost 1. Added predecessor class pa can introduce an oblivious update and an

absent state. Therefore, the cost of the oblivious update is calculated by the number of construc-

tors (function getNoOfConstructors) and the number of fields (function numberOfFields)

in predecessor class pa. Meanwhile, deleted predecessor class pd can introduce phantom ob-

jects and lost state. Phantom objects are not calculated, because in the approach presented in

this dissertation it is expected that unused objects will be garbage collected. However, since

the lost state depends on fields, the cost is calculated by the number of fields in deleted pre-

decessor class pd . Furthermore, for predecessor class pm with changed members, the cost of

the oblivious update is determined by added, deleted, and constructors with a changed body.

Furthermore, the cost of absent state is determined by the number of added fields (function

116

Evaluation

getNoAddedFields), and the lost state is calculated by the number of deleted fields (function

getNoDeletedFields). The runtime phenomena cost for class with changed members cm is

calculated in a similar way as for pm class. The absent state regarding type comparison is not

included in this estimation because the approach presented in this dissertation enables class

hierarchy changes and thus the comparison of objects with the changed type.

The results of runtime phenomena detection and estimation algorithms are shown in Table

9.7 for Pinpoint and Table 9.8 for NewPipe. The results show that the estimation of the runtime

phenomena for NewPipe is lower in compared to Pinpoint, which is a consequence of the num-

ber of changed fields as shown in Table 9.3 and Table 9.4. As expected, the runtime phenomena

estimation is higher for dynamic updates from minor version to revision. Meanwhile, based on

the type of runtime phenomena, the smallest number of objects with lost state will occur, which

corresponds to the small number of deleted fields. The number of other runtime phenomena de-

pends on the number of changes in the subsequent program versions and the program domain.

For example, the oblivious update in Pinpoint is estimated for a large number of classes be-

tween several revisions, such as 1.8.0-RC1 and 1.7.3. Meanwhile, runtime phenomena are not

expected to occur in NewPipe for a dynamic update from the corresponding previous version to

the v.0.16.1 and v0.14.2, because changes are only in the executables bodies. Furthermore, the

results show that the total number of possible runtime phenomena is greater than the number of

those that occur as a result of changes only in class members. Therefore, it can be concluded

that it is necessary to include the inheritance relationship for the runtime phenomena estimation.

Furthermore, the results for absent state regarding type, show that many objects can be affected

when the hierarchy with a large number of classes changes, depending on the position of the

change and the height of the class tree. However, the DSU approach that provides changes in

the class hierarchy implicitly prevents absent state related to type comparison.

117

E
valuationTable 9.7: Pinpoint runtime phenomena estimation

version cost phantom oblivious absent state absent state lost state oblivious (m) absent state lost state

type fields fields (m) fields (m)

1.7.0-RC2 32/* 0/* 4/* 0/* 10/* 1/* 2/* 8/* 1/*

1.7.0 9/* 0/* 0/* 0/* 5/* 0/* 0/* 5/* 0/*

1.7.1 9/9 0/0 0/0 0/0 5/5 0/0 0/0 5/5 0/0

1.7.2 530/530 50/50 84/84 70/70 132/132 42/42 64/64 113/113 2/2

1.7.3-RC1 29/535 2/51 2/84 0/69 8/132 2/43 2/65 8/114 0/2

1.7.3 9/535 0/51 0/84 0/69 5/132 0/43 0/65 5/114 0/2

1.8.0-RC1 910/1364 21/72 192/253 81/150 228/333 27/69 149/194 183/271 10/1

1.8.0 25/1370 0/72 2/254 1/151 12/335 0/69 1/194 11/272 0/11

1.8.1-RC1 951/951 55/55 137/137 101/101 175/175 30/30 88/88 121/121 10/10

1.8.1 11/951 0/55 0/137 0/101 6/175 0/30 0/88 6/121 0/10

1.8.2-RC1 51/949 2/55 5/138 0/99 12/177 2/30 5/91 12/125 0/10

1.8.2 31/969 0/55 2/140 2/101 10/179 0/30 0/91 8/125 0/10

1.8.3 18/974 0/55 2/142 0/101 9/181 0/30 2/93 9/127 0/10

* Results from previous versions are ex-
cluded

118

E
valuation

Table 9.8: NewPipe runtime phenomena estimation

version cost phantom oblivious absent state absent state lost state oblivious (m) absent state lost state

type fields fields (m) fields (m)

v0.13.0-beta */* */* */* */* */* */* */* */* */*

v0.13.1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

v0.13.2 48/48 1/1 5/5 7/7 12/12 0/0 3/3 8/8 0/0

v0.13.3 527/560 87/88 39/39 148/15 51/54 49/49 5/3 13/16 0/0

v0.13.4 10/570 0/88 3/42 1/156 4/58 0/49 3/6 4/20 0/0

v0.13.5 4/574 0/88 1/43 0/156 1/59 0/49 1/7 1/21 0/0

v0.13.6 117/676 0/88 7/46 0/156 22/70 0/49 7/10 15/29 0/0

v0.13.7 0/676 0/88 0/46 0/156 0/70 0/49 0/10 0/29 0/0

v0.14.0 111/775 3/91 10/55 19/175 48/94 0/49 3/12 14/36 0/0

v0.14.1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

v0.14.2 214/214 0/0 20/20 23/23 96/96 0/0 4/4 42/42 0/0

v0.15.0 213/404 7/7 18/38 22/45 18/102 1/1 9/13 12/43 0/0

v0.15.1 54/54 4/4 8/8 9/9 12/12 2/2 3/3 6/6 0/0

v0.16.0 83/137 0/4 12/20 18/27 14/26 0/2 1/4 3/9 0/0

v0.16.1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

* Results from previous versions are ex-
cluded119

Evaluation

9.1.3 Use case example

The object-oriented variant of Snake is developed as a use case example of software evolution.

Two versions are developed to validate the applicability of the proposed update model. In the

first version, class hierarchy is changed such that class is added as the parent of an existing

class. Besides the change of parent, there are no other changes. A type change occurs that

creates several dynamic update classes. In the second version, there are several changes. Class

changes the parent with the existing class, and the class members change as well. Both cases

are used to confirm the applicability of the proposed prototype regarding changes in inheritance

and class members.

Figure 9.1: Implemented Snake game screen (green dot – food, red head with white/black body dots –
snake)

The game consists of a player controlling the snake using four arrow keys on the keyboard

guiding it to the food. After the snake consumes food, it grows by one element; that is, dot on

the game screen (Figure 9.1). The game ends when the snake collides with its own body.

This game is implemented in Java using several classes; as shown in Figure 9.2. Class Game

initializes the game and controls the gameplay. To control snake by keyboard, class KeyLis-

tener (short as KeyList) is implemented. Class Board defines board responsible for drawing

elements on the board, as objects of class Element. Elements contain information about posi-

tion on the board and are drawn on the screen. Food extends Element by random positioning

on the screen. Movable extends Element by enabling the repositioning of element. Snake is a

movable element that can grow and eat food.

120

Evaluation

v1 v2

Object

Game Element

Movable

Snake

KeyList

Food

Board

Object

Game Element

Movable

Snake

KeyList

Food

Board

Pulsing

Figure 9.2: Added Pulsing element class as parent to Food class

Example 1: Added class as a new parent class

In the first update example (Figure 9.2), the Pulsing class is added, which extends the Element

class. Pulsing introduces a new element behavior, temporary invisibility. New behavior is

applied to the Food class by changing the parent. Instead of the Element in v1, parent for Food

in v2 is Pulsing. Furthermore, a change in functionality happens when food is invisible: the

snake cannot eat food. Furthermore, the body of method eatsFood in class Snake is modified.

v1’

Object

Game Element

Movable

KeyList

Food

Board

Board

Diff

Food food;

draw()

placeNewFood()

Food getFood()

Board

Asp

FoodDyn food’;

FoodDyn getFood()’

Pulsing

Game

Asp

draw()’

placeNewFood()’

gameStep()

gameStep()’

Snake
Food

Dyn

Snake

Diff

eatsFood(Food)

eatsFood(FoodDyn)’

Figure 9.3: Snake updated to version with dynamic class Food that inherits from new class Pulsing

Figure 9.3 shows the dynamically updated version v1 for the first example. To change the

parent of the Food class, dynamic class FoodDyn is created. The added class Pulsing inherits

Element, whereas FoodDyn inherits Pulsing. For each class that contains a method that uses

the Food class as a type, dynamic aspect classes are created. In class Game, method gameStep()

121

Evaluation

uses Food object to detect whether the snake ate the food. Therefore, GameAsp class is created to

replace gameStep() method body with the gameStep()’ advice method body, such that state-

ment that uses Food as type is replaced with the statement that uses FoodDyn. Furthermore,

BoardAsp is created to replace the two methods in Board, draw() and placeNewFood(). The

draw() method uses a Food field to draw the food on the board, whereas the placeNewFood()

method creates new food on the board and stores the food in the field. Method placeNewFood()

is invoked from the gameStep() method, whereas draw() is used by internal Java drawing

classes. Furthermore, class Board contains a field of type Food and method Food getFood()

with the return type Food. Furthermore, method getFood() is invoked by method gameStep().

Therefore, diff class BoardDiff is created. The BoardDiff class contains field definition

of type FoodDyn, used by redefined methods draw()’, placeNewFood()’, and getFood()’.

Meanwhile, method eatsFood(Food) in the Snake receives an object of type Food as a param-

eter. Consequently, SnakeDiff class is created that contains the eatsFood(FoodDyn) method

with the FoodDyn parameter. The method defined in the SnakeDiff class is invoked from the

gameStep’() method defined in the GameAsp dynamic aspect class.

v1 v2

Object

Game Element

Movable

Snake

KeyList

Food

Board

Object

Game Element

Movable

KeyList Board

Snake Food

Figure 9.4: Food inherits Movable class to introduce second player that controls food

Example 2: Existing class as a new parent class

In the second update example (Figure 9.4), to introduce a second player who controls the move-

ment of food, the Food class changes the parent from Element in v1 to Movable in v2. Further-

more, another direction field is added to the KeyList class to receive keyboard entries for the

second player.

