
Computer vision-based detection of roadside
vegetation using features from the visible spectrum

Harbaš, Iva

Doctoral thesis / Disertacija

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:215053

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-25

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:215053
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:6612
https://dabar.srce.hr/islandora/object/fer:6612

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Iva Harbaš

Computer vision-based detection of
roadside vegetation using features from

the visible spectrum

DOCTORAL THESIS

Zagreb, 2019.

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Iva Harbaš

Computer vision-based detection of
roadside vegetation using features from

the visible spectrum

DOCTORAL THESIS

Supervisor: Associate Professor Marko Subašić, PhD

Zagreb, 2019.

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Iva Harbaš

Računalna detekcija vegetacije uz
prometnice temeljena na značajkama iz

vidljivog dijela spektra

DOKTORSKI RAD

Mentor: Izv. prof. dr. sc. Marko Subašić

Zagreb, 2019.

This doctoral thesis was made at University of Zagreb Faculty of Electrical Engineering

and Computing, at the Department of Electronic Systems and Information Processing.

Supervisor: Associate Professor Marko Subašić, PhD

Doctoral thesis contains: 86 pages

Doctoral thesis num.:

About the Supervisor

Marko Subašić was born in 1976. He graduated, got his MSc degree and Ph.D. degree from

the Faculty of Electrical Engineering and Computing at the University of Zagreb in 1999, 2003

and 2007 respectively. Since 1999 he has been working at the Department for Electronic Sys-

tems and Information Processing at the Faculty of Electrical Engineering and Computing at the

University of Zagreb, and is currently working as an Associate Professor. at FER, he teaches

several courses at graduate and undergraduate studies. He was a mentor for more than 30 grad-

uate and undergraduate theses. His research interests are in image processing and analysis, and

neural networks with a particular interest in image segmentation and detection techniques, and

deep learning. He is a member of the Image Processing Group at the Department of Electronic

Systems and Information Processing. Dr. Subašić is a member of IEEE - Computer Soci-

ety, Croatian Center for Computer Vision, Croatian Society for Biomedical Engineering and

Medical Physics, Centre of Research Excellence for Data Science and Advanced Cooperative

Systems. Dr. Subašić actively participated in the organization of several international confer-

ences. He participates and has participated in several research projects funded by national and

EU agencies.

Thanks and Dedication

Even though my name is on the front page I am not the only one creditable for finishing this

PhD journey I started almost 7 years ago.

I might have done the grunt work of coding, testing and writing the thesis, but there have

been several individuals that helped me along the way. Some help came in the form of technical

knowledge and discussion while some consisted of motivation and encouragement which was

sometimes even more important.

To start off, I would like to thank my mentor Marko who is the one that made it possible

for me to work on the Faculty for two years and do most of the research necessary for my

thesis. Also, thank you for spending all those hours debugging code with me and for all the

motivational speeches and emails you sent. If I did not show it at the time, they did help and I

am grateful.

Next, I would like to thank my colleague and friend Pavle who shared his woking space

with me for two years and who provided advice, valuable insight that was irreplaceable and all

kinds of stories to pass the time.

Since I left the Faculty I basically stopped working on my thesis and for a long time, it

was standing still. This changed when I started working at Ericsson Nikola Tesla where Goran

Molnar made a special effort to jump-start me into a ’PhD mode’. I wouldn’t be writing this

’Thanks and dedication’ section now if it wasn’t for him, and all the support I got from Emina,

Darko, Zoran, Mario, Vlasta and Mardji who provided me with time and resources when I

needed them to work on my thesis.

A special thanks here must go to my team at work - JARvis. A person could not have

wished for a better team and I do not say this because they were super OK with me taking the

time and working on my thesis, but for the everyday shenanigans that make coming to work

a fun, exciting and challenging experience. So, a very special thanks to Dino, Dario, Zrinka,

Ivan, and Matej.

Thank you Eva for all the talks we had where we tried and motivate and comfort each other

- now we can finally get together and not talk about our PhDs.

Thank you Vedrana for having your door always open - but now, our watch has ended.

Thank you Joke for asking about my PhD often enough that I just had to finish it - now I

have a different answer ready for you.

Thank you Mirkać for listening to me even if you did not understand - I hope that this will

motivate you to do your best.

One very special ’Thank you’ is reserved for a very special person, who is with me every

day, who knows everything that troubles me and everything that makes me happy. There were a

lot of ups and downs in the making of this thesis and he is the one who always knew what to say

to make me come back to this over and over again and who never gave up on me when I would

be in a rut and couldn’t see the end. There are no words how I can thank you, my partner on the

mats, off the mats, in life, and in crime - thank you Nikola, for being there no matter what.

And finally, I dedicate this to my parents who were more nervous and excited about this then

I was. The look on your faces when the defense was over was priceless and I am very happy

that I was able to make you so happy and proud. Thank you Dad for constantly asking me "How

is the PhD coming along?", and thank you Mom for keeping the balance and not mentioning it

as often.

Thank you both for being awesome parents and for all the support. Without you two I wouldn’t

be where I am now, in every sense possible.

iii

Abstract

This thesis contains a comprehensive analysis and discussion of issues and solutions encoun-

tered while developing a method for detecting roadside vegetation. The goal was to develop a

method which would complement vehicles used for roadside maintenance. This would provide

an opportunity to automate such tasks which are currently manually operated by maintenance

workers. Vegetation detection is a common theme in the area of remote sensing where vege-

tation is detected from satellite images and used to monitor the health of vegetation which is

affected by urbanization and industrialization. Most of vegetation detection methods are based

on using satellite images which contain information from the spectrum that is invisible to the

human eye. Our work focuses on developing a method based on using features from the visible

part of the spectrum for detecting various vegetation types using a simple camera mounted on

the vehicle. An extensive overview of developed methods is given starting with simpler ap-

proaches based on different manually selected features for machine learning and ending with

a method based on deep learning where features are learned. We have shown that Fully Con-

volutional Neural Networks can be effectively used in a real world application for detecting

roadside vegetation. For training and testing purposes, we have created our own image database

which contains roadside vegetation in various conditions. Promising experimental results are

presented with a discussion of encountered problems in real-world application as well as a

comparison with several alternative approaches.

Keywords: Image processing, vegetation detection, roadside maintenance, machine learn-

ing, convolutional neural networks

Prošireni sažetak

Računalna detekcija vegetacije uz prometnice temeljena na
značajkama iz vidljivog dijela spektra

U ovom radu je prikazana sveobuhvatna analiza metoda za detekciju vegetacije uz promet-

nice te rasprava o problemima i rješenjima koja su se susrela prilikom razvoja. Cilj je bio razviti

metodu koja će poslužiti kao pomoć vozilima koja se koriste za održavanje cesta. Opremanje

strojeva računalnim vidom i sposobnostima strojnog učenja omogućilo bi automatizaciju takvih

zadataka koji se trenutno obavljaju ručno.

Detekcija vegetacije uobičajena je tema u području daljinskih istraživanja gdje se vegetacija

detektira u satelitskim snimkama.

Detekcija i analiza vegetacije iz satelitskih snimaka se koristi za praćenje zdravlja vegetacije

na koju utječu ubrzana urbanizacija i industrijalizacija. Osim različitih primjena u daljinskom

istraživanju, nedavno je došlo do razvoja metoda za detekciju vegetacije u robotici gdje se takve

metode koriste kao dodatak navigaciji autonomnih vozila koja su namjenjena da operiraju u ne-

urbanim sredinama i u sredinama zaraslima vegetacijom.

Vegetacija se smatra preprekom koju autonomno vozilo može preći, kao npr.visoka trava, za

razliku od drugih, krućih prepreka koje bi vozilo moralo zaobići.

Većina metoda za detekciju vegetacije temelji se na korištenju satelitskih snimaka koje

sadrže podatke iz spektra koji je nevidljiv ljudskom oku.

Uzimajući to u obzir, metode za detekciju vegetacije se mogu podijeliti u dva područja

ovisno o tipu korištenih značajki i to na:

∙ Metode bazirane na značajkama iz vidljivog dijela spektra

∙ Metode bazirane na značajkama iz nevidljivog dijela spektra

Većina metoda zasnivanih na korištenju satelitskih snimaka koristi značajke iz nevidljivog

dijela spektra budući da sateliti snimaju Zemljinu površinu u raznim modalitetima, a i pokazalo

se da je infracrveni dio spektra iznimno korisan za detekciju vegetacije jer vegetacija bogata

klorofilom reflektira najviše elektromagnetskog zračenja baš u tom području spektra.

S druge strane, metode razvijene na ne-satelitskim snimkama se često baziraju na kom-

biniranju značajki iz vidljivog i nevidljivog dijela spektra. Takod̄er, neki istraživači koriste i

posebnu opremu poput LADARa koji snimaju 3D okruženje iz kojeg se računaju 3D značajke

(npr. teksture).

Ideja iza ovog rada je bila razvijanje metode koja bi se bazirala na korištenju značajki

isključivo iz vidljivog dijela spektra što bi se postiglo montiranjem obične kamere na vozilo

te nebi zahtjevalo nikakvu modifikaciju kamere niti posebnu dodatnu opremu.

Rad je organiziran u četiri velika poglavlja i to:

∙ ’Uvod’

Uvod detaljnije opisuje motivaciju iza teme i ideje za potencijalno korištenje metode za

detekciju vegetacije u stvarnim primjenama te daje kratki pregled poglavlja koja slijede.

∙ ’Srodna dijela’
U ovom poglavlju se opisuju postojeći objavljeni znanstveni radovi na temu detekcije

vegetacije. Većina tih metoda dolazi iz područja daljinskih istraživanja gdje se deteck-

ija vegetacije vrši na satelitskim snimkama. U ovom poglavlju se spominju i specifične

upotrebe metoda za detekciju vegetacije i prilagodbe tih metoda za detekciju vegetacije u

snimkama snimljenim na zemlji (ne-satelitske snimke).

