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 SUMMARY 

When analysing Internet traffic today it can be found that digital video content prevails. 

Its domination will continue to grow in the upcoming years and reach 80% of all traffic by 

2021. If converted to Internet video minutes per second, this equals about one million video 

minutes per second. Providing and supporting improved compression capability is therefore 

expected from video processing devices. This will relieve the pressure on storage systems and 

communication networks while creating preconditions for further development of video 

services. Transform and quantization is one of the most compute-intensive parts of modern 

hybrid video coding systems. Improving the compression capability of this computation block 

is achieved using complex algorithms at the expense of increasing implementation complexity. 

Design requirements for higher throughput, reduced communication latency and low power 

consumption cannot be accomplished using homogenous systems and heterogeneous 

multiprocessor high performance systems are imposed as a solution. 

This thesis presents an area efficient reusable architecture for the integer discrete cosine 

transform and quantization and also highly performance optimized kernel designed for 

execution on a GPU. In the case of hardware architecture, optimization is based on exploiting 

the symmetry and subset properties of the transform matrix. The proposed multiply-accumulate 

architecture is fully pipelined. It provides a two-way interface over which the processing system 

can control the data path of the transform process and receive the feedback information about 

utilization from the device. The proposed architecture is implemented on the FPGA platform, 

that achieves a throughput of 815 Msps and can support encoding of a 4K UHD@30 fps video 

sequence in real-time. 

Considering GPU implementation, the performance optimization strategy involved all 

three aspects of parallel design, exposing as much of the algorithm’s intrinsic parallelism as 

possible, with the exploitation of high throughput memory and efficient instruction usage. It 

combined efficient mapping of transform blocks to thread blocks and efficient vectorized access 

patterns to shared memory for all transform sizes. Two different GPUs were used to evaluate 

the proposed implementation. Speedup factors compared to CPU, cuBLAS and AVX2 

implementations are up to 80, 19 and 4 times respectively.  

Keywords: Video Coding, High Efficiency Video Coding (HEVC), Integer Discrete Cosine 

Transform (DCT), Heterogeneous Computing, Hardware Acceleration 



 

 

Projektiranje transformacijskih i kvantizacijskih računskih blokova za videokompresiju 

optimiranih za učinkovito izvođenje na heterogenim višeprocesorskim računalima 

visokih performanci  

Digitalni videozapis danas dominira u mnogim industrijama i uslugama više nego ikada 

prije. Ako se promatraju analiza i predviđanja IP (engl. Internet Protocol) podatkovnog prometa 

u razdoblju od 2017. do 2022., zastupljenost digitalnog videozapisa bit će u rasponu od 80% do 

90% ukupnog prometa. Ovakav visoki udio videozapisa posljedica je ne samo zahtjeva 

korisnika za tom vrstom sadržaja već i uvođenja prijenosa videozapisa vrlo visoke razlučivosti 

(UHD, engl. Ultra High Defintion ili videozapis razlučivosti 4K UHD). Potrebna brzina 

prijenosa takvog videozapisa je dva puta veća od potrebne brzine prijenosa videozapisa visoke 

razlučivosti (HD, engl. High Definition) i devet puta veća od potrebne brzine prijenosa 

videozapisa standardne razlučivosti (SD, engl. Standard Definition). Predviđa se da će se 2022. 

22% od ukupnog IP videoprometa odnositi se na videozapis razlučivosti 4K. Zamjetan je i trend 

pomaka IP prometa u smjeru mobilnih platformi koji doprinosi rastu svih oblika IP prometa a 

osobito videoprometu. Predviđanja su da će se do 2022. 29% prometa ostvarivati putem žičanih 

a preostali dio putem bežičnih mreža. Sve veća dostupnost mobilnih uređaja koji mogu 

reproducirati videozapise visoke razlučivosti te rast brzina prijenosa mobilnih mreža generiraju 

dodatnu potražnju za videozapisima visoke kvalitete i visoke razlučivosti. 

Postoje različiti oblici internetskog videoprometa: internetski prijenos videozapisa, 

videozapis na zahtjev, mrežne videoigre te razmjena videozapisa putem dijeljenja datoteka. 

Ono što je zajedničko postojećim vrstama videozapisa i različitim aplikacijama koje postoje u 

lancu od generiranja videozapisa do njegove reprodukcije je potreba za video(de)kodiranjem ili 

video(de)kompresijom. Kodiranje izvode pružatelji usluga dok se dekodiranje obavlja u 

uređajima korisnika. Obrada videozapisa koja uključuje kompresiju i dekompresiju potrebna je 

kako bi pohranjivanje i prijenos te vrste podataka bili ekonomični. Naprimjer, za pohranu deset 

sekundi nekomprimiranog videozapisa razlučivosti 4K, brzine osvježavanja slike 30 fps (engl. 

frame per second, slika u sekundi), standardnog oblika komponentnog videosignala YCbCr i 

8-bitne dubine boje potrebno je oko 3,48 GB memorijskog prostora ili preračunato u potrebnu 

brzinu 356 MB/s. Ako se takav videozapis komprimira koristeći najsuvremeniju normu 

kompresije HEVC (engl. High Efficiency Video Coding) ili H.265 potreban memorijski prostor 

za pohranu videozapisa je oko 4,34 MB, a potrebna brzina je oko 455 kB/s. Te vrijednosti ovise 

o karakteristikama videosadržaja i postavkama procesa kodiranja. 



 

 

Kompresija videosignala temelji se na smanjenju redundancije unutar slike i/ili između 

slika. Prvi korak u tom postupku je predviđanje unutar slike te predviđanje između slika čiji je 

rezultat razlika između predviđene i trenutačne slike odnosno pogreška predviđanja. Što je taj 

korak učinkovitiji, manja je pogreška predviđanja koja se dalje kodira u sljedećim koracima. 

Prvi sljedeći korak je transformacija u frekvencijsku domenu nakon čega je većina energije 

signala pogreške sadržana u malom broju komponenti niskih frekvencija. Vrijednosti 

komponenti niskih frekvencija se nadalje smanjuju nelinearnom kvantizacijom. Taj postupak 

dovodi do gubitaka informacija i smanjenja vizualne kvalitete. Kvantizacijom je moguće 

upravljati tako da gubitak kvalitete bude prihvatljiv. Kvantizacija je ireverzibilan postupak. 

Zadnji korak kompresije je entropijsko kodiranje. Ono smanjuje redundanciju između bitova u 

slijedu kvantizacijskih razina i vrijednosti sintaksnih elementa. 

Kodiranje videozapisa visoke razlučivosti i velike brzine osvježavanja slike zahtjeva 

veliku računalnu moć i veliku brzinu obrade. Računalni sustavi temeljeni na CPU-u (engl. 

Central Processing Unit) su dosegli gornju granicu brzine računanja po Watu uložene energije 

i nisu efikasni za takve aplikacije koje koriste velike količine podataka pogodnih za paralelni 

način obrade. Heterogena višeprocesorska računala visokih performanci su novo i prikladno 

rješenje za izvođenje takvih aplikacija. Takva računala osim CPU-ova sadrže i druge računalne 

čvorove kao što su GPU-ovi (engl. Graphic Processing Units), DSP-ovi (engl. Digital Signal 

Processors) i namjenske sklopovske akceleratore. Kombinirajući mogućnost paralelne 

programske izvedbe sa arhitekturama vrlo niske latencije postiže se visoka računalna 

propusnost uz nisku potrošnju energije. Projektiranje aplikacije za izvođenje na takvim 

računalima uključuje njenu razdiobu na dijelove pogodne za paralelno izvođenje i visoku 

propusnost te na dijelove namijenjene serijskom izvođenju, osjetljive na latenciju. Ti dijelovi 

aplikacije se potom izvode na odgovarajućim računalnim čvorovima, dijelovi pogodni za 

paralelno izvođenje na GPU-u, DSP-u ili FPGA-u (engl. Field Programmable Gate Arrays), a 

dijelovi pogodni za serijsko izvođenje na CPU-u. U usporedbi s tradicionalnim računalima, 

izvedba aplikacije na heterogenim računalima postiže tako visoke performance i energetsku 

učinkovitost. Pri tome je potrebno obratiti pozornost na dva pomoćna procesa koji mogu biti 

vremenski zahtjevni i značajno utjecati na brzinu izvođenja: prijenos podataka između 

računalnih čvorova i pokretanje izvođenja dijelova aplikacije na pridijeljenim čvorovima. 

Glavni cilj ove doktorske disertacije bio je istražiti programske i sklopovske izvedbe 

transformacijskih i kvantizacijskih računskih blokova za učinkovito izvođenje na heterogenim 

višeprocesorskim računalima visokih performanci. Algoritmi za transformaciju i kvantizaciju 



 

 

su jedan od najsloženijih i podatkovno najzahtjevnijih dijelova algoritama za kompresiju 

videozapisa. Inovativna i optimirana izvedba tih algoritama je ključna za postizanje visokih 

performanci u videokodiranju. Cjelobrojna aproksimacija DCT-a (engl. Discrete Cosine 

Transform), najzastupljenija je vrsta transformacije u videokodiranju i kompresiji slike, ujedno 

propisana u HEVC-u, tema je istraživanja ove disertacije. Kao tipični predstavnici računalnih 

čvorova unutar heterogenih višeprocesorskih računala visokih performanci uzeti su GPU za 

programsku izvedbu, a FPGA za sklopovsku izvedbu ovih računskih blokova. Nakon analiza 

matematičkih modela, značajki transformacije DCT te postojećih izvedbi, predložena je nova 

sklopovska i nova programska izvedba uz razrađenu metodologiju potvrde učinkovitosti. 

DCT se može efikasno izvoditi korištenjem DFT-a (engl. Discrete Fourier Transform). 

DFT se koristi za općenitu spektralnu analizu i nalazi primjenu u mnogim područjima obrade 

signala. DFT je definiran za kompleksne signale ograničenog trajanja, a DCT za realne signale 

ograničenog trajanja koji su podskup skupa kompleksnih signala. Značajka DCT-a koja ga čini 

prikladnijim za kompresiju u odnosu na npr. DFT je da je većina energije signala sadržana u 

malom broju frekvencijskih komponenti videosignala. Ovo je poželjna karakteristika za 

kompresijske algoritme. Izvorni signal u vremenskoj ili prostornoj domeni je dakle moguće 

predstaviti prilično vjerno koristeći mali broj DCT koeficijenata u frekvencijskoj domeni. 

Preostali koeficijenti se uklanjaju u fazi kvantizacije. 

Kompresijska učinkovitost transformacije postiže se sve većim brojem 

transformacijskih blokova različitih dimenzija čime se oni prilagođavaju prostorno-

frekvencijskim karakteristikama ulaznog bloka slike. Učinkovitom izvođenju i povećanju 

interoperabilnosti doprinio je cjelobrojni DCT. Sklopovska izvedba cjelobrojnog množenja je 

brža, koristi manje memorijskih resursa, troši manje energije i zauzima manje područje. 

Učinkovitost programske i sklopovske izvedbe je dodatno naglašena u postupku standardizacije 

za HEVC normu. Osim energetske kompaktnosti, ortogonalnosti i simetričnosti baznih vektora 

HEVC je s manjim brojem različitih elemenata transformacijske matrice postigao manje 

područje potrebno za sklopovsku izvedbu. Ponavljanjem elemenata baznih vektora za sve 

veličine transformacije omogućena je višestruka upotreba istih množitelja, a jednakim 

normiranjem baznih vektora izvođenje kvantizacije operacijom skalarnog množenja. Elementi 

transformacijske matrice koriste 8-bitni zapis, registri za ulazne, transponirane i izlazne podatke 

te množitelji su 16-bitni, a akumulatori 32-bitni. Sve aritmetičke operacije nad 



 

 

transformacijskim blokovima je moguće izvesti koristeći procesorske naredbe SIMD (engl. 

Single Instruction Multiple Data). 

U sklopu provedenog istraživanja razvijeno je sklopovsko rješenje za cjelobrojni 

jednodimenzionalni DCT za sve podržane veličine transformacije u HEVC-u s minimizacijom 

područja sklopovske izvedbe koristeći FPGA tehnologiju te programsko rješenje za 

transformaciju i kvantizaciju prema HEVC normi optimirano za propusnost podataka pri 

izvođenju na GPU-u unutar heterogenog višeprocesorskog računalnog sustava. 

Zbog različite arhitekture temeljnih logičkih blokova predloženo je sklopovsko rješenje 

za dva odabrana uređaja FPGA od dva vodeća proizvođača Xilinx i Intel Altera. Pritom su 

korišteni razvojni alati Vivado IDE te Intel Quartus Prime pri čemu je Vivado IDE bio glavni 

alat. Metodologija projektiranja usklađena je s proizvođačevom preporučenom metodologijom 

UltraFast. Nakon što su svi moduli sklopovskog rješenja prošli simulacijske testove dizajn je 

sintetiziran i implementiran. Fizički ostvariv model (engl. Register Transfer Level Model) i 

vremenska ograničenja kao npr. trajanje signala takta su ulazni podaci potrebni za tu fazu 

razvoja. Budući je smanjivanje područja sklopovske izvedbe postavljeno kao glavni cilj 

provjerene su predefinirane strategije logičke sinteze i implementacije dostupne u alatima. Za 

svaku inačicu sklopovskog rješenja zabilježene su količine upotrijebljenih logičkih blokova, 

registara te potrošnja energije, a proračunata je najveća moguća frekvencija takta i propusnost 

sklopa. Inačica potvrđena za Xilinxov uređaj je potom sintetizirana i implementirana za Intelov 

FPGA sklop. 

Kako bi isto sklopovlje moglo biti korišteno za sve veličine ulaznih blokova, dizajn je 

strukturiran u sklopovske staze. Staza koja je projektirana za izračun neparnih elemenata 

izlaznog vektora za veličinu transformacije 𝑁 označava se kao Staza N. Svaka takva staza 

instancirana je 𝑁/2 puta, a osim za veličinu transformacije 𝑁 korištena je i za sve veće veličine 

transformacije. Jednu stazu čine ulazni multipleksor, multipleksirano množilo tipa MCM (engl. 

Multiple Constant Multiplication) i akumulator. Ona realizira skalarni umnožak jednog baznog 

vektora transformacijske matrice i ulaznog vektora pogreške predviđanja. Ovisno o 

množiteljima koji su izvedeni u MCM-u razlikuje se pet tipova staza. Tijekom 𝑁/2 ciklusa 

takta akumulator pribraja umnoške trenutačnoj pohranjenoj vrijednosti. Nakon tog vremena se 

na izlazu svake staze postavlja rezultat, 16-bitni koeficijent odnosno jedan element izlaznog 

vektora. Svaka staza sadrži dva konfiguracijska registra. U prvi konfiguracijski registar upisuje 

se kodna riječ preko koje se upravlja adresnim ulazima svih multipleksora unutar množila 



 

 

MCM kako bi se nakon tri ciklusa takta izračunao umnožak s jednim od predefiniranih 

množitelja. Drugi konfiguracijski registar sadrži kodne bitove za upravljanje akumulatorom 

gdje logičko stanje ,,0” označava pribrajanje umnoška stanju akumulatora, a logičko stanje ,,1” 

oduzimanje umnoška od trenutačnog stanja akumulatora. 

Instance multipleksiranog MCM-a dominantni su funkcijski blokovi s obzirom na 

postotak zauzeća ukupnog područja sklopovske izvedbe. Taj tip MCM-ova je odabran umjesto 

paralelnog kako bi područje bilo što manje. Njihov nedostatak je veće kašnjenje i smanjena 

propusnost. Uštede područja sklopovske izvedbe su postignute i u dizajnu ulaznog podsklopa. 

Parovi elemenata ulaznog vektora koji su 16-bitne vrijednosti slijedno se dovode na njegov ulaz 

odnosno ulaz cijelog sklopa te se zbroj i razlika njihovih vrijednosti zapisuju u registar čija 

vrijednost se potom postavlja na ulaze svih staza. Širina ulazne sabirnice je dakle 32 bita. U 

ulaznom multipleksoru koji se nalazi u svakoj stazi se jedna od te dvije vrijednosti prosljeđuje 

na izlaz. Kada sklop računa transformaciju veličine 𝑁 onda ulazni multipleksor u Stazi N na 

svoj izlaz postavlja razliku vrijednosti ulaznih parova, a za sve veće veličine transformacije 

njihov zbroj. 

Na izlazu sklopa se nalazi podsklop za serijalizaciju koji sekvencijalno čita izlaze iz 

dvije susjedne instance staza te ih postavlja na izlaz sklopa. Za komunikaciju između sklopa i 

procesorskog sustava projektirana su dva sinkronizacijska kanala. Preko jednog procesor može 

zaustaviti serijalizaciju što uređaj potvrđuje aktivacijom odgovarajućeg izlaza. Preko drugog 

kanala sklop signalizira zastoj kada do njega dođe kako procesor ne bi nastavio sa slanjem 

novih podataka. Do zastoja dolazi kada je vektor transformacijskih koeficijenata postavljen na 

izlaz bloka staza, a serijalizacija prethodnog vektora još nije gotova. Uz signalizaciju zastoja 

procesoru izlazni vektor se upisuje u međuspremnik za kašnjenje. Nakon deaktivacije signala 

zastoja pokreće se novi ciklus transformacije, a vektor iz međuspremnika za kašnjenje se 

serijalizira. 

Predloženo sklopovsko rješenje nadmašuje slična rješenja s obzirom na područje 

sklopovske izvedbe. Najveća frekvencija rada za transformacijski i kvantizacijski blok je 407,5 

MHz. Predložena arhitektura može biti korištena za kodiranje u stvarnom vremenu 

videosadržaja razlučivosti 4K UHD i brzine osvježavanja slike 30 fps. 

Programsko rješenje za transformaciju i kvantizaciju prema HEVC normi optimirano je 

za najveću moguću propusnost podataka pri izvođenju na GPU-u unutar heterogenog 

višeprocesorskog računalnog sustava. U procesu razvoja korištena su dva ispitna okruženja 



 

 

kako bi se potvrdila učinkovitost postupaka optimiranja za GPU-ove sa različitim brojem 

multiprocesora (SM, engl. Streaming Multiprocessor) i napravila usporedba sa ostalim 

programskim rješenjima koja koriste isti tip GPU-ova. Prvo okruženje sadržavalo je GPU iz 

obitelji GeForce, a drugo okruženje GPU iz obitelji Tesla, pri čemu oba imaju arhitekturu 

Kepler. Programski model CUDA (engl. Compute Unified Device Architecture) proizvođača 

NVIDIA Corp. je upotrijebljen za pisanje programske podrške za korišteni heterogeni računalni 

sustav. Usporedno s izvedbom za GPU, dodatna izvedba transformacijskog i kvantizacijskog 

bloka je projektirana za izvođenje na GPU-u uz korištenje NVIDIA-inih funkcija iz biblioteke 

cuBLAS (engl. CUDA Basic Linear Algebra Subroutines). U ispitivanja su uključene i dvije 

izvedbe za CPU. Prva koristi naredbe za jednostruki tok podataka, a druga vektorske naredbi 

AVX2 (engl. Advanced Vector Extensions 2). U procesu razvoja programskog rješenja 

primijenjen je iterativni i inkrementalni pristup. Provedena mjerenja su uključivala mjerenje 

trajanja jezgrene funkcije koja izvodi transformaciju i kvantizaciju svih transformacijskih 

blokova u jednoj slici te mjerenje ukupnog vremena koje osim trajanja jezgrene funkcije 

obuhvaća i trajanje prijenosa podataka od CPU-a do GPU-a i od GPU-a do CPU-a. Ukupno 

vrijeme odgovara vremenu transformacije i kvantizacije jedne slike u videozapisu. S obzirom 

na postavljene ciljeve, pojedine iteracije su uključivale mjerenja efektivne propusnosti globalne 

memorije, iskoristivosti skupova dretvi i učinkovitosti pristupa dijeljenoj memoriji. U 

ispitivanjima su korištene slike videozapisa razlučivosti DCI 4K (engl. Digital Cinema 

initiatives) i 8K Full Format sa sustavom uzorkovanja komponentnog videosignala 4:2:0. 

Za povećanje performanci predloženog rješenja u odnosu na druge izvedbe a s obzirom 

na propusnost podataka ključno je učinkovito korištenje raspoloživih resursa na GPU-u: 

blokova dretvi i samih dretvi (dvije razine paralelizma), dijeljene memorije pridijeljene svakom 

bloku, registara u svakoj dretvi te zajedničke globalne memorije. Svaki SM izvodi dretve preko 

skupova dretvi gdje svaki skup čine 32 dretve. Broj aktivnih blokova dretvi i skupova dretvi po 

SM-u ovisi o izvedbenoj konfiguraciji jezgrene funkcije, veličini prostora zauzetog u dijeljenoj 

memoriji i broju korištenih registara. U jezgrenoj funkciji za transformaciju i kvantizaciju 

obrađuju se velike grupe blokova različitih veličina, a dva matrična množenja predstavljaju 

računski najzahtjevnije operacije na koje otpada više od 90% vremena izvođenja funkcije. S 

obzirom na broj bajtova koji jezgrena funkcija dohvaća i pohranjuje u globalnu memoriju i broj 

aritmetičkih operacija koje koristi, ona može biti obilježena memorijskim pristupom ili 

aritmetičkim operacijama. 



 

 

Zbog potrebnog vremena od 50 µs između završetka izvođenja jedne jezgrene funkcije 

i početka izvođenja druge projektirana je jedinstvena jezgrena funkcija. Koristeći predložak 

funkcije s dimenzijom bloka kao parametrom predloška, funkcija računa blokove razina i 

identifikacijski AZB (engl. All-Zero-Block) niz, a ulazi su joj blokovi pogreške predviđanja, 

kvantizacijski parametar i tri faktora skaliranja. Budući se kod matričnog množenja skalarno 

množe vektori duljine 𝑁 svi blokovi se spremaju u dijeljenu memoriju jer je trajanje dohvaćanja 

podataka za red veličine kraće nego kad se operandi nalaze u globalnoj memoriji. U dijeljenu 

memoriju se kopiraju i blokovi transformacijske matrice smješteni izravno u globalnu memoriju 

na početku programa. Obrasci pristupa podacima u dijeljenoj memoriji ključna su odrednica 

performanci predloženog programskog rješenja. Ako se blokovi podataka za oba operanda 

matričnog množenja izravno kopiraju u dijeljenu memoriju, dolazi do serijalizacije pristupa 

memorijskim bankama, a trajanje transformacije i kvantizacije jedne slike je pritom četiri puta 

dulje. Zbog toga se koristi tehnika dopune blokova kako bi se izbjegla serijalizacija pristupa. 

Budući je propusnost jedne banke dijeljene memorije 64 bita po ciklusu takta podaci su 

grupirani koristeći tip podataka short4 a dijeljena memorija rekonfigurirana za 64-bitni način 

rada kako bi se u jednoj transakciji po memorijskoj banci dohvaćala četiri susjedna elementa u 

redu bloka. Ovakav obrazac pristupa doveo je do vektorizacije jezgrene funkcije jer je jedna 

dretva računala četiri kvantizirana transformacijska koeficijenta. 