Figure 9.5 shows v′1 with applied dynamic updates from the second example. Since the

Food class changed parent in v2, dynamic class FoodDyn is created. Therefore, similar to

the first example, statements that use Food objects are replaced by dynamic aspect and diff

122

Evaluation

Object

Game Element KeyList Board

Board

Diff

Food food;

draw()

placeNewFood()

Board

Asp

FoodDyn food’;

FoodDyn getFood()’

Game

Asp

draw()’

placeNewFood()’

gameStep()

gameStep()’

Snake

Diff

eatsFood(Food)

eatsFood(FoodDyn)’

Snake
Food

Dyn

Movable Food

KeyList

Dif f

KeyList

Asp

Dir player2’;

Dir getPlayer2()’

keyPressed()’

keyPressed()

v1’

Figure 9.5: Snake updated to version with dynamic class Food that inherits from existing class Movable

classes. BoardDiff and SnakeDiff are used for changed fields and methods with changed

parameters, whereas BoardAsp and GameAsp for methods that use these fields and methods. In

comparison to the first example, there is a change in the KeyList class, the player2 field and

the getPlayer2() method were added to receive keyboard entries for the second player. The

getPlayer2() method is invoked from the gameStep method in class Game from v2. Therefore,

advice method gameStep()’ invokes the getPlayer2()’ method defined in the KeyListDiff

diff class. Furthermore gameStep()’ based on the direction of the second player, moves food

in the current game step. Dynamic aspect class KeyListAsp is created to change the body of

the keyPressed() method to store the keyboard entries for the second player. Advice method

keyPressed()’ uses field player2’ defined in KeyListDiff.

Possible runtime phenomena discussion

Previous use case examples show that dynamic update is performed for two arbitrary program

changes. However, dynamic updates can introduce runtime phenomena, as described in Chapter

6. Algorithms to estimate and detect runtime phenomena from Chapter 6 are used to discuss

possible runtime phenomena. The used cost function is δRT , as defined in Algorithm 13. The

results are shown in Table 9.9. Dynamic update v1→ v1.1 corresponds to the first example and

v1→ v1.2 to the second example.

Table 9.9: Detected runtime phenomena for use case example

version update cost oblivious absent state type absent state field absent state field (m)

v1→ v1.1 4 1 1 1 0

v1→ v1.2 4 1 0 2 1

123

Evaluation

For both examples, the estimated cost is 4. In the first example, Pulsing is added as pre-

decessor to Food in v1.1. Class Pulsing contains three fields, therefore absent state field is

detected and the cost is increased by three. In this scenario, the absent state would not occur

because an object of the Food class exists on the board until it is eaten by the snake. When

the food is eaten then new object is created in the gameStep() method that uses initialized

fields from the Pulsing class. However, if the Food object was not created on each snake hit,

then a new instance would be created using the dynamic aspect and diff classes, on the next

call to method gameStep(). The state transfer would occur from an existing Food object to

the new FoodDyn object by the DSU manager. Furthermore, class Pulsing contains a single

constructor, resulting in an increase in cost by 1 and detected oblivious update. As described

runtime phenomena related to fields would not occur since new object of FoodDyn would be

created. Absent state type is detected because class Pulsing inherits Element which changes

the subtype information for class Element. In v1.1 objects of class Element are comparable to

objects of class Pulsing. However, as previously mentioned, this type of runtime phenomena

is implicitly avoided with support for class hierarchy changes.

In the second example, the Food class changed parent to the Movable class. Since the Mov-

able class contains a single field, absent state field is detected, and the cost is increased by

1. Furthermore, Movable contains two constructors, resulting in detected oblivious updatem

thus increasing the cost by 2. Meanwhile, oblivious update and absent state would not occur

because, as in the first example, a new object of class FoodDyn is created with inherited mem-

bers from the Movable class and state transfer is performed from the Food object. Meanwhile,

in the KeyList class, a field is added for the moves of the second player. Therefore, absent

state field (m) is increased by 1 because there may be objects of class Keylist created in v1.

Consequently, absent state field also increases by 1. In this particular case, absent state would

not occur because the player’s move is set to enum with the default value none. In the Snake

gameplay, this does not produce unwanted behavior because the second player joins the game

by pressing the corresponding key and thus changes the value of the field. Therefore, it is not

necessary to initialize the value using the custom transformation functions. However, for more

complex cases when the program semantic requires, a custom transformation function can be

used.

It can be observed that the cost function δRT should be adjusted for specific DSU approaches

and program semantics. The approach presented in this dissertation can implicitly perform state

transfer for cases with class hierarchy changes. However, the initialization for the added field

in matched classes should be inspected based on the program semantics in the updated version.

124

Evaluation

0

10

20

30

40

50

60

70

1 2 3 4 5 6

n
u

m
b

e
r

o
f

n
o

d
e

s

level

v0.8.8 v0.8.9 v0.8.10 v0.8.11 v0.8.12 v0.9.0

v0.9.1 v0.9.2 v0.9.3 v0.9.4 avg

(a) Node distribution per level for 10 NewPipe pro-
gram versions and average number of nodes for cur-
rently available versions

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

n
u

m
b

e
r

o
f

n
o

d
e

s

level

newpipe pinpoint neo4j litho seata

(b) Node distribution per level for available ver-
sions of 5 publicly available programs

Figure 9.6: Node distribution in program versions [98]

9.2 The efficiency of the algorithms

Efficiency evaluation is performed by measuring and comparing the algorithm’s execution time

where the generated trees are used as input for algorithms. The algorithm for creating a ran-

dom tree from [98] is suitable for scenarios that require a random connection between nodes.

However, domain data usually follows certain patterns. Therefore, the distribution of nodes in

several open-source programs is observed. The obtained distribution is used to generate initial

trees that reflect the class hierarchy of the real program. A generated class tree is modified by

the distortion parameters obtained by analyzing the changes between subsequent versions in

open-source programs to reflect real changes between class trees in different versions. Algo-

rithms for generating class trees are based on work in [98]. Therefore, parts of this work are

included for completeness.

9.2.1 Distribution pattern analysis

Tree characteristics such as the number of nodes (n), height (h) together with the level and de-

gree of nodes are used to analyze the shape of a tree. Statistical values based on these measures

include the number of nodes for each level; that is, the number of nodes per level - Nl and the

average degree of nodes per level Da.

Figure 9.6a shows how the distribution of nodes per level Nl is similar between class trees

in NewPipe for 10 subsequent program versions from 0.8.8 to 0.9.12. The average number of

nodes per level for the currently available 62 versions of the NewPipe [63] is represented by

the blue line in Figure 9.6a. The distribution shape for 10 subsequent versions corresponds to

the node distribution in 62 versions. To obtain a more precise approximation of tree shape and

node distribution, in addition to NewPipe, four more programs with publicly available source

code were analyzed, for which the average node distribution is shown in Figure 9.6b. Average

125

Evaluation

values show a similar tendency at the same levels between different programs and correspond

to the values shown in Figure 9.6a. Both figures show a pattern for the class hierarchy in the

form of a node distribution.

9.2.2 Generating class trees by distribution pattern

The distribution of nodes per level for the class hierarchy of five publicly available programs is

discussed in the previous subsection and shown in Figure 9.6b. The node distribution pattern

reflects that the nodes are mostly concentrated at the first two levels, with an increase at the

third level, while at a higher levels the node concentration decreases. An approach based on

distribution pattern obtained from the data is required to generate a tree that reflects real data

from a particular domain or observed phenomenon. Therefore, the algorithm given in [98] is

introduced to generate a tree based on the given distribution of nodes per level. Algorithm 14

to generate a class tree is based on the distribution of nodes algorithm. Similar to the origi-

nal algorithm, connections between nodes are generated randomly, where nodes at the current

level are randomly selected from a set of nodes without parent node - N and are connected

to a randomly selected node from a set of nodes at the previous level - P. Consequently, the

algorithm creates a tree level by level. First, the root node is randomly selected - r, and then

nodes for each level - u. The number of nodes at each level (C) is determined as a result of the

function getNodeCountPerLevel. The function returns the number of nodes per level based

on the given distribution of nodes in percentage - D, number of nodes – n, and current level

i. Set of nodes in the current step in the algorithm – T are predecessor nodes – P in the next

step. The difference between Algorithm 14 and the algorithm presented in [98] is in created

nodes and input parameters related to the created nodes. Algorithm 14 at line 3 uses function

newClassNode. The function creates a class node based on the following parameters: num-

ber of fields (fn), executables (en), and number of parameters for executables (pn). Fields and

parameters are integer type by default.

9.2.3 Distort original tree

One of the possibilities to compare class trees is to generate two independent trees using Algo-

rithm 14. In the case of the class hierarchy, a comparison is performed between two versions

of the program. Therefore, it is necessary to modify the original tree to obtain another tree for

comparison. The difference between created trees can be controlled by distortion parameters as

the amount of added, deleted, and matched nodes with the changed parent, similar to operations

performed on nodes in edit distance algorithms [98]. By changing the specific distortion pa-

rameter, tree changes can be analyzed. Generally, parameters can be used in domains where the

controlled difference between generated trees is required for comparison (e.g., a domain where

126

Evaluation

Algorithm 14: Algorithm to generate class tree by distribution
input : the number of nodes as classes cn, node distribution per level D (expressed as

percentages), the number of fields fn and executables en for class, number of
parameters pn for executables

output: Class tree T (V,E)

1 V ←∅, E←∅;
2 for i← 1 to n by 1 do
3 V ←V ∪{ newClassNode(fn, en, pn) };
4 end

5 N←V ;
6 ur← getRandomNode(N);
7 N← N \{ur};
8 P←{ur};
9 for i← 1 to |D| by 1 do
10 T ←∅;
11 C← getNodeCountPerLevel (D, n, i);
12 for j← 1 to C by 1 do
13 uc← E getRandomNode(N);
14 up← getRandomNode(P);
15 E← E∪ newEdge(up, uc);
16 N← N \{uc};
17 T ← T ∪{uc};
18 end
19 P← T ;
20 end

the tree can only differ in added or deleted nodes). The algorithm to generate trees based on the

given tree and the amount of distortion is given in [98] and is used in this dissertation to modify

the initial class tree.