Napravljena je kategorizacija srodnih objavljenih metoda za detekciju vegetacija na os-

novu dva kriterija:

– Podjela po korištenim značajkama

* Metode bazirane na značajkama iz vidljivog dijela spektra

Postoje objavljene metode koje se baziraju na korištenju značajki iz vidljivog

dijela spektra, ali s različitim primjenama. U nekim radovim za navigaciju

autonomnih vozila autori su koristili dodatnu specijaliziranu opremu poput Li-

DARa koji služe za snimanje 3D okoline.

Drugi radovi se razlikuju po odabiru korištenih značajki (različiti modeli boja

i različite značajke za opis tekstura) za treniranje klasifikatora. Budući da je

svaka od objavljenih metoda rad̄ena za specifičnu primjenu (pojačanje boje u

sportskim TV prijenosima, fotogrametrija, procjena rizika požara u područjima

sušne vegetacije, i sl.) teško je napraviti usporedbu s metodama u ovom radu

koje su takod̄er rad̄ene sa specifičnom primjenom na umu.

* Metode bazirane na značajkama iz nevidljivog dijela spektra

U ovom području je puno više objavljenih radova koji se takod̄er razlikuju po

primjenama i korištenim modalitetima u svrhu razvoja specifičnih značajki za

detekciju vegetacije, tzv.vegetacijskim indeksima. Vegetacijski indeksi su opće

prihvaćen način obrade satelitskih snimaka i u ovom poglavlju se može pron-

aći više detalja o samim svojstvima vegetacije u spektru elektromagnetskog

zračenja i o raznim primjenama.

– Podjela po pristupu razvoja modela

* Metode bazirane na strojnom učenju s ručno odabranim značajkama

Sve metode spomenute u prethodnim poglavljima su bazirane na tradicional-

nom pristupu razvoja klasifikatora gdje se odabrane značajke koriste za treni-

ranje odabranog modela. Ovdje je dan kratak pregled različitih objavljenih

rješenja koja spadaju u ovu kategoriju.

* Metode bazirane na dubokom učenju s naučenim značajkama

Duboko učenje je još uvijek mlado područje istraživanja koje se sve više razvija

vi

što rezultira raznim treniranim modelima koji daju iznimne rezultate u svim po-

dručjima obrade slike od detekcije i klasifikacije pa do segmentacije.

Model razvijen u sklopu ovog rada baziran na potpunim konvolucijkihm mrežama

je detaljnije opisan u zasebnom poglavlju u nastavku.

∙ ’Metodologija’
U ovom poglavlju je sistematski opisano provedeno istraživanje.

Budući da ne postoji javno dostupna baza koja bi se rimjenila u svrhu razvoja algoritama

za detekciju vegetacije uz prometnice kao jedan od doprinosa ovog rada je baza koju smo

snimili i ručno segmentirali. U potpoglavlju "Podatci" je opisana navedena baza te je

detaljnije objašnjen postupak odabira podataka za treniranje. U svrhu predprocesiranja

velikog skupa mogućih značajki za opis vegetacije korišten je Wilcoxonov test rangiranja

značajki za izdvajanje najbolje rangiranih značajki za koje se pretpostavlja da najbolje

(statistički značajno) opisuju razlike izmed̄u željenih klasa (vegetacija i ne-vegetacija).

Iduće potpoglavlje naziva "Alati za klasifikaciju" opisuje teoretsku pozadinu korištenih

klasifikatora i korištene metode postprocesiranja. Najprije se uvode pojmovi i koncepti

vezani za Support Vector Machines (SVM) koji je korišten za razvoj metoda strojnog

učenja baziranih na ručno odabranim značajkama. Nakon toga se opisuju koncepti vezani

uz razvoj neuronskih mreža, od predstavljenog matematičkog modela neurona pa do

razvoja dubokih mreža.

Razvijene metode za detekciju vegetacije su predstavljene u potpoglavlju "Metode klasi-

fikacije" počevši od najjednostavnije, koja je nadograd̄ivana u kompleksnija rješenja pred-

stavljena u svakom idućem potpoglavlju. Svaka od predstavljenih metoda sadrži opisanu

ideju koja je dovela do tog rješenja, implementacijske detalje metode, korištene alate i

postignute rezultate zajedno s uočenim problemima te diskusijom o tome kako pristupiti

njihovom rješavanju.

Ukupno su predstavljene četiri metode:

– Klasifikacija bazirana isključivo na značajkama boje
U postojećim objavljenim metodama za detekciju vegetacije autori kao značajke

često koriste različite modele boja, dok neki iz modela izuzimaju komponentu osv-

jetljenja s idejom da trenirani klasifikator bude manje osjetljiv na promjene u osv-

jetljenju scene.

Kao prvi korak istraživanja izvršena je analiza različitih modela boja za detekciju

vegetacije. Kao značajke korišteni su RGB, HSV, YUV i CieLAB model boja te se

sa svakim zasebno trenirao SVM klasifikator sa radijalnim kernelom. Takod̄er su

testirani i modeli boja s izuzetom komponentom osvjetljenja.

Rezultati su pokazali da korištenje HSV, YUV i CieLAB modela boja rezultira

sličnom točnosti klasifikacije piksela, dok je RGB rezultirao nižom točnosti što nije

vii

iznenad̄ujuće budući da je RGB aditivne prirode za razliku od ostalih modela.

Korištenje svih komponenti modela je dalo bolje rezultate nego izuzimanjem kom-

ponente osvjetljenja iz vektora značajki.

U ovoj kategoriji su testirani i indeksi vegetacije koji su bazirani na značajkama iz

vidljivog dijela spektra (VVI i GRVI). Rezultati postignuti s navedenim indeksima

vegetacije su bili lošiji od rezultata dobivenih korištenjem nekog od modela boja

i SVMa kao klasifikatora. Taj rezultat nije iznenad̄ujući budući da su ovi indeksi

razvijeni u području daljinskog istraživanja i namjenjeni su za primjenu na satelit-

skim snimkama. Primjena takvih značajki na snimke snimljene iz vozila očekivano

nije urodila plodom.

Kao rezultat analize raznih značajki boja odabran je CieLAB model kao deskriptor

boje, s kojim je postignuta točnost od 91,9015%, za razvoj kompleksnijih modela u

nastavku.

Koristeći samo boju za treniranje klasifikatora je rezultiralo klasifikatorom koji ob-

jekte slične vegetaciji po boji pogrešno klasificira kao vegetaciju (npr.zeleni objekti).

Da bi riješili taj problem potrebno je dodati dodatne značajke za opis teksture koja

je, pored boje, najizraženija značajka vegetacije.

– Klasifikacija korištenjem značajki boje i jednostavnog deskriptora teksture
Prilikom odabira znčajki za treniranje klasifikatora koristimo vlastito znanje o prob-

lemu koji želimo riješiti. Ljudsko oko pored boje raspoznaje i teksture te na osnovu

te dvije značajke ljudima nebi bio problem razaznati vegetaciju od ostatka sadržaja.

U slikama, područja vegetacije su turbulentna zbog same prirode vegetacije (npr.

vlati trave) koja raste u svim smjerovima te može biti i različitih oblika i veličina.

U usporedbi s npr. glatkom površinom (zelenog) automobila područja vegetacije u

slikama bi bila "kaotičnija".

Entropija je mjera sadržaja informacije koja se može primjeniti na slike. Pret-

postavka je da bi dijelovi slike koji sadrže više informacija imali veću entropiju

od uniformnijih dijelova.

Entropija se obično računa na crno-bijelim slikama, ali se isto tako može izraču-

nati i za pojedine kanale različitih modela boja (npr. zašto ne zelena?). U svrhu

pronalaska najbolje značajke entropije za razlikovanje vegetacije od ne-vegetacije

upotrijebljen je statistički Wilocxonov test kao korak predprocesiranja značajki. Vri-

jednost entropije je izračunata za sve kanale (R, G, B, H, S, V, L, A, B Y, U, V i

crno-bijeli) za obje klase (vegetacije i ne-vegetacija) i primjenjen je spomenuti test.

Ideja je da su značajke sa višim rangom statistički značajnije za diskriminaciju klasa.

Na osnovu testa kao značajku teksture odabrali smo entropiju izračunati za kanal S

u prozoru o 9x9 piksela.

viii

Primjena entropije kao dodatne značajke je poboljšala rezultate točnosti klasifikacije

na razini piksela (92,436%), ali problemi sa tzv ’problematičnim’ slikama nisu

riješeni u potpunosti. Dijelovi zelenog automobila su točno klasificirani kao ne-

vegetacija, ali neki dijelovi koji su sadržavali više informacija (npr. rubovi) i samim

time rezultirali višim vrijednostima entropije su doveli do pogrešne klasifikacije.

– Klasifikacija korištenjem značajki boje i kompleksnijeg deskriptora teksture bazi-
ranog na kontiuniranoj valićnoj transformaciji
Analiza problema iz prošlog poglavlja dovodi do zaključka da je potrebna kom-

pleksnija reprezentacija značajke teksture. Uzimajući u obzir prirodu snimanja i

snimljenih podataka ideja je bila naći značajku teksture koja bi bila neovisna o skali

i rotaciji.

Neovisnost o skali je bitna jer se snimanjem vegetacije uz prometnice snima veg-

etacija na različitimm udaljenostima od kamere, a vegetacije udaljenija od kamere je

manje u fokusu što bi trebalo ’uhvatiti’ nekom značajkom s kojom se može korigrati

skala.

Neovisnost na rotaciju je bitna jer se isti tip vegetacije može naći pod raznim ku-

tovima (npr.vlati trave).

Uzimajući u obzir sve navedene preduvjete, odabrana je kontinuirana valićna trans-

formacija (eng. Continuous Wavelet Transform - CWT) za računanje značajke teks-

ture. Kontinuirana valićna transformacija je opisana filtriranjem ulazne slike s famil-

ijom valićnih funkcija koja je konstruirana tako da se odabrani bazni valić dilatira

(razne skale) i rotira što rezultira skupinom filtera pomoću kojih se detektiraju ra-

zličite vrste uzoraka u slici.

Za računanje valićne transformacije potrebno je definirati 5 parametara kojima se

definira izgled osnovnog valića te sve skale i rotacije za koje se želi kreirati filter.

