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Summary

Metaheuristic techniques are an essential set of optimisation techniques with broad applications

in numerous problems of great practical importance. Despite their success, using metaheuris-

tics also has notable drawbacks: they are highly complex algorithms whose implementation

process still lacks a formal development methodology. Their development is expensive as it

requires highly trained experts, considerable time and computational resources. This work

proposes a bottom-up development methodology for metaheuristic development, based on a

component-based view of metaheuristics and gradual addition of more complex elements. The

development methodology has the potential to reduce development time and costs while pro-

viding high-quality results. This development methodology was experimentally validated on

three difficult problems: (1) call centre workforce scheduling, (2) carsharing reservations op-

timisations, (3) carsharing variable trip pricing problem. The second and third problems were

especially difficult given their resource-intensive objective function, that requires long evalu-

ation times, this way restricting the evaluations budget. Solutions to these two problems are

to the best of the author’s knowledge, the first applications of the iterated local search meta-

heuristic on problems with a limited budget of evaluations. Further, these solutions do not use

surrogate modelling, which is common practice with such problems. The work concludes with

a set of guidelines for surrogate-free solving of optimisation problems with a limited budget of

evaluations, based on the experiences solving these two problems.

Keywords: metaheuristics, development methodology, Iterated local search, workforce

scheduling, carsharing, transportation optimisation



Prošireni sažetak

U svakodnevnom smislu, riječ optimum znači skup najpovoljnijih mogućih uvjeta ili okolnosti,

najveći mogući stupanj nečega, najbolji rezultat koji se može ostvariti uz zadane ili pretpostavl-

jene uvjete. Glagol optimizirati znači usavršiti do razine najboljeg, izabrati najbolji od svih

mogućih izbora, učiniti nešto najsavršenijim mogućim. Riječ optimizacija je postupak traženja

optimuma, čin, postupak ili metodologija usavršavanja nečega do najviše moguće razine.

Optimizacija je sveprisutna. Genijalni primjeri optimizacije mogu se naći posvuda u prirodi.

Fizički sustavi prirodno teže stanju minimalne energije. Paukove mreže su iznimno optimizirane

strukture, počevši od paukove svile koja se sastoji od vlakana visokih performansi, do njihove

strukturne mehanike. Pahuljasta pera koja se nalaze u “padobranu” maslačka pokazuju savršeno

podešena svojstva koja istovremeno omogućuju da ih vjetar nosi na daleke udaljenosti ali i mini-

mizira količinu potrebnog materijala. Donošenje dobrih odluka važno je i za ljude. “Koju život-

inju loviti od svih životinja u krdu”, “što je najbolje učiniti kada nekoga napadne tigar” ili “gdje

je najbolje mjesto za izgradnju nastambe” tek su neki primjeri složenih odluka koje su ljudi

uspješno rješavali, vod̄eni instinktom i znanjem koje se prenosilo iz generacije u generaciju.

Pojavom znanosti, optimizacija je postala u sve većoj mjeri formalni proces koji se is-

traživao korištenjem sve naprednijih, rigoroznih istraživačkih procesa. Problemi optimizacije

proučavani su još od antike, te su se tijekom stoljeća njima bavili znanstvenici raspršeni u više

područja, većinom matematike i fizike. Istovremeno, optimizacija je i područje u kojem su

brojni izumitelji, inženjeri i programeri inovirali brojne tehnike. Danas probleme optimizacije

proučava matematička optimizacija, područje matematike i računarske znanosti. Pri tom se

problemi optimizacije najčešće postavljaju jezikom matematike ili nekim drugim načinom for-

malne definicije, a za njihovo rješavanje usavršen je velik broj raznovrsnih metoda i procedura.

Važan poticaj razvoju optimizacije pružio je razvoj računala. Dvadeseto stoljeće i početak

dvadeset prvog je vrijeme iznimno brzog razvoja te su se početni velike nezgrapne naprave brzo

razvile u umrežen ekosustav med̄usobno povezanih ured̄aja koji stanu u džep. Porast računalne

snage i mogućnosti raznovrsnih primjena bili su dio tog iznimno brzog razvoja.

Prva računala nalazila su se pretežno u istraživačkim institucijama i koristila se većinom

za matematičke proračune, a njihovo upravljanje i programiranje bilo je rezervirano tek za

uzak krug inženjera i znanstvenika sa specijaliziranim obrazovanjem. Razvojem tehnologije,

mogućnosti primjene računala postajale su sve šire te su postupno računala počela postajati

sposobna za sve više aktivnosti koje su se smatrale tipično “ljudskim”, poput igranja šaha, pre-

poznavanja lica, usmjeravanja vozila i brojnih drugih. Početak 2020 godine vrijeme je kad se

računala nalaze gotovo posvuda, a zbog jednostavnosti za korištenje dostupni su gotovo svim

grad̄anima.

Još 1950. u svom članku “Strojevi koji računaju i inteligencija”, Alan Turing je naslutio



golemi potencijal računala. Taj rad je utabao trag za kasniji razvoj nekoliko disciplina raču-

narske znanosti ali i postavio brojna filozofska pitanja poput “mogu li strojevi misliti”. Uz bro-

jne druge doprinose, u radu se postavlja ideja simulacije evolucije u računalu kao mogućnost

za izradu univerzalnog pristupa rješavanju različitih problema. Tradicionalni pristup korištenju

računala zahtijevao je ljude koji bi željene funkcionalnosti prevodili u strojni jezik, a koje bi

računala tek ponavljajuće izvršavala. Nasuprot takvom pristupu, Turing je predložio razvoj

računala koja bi put od problema do rješenja izvršila samostalno, pri tom stvarajući nove ideje

i učeći. Navedena područja u suvremenom se računarstvu nazivaju strojnim učenjem i evolu-

cijskim računarstvom. Navedeni rad bio je daleko ispred svoga vremena te je još dugo nakon

Turingovog rada računala bila nedovoljno razvijena da bi omogućila razvoj i primjenu tih ideja.

Ipak, šezdesete godine 20. stoljeća i početak sedamdesetih su donijele su veliki optimizam,

pobud̄en ranim uspjehom na jednostavnim problemima. Pojavljuje se algoritam povratne propa-

gacije pogreške (engl. backpropagation algorithm), koji omogućava razvoj umjetnih neuronskih

mreža, inspiriranih načinom na koji je organiziran ljudski mozak i koje korištenjem navedenog

algoritma dobivaju mogućnost učenja ili treniranja ponašanja koja se od njih očekuju. Mnogi

istraživači se bave i začetkom evolucijskog računarstva koje je u suvremenom obliku popular-

izirao John Holland 1975. te se simulacija evolucije u računalu počinje intenzivno proučavati

kao moguć univerzalan postupak rješavanja problema. Genetski algoritam će kasnije biti pre-

poznat kao jedna od prvih tehnika rješavanja optimizacijskih problema koji se danas nazivaju

metaheuristike.

Veliki i ponekad neutemeljeni optimizam je splasnuo dolaskom razdoblja koje se naziva

“zima umjetne inteligencije” (engl. AI winter) sedamdesetih i osamdesetih. Djelomično zbog

nedovoljno razvijenog hardvera, a djelomično i potaknuto razvojem teoretske računarske znanosti,

postalo je jasno da će brojni teški problemi još dulje vrijeme biti izvan dosega rješavanja na

računalu. Primjer takvih iznimno teških problema su 𝒩𝒫-teški problemi. Taj razred je tijekom

sedamdesetih godina dvadesetog stoljeća identificiran kao razred problema za koje ne znamo

učinkovite načine rješavanja, a ne znamo niti je li uopće moguće postojanje takvih učinkovitih

tehnika. Unatoč desetljećima truda najbriljantnijih znanstvenika i programera, na dana pitanja

odgovori nisu poznati te je problem postojanja učinkovitog algoritma za 𝒩𝒫-teške probleme

prepoznat kao jedno od najvećih neodgovorenih pitanja suvremenog računarstva, poznat i pod

nazivom 𝒫? =𝒩𝒫 problem.

U navedeni razred teških problema ubrajaju se i brojni problemi optimizacije čije je rješa-

vanje iznimno važno u praktičnim primjenama. Raznovrsne optimizacije procesa u prometu,

izrada rasporeda smjena u poduzeću, pakiranje tereta tako da zauzme minimalan mogući skladišni

prostor tek su neki primjeri. Budući da za takve probleme ne postoji poznat algoritam koji do-

voljno brzo nalazi njihov optimum, za njihovo rješavanje se u praksi koriste približne tehnike,

koje ne garantiraju pronalazak optimuma ali su brze u pronalasku rješenja koja su blizu opti-
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malnog. U približne tehnike se ubrajaju i metaheurističke tehnike koje su predmet proučavanja

ove doktorske disertacije. Metaheurističke tehnike su općeniti algoritamski razvojni okviri koji

se mogu primijeniti na širok skup problema.

Tijekom posljednjih desetljeća, razvijen je velik broj metaheuristika. Neke se temelje na ko-

rištenju vrlo općenitih zdravorazumskih strategija rješavanja problema. Neke od takvih strate-

gija su načelo “dok god se približavaš cilju, nastavi raditi male pomake” ili “ako mali pomak ne

pomaže, napravi veliki pomak”. Navedene jednostavne ideje zajedno čine temelj metaheuris-

tike ponavljajuće lokalne pretrage (engl. iterated local search). Drugi razred metaheuristika se

temelji na računalnoj simulaciji prirodnih procesa. Primjerice, genetski algoritam koristi sim-

ulaciju prirodnog procesa evolucije kako bi postepeno razvio sve bolja rješenja zadanog prob-

lema. Slično, metaheuristika simuliranog kaljenja se temelji na oponašanju procesa kaljenja

metala, koji je proučavan u području metalurgije te se koristi pri obradi metala, za poboljšanje

njegovih svojstava.

Metaheurističke tehnike važan su skup tehnika optimizacije sa širokom primjenom u bro-

jnim problemima velike praktične važnosti. Unatoč njihovim uspješnim primjenama, korištenje

metaheuristika nosi i neka nepoželjna svojstva: radi se prije svega o složenim algoritmima za

čiju implementaciju još uvijek ne postoje formalne razvojne metodologije. Njihov je razvoj

skup, traje dugo, zahtijeva visoko obrazovane stručnjake i znatne računalne resurse. Uz to,

trenutno ne postoje smjernice koje pružaju podršku pri izboru neke od velikog broja razvijenih

metaheurističkih tehnika. Učinkovit razvoj npr. genetskog algoritma je složen postupak zbog

velikog broja komponenti algoritama te složenosti njihova povezivanja u učinkovitu cjelinu.

Ovaj rad predlaže bottom-up metodologiju razvoja metaheuristika koja se temelji na ras-

tavu metaheuristika na komponente. Implementacija započinje razvojem najjednostavnijih el-

emenata i nastavlja se postupnim dodavanjem složenijih. U svakom koraku implementacije,

algoritam je funkcionalan te može dati potpuna rješenja. Prednost tog svojstva jest mogućnost

davanja početnih rezultata u vrlo ranoj fazi razvoja, i veća agilnost razvoja. Proces se nastavlja

dodavanjem složenijih komponenata i njihovim povezivanjem u sve složenije metaheuristike,

sve dok se ne postignu dovoljno dobri rezultati za primjenu. Primjena razvijene metodologije

može smanjiti trajanje i troškove razvoja, ali i dalje pruža kvalitetne rezultate.

Praktična primjenjivost navedene metodologije je eksperimentalno provjerena prilikom im-

plementacije optimizacijskih algoritama za tri teška problema: (1) izrade rasporeda rada dje-

latnika pozivnog centra, (2) optimizacije rezervacija carsharing sustava, (3) rješavanja prob-

lema odred̄ivanja varijabilnih cijena carsharing usluge. Sva tri problema uspješno su riješena.

Postupak dodavanja složenijih operatora zaustavljen je već pri izradi najjednostavnijih meta-

heuristika: GRASP (nasumična pohlepna prilagodljiva procedura pretraživanja, engl. greedy

randomized adaptive search procedure) i ponavljajuće lokalne pretrage. Navedeni rezultati in-

dikator su prilagodljivosti jednostavnih metaheuristika te potkrjepljuju tezu da se dobri rezultati
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mogu postići i bez dugotrajnog rada potrebnog za implementaciju složenijih algoritama kao što

su genetski algoritam i algoritam mravlje kolonije.

Problem izrade rasporeda rada djelatnika pozivnog centra sastoji se od traženja optimalnih

radnih vremena za djelatnike s ciljem što je moguće bržeg javljanja na dolazne pozive. Pozivni

centri se sastoje od većeg broja educiranih djelatnika, koji se nazivaju agenti. Kad korisnik

uputi poziv na telefonski broj poduzeća, njegov poziv bit će preusmjeren prvom slobodnom

djelatniku, a do tad će korisnik čekati. Razvijen sustav podržao je vrlo složen skup nekoliko

desetaka pravila, počevši od osnovnih kao što su radno vrijeme, do složenijih pravila koja služe

povećanju zadovoljstva djelatnika, npr. izbjegavanje nepopularnih smjena. Velik broj pravila

(engl. constraints) bio je izazovan za rješavanje. Za traženje najboljih rasporeda su implemen-

tirane dvije metaheuristike: ponavljajuća lokalna pretraga i GRASP, u skladu s metodologijom

predloženom u ovoj doktorskoj disertaciji. Već te dvije jednostavne metaheuristike pružile su

zadovoljavajuće rezultate.

Drugi i treći problem koji su riješeni u sklopu doktorskog istraživanja vezana su za us-

lugu carsharinga, koja se ubraja dijeljene prometne sustava (engl. shared mobility). Usluge

carsharinga sastoje se od većeg broja automobila kojima upravlja jedna organizacija, a koji

članovima omogućava kratkoročni najam. Najčešće se nudi u većim gradovima i naplaćuje po

minuti korištenja te svojim korisnicima nudi prednosti automobila bez troškova i odgovornosti

koji proizlaze iz kupovine vlastitog automobila. Tipične primjene carsharinga su primjerice

vožnje radi obavljanja kupovine ili povremeni prijevoz radi zabave (kino, restoran).

Drugi problem, problem rezervacija u jednosmjernom (engl. one-way) carsharingu bavi

se pružanjem usluge dugotrajnih rezervacija u takvim sustavima. Za razliku od carsharinga s

povratnim vožnjama (engl. round trip carsharing), koji zahtijeva da korisnik automobil vrati na

istu lokaciju s koje je preuzet, jednosmjerni carsharing pruža veću fleksibilnost jer dozvoljava

vraćanje vozila na bilo koju lokaciju u servisnoj mreži. Zbog toga je taj oblik carsharinga

i puno zahtjevniji za pružatelje usluga. U takvoj vrsti carsharinga pružanje rezervacija je

posebno složeno za organizaciju te ih većina komercijalnih pružatelja ne nudi ili ih nudi u

vrlo ograničenom obliku, npr. ne više od 30 minuta prije početka vožnje. U sklopu istraživanja

u ovom doktorskom radu, razvijena je metaheuristika ponavljajuće lokalne pretrage za opti-

mizaciju rezervacija u inovativnom načinu pružanja takve usluge. Rezultati simulacije pokazuju

da predložene metode mogu znatno povećati razdoblje pružanja usluge (s trenutnih 30 minuta

na više od 18 sati) bez značajnog gubitka profita.

Treći problem, problem varijabilnih cijena u jednosmjernom carsharingu sastoji se od

podešavanja cijene carsharing usluge ovisno o mjestu početka putovanja te vremenu početka

vožnje. Glavni cilj algoritma za optimizaciju bio je povećanje profitabilnosti sustava, ali im-

plicitno je uz profit povećana i uravnoteženost broja vozila na parkiralištima diljem područja

usluge. Problem je riješen metaheuristikom ponavljajuće lokalne pretrage. Rezultati simulacije
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ukazuju da se korištenjem optimizacijskog algoritma usluga koja je stvarala gubitke veće od

1000C dnevno npr. uspješno preobrazila u profitabilan sustav s dobiti većom od 2500C po

danu.

Drugi i treći problem: optimizacija rezervacija te optimizacija varijabilnih cijena usluge

carsharinga bili su posebno teški s obzirom na njihovu ciljnu funkciju koja zahtijeva intenzivne

resurse, te se zbog toga na računalu izvršava dugo. Navedeni problemi ubrajaju se u razred prob-

lema s ograničenim budžetom evaluacija (engl. problems with limited budget of evaluations),

skraćeno OBE. Tipične primjene metaheuristika implicitno pretpostavljaju mogućnost evalu-

acije velikog broja rješenja, što pri rješavanju OBE problema znatno sužava područje prostora

rješenja koje metaheuristika može istražiti. Uobičajeno se u literaturi takvi problemi rješavaju

izgradnjom nadomjesnog modela (engl. surrogate model) koji aproksimira zahtjevne funkcije

cilja te se može evaluirati veliki broj puta. Rjed̄e su primjene koje metaheuristike koriste direk-

tno na sporoj funkciji cilja, bez korištenja nadomjesnih modela.

Rješenja drugog i trećeg problema su prema autoru dostupnim informacijama, prve prim-

jene metaheuristike ponavljajuće lokalne pretrage na probleme s ograničenim brojem evalu-

acija. Nadalje, izgrad̄eni algoritmi uspješno su izgrad̄eni bez korištenja nadomjesnog modeli-

ranja, što nije uobičajena praksa u literaturi te su korištene jednostavne metaheuristike. Rad

završava nizom smjernica za rješavanje problema optimizacije s ograničenim brojem evaluacija

bez nadomjesnog modela, temeljenih na iskustvima rješavanja ova dva problema. Prilikom is-

traživanja, kao najučinkovitije tehnike za unaprjed̄enje učinkovitosti metaheuristika bili su usm-

jerenost na intenzifikaciju rješenja te nastojanje za ostvarivanjem što je moguće boljeg početnog

rješenja za metaheuristiku.

Izvorni znanstveni doprinosi ovog rada su:

1. Metodologija razvoja za implementaciju metaheurističkih tehnika čiji su ciljevi brz razvoj,

ali i visoka učinkovitost razvijenih softverskih rješenja,

2. Eksperimentalna evaluacija razvijene metodologije na tri optimizacijska problema:

• Problem izrade rasporeda rada djelatnika u pozivnom centru,

• Optimizacija rezervacija u carsharingu

• Problem varijabilnih cijena u jednosmjernom carsharingu

3. Metaheuristika ponavljajuće lokalne pretrage prilagod̄ena na rješavanje optimizacijskih

problema s ograničenim budžetom evaluacija.

Ključne riječi: metaheuristike, razvojne metodologije, ponavljajuća lokalna pretraga, ras-

poredi rada djelatnika, carsharing, optimizacija prometa
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Chapter 1

Introduction

Computers are continuously getting better at performing tasks of increasing complexity. They

have transformed from isolated “big iron” devices into an ecosystem of interconnected devices

that fit into a pocket, and their applications have changed in a similarly striking way. From being

restricted to the mathematical calculation in research institutions, their applications expanded

and nowadays they include tasks that were considered typically “human” such as driving and

routing vehicles, image recognition, staff scheduling and numerous others, as well as tasks that

were impossible to solve by people due to e.g. their size or complexity, and too much time that

would be required.

An area in mathematics and computer science called mathematical optimisation is an im-

portant field of study that fuels the development of such applications. Solving problems using

techniques of mathematical optimisation requires the existence of a mathematical description

of the problem to be solved, and during decades of research, various techniques have been

developed for a wide variety of problems. Initially, such techniques were used to produce

solutions to logistical and economic problems. With more advanced computers and more re-

search being available, it was demonstrated that numerous real-life tasks could be formulated

and successfully solved as optimisation problems. Such algorithms can now perform highly

sophisticated intellectual tasks—staff scheduling, packing goods, and transportation. Optimisa-

tion algorithms are increasingly used to help with complex problems that involve both technical

and social decisions such as “how to perform railway infrastructure upgrade during the next few

decades”.

This thesis focuses on metaheuristics. They are general optimisation techniques commonly

applied to problems on which most other methods fail. Despite their great potential and im-

provements in theoretical understanding, implementing metaheuristics in real-world software

projects is still complicated and expensive. It is CPU-intensive and requires highly trained de-

velopers. As a part of this work, the author investigated various strategies to help improve the

typical workflow of implementing metaheuristics and reduce the complexity and development
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time.

Another area where applying of metaheuristics is hard are the problems with limited bud-

get of evaluations (LBE). With such problems, estimating the quality of each potential solution

requires significant time or other resources (number of CPUs, memory, real-world models and

others). This hinders the ability of metaheuristics to find high-quality solutions since they rely

on testing a large number of potential solutions. The current literature in this area typically rec-

ommends building quicker models called surrogate models or surrogate functions that gradually

learn the features of the problem being solved. While the literature reports success with such

methods, not much analysis is devoted to the fact that such extra layers add even more complex-

ity to the implementation process. Further, little attention has been dedicated to the attempts

to use metaheuristics without additional surrogate models and development of techniques to

improve the performance of the algorithms on such specific problems.

These ideas were tested on three difficult problems:

• Call centre staff scheduling problem,

• Improving the carsharing reservation service by optimising the service quality parameters

across the service area,

• Carsharing service profit optimisations with variable trip pricing in the zones of the ser-

vice area and during the time of day.

The first problem (call centre scheduling) is a common problem, where very quick evaluation is

possible, and checking tens of thousands of different schedules is possible in a reasonable time,

before returning the best found as the solution. The second two are transportation problems, and

they have much more demanding evaluation. In the second problem—carsharing reservations

optimisation, a simulator is used to check the quality of each generated solution. In the third

problem, the evaluation is even more complex and slow since a mathematical model is used to

estimate the solution quality, and it can take up to around one minute to get an evaluation of a

single solution.

Implementing complete algorithms for solving these three problems provided an environ-

ment where different approaches to the development of metaheuristics can be tested and further

improved, to reduce the complexity mentioned above, that a typical metaheuristic based project

inevitably bears. In addition to this, the second two problems are suitable test-cases for testing

various techniques to solve problems with a slow evaluation function.

Although in this thesis, they are used to develop and test more general algorithm devel-

opment concepts, all three problems are relevant on their own, both from scientific as well as

practical perspective. Scheduling can be a difficult task that nearly all human organisations oc-

casionally face. Scheduling problems commonly involve people, various assignments, meetings

and other activities, and problem definition can include numerous preferences and requirements.

Carsharing is an increasingly popular transport mode, in which a fleet of cars is distributed
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around the service area (typically a city). There exist several different configurations of typ-

ical carsharing services that appeared during the last decades, some of which only recently.

Most notably, one-way carsharing first appeared in 2008 and still poses a number of difficult

challenges to any commercial provider.

As a venture into the interdisciplinary work, transportation problems described in this thesis

were not only a very convenient playing field for algorithms research—they are also important

and previously unsolved transportation problems. The carsharing applications provided several

contributions in the area of carsharing. The reservation improvement algorithm is a part of

an innovative method of providing long-term vehicle reservations, which are to this date not

provided by any carsharing provider, nor were considered in transportation literature. Likewise,

the variable pricing algorithm is the first known application of the variable pricing technique to

incentivise user behaviour in carsharing systems.

All algorithms proposed in this thesis have the potential for practical applications. High-

quality scheduling algorithms and software can bring substantial improvements in the function-

ing of complex organisations. It can save the time needed to produce and edit schedules by

hand, and reduce the number of staff that must work on schedules. Such savings in the required

time can allow cost savings and higher productivity.

Similarly, the carsharing reservation scheme investigated in this thesis has the potential to

expand the carsharing market, attract new customers and increase user satisfaction and loyalty.

Regarding the third problem—carsharing variable trip pricing, the algorithm is developed to

maximise profit by adapting the prices in response to the demand across the service area. The

results show that the algorithm was able to turn a simulated Lisbon carsharing provider strug-

gling with losses of more than 1,800 C/day into a profitable company with the daily profit of

more than 2000C.

1.1 Contributions

This thesis provides the following original scientific contributions:

1. Design methodology for applications of metaheuristics, targeting fast development and

efficient software solutions.

This contribution is elaborated in detail in Chapter 4.

2. Experimental evaluation of the developed methodology on three problems:

• Call centre workforce scheduling

• Carsharing reservation service optimisation

• Variable trip pricing in carsharing

This contribution is detailed in Chapter 5. The proposed solution of the call centre work-

force scheduling problem can be found in 5.1. The novel carsharing reservation method
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and the proposed algorithm to further optimise such services is detailed in Section 5.3.

The variable trip pricing problem in carsharing is discussed in Section 5.4.

3. Iterated local search metaheuristic adapted to solve optimisation problems with a limited

budget of evaluations.

The specific implementations of the algorithm is discussed in Sections 5.3 and 5.4. Fur-

ther, in Section 6, a short general overview of the performed adaptations is presented.

1.2 Outline of the thesis

The thesis consists of 7 Chapters, including this Introduction.

Chapter 2 provides a general introduction to the area of mathematical optimisation, com-

bining the mathematical and computer science perspective. It defines the most general terms

that are thoroughly used in this thesis—the optimisation problem, solution, local optima, global

optima, variables, and others. It further describes the most important classes of optimisation

problems, lists the most important achievements of theoretical computer science that are rel-

evant for the area and brings the general guidelines for solving optimisation problems. This

way, the Chapter positions this work in the wide area that optimisation is today. The Chapter

concludes with a few examples of noteworthy optimisation problems.

Chapter 3 introduces metaheuristics—it illustrates the contemporary view on them and

how they can be defined. It further states the most important characteristics shared by all meta-

heuristics. Several techniques that satisfy nearly all of those characteristics are identified, most

importantly pure random search, greedy algorithm and local search. While they cannot be

considered metaheuristics, these algorithms are commonly used in algorithms that do fit the

definition and have all the required characteristics. This analysis is used as a basis for the

component-based view of metaheuristics explained later in the thesis. The chapter finishes with

an overview of the established metaheuristic methods

Chapter 4 describes the bottom-up development methodology, proposed to increase the

agility in implementing metaheuristic methods. The chapter first describes the current prac-

tices in developing metaheuristic algorithms and illustrates the high complexity in this process.

Some theoretical and practical results relevant to the development are presented. The Chapter

continues with the breakdown of all metaheuristics described in Chapter 3 into a set of standard

components. The chapter then illustrates the bottom-up development methodology based on

these algorithmic components, with the gradual addition of complexity, frequent performance

testing and defining the implementation as done as soon as the satisfactory performance is

achieved. The author argues that this methodology can bring considerable savings in the cost

and required time to produce a well-performing algorithm.

Chapter 5 describes how the methodology proposed in Section 4 is applied to three difficult
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problems. First, the implementation of the call centre scheduling is described, along with the

results. Given that the other two problems studied in this work are related to transportation, a

brief introduction to carsharing is provided. The Chapter then provides definitions and the im-

plemented iterated local search algorithm for solving two challenging problems in carsharing:

carsharing reservations problem and variable trip pricing problem. Further, to the best of the au-

thor’s knowledge, these are the first implementations of the iterated local search metaheuristics

on problems with a limited budget of evaluations.

Chapter 6 summarises the guidelines arising from two successful implementations of the

iterated local search metaheuristic into a set of principles for solving optimisation problems

with a limited budget of evaluations. Similarly to the simplicity as a design goal for proper

implementations of metaheuristics, this chapter is an extension of Chapter 4 which describes

the application of the bottom-up development methodology on problems with a limited budget

of evaluations. The Chapter concludes by stating that surrogate models for solution evaluation,

which are a common practice in this area, might not be necessary.

Chapter 7 concludes the thesis, with a summary of key findings, guidelines and contribu-

tions as well as some ideas for the future work.
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Chapter 2

Optimisation problems

In the contemporary world, the area of optimisation is an intersection of several scientific disci-

plines. Such studies are highly relevant since numerous problems of great theoretical and practi-

cal importance can be formulated as optimisation problems. During centuries, several classes of

such problems were studied separately, initially in the areas of mathematics and physics. Those

studies identified systematics of optimisation problems, several ways to hierarchically organ-

ise problem types, and specialised solving techniques. With the computer revolution in recent

decades, hardware of high computational capability, as well as increasingly clever algorithms,

became ubiquitous. This allowed people to use computers to solve problems unprecedented in

their complexity and size. Further, theoretical computer science gained valuable insights into

problem complexity as a research area and provided a rigorous analytical framework for ranking

problem difficulty.

This Section positions this research of metaheuristic techniques in the broad area of op-

timisation. It provides a short historical overview of the most important results, followed by

definitions used in modern research. It further presents the systematics of optimisation prob-

lems and some of the results from the theoretical computer science that shape the directions

of research and development of optimisation algorithms. Finally, short descriptions of several

important difficult problems are provided.

2.1 Historical overview

In the most common everyday sense, the word optimum means the greatest degree of something,

attained or attainable under specified or implied conditions, or the amount of something that is

the most favourable to some end. The meaning of verb to optimise is to make as perfect,

functional or effective as possible. Related to these definitions, optimisation is the act, process,

or methodology of making something as fully perfect, functional, or effective as possible. In a

general sense, optimisation is a process of selecting among a set of possibilities to find the best
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one [1].

Optimisation is ubiquitous. Ingenious examples of optimisation can be found across nature.

Light follows the path that minimises the travel time. Physical systems and chemical reactions

have a tendency towards states of minimal energy. Spider webs seem to have highly optimised

properties, both in terms of spider silk as a high-performance fibre, as well as their structural

mechanics [2, 3, 4]. Dandelion seed pappus1 appears to have perfectly tuned porosity that en-

hances the flight capacity and minimises material requirements [5]. Performing good decisions

was always very important for humans as well. Which animal in a herd to hunt, what to do when

one sees a dangerous animal such as a tiger, where to build a settlement—people were able to

successfully solve complex problems guided by instinct and accumulated knowledge passed

on through generations. With the emergence of science, optimisation became an increasingly

formalised process, explored in rigorous ways, as well as an area where numerous innovative

algorithms were crafted by engineers.

2.1.1 Antiquity

The first recorded evidence of optimisation problems defined mathematically that is known

to the author is the description of the isoperimetric problem in ancient Greece [6, 7, 8]. The

problem consists of finding the figure in the plane with a given perimeter that has the maximum

surface, and analogously in three dimensions, finding the solid with a given surface that has the

largest volume. According to the commentator Simplicius from the 6th century, it was known

even before Aristotle (4th century BC), that the solutions to the problem in the plane are a circle,

and that in space, the solution is a sphere [6, 9, 10].

In the year 19 BC, Latin poet Virgil, in the epic poem Aeneid tells the legend about the

foundation of the ancient Carthage in 814 BC [11]. According to the legend, the Phoenician

princess Dido (also called Queen Elisa) fled her tyrant brother with a group of faithful compan-

ions. They decided to settle on the north region of Africa (modern-day Gulf of Tunisia). She

was able to persuade the native inhabitants to allow them to take only “as much land as they

can enclose in a bull’s hide”. The resourceful Dido cut the bull’s hide in thin strips, this way

producing a long rope, and used it to enclose a considerable area of land, clearly attempting to

maximise the surface that can be enclosed using the limited material given to her [7].

Another excellent example of optimisation in antiquity comes from China and dates from

the 4th century BC. It is preserved in the form of the story about the horse race of Tián Jì

[12, 13]. Tián Jì was a general in Chinese county Qí who loved horse racing. One day, the

King Wei of Qí, ordered Tián Jì to have a horse racing match with him. The match consisted

of three rounds, and in each round, each side could choose a horse to compete with the other

1In botany, a pappus is a body of feathery bristles around the seed that help disperse the plant seed using wind.
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side, with the winner being the side that wins more rounds. Tián Jì knew that his best horse was

not a match for the King’s best one, that his second horse was slower than King’s second, and

likewise, his third horse was slower than king’s third. Advised by the military strategist Sun

Bin, he used the following strategy: he selected his worst horse to race with king’s best. After

the King won this race, Tián Jì selected his best horse to race against King’s second-best and

his second-best to race with King’s third. In this ancient story, Sun Bin solved what is today

known as a weighted bipartite graph matching problem, or assignment problem, and found the

optimal strategy to participate in the tournament. The results confirmed that. Despite losing

his first race, Tián Jì won the last two, and by the result of 2:1, he won the entire tournament

[12, 13].

The previously mentioned isoperimetric problem was relevant for questions related to land

distribution and was mentioned and studied by several scholars in Ancient Greece. In the 4th

century BC Aristotle states “Now, of lines which return upon themselves, the line which bounds

the circle is the shortest” [14]. Approximately in 2nd century BC, Zenodorus proves that the

circle has a larger area than any polygon with an equal perimeter. In a rigorous modern sense,

after more than 2 millennia of effort, the problem was solved in the 19th century AD, by Swiss

mathematician Jakob Steiner who proved that circle indeed is the solution to the problem, using

a geometric method [10].

In his celebrated Elements, Euclid provides the means to construct a parallelogram with

the largest area in a specific setup of parallelograms, along with a geometric proof that the

constructed parallelogram indeed has the maximum area (Book 6, Proposition 27) [15, 16]. By

applying this proposition, it is possible to provide a solution to a related problem—finding the

parallelogram with the largest area that can be inscribed in a triangle and shares an angle with

the given triangle. The solution to this problem is a parallelogram formed by the point of the

shared angle and the midpoints of the triangle’s sides.

Ancient Greek science provided very early observations of optimisation in nature. In the 1st

century AD, Hero of Alexandria (1st century AD) in his Catoptrics describes that reflected light

follows the shortest path [17, 18, 19]. In the 4th century AD, Pappus observes that bees build

their honey-combs using hexagonal shapes without any space in between cells. He proves that

this property allows them to maximise the honey volume in each cell while minimising waste,

and minimising the quantity of material needed to build cell walls [19, 20, 21].

2.1.2 17th – 19th century

The 17th century is noted as the time when revolutionary ideas related to calculus of variations

were born. This is the first time universal techniques for optimisation were developed—unlike

the specialised mathematical treatment of each individual problem that was the case before.

The great scientists such as Fermat, Newton and Euler solve complex problems and create new
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areas of mathematics and physics [10, 22]. Further, optimisation methods from mathematics

start being used in other areas of science, such as economics.

In the year 1636, Pierre de Fermat publishes the pioneering work in the area of mathe-

matical analysis, Methodus ad disquirendam maximam et minimam et de tangentibus linearum

curvarum, in which he shows that derivatives at the extreme points of a function are equal

to zero [22]. During the mid 17th century, James Gregory, Isaac Barrow, Isaac Newton and

Gottfried Wilhelm von Leibnitz develop the mathematical analysis [10, 23].

Several important problems were studied at the time that inspired the development of spe-

cialised techniques for solving that were gradually refined and generalised. In the book “Mathe-

matical Principles of Natural Philosophy, published 1687, Newton studied a problem of finding

the best possible shape of an object moving through “a rare medium” to minimise the resistance

from the medium [24, 25]. The brachistochrone problem, proposed by Bernoulli in 1696, is to

find the curve that minimises the time of descent for a body moving under gravity between two

points of a different altitude [26]. The solution is a cycloid curve [27, 28, 29]. These types of

problems were an entirely new type of problems that have curves or functions as solutions [30],

and together with the techniques of mathematical analysis, they led to the development of calcu-

lus of variations. These methods were further developed in the 18th and 19th century by Euler,

Lagrange, Weierstrass and others [10]. The calculus is widely used for solving numerous tasks

in modern science and engineering, and it is included in almost all higher education textbooks

in mathematics. Notwithstanding the importance of this discovery with mathematicians of that

time, the area of optimisation was relatively scattered across mathematics. The optimisation

was not a formal discipline, and some important contributions were left unpublished, such as

the first definition of the modern Steiner tree problem 2 [13, 31, 32].

The emergence of graph theory in mathematics, inspired by the work of Leonhard Euler in

1736, provided a very natural framework to specify various combinatorial optimisation prob-

lems [33, 34]. Graph theory allows a very intuitive insight into computational difficulty, since

numerous graph problems are trivial to define, but incredibly difficult to solve. For example, the

classical travelling salesman problem was first proposed as a graph problem called minimum

Hamiltonian cycle problem [33, 35]. Determining the chromatic number of a graph [33, 36],

Steiner tree problem [32], minimum spanning tree [37], shortest path [35] and maximum net-

work flow [38] are all classic problems of varying difficulty [33].

In 1784, Gaspard Monge publishes the first formalization of what is today known as Monge-

Kantorovich transportation problem [39, 40]. The problem was stated as “Given a pile of sand

and a set of holes with an equal volume, find the way to realise the transportation of sand into

holes with minimum cost. Leonid Kantorovich later improved the formulation [41].

2The Steiner tree problem is to find a network that fully connects a number of points and minimises the total
distance to all points.
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In 1823, Jean-Baptiste Joseph Fourier proposed the first definition of a linear programming

problem, in the form of a system of linear inequalities [42, 43, 44, 45]. He also develops an al-

gorithm for solving it, known today as Fourier-Motzkin elimination, after Fourier and Theodore

Motzkin, who discovered it independently more than a century later (along with other indepen-

dent authors) [44, 45, 46]. Cauchy presents the steepest descent method [47, 48]. Nowadays, it

is still an essential element of numerous nonlinear optimisation algorithms. The development

of this method was motivated by solving complex systems of equations.

The 18th and 19th century brings ideas from mathematics and optimisation into mainstream

economics. Authors such as Gabriel Cramer, Daniel Bernoulli, and Anne Robert Jacques Tur-

got introduce the ideas of marginal utility and utility maximisation as a goal [49, 50]. David

Ricardo, Thomas Robert Malthus, and other authors simultaneously introduce the law of di-

minishing returns [50]. In his nearly forgotten, then gradually rediscovered work from 1854,

Hermann Heinrich Gossen states: “Man should organize his life so that his total life pleasure

becomes a maximum” [51]. It appears that he considered optimisation as one of the most ba-

sic principles of human existence. In his scientific work, he assumes the existence of utility

functions, hypothesises that man’s needs are hierarchically (lexicographically) ordered and dis-

cusses individual utility maximisation in a remarkably modern way, providing techniques for

utility maximisation under limited time and income constraints [50, 51, 52]. The ideas of util-

ity are further expanded and analysed by Antoine Augustin Cournot, who applies calculus to

develop strategies to maximise profit in competition [50, 53, 54]. Léon Walras describes the

theory of general economic equilibrium [55]. In his theory, under the assumption of absolutely

free competition, the maximum utility of each market participant is compatible with the maxi-

mum utility of others, and the cumulative social benefit is maximised as well. He further argues

that the state of equilibrium is achieved through a process called tâtonnement in French, which

is usually translated as “trial and error”, and is a type of what in modern mathematics would be

described as a hill-climbing heuristic [55].

Expanding on the development of optimisation techniques, such as calculus, several philoso-

phers and scientists became convinced that nature itself, in a certain sense, optimises. Pierre

de Fermat shows that the light traverses space in the way that takes the least time, in what is

today called the least-time principle, or Fermat’s principle [56, 57]. Gottfried Wilhelm Leibniz

argues that the Universe is the best possible, otherwise, it would not be distinguishable from

God [58]. Leibniz, Leonhard Euler and Pierre Louis Maupertuis propose a generalisation of

Fermat’s principle, called the principle of least action [59, 60, 61]. The principle, postulated

by Maupertuis as “Nature is thrifty in all its actions” [59] can be used to deduce equations that

govern motion in various physical systems, such as classical physics, relativity and quantum

mechanics.
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2.1.3 20th century

In the 20th century, the area of optimisation was advanced through several overlapping research

directions and became the modern interdisciplinary area it is today. New research directions

begin to appear, especially with developments of computer science. The research interest keeps

increasing, as evidenced by the literature volume and number of conferences. To the best of

author’s knowledge, the first textbook that focuses on optimisation, called Theory of Maxima

and Minima was published by H. Hancock in 1917 [13, 62]. The first conference in the area

of mathematical programming, International Symposium on Mathematical Programming was

started in Chicago in 1949 [13, 45].

Transportation problems

Difficult transportation problems become defined in their modern form. In 1930, Karl Menger

defined the messenger problem, now called the travelling salesman problem (abbreviated as

TSP), and noted an obvious but slow brute force method [63, 64, 65]. Additionally, he notices

that the greedy approach of always selecting the nearest neighbour does not produce optimal

solutions 3. A generalisation of TSP, the vehicle routing problem (abbreviated as VRP) was

proposed by George Dantzig and John Ramser in 1959 [66, 67]. For some transportation and

coverage problems, very efficient algorithms have been found. Examples include the shortest

path problem (Dijkstra’s algorithm 1956 [65, 68, 69]), and the minimum spanning tree problem

(Borůvka’s algorithm 1926, Kruskal’s algorithm 1956) [69, 70, 71, 72]. For others, including

TSP and VRP, efficient optimal solving seemed elusive, despite great research effort [63, 66,

69].

Simplex method, optimisation becomes ubiquitous

Development of the simplex method in the late 1940s starts a new era of optimisation, when it

becomes widely used and studied [13, 45]. The simplex method is the result of several years

of work of George Bernard Dantzig, who at the time worked for the US Air Force. He was

assigned to apply his mathematical skills to find a way to “mechanise” the planning of train-

ing and logistical supply, and speed up such processes. He modelled what the military called

“ground rules” using an objective function, and by 1947, he was able to include all required

technological relations into his models, and experimentally validate that the method was fast

enough for practical applications [13, 73, 74]. The method was first published in 1951 [75].

3“We denote by messenger problem (since in practice this question should be solved by each postman, anyway
also by many travellers) the task to find, for finitely many points whose pairwise distances are known, the shortest
route connecting the points. Of course, this problem is solvable by finitely many trials. Rules which would push
the number of trials below the number of permutations of the given points, are not known. The rule that one first
should go from the starting point to the closest point, then to the point closest to this, etc., in general does not yield
the shortest route.”
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Examples of optimisation techniques clearly exist pre-1940, however, aside from the far-

reaching invention of calculus, they were scattered across several disciplines, and important

results were frequently ignored [13, 45]. This is even more emphasized in the history of linear

programming. Dantzig mentions “What seems to characterize the pre-1947 era was lack of

any interests in trying to optimize” [13, 76]. There were some exceptions—special cases of the

linear programming problem and early methods for solving were published independently by

Fourier in 1823 [42, 43, 44], Charles Jean de la Vallée Poussin in 1911 [77], Theodore Motzkin

in 1936 [46], Leonid Vial’evich Kantorovich 1939 [78], and Frank Lauren Hitchcock in 1941

[79]. However, most of this work did not consider practical applications, was forgotten soon

after publishing, and his predecessors’ achievements were unknown to Dantzig while he was

working on the simplex method [45, 75, 76, 80, 81].

The pioneering work in the area published by Kantorowich in 1939 was exceptionally exten-

sive [45, 78, 81]. Despite the important innovations, the research was met with hostility from

the USSR authorities. They viewed his ideas about mathematical optimisation in economics

non-Marxist. In 1943, the Soviet political climate was so bad for Kantorovich that he regret-

fully decided to postpone his research. In his own words, “It was dangerous to continue”, and

his work was left unknown [82, 83, 84, 85]. Kantorovich’s research was widely circulated only

in 1959, after considerable progress in the linear programming was made [84, 85, 86].

The simplex method allowed economists to analyse and optimise models of unprecedented

complexity in an efficient, systematic way. In its earliest days, it was used without electronic

computers, on analogue devices or hardware based on punch-cards. The rapid development of

electronic computer technology in the post-war years further advanced development of optimi-

sation as a formal discipline. Since the 1950s, generations of economists, mathematicians and

engineers were trained to use the simplex method. Even today, it is considered one of the most

widely used optimisation techniques, due to abundant literature, simplicity of modelling, and

advanced software for solving [45, 80, 82, 87].

The simplex method is very fast with the great majority of inputs. However, there exist

classes of problems on which it is not efficient. In 1979, Khachiyan presented the ellipsoid

method, and in 1984 Karmarkar presents his projective algorithm. While these algorithms work

faster when applied to problematic classes for the simplex method, overall, the simplex method

still outperforms them both, especially when solving large problems [87].

Nonlinear and combinatorial optimisation

In the area of nonlinear programming, the definition of Karush–Kuhn–Tucker conditions, ab-

breviated as KKT conditions represent an important breakthrough, first published by Karush in

1939 in his Master’s thesis [88] and later, independently, by Kuhn and Tucker in 1951 [89].

These conditions are necessary conditions for optimality in nonlinear programming, provided
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that the problem being solved meets the regularity conditions defined by the KKT theorem. It

allowed the development of a new type of optimisation algorithms, that are based on numerical

solving of the KKT system [87].

The fifties are the time when important advances in combinatorial optimisation were achieved.

They had numerous applications in the aforementioned area of transportation optimisation. In

1956, Fulkerson and Ford study network flow [90], and Kruskal developed his minimum span-

ning tree algorithm [72]. In 1958 Gomory initiated the study of integer programming [91], and

in 1959, Dijkstra proposes his shortest path algorithm [68].

Wider usage of heuristics, the appearance of metaheuristics

The fifties, sixties and seventies further diversify the area of optimisation, as new subtypes

keep appearing: stochastic programming, global optimisation etc [92, 93, 94]. The increases

of computational power expand the areas where algorithms for optimisation can be applied.

More memory and faster processors allow larger and more complex models [13]. Artificial

intelligence appeared as an exciting research direction [95].

During this time, a new class of optimisation techniques appears. Heuristics and their more

general version called metaheuristics, are introduced for difficult problems [96, 97]. They are

usually applied to problems where more analytical and exact approaches are too slow or too

difficult to implement, and an especially notable application area is large scale combinatorial

optimisation problems [96]. Metaheuristic techniques are the focus of this thesis.

Early ideas in this direction appeared even before the sixties in a rudimentary way. Ideas

such as regret selection, greedy selection, and local search are general guidelines that can be

applied for development of efficient heuristic algorithms [69, 98]. The algorithmic principle

of maximum regret avoidance was presented in 1951 by Leonard Jimmie Savage [99]. Greedy

selection is the idea that drives Kruskal’s spanning tree algorithm, and Dijkstra’s shortest path

algorithm, both published in 1956 [68, 72]. Nevertheless, one could argue that they are such

common-sense general ideas that they were present even before.

The idea of local search, also called hill climbing is also a very general and widely used

notion, and the moment in time when it was first published is difficult to pinpoint [69, 95, 98,

100]. The already mentioned steepest descent method developed in the 19th Century by Cauchy

(for continuous optimisation) [48] has such remarkable similarity with the local search (usually

mentioned for combinatorial optimisation) that it can be viewed as a continuous version of

local search. To the best of author’s knowledge, the first published local search algorithm in

combinatorial optimisation was the 2-opt heuristic for solving the travelling salesman problem

by Flood (1956) [101] and Croes (1958) [102]. A similar edge exchange nowadays referred to

as 3-opt was proposed by Bock in 1958 [103]. While local search, greedy selection and regret

selection can be regarded as proto-metaheuristics, they are still simple guidelines with a notable

14



Optimisation problems

drawback—they do not provide the ability to avoid local optima [69, 96, 104, 105].

The first metaheuristic in the modern sense was inspired by nature and ideas in artificial in-

telligence: instead of using custom algorithms built by programmers for each task, we could try

adding some general problem-solving strategies to computers. Equipped with such strategies,

the computers would then solve problems on their own. Attempts to do that were either simulat-

ing the ways people solve problems or were simulating evolution [95, 96]. Ideas of simulating

evolution for solving complex problems can be dated back to Alan Turing, who suggested in

1950 that evolution could be used to build a “learning machine” [106]. During the fifties, Nils

Aall Barricelli and others developed evolutionary algorithms as a research technique in biol-

ogy to study natural evolution [107, 108]. Soon, it was evident that simulated evolution could

be used to perform optimisation as well, and authors like Box, Friedmann, and others were

the first to apply simulated evolution for solving optimisation and machine learning problems

[96, 109, 110]. A notable early optimisation technique was the initial development of evolution

strategy, by Ingo Rechenberg in the 1960s and 1970s [111, 112, 113]. This new optimisation

technique was based on successive mutation of a single solution and choosing the changed ver-

sion if it improved the solution quality and was applied to the difficult problem of aerodynamic

wing design [114]. An approach in which artificial intelligence can be evolved in computers,

nowadays called genetic programming was first proposed by Fogel in 1966 [96, 115].

The genetic algorithm, proposed by John Holland, was the first metaheuristic in the modern

sense [96]. It was published in 1975, and along with the mutation from evolution strategies it

featured new ideas of using population and crossover operators in simulated evolution [96, 116].

These three parts formed the generic problem-solving method that had the ability to focus the

search around good solutions while avoiding being stuck in local optima. Another important

achievement by Holland was the foundation of theoretical investigation in metaheuristics—his

schemata theory states that genetic algorithm iteratively increases the frequency of good com-

ponents that improve solution quality [116, 117]. Early results indicated that evolutionary com-

putation might be a possible solution to the quest of artificial intelligence—a problem-solving

method that does not require detailed programming based on features of the problem to be

solved. Nevertheless, several of these claims were later found to be too optimistic and based on

insufficient understanding of crucial issues such as scalability [95, 96, 118]. Nevertheless, the

genetic algorithm quickly became popular, and completely new area of optimisation appeared.

In the following decades, great enthusiasm was present with numerous published papers, and

new conferences and journals dedicated to the genetic algorithm and evolutionary methods for

optimisation [96, 117].

During the 1980s, several other metaheuristics were developed [96]. By also drawing inspi-

ration from nature, the simulated annealing was proposed in 1983 [119]. It is an algorithm that

mimics the annealing process used in metallurgy to improve the characteristics of the material.
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The process consists of first heating, then slowly cooling the metal, and doing so reduces the

free energy in the material. By analogy, the objective function to be minimised can be viewed as

the free energy, and simulating the process of annealing can be used as a minimisation technique

[96, 119, 120, 121, 122].

Two more metaheuristics inspired by nature were developed in the nineties. The ant colony

optimisation, published by Marco Dorigo in 1991 is inspired by the behaviour of ants and the

way they find good paths while searching for food. It uses an array of agents that coordinate

building of a solution from individual elements, and during this process gather and communicate

information about decisions that increased the quality of solutions. This technique also brings

an innovative way to use known information about good solution parts, if it is available [96, 123,

124]. The particle swarm optimisation metaheuristic is based on social behaviour of animals.

It was inspired by the way fish swim in large flocks. In this method, an array of agents called

particles is initialised in random locations of the vector hyperspace that represents all possible

solutions, and different points have different quality. These particles fly through the solution

hyperspace in order to approach the optimum. The algorithm uses known locations of good

solutions to strategically adjust the speed vector of each particle [125, 126].

While nature has been a great inspiration for several metaheuristics, there are also those who

are not inspired by natural processes, but instead use ideas that are based in ways people might

use to solve problems [96]. A simple, but effective algorithm using this principle is iterated

local search. In order to avoid local optima, the idea is to iterate runs of local search, however,

each time from a slightly different point, close to a previous local optimum [96, 127]. First de-

velopments of this method can be traced back to 1981, when Baxter uses it for solving the depot

location problem [128]. It was later rediscovered independently by several authors under dif-

ferent names, until its current name became common [96, 127]. Tabu search method, proposed

by Glover in 1986 uses a simple idea of using memory to keep track of the previously visited

solutions. The algorithm prohibits returning to recently visited solutions, this way reducing

the probability that the algorithm will stop at a local optimum without exploring other regions

[129, 130, 131, 132]. Another way of doing this was discovered in 1989—the technique called

GRASP [133], which is an abbreviation for greedy randomized adaptive search procedure. The

key idea is iteratively restarting the local search, each time from a different point generated by

randomized greedy algorithm [96, 134, 135]. In 1997 Mladenović and Hansen suggested that

using more than one neighbourhood definition is beneficial in the methods and developed their

variable neighbourhood search [136, 137].

Theoretical computer science

The theoretical computer science started developing in the 20th century, with Gödel, Church and

Turing providing first theoretical insights on the limits of computation [138, 139, 140, 141].
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Computation complexity theory developed the techniques to evaluate the time complexity of

algorithms, and communicate it using the asymptotic time complexity notation [142]. The

theory of 𝒩𝒫−completeness is a fundamental achievement with great impact on optimisation.

It identified large classes of problems for which no efficient algorithm is known despite decades

of effort [143]. Finally, the no free lunch theorem, proved by Wolpert and MacReady in 1996

gives a strong argument for specialisation to improve algorithm performance [144, 145].