An example of a tree generated by distortion algorithm [98] from the tree shown in Figure

9.7a, as the source tree with 100 nodes, is shown in Figure 9.7b. The distortion parameters used

are 10 added and deleted nodes and 10% of matched nodes with changed parents. Note that the

tree in Figure 9.7a is generated by the algorithm with the following distribution: 32.5, 50, 10, 5,

and 2.5%. The given distribution of nodes corresponds to the distribution of trees representing

the class hierarchy of NewPipe in v0.8.9. Trees in Figures 9.7a and 9.7b are similar since

the tree in Figure 9.7b is generated by controllable distortion of the source tree in Figure 9.7a.

Meanwhile, the tree in Figure 9.7c is generated by distribution algorithm with equal distribution

as the tree in Figure 9.7a. An approach where the node distribution algorithm generates both

trees can also be used to generate trees for comparison. In that case, the distribution of nodes in

both trees is equal, but distortion arises in the form of a possibly different number of nodes and

random connections between nodes.

127

Evaluation

Q1

Q2

J1

P2
E2

G1

D2

S2
G2

O

Q3

H

I1

T
D

I2

J2

I3

A1

L1

A2

T2V3

A3

Z1

Z2

E1

R1

R2

R3

J3
B1

C1
S

B2

H2

B3

J

N

S1

L3

S3

B

C

E

F

K1

G

K2

K3

I

F2

K

L

Y2

M

C2

P C3

P3

Q
W2

M3

R

Z

D3

W
T3 U

U3

W1

N1

W3

H1

E3

U2

V2

N3

M1

P1

Y1

V1
G3 F3 V X1

F1
X

D1

Y

N2

M2

O2

X2

U1

L2

T1

O3

H3

O1

(a) by node distribution

Q1

Q2

J1

E2

G1

D2

S2

M1

G2

G3

Q3

I1

T

I2

J2

A1

I3

A2

T2
V3

A3

J3

A4

Z1

Z2

E1

C2

Z3

X2

R1

R3

B1

C1
S

B2

H2

B4

S1

L3

S3

B

E

P2 K1

F

G

I

F2

K

J

L

Y2

M

N

O

C3

P3

P

C4

Q

W2

M3

R

Z

D3

W

U
U3 W1

N1

W3

H1

E3

U2

V1

L1

V2

Y3

X3

P1

Y1

F3
V

X1 F1 X
G4

U1

N2

M2

O2

E4

T1

O3L2

D1

D4
O1

F4

N3

(b) distorted from (a)

Q1
Q2

F1
Q3

T

C

I1

I2

U3

W1

G3

Z1
K2

I3

A1

A2

A3

M
O

Z2

R1

R2

G1H2

R3

J1

G2

J2

E3

J3

B1B2

U2

B3

J

S1

S2P2

S3

B
D2

G

X2

U

O1

E
F

K1

Z

K
T2

Y

H

M3

O3

P1

K3

IL

N

C1

C2

P

C3

Q

T1

R

S

V

V3

W

X

T3

P3

N1 L1

L2

V1

L3

D1

D3

U1

V2

M1 M2

D

E1

E2

N2

Y2
O2

Y1

N3

F2

X1

F3

H3

H1

W2

W3

(c) by node distribution equal to (a)

Figure 9.7: Class trees generated by node distribution and tree distortion

9.2.4 Evaluation setup

The evaluation experiment consists of an experimental setup in which the source class tree (v1)

generated by Algorithm 14 is compared with the target class tree (v2) obtained by the distortion

algorithm from [98]. Based on the analysis of open-source programs from Subsection 9.2.1, the

distribution used to generate the class trees representing the v1 is as follows: 32.5, 50, 10, 5,

and 2.5 %. Class trees in v1 were generated for sizes of 1k, 10k and 100k nodes. Analysis of

the program changes as distortion shows that program versions differ on average in the number

of added, deleted classes and changed type classes. Therefore, the following parameters are

used as input of the distortion algorithm: 6.5% added, 4% deleted, and 0.3% permuted nodes.

Nodes as mock classes are created with a single field and method with a single parameter.

Furthermore, class trees were generated 100 times, and Algorithm 4 (CID - Class Inheritance

Detection) and Algorithm 11 (RPD - Runtime Phenomena Detection) are executed to measure

execution time. The results of the experiment are shown as the distribution of execution time

in the form of box-whisker graphs shown in Figure 9.8. The tree inheritance algorithm (TID,

Algorithm 2) is executed on the same trees as a reference for comparison. The algorithms are

not interchangeable considering usage, although the results are presented together.

Evaluation tests are performed on Windows 8.1 Pro 64-bit running on the computer with

Intel i7-3610QM@2.3GHz processor power and 24GB of system memory.

9.2.5 Results

The evaluation results are shown in Figure 9.8. The execution time for each algorithm is ex-

pressed as nano-seconds. For a class tree with the initial size of 1000 nodes, algorithms to detect

class hierarchy changes and runtime phenomena are slower than tree the inheritance distance

(Figure 9.8a). CID and RPD algorithms perform additional comparisons of nodes by class

members, whereas TID only detect structural changes. Furthermore, RPD is slightly slower

than the CID algorithm, which is related to the costRT procedure to estimate runtime phenom-

128

Evaluation

(a) 1k nodes (b) 10k nodes

(c) 100k nodes

Figure 9.8: Execution time for algorithms by various initial class tree sizes (CID - class inheritance
changes detection, RPD - runtime-phenomena detection, TID - tree inheritance distance)

ena. As described in Subsection 9.1.2, RPD iterates through changed predecessor classes and

calculates the cost based on the number of class members. Meanwhile, Figure 9.8b shows the

results for the class tree with an initial size of 10000 nodes. The CID and RPD algorithms are

slower than TID because of the additional node processing. However, in comparison to the case

with 1000 nodes, the CID algorithm is slower than the TID algorithm. Moreover, the difference

in execution time is more pronounced with a larger number of nodes, as shown in Figure 9.8c.

The main difference between these algorithms is in detecting the overriding methods in CID by

the procedure detectOverridingMethods. Therefore, for a large number of classes, changes

in classes affect the method overriding because for the evaluation setup, each class contains

single method with the same signature.

Based on the results in Figure 9.8, it can be concluded that algorithms perform calculations

relatively quickly compared to the size of generated class trees. For example, for large trees

as 100k nodes in Figure 9.8c, CID as the slowest executed algorithm is below 6 seconds on

the evaluation computer. However, in real cases, execution corresponds to the number of class

members in the program version. The results presented serve as an estimation for comparison,

as they are based on the case where each class contains a single field and method.

129

Evaluation

9.3 DSU performance

9.3.1 Methodology

According to the proposed measurement methodology in Chapter 7, several Java DSU ap-

proaches are selected for comparison [9, 15, 22, 27]. The main criterion for selection was public

availability. Evaluation of the DSU approaches in this section is based on the work in [54]. As

an extension, the prototype system (eDAOP) presented in Chapter 8 is evaluated and compared

to the selected DSU approaches. Therefore, parts of the work are included for completeness.

Based on the categorization in Section 3.1, Jvolve [9] and DCEVM [15] belong to the modified

JVM, whereas Prose [27], Jooflux [22], and prototype system (eDAOP) belong to the DAOP

category implemented as JVMa. eDAOP as an extended dynamic aspect system is evaluated in

two implementations, using Prose and built-in prototype, as described in Chapter 8. Currently,

pure JVM agents are not publicly available. Javeleon [3] has become a commercial product,

and Javadaptor [16] has not been made public. Microbenchmark tests for Prose and Jooflux are

based on work in [24]. Because the Cech [24] implementation is not publicly available, tests

are implemented as an approximation based on the described concept. For example, ext field

is used in the class to reference the object containing the changed class members.

According to the methodology described in Chapter 7, the developed benchmark tool is used

to measure resource demands. As aforementioned, the tool consists of macro and implemented

micro benchmark tests. In this dissertation, open-source test suite DaCapo 2006MR2 [92] is

used as a macro benchmark, with selected tests that are executable on evaluated approaches:

bloat, chart, hsqldb, jython, luindex, and lusearch.

Update duration, execution duration and memory overhead are measured by the imple-

mented micro benchmarks with the developed test suite. Table 9.10 contains tests from the

suite with the associated categorization. For each program change, besides for method body and

multiple modifications, the results for two tests, add and remove (A/R), are shown. Tests in the

basic category perform simple modifications; for example, in the original version of Fact class

in Figure 7.2 of Chapter 7, test AddField (AF) represents the addition of the field. To perform

changes on DAOP beyond the method body modification, the extended model (eDAOP) de-

scribed in this dissertation is used and compared to the client-supplier model from [24] (Prose-

Cech’). In Table 9.10, tests in the compound category consist of multiple changes. For ex-

ample, AddFieldChangeMethod (AF+MB) in Example 5.3 consists of added field result and

the modified body of the calculate method that uses the newly added field in the updated

version. Figure 5.3 shows the Multiple test (Table 9.10) that includes various modifications of

class members (level 2) with supertype change (level 3). Furthermore, in Table 9.10, column

Lev represents the modification level as the maximum level used in a particular test.

Evaluation tests are performed on Ubuntu 12.04.5 LTS kernel 3.13.0-32-generic virtual ma-

130

Evaluation

chine running on Hyper-V in Windows Server 2012 R2 Datacenter. The virtual machine is set

to 25% of the overall 2xIntel Xeon E5-2640 processor power, with up to 8 GB of system mem-

ory. Furthermore, the server compiler configuration is used in the HotSpot VM for eDAOP,

Jooflux, Prose and DCEVM whereas the fast adaptive compiler configuration in the Jikes RVM

for Jvolve.