Od izvedbe za GPU-u koja koristi metode iz NVIDA-ine biblioteke cuBLAS očekivalo 

se ubrzanje u odnosu na vlastito rješenje. Budući cuBLAS metode ne podržavaju cjelobrojne 

tipove podataka širine veće od 8 bita, korišten je tip podataka float. Za svaku od dvije faze 

matričnog množenja pozvana je metoda za grupno množenje matrica koje su jednako 

razmaknute u memoriji. Nakon svakog poziva bilo je potrebno pozvati jezgrenu funkciju za 

zaokruživanje kako bi međurezultati i konačni rezultati bili u skladu s normom HEVC. Takva 

izvedba se pokazala bržom samo uz korištenje skalarnih tipova podataka. Kada je predloženo 

programsko rješenje za izvođenje na GPU-u koristilo vektorske tipove podataka float2 i short4, 

izvedba GPU cuBLAS je bila sporija i u slučaju kada su jezgrene funkcije za zaokruživanje bile 

izostavljene. 

U sklopu projektiranja izvedbe za GPU bilo je potrebno naći optimalan omjer mapiranja 

broja transformacijskih blokova na blok dretvi i ispitati utjecaj dopune blokova u dijeljenoj 

memoriji za različite dimenzije transformacije. Trajanje izvođenja najkraće je uz konfigurirani 

blok dretvi dimenzije 8 × 32 što je i najmanja moguća veličina bloka dretvi za najveću veličinu 



 

 

transformacije. Za veće dimenzije bloka dretvi, kada on obrađuje dva, tri ili četiri 

transformacijska bloka, sinkronizacije izvođenja dretvi i serijalizacije tijekom izračuna AZB 

indeksa negativno utječu na trajanje izvođenja. Kod mapiranja najmanjih transformacijskih 

blokova na konfigurirani blok dretvi, unutar njega se obrađuje 64 transformacijska bloka. Za 

veće omjere mapiranja obrasci pristupa podacima u globalnoj memoriji postaju neučinkoviti. 

Tehnika petlje sa skokom unutar jezgrene funkcije, koja se koristi u dohvaćanju novih blokova 

podataka, smanjuje učinkovitost priručne memorije L2 jer se skok povećava za veći omjer 

mapiranja i podaci se moraju dohvaćati iz globalne memorije. Što se tiče dopune blokova u 

dijeljenoj memoriji, pokazano je da ona pozitivno utječe na učinkovitost pristupa dijeljenoj 

memoriji za blokove dimenzija 16 × 16 i 32 × 32, a za manje blokove ne. Razlog tome je veća 

penalizacija serijalizacije pristupa podacima u stupcima blokova kada nema dopune nego 

prekomjerno alociranog memorijskog prostora po bankama kada je ima. Za manje veličine 

blokova ili nema serijalizacije tijekom izvođenja snopa dretvi (4 × 4) ili je ona manje kritična 

za učinkovitost pristupa od prekomjerno alociranog memorijskog prostora (8 × 8). 

Kako bi se ubrzala transformacija i kvantizacija slike iskorišteni su CUDA tokovi koji 

omogućuju vremensko preklapanje prijenosa podataka i izvođenja jezgrene funkcije. Najveća 

brzina je postignuta kada su transformacijski blokovi razdijeljeni u osam tokova. Postignuto 

ubrzanje ovisi o omjeru trajanja prijenosa podataka i trajanja izvođenja jezgre. Što je on bliži 

jedan, veće je ubrzanje. 

Predloženo programsko rješenje postiže prosječno vrijeme transformacije i kvantizacije 

slike 6,03 ms odnosno 23,94 ms po slici za videozapise razlučivosti DCI 4K i 8K Full Format. 

Ubrzanja u odnosu na izvedbe za CPU, GPU cuBLAS i AVX2 su redom 80, 19 i 4 puta. S 

obzirom na vrijeme izvođenja predloženo rješenje nadmašuje sličnu izvedbu transformacijskog 

i kvantizacijskog bloka 1,22 puta te može biti upotrijebljeno za dekodiranje u stvarnom 

vremenu. 

Unutar ovog doktorskog rada ostvarena su tri izvorna znanstvena doprinosa: 

1. Projektiranje programske izvedbe transformacijskih i kvantizacijskih računskih blokova 

za videokompresiju optimiranih za učinkovito izvođenje na heterogenim 

višeprocesorskim računalima visokih performanci. Izvedba za GPU postiže ubrzanja do 

redom 80, 19, 4 i 1,22 puta u odnosu na izvedbe za CPU, cuBLAS, AVX2 i sličnu 

paralelnu izvedbu za GPU. Predloženo programsko rješenje može se koristiti za 



 

 

dekodiranje u stvarnom vremenu videozapisa razlučivosti 4K UHD i brzine 

osvježavanja slike 50 fps. 

2. Projektiranje sklopovske izvedbe transformacijskih i kvantizacijskih računskih blokova 

za videokompresiju optimiranih za učinkovito izvođenje na heterogenim 

višeprocesorskim računalima visokih performanci. Sklopovska izvedba koristi FPGA 

tehnologiju i postiže propusnost od 1 Gsps uz korištenje 9,6% manje sklopovskih 

resursa u usporedbi sa sličnom izvedbom. Predložena arhitektura može se koristiti za 

dekodiranje u stvarnom vremenu videozapisa razlučivosti 4K UHD i brzine 

osvježavanja slike 30 fps. 

3. Metodologija potvrde učinkovitosti programske i sklopovske izvedbe optimiranih 

računskih blokova. Za potvrdu učinkovitosti programske izvedbe za GPU mjeri se 

trajanje izvođenja jezgrene funkcije i trajanje izvođenja transformacije i kvantizacije 

slike u videozapisu. Dobiveni rezultati uspoređuju se s ostalim izvedbama. U svrhu veće 

učinkovitosti procesa optimiranja, korištena metrika uključuje i mjerenja efektivne 

propusnosti globalne memorije, iskoristivosti skupova dretvi i učinkovitosti pristupa 

dijeljenoj memoriji. Za sklopovsku izvedbu koja koristi FPGA tehnologiju proračunava 

se propusnost podataka i vrednuje u odnosu na količinu upotrijebljenih sklopovskih 

resursa koja treba ostati mala. Za obje predložene izvedbe utvrđuje se mogućnost 

korištenja u sustavima za videokompresiju u stvarnom vremenu. 

 

Ključne riječi: videokodiranje, norma za videokodiranje HEVC, cjelobrojna diskretna 

kosinusna transformacija, heterogeno računarstvo, sklopovske jezgre za ubrzanje  
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1 INTRODUCTION 

Today, more than ever before, digital video dominates many industries and services. If 

observing IP video traffic statistics and forecast for the time period from 2017 to 2022, it is in 

the range of 80 to 90 percent of total IP traffic [1]. Aside from high customer demand for video 

content, this high share is caused by introduction of the Ultra-High-Definition (UHD) or 4K 

video streaming. Its bit rate at about 15 to 18 Mbps, is more than double the High-Definition 

(HD) video bit rate and nine times more than the Standard-Definition (SD) video bit rate. It is 

estimated that in 2022 the 4K video content will account for 22 percent of the global IP video 

traffic. This emerging technology reflects customer requests for high resolution and high quality 

video content. There exist different forms of IP video content including Internet video, IP Video 

on Demand (VoD), video conferencing, video-streamed gaming and video files exchanged 

through file sharing. The very broad range of the forms and applications characterized by 

different specifications and constraints have one thing in common, video (de)compression. 

Compression is done by content providers and decompression is carried out at the consumer 

device. Video compression is a necessary processing step for affordable and efficient storage 

and transmission. Without compression, it would not be feasible to store and transmit digital 

video content because of the required huge storage capacity and a very large bandwidth. For 

example, ten seconds of a YCbCr 4:2:0 8-bit 4K video with a frame rate of 30 fps [2] requires 

a storage capacity of about 3.48 GB or, when recalculated, a bitrate of 356 MB/s. If such a video 

is compressed by using the state-of-the-art High Efficiency Video Coding (HEVC) standard1, 

storage capacity and bitrate are 4.34 MB and 455 kB/s respectively. In case of a compressed 

video the output file size or required bandwidth depend on video content and encoding settings. 

Concerning trends contributing to the continued growth of global IP traffic, a shift 

toward mobility is noticeable. In upcoming years an increasing part of the traffic will originate 

from mobile or portable devices. It is predicted that by 2022 the wired networks will account 

for 29 percent of IP traffic, and Wi-Fi and mobile networks will account for 71 percent of IP 

traffic [1]. Video also becomes the dominant medium in the domain of mobile networks. Nearly 

61 of the 77 exabytes crossing the mobile network per month will be ascribed to video by 2022 

[4]. The new generation of video codecs, the availability of higher resolution mass market 

 
1 The HEVC reference software HM [3] was selected. Video was encoded using Random Access configuration 
and default encoding settings. 



2 

 

devices and mobile networks speed improvements enable the increased usage of mobile 

networks for video applications. High quality video streaming is not feasible with older mobile 

network infrastructure and devices without higher processing capabilities. When conditions for 

high quality video streaming are met that increases its popularity among consumers. 

The new generation of video codecs provides higher quality at lower bit rates. This 

accomplishment was made at the cost of a big increase in the computational complexity of 

video encoding and decoding. Two major standards in this space are HEVC and AV1. Due to 

wide adoption and legacy issues, video encoding is largely skewed towards Advanced Video 

Coding (AVC) today, a representative of the previous generation of video codecs. HEVC 

doubled the compression efficiency compared to AVC [5]. HEVC reference encoder 

outperforms AV1 in terms of bit rate [6] but its disadvantage is a royalty-based business model. 

Upcoming years will determine which business model, whether the royalty-free open source 

software, with AV1 as its representative, or the royalty based one, with Versatile Video Coding 

(VVC), a successor of HEVC, with a planned release at the end of 2020, will prevail at the 

market. 

Video signal compression relies on redundancy reduction inside and/or between the 

frames or images. The reduction is accomplished by intraframe and interframe prediction [7] 

where previous frames are utilized to predict the current one. The predicted and current frame 

are subtracted and then compressed. The more efficient this process is, there will be less data 

in the subtracted, prediction error or residual frame for subsequent compression steps. In 

addition to prediction and differencing, the transformation from time domain to frequency 

domain is used. The main characteristic of the transformation to frequency domain is that the 

energy of the signal becomes concentrated in a small number of lower frequencies. For the 

purpose of further compression, a value range is further reduced through nonlinear quantization. 

This may lead to losses in the video signal. If those losses are made on a level providing 

satisfactory visual quality they can be assessed as acceptable. Quantization is the only 

irreversible processing step and due to losses in it, the entire compression is attributed as lossy 

compression. The final compression technique used in modern video compression systems is 

entropy coding. It reduces the redundancy between bits in the sequence of quantized data and 

syntax element values. 

Compared to compression, video signal decompression is a reverse process with 

reconstructed frames as the process output which can be either stored for future display or 
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immediately sent to the console output in VoD or a real-time application. Decompression starts 

with entropy decoding. After dequantization and inverse transform, the residual frame is 

restored in the time domain. Subsequently, it is added to the reference frame to obtain a 

reconstructed frame using the same prediction process like on the encoding side. 

Video coding of high-resolution and high frame rate videos using new generation video 

codecs demands a high processing speed and compute capability. Computing systems based on 

the Central Processing Unit (CPU) have reached the upper boundary in computation speed per 

Watt and cannot be efficiently utilized for such innovative applications. Video coding 

applications require processing a large amount of data and exhibit a high level of parallelism. 

The emerging heterogenous multiprocessor high performance computers can be used as a 

solution for those challenges. They combine CPUs with non-traditional computing devices such 

as Graphic Processing Units (GPUs), Digital Signal Processors (DSPs) and specialized 

hardware (HW) accelerators to achieve high computation throughput at a lower power 

consumption through exploitation of massive parallelism and low latency architectures. Design 

for heterogenous computing systems involves portioning of an application to parallel, high 

throughput parts and latency optimized, serial parts which are then run on appropriate 

computing nodes. The former are executed using GPUs, DSPs or Field Programmable Gate 

Arrays (FPGAs), and the latter on CPUs. In such a way heterogenous computing system can 

achieve a much higher application performance and energy efficiency than the traditional 

computing systems. The migration to heterogenous computing exposed two overheads that 

have to be solved to make it completely successful. Initiating a task on a non-CPU computing 

device, as well as transferring data to and from such devices can be time-intensive and can have 

a major impact on the overall achievable speed of a parallel application. Moreover, these 

overheads restrict the sort of work which can be offloaded. 

This thesis investigates novel techniques for transform and quantization computation 

blocks in video compression systems that target heterogeneous multiprocessor high 

performance computers. Transformation and quantization algorithms are one of the most 

processing and data demanding parts of the compression algorithm. Innovative and optimized 

implementation of those algorithms on CPU-GPU systems and using FPGA is a key to high 

performance video encoding. Finite precision approximation of the Discrete Cosine Transform 

(DCT), the most widely used transform type in video and image compression, employed in the 

HEVC standard is a use-case which was addressed in the thesis. As a typical representative of 
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processing units in heterogeneous systems, the GPU is taken for SW implementation and the 

FPGA for HW implementation of the computation blocks. After the analysis of theory and 

properties of DCT transforms in already existing techniques, novel performance optimized 

implementations are proposed. Detailed validation is conducted to confirm their efficiency and 

methodology is revealed for each particular proposed implementation. 

1.1 Thesis outline 

Chapter 2 describes DCT (with DCT type II as its most common variant) and 

quantization. The relation with DFT that also decomposes finite length discrete-time signal into 

a sum of scaled and shifted basis functions, but using the harmonically related complex 

functions instead of real-valued cosine functions, is presented. Emphasis is placed on the 

properties which allow coding efficiency, and this is demonstrated on the transform and 

quantization of a video frame. Finally, transform and quantization in the HEVC standard, which 

is designed considering implementation efficiency and which presents the base of this research 

is described. 

Chapter 3 describes the hardware architecture design for HEVC transform and 

quantization and presents results of its validation. As an introduction to the author's own design 

and description of the methodology for efficiency validation, the mathematical model and 

general architectures of the integer DCT computation block are discussed. This is followed by 

the evaluation of related hardware architectures that target ASIC or FPGA devices. 

Chapter 4 deals with the performance optimized GPU implementation of the HEVC 

transform and quantization kernel. The chapter begins with a functionality overview of the 

kernel’s computation subblocks which are ported to the GPU. The development environment 

and methodology for efficiency validation are described and key design decisions are discussed. 

The chapter concludes with an analysis and evaluation of implemented optimization techniques, 

performed in iterations. 

Finally, Chapter 5 concludes the thesis, briefly describes the motivation for this work, 

summarizes the results of the research and suggests directions for further research. 
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2 TRANSFORM CODING 

2.1 Introduction 

Since 1988 and the appearance of the H.261 video coding standard, transform coding is 

the basis for all video coding standards, together with prediction error coding and entropy 

coding. Video signals contain information in three dimensions. In video encoding schemes they 

are modelled as spatial and temporal domains. There is a high level of information redundancy 

in both domains. Neighbouring samples are highly correlated, and the energy tends to be evenly 

spread across the domains. Taking this into account, discarding data or decreasing the precision 

would also decrease video quality and irreversibly impair end-user experience.  

The main goal of transform coding is to map a set of pixel values from the spatial into 

the transform domain. The mapping process has to result in a compact form in terms of signal 

energy. A small number of significant low frequency coefficients in the transform domain will 

contain most of the energy. Besides the energy compaction, data decorrelation has to be 

obtained so that those data, which contribute less to video quality, are removed in a later 

processing. Data removal is made during the quantization stage. Therefore, quantization is 

usually a part of the transform coding process, although often not explicitly stated. Transform 

and quantization properties have to be exploited for efficient implementation. 

DCT, originally proposed in 1974 [8], is widely used in image and video coding 

nowadays due to its properties which satisfy all the general requirements placed on the mapping 

process. Considering strong energy packing and decorrelation properties it is comparable to the 

Karhunen–Loève transform (KLT) [9] which completely removes the statistical dependence 

between transform coefficients. KLT’s disadvantages are dependence on the input signal and a 

complex algorithm. 

This chapter focuses on the DCT and its derivation integer DCT, which advances DCT’s 

implementation efficiency, ensures device interoperability and minimizes the drift between 

encoder and decoder implementations. Rather than on mathematical theory, the emphasis is put 

on properties which are useful both for compression efficiency and for efficient 

implementation. 



6 

 

2.2 Discrete cosine transform 

2.2.1 Derivation and definitions 

DCT transforms a group of image samples into a group of transform coefficients. It is a 

reversible operation. An inverse operation to forward DCT (FDCT), the inverse DCT (IDCT), 

transforms a group of coefficients into a group of image samples. DCT can be applied to a 1D 

group of data with a 1D group of coefficients as a result or to a 2D group or block of data with 

a 2D group or block of coefficients. Both arrangements of the DCT are illustrated in Figure 2.1. 
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Figure 2.1: 1D and 2D discrete cosine transform 

DCT can be derived from the Discrete Fourier Transform (DFT) [10] where frequency 

coefficients are calculated as follows: 

𝑋𝑚 = ∑ 𝑥𝑛𝑒−𝑗
2𝜋𝑚𝑛

𝑁

𝑁−1

𝑛=0

(2. 1) 

for 𝑚 = 0,… ,𝑁 − 1. DFT is widely used for general spectral analysis applications that find 

their way into a range of fields. It is a linear transform which takes as input a complex signal 

𝑥𝑛 of length 𝑁, and gives as output a complex signal 𝑋𝑚 of length N. From (2.1) it can be seen 

that DFT has a kernel given by: 

𝑊𝑚𝑛
𝑁 = 𝑒−𝑗

2𝜋𝑚𝑛
𝑁  (2. 2) 

𝑊𝑚𝑛
𝑁  can be represented as a complex matrix of size N × N. Consequently, the 

Equation 2.1 could be shown as a matrix multiplication expressed as: 
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𝑿 = 𝑾𝒙 (2. 3) 

Compared to the continuous Fourier transform DFT is applicable for computing 

applications as a finite number of samples are taken and processed. This means that the signal 

𝑥𝑛 will be zero outside the domain {0, … ,𝑁 − 1}. Further simplifications can be made 

considering real discrete-time signals. Complex numbers are used in representing the signal just 

for mathematical convenience. Real signals are a subset of complex signals. So, when the real 

signals are analysed with a full complex transformation, it can be expected that the outcome 

will be restricted as well. One of the restrictions is that the real signals have certain symmetries 

in the Fourier domain, that the fully complex signals do not have. 

To derive DCT from DFT, a new signal denoted as 𝑦𝑛 is constructed as follows: 

𝑦𝑛 = {
                 𝑥𝑛, 0 ≤ 𝑛 < 𝑁

          𝑥2𝑁−𝑛−1, 𝑁 ≤ 𝑛 < 2𝑁
 

It can be noticed that 𝑦𝑛 is constructed from 𝑥𝑛 by adding a mirrored version of 𝑥𝑛 to itself as 

depicted in Figure 2.2. It is even symmetric around the point halfway between and 𝑁 − 1 and 

𝑁.  

xn

n

yn

n0 1 0 1
 

Figure 2.2: Source and constructed signals xn and yn 

In the next step, 2N-point DFT of 𝑦𝑛 is computed as: 

𝑌𝑚 = ∑ 𝑦𝑛𝑒−𝑗
2𝜋𝑚𝑛

2𝑁

2𝑁−1

𝑛=0

(2. 4) 

for 𝑚 = 0,… ,2𝑁 − 1. By rewriting Equation 2.4 as a function of 𝑁 terms only, the following 

result can be obtained: 

𝑌𝑚 = 𝑒𝑗
𝜋𝑚
2𝑁 ∑ 2𝑥𝑛𝑐𝑜𝑠 [

𝜋

2𝑁
𝑚(2𝑛 + 1)]

𝑁−1

𝑛=0

 (2. 5) 

for 𝑚 = 0,… ,2𝑁 − 1. If summation part of the expression (2.5): 
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𝐶𝑚 = ∑ 2𝑥𝑛𝑐𝑜𝑠 [
𝜋

2𝑁
𝑚(2𝑛 + 1)]

𝑁−1

𝑛=0

 (2. 6) 

is denoted as 𝐶𝑚, Equation 2.5 can be rewritten as: 

𝑌𝑚 = 𝑒𝑗
𝜋𝑚
2𝑁 𝐶𝑚 (2. 7) 

Factor 𝐶𝑚 is defined as 𝑁-point DCT. As signal 𝑥𝑛 was assumed to be real, it can be 

seen that its DCT will be real as well. Equation 2.7 presents the relation between DFT of signal 

𝑦𝑛 and DCT of signal 𝑥𝑛. Mirroring made during the construction of 𝑦𝑛 provides a way of 

calculating 𝐶𝑚 from 𝑌𝑚 because of its symmetry. It follows: 

𝐶𝑚 = 𝑒−𝑗
𝜋𝑚
2𝑁𝑌𝑚 (2. 8) 

for 𝑚 = 0,… ,𝑁 − 1. Overall relations between DCT and DFT including their inverse 

operations are illustrated in Figure 2.3. 

N-points
xn

2N-points
yn

2N-points
Ym

N-points
Cm

DFT

 

Figure 2.3 Relation between source signal x(n), constructed signal y(n) and their transforms 

By exploiting symmetry and using Equation 2.7, 𝑌𝑚 can be derived from 𝐶𝑚 in a 

similar way as in the time domain [11]. The IDCT is given by: 

𝑥𝑛 =
1

𝑁
∑ 𝑤𝑚𝐶𝑚𝑐𝑜𝑠 [

𝜋

2𝑁
𝑚(2𝑛 + 1)]

𝑁−1

𝑚=0

(2. 9) 

for 𝑛 = 0,… , 𝑁 − 1 where 

𝑤𝑚 = {
1 2⁄ , 𝑚 = 0

1, 𝑚 = 1, 2, … , 𝑁 − 1
 

The pair defined in Equations 2.6 and 2.9 is also referred to as the even symmetrical 

DCT or DCT of type II. There are three more types of DCT which are determined by choices 

made when implicitly extending the finite and discrete input signal to make it periodic, and by 

the point around which the signal is even or odd. These choices relate to signal behaviour at 

domain boundaries. For cosine transforms, signal is even around the left boundary which is the 
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opposite of sine transforms where it is odd. Concerning the right boundary, if the signal is even 

around it then DCT is of type I or II and if odd then of type III or IV. When the signal is even 

or odd around the last sample in a sequence then DCT is of type I or III, and when around 

halfway between the last sample and the first extension sample then it is of type II or IV. 

Extensions mentioned here are the consequence of dualities between the time and transform 

domains. Discrete (non-continuous) signals in one domain correspond to periodic signals in the 

other domain. 

2.2.2 DCT of type II 

Different boundary conditions greatly influence the applications of the transform and 

lead to uniquely useful properties for the various DCT types. DCT of type II, also denoted as 

DCT-II, characterized by excellent energy compaction property and the best approximation to 

KLT, will be in the scope of this thesis and from now on used for all computations in this work. 