Nobel prizes

Two Nobel prizes were awarded for achievements in the area of optimisation. In 1975, Leonid

Kantorovich and Tjalling Charles Koopmans received the Nobel Prize in Economics, for their

contributions to the theory of the optimum allocation of resources [13, 76, 146]. In 1990,

Harry Markowitz received the Nobel Prize in Economics for his pioneering work in the theory

of financial economics, developing a theory for households’ and firms’ allocation of financial

assets under uncertainty, the so-called theory of portfolio choice. It was based on quadratic

programming, an important area of study of nonlinear optimisation [13, 147].

2.2 Optimisation in theory and practice

Generally, the process of applying optimisation techniques to a problem starts with four key

steps:

1. Identifying the optimisation objectives,

2. Identifying the variables or characteristics that can be decided on,

3. Identifying any restrictions in the values of the variables,

4. Identifying the dependencies between variables and the objectives.

This process is called modelling, and the result of this process is called model or mathematical

model. It usually involves a multidisciplinary approach where domain experts for a specific

problem communicate with the optimisation consultants that guide them through the process.

Each of these steps must result in a formal definition, and the produced model is a description

of the problem properties in the language of mathematics [87].

The first step involves choosing the most important goals of the optimisation project. Those

are typically minimisation of undesired properties – such as risks, costs, time, energy, travelled

distances. Conversely, goals can include maximisation of desired outcomes, and some examples

include robustness, profit, efficiency, user and employee satisfaction.

The second step includes specifying the variables that can be adjusted during optimisation,

and that have an impact on optimisation goals. Such components are called variables or deci-

sion variables. Each variable needs to be set to a value, and setting each variable represents
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a choice that needs to be performed in order to solve the problem. In an application for vehi-

cle routing and delivery optimisation, a decision variable might be a sequence of “where to go

next” decisions, as they have a great impact on transport efficiency, total distance driven and to-

tal cost. During this step, it is also important to specify which components of the system cannot

be decision variables—because changing them is not possible or is prohibitively difficult.

The third step consists of identifying restrictions in the values of the variables, called con-

straints. Those are typically physical, legal, quality or safety limitations of what is allowed in

the system we are optimising. In a physical model for example, no speed can exceed the speed

of light. In a vehicle routing application, no driver should drive without a break longer than

specified in the labour laws and traffic security regulation [87, 148].

In the final step, to be able to evaluate the quality of each decision, a description of de-

pendencies between the variables and the desired objectives needs to be determined. Some

decisions related to values of the variables help achieve the optimisation objectives, others not

so much, and a way to evaluate them must be defined as a formula, called objective function,

or cost function. Using this function, one can numerically check how “good” the selection of

variable values is. Formulating a good model requires adding enough detail for the model to

be realistic. Simple models might be easy to handle, however they might not be able to cap-

ture sufficient detail of the real system and might produce results that do not have much value.

Conversely, insisting on too much detail might produce a model that is too complex to solve

[87].

After the model of the optimisation problem is complete, various optimisation techniques

can be used to find solutions. A “universal” optimisation algorithm that performs well on any

given problem does not exist. Instead, a variety of optimisation algorithms emerged, with spe-

cialised techniques for various different problem types. Choosing an appropriate algorithm for

the problem is an important step to ensure efficient solving [87].

2.3 Definitions

In the broadest sense, an optimisation problem is defined as finding x, to

minimise
x∈Rn

f (x), (2.1)

subject to gi(x)≥ 0, i = 1, . . . ,m, (2.2)

h j(x) = 0, j = 1, . . . , p, (2.3)

where f (x) is an objective function, while gi and hi are functions that define the constraints.

The objective function f , and all the constraints g j, h j are scalar functions calculated based on

the values of decision variable vector x ∈ Rn. Each decision variable in x can also be called

18



Optimisation problems

a solution component. The constraints defined using greater than inequalities (gi) are called

inequality constraints, while those defined using the equality operator are called equality con-

straints (h j). Each complete assignment of all the decision variables corresponds to a potential

solution of the optimisation problem [87].

In the standard form, as specified above, the right-hand side of all constraints is equal to

zero—some transformation might be necessary to represent a problem in this form, since for

people it is usually more natural to express constraints with constants at the right-hand side.

For example, the speed limitation, that restricts all speeds in a physical model not to exceed

light speed, written as v ≤ c, where c = 299792458 m
s can be easily transformed to the standard

form c− v ≥ 0. Likewise, a similar transformation might be needed to convert maximisation

into minimisation, which is a standard form to define general optimisation problems. This can

easily be done by negating the objective function, and minimising − f . For example, the prob-

lem of profit maximisation with objective function fmax is equal to the minimisation problem

minimise
x∈Rn

− ( fmax(x)).
If all the constraints gi and h j are satisfied for a point x, then it is called feasible. Points that

do not satisfy all the constraints are called infeasible. If there are no constraints, all points are

feasible. The definition of feasibility mostly relates to suitability for use in the real world. Since

the constraints usually represent strict limits on what is allowed in a solution, violations in the

constraints correspond to issues that prevent applications in practice, either due to safety or legal

limits or because they lead to completely senseless system states. Some examples of constraint

violations might include air traffic optimiser suggesting the plane to go beyond the designated

altitude limit, classical thermodynamic system model in which temperatures drop below 0 K, or

a vehicle routing application suggesting that a driver should drive 18 hours without a break [87].

Note that in a broader sense, an objective function might not be defined in algebraic terms—it

might be an evaluation by groups of people, a result of a simulation or physical testing.

Formally, an instance of an optimisation problem is defined as a pair (S, f ), where S is the

set of feasible points, and an objective function f : S → R that assigns an objective function

value to each point. The objective function value is frequently abbreviated to value, and is

sometimes called cost. The problem is to find s ∈ S, that minimises the objective function f

[8, 69].

An optimisation problem is a set of instances of an optimisation problem. While formally,

any set of problem instances can be defined as a problem, in the optimisation community, well-

defined problems always consist of a set of instances sharing the definition of the decision

variables, the constraints, and the objective function. It is a collection of similar problem in-

stances, that share the same structure, as opposed to a single instance, that can be viewed as

“input data”, with all required details to perform optimisation in that specific case [8, 69].
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2.3.1 Solutions and optimality

In the optimisation community, the word “solution” can have multiple meanings. In the narrow

sense, solution of an optimisation problem is the optimum, a point x, for which the objective

function f reaches its minimum, and that satisfies all the constraints gi and h j. In a broader

sense, the word solution can mean the output of an optimisation algorithm, that might or might

not be optimal, depending on the used algorithm. In an even broader sense, the terms candi-

date solution, potential solution and possible solution, sometimes abbreviated to “solution”, can

mean any assignment of the decision variables, regardless of its quality, or the constraints. In

this sense, they are synonymous with the word point, as any possible solution of an optimisation

problem as defined in Equations 2.1–2.3) forms a point in an n-dimensional hyperspace. There-

fore, the set of all potential solutions, or the domain of the objective function f is sometimes

called solution space, or search space [149, 150].

The best possible outcome of any algorithm would be finding the best solution, also called

the global optimum. Formally,

a feasible point x is a global optimum of the function f (x)
if f (x)≤ f (x), for all x,

where x ∈ Rn (or some other domain, according to the problem definition). Global optimum

achieves the best value of the objective function x, also called optimal value [87]. An optimisa-

tion problem can have:

• no optimal solutions, in cases of constraints that cannot be satisfied at once, or unbounded

objective functions,

• one (unique) optimal solution,

• multiple optimal solutions, in cases when there exist multiple feasible points with equal

objective function value.

If an optimal solution exists, there can be only one optimal value [87].

Global optimum is difficult to find and many optimisation algorithms can find only a local

optimum. Local optimum is tightly related to the definition of the neighbourhood. A neighbour-

hood around the point x, is a subset of the objective domain, that contains x. Which points are

elements of the neighbourhood and which not is decided based on some appropriate definition

of “closeness”, which is domain and problem-specific. The neighbourhood around x is denoted

𝒩 (x), and contains all elements of the function domain that are close enough to x [69, 87].

Local optimum is the best solution in this subset of the function domain. Formally,

a point x* is a local optimum with respect to 𝒩
if f (x*)≤ f (x) for all x ∈𝒩
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The idea behind finding local optima is the following: since it is very difficult to find a global

optimum, and such algorithms might not be able to produce results in reasonable time, restrict-

ing the domain to some smaller region allows the algorithm to find a result quickly, however,

this result is guaranteed only to be locally optimal. With difficult problems, unless the pro-

cess has been incredibly lucky, a local optimum in a neighbourhood does not correspond to the

global optimum [69, 87].

2.4 Types of optimisation problems

Studying problems separately allows development of efficient algorithms and gaining theoreti-

cal insights into the properties of each problem, instead of simply creating a “quick-and-dirty”

algorithm for each instance. Further, identifying key properties of various problems allows

defining related problems and transferring successful ideas to similar problems. Contemporary

computer science and mathematics gathered rich insights into various problem types and know-

ing the problem type for the problem one is solving is critical to allow choosing appropriate

direction in finding successful solution techniques [87]. Several ways to classify optimisation

problems are considered valuable.

2.4.1 Constrained and unconstrained optimization

Depending on the existence of the constraints, optimisation problems can be classified into

constrained and unconstrained. Unconstrained problems are defined by only the objective func-

tion, with an empty set of constraints gi and hi in the standard form (equations 2.2 and 2.3).

They appear in numerous applications, especially in natural sciences and mathematics. Physi-

cal systems tend to the states of minimum energy, and finding function extremes is frequently

needed in mathematics. Unconstrained problems can arise from simplifications of problems

with constraints that are safe to disregard under certain conditions. Further, some constrained

problems can be approximated as unconstrained problems, using penalty and barrier methods.

Such transformations add appropriate cost to the objective function value when the constraint

is not satisfied, this way discouraging the optimisation algorithm from breaking the constraints

[69, 87].

Conversely, constrained optimisation is the area of optimisation that studies problems with

explicitly stated constraints (equations 2.2 and 2.3). Constrained optimisation is a broad area

where the problems and their complexity greatly vary depending on the number of constraints,

restrictions they introduce and the overall constraint complexity. The initial general definitions

of gi and h j allow any function to be used to specify the constraints. In simplest cases, such
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constraint can be variable value limits, e.g. x > 0 and x < 50. In more complex cases, a

constraint could be any non-linear relation of the variables. Recognising the type of constraints

is very important to choose the appropriate solving technique, and further classification of such

problems exists, depending on constraint specifics, as elaborated below [69, 87]. Problems

with large number of constraints or with very complex constraints are called highly constrained

problems. For such problems, even finding a feasible point might be a challenging task [151].

2.4.2 Stochastic and deterministic optimization

Determinism is a possible feature of both the optimisation problem, as well as the optimisation

algorithm used to solve the problem. The noun determinism and the adjective deterministic

means that some value or outcome can be assessed conclusively, and with certainty. Nonde-

terministic means that something is not deterministic, and the related word stochastic indicates

something that has a random variable or is based on a random process, and cannot be determined

with certainty [87, 152].

Optimisation poblems

Deterministic problems are fully specified and in such models, no uncertainty is present. For a

given point, the objective function value is always the same. The assumption of deterministic

model is that the model captured sufficient level of detail to provide predictions whose error can

be neglected. Determinism of the model simplifies applications of the optimisation algorithms,

which can assume the stability of the problem and optimise only one scenario of the given

problem.

Reality can be difficult to predict and model accurately. Approximations and simplifications

are necessary for any model of real systems to allow models to be computationally tractable,

and allow analysis and optimisation in reasonable time. Further, for some problems, fully pre-

cise information about the system state is unknown. Any physical measurement implies noise

in the data, and uncertainty is always present in models that deal with prediction of the future.

Forecasting the temperature in a given city tomorrow, demand for taxi vehicles in a street of that

city, or the sales results from a store in that street is not possible with full accuracy and some

randomness in such predictions cannot be avoided. Nevertheless, modellers are frequently able

to estimate the uncertainty of their forecasts, and assign different probabilities to various sce-

narios. In such cases, techniques for solving stochastic optimisation problems can be used to

handle the uncertainty and include randomness in the optimisation problem. The area of optimi-

sation studying this class of problems is called stochastic optimisation. Using these techniques,

users can optimise the desired criteria across multiple scenarios [87].

This thesis focuses on deterministic problems. Adding randomness to the model is in contra-
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diction with assumptions about the stability of the objective function value that is implied with

algorithms discussed in this work. Note, however, that numerous stochastic algorithms repre-

sent randomness as a set of deterministic subproblems, that indeed can be solved by algorithms

for deterministic optimisation [87].

Optimisation algorithms

Algorithms that produce solutions to the input problems can be classified into

• deterministic algorithms,

• stochastic or nondeterministic algorithms.

Deterministic algorithms behave in an easily predictable way and guarantee equal output for

each equal input. Conversely, stochastic algorithms (also called nondeterministic algorithms

and randomized algorithms) do not guarantee this, perform random choices, and for a single

input, might produce different output each time they are used [153, 154].

2.4.3 Continuous and discrete optimisation

The general problem definition in Equations 2.1–2.3 assumes that the domain is a set of vectors

of real numbers x ∈Rn. While large array of problems can be represented in this way, for some

problems, variables can hold only integer values. This frequently happens when dealing with

atomic units that cannot be split into parts. For example, there is no sense in asking a delivery

driver to ship 3.7 of four books a customer ordered today, then 0.3 books the next day, as there

is no sense in ordering 0.7 ships from a ship factory. Likewise, a “yes or no” decision might

be a part of the problem [69, 87, 148]. Formally, the restriction to integrality is modelled by

adding the constraint

xk ∈ Z k = 1, . . . ,q, (2.4)

where xk are all components of the vector x = [x1,x2, . . . ,xn] that must have integer values, and

Z is the set of all integers. If the vector x consists only from integers, and no component is real-

valued, the problem is called an integer programming problem. Problems of this type are solved

using techniques of discrete optimisation [69, 87]. Problems with both integer and real-valued

variables are called mixed integer programming problems. Conversely, problems with only real

variables, that deal with finding the best value out of an uncountably infinite 4 set and smooth
5 objective function f are called continuous optimisation problems [87]. Optimization of nons-

4A set Su is uncountably infinite if it is infinite and there exists no one-to-one correspondence (bijective function)
between Su and the set of natural numbers N0 = {0,1,2,3, . . .} [155, 156].

5A function is smooth if its derivatives up to a certain order are continuous [157, 158]. A function is continuous
if small changes in the argument change the function value for a small value. More formally, a function f (x) is
continuous at point x0 if it is defined at this point, the limit of f as x approaches x0 is defined, and limx→x0 f (x) = x0
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mooth functions, that might not be differentiable or might have discontinuities is a separate area

of research [87].

A discrete optimisation problem, or combinatorial optimisation problem deals with finding

the best item in a finite or countably infinite set 6. Contrary to the idea that a reduction in the

type and the number of elements to search also renders the problem simpler, discrete problems

are generally more difficult to solve. Solutions to combinatorial optimisation problems are

typically an integer or a vector of integers, graphs, sets, or subsets [69, 87, 162].

Continuous optimisation techniques use information about the objective function to infer

function behaviour in the proximity of observed points, which speeds up the solving process.

Such general conclusions about the function value close to a point cannot be deduced with

discrete problems, where large differences in objective function value are possible for very

close points. Due to great differences in the important properties of discrete and continuous

optimisation, the two fields diverged during history and developed separate solving techniques

[87]. This thesis is focused on combinatorial optimisation problems.

2.4.4 Exact and approximate optimisation

Methods for optimization can be classified into exact and approximate [8, 69, 162]. With exact

methods, the user is always guaranteed to get the optimal solution to the problem. In continuous

optimisation, there exist classes of problems where finding the exact solution is fast, however,

in general non-linear problems, finding the global optimum can be difficult. Writing fast exact

algorithms for combinatorial optimisation is even more difficult. Typical issue with exact algo-

rithms is the fact that it can be difficult to prove that the point x is an optimum, and finding the

optimum is even more challenging. As a consequence, exact algorithms can be slow and scale

poorly with increases in problem size, especially on certain classes of difficult problems. For

them, these scalability issues mean that the algorithm is too slow to be considered, except on the

smallest problem instances, and even for the moderately sized problems, exact algorithms could

take centuries or even millennia to complete. This considerably limits practical applicability of

such methods. For numerous problems of great practical importance, there exists no known fast

exact algorithm [8, 69, 87, 162].

Approximate methods do not guarantee finding the optimum. Instead, they use different

strategies to try to approach as close to the optimum as possible in the provided time. These

methods typically provide suboptimal solutions, however they do that in a relatively short time.

Approximation algorithms, heuristics and metaheuristics are important classes of approximate

methods, mostly used in the area of combinatorial optimisation [8, 69, 162, 163].

[159, 160, 161]
6A set Sc is countably infinite if it is infinite and there exists a one-to-one correspondence (bijective function)

between the set Sc and the set of natural numbers N0 = {0,1,2,3, . . .} [155].
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2.4.5 Single and multiobjective optimisation

The standard form of the optimisation problem in Equations 2.1–2.3 has only one objective

function. Such problems are called single-objective optimisation problems. In practice, it is

common for a problem to have more than one objective that must be optimised at once. For

example, an investor might want to invest money into stocks that will have the highest return

and minimum risk, a car manufacturer might want to use motor with maximum power that

also has minimum weight. These problems are called multiobjective optimisation problems.

To solve such problems, complex tradeoffs are frequently necessary to achieve good balance

of multiple objectives, especially when there is a constellation of mutually conflicting goals.

Further, since in multiobjective optimisation the result of evaluation by the objective functions

is not a scalar, but a vector, refined ways to evaluate each point in the feasible region are needed

[164].

For such problems, generally, it is rare to find a solution that outperforms all others across

all the objective functions. Frequently, the criterion of Pareto optimality is used—a point is

considered Pareto optimal if it is not possible to improve the value of a single objective without

degrading some of the others. Using the ideas of Pareto optimality, a solution of the multiob-

jective optimisation problem is not a single point, but instead a set of points. Without additional

preference information, all such points are equivalent in terms of finding the best [164, 165].

Various solving techniques are used for multiobjective problems. A very common technique

for solving is scalarisation—converting multiobjective problem to a single-objective problem.

After a suitable representation as a single-criteria problem has been found, the common opti-

misation techniques for the single-objective problems can be applied. A widely used simple

scalarisation technique is the weighted-sum method, where a weight factor is assigned to each

objective, and the scalarised objective is the minimisation of the sum of weighted individual ob-

jective function values [164]. More complex techniques can assume a hierarchy of objectives or

intrinsically handle multiple solutions in the algorithm, with the goal of approaching the Pareto

optimal set. Regardless of the used solving methods, detailed insights from the users are crucial

to identify and adequately model multiple objective priorities [164].

2.4.6 Important classes of objective functions

Some objective functions are easier to optimise than others. If it is possible to prove that the ob-

jective function satisfies certain desirable properties, it is possible to apply specialised, efficient

algorithms that use specifics of the objective function to work faster [87].

In continuous optimisation problems, a notable class are convex optimisation problems and

linear programming. For such problems, it can be proved that every local optimum is a global

optimum as well. This significantly simplifies the search process and alleviates the need for
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sophisticated local optima avoidance techniques, that are necessary in general optimisation al-

gorithms [87]. Formally, the problem is convex if

• the objective function is convex 7,

• inequality constraints gi, i = 1, . . . ,m are concave 8.

• equality constraints h j, j = i, . . . , p are linear [87].

When the objective function f , as well as all the constraints gi, h j are linear, the optimisation

problem is called linear programming problem. Very efficient algorithms are developed for this

class of problems, most notably the simplex algorithm and the ellipsoid method. The simplex

algorithm of G. B. Dantzig is a classical optimisation algorithm that has undergone decades of

development and is considered the fastest algorithm for linear programming. Nevertheless, for

certain problems, it is inefficient, as the number of steps to complete becomes exponential to the

problem size. The ellipsoid algorithm has better worst-case complexity—it requires the number

of steps that is polynomial to the problem size. Unfortunately, this method approaches its most

pessimistic number of steps on all problems, and therefore on almost all problem instances, the

simplex algorithm is faster than the ellipsoid algorithm [87, 166].

Unfortunately, for general nonlinear and especially for nonsmooth and discrete problems

that are the focus of this thesis, such speedups are difficult or near impossible to achieve. These

functions have fewer properties that the algorithm can utilize to reduce optimisation complexity.

As algorithms get more general and applicable to a broader range of problems, they also tend

to be less efficient. Therefore it is highly important to recognise the class of the problem to be

solved. If specialised fast algorithms can be applied to the problem being solved, it is always

recommended to use them instead of more general methods [69, 87, 145].

2.4.7 Problem size

Problem size in optimisation is usually evaluated using the number of variables. For discrete

problems, problem size is sometimes also evaluated using the number of elements in the do-

main. The problem size itself does not tell us much about the problem difficulty—it is the type

of the objective function and the constraints that are the principal cause of complexity. As an

illustration, linear programming papers by Barnhart et al. [167] and Bixby et al. [168] pub-

lished during the 1990s routinely report solving problems with millions of variables in less than

an hour. For a different problem, even a hundred is a lot to deal with, e.g. Pecin et al. in

[169] report that it takes up to 17 hours to solve some VRP instances with 100 locations, using

state-of-the-art algorithms and hardware available in 2017.

7A set S ∈ Rnis called a convex set if any straight line segment connecting two points in the set is entirely in S.
A function f is convex if the domain is a convex set and any line segment connecting two points in the graph of f
lies above or on the function graph [87].

8A function g is concave if −g is convex [87]
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Still, for the instances of the same problem, the size can be used as one of the indicators

of relative complexity as compared to other instances of the same problem. Generally, the

larger the problem is, it is more challenging to solve using computers. With a large number

of variables, the number of different variable combinations to evaluate becomes increasingly

larger, which adds difficulty in finding the optimal or near-optimal solutions. Further, even

for problems for which efficient algorithms are known, and especially for those that we do not

know to solve efficiently, very large problems might go beyond what is possible on the available

hardware in terms of memory and computation resources. Such big problems are called large

scale problems and are studied in a separate subfield of large scale optimisation [87, 170].

Very large problems are usually solved using strategies such as decomposition or partition-

ing into a series of smaller problems that can be effectively solved. Other commonly used

techniques are various approximations and heuristics. In combinatorial optimisation, which is

the focus of this work, large-scale problems are very common [87, 170].

2.4.8 Objective function evaluation

The process of finding the optimum assumes that the objective function can be evaluated—that

for each x, it is possible to find the value of the objective function f (x) at that point. Addition-

ally, it is typically assumed that the objective function evaluation can be done using reasonable

resources such as time and computational power. Quicker the evaluation, the algorithm will

also in general be quicker to find a good solution. For a great deal of optimisation problems,

e.g. when the objective function is a simple algebraic formula with a reasonably small number

of variables, an optimiser can evaluate large numbers of potential solutions before providing the

result [87, 171]. The travelling salesman problem satisfies this assumption since the objective

function is a simple sum of all the distances in a route that can be calculated very quickly. Like-

wise, the constraint of having all cities visited only once can be verified using several quick and

simple set algebra calculations.

Still, there exist important optimisation problems that do not allow evaluating large number

of solutions [171, 172, 173, 174]. Examples include transportation problems that are evaluated

using simulation [172, 175, 176, 177, 178, 179, 180, 181, 182] and engineering problems that

require computationally demanding steps such as solving differential equations [183, 184, 185,

186, 187, 188, 189]. These processes are computationally intense and to perform an evaluation

they require either a lot of CPU power, a lot of time or both. In some cases, the real values

for the optimisation problem evaluation can be found only by building physical models such

as wind tunnel experiments or synthesizing chemical molecules and performing biological tests

with them [184, 190]. While the cost of building and testing phisical models is usually too high

to be used as a part of the optimisation algorithm, such high accuracy methods can be used to

validate the final solution, while the algorithm uses a simplified evaluation function. The third

27



Optimisation problems

category are studies where solutions need to be evaluated by people [191, 192, 193]. A similar

difficulty can arise when the algorithm is a part of a realtime system and has a very short time

to produce solutions, even when the objective function is simple and can be calculated quickly,

e.g. for problems in robotics [194]. All these categories are especially difficult to solve since

algorithms need to access the objective function sparingly. These problems are called problems

with limited budget of evaluations (LBE problems) or expensive optimisation problems.

Problems with limited budget of evaluations are an important part of this thesis. Two out

of three problems for which a solving algorithm is presented in Chapter 5 are transportation

problems with a limited budget of evaluations. The difficulties in evaluating large number of

solutions is especially challenging when using metaheuristics and is an active research area

[173, 175].

2.5 Theoretical computer science

Theoretical computer science provided numerous results of great practical, theoretical and

philosophical importance. The most important achievements for the area of optimisation are

analysis of algorithms, computational complexity theory, and the no free lunch theorem. Al-

gorithm analysis helps practitioners and algorithm developers get an estimate of how long the

algorithm will run and how much memory it will take [195, 196]. Computational complexity

theory generalises algorithm behaviour and provides far-reaching insights that shape the tech-

niques to solve problems. It helps us decide if it is possible to develop an exact method for a

given problem, and compare the difficulty of various problems [197, 198, 199]. Finally, the no

free lunch theorem is a result that describes algorithm performance in very general terms. It

proves that providing a general algorithm that is equally efficient on all possible problems is not

possible. It is a strong theoretical indicator of the merit of high specialisation of optimisation

techniques developed during centuries [144, 145, 200].

2.5.1 Analysis of algorithms

Analysis of algorithms is an essential discipline in computer engineering and computer science.

The term was invented by Donald Ervin Knuth and much of his monograph The art of com-

puter programming published in 1968 [196] is dedicated to this, then new, branch of computer

science. Analysis of algorithms provides useful insights about algorithm properties depend-

ing on inputs of various sizes, and allows comparison with other algorithms. Most important

properties of an algorithm are the time and memory requirements—how much time will an

algorithm spend and how much memory will it need, although use of other resources can be

analysed as well (e.g. battery drain on mobile devices, number of comparisons in search and
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sort algorithms). Analysis of algorithms includes finding the worst-case, average and best-case

performance of the algorithm, and how the resource requirements change with increases of the

input size. This is performed by building mathematical models that describe algorithm compu-

tational complexity in sufficient detail level [196, 201].

The required time is one of the most important characteristics of an optimisation algorithm,

since some of them can scale poorly. Algorithm runtime estimates are usually communicated

using the big-O notation, also called Bachmann-Landau notation, that defines an upper asymp-

totic bound (worst case algorithm performance). It was first mentioned by mathematicians Paul

Gustav Heinrich Bachmann in 1894 [202] and Edmund Landau in 1909 [203], who used it for

asymptotic analysis of functions. This notation provides an upper bound for a function when

argument value becomes large.

Formally, O( f (n)), where n ∈ 𝒩 is the set of all functions that are asymptotically bounded

from above as n→∞. For an individual function f (n), it is said that it is asymptotically bounded

from above as n becomes very big, denoted

f (n) = O(g(n)) (n → ∞) (2.5)

if there exist positive constants M and n0, for which

| f (n)| ≤ M · |g(n)| whenever n ≥ n0. (2.6)

In other words, this indicates that f (n) grows equally or slower than g(n). Using this way of

communicating algorithm time requirements abstracts unnecessary detail such as differences in

hardware and compilers, while it does not suppress useful information about general algorithm

behaviour with different inputs [196, 197, 199, 201].

2.5.2 Computational complexity theory

Computational complexity theory is the area of theoretical computer science that studies the

problem difficulty and investigates why some problems are hard to solve by computers, and

the complex interactions between problems (tasks) and problem-solving methods (algorithms).

Developing suitable models of computational devices, investigating their characteristics and

limits, formal languages, language recognition, algorithms and problems are key study areas

of computational complexity theory. It extensively uses analysis of algorithms and provides

general insight into the properties of any algorithm that can be applied to a problem. It is very

important in optimisation because it provides rigorously proved far-reaching discoveries about

general problem properties and their intrinsic difficulty [196, 197, 199].
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What is fast enough?

Techniques developed for analysis of algorithms and communicating the time complexity al-

low us to compare performance of different algorithms for different problem types. There exist

algorithms that scale great, for example, the constant runtime algorithms, with complexity of

O(1), whose duration is not dependent on the input size n. Conversely, some algorithms require

much more steps as input size increases, for example the algorithms whose complexity is ex-

ponential, such as O(2n). When the analysis of an algorithm is done and its time complexity is

known, engineers and scientists need to be able to decide if the algorithm is fast enough to be

suitable for practical applications.

A commonly accepted rule for deciding if the algorithm scales sufficiently well is to check if

the time complexity of the algorithm can be bounded by polynomial time or not [197, 199, 204].

This rule creates two fundamental classes of algorithms:

• polynomial algorithms and

• superpolynomial algorithms.

Polynomial algorithms can be bounded from above by a polynomial function. For superpoly-

nomial algorithms, this is not possible and they grow faster than any polynomial function

[197, 199, 204].

The above classification is an essential criterion to decide suitability of an algorithm for use

in practice, and is described in the Cobham-Edmonds Thesis [205]. Algorithms requiring poly-

nomial time are usually suitable for practical use, while those that require superpolynomial time

almost never are. Polynomials have reasonably slow growth, which is extensively confirmed in

practice. Further, they have a very convenient characteristic of being “closed” with regard to

the usual ways of algorithm composition—calling a polynomial algorithm as a subroutine from

a polynomial algorithm produces a polynomial algorithm [204].

Key characteristic of superpolynomial algorithms that prevents practical applications is the

very rapid growth of such functions. This growth is so fast that it implies prohibitively long

solving times on any except the smallest problem instances. Most important class of super-

polynomial algorithms are the exponential complexity algorithms such as O(2n). Note that all

superpolynomial algorithms are sometimes also called exponential algorithms, even though this

might not be strictly correct. Functions that have slower growth than exponential, but cannot be

bounded by a polynomial such as O(nlogn) are a good example [204, 206, 207]. In this work,

the expression superpolynomial will be used, unless the algorithm complexity is bounded by a

strictly exponential function O(kn), k > 1. Functions with even faster growth than exponential

do exist, such as factorial O(n!), O(nn) and double exponential O(22n
)[153, 197, 206].

The above classification into polynomial and superpolynomial algorithms provides satisfac-

tory results in a great majority of cases. However, it is still a very general rule of thumb, that

has its limitations. The big-O notation that is standard in computer science captures general
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detail about the complexity growth, however, it suppresses details such as constant factors and

low-order terms [153, 196, 208, 209]. Depending on these neglected details, exceptions in this

general classification are possible. Consider for example the polynomial 10100n73 and the ex-

ponential function 20.01n. In this example, the polynomial function values are greater than the

exponential even for large values of the argument9, and this difference is especially notable for

small n. While in practice such great degrees of polynomial complexity occur only exceedingly

rare, the example is a good illustration that there might exist cases when exponential algorithms

are suitable for use, or even outperform polynomial algorithms.

It should also be highlighted that the bounds given in this analysis are the worst-case bounds

for algorithm behaviour. The bounds for the average input, might be lower, which might mean

that algorithm is generally well suited for practical applications [153, 196, 204, 206]. There

might exist broad subclasses of problem instances where very efficient solving is possible, as is

the case with the simplex algorithm [87]. Therefore, one should be careful not to interpret the

above guidelines as “any exponential algorithm is slower than all polynomial algorithms for all

problem instances”.

Turing machine

In the early 21st century saying computation is almost synonymous with electronic comput-

ers. According to the Merriam Webster English dictionary, computation is “the act or action

of computing”, or “the use or operation of a computer” [210]. Modern computers are complex

systems. This makes it difficult to create formal mathematical models of behaviour of com-

puters that include the specifics of all their components such as memory and multicore central

processing units. To allow mathematical analysis, simpler models of computing machines were

developed. They hide technical detail that is not necessary for general questions in the focus of

theoretical computer science and computational complexity theory.

In 1936, Alan Turing proposed his abstract model of computation that represents a “purely

mechanic process”. He called it “a-machine”, and used it in theoretical research on what can be

computed by such processes [141]. It is now called Turing machine, and is an important tool

in thought experiments of computer science. Turing machine is generally regarded as a highly

simple abstraction of an algorithm, and it can perform anything that any modern computer can.

In the strict sense, much like other models of computation, a Turing machine output is either

acceptance or rejection of an input string [69, 197, 204, 206].

It can be proven that anything that a computer does in n steps can be performed on a Turing

machine in at most P(n) steps, where P is a polynomial function. Put in broad terms of the

efficiency criteria discussed above, anything that can quickly be performed on a computer can

9Numerically solving the equation of the polynomial and the exponential, 10100n73 = 20.01n shows that the
polynomial is bigger for all n ≤ 159378
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also be quickly performed on a Turing machine, and vice-versa. This is an important result that

indicates that computers and algorithms and Turing machines are equivalent—both in terms

what can be computed using them, and in terms of similar speed of computation [211].

A Turing machine consists of a tape used as a storage and the “machine head” that can

move on the tape in both directions. The tape of the Turing machine is infinite in length in both

directions, and is divided into discrete blocks or cells. Each tape cell can be either blank or it

can store a symbol from the tape alphabet. The machine head can read and write on the tape.

Turing machine keeps an internal state at all times and is provided with a set of instructions

that define how the head will move, and what symbols will be written under which conditions.

Instructions are also called the transition function. Along with movements, reading and writing,

the instructions also specify under which conditions will the input string be accepted and when

the machine halts. The set of allowed tape symbols and the set of instructions are provided as

inputs. Each input must also specify the initial configuration: the initial head state, the initial

string of symbols written on the tape, and the initial head location. The Turing machine head

then reads the initial symbol, and performs the following actions according to the instructions:

1. Updates the tape cell value to a symbol from the tape alphabet,

2. Updates the head state,

3. Moves the head position, either to the left tape cell, or to the right.

The above procedure is repeated until the halting condition is met—either the machine reached

an accepting state, or there is no move defined for the current combination of the head state and

symbol on the tape [69, 198, 206, 211].

Formally, a Turing machine M is defined as an ordered 7-tuple

M = (Q,Σ,Γ,δ ,q0,B,F), (2.7)

where the tuple components are:

• Q is the finite set of states of the machine.

• Σ ⊆ Γ∖{B} is the finite set of input alphabet symbols.

It is the set of symbols that are used to specify the input on the tape before starting the

machine.

• Γ is the finite set of symbols in the tape alphabet.

Input alphabet Σ is always a subset of the tape alphabet Γ, since the tape alphabet contains

a blank symbol B that cannot be used when defining an input.

• δ : (Q∖F)×Γ → Q×Γ×{L,R} is the transition function.

The domain of the transition function δ (q,X) are ordered pairs of

1. the machine state q ∈ Q, and

2. the input symbol X ∈ Γ.

32



Optimisation problems

The value of the transition function, is a triplet (p,Y,d), where

1. p ∈ Q is the next state,

2. Y ∈ Γ is the symbol to write to the tape,

3. d ∈ {L,R} is a set of possible movement directions, and L and R denote left and

right.

The transition function δ can be undefined for some pairs of (q,X). If this happens while

the machine is working, the Turing machine halts.

• q0 is the initial state of the machine.

• B is the blank symbol.

It is a part of the tape alphabet Γ, however it does not appear in the input (B /∈ Σ).

• F ⊆ Q is the set of acceptable states.

The abstract computational device defined above is also called deterministic Turing ma-

chine, abbreviated DT M. The deterministic Turing machine has a transition function that for

a single argument (q,X) provides a single transition (p,Y,d) [69, 198, 206, 211]. Unlike the

above device that can also be quickly simulated in reality on conventional computers, there exist

purely fictious computing models.

A nondeterministic Turing machine, abbreviated NT M, is a fictitious computing device con-

ceived for theoretical investigations. It is similar to the deterministic Turing machine, however,

it has a different transition function, that might produce more than one triplet (q,Y,d) as the

result:

δ : Q×Γ −→ 𝒫(Q×Γ×{L,R}), (2.8)

where 𝒫 is the power set of triplets (q,Y,d), that contains all subsets of the set that contains all

combinations of such triplets. Given this transition function, after each tape read, the nondeter-

ministic Turing machine can proceed to a set of triplets {(q1,Y1,d1),(q2,Y2,d2), . . . ,(qn,Yn,dn}).
For each choice, the following transition will again be a set, and this way, computation using a

nondeterministic Turing machine becomes a tree whose branches correspond to different paths

of selected possibilities. The nondeterministic Turing machine halts and accepts the input string

if there exists an acceptable state in any possible sequence of transitions from the initial config-

uration [69, 198, 206, 211].

Nondeterministic Turing machine is an abstract computing device, that was never intended

as a model of something that could be realistically built. While a NT M can be simulated on a

DT M, straightforward ways to achieve that are exponentially slower—if a task can be decided

using an NT M in time f (n), then it can be decided by a DT M in O(c f (n)), where c > 1 is a

constant. There is no known way to do this with only a polynomial slowdown. The previously

shown equivalence between computers and DT M in terms of speed therefore also indicates that

there is no known general way to simulate an NT M on a computer without a superpolynomial

increase in time requirements [69, 198, 204, 211].
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Complexity classes 𝒫 and 𝒩𝒫

The most important achievement of computational complexity theory from the optimisation

point of view is the theory of 𝒩𝒫-completeness. It relies on previously defined notation and

abstract computing machinery to provide valuable insight into the intrinsic difficulty of prob-

lems, regardless of the specific choices of known algorithms. Using this theory, the complexity

of problems and problem classes can be estimated and compared [197, 199, 204, 211].

Two key complexity classes provided by this theory are:

• class 𝒫 , that contains all problems for which there exists a polynomial-time algorithm,

• class 𝒩𝒫− complete, for which there is no known polynomial-time algorithm.

Put more formally, the class 𝒫 contains all problems that can be solved in polynomial time on

a deterministic Turing machine. Given the fact that any problem that is solvable on a determin-

istic Turing machine also corresponds to a problem that can be solved on computers in similar

time, this implies that the class P is the class of all problems solvable on computers in polyno-

mial time. Since all algorithms that require polynomial time when running on computers are

considered to be quick enough for everyday use, the class 𝒫 is regarded as class of problems

that can be efficiently solved [197, 199, 204, 211].

The class 𝒩𝒫-complete is more complex to precisely define. Definition of the 𝒩𝒫-complete

complexity class is based on the notion of

• the definition of the class 𝒩𝒫 and

• polynomial-time reduction.

The class 𝒩𝒫 is the class of all problems that can be solved in polynomial time on a nondeter-

ministic Turing machine. Clearly, 𝒫 ⊆𝒩𝒫 [197, 199, 211, 212].

Definition of polynomial-time reduction is based on the idea of converting an instance of

a problem to an instance of another problem. Let us consider a situation when we are given a

decision problem (such that has an answer yes or no), denoted P1, for which we only have a

slow solution procedure S1. It might be possible that this decision problem can be reduced to a

different problem, P2 for which a faster solution procedure S2 is known. This would assume that

there is a procedure that can produce an equivalent instance of the second problem p2 for each

instance p1 of the initial problem. Equivalent here means that the answer s2 = S2(p2), given by

procedure S2 with p2 as the input must be equal to the solution provided by the initial algorithm

on the initial problem s1 = S1(p1) for each converted problem instance. A reduction is called a

polynomial time reduction if it is possible to convert any instance of P1 to an instance of P2 in

polynomial time [69, 197, 199, 213].

Given the definitions of 𝒩𝒫 and polynomial-time reduction, it is possible to formally define

the class of 𝒩𝒫-complete problems. A problem c is in the class 𝒩𝒫-complete if it satisfies the

following conditions:

1. c is in 𝒩𝒫 , and
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2. There exist a polynomial-time reduction of any other problem in 𝒩𝒫 to the problem c.

The second condition ensures that 𝒩𝒫-complete contains the hardest problems in 𝒩𝒫 and

that it is “closed” with regard to polynomial reducibility. Problems that satisfy only the second

condition are called 𝒩𝒫-hard, and they are considered at least as hard as any problem that can

be solved by NT S in polynomial time. In (1) it is defined that any problem in 𝒩𝒫-complete can

be solved in polynomial time on an NT S. Since there is no known way to perform calculations

of an NT S without at least a superpolynomial slowdown, it implies that none of these problems

can be solved on a computer in polynomial time [197, 199, 206, 211].

It should be noted that the definitions of this problem class commonly include the phrasing

“no known”, and similar. This refers to the 𝒫 vs. 𝒩𝒫 problem. It is one of the most famous

open problems in modern computer science and mathematics, and it is equivalent to the question

of existence of a polynomial reduction of any problem from 𝒩𝒫-complete to any 𝒫 problem.

It can also be stated as a problem of existence of a polynomial algorithm for any 𝒩𝒫-complete

problem, or as a problem of simulating the NT S on a DT S with at most polynomial slowdown.

Note that due to the fact of polynomial reducibility of any problem in 𝒩𝒫-complete to any other

problem in that class, it would be sufficient to show that polynomial solving is possible for any

problem in that class to allow polynomial solving of all other problems in it. Despite decades of

effort of brilliant computer scientists, such an algorithm has not been discovered. Nevertheless,

it is also not proven that such an algorithm cannot exist. Therefore the definitions of complexity

classes are typically cautious to allow for the possibility that such algorithm exists and has not

been discovered yet [197, 199, 206, 211].

The theory of 𝒩𝒫-completeness was started when Cook-Levin theorem was proved in early

1970s [143, 214, 215], however the term 𝒩𝒫-complete was introduced later [198, 216, 217].

The theorem was proved independently by Stephen Cook and Leonid Levin, and it shows that

the Boolean satisfiability problem, i.e. setting the values in a Boolean logical formula, such

that the formula evaluates as true. The proof states that any problem in 𝒩𝒫 can be reduced in

polynomial time to the problem of Boolean satisfiability [143, 215]. The paper received great

interest after Richard Karp showed that numerous practical problems are 𝒩𝒫-complete and he

provides the famous list of Karp’s 21 NP-complete problems [36].

2.5.3 No free lunch theorem

In 1997, David Wolpert and William Macready published the no free lunch theorem, abbrevi-

ated as NFL-theorem [145]. It is another crucial achievement of theoretical computer science

that has direct consequences in the entire area of optimisation. In the recent decades, great ef-

fort was devoted to both specialisation as well as generalisation of algorithms. Specialisation

is usually used when developing high-performance techniques that work great on a narrowly

defined problem, with the goal of using as much problem-specific features possible to improve
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the efficiency. The attempts to achieve generalisation are especially prominent in the area of

metaheuristics, where numerous general optimisation techniques were proposed. It is natural to

ask—of all the possible problem-solving methods for a problem at hand, which one is the best.

The no free lunch theorem provides a formal mathematical insight into this question. Let

us define the sets 𝒮 and 𝒴 as two finite sets, where 𝒮 is the set of possible solutions, and 𝒴
is the set of their values (e.g. given by an objective function to each element of 𝒮). Further,

let us define f : 𝒮 → 𝒴 to be a mapping between solutions and their values. We denote a set

of all possible such mappings ℱ = 𝒳𝒴 . We now define T s
m = {s1, . . . ,sn} to be a sequence of

solutions with the length m, considered by an optimisation algorithm while finding the optimum

of an optimisation problem corresponding to f . Analogously, let us define T y
m = {y1, . . . ,ym} to

be a sequence of the corresponding values for each possible solution f (s1), . . . , f (sm). Finally,

let us use P(T y
m | f ,m,a) to denote a probability tht the search algorithm a will in m steps find

precisely the sequence of values T y
m.

Then, the no free lunch theorem states that for each pair of algorithms a and b,

∑
f∈ℱ

P(T y
m | f ,m,a) = ∑

f∈ℱ
P(T y

m | f ,m,b) (2.9)

We use Φ(T y
m(a, f ) to denote the function that gives performance of an algorithm a that per-

formed m steps while optimising the function f . A typical algorithm performance function

could be the minimum value y j that the algorithm has found. Then, from the no free lunch

theorem it follows that any performance function averaged on the set of all functions ℱ is in-

dependent of the algorithm a. Conversely, for any two algorithms a and b, there exists two

functions f and g, such that the sequence of values obtained using algorithm a to optimise

function f is equal to the sequence of values using the algorithm b to optimise g.

The sharpened version of the no free lunch theorem brings the set of theoretical conditions

that a subset of the set of all functions ℱ must satisfy in order for the theorem to hold on the

subset too [218]. These are defined in purely mathematical terms that can be difficult to check.

Still, it is shown that the sharpened NFL holds only on trivial subproblems of e.g. symmetric

travelling salesman problem, and not for the symmetric TSP in general. Similar results are

reported for several other classical combinatorial optimisation problems [219].

2.5.4 Implications for optimisation

The elaborated achievements of theoretical computer science have direct implications when

developing optimisation algorithms. After Karp’s 21 𝒩𝒫 problems [36] were published, the

awareness grew about the fact that numerous optimisation problems that have high importance

in practice belong to the class of intrinsically difficult problems. Further, numerous attempts to

provide fast and exact solutions were not successful. This leads to very strong guidelines when
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developing optimisation problems, that can be summarised as follows:

1. Try developing a simple and fast exact algorithm for the given problem,

2. If you fail in doing (1), try proving that the problem is 𝒩𝒫−hard,

3. If you successfully prove (2), use approximate methods.

The above general rule is based on the fact that not only algorithms need to provide solutions

quickly—the algorithm developers are also encouraged to produce efficient algorithms as soon

as possible. When facing an 𝒩𝒫-hard problem, the algorithm developer must know that the

problem to solve is so difficult that despite decades of effort of most brilliant minds in computer

science and mathematics, such an algorithm was not found. This means that it is not viable to

spend time on an unsolved problem, and therefore the recommendation (3) is given for such

cases. Continuing with the attempts to produce an efficient solution is considered as a valid

research direction only when conducting research of theoretical computer science [199].

Similarly to the theory of 𝒩𝒫-completeness, the no free lunch theorem has also shown to

have far-reaching conclusions and shaped the way modern optimisation algorithms are devel-

oped. It is a strong indicator that efficiency can be achieved only by means of specialisation.

It also provides an important point of view when performing common development tasks. For

example by tuning an algorithm, its efficiency increases on a particular subset of problems. In

the no free lunch framework, better performance on a subset of all functions also means that the

performance can drop on other problems, however this might be hidden to a developer unaware

of the NFL-theorem. Given the wide availability of various different types of metaheuristic al-

gorithms, and the general intent to provide as much generality as possible in such methods, the

NFL-theorem suggests that the best metaheuristic for a given problem is the one that can be best

adapted to the problem [8, 220]. It can also be argued that it shaped the metaheuristic research

to move from the method-centred research towards a framework-centred, where metaheuristics

are viewed more as a framework to develop heuristics than different methods.

2.6 Solving difficult problems

The superpolynomial dependency between the input problem size and the number of steps to

complete the exact methods applied to 𝒩𝒫-hard problems is an indicator that simply waiting

for more efficient hardware to appear is not an option when facing problems of such complexity

[8]. Let us consider an exact algorithm that needs to complete 10100 steps to complete. In

the most optimistic case, assuming that a single processor cycle is sufficient for one algorithm

step, with a conventional 3 GHz processor available in 2019, this algorithm would require

2.6 · 1082 years to complete. In practice, problems of such and even greater complexity are

common in combinatorial optimisation. Given the current state of microprocessor industry,

microprocessor units with 100 times more computational capacity than currently available are
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not very likely to appear in the next few years. Since the paradigm in increasing computational

capacity is not increasing the clock rate, but instead adding more cores to the processor chips

[221], this would also mean less than 100 times faster solving, since not all exact algorithms

can be easily parallelised [222, 223, 224]. Even in the most optimistic case, when this would

lead to 100 times faster solving, this speed increase would not mean much for the practical

applications in the given example—using 100 times faster hardware, the algorithm would now

require 2.6 · 1080 years. This also leads to the conclusion that such algorithms are not suitable

even when utilising large cloud or grid resources—a speedup factor of 100 or even 5000 in

available CPUs does not mean much for exact algorithms and problems of this size. Quantum

computing is an exciting research area, and for general search problems, it can achieve quadratic

speedups [225, 226, 227]. While quadratic speedups would significantly improve the capability

to solve smaller problems, there is still no practical benefit from these speedups in the larger

problems. It is unclear if it can achieve more significant breakthroughs in the 𝒩𝒫 class in

general. Despite efforts like IBM Quantum cloud [228], quantum computing hardware is still

expensive and impractical for use [229].

The above discussion shows that the hardware sufficient for applying currently known exact

methods to solve 𝒩𝒫-hard problems will not be available anytime soon. This means that the

effort to solve such problems with more success must lie in development of better algorithms,

which motivated a great research effort in the area of combinatorial optimisation, including

approximate methods. In the years to come, unless there is a breakthrough that would show that

𝒫 =𝒩𝒫 , efficient exact solving of anything but toy-sized instances of these problems will not

be viable in practice, and providing good solutions will inevitably involve approximate methods

[8].

2.6.1 Developing good optimisation algorithms

Optimisation algorithms start with an initial guess of the solution (or a population of solutions),

and then iteratively attempt to improve it and approach the optimum [69, 87, 105, 230]. The way

they change the variables during this process can be viewed as a series of movements through

the domain, and each algorithm has its unique way in doing so. For any optimisation algorithm,

it is desirable that it is efficient, as general as possible, and accurate. Efficient algorithms

produce solution in short time, without too much computational resources. General algorithms

are robust enough to be applied to a wide variety of problem instances, and tolerate different

choices of initial points. Finally, an algorithm must be accurate in terms of precisely setting

variables to values that make sense, and it must be able to tolerate minor errors in the input and

due to rounding when representing numbers in computer memory [87].

These goals can be contradictory to each other, especially the generality and efficiency. A

very fast algorithm might require a lot of memory. Therefore a balance between performance
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and available resources also needs to be kept in mind when developing optimisation algorithms

[87].

2.6.2 Superpolynomial exact algorithms

For 𝒩𝒫-hard problems, the best-known algorithms have superpolynomial complexity. This is

in general considered a very unfavourable option, that frequently leads developers to use ap-

proximate methods without even considering exact methods. Still, it should not be forgotten

that they might indeed be practical for solving small problem instances. They can be an at-

tractive option when the problem can be solved using algorithms that are trivial to implement,

and we are sure that we will only have sufficiently small inputs [69]. Before attempting to do

that, nevertheless, it is necessary to perform thorough algorithm complexity analysis and ensure

that problem instances that will be too large to solve will indeed never be encountered. It is

crucial to communicate these restrictions with users, who should have enough information to

understand the limitations of this approach.

Exhaustive search

A very simple exact method in combinatorial optimisation is called exhaustive search, or brute

force algorithm. It successively enumerates all the elements in the problem domain, and keeps

the one with the lowest objective function value as the result. Such algorithms are usually very

simple to implement, and guarantee finding an optimum. However, as any other exact method,

they scale poorly, and for complex combinatorial structures, the implementation might not be

trivial [69, 231].

Identifying subproblems and probabilistic analysis

An important reason for performing the complexity analysis before starting work on the algo-

rithm is the fact that some problems that are in the 𝒩𝒫-hard class might have special cases

that are easy to solve. If the users focus solely on such easier instances, specialised fast exact

algorithms for this subset of the problem could be applied. Even when the problem does not

have special cases that are easy solvable, probabilistic algorithm analysis might reveal that an

exact algorithm performs good on most problem instances, with the worst-case scenario hap-

pening sufficiently rarely to consider using the algorithm in practice [69]. Unlike with applying

exhaustive search, it might be more difficult to understand on which problems the algorithm can

work, and on which it cannot. This requires very careful communication with users to ensure

they understand the limits on the algorithm applicability.
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2.6.3 Approximation

Approximate methods include approximation algorithms, heuristics and metaheuristics. They

are not guaranteed to produce an optimum, however, they use various strategies to get as close

to the optimum as possible. The key differences in these methods are in

• guarantees of closeness to the optimum they provide, and

• their generality and applicability to different problems.

Approximation algorithms

Approximation algorithms are fast algorithms that can produce a feasible solution and provide

strict guarantees regarding the closeness to the optimum, expressed as a factor or percentage of

the objective function value at the optimum [69, 163]. For example, an algorithm might guaran-

tee that the solution will be less than or equal to the double of the optimal value. While this is an

appealing property, approximation algorithms can be complex and difficult to implement. They

are usually highly specialised, and rely on problem-specific features. Therefore they cannot

easily be modified for use on other problems. Further, for several classes of problems, there are

proofs that fast approximation algorithms with tight closeness to optimum cannot exist, unless

𝒫 =𝒩𝒫 [69, 232].