9.3.2 Results

The tests are performed 50 times with the DaCapo warm-up option and in separate VM in-

stances to measure overhead due to the presence of the DSU in program execution (steady-

state). Each test run is performed on the two test cases, with (DSU) and without dynamic up-

dating (standard). Overhead is calculated as a mean value of the difference between execution

time with and without DSU expressed as a percentage. The results in Figure 9.9 represent over-

head across the entire test suite for the selected approaches, besides for eDAOP, hsqldb test for

Jooflux and Prose, and jython test for DCEVM. The difference in these cases is due to separate

runs of the tests and is negligible. For DAOP approaches, the overhead in most tests is below

the standard deviation, besides for Prose in the lusearch test. Moreover, the results for luse-

arch demonstrate a high steady state overhead for all selected approaches except Jooflux and

eDAOP. This shows that DSU approaches introduce a significant overhead for multithreaded

tasks that process large memory objects [92]. The results show that eDAOP does not introduce

steady state overhead. Meanwhile, eDAOP uses the HotSwap feature to replace the bytecode

of the method body, which does not affect VM execution when there are no dynamic updates.

Furthermore, the results of eDAOP implementation using Prose correspond to the results of

Prose.

1
,6

1

1
,9

8

-9
,5

6

0
,4

7

2
,1

2

0
,0

1

1
1
,7

9

8
,0

1

-1
,2

4

3
5
,7

1

5
,9

7

2
3
0
,7

8

-0
,1

1

4
,9

7

-0
,5

5

2
2
,7

9

2
,8

5

1
2
,9

3

1
2
,9

9 7
7
,6

4

1
0
,3

5

-0
,0

9

2
2
,9

8

2
0
0
,9

9

5
6
,7

7

5
0
,4

6

7
4
,5

3

1
0
0
,3

8

1
3
2
,5

2

4
0
8
,3

8

-10

90

190

290

390

bloat chart hsqldb jython luindex lusearch

overhead [%] eDAOP prose jooflux dcevm jvolve

Figure 9.9: Steady state overhead

Dynamic update duration is measured in 50 test runs on separate VM instances and 100k

test class objects. The results are shown as the mean update time in milliseconds for each

dynamic change test from Table 9.10. DAOP approaches, eDAOP, Jooflux (Cech†), and Prose

131

Evaluation

(Cech†), support level 2 changes only indirectly through compound changes (“**”). Jooflux

lacks support for field changes because it does not currently support the join-point activation on

the field level, required for dynamic evolution based on Cech. Meanwhile, eDAOP, the approach

presented in this dissertation, supports class hierarchy changes, and therefore Multiple test.

DCEVM supports all microbenchmark tests, while Jvolve partially supports supertype change,

but only as a compound change (“***”). The Jvolve comparison tool lacks the functionality

to detect class supertype change. The results show that values are lowest for the Jooflux, and

highest for the Prose approach. Jooflux switches call site using the invokedynamic [22], while

Prose modifies the bytecode with method inlining technique [27]. DCEVM and Jvolve show

similar results, as both are based on the modified JVM garbage collector. In addition, eDAOP

shows similar results for various program changes. For built-in implementation, the results are

lower than Prose and comparable to the DCEVM and Jvolve as a modified VM. eDAOP (Prose)

results are slightly higher than Prose (Cech†) which can be related to using an aspect register

implemented in the prototype. Overall, the time to perform dynamic updates for different tests

within the same approach does not vary significantly. However, it can be observed that DCEVM

has higher values for the AddField and AddSupertype tests because the dynamic updating in

DCEVM involves memory and class hierarchy rearrangement. Meanwhile, Prose results show

that field updates are slower, which indicates that join-point activation is slower for class fields.

Finally, eDAOP shows the most stable values across microbenchmark tests.

132

E
valuation

Table 9.10: Dynamic update duration

Category DSU duration [ms]

Level Test eDAOP (built-in) eDAOP (Prose) Prose (Cech†) Jooflux (Cech†) DCEVM Jvolve

1 Method body (MB) 183,92 703,051 685,58 6,78 115,49 73,01

2

Method (M*) ** ** ** ** 116,08/115,32 143,26/137,85

Constructor (Co*) ** ** ** ** 113,34/116,29 142,76/142,45

Field (F*) ** ** ** NA 154,12/123,86 143,38/148,57

Class (C*) **** *** **** **** **** ****

3
Supertype (S*) NA NA NA NA 154,91/135,48 ***

Interface (I*) NA NA NA NA 117,40/126,73 142,65/140,66

2

M* + MB 175,63/179,74 702,534/702,908 685,91/705,47 3,98/6,62 121,92/122,77 169,73/164,62

F* + MB 189,23/186,16 705,880/700,456 1125,74/685,88 NA 170,49/124,81 167,75/170,36

Co* + MB 179,75/173,57 703,046/705,618 686,66/684,68 5,37/5,22 122,19/122,37 169,82/167,22

C* + MB 191,81/185,96 709,845/709,149 693,02/690,29 6,56/6,33 115,63/115,23 69,31/74,59

3 Multiple 178,22 730,266 NA NA 121,31 142,05
† tests are based on [24]
* Add and remove modification
** Indirectly supported
*** Partially supported
**** Dependent modification

133

Evaluation

Table 9.11 shows the differences in memory usage before and after the dynamic update.

The test setup is the same as for the update duration (50 runs and 100k objects), and the val-

ues denote the mean difference in megabytes (MB). Values were measured only for method

body and compound changes because most approaches support them. The results for some ap-

proaches show a decrease in memory consumption. For example, Jvolve, if required, performs

garbage collection after each update and then executes the transformation function. To per-

form a memory rearrangement, DCEVM activates a modified garbage collector to add a field.

Meanwhile, DAOP approaches have low memory usage, besides Prose for the AddField test,

related to field join-point activation. The results for eDAOP as built-in implementation shows

decrease in memory usage, which is related to the JVM class redefinition functionality. In these

cases, JVM performs garbage collection after dynamic update for AddFieldChangeMethod and

AddClassChangeMethod microbenchmark tests.

Table 9.11: Difference in memory usage in MB

Test eDAOP eDAOP Prose† Jooflux† DCEVM Jvolve

(built-in) (Prose)

Method Body -1,26 1,04 0,47 0,41 1,18 -5,66

M + MB (A/R) -0,05/-0,04 2,14/2,15 1,35/1,15 0,97/1,00 1,28/1,30 2,81/2,82

F + MB (A/R) -1,25/-1,18 1,04/1,03 5,42/1,16 NA -0,39 2,76/2,13

C + MB (A/R) -1,17/-1,17 1,09/1,06 0,56/-0,07 0,48/-0,1 1,18/1,18 -2,31

Multiple -0,02 2,4 NA NA 1,25 1,87
† based on Cech [24]

Execution overhead in the short-term is measured over 50 runs on separate VM instances

with a single method call. Long-term overhead is measured with multiple method calls (i.e.

1000) on the same VM instance. Figure 9.10 contain results expressed as mean execution time

in milliseconds in an environment without DSU (standard) and a DSU environment. The Add-

ChangeMethod (AM + MB) test is performed, where the non-recursive method from Example

5.3 is added to the class and called 10M times from the method changed in another class. The

results are shown for eDAOP implemented as a built-in dynamic weaver since results for Prose

are similar to eDAOP that uses Prose as a dynamic aspect system. Results show that short-term

overhead is lower for DAOP approaches. Prose and Jooflux introduce small overhead in short-

term execution related to DSU implementation. In the long-term, execution times in a DSU

environment are almost equal to execution times in an environment without DSU. Jvolve is an

exception because it introduces a long-term execution overhead, meaning that some JVM op-

timizations must be discarded to perform dynamic updates. Furthermore, the built-in dynamic

weaver (eDAOP) shows no overhead in execution time, similar to the DCEVM, conforming

134

Evaluation

to the previous results. eDAOP replaces bytecode in the method body by using VM HotSwap

feature that does not affect execution performance, similar to the modified VM as in DCEVM.

The changed bytecode in the method body is optimized as the original bytecode, compatible

with internal VM optimizations.

3
3
,0

1

2
9
,4

9

3
3
,0

1

3
1
,8

7

1
6
0
,4

3

3
6
,2

5

4
1
,4

9

5
0
,7

6

3
2
,3

0

1
6
1
,6

4

1
2
,1

9

3
,6

5

1
2
,4

4

1
2
,5

2

1
1
,4

0

1
2
,2

9

3
,8

3

1
2
,6

1

1
1
,9

2

6
9
,5

8

0

50

100

150

200

eDAOP prose jooflux dcevm jvolve

ti
m

e
 [

m
s
]

standard - ST DSU - ST standard - LT DSU - LT

Figure 9.10: Short-term (ST) and long-term (LT) execution time

The results show that eDAOP with a built-in dynamic weaver does not introduce overhead in

a steady state nor in the execution of dynamically updated methods. Dynamic update duration

is comparable to the modified VM. Furthermore, there is no additional memory usage because

VM performs garbage collection, resulting in less memory usage. Other approaches introduce

higher memory consumption for specific microbenchmark tests. The built-in dynamic weaver

utilizes the HotSwap feature of VM compatible with VM optimizations and does not introduce

overhead in join point activation because method bodies are replaced with the new bytecode.

Meanwhile, eDAOP based on Prose, for particular tests introduces an overhead in steady state,

memory usage, and execution. However, the results are comparable to other DAOP approaches,

which in general introduce less overall overhead. Jooflux performs best in the dynamic update

duration. Therefore, for future work, eDAOP could be implemented with Jooflux based join

point activation by using dynamic invoke feature. However, the evaluation results show that

Jooflux introduces certain overheads in steady state and execution performance. Meanwhile,

eDAOP implemented as a prototype conforms to the requirement of minimal performance im-

pact on the executing environment, as described in Chapter 2.

135

Chapter 10

Concluding remarks

Several of the DSU challenges considered in this dissertation resulted in the proposed system

for dynamic updating. In order to realize an approach for an object-oriented paradigm with

a large set of possible changes, correct state after the update, and a small impact on execution

performance, changes between program versions are considered from a class hierarchy perspec-

tive and applied by dynamic aspects. This chapter summarizes the contributions and discusses

the presented approach and solutions. Furthermore, current open issues are discussed, together

with recommendations for future work.