Da bi dobili najoptimalniji skup parametara korišten je Wilcoxonov test rangiranja

značajki pomoću kojeg su se isfiltrirale najoptimalnije vrijednosti.

Koristeći novi skup značajki treniran je SVM klasifikator. Analiziranjem prob-

lematičnih slika (npr. slika sa zelenim automobilom) vidljivo je poboljšanje u us-

poredbi s prethodnim rezultatima čak i sveukupnoj točnosti klasifikacije piksela -

93,89%. Veći dio problematičnih objekata je sad točno klasificiran, no ne u pot-

punosti. I dalje ostaju problematični dijelovi slike koji sadrže visoke frekvencije

poput rubova.

Navedena metoda je dalje nadograd̄ena s dodatnim predprocesiranjem u kojem se

pomoću specijalne implementacije optičkog toga odredi područje interesa defini-

rano kao područje u fokusu, tj.područje bliže vozilu. Detekcija se vrši samo un-

utar područja interesa - na ovaj način se smanji broj piksela koje treba klasificirati

ix

i isključiti potencijane piksele koji su predaleko od kamere i čija kvaliteta (razina

detalja) može varirati.

– Klasifikacija bazirana na dubokom učenju koristeći potpuno konvolucijke neu-
ronske mreže
Prethodne metode su bazirane na ručnom odabiru značajki korištenih za treniranje

klasifikatora. Duboko učenje je specijalno po tome što se mrežama daju čisti podaci

na ulazu, za razliku od prethodnih pristupa gdje se na ulazu davao vektor izračunatih

značajki. Mreža se zatim trenira i u procesu treniranja skriveni slojevi mreže uče

raspoznavati različite uzorke na osnovu kojih će cjelokupna mreža naučiti značajke

koje će na izlazu dati rezultat što sličniji očekivanom (pomoću označenih, ručno

segmentiranih ulaznih podataka).

Korišteni model mreže je modificirani VGG16 model za klasifikaciju slika. Modi-

fikacija mreže se sastoji u pretvorbi svih slojeva u konvolucijske slojeve i dodavan-

jem tzv. ’skip’ koraka u mreži koji služe za povećanje rezolucije slike unutar mreže

u različitim fazama učenja što nam omogućuje da se na izlazu dobije segmentirana

slika jednakih dimenzija kao i na ulazu u mrežu.

Izlaz iz mreže je segmentirana slika gdje svaki piksel predstavlja vjerojatnost da taj

piksel pripada klasi ’vegetacija’. Postavljanjem praga koji se izračuna na osnovu

crtanja ROC krivulje se kao konačni izlaz dobije binarna slika s označene dvije

očekivane klase.

Ova metoda je rezultirala s najvišom točnosti klasifikacije piksela - 96.257%

Uspordeba rezultata iz ovog rada s drugim metodama segmentacije i klasifikacije je teška

budući da se način snimanja, korištena baza slika i planirana primjena značajno raz-

likuju od trenutno objavljenih metoda te bi takve rezultate bilo teško tumačiti. Detek-

cija i raspoznavanje objekata u video sekvencama je relativno istraženo područje, dok

raspoznavanje različlitih vrsta površina u prirodnim okruženjima je manje istraženo po-

dručje gdje spada i detekcija vegetacije. Trenutno ne postoje srodni radovi koji istražuju

područje detekcije vegetacije primjenom značajki iz vidljivog dijela spektra.

U Tablici 1 su predstavljeni svi rezultati dobiveni kroz ovaj rad (bez postprocesiranja

- rezultati treniranih klasifikatora). Najprije su uspored̄eni različiti modeli boja sa i bez

komponente osvjetljenja gdje je CieLAB dao najbolju točnost i kasnije je korišten u kom-

binaciji s različitim značajkama teksture (Entropija i CWT). Evaluirane su i performanse

vegetacijskih indeksa baziranih na R, G i B vrijednsotima koje pripadaju značajkama

vidljivog dijela spektra.

Konvolucijske mreže daju najbolje rezultate i to ne samo u postotku točno klasifici-

ranih piksela, nego i u točnosti klasifikacije problematičnih objekata što je bio i jedan

x

od glavnih problema koji smo prethodno pokušavali riješiti kompleksnijim značajkama

teksture.

Table 1: Pregled točnosti klasifikacije metoda za detekciju vegetacije.

Vektor značajki Točnost Vektor značajki Točnost

CieLAB 91,9015% AB 89,9947%

YUV 91,8235% UV 61,7462%

HSV 91,4285% HS 88,7151%

RGB 89,6314%

VVI 58,342%

GRVI 67,617%

CieLAB + Entropija 92,436%

CieLAB + CWT 93,89%

FCN 96,257%

∙ ’Zaključak’
Posljednje poglavlje sažima sve zaključke i rezultate dobivene provedenim istraživanjem.

Detekcija vegetacije može poslužiti kao prvi korak za razvoj algoritama klasifikacije

tipova vegetacije što bi imalo široku primjenu u ekologiji i botanici za mapiranje staništa,

istraživanje šumovitih, teško-prohodnih područja, za praćenje stanja i zdravlja vegetacije

i sl.

Ključne riječi: Obrada slike, detekcija vegetacije, održavanje prometnica, strojno učenje,

duboko učenje, konvolucijske neuronske mreže

xi

Contents

1. Introduction . 1

1.1. Motivation . 1

1.2. Dissertation structure . 2

2. Related Works . 3

2.1. Detection based on input data . 4

2.1.1. Methods based on the visible spectrum 4

2.1.2. Methods based on the invisible spectrum 5

2.2. Detection based on Machine Learning . 8

2.2.1. ML based on selected features . 8

2.2.2. ML based on learned features . 9

3. Methodology . 10

3.1. Data . 11

3.1.1. Selecting the training set . 15

3.1.2. Feature ranking . 16

3.2. Classification tools . 17

3.2.1. Classifiers . 17

3.2.2. Postprocessing . 23

3.2.3. Validation . 24

3.3. Classification methods . 25

3.3.1. Classification based on color features only 25

3.3.2. Color and texture features . 31

3.3.3. Color and CWT-based texture features 35

3.3.4. Deep learning - Fully Convolutional Neural Network 45

3.4. Final Discussion and results . 56

4. Conclusion . 59

Chapter 1

Introduction

1.1 Motivation

Vegetation detection is a topic frequently addressed in remote sensing, but recently it has been

gaining importance in the field of robotics. The need for detecting vegetation in robotics arose

when autonomous vehicles (AVs) started being used for forest exploration. Detection and anal-

ysis of vegetation from satellite images is used to monitor the health of vegetation which is

affected by urbanization and industrialization. Detection of stressed vegetation [1, 2] is aimed

at raising environmental awareness and improving our ecological footprint. Aerial vegetation

detection is useful in forest management planning, urban vegetation mapping, environmental

monitoring [3], vegetation cover estimation [4], estimating land usage in urban areas [5], map-

ping arctic vegetation [6], phenological surveys [7] and in drought-affected vegetation detection

which is used for fire risk assessment [8, 9].

The increase in demand and popularity of autonomous vehicles resulted in increased re-

search of vegetation detection as an obstacle in off-road navigation. First works on this topic

were greatly influenced by The DARPA Grand Challenge for developing a self-driving car. Veg-

etation is considered a soft obstacle which an off-road vehicle can drive over compared to hard

obstacles which must be avoided [10, 11, 12, 13, 14, 15].

Vegetation has very distinctive properties in the Near Infra Red (NIR) part of the spectrum

because the chlorophyll in vegetation significantly reflects NIR light. That property is used in

many published methods for vegetation detection. Our research on detecting vegetation was

focused on using only the information from the visible spectrum to allow the usage of a com-

mon color camera. The benefit of this approach is that the same camera can be used for other

computer vision tasks which require color images as input data.

In the following chapters, we provide a broad review of the vegetation detection research

area with an emphasis on a specific application of vegetation detection methods that are based

on some specific constraints.

1

Introduction

We will present several methods that we have developed, ranging from simpler ones to

more complex methods used for roadside vegetation detection. The planned application was

intended for traffic safety and infrastructure maintenance (e.g. mowing the grass along the

road). Roadside vegetation maintenance is usually done by a maintenance worker who manually

operates a mower, trims what is necessary and avoids posts, trees, and other obstacles that

would possibly damage the mower. Mounting a camera on a maintenance vehicle and using

a machine learning-based vegetation detection algorithm to navigate the mower would greatly

help workers who maintain traffic roads.

The main goal is to demonstrate that different machine learning approaches can be effec-

tively used to detect roadside vegetation in color images without using any special equipment.

Efficient detection of vegetation from a camera mounted on a vehicle provides many possi-

bilities for this application even beyond traffic infrastructure maintenance which will also be

discussed.

1.2 Dissertation structure

The thesis is organized as follows: a brief overview of different proposed methods for vege-

tation detection is given in Chapter 2. The research path of the doctoral research consisted of

applying different approaches (methods and algorithms) which were used to improve and refine

the vegetation detection method. This whole process is described in Chapter 3, accompanied

by results and discussion. The final conclusion and discussion are presented in Chapter 4.

2

Chapter 2

Related Works

When developing a detection or classification algorithm based on machine learning one faces

two main problems:

∙ What to use for training?

We need a good dataset in order to properly train and test the selected classifier. Gener-

ally, the better the data, the better the classifier/detector.

Depending on the selected machine learning model the data for training can be the original

(unchanged) data or a set of calculated features that describe the original data. Finding a

good feature set is a neverending task. The more (good) features you use, you can achieve

a better classifier, but overtraining a classifier can also be a problem. That is why this step

is so important and can be very time-consuming.

∙ What to train?

Once you have your data or you have selected a feature set that best describes your data

you choose a model to train.

This process (construct a feature set -> use the feature set to train a classifier) is common

in a machine learning-based approach. The feature selection process is very sensitive and it

depends on the data and on the problem that is trying to be solved. We will encounter some of

these issues in later Chapters.

On the other hand, in a Deep Learning-based (DL) approach one is freed from the first step

of selecting features for training the model. One of the biggest benefits of choosing a Deep

Learning model is its ability to perform automatic feature extraction from raw data, also called

feature learning. Deep Learning algorithms seek to exploit the unknown structure in the input

distribution in order to discover good representations, often at multiple levels, with higher-level

learned features defined in terms of lower-level features [16].