Heuristics and metaheuristics

Heuristics are approximate methods for which there is no formally provable ratio between the

worst-case result and the true optimum. They are usually specifically designed for a certain

problem and during the optimisation process, they use problem-specific features to speed-up

the search for the optimum [8, 69, 233]. Metaheuristics are algorithmic frameworks that allow

quick development of heuristics. They do not focus on efficiently solving a single problem, in-

stead they are generic search strategies that allow searching for good solutions in very large do-

mains. This thesis focuses on expanding the applicability of metaheuristics to problems where

they are difficult to apply, as well as improving the implementation development methodologies

[105, 129, 234].

When implemented properly, heuristics and metaheuristics can provide excellent results.

The fact that they provide no guarantees on the solution quality, is not an attractive property

from the analytical and purely mathematical point of view. However, in many practical appli-

cations, such as engineering, construction, and especially business, to consider an algorithm

successful, it is sufficient that the algorithm outperforms computation by hand, or some other

simple technique. The benefits of using heuristics are even more obvious when the only alter-

native are exact algorithms that are too slow to consider. Given the prospect of waiting years or

even centuries for the algorithm to finish, a slight decrease in solution quality is a great tradeoff
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that allows getting solutions in short time. While their speed is a good argument to use heuris-

tics, the lack of guarantee on the solution quality does not necessarily mean that the solutions

provided by them are not good. For many problems of great practical importance, heuristics

and metaheuristics provide state-of-the-art results [8, 235].

2.7 Noteworthy problems

Following the discovery that the widely studied boolean satisfiability problem is 𝒩𝒫-complete,

during the 1970s [143, 214, 215], an entire array of other problems of equal difficulty was dis-

covered. All these problems are characterised by the fact that they are the most difficult prob-

lems in 𝒩𝒫 , and that each of them can be polynomial-time reduced into any other problem from

this class. An important milestone was the publishing of Karp’s 21 𝒩𝒫-complete problems in

1972 [36]. This paper demonstrated that being 𝒩𝒫-complete is not an isolated curiosity of the

boolean satisfiability problem, and that such problems of great practical importance are fairly

common. Several other important problems were later proven to be at least as difficult, such as

vehicle routing problem [236] timetabling problem [199, 237, 238] and others.

Boolean satisfiability problem

The Boolean satisfiability problem is the problem of checking the existence of an assigment of

variables that evaluates a given Boolean formula to true [69, 197, 239]. Boolean variables are

values that can assume values true or false, and Boolean logic formulas are built from Boolean

variables using the logical and (∧), or (∨) and not (¬) operators. Each Boolean formula can

be transformed into an equivalent standardised form called conjunctive normal form, which

consists of several clauses, connected using the and operator. Each clause is a logical formula

that can only be a disjunction of literals, where a literal is either a variable (x) or a negation of

a variable (¬x). In the example below, five boolean variables x1, . . .x5 are used in a Boolean

formula that already is in a conjunctive normal form:

(x1)∧ (¬x1 ∨ x2)∧ (¬x3)∧ (¬x4)∧ (x1 ∨ x5) (2.10)

For each given assignment of logical variables, the entire formula evaluates to either true

or false. Formulas that are satisfiable evaluate to true for some assignment of variables. Con-

versely, formulas that are not satisfiable can never evaluate to true, and contain an intrinsic con-

tradiction. Using the conjunctive normal form representation, for the formula to be satisfiable,

there must exist an assignment of variables that evaluates all clauses as true. The above example

is a satisfiable formula since it evaluates to true for x1 = x2 = x5 = true, x3 = x4 = f alse.

Formally, given a set of Boolean clauses C1,C2 . . .Cn, where Ci is a clause, the boolean
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satisfiability problem is defined as the problem of checking if the formula C1 ∧C2 ∧ . . .∧Cn is

satisfiable [69, 197, 239]. It was the first problem proven to be 𝒩𝒫-complete [143, 214, 215,

240]. Efficient solving of satisfiability problems is important in practice for theorem proving

algorithms, circuit design, formal verification of hardware and software. While all best-known

algorithms have exponential worst-case complexity, it was demonstrated that most randomly

generated problem instances are fairly easy to solve. In practice, great results are achieved, and

problems with more than million variables have been successfully solved [239, 241].

Integer linear programming

The integer linear programming problem, abbreviated ILP, is an extension of the linear pro-

gramming model, in which all the variables are restricted to integers [87, 242, 243, 244, 245].

More formally, the problem is stated as follows:

minimise cᵀx, (2.11)

subject to Ax = b, (2.12)

x j ≥ 0, for each j ≤ n, (2.13)

x j integer, for each j ≤ n, (2.14)

where x is a vector of n variables, b and c are integer vectors, and A is an integer matrix

[242, 243, 244, 245]. The problem is 𝒩𝒫-complete [197, 246]. The restricted problem, when

the variables in x can be only zero or one is called 0-1 integer programming, and in this ver-

sion, it is one of Karp’s 21 𝒩𝒫-complete problems [36, 243, 244]. Solving such problems is

important in production planning, when constraints are linear, and the variables must be inte-

gral or boolean. Scheduling and transportation problems also can be defined as integer linear

programming problems.

Important class of subproblems that can be efficiently solved was identified—if the problem

is only to solve the system of equations that define the constraints and the number of variables or

constraints is fixed, then there exists a polynomial algorithm to solve it [247]. While the prob-

lem formulation is analogous to the problem of linear programming, the integrality constraint

causes the problem to be more complex to solve than linear programming with real variables.

Since general linear programming can be solved using fast algorithms, and given the apparent

similarity of the problem, it might be tempting to ignore the integrality constraint, and solve

these problems as if they are linear programming with real variables. Solutions of this could

then be rounded to nearest integer values. This approach is called LP relaxation. Such solutions

are not guaranteed to be optimal or to satisfy all the constraints, however they can be used as

good starting points for exact algorithms [244]. For the general ILP, strategies such as branch

and bound can be used to find exact solutions, however, branch and bound has exponential
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worst-case complexity [248]. Heuristics and metaheuristics such as tabu search are also used as

a solving method [131].

Knapsack problem

The knapsack problem is formally defined using integer linear programming, as follows:

maximise
n

∑
j=1

c jx j, (2.15)

subject to ∑ j = 1nw jx j ≤ K, (2.16)

x j integer, (2.17)

where c j is the value of each item j, w j is the weight of each item, akd K is the capacity.

Given a knapsack whose capacity is K kilograms, and a choice of items with known weights

w j, j = 1, . . . ,n, the problem is to decide which items to fit into a knapsack, so that the total

value of the selected items is highest, while not exceeding the knapsack capacity. In the above

version, also called unbounded knapsack problem, there is no limit on the number of items that

can be selected, assuming infinite number of each item can be selected [69, 243, 249].

There exist several variants of the knapsack problem. If there is a limited availability of

each item, then the constraint 2.17 is replaced with 0 ≤ x j ≤ b j, where b j is the available stock

for each item j, and such problem is called bounded knapsack problem. A problem might be

restricted to selecting only a subset of n, available items, called 0-1 knapsack problem, that has

the constraint 2.17 defined as x j ∈ {0,1}. Additional constraints can be added to the problem,

e.g. specifying the dimensions of the items in addition to their weight, and such problems are

called multidimensional or multiconstraint knapsack problem [69, 243, 249]. All versions of

the knapsack problem are 𝒩𝒫-hard, and the 0-1 knapsack problem is 𝒩𝒫 complete [199].

There exist techniques that can produce exact solutions to the problem in less than expo-

nential, however not polynomial time. Exact solving techniques include dynamic programming

and branch and bound approach [199, 249, 250, 251, 252]. Given the fact that it is simple to

model, the problem is also an attractive benchmark for other combinatorial optimisation meth-

ods, including approximation algorithms and metaheuristics [253, 254, 255, 256, 257].

Bin packing problem

The bin packing problem is a generalisation of the knapsack problem. Given a number of items

with known weight, and a number of bins, where all bins have equal capacity, the problem is

to fit all items into bins in a way that does not exceed the capacity of any used bin, using as

few bins as possible [69, 242]. The problem is 𝒩𝒫-hard and exact algorithms are too slow

for practical use [197, 199, 258]. However, approximation algorithms are successful on the
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problem, and even for the simple heuristics such as first-fit decreasing10 it can be proven they

provide results close to the optimum [259, 260, 261, 262].

The problem can be generalised by specifying that e.g. each bin can have a different ca-

pacity, a variant called variable sized bin packing problem [258]. Another generalisation is the

multidimensional bin packing problem that has several flavours as well. In the 2-dim version,

the problem is to pack a set of rectangles in a number of rectangular bins, where rotation might

or might not be allowed. In d-dim vector packing, each bin can have multiple constraints, e.g.

weight and volume. In this case, bin capacity and item weights are multidimensional vectors.

The sum of all the items in each bin is also a vector, and the components of the total sum vector

must not exceed the corresponding components in the capacity vector [263, 264]. It is proven

that this problem has no efficient approximation algorithms [265].

Travelling salesman problem

Given a set of cities to visit, and the distances between each pair of cities, the travelling sales-

man problem (abbreviated TSP) is to find the shortest closed path that visits each city exactly

once. In terms of graph theory, it corresponds to the problem of finding the shortest Hamilto-

nian cycle in a complete weighted graph, where edge weights represent distances between cities

represented by nodes. Any valid solution starts in the initial city, visits each city exactly once

and then returns to the initial city [69].

It is one of the most famous combinatorial optimisation problems, that has been widely

studied by generations of mathematicians and computer scientists. It is trivial to define and

notoriously difficult to solve. The simplest solving approach, by enumerating all the possible

solutions scales terribly—it has time complexity of O(n!). Several exact methods have been

developed, however all of them have exponential worst-case complexity. Despite decades of

effort, no exact algorithm faster than O(2n) is known [197, 266, 267, 268, 269]. In its general

form, the problem is not well suited for approximation algorithms, however there are subprob-

lems that can be well approximated [232, 270, 271, 272, 273]. Various heuristics and meta-

heuristics have been used, both in practice and in research. The TSP is an especially attractive

problem to test new algorithms, due to the simplicity as well as high theoretical and practical

importance [124].

10The first fit heuristic first sorts the items by their weight, from largest to smallest, then packs them using the
following two rules:

1. Try fitting the current item in the first bin that has sufficient space,
2. If no bin has sufficient space, allocate a new bin for the current item.
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Vehicle routing problem

The vehicle routing problem, abbreviated as VRP is a generalisation of the travelling salesman

problem—given a set of vehicles and a set of locations (customers) to visit, the problem is to

find the shortest path that visits each location exactly once by any of the available vehicles. This

transportation problem is very important in numerous practical applications. Any company that

deals with physical goods can benefit from efficient transportation of the product, and successful

solving of practical variants of the vehicle routing problem can produce higher customer satis-

faction, as well as great savings in transportation costs [274]. The problem was first proposed

by Dantzig and Ramser in 1959 [66].

Due to the wide adoption in practice, depending on the specific requirements of each trans-

portation process, there are numerous extensions of the above basic problem definition. In the

vehicle routing problem with time windows, the time window (tearliest , tlatest) is specified for

each customer, along with the service time, an estimated time that the vehicle must spend at

each location to finish the delivery. In good solutions, each delivery must start during the re-

quested interval. The capacitated vehicle routing problem defines a capacity of each vehicle,

and the demand of each customer, both usually in kg. This problem variant adds the capacity

constraint—no vehicle can carry more cargo than the capacity of the vehicle allows [274].

The vehicle routing problem is 𝒩𝒫-hard [274, 275, 276, 277, 278]. There is considerable

progress in improving the speed of exact techniques, including impressive exact solutions of

two large problem instances with 400 and 1000 customers [279]. However, the problem is very

difficult to solve using exact techniques, and in most cases they are limited to small problem

instances with up to 200 customers [280, 281, 282]. Solvers used in practice usually use some

type of a multiphase heuristic solving. Metaheuristics have been widely applied as well [283,

284, 285, 286, 287, 288, 289, 290, 291].

Scheduling problems

In the most general sense, scheduling is deciding which resources will be doing which tasks

at what time. They commonly appear in manufacturing (which machine should be processing

which input), service industries (which staff member will work at which position at what time),

transportation (which flight attendant will work on which flight), education (school timetabling),

etc. Depending on the application, the problem definitions can be very diverse [292]. Numerous

scheduling problems are 𝒩𝒫-hard, such as job shop scheduling problem, cloud task scheduling,

university course timetabling and call centre scheduling [199, 237, 238, 293].

In some scheduling and timetabling problems, the constraints are divided into hard and soft

constraints. Hard constraints are rules that must be satisfied in any schedule. Typically, they

are the most basic rules, such as “do not put more people in a room than the room can fit”. Not
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satisfying such rule, by e.g. scheduling 100 people in a classroom that can accommodate 20

would clearly prevent such a schedule from being used in practice. Conversely, soft constraints

are preferences that increase schedule quality, however, they are not a strict requirement. They

need to be minimised, however, completely avoiding might not always be possible. Specifying

“teachers prefer to arrive to work at the same time each day” could be an example soft con-

straint. When modelling scheduling problems, in terms of the optimisation problem as stated

in Equations 2.1 - 2.3, hard constraints can be translated into constraints (Equation 2.2 and

2.3), while soft constraints can be encoded into the objective function [294]. It is common for

scheduling problems to be highly constrained [295, 296, 297, 298].

The job shop scheduling problem is to schedule jobs on m machines, so that each job consists

of a sequence of operations. Sequence of operations is strictly ordered for each job, and for

each operation, a machine on which the operation takes place and processing time are defined.

Processing of each operation must be uninterrupted, and a single machine can work on at most

one job at a time. There are no precedence rules for jobs and each job can be processed only on a

single machine at a time. The objective of the job shop scheduling problem is to find a sequence

of operations for each machine that respects the constraints and minimises the makespan of the

entire project: the time between the first job start and the completion of last job [292, 299].

This problem was a subject of great research interest, and it was proven to be 𝒩𝒫-complete for

any problem with two or more machines [199]. Popular solving techniques include branch and

bound (exact), heuristics and metaheuristics [300, 301, 302, 303, 304, 305, 306].

The cloud task scheduling problem is to distribute the virtual machines in a cloud computing

service to available physical hardware. With the popularisation of cloud computing, efficient

usage of hardware resources is becoming increasingly important to achieve good performance

with reasonable use of computer resources [307, 308, 309, 310, 311]. The problem can be

formulated as the aforementioned d-dim bin packing, where requirements such as memory and

CPU are the constraints related to physical machines [312]. As a separate problem, a novel vari-

ant of bin packing is proposed, in cases when virtual machines can share parts of their memory

(e.g. the operating system) [313, 314, 315]. Large part of cloud scheduling techniques are on-

line algorithms, that can dynamically schedule tasks incoming one-by-one, and work without

complete information about tasks that will arrive in the future [316]. Along with minimisation

of running machines, it is frequently an attractive option to also model energy consumption

and minimise energy consumption as one of the objectives [314, 317, 318, 319]. If a bin pack-

ing model is used, the problem is at least as hard as the bin-packing problem, therefore it is

𝒩𝒫-hard [317].

The university course timetabling problem is a problem of finding good schedules for uni-

versity course that keeps students and as satisfied as possible. The problem is to schedule

students into rooms where lectures are held. The problem is defined as a set of events, class-
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rooms, students and timeslots. Each course is a set of events or lectures. For each event there is

a list of students that attend the event and a set of required features related to the room where

the event can take place, e.g. some events might require a computer to be installed in the room.

Further, to be suitable for the event, any room must have sufficient capacity for all the attending

students. For each room, a set of features it offers and the capacity is known. For each student,

a subset of enrolled courses is defined. Finally, a set of time slots in which all events can take

place are defined. The problem includes the following hard constraints:

• A student can be in only one place at a time,

• Classrooms have sufficient capacity for events held in them,

• Classrooms satisfy all required features for events held in them,

• At most one event can be held in a classroom at any time.

Possible soft constraints include:

• A student should not be scheduled in the last time slot of the day,

• A student should not have more than two classes without a break during a single day,

• A student should not have only one class in a day.

A complete solution is an assignment that places each event in a room and a time slot. Good

schedules satisfy all hard constraints and minimises soft constraint violations [297, 320, 320,

321, 322]. The problem is 𝒩𝒫-hard [323]. It was first defined in the Metaheuristic network

research project [324]. The problem was successfully solved using metaheuristics [297, 320,

320, 321].

The call centre scheduling problem is a problem of producing work schedules for call cen-

tre staff with the primary goal of reducing customer waiting times. Call centres are offices

organised to answer large volume of customer calls and are frequently used by companies to

interact with their customers. Prominent feature of call centre scheduling is variable demand,

that might be known only approximately. A centre might have only a few incoming calls in the

morning, and a peak with hundreds of calls around 17:00, however the exact number and du-

ration of calls that will take place cannot be known in advance. Call centre scheduling usually

starts with a forecasting step in which various techniques are used to estimate the number of

needed people for each time unit in the scheduling period. With this information, the scheduling

problem is to decide which staff member comes to work at which time, in order to minimise

the difference to forecasted ideal staff number [325, 326, 327]. While there exists a polyno-

mially solvable restriction of the staff scheduling problem [328], general staff scheduling is

recognised as NP-hard, even in the simplest versions [199, 329, 330]. There are numerous con-

straints such schedules must satisfy. Total working hours a person can do in a day and in a

month without causing too much fatigue is limited, and usually even strictly enforced in labour

laws. Duration of the working day might differ, depending on the employee type, and part-

time staff might be available only a day or two per week. Since each organisation might have
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various specific constraints, problem might be highly constrained [331]. Various techniques

such as dynamic programming, mixed integer programming, linear programming relaxations,

heuristics and metaheuristics have been used for solving the call centre scheduling problem

[325, 327, 332, 333, 334, 335, 336, 337, 338, 339].
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Metaheuristic methods

This chapter presents an overview of early heuristic design principles, followed by short descrip-

tions of established metaheuristics. This theory establishes the requirements for the analysis of

components of metaheuristics and allows their faster development. This Chapter further brings

an overview of current development methodologies for metaheuristic algorithms and addresses

an important assumption on the quick evaluation of solutions. “Slow evaluation” can be an

obstacle that prevents a successful implementation. This thesis later brings some adaptations to

the ILS algorithm to show how it can still achieve good results even in cases when evaluation

function takes time, or conversely, when number of evaluations is limited.

3.1 Definitions

The word metaheuristic comes from the Greek prefix meta that means “after” or “beyond”

[340, 341] and the word heuristic, which also comes from Greek and means “I find” or “I dis-

cover” [340, 342]. In the modern sense, the word “metaheuristic” implies a higher-level abstrac-

tion beyond heuristics. The term was first proposed by Glover in 1986 [129]. The contemporary

definition of metaheuristics that will be used in this work is from Sörensen and Glover [234]:

“A metaheuristic is a high-level problem-independent algorithmic framework that pro-

vides a set of guidelines or strategies to develop heuristic optimization algorithms. The

term is also used to refer to a problem-specific implementation of a heuristic optimiza-

tion algorithm according to the guidelines expressed in such a framework.”

Another commonly accepted definition, from Handbook of metaheuristic [150] is is that they are

“Solution methods that orchestrate an interaction between local improvement proce-

dures and higher-level strategies to create a process capable of escaping from local
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optima and performing a robust search of a solution space.”

The second definition highlights that aside from being general frameworks to develop optimi-

sation algorithms, they all share similar working principles. According to this definition, any

metaheuristic must have three basic components: (i) a local improvement procedure that finds

local optima, (ii) strategies that prevent the algorithm being stuck in a local optimum too long

without exploring other areas of the solution space and (iii) a strategy to decide when should

each of these two principles be used, depending on the current state of algorithm progress.

Development of these techniques is also an attempt to add more generality to heuristics,

which are highly problem-specific. Developing an efficient heuristic requires an in-depth under-

standing of the intricate features of the problem being solved, and it sometimes takes a detailed

interdisciplinary effort to allow building such algorithms. It is not a very efficient strategy to try

solve a problem using a heuristic developed for other problems, since other problems usually

have a completely different structure with their own set of subtle features that need to be used

to find good solutions [8].

Like heuristics, there is no guarantee that using a metaheuristic will provide an optimal

solution, nor any guarantees on how close to the optimum the results will be [8, 69, 150, 162,

234]. As elaborated in Section 2.6.3, there exist difficult problems, for which exact methods

are prohibitively slow. The goal of metaheuristics is to willingly give up on the guarantee of

optimality on such problems, and be fast [8, 69, 234].

As summarised in Section 2.1.3, metaheuristics are inspired either by natural processes such

as evolution or by general ideas on search strategies such as “do not go back to already explored

areas”. They are non-deterministic algorithms that largely rely on randomness . Metaheuristics

are high-level frameworks. Further, metaheuristics are not finished algorithms that simply need

to be coded in the desired programming language. Instead, they provide general descriptions

on how to work with solution components in various circumstances, and especially with regard

to decisions that improved the solution. The work of connecting the abstract guideline such as

“mutate the solution” in the genetic algorithm framework with precise changes in the variables

of a candidate solution is left to the developer to decide on[150, 162, 343, 343]. Developing an

efficient metaheuristic algorithm can be a difficult research problem [8, 283, 344, 345, 346].

Unlike heuristics that require an extensive understanding of subtle details of the problem be-

ing solved, metaheuristics in general assume very little requirements in order to apply them to

an optimisation problem. The ability to evaluate different points in the solution space, a deter-

ministic objective function, and the freedom to decide on the variables are all that is needed to

implement a metaheuristic. No detailed understanding on how the objective function is needed,

in fact there exists an area of black-box optimisation that deals with developing good optimi-

sation techniques when the objective function is not known in an analytical form and acts as a
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“black-box” to the developers [96, 162, 343, 347, 348, 349, 350].

They have shown to be very effective in problem-solving. Given their low requirements,

they are usually used to solve problems where all other methods fail. Such problems in-

clude hard and large scale combinatorial optimisation problems. These problems do not have

favourable characteristics that help find the optimum. Their objective function is not smooth

and can have great variations for small changes in the variables which makes it difficult to de-

cide in which direction to move in the solution space. We are usually provided with very little

information on how to set the variables to find good results, and it is not possible to use some

reasonable rules to deduce the values of the optimum (or near-optimal) point. Finally, given the

large scale of the problem, the simple exhaustive search is also not a good way to search for

good results. Given the very few requirements they have, metaheuristics are an excellent choice

for problems that fit the above description. They provide reasonable guidelines on how to move

in the vast search spaces, without knowing anything else than the objective function value. The

class of 𝒩𝒫-hard problems satisfies all the above conditions, and it is not surprising that these

problems are the most typical problems solved by metaheuristics [96, 150, 162, 234, 343].

The great level of generality also implies that metaheuristics can be applied to almost any

optimisation problem. This is a highly favourable option when solving practical problems.

For numerous important problems, they are providing state-of-the-art results [127, 150, 351].

A number of software packages that use metaheuristics has been developed, and their role is

especially notable in vehicle routing and scheduling [283, 352, 353]. They are common in

simulation software to allow simulation optimisation, such as OPTQuest, developed by Opt-

Tek [354, 355, 356]. Finally, they are widely used in more general commercial packages for

modelling and solving optimisation problems, such as IBM ILOG CPLEX Studio, which uses

an evolutionary algorithm to improve the result of their ILP solver [357, 358, 359]. Libraries

such as COIN OR, OptaPlanner and LocalSolver also include several metaheuristic frameworks

[360, 361, 362, 363].

Criticism of metaheuristics includes the already mentioned fact that they are not com-

pletely finished algorithms—instead, there is considerable work needed to bring the general

and problem-specific together in an implementation of a metaheuristic algorithm, especially if

high performance is required [8, 234, 235, 364]. From the software industry point of view,

metaheuristics still require expert knowledge and their development is expensive and requires

a lot time. The methods have been criticised as difficult to understand as well, with a large

number of complex operators [234, 235, 364, 365]. The area of metaheuristics has several

established methods. Further, tens of methods published during the “metaphor controversy”,

have questionable novelty and add even more complexity [96, 234]. Therefore, newcomers

and outsiders of the metaheuristic community that simply want to apply an efficient method to

solve their problem are frequently discouraged from using metaheuristics. Finally, there is a
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general lack of development methodologies that would work well in the software industry and

help save development time and costs. Almost all research in academia is focused on achiev-

ing better and better results on simplifications of practical problems [96, 234, 365]. Very little

research is devoted to inventing methods that are simple to understand and quick to implement

under a well-defined development methodology [96, 234], and the fact that ease and simplicity

of implementation are equally important, is generally ignored in academic work.

This thesis attempts to help address some of these criticisms. By viewing the array of popu-

lar metaheuristics as frameworks that can be assembled from independent reusable blocks, it is

possible not only to easily create hybrid metaheuristics with high performance [235, 357, 366,

367], but also save development cost. Numerous companies are not interested in finding the for-

mally proven optimum. What they need are algorithms that produce good enough solutions for

their client’s demands that might change during time. By selecting the simplest metaheuristic

components, it is possible to save development time and stop adding more complex operators,

if the algorithm is performing efficiently enough. Details about this development methodology

are given in the next Chapter.

As mentioned in the above definition, the word “metaheuristic” typically refers to both the

algorithmic framework and the specific realisation of an algorithm. This way, “ant colony opti-

misation” can be both the metaheuristic framework, as well as specific algorithm implementa-

tion to a specific problem, such as “ant colony optimisation for solving the travelling salesman

problem”. To resolve this ambiguity, it was proposed that the term “metaheuristic framework”

is used for the general metaheuristic, while the term metaheuristic algorithm denotes an imple-

mentation of some metaheuristic framework to solve a specific optimisation problem [96].

3.2 Defining characteristics of metaheuristics

Based on the definitions of metaheuristics discussed at the beginning of this Chapter, there are

several identifying characteristics that all metaheuristics have [150, 162, 365]:

1. Metaheuristics are general optimisation frameworks, applicable to a wide variety of prob-

lems,

2. Metaheuristics place very little requirements on problems to be able to solve them,

3. Metaheuristics have a local improvement operator that is able to find a local optimum

around a point,

4. Metaheuristics have procedures to avoid being stuck in local optima for too long,

5. Metaheuristics have a strategy to balance local improvement and local optima avoidance

[150, 162, 365].

Along with the characteristics that are provided in their definition, it is agreed that:

6. They are stochastic algorithms that rely on random value generators [150, 343, 368],
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7. They scale well [150, 162, 365, 368],

8. They provide no guarantee on the optimality of results [162, 365].

3.3 Types of metaheuristics

During the last decades, numerous different metaheuristics have been developed. While they

all share the same goal of finding “as high quality as possible” solutions, and doing this task “as

quickly as possible”, the internal mechanisms they use in an attempt to realise this goal vary

significantly. Some metaheuristics, such as the genetic algorithm and ant colony optimisation

have clear inspiration in natural processes. Others do not have any metaphor in their basis,

and instead, use reasonable strategies to overcome issues with the underlying simpler methods.

Despite the great variety, metaheuristics can be classified into several categories [96, 150, 162,

365].

Depending on the number of solutions they consider in each iteration, metaheuristics can

be a single state or the population-based. Based on the prerequisites, the components of meta-

heuristics can be constructive or modification components. They can use the search history

(memory), or be memoryless. Finally, there is a great variety of techniques for handling con-

straints [96, 162, 343, 365]. These categories mostly overlap and more complex implementa-

tions might be difficult to categorise.

3.3.1 Single-state and population metaheuristics

Single-state techniques, also called trajectory methods always keep a single solution in each

iteration of the metaheuristic. They find good solutions by doing systematic modifications to

the current solution and checking if each change achieved an improvement. The sequence of

modifications to the currently active solution can be visualised as a multidimensional point

travelling through the solution space. For this reason, they are sometimes called trajectory

methods. The best solution so far is always kept, therefore any improvement is preserved while

the quality of the current solution can oscillate [162, 343, 365]. Popular single state methods

are GRASP, iterated local search, variable neighbourhood search, tabu search and simulated

annealing [119, 127, 129, 133, 135, 136, 137, 369, 370].

Conversely, population methods are capable of keeping more than one solution at each itera-

tion. They can be visualised as multiple points whose positions are jumping around the solution

space. Having more than one point means that it is possible to cover wider areas of the solu-

tion space in one iteration, and by such sampling get more information about the problem and

high-quality solutions. Drawbacks of such approach are higher memory requirements and more

processing resources needed for each iteration [162, 343, 365]. Widely used population methods
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include ant colony optimisation and genetic algorithm [116, 124, 150, 343, 351, 371, 372, 373].

3.3.2 Search history

Search history, also called search memory is the capability of a metaheuristic to remember

solutions from previous iterations and use the information gathered during the search to achieve

better decisions. Search history is also sometimes called search memory, and it can be further

classified into short-term memory, and long-term memory. Short term memory keeps a record

of the most recently visited solutions or moves that the metaheuristic has performed. Long

term memory can contain information like statistics about components that were parts of good

solutions etc. Using such long term information, the metaheuristic can behave more reactively

to the current state of the search process [150, 162, 343, 365].

Depending on their use of the search history, metaheuristics can be classified into mem-

oryless techniques, that do not use search history, and those that incorporate memory. The

techniques that do not use memory keep track only of the current solution (or population),

like in a pure Markov process, in which the next state depends exclusively on the current

state. At the very least, in addition to the current state, all reasonable metaheuristic imple-

mentations keep a copy of the best-so-far solution [150, 162, 365, 368, 374]. Using search

history is an attractive research area with high potential to improve metaheuristic performance

[127, 369, 375, 376, 377]. However, identifying the best strategy to use memory can be de-

manding and require a lot of experimentation.

A notable area in which the search history is intensely used are adaptive metaheuristics,

sometimes also called reactive search. With conventional metaheuristics, the implementation

decisions are done by the human developer before the metaheuristic is run, and do not change,

regardless of the search progress on the current problem. Unlike the conventional metaheuris-

tics, adaptive metaheuristics do not have such restriction and use various adjustments during the

optimisation algorithm run. They react to the current state of the optimisation process, and can

change the behaviour of the algorithm in an attempt to improve efficiency. This can help them

self-adapt to various different inputs problems [378, 379, 380].

3.3.3 Constructive and perturbation-based metaheuristics

Each metaheuristic is based on several types of operators and procedures. They start with an

initial solution or a population of initial solutions that need to be initialised in some way, there-

fore all types of metaheuristics must at the very least have a solution initialisation procedure.

The simplest way to achieve this is using random construction, by initialising each variable

to some random value from its domain. Advanced versions might use a greedy randomised

algorithm, include feasibility restrictions, or include a variety of problem-specific speedups
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[127, 135, 150, 162].

The operators of a metaheuristic are typically classified into constructive and modification

operators. Constructive operators start with an uninitialised solution where no values are as-

signed to any of the variables. Constructive operators assign suitable values to these unini-

tialised variables. Typically, a constructive procedure can also take an incompletely initialised

solution and complete it into a fully specified solution. Solution initialisation procedures are

constructive in regular implementations of metaheuristics . Conversely, modification operators

perform modifications of existing solutions and they assume that a completely specified solution

will be provided as an input [127, 150, 162, 351]. Using an incompletely initialised solution

with such operators results in an exception during runtime.

Constructive operators include random initial solution initialisation procedures, ant agents

in the ant colony optimisation metaheuristics and the greedy algorithm. A common modification

operator is a local search procedure, that searches for a local optimum in the proximity of an

initial point. Note that unlike constructive procedures, as explained in the previous paragraph,

local search has a solution as an input. Likewise, various perturbation operators are used to

introduce random changes in a solution [127, 150, 351].

Based on this classification of the operators they use, metaheuristics can be classified into

constructive and perturbation-based metaheuristics. In constructive metaheuristics, a current

solution in each iteration is initialised by a constructive operator. Ant colony optimisation and

GRASP metaheuristics use this approach [124, 135, 351]. Perturbation-based metaheuristics

create an initial solution or a population of solutions that is then modified using the modification

operators. Examples include iterated local search, variable neighbourhood search, tabu search

and simulated annealing [127, 137, 369, 370]. In population-based metaheuristics, there exist

more complex operators that do not take only one solution to modify as the argument. The

crossover operator, used in e.g. genetic algorithm is a notable exception. It takes two (or more)

solutions as an input and as a result, it produces one or more solutions by mutually exchanging

values of the solution variables that were provided to the operator [116, 373].

3.3.4 Constrained problems and feasibility

Solving constrained problems, as defined in Sections 2.3 and 2.4.1 adds complexity to solving

techniques. With constrained problems, in addition to investigating the areas of the objective

function, any algorithm for optimisation must also take care of satisfying the constraints. This

can be a highly complex task [295, 381, 382, 383]. Regardless of the used technique, there exist

three general ways to add constraint handling using optimisation algorithms:

1. Prohibiting infeasible solutions,

2. Using repair procedures for infeasible solutions,

3. Allowing infeasible solutions. [162, 295, 382, 384, 385, 386, 387, 388, 389, 390, 391]
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The first and the last option are two independent categories, while the second option is a middle-

ground approach that can also be used as an addition to the other two. In an algorithm that

prohibits infeasible solution, a repair might be attempted in cases when the current operator

produced an infeasible solution. Likewise, a problem specific repair procedure can be used

when infeasibility is not prohibited, to help the metaheuristic with known problem-specific

speedups [387, 388, 389, 390].

Note that while these techniques are widely used, the list above is not exhaustive as there

exist ways to handle constraints that do not fit into any of these three general ways [162, 387,

390, 391]. For example, multi-stage solving is sometimes used in timetabling, and consists

of dividing the problem into two different problems, solved separately. In the first phase, the

goal of the metaheuristic is to only find a feasible region, and then in the second phase, the

full problem is solved using the complete objective function, and starts from the feasible point

from the first phase [392]. Another example can be found in [393], where authors developed

a completely new variant of the ant colony optimisation metaheuristic, especially suited for

highly constrained problems. While authors report success of these techniques, they bring more

complexity to the process of development.

Prohibiting infeasible solutions

The first technique—prohibiting infeasible solutions restricts the algorithm to search in the

feasible region only. It might be a good option for simple constraints as it helps the metaheuristic

with problem specific operators. However, in highly constrained problems, e.g. in scheduling,

it might be difficult to find even a single feasible point [391, 394].

Drawbacks of this method include the fact that restricting the search to feasible options

also requires that the operators must produce feasible results. This can be very difficult to

achieve in highly constrained problems, as it requires both a careful formal analysis of the

problem specifics, as well as a high level of support in the codebase to achieve feasibility in

each step [343, 388, 390, 391, 395]. High complexity increases the required development and

maintenance time and effort. Even after the algorithm is finished, a simple request to add a

single new constraint might not fit in the constraint model that was specified in the earlier stages

of the project and require costly revisions and rewrites in the codebase [388, 391, 395, 396].

Finally, even with highly detailed rules to ensure feasibility, since e.g. scheduling is 𝒩𝒫 −
hard, there might be cases where the constraint handling system is unable to produce any new

feasible points. When this happens, the algorithm ends up in a “dead-end” and all attempts to

modify a solution without returning to a previous one results in an infeasible step. It is not clear

what to do in such situations—possibilities include backtracking, repeating the operator with

a higher degree of allowed changes, or restarting the search from a completely different point

[162, 352, 397, 398].
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Despite higher complexity, this technique has its advantages. Most important benefits in-

clude the guarantee to the users that any solution produced by the algorithm is always feasible,

whenever the input problem allows it. Additionally, restricting the search only to a feasible

parts of the solution space can speed up the metaheuristics. The potential speedup is due to the

smaller space to cover as well as the fact that the metaheuristic does not have to invest additional

effort to bring the points to feasible regions [388, 391, 395, 396].

Using repair procedures

Repair procedures, sometimes also called filtering procedures attempt to repair an infeasible so-

lution and bring it to the feasible region. Typically they perform modifications based on problem

specifics. For example, in [399], a repair operator is defined for the knapsack problem. The al-

gorithm tries to repair infeasible problem instances by removing elements from the overloaded

knapsack until the capacity constraint is met. While in this simple example a repair is always

possible, doing similar repairs with solutions of highly constrained problems is more difficult

and might not always be possible in a reasonable computing time. Discussion and some results

related to the use of repair methods has been reported in [383, 387, 388, 390, 391, 400, 401,

402, 403].

Allowing infeasibility

When infeasible solutions are allowed, finding good solutions is achieved by introducing mod-

ifications into the objective function. Modified objective functions like that include a penalty

component, so that each constraint violation is discouraged by a low-quality value. Not re-

specting constraints typically has higher penalty than having a bad objective function value,

and multilevel lexicographic ordering objective functions are a good fit for modelling such

problems [87, 385, 386, 404, 405, 406, 407, 408].

When infeasible solutions are allowed, the metaheuristic will need to discover how to find

feasible regions by itself. This can require considerable computing resources and the algorithm

might spend a lot of time being stuck in infeasible regions when problem being solved is highly

constrained. Further, in cases of difficult problems, the users might occasionally be presented

with an infeasible solution, which is not a good option for the users since such results are

essentially useless in practical applications [386, 387, 409].

Advantages of this technique is the simplicity and low cost of development. Everything

that is needed is to appropriately encode the constraints into the objective function. Simply

specifying and coding those conditions in a programming language is typically much simpler

than developing operators that guarantee that feasibility is always conserved [386, 396].
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Explicit constraint handling in metaheuristics

Most metaheuristics are deferring the constraint handling to the developer, since the above-

defined techniques are standard ways to implement them. Nevertheless, some metaheuristic

frameworks handle the constraints in explicit ways. Most notably, the literature about the

GRASP metaheuristic implies that the infeasible solutions are filtered during construction and

further specifies a repair step after the solution construction in case the construction algorithm

did not produce a feasible solution [135]. In a similar fashion, the simplest variants of the

ant colony metaheuristic assumes that the construction procedure will avoid infeasible solution

components [124, 351]. These are, of course, guidelines, not critical components of neither of

those algorithms. In practical applications, constraints can be implemented differently, since a

lot of problem-specific details always must be added to each metaheuristic. Both GRASP and

ant colony optimisation are compatible with all three ways to add constraints [124, 135, 351].

For example, in [410], a hybrid GRASP metaheuristic is used where constraint violations are

allowed in the solution construction algorithm. In fact, there is a large volume of research de-

voted to hybrid metaheuristics that do not follow any metaheuristic in its pure form and achieve

good results [397, 411]. Instead, hybrid algorithms combine operators and general principles

from several techniques.

3.4 Intensification and diversification framework

In the previous paragraphs, it was described that metaheuristics use a variety of different types

of operators. In the detailed descriptions of each metaheuristic in the rest of this Chapter, it will

be further described how the basic ideas that inspired some of the popular metaheuristics come

from various areas. Some metaheuristics are devised following logical ideas such as “do not

return to already visited places in order to discover new better points”. Some metaheuristics

simulate natural phenomena, including ants, metallurgical processes, evolution.

Despite differences, from the above discussion, it is also clear that they have important sim-

ilarities. They are all algorithm development frameworks, with the goal to find the best possible

solutions in as short time as possible. They can all share similar constraint handling techniques

and search history. In their essence, they all perform strategic probing of the solution space in

order to approach the optimum. This Section will present probably the biggest generalisation

in the area of metaheuristics, the intensification and diversification framework [162].

Basic ideas and definitions

Intensification and diversification are two principles included in every metaheuristic, and each

metaheuristic is unique in the way it achieves both. Each metaheuristic should be able to fo-

58



Metaheuristic methods

cus on the good areas of the search space and in them, systematically and intensely scan the

proximity of top quality solutions. However, when no improvement is achieved in these regions

for a while, it should continue and explore other areas with solutions that are significantly dif-

ferent from those explored before [162, 412, 413]. The first idea of detailed search in regions

with good solutions is called intensification, while the second one, moving to previously unex-

plored areas is called diversification. These concepts were first mentioned in the investigation of

the tabu search metaheuristic [412]. Common names for the related principles in evolutionary

computation are exploitation and exploration [162, 414].

Intensification and diversification are effects of metaheuristic components. In the spectrum

between pure intensification and pure diversification, there are numerous intermediate possibil-

ities. In their well-known overview, Blum and Roli [162] introduce the following defining cri-

teria for diversification: moves that are not guided by the objective function and moves guided

by random decisions. Conversely, they define intensification as moves guided exclusively by

the objective function.

Intensification and diversification spectrum

Most operators can be placed close to the pure categories, however even the operators tradi-

tionally viewed as diversification operators, usually have some elements of intensification and

vice-versa. For example, a perturbation operator in the iterated local search metaheuristic is

viewed as a diversifying operator. It is indeed an operator whose outcome is almost entirely

diversification. Still, it is not pure diversification. Firstly, the design guidelines specify that

changes need to be limited to sufficiently close points. Further, it can also be argued that even

the very structure of the neighbourhoods with well-tuned operators always has a certain bias

towards fostering good moves with the given objective function. Therefore even the random

perturbation moves cannot be considered pure diversification, and have a slight intensification

component, unless the neighbourhood is also randomly selected and has an unlimited distance

[162].

Balance between intensification and diversification

The described ideas are tightly related to the definitions of “locality” and “distance”, which are

always problem specific and difficult to formally define. Likewise, it is always difficult to say

how long should a search focus on the good region before moving on to more distant ones.

Finding the answer to this question, and more broadly, finding the right and efficient balance

between intensification and diversification is a crucial issue in metaheuristics [415], and the

design goal for any successful implementation of a metaheuristic technique [413, 416, 417].

If the intensification is insufficient, then the metaheuristic will not spend enough time in

careful examinations of the neighbourhoods of known good solutions. This way it will not be
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able to catch the best solutions that lie in the neighbourhood and move on to the next region too

soon. Conversely, staying in the neighbourhood of a good solution can waste a lot of time if a

highly detailed search of the neighbourhood is not producing improvements or the improvement

is small. By focusing too much on the known regions with mediocre solutions, the algorithm

will not have sufficient time to reach the areas with best solutions.

Finding this delicate balance between intensification and diversification is the ultimate goal

in any project that uses metaheuristic techniques. Further, the process of implementing meta-

heuristics to achieve this desired goal in large deal still resembles more an art, guided by the

developers’ intuition rather than a rigorous engineering process based in science and formal

processes. While a quick initial implementation of metaheuristics generally works, to achieve

state-of-the-art performance, detailed experimentation with different algorithm components and

their parameters is necessary. Despite progress in the tuning algorithms, this process typically

requires a large number of computationally demanding experiments [8, 413, 416].

3.5 Proto-metaheuristics

There exist solving techniques that satisfy some of these conditions that have been in use even

before the term “metaheuristic” was proposed, however they are not metaheuristics in the mod-

ern sense. These techniques, such as greedy search, hill-climbing, and similar [69, 98] are

developed out of some general rules of thumb, and are too simple to be called metaheuristics.

Still, all of them satisfy almost all the requirements of a metaheuristic, most importantly, their

functional requirements (1) and (2) from Section 3.2, and complete metaheuristics can be de-

veloped by only adding a single simple operator to them. These techniques, especially the local

search are used as components of almost all metaheuristics. Therefore, four such techniques,

for which the term “proto-metaheuristic” is proposed in this thesis are described in this Section.

3.5.1 Pure random search

From the general definition of an optimisation problem, stated in Section 2.3, it is clear that a so-

lution of any optimisation problems in the most broad sense is a problem of deciding on the val-

ues of variables for which the value of the objective function will be as low as possible. These

variables are from some problem-specific domain and are also subject to constraints. Given this

definition, and a random value generator, it is trivial to implement the simplest problem-solving

algorithm: pure random search, sometimes also called Monte Carlo method, crude random

search [418] etc. Random search consists of assigning each variable a random value from that

variable’s domain, usually following a uniform distribution. This process is equivalent to select-

ing a random point in the solution space. Pure random search repeats this procedure of random
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sampling while keeping the best solution so far. The technique’s earliest mentions can be traced

back to Anderson, Brooks and Karnopp [93, 94, 231, 419, 420, 421].

This technique surprisingly, satisfies all of the above requirements except (3) and (5) from

Section 3.2. It can even be proven that the technique converges to optimality in probability

[368]. This does not claim anything related to the time requirements to find an optimum which

might be immense. Still, this result is remarkable, and shows that simply maintaining the best

solution so far can be the differentiator between converging in probability or not. In [374], it

is shown that not even the highly sophisticated way of creating solutions used by a canonical

genetic algorithm is enough to ensure that the final population will contain a globally optimal

solution, in fact, it was proven that it never will converge in probability. However, when a

standard practice of maintaining a copy of the best solution so far is used, the GA converges in

probability.

If the search space consists of large regions of good solutions, then indeed the probability

that a random selection of variables will also provide good result is not negligible. For such

problem instances, this technique might indeed work in practice. Naturally, this is not the

case for any realistic problem studied in this thesis. In fact, the opposite is true since difficult

combinatorial optimisation problems can have multiple isolated local optima. When solving

constrained problems, in large parts of the solution space not even the constraints are satisfied.

Pure random search is not a good choice to solve such problems [231, 368].

Despite the fact that is not an effective search algorithm, developing a pure random search

can be a simple and useful first step in any optimisation project. Creating and analysing random

solutions gives useful insights on the problem features. Moreover, random search is commonly

used in more complex metaheuristics, to select initial points or populations [127, 150, 230, 422,

423].

3.5.2 Greedy algorithm

A greedy algorithm is an algorithm that chooses a locally optimal decision in each step. Similar

to the random search, it is a solution construction procedure that produces a completely new

solution in each iteration. It is a refinement of the random search process, that does not set the

variables to completely random values—instead it assumes that choosing what currently seems

the best might be close to the optimal solution to the problem while gradually assembling a

complete solution, step by step. They do not find the global optimum for all problems, however,

for some, it can be proven that they indeed always lead to a global optimum [69, 153, 424].

Notable example is the famous Dijkstra’s algorithm for finding the shortest path between two

nodes in a weighted graph [68, 69]. Greedy principle satisfies all the properties of metaheuristics

stated above, except (4), (5) and (6).

Greedy algorithms are solution construction procedures that iteratively set values of the
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variables in the optimisation problem instance. They assume that it is possible to approximate

the contribution that setting a variable in an incomplete solution will have to the overall objective

function, and that it is possible to filter out values that will lead to infeasible solutions. Let us

define the function ϕ , as an objective function that evaluates such incompletely constructed

solutions, where part of the variables is still not set. More precisely, let ϕ(x,xi,v) to be the

incremental cost function, in this work also called partial objective function. This function

calculates the approximate change in the objective function of the incomplete solution x, when

the previously unset variable xi ∈ x is set to the value v. Further, let us use f easible(x,xi) to

denote a procedure that will provide all possible values of the variable xi in the incompletely

initialised solution x for which the constraints are not violated. In the most general sense,

the algorithm would set each variable sequentially, and estimate the overall contribution to the

objective function of each possible value, as outlined in the pseudocode in Algorithm 1. Using

this approach, each variable would be set to the value that brings the least estimated increase in

the objective function value.

Note that to be compatible with the greedy algorithm, the f easible(x,xi) function must

return a finite number of elements. This requirement implies that greedy algorithms are not

applicable directly for continuous problems. To allow applications to continuous problems,

some type of discretisation or a suitable sampling strategy would be required. An example of

such technique is developed as a part of the continuous GRASP metaheuristic [424, 425], where

a line search across each variable is performed in the construction process.

Algorithm 1 Greedy algorithm pseudocode
procedure GREEDY()

x = (x1,x2, . . . ,xn), for all i ∈ [1,n], xi = null . Uninitialised solution
for all i ∈ [1,n] do

v*i = null . Uninitialised localy optimal value of the variable xi
p*i = ∞ . Best partial evaluation
for all vi j ∈ f easible(x,xi) do

pvi j = ϕ(x,xi,vi j)
if pvi j < p*i then

p*i = pvi j

v*i = vi j
end if

end for
xi = v*i

end for
return x

end procedure

As a simple example, when solving the knapsack problem, defined in Section 2.7, we could

always select the item with the highest profit-to-weight ratio that does not exceed the current

capacity [249]. In a slightly more complex example, we could develop a greedy algorithm
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for the travelling salesman problem (TSP) (Section 2.7). A true random solution would mean

that starting from the initial city, the salesman proceeds to a random city. Results constructed

with this procedure would almost always break the constraints: there is no guarantee that a

random solution would be a cycle and that it would not return to the initial city too early or have

repeated visits to the same city. A slight refinement by adding the constraints to the algorithm

would ensure that random solutions are at least feasible, and that starting from the initial city, a

random city is selected without repeated visits and closing the cycle too soon. This algorithm

would not be a random search in the strict sense, and the solution quality would still be low.

A further refinement by choosing the closest instead of random city at each step [424] would

transform the algorithm into a greedy algorithm for the travelling salesman problem:

• In the initial city, choose the closest city.

• In each of next cities, choose closest city that has not yet been visited.

• When all cities have been visited, return to the initial city.

Similarly to the random search, greedy algorithm can be used as a component of other

metaheuristics. It is a popular choice for solution initialisation method [127, 351]. However

it should be noted that for e.g. the asymmetrical travelling salesman problem, it is possible

to create problem instances for which the greedy strategy is a poor choice, even worse than

random search [426]. Therefore, some initial testing on a representative set of problems is

always advisable, when formal or empirical performance results are not available (e.g. for new

and highly specific problems).

3.5.3 Regret avoidance

The principle of regret avoidance is the idea of constructing the solution in a way that will

minimise the regret in each step of the solution construction. Regret is viewed as the possible

loss from not choosing a solution element. Similar to greedy algorithms, this method can be

used to initialise solutions that will be further improved using other techniques, and it assumes

the existence of the Φ function that can evaluate incomplete solutions. Given such a function,

regret can be formally defined as the difference in the contribution of the best and the second-

best outcome.

The principle was first considered by Leonard Savage in 1951 [96, 99, 427], and examples

in the literature include the Vogel’s approximation method for the transportation problem, and

vehicle routing [428]. It has all the characteristics that are shared by metaheuristics from our

list, except (4), (5) and (6). While it is a rather general framework to work with optimisation

problems, there is still more complexity when applying regret avoidance than greedy algorithm

or random search. Therefore, with regard to (1), it can be argued that this approach is slightly

less general.

Let us consider a vehicle routing problem (VRP) instance. A regret avoidance heuristic is
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building a solution by going through a list of customers and assigning a vehicle for the current

customer. For each unassigned customer ci, let us assume that the algorithm first calculates

the best insertion place in the current routes of all vehicles vi. For some customers, the cost of

assigning the customer to vehicle vi might be approximately equal, regardless of the selected

vehicle. For other customers, there might be considerable variation. A regret for each customer

r(ci)is defined as the difference between the second-best (v*2) and the best (v*1) vehicle choice:

r(ci) = estimateContribution(v*2)− estimateContribution(v*1). (3.1)

A large regret means that there is a significant difference between the best vehicle and others

and that there is not much good alternatives for the insertion of the current customer. Low

regret means that it is possible to assign the customer into multiple different vehicles without

great decrease in quality. The regret avoidance heuristic assigns the customer with the highest

regret to the best vehicle. Indeed, it can be argued that it is reasonable to assign this customer

first since there are very limited options for assigning it, while for other customers there is still

more opportunities to find equally good vehicles [427, 428].

3.5.4 Local search

Local search is based on the idea that a sequence of small changes to the solution can produce

a considerable improvement. In the basic form, it can be summarised as the principle of “keep

doing small improvements, as long as you’re improving the solution”. Unlike previously de-

scribed proto-metaheuristics, local search is not a constructive approach. Instead, it assumes

that it starts with a fully specified initial point, where all variables are assigned to values from

the appropriate domain. From there, local search modifies the components of the solution in an

attempt to improve it. It cannot construct new solutions starting from nothing (an uninitialised

or unspecified solution) [69, 98, 100].

In the list of the characteristics of metaheuristics, local search satisfies all conditions except

(4) and (5). Local search is based on definitions of the problem (objective function and con-

straints), as defined in Section 2.3, and a definition of a neighbourhood on the problem solution

space (Section 2.3.1). Each local search procedure can only guarantee that the result will be at

best a local optimum [69, 87, 98, 100]. As described in Section 2.3.1, there is no guarantee that

a local optimum is also globally optimal. In difficult combinatorial problems, unless the choice

of the initial point was incredibly lucky, results of local search will not be globally optimal

[69, 87, 100].