10.1 Summary of contributions

In this dissertation, changes between program versions are considered as changes in the class hi-

erarchy, which is the basis for the extended DAOP update model supporting the class hierarchy

changes. Runtime phenomena that occur after dynamic updating due to changes in class inher-

itance are considered, and algorithms for detection and estimation are presented. Furthermore,

the performance evaluation methodology enables the development of the DSU approach with

performance impact assessment. Therefore, the prototype system is developed based on the ex-

tended model, runtime phenomena detection algorithms, and performance evaluation methodol-

ogy. By using the prototype system, the currently running program can be updated dynamically

with a program version containing class members and inheritance changes with estimated run-

time phenomena and minor impact on execution performance.

• Extended DAOP update model Analysis of the relationship between classes allows the de-

tection of changes in the class hierarchy between program versions and the dynamic update of

these changes, as shown in Chapter 5. Classes are related through inheritance relationships,

forming a class hierarchy. DAOP with cross-cutting concerns property, as an indirection

level, provides changes in class inheritance for dynamic updating. To enable class hierarchy

136

Concluding remarks

changes, a dynamic class is introduced. By using the dynamic class and the client/supplier

pattern, the existing class hierarchy is extended, thus enabling type changes regarding hierar-

chy. Furthermore, dynamic aspect and diff classes allow changes to class members.

• Run-time phenomena detection algorithms Algorithms to detect and estimate runtime phe-

nomena based on changes between program versions are proposed in Chapter 6. Runtime

phenomena are analyzed from the perspective of changes in the class hierarchy and call de-

pendency. In this dissertation, the focus is on the impact of changes in inheritance on runtime

phenomena. The algorithm to estimate runtime phenomena assesses the risk of performing

the dynamic update. Meanwhile, the algorithm for detecting runtime phenomena results in

information about program changes that can cause runtime phenomena. This information can

be used to make adjustments to an updated version of the program to perform the dynamic

update without detected runtime phenomena. Furthermore, to perform dynamic updates cor-

rectly in the model, a state transfer is performed by a procedure that initializes the new state

of the object using the current state.

• Prototype system The prototype system is implemented based on the extended DAOP model

and runtime phenomena algorithms. The system is described in Chapter 8 consisting of an

offline and online tool. The offline tool analyzes source code of the currently running and

updated version, and extracts changes in the form of Java classes. The online tool loads the

created classes and applies the changes to the running program using DAOP. As Prose as

DAOP does not provide a redefinition of the constructor body, dynamic weaver intended for

dynamic updating and based on the Prose definition of aspects is implemented. However,

in addition to Prose, other aspect languages can be used. The prototype system is evaluated

in Chapter 9 on the use case example and empirical study. Results show that changes in

class hierarchy and class members as consequence of software evolution can be applied by

dynamic aspects. Furthermore, the estimated runtime phenomena, together with performance

evaluation, reflect the applicability and effectiveness of the proposed approach.

• Benchmark methodology for performance evaluation One of the requirements of DSU is

the minimal impact of the implementation on the system’s resources and program execution

performance. The methodology to evaluate and compare approaches was proposed in Chap-

ter 7, based on which the benchmark tool was implemented. The methodology contains the

measurement of DSU impact on performance without dynamic updates, with the performed

dynamic update, duration of dynamic update, and impact on memory usage. With the imple-

mented test cases representing changes in programs, the evaluation in Chapter 9 shows the

advantages and disadvantages of the evaluated approaches, conforming to the implementation

of a particular approach.

137

Concluding remarks

10.2 Open issues and recommendations for future work

The current implementation of the dynamic update prototype is constrained to executing .class

files. Therefore, future work should include defining program changes in .jar files. Further-

more, the current implementation lacks support for the anonymous and inner class changes.

Special cases for such classes can be implemented in the change detection algorithm and han-

dled by DSU manager in the online tool. In the case of constructor changes in the v2, when

in version v1 there is no default constructor in the parent class, the update process will create

statements that use a non-existent constructor. As a result, runtime exceptions or errors will

occur. In future work, this limitation can be overcome by replacing the affected classes with the

dynamic classes. The implementation of the online tool, in general, uses JVM reflection API to

manipulate objects. In further prototype development, the instrumentation API can be used to

improve performance because the reflection discards some of the JVM optimizations.

Runtime phenomena detection algorithms detect phenomena related to inheritance changes.

However, the algorithms are based on static analysis and estimate possible runtime phenom-

ena. Further work should include dynamic analysis, where the online tool can be extended by

heap analysis to determine currently active objects. Moreover, call dependency analysis can be

performed by analyzing the current state of the stack. Dynamic analysis should improve the de-

tection of runtime phenomena, where dynamic updates that can cause runtime phenomena can

be performed if the analysis determines that the affected objects are not active. Furthermore,

the DSU manager can postpone the update to analyze the current state within a predefined time

frame and perform the update when possible.

A benchmark tool to evaluate the performance of the DSU approach could use unified micro-

benchmark tests. In the current implementation of the benchmark, tests are manually adapted

to the evaluated approach. However, implementation with unified tests requires an appropriate

interface for each approach to transform the test from a unified format to a suitable format for

a particular approach. In addition, future work may include new measurements, such as the

impact of dynamic updating on memory usage in steady-state.

138

Bibliography

[1] Chen, H., Yu, J., Chen, R., Zang, B., Yew, P.-C., “POLUS: A POwerful Live Updating

System”, in Software Engineering, 2007. ICSE 2007. 29th International Conference on,

May 2007, str. 271–281.

[2] Fabry, R. S., “How to design a system in which modules can be changed on the fly”, in

Proceedings of the 2nd international conference on Software engineering. San Francisco,

California, USA: IEEE Computer Society Press, 1976, str. 470–476.

[3] Gregersen, A. R., Rasmussen, M., Jørgensen, B. N., “State of the Art of Dynamic Software

Updating in Java”, in Software Technologies, Cordeiro, J., van Sinderen, M., (ur.). Berlin,

Heidelberg: Springer Berlin Heidelberg, 2014, str. 99–113.

[4] Gupta, D., Jalote, P., “On-line software version change using state transfer between

processes”, Software: Practice and Experience, Vol. 23, No. 9, 1993, str. 949–964,

available at: http://dx.doi.org/10.1002/spe.4380230903

[5] Kramer, J., Magee, J., “The evolving philosophers problem: Dynamic change manage-

ment”, Software Engineering, IEEE Transactions on, Vol. 16, No. 11, Nov. 1990, str.

1293–1306.

[6] Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M., “Practical Dynamic Software Updating

for C”, SIGPLAN Not., Vol. 41, No. 6, Jun. 2006, str. 72–83, available at:

http://doi.acm.org/10.1145/1133255.1133991

[7] Stoyle, G., Hicks, M., Bierman, G., Sewell, P., Neamtiu, I., “Mutatis Mutandis: Safe

and Predictable Dynamic Software Updating”, ACM Transactions on Programming

Languages and Systems, Vol. 29, No. 4, Aug. 2007, available at: http://doi.acm.org/10.

1145/1255450.1255455

[8] Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T., “Tranquility: A Low Disruptive

Alternative to Quiescence for Ensuring Safe Dynamic Updates”, Software Engineering,

IEEE Transactions on, Vol. 33, No. 12, Dec. 2007, str. 856–868.

139

http://dx.doi.org/10.1002/spe.4380230903
http://doi.acm.org/10.1145/1133255.1133991
http://doi.acm.org/10.1145/1255450.1255455
http://doi.acm.org/10.1145/1255450.1255455

Bibliography

[9] Subramanian, S., Hicks, M., McKinley, K. S., Dynamic Software Updates: A VM-centric

Approach, 2009.

[10] Bashar Gharaibeh, Hridesh Rajan, J. Morris Chang, “Towards Efficient Java Virtual Ma-

chine Support for Dynamic Deployment of Inter-type Declarations”, Iowa State Univer-

sity, Computer Science Technical Report 321, 2010.

[11] Hicks, M., Nettles, S., “Dynamic Software Updating”, ACM Transactions on

Programming Languages and Systems, Vol. 27, No. 6, Nov. 2005, str. 1049–1096,

available at: http://doi.acm.org/10.1145/1108970.1108971

[12] Gregersen, A. R., Jørgensen, B. N., “Dynamic Update of Java Applications-

Balancing Change Flexibility vs Programming Transparency”, The Journal of Software:

Evolution and Process, Vol. 21, No. 2, Mar. 2009, str. 81–112, available at:

http://dx.doi.org/10.1002/smr.v21:2

[13] Bierman, G., Parkinson, M., Noble, J., “UpgradeJ: Incremental Typechecking

for Class Upgrades”, in ECOOP 2008 – Object-Oriented Programming: 22nd

European Conference Paphos, Cyprus, July 7-11, 2008 Proceedings, Vitek, J., (ur.).

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, str. 235–259, available at:

http://dx.doi.org/10.1007/978-3-540-70592-5_11

[14] Gu, T., Cao, C., Xu, C., Ma, X., Zhang, L., Lu, J., “Javelus: A Low Disruptive Approach

to Dynamic Software Updates”, in Software Engineering Conference (APSEC), 2012 19th

Asia-Pacific, Vol. 1, Dec. 2012, str. 527–536.

[15] Würthinger, T., Wimmer, C., Stadler, L., “Unrestricted and safe dynamic code

evolution for Java”, Science of Computer Programming, Vol. 78, No. 5, 2013,

str. 481 – 498, special section: Principles and Practice of Programming in Java

2009/2010 & Special section: Self-Organizing Coordination, available at:

http://www.sciencedirect.com/science/article/pii/S0167642311001456

[16] Pukall, M., Grebhahn, A., Schröter, R., Kästner, C., Cazzola, W., Götz, S., “JavAdaptor:

Unrestricted Dynamic Software Updates for Java”, in Proceedings of the 33rd

International Conference on Software Engineering, ser. ICSE ’11. New York, NY, USA:

ACM, 2011, str. 989–991, available at: http://doi.acm.org/10.1145/1985793.1985970

[17] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,

J., “Aspect-oriented programming”, in ECOOP’97 — Object-Oriented Programming:

11th European Conference Jyväskylä, Finland, June 9–13, 1997 Proceedings, Akşit, M.,

Matsuoka, S., (ur.). Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, str. 220–242,

available at: http://dx.doi.org/10.1007/BFb0053381

140

http://doi.acm.org/10.1145/1108970.1108971
http://dx.doi.org/10.1002/smr.v21:2
http://dx.doi.org/10.1007/978-3-540-70592-5_11
http://www.sciencedirect.com/science/article/pii/S0167642311001456
http://doi.acm.org/10.1145/1985793.1985970
http://dx.doi.org/10.1007/BFb0053381

Bibliography

[18] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W. G.,

“An Overview of AspectJ”, in Proceedings of the 15th European Conference on

Object-Oriented Programming, ser. ECOOP ’01. London, UK, UK: Springer-Verlag,

2001, str. 327–353, available at: http://dl.acm.org/citation.cfm?id=646158.680006

[19] Bockisch, C., Haupt, M., Mezini, M., Ostermann, K., “Virtual Machine Support

for Dynamic Join Points”, in Proceedings of the 3rd International Conference on

Aspect-oriented Software Development, ser. AOSD ’04. New York, NY, USA: ACM,

2004, str. 83–92, available at: http://doi.acm.org/10.1145/976270.976282

[20] Popovici, A., Alonso, G., Gross, T., “Just-In-Time Aspects: Efficient Dynamic Weav-

ing for Java”, in In Proceedings of the 2nd international conference on Aspect-oriented

software development. ACM Press, 2003, str. 100–109.