3

Related Works

2.1 Detection based on input data

The human visual system detects vegetation on the basis of typical vegetation’s visual charac-

teristics such as color, texture, and shape. Hence, one plausible research direction is to mimic

the human visual system when developing methods for automatic detection of vegetation. Be-

sides typical features in the visible spectrum, studies have shown that there is also valuable

information for vegetation detection in the spectrum invisible to the human eye and therefore,

methods for detecting vegetation can be divided into two groups:

∙ Methods based on the visible spectrum

∙ Methods based on the invisible spectrum

2.1.1 Methods based on the visible spectrum

Methods based on the visible spectrum use color and/or texture features for detection [17].

Color features alone are not sufficient because objects similar in color to vegetation can be

mistaken for vegetation. Such objects can be distinguished from vegetation by additional texture

features. Some researchers use LiDAR (Light Detection And Ranging) sensors that measure the

distance to a target by illuminating that target with laser light. This provides 3D information

about the environment and can be used for calculating spatial texture features. Authors in [13,

14] use a sliding cube across the 3D-point cloud and segment the 3D-point cloud into three

classes: surfaces, linear structures and porous volumes (foliage grass, tree canopy). It can be

argued that using only 3D-data, i.e., only texture properties, cannot result in robust detection of

vegetation because no color information is used. Therefore, in [13] the authors combine 2D and

3D information for vegetation detection. The problem with this approach is mapping 2D and

3D data because they are obtained by two different sensors. This approach is time-consuming

and it should be used when time is not critical [14]. In a similar way authors in [11] use a

combination of 2D and 3D features. They use the height calculated from the 3D LiDAR data

and H and S color components (from HSV color space) for color features.

In addition to its use in navigation systems, which is the most common, vegetation detection

is also used in improving the quality of video or TV images, especially in sports broadcasts.

In [17, 18] authors used YUV color components and texture features for vegetation detection.

Based on detected vegetation regions, the image is enhanced by changing the color, brightness

or saturation of pixels.

There are also so-called vegetation indices that use only information from the visible spec-

trum, combining color channels to obtain a single feature. For example, the Visible Vegetation

Index (VVI) is a measure of the amount of greenness of an image [19], while in [20] authors

evaluate the use of the Green-Red Vegetation Index (GRVI) as a phenological indicator.

Another example where vegetation detection is applied is in photogrammetry which, for

4

Related Works

example, uses vegetation detection to monitor landslides and to eliminate the influence of vege-

tation in the process of monitoring land deformations [7]. To achieve this, a Bayesian classifier

was trained using texture features obtained from the gray-level co-occurrence matrix in con-

junction with Sobel gradient values.

One example of using vegetation detection similar to ours can be found in [8, 9]. The

emphasis of their work was to develop a novel strategy for feature extraction used for roadside

grass classification [8]. In [9] the authors focused on developing a novel texture feature based on

a multiple classifier technique with the goal of improving the classification of dense and sparse

grass areas. The goal was to use the detected areas for fire risk assessment. Another vision-

based approach for roadside vegetation detection is presented in [21]. The authors constructed a

superpixel database by segmenting training images into superpixels, and each superpixel patch

is represented with multiple features. The detection is performed by superpixel matching.

2.1.2 Methods based on the invisible spectrum

Using features from the visible spectrum has some drawbacks (leaves tend to change color, the

presence of green objects, etc.) and that is why features from the invisible spectrum are used

more often. This idea came from remote sensing where researchers found that chlorophyll-rich

vegetation has a high reflectance of NIR wavelengths, while it strongly absorbs red light dur-

ing photosynthesis [22]. Using spectral band information researchers have developed various

Vegetation Indices which are a mathematical combination of different reflectance values that

emphasizes the spectral properties of vegetation so that it appears distinct from other image

features.

When electromagnetic radiation hits an object, three different interactions can occur:

∙ it can be transmitted through the object like light through a window

∙ it can be reflected off the object like light bouncing off a mirror

∙ it can be absorbed by the object.

The reflected radiation is the reason we, with our eyes, see different objects and discern different

colors. Different colors depend on the combinations of different wavelengths that are reflected

from the object. They make the so-called visible part of the electromagnetic radiation spectrum.

The value of reflectance ranges from 0 (no reflection) to 1 (complete reflection).

In Fig. 2.1 three spectral curves are shown for three different objects (vegetation, water and

ground) [23]. A spectral curve or the spectral signature of the object is obtained by plotting the

reflection values associated with that object for a relevant wavelength range.

The vegetation reflection spectrum is divided into three areas:

∙ visible (from 0.4µm to 0.7µm)

∙ near infrared (NIR) (from 0.701µm to 1,3µm)

∙ middle infrared spectrum (MIR) (from 1,301µm to 2,5µm)

5

Related Works

Figure 2.1: Spectral curve for three different types of objects

as shown in Fig. 2.2.

Figure 2.2: Spectral curve of green grass

In Fig. 2.2 the so-called ’red edge’ is visible that represents a sudden jump in the spectrum

between the large absorption of wavelengths of visible red and the strong reflections of NIR

wavelengths. In the visible part of the spectrum, the chlorophyll found in vegetation absorbs

red light and reflects green (hence, the green color). The amount of reflection in the NIR area

is very pronounced and this characteristic is suitable for vegetation detection.

Many Vegetation Indices have been developed during the last two decades. Depending on

the spectral properties of plants different spectral ranges are used for calculating these indices.

6

Related Works

It can be observed that many scientists have developed indexes related to their specific field

of research. One typical representative, which is most commonly used, is NDVI (Normalized

Difference Vegetation Index) [3, 4, 12]:

NDV I =
NIR−Red
NIR+Red

(2.1)

where NIR and Red are the spectral reflectance measurements acquired in the NIR and Red

(visible) regions, respectively.

NDVI values can range from -1 which represents a blue sky to 1 which indicates chlorophyll

rich vegetation. The reflection relationship in the red and NIR area is shown in Fig. 2.3 [10].

Figure 2.3: Ratio of Red and NIR reflectance

Although NDVI has been successfully used in remote sensing, the work of Bradley et al. [10]

has shown that there is a drastic difference between the viewpoints of a satellite and of an

autonomous ground vehicle since there are more problems typical for on-ground recordings

such as shadow, light reflection, and underexposure effects.

Taking that into consideration and wanting to avoid time-consuming processes of calibration

and LiDAR scanning, Nguyen et al. developed a modified vegetation index MNDVI [14] which

they use as a feature for vegetation detection:

MNDV I =
NIR− log(Red + ε)

NIR+ log(Red + ε)
(2.2)

where ε(≤ 1) is a constant used to avoid a negative index value and the logarithmic term ex-

presses the less impact of the Red when an artificial lighting system is used.

7

Related Works

In [12] they combine NDVI and MNDVI to obtain pixels rich in chlorophyll. These pixels

are seeds for the spreading algorithm that follows. For each seed pixel, the distance in color and

texture between the seed pixel and its neighbors is calculated and based on those distances it is

decided if the neighboring pixel belongs to the same group as the seed pixel or not.

Systems based on information from the invisible spectrum require equipment for recording

NIR images and systems based on the visible spectrum that uses LiDAR for feature extraction

need an additional LiDAR scanner. Since our focus is on using only features from the visi-

ble part of the spectrum all we need is a color camera for data acquisition and no additional

specialized sensors are required.

2.2 Detection based on Machine Learning

There are many different applications of vegetation detection techniques and they all vary in

types of features used and classifiers trained. In order to achieve good results with conven-

tional Machine Learning (ML) techniques, the best features have to be selected. Deep Neural

Networks features are learned from the input data and that is the main difference in these two

approaches.

We will, first, present some of our methods and results achieved by manually selecting

features and training a learning model. Through these experiments, we will present all the

problems and setbacks encountered and in the end, we will present the result of using a Deep

Learning approach where the features will be learned and not selected.

2.2.1 ML based on selected features

Most of the methods mentioned in Chapter 2.1 follow this approach when developing a detec-

tion and/or classification algorithm. The first step consists of selecting a set of features based

on the domain knowledge that one has and using that carefully selected feature set for training

an ML-based algorithm. The second step is to select an appropriate learning algorithm (e.g.

Bayesian [7], SVM [11, 13], Linear maximum entropy [10]). Different algorithms have dif-

ferent advantages and disadvantages so some investigation should be done in order to select

one.

The hardest and the most important part is selecting the feature set which will represent the

dataset. Some statistical methods can be used in order to analyze possible features and select

the subset that is believed to be the most significant one.

If a model is trained on bad data/features then we can not expect good results. Going back

and changing the features is not rare. The biggest difference, when compared to Deep Learning

8

Related Works

methods, is the feature selection step. For DL models, the researcher does not handpick the fea-

tures because the features are learned from the raw input data and the given labels corresponding

to different classes in the images.

2.2.2 ML based on learned features

Such approaches have shown promising results in solving a variety of problems, such as ob-

ject recognition in images [24, 25], speech recognition [26], semantic segmentation of im-

ages [27, 28, 29, 30, 31, 32], handwritten character classification recognition [33] and text

analysis [34]. Prior approaches that used Convolutional Neural Networks (CNN) for semantic

segmentation label each pixel with the class of its enclosing object or region. Fully Convolu-

tional Networks [35] are a special derivative of CNNs that are trained end-to-end, pixel-to-pixel

and exceed the state-of-the-art in many semantic segmentation problems. Using such an ap-

proach, the authors have built a fully convolutional network that takes input images of arbitrary

size and produces a correspondingly-sized output with efficient inference and learning.

The work of [36] investigates the use of deep fully convolutional neural networks (DFCNN)

for pixel-wise scene labeling of satellite images using data fusion from heterogeneous sensors

(optical and laser). The approach is able to generate dense scene labels using multi-modal

and multi-scale encoder-decoder architecture. Another, similar approach for dense pixel-wise

segmentation based on multi-channel data fusion is presented in [37]. The authors train their

architecture with RGB, NIR, and depth data contained in their database. Then they identify the

best performing modalities and fuse them by using a DFCNN.