In the general optimisation problem, given an initial point x, the local search performs the

search of the neighbourhood 𝒩 (x) around the initial point, using some search strategy. The

search strategy could be “try incrementing each variable xi ∈ x to the next feasible value”.
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The pseudocode, provided in Algorithm 2 consists of a loop, where the search procedure that

looks for improvements in the neighbourhood is denoted searchNeighbourhood, and f (x) is

used for the objective function. If an improvement has been found, the procedure repeats in the

new neighbourhood, around the previously found improved point. It stops when the attempt to

improve a solution by searching the neighbourhood no longer improves the result [69, 98, 100,

429].

Algorithm 2 Local search pseudocode
procedure LOCAL SEARCH(x) . x is the initial solution

xbest = x . xbest is the best solution found so far
repeat

x* = searchNeighbourhood(𝒩 (x))
if f (x*)< f (xbest) then

xbest = x*

end if
until xbest did not improve

return xbest
end procedure

The definition of the neighbourhood and the choice of the search strategy inside the neigh-

bourhood specify the local search operator. The searchNeighbourhood procedure can use the

first improvement strategy, where the search of the neighbourhood 𝒩 (x) stops as soon as the

first improvement is found. Another version of the search strategy could be the best improve-

ment strategy, in which the entire neighbourhood is enumerated and evaluated by the objective

function, and the best point in the neighbourhood is returned. Local search should be tuned

to achieve a good balance of speed and thoroughness. Narrow neighbourhoods and the first

improvement strategy will work quickly, however, they might ignore large parts of the neigh-

bourhoods, including potentially great solutions. Conversely, a decision to increase the size of

the local search will find better results, however it might take much more time [69, 98, 100].

For the travelling salesman problem, there are numerous local search techniques that have

been developed, and the earliest is the 2-opt, published in 1950s by Croes [102]. This algorithm

defines the neighbourhood around a current solution to the TSP as a set of all solutions that can

be reached by swapping two connections in a route, e.g. modifying the sequence A−C−B−D

to A−B−C−D. Generalisations of this technique exist: the 3-opt algorithm that first deletes

and then reassigns three components of the current route, and the Lin-Kerningham heuristic,

which does this for an arbitrary number of exchanges [430, 431].

Local search is widely used as the operator in other metaheuristics. It allows achieving

the characteristic (3) in an easy way. Even if the local search is not specified in the basic

version of some metaheuristic, experimenting with adding it is always useful as it can improve

the performance [127, 150, 351]. Such is the example of the genetic algorithm, that in the
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canonical version does not have a local search operator, and it’s extension, memetic algorithm
1 [373, 432].

3.6 Established metaheuristic methods

Unlike the simpler techniques that are described in the previous Section, metaheuristics are

complete frameworks that are characterised by having both the ability to identify local optima

(3), as well as to escape local optima if the search is stuck (4) [150, 234]. Some reasonable

combination of characteristics (3) and (4) produces (5). Indeed, it can be observed that all of

the discussed proto-metaheuristics lack (5) and either (3) or (4).

This conclusion can be utilised to quickly assemble simple metaheuristics from individual

algorithmic components. For example, a developer might try using random search to initialise

initial points, combine it with local search to improve the initial point, and repeat. While very

simple, this procedure is in fact a complete metaheuristic satisfying all the required properties,

and it is called random restart local search. More sophisticated ways exist to achieve condition

(5) and balance local optima avoidance with keeping the local search deep enough to capture

the good solutions.

Several different ways to achieve this were developed. A great number of different methods

were proposed, especially during the “metaphor controversy” period. In this thesis, only the

established methods will be analysed further. While deciding what is “established” always must

be somewhat subjective, two criteria were used: (i) their historical significance and introduction

of new ideas, (ii) the diversity criterion, to cover wide range of different frameworks [96].

3.6.1 Random restart local search

The random restart local search is one of the simplest metaheuristics. It is based on the idea

of combining random search and local search, as mentioned above. Random point selection is

used to provide an initial point in the solution space and the local search procedure then tries

to improve that initial point. The described steps are repeated until the termination criteria (e.g.

number of iterations or a timeout) is met [8, 127, 343]. The pseudocode of the metaheuristic

is provided in Algorithm 3. Unlike any of the aforementioned proto-metaheuristics, it satisfies

the criterion (3) as well as criterion (4). The criterion (3) is satisfied by using the local search

which finds local optima, and the criterion (4) is achieved by starting from a new initial point at

each iteration. In realistic combinatorial problems, the solution space is typically so large that

the probability of ending up stuck in a local optimum is negligible [127].

1In this text, the original names for genetic algorithm and memetic algorithm are kept. It should be noted,
however that in modern language, both are better described as metaheuristic frameworks than algorithms.

66



Metaheuristic methods

Algorithm 3 Random restart local search
procedure RANDOM RESTART LOCAL SEARCH( )

x = selectRandomPoint() . x is the initial solution
xbest = x . xbest is the best solution found so far
repeat

x* = localSearch(x)
if f (x*)< f (xbest) then

xbest = x*
end if
x = selectRandomPoint()

until end condition is met return xbest
end procedure

Assuming that the quality of an average local optimum is sufficient for practical use, even

this simple algorithm can be good enough. Unfortunately, case studies in properties of local

optima well as the author’s practitioner experience indicate that in large-scale combinatorial

optimisation problems, local search around random points produces globally suboptimal results,

unless the selection of the random points was incredibly lucky [433]. In the travelling salesman

problem case study [434]and for graph partitioning problem [435], it is shown that the results of

local search algorithms have a mean quality y* that is a fixed percentage worse than the optimal

point, and that the distribution of the local optima quality becomes peaked around that mean as

the problem size increases. This indicates that the probability that random restart local search

will find solutions better than the average local optimum y* decreases as the problem becomes

bigger. In practice, the search space of local optima is large, and there is typically too much

mediocre local optima to rely on random restart to find the best ones [127].

While it can be argued that the algorithm has a way to control exploration versus local

improvement, called criterion (5) in this work, it is rudimentary. The intensity of the local

search can be configured by selecting the breadth of the search procedures. The local search,

however, starts in a new, completely random point at each iteration without any option to control

how far from the known points will the algorithm be going. The aforementioned discussion

indicates that simply restarting the local search in random points is not flexible enough to ensure

high-quality results in typical large-scale combinatorial optimisation problems [127]. During

decades, several more complex metaheuristics have been devised that attempt to provide a better

balance between staying around local optima and venturing into unknown regions of the search

space. As will be shown in the following paragraphs, it is precisely the mechanism that provides

this balance that is the key identifying characteristic of all metaheuristics [150, 343].
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3.6.2 GRASP

The greedy randomised adaptive search procedure, usually referred to in short as GRASP [135]

can be seen as a refinement of the random restart local search metaheuristic. It was proposed by

Feo and Resende in 1989 [133] who applied it for solving the set covering problem. Similarly to

the random restart local search, the algorithm consists of a construction and improvement phase.

Using GRASP, however, each initial point is not completely random. Instead, it is constructed

using an appropriate randomized greedy algorithm. Provided that the greedy algorithm works

well on the problem and produces better solutions than random search space sampling, the

local search is applied on solutions that are already showing promise. Based on this idea, it is

conjectured that the algorithm can perform better than simply starting from a random solution

each time [133, 135, 343].

Algorithm 4 GRASP pseudocode
procedure GRASP( )

x = greedyRandomisedConstruction() . x is the initial solution
xbest = x . xbest is the best solution found so far
repeat

x* = localSearch(x)
if x* is not feasible then

repair(x*)
end if
if f (x*)< f (xbest) then

xbest = x*
end if
x = greedyRandomisedConstruction()

until end condition is met
return xbest

end procedure

From the metaheuristic pseudocode in 4, it is apparent that the algorithm is highly similar

to the random restart local search, with two differences:

• inputs to the local search operator are constructed using the greedy randomised solution

construction procedure, and

• for constrained problems, initial points are checked for feasibility, and in cases when the

initial solution is not feasible, problem-specific repairs that attempt to bring them back

into the feasible region are performed. Examples of such repair procedures can be found

in [403, 436, 437] .

The greedy randomised solution construction is a randomised variant of the greedy algorithm

described in Section 3.5.2. This algorithm first constructs a restricted candidate list RCL of

best options. The RCL can contain the best p options (cardinality based limit) or the options

with the quality above some threshold (value-based limit). Then, a random component from the
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RCL is selected. By repeating this process component by component, the algorithm constructs

a complete candidate solution [135].

Using the value-based limit with a threshold that is relative to the currently available best

and worst option, it is possible to control the algorithm in a very intuitive way. This value

threshold denoted α is always in the interval [0,1] and specifies that the RCL will contain all

elements whose quality is in the interval [cmin,cmin +α(cmax − cmin)], where cmin and cmax are

the partial evaluations of the components with the best and worst quality. Specifying α = 0.2

means that in each step, the algorithm chooses from a subset of components whose quality is

in the best 20%. Setting α to zero converts the algorithm into a pure greedy algorithm which

always selects the best option. Setting it to 1 turns it into random selection [135].

Compared to the random restart local search, GRASP provides users a richer set of con-

figuration options—in GRASP both the solution construction and local search behaviour can

be controlled. The RCL size parametrization gives a way to choose the tendency to restrict the

search around good solution components or allow the algorithm to venture into less promising

directions. Balancing this with the local search intensity allows finding a good balance between

focusing around good solutions and exploring wider areas of the search space [133, 135].

3.6.3 Iterated local search

Iterated local search, abbreviated ILS is another example of a very simple metaheuristic based

on the idea of repeated use of the local search. It was first published by Baxter in 1981, who

used it for solving the optimal depot location problem [128]. This idea was independently

discovered by several other authors who used it under different names, such as iterated descent

[438, 439], large-step Markov chains [440], iterated Lin-Kernighan [441], and chained local

optimisation [442].

The pseudocode is given in the Algorithm 5. Along with local search, ILS uses a per-

turbation operator, to find suitable initial points for the next iterations of local search. The

perturbation operator introduces changes to the previous point, usually by performing random

modifications in the solution elements. Ideally, the perturbation operator would always modify

the current point into a good initial point for the next local search iteration. The change should

be sufficiently big to prevent the local search from returning to the previous point again the

algorithm will be stuck in a local optimum for too long. However, the perturbation intensity

also should not be too large to degrade the movements to random restart local search [127].

Iterated local search is a single-state method, since during the entire run of the metaheuristic,

it is considering only one solution as a base for perturbation and next iterations of the local

search. The decision whether the new local optimum x ′* is accepted as the current solution

for the next iteration is done in the accept procedure. As seen in Algorithm 5, the decision

where to move can be done based on the current and previous local optimum, and the history of
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Algorithm 5 Iterated local search pseudocode
procedure ITERATED LOCAL SEARCH ( )

xinitial = initialSolution() . x is the initial solution
x* = localSearch(xinitial) . x* is the current solution
xbest = x* . xbest is the best solution found so far
repeat

x′ = perturb(x*)
x ′* = localSearch(x′)
if f (x ′*)< f (xbest) then

xbest = x ′*

end if
x* = accept(x*,x ′*,history)

until end condition is met
return xbest

end procedure

previously visited points.

A simple acceptance criterion, called better accepts the newly found local optimum only

if it outperforms the previous best-found solution. This way, a very strong intensification is

supported as the algorithm will never consider areas around points that do not bring performance

improvement, even in cases when the current point is only slightly worse than the best so far.

Conversely, the random walk acceptance criterion always selects the last local optimum as the

current solution, regardless of its quality. This encourages much more exploratory behaviour as

even the points that are much worse than the previous one always get accepted. Between those

two criteria, there are numerous possibilities for various middle-ground selection criteria, e.g.

mimicking the gradual shift from diversification to intensification as in the simulated annealing

metaheuristic [127].

While the pseudocode for the procedure accept in the Algorithm 5 allows using history,

the metaheuristic is frequently able to achieve great results without using history. The two

mentioned acceptance criteria, “better” and “random walk” do not use history beyond the infor-

mation about the current and the previous point. In practice, even these simple acceptance rules

are frequently achieving very good results and given their simplicity, they are a very popular

choice. Nevertheless, there are indications that using information about previous runs improves

performance [375]. A simple use of history can be implemented as a restart in cases when no

improvement is found after a while. There are numerous other ways to use information about

previous points, and in cases when state-of-the-art performance is needed, researching sophisti-

cated ways to use history can allow making better decisions and improve the quality of solutions

[127].

Iterated local search is similar to both GRASP and random restart local search, in terms

of iterating the runs of the local search multiple times until the end condition is met. The
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most important difference is the way these metaheuristics evade being stuck in local optima—

GRASP and random restart local search create a completely new solution in each iteration

while ILS instead performs modifications of the current solution using the perturbation operator.

These modifications move the current point relatively close to the current local optimum. Such

behaviour illustrates the assumption that good solutions tend to be grouped nearby in the search

space. As opposed to the random restart local search, ILS tries to utilise this assumption by

keeping reasonably close to known points, while still avoiding being stuck in the same local

optimum [127]. The metaheuristic is also similar to other single-point techniques, such as tabu

search, where a random shakeup was described in the early literature as an operator analogous

to perturbation in the iterated local search [129].

3.6.4 Variable neighbourhood search

Variable neighbourhood search, abbreviated VNS is another single-state metaheuristic based

on iterating the local search procedure. While in the previously described metaheuristics it is

generally assumed that the local search has a predetermined and fixed neighbourhood definition,

VNS has a distinct feature of using multiple different local search operators, and a strategic

way to select the appropriate local search operator. The variable neighbourhood search was first

proposed in 1997 by Hansen and Mladenović [136].

The overall technique is very similar to ILS, as outlined in the pseudocode in Algorithm 6,

where local search is iteratively used in such a way that the initial point for a local search is

a slightly modified previous local optimum. The difference is that VNS performs local search

and perturbation in more than one neighbourhood. During the metaheuristic run, the neighbour-

hoods for LS and perturbation are subject to systematic change with the intention of balancing

intensification and diversification. The rationale for implementing multiple different neigh-

bourhoods is that a local minimum in one neighbourhood might not be a local minimum in

another. Further, a global optimum is optimal in all possible neighbourhoods. Therefore, using

more than one neighbourhood definition adds an extra level of robustness and promotes discov-

ery of solutions that might not be accessible by moving only in one type of a neighbourhood

[136, 137].

How to define the neighbourhoods for use with VNS? The commonly used and simple way

of creating different operators is having a single proximity definition and neighbourhoods of

different sizes, e.g. including up to p closest points to evaluate. This approach was applied

for solving the travelling salesman problem in the original article by Mladenović and Hansen

[136], where each neighbourhood 𝒩p(x,v) is defined as the set of solutions that can be created

by modifying arcs that connect p closest cities to the city v in the current solution x. Increasing

p also allows larger change in the solution x. By using various values of the parameter p, it is

possible to create a set of different neighbourhoods.
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Algorithm 6 Variable neighbourhood search pseudocode
procedure VARIABLE NEIGHBOURHOOD SEARCH( )

xinitial = initialSolution() . xinitial is the initial solution
xbest = localSearch(xinitial,𝒩1) . xbest is the best solution found so far
k = 1 . current neighbourhood index, k ∈ [1,kmax]
repeat

x′ = shake(xbest ,𝒩k)
x ′* = localSearch(x′,𝒩k)
if f (x ′*)< f (xbest) then

xbest = x ′*

k = 1 . Reset to the first neighbourhood
else if k < kmax then

k = k + 1 . Move to next neighbourhood, unless already in the last
end if

until end condition is met
return xbest

end procedure

Using the strategy of switching neighbourhoods as defined in Algorithm 6 is especially

suited for neighbourhoods sorted ascendingly by their size. When this condition is satisfied, the

algorithm tries to improve by using the smallest neighbourhood, and the fastest local search.

If that fails to improve the current solution, the search area is expanded, therefore achieving

diversification. By resetting to the most narrow local search as soon as improvement is detected,

the algorithm switches to intensification again.

Along with simply defining a single local search across different neighbourhoods, in more

sophisticated implementations, using more than one distance definition is encouraged. If each

neighbourhood is populated according to a different distance definition, more diversity across

different neighbourhoods is promoted. This way, even if two different neighbourhoods have

similar size, they can contain completely different solutions [136], and the search can move in a

completely different way, depending on the currently selected neighbourhood. A good example

of different definitions of a neighbourhood can be found in [443], where de Paula et. al. propose

three neighbourhood definitions for the parallel machines scheduling problem. Elements of each

neighbourhood are created by a different type of modifications to the current solution, and each

neighbourhood definition implies a different structure of its elements. Proposed neighbourhood

definitions include all solutions that can be created by (i) swapping the jobs on one machine,

(ii) swapping jobs on different machines, and (iii) moving jobs from machine with the highest

load to the machine with the lowest load. Each neighbourhood in general has a different size,

depending on the number of machines and the current job assignment. More importantly, each

neighbourhood of the first type contains a different set of solutions than the other two, since

swaps across one machine can never result in solutions for which swapping across different

machines is needed.
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Similarly to the definition of the local search that is highly dependent on the currently used

neighbourhood, the shake(x,𝒩k) procedure introduces random moves from the current solution

x, and returns a random element from the current neighbourhood 𝒩k. While the author uses the

name shake, the behaviour and motivation for having this procedure is very similar to the per-

turbation operator in the ILS. This method diversifies the search and helps escape local optima,

nevertheless, it is different from the perturbation in ILS since it assumes that the neighbourhood

to use will always provided as an input. The basic version of the VNS always uses the best ac-

ceptance criterion, in which the current local search is accepted as the incumbent solution only

if it outperforms the best solution found so far. Therefore, in the pseudocode, xbest represents

both the best solution for and the incumbent solution for the current algorithm iteration [137].

3.6.5 Tabu search

The tabu search, abbreviated as TS uses the idea of using search history, to help avoid pre-

viously visited local optima. It keeps a tabu list of previously visited solutions, and explicitly

prohibits re-visiting all the solutions in the tabu list. All moves that would cause the metaheuris-

tic to return to solutions in the tabu list are called tabu moves . The length of the tabu list is a

parameter. This optimisation technique was first proposed in 1986 by Fred Glover [129].

The pseudocode of TS is provided in Algorithm 7. At the algorithm start, the initial solution

is constructed, the tabu list is created and the initial solution is added to the tabu list. While it

is traditionally called tabu list, it is in fact implemented as a first-in-first-out queue. Each time

a new element is added to the tabu list, the number of current elements needs to be checked,

and if adding a new element would exceed the maximum size, the oldest added element must

be removed.

In the main loop, the algorithm runs an extended version of the local search, denoted

localSearch(x*, tabuList) in Algorithm 7. This extended local search method, as outlined in

Algorithm 8 chooses the best neighbourhood element that is not in the tabu list. Preventing

returns to recently visited solutions guarantees that the algorithm will not be stuck in a local

optimum. Further, it prevents the algorithm from cycling in the same sequence of local optima

for all potential cycles with up to l elements. In the TS metaheuristic, the result of this local

search procedure is then selected as the current solution, added to the tabu list and then the next

loop iteration starts. In terms of the acceptance criteria, the basic version of tabu search uses

acceptance criterion that corresponds to the random walk acceptance in the ILS [129, 369].

In practice, keeping copies of entire solutions in the tabu list, and performing comparisons of

the current candidate with each element of the tabu list can be impractical due to large memory

and processing time requirements. Therefore, implementations usually do not store copies of

previous solutions. Instead, they keep the history of the most recent transformations on the so-

lution, and prohibit undoing these transformations. Likewise, it is possible to develop strategies
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Algorithm 7 Tabu search pseudocode
procedure TABU SEARCH( )

x* = initialSolution() . x* is the initial and currently accepted solution
xbest = x* . xbest is the best solution found so far
tabuList = initialiseQueue(l) . Initialise the tabu list with maximum size l
tabuList.add(x) . Add the initial solution to the tabu list
repeat

x* = tabuLocalSearch(x*,xbest , tabuList)
tabuList.push(x*)
if f (x*)< f (xbest) then

xbest = x*
end if

until end condition is met
return xbest

end procedure

Algorithm 8 Tabu-extended local search pseudocode
procedure LOCAL SEARCH(x*, xbest , tabuList)

xlocalBest = tabuList[0] . Current local optimum
for all x ∈𝒩 (x*) do

if f (x)< f (xlocalBest) then
if [not tabuList.contains(x)] or [aspiration(x,xbest , tabuList)] then

xlocalBest = x
end if

end if
end for
return xlocalBest

end procedure

74



Metaheuristic methods

where entire classes of transformations are prohibited. An example of such strategy could be to

not allow any type of modification to last l variables that were modified. This way of “locking”

large sets of variables and similar types of adding wide ranges of moves to the tabu list can in

some cases become too restrictive. To ensure that the tabu does not prevent the metaheuristic

from exploring good areas, a technique called aspiration is used. A simple and commonly used

aspiration criterion is allowing moves that are in the tabu list if they have better quality than

the best solution found so far. More sophisticated techniques that allow tabu moves if they can-

not form a cycle have also been proposed [291, 444]. In Algorithm 8, the aspiration criterion is

implemented in the aspiration procedure, that can override the tabu in the acceptance condition.

The size of the tabu list is the most important parameter of the metaheuristic. Longer tabu

list means that it is less likely that the search will return to previously visited solutions and this

is a favourable condition since cycling is an undesirable state for search algorithms. Still, the

size of the tabu list should be balanced with the speed requirement, since too long lists can be

too slow and too restrictive [369].

The metaheuristic is similar to GRASP and ILS, however it does not use the perturbation

operator, nor construction by greedy algorithm to initialise inputs for the next iterations of the

local search. Instead it simply does the random walk and always accepts the current local

optimum. Further, the way it avoids local optima is different. Unlike ILS and GRASP, tabu

search can guarantee the algorithm will not be stuck in cycles of local optima. This is not

the case in basic versions of GRASP and ILS. Still, in good implementations, cycling will be

avoided by different mechanisms, and the developer has the option of specifically designing

these operators to ensure that cycling is avoided if needed [369].

3.6.6 Simulated annealing

The simulated annealing metaheuristic is inspired by the physical process of annealing, used

in metallurgy to reduce defects in materials. This heat treatment improves the ductility and

reduces the brittleness of the material [445]. The process consists of heating the material to

high temperatures, then slowly cooling it under controlled conditions in a heat bath. Heating

first diffuses the atoms in a random arrangement in the liquid phase. The slow cooling that

follows allows reaching an energy equilibrium at each temperature, and as the final product,

crystallisation in a perfect lattice which corresponds to the minimum energy state [121, 446].

This remarkable process, studied in the area of statistical physics has drawn the attention of

the researchers in the area of optimisation, due to evident analogies with combinatorial optimi-

sation. The idea to simulate the process of annealing was grounded in the fact that the process

that can find the minimum energy state for metal specimens with large numbers of atoms could

be employed to find minimum cost solutions to combinatorial optimisation problems with very

large number of possible solutions [121, 370, 446].
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The first papers describing the simulated annealing metaheuristic can be dated to work of

Kirkpatrick in 1983 [119] and Cerny in 1985 [447]. Simulated annealing, abbreviated as SA is a

single-state metaheuristic in which the algorithm creates a sequence of solutions, while keeping

the best-found solution. The distinct feature of SA is the possibility of accepting solutions that

degrade quality. Contrary to intuition, this allows metaheuristic to evade being stuck in local

optima for too long and helps find the global optimum. The pseudocode of simulated annealing

is given in the Algorithm 9 [121, 343, 370, 446].

Algorithm 9 Simulated annealing pseudocode
1: procedure SIMULATED ANNEALING ( )
2: x = initialSolution() . x is the initial and currently accepted solution
3: xbest = x* . xbest is the best solution found so far
4: T = t0 . Initialise the temperature parameter to the initial value
5: repeat
6: x′ = perturb(x)
7: if f (x′)< f (xbest)) then . Update the best so far
8: xbest = x′
9: end if

10: if f (x′)< f (x) then . Update the current solution
11: x = x′
12: else if random()< exp(− f (x′)− f (x)

T ) then
13: x = x′ . Allow acceptance of worse solutions
14: end if
15: T = updateTemperature(T )
16: until end condition is met
17: return xbest
18: end procedure

The metaheuristic sequentially creates solutions from the neighbourhood of the current so-

lution, using the perturbation operator as the one used in ILS. It is then decided whether to

accept this new solution or not. Algorithm lines 10-14 define the acceptance criterion used by

the basic version of the metaheuristic, where in each case when the new solution outperforms

previous, it is always accepted. If the new solution is not better than previous, it is still possible

that it will be accepted, and the probability that this will happen is equal to

P(accept worse solution) = exp
(
− f (x′)− f (x)

T

)
. (3.2)

The above stochastic acceptance is implemented using the random number generator, where in

the pseudocode, it is assumed that random() function returns a random number in the inter-

val from zero to one. The probability that a worse solution will be accepted depends on the

temperature and drops as the temperature decreases. The updateTemperature(T ) function is

slowly decreasing the temperature at the end of each iteration. Therefore, the probability that
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the worse solutions will be accepted is initially very high, which leads to the exploration phases

in the early stages of the algorithm, which accepts virtually all solutions and performs a random

walk in the search space. As time passes and the temperature drops, it becomes less likely that

the algorithm will move in the direction that does not improve the solution, leading to an inten-

sification phase. As the metaheuristic is close to finishing, the probability of accepting worse

solutions becomes approximately equal to zero. In this phase, the algorithm for the greatest part

accepts only improvements and degenerates into a variant of the local search. The algorithm

runs until the termination criterion is met. Note that the cooling schedule must be adapted to

the termination criteria, to ensure that cooling is slow enough [121, 343, 370, 446].

The most important parameters of the algorithm include the initial temperature and the cool-

ing schedule. Very commonly used cooling rule is the geometric temperature update, that cor-

responds to the exponential temperature decrease. Using this type of temperature update, the

temperature in the next iteration Tk+1 is calculated by multiplying with a parameter Tk+1 = aTk.

There are numerous other cooling schedules, including nonmonotonic updates of the temper-

ature, in which temperature sometimes can increase as well [162, 448, 449, 450, 451]. More

advanced implementation decisions include selecting the neighbourhood definition, and the ac-

ceptance probability function. While the exponential function provided in Equation 3.2 is most

commonly used, there are other examples in the literature [370, 452].

For the basic version of the metaheuristic, it has been formally proven that it converges if

infinite time is provided [370]. Compared to the previously described metaheuristics, there are

several distinct features of simulated annealing. Unlike most metaheuristics, it does not have an

explicitly defined separate local search method. Instead, it achieves intensification by accepting

only the improving moves as the temperature drops and the termination condition nears. It

uses the perturbation operator present in ILS and VNS to diversify search. When it comes to

acceptance criteria, initially it is equivalent to the random-walk acceptance criterion in ILS,

that gradually changes to best. As opposed to tabu search, SA is memoryless, and in the basic

version it does not use information about search history.

3.6.7 Ant colony optimisation

The ant colony optimisation metaheuristic is a popular technique inspired by natural processes.

It mimics the food searching behaviour that was observed in the Argentine ant (Iridomyrmex

humilis), during experiments by Simon Goss et. al. [453]. These experiments have shown

that the ants use an indirect form communication called stigmergy, to allow self-organisation

of large numbers of individual organisms [454]. Each ant has very limited sight and other

senses, however, collectively, they show highly sophisticated behaviour. A notable example is

their ability to find shortest paths from their nests to the location where food is placed. They use

pheromone trails to mark the path they used to reach the food source, as well as their return-trip.
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Due to the differences in path length, the first ants to return to nest will also be the ones who

found the shortest path. In their movements, ants prefer following the highest concentrations of

the pheromone trail deposited by previous ants, which will cause even higher concentrations on

that trail, as more ants follow it. This autocatalytic positive feedback behaviour was modelled

by biologists and served as an inspiration for the ant colony optimisation metaheuristic [453].

It was first proposed by Marco Dorigo in 1991 [123].

The basic version of the ant colony optimisation was developed for the travelling sales-

man problem, and traditionally, the descriptions of the metaheuristic rely on an example TSP

application. While this can be confusing for the newcomers that wish to apply it to a differ-

ent problem, in practice this is not limiting as almost any combinatorial optimisation problem

can be represented as a shortest path problem. In more precise terms, ACO can be applied to

any optimisation problem for which it is possible to develop an element-by-element solution

construction procedure [124, 351].

Using a problem independent notation, in the framework of ACO construction procedure,

each solution is observed as a set of solution components. During solution construction, the

algorithm must first select the first component, then keep adding the following solution com-

ponents compatible with previous ones, until a complete solution is produced. In terms of the

optimisation problem, similarly to the greedy algorithm in Section 3.5.2, a solution is a vector

of variables x = (x1, . . . ,xn), where n is the dimensionality of the problem. Each variable xi

must be set to some value v from the corresponding variable domain, or a feasible subset of

the domain if the given problem is constrained. Let us assume that there is k possible values

that can be assigned to xi, and that the algorithm needs to choose which of k possible elements

{vi1,vi2, . . . ,vik} to assign. Then, a solution component, denoted ci j as a decision to set the

value of xi to the value vi j. Indeed, solving each optimisation problem is a series of decisions

on which values to set to a certain variable. In terms of ACO, it is a series of choices of so-

lution components, as if assembling a physical object from individual parts [124, 351]. Note

that, similar to the discussion for the greedy algorithm, discrete variables are assumed in this

discussion, therefore, the basic version of ACO is limited to discrete problems. Still, extensions

for continuous problems have been proposed [455].

To each solution component ci j, in the framework of the ACO metaheuristic, a pheromone

value, denoted τi j is assigned. This value indicates the quality estimate of each component,

as a result of the collective work of large number of artificial ants, that update the pheromone

values in such a way that components of good solutions are assigned with higher pheromone

values. Along with the pheromone value, ACO can also use the apriori available information

about each component, e.g. distance from the current to the next city in the travelling salesman

problem. In the ACO metaheuristic, this information needs to be stored in the form of heuristic

function, denoted η(ci j). Pheromone information is gathered during the metaheuristic runtime,
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while heuristic information is based on the information available in advance that keeps constant

while algorithm is working [124, 351].

The pseudocode of the metaheuristic is given in Algorithm 10. Initially, the pheromone

values are assigned to the initial pheromone value τ0. In the basic variant of the metaheuris-

tic called ant system, τ0 is set to zero. The loop begins by runs of artifical ants, which are

probabilistic solution construction procedures similar to the random greedy algorithm used in

GRASP. In each iteration, m ants perform solution construction. Unlike the randomisation used

in GRASP, ACO uses a different approach, where the randomised biased solution selection is

based on the current pheromone concentrations and the heuristic function. In each step of the

solution construction the function f easible(x,xi) gives possible feasible choices for the variable

xi, given the incomplete solution x that is currently under construction. Put in the language of

ACO, the f easible(x,xi) function enumerates all feasible components at the current step. Given

k possible choices for the solution component, the probability that the component ci j will be se-

lected is given by the formula for probabilistic selection. Most commonly used is the random

proportional rule formula

P
(
ci j|x

)
=

τα
i j ·

[
η
(
ci j

)]β

∑cil∈ f easible(x,xi) τα
il · [η (cil)]

β
,∀ci j ∈ f easible(x,xi), (3.3)

where α and β are parameters. The above formula assigns selection probability proportionally

to the product τα
i j ·

[
η
(
ci j

)]β . The parameters α and β are used to control the relative impor-

tance of the pheromone as opposed to heuristic information. Setting α to zero means that only

the heuristic information will be used, and the construction will be reduced to a random greedy

algorithm. Conversely, using β = 0 will ignore heuristic information, this way leading ants

exclusively with information gathered by the walks of previous ants in the current metaheuristic

execution [351].

Algorithm 10 Ant colony optimisation pseudocode
1: procedure ANT COLONY OPTIMISATION ( )
2: τi j = τ0 for all i, j . τ0 is a parameter
3: xbest = null . Uninitialised xbest .
4: repeat
5: currentSolutions = constructAntSolutions(m)
6: localSearch(currentSolutions) . Optional step
7: updatePheromones(currentSolutions,τττ)
8: xbest = f indBest(currentSolutions,xbest)
9: until until end condition is met

10: return xbest
11: end procedure

Each constructed solution can be further improved using the local search operator. While
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this step is optional, in a wide range of problems, the best results are achieved when a local

search is used [124, 456, 457, 458, 459]. This indicates that in a typical project where combi-

natorial optimisation problems are solved using ACO, it is highly advisable to use local search

to help ants find good solutions.

In the next steps, each solution is evaluated, and the pheromone is updated (updatePheromone

procedure). It is done in two steps: pheromone evaporation and pheromone deposit. Pheromone

evaporation is usually performed by multiplying each τi j with (1−ρ), where ρ ∈ [0,1] is a pa-

rameter called evaporation rate. Evaporation is implemented with the intention of “forgetting”

very old solutions by decreasing the pheromone concentration for a fixed percentage in each

iteration.

Pheromone deposit is performed by increasing the pheromone concentration for selected

solution components. There are several variants of the ACO metaheuristic that differ in the

precise recipe on how to deposit pheromone. In general, the rule for the pheromone deposit

can be summarised as “add most pheromone to the components of the best solution”. The

simple ant system uses the following rule: given the objective function f (x), for each solution x
created by an ant in the current iteration, add 1/ f (x) to pheromone values τi j that correspond to

solution components of x. An extension called elitist ant system adds an extra step of updating

the best solution found so far. Another popular extension, ℳ𝒜𝒳 −ℳℐ𝒩 ant system, restricts

pheromone values to an interval [τmin,τmax], initialises the pheromone to the highest value at the

metaheuristic start (τ0 = τmax), and in every iteration, only the best ant updates the pheromone.

The overall ACO pheromone update equation can be written as

τi j = (1−ρ)τi j + ∑
x∈Su|ci j∈x

g(x), (3.4)

where the first summand calculates the pheromone evaporation, and the second one is pheromone

deposit. In the formula, Su denotes the algorithm variant set of solutions for which pheromone

deposit is performed, and g(x) is a function called evaluation function, commonly implemented

as inversely proportional to the objective function, g(x) = 1
f (x) [124, 343, 351].

Several differences are visible when comparing ACO to previously described metaheuris-

tics. All previously described techniques keep one accepted solution in each algorithm itera-

tion. ACO generates m solutions in each iteration, and is therefore a population-based method.

Therefore, the computer running ACO must reserve extra memory for multiple solutions, as

compared to previously described techniques. The metaheuristic is generally more complex,

with more parameters to set-up and more decisions to make when implementing (should we

evaporate pheromone, which of the pheromone update variant to use, which pheromone update

function to use).

Conceptually, ACO is similar to the GRASP metaheuristic. Both techniques use randomised
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biased solution construction procedures whose goal is to produce a different solution each time,

while also trying to select good solutions with higher probability. If local search is used, then

the algorithms are even more similar. Still, ACO creates more than one solution at each iteration

and uses the innovative framework of pheromone trails to store details about solution quality that

can be reused in future construction procedures. Further, it brings a systematic way to integrate

anything that is known before solving in the form of heuristic information [124, 343, 351].

3.6.8 Genetic algorithm and evolutionary techniques

The genetic algorithm, abbreviated GA is the oldest metaheuristic technique. The basic prin-

ciples date back to Alan Turing’s idea of using evolutionary mechanisms to build “learning

machines” in 1950s [106, 460]. During 1960s, a variety of related techniques known under

the umbrella term of evolutionary computation was developed with the goal of creating generic

adaptive systems with various purposes [115, 390, 461, 462, 463]. These techniques had a high

impact in the areas of artificial intelligence and optimisations. During the eighties, numerous

conferences and specialised journals started to appear, and the volume of papers started to rise

quickly [96, 373].

Evolution strategy by Ingo Rechenberg is the earliest evolutionary technique used for opti-

misation [111, 112, 113]. It could not be considered a metaheuristic in a modern sense since

it is a simple method of iteratively introducing modifications to a single solution and keeping

the changed version if the last modification improved the solution. This approach lacked a local

improvement operator (requirement 3) and therefore also a balancing strategy between local

search and the optima avoidance (requirement 5).

The complete genetic algorithm was first proposed by John Holland in 1975 [116]. It is

inspired by the natural process of evolution, and the way biological species change and adapt to

the varying environment [464, 465]. Genetic algorithm uses a population of candidate solutions

of a problem. They are gradually changing in the process of simulated evolution that tries to

adapt them to the best possible solutions to a given problem. Pseudocode of a basic genetic

algorithm is given in Algorithm 11 [343, 373, 466].

Population

The first step of the metaheuristic is creation of the initial population. Each candidate solution

is encoded as a chromosome, that is a set of genes. Each gene gi corresponds to a variable of

a solution xi ∈ x, and the set of possible values of a gene is called alleles. Each chromosome

corresponds to a complete solution to the problem. Rules that convert a chromosome represen-

tation into a complete solution and vice-versa are called genotype-phenotype mapping in the

GA jargon. The idea behind genetic algorithm is that simulating the way a species adapts to
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Algorithm 11 Genetic algorithm pseudocode
1: procedure GENETIC ALGORITHM ( )
2: population = initialisePopulation(M) . Population size M is a parameter
3: population = localSearch(population) . Used in memetic algorithm only
4: xbest = findBest(population) . The best solution found so far
5: repeat
6: if crossover condition satisfied then
7: crossoverSelection = selection(population)
8: o f f spring = crossover(crossoverSelection)
9: localSearch(o f f spring) . Used in memetic algorithm only

10: end if
11: if mutation condition satisfied then
12: mutationSelection = selectMutationIndividuals(population)
13: mutate(mutationSelection)
14: localSearch(mutationSelection . Used in memetic algorithm only
15: end if
16: xbest = updateBest(xbest ,o f f spring)
17: population = selectNewPopulation(population,o f f spring)
18: until until end condition is met
19: return xbest
20: end procedure

the environmental conditions allows evolving generally poorly performing initial solutions into

high-quality solutions that satisfy the objective function and the constraints in a great extent.

Evaluating individual solutions is done using a fitness function, which assigns higher fitness

values to higher quality solutions. This means that for minimisation problems the fitness func-

tion has an opposite sign than the objective function [343, 373].

Biologically inspired operators—selection, crossover and mutation

Artificial evolution is based on three operators of the genetic algorithm that are performed in

the loop of the metaheuristic:

1. selection operator,

2. crossover operator,

3. mutation operator,

where the choice of the name for each operator indicates clear inspiration in analogous phenom-

ena from nature that are studied by biologists. During each iteration, the current population is

called generation. In each iteration, the selection operator defines the subset of the population

that will have offspring. The crossover operator, sometimes also called recombination operator

takes two solutions called parents, and creates a new individual, whose genes are recombined

copies of the chromosomes of the parents. The new individual is called an offspring. Finally,

the mutation operator introduces small random changes to the genes of an individual, similar
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to the perturbation operator of ILS. The process is repeated with the next generation, until the

termination condition is met [343, 373].

There are numerous ways to implement each of these operators. Crossover creates one or

more solutions based on typically two, however potentially more parent solutions. Simple ex-

amples of crossover are based on the binary representations of the solution where either entire

segments or discontinuous sets of bits from each parent are joined in the offspring chromo-

some. However, this approach can be too simplistic, and in practical applications, the crossover

operator is usually problem-specific [343, 373, 416].

Two popular choices for the selection operator include

• tournament selection, and

• fitness proportionate selection.

The selection operator should prefer the best solutions to allow furthering the genes of the best

individuals into the next generation. Still, the probability of choosing poor performing individ-

uals should not be zero since despite poor fitness, they might still carry some highly valuable

genes. By balancing these two requirements, the algorithm will not go too far investigating poor

parts of the solution space, while also not converging to mediocre solutions too soon [343, 373].

Tournament selection is a very simple algorithm where the selected individual is the best

out of randomly selected t individuals. It can be configured by varying the tournament size—

having a tournament with only a few selected individuals promotes diversity and with t = 1, it

degenerates into random selection. Conversely, increasing t increases the probability that the

best individual will be selected. When t is equal to the population size, then the tournament

selection always returns the best solution [343, 373, 416].

Fitness proportionate selection, also called roulette-wheel selection is more complex, and it

corresponds to the random proportional rule used in ACO. It guarantees that in the population,

the selection probability is proportional to the individual’s fitness. The term “roulette-wheel”

comes from the analogy with a fictional roulette wheel, where the winning number corresponds

to the selected individual. Unlike equal segment lengths in a common roulette, in the GA

roulette wheel selection, each of the numbers has different width, proportional to the individ-

ual’s fitness, therefore ensuring that the best individuals have a higher likelihood of winning

[343, 373, 416]. A faster version of such selection under the name of stochastic universal

sampling (SUS) can select several individuals with a single run [467].

Finally, when sufficient number of offspring is created, and the mutation is finished, the

new iteration starts, with a new population. The original GA simply replaces old population

with the new population, that contains the same number of the offspring as the previous popu-

lation. Modifications of this simple approach include elitism—keeping the best, or several best

solutions always present in the population [343, 373, 416].
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Extensions and related techniques

The basic GA can be extended in several ways [114, 468, 469]. The local search operator is not

present in the canonical GA proposed by Holland. Metaheuristic called memetic algorithm uses

local search to improve individuals after recombination and mutation, under some conditions

[432, 470]. As in the ACO metaheuristics, reports indicate that the local search great potential

to improve solutions of pure GA. A related area called genetic programming uses the principles

of simulated evolution to evolve computer programs instead of programming them manually.

Genetic programming is based on an appropriate program representation such as syntax tree,

and a population of programs represented in such way, on which selection, recombination and

mutation are iterated. For this purpose, the fitness of an individual can be estimated based on

the number of errors, required time, achieved accuracy or quality of results.

As compared to other metaheuristics in this Section, it is clear that the genetic algorithm

has higher complexity, both in the effort needed to understand the metaheuristic as well as to

implement it to solve a problem. It consists of several operators, and each of those operators

can be implemented in several ways. Even after choosing the variant of the operator that seems

suitable, there is a significant number of parameters that need to be tuned and balanced with

each other, frequently in unclear ways [471]. How much mutation, how frequently and to how

many individuals should we use? How elitist should the selection be? How large should the

population be? Conducting detailed experiments, which can consume a lot of time is the only

way to get answers to these questions since these are all problem-specific questions.

The method is similar to ACO in terms that it handles multiple solutions at each iteration.

Genetic algorithm and most evolutionary computation techniques are population-based. Benefit

of having a population is the potential for more diversity in the solutions and exploring larger

areas of the solution space, however this comes at the cost of needing more memory. For all

individuals in the population, the value of the objective function must be computed at some

point. Therefore, genetic algorithm uses a lot of processing power per iteration, as compared to

the single-solution methods.

3.7 Problems with limited budget of evaluations

As described in 2.4.8, problems with limited budget of evaluations (LBE problems) have been

identified as an especially difficult subset of optimisation problems. In the literature covering

metaheuristic techniques it is mostly implicitly assumed that the evaluation function is fast and

cheap to execute. For conventional problems, this allows the algorithm to explore large parts of

the solution space before returning the solution. It is not uncommon to evaluate thousands or

even millions of solutions in various implementations before the algorithm finishes. Unfortu-

nately, due to various limitations such as slow evaluation function and very high computational
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demands, evaluating large number of options is prohibitively costly in LBE problems. Meta-

heuristics cannot rely on evaluating large number of solutions in LBE problems, instead they

might have access to e.g. only a thousand or a few hundred evaluations [150, 173, 175]. A sep-

arate issue is how to handle constraints if the LBE problem has them, some successful results

can be found in [472, 473, 474, 475, 476, 477, 478, 479].

There are two general directions in solving such problems:

1. applying an optimisation algorithm directly to the expensive objective function [174],

2. developing a surrogate model, also called meta model that is cheap to evaluate and used

to approximate the expensive objective function [173, 175].

The advantage of the direct approach is simpler implementation since there is no need to invest

effort to build a surrogate model and integrate it into the general algorithm. Disadvantage of this

approach is a need for specialised tuning and using as much problem specific details as possible

since the algorithm will otherwise run too slow [174]. Nevertheless, such direct solutions are

rare in the LBE literature. Most published research reports good results with surrogate models

since they allow the algorithm to work quicker at a cost of loss of accuracy. Their advantage is

the ability to get larger number of objective function estimations. A disadvantage of such ap-

proach is higher complexity of implementation which requires a surrogate model to be prepared

and then integrated into the algorithm. Deciding when and how to use a fast surrogate, which

points to select based on what is known, and when to use the expensive original can be a highly

complex research question [173, 175].

When using a surrogate model for a new problem, the biggest obstacle is the uncertainty that

the simplified model will represent the objective function faithfully. Such issues appear in the

machine learning community and there are techniques to control model errors such as dividing

the dataset into training and validation set, detection of overfitting and others. These techniques

are essential when assessing the general reliability of any model, unfortunately they are typically

developed for a different purpose, not for the direct use in an optimisation algorithm [8, 480,

481, 482].

When optimising using surrogates, it is not critical that the surrogate model provides abso-

lutely accurate values of the true objective function, it is more important that the estimate is good

enough to lead the algorithm in the direction of the optimum. Unfortunately, there is usually

not much guarantee that a surrogate will do that. Situations when a surrogate mistakes a point

as a local optimum is a notable issue called “false optima”, where the point is a locally optimal

value for the surrogate model, but not the original objective function that needs to be optimised.

Such errors can keep the algorithm in a false optimum for considerable time and waste a lot of

resources. To prevent this, surrogate based meaheuristic usually have a strategy to systemati-

cally compare the surrogate with the expensive original objective function [173, 175, 480, 483].

While complex, there also exist studies that involve more than one surrogate [484, 485, 486]
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3.7.1 Commonly used surrogate models

The surrogate based optimisation literature has provided investigations of various types of surro-

gate models, from polynomials, to statistical and machine learning methods. Some metaheuristic-

specific techniques such as fitness inheritance have also been widely applied. Finally, some re-

searchers combined various surrogates and developed methods for selecting the surrogate under

various circumstances [173, 175, 487, 488].

The polynomial models, sometimes also called the response surface model method typically

use second-order polynomials to estimate the original expensive objective function. The coeffi-

cients in the polynomials can be calculated using least squares method and gradient method. In

both methods, the number of needed samples to get good results is proportional to the squared

number of input variables. For problems with high dimensionality, the least squares method

can have too high computational cost, and in such cases the least squares method is preferred

[172, 489, 490, 491].

A very popular statistical method for approximating the expensive objective functions,

called kriging was initially invented for application in mining industry. It was named by Daniel

Gherardus Krige who achieved good results in applying statistical methods for estimating the

unknown distribution of gold under ground, based on a limited number of test drills. The tech-

nique is also called gaussian process regression, Wiener-Kolmogorov prediction, and spatial

correlation modelling [492, 493, 494, 495, 496, 497, 498]. Using kriging, a function values are

modelled based on Gaussian processes, the assummption that a function values will be similar

in nearby points, and that this similarity will drop as the distance between the points increases.

Given n points where the function values are available, interpolating the function value in an un-

known point has a computational complexity of O(n3). Kriging provides uncertainty estimates

for each interpolated point [499]. The uncertainty estimates provide opportunities for active

selection of points to sample using the expensive original function and balancing the model

accuracy and exploration of promising regions. This idea is the basis for the efficient global

optimisation (EGO) algorithm [500, 501]. Some applications of Kriging with metaheuristics

can be found in [175, 483, 502, 503, 504].

Techniques used in machine learning are another natural framework for the problems of

objective function approximation. Popular choices include neural networks and support vector

machines [172, 175]. Neural networks are inspired by the research on brain. They are repre-

sented as collection of connected artificial neurons, which can be efficiently trained based on

input data to provide an expected output when given a typical input [505, 506, 507]. Support

vector machines are models that can be used for classification and regression analysis based on

statistical models of the learning process [508, 509, 510, 511, 512, 513, 514]. Applications in

the area of LBE problems can be found in [485, 515, 516, 517, 518, 519, 520].

In addition, techniques that use specific functionalities of metaheuristics have been devel-
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oped to run with less evaluations while solving LBE problems. Fitness approximation is an

example of such technique used in genetic algorithms. Using such approach, a child of two par-

ents with known fitness can be assigned an average fitness of the child’s parents or a weighted

average based on the proportion of the inherited genetic material [521, 522]. While this proce-

dure is very fast in estimating the fitness of an individual, critics highlight that it was proven

to give satisfactory results only with very simple objective functions such as continuous and

convex problems [523].

It is difficult to select the appropriate surrogate for a given problem. The choice of the best

surrogate can in great deal depend on the problem. Further, the literature that compares various

models is limited and sometimes focuses on simple problems. Therefore, the choice of the

appropriate surrogate can be difficult, and practitioners are sometimes left to their intuition to

select the surrogate if implementations and comparisons of several methods are not possible.

Some studies that compare various surrogate models can be found in [524, 525, 526, 527, 528,

529, 530, 531].

Metaheuristics that have so far been successfully used with surrogate include in most part

evolutionary computation [175, 525, 532, 533, 534, 535, 536]. While the method of using

surrogates can be used with other metaheuristics as well, using other metaheuristics is more rare

in LBE community. Some examples include simulated annealing, artificial immune systems,

particle swarm optimisation [537, 538, 539, 540, 541].
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Chapter 4

Bottom-up development methodology

The area of metaheuristics received great attention in the last decades as they have favourable

characteristics of being highly generic, and having great potential for achieving good results

[8, 105, 343, 542]. Research effort and progress has been so great that the scale and com-

plexity that can be solved nowadays seemed out of reach only a few decades ago. Despite

the progress, using metaheuristics still poses numerous challenges. A notable issue with meta-

heuristic projects is the fact that these methods are still complex and require considerable adap-

tation to specific problems before they can be used [8, 96, 234, 542]. Projects that are based

on metaheuristic techniques require experienced experts, and therefore, the development can

be slow and costly. A lack of development methodologies does not help mitigate that issue.

Further, dozens of proposed metaheuristics and their variants can be confusing to the newcom-

ers and requires a significant effort in learning [235]. Even under expert guidance, the process

of implementing metaheuristics in some parts still resembles more an art than an engineering

process grounded in rigorous science [96].

This Chapter presents a bottom-up development methodology devised to minimise the im-

plementation effort. The proposed methodology is grounded in the fact that established meta-

heuristics share similar operators, and on the no free lunch theorem, which provides a formal

basis for the algorithm efficiency comparison. Established metaheuristics, discussed in the pre-

vious Chapter are decomposed into the required operators, and the development starts with

the simplest components, to which complexity is incrementally added. By gradually adding

increasingly complex components to the metaheuristic, while performing performance evalua-

tions in each step, the development can stop when the results are considered satisfactory, this

way saving development time and cost if simple metaheuristics perform sufficiently well.

89



Bottom-up development methodology

4.1 Motivation

The development of metaheuristics that can be observed in the last decades can be viewed as a

result of two overlapping research efforts:

• researching general problem-solving behaviours, and developing adaptive systems that

would be able to find solutions to various problems without explicit programming by

humans, in the area of artificial intelligence [96],

• developing more general heuristic algorithms, reducing their complexity and reducing the

required development effort in the areas of operations research and optimisation [8, 542].

There has been great progress in both directions. Techniques of genetic programming can

evolve procedures for tasks of varying complexity without much intervention of a programmer

[423, 543]. Likewise, the wide area of reactive search, hyperheuristics, and metaheuristic tuning

techniques have a potential to relieve the developer from some parts of the development process

[8, 344, 379, 544, 545, 546]. Metaheuristics are nowadays considered to be a standard way of

solving especially large and difficult optimisation problems. They are popular both in academic

research as well as in practical and commercial applications [96], and for numerous problems,

they are achieving state-of-the-art results [150].

Despite considerable progress, we are still far from the ideas of fully autonomous soft-

ware systems that solve complex tasks with minimum intervention from the human developers.

Metaheuristics did achieve a very high degree of generality, nonetheless, successful applica-

tions require significant effort to adapt the metaheuristic to the specifics of the problem being

solved [234]. Further, projects that use metaheuristics require experienced developers with high

level of expertise. If high performance is needed, implementing metaheuristic techniques can

become a complex research project [96, 235, 547].