[21] Ansaloni, D., Binder, W., Moret, P., Villazón, A., “Dynamic Aspect-Oriented

Programming in Java: The HotWave Experience”, in Transactions on Aspect-Oriented

Software Development IX, Leavens, G. T., Chiba, S., Haupt, M., Ostermann, K.,

Wohlstadter, E., (ur.). Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, str. 92–122,

available at: http://dx.doi.org/10.1007/978-3-642-35551-6_3

[22] Ponge, J., Mouël, F. L., “JooFlux: Hijacking Java 7 InvokeDynamic To Support

Live Code Modifications”, CoRR, Vol. abs/1210.1039, 2012, available at: http:

//arxiv.org/abs/1210.1039

[23] Suvée, D., Vanderperren, W., Jonckers, V., “JAsCo: An Aspect-oriented Approach

Tailored for Component Based Software Development”, in Proceedings of the 2Nd

International Conference on Aspect-oriented Software Development, ser. AOSD ’03.

New York, NY, USA: ACM, 2003, str. 21–29, available at: http://doi.acm.org/10.1145/

643603.643606

[24] Cech Previtali, S., Gross, T. R., “Aspect-based Dynamic Software Updating: A Model

and Its Empirical Evaluation”, in Proceedings of the Tenth International Conference on

Aspect-oriented Software Development, ser. AOSD ’11. New York, NY, USA: ACM,

2011, str. 105–116, available at: http://doi.acm.org/10.1145/1960275.1960289

[25] Marija Katic, “Dynamic Evolution of Aspect Oriented Software”, PhD thesis, Faculty of

Electrical Engineering and Computing, University of Zagreb, 2013.

[26] Previtali, S. C., “Dynamic Updates: Another Middleware Service?”, in Proceedings of

the 1st Workshop on Middleware-application Interaction: In Conjunction with Euro-Sys

2007, ser. MAI ’07. New York, NY, USA: ACM, 2007, str. 49–54, available at:

http://doi.acm.org/10.1145/1238828.1238841

141

http://dl.acm.org/citation.cfm?id=646158.680006
http://doi.acm.org/10.1145/976270.976282
http://dx.doi.org/10.1007/978-3-642-35551-6_3
http://arxiv.org/abs/1210.1039
http://arxiv.org/abs/1210.1039
http://doi.acm.org/10.1145/643603.643606
http://doi.acm.org/10.1145/643603.643606
http://doi.acm.org/10.1145/1960275.1960289
http://doi.acm.org/10.1145/1238828.1238841

Bibliography

[27] Nicoara, A., Alonso, G., Roscoe, T., “Controlled, Systematic, and Efficient Code

Replacement for Running Java Programs”, ACM SIGOPS Operating Systems Review,

Vol. 42, No. 4, Apr. 2008, str. 233–246, available at: http://doi.acm.org/10.1145/1357010.

1352617

[28] Gregersen, A. R., Jørgensen, B. N., “Run-time Phenomena in Dynamic Software

Updating: Causes and Effects”, in Proceedings of the 12th International Workshop on

Principles of Software Evolution and the 7th Annual ERCIM Workshop on Software

Evolution, ser. IWPSE-EVOL ’11. New York, NY, USA: ACM, 2011, str. 6–15, available

at: http://doi.acm.org/10.1145/2024445.2024448

[29] Seifzadeh, H., Abolhassani, H., Moshkenani, M. S., “A survey of dynamic software

updating”, Journal of Software: Evolution and Process, Vol. 25, No. 5, 2013, str.

535–568, available at: http://dx.doi.org/10.1002/smr.1556

[30] Mlinarić, D. et al., “Challenges in dynamic software updating”, TEM Journal, Vol. 9,

No. 1, 2020, str. 117–128.

[31] Frieder, O., Segal, M. E., “On Dynamically Updating a Computer Program: From

Concept to Prototype”, The Journal of Systems and Software, Vol. 14, No. 2, Feb. 1991,

str. 111–128, available at: http://dx.doi.org/10.1016/0164-1212(91)90096-O

[32] Sprenkels, R., Pras, A., “Service level agreements”, Internet NG D, Vol. 2, 2001, str. 7.

[33] Neamtiu, I., Bardin, J., Uddin, M. R., Lin, D.-Y., Bhattacharya, P., “Improving

Cloud Availability with On-the-fly Schema Updates”, in Proceedings of the 19th

International Conference on Management of Data, ser. COMAD ’13. Mumbai,

India, India: Computer Society of India, 2013, str. 24–34, available at: http:

//dl.acm.org/citation.cfm?id=2694476.2694487

[34] “Debugging with the Eclipse Platform”, available at: http://www.ibm.com/

developerworks/library/os-ecbug/ May 2007.

[35] Microsoft, “Edit and Continue”, available at: https://msdn.microsoft.com/en-us/library/

bcew296c.aspx 2015.

[36] Payer, M., Bluntschli, B., Gross, T. R., “DynSec: On-the-fly code rewriting and repair”,

Presented as part of the 5th Workshop on Hot Topics in Software Upgrades, 2013, str.

115–126.

[37] Pukall, M., Kästner, C., Götz, S., Cazzola, W., Saake, G., “Flexible Runtime Program

Adaptations in Java - A Comparison”, School of Computer Science, University of Magde-

burg, Germany, Tech. Rep. 14, Nov. 2009.

142

http://doi.acm.org/10.1145/1357010.1352617
http://doi.acm.org/10.1145/1357010.1352617
http://doi.acm.org/10.1145/2024445.2024448
http://dx.doi.org/10.1002/smr.1556
http://dx.doi.org/10.1016/0164-1212(91)90096-O
http://dl.acm.org/citation.cfm?id=2694476.2694487
http://dl.acm.org/citation.cfm?id=2694476.2694487
http://www.ibm.com/developerworks/library/os-ecbug/
http://www.ibm.com/developerworks/library/os-ecbug/
https://msdn.microsoft.com/en-us/library/bcew296c.aspx
https://msdn.microsoft.com/en-us/library/bcew296c.aspx

Bibliography

[38] Hayden, C., Smith, E., Hardisty, E., Hicks, M., Foster, J., “Evaluating Dynamic Software

Update Safety Using Systematic Testing”, Software Engineering, IEEE Transactions on,

Vol. 38, No. 6, Nov. 2012, str. 1340–1354.

[39] Cook, R. P., Lee, I., “DYMOS: A Dynamic Modification System”, SIGSOFT

Softw. Eng. Notes, Vol. 8, No. 4, Mar. 1983, str. 201–202, available at:

http://doi.acm.org/10.1145/1006140.1006188

[40] Dmitriev, M., “Safe evolution of large and long-lived java applications”, Ph.D. Thesis,

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland,

2001.

[41] Neamtiu, I., Hicks, M., “Safe and Timely Updates to Multi-threaded Programs”,

SIGPLAN Not., Vol. 44, No. 6, Jun. 2009, str. 13–24, available at: http:

//doi.acm.org/10.1145/1543135.1542479

[42] Segal, M. E., “Dynamic Program Updating in a Distributed Computer System”, Doktorski

rad, University of Michigan, Ann Arbor, MI, USA, 1989, uMI Order No: GAX90-01706.

[43] Ebraert, P., Schippers, H., Molderez, T., Janssens, D., “Safely Updating Running

Software: Tranquility at the Object Level”, in Proceedings of the 7th Workshop on

Reflection, AOP and Meta-Data for Software Evolution, ser. RAM-SE ’10. New York, NY,

USA: ACM, 2010, str. 2:1–2:6, available at: http://doi.acm.org/10.1145/1890683.1890685

[44] Wernli, E., Lungu, M., Nierstrasz, O., “Incremental Dynamic Updates with First-Class

Contexts”, in Objects, Models, Components, Patterns, ser. Lecture Notes in Computer

Science, Furia, C., Nanz, S., (ur.). Springer Berlin Heidelberg, 2012, Vol. 7304, str.

304–319, available at: http://dx.doi.org/10.1007/978-3-642-30561-0_21

[45] Duggan, D., “Type-based Hot Swapping of Running Modules (Extended Abstract)”,

SIGPLAN Not., Vol. 36, No. 10, Oct. 2001, str. 62–73, available at: http:

//doi.acm.org/10.1145/507546.507645

[46] Wernli, E., “Theseus: Whole Updates of Java Server Applications”, in Proceedings

of the 4th International Workshop on Hot Topics in Software Upgrades, ser.