These papers focus mostly on multi-modal data fusion. There has also been work done in the

area of vegetation classification represented in [38] where the main goal is to distinguish weeds

from crops. The data used was recorded with a multispectral camera. Here, the authors use

a pipeline of two different CNNs applied to the input RGB and NIR images. The first step is

the detection of 3D points that belong to green vegetation. Using the NIR values in this task is

highly useful which has been shown even in hand crafted-based approaches mentioned before.

CNN can take advantage of such a feature even better. The second, deeper, CNN is then used

to classify the extracted pixels into desired classes.

Recently, deep learning was used to create a new NDVI-based index. The authors in [39]

use a Conditional Generative Adversarial Network (CGAN) architecture model to generate a

new vegetation index.

Deep learning is still emerging as a tool in many applications and lately, it has been re-

searched and used with multi-spectral imagery for various tasks. Since our focus is on detecting

vegetation by using data from the visible spectrum, a logical continuation of our work is to

investigate the usage of a deep learning approach for this task. Currently, there is no research

done on this specific topic.

9

Chapter 3

Methodology

In this chapter, four different classification methods for detecting roadside vegetation will be

presented starting from the simplest approach where only color features were used as descrip-

tors, followed by variants of manually selected color and texture features used for training a

classifier, and finishing with a Deep Learning method where no features were manually se-

lected:

∙ Methods with manually selected features

– Only color features

– Color and entropy-based texture features used with an SVM classifier

– Color and CWT-based texture features used with an SVM classifier

∙ Method with learned features

– Deep learning-based method using Fully Convolutional Networks

Going through the previous chapter and analyzing related methods developed for vegetation

detection one can notice that most of the methods follow the recipe:

∙ choose features (most often color and texture features)

∙ use those features and machine learning to train a classifier

∙ test and refine the classifier

There are many possible features and machine learning methods to choose from and pre-

cisely those make the difference between different published methods and the results achieved.

Vegetation detection is a problem that can be tackled in many different ways. If the de-

tection is done on the ground (from an AV vehicle) the selected features and/or classifier de-

pend on the application, method of recording, type of recording, the application of the detec-

tion/classification method, and additionally, once a classifier is chosen there are parameters to

fine tune for the problem at hand.

The idea was to try simpler methods and gradually get to more complex solutions in order

to properly analyze the issue at hand and to identify the most beneficial components used.

10

Methodology

3.1 Data

To the best of our knowledge, there is no publicly available database that could be used for our

application. That is why we made our own database for testing. The database was recorded

using an HD Camcorder Canon XF100 from a moving vehicle. There are several scenarios that

we took into consideration when recording and selecting images that will represent our dataset

used for verification. We wanted to create a versatile database which would contain as much

as possible real-world scenarios. Some examples of images are shown in Fig. 3.1 where we

covered:

∙ Varying lighting conditions - The recording was always done in daytime but during dif-

ferent times of the day.

∙ Different traffic scenarios - Driving on main and various auxiliary roads, parking lots, and

other traffic scenes that include special road signalizations and roadside infrastructure.

∙ Different types of roadside vegetation - Roadside vegetation mostly consist of grass, but

often there are different types of bushes planted by the road, especially in urban environ-

ments.

∙ Vegetation of different colors - When seasons change, the leaves from trees turn brown/yellow

and fall to the ground. These examples were included in the final dataset since it could

also be used for roadside maintenance.

During training and validation of our algorithms, the database was carefully split into sets

for training and validation keeping in mind that all scenarios and special cases are covered in

both sets.

Currently, our database contains 270 images of resolution 1920x1080 extracted from the

recordings. For every image, there is a corresponding label image used as ground truth for

training and testing. The segmentation of label images was done in a pipeline which consisted

of performing k-means clustering on the original image and then manually correcting the clus-

tering result.

K-means clustering is one of the simplest unsupervised machine learning algorithms. The

algorithm partitions the data into k mutually exclusive clusters. Each observation, i.e. pixel in

an image, is treated as an object having a location in space and the goal of the algorithm is to

assign each observation to its appropriate cluster. The decision to which cluster a pixel belongs

to is made based on a defined distance metric [40].

The algorithm starts by randomly selecting k centroids, which are used as the beginning

points for every cluster. The user defines the number of clusters k which is 2 in our case. The

distance to the cluster centers is calculated for every observation and based on the calculated

11

Methodology

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3.1: Example images from the database: (a) Vegetation in shade; (b) Main road with roadside
vegetation in bright sunlight and in shade with autumn leaves; (c) Auxilliary road with different bushes
by the road; (d) Main road with roadside vegetation and green poles; (e) Auxiliary road without roadside
vegetation; (f) Roadside traffic scenario with a pedestrian crossing; (g) Different type of roadside vegeta-
tion; (h) Roadside vegetation in heavy shade; (i) Traffic scenario with special yellow traffic markings on
the road; (j) Traffic scenario with a pedestrian in a green T-shirt; (k) Traffic scenario with a parked green
vehicle; (l) Traffic scenario with multiple pedestrians; (m) Traffic scenario with a pedestrian crossing
withpout roadside vegetation; (n) Traffic scenario with a vehicle in motion and some roadside vegeta-
tion; (o) Roadside vegetation further from the camera on a traffic crossing

12

Methodology

values, the object is assigned to one of k defined clusters (a smaller distance indicates higher

similarity to the cluster representative). The algorithm iterates through the data and optimizes

the positions of the centroids. Once the centroids have stabilized, i.e. there are no changes in

their values, or if a predefined number of iterations has been achieved the algorithm stops.

The main issue with this algorithm is that if you run it several times on the same data you can

get different results each time because the algorithm starts at a random location every time. It is

also very sensitive to outliers since they can skew cluster grouping and increase the amount of

time needed to find an optimal solution. All of that being said makes this algorithm not reliable

to be used as a vegetation detection method, but it can help speed up the segmentation process.

The biggest benefit was when segmenting images where vegetation was heavily present and

the clustering often managed to group vegetation areas in one cluster which we then manually

modified, if needed, to create a final label. Other images, where vegetation is not that present

or where it was too scattered, k-means clustering often failed and did not manage to cluster all

vegetation areas in one cluster so there was more work to be done manually. In Fig. 3.2 we

show some images from the database together with their labels.

In these binary masks, ones (’1’) represent the positive class, i.e. the vegetation areas, and

the zeros (’0’) represent the negative class, i.e. the non-vegetation areas.

Depending on the image content the difficulty of the labeling process varied drastically.

For images like Fig. 3.2(b) containing simple scenarios where roadside vegetation is uniformly

illuminated and contained in one area, the k-means algorithm often grouped the vegetation as

one cluster which was then taken as the final image label. More often this was not the case.

Images often contain some objects which would skew the k-means clustering of vegetation. In

Fig. 3.2(e), for example, we had to manually correct all the green poles while in Fig. 3.2(n) we

had even more manual labeling for selecting all the vegetation in the background and correctly

labeling objects similar to vegetation in color.

K-means clustering as a pre-labeling step did speed up the labeling in scenarios where different

types of vegetation were present in the image like in Fig. 3.2(k). In cases like this, the clustering

helped in defining boundaries of vegetation areas, while minor corrections had to be done to,

for example, also include the dry vegetation or vegetation in heavy shade like in Fig. 3.2(h).

It should be made clear that many publications mentioning successful vegetation detection

often indicate some very specific species of vegetation or a very limited dataset. And these

approaches are then just used for robots operating in a specific environment or for satellite

images. They are not used for roadside vegetation detection using a camera mounted on a

vehicle. Due to different goals, those methods cannot be directly compared to our method for

detection of roadside vegetation.

13

Methodology

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3.2: Example of manually segmented label images: (a) Final label for a simple roadside vege-
tation scenario; (b) Original image containing simple roadside vegetation scenario; (c) Original image
multiplied with its corresponding label; (d) Final label for image containing roadside vegetation and
poles (e) Original image containing roadside vegetation and green poles; (f) Original image multiplied
with its corresponding label; (g) Final label for image with vegetation in heavy shade; (h) Roadside
vegetation in heavy shade; (i) Original image multiplied with its corresponding label; (j) Final label for
roadside scenario with different types of roadside vegetation; (k) Different type of roadside vegetation;
(l) Original image multiplied with its corresponding label; (m) Final label for a roadside traffic scenario
with a pedestrian in a green T-shirt; (n) Traffic scenario with a pedestrian in a green T-shirt; (o) Original
image multiplied with its corresponding label

14

Methodology

3.1.1 Selecting the training set

Size of the training set

Since we are focused on per-pixel classification this means that there are 1920*1080*270 pixels

available for training and testing the classifier. Training a classifier with a large number of

samples can result in a complex model that can be computationally demanding. Smaller sample

size needs to be selected in order to optimize the whole process.

It is possible to construct a formula that suggests the optimal sample size [41]. There are

various statistics-based recipes for calculating the required sample size which requires knowl-

edge of the variance or proportion in the population, the maximum desirable error, as well as

the acceptable Type I error risk (confidence level).

Given a population size (1920*1080*270), a specific margin of error (ME = 2.5%) and a

desired confidence interval (CI = 95%), based on the table from [41] we found that the best

sample size is 4000 (2000 samples representing vegetation and 2000 samples representing non-

vegetation). These 4000 samples are chosen randomly. We tested our algorithms by using a

greater number of samples but it only increased the computational time and it did not signifi-

cantly improve accuracy.

Class representation in the training set

Once we established the size of our training set we had to decide which samples are going in

that limited set. Selecting the training data is an important step because all further classification

depends on the trained model.

First, we need to pay attention to stratification. Stratification is a system of dividing the popula-

tion into homogeneous subgroups/classes before sampling. Once these subgroups are defined,

we then take samples from each individual group which ensures that every class is represented

in the training dataset (e.g. 50% positive class samples and 50% negative class samples).

We have two classes: vegetation and non-vegetation. We could randomly select samples from

these two classes, but an analysis of the database showed that there are corner cases and sub-

groups of samples we need to take into consideration.