When starting a project based on metaheuristics, mutually related questions like these come

up naturally:

1. “Which metaheuristic should I use? ”,

2. “Which metaheuristic will give the best solutions for my problem? ”,

3. “Which metaheuristic will be easiest to implement? ”

The question, in a general sense, unrestricted to metaheuristics was first formulated in 1976

by Rice [548]. A large number of published metaheuristic techniques only complicates this

problem further. While these are all fundamental questions, the existing literature provides

limited support to answer them. Research projects usually focus on the details of a single

method and do not address these problems directly. In the published work that does address the

problem of best performing metaheuristic, several types of answers are provided:

• “This is not known in advance since metaheuristics by their definition do not provide

performance guarantees” [8, 69, 150, 405],
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• “It depends” [234],

• “You need to compare the performance of various metaheuristics to find out [8, 405,

549]”,

• “Use hyperheuristics, algorithm portfolios or machine learning as a procedure to find out”

[344, 366, 550, 551, 552].

There is no doubt that all of the above answers are correct and based in deep understand-

ing of the difficulties and complexity involved with building efficient optimisation algorithms.

Experimental evaluation is indeed the only way to compare different techniques with certainty,

nevertheless the methodology for rigorous testing and comparisons of metaheuristics is still de-

veloping [549, 553]. Hyperheuristics and algorithm portfolios are an attempt in establishing

procedures that can do a part of the development tasks, this way avoiding a need for several

labour-intensive development steps, however they add extra complexity, require a high level of

expertise and have very high computational requirements. A big drawback of any experimental

evaluation is the aposteriori essence of such methods—they can be used only after implement-

ing two or more different algorithms.

Unfortunately, the above answers are not helpful at all to practitioners, experts in other areas

and anybody else who wants to solve their optimisation problem, that might not be complex.

This is especially notable if the practitioners do not have deep experience in the area and can-

not reliably estimate the complexity of various techniques. Indeed, advice such as “Try out

five metaheuristics to find which one works best” completely ignores the immense effort and

expertise needed to first implement and then rigorously compare several different metaheuris-

tics. In practice, software projects are regularly done under deadlines and with limited staff

and computational capacity. Instead of first implementing five different techniques in order to

compare them, then discarding the four algorithms that are not the winners, it would be much

more economical to implement only one, that balances the implementation effort and good per-

formance, depending on the project ambitions and resources and start out with a reasonable

project strategy to achieve this goal.

In a typical practical project, the metaheuristic is often selected based on the existing publi-

cations and experiences of others in solving the given problem or similar problems. Published

results reporting good results of some technique can be viewed as an encouragement to try and

reproduce the same technique. The developer’s level of expertise in different techniques is an

additional bias that is present even with highly experienced researchers and developers. For

someone with years of experience building genetic algorithms, it is easier to simply do one

more implementation of genetic algorithm, than to spend time learning the details of e.g. iter-

ated local search. This is a myopic view since a simpler technique such as iterated local search

can be much quicker to implement and could save development time. Furthermore, these per-

sonal biases are an important underlying cause of close segregation in research groups in the
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area of metaheuristics and optimisation in general that was highly pronounced until recently

[554, 555, 556].

Bridging the gap between research and practice

The above discussion illustrates a prominent issue in the metaheuristics community: an appar-

ent lack of development methodologies that are robust enough to allow building high-quality

optimisation software, however also economical in terms of required staff, time and compu-

tational resources [234, 554, 557]. It is a symptom of a wider dichotomy between academia

and software engineering practice. Despite the initial idea that metaheuristics will simplify the

process of developing optimisation algorithms, a gap still exists between the output of research

projects and what would be required for a direct application in the industry [345, 346, 558].

The academy is regularly focused on developing innovative techniques with the goal of fur-

ther performance improvements, commonly referred to as the up-the-wall game [559]. It is

only recently that there is an increasing research effort devoted to better understanding of the

existing methods, including the reasons why certain techniques work on certain problems, even

if there is no immediate performance gain [234]. Furthermore, practical problems commonly

have a large number of complex traits and numerous constraints. Due to the difficulties in real-

istic modelling of these problems, and the desire to put more focus on the algorithms, academic

research is often done on simplifications of practical problems. Finally, nearly all academic

work assumes that the problem definition is final and that the requirements will never change

[557]. While this is reasonable from academic perspective, it limits the direct applicability of

devised methods to the real problems [283, 346, 560].

An excellent overview of the use of metaheuristics in the software industry is given by

Edmund Burke and Emma Hart, who in [235, 364] state the following:

Many state-of-the-art meta-heuristic developments are too problem-

specific or too knowledge-intensive to be implemented in cheap, easy-

to-use computer systems. Of course, there are technology provider com-

panies that have brought such developments to market but such products

tend to be expensive and their development tends to be very resource-

intensive. Often, users employ simple heuristics which are easy to im-

plement but whose performance is often rather poor. There is a spec-

trum which ranges from cheap but fragile heuristics at one extreme and

knowledge-intensive methods that can perform very well but are hard to

implement and maintain at the other extreme. Many small companies

are not interested in solving their optimisation problems to optimality

or even close to optimality. They are more often interested in “good

enough—soon enough—cheap enough” solutions to their problems.
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The above citation has been confirmed times and times again by the practical experience of the

author of this thesis. Very often, the great effort needed to solve general classes of problem in-

stances is not required as the project might be focused on a subset of smaller problem instances.

In other cases, it is enough only to outperform humans that were previously doing the task of

the optimiser to consider the project as a success.

Unlike in academia, a big source of complexity is highly specific real problems, that can be

difficult to communicate effectively and formally define. A problem might have very complex

constraints. In some cases evaluation of a solution can take a long time or require significant

computational power. Finally, the changing requirements are a reality of the software indus-

try, where significant changes to the problem formulation are expected during the course of a

software project, e.g. when a product is sold to a different customer with a slightly different

problem specifics. There has been a wide array of techniques to improve software development

methodologies to allow better adaptability of software and more resilience to change, uncer-

tainty and incomplete specifications, such as test-driven development and agile methodologies

[561, 562, 563]. Instead of relying on a complete and fixed specification, these methodologies

rely on small improvements and frequent communication with the customer, this way allowing

quicker responses to any changes during the implementation process.

Building on the issues discussed above, a notable and as of 2019 still insufficiently addressed

criticism of metaheuristics includes an apparent lack of a universally applicable development

methodology [234]. This is such a notable issue that there exists an entire conference devoted

to this and related issues. The web site of the SLS2019: International Workshop on Stochastic

Local Search Algorithms [564] states:

Development of effective SLS algorithms1 is a complex engineering pro-

cess that typically combines aspects of algorithm design and implemen-

tation with empirical analysis and problem-specific background knowl-

edge. The difficulty of this process is in part due to the complexity of

the problems being tackled and in part due to a large number of de-

grees of freedom researchers and practitioners face when developing

SLS algorithms.

This development process needs to be assisted by a sound methodol-

ogy that addresses the issues arising in the phases of algorithm design,

implementation, tuning and experimental evaluation. In addition, more

research is required to understand which SLS techniques are best suited

for particular problem types and to better understand the relationship

between algorithm components, parameter settings, problem character-

istics and performance.

1SLS algorithm is an abbreviation for stochastic local search algorithm, a synonym for metaheuristic.
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The methodological publications are rare, with a few exceptions in [8, 547, 549, 557, 565].

While initiatives advocating better formalisation of the research and early proposals of design

patterns do exist, this direction in the science of metaheuristics started only recently [365, 557,

566, 567]. It is now generally understood that metaheuristics cannot be viewed as a set of

independent and distinct optimisation techniques. Instead, the component based view defines

each metaheuristic as a set of components that can be reused and assembled in various ways.

The component-based view was used as a justification for research into techniques that can

procedurally assemble hybrid metaheuristics while minimising the need for decisions by the

developers [344], nevertheless no study so far used it to investigate the potential to improve the

development methodology of metaheuristics with the goal of reducing development time and

labour. In [565], Zäpfel et al. mention that the top-down implementation approach is legitimate

and often used, and that the bottom-up approach might be better suited for practice as well as

teaching. Still, the authors do not go further in the analysis and do not mention the benefits

and the potential that the bottom-up approach has to allow faster implementation and save the

development cost. Much of the related research is also done in the area of methods for algorithm

tuning and techniques for comparisons of metaheuristics [8, 549, 553, 557, 568].

Towards a general metaheuristic development methodology

The potential of the component-based view in practice and the implications to development

methodologies remained largely unexplored. While there exists a number of software libraries

with the goal of utilising the component-based view to provide reusable components for build-

ing metaheuristics, each of them has a slightly different development model and limitations.

It is a common dilemma in software engineering: use a library for some task or do your own

implementation of the functionality. General risks with third-party libraries include security,

level of support, possible termination of the development, and unexpected bugs that might not

be under control of the users of the library and can take considerable time to resolve. Finally,

along with learning the theory, which is needed for the use of most libraries, a certain amount

of time is also needed to learn the library that is to be used.

This Chapter focuses on cases when the external libraries are not used, and when for any

reason, an implementation from scratch is required. It provides a proposal of a clear and simple

development methodology whose goal is to develop efficient-enough metaheuristics using min-

imal development effort: expertise, time spent in development and learning, and computational

capacity. Unlike the top-down approach that is implied in much of the literature, the proposed

methodology is a bottom-up design. By starting with the simplest metaheuristic components,

more details and more complex components are incrementally added. Using this philosophy,

development can stop as soon as satisfying results are achieved.
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4.1.1 Current practices in impelementing metaheuristics—a fractal of com-
plexity

Metaheuristics are generally last-resort methods, that are used to solve problems for which

no simpler and faster methods are known [343]. A most important source of complexity in

metaheuristic implementations is the difficulty of the problems that need to be solved. Very

commonly, they are used for 𝒩𝒫-hard problems, for which no efficient algorithms are known.

A traditional top-down approach would usually include some variations of the following steps:

1. Select the metaheuristic to implement,

2. Implement the general framework for the metaheuristic, the main loop and e.g. the pop-

ulation handling in GA or the pheromone graph in ACO,

3. Decide which operators will be used,

4. Perform tuning.

As seen in the overview available in Chapter 3, metaheuristics vary in the complexity, ranging

from those that can be summarised in only a few sentences, to those who have several intricate

operators.

The above process has a very high number of combinations. For each metaheuristic, there

are several operators (out of which some are optional). For each operator there exists several

flavours of the operator (e.g. selection in GA can be made using SUS or tournament selection).

For each flavour, there can be several parameters (e.g. if tournament selection is used in GA, the

tournament size needs to be set). The above discussion illustrates the need for a large number

of good decisions that need to be done when implementing a metaheuristic. All these decisions

are problem instance-specific since good values for a certain problem instance might perform

poorly on other problem instances and vary even more when used on a completely different

problem [8, 124].

All the operators must act harmoniously with each other in order for the metaheuristic to

work well. If this is not achieved, the algorithm performance will not be satisfying or the algo-

rithm might not work at all. Finding good combinations of structural decisions and parameters

is not an easy task, since interactions between parameters can be difficult to comprehend [471],

and the efficiency of different configurations of metaheuristics needs to be evaluated experi-

mentally. Despite high complexity, the process of testing several different configurations is very

important since this allows finding a good balance between intensification and diversification,

as discussed in Section 3.4.

In practice, metaheuristic development is typically an iterative process based on resource-

intensive experiments, and guided by the developer’s experience, intuition and preliminary

experimental results [96]. Any change to the problem definition, e.g. adding an additional

constraint or changing the objective function can mean that the entire process needs to restart
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[8, 557]. This process in a great deal holds more resemblance to an art than to engineering [96].

4.1.2 Tuning metaheuristics

Each metaheuristic itself can have numerous parameters. In GA, e.g. population size, elitism

and tournament size need to be set. In tabu search, the length of the tabu list needs to be set.

In GRASP, the length of RCL needs to be set. The problem of choosing the metaheuristic

parameters is difficult due to two facts:

• metaheuristics generally return a different solution each time [105],

• good parameters are not problem-specific, they are problem-instance specific [8, 124,

557].

Stochasticity of the results produced by metaheuristics implies that the experimental evaluation

cannot be performed on a single run only. Instead, a statistical analysis of multiple runs on the

same instance is needed to draw reliable conclusions from the experiment. The second issue

is the fact that good performance on one problem instance does not imply good performance

on other problems the metaheuristic needs to solve. Therefore, an experimental evaluation of

a single configuration requires multiple runs on multiple problem instances. Assuming that we

use 30 runs per instance and that we have 10 instances as the representative set for a problem,

we need 300 runs to evaluate each algorithm configuration. Clearly, detailed tuning is resource-

intensive and becomes intractable if large number of configurations needs to be evaluated or

when each run is long.

To help speed up the process of tuning, it is possible to use procedural tuning [8, 546], where

different techniques such as racing algorithms, surrogate-based modelling and heuristic search

techniques have been proposed. Still, due to the vast number of different configuration options,

and the exponential number of combinations when numerous parameters are involved, some

filtering and prioritisation by a human developer is almost always necessary.

4.1.3 Metaheuristic design patterns

Software design patterns are reusable solutions for common problems that occur in software

development. They are inspired by similar ideas in a completely different area—architecture,

where in [569] Alexander considers high-quality architectural solutions across long periods of

time and suggests to call them “patterns”:

(. . . ) each pattern describes a problem which occurs over and over

again in our environment, then describes a core of the solution to that

problem, in such a way that you can use this solution a million times

over, without ever doing it the same way twice.
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In their seminal book [570], Gamma et. al. define software design patterns in object-oriented

software development as

(. . . ) descriptions of communicating objects and classes that are cus-

tomized to solve a general design problem in a particular context.

In addition to the definition, the authors provide a catalogue of patterns divided into several

categories. Their work helped shape the contemporary software industry, and nowadays design

patterns are a commonly used accumulated wisdom related to difficult problems in software

design [571].

In the area of metaheuristics, there has been a similar initiative to document design patterns

that help solve common problems that are specific to the development of metaheuristics [572].

Goals of such research are to document reusable solutions, allow wider access to this catalogue,

and standardise the notation by e.g. using the unified modelling language [573]. The GECCO2

conferences in 2014 and 2015 had dedicated workshops that were advocating design patterns in

metaheuristics [574, 575].

In [576], Lones identifies several concepts used in nature-inspired metaheuristics, such as

local search, hill-climbing, variable neighbourhood search, multi-start, adaptive memory search

(tabu lists), population, intermediate and directional search, and search space mapping (used in

ACO). The single point search algorithm pattern is presented in [577], where algorithms such

as ILS and VNS are presented in a common framework with the goal of creating hybrid meta-

heuristics. Ben Kovitz and Jerry Swan discuss various types of search history usage, which they

call “tagging” in [578]. The “structural stigmergy” is a proposed name for a complex interplay

of several other components [579]. Composite operators are discussed in [580]. Improving the

ways the solutions are presented when humans are evaluating solutions is defined as “Interac-

tive Solution Presentation” pattern in [581], where several different ways to improve the process

and reduce the fatigue of involved people is suggested. Using various types of surrogates for

modelling “slow” objective functions is discussed in [582].

While the above work correctly identified various common techniques used in metaheuris-

tics, the impact these design patterns had has so far been limited. They correctly identify the

issues with the limitations of the traditional top-down view, and the need for documenting the

patterns. Nevertheless, they do not proceed further in investigating the potential that such de-

composition has to speed up the development of metaheuristics and typically limit the discus-

sion to their potential for constructing hybrid metaheuristics and hyperheuristics.

2GECCO is an abbreviation for the Genetic and Evolutionary Computation Conference
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4.2 Theoretical foundations

This work is in large part inspired by the no free lunch theorem and the convergence proofs

for various metaheuristics. The no free lunch theorem, presented in more detail in Section

2.5.3 is a rigorous mathematical proof with deep consequences for the field of optimisation.

It states that the average performance on the set of all possible problems is equal for any two

algorithms [145]. In the optimisation community, it has been used to illustrate the need for

more specialised algorithms [220], and invest more effort in e.g. metaheuristic tuning [8]. It

also implies that for no two metaheuristics, it can generally be said that one is more efficient

than the other. However, in the interpretation that advocates specialisation, it can be argued that

a better metaheuristic would be the one that can be adapted more closely to the relevant problem,

this way highlighting the importance of the low-level operator adaptation by e.g. choosing the

appropriate neighbourhood definitions and implementing efficient problem-specific moves.

Similar theoretical results arise from the area of convergence analysis. For some metaheuris-

tics, such as GA, ACO and SA, it has been proven, that given enough time, the probability of

converging to the optimum is equal to one. Interestingly, the same proof exists for the pure ran-

dom search, which is a trivial algorithm [368]. These formal proofs do not give any conclusions

about the required time to reach the optimum, which might be millions of years, therefore they

have limited consequences for real applications. Still, both the no free lunch theorem as well as

the convergence analysis show that from a purely theoretical point of view, using more complex

metaheuristics does not give any guarantee that the results will be better.

Finally, there is a consensus in the research community that all metaheuristics fit the inten-

sification and diversification framework (I&D) [162]. The I&D framework is described in more

detail in Section 3.4, and it is an important step towards a unified view of metaheuristic algo-

rithms in which all metaheuristics are governed by an interaction of these two ways to move

in the solution space. Most components of the metaheuristics can be placed in this spectrum,

between pure intensification (moves guided by the objective function) and pure diversification

(random moves not guided by the objective function). Further, it is common that a metaheuristic

has one component that is used for most of the intensification, and conversely, one component

that does the most of the intensification. The unified view on metaheuristics has greatly inspired

this work that tries to use this universality principle to propose a unified development process

to build any metaheuristic from the I&D framework.
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4.3 Practical foundations

4.3.1 Implementation complexity and development effort

The goal of this Chapter is to provide a development methodology that can develop efficient

algorithms, while minimising the development effort. For the purpose of this thesis, the devel-

opment effort is defined as the total effort required to learn, implement and tune a metaheuristic.

The definition of the development effort will always be somewhat vague since it involves in-

dividual aspects related to the developer skills, expertise, previous experience with different

metaheuristics etc., as well as the subjective perception of difficulties of certain tasks. Typ-

ical ways to evaluate this effort can be the total number of man-hours needed to complete a

project, total CPU-time needed to tune the algorithm, total makespan3 of the project, or total

development cost.

As discussed in Chapter 3, GA and ACO, as compared to single-point methods have more

operators and more degrees of freedom in the ways to implement them. All this means that

generally, the effort required for the implementation of GA and ACO will be higher with re-

gard to all three criteria mentioned above. GA requires longer development time due to a large

number of operators, ACO has an added complexity of implementing artificial ants and the

pheromone graph that corresponds to solution components. Both GA and ACO have a much

wider set of structural options and parameters, therefore the tuning process will be more de-

manding. More complex implementation and more demanding tuning imply generally longer

makespan or higher cost. Therefore, SA, TS, ILS, GRASP and random restart local search will

be referred to as simple methods, while GA and ACO will be discussed as complex methods,

where simple and complex are related to the development effort.

To illustrate the above discussion, let us assume that we have a single optimisation problem

and that we want two development teams to solve it using different techniques: Team GRASP,

who works on implementing GRASP, and Team GA who is implementing the genetic algorithm.

Team GRASP needs to devise two components a solution construction procedure and a local

search procedure. Team genetic algorithm, must develop at least five: a solution construction

procedure, mutation, crossover, selection, general population handling, and preferably also local

search.

When it comes to tuning the algorithm parameters, team GRASP needs to decide on two

parameters: the restricted candidate list size and the local search parameters. Team GA needs

to tune seven: mutation intensity, frequency of mutation, crossover parameters, the tendency

towards selecting best individuals, elitism parameters, population size, local search parameters.

Clearly, there is a great number of combinations of these parameters, with potentially complex

interactions among them, while the basic GRASP has only two, which simplifies tuning.

3Makespan is the time that elapsed between the start and the end of the project
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Finally, GA and ACO are population-based, therefore they have higher memory require-

ments and need to evaluate more solutions per each iteration. This implies higher computational

requirements for running and tuning these metaheuristics. The added memory requirements

might be prohivitively big with high population size and large problems that require a lot of

memory.

4.3.2 Empirical studies of metaheuristic efficiency

Comparing different metaheuristics on the same problem is labour and resource-intensive. Per-

haps this is the reason for limited research in this direction. A notable example of such inves-

tigation is presented in [320], where a group of authors in the Metaheuristic Network project

[560] compares the performance of evolutionary algorithms, ant colony optimisation, iterated

local search, simulated annealing, and tabu search. All these methods were applied to solving

the university course timetabling problem with several artificially generated problem instances.

Problem representation and local search code were shared with all metaheuristics in an attempt

to provide fair comparison. The results indicate that no heuristic is a clear winner on all in-

stances, even when similar instances are considered. This illustrates the difficulty of identifying

the best metaheuristic on wide problem classes. Still, some trends can be observed. In the small

problem instance, ILS, followed by SA is the best. With medium instances, SA is the best, fol-

lowed by ILS. On large instances, in terms of hard constraints, Tabu search is the best, followed

by ILS.

Similar results were observed in [583], where François et al. compare genetic algorithms,

tabu search, several ant colony optimization techniques, and (interestingly) recurrent neural

networks to optimise fuel reload patterns in boiling water nuclear reactors. The goal of the

optimisation was to increase the produced energy while satisfying the thermal and reactivity

constraints. The best average performance was achieved using the recurrent neural network,

and tabu search was the second best. The best performing individual solution was found using

tabu search.

In [584], Sönke Hartmann and Rainer Kolisch compare tabu search, genetic algorithm and

simulated annealing for solving the resource-constrained project scheduling problem. For sim-

ulated annealing and genetic algorithm, the authors also compare the performance with differ-

ent problem representations. In addition to the metaheuristics, several direct heuristics were

compared. In this work, genetic algorithm and simulated annealing with the “activity list” rep-

resentation worked best. The authors note that their experiments indicate that the choice of an

appropriate representation has been far more significant than the choice of the metaheuristic.

Further, they indicate that initial solution generator procedures are an important component in

metaheuristics, and that tabu search was the best technique when the number of allowed evalu-

ations was limited.
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Antosiewicz et al. in [585] compare genetic algorithms, simulated annealing and tabu search

with less established techniques—quantum annealing, particle swarm optimization and har-

mony search on the travelling salesman problem under a limited budget of evaluations. Their

results indicate that simulated annealing and tabu search clearly outperformed other techniques.

Further, tabu search was the fastest to converge.

4.3.3 General experience

In his invited talk at the EU ME meting 2009 conference, based on his experience in the Meta-

heuristics Network project [324] Thomas Stützle identifies the following as the most important

contributors to successful implementation:

• Creative use of general ideas and insights into the algorithm behaviour and its interaction

with the problem specifics,

• Expert developers,

• Sufficient time that permits implementation and detailed tuning.

More importantly, similarly to [584], Stutzle highlights that efficient local search neighbour-

hoods and other underlying heuristics were highly important for the success of the algorithm,

while the strict adherence to the rules of a specific metaheuristic was less important.

From the perspective of this work, it is remarkable that simple techniques such as ILS, SA

and TS were consistently outperforming GA and ACO in three out of four studies presented

above, while in [584] GA and SA results were similar. In the area of metaheuristics, any gen-

eralisation is very difficult, as is the objective algorithm comparison [553]. Excellent results of

simple techniques, and the understanding that efficient components can be more important than

the selection of the metaheuristic indicate a very important premise of this work: more complex

metaheuristics are not a guarantee of better performance.

4.4 Standard metaheuristic components

Chapter 3 brings a brief overview of several commonly used metaheuristics. Their analysis

uncovers numerous common components that they share. The three ubiquitous components

are:

1. Initial solution generation procedure initialSolution(),

2. Perturbation operator (diversification component) pertrub(x),
3. Local search operator (intensification component) localSearch(x).

Each operator definition can vary depending on the metaheuristic. Further, depending on the

metaheuristic, the same operator might be named differently. The mutation operator in the

genetic algorithm is functionally equivalent to the perturbation operator in the iterated local
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search and the shake operator in VNS. The basic functionality of introducing random moves

undirected by the objective function is the same, therefore in this work, all such operators will

be called perturbation. Likewise, all components that provide a local optimum as a result will

be called local search.

The bottom-up methodology presented in this work is based on building reusable com-

ponents that can be assembled into various metaheuristics. Components are implemented as

an evolution of previously developed components if possible. A principal technique used to

achieve savings in the development effort is the classification of the effort into small incremen-

tal changes and complex modifications that require either writing the component from scratch

or a complete rewrite, or a significant addition of new functionality. In the diagrams that show

the evolution of each component from simplest to more sophisticated, a full-line arrow is used

for the complex modifications, while quick to implement incremental improvements are drawn

in a dashed arrow.

4.4.1 Initial solution generation procedure

The initial solution generation procedure is the component that provides the initial solution for

the single point algorithm or a population of solutions for population-based methods. It is gen-

erally considered that this procedure must be fast to allow sufficient time for the metaheuristic

to work. Usually, pure random variable choice, denoted initialSolutionRandom() or a simple

greedy algorithm, denoted initialSolutionGreedy() is used

Variants of the greedy approach are used in GRASP and ACO, where unlike other discussed

techniques, the solution construction procedure is fully specified, and both are based on greedy

solution construction. In GRASP, the canonical greedy algorithm provided in Algorithm 1 is

modified by adding a restricted candidate list as a technique to include biased randomness. The

size of the restricted candidate list is a parameter that controls the intensification of the proce-

dure, as described in more detail in Chapter 3.6.2. In the remainder of this work, the greedy ran-

domised solution construction used in GRASP will be denoted initialSolutionGRASP(). While

more complex than random selection, the implementation of GRASP is still a small incremental

modification of a greedy algorithm.

Creating solutions in ACO is more complex. In ACO, solution creation is iterated in each

algorithm step to create a population of solutions. It uses the randomised greedy construction

philosophy similar to GRASP, however using a different approach to selection of variable val-

ues. Implementing the ACO solution initialisation requires additional data structures to store

heuristic information and the pheromone graph. Pheromone graph is a solution representation

specific to ACO and it might take a while to develop, especially to beginners and if the prob-

lem is not tightly related to graph problems. In the ACO solution construction, each solution

construction procedure represents an artificial ant, that instead of basing the decisions on the in-
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initialiseSolutionRandom()

initialiseSolutionGreedy()

initialiseSolutionGRASP() initialiseSolutionACO()

Minor	change

Major	change

Figure 4.1: Initial solution construction operators evolution

cremental objective function evaluations chooses solution components in a biased random way,

such that the components with higher pheromone concentration and higher heuristic informa-

tion have a higher probability to be selected. This procedure will be called initialSolutionACO()

in the rest of this work.

Initial solution generator procedures are always constructive, since they provide a complete

solution from scratch. Figure 4.1 shows a recommended evolution of the initial solution con-

struction procedure. In almost all cases, random initialisation will be the quickest to implement.

There are several other more complex to implement initial solution generation procedures are

possible. A full-line arrow between operators indicates that the more complex operator needs to

be developed from scratch or as a significant improvement from the initial operator. Conversely,

dashed arrow between operators is used when an operator can be developed as an incremental,

small modification of the initial operator. A typical improvement over a random initialisation

would be a greedy approach, however it requires additional and problem-specific development

effort. Building on the greedy algorithm, it takes a simple and incremental improvement to mod-

ify the algorithm into the GRASP solution construction, while the ACO solution construction

using artificial ants requires more extensive development of features specific for ACO meta-

heuristic.

4.4.2 Local search

Local search is a widely used idea in metaheuristics. It is so efficient and has such a high

potential to improve the results that it is by definition used in nearly all metaheuristics, and

even the metaheuristics that do not explicitly define local search as their component generally

recommend its use (e.g. ACO) or can be extended to include local search (e.g. SA and GA)

[442, 470]. Basic algorithmic template and description of related ideas for local search are

briefly presented in Section 3.5.4. Local search is mostly an intensification component.

In most metaheuristics, there is no precise specification on how to implement the local

search, instead it is problem-specific and closely related to the neighbourhood definition. It can
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localSearch()

localSearchTabu(x,	xbest,	tabuList)	 localSearchVNS(x,	N		k	)

Figure 4.2: Local search operators evolution

be deterministic or stochastic. The basic version can be reused in almost any metaheuristic,

however to be usable with TS and VNS, the local search operator needs to be extended. In tabu

search, the local search needs to be extended by the tabu list functionality and ensure that it will

not go back to the solutions in the tabu list. The VNS metaheuristic requires implementation of

several different local search procedures, so that each uses a different neighbourhood definition.

This can be implemented by e.g. parametrising the current local search operator, so that the

neighbourhood size becomes a parameter, by implementing several procedures that use different

neighbourhood definitions or by combining these two approaches.

The evolution from the simplest to more complex operators is shown in Figure 4.2. The VNS

local search, denoted localSearchV NS() has two parameters: the neighbourhood definition to

use and the neighbourhood size. Having several neighbourhood definitions with neighbourhood

size as a parameter is generally a good practice, unrelated to VNS. Specific variants of such lo-

cal search can be plugged in into all other metaheuristics and tuned so that the best performing

neighbourhood definition size is selected. While VNS local search is reusable, the Tabu local

search, denoted localSearchTabu() is usually restricted to the use with the tabu search meta-

heuristic, except with hybrid metaheuristics. It has the tabu list and current best-found solutions

as arguments, in addition to the point around which to search.

4.4.3 Perturbation operator

The perturbation operator results in the diversification of the search. It introduces random

modifications to the solution without any regard to the objective function. It is used in SA, ILS,

VNS (where it is called a shake function), and GA (where it is called mutation).

The implementation of the perturbation is closely related to the neighbourhood definition of

the local search, and the intensity of the perturbation should be balanced with the intensity of lo-

cal search (if used) and other intensification components. While this operator can be developed

independently, due to close ties with the local search, it can be a good strategy to implement the

local search first. After the local search is finished, the perturbation can usually be implemented

in a trivial incremental way, by simply disabling the component that directs local search accord-

ing to the objective function and accepts first random change in the solution. This is illustrated

in Figure 4.3, where dashed line between the operators indicate that only minor effort is needed
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localSearch()

perturbation()Minor	change

Major	change

Figure 4.3: Perturbation operator evolution

to evolve local search to perturbation and convert the random restart local search into iterated

local search.

4.5 Bottom up development methodology

As described in 4.2 and 4.3, there exists no evidence in the available theoretical study, nor in

the empirical comparisons that more complex metaheuristics provide better performance and

higher quality results. At best, the results indicate similar performance, and at worst, there

exist empirical studies where simple techniques such as SA and ILS outperformed complex

metaheuristics such as GA and ACO.

These results bring the question of whether it is reasonable to use complex metaheuristics

like GA and ACO, when the same or better results could be attained using much simpler meth-

ods. Moreover, the literature indicates that performance-wise, selecting the right metaheuristic

is less important than having efficient problem representation, neighbourhood definition and the

operators based on problem-specific speedups. The time could be better spent by e.g. improv-

ing the local search procedure used in a simple metaheuristic such as ILS, than taking the time

to implement and tune a complete GA.

The bottom-up development methodology for the development of metaheuristics is an at-

tempt to resolve the above issues by providing a well-defined set of steps when solving a prob-

lem metaheuristically. It is a set of development principles with the following goals:

• Introduce a generally applicable, simple to use metaheuristics development methodology,

• Reduce the complexity of the development,

• Sistematise the existing established metaheuristics in a common framework for the devel-

opment and exchange of operators,

• Reduce the development time, number of staff, computational resources and cost,

• Allow balance between implementation cost and the quality of results.

These goals are especially suited for situations when there is limited time for the algorithm
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implementation, limited staff and limited computational capacity. It is a great option to bring

more order in metaheuristics implementation in both the practical applications as well as the

academic study, since efficient development is important in both fields. The bottom-up devel-

opment methodology uses the following design principles:

• utilising the component-based view of metaheuristics

• building complete components, in terms of each component being capable of returning a

fully specified solution,

• building reusable and compatible components, that share the solution representation code,

• starting the development with the simplest components,

• incrementally adding more complexity,

• assembling available components into complete metaheuristics,

• stopping with adding more complexity when the results are sufficiently good.

Using the bottom-up approach, the development starts by implementing the first complete

component: the simplest version of the initial solution generator. It continues by implementing

the local search, and finally the perturbation. In each step, the metaheuristic into which the

components are assembled can be selected based on the preferences, developer experience and

specific features of the problem. Most importantly, stopping as soon as the good performance

is achieved and achieve savings in the development time if the problem can be solved using

simple techniques.

4.5.1 Assembling metaheuristics from components

As described in more detail in Chapter 3, each metaheuristic is a loop that performs a sequence

of different operators (components), while remembering the best-found solution at all times.

Initial solution generator, local search and perturbation are common components, however not

all metaheuristics use all of them. Table 4.1 provides a breakdown of the components used

per various established metaheuristics. In the table, a component is indicated as required by a

bullet (•), and components that are not needed are indicated by a blank space (e.g. simulated

annealing does not use the local search). Bullets also indicate components that can be shared

across metaheuristics. For example, the local search used in GRASP can also be used in the

iterated local search, without any modifications. Still, there are some metaheuristics that require

specialised operators. These are denoted as “specific” in the table, e.g. GRASP and ACO

impose specific requirements on the solution construction procedures. While GRASP solution

construction could be used in other metaheuristics, the other direction does not hold. Likewise,

tabu search uses a specific version of the local search that is not compatible with any other

metaheuristic, unless a hybrid technique is being developed. Variable neighbourhood search

requires more than one local search procedure, which is denoted as “multiple”. Finally, SA,

ACO and GA do not require local search in their canonical definitions, however embedding it
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Metaheuristic Initial solution gen. Local search Perturbation

Pure random search •

Random restart local search • •

GRASP specific •

Iterated local search • • •

Variable neighbourhood search • multiple •

Tabu search • specific

Simulated annealing • optional •

Ant colony optimisation specific optional

Genetic algorithm • optional •

Table 4.1: Example of required components for various metaheuristics

in these metaheuristics is encouraged since it can significantly improve their performance. Such

cases when local search can be added is denoted as “optional” in the table.

From Table 4.1, it is visible that the initial solution generation procedure is needed for all the

considered techniques. Building the initial solution generator and only the local search proce-

dure provides the possibility to assemble a wide range of metaheuristics. This is further detailed

in Table 4.2, where a list of metaheuristics that can be built with several given combinations of

parameters is provided. ACO and TS are in parentheses in the table since they require more so-

phisticated versions of either solution construction or the local search, therefore requiring more

effort than building random restart local search and GRASP from the same components. As

presented in the table, having the initial solution construction and local search allows greater

flexibility in the metaheuristic selection than having only the initial solution construction and

perturbation. With all three operators, all of the above techniques can be assembled. Typically

these components need to be connected in a loop and adding some metaheuristic-specific code

is always needed. In simpler metaheuristics such as ILS, this is simple and typically includes

connecting the components according to the specification of the metaheuristic and keeping the

best solution found so far. However in complex metaheuristics such as ACO and GA it requires

more work.

4.5.2 Bottom-up workflow

The bottom-up workflow starts with the simplest and most basic components and gradually

adds more complexity, in incremental improvements. After each incremental development, the

current algorithm must be able to produce a complete solution to the problem. The solution must

not be of high quality in the early stages, however it must be a complete assignment of values
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Implemented components Possible metaheuristics

Initial solution generation procedure Pure random search

Initial solution generation procedure +
Perturbation

Pure random search

Simulated annealing

Initial solution generation procedure +
Local search

Pure random search

Random restart local search

GRASP

(Tabu search)

(Ant colony optimisation)

Table 4.2: Metaheuristics that can be assembled with different components

to each planning variable. This allows a rapid prototyping approach, where early proposals of

the system can be presented very quickly after starting the project.

After each incremental improvement, preliminary tuning, testing and performance checks

need to be performed. If it is a commercial project, it is recommended to have the customer

involved in each improvement, to allow early detection of issues. As soon as sufficient or near-

sufficient quality of the devised algorithm is attained, the final detailed tuning needs to be done,

and then the development can stop. The process can be viewed as a walk in a graph of possible

metaheuristics where each metaheuristic is represented by a node. Iitially, the process starts

with a random initial solution construction procedure, used in a pure random search. From

there, the recommended path is to first add the local search, then develop perturbation. With

these operators, the process moves from pure random search to random restart local search and

then to the simplest complete metaheuristics: iterated local search, grasp and SA+LS.

Earliest developments

The development starts with the two most basic components:

• implementing the objective function and the constraints,

• implementing the initial solution generation procedure.

Both components are needed to allow complete functionality of creating new solutions and

estimating the solution quality. Regarding the initial solution generator procedure, the simplest

version of the generation procedure is needed. In most cases it is the random initialisation of all

variables.

It is critical to implement the objective function as early as possible, especially in com-

mercial projects that have numerous complex constraints. Having the implementation of the

objective function at the start of the project helps with the implementation of all other com-
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ponents since it defines what the result of the algorithm will be. The objective function must

be combined with the appropriate solution representation, and it must be as fast as possible.

Therefore, the precise formulations of the objective function and constraints shape nearly all

details in the optimiser, from the earliest stages where the most efficient solution representation

and neighbourhood definition are selected to the final touches of various tuning procedures.

Having the implementation of the objective function early allows testing the initial solutions,

and it allows the developers to gain insight into the features of good solutions.

Another big advantage of having the objective function early is the fact that it is a precise

formal definition of the goals of the project. By including the customer in the process when

commercial projects are developed, discussing the results of the objective function and the way

different solutions are compared significantly increases the clarity of any communication when

features of the project are specified. Agreeing on the precise formulation for the constraints

can be a difficult management and communication issue, especially if people were performing

the task of the optimiser previously. The knowledge of people who were manually solving

the optimisation problem can be characterised as tacit knowledge, something intuitively clear,

however difficult to explain, formulate and implement in a software system.

Finally, having both the objective function and the initial solution generator defined and

implemented as the first thing in the project allows a rapid prototyping approach to be used

from the very start of the project. Solutions constructed by a random initialisation procedure

will most likely be of very poor quality. Still, they are complete solutions, that can be used

in other components of the system (e.g. the graphical user interface, and export modules that

convert it into various human-readable reports). Most importantly, it allows the users of the

product to be involved and track its evolution from the very start, this way allowing faster

responses to any changes that might be needed.

Simple techniques

Given the initial solution construction procedure developed in the previous step, it is possible to

very quickly develop search techniques, that while rudimentary, still have the most basic traits

of metaheuristics. By simple iteration of the initial solution generation procedure in a loop,

and keeping the best solution so far, it is possible to simply develop the pure random search,

probably one of the simplest optimisation techniques. Pure random search, described in more

detail in 3.5.1 generally does not perform well, however running it allows extensive tests of the

existing code as well as an early presentation of the results in the rapid prototyping approach.

When the initial solution construction procedure is ready and tested, the development can

continue by developing the next component. The next component to be devised can be either

the local search or the perturbation operator. Despite the fact that local search is generally more

difficult to implement than perturbation, unless the problem to be solved is very simple, it is
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recommended to implement the local search first. There are three reasons for this: (1) the local

search, allows significantly better results earlier in the project, (2) local search is sufficient to

build a wider array of metaheuristics, (3) perturbation is a trivial incremental step after the local

search operator is built.

Still, if the developers opt for the development of the perturbation operator, it allows creat-

ing a first complete metaheuristic. By perturbing a solution in a loop and accepting the solutions

according to the Metropolis criteria, it is possible to assemble the simulated annealing meta-

heuristic. Simulated annealing is a simple technique and in a narrow sense, simulated annealing

itself can be considered a local search technique. In the Handbook of metaheuristics, Delahaye

et al. state: It is therefore necessary to see the annealing as a mechanism for approaching the

global solution of a combinatorial optimization problem, to which it will be necessary to add

a local search method allowing an optimum to be reached exactly [370]. Therefore, it is com-

mon to complement it by the local search procedure to improve the results. In simple projects,

however, even the canonical SA might be sufficient to reach good results. If this is empirically

proven during testing, then the development can stop with SA.

Adding the local search

Given the

• initial solution construction procedure and a

• local search procedure,

it is possible to construct several search techniques, as seen in Table 4.2. The simplest one is

the random restart local search. With some more development effort, it is possible to implement

GRASP. If further development effort to devise metaheuristic-specific components is invested,

two additional techniques—tabu search and ACO can be constructed.

Random restart local search can simply be assembled by running a local optimiser on the

new random solution, and repeating the process in a loop. Random restart local search will

generally provide results superior to the pure random search. Still, as described in Section 3.6.1,

it is considered as a basic method due to the lack of focus. Local optima tend to be clustered in

combinatorial optimisation problems, therefore random restarts as the basis for local search are

too dispersed to provide good results.

In simple problems, especially if there is a large density of good solutions, this approach

might be sufficient. If not, implementing algorithms with better control of the search process is

recommended. Simulated annealing with local search is a popular extension of the simulated

annealing, with the ability to provide better results than the canonical SA [370, 442]. Another

possible direction is choosing either GRASP or tabu search and moving in the direction of these

two metaheuristic-specific operators.

The GRASP metaheuristic can be implemented by adding an improvement to the initial
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solution construction procedure. It needs to be converted from a pure random initialisation

to a randomised greedy algorithm. The recommended development course is to first develop

a greedy construction algorithm, then add the randomisation element based on the restricted

candidate lists, as specified in Section 3.6.2. It can be an attractive option if we have access to a

greedy algorithm or the problem definition allows trivial development of a greedy construction

procedure.

By extending the local search algorithm with the tabu list framework of tabu search, it is

possible to improve random restart local search to tabu search. This requires that the basic local

search procedure is extended to the localSearchTabu(x,xbest , tabuList) procedure adjusted to

the tabu search metaheuristic that has a description of the solutions that are prohibited as an

argument. In a basic version of the metaheuristic, a simple list of prohibited solutions needs to

be provided, however usually it is a specification of variables that must not be changed or classes

of transformations that should not be done. This implies that that solution comparison support

must be developed and that the corespondig classes of transformation can be checked. For

simple problems this is trivial, however in e.g. scheduling it involves working with complex data

structures and might require considerable and error-prone implementation effort. Additionally,

the aspiration criteria also need to be implemented in the extended local search procedure to

ensure that moves that improve the solution are not missed.

While GRASP and tabu search can be a good development direction, especially when the de-

veloper knows these techniques well, the bottom-up development methodology highlights that

developing better low-level operators can be a better investment than developing sophisticated

metaheuristics with complex operators and parameters that are difficult to tune. Developing the

third standard problem-specific component, the perturbation operator is much simpler, since

it can be a trivial simplification of the already existing local search codebase. Further, adding

perturbation allows development of any metaheuristic, since this way both the intensification

and diversification component is available. Therefore, implementing perturbation after local

search it is the recommended direction in this development methodology since it is simple and

allows assembling the developed components into virtually any metaheuristic.

Local search and perturbation

Given the

• initial solution construction procedure,

• local search operator,

• perturbation operator,

any established metaheuristic from Chapter 3 and any other metaheuristic that fits into the in-

tensification and diversification frame [162] can be developed. Simpler metaheuristics can be

assembled by simply connecting the developed operators in a loop. More complex metaheuris-
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tics require coding additional metaheuristic-specific elements. A good example of the simple

technique is the iterated local search as well as the variable neighbourhood search. Conversely,

the genetic algorithm uses all three operators as well, nevertheless the implementation of a

genetic algorithm also requires implementing the problem-specific crossover operator and pop-

ulation handling.

The iterated local search metaheuristic can be built by perturbing the result of each local

search in a loop, while keeping the best result so far. The most common acceptance criteria

(“random walk” and “best”) are trivial to implement, as discussed in 3.6.3. Along with sim-

ulated annealing complemented with local search and GRASP, it is the simplest metaheuristic

in terms of development effort that is also capable of producing great results. The variable

neighbourhood search can be implemented as a natural extension of ILS. To implement VNS,

several different local search procedures are needed, so that each has a different neighbourhood,

as detailed in 3.6.4.

Complex methods

The complex methods considered in this work are the genetic algorithm and ant colony opti-

misation. They require several components that are not used in other metaheuristics, in this

way limiting the reusability. They are population methods, that require more memory, this way

requiring more resources, which can be a problem when solving large problems and a large

number of evaluations which is a problem when solving problems with a limited budget of

evaluations. They can be difficult to tune.

The genetic algorithm can be developed based on initial solution construction and perturba-

tion, however, extending it to a memetic algorithm by using the local search as well can improve

performance (see Section 3.6.8). Along with these standard operators, genetic and memetic

algorithms need population handling code and a selection operator, as well as the crossover op-

erator. Since it uses numerous specific elements, it is not possible to create genetic and memetic

algorithm by simple modifications of other metaheuristics.

The ant colony optimisation metaheuristic is most similar to GRASP. It is a multistart

method based on randomised greedy solution construction. While the basic version uses only

the solution construction procedure, it is recommended to extend it using local search. The

metaheuristic does not use the perturbation operator. Using the bottom-up approach, ACO can

be built by extending the greedy algorithm, where solutions are built based on the heuristic in-

formation and pheromone traces of artificial ants. This requires a pheromone information data

structure to be implemented, usually as an appropriate graph. The highly specific solution con-

struction can be complex to tune since it depends on several parameters such as the pheromone

update function, algorithm variant, the range of values of the objective function, evaporation.
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4.5.3 Achieving high performance

In this methodology, it is highlighted several times that each prototype should be tested to

check if sufficient performance is achieved. The sufficient performance can be anything from

providing any solution at all, to outperforming people who were doing the task manually, to

outperforming worlds top solvers. An important goal of this methodology is to eliminate the

unneeded complexity and unneeded development effort and highlighting the potential of simple

metaheuristics to provide great results. This does not mean that applying the proposed method-

ology cannot produce top quality solutions. By allowing the developer to move in the direction

of higher complexity when the current results are not satisfactory, it allows building arbitrar-

ily complex methods, including exotic metaheuristics that are not explicitly mentioned in this

work, as long as they fit the I&D framework.

Another important recommendation is that once all three basic components have been built,

the development of the low-level operators is favoured instead of using more complex meta-

heuristics. As an illustration, let us consider a scheduling problem that involves scheduling the

staff in a set of 1-hour tasks, so that some employees always must be grouped in the same team.

Also, let us assume that we have a very early version of the ILS metaheuristic with a basic local

search operator that moves one person at a time across different tasks. What would be better—

to invest time to build a more complex metaheuristic such as ACO, or invest time to improve

the local search operators. From the author’s experience, as well as some other researchers, the

answer is almost always—”improve the operators” [585].

With enough time, any metaheuristic will eventually arrange the employees in a way that

does not split the teams across different tasks. Nevertheless, the above version of the local

search is inefficient. Moving a single person at a time, without considering that some need to

be grouped will have a local neighbourhood in which groups will frequently be split, especially

if a group is big. A simple improvement to our ILS algorithm would be modifying the solution

representation so that the groups are viewed as a single unit. Then the local search and all other

operators would always move these groups together. This way, the algorithm would be able to

focus on the difficult parts of the problem and it will not have to waste time discovering trivial

problem specifics.

While any metaheuristic will eventually adapt the solution to respect the constraints, meta-

heuristics can be slow in such discoveries. Instead of burdening the algorithm with the task of

discovering the knowledge that can be simply encoded into the operators, it is much better to

add this knowledge to the operators. Metaheuristics are very general problem solvers, therefore

more complex search procedure will typically add fewer benefits than adding more problem-

specific features to the operators. In the above scheduling problem, using ACO instead of ILS

will have the same problem as long as the solution representation is inefficient and groups are

split.
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4.5.4 Agile development

The methodology proposed in this work is more compatible with contemporary software de-

velopment methodologies such as agile software development and rapid application develop-

ment (RAD). It is more consistent with the shorter release cycle, iterative product development

and gradual product evolution, which are the basic ideas in the agile software development

methodologies. It is suitable for the prototyping approach in which prototypes of an optimisa-

tion algorithm are continuously improved in cooperation with the users or customers. Finally,

complexity is a common issue in implementations of metaheuristics, therefore the proposed

methodology puts a great emphasis on keeping the implementation as simple as possible.

These practices can allow greater flexibility in the development and project management,

and embrace the fact that in the real world, software specification is often subject to change.

Instead of viewing the implementation of the algorithm as a single big task, it facilitates the

component-based view that promotes splitting a big task into smaller ones. Finally, it avoids the

frequent practice of implementing complex metaheuristics, when the same task could be done

with much simpler.

Comparison with traditional top-down and waterfall approach

Nearly all literature in metaheuristics implies the waterfall approach, in which there is an imple-

mentation phase and production phase, and the implementation effort is nearly always ignored,

mostly implicitly, and in rare cases, also explicitly [557]. This corresponds to the waterfall

software development methodology in which a problem is first completely specified, then the

implementation is done in predefined steps, so that the next step proceeds only after completing

the previous. This approach works well in e.g. construction engineering, however it is criti-

cised as not sufficiently flexible for software development. While this is acceptable in academic

study focused on e.g. improving the process of tuning, such an approach ignores the prob-

lems described in this work: unjustified complexity in the algorithms which promotes slow and

expensive development.

Consider e.g. the guidelines for implementing ACO published in 2004 in the excellent book

[124] by Marco Dorigo (redacted):

1. Represent the problem in the form of sets of components and tran-

sitions or by means of a weighted graph, on which ants build so-

lutions.

2. Define appropriately the meaning of the pheromone trails. This

is a crucial step in the implementation of an ACO algorithm and,

often, a good definition of the pheromone trails is not a trivial task
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and typically requires insight into the problem to be solved.

3. Define appropriately the heuristic preference for each decision

that an ant has to take while constructing a solution.

4. If possible, implement an efficient local search algorithm for the

problem to be solved.

5. Choose a specific ACO algorithm and apply it to the problem being

solved, taking the previous aspects into account.

6. Tune the parameters of the ACO algorithm.

The above workflow is an example of a waterfall process of implementing a software project,

common in literature about metaheuristics. Since the publication of this book, the waterfall

approach has been widely abandoned in software engineering, in favour of more agile methods

. Understandably, given that the book is about the ant colony optimisation algorithm, it assumes

that the developer will implement ACO.

The drawbacks of the approach presented above is the fact that a complete solution to a

problem can be produced only after step 4 (or 5 if local search is not used). Before that, several

complex and problem-specific steps must be done, which indicates that this might not be a quick

process. It also implies that the development of components such as graphical user interface

either must wait or must be done with limited set of artificial solutions until steps 4 or 5 are

done. If local search is used, this approach ignores the fact that experiments with simpler

methods can be done as soon as we have developed the local search. The literature is still widely

segmented into different metaheuristics. Therefore almost all methodological recommendations

in the literature are similar—based on the assumption that the method to be implemented is

already selected and then based on the fact that the problem is fully specified and that the

problem definition will never change.

Contrary to the waterfall model above, using the methodology proposed in this work, the

user can be presented with early prototypes as soon as the initial solution generating procedure

is finished. Since random initialisation is trivial, this can be done very quickly. The graphical

user interface as well as e.g. export to OpenOffice format can be implemented in parallel as both

teams can be provided with numerous complete solution objects. The integrations team can plan

the web service endpoints for the system and test all layers of the application. No component

is implemented unless necessary and there is no need to wait for very long development cycles

to see a result of the improvement that is currently being worked on. There is no complexity

and development time invested unless justified by performance reasons. Finally, the process

assumes that a customer might change the problem definition during the process. By attempting

to detect parts of the system that need to be changed as soon as possible, using the prototyping

approach, it allows implementing changes while the system is yet incomplete and there was not

much effort spent into all the final details.
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4.6 Conclusions and future research directions

This work is an effort to reduce the dichotomy between academia and software industry, and

reduce the gap between the output of a successful academic research project and the needs of

practitioners. Current research is still in great deal segregated in independent units focused on

individual metaheuristics and improving efficiency. Further, the current research typically does

not devote much attention to the issues of high effort that is required to achieve good results in

practice. Conversely, the software industry is typically not interested in the best possible results

and highly complex (and expensive) methods. Instead, it needs the balance between quality and

the cost of development. The development methodology proposed in this work can provide this

balance, and great savings in the generally expensive process of metaheuristics development.

Finally, the methodology is more compatible with modern agile software development method-

ologies, allowing small incremental changes and a quicker response to changing requirements.

Instead of building complex method-focused systems, the methodology emphasises minimum

complexity that allows satisfying performance, and a component-based view, where individual

components can be assembled and reassembled in different ways.