HotSWUp ’12. Piscataway, NJ, USA: IEEE Press, 2012, str. 41–45, available at:

http://dl.acm.org/citation.cfm?id=2664350.2664359

[47] Hashimoto, M., “A Method of Safety Analysis for Runtime Code Update”, in Advances

in Computer Science - ASIAN 2006. Secure Software and Related Issues, ser. Lecture

Notes in Computer Science, Okada, M., Satoh, I., (ur.). Springer Berlin Heidelberg, 2007,

Vol. 4435, str. 60–74, available at: http://dx.doi.org/10.1007/978-3-540-77505-8_6

143

http://doi.acm.org/10.1145/1006140.1006188
http://doi.acm.org/10.1145/1543135.1542479
http://doi.acm.org/10.1145/1543135.1542479
http://doi.acm.org/10.1145/1890683.1890685
http://dx.doi.org/10.1007/978-3-642-30561-0_21
http://doi.acm.org/10.1145/507546.507645
http://doi.acm.org/10.1145/507546.507645
http://dl.acm.org/citation.cfm?id=2664350.2664359
http://dx.doi.org/10.1007/978-3-540-77505-8_6

Bibliography

[48] “TIOBE Index | TIOBE - The Software Quality Company”, available at: https:

//www.tiobe.com/tiobe-index/

[49] Noubissi, A., Iguchi-Cartigny, J., Lanet, J., “Hot updates for Java based smart cards”,

in Data Engineering Workshops (ICDEW), 2011 IEEE 27th International Conference on,

Apr. 2011, str. 168–173.

[50] Bhattacharya, P., Neamtiu, I., “Dynamic Updates for Web and Cloud Applications”, in

Proceedings of the 2010 Workshop on Analysis and Programming Languages for Web

Applications and Cloud Applications, ser. APLWACA ’10. New York, NY, USA: ACM,

2010, str. 21–25, available at: http://doi.acm.org/10.1145/1810139.1810143

[51] Lin, D.-Y., Neamtiu, I., “Collateral Evolution of Applications and Databases”, in

Proceedings of the Joint International and Annual ERCIM Workshops on Principles

of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops, ser.

IWPSE-Evol ’09. New York, NY, USA: ACM, 2009, str. 31–40, available at:

http://doi.acm.org/10.1145/1595808.1595817

[52] Kim, D. K., Tilevich, E., “Overcoming JVM HotSwap Constraints via Binary Rewriting”,

in Proceedings of the 1st International Workshop on Hot Topics in Software Upgrades,

ser. HotSWUp ’08. New York, NY, USA: ACM, 2008, str. 5:1–5:5, available at:

http://doi.acm.org/10.1145/1490283.1490290

[53] Neamtiu, I., Hicks, M., Foster, J. S., Pratikakis, P., “Contextual Effects for

Version-consistent Dynamic Software Updating and Safe Concurrent Programming”,

SIGPLAN Not., Vol. 43, No. 1, Jan. 2008, str. 37–49, available at: http:

//doi.acm.org/10.1145/1328897.1328447

[54] Mlinaric, D., Mornar, V., “Dynamic Software Updating in Java: Comparing Concepts

and Resource Demands”, in Companion to the First International Conference on the Art,

Science and Engineering of Programming, ser. Programming ’17. New York, NY, USA:

Association for Computing Machinery, 2017, event-place: Brussels, Belgium, available

at: https://doi.org/10.1145/3079368.3079389

[55] Katić, M., Fertalj, K., “Model for Dynamic Evolution of Aspect-Oriented Software”, in

Software Maintenance and Reengineering (CSMR), 2011 15th European Conference on,

Mar. 2011, str. 377–380.

[56] “JDPA Enhancements 1.4”, available at: https://docs.oracle.com/javase/8/docs/technotes/

guides/jpda/enhancements1.4.html#hotswap

144

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
http://doi.acm.org/10.1145/1810139.1810143
http://doi.acm.org/10.1145/1595808.1595817
http://doi.acm.org/10.1145/1490283.1490290
http://doi.acm.org/10.1145/1328897.1328447
http://doi.acm.org/10.1145/1328897.1328447
https://doi.org/10.1145/3079368.3079389
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/enhancements1.4.html#hotswap
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/enhancements1.4.html#hotswap

Bibliography

[57] Gregersen, A. R., Simon, D., Jørgensen, B. N., “Towards a Dynamic-update-enabled

JVM”, in Proceedings of the Workshop on AOP and Meta-Data for Software Evolution,

ser. RAM-SE ’09. New York, NY, USA: ACM, 2009, str. 2:1–2:7, available at:

http://doi.acm.org/10.1145/1562860.1562862

[58] Battista, G. D., Eades, P., Tamassia, R., Tollis, I. G., Graph Drawing: Algorithms for the

Visualization of Graphs, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1998.

[59] Herman, I., Melancon, G., Marshall, M. S., “Graph visualization and navigation in in-

formation visualization: A survey”, IEEE Transactions on Visualization and Computer

Graphics, Vol. 6, No. 1, Jan. 2000, str. 24–43.

[60] “Graphviz - Graph Visualization Software”, available at: http://www.graphviz.org/ Oct.

2019.

[61] Himsolt, M., “GML: A portable graph file format”, Universität Passau, 1997, available

at: http://svn.bigcat.unimaas.nl/pvplugins/GML/trunk/docs/gml-technical-report.pdf

[62] “TGF”, available at: http://docs.yworks.com/yfiles/doc/developers-guide/tgf.html

[63] “A libre lightweight streaming front-end for Android.: TeamNewPipe/NewPipe”,

available at: https://github.com/TeamNewPipe/NewPipe Original-date: 2015-09-

03T23:39:26Z.

[64] Mlinarić, D., Milašinović, B., Mornar, V., “Tree Inheritance Distance”, IEEE Access,

Vol. 8, 2020, str. 52 489–52 504, publisher: IEEE.

[65] Singh, G. B., “Single Versus Multiple Inheritance in Object Oriented Programming”,

SIGPLAN OOPS Messenger, Vol. 6, No. 1, Jan. 1995, str. 30–39, available at:

http://doi.acm.org/10.1145/209866.209871

[66] Sakkinen, M., “Disciplined Inheritance.”, in ECOOP, Vol. 89, 1989, str. 39–56.

[67] Shasha, D., Wang, J. T., Kaizhong Zhang, Shih, F. Y., “Exact and approximate algo-

rithms for unordered tree matching”, IEEE Transactions on Systems, Man, and Cybernet-

ics, Vol. 24, No. 4, Apr. 1994, str. 668–678.

[68] Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., Widom, J., “Change Detection in

Hierarchically Structured Information”, SIGMOD Rec., Vol. 25, No. 2, Jun. 1996, str.

493–504, available at: http://doi.acm.org/10.1145/235968.233366

[69] Daelemans, W., De Smedt, K., Gazdar, G., “Inheritance in Natural Language

Processing”, Computer Linguistics, Vol. 18, No. 2, Jun. 1992, str. 205–218, available at:

http://dl.acm.org/citation.cfm?id=142235.142243

145

http://doi.acm.org/10.1145/1562860.1562862
http://www.graphviz.org/
http://svn.bigcat.unimaas.nl/pvplugins/GML/trunk/docs/gml-technical-report.pdf
http://docs.yworks.com/yfiles/doc/developers-guide/tgf.html
https://github.com/TeamNewPipe/NewPipe
http://doi.acm.org/10.1145/209866.209871
http://doi.acm.org/10.1145/235968.233366
http://dl.acm.org/citation.cfm?id=142235.142243

Bibliography

[70] Hashimoto, M., Mori, A., “Diff/TS: A Tool for Fine-Grained Structural Change Analysis”,

in 2008 15th Working Conference on Reverse Engineering, Oct. 2008, str. 279–288.

[71] Shapiro, B. A., Zhang, K., “Comparing multiple RNA secondary structures using

tree comparisons”, Bioinformatics, Vol. 6, No. 4, 1990, str. 309–318, available at:

https://doi.org/10.1093/bioinformatics/6.4.309

[72] Dulucq, S., Tichit, L., “RNA secondary structure comparison: Exact analysis of the

Zhang–Shasha tree edit algorithm”, Theoretical Computer Science, Vol. 306, No. 1,

2003, str. 471 – 484, available at: http://www.sciencedirect.com/science/article/pii/

S0304397503003232

[73] Yang, W., “Identifying syntactic differences between two programs”, Software:

Practice and Experience, Vol. 21, No. 7, 1991, str. 739–755, available at:

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380210706

[74] Neamtiu, I., Foster, J. S., Hicks, M., “Understanding Source Code Evolution Using

Abstract Syntax Tree Matching”, SIGSOFT Software Engineering Notes, Vol. 30, No. 4,

May 2005, str. 1–5, available at: http://doi.acm.org/10.1145/1082983.1083143

[75] Sager, T., Bernstein, A., Pinzger, M., Kiefer, C., “Detecting Similar Java Classes

Using Tree Algorithms”, in Proceedings of the 2006 International Workshop on Mining

Software Repositories, ser. MSR ’06. New York, NY, USA: ACM, 2006, str. 65–71,

available at: http://doi.acm.org/10.1145/1137983.1138000

[76] Roy, C. K., Cordy, J. R., Koschke, R., “Comparison and Evaluation of Code

Clone Detection Techniques and Tools: A Qualitative Approach”, Science of

Computer Programming, Vol. 74, No. 7, May 2009, str. 470–495, available at:

http://dx.doi.org/10.1016/j.scico.2009.02.007

[77] Böhme, M., Roychoudhury, A., Oliveira, B. C. d. S., “Chapter 2 - Regression Testing

of Evolving Programs”, ser. Advances in Computers, Memon, A., (ur.). Elsevier, 2013,

Vol. 89, str. 53 – 88, available at: http://www.sciencedirect.com/science/article/pii/

B9780124080942000023

[78] Valiente, G., Algorithms on Trees and Graphs. Berlin, Heidelberg: Springer-Verlag, 2002.

[79] Riesen, K., Structural Pattern Recognition with Graph Edit Distance: Approximation Al-

gorithms and Applications, 1st ed. Cham, Switzerland: Springer Publishing Company,

Incorporated, 2016.

[80] Kobler, J., Schöning, U., Torán, J., The Graph Isomorphism Problem: Its Structural Com-

plexity. Springer Science & Business Media, 2012.