The database analysis showed the following:

∙ Not all vegetation is green - using only green vegetation in training will make a classifier

that does not detect dry vegetation or any other non-green vegetation. If samples of dry

vegetation (or other non-green vegetation) are included in the training phase then the

classifier will be more robust and it will learn to detect vegetation of different colors.

– Vegetation does not only differ in color but also in shape and size. There are different

types of roadside vegetation (grass, leaves, bushes, etc.) to be detected which will

15

Methodology

have to be represented in the database and it will be something to pay attention to

when selecting the training feature set.

∙ Everything green is not vegetation - the non-vegetation class is more complex since it

contains everything except vegetation. In order to represent such a versatile group, we

need to identify potentially problematic cases and be sure to include them.

Through our research and testing, we identified some special cases (i.e. green and yel-

low vehicles, green roadside posts, yellow traffic markings on the road, etc.) which we

labeled in images. These labels were used when selecting training samples to ensure that

they will be represented in the training sample set.

3.1.2 Feature ranking

The biggest issue when choosing and training a classifier is to select the feature set to be used

for training. If one knows that color is important for the task at hand there are several color

modulations to choose from. For texture features, there are even more possibilities. How to

choose the best one? To select the optimal (hopefully the best) features we use additional

statistical tools to help us narrow down the selection.

To understand the influence of features on the system, or even if the number of features is too

large, feature ranking is a good method to get baseline results, to assess features individually,

and is independent of the choice of the predictor [42].

Feature ranking is a good filtering method and a good preprocessing step where features are

ranked using some statistical test and based on the calculated rank we choose the best one as our

descriptor. The goal of using any kind of filtering of features is to eliminate possible outliers.

In our work, we used the Wilcoxon rank sum test which is a nonparametric test for equality

of population medians of two independent samples. A nonparametric test was used because

they don’t assume normally distributed classes. Our samples were tested and showed that they

do not follow a normal distribution [43].

Variable ranking makes use of a scoring function computed from the input variables (cal-

culated features) and output variables (class assignment). The Wilcoxon rank sum test uses the

rank sum statistic calculated for every feature in the feature vector as the scoring function. By

convention, we assume that a high score is indicative of a valuable variable [42]. By filtering

our feature vector, according to the calculated rank, we eliminate less valuable features.

16

Methodology

3.2 Classification tools

The following chapters contain more information about the specific implementations of used

classifiers together with the achieved results, but first, we will present some theoretical back-

ground and introduce and define some concepts and methods that will be mentioned in the

following chapters and which will serve to better understand the presented methods.

3.2.1 Classifiers

Support Vector Machines

Support Vector Machines [44] is a well known supervised learning algorithm used for both

regression and classification tasks. SVM is used as a classifier in some of the methods that will

be presented in this thesis.

The objective of this algorithm is to find a hyperplane that distinctly classifies data points into

their respective classes. Depending on the dimensionality of the data the hyperplane can be a

line (in a 2D feature space) or a plane (in a 3D feature space) as shown in Fig. 3.3.

Figure 3.3: Hyperplanes in 2D and 3D feature space

There are many possible hyperplanes that could be chosen to separate two classes of data

points. The goal of SVM is to find the optimal plane, i.e. the plane that has the maximum

margin as shown in Fig. 3.4. Maximizing the margin distance provides some assurance that

future data points will be classified with more confidence.

Support vectors (where the method gets its name) are data points that lie closest to the

hyperplane and influence the position and orientation of the hyperplane. As shown in Fig. 3.5

depending on the chosen support vectors the margin of the classifier will change. The SVM

algorithm is based on maximizing this margin around the separating hyperplane. The problem

17

Methodology

(a) (b)

Figure 3.4: (a) Possible hyperplanes (b) Optimal hyperplane

of finding the optimal hyperplane is an optimization problem solved by different optimization

techniques.

Figure 3.5: Support vectors

One more important SVM feature is the so-called "Kernel trick" [45].

All the previous examples show linearly separable data. The idea behind the kernel trick is that

data, which isn’t separable in our N-dimensional space may be separable in a higher dimen-

sional space. One good example is shown in Fig. 3.6 where on the left we have two linearly

nonseparable datasets, but on the right, when looked in another dimension we see that these

classes are separable.

More details on how we trained our SVM classifiers will be presented in later Chapters.

18

Methodology

Figure 3.6: Linearly nonseparable data

Machine Learning, Neural Networks, and Deep Learning

Today, machine learning technology is a key component in many aspects of modern society.

Machine learning systems are used for filtering web content, recommending content based on

the user’s interests, selecting relevant search results, processing images in our smartphones, and

many more.

A machine learning algorithm is an algorithm that is able to learn from data. In [46] machine

learning is defined with the following:

A computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E.

Some tasks T often solved by using machine learning are:

∙ Classification - the computer program is asked to specify in which category some input

belongs to

∙ Regression - the computer program is asked to predict a numerical value given some input

∙ Machine translation - the computer program converts/translates a sequence of symbols

from one language to another

∙ Anomaly detection - In this type of task, the computer program sifts through a set of

events or objects and flags some of them as being unusual or atypical

∙ Denoising - the machine learning algorithm is given as input a corrupted example x̃ ob-

tained by an unknown corruption process from a clean example x. The learner must

predict the clean example x from its corrupted version x̃.

A performance measure P is used to evaluate the abilities of a machine learning algorithm.

The performance measure P is a quantitative measure of the performance of the algorithm and

is often specific to the task T. For example, for a classification task the performance measure is

19

Methodology

often the accuracy or the error rate of the model calculated using the original data provided for

training and the model’s output. These kinds of design choices depend on the application [47].

Machine learning algorithms can be broadly categorized as unsupervised or supervised by

what kind of experience E they are allowed to have during the learning process. In a supervised

scenario, a model for machine learning is build based on a given dataset and the associated

labels of the data. Depending on the task T these labels can represent different things. For

a classification task, the labels will contain information about which data sample belongs to

which class the model should learn to discriminate. In an unsupervised scenario, the labels are

not present. In this case, the model tries to learn the underlying probability distribution of the

data. Clustering is a good example of an unsupervised algorithm which divides the dataset into

clusters of similar examples. Some machine learning algorithms do not just experience a fixed

dataset. For example, reinforcement learning algorithms interact with an environment, so there

is a feedback loop between the learning system and its experiences [47].

Using conventional machine learning limited the users because it required careful engineer-

ing and domain expertise to design a feature extractor that will transform the raw data into a

suitable representation on which the learning process is based.

Deep Learning (DL) methods, on the other hand, are representation learning methods that al-

low a machine to be fed with raw data and to automatically discover the representations needed

for detection or classification [48].

DL methods are, in their essence, neural network architectures, which is why deep learning

models are often referred to as Deep Neural Networks (DNN). The term “deep” usually refers to

the number of hidden layers in the neural network. Traditional neural networks consist of neu-

rons that are organized in layers. Artificial neurons are the building blocks of neural networks

and they are mathematical models which are designed to mimic their biological counterparts. A

neuron produces a single output from its inputs xi and weights ωi associated with those inputs

as shown in Fig 3.7

Figure 3.7: Mathematical model of an artificial neuron

20

Methodology

Weights are real numbers expressing the importance of a given input to the output. The final

output is defined as:

y = f (
n

∑
i=1

xiωi) (3.1)

where f is the neurons activation function. The activation function maps the resulting values

into the desired range (e.g., from 0 to 1, or from -1 to 1). A sigmoidal activation function is

most commonly used, but there are others. This is one more design choice that depends on the

application. The neuron’s output, 0 or 1, is determined by whether the weighted sum ∑
n
i=1 xiωi

is less than or greater than some threshold value:

out put =

0 i f ∑

n
i=1 xiωi 6 threshold

1 i f ∑
n
i=1 xiωi > threshold

 (3.2)

One could say that a neuron weighs evidence given as input to make a decision given as the

output. A complex network of neurons would have even more evidence which could be used to

make complex decisions.

The former equation is further simplified by moving the threshold value to the left side of

the inequality which leads further to notational simplifications when incorporating this into an

optimization algorithm [49]. That being said, the former equation can be rewritten like:

out put =

0 i f ∑

n
i=1 xiωi +b 6 0

1 i f ∑
n
i=1 xiωi +b > 0

 (3.3)

The parameter b is also called the bias, b ≡−threshold. The bias is a measure of how easy it is

to get the perceptron to output a 1. Or to put it in more biological terms, a measure of how easy

it is to get the neuron to fire [49].

Fig. 3.8 shows a simple neural netowrk consisting of four layers.

On the left are the input neurons xi making the input layer, and the rightmost layer is called

the output layer which contains the output neurons. The two layers in between are called hidden

layers. Conventional neural networks contain 2-3 hidden layers, while deep networks can have

as many as 150 depending on the type of deep network and its applications.

When training a neural network in a supervised setting, our goal is to find the parameters

(weights and biases) of the network such that the difference between the predicted labels ỹ and

the true labels y is as small as possible. A function defining this difference, i.e. the error of

prediction, is called the loss function which is a function of ỹ and y.

The loss function is used to quantify how well the training process is going. An optimiza-

tion algorithm is used to find it’s minimum. Often, the algorithm of choice is the Gradient

21

Methodology

Figure 3.8: Artificial neural network with four layers

Descent [47, 48].

The learning process is an iterative one. The network’s parameters are randomly initialized

at the start of training. The output from one layer is used as input to the next layer in the

network. Such networks are also referred to as feedforward neural networks. After the first

pass, a prediction ỹ is calculated which is compared to the expected output y. The difference

between the prediction and the ground truth is propagated back through the network in order to

use that information to properly adjust the network’s weights and biases. The process repeats

itself until the network has achieved a satisfactory performance, i.e. until the parameters are

found that minimize the loss function.

Gradient descent and backpropagation were also used to train deep networks. Unfortunately,

except for a few special architectures, they didn’t have much luck.

DNNs represent complex models which result in multidimensional and complex loss func-

tion that needs to be optimized. These networks would learn, but the process is slower, and

in practice often too slow to be useful. Another issue with such complex loss functions is the

presence of multiple local minima where the gradient descent algorithm could get "stuck".