Same as with DFT, DCT as a linear transform can be expressed in a matrix notation 

𝑿 = 𝑪𝒙 (2. 10) 

where 𝒙 is the input signal, 𝑿 the output signal, both represented as the column vectors of size 

𝑁, and 𝑪 is a transform matrix of size N × N. Due to the properties of cosine function with the 

frequency 𝜋𝑚

2𝑁
 and sampling rate 𝑛 it can be shown that rows of 𝑪 are orthogonal. Furthermore, 

if its rows or vectors are normalized, they can be considered as a set of 𝑁 orthonormal vectors 

that constitute the basis of a 𝑁-dimensional vector space [12]. After normalization, the DCT-II 

transform coefficients and reconstructed original signal values are given by: 

𝑋𝑚 = √
2

𝑁
𝑤𝑚 ∑ 𝑥𝑛𝑐𝑜𝑠 [

𝜋

2𝑁
𝑚(2𝑛 + 1)]

𝑁−1

𝑛=0

(2. 11) 

for 𝑚 = 0,… ,𝑁 − 1 and 

𝑥𝑛 = √
2

𝑁
∑ 𝑤𝑚𝑋𝑚𝑐𝑜𝑠 [

𝜋

2𝑁
𝑚(2𝑛 + 1)]

𝑁−1

𝑚=0

 (2. 12) 

for 𝑛 = 0,… , 𝑁 − 1 where in both equations 

𝑤𝑚 = {1 √2⁄ , 𝑚 = 0
1, 𝑚 = 1, 2, … ,𝑁 − 1

(2. 13) 
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With analogy to an electrical signal, voltage or current, coefficient 𝑋0 is called the DC 

coefficient and other coefficients are called AC coefficients. 

For visualization purposes, the basis vectors of the transform matrix can be represented 

using pixel frequencies i.e. color changes along a row. For simplicity, scaling factors from 

Equation 2.13 are neglected and transform coefficients range from -1 to 1. All values from the 

range are represented as rectangles painted using grayscale normalized to range {-1,1}. Every 

basis vector is therefore displayed as an array of 𝑁 rectangles. Graphic representation for the 

4 × 4 transform matrix is shown in Figure 2.4. 𝑁 calculated transform coefficients from 

Equation 2.11 are weights for a weighted sum of basis arrays which yields the data vector itself. 

 

Figure 2.4: Graphic representation of the 1D DCT transform matrix 

1D DCT can be used to compress one-dimensional data like an audio signal. When a 

video signal is considered then the data appear in the two-dimensional structures like a frame 

or images in the spatial domain or prediction error in both domains. The pixel as a basic 

information unit in such a data structure resembles all its horizontal neighbours. To make the 

DCT of such data practical, it is applied to smaller size blocks and in two directions, first to 

each row of a data block and then to each column of the result. That makes it separable, which 

is important for the implementation efficiency. 2D DCT for a square-shaped block of size N × N 

is defined by: 

𝑋𝑚1𝑚2
=

2

𝑁
𝑤𝑚1

𝑤𝑚2
∑ ∑ 𝑥𝑛1𝑛2

𝑁

𝑛2=0

𝑁

𝑛1=0

 𝑐𝑜𝑠 [
𝜋

2𝑁
𝑚2(2𝑛2

+ 1)] 𝑐𝑜𝑠 [
𝜋

2𝑁
𝑚1(2𝑛1 + 1)] 

(2.14) 

for 𝑚1, 𝑚2 = 0,… ,𝑁 − 1 and the inverse 2D DCT is defined as: 

𝑥𝑛1𝑛2
=

2

𝑁
∑ ∑ 𝑤𝑚1

𝑤𝑚2
𝑋𝑚1𝑚2

𝑁

𝑚2=0

𝑁

𝑚1=0

 𝑐𝑜𝑠 [
𝜋

2𝑁
𝑚1(2𝑛1

+ 1)] 𝑐𝑜𝑠 [
𝜋

2𝑁
𝑚2(2𝑛2 + 1)] 

(2.15) 
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for 𝑛1, 𝑛2 = 0,… ,𝑁 − 1, where 𝑤𝑚1
 and 𝑤𝑚2

 equal 𝑤𝑚 defined in Equation 2.13. Coefficient 

𝑋00 is denoted as the DC coefficient and remaining coefficients are denoted as AC coefficients. 

If basis vectors of the 2D transform matrix are visualized using the same approach as 

for the 1D transform matrix, each square, representing one element of a vector, is rasterized to 

a N × N image. Grayscale representation for each image element is obtained from the product 

of cosine functions which change along two dimensions 𝑛1 and 𝑛2. Figure 2.5 shows the graphic 

representation of 16 basis squares of the 2D DCT for N = 4. 

 

Figure 2.5: Graphic representation of the 2D DCT transform matrix 

2.2.3 Energy compaction and decorrelation 

Effective energy compaction and decorrelation are properties that leverage DCT from 

other transforms and contribute to its wide usage in field of data compression. Scattered signal 

energy in the spatial domain becomes concentrated in a few coefficients once the signal is 

transformed. Remaining coefficients will carry very little energy and can be encoded with less 

fidelity, in a coarse manner compared to the fine encoding of important coefficients. Figure 2.6 

illustrates the energy compaction property of the DCT on an example of two blocks with the 

same centre but of different sizes. The whole frame and its two blocks of sizes 16 × 16 and 

32 × 32 are shown in Figure 2.6a and Figure 2.6b, while in Figure 2.6c the transform 

coefficients of the 2D DCT for both blocks are shown. 



12 

 

 

a 

                                                       

b 
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d 

 

e 

Figure 2.6: a) Original 4096 × 1714 frame number 17507 in a video sequence, source [13] b) Frame's two 

blocks of samples of size 16 × 16 and 32 × 32 having the same centre c) 2D DCT transform of each block d) 

Difference between blocks at same position in frame number 17507 and 17506 e) 2D DCT transform of 

block difference 

It can be noticed that the pixels in both blocks are highly correlated. In the transform 

domain, the energy is concentrated (compacted) in the low-frequency part of the spectrum, 

around the DC coefficient which has the highest value. When moving away from the DC 

coefficient, towards higher frequency coefficients, their values decrease very quickly exhibiting 
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successful decorrelation. When block size is bigger DCT is more effective. This performance 

can be explained with a larger dimension of vector space which is spanned by DCT basis 

vectors. More frequency components exist, and every pixel or every component of an input 

vector can be described more precisely using more basis vectors (Figure 2.6c). 

In case when the input signal is a prediction error block, which is computed as the 

difference between a block of pixels at same positions within two neighbouring frames, DCT 

is less effective. It can be observed by comparing DCT results in Figure 2.6c and Figure 2.6e. 

A substantial amount of decorrelation is already achieved through block differencing and the 

transform cannot contribute more to decorrelation like it can for the block of pixels. As a result, 

heavy quantization will not be effective since it would significantly degrade frame quality. 

Nevertheless, blocked DCT and subsequent quantization are complementary function blocks to 

block prediction in video compression systems. 

2.3 Quantization 

Quantization is the final stage of transform coding. Transform coefficients which were 

produced during the transform stage are converted into levels. Compared to transform, which 

is a reversible process, where video data are represented in an another domain, quantization is 

a lossy, irreversible step. It is important to understand that the energy compaction and 

decorrelation, obtained with transform, do not involve any data compression. On the other side, 

quantization discards less important information from the frame and overall video and preserves 

that which is important. Therefore, this functional block has to be designed considering the 

characteristics of the input, its range and distribution. Using a dedicated configuration 

parameter, quantization is usually a primary controlled function inside a video coding system 

when a desired rate-distortion performance of a system wants to be achieved or exceeded. 

Quantization process is depicted in Figure 2.7. Original transform coefficients may have 

a large number of possible values. That number is limited by implementation features, data 

types and register sizes. The levels and reconstructed transform coefficients restrain the signal 

to a discrete set of possible values. The trade-off between coding efficiency and video quality 

is made through the number of levels which is set as a part of quantizer design. When there are 

more levels, reconstructed coefficients will be closer to original coefficients, but compression 

will be low. With less levels on disposal, coefficient precision and video quality decrease but 

compression gets higher. How the number of levels impacts the blocked transform can be 
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illustrated when the prediction error block from Figure 2.6d is further quantized and 

dequantized with both a fine-grained and coarse-grained quantizer. It can be seen in Figure 2.8 

that the coarse-grained quantization (with the step size of 32) resulted in a higher percent of 

block sparsity compared to the fine-grained quantization (with the step size of 4). On the other 

hand, the former reconstructs the original prediction error more precisely.  

Range of transform 
coefficients

Reconstructed 
transform coefficients

Levels

DequantizationQuantization

 

Figure 2.7: Quantization and dequantization 

Quantization takes place in a video encoder and dequantization occurs in both the video 

encoder and decoder. Dequantization in the encoder is part of the frame reconstruction process, 

which is essential for the subsequent frame predictions. In the decoder, reconstruction aims at 

frame storage or direct display. Operations performed at the block level end with 

dequantization. Thereafter the quantized transform coefficients are scanned and included in a 

stream. 

 

Figure 2.8: Quantized and dequantized transform coefficients with fined-grained quantization (left) and 

coarse-grained quantization (right). Nonzero elements are shown with black squares  
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2.3.1 Quantizer types 

There are two major types of quantizers, scalar and vector. Both types are additionally 

categorized depending on memory usage and input-output characteristics. If quantization of a 

coefficient is independent of other coefficients, then the quantizer can be categorized as 

memoryless. Furthermore, depending on the input-output characteristic they can be either 

symmetric or nonsymmetric. 

Scalar quantizers handle input transform coefficients as scalars and convert them to a 

finite precision representation. They can be uniform or nonuniform. Such classification relates 

to distances between adjacent boundary values and between adjacent reconstruction values. 

Choice of a particular quantizer class highly depends on the input signal distribution. A uniform 

and a common example of a nonuniform quantizer are shown in Figure 2.9. 
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Input
1 2 3 4
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1
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-3

-4

Output

Input
1 2 3 4
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4

-1

-2

-3

-4

|dead| 
zone

 

Figure 2.9: Uniform quantizer (left) and nonuniform quantizer with a dead zone area (right), source [14] 

A scalar quantizer can be generally described with the following function: 

𝑦 = 𝑄(𝑥) (2. 16) 

where 𝑄(∙) is the quantization function. The 𝐾-level scalar quantizer is defined by 𝑘 + 1 

decision levels (domain intervals) and 𝑘 output levels (range intervals). Each interval is referred 

to as a quantization bin. Quantization error 𝑒(𝑢) is defined by: 

𝑒(𝑢) = 𝑄(𝑢) − 𝑢 (2. 17) 
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This is an essential quantity in specifying the scalar quantizer which determines the level 

of distortion. The design of the quantizer will tend to minimize the quantization error. 

A uniform quantizer has a nonlinear staircase function composed of a set of equally 

spaced decisions and output levels. Width of the decision interval and the distance between 

adjacent levels is called quantization step size. The choice of a uniform quantizer is appropriate 

when the input has a uniform distribution. The quantization specified in the modern video 

coding standards operates on transformed prediction error signals. The residual DCT 

coefficients are distributed around zero value. The associated coefficient matrix will, therefore, 

contain a considerable number of values close to zero, either positive or negative, and not many 

higher values. With such distribution a nonuniform quantizer with the dead zone is a better 

choice than a uniform quantizer. It will eliminate the near-zero values and keep the higher 

values. 

x1

x2

 

Figure 2.10: Illustration of vector quantization in a two-dimensional vector space, source [15] 

In contrast to operating independently on each sample as done in scalar quantization, 

vector quantization operates on a group of samples. A predetermined set of levels is replaced 

by a set of vectors. An example of quantization with a two-dimensional vector space is shown 

in Figure 2.10. The dots inside each quadrilateral represent the reconstruction codeword for all 

vectors which reside inside it. 
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Blocks containing transform coefficients are scanned creating vectors of length 𝑛 which 

are inputs for the vector quantizer. Quantization is performed in such a way that for every vector 

𝑿, codebook vector representation 𝑿̂ is chosen using the closest match criteria. Example for 

such criteria can be finding the minimum Mean Squared Error (MSE) between vector 𝑿 and all 

codebook vectors 𝑿̂𝑖. The information which will be coded into the video stream is the 

codebook vector index 𝑖. On the receiver side, it will be used to decode the vector. The size of 

the codebook affects coding efficiency and reconstruction quality. 

2.4 Transform and quantization in HEVC 

Transform and quantization evolved over the years. The driving force behind the 

improvements was the coding efficiency and efficient implementation for the newest computing 

architectures. With each new video coding standard, the complexity of the transform 

computation blocks increased. Allowing different transform block sizes to adapt to varying 

space-frequency characteristics of the input signal or changing transform basis function to 

achieve better signal modelling led to this increase. Advances in computing architectures in 

terms of processing power, which were especially important for high demanding applications 

like video coding in the real-time, allowed an increase in algorithm complexity. 

In subsequent sections transform and quantization computation blocks in HEVC are 

presented. Emphasis is placed on decisions made during their design process, and the transform 

and quantization features which contributed to coding efficiency and facilitated the efficient 

implementation for new and parallel architectures. This will be the basis for the development 

of scientific contributions in the next chapters, targeting the heterogeneous multiprocessor high-

performance computers. 

2.4.1 The integer DCT 

The original DCT (Equation 2.11) used in digital image, video and audio applications, 

operates on integer signals and yields real-valued transform coefficients which are subject to 

subsequent quantization. The cosine function, which is the core function for calculations of 

transform coefficients, is a source of real numbers. Previous video coding standards H.261, 

MPEG-1, H.262/MPEG-2 and H.263 specified the 8-point transform with infinite precision. 

Since this specification is not practical for implementation in digital computers, manufacturers 

of video codecs had more freedom when designing a DCT computation block. DCT software 
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or hardware implementations by different manufacturers used different finite-length number 

representations and rounding. That introduced a drift between encoders and decoders of 

different manufacturers. To prevent error propagation a block-level periodic intra refresh and 

accuracy performance test is required. Representing DCT coefficients with finite-length 

floating-point numbers, even if it would be subject to standardization, inevitably involves 

round-off errors. These errors distort the DCT’s property of orthonormality and therefore 

compression performance. As a consequence, transformation is not completely lossless 

anymore. 

Considering implementation in hardware, operations with floating-point data are slow, 

too much memory is being allocated and power consumption is high. Compared to integer 

multiplication, floating-point multiplication consumes much more time and power leading to 

larger and more expensive devices. To override these issues and reach faster realization, 

floating-point factors are scaled up and rounded to integer values. Original coefficients of a 

DCT matrix are scaled up by a parameter 𝛼 and approximated by a near integer number: 

𝑇𝑁(𝛼, 𝐶𝑥) = 𝑟𝑜𝑢𝑛𝑑(𝛼 ∙ 𝐶𝑥) = 𝑇𝑁(𝛼) (2. 18) 

Parameter 𝛼 tends to be large to minimize the round-off error and preserve the desirable 

properties of the DCT matrix. The main problem with a large parameter 𝛼 is an increase in the 

dynamic range. Consequently, larger architectures (32 or 64-bit) are needed for implementation.  

The DCT with finite-precision approximation of basis vectors is significant for the 

research community since it simplifies the design of low-power, low-cost compression systems 

and makes them efficient. This is especially beneficial for battery supplied devices in wireless, 

satellite or portable computing applications. Various techniques of integer approximation 

provide the ability to balance between coding efficiency and efficient implementation. 

Multiplication which consumed a lot of resources and was a performance bottleneck, when 

made with floating-point data, can be implemented with binary additions and shifts, and it can 

yield a better performance. 

H.264/AVC, H.265/HEVC’s predecessor, was the first video coding standard that 

specified a transform in integer operations. As a trade-off between transform precision and 

savings in arithmetic bit-width, the scaling parameter 𝛼 was set to 2.5. The rows of the core 

transform matrix were orthogonal but didn’t have equal norms. This implied the usage of 

quantization matrices as equal frequency-weighting is expected. 
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2.4.2 HEVC core transform design 

HEVC was being developed at the time when high and ultra-high definition videos were 

becoming more and more popular. For transform coding of large frame areas with a uniform 

sample intensity, larger block sizes are supported. The standard [16] specifies transform of sizes 

4 × 4, 8 × 8, 16 × 16 and 32 × 32. Integer DCT is used for all transform sizes, prediction modes, 

and colour components except for the 4 × 4 luma intra prediction. It was found that the discrete 

sine transform compacts the residual energy more efficiently than the DCT [17]. 

To obtain the core transform matrix, scaling parameter 𝛼 was set to 26+𝑀 2⁄  where 𝑀 =

log2 𝑁 and 𝑁 is the order of the transform matrix. With this setting, each transform matrix 

element can be represented with 8 bits including the sign bit. Approximation of the integer DCT 

matrix elements was carried out by prioritizing the real-value DCT properties. Those which 

reduce the number of arithmetic operations and implementation costs were fully preserved. 

After scaling, the resulting coefficients were hand-tuned to reach the optimal balance between 

the orthogonality feature, closeness to the original DCT and equal norm. The 32 × 32 forward 

transform matrix, symmetric to the right half for even basis vectors and anti-symmetric for the 

odd ones, with embedded transform matrices for other transform sizes, is shown in Figure 2.11. 

The embedding property provides reusability of the same hardware architecture for all specified 

transform sizes, and the small number of unique elements in the matrix, 31 of them in case of 

the largest transform matrix, means fewer multipliers for such a hardware implementation. 

Although the orthogonality property is slightly compromised with the approximation process, 

the transpose of the HEVC transform matrix is defined as its inverse. 

As the HEVC transform matrix is the result of upscaling and customized rounding, 

downscaling is required after each 1D integer transform. To ensure efficient implementation, 

scale factors are set to a power of two so that they can be implemented as a right shift. 

Additionally, values of scale factors were calculated and specified in the standard so that the 

signal dynamic range after each transform can be represented with 16 bits including the sign 

bit. Adding offset value to minimize the rounding error is specified as an operation before a 

right shift. The transform and quantization process, with forward and inverse operations is 

shown in Figure 2.12.   
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2D forward transform

1D column forward 
transform

D×[...]

×ST1

1D row forward 
transform
[...]×DT

×ST2

Quantization

Quantization
214/Qstep

×SQ

Residual input block 

Level block

2D inverse transform

1D column inverse 
transform

DT×[...] 

×SIT1

1D row inverse 
transform
[...]×D

×SIT2

Dequantization

Dequantization
26Qstep

×SIQ

Reconstructed 
residual block

Level blockX

Y  

Figure 2.12: The HEVC forward transform and quantization (left) and HEVC inverse transform and 

dequantization (right). D is the HEVC transform matrix, the scaled approximation of the DCT matrix. 

Scaling factors appear after each transform and quantization step to ensure equal norm and specified 

dynamic range  
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As inverse transform and dequantization are used in the reconstruction of a referenced 

frame, which exists in both encoder and decoder, its specification is in the scope of the standard. 

It is left to the implementer to select or design its own forward transform and quantization.  

2.4.3 Quantization and dequantization 

Quantizer specified in HEVC is of a uniform scalar type. The relation between the 

quantization step size 𝑄𝑠𝑡𝑒𝑝 and quantization parameter 𝑄𝑃, which can be configured by a 

user, is given by: 

𝑄𝑠𝑡𝑒𝑝(𝑄𝑃) = 𝐺𝑄𝑃%6 ≪
𝑄𝑃

6
 (2. 19) 

where 

𝑮 = [𝐺0, … , 𝐺5 ]
𝑇 = [2−4 6⁄ , 2−3 6⁄ , 2−2 6⁄ , 2−1 6⁄ , 20, 21 6⁄ ]

𝑇
 (2. 20) 

and QP is an integer value in the range of 0 to 51. When its value increases by 6, 𝑄𝑠𝑡𝑒𝑝 doubles 

and when it’s configured to 4, 𝑄𝑠𝑡𝑒𝑝 becomes 1. Since values from Equation 2.19. are real 

numbers, they are, similarly to a real-valued transform, scaled up and rounded to the nearest 

integer. Such upscaling modifies the norm of the residual block and additional multiplication 

by a scale factor is required to restore the norm. The corresponding factors 𝑆𝑄 and 𝑆𝐼𝑄 are 

indicated in Figure 2.12. 

Though 𝑄𝑠𝑡𝑒𝑝 is a divisor value in case of quantization and a multiplicand value for 

dequantization, the fixed-point approximation is so designed, that upscaling before rounding is 

carried out in both the quantizer and dequantizer. Related upscaling factors are 214 and 26 for 

the quantizer and dequantizer respectively.  

As quantization is a configurable lossy operation, HEVC provides additional tools for 

this computation block in video coding. Quantization granularity can be differed, depending on 

frequencies, using quantization matrices. 𝑄𝑠𝑡𝑒𝑝 can be changed dynamically within a picture 

for the sake of rate control or perceptual quantization. To achieve bitrate savings the QP 

prediction process is developed at the level of quantization groups, which comprise more coding 

units (CUs), so that only the delta QP is transmitted if it exists [18]. 
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3 A PERFORMANCE EFFICIENT HEVC TRANSFORM 

ARCHITECTURE 

3.1 Introduction 

Due to its properties, useful both for compression efficiency and efficient 

implementation, the discrete cosine transform (DCT) is widely used in video and image 

compression. The HEVC standard, with significant improvements in compression performance 

compared to its predecessors, uses the finite precision approximation of transformation as 

described in Section 2.4.2. In overall encoding time, transform and quantization takes about 

25% for the all-intra and 11% for the random access configurations [19]. To ensure higher 

compression of the ultra-high definition (UHD) video resolutions the standard introduced 

additional transform sizes at the cost of processing and implementation complexity. That is why 

efficient implementation, set as a design goal during the HEVC transform development 

[20][21][22], significantly impacts the overall performance of the codec. 

HEVC transform architectures are mostly based on the parallel butterfly computation 

structure to obtain maximum sharing of internal operations. Most of the architectures assume 

that all the elements of a residual vector are transferred to the input in the same cycle. In the 

case of a video with an 8-bit color depth, 9 bits are required for residual value representation. 

288 bits are needed if one residual vector for the biggest transform block size is transmitted at 

once, or 512 bits if residuals are byte-aligned. Therefore, these architectures raise issues of huge 

peak access bandwidth and hardware overhead. In modern Systems on Chips (SoCs), especially 

in their budget versions, hardware resources and communication interface bit widths are 

limited. Moreover, considering performance requirements of a real HEVC applications, parallel 

architectures are unnecessary. For example, the percentage of 32 × 32 and 16 × 16 block sizes 

used for transform is less than 2% and 10% respectively [23]. If the designed hardware outputs 

16 transform coefficients in each cycle in parallel, the operating frequency with 

4096 × 2048@30fps real-time application is calculated from the following equation: 

𝐹𝑟𝑎𝑚𝑒 𝑤𝑖𝑑𝑡ℎ × 𝐹𝑟𝑎𝑚𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑉𝑖𝑑𝑒𝑜 𝑓𝑜𝑟𝑚𝑎𝑡 × 𝐹𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒

= 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 × 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

nearly as low as 7.5 MHz. Such high performance, low-power architecture is obtained at the 

cost of a high throughput and large hardware overhead. 
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This chapter is organized as follows. Section 3.2 describes the integer DCT with a 

parallel butterfly computation structure. Section 3.3 provides an overview of the general 

architecture of the integer DCT computation block. Research directions and scientific 

contributions related to the topic of HEVC transform architecture are outlined in Section ., while 

Section 3.5 describes the development environment and methodology for efficiency validation 

of performance-optimized hardware implementation. In Section 3.6, an area efficient and 

reusable HEVC transform architecture for systems with limited resources [24] is presented 

which can receive two byte-aligned residuals (total of a 32-bit bus width) and output two scaled 

intermediate 16 bit transform coefficients in one cycle. Improving area efficiency is stressed as 

the main design goal. Section 3.7 demonstrates and discusses evaluation and comparison 

results. 