The next chapter gives a description of the application of this methodology to solving three

difficult problems:

• Workforce scheduling in small inbound call centres,

• Improving the carsharing reservation service, and

• Improving the profitability of carsharing services by variable trip pricing.

In all three cases, adding more complexity stopped when sufficiently good results were achieved.

The results show that the ILS metaheuristic was sufficiently flexible in solving all three prob-

lems in a satisfactory way. These results are consistent with findings of [320], which indicated

that even the very simple metaheuristics could be highly efficient problem solvers.

A very interesting future work direction is resiliency to changing requirements, which is

dealt with in a limited way in this work. Development of techniques that increase the robustness

of metaheuristics to adding constraints and modifications in solution representation would help

increase adoption of metaheuristics by the practitioners. Additionally, development of such

techniques can provide valuable insight into the behaviour of various metaheuristics and the

interactions between the metaheuristic and solution representation, which would add great value

from the academic point of view.
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Applications

This Chapter describes three case-studies in which the bottom-up development methodology

proposed in Chapter 4 is applied to build metaheuristics for solving three difficult problems:

• Call centre workforce scheduling problem in small and medium call centres,

• Carsharing reservation system service quality and profit optimisation,

• Dynamic pricing optimisation problem in one-way carsharing.

Each of the above problems is a discrete, constrained, deterministic optimisation problem. The

first problem, call centre workforce scheduling problem is a highly constrained scheduling prob-

lem, while in the second two, the constraints are few and very simple. Contrary to the con-

straints, the first problem has a simple objective function that can be calculated very quickly,

therefore allowing short solving times of typically 30 seconds per problem. The second two, and

especially the last problem have a slow objective function. These problems are solved using an

approach where each solution is evaluated by simulation. For large problems, this process can

last several minutes, therefore limiting the total number of possible evaluations. The first and

the last problem are single-objective problems, whereas the second problem is a multiobjective

problem.

The first problem, call centre workforce scheduling problem is a complex scheduling prob-

lem, consisting of a large number of constraints. The problem is solved using two metaheuris-

tics: GRASP and ILS, and the results are compared. The work was presented on the EvoAp-

plications, European Conference on the Applications of Evolutionary and bio-inspired Compu-

tation held in Porto, Portugal 30 March - 1 April 2016. The detailed report is published in the

conference proceedings available in [395].

The second two problems are related to carsharing. Carsharing is a service that consists

of a fleet of vehicles available at various locations across the service area that can be used by

a large group of the service members and is typically charged by minute or by the hour [586].

The carsharing reservation system improvement problem solved using the ILS metaheuristic is

a multiobjective problem in which the profit of the provider and the service quality provided
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need to be balanced. Along with the successful solution of the problem, the research also re-

sulted with a first technique that can provide long-term reservations in one-way free-floating

carsharing systems. The simulated results significantly outperform the reservation times avail-

able in the contemporary carsharing providers. The results are published in the Transportation

Research Part C: Emerging Technologies journal [182].

In the third problem, the carsharing system is improved by introducing variable pricing for

customer trips in a one-way station based carsharing systems. To the best of author’s knowl-

edge, this is the first application of ILS metaheuristic to a problem with a limited budget of

evaluations. Variable pricing is an attractive option to guide customer behaviour used in various

industries, including transportation, however their use in carsharing has been limited. It was

hypothesised that by lowering the prices for trips that help the system and raising the prices for

the trips that are not favourable under current conditions, it is possible to improve the system

performance. These improvements could include better fleet balance, as well as higher total

profit, nevertheless this potential of pricing was not proven in rigorous research of one-way

carsharing, nor the practice. The simulation results indicate that significant profit and balance

improvements can be achieved using this approach. For example, the proposed metaheuristic

was able to turn a simulated Lisbon carsharing provider struggling with losses into a profitable

service that produces more than 1000 C of profit per day. The results of the research are pub-

lished in the journal Transportation Research Part B: Methodological [181].

By applying the development methodology on three diverse problems, it is shown that the

methodology is flexible enough to allow solving difficult problems, including those with slow

evaluation function, while still resulting in simple metaheuristics. The remainder of this Chapter

first brings the results of applying the bottom-up development methodology on the call centre

scheduling problem. Then, in Section 5.3 the carsharing reservation problem is described in

detail. The chapter concludes with the description of the ILS metaheuristic for the one-way

carsharing variable pricing problem.

5.1 Workforce Scheduling in Inbound Customer Call Cen-

tres 1

Nearly all types of human organisations occasionally face scheduling problems. Staff schedul-

ing is a classic operations research problem that consists of assigning a set of employees to a

set of working times, subject to various constraints and with the goal of finding the schedule of

1This section is based on the previously published paper: “Workforce Scheduling in Inbound Customer Call
Centres with a Case Study”, in the proceedings of Evo* 2016: Applications of Evolutionary Computation, 19th
European Conference, EvoApplications 2016, Porto, Portugal, March 30 – April 1, Part of the Lecture Notes in
Computer Science book series (LNCS, volume 9597). Copyright is held by Springer International Publishing
Switzerland 2016.
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the best quality. Such problems are 𝒩𝒫 − hard [199, 329, 587] in their very simplest forms,

which imposes tractability issues and renders them difficult to solve efficiently. Contact centre

staff scheduling is an example of this type of a problem [339, 587, 588, 589].

Call centres are an instrument many companies use for communication with their clients.

They are commonly used to provide technical support, perform sales, handle various customer

inquiries etc. They typically consist of a centralised pool of trained staff members called agents.

When a customer dials the number of a company, if there are available agents in the centre, her

call is answered immediately. However, if all staff members are busy at that moment, the

customer will have to wait in the queue until an agent becomes available. Long waiting times

can cause customer dissatisfaction and it is critical to keep the waiting times as low as possible.

This relates to the typical goal of a call centre, achieving high service levels. On the other hand,

to keep the operating cost reasonable, hiring too much staff is also undesired.

In a traditional call centre, staff members are communicating exclusively via telephone.

With the increasing popularity of the Internet, many companies added support for other means

of contact, such as e-mail or chat, extending call centres into their contemporary generalisation

called contact centres. Contact centres support several communications channels, and typically

include e-mail, online chat and telefax aside from the usual phone. Based on the number of

supported channels, centres can be multi–channel or single–channel. Centres that are answer-

ing, but never actively initiating communication are called inbound contact centres. Conversely,

centres that are only initiating communication are called outbound contact centres. If both an-

swering and calling are performed, the service is classified as a mixed contact centre. With

regard to the staff skills, a contact centre can be single–skilled or multi–skilled. In a single

skilled centre, all of the employees have the same training and theoretically, provide a homo-

geneous service level, independent of the agent. In a multi–skilled centre, there are various

profiles of agents, depending on their skill sets. Good workforce schedule needs to organise ex-

isting staff into schedules that keep the service level as high as possible while taking legal and

organisational constraints, as well as personnel preferences into account. Such staff schedules

will not have too much staff members available during low intensity hours since it is expensive

to have idle agents at work. Conversely, good schedules will not have deficit of agents at peak

hours to keep the customer satisfaction high. Ideally, all of the incoming calls will be answered

immediately and staff utilisation rates will always be high.

In this work, a call centre scheduling algorithm is proposed. It is suited for the needs

of a small to moderately sized single–skill inbound call centres. The system is based on a

flexible constraint management framework that allows easy addition of new company–specific

constraints and two robust, scalable metaheuristics. The system is used in two steps. First,

forecasting is performed, based on the call history in order to estimate the distribution of

calls during the next scheduling period. The forecast demand is used to calculate the distri-
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bution of staff during time, that ideally meets the demand and the service levels during the

scheduling period. After the forecasting and staffing curve estimation is done, schedules are

generated using an optimisation algorithm that searches for the schedule that best fits the fore-

casted calls. Related work proposes a diverse range of techniques such as dynamic program-

ming, linear, quadratic and mixed integer programming and relaxations of the linear programs

[325, 327, 332, 333, 334, 335, 336, 337, 338]. Several heuristic methods are also proposed

[590]. However, the aforementioned work is focused on the optimisation part and less on the

constraints imposed by the organisation. As an exception, a hybrid heuristic approach with sev-

eral techniques, including an algorithm inspired by simulated annealing is described in [339]

and applied to a real–world problem. Constraint handling appears to be performed through the

means of the objective function, therefore defining them as ranked soft constraints that can be

violated in final solutions. In [327, 332], an integer program is solved using an iterative cutting

plane method with evaluations based on simulation while in [591] the the problem is framed as

a mixed integer stochastic program. A detailed literature review on staff scheduling, including

specifics of call centres, is available in [325].

Using the incremental metaheuristics building methodology proposed in previous Chapter,

two metaheuristics were built: GRASP and iterated local search (ILS). These two metaheuristics

were, to the best of the author’s knowledge, never successfully applied to this type of problems.

As compared to related work, this problem is a highly constrained example of a real world

problem. A flexible constraint handling system is a highly prominent feature of the system.

Moreover, the implemented approach deals with the constraints differently than any other pro-

posed method the author is aware of. Instead of implementing them in the objective function as

in [339], devised a rule based assurance system is devised in each component of the algorithm.

In that manner, hard constraints are guaranteed to be satisfied in all of the solutions throughout

the execution.

As noted in [592], a noticeable gap was observed between the research output from academia

and the needed expertise that can be directly utilised by the industry. Solving real problems is

difficult since it necessitates modelling and handling various kinds of constraints which are usu-

ally simplified in academic problems. This work aims to contribute to bringing the worlds of

academia and practical implementations closer together.

5.1.1 Problem Description

The call centre workforce scheduling problem (CCWSP) is a scheduling problem whose goal

is to maximise the service level while satisfying all the imposed constraints. The service level

is typically defined as a combined measure consisting of (i) a percentage of answered calls

(more is better) and (ii) percentage of dropped calls (less is better) during a time period. In the

developed algorithm, schedules are typically generated one month ahead, with adjustable target
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service levels. Times are quantized, with the minimum quantum duration given as a parameter

and 30 minutes is used in this case study. If needed, finer granularity could be used. This

naturally means that the optimisation problem might be more complex.

The problem is defined as an ordered triplet:

CCWSP = (S,sd(t),C),

that consists of a set of staff members S, the desired staff number during time sd(t), calculated

based on the demand, and a set of constraints C. The set of staff members is a fixed set of

workers at the contact centre, with their permanent workplace designated for each staff member.

Seating and workplace assignment is therefore not a part of the optimisation problem. Each staff

member is defined by its identifier in the system and the relevant staff data is stored in a suitable

database.

The ideal staff distribution sd(t) : N → N is a function which defines a minimum number

of employees needed at time t, in order to achieve the desired service level. As the frequency

of calls varies throughout the days of the month, staff number that is needed to handle such

demand will also vary. In this case study, based on the preliminary interviews with a call centre

in Zagreb, Croatia the demand peaks are usually experienced afternoon, and they are most

prominent on Mondays, as seen on Figure 5.1. Much fewer calls are placed during weekends,

requiring noticeably less workforce.
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Figure 5.1: An example staff distribution curve for one week (Mon-Sun) [395]

The set of constraints is derived from the labour law in Croatia, company specific policies

and regulations. Furthermore, it’s easy to notice that many of the constraints were defined out of

a desire to keep the employees satisfied, by giving them as much flexibility as currently possible.

Most of the constraints are related to a single worker but there are some, that are dealing with

an aggregate number of working staff during weekends.

Contact centre constraints include:

• Contact centre open hours, e.g. centre is open 7:00–21:00 during working days, 07:00–

17:00 during Saturdays and closed Sundays and holidays.

• Shifts intervals (e.g. morning shift arrivals from 07:00 - 10:00).
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• Maximum allowed daily work time (legally defined to be 8 hours).

• Minimum daily break, defined as the time between consecutive presences at work, (cur-

rently 12 hours as defined in the Croatian labour law).

Basic staff constraints include:

• Suitable arrival times (some workers can only work in the morning while some can work

anytime – during the morning, afternoon and night shift).

• Suitable working days (e.g. some workers work Mon-Sat, some Mon-Fri).

• Duration of the work time (can be adjusted for each day of the week and holidays, e.g.

worker can work 8 hours Mon-Fri and 7 hours on Saturdays).

• Prearranged absences (vacations, free days, sick leaves).

• Prearranged presences (a manager might arrange some activities in advance).

Some company specific constraints include:

• Workers arrive to work at the same hour throughout Mon-Fri.

• The weekend schedule is independent of the work day schedule.

• Simple night shift rotation rules are supported for the night shift staff.

• The night shift order is defined as an input, with a different staff member assigned to

the night shift in each period. This defines night shifts as a specific case of prearranged

presences.

• Employees working on Saturdays need to have at least two working Saturdays, if needed

(during 5 Saturday months), an employee can work three Saturdays, but only if he or she

didn’t work three Saturdays during the previous month.

• Shift work (soft constraint) – employees working in both morning and afternoon shifts

need to have at least 5 days in each, to ensure they are entitled to their monthly shift work

bonus.

• To ensure equal service levels during weekends, number of staff members during Satur-

days needs to be roughly equal.

• Unpopular shifts constraint: an employee cannot be scheduled in unpopular shifts (e.g.

14:00) during two consecutive weeks.

• Highly unpopular shifts constraint: a list of short time periods that are considered the most

unpopular among staff. A staff member can be assigned to work during the unpopular

shift only one week per month at maximum. In this work, the most unpopular arrival

times were the mid–day periods at 10:00, 10:30, 11:00 and the late afternoon at 14:00.

Solutions that satisfy all of the above constraints are called feasible solutions. Violation of

any constraint other than the shift work constraint renders the schedule unsuitable for use and

such solutions are therefore considered infeasible. While these constraints are highly specific

for the case study call centre, the implementation of the constraint management system is mod-

ular and parametrised, in order to enable easy integration into similar call centres and further
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customisation. The input to the scheduling system is an XML document which includes infor-

mation about employees, ideal distribution and the constraints for the scheduling period. While

such files can be edited directly, end users are accessing the system through a suitable graphical

user interface.

5.1.2 Methodology Overview

Similarly to related approaches, the process of scheduling the contact centre workforce is per-

formed in three stages: (1) forecasting, (2) staffing and (3) scheduling. Unlike in [335], schedul-

ing and rostering is both done in the same stage and performed by the metaheuristic. In the

remainder of this Section, the first two stages will be briefly described, while the scheduling

algorithm is elaborated in detail in the following Section. The typical workflow starts by the

contact centre manager telling their staff to enter their preferences and absence days in the

scheduling system through the staff version of the user interface. Call centre administrators

then make further adjustments such as setting up the target service level and constraints, using

the administrator version of the user interface. In this stage, the S and C component of the

contact centre scheduling problem are defined.

The ideal staff distribution sd(t), however, isn’t known in advance and depends on the num-

ber of calls received during the upcoming scheduling period. The call forecasting is based on

the inbound call records from the activity history. Currently, apply a simple forecasting model

is applied, where it is assumed that the calls for the current month will match the inbound calls

during the same month previous year. To further refine the forecasting and account for the dif-

ferences among days of the week, the forecasting system automatically aligns working days for

the forecasted month with the working days of the reference month. In that way, working days,

weekends and fixed non working days are aligned. For example, call forecast for April 2016

based on April 2015 call history, will be shifted two days ahead as April 1, 2015 is Wednesday

and April 1 2016 is Friday.

The greatest variation in the volume of calls is dependent on the day of the week and the

season of the year. Aside from already mentioned weekend–work day load intensity differences,

late December peaks and low–intensity summer weeks are common in this work and this pattern

repeats every year. Therefore, even such a simple model provided a good estimate of the future

calls.

After forecasting, the staffing is performed. It consists of determining the ideal staff distri-

bution for the upcoming period. Since the assumption is that the call centre has a single queue

and is single–skilled, there is an analytical solution to calculating the number of necessary staff.

This calculation is computed using the Erlang-C [588] formula. An example of an ideal staff

distribution curve calculated by the system for an example real–world week is shown on Figure

5.1. As discussed earlier, it is visible that Monday has a considerable peak but also that only
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a few staff members are needed to successfully handle the weekend calls. The user interface

allows further manual staff distribution curve adjustments as specific events such as promotions

of new services might change the demand.

After defining an ideal staff distribution, it is needed to find the workforce schedule that

matches this distribution as closely as possible. Due to the complex constraints and tractability

issues, devising a direct algorithm for the problem is difficult. Therefore, it was decided to use

a metaheuristic approach.

The bottom-up development methodology proposed in this work was used to first build

a random restart search based on the initial solution generator. After this, the local search

operator was used to produce the GRASP metaheuristic. Surprisingly for the author, the call

centre experts that were consulted for this work considered even this simple metaheuristic as

working well enough. For research purposes, after a simple modification component was built,

some experiments were performed with the iterated local search algorithm.

Constraint assurance and Prototyping Approach

While general ideas about the constraints were agreed upon before the project started, they

were not detailed enough to allow simple translation into scheduling rules that can be imple-

mented in a software product. The goal was to produce a scheduling system that is able to

respond to a plethora of possible events in a highly sophisticated way — in essence, acting as

a replacement for the human that was in charge of scheduling. Agreeing on the definition of

the necessary constraints for the workforce scheduling system is a difficult management and

communication issue. The knowledge of the persons who were manually scheduling the work-

force can be characterised as tacit knowledge, something that is intuitively clear, but difficult

to explain, formalise and automate. Therefore, a prototyping approach was chosen. Prototypes

of a scheduling system were presented on regular meetings with the call centre management

and further improvements were discussed and agreed upon. Since the definition of the problem

varied through time, a flexible constraint assurance system was needed.

The author decided to use a system in which all of the constraints except one are satisfied

throughout the search process. The only exception is the soft shift–work constraint that was

added later and is a combinatorial optimisation problem on its own, in current version partially

solved by postprocessing. The devised system is a modular object oriented set of classes and

interfaces written in Java and based on the observer design pattern. Such approach, that was

to the best of the author’s knowledge first used in [593] is a natural way to implement complex

interactions of various constraints as scheduling events are occurring. In this approach, each

staff member is a subject, to which an arbitrary set of constraint objects (observers) can be

added. After scheduling an agent to a certain time slot, all of the observer objects (constraints)

assigned to him/her are notified. After receiving the scheduling event notification, each observer
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updates the list of suitable times for that staff member to reflect the effects of each schedule

change.

Using the described architecture, the lists of allowed time intervals are constantly main-

tained by the observers. In each search step, the algorithm can easily determine which quanta

are suitable to schedule a staff member by performing a simple querying of the feasible times

list.

For example, the unpopular times constraint removes other unpopular times throughout the

previous and next week for that staff member if it receives a notification about scheduling in an

unpopular period. Removed time quanta are “invisible” to the search algorithm in the remainder

of the run, thus further reducing the size of the search space. If a new type of a constraint is

needed, it is easy to implement – it is enough to provide an implementation of the observer

interface and simply plug it in the rest of the system.

5.1.3 Scheduling Algorithm

In this Chapter, a GRASP (Greedy Randomised Adaptive Search Procedure) [134] and iterated

local search [594] metaheuristics to solve CCWSP are elaborated. The GRASP metaheuristic

uses a solution construction component and local search to build different locally optimal so-

lutions while keeping a record of the best so far. Iterated local search (ILS) is a simple but

effective metaheuristic that systematically explores close proximities of known good solutions

using the local search operator while avoiding being stuck in local optima by the means of a

perturbation operator.

The complete solution algorithm works in three stages: (1) preprocessing, (2) work day

scheduling, (3) time scheduling. In the first step, preprocessing is done to find misconfigurations

in the input problem and handle prearranged presences and absences. Working days are then

split into statically and variably scheduled days. For statically scheduled days, the schedule

is known in advance. Such days are not subject to optimisation and are not modified by the

algorithm.

After the preprocessing, weekend working days are chosen using a direct, feasibility–preserving

heuristic that determines which Saturdays and Sundays a person is working. When all the work-

ing days are known, the solution representation data structures are built. Since staff always

comes at the same time Monday – Friday, in most cases Monday can represent the remain-

ing four working days as well. Such preprocessing significantly reduces the dimension of the

search space. After building the solution representation, the working days are known, however,

the schedule is still empty as variable working times are yet to be determined by the optimi-

sation algorithm. It is clear that scheduling a staff member at the time t during the day d has

consequences for the work times during the remainder of the month due to a complex set of

imposed constraints. To ensure that complete schedules are feasible, the robust and extensible
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constraint assurance system described in the previous Section is used. As already mentioned, in

the current implementation, throughout the search process all except the shift work constraint

is always satisfied.

Objective function

An ideal timetable will have exactly sd(t) staff members available at time t. As ideal staffing

curves frequently have short spikes and irregularities (Fig. 1) and the typical working time is

around 8 hours, it’s generally impossible to achieve absolute accordance to the ideal curve. The

objective function evaluates how close the real staff distribution is to the ideal one.

In the proposed objective function, a penalty is defined for each candidate schedule as a sum

of penalties for all time quanta in the schedule:

p =
tmax

∑
t=0

(sd(t)− s(t))2,

where tmax is the last quantum in the scheduling period and s(t) is the number of staff in the

generated candidate schedule, as opposed to the goal number of staff members sd(t) during time

t.

Note that the number of missing staff is squared. The rationale for such objective function is

the decision to emphasise bigger deviations from the desired curve. For example, let us compare

a schedule with one man–hour missing during 5 hours, one per each hour and a schedule with

5 man–hours missing during one hour. For that day, they both have a total of five man–hours

missing. However, a lack of one person is hardly noticeable in the call centre while lack of

five people has a significant impact on the service quality of a small centre with 30 employees.

Squaring the number of missing persons helps emphasise this effect. A bigger difference from

the ideal staff distribution means bigger penalty and lower solution quality. The best possible

solution would perfectly follow the ideal distribution and have a penalty of zero.

Random solution generator

The random solution generator uses the described constraint assurance system to produce an

initial solution in which all of the working times are chosen randomly from a set of feasible

times. The scheduling is done sequentially, for all of the working days in the schedule, for

each staff member that works on that day. As each scheduling decision is made, the constraints

handling system is keeping updated information about which working times are suitable for the

employee. As the schedule is having more working times determined, less and less time inter-

vals are suitable, since many constraints contradict each-other. In the case of a failed constraint

setup for an employee, that employee’s schedule might be empty due to a constellation of con-
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flicting constraints which caused the feasibility checker to determine that no working hours are

suitable for the staff member. In such cases, users are advised to carefully inspect the setup for

that person or ask for help from the support team.

Local search and perturbation operators

Local search is a simple greedy operator that tests if moving a staff member earlier or later

during the day helps make a better schedule. It can operate only on feasible times and does

nothing if the current time is the only one that’s feasible. Local search is performed for each

staff member, for each day in the search space. The local search operator has one parameter:

number of passes through the entire schedule. If the number of passes is set to 2, the local

search algorithm will be performed twice.

To promote unbiased discovery of good solutions, the order in which local search is applied

on staff members is randomised. In that manner, unfair schedules are avoided, since initial

solutions tend to have a different distribution than the goal staff distribution. For that reason,

some favouritism was discovered as the agents that were first to be optimised had a tendency to

be scheduled to unpopular afternoon times when the demand is, in general, higher.

The perturbation operator introduces random changes in the solution, which might both im-

prove or decrease the solution quality. Perturbation operator has one parameter: the percentage

of staff members for which the schedules will be modified. For each staff member, and for each

time in the dynamic schedule, a random choice of a feasible work time is performed.

Random restart search

After implementing an initial solution generator, a trivial random restart search metaheuristic

can be easily implemented by running it in a loop. It is frequently used as a baseline to check

initial versions of more advanced algorithms. The more advanced algorithms should, at their

very least, be able to significantly outperform random restart search. As the end condition, a

timeout is used, currently fixed to 30 seconds, as described in Section 6.1.

GRASP and Iterated Local Search

An initial solution generator and the local search are sufficient to assemble an implementation

of a GRASP metaheuristic [134, 343, 364, 595]. It starts by building a random initial feasible

solution, on which the local search operator is applied. After that, the procedure is repeated,

all the time keeping a record of the best solution found so far. The algorithm pseudocode is

given in Algorithm 1. As the end condition, a timeout is used, currently fixed to 30 seconds, as

described in Section 5.1.4.
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Adding the perturbation operator to initial solution generator and local search makes it

possible to assemble the iterated local search metaheuristic. It uses the perturbation opera-

tor instead of generating entirely new solutions to escape local optima. As with the previous

two approaches, a timeout of 30 seconds is used. The algorithm pseudocode is given in Al-

gorithm 2. In this implementation, perturbation is always applied to the last local optimum,

therefore, the author selected the random walk acceptance criterion for the iterated local search

[343, 364, 594].

5.1.4 Results

The proposed metaheuristics are implemented in Java 1.8 programming language. During the

experimental evaluation, a series of experiments was run on a problem instance that is consid-

ered to be an appropriate representative of an usual scheduling problem in a small call centre.

The problem has 32 staff members under a typical workload for a one month period. In that

example, the call centre is open 7:00–21:00 during working days, 7:00–20:00 on Saturdays and

closed Sundays and holidays. Most staff members have 7 hours work time Mon–Fri and 5 hours

work time during Saturdays. Total of 13 staff members is using their absence days, 58 days in

total, with most of them absent for a week (6 days). There are no public holidays in this month.

Time quantum duration is 30 minutes. This example is representative for most other examples

that were encountered during the development.

All experiments were run on a computer equipped with a 2.4 GHz Intel Core i7-4700HQ

processor and 16 GB of RAM. The algorithm was running using Java 1.8.0, subversion 25-b18

runtime environment. First, the initial tuning of the termination criteria was performed. Then, a

detailed parameter tuning for the local search intensity and perturbation parameters (ILS only)

was done with the best–found termination run time. Finally, ILS and GRASP performance was

compared with the baseline random restart search and with each other’s performance.

Termination condition

It was decided to use the allowed execution time as the termination condition. This termination

condition allows a consistent user experience and near–real–time way of using the system. Be-

fore doing the tuning process, the author wanted to decide on the allowed time and performed an

initial tuning step to investigate the influence of execution time on the performance. Typically,

when running a metaheuristic, there is an initial period of fast improvement that soon starts to

slow down. After a certain point in time, the improvement rate becomes slow to none and the

task of termination time tuning was to determine the time which will allow the algorithm to con-

verge but not waste the effort if improvement rates drop too low. Initial experiments have shown

that increasing the GRASP running time from 1 to 10 seconds gives a quality increase of only
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6% and that 30 seconds runs give approximately the same quality as the 10s runs. Therefore,

the termination criterion of 30 seconds is selected as a tradeoff between comfortable waiting

time and scalability.

Parameter tuning

Most metaheuristics have various parameters that need to be set to a certain value. While a quick

setup with parameters chosen by the developer’s intuition might work well, parameter tuning

based on experimental evaluation is an essential part of the metaheuristic implementation. It

ensures that the parameters are adapted to the problems representative of those being solved

by the final version of the algorithm and, therefore, provide the best possible performance in a

production setting [542].

During the GRASP tuning, experimental evaluation consisted of determining the best local

search intensity. Running the local search multiple times after each initial solution is con-

structed might improve the solution. However, focusing on local search too much will cause

the search procedure to get stuck in local optima too frequently and not exploring the search

space thoroughly enough. A total of 8 experimental setups was evaluated ranging from 1 to 500

iterations, with 30 algorithm runs for each of them, as displayed in Table 5.1. The best average

performance was achieved with only 5 iterations, proving that the local search operator is able

to reach the local optimum in a rather low number of passes through the solution.

Iterated local search tuning consists of finding a balance among the local search and the

perturbation operator. The intensity of the perturbation should be high enough to ensure that

the local search operator doesn’t return back to the initial solution, yet not too high, to prevent

the algorithm from degrading to random restart local search [594]. For each of the 4 different

perturbation configurations, 8 different local search intensities are evaluated, leading to a total

of 40 different setups. The average performance for 30 runs of each setup is shown in Table 1.

Similarly to the GRASP local search tuning, the results show that the local search converges to

the local optimum after a relatively low number of passes. For the perturbation intensity equal

to zero, the algorithm degrades to infinite local search around the initial solution, leading to

clearly suboptimal solutions. Changing 20% of the solutions (the percentage of staff members

affected with perturbation) with 10 iterations of LS has produced the best results. Setting the

perturbation to higher values produces worse solutions, but only slightly, since the LS operator

is able to reach good solutions even with very high perturbation rates. The reason for such

effect might be the fact that a large number of restrictive constraints prevent the operator from

changing the solution to a great extent.
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Table 5.1: Metahruristic tuning results [395]

GRASP tuning

LS passes Average penalty

1 14802

5 14582

10 14760

20 14951

50 15188

100 15278

200 15716

500 16263

ILS tuning

1-5 perturbation intensity

2-5 LS passes 0.0 0.2 0.5 1.0

1 18675 14158 14284 14528

5 18293 13975 14188 14188

10 17944 13952 14094 14098

20 18277 13957 14209 14181

50 18916 14108 14180 14149

100 19699 14100 14223 14253

200 19193 14020 14331 14398

500 18972 14349 14580 14530

Performance comparison

The best performing configurations of GRASP and ILS are also compared with the baseline

random restart search as well as with each other. The results obtained in 30 experimental runs

are shown in Table 2, including the median penalty (relevant for the statistical test). Addition-

ally, average, minimum, maximum and sample standard deviation of the penalty is provided to

give a better illustration of the distributions. From the table, it is clear that both GRASP and ILS

are producing better results than the baseline random restart search and that ILS is better than

GRASP. This is formally verified using Wilcoxon–Mann–Whitney test to check the H0 hypoth-

esis that distribution functions of the algorithm performances for GRASP and ILS are the same

as for random restarts. Both tests resulted in p–values below 1 ·10−10. Using the same statisti-

cal test, it is shown that performance differences of GRASP and ILS are statistically significant

(U = 18, p = 1.773 ·10−10).

In order to test how representative was the example used for tuning, the performance on a

larger set of input examples was tested: April, May, July and November of 2014 and January

2015. Note that these examples weren’t available at the time of initial tuning. Overall, while still

being better, the median performance of ILS is only 2% better than in the case of GRASP. On

a case–by–case basis, ILS had better median results in 4 out of 5 examined problem instances,

while GRASP was more successful in one.

The described system has been successfully applied to several difficult problem instances

representative for real-wold call centre scheduling. Creating such schedules by hand is highly
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Table 5.2: Random restart, GRASP and ILS performance comparison [395]

Penalty

Metaheuristic Avg. Median Min Max Std. dev

Rand. restart 30072 30267 27384 31340 876

GRASP 14563 14558 14180 14902 173

ILS 13952 13937 13548 14456 232

labour intensive. Further, when developing schedules by hand even if satisfying the constraints,

it is difficult to assess the impact on the service quality. The devised system produces schedules

that are ready for use in less than a minute, therefore a software system based on the developed

algorithm has a potential to bring great time savings.

5.1.5 Future work and Conclusion

This Chapter presents applying two metaheuristics: GRASP and ILS to solve a call centre

scheduling problem. To ensure suitability for small enterprises, minimalism, simplicity and,

therefore, reduced development effort were main implementation strategies. The algorithm is

attractive for cases when complex and expensive suites featuring support for multi–channel

multi–skilled centres is not needed. Despite the simplistic design goals, the devised problem

definition is still quite broad and applicable to a wide range of call centres. The devised con-

straint handling system provides a rich set of implemented rules and in case some of the require-

ments are not covered by existing rules, it’s architecture provides clearly defined interfaces for

the addition of new ones.

It is also demonstrated that the proposed bottom–up design approach produced surprisingly

good results even in the early stages of implementation. While the original plan was to connect

the components in some of the more complex metaheuristics such as ant colony optimisation or

genetic algorithm, even the initial GRASP version produced results that were satisfactory. The

author believes that using a simple algorithm in the aforementioned manner led to great savings

in software development costs. An essential component of this approach is an independent con-

straint assurance system that facilitated rapid prototyping. Since defining the constraints during

a scheduling project is a difficult communication issue, prototyping approach that gives users

a chance to see the constraints in action after short development cycles significantly simplified

the requirement analysis and functional specification for the project.

The implemented system has a great potential to help the contact centre management to save

time on scheduling and focus on other important tasks. With an addition of a suitable graphical
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user interface, call centres could have an integrated and easy to use system that could allow

them base their schedules on real data. Break scheduling could further improve service quality

and as a major feature, multi–channel and multi–skilled contact centres could also be supported.

These types of contact centres are especially interesting research area since there is no known

analytical way to calculate their ideal staff distribution and existing approaches are based on

heuristics or a simulation to evaluate the schedule quality.

5.2 Carsharing

Carsharing is a type of mobility service that provides short-term car rental [182, 586, 596].

Such services provide a fleet of cars distributed across the coverage area that can be used by the

service members. Unlike traditional rent-a-car, the typical rental durations are short and charged

by the minute or the hour. They are typically privately owned and marketed as a membership-

based service. Service price includes the costs of fuel, cleaning, insurance, maintennance and

management of each vehicle [182, 586, 597].

In modern carsharing systems, user interaction is commonly done using a smartphone ap-

plication or a web site of the provider. In more rare cases, users could request a vehicle using a

phone or other suitable channels. From the users’ point of view, using the service is performed

in the following sequence of steps.

1. User searches for the closest available vehicles.

2. User checks if the nearby vehicles found in the above step are suitable for the trip, based

on personal preferences and trip requirements such as car brand, number of seats and the

distance of the location where the free car is parked.

3. If a suitable vehicle is found, the user books the vehicle.

4. User goes to the vehicle, unlocks it using his membership smartcard or the mobile app

and starts the trip.

5. The user is driving, and the service is charged e.g. by minutes or hours used.

6. After the trip is finished, the user parks the vehicle in a suitable location, locks the vehicle

and checks out.

7. The returned vehicle again appears as available to all other users that can then book it.

Carsharing can provide the flexibility and accessibility of a private vehicle, without costs

and responsibilities of owning a car. Using carsharing can be an alternative to both private

vehicle ownership and public transport [586, 598]. To policymakers, carsharing systems are

interesting due to their potential to reduce pollutant emissions and reduce the need for parking

spaces and costly expansions of the public transport service coverage [599, 600].
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5.2.1 Similar services and discriminating features

Carsharing is a part of recent trends in which various shared mobility services are becoming

more popular and have wider availability, especially in urban areas [597]. Such services include

bikesharing, ridesharing and others. Bikesharing involves a fleet of bicycles shared by the

service members, and used in a similar way cars are used in carsharing. Ridesharing has a

different operating model, in which rides of users with similar origins, destinations and start

times are grouped in the same vehicle.

Despite the similarities in the general idea, carsharing is different from the traditional rent-

a-car, which provides longer rental periods, usually charged by day or week. Traditional car

rentals often have complicated procedures for taking and returning the vehicle, and carsharing

has very simple and quick self check-in and check-out. The locations of the rent-a-car service

centres, clustered around big commercial centres and terminals as compared to carsharing cars

distributed across the city further indicate that carsharing and rent-a-car do not share the cus-

tomer base, nor can they support equal trip purposes. Rent-a-car is well suited for a multi-day

trip between several cities e.g. during a tourist visit to a foreign country, while a typical car-

sharing trip could be a trip to a popular restaurant in the city that could be an attractive option

both for visitors as well as city residents.

5.2.2 Classifications of carsharing services

Carsharing systems can be classified into round-trip carsharing and one-way carsharing sys-

tems. The round-trip carsharing systems are the traditional type of carsharing, where each

vehicle must be returned to the initial location after use. This type of carsharing limits the pos-

sible purposes of such trips, as the requirement to return the vehicle to the same location where

it was taken limits users to round-trips, such as shopping. This type of carsharing is not suitable

for travellers that have a considerable period of activity at their destination, or the travellers who

do not need the return trip, e.g. a trip to the cinema or the daily commute [596, 601]. In the one-

way carsharing, trip can end at any location, not necessarily the same one where the trip started.

This type of carsharing is much more flexible for the users who can use it for all purposes, in-

cluding the daily commute to and from work. While the greater flexibility is favoured by users,

providing this type of carsharing is much more complex and expensive [181, 182, 597, 601].

A notable issue in one-way carsharing is the vehicle stock imbalance problem. The demand

for vehicles across the service area varies [596, 601, 602]. Since users are freely moving the

vehicles, due to varying demand, some areas might have more arrivals, while in others the num-

ber of departures might be larger. During the morning rush hour, it is likely that areas around

the business districts will have more incoming than outgoing trips due to the daily commuters

arriving to work [602]. This varying demand can lead to the accumulation of excessive number
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of vehicles in locations where the demand is low, and a lack of vehicles where there is a great

demand for the service. The imbalance problem can in some cases even cause the lack of the

parking space in the areas where there is a lot of incoming trips [181].

Based on the allowed set of locations where a vehicle can be returned after use, carsharing

can be classified into station-based and free-floating systems. In station-based carsharing, the

provider defines a set of specific locations (stations), and the vehicles can be returned only to the

stations of the provider. Usually such providers purchase and reserve private parking places or

garages in several locations across the city. Conversely, the users of free-floating carsharing can

leave vehicles in any legal parking area in the city. Such providers typically arrange a business

deal with the city authorities to allow the carsharing vehicles city-wide parking in the public

parking places.

Depending on the type of propulsion system used in the cars, there are specifics related to

the vehicle use and management required in carsharing. A carsharing fleet can be based on

internal combustion engine vehicles, electric vehicles, hybrid vehicles and some combination

of the three [603]. The internal combustion engine vehicles have a long range that can be

travelled without refueling, and the refueling process is quick, however they are notorious for

their environmental impact. Electrical vehicles are considered to be a greener alternative to the

combustion engine cars, however they are more expensive, and have a shorter range [603, 604].

Further, charging the batteries of electric cars can take a considerable time during which the

car cannot be used, unless battery swap techniques are used. Due to these specifics, carharing

systems that use electrical vehicles have a higher management complexity [605, 606, 607, 608].

5.2.3 Historical overview

The earliest known carsharing project was started in 1948 in Switzerland. The project was

called “Sefage”, a short for “Selbstfahrergemeinschaft”, which could be translated from Ger-

man as “self drive community” [586, 597, 609, 610]. Established in the city of Zurich, it can

be described as a cooperative, whose members were sharing access to vehicles as a group of

friends, without a strict agreement. This community was founded mostly motivated by eco-

nomic reasons. At the time, cars were expensive, and owning one was considered a luxury

[597, 611]. The project was successfuly functioning during 50 years.

In 1951, French engineer Jacques d’Welles discussed the potential negative effects of pri-

vately owned cars and their increasing numbers in cities. To solve the problem of excessive

privately owned vehicles, he proposed a development of a small electric city car. He further

suggested that these cars could be shared by a large number of members, to further reduce the

total number of needed vehicles [597, 612]. The proposed concept was strikingly similar to

the modern electrical vehicle projects such as the Bluecity carsharing company in London that

provides an entirely electric fleet of Bolloré Bluecar vehicles [613, 614].
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Similar public car initiatives, mostly motivated by the well being of the citizens, and later as

an effort to reduce pollution were started in 1970s and 1980s. A notable example in Montpellier,

France, called “Procotip”, started in 1971 was the first known one-way carsharing system that

had 35 cars and 19 stations. The members were buying tokens to be inserted in the “Tipmetre”

devices that resembled parking meters. The project was active during two years, and in 1973,

the project filed for bankruptcy. It failed mostly due to technological issues and a lack of suitable

control systems.

A similar project called “Witkar” (Dutch for White car or white coach) was a one-way elec-

trical vehicle carsharing project in Amsterdam, started in 1973 [597, 615]. Such an endeavour

sounds cutting-edge even at the time of writing of this thesis, almost 50 years later. The service

was providing access to 35 custom electrical vehicles in five stations in the centre of the city.

The vehicles were an innovative custom designed electrical mini-cars or coaches, developed

with the goal to be small, environmentally friendly and suitable for the city commute, with

room for two persons, 1.76 m long, 1.42 m wide and 1.95 m high [597, 616].

The long term goal was to achieve centralised control over the vehicles with minimal labour.

For this purpose, the cooperative purchased a Digital Equipment PDP-11 minicomputer and

developed software support for vehicle release, checks of available parking space at the des-

tination. The system was also used to track the battery status in vehicles, advise on battery

replacement if possible and control the vehicle stock balance. In cases of vehicle deficiency or

excess vehicles at some stations, the system would advise the staff about the issue, that could

then organise trips to rebalance the vehicles. The system was also used for payments: it would

check the user creditworthiness and to avoid the need for handling cash, it could directly charge

the users’ bank account by regularly exchanging the PDP computer tapes with the Amsterdam

savings Bank where all members needed to have a bank account [616]. The service was active

during 12 years and had a total of four thousand users [597, 617]. It was discontinued due to

the lack of govenment support and technological issues. The service had problems with vehicle

stock imbalance due to allowing one way trips. While both the Witkar and Procotip services

closed, they achieved great accomplishments in advancing the urban transportation. They were

the pioneering projects in carsharing, that were ahead of their time in numerous ways. The

available car technology, computers and software, as well as transportation research were sim-

ply not advanced enough at at the time to support successful services of such complexity, and

both projects also lacked the sufficient support from the government and the cities in which they

were tested [586].

During the 1970s and 1980s, several additional early projects were also started in Sweden

(cities of Lund, Örebro, Gothenburg), United Kingdom (Suffolk), Switzerland (Zurich), Ger-

many (Berlin) [586, 618], and in the North America. Development of carsharing was slow and

steady during this period. In 1991, the European Car Sharing Association (CSA) was founded,
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with the goal to support the carsharing development and lobbying across Europe. In 1997, CSA

had around 70 operators as members [586].

During the last two decades, a notable increase in the number of providers and users has

been observed. Carsharing turned from dispersed and small experimental initiatives to a widely

accepted transportation service. These developments have been especially fast in Asia and

North America. In North America, the number of carsharing users increased from 210 thousand

members in 2007 to 1.9 million members in the year 2017 [597, 618, 619]. Globally, as of 2016,

carsharing operators were present in 46 countries on six continents, with more than 15 million

members and over 150.000 shared vehicles in total [620].

5.2.4 Carsharing technology

The development of information technology has been crucial for the development and the in-

creasing popularity of this mode of transportation. The ubiquity of smartphones, the flexibility

of developing fully customised applications for smartphones, vehicle access secured by contact-

less smart cards and mobile phones, precise geolocational services such as GPS are the basic

“ingredients” used by virtually all modern carsharing providers. These technologies greatly

simplified the business of running a carsharing project and increased the simplicity of use and

the security and reliability of the operation.

Another critical technological element that is routinely used by most carsharing services are

specialised software packages that provide support for the service operation and automate pro-

cesses such as booking, billing, vehicle tracking, fuel and battery level monitoring and others,

this way integrating the fundamental technological components such as GPS and mobile phone

apps into a comprehensive suite for running a carshairng system. Along with the basic features

such software packages can include more advanced logistical and optimisation solutions that

can automate tasks such as vehicle stock balancing, relocation movements optimisation and

others [586, 597, 611].

5.2.5 Potential benefits of carsharing

Carsharing is associated with a number of potential benefits, both for the users as well as the

environment, and some studies also report the wider social benefits [603]. Transportation is

causing notable negative effects, including the greenhouse gas emission, air pollution, and traf-

fic congestions. Studies indicate that carsharing has a potential to reduce the greenhouse gas

emissions [597, 621, 622, 623], reduce the vehicle ownership rates [598, 623, 624], reduce

the car use and total kilometers driven [599, 622, 624, 625]. In addition to these benefits,

up to 35% of the carsharing users either sold, delayed buying or considered selling their car

[623, 626, 627]. In [624] it is demonstrated that carsharing users also have a lower drive-alone
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rates. Finally, carsharing is ineresting to the policymakers due to its potential to complement the

public transport network and expand its reach by filling the gaps in the existing public transport

service coverage [597, 623, 628].

The most important advantage to the users is affordable access to the benefits of having a

car without all costs and responsibilities of owning one, especially when the user does not travel

a lot. It is very convenient and cost effective for occasional use [599]. There exist indicators

that lower vehicle usage also encourages carsharing users to use healthy modes such as walking

and cycling [622].

5.2.6 Commercial carsharing providers

According to the carsharing market report for 2019, authored by the Canadian consultancy

firm Movmi [629] and the CSA Carsharing association [630], there exist only two carsharing

providers with global reach: Zipcar [631] and Share Now [632]. ZipCar is a station-based

carsharing provider headquartered in Boston, USA, and providing services in a total of 384

cities. It was acquired by Avis Budget Group in 2019. Share Now [632] provides free-floating

carsharing in a total of 30 cities. It is a joint venture that merged Car2go (owned by Daimler

AG) and DriveNow (owned by BMW). Before the merge, Car2go was the top provider in terms

of the number of cities where it is available.

In Croatia, as of 2019, there is only one carsharing provider called Spin City [633], available

in Zagreb. It is a free-floating service with a fleet consisting of 20 combustion engine cars and

10 electric vehicles. In addition to the usual carsharing services, it also allows the use of prepaid

packages and more traditional rent-a-car services, charged daily.

5.3 Optimising long-term vehicle reservations in one-way free-

floating carsharing systems 2

Despite numerous benefits reported in 5.2.5, carsharing is still a service that received a wider

adoption only decades ago and is still evolving. Better technical support and innovative trans-

portation solutions such as the most recent appearance of one-way systems increased the appli-

cability of this service [597]. Despite all progress, an important obstacle to the broader adoption

is the fact that the service is still more difficult to access than for example a taxi. Aside from be-

ing dispersed at attractive locations around the city to allow walk-ins, the taxi service typically

offers the dial-a-ride, e-hail, and booking services which add additional value and increase the

suitability of the service for different purposes.
2This section is based on the paper: “Long-term vehicle reservations in one-way free-floating carsharing sys-

tems: A variable quality of service model”, published in the journal “Transportation Research Part C: Emerging
Technologies”, Volume 98, January 2019, pages 298-322”, copyright 2018 Elsevier Ltd.
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A possible way to increase availability and user satisfaction in one-way carsharing systems

could be providing vehicle reservations. Reservations are available in a wide range of services

and industries: reserving a table at a restaurant, seats in a theatre or booking hotel rooms are

nowadays ubiquitous everyday actions. Reservations are available in other transportation ser-

vices as well: virtually all of the air traffic is reserved ahead, and most taxi providers allow

their users to reserve a ride [634, 635, 636, 637]. Reservations can give the providers useful

information, such as daily, weekly and seasonal demand patterns, and the way users respond

to various campaigns. Knowing the demand ahead helps these services to plan their operations

and organize the resources to improve efficiency. Therefore, the operators commonly encourage

users to perform reservations as soon as possible. Pricing incentives are a frequently used way

to achieve early user response. As a notable example, booking a hotel room or a flight just one

day ahead is almost always much more expensive than doing it some months in advance.

Providing vehicle reservations in carsharing can be a highly challenging issue though, and

has hardly been addressed in the literature. The topic of using resource reservation as a man-

agement strategy in carsharing has been mainly explored for parking at the destination when

there is a shortage of parking spaces [602, 638]. Unlike the airline and hospitality industries,

where the reserved resources are under complete control by the provider, this is not the case

in carsharing. The shared fleet movements are dynamic and difficult to predict, due to varying

demand. For a carsharing service provider, knowing reservations a few days ahead, i.e., where

a vehicle is going to be picked-up, does not help much in running the enterprise as relying on

daily user trips is not enough to provide the guarantee that a vehicle will be available at the

reserved location and time. Instead, some other mechanism needs to be used to support the

reservation service and ensure that the user will have the reserved vehicle at the place and time

he/she desires.

A simple and effective strategy that can be used to enforce reservations is vehicle locking.

In this approach, the user selects a vehicle close to the desired location and the departure time.

After this, the vehicle is considered locked and inaccessible for use by any other member,

similarly to a waiter in a restaurant putting a “reserved” label on a table. A prominent drawback

of such approach is that it lowers the vehicle utilization rates and the revenue produced by the

locked vehicle. This is such a notable issue that many one-way carsharing providers do not

have reservation services at all, or if they do, they offer it under highly restrictive conditions.

For example, the global operators Car2Go and ZipCar allow reservations for one-way trips,

but only up to 15 or 30 min before the trip start [639, 640]. Some other services allow longer

reservations, however, charge for them by the minute [641, 642]. The utility of such service is

therefore highly limited as reserving a vehicle for a trip to the airport a week ahead or a trip to

work tomorrow morning is not possible or at best, is expensive. These restrictions substantially

decrease the quality of service being provided by a mode that is supposed to serve a higher
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share of demand in the future.

Relocation operations are vehicle movements initiated by the service provider and per-

formed by a team of employees. So far, relocations have been used mainly to solve the vehicle

stock imbalance problem, both in the station based and free-floating carsharing systems. Relo-

cation trips do not generate revenue and represent a cost for the company due to the fuel and

staff expenses. However, research has shown that such investment can lead to higher overall

profits by providing the ability to fulfill more demand. It is possible to find several optimization

and simulation methods dedicated to this problem [643, 644, 645, 646, 647, 648, 649].

To the best of the author’s knowledge, no research has been done to demonstrate the draw-

backs of the vehicle locking method for providing carsharing reservations, nor in providing

a more efficient alternative that can cope with identified disadvantages. In this work, an in-

novative reservation enforcement method named Relocations-Based Reservations (R-BR) that

complements vehicle locking with relocations operations in a free-floating one-way carsharing

system is proposed. It is hypothesised that this approach will allow longer reservation times

while keeping the vehicle utilization rates and revenues reasonably high.

Methodologically, this work is based on a simulation-optimization approach. A custom

microsimulation environment is built to investigate the user-operator interactions under different

conditions related to reservations. A carsharing company might not support reservations at all

or might use various strategies to ensure that reserved vehicles will be at the requested location

at the required time. Companies might also sometimes reject reservations and users will not

use the service unless an available car is close enough to reach it by walking. The developed

model has similar properties to others that have been proposed in the literature to study the

management of carsharing systems such as [643, 650, 651, 652].

The reservation quality of service (QoS) is defined using two parameters: (1) time in advance

allowed for making a reservation, denoted h, and (2) the radius around the trip origin, denoted

r, where the reserved vehicle is guaranteed to be available at the time of the client departure. It

is assumed that users would like to be able to reserve a car anytime they want, therefore longer

h means better user satisfaction. Conversely, it is also assumed that users would like to walk

the shortest possible distance to the reserved vehicle [653]. More formally, to improve user

satisfaction, it is desirable to maximize h and minimize r.

Applying an equal setup everywhere in the service area might not be optimal. Tactically

increasing the service quality in certain zones of the city and decreasing it in others has the

potential to improve the profitability of the service and increase the accepted demand, without

impacting the service quality too much. Based on this idea, the Variable Reservation Service

Quality Problem (VRSQP) is defined: given a set of zones in a city, with the possibility to

choose a separate service quality level in each zone, the goal is to find the best set of (radius,

time ahead) parameters in order to maximize the objective function (denoted Z). The objective
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function is defined as a weighted sum of individual goals: profit (maximized), satisfied demand

(maximized), allowed time between the moment of reservation and trip start (maximized) and

the radius around the user (minimized). These goals can be contradictory in some cases, which

makes the VRSQP a multi-objective optimization problem. By choosing the appropriate weight

for each of the four individual goals, it is possible to model the operator preferences: some

businesses might be entirely profit-oriented and set to ignore all other goals, others might prefer

a more balanced approach where profit is not improved if it causes large drops in service quality.

Choosing a setup of the geographically varying pairs of r and h is a complex problem. The

author implemented an Iterated Local Search (ILS) metaheuristic [594, 654] in a simulation-

based optimization approach for finding good and realistic solutions to the VRSQP. In this

setup, the simulator acts as an evaluator for the variable service quality layouts proposed by the

ILS algorithm. Based on the evaluation from the simulator, the algorithm creates increasingly

better solutions and discards those that produced bad results in the simulation.

The methodology is applied on several problem instances: two extreme hypothetical cities

(small town and large major city) and a case study of Lisbon Municipality, Portugal, with four

different demand levels. Two key experiments are performed:

1. Comparing the vehicle locking and the R-BR method under a constant QoS in the entire

service area,

2. The R-BR method is further optimized under a variable QoS using the ILS.

5.3.1 The relocations-based reservations (R-BR) method

Let us imagine that a user calls at 17:00 and wants to reserve a vehicle to be available the same

day at 21:00 at a specific location of the city. In the vehicle locking approach, the operator

searches for the closest vehicle to the desired location. If the closest vehicle is within the

acceptable radius (r) from the location, the reservation is accepted, otherwise, it is rejected.