Until recently, for that reason, it was believed too difficult to train deep multi-layer neural

networks. Empirically, deep networks were generally found to be not better, and often worse,

than neural networks with one or two hidden layers [50]. An approach that has been explored

with some success in the past is based on constructively adding layers.

In 2006. a greedy layer-wise unsupervised learning algorithm for Deep Belief Networks

22

Methodology

(DBN), a generative model with many layers of hidden causal variables was introduced that

presented the breakthrough for training deep networks [51]. Upper layers are supposed to rep-

resent more abstract concepts that explain the input observation x, where the lower layers extract

low-level features from x. They learn simpler concepts first and build on them to learn more

abstract ones. In[52] three aspects of this strategy are considered important:

∙ pre-training one layer at a time in a greedy way

∙ using unsupervised learning at each layer in order to preserve information from the input

∙ fine-tuning the whole network with respect to the ultimate criterion of interest.

These ideas and concepts made it possible for successful training of deeper networks and for

developing new techniques that even further optimized the whole process. These deep learning

techniques are based on stochastic gradient descent and backpropagation, but also introduce

new ideas. These techniques have enabled much deeper (and larger) networks to be trained and

it turns out that these perform far better on many problems when compared to shallow neural

networks. The reason, of course, is the ability of deep networks to build up a complex hierarchy

of concepts.

DL methods aim at learning feature hierarchies where higher level features are formed by

the composition of lower level features. Automatically learning features at multiple levels of

abstraction allow a system to learn complex functions mapping the input to the output directly

from data, without depending completely on human-crafted features. This is especially impor-

tant for higher-level abstractions, which humans often do not know how to specify explicitly.

One of the most popular types of DNNs is known as Convolutional Neural Networks (CNN

or ConvNet). A CNN convolves learned features with input data, and uses 2D convolutional

layers, making this architecture well suited to processing 2D data, such as images.

We will go in more detail with CNNs in a later Chapter.

3.2.2 Postprocessing

Since detecting boundaries of vegetation areas is important for the intended application we

perform per-pixel classification, i.e. classification is done for every pixel in an image. The

resulting image containing two classes often contain pixels marked as vegetation in the non-

vegetation class and non-vegetation pixels in the vegetation class. It is safe to assume that

pixels or groups of pixels surrounded by vegetation also belong to vegetation. Also, solitary

pixels or small groups of pixels surrounded by non-vegetation is often non-vegetation but is

misclassified because it is too similar to underexposed vegetation (shadows under cars or parts

of asphalt) or it has yellow reflectance. These gaps and solitary pixels can be removed after

classification using a combination of morphological operations on the image.

Postprocessing is done in three steps:

23

Methodology

∙ Morphological opening is applied using a circular structuring element with an experimen-

tally determined radius.

The morphological open operation is an erosion followed by a dilation, using the same

structuring element for both operations [53].

At this step, we presume that vegetation parts in the image are well connected and that

those parts are large.

∙ Remove solitary groups of pixels of a certain size for which we presume are misclassified

non-vegetation pixels.

∙ Fill up patches of a certain size for which we presume are misclassified as non-vegetation

(surrounded by vegetation).

In order to perform the postprocessing, there are three parameters that we need to determine

(radius of the structuring element, group size for removal and patch size for filling up). We

experimentally select the ones with the best ratio of per-pixel accuracy and false detections.

3.2.3 Validation

To properly evaluate how a feature set will generalize to an independent data set we used 10-

fold cross-validation to measure the performance and to validate the results obtained with our

methods [54].

Generally speaking, in a k-fold cross-validation, the dataset is randomly divided into k equal

sized subsamples. One subsample is used as the validation one for testing the model, and the

remaining k− 1 subsamples are used for training. The cross-validation process is repeated k

times, i.e. until every subsample was used as the validation one. The k results can be averaged

to produce a single estimation. The advantage of this method is that all observations are used

for both training and validation, and each observation is used for validation exactly once.

The purpose of testing this way is to exclude the possibility of choosing “the perfect” train-

ing samples that would not generalize well to new data. In every run, the used samples are

selected randomly, but paying attention to special case samples.

24

Methodology

3.3 Classification methods

The first, simplest approach we can take is to just use color (vegetation is "mostly" green,

right?) as a discriminator. We expected that this approach will not yield promising results but

it did indicate some potential problems in choosing the training data which was then corrected

accordingly. We will cover this in greater detail in the following chapters.

Once we concluded that using only color is not going to be good enough, a new feature,

describing the texture, needed to be added. This presented a new set of obstacles. Texture fea-

tures are one of the most investigated areas in image processing, so we started with a simpler

approach and build up to a more complex texture descriptor.

First, entropy was used to describe the texture. Entropy [55] is a measure of chaos in some

sense, and vegetation areas, when compared to the road or other roadside objects contain more

chaos.

Adding texture improved results compared to using only color (as expected), but additional

steps were used as postprocessing to further improve results.

The next step was to use a more complex texture feature that would be invariant to rotation

and scale. Any patch of vegetation should be recognized as vegetation region regardless of the

orientation. Given the limited dataset, rotation invariance is a desirable feature for any method.

Also, the appearance of the vegetation, i.e. the scale, depends on the distance from the camera

and our goal is to detect all kinds of roadside vegetation from thin grass to wider leaves of

bushes regardless of the distance from the camera.

There are many different applications of vegetation detection techniques and they all vary in

types of features used and classifiers trained. In order to achieve good results with conventional

machine learning techniques, the right features have to be selected.

As the final step in our research, a Convolutional Neural Network was implemented and

tested. With CNNs the features are learned from the input data so we do not have the problem

of selecting the feature set as we did before.

3.3.1 Classification based on color features only

Human perception of color is one of the most important visual elements which helps us rec-

ognize different objects. Transferring this human ability to a computer algorithm is far from

simple. One major problem is the change in intensity and color in different lighting conditions

which does not pose a problem for the human visual system, but for a computer algorithm, a

change in luminance can result in large differences in calculated features.

25

Methodology

Color spaces

As it was introduced in Chapter 2.1, some authors use different color spaces as color features for

vegetation detection (e.g. HSV [11], YUV [17, 18]) in order to improve results, while others,

ignore the luminance component completely in order for their feature set to be less sensitive to

lighting changes in the scene. One such example is presented in [11] where the authors chose to

use only H and S components, ignoring the luminance component V from the HSV color space.

We took that into consideration and evaluated different color spaces to determine if a different

color representation performs better for the problem at hand.

We used four different color spaces for testing: RGB, HSV, YUV, and CieLAB. CieLAB

was added because it is designed to mimic human perception of color. Additionally, we tested

only the H and S components excluding the lightness from HSV and only A and B components

excluding the L component from CieLAB.

Vegetation indices

The NDVI vegetation index was mentioned several times in Chapter 2 since it is one of the most

used features for vegetation detection in satellite images. This index and its derivatives can only

be calculated if the needed image modalities are available. For our case, when using only the

visible part of the spectrum, we turn to the two available vegetation indices based only on R, G

and B values.

The Visible Vegetation Index (VVI) and the Green-Red Vegetation Index (GRVI) are indices

that use only information from the visible spectrum, combining color channels to obtain a single

feature. For example, VVI is a measure of the amount of greenness of an image [19]:

VV I =
[(

1−
∣∣∣∣R−R0

R+R0

∣∣∣∣)(1−
∣∣∣∣G−G0

G+G0

∣∣∣∣)(1−
∣∣∣∣B−B0

B+B0

∣∣∣∣)]1/w

(3.4)

while in [20] authors evaluate the use of this index as a phenological indicator.

GRV I =
G−R
G+R

(3.5)

where R, G, and B are reflectances of visible red, green and blue respectively. [RGB]0 is a

reference green color vector and w is a weight exponent used for adjusting the sensitivity of the

scale. The final classification into vegetation and non-vegetation is performed by thresholding.

The threshold for vegetation detection from the calculated GRVI is zero, while the threshold for

VVI is a parameter that is experimentally determined.

26

Methodology

Results

Nine different feature vectors containing different color features were used to train an SVM

classifier with a radial kernel. This classifier was used only in this stage of testing to determine

if there is a significant difference between these features and to serve as an aid in selecting the

best one.

The results of running 10-fold cross-validation are shown in Table 3.1. From these results,

we conclude that using or excluding the lightness component from the feature set does not

affect the results drastically. Slightly better performance can be seen when using the lightness

component with color information, i.e., better accuracy is achieved using HSV and CieLAB

then HS and AB features respectively. The second conclusion we draw from Table 3.1 is that

CieLAB, YUV, and HSV color spaces perform similarly and are giving slightly higher accuracy

results compared to RGB which was expected due to the additive nature of RGB and the fact that

every component contains luminance information which makes it more sensitive to luminance

changes.

Table 3.1: Comparison of different color spaces used for vegetation detection.

Feature vector Accuracy Feature vector Accuracy

CieLAB 91,9015% AB 89,9947%

YUV 91,8235% UV 61,7462%

HSV 91,4285% HS 88,7151%

RGB 89,6314%

VVI 58,342%

GRVI 67,617%

Finally, thresholding of the vegetation indices VVI (Fig. 3.9(b) and Fig. 3.9(e)) and GRVI

(Fig. 3.9(c) and Fig. 3.9(f)) did not yield better results compared to the "simpler" color features.

This is not surprising due to lack of information in these vegetation indices. They use only color

information which is not enough to properly describe and to afterward classify objects similar

in color to vegetation. Problematic objects in images like the green automobile in Fig. 3.9(a)

and the green T-shirt in Fig. 3.9(d) are partially(Fig. 3.9(b) and Fig. 3.9(e)) or completely mis-

classified(Fig. 3.9(c) and Fig. 3.9(f)) when using the VVI and GRVI-based methods. Even parts

of the surrounding objects which are not similar to vegetation in color are also misclassified as

vegetation.

The threshold for vegetation detection from the calculated GRVI is zero, while the threshold

for VVI is a parameter that is experimentally found. Calculating VVI requires adjusting four

more parameters: [RGB]0 and w which does not make it robust. The same set of parameters

27

Methodology

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Result example of methods based on VVI and GRVI for some problematic images. The
results are achieved by thresholding the vegetation indices: (a) Original image, (b) VVI, (c) GRVI, (d)
Original image, (e) VVI, (f) GRVI

cannot be used for scenes that differ in the amount of light or shade they are getting. Our results

show that these indices need additional modification for usage in ground recordings.