146

https://doi.org/10.1093/bioinformatics/6.4.309
http://www.sciencedirect.com/science/article/pii/S0304397503003232
http://www.sciencedirect.com/science/article/pii/S0304397503003232
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380210706
http://doi.acm.org/10.1145/1082983.1083143
http://doi.acm.org/10.1145/1137983.1138000
http://dx.doi.org/10.1016/j.scico.2009.02.007
http://www.sciencedirect.com/science/article/pii/B9780124080942000023
http://www.sciencedirect.com/science/article/pii/B9780124080942000023

Bibliography

[81] Gao, X., Xiao, B., Tao, D., Li, X., “A survey of graph edit distance”, Pattern

Analysis and Applications, Vol. 13, No. 1, Feb. 2010, str. 113–129, available at:

https://doi.org/10.1007/s10044-008-0141-y

[82] Wang, J. T. L., Zhang, K., “Finding similar consensus between trees: An algorithm and a

distance hierarchy”, Pattern Recognition, Vol. 34, No. 1, 2001, str. 127 – 137, available

at: http://www.sciencedirect.com/science/article/pii/S0031320399001995

[83] Zhang, K., Shasha, D., “Simple Fast Algorithms for the Editing Distance Between Trees

and Related Problems”, SIAM Journal on Computing, Vol. 18, No. 6, Dec. 1989, str.

1245–1262, available at: http://dx.doi.org/10.1137/0218082

[84] Tai, K.-C., “The Tree-to-Tree Correction Problem”, Journal of the ACM, Vol. 26, No. 3,

Jul. 1979, str. 422–433, available at: http://doi.acm.org/10.1145/322139.322143

[85] Wagner, R. A., Fischer, M. J., “The String-to-String Correction Problem”, Journal

of the ACM, Vol. 21, No. 1, Jan. 1974, str. 168–173, available at: http:

//doi.acm.org/10.1145/321796.321811

[86] Selkow, S. M., “The tree-to-tree editing problem”, Information Processing Letters, Vol. 6,

No. 6, 1977, str. 184 – 186, available at: http://www.sciencedirect.com/science/article/pii/

0020019077900643

[87] Bille, P., “A survey on tree edit distance and related problems”, Theoretical

Computer Science, Vol. 337, No. 1, 2005, str. 217 - 239, available at: http:

//www.sciencedirect.com/science/article/pii/S0304397505000174

[88] Chidamber, S. R., Kemerer, C. F., “A metrics suite for object oriented design”, IEEE

Transactions on Software Engineering, Vol. 20, No. 6, Jun. 1994, str. 476–493.

[89] Šelajev, O., Gregersen, A., “Using runtime state analysis to decide applicability of dy-

namic software updates”, in Proceedings of the 12th International Conference on Software

Technologies, 2017, str. 38–49.

[90] Šelajev, O., Gregersen, A. R., “Genrih, a runtime state analysis system for deciding the

applicability of dynamic software updates”, in International Conference on Software Tech-

nologies. Springer, 2017, str. 135–159.

[91] Gharaibeh, B., Rajan, H., Chang, J.M., “A quantitative cost/benefit analysis for dynamic

updating”, Iowa State University, Technical Report, 2009.

[92] Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M., McKinley, K. S., Bentzur, R.,

Diwan, A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A., Jump, M.,

147

https://doi.org/10.1007/s10044-008-0141-y
http://www.sciencedirect.com/science/article/pii/S0031320399001995
http://dx.doi.org/10.1137/0218082
http://doi.acm.org/10.1145/322139.322143
http://doi.acm.org/10.1145/321796.321811
http://doi.acm.org/10.1145/321796.321811
http://www.sciencedirect.com/science/article/pii/0020019077900643
http://www.sciencedirect.com/science/article/pii/0020019077900643
http://www.sciencedirect.com/science/article/pii/S0304397505000174
http://www.sciencedirect.com/science/article/pii/S0304397505000174

Bibliography

Lee, H., Moss, J. E. B., Phansalkar, A., Stefanović, D., VanDrunen, T., von Dincklage,

D., Wiedermann, B., “The DaCapo Benchmarks: Java Benchmarking Development and

Analysis”, SIGPLAN Not., Vol. 41, No. 10, Oct. 2006, str. 169–190, available at:

http://doi.acm.org/10.1145/1167515.1167488

[93] “APM, (Application Performance Management) tool for large-scale distributed systems

written in Java. : naver/pinpoint”, available at: https://github.com/naver/pinpoint

Original-date: 2014-10-20T09:27:22Z.

[94] “Javassist by jboss-javassist”, available at: https://www.javassist.org/

[95] “Welcome to NetBeans”, available at: https://netbeans.org/

[96] Commons, A., “Bcel: Byte code engineering library”, URL http://commons. apache.

org/bcel, 2011.

[97] “ASM”, available at: https://asm.ow2.io/

[98] Mlinarić, D., Mornar, V., Milašinović, B., “Generating Trees for Comparison”, Comput-

ers, Vol. 9, No. 2, 2020, str. 35, publisher: Multidisciplinary Digital Publishing Institute.

148

http://doi.acm.org/10.1145/1167515.1167488
https://github.com/naver/pinpoint
https://www.javassist.org/
https://netbeans.org/
https://asm.ow2.io/

Biography

Danijel Mlinarić was born in 1985 in Zagreb, Croatia. He received his M.Sc. degree in comput-

ing from the Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia,

in 2009. From 2009 to 2014, he was a Research Associate with the same institution at the De-

partment of Applied Computing, working on national information systems of application and

enrollment in secondary schools and higher education institutions. From 2014, he has worked as

a Research and Teaching Assistant with the Faculty of Electrical Engineering and Computing,

University of Zagreb. His research interests include software engineering focused on software

evolution, program analysis, and dynamic software updating. He has contributed to publica-

tions in international peer-reviewed journals and to international conferences. He is a member

of the IEEE society.

List of published papers

1. Mlinarić, Danijel, Mornar Vedran, “Dynamic Software Updating in Java: Comparing

Concepts and Resource Demands”, Companion to the first International Conference on

the Art, Science and Engineering of Programming, April, 2017, pp. 12:1-12:6.

Journal papers

1. Mlinarić, Danijel, Mornar, Vedran, Milašinović, Boris, ”Generating Trees for Compari-

son”, Computers, Vol. 9, Issue 2, April, 2020, pp. 35.

2. Mlinarić, Danijel, Milašinović, Boris, Mornar, Vedran, ”Tree Inheritance Distance”, IEEE

Access, Vol. 8, March, 2020, pp. 52489-52504.

3. Mlinarić, Danijel, “Challenges in Dynamic Software Updating”, TEM Journal, Vol. 9,

Issue 1, February, 2020, pp. 117-128.

4. Brčić, Mario, Mlinarić, Danijel, “Tracking Predictive Gantt Chart for Proactive Reschedul-

ing in Stochastic Resource Constrained Project Scheduling”, Journal of Information and

Organizational Sciences, Vol. 42, No 2, December, 2018, pp. 179-192.

149

Životopis

Danijel Mlinarić rod̄en je 1985. u Zagrebu. Diplomirao je na Fakultetu elektrotehnike i raču-

narstva Sveučilišta u Zagrebu 2009. i stekao zvanje diplomirani inženjer računarstva. Od 2009.

do 2014. zaposlen je kao znanstveni suradnik na istoj instituciji na Zavodu za primijenjeno

računarstvo, gdje radi na nacionalnim informacijskim sustavima prijave i upisa u srednje škole

i fakultete. Od 2014., radi kao asistent na Fakultetu elektrotehnike i računarstva Sveučilišta u

Zagrebu. Njegov istraživački interes uključuje programsko inženjerstvo fokusirano na evolu-

ciju softvera, analizu programa i dinamičko ažuriranje softvera. Objavio je nekoliko radova u

časopisima s med̄unarodnom recenzijom i sudjelovao na med̄unarodnoj konferenciji. Član je

IEEE organizacije.

150

	Introduction
	Motivation
	Contribution
	Thesis outline

	Dynamic software updating
	Introduction to dynamic software updating
	Dynamic software updating requirements
	Related problems
	Updating techniques and mechanisms
	Level of update
	Update of dependent components
	Time of update: safe point of update
	State transfer
	Cleaning
	Rollback

	Dynamic software updating implementation
	Programming language
	Application type
	Runtime environment
	Type safety: binary compatibility
	Concurrency
	Defining the set of changes: the set of differences
	Coexisting of multiple versions

	Challenges
	Runtime phenomena: state artifacts
	Evaluating dynamic software updating implementation

	Object-oriented environment
	Java approaches
	Update timing
	Program adaptation
	Supported changes

	Hierarchy changes
	Type changes
	Member changes

	Class hierarchy visualization

	Tree dissimilarity
	Class hierarchy as tree data structure
	Introduction to trees and dissimilarity measures
	Preliminaries
	Edge edit operations
	Relationship between nodes

	Edge edit distance
	Edge extended tree
	Set of edit operations
	Edit set cost

	Tree inheritance distance
	Tree editing impact on the inheritance
	Detecting inheritance changes
	Direct and indirect edit operations
	Inheritance edit operations
	Inheritance cost

	Extended DAOP model
	Model properties
	Dynamic aspects (DAOP)
	Prose

	Extended model
	Program changes detection algorithm

	Classes for dynamic update
	Type changes
	Member changes

	Runtime phenomena detection
	Runtime phenomena
	Runtime phenomena analysis in update model
	Call changes dependency
	Inheritance change dependencies

	Runtime phenomena detection algorithm
	Discussion of runtime phenomena in extended DAOP update model

	Measurement methodology for performance benchmarking
	Discussion
	Measurement methodology
	Steady state overhead
	Update duration
	Modified state overhead
	Memory usage

	Benchmark architecture
	Benchmark tool
	DSU interfaces (helper tools)
	Microbenchmark test cases

	Prototype system
	Prototype structure
	Creating version and source info
	Source code analysis
	Changes and runtime phenomena detection
	Class generator
	Java agent
	Loading changes
	DSU manager

	Dynamic aspect (DAOP) weaver

	Evaluation
	Applicability
	Program changes analysis
	Runtime phenomena detection
	Use case example

	The efficiency of the algorithms
	Distribution pattern analysis
	Generating class trees by distribution pattern
	Distort original tree
	Evaluation setup
	Results

	DSU performance
	Methodology
	Results

	Concluding remarks
	Summary of contributions
	Open issues and recommendations for future work

	Bibliography
	Biography
	Životopis