3.2 The mathematical model for hardware implementation 

The HEVC 2D integer DCT transform of size N × N (N = 4, 8, 16, 32) is given by:  

𝒀 =  𝑫 ×  𝑿 ×  𝑫′ (3. 1) 

where 𝑫 is the HEVC transform matrix with constant values, 𝑿 the residual matrix of size N × N 

and 𝑫′ is a transpose of the transform matrix. When properties of the transpose operator are 

considered, Equation 3.1 can be rewritten as: 

𝒀 =  (𝑫 × (𝑫 ×  𝑿)′)′ (3. 2) 

In this equation, it can be noticed that the matrix D is twice used in the multiplication. 

Compared to Equation 3.1 the basis vectors with constant values in both multiplications are 

multiplicands that can be mapped in the hardware to a single multiply-accumulate block. Its 

input will be a series of residual vectors when implementing inner multiplication and a series 

of intermediate vectors, which can be brought to the input of the same block as feedback. This 

property known as transform separability can be used to design hardware architecture for a 2D 

integer DCT by utilizing the same 1D integer DCT core and applying transpose to the result 

matrices. 

Since elements of the even basis vectors of the transform matrix are symmetric and the 

odd basis vectors antisymmetric, the decomposition of the 1D integer DCT matrix 

multiplication can be made as follows: 
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 (3. 4) 

where 

𝑎𝑖
𝑁 = 𝑋𝑖

𝑁 + 𝑋𝑁−1−𝑖
𝑁 (3. 5) 

𝑏𝑖
𝑁 = 𝑋𝑖

𝑁 − 𝑋𝑁−1−𝑖
𝑁  (3. 6) 

for 𝑖 = 0, 1, 2, ..., 𝑁/2 − 1. 𝑿 is the input residual column vector, 𝒀 is the 𝑁-point 1D integer 

DCT of 𝑿, 𝑫𝑁/2 is the 𝑁/2-point HEVC transform matrix and 𝑩𝑁/2 is the matrix of size N/2 

× N/2 defined as: 

𝑩𝑖,𝑗
𝑁 2⁄

= 𝑫2𝑖+1,𝑗
𝑁 (3. 7) 

for 𝑖, 𝑗 = 0, 1, 2, ..., 𝑁/2 − 1. Matrix 𝑫𝑁/2 from Equation 3.3 can be further decomposed to 

𝑫𝑁/4 and 𝑩𝑁/4 in the same way. Decomposition is applicable for all transform sizes supported 

in the HEVC standard. By observing the elements of the matrix 𝑩𝑁 it can be seen that every 

row contains the same unique values with a different distribution. Reusability as a consequence 

of decompositions and a small number of unique elements will decrease implementation costs. 

The computational complexity calculation shows significant savings for this algorithm, 

referred to as partial butterfly in [22]. For a straightforward (N × N)-point transform, the number 

of operations is as follows: 

𝑂𝑚𝑢𝑙𝑡 = 2𝑁3 

𝑂𝑎𝑑𝑑 = 2𝑁2(𝑁 − 1) 

whereas using the partial butterfly it is reduced to: 

𝑂𝑚𝑢𝑙𝑡 = 2𝑁 (1 + ∑ 22𝑘−2

log2 𝑁

𝑘=1

) 
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𝑂𝑎𝑑𝑑 = 2𝑁 ( ∑ 2𝑘−1(2𝑘−1 + 1)

log2 𝑁

𝑘=1

) 

Table 3.1 shows how the number of operations depends on the transform size and 

algorithm type. 

Table 3.1: Number of operations for two transform algorithms 

Transform size 
Straightforward transform Partial butterfly algorithm 

Multiply Add Multiply Add 

4 128 96 48 64 

8 1024 896 352 448 

16 8192 7680 2752 3200 

32 65536 63488 21888 23808 

3.3 2D integer DCT architecture 

Thanks to transform separability described in Section 2.2.2, an (N × N)-point 2D integer 

DCT can be calculated by the row-column decomposition method in two distinct transform 

stages. In the first stage an N-point 1D integer DCT is calculated for each column of the input 

residual matrix of size N × N to produce an intermediate output matrix of the same size. In the 

second stage, each row of the intermediate matrix is used for the computation of an N-point 1D 

integer DCT to produce a 2D integer DCT matrix of size N × N. This matrix contains transform 

coefficients. 

The 2D integer DCT architecture can be implemented using the folded or full-parallel 

structure. The selected implementation affects performance and determines resource usage. 

Computation of an (N × N)-point 2D integer DCT using the folded structure is shown in Figure 

3.1. The folded structure contains one N-point 1D integer DCT computation block, and N 

multiplexers, which serve as switches between transform stages and transposition buffer. Data 

are computed in the DCT computation block and written column-wise to the transposition 

buffer during the first transform stage and read during the second stage row-wise. Each stage 

lasts for N cycles. The transform of a new residual block can not start before both transform 

stages for the current residual block are finished. So, this structure introduces a pipeline latency 

of 2N cycles.  
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Figure 3.1: The folded structure of a (N × N)-point 2D integer DCT implementation, source [25]  
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Figure 3.2: The full-parallel structure of a (N × N)-point 2D integer DCT implementation, source [25] 

Computation of (N × N)-point 2D integer DCT using a full-parallel structure is shown 

in Figure 3.2. The full-parallel structure contains two N-point 1D integer DCT computation 

blocks and a transposition buffer. Compared to the transposition buffer in the folded structure, 

this transposition buffer has to be able to support alternating column-wise and row-wise read 

and write operations. During the first transform stage, intermediate transform coefficients are 

stored column-wise during N cycles to the buffer. In the next N cycles, which belong to the 

second transform stage, they are read row-wise and transformed sequentially by the second 𝑁-

point 1D integer DCT computation block. Concurrently, the first N-point 1D integer DCT 

computation block fills its newly computed intermediate data, now row-wise, to the buffer. So, 
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in one stage both operations, read and write, are performed in the transposition buffer. In the 

case of the full-parallel structure, the transposition buffer introduces a pipeline latency of N 

cycles. That period is used to load the buffer at the start of the operation. 

Transposition buffer in both structures can be implemented using registers or the dual-

port on-chip Static Random Access Memory (SRAM). The former presents a power-efficient 

solution due to possible clock gating [66]. The full-parallel structure consumes more power 

than the folded structure since it has two 1D integer DCT computation blocks with 

approximately the same complexity of the transposition buffer. Due to differences in pipeline 

latencies, the full-parallel structure can obtain double the throughput of the folded structure. 

3.3.1 1D integer DCT architecture 

Conventional architecture for N-point 1D integer DCT, which is the core computation 

block for both implementation structures, is shown in Figure 3.3. 
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Figure 3.3: Conventional architecture for an 1D integer DCT of lengths N = 8, 16 and 32, source [25] 

Inside the input adder unit, symmetric elements of transform block’s column vector are 

both summed and subtracted (Equations 3.5 and 3.6). N/2 subtracted values are multiplied with 

all the elements belonging to the left half of the transform matrix’s odd rows. Since absolute 

values of coefficients, which appear in odd rows of a transform matrix, are the same, with only 

a difference in their positions in each row, the same circuit is instantiated N/2 times. The output 

adder unit which has the structure of a binary adder tree will sum up all N/2 summands from 
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corresponding shift-add units’ outputs to compute transform coefficients in odd rows of an 

output column vector. 

N/2 summation results from the input adder unit are fed to a N/2-point 1D integer DCT 

unit which computes transform coefficients in remaining even rows of the output column 

vector, using the same units which operate with double fewer elements. The butterfly 

computation structure of an 8-point 1D integer DCT is shown in Figure 3.4. It can be seen that 

the 4-point integer transform is embedded in the structure and its results present even transform 

coefficients of the 8-point integer transform. Generally, the results of smaller block sizes 

transformations are recursively used for larger block sizes transforms. 
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Figure 3.4: The butterfly computation structure of an 8-point 1D DCT 

3.4 Overview of scientific contributions to the integer DCT architecture 

Architecture improvements in terms of performance increase or obtained resource 

savings, made from the scientific community, can be classified according to four distinct design 

approaches: 

• Optimization of the shift-add unit 

• Pipelined design of the overall circuit 

• A unified architecture for the forward and inverse transform 

• Resource savings through accuracy decreases 

Reusability of the 𝑁/2-point 1D integer DCT architecture for the implementation of the 

𝑁-point 1D integer DCT is identified in [26] where 𝑁 = 2𝑀 and 𝑀 is an integer. The 𝑁-point 

integer DCT architecture, as already described in Section 3.3.1, consists of a partial butterfly 
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unit, Multiple-Constant-Multiplication (MCM) units, built from shift and add units, adder units 

and a 𝑁/2-point integer DCT unit. Adder units output odd transform coefficients and a 

recursive 𝑁/2-point integer DCT unit outputs even transform coefficients of a 𝑁-point integer 

DCT. That architecture was proposed as an alternative to the resource-consuming direct 

implementation of matrix multiplication in hardware.  

Transform matrix decomposition, when calculating even and odd coefficients and 

hardware reusability was exploited in [25] as well. Additionally, a constant throughput for every 

transform size was achieved by adding an additional 𝑁/2-point integer DCT unit. In the same 

work, the full integer 2D DCT architecture was derived from the integer 1D DCT architecture. 

That is possible due to the row-column separability of the transform. Two architectures were 

proposed, folded and full-parallel. Constant throughput was achieved in [27] with the sharing 

of MCM and adder units for different transform sizes with added multiplexers for the transform 

size selection as a design overhead. With this technique, additional units were avoided, and 

better resource utilization was achieved. Usage of MCM units was investigated in [28] and [29] 

in order to avoid the high latency of the hardware multipliers. In [28] subtractors were not used 

in the design because they use more hardware resources and have a lower operating frequency. 

MCM and adder units were designed by using 3-input adders in addition to 2-input adders in 

order to further decrease resource consumption. In [29] optimization of MCM units was 

performed considering the critical signal path and signal bit-width. The Hcub algorithm for 

generating MCM networks with the least possible adders in the critical path was used. Bit-width 

optimization was conducted on adders’ inputs and output inside MCM circuits. The minimum 

number of bits was selected to represent the adder output value and input bit-widths were 

aligned with that number. Such a design approach is beneficial to the latency of adder unit and 

area usage. To decrease design and verification time and improve design reusability, the usage 

of High-Level Synthesis (HLS) is proposed in [30]. It is a C and C++ based pipelined design in 

which the even-odd decomposition stages were mapped to the adder tree, Digital Signal 

Processor (DSP) blocks and accumulator during synthesis respectively. Two architectures were 

designed for the 8, 16 and 32-point transform, low-cost and high-speed architecture. In a low-

cost variant, 𝑁 residuals are processed in parallel. High-speed architecture has a constant 

throughput of 32 coefficients per cycle (32/𝑁 columns of a residual block are received in a 

single cycle). Separately, the architecture for a 4-point DCT/DST is designed. Since 

management and control of residual quadtree partitioning are usually not in the scope of 
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transform architectures, [31] proposes a flexible input architecture and a supporting 

configuration encoding scheme. All possible combinations of transform blocks and residuals 

are mapped to hardware sets using the encoding scheme and ensuring constant throughput. 

During the HEVC encoding rate-distortion optimization (RDO) every possible combination of 

prediction blocks is considered, and it is necessary, before a split decision, to carry out both the 

forward and inverse transform. In [32] two unified pipelined architectures for the 

forward/inverse integer DCT are proposed. Compared to competing proposals, savings in area 

usage are not made at the cost of throughput performance. There are also proposals where 

transform accuracy is reduced to save hardware resources. In [25] resource savings are made 

through pruning the least significant bits in MCM and adder units. This can be seen as an 

integration of the scaling step with the integer transform. This affects rate-distortion 

performance [33] insignificantly but brings a reduction in area and power. In [34] a hardware-

oriented implementation of an Arai-based DCT is proposed and sinusoidal multiplication 

constants are approximated (scaled, rounded and right-shifted) with a configurable number of 

representation bits. As this number is smaller, gate count and power consumption are lower and 

the clock frequency is higher. 

3.5 Development environment and methodology 

Due to availability and prices of integrated development environments, FPGA is 

selected as the target hardware platform for the validation of the own design of the 1D integer 

DCT architecture, which is the core computation block in HEVC transform coding. To make 

an extensive validation, several scientific works, which targeted the same hardware platform, 

were selected and corresponding results were taken for comparison. Other scientific works 

whose research objectives relate to the integer DCT or its inverse, no matter which type of VLSI 

circuit they target, were also considered and analysed to gain insight into design principles and 

features of modern transform circuits for video coding. 

There are two leading manufacturers of FPGA devices, Xilinx and Intel Altera. Both are 

approximately equally represented in related scientific works. The architecture of logic units, 

basic building blocks that implement logic functions, and routing architecture of these FPGAs 

are different. This leads to different performance and utilization results once a design is 

implemented. The prepared design is therefore synthesized and implemented using an 

integrated development environment from both manufacturers. As the primary tool, the Vivado 
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Integrated Development Environment (IDE) was taken. Once the design is verified and 

implemented in Vivado IDE, the design files are compiled again in Intel Quartus Prime. Table 

3.2 describes the targeted device families, and the development tools used for the validation 

activities. 

Table 3.2: Setup of the development environment 

Manufacturer Device family Development tool Builds 

Xilinx Virtex 7 Vivado v2016.4 (64-bit) SW Build 1756540 

IP Build 1755317 

Intel Altera Stratix V Quartus Prime Standard 

Edition 18.1.0  

Build 625 

This design is not transferred to a physical FPGA device and the design flow ends with 

net routing which precedes bitstream generation. Design methodology applied to the FPGA 

design in this thesis, which is aligned with the manufacturer’s UltraFAST design methodology 

guide [35], is shown in Figure 3.5. At the beginning of the process, the application design 

description is developed in a Hardware Description Language (HDL). In parallel with the 

development of the Register Transfer Level (RTL) model, a test bench is developed for every 

submodule to verify its function. After every submodule and top module passed the simulation, 

the synthesis could be run. There are two types of inputs that have to be available for synthesis. 

Except for a valid RTL source code, timing constraints have to be defined. This is done in a 

separate file. For this work such a file contains the single Tool Command Language (Tcl) 

command [36] as follows: 

create_clock -period <clock period> -name <clock name> -waveform <clock 

edge specification> [get_ports <clock name>] 

As improving area efficiency is stressed as the main design goal, the synthesis and 

implementation strategies (Vivado) and the optimization modes (Quartus) are configured 

accordingly. In case of Vivado this is carried out with a Tcl synthesis command as follows: 

synth_design -top <top module name> -part <target part> -directive 

AreaOptimized_high -mode out_of_context 

The last two command options define overrides from the Vivado Synthesis Defaults 

(Vivado Synthesis 2016) preconfigured synthesis strategy. In the tool evaluation phase, it 

has been shown that compared to two other strategies, the Flow_AreaOptimized_high 

(Vivado Synthesis 2016) and Flow_PerfOptimized_high (Vivado Synthesis 2016), 
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this setting yields the best trade-off between resource utilization, power and timing. Since the 

physical FPGA device is not the result of the design process, design mode out_of_context is 

configured. It enables the implementation of the module without IO buffers, prevents 

optimization due to unconnected inputs or outputs, and appropriately adjusts the Design Rule 

Check (DRC) rules for the design. 
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Figure 3.5: Design methodology 

The Vivado IDE also offers a set of pre-defined different strategies to use for the 

implementation run. Seven of them were selected during the evaluation phase and applied to 
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the implementation of the 32-point 1D integer DCT architecture. The best trade-off between 

resource utilization and performance was achieved for the Performance_NetDelay_high 

strategy. To provide better understanding of made compromises, results are shown in Table 3.3 

for two combinations of synthesis and implementation strategies for the tested design. The clock 

period was set to 10 ns. The first strategy combination can be characterized as cost-effective 

and second as performance effective. The latter yields about 1.2 times higher throughput at the 

cost of 28% more LUTs and 4% more registers. The former is therefore selected as the referent 

one for all subsequent runs during the design process. 

Synthesis 

strategy 

Implementation strategy LUTs Registers Power 

(mW) 

WNS 

(ns)  

Vivado 

Synthesis 

Defaults 

Vivado Implementation 

Defaults, -directive 

= AreaOptimized_high 

7196 5512 224 2.74 

Flow_PerfOptim

ized_high 

Performance_NetDelay_

high 

9185 5740 235 3.81 

Table 3.3: Implementation results for the two boundary combinations of strategies 

In the case of Quartus Prime, the development environment synthesis and 

implementation strategy selection are combined into the Optimization mode selection inside the 

Compiler settings menu. The Aggressive Area mode is selected here. It instructs the compiler 

to target an area minimal solution, even if this reduces the overall timing performance. 

By having a verified RTL model and constraint file available and appropriate settings 

made, the synthesis run [37] can start. The synthesis result is an optimized netlist that is 

functionally equivalent to the RTL. As an additional result of the synthesis, various reports are 

generated. Timing closure in this work consists of the design meeting positive timing margin 

of Worst Negative Slack (WNS). If this timing requirement is not met, a new design iteration 

starts which includes result analysis, design modification and constraint modification (Figure 

3.5).  

Results of timing analysis made during the synthesis run contain some estimations of 

path delays. If timing is not met but the reported WNS negative timing margin has a relatively 

low value, the process can go ahead. Implementation tools could make this timing margin 

positive if they allocate the best resources to the failing paths. Implementation [38] contains all 

steps required to place and route the netlist onto the FPGA device resources while satisfying 
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the design’s logical and timing constraints. In this design step the logical netlist, output of the 

synthesis step, is mapped into the physical array of the target device. The implementation 

comprises logic optimization, placement of logic cells and routing of the connection between 

cells. 

To calculate the maximal operating frequency of the design, the timing summary report 

is being referred to. At the top of the Max Delay Paths section of the report, the signal path with 

WNS is listed. Its value represents the timing margin for the clock signal. Subtracting this value 

from the clock time period, specified in the constraint file, yields a minimal time period of the 

clock which then, in turn, defines the maximum operating frequency. Design throughput can be 

calculated by multiplying the maximum frequency with the pixel processing rate. Considering 

this is a pipelined design, pipeline latency is noted.  

3.6 An area efficient and reusable HEVC 1D transform architecture 

To minimize the logic circuit for the input adder unit, elements of the residual vector 

are transferred sequentially into the transform engine. It can be observed in Equations 3.3 - 3.6 

that the optimal grouping of elements would be such that pairs of residuals are transferred in 

one cycle because they can be immediately processed. For area minimization purposes the input 

bus-width of 32 bits is selected. Two byte-aligned residuals will be either added or subtracted 

depending on the position in the result vector which is being calculated. Results of the operation 

are multiplied with all constants from a matrix 𝑫𝑁 column and products are added to their 

respective accumulated value. Accumulation of products is done during 𝑁/2 cycles when the 

resulting vector element is available. Based on the given steps in obtaining the result, the 

architecture will include a pre-operation unit (PREOP), providing a sum and difference of the 

residuals, MCM units (MCMs) and accumulation units (ACCUs). Units that build a single lane 

are shown in Figure 3.7. Parallel MCMs are the preferred solution for systems where the 

complete residual column vector can be retrieved instantaneously. In the proposed architecture 

with a 32-bit bus, such a circuit wouldn’t be fully utilized and would result in an additional 

area. Therefore, multiplexed MCMs are used. They are implemented using the algorithm from 

[39] where a block diagram can be retrieved from a multiplexed multiplier block generator 

presented in [40]. The block diagrams of the MCMs for transform sizes 4 and 16 are shown in 

Figure 3.6. Each adder and multiplexer in the circuit is designed with the minimum number of 

bits that can describe their outputs. For example, in an 4-point 1D DCT, adders are not designed 
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to have a bit-width of 𝑛+8, which is the maximum bit-width increase required to describe the 

output of the unit. Bit-width extension of the adder is specified to represent its output instead. 

In the case of multiplexers, the output bit-width matches the bit-width of its largest input. Bit-

width extensions are made by wiring, like shifters and save area. The area advantage with 

multiplexed MCMs is obtained at the cost of increased latency and therefore a decreased 

throughput. 
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Figure 3.6: Multiplexed MCM unit for a) 4-point 1D DCT and b) 16-point 1D DCT 

To enable the reusability of the same hardware for different transform sizes, the design 

is structured into lanes. The lane used for the transform size N is also used for all the larger 

transform sizes. The difference in the amount of multiply and accumulate cycles depends on 
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transform size as described above. Compared to the competing hierarchical architectures, which 

have multiplexers at the input of every 𝑁-point integer DCT unit when 𝑁 = 4, 8 or 16, the 

proposed lane-based architecture requires multiplexing only once. 
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Figure 3.7: General block diagram of the integer DCT lanes 

Constant multipliers used in a lane for one transform size are repeated for all transform 

sizes in which that lane is involved. Which row of the result vector a lane outputs is determined 

with the value of the MCM configuration register. Every register contains sixteen codes for 

sixteen multipliers. The code length depends on a number of unique elements in the same row 

of the transform matrix. The 1-bit code is sufficient to represent two unique multipliers in odd 

rows for a 4-point transform. In the case of a 32-point transform, a 4-bit code is needed to switch 

between sixteen different multiplication datapaths. The signs of multipliers are determined with 

a 16-bit value of the ACCU configuration register. Depending on each bit value, the MCM 

output will be added or subtracted from the current accumulated value. Instances of a lane differ 

from each other only in the content of these two registers. For example, LANE8 is used for the 

8, 16 and 32-point integer DCT. It has four constant multipliers, which are used in every one of 

these three applicable transform sizes. LANE2 implements multiplication with a single 

multiplier sixty-four and therefore doesn’t contain the MCM configuration register. A lane can 

be interpreted as a set of functional blocks that implements the multiplication of a basis vector 

with a residual vector and outputs the single transform coefficient. Schematic for one lane is 

shown in Figure 3.8 

The serialization block is placed at the output because this architecture receives two 

residuals per cycle to keep the area usage low. It is controlled by the processing system. The 

architecture will output two 16-bit coefficients and signal their availability over the dedicated 

interface. There are two synchronization channels between the device and the processing 
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system. Over one the system can request a serialization hold and when it becomes effective it 

is signalized at the output. Over the second channel, the hold mode, as shown in Figure 3.9, is 

activated when scaled transform coefficients are ready for serialization but the previously 

started serialization is not yet finished. In that case, the result vector will be moved to the delay 

buffer and, using an additional output interface, a signal will be sent that the transferring of new 

residuals has to be stopped and will remain so until the signal is deactivated. 
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Figure 3.8: Schematic of a lane 
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Figure 3.9: Serialization of scaled transform coefficients 

The proposed 1D integer DCT architecture, which is designed for systems with limited 

hardware resources, supports all transform sizes. The proposed lane structure which exploits 

the subset property of the transform matrix simplifies power management. The interface 
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responsible for bidirectional communication with the processing system enables the transform 

to hold and continue without any data loss. 