If the reservation is accepted, the current closest vehicle is marked as locked and in that way,

reserved for the user. In the example in the Figure 5.2, the closest vehicle that was found will be

locked at 17:00 and will remain in its location until the desired departure time (21:00) when the

user picks it up. Notice that this reservation process would be the same had the user searched a

specific vehicle himself by using a smartphone or a laptop with internet access.

Using the Relocations-Based Reservations (R-BR) method, when a client makes a reserva-

tion, no action is taken immediately. At that moment, the reservation is checked for feasibility,

as there exists the QoS limit of accepting reservations no more than h minutes ahead. After the

reservation is accepted, all vehicles in the network continue to be available as if no reservation

has taken place until the response time moment, denoted as ta. Response time moment is the

time before the desired departure at which the system starts processing the reservation and acti-

vates the relocations enforcement mechanism. At that point a decision needs to be made: lock
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Figure 5.2: Vehicle locking and relocation strategies for allowing reservations [182]

some nearby vehicle or use a relocation movement. This decision is made based on the loca-

tion of the closest available vehicle to the client trip origin. If the nearest vehicle is within the

acceptable QoS radius (denoted as r), that vehicle is locked until the user takes it at the desired

departure time.

When the vehicle is relocated, it will be locked until the user takes it. If there are no vehi-

cles available for relocation a taxi must be provided to the client since he/she was expecting a

vehicle. In the example shown in Figure 5.2, the vehicle locking system caused the vehicle to

stay idle for 4 h whilst using the R-BR method, the car would be idle much shorter (only up to

1 h in the example). This approach is sketched in Figure 5.3. Note that the values of r and h can

be set globally, equal for the entire service area or they can vary depending on the origin zone

as in the VRSQP problem.

An important aspect that needs to be decided is how long before the reservation does the

system need to respond. If the response time is too long, there is the risk of having low vehicle

utilization rates, similar to the ones obtained with vehicle locking, if it is too short, the system

risks having unreliable service where delays can happen. The author proposes propose that this

parameter should be set in such a way that the system still has enough time for a relocation,

even under the most pessimistic traffic conditions for the particular case-study city. While a

more realistic value could be used in the function of actual traffic conditions, in this work the

parameters are set to the most conservative estimates due to the fact that such forecasting could

be unreliable. Last-minute cancellations of accepted reservations would undermine the user

trust, and therefore selected higher reliability is selected instead of slightly better profit. A key

issue when applying R-BR method is choosing a right balance of QoS parameters r and h and

other performance indicators such as profit and satisfied demand. Any change of these will

affect users who in general want to be able to reserve as early as possible and want their cars to

141



Applications

 

 

Find closest stationary and available car,  
calculate distance dclosest 

Relocate an available car to the desired 
location 

Wait for the response moment  
ta before the desired departure time  

Is it response 
time (𝑡 = 𝑡𝑎)? 

Yes 

Place reservation at  
(time, location) 

No 

time ahead < h? 

dclosest <r 
? 

Lock the vehicle,  
Assign it to the user 

Reject reservation 

User takes the vehicle 

Incoming reservation request 

Yes 

No 

Yes 

No 

Available 
cars > 0 

Yes 

Fallback: arrange a taxi to the 
reservation location 

No 

Figure 5.3: The proposed relocations based reservations enforcement strategy [182]
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be as close to them as possible. Achieving a high quality of service can require more effort from

the provider, and it has the potential to cause drops in profitability. In this work, two algorithms

are proposed to help set these parameters:

1. a simple QoS-sweep algorithm to choose the best global service quality (equal in the

entire service area regardless of the origin location) and

2. an ILS metaheuristic to choose these parameters when they can vary, depending on the

origin zone.

Vehicle stock balancing

The simulation environment developed in this work supports two different types of relocations:

1. Reservation support relocation movements,

2. Balancing relocation movements.

The key application of relocations in this work is the first one: relocations are used to bring

a vehicle to the location of a reservation if there are no nearby cars. The second type is a

traditional application in carsharing, used to improve the vehicle stock balance and increase the

probability that a vehicle will be close to the average user, including the users doing walk-ins

[643]. Even though the focus of this work is on the first type, in the simulator, both can be

used independently or complementary. In both cases, the relocation decisions are based on the

current state of the simulated fleet (reserved, available and occupied vehicles), and the demand

forecast data in the rectangular grid across the city, during several time periods.

While the first type of movements has a reservation support purpose, they can nevertheless

be used to improve balance. Consider the situation where a type 1 movement is needed because

there are no vehicles close to the user for a reserved a ride. A relocation movement will be

performed to move a vehicle to the departure location. Depending on the choice of the car to

relocate, it could increase or decrease system balance. Always choosing the closest car is the

myopic cheapest move, however, it does not take the vehicle stock balance into account and

has the potential to worsen it. Conversely, performing relocation trips that are best from the

balancing point of view could lead to a large number of long and expensive relocation trips.

For the reservation support movements, the middle-ground approach is used, where cars are

relocated from the closest zone with a vehicle stock surplus. In the case where there are no

surplus zones in the system, the closest available car is relocated.

For the second type, a simple strategy is implemented, where a number of balancing trips

is periodically dispatched. Balancing effort intensity is parametrized by two parameters: (1)

balancing trips per period, denoted bn and (2) balancing period duration, denoted bp. All the

balancing trips are started at the same time at the beginning of each balancing period. Increasing

the number of balancing trips per period and shortening the period (increasing the dispatch

frequency) will improve the balance, however, the costs of operating these relocations will
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increase.

The balancing algorithm uses the forecasted demand during several days and the city area

divided into a rectangular grid to determine which zones have a surplus of vehicles and which

have a deficit. Depending on the severity of the deficit/surplus, the zones are prioritized into

suppliers and demanders, and relocation movements from suppliers to demanders are produced.

Cost of relocation movements is calculated based on the cost per minute driven for relocation

trips, denoted Cr .

Note that faithfully modeling different balancing relocation strategies is a separate, complex

issue that is still under research on its own [643, 644, 645, 646]. Considering that a highly

realistic simulation of relocations is not the goal of this work, and to ensure faster execution

of the model, the details related to advanced optimization techniques for selecting relocation

movements are intentionally omitted, as well as the details of running the appropriately sized

workforce. it is assumed that at any given moment, a staff member can immediately be available

in any part of the city to start the relocation if needed. This is a simplification of the real systems

which often work with their own staff team who require some time to reach the vehicles to be

relocated and have a varying number of available staff throughout the day. However, an another

assumption in this Chapter is that the relocations are performed by out-sourced people who

do each relocation operation one service at a time and are paid by minute of relocation rides.

When other staff payment models are used, some approximations are needed. For example, an

operator might observe that approximately 35% of their relocation costs are spent traveling to

the relocation movement origin and take that into account when calculating the value of the Cr

parameter.

5.3.2 Variable reservation quality of service (QoS)

Varying the service parameters such as prices according to the local conditions is widely used

in transport services [181, 655, 656, 657]. To further tailor the one-way carsharing operation

to the demand, aiming at increasing the profit of the company while allowing reservations and

keeping the service quality high, a variable QoS model across a city is added to the simulation.

Given varying trip patterns across the zones of a city, tailoring the reservation parameters has

the potential to improve the system efficiency. In the variable service model, the service area is

divided into N zones, with individual QoS parameter values in each trip origin zone:

QoSi = (ri,hi), (5.1)

where ri is the maximum allowed distance of the reserved vehicle (radius around the user) in

the i-th zone and hi is the maximum allowed reservation time ahead of the trip start in the same

zone.
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The Variable Reservation Service Quality Problem (VRSQP) is defined in general terms as

the problem of finding the optimal set of QoS parameters for the zones in the city, for which

an objective function that describes the operator preferences is maximized. While the profit

of a carsharing company is a good foundation for comparing the solution quality from the

perspective of the operator, it is clearly not enough to guarantee that service of good quality

is being provided to the travelers. Large radius r might lead to savings in relocation trips and

higher profits, nevertheless, the users prefer it to be as small as possible. For many users,

walking half a kilometer to reach the vehicle makes little sense, especially if their trip is going

to be short. Likewise, users prefer to be able to place reservations with as few restrictions as

possible, therefore the longer the allowed reservation time, the better the service quality offered

to the clients. Finally, the satisfied demand is the fourth importat factor which determines

the solution quality, higher demand acceptance levels mean that a better user coverage was

achieved.

Therefore the problem of finding the optimal reservation parameters is defined as a com-

bination of all or some of the following individual objectives (1) maximizing the profit, (2)

maximizing the reservation times, (3) minimizing the radius around the user where the reserved

vehicle will be available, and (4) maximizing the satisfied demand. All of those can be com-

bined into a scalar function as follows:

Max(Z) = wP
P−Pmin

Pmax −Pmin
+ wh

h
hmax

+wr

(
1− r

rmax

)
+ wd

dsat

dtot
(5.2)

where P is the profit for a given solution, Pmin and Pmax are the lower and upper profit bound

estimates, h is the average reservation time limit across all zones of the city, hmax is the max-

imum allowed reservation time, r is the average radius across all zones of the city, rmax is the

maximum radius, dsat is the number of satisfied trips, dtot is the total demand (maximum po-

tential number of carsharing trips) and wP, wh, wr and wd are the weight factors determining

the relative priority of each function component during optimization. Since the radius is to be

minimized, in the objective function it is converted to a maximization objective by subtracting
r

rmax
from 1.

The operator has complete freedom to choose the relative importance of each performance

indicator and even to entirely exclude them from consideration. For example, a profit-oriented

business might optimize only profit (wP = 1,wh = wr = wd = 0), not caring at all about satisfied

demand or cars being close to the users. Some other operator might be in a middle of a mar-

keting campaign during which they want to increase satisfied demand and brand exposure, even

at the cost of slightly lower profit. A third provider might choose a balanced approach where

service quality drops are acceptable, but only if they are justified by a high profit increase.

Note that the components of the objective function are normalized to an interval of [0, 1].

Therefore, if the weight factors are chosen in a way that their sum is equal to one and the profit
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limit estimates are correct, the entire objective function will be normalized to that interval as

well, thus being possible to be represented by a percentage. The bound values hmax, rmax and

dtot are known in advance as they are the input to the optimization. However, the upper and

lower bounds of the profit, Pmax and Pmin are not known in advance and need to be estimated.

In the simulation model, a fixed trip database is used and it is assumed that the input de-

mand is constant. Giving the optimizer too much freedom when choosing the service quality

would certainly break this, e.g., frequently placing a car 3 km away from the user who reserved

it would give a very bad impression and discourage users from using the service, this way also

lowering the demand and invalidating the profit calculation based on the constant demand as-

sumption. To achieve ceteris paribus conditions in the optimization process, especially related

to the input demand volume, the simulation framework provides two ways to control the algo-

rithm’s freedom to modify the solution: (1) hard QoS limits hmax , rmax , hmin, rmin and (2) soft

objective function weights.

By imposing a hard limit using the algorithm parameters, it is guaranteed that service qual-

ity will never reach nonsensical values that would impose significant changes in the demand:

the operator might request the cars always to be placed 500m or less from the user. The soft

configuration of the objective function further adjusts the degree of the algorithm’s freedom.

Unlike the hard limits, using these soft weight parameters defines only the tendency to give

higher importance to some performance indicators over the others, without guarantees on the

final values. Combining both the hard limits and precisely defining the tendency to prioritize

certain parameters, it is possible to ensure that the optimization objectives of the operator are

met and that the service quality variations are sufficiently small to prevent having a notable

impact on the demand.

5.3.3 Solution algorithm for the variable reservation service quality prob-
lem (VRSQP)

In the simulation-based optimization approach used in this work, simulation is combined with

the ILS metaheuristic [594, 654] to solve the Variable Reservation Service Quality Problem

(VRSQP). The metaheuristic is used to devise a set of QoS parameters that are provided to the

simulator as an input, and the simulator is used to evaluate profit and satisfied demand. Based

on this feedback, the algorithm iteratively decides which changes in the QoS across the city

to perform to enhance the objective function further. This way, the simulator is acting as an

evaluator for the solutions suggested by an algorithm to solve the VRSQP.
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Reservation simulator

For this research, the author devised a custom discrete-event microscopic simulator to investi-

gate various reservations-related decisions and reproduce the user/operator interactions under

different conditions. The main design goals for the simulator were:

• Ability to model user decisions while performing walk-ins or reserving a vehicle while

taking into account the spatial effects of moving vehicles in a minute-to-minute simula-

tion environment;

• Ability to model the provider behavior when deciding whether to accept or reject incom-

ing trips;

• Ability to choose reservation demand as a percentage of walk-ins vs. reservation requests;

• Ability to estimate performance indicators such as the revenue, operating costs, profit,

and percentage of satisfied and rejected demand.

The proposed simulation-based methodology assumes the existence of a carsharing trip

database with origin/destination coordinates, start times and trip durations for each trip. Trip es-

timation can be performed by surveying users or specialized mode choice simulations. Further,

the demand forecast can be based on historical data on fleet utilization and individual trips.

The simulation is based on a list of walk-in and reservation trips synthesized from the initial

trip database by a component called mode divider. The number of reservations is parametrized

by the reservations percentage parameter (ρ), defined as a ratio of the number of trips that are

reserved ahead and the total number of trips. The mode divider uses the Monte Carlo method

to divide the input demand into walk-ins and reservations and set up the reservation times.

Summarized, the inputs to the simulator are (1) walk-in trips (2) reservation trips, (3) initial

vehicle locations, (4) QoS parameters (arrays of r and h across the service area), (5) maxi-

mum comfortable walk-in distance cwd , (6) forecasted ideal vehicle stocks in the service area

during periods of time Bideal , (7) balancing relocations dispatch period bp, and (8) balancing

relocations trip number per period limit bn. The pseudocode of the simulator is available in the

Algorithm 12. The key component of the simulator is the vehicle location record data struc-

ture, denoted as VLR. It is a dictionary which contains the vehicle status and locations for each

minute in the simulated period. Supported values of the status variables for a vehicle are: (1)

“stationary and available”, (2) “stationary and locked”, (3) “moving by user”, (4) “moving by a

staff member”. Vehicles are available to start new trips and to be reserved only when in status

(1) “stationary and available”. In all other cases, they are already assigned to a user or in use by

a staff member. The simulation starts by loading the initial vehicle locations and initializing the

vehicle time record. Results of a simulation run are estimates of the carsharing provider profit

and satisfied demand as well as the complete record of all vehicle movements (OD locations

and trip start and end time for each performed trip).

The simulation model filters the trips from the trip database for each minute t sequentially.
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Algorithm 12 Carsharing reservation simulator pseudocode [182]
procedure RESERVATION SIMULATOR(walk-ins, reservations, initial vehicle locations, QoS,
cwd , Bideal , bp, bn)

VLR=initialize vehicle location record(initial vehicle locations)
for each t in the simulation period do

initialize set WIDt containing all walk-in demand starting at t
initialize set RDt , containing all reservations to respond to at t
for each walk-in trip wi in WIDt do

get the closest stationary and available vehicle csa
if closest vehicle distance > cwd then

reject walk-in
else

accept walk-in
calculate walking duration tw
lock vehicle csa from t until tstart = t + tw
Update VLR: set status of the vehicle csa to “moving by user”

from tstart until tend = tstart +duration of the trip
Update VLR: set status of the vehicle csa as “stationary and available”

at the destination location of wi from tend onwards
end if

end for
for each reservation trip resi in RDt do

processReservation(resi, Bideal)
end for
if t mod bp = 0 then

dispatchBalancingTrips(Bideal,bn)
end if

end for
calculate profit

end procedure
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Walk-ins are accepted or rejected by the user, as defined by the comfortable walk-in distance

(cwd) parameter. If a walk-in is accepted, it is assumed that the user will reach the vehicle

by walking from his current location (trip origin) to the closest vehicle and that he will start

walking immediately after sending the request. Walking duration tw is estimated under the

assumption that the walking speed is 5 km/h and that the walking distance is the Euclidean

distance multiplied by a random number in the interval [1,2] to take the impact of the street

layout into consideration. Note that cwd is a parameter used to define user behavior with regard

to walk-ins and that it is not related to reservation service quality parameter r which applies

only to the reservations.

Reservation enforcement (Type 1 relocations) are handled by the processReservation (resi,

Bideal) function in Algorithm 12. There are two possible implementations this function can

be redirected to: locking and relocations. The locking version is simple and straightforward:

if close enough, lock the closest vehicle from the moment the reservation is made, until the

departure, otherwise reject the reservation. The relocations strategy is implemented as detailed

previously in Fig. 2, and uses the ideal vehicle stock Bideal to choose vehicles to relocate. The

carsharing operator resorts to a taxi service as a backup to ensure the reservations are satisfied

even in cases where the fleet is overloaded and there are no free vehicles. The user will be

charged the standard service price and the carsharing company will pay the taxi. This way, the

service is paying the difference between normal carsharing fees and taxi rides. These trips are

considered to be satisfied demand as the service ensured the trip can be performed under the

same pricing conditions. Such trips are undesirable as a taxi is typically more expensive and

these outsourced trips generate losses.

The balancing trips (type 2 relocations), if balancing is used (i.e., if bn > 0) are dispatched

in regular time intervals which is denoted as dispatchBalancingTrips(Bideal,bn) function in

Algorithm 12. Balancing trip assignment is performed based on comparisons of the vehicle

stock in the currently running instance and their ideal distribution. Vehicles are relocated from

zones with the highest surplus to the zones with the highest deficit as in [643], where a set of

all zones in a time interval t is denoted Wt . In case more relocations than bn are needed to fully

balance the system, the simulator will have to choose the distribution according to probabilistic

priorities. For each cell with a surplus (supplier) and for each cell with a deficit (demander)

origin and destination probabilities are calculated according to the following equations:

Prob_Oit =
St it −Bideal it

∑ j∈N,St jt−Bideal jt>0 St jt −Bideal jt
, ∀it ∈ Wttt , St it −Bideal it > 0, (5.3)

Prob_Dit =
Bideal it −St it

∑ j∈N,Bideal jt−St jt<0 Bideal jt −St jt
, ∀it∈Wttt , Bideal it −St it < 0, (5.4)

where ProbOit is the probability that cell i will be an origin for the balancing trip at time t,
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ProbDit is the probability that cell i will be a destination for the balancing trip at time t, Bidealit

is an ideally balanced number of vehicles in cell i at time t, St it is the vehicle stock in zone i

during time t. Based on these probabilities, the origin and destination are assigned in each trip.

The equations are inspired by the random proportional rule used in the ant colony optimisation

metaheuristic, as described in 3.6.7.

While real systems would most likely include undesirable effects, such as no-shows and

late cancellations, in this work, they are not taken into account. Each area is likely to have

slightly different no-show patterns, depending on the local culture and user habits and such data

is difficult to obtain. Nevertheless, each provider would probably devise some type of penalty

strategy (e.g., charging a no-show fee or forbidding the user to re-book the same vehicle after

not taking it on time) to discourage such behavior and compensate for the financial losses,

similar to practices in taxi reservations [658]. For this reason, it can be argued that the effects

of no-shows can be neglected for the purpose of this work.

Several decisions in the simulator are based on random behavior, for example, user-car

walking time estimation and dividing the demand into walk-ins and reservations. The simulator

has two modes: non-deterministic and deterministic. In the deterministic mode, random value

generators are always initialized with the same seed thus producing the same list of random

numbers.

The profit (denoted P) calculation is performed by going through the VLR and calculating

the revenue (R) and costs (C) of vehicle operations:

P = R−C (5.5)

The revenue component is calculated as a sum of individual revenues of user trips, based

on the service price per minute, denoted as π , and the given trip duration estimates, denoted

duration(tripi):

R = ∑
i∈L

duration(tripi) ·π (5.6)

where L is the set of all user trips. The costs are calculated as a sum of fixed costs (C f ) and

variable costs (Cv):

C =C f +Cv. (5.7)

Fixed costs do not depend on the number of performed trips and are calculated as a sum of daily

parking costs and daily vehicle depreciation costs for all the vehicles in the fleet:

C f = A ·Cpark +A ·Cveh, (5.8)

where A is the fleet size (number of cars),Cpark is the cost of parking per vehicle per day in the

city and Cveh denotes the costs of depreciation per vehicle per day. Variable costs are calculated
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as the sum of costs of vehicle maintenance, relocation and taxi:

Cv = ∑
i∈L

duration(tripi) ·Cmv+ ∑
i∈L′

duration(tripi) ·Cr+ ∑
i∈G

(Ctaxistart + distance(tripi) ·Ctaxikm),

(5.9)

where L is the set of all user trips, L′ is the set of all relocation trips, Cmv is the cost of vehicle

maintenance per minute driven, Cr is the cost of a relocation operation per minute driven, G is

the set of all trips redirected to taxi, distance(tripi) is the estimated distance of the trip i, Ctaxistart

is the taxi start price and Ctaxikm is the price of driving 1 km in a taxi.

Iterated local search metaheuristic

The set of feasible solutions Q is defined by a tuple Q(N,rmin,rmax,hmin,hmax), where N is the

number of zones. It contains all possible values of the r and h parameters within the allowed

radius [rmin,rmax] and time [hmin,hmax] intervals for each zone. For the purpose of using a heuris-

tic to solve the problem, both radius and reservation time values are discretised, with minimum

resolution steps of rresol and hresol as parameters which, along with the allowed intervals for r

and h, define the solution space:

|𝒬|=
((

rmax − rmin

rresol
+1

)
·
(

hmax −hmin

hresol
+1

))N

(5.10)

Note that the size of the feasible solution space grows as the radius and time resolution

increases and especially quickly as spatial resolution is increased (number of zones N). Further,

it should be emphasized that rmin, rmax, hmin and hmax are algorithm parameters for establishing

possible ranges of variables, that in general do not correspond to actual values the algorithm

will produce in the solutions. They are defined in order to allow users control over the values

of the QoS – allowing the radius to be larger than 500m does not make much sense as this

has a potential to place cars too far from the users to be practically accessible. The algorithm

guarantees that solutions will not have radius r larger than rmax in any of the city zones.

For each QoS set, it is possible to calculate the profit and the accepted demand by running

the simulator with these specific reservation parameters in the city zones. To ensure that the

evaluation of different solutions can be compared, the deterministic mode of the simulator is

used. The pseudo-code of the algorithm is given in 13. The overall algorithm has five parame-

ters: execution time and the allowed QoS radius and time intervals. The LSO and PO operators

have more detailed parameters as described below. The algorithm begins by generating an initial

solution QoSinitial , with h and r across zones initialized to random values in the allowed inter-

vals, r ∈ [rmin,rmax], h ∈ [hmin,hmax]. The local search is then applied to this solution, resulting

in the first local optimum QoS . The main algorithm loop then runs until the allowed time passes

(time). The loop consists of the perturbation operator generating the current perturbed solution
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QoS′ and then applying the local search to the perturbed solution to create a new local optimum

QoS′*. The best-found solution is kept at all times and the random walk ILS movement strategy

is used, meaning that the next initial solution for the PO is always the current local optimum.

Algorithm 13 Implemented iterated local search (ILS) metaheuristic for VRSQP pseudocode
[182]

procedure ITERATED LOCAL SEARCH(time, rmin, rmax, hmin, hmax)
QoSinitial =generate initial solution(rmin, rmax, hmin, hmax)
QoSbest = QoS* = local search(QoSinitial)
repeat

QoS′ = perturb(QoS*)
QoS′* =localSearch(QoS′)
if evaluation for QoS′ is greater than the evaluation for QoSbest then

QoSbest = QoS′

end if
QoS* = QoS′*

until time expired
end procedure

Local search operator

The LSO used in this work is a simple method that tries to increase and then decrease both the

reservation distance and reservation time in the solution. After trying all the options, it chooses

the change that caused the biggest improvement in the objective function value or retains the

original value if no improvements have been produced. It has eight parameters: the initial

solution QoS; the distance and time steps rstep and hstep define the increments of the variables

that the local search will perform; the partToSearch value needs to be in the interval [0, 1]

and it determines the approximate percentage of the QoS table which can be changed by the

operator; the parameters rmin, rmax , hmin, hmax define the allowed interval for the reservation

distance and reservation time. The pseudocode of the operator can be found in Algorithm 14.

The operator visits each element of the QoS table in the main loop. The functionality of

determining the part of the table to change is implemented by a random number generator

which accepts modifications of solution elements with probability equal to the partToSearch

parameter. The operator is non-deterministic and this way, it can achieve more diversity in the

search. For each table element that the local search is modifying, the operator first tries to adjust

the reservation radius. It first adds rstep to the current distance value, then it subtracts rstep and

evaluates both modifications. If neither the adding nor the subtracting of the step value improved

the solution, the table remains unchanged. If any of these produced an improvement, the table

is updated so that the new r value for the current element is either the added or subtracted value,

depending on which one caused a greater quality increase in the objective. The analogous

procedure is performed with the reservation time-ahead parameter h.
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Algorithm 14 Implemented local search for VRSQP pseudocode [182]
procedure LOCAL SEARCH(QoS, rstep, hstep, rmin, rmax, hmin, hmax, partToSearch)

for each element i in the service quality table QoSi = (ri,hi) do
initialize random number e ∈ [0,1]
if e > partToSearch then

continue with next element QoSi+1
else

while improvement achieved do
rdown = ri - rstep, unless this would make rdown < rmin
QoSRdown = (rdown,hi)
rup = ri + rstep, unless this would make rup > rmax
QoSRup = (rup,hi)
update QoS to the element of{QoS,QoSRdown,QoSRup}

for which Z is maximal
end while
while improvement achieved do

hdown = hi −hstep, unless this would make hdown < hmin
QoSHdown = (ri,hdown)
hup = hi +hstep, unless this would make hup > hmax
QoSHup = (ri,hup)
update QoS to the element of {QoS,QoSHdown,QoSHup}

for which Z is maximal
end while

end if
end for

end procedure
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The procedure ends when the main loop has iterated through all table elements. By sys-

tematically investigating the effects of distance and time variation and combining the effects

of small changes, the local search can produce notable improvements to the initial solutions,

especially when iterated with the perturbation operator in the ILS metaheuristic.

Perturbation operator (PO)

The perturbation operator introduces random changes in the part of the QoS table elements. The

operator has eight parameters: the input QoS to modify, number of changes to make c, distance

and time change steps r and h, and allowed distance and time intervals defined by rmin, rmax,

hmin, hmax. In total, the algorithm performs c change attempts of the randomly selected cells in

the QoS table. It might change up to c cells or less if some cells are changed multiple times or

left unchanged due to reaching the allowed limits of their values.

After choosing an element to change, the distance for the current element is modified. The

algorithm first decides on the direction of the change: increase or decrease. To perform this

choice, a random Boolean value ωr is produced by the random value generator. If r is true,

then the distance in the current element will be increased for the distance step r, if it is false

it performs the decrease, unless the change would take r out of the [rmin,rmax] interval. The

analogous operation is performed for the reservation time-ahead using the Boolean variable h.

Algorithm 15 Implemented perturbation operator for VRSQP [182]
procedure PERTURB(QoS, c, ∆r, ∆h, rmin, rmax, hmin, hmax)

repeat
choose a random element of the QoS table QoSi = (ri,hi)
choose two random Boolean variables ωr and ωh
if ωr is true then ri = ri +∆r, unless it would make ri > rmax
elseri = ri−∆r, unless it would make ri < rmin
end if
if ωh is true then

hi = hi +ωh, unless it would make hi > hmax
else

hi = hi−∆h, unless it would make hi < hmin
end if
c = c−1

until c = 0
end procedure

The fact that both the perturbation as well as the local search operator act only on a ran-

domly selected subset of the table, combined with various possibilities for parameter selection,

provides possibilities to adjust the algorithm to work as needed: so that the perturbation is low

enough in order to keep the algorithm focused but still high enough not to prevent the algorithm

from being stuck in local optima.
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Table 5.3: Hypothetical city features [182]

Problem
instance

Total size Trip
number

Average
trip time
(min)

Average trip
distance
(km)

Fleet
size A
(cars)

tttaaa
(min)

Town (500) 5 x 5 km 500 5 2.6 km 10 40

Metropolis
(40,000)

50 x 50 km 40,000 51 24.6 km 2000 180

5.3.4 Computational experiments

To test the performance of the proposed methodology, experiments were performed on two sets

of benchmark problem instances: hypothetical cities and case-study city. The demand for the

hypothetical cities is generated using a custom built trip generator with trip patterns based on

typical features for two extreme cases: town and metropolis. The case-study city in this work

is the Lisbon municipality in Portugal, whose data was obtained from an agent-based model of

Lisbon carsharing mobility [659]. Both categories include trips from a single working day of

carsharing with reservation-ahead times assumed to be less than 18 h. Even though only one

day is simulated, reservations from “the night before” and any time before t=0 in the simulation

are allowed as long as there is enough time for a system response during the simulation period.

In real systems that do not have simulation limitations, periods much longer than 18 h might be

feasible. Trips that start at t < ta require response too early during the simulation start, and are

rejected by the system.

Several experiments with up to three days of trips have shown that the results tend to be

approximately proportional to the simulated number of days. Since the current limit of 18 h

allows simulating overnight reservations, simulating only one day is sufficiently representative

for the purpose of this work. When simulating largest datasets, scalability issues start to occur as

simulation times get longer. Due to the analyses that indicate that there is no loss of generality

when running one day and given the speed benefits of it, in this work, one day of trips is

simulated.

Hypothetical cities

Problem instances for hypothetical cities are generated using a custom generator, built specif-

ically for this study to enable generating carsharing trips in different environments. Two dif-

ferent hypothetical cities are used: town and metropolis: the town is representative of a small

urban area with several tens of thousands of people, while the hypothetical metropolis is a large,

densely populated urban area, typical of some of the largest cities in the world. Throughout this

Chapter, problem instances are named based on the city name followed by the number of trips
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in the parentheses, e.g., Town (500). The detailed features of the hypothetical cities used in this

work are shown in Table 5.3, where geographical size, trip number, average trip duration and

distance, number of cars and response time ta are defined. In the case of a small town, response

time is much shorter than in the metropolis since even in the most conservative estimates, it

takes up to 40 min to reach any location in the service area. In the metropolis, this is estimated

to take up to three hours.

The generation process involves both trip generation and distribution. It takes into account

the total volume of trips and the temporal and spatial demand variations, all of which can be

specified in the input. Generating trips based on an input distribution is implemented using a

technique inspired by the fitness proportional selection operator used in genetic algorithm and

the pseudorandom proportional rule in the ant colony optimization metaheuristic [124, 343,

660].

Modeling trip intensity is done analogously: for each time interval, an individual value can

be set up for the relative probability that an individual cell will be an origin and a separate value

for the probability that the same area will be a destination. This allows modeling of the demand

variations. The city consists of a highly populated central business district and broad residential

areas on the outskirts. The southern part of the service area is water surface, therefore all relative

chances of being an origin or destination are zero in these zones. As typical in the mornings,

residential areas have more outgoing trips than the business areas. Business areas have more

incoming trips during the morning. Initial vehicle locations are devised based on the trip origin

probabilities during morning rush hour — this way the initial number of vehicles is proportional

to the number of origins across zones to match the morning demand.

Case-study city: Lisbon

Realistic problem instances are based on the carsharing trip forecasting case study of the Lisbon

municipality in Portugal [659, 661, 662] and an extensive mobility survey, performed by the

Lisbon Municipality [663, 664]. Results from these studies were also used to decide on the fleet

size and initial vehicle distribution. Unlike the rough estimates included in the hypothetical city

models, this model takes into account the precise transportation habits of the local population

and microscopic effects occurring on a high-resolution network of nodes.

The Lisbon area has been dealing with several mobility issues, including congestions and

lack of parking space. Innovative transport solutions, including carsharing, are one of the al-

ternatives that could help reduce mobility problems in the city. Details of the Lisbon problem

instances are reported in Table 5.4. .
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Table 5.4: The city of Lisbon features [182]

Geographical
size (km)

Trip
number

Average trip
duration
(min)

Average trip
distance (km)

Fleet
size A
(cars)

tttaaa
(min)

Lisbon
(3,000)

11.6 x 11.0 3,000 14.3 4.3 80 60

Lisbon
(6,000)

11.6 x 11.0 6,000 14.5 4.5 159 60

Lisbon
(12,000)

11.6 x 11.0 12,000 14.5 4.4 318 60

Lisbon
(25,000)

11.6 x 11.0 25,000 14,5 4,4 664 60

Simulation parameters for all runs

All of the following parameters are the same for all problem instances defined above. This

can be a limitation since for instance parking price should be different in a small city when

compared to a big city. Nevertheless, maintaining these parameters equal allows for a better

comparison between the scenarios.

The costs of vehicle ownership are estimated using the Interfile tool for car ownership costs

estimation [665]. As a reference vehicle, use an average city vehicle with the initial cost of

20,000C is used, under assumptions that the company financed the entire initial cost using

a loan with an interest rate of 12% and the vehicle’s residual value after three years equal

to 5000C. For such a vehicle, the cost of depreciation (Cv) is 17C per day, with expected

use duration of 3 years. The cost of maintaining the vehicle (Cmv) is estimated to be 0.007

C per minute, taking into account insurance, fees, taxes, fuel, maintenance and wear of the

vehicle. The relocation cost Cr is estimated to 0.20C per minute, and it includes fuel, vehicle

maintenance and staff costs, as well as the compensation for the cost of reaching the relocation

trip origin. The parking cost Cp is estimated to be 1.2C per hour [666]. The service fee per

minute is set to 0.30C per minute, based on the rates of the global operator Car2Go [667]. Taxi

start price is set to 3.5C and price of driving 1 km is 0.47C [668]. User walking speed is set to

5 km/h and the vehicle walk-in distance cwd is set to 250m [669].

Running the experiments

The simulator and the optimization algorithm are implemented in Java 1.8 programming lan-

guage. The experiments were performed on a computer equipped with a 2.4 GHz Intel Core

i7-4700HQ processor and 16 GB of RAM, using Java 1.8 runtime environment under Windows

10 operating system. The running time to simulate one full day is less than a second in the
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Table 5.5: Iterated local search metaheuristic parameters [182]

Parameter Value

Comfortable walk-in distance cccwd 250 m

Local search distance step rrrsssttteeeppp 200 m

Local search time step hhhsssttteeeppp 480 min

Local search percentage to explore partToSearch 100 %

Perturbation distance change ∆∆∆rrr 100 m

Perturbation time change ∆∆∆hhh 300 min

Perturbation number of elements to consider ccc 50 (50%)

Minimum allowed distance rrrmmmiiinnn 50 m

Maximum allowed distance rrrmmmaaaxxx 500 m

Minimum allowed time hhhmmmiiinnn 60 min

Maximum allowed time hhhmmmaaaxxx 1080 min

Radius resolution rrrrrreeesssooolll 1 m

Time resolution hhhrrreeesssooolll 1 min

smallest instances and around 30 s for the ones with the largest number of cars and trips.

The experiments were performed with three different sets of values for the objective function

parameters. A balanced parameter set is used, that gives half of the weight to the profit: wp = 0.5

and the rest is equally distributed to other three service quality components: wr = 0.167,

wh = 0.167 and wd = 0.167. The sum of all factors is equal to one, to ensure that the re-

sulting values will be normalized to the [0, 1] interval. To optimize metaheuristic performance,

tuning experiments were performed on the Lisbon (6,000) dataset with the balanced objective

function parameters. The best performing configuration found during tuning is shown in Table

5.5, and this set of algorithm parameters was used in all subsequent experiments in this work.

Note that all of these parameters are algorithm input parameters, and that the distance and time

limits [rmin,rmax], [hmin,hmax] refer to allowed intervals, not the realized values in the solutions,

although they might coincide.

158



Applications

Table 5.6: Vehicle locking method performance in Town (500 trips) problem instance [182]

Reservations
percentage (ρ)

Profit (P)
(C/day)

Costs (C/day) Revenue (R)
(C/day)

Demand
satisfied

C C f Cv

0 % -351.27 460.55 458.00 2.55 109.28 9.80%

20 % -370.68 460.09 458.00 2.09 89.40 8.03%

40 % -383.93 459.77 458.00 1.77 75.83 6.48%

60 % -384.66 459.75 458.00 1.75 75.09 5.89%

80 % -391.00 459.60 458.00 1.60 68.60 5.28%

100 % -419.37 458.92 458.00 0.92 39.56 4.10%

5.3.5 Results

R-BR method under constant QoS

In the first round of the experiments, the differences in the described reservation enforcement

strategies are assessed under constant service quality in the entire city area. The reservation

service quality for all experiments in this round was set to r = 200 m, h = 600 min (10 h).

In the input trip volume, which consists of spontaneous walk-ins and trips reserved ahead, the

reservations percentage (denoted ρ) was varied, while keeping all other conditions constant.

Note that = 10% does not mean 10% more trips in total, it means that 10% of trips that were

walk-ins in the original dataset are now long-term reservations.

The results are shown in Fig. 5.4. The x-axis of each graph shows the reservation per-

centage, and the y-axis shows the daily profit in euros for that day. A detailed breakdown of

profit into its components: revenue (R), fixed, variable and total cost (denoted C f , Cv and C

respectively) as well as the percentage of demand satisfied and outsourced demand (taxis) are

specifically presented for the Town (500) and the Lisbon (25,000) problem instances in Tables

5.6 - 5.9.

When the reservation service is not offered (ρ = 0), Town (500), Lisbon (3000) and Lisbon

(6000) instances are generating losses and all others are profitable. As seen in Table 4, in

the Town (500), only 9.80% of the demand is satisfied for ρ = 0. Despite the fact that there

are 500 potential trips, most of them are not done because the closest vehicle is too far for

a comfortable walk-in at the moment of the request (cwd = 250 m). A small fleet with only

10 vehicles is not enough for sufficient coverage and to ensure that, on average, vehicles are

close enough to interested users. The revenues generated by such a low number of trips are

not sufficient even to cover the fixed costs of fleet ownership and parking. Similar results are

observed in the smallest Lisbon instances. These results indicate that carsharing can hardly be
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Figure 5.4: Comparison of vehicle locking and reservation based relocations under constant QoS [182]

Table 5.7: R-BR method performance in Town (500 trips) problem instance [182]

Reservations
percentage (ρ)

Profit (P)
(C/day)

Costs (C/day) Revenue
(R)
(C/day)

Outsourced
(taxi) de-
mand

Demand
satisfied

C C f Cv

0 % -351.27 460.55 458.00 2.55 109.28 0.00% 9.80%

20 % -368.91 605.95 458.00 147.95 237.04 2.21% 21.29%

40 % -391.47 813.42 458.00 355.42 421.95 7.44% 35.81%

60 % -535.02 1,102.37 458.00 644.37 567.35 16.53% 51.61%

80 % -686.17 1,405.30 458.00 947.30 719.12 28.43% 64.72%

100 % -829.65 1,744.10 458.00 1,286.10 914.46 40.69% 80.57%
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Table 5.8: Vehicle locking method performance in Lisbon (25,000 trips) problem instance [182]

Reservations
percentage (ρ)

Profit (P)
(C/day)

Costs (C/day) Revenue (R)
(C/day)

Demand
satisfied

C C f Cv

0 % 15,249.54 31,502.07 30,411.20 1,090.87 46,751.61 42.92%

20 % 5,027.00 31,257.85 30,411.20 846.65 36,284.85 34.41%

40 % -4,116.62 31,039.40 30,411.20 628.20 26,922.78 26.61%

60 % -10,641.26 30,883.52 30,411.20 472.32 20,242.26 20.61%

80 % -16,898.83 30,734.02 30,411.20 322.82 13,835.19 14.75%

100 % -21,783.32 30,617.33 30,411.20 206.13 8,834.01 9.86%

Table 5.9: R-BR method performance in Lisbon (25,000 trips) problem instance [182]

Reservations
percentage (ρ)

Profit (P)
(C/day)

Costs (C/day) Revenue
(R)
(C/day)

Outsourced
(taxi) de-
mand

Demand
satisfied

C C f Cv

0 % 15,249.54 31,502.07 30,411.20 1,090.87 46,751.61 0.00% 42.92%

20 % 12,870.18 36,080.55 30,411.20 5,669.35 48,950.73 0.00% 45.62%

40 % 9,497.43 42,789.81 30,411.20 12,378.61 52,287.24 1.15% 49.91%

60 % 1,558.51 54,054.44 30,411.20 23,643.24 55,612.95 4.35% 54.96%

80 % -4,965.13 68,583.61 30,411.20 38,172.41 63,618.48 12.33% 64.68%

100 % -10,402.24 84,073.84 30,411.20 53,662.64 73,671.60 23.97% 77.29%
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profitable below a certain threshold of a minimum trip volume and confirm similar findings in

other studies [670, 671, 672].

When reservations are allowed (ρ > 0) and vehicle locking is applied as the enforcement

method, the profit steeply drops. At ρ = 20%, only Lisbon (25,000) is profitable and when

reaches 30%, vehicle locking is not profitable in any of the investigated problem instances.

This method causes long waiting periods during which vehicles are idle and therefore it reduces

the overall service availability for potential trips. These effects are clearly visible in Tables 5.6

and 5.8: more reservations bring less satisfied demand and less revenue. Very large losses result

from high reservation percentages and high trip volume, e.g., more than 20,000 C per day in

Lisbon (25,000). The proposed RB-R method also brings profit drops when reservations are

present. However, in all problem instances except in Town (500), R-BR considerably outper-

forms vehicle locking. In Lisbon (3000) and Lisbon (6000), R-BR brings more revenue and

allows more demand to be satisfied. Nevertheless, the improvement is not sufficient to turn

around these losses. In the remaining four instances, R-BR can maintain the profitability of the

operations with two to three times the reservation volume than the vehicle locking. While R-BR

imposes additional relocation and taxi costs, the method leads to less rejected trips which brings

higher revenues (Tables 5.7 and 5.9). Whether the benefits of the added revenue will outweigh

the costs depends on the number of performed trips. Note that even with ρ = 100% all trips

are not accepted since the QoS settings allow the system to reject reservations more than 10 h

ahead (h = 600 min).

In the Town (500) instance, the profit of vehicle locking is similar to the RB-R for low ,

however, with more than 50% of reservations, the RB-R quickly starts to be worse than locking

(Fig. 5.4). Part of this is due to the increased costs brought by the relocation movements,

however, the key reason for poor performance with high is the increased level of trip outsourcing

to taxi. With ρ > 50%, the outsourcing rate quickly starts rising, adding large extra costs (Table

5.7).

The performance of the newly proposed R-BR method outperforms the simple vehicle lock-

ing, in all cases with sufficiently high demand. While R-BR method has a high potential to

improve the profit, it should only be considered for the systems that are profitable with no reser-

vations as the added operational cost of enforcing reservations can lead to even more losses

when the number of trips is small.

Variable QoS

To further improve the performance of the reservations, the devised ILS metaheuristic is applied

on the available problem instances in a setting with high reservation load: ρ = 50%. Profit

bounds for all problem instances Pmin and Pmax were estimated by running a simple QoS sweep

algorithm that examines all (r,h) combinations with the (50 m, 60 min) steps under various
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Table 5.10: ILS performance in 5 runs [182]

Problem
instance

Constant
QoS

Variable QoS

Best
known
Z

ILS
time
limit (h)

Z in 5 ILS runs

Average Median Best Worst Std.
dev

Town (500) 53.81% 2 62.74% 62.00% 71.54% 57.72% 5.66%

Metropolis
(40,000)

76.49% 10 80.79% 81.02% 82.75% 79.07% 1.38%

Lisbon
(3,000)

68.24% 2 74.14% 73.93% 74.97% 73.21% 0.75%

Lisbon
(6,000)

66.59% 2 77.14% 77.05% 78.35% 75.92% 1.05%

Lisbon
(12,000)

68.08% 2 76.58% 76.03% 79.87% 73.09% 2.53%

Lisbon
(25,000)

70.42% 5 76.92% 78.73% 78.96% 72.18% 2.95%

reservation percentages. Further, an additional run of the ILS was done for highly profitable

problem instances. After the profit bounds have been established, the best constant QoS was

found by calculating the entire objective function in the QoS sweep algorithm.

Experiments with five runs of the ILS metaheuristic on each problem instance were per-

formed, with the initial solution being a random solution with r ∈ [50,500] and h ∈ [60,1080].

The other algorithm parameters were used as in Table 5.5. For smaller problem instances, the

algorithm is able to produce good solutions more quickly than for those with more trips and

cars. Therefore, the time limit of 2 h was used for problem instances with less trips, while

up to 10 h was used for those with more trips and longer time needed for solution evaluation.

The results are given in detail in Table 5.10, where average, median, best and worst Z in the

performed runs, as well as the standard deviation of the objective function values are provided.

The results show that ILS was always able to find a better solution than the best known with

constant QoS.

A detailed comparison of best known constant and variable QoS solutions is provided in

Table 5.11, where the elements of the objective function are given: average time h , and radius

r, over zones, as determined by the heuristic as well as the satisfied demand, profit and the

overall objective function value Z. These results show that th ILS metaheuristic was able to
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improve the profit in all problem instances, in some of them substantially. In most examples,

the satisfied demand is slightly lower than with the constant QoS. The average r and h are very

comfortable for all variable QoS solutions: less than 200m and more than 12 h in all problem

instances. Further, Lisbon (6000) is not profitable even with the best constant QoS. However,

ILS was able to achieve high increases of the profit, turning the service generating losses into

a profitable one. Attaining profitability with the large reservations pressure of 50% used in

these experiments is very difficult, as shown in the constant QoS experiments. Nevertheless,

using ILS, it was possible to optimize the profit to the levels which are better than the profits

with no reservations. The especially good QoS with high profits for Metropolis (40,000) and

Lisbon (25,000) problem instances show the potential of this method with large trip volume.

For example, the Metropolis (40,000) with no reservations has a daily profit of 16,573.85 C

(Fig. 5.4), while the profit of the best variable QoS solution with 50% reservations is a slightly

higher value of 17,905.17C. At the same reservation level, the constant QoS solution with the

best Z is barely profitable (less than 300C per day). The highest known constant QoS profit

is 11,122.17C, achieved with much higher r and similar h QoS (r=500 m, h=840 min). For

an additional comparison, vehicle locking with 50% of reservations causes losses of more than

35,000 C per day.

Additionally, the performance of both ILS and best constant solutions is compared with the

basic random restart search algorithm in which the best out of randomly generated solutions is

selected. With run-times equal to those given to the ILS, the random restart algorithm was not

able to outperform the best-found constant solution, and the solutions found by ILS outperform

it. A very simple algorithm such as random restart is not able to refine the solutions well enough

to give good results and produces a very irregular distribution of radiuses and times that does

not reflect the shape of the central business district as ILS does.

Detailed values of QoS parameters across the zones for the best-known solution for Metropo-

lis (40,000) are shown in Fig. 5.5, where the radiuses (left) and reservation times ahead (right)

are displayed in a heat map. Comparing these values with O-D probabilities indicate that the

ILS metaheuristic was able to capture the general behavior of the system. In general, the algo-

rithm lowered the service quality in zones with many trips and kept it very high in areas with

fewer trips. Increasing the radius in the central business district has the benefit of lowering the

relocation costs. Likewise, it is in general kept low in zones with fewer trips where due to the

low concentration of vehicles, relocations will most likely be needed regardless of r. Average

r is 139 m, however, median r is 50 m, equal to the lowest allowed value rmin=50 m. Distri-

bution of times ahead is similar: the h heat-maps (Fig. 5.5, right) give an approximate outline

of the city center contours. In areas with a lot of trips, the algorithm had a tendency to lower

the allowed time-ahead t, most likely due to the fact that many reservations in these areas have

the potential to overload the fleet and cause too many relocations and outsourcing costs. The
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Table 5.11: Comparison of best known constant and variable QoS solutions [182]

Problem
instance

Best found constant QoS Best found variable QoS

h
(min)

rrr
(m)

dsat
dtot

Profit (C) ZZZ hhh
(min)

rrr (m) dsat
dtot

Profit
(C)

ZZZ

Town
(500 trips)

180 50 19% -368.59 53.81% 751.39 129.0 38% -335.44 71.54%

Metropolis
(40,000
trips)

1080 50 53% 293.15 76.49% 924.71 139.15 47% 17,905.17 82.75%

Lisbon
(3,000
trips)

1080 50 49% -1,368.32 68.24% 764.65 135.56 40% -725.82 74.97%

Lisbon
(6,000
trips)

900 50 50% -1,255.04 65.39% 786.83 153.35 44% 275.90 78.35%

Lisbon
(12,000
trips)

900 500 52% 2,267.86 68.08% 821.83 196.36 48% 2,832.93 79.87%

Lisbon
(25,000
trips)

960 500 57% 10,668.61 70.42% 785.12 186.32 51% 11,552.52 79.88%
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50 50 50 50 50 50 50 50 50 50 1080 834 778 1080 492 498 1080 460 1012 1029

50 50 50 50 50 176 301 50 50 50 1080 1080 1080 1025 1000 582 660 986 938 1080

50 50 500 50 500 500 500 50 50 50 1025 1080 1080 847 1080 1080 1080 1080 1080 1080

50 50 50 500 500 500 50 50 50 50 1080 1068 1080 1080 1080 650 1080 249 837 1068

50 50 50 500 500 500 50 50 50 50 1080 1080 728 1080 1080 1080 1032 1022 909 1080

50 50 50 50 500 500 500 500 50 50 904 1080 1037 118 1008 783 472 1080 619 1080

50 50 50 500 500 481 50 50 50 50 1080 1080 505 887 906 666 131 716 1078 748

50 50 50 99 500 458 50 50 50 50 528 1080 984 1069 1080 858 828 1080 1080 930

50 50 50 50 50 50 50 50 50 50 917 1061 803 1080 1080 1080 1080 873 499 1080

50 50 50 50 50 50 50 50 50 50 1080 863 963 1080 1080 1080 1080 681 627 1080

Figure 5.5: Radiuses r (left) and times ahead h (right) in the best known variable QoS solution for
Metropolis (40,000) [182]

average and median values of r and h are only slightly worse than in the best known constant

QoS and even the zones with the lowest QoS by far outperform the reservation time-ahead of

30 min that is nowadays allowed by the carsharing operators.

5.3.6 Speeding up the algorithm: initial solution tuning

While the results in the previous Section show that the ILS was flexible enough to find solutions

to this transportation problem in reasonable time, there is still room for improvement. An

especially interesting direction, since this is a problem with a slow evaluation function was to

investigate the potential of using a fixed initial point. This way, if a particularly good initial

solution is known, the search could start from it, this way potentially saving a lot of time to

reach to a good area of the search space from a random initial point.

To asses this, first the constant QoS sweep algorithm is run to find the best constant QoS

solutions for two test problem instances: Lisbon (3,000) and Lisbon (12,000). The best constant

solutions were (r = 50m, h = 1080 min) for Lisbon (3,000), and (r = 100m, h = 1080min) for

Lisbon (12,000). The best constant solutions were then used as the initial point for the ILS,

and the results can be found in Table 5.12. It can be seen that the algorithm start from a good

solution considerably improved the solution quality. The Lisbon (3,000) instance is difficult to

optimise due to low number of trips, nevertheless, using the best known constant solution as

the initial point added extra 5% to the total evaluation. The difference is striking for the Lisbon

(12,000) problem instance, where the evaluation increased to more than 113%. The evaluation
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Table 5.12: Speeding up the ILS by using a good initial solution [182]

Problem instance Random initial solution Best known constant initial solution

Lisbon (3,000) 74.14% 79.44%

Lisbon (12,000) 76.58 113.20%

higher than 100% indicates it is higher than the estimated top profit, that is set before running

the algorithms. This both demonstrates the potential of efficient algorithms on problems where

good solutions do exist, as well as the potential of the algorithm improvements by selecting a

good initial point. A single evaluation for Lisbon (12,000) requires around 2 seconds, therefore

for this problem, up to 3600 evaluations were possible.

Practical considerations

The author recommends gradual implementation in the existing carsharing systems. Before

implementation, a rigorous viability assessment of reservations is required, since long-term

reservations are not well suited to, e.g., carsharing systems with low demand or small fleets.