3.7 Implementation and evaluation 

In this section, the performance of the proposed architecture is evaluated in terms of 

area, latency, delay, throughput and power consumption with focus on the area. Implementation 

and result presentation were done for comparable circuits of leading FPGA manufacturers 

(Xilinx, Intel Altera). To have an equitable evaluation and comparison with competing parallel 

integer DCT architectures, two architectures will be implemented, the proposed architecture 

with 32 bits wide data input and output, and a separate configuration where the serialization 

unit is omitted. 

Table 3.4: Performance results of the proposed integer DCT architecture with output serialization 

Transform 

size 

LUTs Registers Latency Frequency 

(MHz) 

Throughput 

(Gsps) 

Total power 

(mW) 

4 313 452 8 741.84 1.48 189 

8 1004 1113 10 590.32 1.18 208 

16 2862 2493 14 480.77 0.96 251 

32 6776 4948 22 407.50 0.81 355 

Table 3.5: Performance results of the proposed integer DCT architecture with parallel output 

Transform 

size 

LUTs Registers Latency Frequency 

(MHz) 

Throughput 

(Gsps) 

Total power 

(mW) 

4 237 363 7 744.05 1.49 187 

8 835 963 9 613.50 1.23 215 

16 2367 2198 13 527.15 1.05 247 

32 6085 4402 21 500.25 1.00 348 

Design is coded in VHDL and synthesized targeting a Virtex 7 device, Xilinx 

XC7VX330T FFG1157 FPGA with speed grade 3. It is implemented using Vivado IDE 

according to the process described in Section 3.5. The word length of the input residual is set 

to 16 bits. The area, the number of used registers, the maximum delay and the total power are 



42 

 

obtained for the baselined design from the implementation reports, and the maximum operating 

frequency and throughput are calculated. The power analysis which is based on vectorless 

(probabilistic) power analysis methodology is run with a default device and environment 

settings and 100 MHz clock frequency. The results of the integer DCT for two device 

configurations and different transform sizes are presented in Table 3.4 and Table 3.5. 

The results show that look-up tables’ (LUT) utilization for the 𝑁-point transform is 

about 2.8 times and registers’ utilization about 2.2 times the utilization for the 𝑁/2-point 

transform for the complete architecture. Power consumption increases by a factor of 1.2 on 

average. When the serialization unit is omitted there are less employed LUTs and registers and 

the maximum operating frequency is higher for all transform sizes. By eliminating one 

functional block in the architecture the path complexity is reduced, which affects the maximum 

path delay and operating frequency. The latency is contributed by two addends, five or six 

pipeline stages, depending on the architecture variant, and 𝑁/2 cycles needed to process one 

residual vector. 

This architecture supports the processing of 4K ultra high definition (UHD) videos in 

HEVC standard at 30 frames/s and 4:2:0 YUV format. The minimum operating frequency for 

this video format is calculated as follows: 

𝐹𝑚𝑖𝑛 = 2 × 𝑊 × 𝐻 × 𝑓𝑜𝑟𝑚𝑎𝑡 × 𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒 × (
𝐿

32 × 32
+

1

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
) (3. 8) 

where W × H is the resolution of a video sequence, and the format equals 1.5. It is considered 

that a pair of residuals is transferred every cycle to the input of a 1D integer DCT core and that 

two transform coefficients can be output per cycle. So, the throughput expressed in Pixels Per 

Cycle unit (ppc) is 2. Factor two in Equation 3.6 is characteristic for the folded structure of a 

2D transform. 𝐿 is the pipeline latency. To process a 32 × 32 size transform block using a 2D 

folded structure, built with the proposed 1D architecture, 2𝐿+1024 cycles are needed. The 

transpose buffer is not in the scope of this work but is required for a 2D transform according to 

Equation 3.2. This performance evaluation is not affected if its throughput is not less than two 

pixels per cycle. The minimum operating frequency for the given format and processing rate is 

393 MHz. This condition is satisfied by the proposed architecture. This is a satisfactory result 

considering the design objectives and compromise on throughput. 
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The performance of the proposed architecture is compared to related architectures that 

target the FPGA platform and results are shown in Table 3.6. Since about 90% of transform 

blocks are of size 4 × 4 or 8 × 8 [41], the 4-point and 8-point integer DCT accelerators are 

considered. To be able to have a fair comparison with a pipelined design, like the one from [28], 

the synthesis is made on the same device, Stratix V FPGA 5SGXMABN3F45I4 using Quartus 

Prime Standard Edition. Logic cells from Stratix V and Virtex 7 device families have a different 

architecture and therefore the number of used adaptive logic modules (ALMs) in Stratix V can’t 

be directly compared with LUTs in Virtex 7 to assess area efficiency. 

Table 3.6: Comparison with related works 

Architecture Technol

ogy 

Max 

Freq 

(MHz) 

ALMs 

/ LUTs 

Registers Pixels / 

Clock 

Cycle 

Throughput 

(Gsps) 

Bolaños-Jojoa [28] Stratix V 630.12 108 288 4 2.52 

Proposed Stratix V 696.38 92 244 2 1.39 

Chatterjee [27] Virtex 7 183.30 924 - 8 1.46 

Proposed Virtex 7 613.50 835 963 2 1.23 

All related designs are made for parallel processing of all elements in a residual vector. 

The maximum operating frequency for the proposed design is higher than [27] and [28]. The 

usage of parallel MCMs rather than multiplexed MCMs comes at the cost of the area. That is 

apparent in the number of utilized ALMs and LUTs. Moreover, these two competing designs 

are not developed as accelerators but as single DCT modules and therefore do not include 

synchronization and control signals which are necessary for communication with the processing 

system. The amount of utilized logic cells is 14.81% lower than in [28] while throughput is 

decreased 1.81 times. Compared to [27], the hardware cost is lower 9.6% while throughput is 

lower 1.21 times. Though [27] is not implemented as a pipelined circuit this will implicate the 

use of flip-flops and the number of used LUTs is not under the impact. 
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4 A PERFORMANCE OPTIMIZED SOFTWARE IMPLEMENTATION OF 

THE HEVC TRANSFORM AND QUANTIZATION ALGORITHM 

4.1 Introduction 

The HEVC standard is devised for a hybrid video coding where transform, scaling, and 

quantization (TQ) are contained in an important functional block. In modern hybrid video 

coding systems that block follows the motion-compensated prediction and precedes entropy 

coding. Regardless of how effectively the preceding prediction process is exercised, there is 

typically a remaining prediction error residual signal that has to be further processed. As a new 

feature, when compared to prior standards, HEVC introduced additional transform block (TB) 

sizes to make encoding of video files of 4K and 8K resolutions more efficient; replaced the 

real-valued discrete cosine transform (DCT) with the integer DCT to ensure device 

interoperability and avoid an encoder-decoder mismatch; simplified (de)quantization process 

by turning it into scalar division (multiplication). Efficient implementation in software 

exploiting SIMD capabilities and parallel processing were set as design goals during HEVC TQ 

development [20]. 

To cope with increased computational complexity, which is especially challenging for 

the design of real-time applications, advanced computing architectures are required. 

Heterogenous multiprocessor computing architectures are one possible solution in such cases. 

There, the application is portioned in such a way that tasks are distributed among coprocessors 

depending on their specialized processing capabilities. Currently, the most common 

heterogeneous systems are made of a multicore Central Processing Unit (CPU) and a GPU [42]. 

Serial portions of applications are run on the former, while data-parallel, compute-intensive 

portions are offloaded to the latter. Programming paradigms for these two architectures are 

different, which has to be considered during the application design. 

This chapter is organized as follows. Section 4.2 describes types of operations included 

in the TQ functional block and differences between TQ and its inverse operations. In Section 

4.3 an overview of significant scientific contributions related to this topic is given. Section 4.4 

describes the development environment and methodology for efficiency validation of 

performance optimized software implementation for parallel computation. In Section 4.5 one’s 

own, highly parallel HEVC transform and quantization kernel with AZB identification [43] is 

presented. It is designed for execution on a GPU. Memory bandwidth, instruction throughput, 
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and on-chip memory allocation were properly balanced to achieve efficient execution and high 

resource utilization. Different optimization techniques, from overlapping data transfers with 

computation to fine-tuning arithmetic operation sequences, were incorporated to reach high 

performance. Section 4.6 provides a comprehensive evaluation of all optimizations made during 

the iterative and incremental development. 

4.2 HEVC transform and quantization process 

HEVC TQ processes the TBs coming from the residual quadtree (RQT) structure. The 

output are the quantized transform coefficients (level). The process consists of three stages: the 

2D integer DCT transform, quantization, and all-zero-block (AZB) identification as shown in 

Figure 4.1. 

2D int. DCT Quantization
AZB 

identification

 

Figure 4.1: General block diagram of the HEVC transform and quantization process 

The 2D integer DCT and quantization are described in previous chapters. AZB 

identification is the last stage in the process. The information if all levels coming out from one 

TB are zero is used to set the value of the syntax element coded block flag (CBF). This helps 

to reduce the number of bits to be transmitted. 

The decoder is built-in the HEVC encoder since the frame has to be fully decoded to be 

used as a reference in the estimation and prediction process for subsequent frames. As the first 

step in the reconstruction of the frame, quantized transform coefficients are dequantized and 

inverse transform is applied thereafter. The computation complexity of dequantization and 

inverse transform (DQIT) is equivalent or lower to that of the TQ process. Double matrix 

multiplication of input blocks with the HEVC transform matrix and its transpose with 

intermediate scaling, the same number of scalar multiplications and bitwise shifts appear in 

both functional blocks. AZB identification is part of the TQ process only. 
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4.3 Overview of scientific contributions to HEVC transform algorithms on 

GPUs 

Previous research in this field focused mainly on CPU+GPU heterogeneous platforms. 

It tackled motion estimation as a functional block with the highest computational load [44], 

[45]. A step further was taken with massive parallelization in [46] and all functional blocks of 

the HEVC decoder, except entropy decoder, were ported to the GPU. Quite the contrary, 

solutions with TQ acceleration using FPGAs rather than a GPU [47] are much more represented 

as a research topic. 

Regarding migration of the HEVC TQ to the GPU in [48] two tables, one describing 

transform unit (TU) partitioning and the other QP value storing, together with the mapping 

algorithm at the CTU level, were proposed to achieve efficient implementation. In [49] authors 

dealt with a heterogeneous system for a HEVC encoder where motion-compensated prediction 

processing already resides at the GPU side and additionally the TQ has to be ported there. 

Parallel TU address list construction and coefficient packing were proposed to achieve high 

processing speed. Benchmarking the performance of four different HEVC 2D transform kernel 

designs against its industrial solution, which combine assembly and AVX2 instructions, was 

carried out in [50] without conducting performance optimizations. In [51] the highly optimized 

parallel implementation of the HEVC dequantization and inverse transform is presented using 

the unified programming model for the CPU+GPU heterogeneous system. 

Previously mentioned works mainly focus on the integration aspect of GPU 

implementation of the HEVC TQ and do not reveal in detail the design of kernel function and 

optimizations which are made to efficiently balance between GPU resources, sum of registers, 

allocated on-chip memory per thread-block, number of threads per multiprocessor and global 

memory bandwidth. That is preventing proper validation of their performance gains and gaps. 

Additionally, it has to be mentioned that fair comparison using only TQ processing time is not 

feasible. In [48], GPU acceleration is done at the CTU block level and in [49] and [51] it is 

done at the frame level with transform blocks previously grouped for GPU acceleration. The 

latter approach allows much better use of GPU parallelism. 

The highest workload stage during HEVC TQ is the 2D forward transform which is 

mathematically realized as a double matrix multiplication. Many guidelines exist with general 

optimization principles exampled in matrix multiplication and other basic linear algebra 
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subroutines (BLAS) [52][53][54]. They mainly deal with the multiplication of two large size 

(one or both dimensions) matrices which are tiled to small size subblocks e.g. 16 × 16 and 

distributed among the GPU thread-blocks. Values from input matrices are repeatedly loaded in 

subblocks and the resulting subblock is computed as the sum of products of these subblocks. 

HEVC TQ operates with batches of small size matrices i.e. TBs where the tiling approach would 

degrade performance. The efficient mapping of TBs and dot product computations to various 

components of the GPU subsystem with the adaptation of known performance optimization 

techniques was set as the main design objective. The final proposal presents a systematic and 

efficient solution for the multithreaded GPU kernel function for all supported transform sizes 

in HEVC. 

4.4 Development environment and methodology 

The heterogeneous processing systems used in this thesis contains the CPU and its 

memory, hereafter referred to as the host, and GPU and its memory hereafter referred to as the 

device. Both are connected to motherboard and exchange data over the PCI Express x16 Gen3 

high-speed bus (PCI-e). Two different environments, set up to perform all planned evaluations, 

are shown in Table 4.1.  

Table 4.1: Evaluation environments 

Environment name Desktop Workstation 

CPU Intel Core i5-4570 

3.20 GHz 

Intel Core i5-3570K 

3.40 GHz 

Memory DDR3  

8GB 

800 MHz 

DDR3  

8GB 

800 MHz 

Bus PCI Express x16 Gen3 

GPU NVIDIA GeForce GT 640 NVIDIA Tesla K40c 

Memory DDR3 

2GB  

DDR5 

12GB 
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The Desktop and Workstation environments have similar CPU characteristics, but 

significant differences in GPU characteristics affect their performances in accelerated 

computing. GPUs from both environments have the same Kepler architecture but Tesla K40c 

exhibits a higher performance due to a larger number of streaming multiprocessors (SMs) and 

faster memory as shown in Table 4.2. For measurements obtained for final benchmarking and 

comparison with competing implementation in Section 4.6.10 of this chapter, the Workstation 

environment was used. All other measurements including those associated with the AVX2 

implementation, which is not supported in the Workstation environment, were made using the 

Desktop environment.  

In this thesis, the Compute Unified Device Architecture (CUDA) programming model 

[55] from NVIDIA, one of the leading GPU manufacturers was used to support heterogeneous 

computation where applications use both the CPU and the GPU. CUDA was integrated into the 

Microsoft Visual Studio (MSVS) IDE. Components of the toolset were: 

• MSVS Community 2017 v15.9.7 

• Platform Toolset: Visual Studio 2017 (v141) 

• NVIDIA Visual Profiler Ver.: 10.1 

• CUDA Compilation tools R10.1, V10.1.105 

• CUDA Driver Ver.: 10.1 

Except for displaying a timeline of the application’s CPU and GPU activity, the Visual 

Profiler was exploited for a comprehensive application analysis and identification of 

optimization opportunities.  

Table 4.2: GPU comparison in the two environments 

GPU model NVIDIA GeForce GT 

640 

NVIDIA Tesla K40c 

SM count 2 15 

Core count 192 192 

Core clock (MHz) 902 745 

Memory bandwidth (GB/s) 28.51 288.4 
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Application DCT_Runner was launched from the command line with the following 

arguments: 

DCT_Runner -–gpu -–cublas -–avx -–blockSizes <no. of 4×4 TBs> <no. of 8×8 

TBs> <no. of 16×16 TBs> <no. of 32×32 TBs> --qp <QP value> --nTrBuff <no. 

of kernel invocations> 

Four different implementations were supported. Results obtained from the GPU, 

CUBLAS, and AVX2 implementation are verified against results from the referent CPU 

implementation. Since the application was developed for benchmarking purposes, every 

implementation started with an untimed warm-up run before the timed execution was invoked. 

Kernel function that will be executed on a GPU was invoked ten times and the final 

measurement value was obtained as an average of all processing times. The application could 

be reconfigured over several preprocessor macros 

#define HIGH_RES_TIMER 

#define RANDOM_RESIDUALS 1 

#define RESIDUAL2THREAD_BLOCK_MAPPING_TYPE 1 

// 0 - 1:1 mapping 

// 1 - (1024/N^2):1 mapping 

// 2 - (2048/N^2):1 mapping  

// 3 - (3072/N^2):1 mapping 

// 4 - (4096/N^2):1 mapping 

// 5 - (512/N^2):1 mapping 

#define SMEM_PADDING 1 

#define IS_ZERO_MATRIX_IDENTIFICATION 1 

#define PINNED_MEM 1 

High- and low-resolution time measurements were supported in the application. 

Residual samples could be generated either as random integer values in the range between -255 

and 255 or as a linear incremental increase by one, starting with zero-value of the top-left 

element in every block. As the next step it could be configured how many TBs are processed 

within one thread-block. A memory padding could eliminate bank conflicts when accessing 

data stored in shared memory. AZB identification could be bypassed during kernel execution. 

Data transfers could be selected as pageable or page-locked. By default, data allocations in the 

host were pageable. To be able to transfer the data from pageable memory, where allocation is 

made by default, to the device, the CUDA driver must first allocate space in the page-locked 

memory, copy data there and then transfer them to the device. The copying overhead can be 

avoided by direct allocation in the pinned memory. 

Optimizations were carried out and new features delivered by employing iterative and 

incremental development. Basic performance measurement in every iteration included overall 

and kernel processing time per frame as shown in Figure 4.2. Overall processing time per frame 
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involved the duration of data transfers from the host to the device and back. Data that were sent 

towards the device were blocks of residual samples from one frame. Once computed, the device 

returned blocks of levels and AZB identification array where each element identifies if the 

associated block of levels contains any non-zero level. 

Data transfer 
H2D

Transform 
quantization

AZB ident.

Data transfer
D2H

 

Figure 4.2: Time measurement 

Except for the time measurement, performance metrics included the device global 

memory bandwidth, occupancy and shared memory efficiency, if that was required by the 

objectives set in an iteration.  

4.4.1 Effective memory bandwidth 

Two bandwidths are calculated for evaluation purposes, the theoretical peak bandwidth 

and the effective memory bandwidth. The former is determined by a memory clock rate, bus 

width, and transfer type. The corresponding value is labeled as 𝐵𝑊𝑇ℎ𝑒𝑜. The latter is calculated 

as a ratio between the number of memory accesses in bytes and their overall duration, as 

expressed in equation: 

𝐵𝑊𝐸𝑓𝑓 =
(𝑅𝐵 + 𝑊𝐵)

𝑡
 (4. 1) 

where 𝑅𝐵 is the number of bytes read per kernel, 𝑊𝐵 is the number of bytes written per kernel 

and 𝑡 is the elapsed time. In general, the best achievable bandwidth of GPU memory is usually 

in the range of 75% to 85% of the theoretical value. Since time is measured at the host side, 

first before the kernel call and second with the first command after the kernel was executed, 

kernel start and stop overheads affected bandwidth. Additionally, it is important to note that the 

lower 𝐵𝑊𝐸𝑓𝑓 value doesn’t necessarily indicate inefficient memory usage. The more 

computations in the kernel, the more time is spent performing arithmetic operations, and the 

value in the denominator in Equation 4.1 increases. In case the kernel execution is mainly 

occupied by memory accesses and not by computation it will be bandwidth bound. Then the 
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bandwidth is the most important metric to measure and optimize. In another scenario, the kernel 

can be computation bound and then computational throughput is expressed as: 

𝑂𝑃𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑𝐸𝑓𝑓 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑡
 (4. 2) 

and is more relevant for performance evaluation. In practice, kernels are mainly bandwidth 

bound. 

4.4.2 Occupancy 

Occupancy [56] is an NVIDIA’s metric that describes how effectively the GPU 

hardware is kept busy or from how many warps the SM can choose to execute. It is the ratio of 

the number of active or resident warps per multiprocessor to the maximum of possible active 

or resident warps. Each SM on the device has a set of registers and shared memory space 

available for use by CUDA threads. Both resources are shared and allocated among the thread-

blocks executed on an SM. Resource usage indicated through the number of configured threads, 

bytes allocated in shared memory and used registers per thread-block, affects the occupancy. 

Maximizing the occupancy can improve latency cover during global memory accesses. 

Nevertheless, its higher value does not necessarily suggest higher performance. If the kernel is 

not bandwidth bound then increasing occupancy will not inevitably increase performance. If 

thread-blocks, active in a kernel grid, are bottlenecked by computation and not by global 

memory accesses, then increasing occupancy may have no effect. In this work, experiments 

were the preferable method to understand how design changes affect the measured processing 

times. 

4.4.3 Shared memory efficiency 

Shared memory efficiency is defined by NVIDIA as the ratio of requested shared 

memory throughput to required shared memory throughput, and it is expressed as a percentage. 

Shared memory has an overall 32 banks and supports 32- and 64-bit addressing modes. Each 

bank has a bandwidth of 64 bits per clock cycle. Banks can be accessed simultaneously. If more 

than one thread in a warp accesses data in the same bank, not belonging to the 64-word aligned 

segments, accesses cannot be served simultaneously but have to be serialized. This performance 

degradation of shared memory access is called a bank conflict. The referenced metric describes 

how many excessive memory accesses happened due to bank conflicts. 
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Depending on measurement objectives in each iteration, support to different block 

distributions was implemented accordingly. Work started with separately implemented kernels 

for a (32 × 32)-point 2D integer DCT and quantization. These types of the kernel have the 

highest computational complexity. The number of multiplications for a 2D transform is 2𝑁3 

and the number of additions 2𝑁2(𝑁 − 1). The kernel for a (4 × 4)-point 2D integer DCT was 

implemented as next when mapping from TB structure at the host side to the thread-block 

structure at the device side and transform matrix access modes had been investigated. Most of 

the design decisions could be met using these two transform sizes. Transforms for the remaining 

transform sizes 8 × 8 and 16 × 16 had to be implemented when the impact of shared memory 

padding on bank conflicts had been investigated. When not avoided, bank conflicts cause 

decrement of shared memory effective bandwidth. 

4.5 Performance engineering for HEVC transform on GPU 

GPUs are powerful arithmetic engines suited to running thousands of threads in parallel. 

To obtain the best performance from a GPU and to achieve suitable low video latency, GPU 

processing is done at the frame level or frame’s horizontal segment level. Compared with pure 

CPU implementation, heterogeneous accelerator-based architecture could potentially suffer 

from a large overhead in data transfer between the host and the device. As shown in Section 0 

and 4.6.10, that overhead could reach up to 54% of overall processing time in case of a mid-

end GPU and 87% in case of a high-end GPU. 

Residual data blocks are copied asynchronously in groups from host to device as shown 

in Figure 4.3. One group includes all the blocks of the same size. Data transfers are optimized 

according to [57]. Once computed, blocks of quantized coefficients and their zero markings are 

returned to the host. The device receives data into its global memory and transfers them from 

there to the SMs. Transform matrices of all sizes are written to the global memory in advance. 

To reach the full SM utilization and decrease the thread creation and destruction cost, the grid-

stride loop technique [58] was employed for kernel design. Access to the device global memory 

is done in a coalesced way to maximize effective memory bandwidth. A thread-block accesses 

a group of residual blocks, block by block in the raster scan order where the data belonging to 

a residual block are accessed row by row. 
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Figure 4.3: Data transfers between the host and the device 

The residual image is dynamically partitioned into TBs whose size adapts to spatial and 

frequency characteristics of the corresponding image area. Transform operations performed 

with TBs of different sizes are different and TBs are grouped before the transfer to the device. 

Gathering the same sized TBs can be done by resuming work from [59]. The prediction stage 

can be modified in such a way that residual values are stored in a memory location for a 

particular block size. The index of the addressing information for the block is written into the 

TU data structure. 

When computing the HEVC transform, the partial butterfly algorithm significantly 

reduces the number of arithmetic operations as shown in Section 3.2. This is beneficial for 

FPGA implementation as additional operations increase the area usage and the latency. If the 

partial butterfly algorithm would be implemented on a GPU then the data-dependent conditional 

branching in the kernel code would be necessary. Different arithmetic operations have to be 

executed to compute a one-half of the transform coefficients compared to another half. 

Moreover, this conditional branching is recursively applied to one-half of the computed 

coefficients. In case of branching code, the threads within a warp diverge and the warp 

consecutively executes each branch. In this way thread utilization and computational 

throughput decrease. Taking this into account the straightforward matrix multiplication is used. 
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Since matrix-matrix multiplications are the most compute-intensive part of the process, 

the shared memory, located on the chip, is used to hold the input data to reduce global memory 

accesses. If the latencies for these two types of memory are compared, then the shared memory 

latency is approximately 100 times lower. To achieve high bandwidth, it consists of memory 

banks. Each bank provides a bandwidth of 64 bits per clock cycle. Buffered data, byte-aligned 

residuals and intermediate transform coefficients are each 16-bits wide. The shared memory 

access pattern which enables maximum throughput of shared memory will be presented in the 

next sections. 

Shared memory is additionally exploited as the single access point for AZB 

identification. Mapping ratio for mapping from residual blocks to thread-blocks can be 

described with the expression 𝑛: 1 (𝑛 ∈ ℕ). Therefore, an intermediate array of Booleans of 

length 𝑛 is allocated in the memory to identify AZBs. Group of threads in a thread-block that 

computes levels in a TB will initiate a write request to the same corresponding array element if 

the non-zero level was identified among transform coefficients which are computed by that 

thread. As the last step, each array element is tested by a single thread in the group to set a 

related array element in the output AZB array in global memory. To ensure correct results of 

values in both arrays, the threads are synchronized two times. The first time after the 

initialization of arrays in shared and global memory and the second time after the thread wrote 

a corresponding value to the matching residual block’s array element. If the AZB identification 

stage is skipped in the process kernel, the processing time is shortened 4% or 2% depending on 

the used GPU type. 

4.5.1 Indexing transform blocks with thread-blocks and threads 

There are two levels of parallelism in the GPU. In a multithreaded program, kernel 

function, which is to be parallelized, is partitioned into thread-blocks and in turn, thread-blocks 

are partitioned into threads. This programming model has a grid at the top of the hierarchy. 

Thus, a kernel is launched as a grid of thread-blocks of threads. Grid and thread-block 

partitioning can be made in one, two or three dimensions. This provides a natural and intuitive 

way to model different data structures like vectors, matrices or volumes. All elements in a data 

structure can be accessed using built-in variables gridDim, blockDim, blockIdx and 

threadIdx. They provide access to each thread that executes the kernel. An example of a two-
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dimensional split of a grid and thread-block with appropriate indexing is shown in Figure 4.4. 

Associated kernel invocation for the illustrated grid is as follows: 

dim3 blocksPerGrid(2,3); 

dim3 threadsPerBlock(4,2); 

kernel<<<blocksPerGrid, threadsPerBlock>>>(…) 

Parameters inside triple brackets syntax are called execution configuration. Each of the 

forty eight threads configured in this example executes a kernel function. 
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Figure 4.4: Grid of thread-blocks 

For performance optimized HEVC TQ with maximized parallel execution, the 

maximum utilization of available device resources has to be achieved. The GPU physical limits 

relate to numbers of threads, thread-blocks, available registers, allocatable size of shared 

memory per SM. The SM schedules and executes threads in warps, groups of 32 parallel 

threads. The number of active thread-blocks and warps depends on the amount of shared 

memory and registers used by the kernel but is constrained by their physical limits. The 

occupancy performance metric will show if a good balance between different resources was 

reached. 
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In this work kernel operates with four different matrix sizes. If one thread-block handles 

one TB and every thread compute one element in a TB then the maximum number of threads 

per thread-block (1024) is utilized for the largest size TB. An increasing number of TBs that 

would be handled by a single thread-block would not be feasible. If 1:1 mapping from TB data 

to thread-block is applied for all transform sizes and data modeled with a one-dimensional grid 

and two-dimensional thread-blocks, then indexing a batch of TBs with thread-blocks and 

threads would be as follows: 

sA[threadIdx.y][threadIdx.x] = A[blockDim.x * blockDim.y * blockIdx.x + 

threadIdx.y * N + threadIdx.x] 

where sA is a shared memory copy of a two-dimensional array A, initially received from the 

host and stored to the global device memory. N is the order of a square matrix.  

Contrary to a 32 × 32-point transform, for other transform sizes one thread-block can 

process more TBs. If same data modeling within a kernel grid would be kept the indexing would 

be as follows: 

sA[threadIdx.y][threadIdx.x] = A[blockDim.x * blockDim.y * blockIdx.x + N * 

N *(threadIdx.y /N * (32 / N) + threadIdx.x / N) + threadIdx.y % N * N + 

threadIdx.x % N] 

For the presented data model, the mapping ratio can be generally expressed as 

(1024 𝑁2⁄ ): 1. An example of the mapping of TBs of size 4 × 4 is shown in Figure 4.5. Residual 

data within a TB are stored in row-major order. When performing matrix multiplication each 

thread retrieves data from the corresponding row in the first matrix and the corresponding 

column in the second matrix. 

Mapping one residual block to one thread-block is a straightforward approach when 

setting execution configuration. Considering the maximum number of resident thread-blocks 

per SM, which is sixteen for the Kepler architecture, such mapping would cause very low 

occupancy for TBs of size 4 × 4. If one thread would compute one level sample that yields that 

one SM processes only 16 TBs. In that case 256 threads would be utilized which is significantly 

less than 2048, the maximum number of resident threads per SM. For TBs of size 32 × 32, this 

mapping ratio wouldn’t be an issue since one thread-block would contain 1024 threads. Low 

occupancy would cause performance degradation since the kernel is bandwidth bound. An 

arithmetic calculation on the stream processor has a latency ten to twenty of cycles while the 

global memory access can take up hundreds of cycles. For the computation of a quantized 

transform coefficient, 4𝑁 bytes are loaded and 2 bytes are stored to any of two memories during 
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each transform stage. The overall number of executed multiply-add operations is 3𝑁, 𝑁 of 

which are performed during each transform stage and 𝑁 during quantization. Thus, arithmetic 

intensity equals 3𝑁 (8𝑁 + 4)⁄ . This value is lower than the ratio of the theoretical instruction 

throughput (57.73 GInstr/s for 32-bit integer instructions) to the theoretical memory throughput 

(28.51 GB/s) for the used mid-end GPU. This makes kernel memory bound [60]. 
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Figure 4.5: 64:1 residual to thread-block mapping for 4 × 4 TBs 

4.5.2 Vectorized memory access 

The kernel for transform and quantization with AZB identification is bandwidth bound 

as shown in the previous section. Effective global memory bandwidth is determined with the 

number of accessed bytes per kernel during its execution time. That number exceeds the number 

of executed operations. Since residual data are represented using short, int or 32-bit float data 

types, load and store instructions will operate with 32-bit data. The performance of these 

operations can be improved by using the vectorized load and store instructions [61]. Those 

instructions operate with 64- or 128-bit data. The expected gains using vectorized instructions 

are the reduced total number of instructions, reduced latency, improved bandwidth utilization 

and kernel shift towards computation bound. 
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Figure 4.6: 64:1 residual to thread-block mapping with vectorized memory access for 4 × 4 TBs 

By employing vectorized memory access, more mapping options are applicable and can 

be tested. If one thread handles one vector that computes four matrix elements, then four TBs 

of the largest size can be assigned to one thread-block. An example of residual to thread-block 

mapping with a vectorized kernel for 4 × 4 TBs using mapping ratio 64:1, as in Figure 4.5, is 

shown in Figure 4.6. It can be noted that fewer threads are contained in a thread-block compared 

to scalar memory access. Thus, their utilization increases. The disadvantage of vectorized 

access is the increased use of registers. This is an acceptable compromise since the use of 

registers is not excessive. They are used for intermediate results of dot products, stride constant, 

sign handling during quantization and zero-level flag in AZB identification. The biggest 

performance improvement is expected for shared memory accesses. 

4.5.3 Efficient vectorized access pattern to shared memory 

For efficient communication with the memory, vectorized memory access is used and 

four data per bank per transaction are retrieved from the memory. Bank size is reconfigured to 

64 bits so that in a thread-block successive 64-bit vectors are assigned to successive banks. By 

using 64-bit vectors, an adjustment to the bus width of the shared memory bank is 

accomplished. To achieve overall high memory bandwidth, an appropriate access pattern for 
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all TB sizes has to be created. In the 2D transform application, every thread will execute a dot 

product of a matching row in a multiplicand block with a matching column in a multiplier block. 

Reading row data is performed as reading along the banks and as such is naturally parallel. In 

the case of the widest row, which appears for 32 × 32 TB, row data will reside in eight different 

banks. Data load can be done within one transaction. 

Loading of column data within a warp with an access pattern that results in reading from 

the same bank causes bank conflicts. With an array width of 8, which is the least common 

multiple for all array widths in vectorized access (1, 2, 4, 8), and regular access pattern bank 

conflict would happen for transform sizes larger than four. For that particular transform size 

memory locations, belonging not only to column data from one TB but to a complete row of 

TBs in a thread-block, always map to different memory banks. For example, in the case of 

transform size 8 × 8, 32 memory locations in separate banks are sufficient to store only half of 

one row of TBs in a thread-block.  

Memory requests to one bank are split into as many requests as there are requested 64-

bit words in that bank. To prevent bank conflicts, the shared memory 2D array is padded with 

an additional column. The additional column will cause data to shift right to the new bank. But 

this technique is not efficient for all transform sizes. Access pattern to the padded shared 

memory array for one thread-block for 4 × 4 TBs and 32 × 32 TBs is shown in Figure 4.7. 

Padded array locations are marked with striped squares. In the case of a 4-point 1D transform, 

threads which process eight consecutive TBs compose one warp. As can be seen, when padding 

is used, some data which are processed by the first warp are spilled to the next memory location 

in the already used banks. Such data couldn’t be accessed in the same transaction as the data 

from the upper memory location. Without padding, the first warp would access memory 

location 0 in all 32 banks in the same cycle. A similar thing happens for 8 × 8 TBs where warps 

would retrieve the necessary data from shared memory in three requests when padding is 

applied instead of two requests when padding is omitted. For 16 × 16 and 32 × 32 TBs, there 

are four and eight serialized memory requests to column data respectively when there is no 

padding. With padding, those accesses are conflict-free. For the latter transform size that is 

shown in Figure 4.7b.  
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Figure 4.7: Padded shared memory allocated for the short4 data type with the access pattern for 4 × 4 (a) 

and 32 × 32 (b) transform blocks 
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4.6 Iterative implementation and evaluation 

In this section, performance optimization techniques from previous sections, intended 

for highly parallel computation on GPUs, are implemented. Implementation is done in an 

iterative way by increasing implementation complexity. Work starts with combining the 

number and the scope of kernel functions related to existing stages in the HEVC transform and 

quantization process. A comparison with the NVIDIA’s library methods follows to identify 

gains and gaps of the basic algorithm. Known CUDA basic and advanced optimization methods 

are tailored to meet joint characteristics of computations, executed for all transform sizes. 

Thereafter the optimal ratio for mapping TBs to thread-blocks is found and efficient transfer of 

data between the host and device is investigated. Lastly, an additional level of parallelization is 

obtained through overlapping data transfers with kernel execution using CUDA streams. A 

comparison with the related efficient parallelization of the HEVC DQIT kernel is carried out to 

place the results of this performance engineering in the context of other scientific contributions. 

The performance of the proposed parallel implementation is always evaluated in terms 

of processing time per frame and compared with the HEVC TQ implementation on other 

computing platforms. Other performance metrics are included depending on the objectives set 

for every iteration. Objectives are presented at the beginning of every section. Thereafter 

measurement results are given and discussed. 

The implementation framework is described in Section 4.4. TBs with random values 

were generated at the host side, transferred to the device and processed there. Quantized 

transform coefficients and the AZB identification array are sent back as process outputs to the 

host. The number of blocks matches two video resolutions: the Digital Cinema Initiatives (DCI) 

4K and 8K Full Format. This number considers the 4:2:0 chroma sampling format and the same 

block sizes for all three-color components. Since frame resolutions for the two mentioned 

standards are 4096 × 2160 and 8192 × 4320, the number of blocks equals 12960 and 51840 

respectively. The time required to process TQ in a frame is referred to as frame processing time.  

4.6.1 Merging transform and quantization kernel 

This section explores how execution configurations affect the performance of the 

transform and quantization kernel. Variants with separate kernels for transform stages and 

quantization are examined as well as a unique kernel which includes all operations made on a 

residual block.  
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Baseline application includes the first transform stage and operates with 32 × 32 TBs. 

The kernel comprises of two 1D integer transforms and scaling. A batch of residual blocks, the 

transform matrix, and its inverse are loaded from global memory and stored into the shared 

memory. Every thread-block has its own copy of transform matrices. No optimization is carried 

out. Execution configuration specifies a one-dimensional grid where the number of thread-

blocks equals the number of residual blocks and the two-dimensional thread-block with 32 

threads in each dimension.  

Prior to baselining, an attempt was made with the kernel performing only one 1D integer 

DCT transform. Thus, transforming one residual block involved two kernel launches, each 

loading corresponding data blocks from global memory. Except for the overhead in memory 

accesses, there was also the high overhead cost associated with the kernel launch. The measured 

time between two kernel launches was about 50 µs, which is ten times more compared to a 

single kernel execution. This long time can be explained with the exchange of the program 

control between the host and device. After the GPU had finished the first kernel launch and first 

transform stage program control is returned to the CPU and then given to the GPU again for the 

second kernel. 

Table 4.3: Comparison of the CPU, AVX2 and GPU implementation of the HEVC transform for 32 × 32 

transform blocks and effective memory bandwidth for the GPU kernel  

No. of 32 × 32 

transform 

blocks 

Processing time [ms] BWEff 

CPU AVX2 GPU Absolute 

[GB/s] 

Relative 

% 

12960 544.32 105.66 41.36 1.28 5 

Measured performance for the baselined application is shown in Table 4.3. Compared 

to the CPU and AVX implementation, the GPU implementation exhibits speed ups 13.16 and 

2.55 respectively. Theoretical global memory bandwidth for a mid-end GPU is computed as 

25.92 GB/s. This value is lower than the one reported in the manual since the memory doesn’t 

operate on maximum frequency. Effective memory bandwidth is 5% since every thread spends 

most time computing dot product where data are retrieved from the shared memory. 

The attempt was made to exploit the device constant memory as a storage location for 

transform matrices. Kernel execution time was 288.47 ms, seven times slower compared to the 

baseline. The constant memory is not an appropriate solution for this application since all 
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threads do not retrieve the same data. In matrix multiplication, every result coefficient of 

indexes i and j is computed using row data of index i and column data of index j. 
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Figure 4.8: Shared memory access pattern with padding 

In the first transform stage, thread retrieves row elements of the transform matrix and 

columns of the residual block to compute the dot product. Reading column data of 32 × 32 

transform matrix from shared memory infers reading from the same memory bank and the 

occurrence of bank conflicts. To prevent this, memory padding is applied to eliminate bank 

conflicts. As all input data can be represented with a 16-bit signed integer, all matrices are 

declared with twice as many elements to reach an alignment with the memory bank’s bus width. 

Declaration example is as follows: 

__shared__ int16_t sA[32 * (64 + 2)];  

where summand 2 inside the parenthesis denotes a padded number of 16-bit words. Access 

pattern with memory padding is shown in Figure 4.8. The following code line abstracts the data 

retrieval of block A from global memory and its store to shared memory as block sA. 

sA[2 * threadIdx.y * (N + 1) + 2 * threadIdx.x] = A[blockDim.x * blockDim.y 

* blockIdx.x + threadIdx.y * N + threadIdx.x];  

Matrix elements are stored in the shared memory so that half of the 32-bit word remains 

empty. For subsequent accesses to shared memory, threads access half of the word in every 

bank. 
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In the second transform stage, the column data of inverse transform matrix are loaded. 

To prevent bank conflicts when accessing the second matrix, shared memory is not allocated 

for the transpose of the transform matrix and that matrix is not used in the process. Accessing 

column data of the transposed transform matrix of index i corresponds to accessing row data of 

the regular transform matrix of the same index. Table 4.4 shows the results of application 

benchmarking after the described optimization measures are implemented.  

Table 4.4: Comparison of the CPU, AVX2 and GPU implementation of the HEVC transform for 32 × 32 

transform blocks and effective memory bandwidth for the GPU kernel  

No. of 32 × 32 

transform 

blocks 

Processing time [ms] BWEff 

CPU AVX2 GPU Absolute 

[GB/s] 

Relative 

% 

10 0.44 0.15 0.10 0.6 2 

100 4.41 0.89 0.41 1.52 6 

1000 44.11 7.99 3.25 1.89 7 

12960 555.20 109.67 38.40 2.08 8 

51840 2203.47 440.47 152.76 2.09 8 

It can be noticed that the effective memory bandwidth tends towards 8% as the number 

of TBs grows. This is due to the decreasing impact of overhead time associated with a kernel 

launch. For referent implementation related to the DCI 4K video resolution the speed-up 

compared to CPU and AVX2 implementations is 14.48 and 2.86 respectively. 

To validate the overhead related to the data transfer from the host to device and back, 

additional time measurement is involved in the evaluation. Except for the kernel execution time, 

the overall GPU processing time is measured (see Figure 4.2). Furthermore, when making 

comparisons with other implementations, the overall GPU processing time will be considered. 

In this phase, the separate kernel function for quantization and AZB identification is 

included in the application. All one-dimensional arrays which represented both TBs and 

transform matrices are replaced with two-dimensional arrays. With such a formal change, the 

kernel execution time is decreased 1.02 times. To confirm the efficiency of the shared memory 

padding, padding is omitted from declarations of variables. Declaration example for block sA 

looks like as follows: 
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__shared__ int16_t sA[32 * 64]; 

As a result, kernel execution time is 3.95 times slower. Profiling tool reports a warning 

related to the shared memory access pattern. It suggests that one transaction would be sufficient 

to retrieve column elements, instead of the existing 16 transactions. Since 64-bit segments can 

be accessed per bank per cycle, 2 block elements per cycle are accessed. The reported shared 

memory efficiency is as low as 5.4%. 

Table 4.5: Comparison of the CPU, AVX2 and GPU implementation of the HEVC transform for 32 × 32 

transform blocks. The duration of data transfers is included in measurements for the GPU 

implementation. 

No. of 

32 × 32 

transform 

blocks 

QP Frame processing time [ms] Speed-

up GPU 

overall 

over 

AVX2 

Memory 

copy 

share 

[%] 

CPU AVX2 GPU 

overall 

GPU w/o 

data 

transfer 

12960 

22 578.07 111.04 68.53 45.35 1.62 34 

27 585.22 111.50 69.33 45.21 1.61 35 

32 592.13 112.34 69.73 45.37 1.61 35 

37 606.27 112.82 69.82 45.52 1.62 35 

51840 

22 2332.06 447.61 272.76 178.88 1.64 34 

27 2343.35 453.61 273.35 179.71 1.66 34 

32 2390.99 447.21 272.41 179.17 1.64 34 

37 2418.51 448.32 272.38 179.56 1.65 34 

For a better understanding of global memory, effective bandwidth and relations between 

memory bound and compute bound kernels, the transform code is commented out. The only 

remained computation was the arithmetic right shift of input and the result was written to the 

output block. Measured bandwidth is 15.128 GB/s or 58% relative to the theoretical bandwidth. 

When the kernel doesn’t include operations that involve shared memory access, achievable 

bandwidth is typically in the range of 75% to 85% of the theoretical value. These measurements 

reported the effective memory bandwidth, and conclusions related to arithmetic intensity in 
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Section 4.5.1 show that kernel performance is bound by the effective shared memory 

bandwidth. This is thus a performance limiter and will be tackled in the next iterations. 

With the application built upon two kernels, one for the transform and another for 

quantization and AZB identification, performance is measured once more, and results are given 

in Table 4.5 and Table 4.6. 

The former shows frame processing times for three different implementations. All three 

include quantization and AZB identification. The overall GPU time covers data transfers and 

two kernel executions. It can be seen that the separate quantization kernel degraded the speed-

up from 2.86 to 1.62 for the referent video resolution. The data transfer takes about one-third 

of the overall GPU processing time. In the quantization kernel, the QP value determines the 

index of the array, through which quantization multiplicand is retrieved, and the number of 

places to shift to the right. These scalar operations do not have an impact on measured time. 

Table 4.6: Kernel execution time and effective memory bandwidth in the GPU implementation of the 

HEVC transform and quantization kernels for 32 × 32 transform blocks 

No. of 

32 × 32 

transform 

blocks 

QP Kernel execution time [ms] BWEff 

2D 

transform 

Quantization 

and AZB ident. 

2D transform Quant. And AZB 

ident 

Absolute 

[GB/s] 

Relative 

[%] 

Absolute 

[GB/s] 

Relative 

[%] 

12960 

22 37.90 7.45 2.10 8 10.69 41 

27 37.78 7.42 2.12 8 10.74 41 

32 37.86 7.51 2.10 8 10.60 41 

37 38.04 7.47 2.09 8 10.65 41 

51840 

22 149.53 29.35 2.13 8 10.85 42 

27 149.84 29.88 2.13 8 10.66 41 

32 149.81 29.35 2.13 8 10.85 42 

37 149.90 29.67 2.12 8 10.74 41 
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The latter presents a further analysis of the transform and quantization kernels. 

Compared to the quantization kernel, the transformation kernel takes about 5 times more time 

as it operates with more data and has intermediate access to the shared memory. The conclusion 

about less computation and shared memory accesses can be also drawn from measured effective 

memory bandwidths for two kernels. 

Based on findings from previous experiments, a unique kernel for transform, 

quantization and AZB identification is constructed. Aside from avoiding one kernel launch, 

saving is also achieved in data transfer. Intermediate transform coefficients, obtained after the 

first transform stage, do not have to be transferred to the device anymore. 