Reservations have a clearly defined market: airport trips, intermodal trips connecting users to

trains, buses, and other modes with a fixed schedule, users who need a temporary replacement

car for everyday commute, people who do not own a car and might want to use carsharing to go

to work during a week of bad weather etc. Therefore, a survey of user preferences to assess the

market size for the long-term reservation service should be performed prior to implementing

R-BR to help decide if the revenue increase from such a service would justify the change in

operations.

The gradual implementation of the R-BR methodology can be performed in the following

four steps:

1. Setting up the constant service quality reservation system,

2. Experimenting with improving the key performance indicators (profit, satisfied demand,

user satisfaction) using the ILS metaheuristic,

3. Evaluating the real-world performance,

4. Repeating steps 2 and 3 if needed.

The optimization in step 2 requires a demand database or a forecast. Further, the ILS algorithm

in a simulation-optimization approach is not fast enough for real-time decisions so it would

typically be used for long-term iterative planning, on, e.g., weekly or monthly basis. Depending

on the yearly and daily variations in demand, it is advisable to create several separate setups

for typical working day vs. a weekend, summer months, and other specific circumstances.

Experimenting with several different solutions before choosing the final one is recommended,

while carefully monitoring the service quality KPIs in the real carsharing system.
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5.3.7 Carsharing reservations – concluding remarks and future work

Carsharing systems are being classified as a sustainable green mode, especially if provided

with electric vehicle fleets. Nevertheless, one-way systems, in which the user may drop-off the

vehicle anywhere inside a service area, are still being used by only a small segment of the urban

transport demand. As the number of users grows, so do the logistic management problems to

be solved if the quality of service and profitability are to be maintained.

Vehicle reservations provided through simple vehicle locking, by which the vehicle must

stay idle until the client comes, have a too high impact on the profit to be viable as showed

in this Chapter. While the author is not aware of any research that estimates the potential of

reservations to attract more customers, it is reasonable to assume that customers do not favor

high restrictions in the reservations service in commercial carsharing providers. Services such

as restaurants, theatres, and hotels allow flexible reservation options, however, one-way carshar-

ing reservations are currently mostly limited to very short time or are at best, very expensive.

As the carsharing services do not control the trips their clients will be doing, additional infor-

mation about the demand gathered from the reservations is not very valuable without a reliable

and sustainable way to ensure that a reserved vehicle will indeed be in the correct place at the

proper time.

In this work, an innovative relocations-based reservations (R-BR) method is proposed, in

which vehicles are only locked sometime before the beginning of the trip, and if a vehicle is

not naturally available, one will be relocated. The author hypothesized that this method could

perform well even with much higher reservation times ahead than the commercial carsharing

providers offer nowadays (typically 30 min). Furthermore, optimizing the allowed reservation

time ahead and the proximity of reserved vehicles to users in different areas of the city is an

additional step to help tailor the system to the demand profile.

To test the performance of both types of reservations (with and without the variable quality

of service), the author developed a simulator that enables evaluating various service configu-

rations related to reservations. Several test instances have been created with daily carsharing

trips in typical cities of various sizes. Problem instances include the trips in two artificial cities

and a set of experiments with the case-study city of Lisbon (Portugal) where long reservation

times are allowed. Results show that the vehicle locking strategy with long reservation times

gives bad results for anything but a very low number of reservations (up to 20% of the total

trip number). Furthermore, it is demonstrated that the proposed relocations method is able to

keep the system profitable with up to 60% reservations in the Lisbon (25,000 trips) example.

The R-BR method achieved better results than locking in all problem instances except the Town

(500) with a very low number of trips.

Unprofitable results for low trip volumes are in line with similar conclusions by other re-

searchers: small towns are not well suited for commercial carsharing services. In such places,

168



Applications

the revenues are too low to allow the successful operation of commercial providers, and the

successful examples are typically restricted to the volunteer-based community services [673].

Conversely, big cities have shown to be very suitable for carsharing as it is much easier to sus-

tain a company with a high concentration of the demand in areas with high population density

and high revenue from a lot of daily trips.

As a guideline to operators interested in implementing reservations, if the system is not a

profitable one without reservations, offering them is risky. While this method is able to increase

the customer satisfaction and the profit of already successful carsharing enterprises, in systems

that are not profitable, the gains from adding reservations will most likely be very low to none,

and with low trip volume, it might even cause profit decreases.

The implemented ILS metaheuristic was able to perform complex trade-offs of increasing

the profit without lowering the service quality and the demand too much. It is able to learn

from the performed daily trips and successfully identify areas with the highest demand, where

QoS adjustments bring the most benefits. In general, increasing the r in the areas with the

highest demand has shown to be a very effective tool that ILS used to lower relocation costs

and increase profit. Further, lowering h in the areas with the highest demand can help prevent

system overload and high costs of reliance on outsourcing. The flexibility of adjusting the

relative importance of multiple optimization criteria allows further adjustments to the current

goals of the operator.

While the objectives of this work were achieved using the above experiments, several re-

finements to the methodology are possible. An interesting research direction would be giving

more attention to adding more realism to reservation time distribution and investing more com-

putational resources to simulate longer periods of time, as well as supporting more realistic

relocations, e.g., for companies with permanent staff in charge of relocations. Another interest-

ing direction is investigating the performance of reservations when used with various different

balancing mechanisms.

In this work, the added demand as a result of introducing the reservation system is not

considered. A more detailed demand model that adjusts the demand with the QoS changes

would further improve the accuracy of the obtained results and extend the applicability of the

method to allow larger variance in the QoS. This approach would also allow users of the model

to view more precise profit effects of each optimization variable that has been changed. Better

integration of the effects of the QoS variation into the profit calculation is especially suitable

for businesses, which are typically concerned with profit maximization as their top priority.

Such demand models are usually non-linear mode choice models, nevertheless, they are suitable

for integration into the simulation model, which is another advantage of the simulation-based

optimization approach.
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5.4 Variable pricing in one-way station based carsharing ser-

vices 3

As described in Section 5.2.2, one-way carsharing is attractive to the users, due to its flexibil-

ity and possibility to perform e.g. daily commute using carsharing. For operators, they are

challenging since they promote the vehicle stock imbalance problem. Several approaches have

been proposed in the literature to mitigate the effects of vehicle stock imbalance where the most

extensively studied method is vehicle relocation [643, 646, 652, 674, 675, 676, 677]. Alterna-

tive methods include accepting or refusing a trip based on its impact on vehicle stock balance

[596, 678], station location selection to achieve a more favorable distribution of vehicles [596],

and price incentives for grouping people if they are traveling from a station with a shortage of

vehicles, and ungrouping them otherwise [679, 680]. Regarding the use of pricing, two meth-

ods exist in the literature: price incentive policies for users to choose another drop-off station,

where total demand stays unaltered [644, 650, 681], and trip pricing, that is, changing the trip

prices to control the demand, taking its contribution to stock balancing into account, which is

seen as a proxy for profit maximization [682, 683]. Mitchell et al. [682] and Weikl and Bogen-

berger [644] only suggested this as a theoretical balancing strategy and did not define ways of

choosing prices and applying them in reality. In the case of the other authors, the methodolog-

ical approaches mainly fall into two categories, one in which the state of stations is analyzed

to determine if they are oversupplied, undersupplied or balanced, and the other where the the

users’ response to it is studied, by means of a simulation approach.

In this work, the goal was to help bridge the apparent research gap in the literature by

proposing a method for optimising the trip prices in one-way station-based carsharing systems

and show how it can be useful for profit maximization by reducing vehicle fleet imbalance.

Contrary to previous studies, pricing is not used as a reactive measure but as a stable reference

of the company that produces a table of prices that should be tailored to the existing consumer

preferences and the operational constraints of the company. It is relevant to say that even though

the trip pricing has not yet been implemented to solve carsharing imbalance problems, it has

been used to solve other transportation problems, in particular with respect to: traffic congestion

[684, 685, 686, 687]; high occupancy/toll lane management [688], and airline seat management

[689, 690]. As in this approach, these methods also consider elastic travel demand towards price

either with simple elasticity models or expressed by logit models [688, 689, 690]. Logit models

are more precise but they also make it more difficult to reach an optimized solution, since

they introduce a non-linear and non-convex behavior of the objective function. To address this

limitation, researchers used three main methods: transforming the non-convex formulation into

3This section is based on the paper: “Trip pricing of one-way station-based carsharing networks with zone
and time of day price variations”, published in the journal “Transportation Research Part B: Methodological”,
copyright 2015 Elsevier Ltd.
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a convex one [684, 689], for example by using the inverse of the logit model function [689],

using heuristics [685], metaheuristics [687, 690], or using simulation instead of optimization

[688].

The method for setting variable carsharing prices has two main components: (i) a mixed-

integer non-linear programming (MINLP) model which, with trips made throughout an entire

day and the price elasticity of demand, determines which prices to charge in a given period

of time for profit maximization; (ii) an iterated local search (ILS) metaheuristic to find good

solutions as fast as possible, given the non-linearity of the MINLP.

In this work, it was decided to maximize profit since carsharing is mostly provided by private

companies. Nevertheless, it should be noted that maximizing profit, although not leading to the

highest level of service provided to the clients, it should allow to operate a bigger network since

the company is able to profit even when its market is highly imbalanced as it happens often with

encompassing city center and suburban areas [691, 692].

The method is applied and tested for the case study of Lisbon, in Portugal, providing the

following main scientific contributions:

1. it is the first method to set a variable trip pricing table for one-way carsharing;

2. it is a method that leads to better results than having no balancing strategy and it avoids

high logistic adaptations entailed in using relocation operations.

The method assumes that the estimated value of the price elasticity of demand is known and

that the mobility patterns in the network can be forecast. Elasticity is typically estimated from

historical sales information and can be extracted using different statistical methods [693, 694,

695]. Transportation forecasting can also be done by simulation or modeling based on the data

acquired from past network use or from surveying users. Since there is ample research on this

separate subject [696, 697], a detailed description of the techniques for demand modeling is

beyond the scope of this work.

5.4.1 The trip pricing problem for one-way carsharing systems (TPPOCS)

The problem of trip pricing for one-way carsharing system is defined as a problem of setting

prices for carsharing trips based on their origin, destination and the time of day. Given a set of

carsharing stations operating in one-way mode for which an origin-destination matrix is known

for a given reference price, the TPPOCS aims at finding new prices between groups of stations

during a working day such that the profit of running the system is maximized while satisfying

all demand.

Let us define the following notation.

Sets: I′={1, . . . , i . . . I}: The set of time intervals in the operation period.

Z′={1, . . . ,z . . .Z}: The set of zones.

Parameters:
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α0
kt

: Number of vehicles relocated to station k at time instant t when relocation costs are

0,∀kt ∈ XXX .

β 0
kt

: Number of vehicles relocated from station k at time instant t when relocation costs are

0,∀kt ∈ XXX .

ε0
kt

: Difference in the number of vehicles relocated to/from station k at time instant t when

relocation costs are 0, ∀kt ∈ XXX .

tbi: The beginning instant of time interval i, ∀ i ∈ III′′′.

tei: The end instant of time interval i, ∀ i ∈ III′′′.

ω0
ki

: Difference in the number of vehicles relocated to/from station k during time interval i

when relocation costs are 0, ∀k ∈ KKK′′′, ∀i ∈ III′′′.

o: Number of observations in the cluster analysis.

u: Number of clusters desired.

E: Price elasticity of demand.

P0i
zw: The current carsharing price per time step driven between zones z and w when depar-

ture time interval is i,∀z,w ∈ ZZZ′′′, i ∈ III′′′ (all prices set to P0).

Decision variables:

Dktjt+δ t
kj

: Number of customer trips from station k to station j from time instant t to t +

δ t
k j,∀

(
kt , jt+δ t

k j

)
∈ AAA111 after the price is varied.

Pi
zw: Carsharing price per time step driven between zones z and w when departure time

period is i,∀z,w ∈ ZZZ′′′, i ∈ III′′′.

Demand, in this model, varies according to a simple elastic behavior. The new demand(
Dkt jt+δ t

k j

)
results from applying the price elasticity E to a reference demand

(
D0kt jt+δ t

k j

)
that

exists for price P0. The expression is:

E =

Dktjt+δ t
kj
−D0ktjt+δ t

kj
D0ktjt+δ t

kj

Pi
zw−P0i

zw
P0i

zw

(5.11)

The model assumes the elasticity to be the same for any interval of price variation. This may

be unrealistic for large price variations, however, one does not expect to change prices beyond

a realistic interval around the current reference price P0.

Using the notation presented in the previous sub-sections and the elasticity defined in Equa-
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tion (5.11), the MINLP model is formulated as follows:

Max θ = ∑

kt jt+δ t
k j

εAAA111

z,w ∈ ZZZ
′′′

i ∈ III
′′′

(
Pi

zw −Cmv
)
×Dkt jt+δ t

k j

×δ
t
k j −Cmp ∑

k∈KKK
′′′
Zk −Cv ∑

k∈KKK
′′′
ak1 (5.12)

subject to,

Dktjt+δ t
kj
≥D0ktjt+δ t

kj
+

E×D0ktjt+δ t
kj
×
(
Pi

zw−P0i
zw
)

P0i
zw

−0.5 , ∀
(

kt, jt+δ t
kj

)
εA1, z,w∈Z

′
, i∈I

′

(5.13)

Dktjt+δ t
kj
≤D0ktjt+δ t

kj
+

E×D0ktjt+δ t
kj
×
(
Pi

zw−P0i
zw
)

P0i
zw

+0.5 , ∀
(

kt, jt+δ t
kj

)
εA1, z,w∈Z

′
, i∈I

′

(5.14)

D0ktjt+δ t
kj
+

E×D0ktjt+δ t
kj
×
(
Pi

zw−P0i
zw
)

P0i
zw

≥0 (5.15)

Vktkt+1+ ∑
j∈KKK

′′′
Dktjt+δ t

kj
− ∑

jεKKK
′′′
:t′=t−δ t

jk

Dj
t′ kt−Vkt−1kt= 0 ,∀kt∈X (5.16)

akt− ∑
jt∈X

Dktjt+δ t
kj
− Vktkt+1= 0 ,∀kt∈X (5.17)

Zk≥akt ,∀kt∈X (5.18)

Dktjt+δ t
kj
∈N0 ,∀

(
kt, jt+δ t

kj

)
εA1 (5.19)

Pi
zw ∈ R0 ,∀z,w∈Z

′
, i∈I

′
(5.20)

Vktkt+1∈N
0 , ∀(kt,kt+1)∈A2 (5.21)
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akt∈N
0 ,∀kt∈X (5.22)

Zk∈N0 ,∀k∈K
′

(5.23)

The objective function (5.12) maximizes the total daily profit (θ) of the one-way carsharing

service, taking into consideration the revenue from trips paid by the clients, vehicle maintenance

costs, vehicle depreciation costs, and station maintenance costs. Note that in this model no

relocations are considered. Constraints (5.13) and (5.14) compute the demand resulting from

considering the price change. Given that this demand is a continuous function of price, two

inequalities are used to ensure that D will be integer. Constraints (5.15) ensure that the demand

resulting from the application of price elasticity to the reference demand is positive. Constraints

(5.16) and (5.17) ensure the flow conservation and calculate the number of vehicles at each

station at each time instant. Constraint (5.18) guarantees the station capacity constraint is met.

Expressions (5.19)-(5.23) set the variables domain.

The decision variables of the model are: the number of vehicles in each station at the be-

ginning of the day, the demand for each OD pair of stations at each time step, and the prices

charged for each OD pair of zones per time interval. It is evident that the objective func-

tion (5.12) is non-linear because demand is multiplied by the price and is non-concave, which

makes this a MINLP problem not easily solvable by traditional branch and cut algorithms. Some

MINLP solver software solutions are available to solve this type of problem for both concave

and non-concave formulations, but these typically have difficulties managing real size problem

instances [698]. The size of the search space of the trip pricing problem is much greater than

these solvers are able to tackle. For only 5 zones and 6 time periods, if prices vary from 0 to

0.70 C/min, with 0.01 increments, the number of possible solutions for this problem would be

|𝒫|=715·5·6= 4.88·10277.

5.4.2 Solution algorithm

The goal of the solution algorithm presented in this section is to find the prices Pi
zw for which

the daily profit θ of the TPPOCS will be as high as possible. A solution of this problem is a set

of trip pricing tables denoted P [|I|] [|Z|] [|Z|] (pmin, pmax), or in short P (pmin, pmax), where |I|
is the number of time intervals, |Z| is the number of zones and pmin and pmax are the minimum

and maximum allowed prices, respectively. Pricing table P (pmin, pmax) contains (|I| · |Z| · |Z|)
individual elements and each element Pi

zw corresponds to the price charged per minute for trips

from any station in zone z to any station in zone w, starting in time interval i. The set of feasible

solutions 𝒫(pmin, pmax) is defined as the set of all possible trip pricing tables of appropriate
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dimensions (|I|× |Z|× |Z|) whose elements are in a given price interval.

The optimal pricing table P is a trip pricing table for which the daily profit (θ) of a carshar-

ing company is maximised. More formally, the goal of the optimization algorithm is to find P

for which the following equation is satisfied:

Max θ
(
P
)
≥ Max θ (P) , ∀P (pmin, pmax) ∈ 𝒫 (pmin, pmax) .

For each trip pricing table P(pmin, pmax) generated by the solution algorithm, the TPPOCS

mathematical model is executed as a classical mixed integer programming (MIP) problem where

prices are given. In that way, the TPPOCS model finds the best possible profit that can be

achieved using a fixed trip pricing table suggested by the solution algorithm. The best possible

profit value is then introduced back to the algorithm, in essence rendering the model an evaluator

for the solutions suggested by the algorithm.

For this problem, again, the iterated local search (ILS) metaheuristic is selected. The algo-

rithm outline is available in Section 3.6.3. Various options are available when deciding on the

end condition for the algorithm and the local search operator. In the numerical experiments, the

time limit, which can be set as a parameter is used as the end condition. Furthermore, different

solution acceptance criteria can be chosen for the perturbation operator: starting each perturba-

tion from the best so far, from the current local search result or some other solution found during

the algorithm run history. The algorithm runtimes for the numerical experiments, as described

in Section 5.4.4, are very long, therefore, it was decided to focus the search as much as possible,

always using the best known solution as the perturbation starting point. In the ILS literature,

such acceptance criterion is usually called the best acceptance criterion.

Initial solutions

Initial solutions Pinitial are randomly generated trip pricing tables with each element Pi
zw ∈ Pinitial

in the interval pmin, pmax. They are obtained using a random number generator that generates

numbers with approximately uniform distribution in the specified interval. Preliminary tests

have shown that the quality of initial solutions varies significantly, depending on the choice of

the price interval, therefore this interval is subject to tuning. Such tuning considerably increased

the algorithm performance, similarly to the initial point selection in for the reservation problem.

Local search operator

The local search operator (LSO) used in this approach is explained in the pseudo-code in Al-

gorithm 2. It is a simple method that iteratively increases and then decreases trip pricing table

elements, as long as these changes improve profit. The procedure has two parameters: step and

time. The step parameter defines the smallest change in price that can be made during the search

and the time parameter defines the longest allowed search duration. The interval in which the

175



Applications

local search can modify the solutions ispmin and pmax. The price interval should be selected as

a reasonable interval for the problem at hand.

The order in which table elements are modified is randomized to encourage the discovery

of features for which the order of price changes matters, thus the operator is non-deterministic.

For each considered element of the table, the operator first tries to increase the price by adding

step to the initial price. If the modification causes a better profit, further increases will be

performed until pmax is reached or price increases are no longer improving the profit (or the

time expires). The analogous procedure is followed for price decreases. After the benefits of

both increasing and decreasing the price have been examined, the algorithm updates the trip

pricing table accordingly so that the new value gives the highest profit gain or retains the old

value if price changes caused a profit drop. The subset of the prices to consider changing can

vary, but in this work, the author decided to search through the entire table, i.e. the changing

candidate set of prices for the LSO, denoted Cls is a set of all table elements. After all of the

elements of Cls have been considered for modification, the operator will start again, but it will

visit the elements in a new randomly generated sequence.

The above procedure continues until on entire pass through the table has been done without

any improvements being made or until the allowed time has elapsed. By systematically ex-

ploring the effect of the price variations and combining the contributions of many small price

changes, the LSO can yield significant solution improvements, as shown in the numerical ap-

plication.

Some additional notation used in Algorithm 16:

(Pi
zw)down: Potential new lower price considered by the LSO and calculated by lowering the

initial price Pi
zw.

(Pi
zw)up: Potential new higher price considered by the LSO and calculated by increasing the

initial price Pi
zw.

Perturbation operator

The perturbation operator (PO), presented in Algorithm 17, introduces random price changes in

a small subset of the price table elements. The operator has two parameters: maximum number

of elements to change (n) and the maximum allowed change (d). First, n elements from a

price table P(pmin, pmax) are randomly selected into the perturbation modification candidate set

Cp ⊆ P(pmin, pmax). Then, for each element P(z,w)i ∈Cp, the new price is calculated by adding

a random value ∆p ∈ [−d,d] to the previous value. The interval, in which the perturbation can

change the prices, varies between pmin, and pmax. If the price after adding ∆p is lower than

pmin, it is updated to pmin, and likewise, if it is greater than pmax, it is updated to pmax. The set

Cp is called the modification candidate set, since there is no guarantee that all of its members

will be changed. Due to the definition of the interval from which ∆p values are selected, it is
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Algorithm 16 The local search operator [181]

possible that for some elements ∆p will be zero, leaving the table elements unchanged. This

behavior is intentional to ensure greater variability of the perturbation effects on a candidate

solution. It should be noted that LSO and PO are structurally related in such a way that the

local search is unlikely to cancel the effects of perturbation. If step is greater than 0.01 C/min,

the local search can return to the previous local optimum only if all of the changes caused by the

perturbation are multiples of the search step value. The probability for such an event to occur

drops very quickly as d grows in comparison to step and n> 1. Nevertheless, finding a balanced

perturbation intensity is still very important, to ensure that it is not too strong, as shown in the

numerical application in Section 5.

Algorithm 17 The perturbation operator [181]

5.4.3 Lisbon case study

The case study used in this work is the municipality of Lisbon, in Portugal. This municipality

has been dealing with several mobility problems, including traffic congestion and shortage of
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parking space associated with the increase in car ownership and the consequent high use of

private transport. Public transport has been upgraded; however, it has not been able to reduce

the use of private transportation for commuter trips. There is a need to manage mobility in a

smart way by, for instance, encouraging transport alternatives such as carsharing.

The base carsharing price per minute, P0, was considered to be 0.3 euros per minute, which

is based on the rates of Car2go from 2014 [639]. Note that there is no linkage between this price

and the demand that is going to be used for the computational experiments, since carsharing was

not offered in Lisbon at the time this research was conducted (2014). Time was divided into

6 intervals: 6:00 a.m. to 8:59 a.m., 9:00 a.m. to 11:59 a.m., noon to 2:59 p.m., 3:00 p.m to

5:59 p.m., 6:00 p.m. to 8:59 p.m, and finally from 9:00 p.m. to midnight, and the stations

were grouped into 5 zones. Note that zones are not necessarily geographically distributed,

since clustering based on demand patterns similarity was used to group the stations into these

categories [181].

5.4.4 Running the experiments

The TPPOCS mathematical model was also implemented using Xpress 7.7 with the same data

that was used in the VRPOCS model. The ILS metaheuristic was implemented in Java 1.8 pro-

gramming language and Xpress Java Application Programming Interface to gain access to the

model. All experiments were performed on two identical computers equipped with a 2.4 GHz

Intel Core i7-4700HQ processor and 16 GB of RAM and using Java 1.8 runtime environment

under Windows 8.1 operating system.

A single run of the TPPOCS model takes around 30 seconds and approximately one minute

when 8 instances of the model are running simultaneously. Most of the algorithm runtime is

therefore spent evaluating the candidate solutions; the benchmarks have shown that, in the best

case, only around 430 evaluations could be performed in one hour, using all of the eight logical

processor cores in parallel. This fact strongly influenced the tuning process of the algorithm

as well as the algorithm design itself. To obtain good solutions as quickly as possible, strong

intensification is performed through detailed local search and the use of the best perturbation

acceptance policy [127]. The strong intensification is introduced to facilitate the discovery of

profit-increasing features as soon as possible. The rest of this section gives an overview of the

tuning process and the best results found by the algorithm are presented in the next section.

Parameter tuning

The parameter tuning for this problem was done in three stages:

• Initial solution generator tuning,

• Local search tuning,
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• Perturbation tuning.

Initial solution generator tuning consisted of determining price bounds pmin and pmax for

the initial solutions. Initial solution tuning rationale is based on the assumption that good initial

solutions will enable the local search to find better results more quickly. In total, 105 different

intervals were explored: each interval with pmin and pmax being a multiple of 0.05C/min in the

range [0.00;0.70] C/min, with 50 solutions generated in each of these intervals. The results

proved that the average daily profit for the initial solutions varied greatly depending on the

price interval. The worst profit was measured for the interval [0;0.05] C/min, (average deficit

of 16,714.2 C/day) and the best profit, zero, was achieved for any interval with pmin and pmax

above 0.5 C/min. While at first this might seem like a good result, it should be pointed out that

the simulated carsharing demand adapts to price. When unreasonably high prices are applied,

the demand drops to zero by force of the elasticity. Zero demand causes the model to shut down

the service, interpreted as a zero profit result.

To take this into account, both profit and demand were considered for the initial trip pricing

tables. The scatter plot of a subset of explored initial intervals can be seen in Fig. 5.6, with

average profit on the x-axis and average demand on the y-axis. The Pareto non-dominated set

of (profit, demand) pairs, indicated by grey dots on the chart, was selected as a set of candidate

intervals [699, 700]. The highlighted interval [0.35;0.40] C/min has the lowest average deficit

(32.48 C/day) while also retaining high average demand (1579 trips, which corresponds to 89

% of the demand with the reference price). Configurations with higher profit do exist, but for

them, the demand drops to nearly zero, as can be seen in the example of the interval [0.45;0.65]

C/min, indistinguishable from the zero demand interval [0.5;0.7] C/min. Having near-zero

demand in the system is clearly not the desired result. Therefore, the values of pmin=0.35

C/min and pmax=0.40 C/min are selected as the initial randomly generated solutions.

The local search tuning consisted of determining the best search step parameter. Five initial

solutions with price intervals set up according to the values given above were randomly selected

and for each of them, local search with step equal to C0.01, C0.02, C0.05 and C0.10 was

applied. The experiment was repeated five times, resulting in 100 test runs with each local

search being limited to run for 4 hours. It is assumed that a better functioning local search

will provide good results faster in the environment of the ILS. The best results were in general

achieved using a step of C0.02.

Perturbation tuning consisted of trying to identify which pair of changed set size and inten-

sity (n,d) works best with the LSO configured as in the previous stage. A total of 8 different

configurations were run 5 times for 12 hours, to determine which perturbation parameters best

fit the balance of diversification and intensification. As the preliminary tests have shown, the

model is very sensitive to price changes. Best average profits are achieved with low perturba-

tion intensities (n=2,d=0.02) and (n = 5,d = 0.02), which have almost equal average profit. If
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Figure 5.6: Initial solution generator tuning [181]

Table 5.13: Recommended ILS parameters [181]

Initial solution step (C) n d

Pmin (C) Pmax (C)

Short runs (≤ 12h) 0.35 0.40 0.02 2 0.02

Long runs (>12h) 0.35 0.40 0.02 10 0.02

perturbation is more pronounced, average profits fall. This can be explained by the fact that

the local search is unable to find good solutions before another intensive round of perturbation

reduces the profit of the current local optimum.

The recommended metaheuristic parameters for solving the TPPOCS, using Lisbon as a

case study are given in Table 5.13. The time limits in the table are valid for equipment with

similar performance to the experimental setup from this work. When using the hardware as

specified in this Section, around 1440 model evaluations is available in 12 hours.

Best found solution

The best trip pricing table found in the experiments, denoted Pbest , is presented in Table 5.14.

Using this pricing table, the system is able to achieve a profit of 2068.1 C/day. Compared to
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Table 5.14: Best found trip prices for each origin-destination pair of zones and time interval [181]

TI 1 (6:00 a.m.-
8:59 a.m.)

TI 2 (9:00 a.m.-11:59 a.m.) TI 3 (midday-2:59p.m.)

Zones 1 2 3 4 5 Zones 1 2 3 4 5 Zones 1 2 3 4 5

1 0.36 0.44 0.38 0.40 0.38 1 0.35 0.43 0.38 0.41 0.40 1 0.40 0.39 0.39 0.40 0.41

2 0.38 0.39 0.39 0.38 0.39 2 0.39 0.39 0.39 0.39 0.39 2 0.38 0.39 0.38 0.39 0.39

3 0.46 0.37 0.38 0.44 0.38 3 0.38 0.38 0.39 0.38 0.39 3 0.39 0.39 0.39 0.39 0.39

4 0.35 0.41 0.36 0.38 0.39 4 0.39 0.40 0.39 0.41 0.40 4 0.38 0.40 0.38 0.39 0.39

5 0.39 0.45 0.35 0.41 0.39 5 0.38 0.39 0.38 0.36 0.38 5 0.39 0.39 0.39 0.39 0.39

TI 4 (3:00p.m.-
5:59p.m.)

TI 5 (6:00p.m.-8:59p.m.) TI 6 (9:00p.m.-midnight)

Zones 1 2 3 4 5 Zones 1 2 3 4 5 Zones 1 2 3 4 5

1 0.39 0.43 0.39 0.39 0.38 1 0.39 0.38 0.39 0.38 0.45 1 0.39 0.36 0.38 0.38 0.36

2 0.38 0.38 0.38 0.38 0.39 2 0.39 0.38 0.38 0.38 0.39 2 0.40 0.39 0.40 0.35 0.40

3 0.39 0.39 0.38 0.38 0.39 3 0.36 0.39 0.40 0.38 0.38 3 0.38 0.36 0.39 0.38 0.39

4 0.39 0.39 0.39 0.37 0.46 4 0.38 0.40 0.39 0.39 0.38 4 0.35 0.35 0.38 0.36 0.36

5 0.39 0.39 0.38 0.38 0.35 5 0.39 0.38 0.41 0.38 0.39 5 0.39 0.38 0.40 0.38 0.38

the loss of 1160.7 C/day resulting from not implementing any balancing strategy and having

to satisfy all the reference demand (1777 trips) for the reference price, it is clear that variable

pricing can lead to significant profit increases. For the best trip pricing table found, satisfied

demand is 1471 trips per day, which is a loss of 306 trips in relation to the reference demand

(17.7 % demand reduction). Note, however, that this demand is not rejected per se; it indicates

that some travelers will find the price too high to use the carsharing service. The average price

charged is 0.39C/min, with all the prices being in the interval [0.35 ; 0.46] C/min, that is, all

prices charged are higher than the reference carsharing price (P0), which is 0.30C/min. Most of

the OD pairs of zones that have a significant fall in demand correspond to a price of 0.40 C/min

or higher. It should be mentioned that the elasticity is being applied to the unit price per trip

and not to the total price of a trip; thus, it is not considered that longer trips may give different

results from shorter ones.

The improvement in the profitability of the company is not only due to the decreased demand

for some OD pairs of zones and time intervals, it is also due to the price increase itself in many

OD pairs where, while it is not enough to produce an expected demand reduction, it is sufficient

to have an impact on increasing the profits. This occurs even though it is considered in the case

study that demand is elastic to price variations, and elasticity is greater than 1 (absolute value),

which should point to a reduction in profit from price increase in a linear model. The special

and complex interdependence of supply and demand in carsharing systems leads to a system

that is beneficial when run for a lower number of trips, yet one that is more balanced.
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Table 5.15: Global results with and without trip pricing [181]

Profit
(C/day)

Revenue
related
to the
trips
(C/day)

Costs of ve-
hicle main-
tenance
(C/day)

Costs of
vehicle
depre-
ciation
(C/day)

Costs of
parking
spaces
main-
tenance
(C/day)

Satisfied
de-
mand

Fleet
of ve-
hicles

Number
of
park-
ing
spaces

No bal-
ancing
strategy

-1160.7 7113.3 166.0 6630 1478 1777 390 739

Trip
pricing

2068.1 7576.4 138.3 4352 1018 1471 256 509

Zoning that was determined by computing a theoretical desired relocation vector is able to

divide the stations into sets for which the price variations yield a higher profit. Even though

using the metaheuristic does not guarantee the optimal solution will be found, it can still be

demonstrated through its application to the case study that an increase in prices can actually

lead to a higher profit; a solution that not only avoids losses (system closure will generate

0 profit) but that is able to generate positive and significant profits. From the global results

presented in Table 5.15 it can be concluded that the balance of vehicles and profit are directly

related, because a more balanced system, despite resulting in lower revenue, requires fewer

vehicles and fewer parking spaces, which means lower operating costs.

5.4.5 Notes for potential practitioners – precision vs. simplification

When deciding on the number of clusters and time intervals for modeling a new city, they should

be sufficiently large to faithfully model the mobility patterns and classify the stations in enough

detail, but not so big as to diminish metaheuristic performance. For example, if a city has rush

hours in the morning (around 8:00 a.m.) and in the afternoon (around 4:00 p.m.), dividing the

day in two intervals (7:00 a.m. - 7:00 p.m.) and (7:00 p.m. - 7:00 a.m.) is clearly a bad choice.

Because both rush hours happen in a single time interval (the first one), this oversimplification

will cause the system to treat them both the same, despite the fact that they typically move in

opposite directions. The insufficient detail level of only two time intervals and a bad choice of

the interval start will therefore be likely to prevent the system from efficiently taking advantage

of differences in mobility patterns in the morning and afternoon rush hours. Similar reasoning

can be given for the cluster detail level.

The number of clusters and time intervals only has to be enough to allow the algorithm to

do detailed decisions that take advantage of the user behavior in the best possible way. Despite

the greater precision it brings, making the number of clusters too high may not be beneficial.

The number of possible candidate solutions increases exponentially the higher the number of
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clusters and time intervals. Too many clusters and intervals cause the metaheuristic to converge

rather slowly due to the increased computational complexity arising from the combinatorial

explosion of the search space size. The number of clusters and time divisions can be a part of the

metaheuristic tuning as well, if the initial results with the predefined values are not satisfactory.

In [181], a bound analysis formulas and models are provided for the TPPOCS problem.

They can be highly useful guidelines to arriving at educated decisions while implementing this

methodology. If the solutions found by the metaheuristic algorithm are far from the optimum, or

even lower than the lower optimum bound, this can be a good indicator that a tuning procedure,

although lengthy, might be beneficial to the system. Likewise, if the profit is closer to the

upper optimum bound (which is clustering independent), it is a sign that the metaheuristic is

approaching the upper limit of its capabilities. In these cases, further tuning and increases in

the cluster number will almost certainly produce little or no improvement.

5.4.6 Variable pricing - concluding remarks

The case study application shows that using price variation to balance vehicle stock across one-

way carsharing stations works satisfactorily. When no vehicle balancing mechanism is applied,

the carsharing company has a deficit of 1160.7 C/day. In a perfectly balanced solution, a profit

of 316.0 C/day is achieved. Using the trip pricing metaheuristic approach, the profit for the

best price combination found through the use of the ILS is 2068.1 C/day. This is an increase

of 3228.8 C/day over the case of no balancing mechanism in a system that has 75 stations and

serves 1471 trips. It is demonstrated that system balancing has a very important role in reducing

the costs and increasing profitability of carsharing systems. The perfectly balanced solution has

a higher profit than the imbalanced one.

Still, as shown in [181], balancing alone is not enough to achieve optimal profits. Using a

metaheuristic algorithm to optimize profits, it was possible to find solutions offering more than

six times higher profit than a perfectly balanced solution. While the best solution found also

has significantly decreased imbalance, it is not zero.

It is also relevant to note that the prices charged to the clients for every OD pair of zones

increased in comparison to the reference price, which leads to lower demand. However, the

increase in price happens through a generalized reduction in the imbalanced demand served by

carsharing. The results show that in most cases the OD pairs of zones that have price increases,

and therefore a decrease in demand, are the ones with a greater difference between trip origins

and trip destinations which demonstrates that the solution algorithm (metaheuristic) is able to

capture the essential behavior of the system related to the trip imbalance across zones and time

intervals and improve its performance. Additionally it is quite interesting to observe that even

though a notable elastic behavior of demand toward price (-1.5) was introduced in the model

the general increase of prices produces a higher profit, which in a simpler case of one demand
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for one price is not intuitive, but in this case is the result of a complex system with multiple

feedbacks that characterizes carsharing.

The main conclusion that is drawn from this study is that trip pricing can be considered an

effective method to improve the profitability of one-way carsharing systems. Concerning the

generalizability of the method, it was shown that it is possible to successfully apply it under

variability such as changes in the way stations are divided into clusters, or changes in consumer

habits that impact price elasticity over time [181]. Therefore, the methodology is robust enough

to work reasonably, even if some of the real world parameters change. Additionally, the meta-

heuristic is a generic optimization tool that could be used with any other traffic simulator that

is able to estimate profit based on a variation in pricing, and is not restricted to the elasticity

model used in this Chapter. This indicates that the developed methods could be applied in var-

ious other environments. However, it must be noted that the solution algorithm computation

time is dependent on the problem dimension.
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Chapter 6

Metaheuristics for problems with limited
budget of evaluations – lessons learned

Several general conclusions can be taken from the described experience implementing meta-

heuristics for problems with a limited budget of evaluations. Caution is needed when attempt-

ing to generalise any experiments with metaheuristics, especially since the two studied problems

are similar and come from a specific area of carsharing optimisation. While these restrictions

hold, the fact that the devised algorithms are first implementations of the iterated local search

metaheuristic for such type of problems can provide important insight for other researchers

interested to applying this metaheuristic to problems with limited budget of evaluations.

Further, not using a surrogate, but instead focusing on improving the performance of the

“naked” metaheuristic is a rare approach in the current literature. Existing research typically

suggests that the best course of action is building appropriate surrogate methods and developing

a sampling strategy that balances the quality of the surrogate and the focus around areas with

good potential objective function value. Despite this in the two successful implementations of

the ILS this step was not necessary. In this chapter, the benefits and drawbacks of both using

and not using surrogate models are discussed.

The author believes that some of the seemingly simple techniques such as initial solution

generator tuning, and more generally a high quality initial solution generation technique can

bring great improvements in the algorithm performance. In fact, the tuning of the initial solu-

tion generator was the step that has brought the highest performance improvements during the

development. While this analysis is restricted to ILS, there is no reason to suspect that improv-

ing the initial solutions would also improve performance of any other metaheuristic, when very

low number of solutions can be sampled. In the remainder of this chapter, the most important

findings are described, followed by guidelines based on the conducted experiments.
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6.1 Initial solution generation

When applied on problems that have an objective function that can be quickly evaluated, meta-

heuristics can perform large number of solution evaluations, and evolve a solution to a highly

optimised one. This is possible even with very small changes in each step because it is not un-

common to evaluate and compare hundreds of thousands of solutions before returning the best

found. As described in the introductory chapters of this thesis, the progress of a metaheuristic

technique can be visualised as a path of a point (when single-soution methods are used) or mul-

tiple paths of multiple points (when a population method is used) in the solution hyperspace.

With quick objective functions, the large number of evaluated solutions corresponds to a long

path the algorithm can perform in the solution space, before finishing. This also indicates that

with such problems, the choice of the initial point does not matter much as any other point in

the solution space will be reachable by the algorithm in the provided time. Because of that, for

most problems with fast evaluation functions, even a trivial random solution initialisation works

well enough.

This does not apply to the problems with a slow evaluation function, where only a few

hundreds, up to a few thousands of points can be sampled and evaluated. Algorithms applied to

such problems also traverse a path in the solution space, however it is much shorter than with a

fast objective function. This also means that it is less likely that an algorithm will reach a region

with high quality solutions if the initial solution (or solutions) are very distant from the initial

point. This fact is mentioned e.g. in [594], where the authors mention that the choice of the

initial point is not highly important for the quality of the final solution (in implied situation when

it is possible to perform a lot of evaluations). However, it is specifically stated that the choice

of the initial point is important if good solutions need to be found quickly. Unfortunately, the

literature related to solving optimisation problems with slow objective function barely mentions

this simple approach.

Experiments conducted in this work show that choosing good starting points significantly

improves the solutions. Good solutions tend to be clustered, therefore being in an already

not-too-bad solution increases the probability that we are indeed close to a good region of the

solution space. For this purpose, several techniques were considered: tuning the initial solu-

tion random generator, implementing a greedy algorithm, and deducing construction heuristics

based on experiments performed by hand. In the two applications from this work, the first

approach performed well enough, therefore the more advanced ones were skipped.

6.1.1 Tuning the parameters of the random solution generator

The initial experiments for the variable trip pricing problem in 5.4 indicated that a very simple

configuration of the interval in which the prices are generated can have a considerable effect
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on the inital solution quality. In that example, instead of generating each price in the general

interval p ∈ [0.00,0.70], the initial solutions used a restricted version where all initial prices

were set to a random value between 0.35C and 0.40C was used.

This interval was selected after running a simple experiment in which the average objective

function value was calculated for 50 randomly initialised solutions with the variable versions in

the provided interval. A total of 105 different intervals was used, with 0.05 C as the step value

and both the upper and lower limit being divisible by 5 cents. This resulted in experimentally

tested average solution quality for each of the intervals below

[0.00,0.05], [0.00,0.10], [0.00,0.15], . . . , [0.00,0.70]

[0.05,0.10], [0.05,0.15], [0.05,0.20], . . . , [0.05,0.70]

. . .

[0.60,0.65], [0.60,0.70],

[0.65,0.70]

(6.1)

Such tuning is simple to implement—requires two nested for loops, which is trivial. The

resolution of this sampling and the number of repetitions can be easily configured so that the

running time is not too long. The method can be easily generalised to problems in which each

variable has a different default interval, or even a completely different domain. General version

of the interval narrowing algorithm could take e.g. a percentage of the allowed domain for each

variable category.

6.1.2 Greedy algorithms

Greedy algorithms have the potential to improve the initial solutions. An important drawback

of such algorithms is the fact that they require that the objective function can evaluate incom-

pletely initialised solutions. In our problems, this was not the case since both the reservations

simulator and the variable trip pricing model did not support evaluating partial solutions. Still,

in problems where this might be possible, greedy algorithms might be a very simple but efficient

technique for choosing the initial point. Experimental validation is recommended, to validate

the assumption that the greedy algorithm indeed does return better solutions than the random

value generator (or the restricted-interval random value generator).

6.1.3 Investigating the objective function

In nearly all implementations, problem specific algorithms that have the potential to generate

good solutions can be added. In the carsharing variable pricing example, increasing the prices

for trips originating in areas with vehicle deficiency and in the direction of areas with a suficit
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could be increased by some predefined percentage. In the problem of carsharing reservations,

experiments with constant QoS tables identified candidates with good objective function values.

Such experiments by the developer can be done for any problem, even the black box problems.

The surrogate modelling approach assumes it is more productive to spend the developer

time implementing models that will then learn the objective function landscape from the inputs

gathered during the algorithm run. Conversely to this approach, in some cases it might be more

useful to allow the developer to deduce some simple rules for initial solution generation based

on what is known about the problem and what can be deduced by human intelligence.

6.2 Intensification instead of diversification, but not too much

Since there is not enough chance to spend much time intensifying the solution, successful al-

gorithms for both LBE problems had much more emphasis on the intensification (local search)

phase, than diversification (perturbation), which was left to be mild. Too much diversification

can divert the search from good solutions even in problems where fast evaluation is possible.

With slow evaluation, the reach of local search is very limited, therefore perturbation must also

not be too intense, otherwise the ILS metaheuristic woud degrade to the random restart local

search, which is a suboptimal configuration.

Similar results were reported in [174], where authors report best configurations of the ACO

metaheuristic, applied without surrogates to a limited budget of evaluations variant of the TSP

problem. The best configurations had parameter values that indicated more intensification than

in the TSP version with the usual quick evaluation. When there is available information about

good parameter values for the regular version of the problem, it is indeed reasonable to use

the metaheuristic configuration with more intensification. This of course is possible only with

problems with “artificially slowed down” evaluation, such as TSP which is in [174] limited to

100 or 1000 evaluations, despite the fact that much more are possible in short time. With “true

slow evaluation” problems, it is generally not known what would be the best configuration in

the “fast evaluation” case. Even then, it seems like a good idea to start with low diversification

intensity and then tune the algorithm by gradually increasing the diverrsification component,

especially if the initial solution generator is also tuned to produce good solutions.

6.3 Population or single-point methods?

Despite the fact that a large body of research in optimisation of slow objective functions uses

variants of the genetic algorithm, the results from this work indicate that it might not be the best

metaheuristic for the LBE problems. Genetic algorithm, and all population methods require a

population of solutions, and evaluating all of them takes a long time. In fact, population methods
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are metaheuristics that use the highest number of evaluations per iteration of all metaheuristics

and without the help of local search converge slowly.

Why is then genetic algorithm the most commonly used algorithm for solving LBE prob-

lems? Part of the answer is probably in the fact that it is the oldest metaheuristic technique with

ample research available for the conventional problems with quick evaluation. Another reason

might be that a large part of the LBE literature comes from publications in areas of application

such as chemistry and mechanics, where authors might not be aware of all available optimisa-

tion techniques and simply decided to use the most widely cited or the oldest. To help speed

up GA when applied to LBE problems, techniques that evaluate only a subset of the solutions

during time have been developed. However, as with surrogate functions, this risks missing good

solutions whose fitness was falsely estimated as low.

Single point methods such as ILS or Tabu Search require only one evaluation per iteration.

There is no evidence that population based methods are faster, in fact, available literature indi-

cates that the opposite is true for several problems described in 4.3.2. Additionally, single-point

methods have simpler operators. This not only simplifies the development, it also allows the

developer more direct control and higher predictability over where the search process will go.

This can be important when a highly limited budget of evaluations is available. Due to these

reasons and given the successful implementations of ILS for two LBE problems, the author

argues that simple methods such as ILS might be a better way to solve practical problems even

when they have a slow evaluation function.

6.4 Are surrogates needed?

The literature in general reports success with surrogate modelling based algorithms, with a few

exceptions reporting negative results. It is unclear if this is due to high level of success of surro-

gates or due to the tendency of researchers in the optimisation community not to report negative

results. Positive results generally include significant improvement in the solution quality given

the same number of evaluations or reaching the best known solution quicker than without them.

It should also be noted that for highly dimensional problems, the ability of surrogates to give

good approximations with limited budget of evaluations decreases.

A notable drawback of the existing literature is that it usually does not report much detail

about the effort invested into tuning and adaptation of the bare, “surrogate-free” techniques.

As with metaheuristic comparisons, it is only fair to compare metaheuristics that are equally

carefully tuned to the given problem. Further, a single study that uses a systematic comparison

methodology reports that simply tuning the ACO algortihms performs better than the surrogate

model based on EGO sampling [174].

Another issue with surrogates is that they add a new layer of complexity into already com-
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plex art of metaheuristic development. All the problems related to metaheuristics also apply to

implementing surrogates. Which surrogate method is best suited for our problem? While there

exist some guideliens, there is no formal process to help decide that. Integrating surrogates

takes development time, and before testing them experimentally, it is difficult to predict how

successful will the surrogates be. With the surrogate, there also comes the question of the sam-

pling strategy and balancing the the surrogate fidelity vs. exploring known good regions. With

all this comes also the problem of parameter tuning, which is complex for such systems with a

lot of parameters and unclear connections between them. How does an increase of the tendency

to improve surrogate fidelity and explore unseen regions correspond to the population size in

GA? Should it be kept the same, increase or decrease? Detailed experiments are the only way

to find such answers, however, with LBE problems, detailed experiments might not be practical

given the their high resource requirements.

Finally, none of the surrogates provides any guarantees that they will help the algorithm

work better. Given the fact that implementing and integrating the surrogate takes time, requires

high levels of expertise and add even more complexity to the process, the author argues that

at the very minimum, the performance of the direct application of the metaheuristic should

be tested before starting using surrogates, especially if state-of-the-art performance is not a re-

quirement. Starting off with a surrogate implementation without testing if we can have sufficient

performance with a simpler method risks using precious development time to develop complex

methods that might not bring the performance improvement at all, or th improvement might not

be sufficient to justify the extra complexity and development time.

6.5 Bottom-up development of metaheuristics for the prob-

lems with limited budget of evaluations

Applying the bottom-up development methodology with gradual addition of complexity, and

only if necessary, the process of solving problems with limited budget of evaluations would

not introduce surrogates until reasonable effort to implement a direct metaheuristic is finished.

Single-point methods are advisable instead of population methods. Then, and only if the perfor-

mance is not good enough, it would be sensible to experiment with surrogates. If possible, it is

advisable to run a preliminary test of various possible surrogates to identify the one performing

the best on the given objective function. While this strategy cannot be proven to produce the

best results, it is helpful since it has a tendency to produce simple and efficient solutions while

saving the development time.
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Conclusion

This thesis is an effort to increase the applicability and manageability of metaheuristic tech-

niques. While these methods have been praised as efficient and general problem-solvers, their

adoption in practical problems, especially outside academia is still widely considered as com-

plicated, expensive and requires a high level of expertise. A large number of available meta-

heuristics further confuses practitioners who want to choose the best method for their prob-

lem. To mitigate all these problems and reduce the complexity, the bottom-up development

methodology for metaheuristic development is proposed. It is based in component-based view

of metaheuristics, and the results that show that algorithms with more operators or parameters

do not necessarily have better performance, and that sometimes the opposite holds. Follow-

ing this proposed development methodology, the simplest component capable of producing a

solution is implemented first. Then, more sophisticated components are gradually added until

satisfactory performance is achieved.

The proposed methodology is tested on three problems that appear in practice. The first

problem, called call centre workforce scheduling problem consists of scheduling staff in a call

centre so that the number of available staff always meets the forecasted demand (volume of

incoming calls), while also taking care of all the legal and organisational requirements. The

problem was successfully solved with satisfactory solution quality, and to the author’s surprise,

this was achieved even with very simple metaheuristics: GRASP and iterated local search. The

work is published as a conference paper in [395].

The second and third problem are the interdisciplinary part of the thesis. They are trans-

portation problems related to carsharing. In the first problem, an efficient method for handling

reservations in one-way carsharing systems is proposed and tested on a case study of the Lisbon

municipality in Portugal. The method is further improved by introducing a geographically vary-

ing service quality, whose goal is to improve the overall service, as defined by four parameters:

profit, proximity of cars to the user, longest allowed reservation time and accepted demand. An

iterated local search metaheuristic was implemented to solve this problem. Using this method,
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the reservation times systems increased from 15-30 minutes available in current commercial

providers up to 18 hours available in a simulated Lisbon provider, without a significant loss of

profitability. The work is published in [181].

The third problem is the first application of variable pricing in one-way carsharing. The

goal of the project was to create a procedure for determining trip prices that vary depending

on the time of day and geographical zone of the service area that increase the provider profit

the most. By setting the correct prices in each zone, the users can be stimulated to behave in

the way that helps the carsharing provider to improve the vehicle stock balance and at the same

time earn more money by having the prices adjusted to the current demand. The method was

successful in improving the profit of a simulated carsharing provider in Lisbon under several

possible variations. In the most likely case, the service using constant pricing was reporting

losses of around 1800 C per day. The iterated local search for trip pricing was able to set the

price values that turned these losses around and achieved profits of up to 2000C per day. The

work is published in [182].

While all three problems were useful tests and demonstrations that the development method-

ology proposed in this work allows rapid development of efficient problems solvers, the studied

transportation problems had another element that increased their difficulty. Both problems, and

especially the problem of carsharing variable pricing, are problems with a limited budget of

evaluations. Unlike the most common approach in the literature—genetic algorithm and a sur-

rogate method to estimate the values of the objective function, the solutions proposed in this

work use iterated local search, without the use of surrogates. To the best of the author’s knowl-

edge, these are the first applications of the iterated local search metaheuristic to the problems

with a limited budget of evaluations. These algorithms were implemented using a bottom-up

development methodology, as a further indicator that the methodology can be extended to prob-

lems typically used complex surrogate modelling. The experience with successful solving of

these two problems is further synthesised into a set of guidelines and recommendations for

solving problems with limited budget of evaluations using metaheuristics.
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godine pod mentorstvom prof. dr. sc. Domagoja Jakobovića brani temu doktorske disertacije
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