Table 4.7: Processing times and effective bandwidth in the GPU implementation for 32×32 transform 

blocks 

No. of 

32 × 32 

transform 

blocks 

QP Frame processing time 

[ms] 

BWEff Data transfer 

GPU 

overall 

GPU w/o data 

transfer 

Absolu

te 

[GB/s] 

Relative 

[%] 

Durat

ion 

[ms] 

Share in 

overall proc. 

time [%] 

12960 

22 56.51 39.14 0.25 1 17.40 31 

27 56.75 39.24 0.25 1 17.50 31 

32 56.44 38.82 0.26 1 17.60 31 

37 56.99 39.22 0.25 1 17.80 31 

51840 

22 227.30 155.21 0.26 1 72.10 32 

27 224.98 154.78 0.26 1 70.20 31 

32 229.78 154.89 0,26 1 74.90 33 

37 227.70 155.06 0.26 1 72.60 32 

The quantization and AZB identification part of the kernel was also subjected to 

optimization. The intermediate two-dimensional array of the Boolean data type, allocated in 

shared memory for a thread-block, is replaced with the Boolean register in every thread. The 

array size was equal to the number of elements in TB and every element indicated if the 

matching level is zero. Quantization is a scalar operation and usage of shared memory is 
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excluded, except for the Boolean variable which indicated if a block of levels is non-zero. All 

threads in a TB accessed that same variable. 

The iteration ended with the redesign of the kernel using the grid-stride loop method. 

Aside from easier debugging, scalability and thread reuse this method also provides full SM 

utilization over a number of configured thread-block. Performance results of an application with 

the unique TQ kernel are shown in Table 4.7. The relation between processing times for 

different implementations is additionally visualized in Figure 4.9. 

The unique TQ kernel and made optimizations decreased the frame processing time for 

the GPU implementation. Compared to the AVX2 and CPU, the speed-ups are 2 and 10 times 

respectively. Effective memory bandwidth dropped to 1%. Such a low value indicated a very 

low percentage of operations with global memory and suggested that all further optimizations 

should address computation and shared memory accesses rather than global memory accesses. 

Data transfer share in overall computation decreased but is still above 30%. 

 

Figure 4.9: Comparison of frame processing times for different TQ implementations for 32 × 32 transform 

blocks 

4.6.2 Benchmarking against NVIDIA’s library functions 

In this section, it is analyzed if there are library functions provided by the system 

manufacturer NVIDIA which can replace and enhance parts or whole HEVC TQ kernel. The 

CUDA basic linear algebra subroutine (cuBLAS) library [62] is used for this purpose. The 
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application is extended with the additional implementation named CUBLAS. Before calling the 

appropriate cuBLAS Application Programming Interface (API), data that are processed have to 

be transferred to the GPU memory. After the API is executed, the results have to be transferred 

back to the host. The cuBLAS functions are divided into three different levels depending on the 

type of operands: the BLAS1 functions perform scalar and vector-based operations, BLAS2 

matrix-vector and BLAS3 matrix-matrix operations. 

Before searching for appropriate library functions the existing kernel is analyzed to 

determine the timeshare of every computation stage in overall frame processing time i.e. 

identify computation critical stages. Three tests are carried out for three stages: the transform, 

quantization and AZB identification. A unique TQ kernel is reworked for every test so that two 

stages outside the test scope are commented out. Loading a residual block into the thread-block 

and allocation in shared memory, necessary for a particular test, is kept in every test so that the 

sum of results can’t be 100%. After that, time measurements are collected and calculated 

portions are as follows: 

• Transform 91% 

• Quantization 10.6% 

• AZB identification 12.4% 

Since kernels spend most of the time on transformation, finding a library function for 

the 2D integer transform which is more efficient than one's own solution is the objective of this 

iteration. Quantization and AZB identification are excluded from analysis and thus commented 

out in all implementations. The GPU and CUBLAS implementations are in focus of this 

iteration, the CPU is kept as a referent and AVX2 is neither adjusted nor executed. It is included 

in the comparison and executed again during optimization based on the vectorized memory 

access. 

The 2D integer transform is comprised of two 1D integer transforms followed by 

scaling. As cuBLAS doesn’t support integer data sizes larger than 8-bit, the data type for all 

blocks and intermediate values is changed to a 32-bit floating-point. The 16-bit floating-point 

data are not used to avoid a compromise on accuracy. The data type change made scaling based 

on a right-shift obsolete. Scaling is therefore implemented as a scalar multiplication. The results 

obtained from the cuBLAS API in CUBLAS implementation are rounded in a separate kernel 

by using the command floor(x + 0.5) to obtain equal results for all implementations. 
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Preliminary or so-called warm-up calls of the transform function are added to every 

implementation. It has been shown that the execution time ratio between the GPU and CUBLAS 

implementation is 1:5.92 when there is no preliminary call and 1:1.04 when there is one. 

When transforming TB data in a frame, a batch of square-shaped matrices with different 

values is multiplied with the matrix of predefined values. Two different cuBLAS APIs are taken 

into consideration for further analysis; cublasSgemmBatched(…) and 

cublasSgemmStridedBatched(…). The latter considers that each batch of matrices, multiplier, 

multiplicand or product batch contains matrices that are stored consecutively in the device 

memory. Thus, it has three stride parameters that define address offsets between adjacent blocks 

in every batch and three pointers to the first instance of the batch. The former allows a more 

flexible storage of operands and results. There are no stride parameters, but rather three arrays 

of pointers where each pointer in an array points to each instance of the batch. Both APIs take 

and output matrices stored in column-major formats. Rearrangement from the row-major 

format, applicable for other implementations, to column-major format is made together with 

the device global memory allocation. Results are rearranged back to the row-major format 

before allocated space is freed. 

Table 4.8: Comparison of the CPU, GPU and CUBLAS implementation of a 2D integer transform with 

scaling for 32 × 32 transform blocks 

No. of 

32 × 32 

transform 

blocks 

Processing time [ms] Speed-up 

GPU over 

CUBLAS w/o 

data transfer 

CPU GPU 

overall 

GPU w/o 

data 

transfer 

CUBLAS 

overall 

CUBLAS w/o 

data transfer 

12960 563.57 63.99 38.89 1315.31 39.06 1.00 

51840 2253.92 246.68 155.03 5468.81 156.32 1.01 

A comparison of the GPU, CUBLAS, and referent CPU implementation of a 2D integer 

transform with scaling using cublasSgemmBatched(…) is showed in Table 4.8. Results show 

that the transform on a GPU based on one's own design is slightly faster than the CUBLAS 

based implementation. The poor performance of the CUBLAS implementation is caused by 

calls to the rounding kernel whose executions take about 48% of the processing time without 

the data transfer. When the rounding kernel is left out from the GPU and CUBLAS 
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implementation, the CUBLAS implementation is 1.38 times faster. Though it should be noted 

that the result is not HEVC compliant. 

The performance of the data transfer is much worse for the CUBLAS implementation 

since data are transferred block by block using an array of pointers. Such transfer implies low 

bandwidth utilization of the PCI Express interface. The CUBLAS implementation built on 

cublasSgemmStridedBatched(…)uses a single pointer and stride parameter to access blocks 

within a batch and allows for an efficient data transfer. It is showed in Table 4.9 that processing 

with that cuBLAS API obtains better performance. The duration of the data transfer in both 

GPU implementations is about the same now. Although the rounding kernel still slows down 

the CUBLAS implementation, a more efficient API execution contributes to the overall speed-

up.  

Table 4.9: Comparison of the CPU, GPU and CUBLAS implementation of a 2D integer transform with 

scaling for 32 × 32 transform blocks 

No. of 

32 × 32 

transform 

blocks 

Processing time [ms] Speed-up 

GPU over 

CUBLAS w/o 

data transfer 

CPU GPU 

overall 

GPU w/o 

data 

transfer 

CUBLAS 

overall 

CUBLAS w/o 

data transfer 

12960 554.01 57.49 34.44 52.85 30.10 0.87 

51840 2229.39 233.00 136.52 212.16 116.75 0.86 

The HEVC incompliant application, which includes two matrix-matrix multiplications 

and two scalings, and excludes result rounding, is repeated once more. It is shown that the 

CUBLAS implementation outperforms the GPU implementation 1.73 times in terms of overall 

processing time. 

The results obtained in this iteration have driven optimization efforts towards further 

analysis and improvement of one's own transform implementation inside the TQ kernel. 

4.6.3 Vectorized memory access with a float2 data type 

The starting point for optimizations in this iteration was a low shared memory efficiency 

which equals 50%. The shared memory bus enables the transfer of 64-bits per bank in one cycle. 

With the bank size configured to four bytes, only half of that amount is transferred per bank, in 

both row and column access. The design objective is therefore to make the access to shared 
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memory more efficient. The quantization stage is activated again. AZB identification stage 

remained inactive until the design of the most complex part of the kernel was not finalized. 

To better use the available bandwidth, data types of block variables in the TQ kernel are 

changed from float to float2. Vector loads and stores now replace scalar loads and stores. 

Declaration example for block sA in shared memory looks like 

__shared__ float2 sA[32][16 + 1]; 

where the block sA is padded so that it has an extra column, which is a remedy for bank 

conflicts. 

Data processing, matrix multiplication, scaling and quantization are reworked according 

to newly introduced vector data types. The number of threads in the y dimension remains 

unchanged and the number of threads in the x dimension is twice less than the matrix order as 

each thread processes two matrix elements. Mapping data, belonging to the top row and the 

most left column, from one TB to shared memory is shown in Figure 4.10. Those residual 

elements are processed by a top-left thread in a thread-block. An important feature of this access 

pattern is that, besides avoiding bank conflicts, 64-bits instead of 32-bits of data are accessed 

in one cycle per memory bank. It is expected that this will significantly increase the data rate. 

Table 4.10: Comparison of the CPU, vectorized GPU and CUBLAS implementation of transform and 

quantization for 32 × 32 transform blocks 

No. of 

32 × 32 

transform 

blocks 

Frame processing time [ms] Speed-up 

GPU over 

CUBLAS w/o 

data transfer 

CPU GPU 

overall 

GPU w/o 

data 

transfer 

CUBLAS 

overall 

CUBLAS w/o 

data transfer 

12960 626.94 44.19 18.31 57.50 31.15 1.70 

51840 2512.88 180.47 75.34 221.29 119.98 1.59 

Optimizations based on vectorization of the TQ kernel result in performance 

improvements as shown in Table 4.10. Compared to the previous iteration, the vectorized 

memory access and computation shorten the kernel execution time almost two times. This is 

an expected achievement since the kernel is mostly occupied with access to shared memory, 

whose throughput is increased twice. The GPU implementation outperforms the CUBLAS 

implementation, whether they are HEVC compliant or exclude rounding of scaled transformed 

coefficients and quantization. The latter yields a speed-up of 1.3 times for the DCI 4K video 
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Figure 4.10: Distribution of data structured in shared memory using float2 data type and processed by the 

top left thread in a thread-block for 32 × 32 transform block 
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format. The profiling tool reported a shared efficiency of 97.9%. The kernel remained memory 

bound but compute utilization increased from 35% to 55%, and memory utilization dropped 

from 85% to 65%. 

Vectorization didn’t have any impact on the data transfer and its duration remained the 

same as in the previous iteration. Now with less processing time needed for TQ kernel in the 

GPU implementation, and thanks to vectorized memory access and computation, the data 

transfer share in overall processing time was increased to a substantial 59%. 

4.6.4 Vectorized memory access with a short4 data type 

In the previous section, a significant performance increase was achieved with the 

vectorized memory access and computation. This was made with a float2 vector data type. That 

type was selected to make a performance comparison between the GPU and CUBLAS 

implementations on equal terms. In this iteration, blocks will be declared to be of the integer 

data type since HEVC specifies integer transform and quantization. In the case of the CUBLAS 

implementation, a float2 data type will be kept and results will be rounded to get the same 

results as with other implementations. The AVX2 implementation is activated again with the 

change of output data type from int to short inside the quantization function.  

As HEVC uses 16-bit data representation before and after each transform stage, a short4 

vector data type can be used to get the maximum bandwidth of a single bank in the shared 

memory. Declaration example for block sA in shared memory looks like: 

__shared__ short4 sA[32][8 + 1]; 

A thread-block that computes levels of a TB changes its x dimension to eight and y 

dimension remains thirty-two. All computations related to the two-component vectors are 

reworked for four-component vectors. Every thread now computes four outputs inside a TB 

row. Mapping pattern for a one-dimensional array of size 1024, containing residuals from one 

32 × 32 TB, is shown in Figure 4.7b. The array is first transferred to the device global memory. 

At the beginning of kernel execution, it is stored to shared memory and its data are retrieved 

from there without bank conflict using the highest possible throughput.  

A comparison of frame processing times for different implementations is shown in 

Table 4.11. Data transfers for the GPU implementation takes twice less time than for the 

CUBLAS implementation since the datum is represented with two times fewer bits. The speed-

up of GPU kernel execution over CUBLAS kernel is 1.47 times for the referent video 
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resolution. When comparing the overall processing time, and not only kernel execution, the 

GPU implementations with a short4 data type is 1.31 times faster than with a float2 data type. 

The decrease in the speed-up compared to a GPU kernel with the float2 data type (Table 4.10) 

can be explained with computational throughput that is higher for the floating-point than for 

integer data [63].  

Table 4.11: Comparison of the CPU, AVX2, GPU and CUBLAS implementations of transform and 

quantization for 32 × 32 transform blocks 

No. of 

32 × 32 

transform 

blocks 

Frame processing time [ms] Speed-up 

GPU over 

CUBLAS 

w/o data 

transfer 

CPU AVX2 GPU 

overall 

GPU w/o 

data 

transfer 

CUBLAS 

overall 

CUBLAS 

w/o data 

transfer 

12960 828.19 113.12 33.63 21.14 55.42 30.99 1.47 

51840 3318.97 454.04 133.22 83.93 221.63 119.50 1.42 

After multiple optimization measures are implemented, the remaining transform sizes 

and associated TB dimensions have to be included in the analysis. The first kernel is extended 

to support a TQ of 4 × 4 TBs. The extension is also made in the CPU, GPU and CUBLAS 

implementations. With support for boundary transform sizes, performance issues can be 

identified and addressed for optimizations and conclusions can be made related to the overall 

performance. Up to now, one thread-block computed the levels and AZB flags for one 32 × 32 

TB. If one kernel with the same execution configuration for all transform sizes is kept and one 

to one mapping from TB to thread-block remains effective across transform sizes, different 

threads will have to follow different execution paths. In this case, threads of the same warp 

diverge, execution paths are serialized, and instruction throughput and performance decrease. 

When the kernel is invoked for a small transform size there would be more threads that are 

configured, consume resources but do not do any computation, and warp divergency would 

decrease performance even more.  

The impact of different mapping ratios on performance is investigated in Section 0. The 

transform matrix is left out from that investigation. Its instantiation in shared memory is 

separately discussed in Section 4.6.5. In the remaining part of this section, it is considered that 

the execution configuration is constant for all transform sizes and that mapping ensures that all 
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threads perform computation. This means that one thread-block in a kernel calls processes 

1024 𝑁2⁄  TBs and that the same number of transform matrices are instantiated in shared 

memory. 𝑁 in this expression denotes transform sizes. 

Indexing TB arrays with thread-blocks and threads is modified to enable mapping 

dependent on the transform size. If indexing arrays with four elements per thread and usage of 

grid-stride loop technique are considered, the kernel code looks as follows: 

int index = blockDim.x * blockDim.y * blockIdx.x + (threadIdx.y / N * (32 / 

N) + threadIdx.x / (N / 4)) * N * N / 4 + threadIdx.y % N * (N / 4) + 

threadIdx.x % (N / 4); 

int stride = gridDim.x * blockDim.x * blockDim.y; 

 

for (int k = index; k < nElements / 4; k += stride) 

{ 

sA[threadIdx.y][threadIdx.x] = A[k]; 

  

 //Transform and quantization 

} 

In this code snippet, A is a pointer to the batch of TBs in the device global memory, sA is a 

pointer to a sequence of TBs in shared memory, processed within a thread-block and nElements 

is the total number of residual samples. Kernel dependency on transform size is implemented 

using a function template where the transform size is passed as an argument to the template. In 

terms of kernel execution time, this implementation outperforms the implementation where 

transform size is an additional function parameter. 

After application supported 4 × 4 TB, tests are repeated for both supported block sizes. 

Results are about the same for upper boundary TBs like in Table 4.11, so in Table 4.12 only 

results for lower boundary TBs are shown. 

Table 4.12: Comparison of the CPU, GPU and CUBLAS implementations of transform and quantization 

for 4 × 4 transform blocks 

No. of 4 × 4 

transform 

blocks 

Processing time [ms] Speed-up 

GPU over 

CUBLAS w/o 

data transfer 

CPU GPU 

overall 

GPU w/o 

data 

transfer 

CUBLAS 

overall 

CUBLAS 

w/o data 

transfer 

829440 272.42 17.47 4.79 721.16 694.87 145.16 

3317760 1088.36 71.84 19.09 2881.11 2779.36 145.56 
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The number of TBs considers that all color components of a frame for video formats 

DCI 4K and 8K Full Format are split to 4 × 4 TBs. Compared to results for the GPU 

implementation of TQ for 32 × 32 TBs, kernel execution time is significantly reduced from 

21.14 ms to 4.79 ms. As the kernel became computation bound when two-component vectors 

were replaced with four-components vectors (95% compute utilization, 25% memory 

utilization), the performance started to depend heavily on computation complexity which is 43 

times lower for the lower boundary size of TBs. The duration of the data transfer remained 

unchanged, so it occupied 73% of overall processing time. The profiling tool reported a 

comparable occupancy for two kernels with a value above 86%. Both kernels also have 100% 

global load and store efficiencies. Shared efficiency decreased, 97.6% was obtained for TQ of 

32 × 32 TBs and now it is 73.8%. This performance gap was further investigated in the next 

two iterations. The lower shared efficiency is caused by memory padding which is not 

beneficial for the lower transform sizes as explained in Section 4.5.3. An additional 

optimization measure is not to apply mapping to the transform matrix. It could be sufficient to 

use one instance of it rather than a separate instance in shared memory for every TB in a thread-

block. 

Performance of the CUBLAS implementation for 4 × 4 TBs degraded considerably; it 

is even lower than the performance of the CPU implementation. Analysis using a profiling tool 

showed that for the 1D integer transform kernels were invoked thirteen times altogether. The 

first kernel, invoked twelve times, contains 65535 thread-blocks and the second, invoked once, 

43020 thread-blocks. Thread-blocks in both kernels contain 128 threads. The overall number 

of thread-blocks in these two kernels equals the number of TBs but the number of threads 

indicates an excessive number of configured threads as there are only sixteen coefficients that 

have to be computed. Additionally, both kernels are characterized by a low global load and 

store efficiency, 33.3% and 50% respectively, a shared efficiency of 25.9% and low occupancy 

of 24.2%.  

4.6.5 The single access transform matrix 

In this section shared memory access patterns for the transform matrix will be analyzed. 

In the previous section, it was also considered that there are as many instances of the transform 

matrix in the shared memory as there are TBs mapped to one thread-block. In the case that only 

one instance of the transform matrix would exist, which all the threads in a thread-block would 

access when performing matrix multiplication, less memory space would be used. But it is 
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questionable whether this would allow faster access to the memory since address offsets are not 

the same for both arrays involved in the matrix multiplication. This iteration, therefore, aims to 

find a performance efficient access to predefined transform matrix data. 

For the implementation of one instance of the transform matrix per thread-block, 

dynamic allocation in shared memory is necessary. Since the size of the allocated memory 

depends on transform size the variable sDCT is declared using the variable template (supported 

by C++14 compiler) as follows: 

template <int N> 

extern __shared__ short4 sDCT[][N / 4 + 1]; 

Indices for two-dimensional transform matrices are reworked since all TBs processed 

within one thread-block multiply one instance of the transform matrix. The following code 

snippet abstracts the instantiation of the 4 × 4 transform matrix in the shared memory. 

if ((threadIdx.y < 4) && (threadIdx.x < 1)) 

{ 

 sDCT<N>[threadIdx.y][threadIdx.x] = 

reinterpret_cast<short4*>(d_D4)[threadIdx.y % N * (N / 4) + threadIdx.x % 

(N / 4)]; 

 } 

A conditional branch using an if statement has to be defined in the kernel for every 

transform size separately. In this code d_D4 is the initial allocation of transform matrix in the 

device global memory. For the purpose of the vectorized access d_D4 is recast to the short4 data 

type. 

Table 4.13: Comparison of the CPU, GPU and CUBLAS implementations of transform and quantization 

for 4 × 4 transform blocks 

No. of 4 × 4 

transform 

blocks 

Processing time [ms] Speed-up 

GPU over 

CUBLAS w/o 

data transfer 

CPU GPU 

overall 

GPU w/o 

data 

transfer 

CUBLAS 

overall 

CUBLAS 

w/o data 

transfer 

829440 278.08 17.76 4.81 720.34 694.88 144.40 

3317760 1094.86 69.87 18.77 2883.57 2779.34 148.07 

The results for the single access transform matrix are shown in Table 4.13. Speed-up of 

1.02 is achieved by using a single access instead of multiple instantiations. This improvement 

can be explained with fewer memory transactions, as the retrieved data can be reused among 
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the threads within a warp. Read accesses from threads in a warp, belonging to different TBs, to 

a single core transform array result in a performance efficient broadcast mechanism. The 

improvement is not as big since shared memory broadcasting is rewarded much less compared 

to avoiding bank conflicts. Shared efficiency increased from 73.8%, measured in the previous 

iteration, to 79.8%. Global load and store efficiency remained the same. Occupancy increased 

from 86.6% to 98.6%. Due to savings in allocated shared memory space (6.75 kB previously, 

4.562 kB now) occupancy increased but this is not of big importance since the kernel is now 

compute bound. 

4.6.6 Transform block to thread-block efficient mapping 

In previous iterations, TB to thread-block mapping was set to 1024 𝑁2: 1⁄ . With such a 

configuration, one thread-block processes one 32 × 32 TB, four sixteen 16 × 16 TB, sixteen 

8 × 8 TB and sixty-four 4 × 4 TB. When these figures are scaled-up by four, full thread-block 

exploitation is achieved. As same kernel with configured execution configuration is invoked 

for all transform sizes, the mapping ratio is determined by the thread-block size and cannot be 

set separately for a particular transform size. The design objective in this iteration is to find a 

performance efficient mapping ratio. Data transfer is not considered. Besides the GPU no other 

implementation is executed. Resource consumption and occupancy will be tracked and 

discussed for every mapping configuration under test where the kernel execution time is set as 

a decisive parameter for performance efficiency. 

Table 4.14: Processing times for different block mappings for 4 × 4 transform blocks 

No. of 4 × 4 

transform blocks 

Mapping 

ratio 

Kernel 

execution 

time [ms] 

Registers 

per 

thread 

Shared 

memory 

usage per 

block [bytes] 

Occupancy 

[%] 

829440 

1:1 49.55 28 112 25 

64:1 5.02 32 4160 100 

128:1 5.60 32 8320 100 

192:1 7.59 31 12480 75 

256:1 8.71 32 16640 100 
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Table 4.14 shows processing time for several mapping ratios for 4 × 4 TBs including 

two boundary cases; when only one TB is processed within a thread-block and when the 

maximum thread-block size is configured. Configured number of threads depends on the 

mapping ratio. Fox example, as four threads process one TB, there are 512 threads configured 

for 128:1 block mapping. 

Low occupancy for 1:1 block mapping is caused by the low utilization of thread blocks. 

Though the maximum number of thread-blocks resides on every SM, there is only one warp 

allocated per thread-block. Moreover, this one warp is not fully utilized. Only four of its threads 

are active. In the case of 64:1 block mapping, higher thread-block utilization yields higher 

performance, with a kernel speed-up of 9.8 times. As the mapping ratio further increases, so 

does the kernel execution time. This behavior is caused by the progressive reduction of global 

memory throughput. As more TBs are mapped to a thread-block, the stride of the kernel loop 

is larger and fewer memory transactions can be served from the L2 cache load. The L2 cache 

is shared by all SMs and used to cache accesses to global memory. This kernel is computation-

bound and therefore the lower occupancy, in case of 192:1 block mapping, is not penalized with 

an additionally longer execution time. The block mapping of the ratio 64:1 with TB and thread 

indexing is illustrated in Figure 4.6. This thread-block size will be employed for all transform 

sizes in the rest of the chapter. 

4.6.7 Page-locked memory transfer 

Up to now, data allocations at the host side were pageable. Pageable host memory cannot 

be accessed from the GPU directly. Thus, when data were transferred from the host to the device 

they had to be copied to page-locked memory, where the GPU driver allocated necessary 

memory space, and then transferred data to the device memory. The described process is 

represented with the following code: 

short *residual32 = new short[residual32Size]; 

short *d_residual32 = NULL; 

 

cudaMalloc(&d_residual32, residual32Size * sizeof(short)); 

cudaMemcpy(d_residual32, residual32, residual32Size * sizeof(short), 

cudaMemcpyHostToDevice)); 

where residual32 and d_residual32 are pointers to arrays of size residual32Size in the 

host and device memory respectively. Aforementioned intermediate allocation and copy to 

page-locked memory is part of the cudaMemcpy command execution. The cost of transfer 
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between pageable and page-locked arrays can be prevented with following modifications of the 

previous code: 

cudaHostAlloc((void **)&residual32, residual32Size * sizeof(short), 0); 

short *d_residual32 = NULL; 

 

cudaMalloc(&d_residual32, residual32Size * sizeof(short)); 

cudaMemcpyAsync(d_residual32, residual32, residual32Size * sizeof(short), 

cudaMemcpyHostToDevice)); 

With cudaHostAlloc, the CUDA API arrays are allocated directly in the page-locked 

memory. The last parameter of the API denotes a stream identifier. From page-locked memory, 

data are transferred across the PCI-e bus to the device memory with cudaMemcpyAsync, which 

is the opposite of the cudaMemcpy non-blocking CUDA API and the CPU continues with the 

execution of the next command. Synchronization using cudaStreamSynchronize(0) has to 

follow to distinguish the time between the data transfer from the kernel launch at the host side 

where the time is being measured. 

Processing times changed using the page-locked data transfer for the GPU 

implementation and their values for the two boundary transform sizes are shown in Table 4.15. 

If the referent DCI 4K resolution is observed, the data transfer duration is shortened about 2.5 

times (in comparison with values in Table 4.11 and Table 4.13) and its share dropped to 17% 

and 49% of the overall GPU processing time for 4 × 4 TBs and 32 × 32 TBs respectively.  

Table 4.15: Comparison of the CPU and GPU implementations of transform and quantization for 4 × 4 

and 32 × 32 transform blocks based on page-locked data transfers 

No. of transform 

blocks 

Processing time [ms] Data transfer 

share in 

overall proc. 

time [%] 

Data 

transfer 

speed-up  32 × 32 4 × 4 CPU GPU 

overall 

GPU w/o 

data transfer 

12960 0 776.41 26.92 22.34 17 2.58 

51840 0 3134.82 109.93 88.73 19 2.14 

0 829440 253.90 9.26 4.68 49 2.45 

0 3317760 1009.70 40.31 18.74 54 2.09 
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4.6.8 Shared memory padding 

In Section 4.5.3 it is described how memory padding affects shared memory 

performance for different transform sizes. It is shown that padding is not appropriate for smaller 

transform sizes and as such, it shouldn’t be applied in those cases. In this section, those design 

hypotheses are confirmed with measurements. Only the GPU implementation is under test. For 

every transform size, two tests are conducted. In one, arrays associated with the first and second 

block involved in matrix multiplication and intermediate block product are padded so that they 

have an extra column. In the other the padding is omitted. 

The impact on the kernel execution time for different transform sizes is shown in Table 

4.16. As shown in the table, padding has to be applied for the upper half of transform sizes, 

whereas it has to be avoided for the lower half. Its absence most affects the shared memory 

efficiency in the case of the largest transform size. This happens because all threads within the 

warp access 32 elements from shared memory and if a column of data is accessed that results 

in 16-way bank conflict. In the case of the smallest transform size, each thread accesses four 

elements and in the worst case a 2-way bank conflict occurs. 

Table 4.16: Execution times and shared memory efficiency with or without the shared memory array 

padding 

Transform 

block size 

Number of 

transform 

blocks (DCI 4K) 

Shared 

memory 

padding 

Overall 

processing 

time [ms] 

Kernel 

execution 

time [ms] 

Shared 

memory 

efficiency [%] 

4 × 4 

 

829440 

 

No 9.69 4.99 81 

Yes 10.01 5.15 67.5 

8 × 8 

 

207360 

 

No 12.59 7.89 90.2 

Yes 12.67 8.07 83.4 

16 × 16 

 

51840 

 

No 17.92 13.26 69.9 

Yes 17.49 12.87 91 

32 × 32 

 

12960 

 

No 30.04 25.37 26.7 

Yes 27.69 22.93 95.3 
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After optimization measures have been separately analyzed and implemented into the 

kernel and data transfer, the relation between different implementations is visualized in Figure 

4.11 for the most complex transform size. This is done in order to have an overview of the 

performance improvement compared to the end of the first iteration (Section 4.6.1 and Figure 

4.9). It can be seen that the GPU implementation outperforms others. Thanks to the optimization 

steps, progress has been made compared to the initial TQ processing time of 56.51 ms and is 

now 26.92 ms. In the last two iterations, a new level of parallelism, overlapping data transfers 

with the kernel execution, is investigated. 

 

Figure 4.11: Comparison of frame processing times for different TQ implementations for 32 × 32 

transform blocks after optimizations 

4.6.9 Overlapping kernel execution and data transfer 

In previous sections, efficient memory transfers and computation on the device were 

discussed. A memory transfer consists of two operations; transfer from the host to the device 

and transfer from the device to the host. In this section, the discussion is shifted towards the 

overlapping of all three operations or independent tasks, two memory transfers and computation 

on the device, for an even more efficient GPU implementation. 

The application controls the concurrent tasks through streams. A stream is a sequence 

of commands that execute in the order in which they are invoked by the host code. Usage of the 

default or “null-stream” is implied when no stream is specified in the CUDA API call. The 
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default stream is synchronizing with respect to operations on the device; operations in the 

default stream do not start before ongoing operations in other streams finish and operations in 

other streams cannot start while the ongoing operation in the default stream is being executed. 

Thus, neither the data transfers nor kernel can be assigned to the default stream. Otherwise, 

these tasks would follow each other in time and their concurrent execution would not be 

accomplished. Remaining preconditions which have to be fulfilled to enable the overlapping 

are data stored directly to the page-locked memory and the device hardware capable of that. 

The latter is fulfilled for nearly all devices with a compute capability 1.1 and above.  

Only the GPU implementation is in the scope of this iteration. All tests are conducted 

with the referent number of TBs related to the DCI 4K video format. They are broken up into 

chunks, which can be interpreted as horizontal frame segments and each chunk is assigned to 

its own stream. The objective of the section is to find the frame segmentation for which the 

highest performance in terms of frame processing time is achieved.  

There are two ways to implement the TQ of frame segments using streams. The common 

feature for both is that all three tasks related to a segment are issued to the same stream 

according to their dependencies; the host-to-device transfer is followed by kernel execution 

which in turn is followed by the device-to-host transfer. So, there are so many streams as there 

are frame segments. In the first way, all three tasks related to a segment are first issued to one 

stream. Thereafter the same is done for the next segment. The characteristic of the second way 

is to issue tasks of the same type for different segments to different streams first. Device-to-

host is thus issued for all segments first. Thereafter the kernels are issued to their streams. 

The efficiency of a particular approach to frame segmentation depends on the GPU 

architecture [64]. Some architectures contain only one copy engine and therefore only one 

transfer at a time can be executed. For such devices, the first approach doesn’t provide the 

desired overlapping. Host-to-device transfers for the following segments in the order of 

processing are blocked by device-to-host transfer for the segment which is currently processed. 

It is issued to the copy engine earlier and has to be processed earlier. Kernels, belonging to 

pending segments that depend on the related host-to-device transfers, cannot start in parallel 

with the device-to-host transfer from previous segments. Hence not only are the operations 

issued to a stream serialized, which they must be due to interdependence, but also the streams 

are serialized. So, there is no overlap here. 
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In the case of the second approach, the device-to-host tasks are not queued up into the 

copy engine before host-to-device tasks so they do not block them and in turn, they do not block 

the invocation of kernels which depend on their accomplishment. The GPU from the Desktop 

environment has an architecture with a single copy engine. The diagram in Figure 4.12 

illustrates the execution of the TQ application on the Desktop environment for the two described 

work decompositions. Each approach to horizontal frame segmentation is represented with its 

own application version. Four streams are used for this purpose. The overall frame processing 

time is 29.24 ms for the first version and 24.33 ms for the second version. Time-saving is 

achieved through double overlapping which occurred for the second version. Kernel execution 

associated with 𝑠𝑡𝑟𝑒𝑎𝑚 𝑛 is overlapped with the host-to-device transfers for all other streams 

and kernel executions associated with those other streams are overlapped with the device-to-

host transfer from their preceding stream. This version is used for the next test where it is 

evaluated how a different number of CUDA streams affects performance. Separate tests are 

made for the frame split to all 32 × 32 TBs and 4 × 4 TBs to check if the optimal number of 

streams depends on TB distribution. The results are shown in Figure 4.13. 

KN N-point TQ kernel

H2D Host to device data transfer

D2H Device to host data transfer

stream n

stream n+1

K32

stream n+2

stream n+3
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K32H2D D2H

K32H2D D2H
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stream n

stream n+1

K32
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Figure 4.12: Execution timelines for two versions of the TQ application, implemented on the GPU. In version 

a) all operations related to one segment are issued and then the next segment is processed in the same way 
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and in version b) host-to device transfers for all segments are issued first, followed by all kernels and all 

device-to-host transfers. 

When only one stream is used then the results obtained in previous sections with the 

default stream are repeated. Processing time is reduced 8% and 22% for 32 × 32 TBs and 4 × 4 

TBs respectively when the two streams are specified. Further increments in the number of 

streams result in smaller reductions in processing times. Lowest processing times 23.73 ms and 

6.08 ms are achieved when eight streams are used. Further increments in the number of streams 

keep the processing time at about the same value. When twenty streams are used, processing 

times are 23.91 ms and 6.53 ms and with sixty streams specified they are 25.73 ms and 7.35 

ms. When comparing the minimum values of processing times for two transform sizes with 

their initial values it can be noticed that the reduction amount depends on the data transfer share 

in overall processing time for the GPU implementation (see Table 4.15). Kernels for different 

array chunks are issued to different streams and their execution cannot overlap. As the number 

of streams increases data work is partitioned to more data transfer and kernel operations where 

only data transfers overlap with the kernels. The performance gain achieved through the 

overlapping depends on the ratio between the data transfer duration and the duration of kernel 

execution. Closer this value is to one, the higher the speedup is. 

 

Figure 4.13: Impact of the number of CUDA streams on performance  
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the scope of the section. The AVX2 instruction set is not supported on the Workstation’s CPU 

and is left outside the scope. Besides the frame split to 4 × 4 and 32 × 32 TBs, the real-value 

block distribution, which emulates the frame split of real video sequences, is included in the 

test. These three distributions are named 4 × 4, 32 × 32 and are real-valued in the tests. Real-

value block distribution refers to TB shares reported in [23]. For transform sizes 4 × 4 to 32 × 32 

they are 58%, 32%, 8% and 2% respectively. When these values are represented through the 

number of TBs in the referent DCI 4K frame it corresponds to 108840, 60050, 15012 and 3754. 

To confirm the scientific contribution a performance comparison is made with a parallel 

implementation on a GPU from [51]. 

Table 4.17: Processing time comparison of the CPU and GPU implementations of transform and 

quantization for three transform block distributions on the Workstation environment 

Transform 

block 

distribution 

Video 

resolution 

Frame processing time [ms] 

CPU GPU 

overall 

GPU 

w/o data 

transfer 

CUBLAS 

overall 

CUBLAS 

w/o data 

transfer 

32 × 32 DCI 4K 708.11 8.88 3.66 21.48 8.96 

8K Full Format 2832.67 36.19 14.01 76.38 35.84 

Real-valued DCI 4K 421.32 8.51 2.30 48.95 38.55 

4 × 4 DCI 4K 246.26 6.03 0.79 113.84 101.75 

8K Full Format 979.30 23.94 2.96 447.65 407.12 

Performance results for the GPU implementation without overlapping are shown in 

Table 4.17. and the calculated speed-ups and data transfer shares are shown in Table 4.18. Data 

transfers for both GPU implementations on the Workstation environment require the same time 

as on the Desktop environment since both environments have the same PCI-e bus type. Kernel 

execution times are shortened for two boundary transform sizes applied to the referent video 

format from 22.34 ms and 4.68 ms to 3.66 ms and 0.79 ms, which yields speed-ups of 6.10 and 

5.93 respectively. These accelerations are achieved due to the 7.5 times larger amount of SMs. 

Since the kernel is compute bound now, the difference in the device global memory bandwidth 

in two environments doesn’t have much of an impact. If the increase in the processing power 
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is multiplied with the ratio of core clock speeds (see Table 4.2), a factor of 6.2 is calculated. 

This value is close to the accelerations which were measured in the empirical analysis. 

Table 4.18: Performance evaluation of the GPU implementation of transform and quantization for three 

transform block distributions on the Workstation environment 

Transform 

block 

distribution 

Video 

resolution 

Speed-up 

GPU over 

CPU 

Speed-up GPU 

over CUBLAS 

w/o data transfer 

GPU data 

transfer 

share [%] 

32 × 32 DCI 4K 79.75 2.45 59 

8K Full Format 78.28 2.56 61 

Real-valued DCI 4K 49.51 16.77 73 

4 × 4 DCI 4K 40.85 128.68 87 

8K Full Format 40.90 137.61 88 

The CUBLAS implementation exhibits the same performance issues as on the Desktop 

environment (see Table 4.11 and Table 4.13). Performance is still much lower compared to the 

GPU implementation when the frame is only split to 4 × 4 TBs. The acceleration considering 

an environment switch from the Desktop to Workstation is higher compared to the GPU 

implementation but only for 4 × 4 TBs and equals 6.82. For 32 × 32 TBs the acceleration equals 

3.20 which is less than the expected value, that should be close to 6. Kernel invoked by the 

cublasSgemmStridedBatched(…) CUDA API is memory bound as one TB is mapped to one 

thread-block. When kernel performance reports from profiling tools are compared it can be 

noticed that memory utilization on the Desktop environment is around 85% whereas it is 35% 

on the Workstation environment. Considering the significantly higher memory bandwidth on 

Tesla K40c compared to GeForce GT 640 this indicates an inefficient global memory access. 

Similar to Section 4.6.8 and Figure 4.11, the results for all implementations are 

visualized for the most complex transform size in Figure 4.14. A high-end GPU increased the 

performance gap between the CPU implementation and implementations on the GPU, which 

was expected considering its computing power. The GPU implementation again proved to be a 

better solution than the CUBLAS implementation in terms of processing time. 
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Figure 4.14: Comparison of frame processing times for different TQ implementations on the Workstation 

environment for 32 × 32 transform blocks 
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Figure 4.15: Overlapping TQ kernel execution and data transfers by using two CUDA streams 
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execution is overlapped with data transfers in the proposed implementation by using CUDA 

streams. The frame is broken up into two segments with the execution flow shown in Figure 

4.15. 

Frame processing times for two parallel implementations are shown in Table 4.19. In 

the case of the proposed implementation, two block distributions are considered, real-valued 

and 32 × 32, as a worst-case distribution related to performance. Time comparison is made 

against the best time for a given resolution in the competing proposal. As can be observed, the 

proposed implementation achieved a speedup as high as 1.22 times.  

By observing Figure 4.15 it can be noticed that there is a possibility to further reduce 

the processing time by overlapping two data transfers with the kernel execution, since these 

three tasks take a similar time. The test with passing through different numbers of streams and 

finding minimum processing time is therefore repeated on the Workstation environment. The 

capability of the TQ kernel for real-time applications is validated as well. The 32 × 32 block 

distribution for the DCI 4K video frame is considered in the test. 

Table 4.19: Comparison with a related implementation 

Implementation Encoder config / TB 

distribution 

Processing time 

[ms] 

De Souza [51] 
“DucksTakeOff” B 

Frame, Random Access 

6.56 

Proposed 
32 × 32 6.17 

real-valued 5.38 

It is measured that the best performance is achieved with nine streams. Processing time 

equals 4.82 ms. The speed-up compared to the configuration with one CUDA stream is 1.84 

times. Resulting processing times expose the capability of this implementation to be used in 

real-time applications. For a frame rate of 50 fps, each frame has to be processed in less than 

20 ms. Considering the decoding time distribution for DQIT functions in an all-intra 

configuration [19], the remaining time would be sufficient for other decoding stages to be done. 
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5 CONCLUSION 

Performance optimized architectures and algorithms of transform and quantization 

computation blocks for video compression targeted to heterogeneous multiprocessor high 

performance computers were explored in the scope of research that was carried out for this 

thesis. Such researches are motivated by the continuous growth of video traffic and video 

services, especially in the field of high resolution and high-quality video content. Deployment 

of UHD video content, its representation precision, a higher dynamic range and a wider range 

of representable colors place heavy demands on video compression, which must be more 

efficient to lessen the burden that falls on storage and transmission systems. The required 

compression capability or coding efficiency is achieved with an extended set of coding tools, 

advanced algorithms and sophisticated computational methods. When this is compounded by 

the demands of a broad range of real-time video processing applications their need for reduced 

communication delays, the implementation of algorithms and methods on high-performance 

computing systems becomes a necessity. Computing systems based on CPUs spend a lot of 

power on non-computational units, do not provide enough parallelism and cannot be utilized 

for such innovative applications. Heterogenous multiprocessor high performance computers 

aim to address these issues. They deliver improvements in power efficiency, achieve a 

performance gain through parallelism, but also pose new challenges not found in typical 

homogeneous systems. The application has to be decomposed, tasks are portioned to those 

computing units that provide the best performance or power-performance ratio for the overall 

application. This inevitably leads to non-uniformity in system development and programming 

practices. Overheads in task initiating and data transfer must be considered, and synchronization 

carried out in a timely manner. 

Transform and quantization are very important parts of not only video coding systems 

but multimedia compression systems in general. Mapping signals from spatial into the 

transform domain provides energy compaction and decorrelation. Once this is obtained, spectral 

components contributing less to video quality are removed during quantization. DCT is the 

most widely used lossy compression method by reason of its properties, which contribute to 

both compression efficiency and efficient implementation. Driven by a further increase in 

implementation efficiency and interoperability, modern compression standards adopt integer 

approximation to the DCT. One such transformation is the one specified in the state-of-the-art 

video coding standard HEVC which was investigated as a case study in this thesis. 
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Performance optimization in terms of area, power and reusability for systems with 

limited resources and low power consumption was a research direction for the heterogeneous 

system with the accelerated transform and quantization on FPGA. The multiply-accumulate 

architecture is built on the regular lane design where lanes are reused and shared among all 

supported transform sizes. Computation of one scaled transform coefficient is made within one 

lane, which processes the added/subtracted symmetric residual values and involves multiplexed 

MCM and accumulation with scaling. The result values from 32 lanes are serialized to have the 

appropriate data format at the output. Additionally, an architecture variant with a parallel output 

is proposed. Concerning the hardware cost, it outperforms related architectures. The proposed 

architecture can encode 4K UHD@30fps in real-time. 

Another research direction dealt with the performance optimized software 

implementation for the most common heterogeneous system with a CPU and GPU as the 

processing unit specialized for highly parallel computation. The performance engineered 

transform and quantization kernel is presented to be executed on GPU accelerators. All the 

relevant state-of-the-art techniques related to kernel vectorization, shared memory optimization 

and overlapping data transfers with computation were investigated and carefully combined to 

obtain a performance efficient solution across all applicable transform sizes. Experiments were 

conducted using two different GPUs. Substantial gains are shown against the CPU, cuBLAS 

and AVX2 implementations, and improvements are also demonstrated against state-of-the-art 

GPU solutions. 

In this thesis, three original scientific contributions were achieved: 

1. Design of performance optimized software implementation of transform and 

quantization computation blocks for video compression targeted to heterogeneous 

multiprocessor high performance computers. The GPU implementation exhibits speed-

ups up to 80, 19, 4 and 1.22 times compared to the CPU, cuBLAS, AVX2 and related 

highly parallel implementations respectively. The proposed implementation can support 

the 4K UHD@50fps real-time decoding process.  

2. Design of performance optimized hardware implementation of transform and 

quantization computation blocks for video compression targeted to heterogeneous 

multiprocessor high performance computers. The FPGA implementation achieves 

throughput of 1 Gsps, with a 9.6% lower hardware cost compared to the related 
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implementation. The proposed architecture can be used to decode4K UHD@30fps in 

real-time.  

3. Methodology development for efficiency validation of performance optimized software 

and hardware computation blocks implementations. For efficiency validation of the 

performance optimized GPU implementation, the kernel execution time and frame 

processing time were compared with other implementations and between different 

development iterations. To identify optimization opportunities, performance metric also 

included the device global memory bandwidth, occupancy and shared memory 

efficiency. For the area efficient FPGA implementation, the maximal throughput is 

computed and evaluated related to the hardware cost which had to stay low. For both 

proposed implementations, usability for real-time applications is analyzed. 

Obtained findings and results provide a fertile ground for further research. Considering 

a hardware-based kernel the changes to the front-end when using different bus-widths (e.g. 64 

bits) and its impact in the scaling of the architecture can be investigated. Subsequently, 

integration aspects of architecture can be analyzed, and the proposed solution of the problem 

can be focused in the context of the energy consumption of the accelerator. ASIC device design 

can help to fully benchmark the performance of this approach. 

In the case of the GPU implementation, other optimization techniques can be explored 

to increase the accelerator’s performance. To maximize the memory throughput, texture 

memory space and texture cache which is optimized for 2D spatial locality can be used. Double 

buffering by loading data into one shared memory, while operating on another, can be an 

efficient solution when the kernel would be extended to execute an inverse transform and 

dequantization.  
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