28

Methodology

Problems

As mentioned in Chapter 3.1.1, using only green vegetation in training will make a classifier

that does not detect dry vegetation, i.e. vegetation that is not green like in Fig. 3.10(a). These

results improve when we add these samples in the training process as it is shown in Fig. 3.10(b).

(a) (b)

Figure 3.10: Detection using: (a) only green vegetation for training, (b) all vegetation for training.

While including dry vegetation in the training phase will make a more universal classifier,

on the other hand, the number of false positive detections will increase. Beside the green objects

like the green car in Fig. 3.11(f) and the green T-shirt in Fig. 3.11(e) that are falsely detected

as vegetation, the yellow markings on the road in Fig. 3.11(d) are also falsely classified as

vegetation by a color-based classifier.

(a) (b) (c)

(d) (e) (f)

Figure 3.11: Examples of vegetation detection using only green vegetation for training.

This is a good demonstration of how classification results are affected by the selected train-

ing set. We expanded our classifier to detect dry vegetation, i.e. roadside vegetation of different

colors and/or states, but at the same time, we have increased the number of false positives. In

29

Methodology

order to solve this problem, we need to add a new feature to our feature vector since using only

color is evidently not enough.

30

Methodology

3.3.2 Color and texture features

Features

As shown in the previous chapter, using only color as a feature had some expected drawbacks

so objects similar to vegetation in color were classified as vegetation. To solve this problem

we decided to add texture features to the feature vector used for training the classifier. There

are many different methods for calculating texture features in images and choosing one is a

difficult task. Knowing that vegetation is diverse and that vegetation parts in images contain

more information then homogeneous surfaces we decided to use entropy as a texture feature.

Entropy is a statistical measure of randomness and it can be described as a measure of the

amount of disorder in a system. For images, it can be expressed as a spread of states (gray

levels) which the individual pixel can adopt. If pixels in an image, or in a part of an image, have

the same values then the entropy is zero. On the other hand, if an image (or a part) contains

pixels with varying values, the entropy will be higher. We expect that vegetation regions in an

image have high entropy. The entropy H of an image is defined as [55]:

H =−
M−1

∑
k=0

pklog2 pk (3.6)

where M is the number of gray levels and pk is the probability associated with a gray level k.

Feature ranking

Usually, entropy is calculated using a grayscale image, but since grayscale images are sensitive

to changes in luminance we also considered calculating entropy in different color spaces. Color

spaces taken into consideration were the same ones used for testing color features. We used

feature ranking to select in which modality to calculate the entropy.

We created a feature vector that contains color features (LAB) and 9 texture features that

are entropy calculated for R, G, B, H, S, V, L, A and B components of the corresponding color

space models. Twelve features is not a big number for any kind of feature selection, but feature

ranking is a useful filtering method and a good preprocessing step [42]. All these features are

ranked and based on the calculated rank we choose the best one as our descriptor.

This test was repeated 10 times in order to establish statistical significance. In every it-

eration, the color features were always the top three ranked features. Entropy calculated for

saturation is the only calculated entropy that was mostly top-ranked while others varied dras-

tically from test to test. That is why only entropy of this channel was added to the feature

vector.

31

Methodology

Training the classifier

SVM was used as the classifer. For training and classification, besides the linear kernel, the

quadratic and radial kernels were tested in order to take advantage of SVMs kernel trick and to

transform features in a new feature space. The best classification accuracy was obtained using

the radial basis SVM.

The data is normalized before training, and training is done using the Gaussian Radial Basis

Function kernel with the scaling factor (Sigma) set to 1. Sequential Minimal Optimization is

the method used for finding the separating hyperplane.

Postprocessing

The classification is done on the pixel level which leaves room for morphological operation-

based postprocessing as described in Chapter 3.2.2.

For performing the morphological opening a circular structuring element with a 5-pixel

radius was used. We remove groups that are less than 3000 pixels and the filling was done

for patches less than 500 pixels big. The small value of 500 was used because there are parts

of roadside vegetation that have utility shafts that are small and any bigger size of 500 would

misclassify these parts as vegetation (e.g. utility shafts in Fig. 3.12(d) and Fig. 3.13(d)).

Experiments and results

To find the optimal parameters for this method we tested several options for every aspect and

choose the ones that gave the best per-pixel accuracy.

Entropy is calculated for every pixel based on its neighborhood. We tested four neighbor-

hood sizes: 7x7, 9x9, 11x11, and 13x13. Experiments showed that the optimal neighborhood

size for this application is 9x9. Taking smaller block sizes resulted in lower per-pixel accuracy,

and using a bigger neighborhood did not improve the final result.

Adding texture features improved detection in these problematic images. With these features

the green objects in Fig. 3.12(a) and Fig. 3.12(b) and the yellow stripes in Fig. 3.12(c) are much

better classified as non-vegetation (Fig. 3.12(d) - 3.12(f)) compared to Fig. 3.11 where only

color features were used.

Figures 3.12(d) - 3.12(f) show the classifier output. In these images the misclassified soli-

tary pixels and groups of pixels can be seen which are removed in the postprocessing step

(Fig. 3.12(g) - 3.12(i)).

The trained classifier achieved an average accuracy of pixel classification of 92,436% prior

to performing the postprocessing step. The morphological operations improve the overall accu-

racy to 94,995%.

32

Methodology

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.12: Classification result of problematic areas: (a)(b)(c) Original image, (d)(e)(f) Classification
result of SVM - before postprocessing, (g)(h)(i) Final image result - after postprocessing

Additional vegetation detection results using the method presented in this chapter are shown

in Fig. 3.13.

Fig. 3.13(d), Fig. 3.13(e) and Fig. 3.13(f) show good detection results in different traffic

scenes, while good performance in detecting vegetation in shade can be seen in Fig. 3.13(j),

Fig. 3.13(k) and Fig. 3.13(l).

Problems

Even though the overall per-pixel accuracy was increased by adding a texture feature in the

training process there were still some issues present so further improvements were needed. The

main issue with this method is:

∙ In Fig. 3.12(d) and Fig. 3.12(g) parts of the green car (mostly edges and places of high

reflection on the hull) are still detected as vegetation even though we included these ex-

amples in the training set. This color is too similar to the vegetation examples in the

training set and because entropy is high over the edges the classifier decided that these

parts are also vegetation. In order to improve the accuracy of the classifier, we will con-

sider using a more complex feature for describing vegetation texture. Using only entropy

is not enough due to the nature of the images we are processing. Real life traffic scenarios

33

Methodology

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.13: Examples of detection in various traffic environments: (a)(b)(c)(g)(h)(i) The original im-
age; (d)(e)(f)(j)(k)(l) The result of classification

will often contain similar objects in color to vegetation that could have high entropy due

to uneven texture and/or surface.

34

Methodology

3.3.3 Color and CWT-based texture features

So far we have observed that we need both color and texture features in order to train a good

classifier. We also concluded that we need a more descriptive texture feature in order to properly

classify non-vegetation areas which are similar to vegetation in color and entropy-based texture

feature.

The Continuous Wavelet Transformation [56] is a filtering technique that can be interpreted

as a measure of the similarity between a signal and an analyzing function. In our case, the

signal is a 2D image and the analyzing function is a wavelet, and selection of a proper wavelet

function depends on the application. There are many wavelet families and each one has certain

advantages and disadvantages. In short, the 2D CWT compares the image to the shifted and

compressed/stretched versions of the selected wavelet which makes this technique robust to

scale and orientation [56]. Since we need to detect vegetation of various types and various sizes

this robustness might improve the classification results.

Additionally, we tested this approach with a preprocessing step specific for the intended us-

age of a vegetation detection algorithm for roadside maintenance. We assume that the recording

of roadside vegetation will be continuous from a moving vehicle, which means that we could

focus our detection on the area closer to the vehicle. Vegetation that is further away from the

vehicle will be detected later as the vehicle approaches it. The preprocessing step of our method

is meant to help determine a region of interest for vegetation detection. This way, we narrow

down the classification area in each frame of the recorded video.

More about the 2D CWT as a texture feature and how we selected the area of interest (AOI)

will be described in the following chapters.

With the new, preprocessing step, the method presented in this chapter consists of four steps

as it is shown via block diagram in Fig. 3.14:

1. preprocessing,

2. extraction of selected features,

3. pixel classification and

4. postprocessing.

Figure 3.14: Block diagram of the proposed method

35

Methodology

Preprocessing

The area of interest is determined for each frame and then vegetation is detected in that area.

This is necessary because objects that are further from the camera lack detail and sharpness

compared to objects that are closer. Our method for vegetation detection depends on texture

features which can be different for the same object, depending on the distance from the camera.

To determine a region of interest a simple window of a certain size could be applied but

that approach is not universal and it fails in certain traffic scenarios. Highways and main roads

are usually surrounded only by grass, but through the city, the roadside landscape changes.

Somewhere there is only grass by the road, but somewhere there are trees and bushes of different

sizes as shown in Fig. 3.15. To cover these situations we needed to consider a more universal

and complex method for determining the distance from the vehicle.

(a) (b) (c)

(d) (e) (f)

Figure 3.15: Examples of different roadside vegetation to consider when determining the area of interest

Estimating depth, i.e. distance, from images is usually done with a pair of calibrated stereo

cameras. Monocular depth estimation either considers a supervised learning approach [57] or

a specific camera set up (static and/or calibrated camera, the camera’s optical axis coincide

with the vehicle translation direction [58], etc.). Since we only have our database for develop-

ment which is recorded with one camera and which does not meet the requirements of above-

mentioned methods, we turn to a simpler method of estimating distance as optical flow. Optical

flow estimates the direction and speed of an object’s motion from one frame to another. By esti-

mating optical flow between video frames the velocities of objects in a video can be measured.

In general, if the camera is moving, objects closer to the camera will display more apparent

motion. By selecting the area in the scene where larger motions are present we determine our

area of interest. Optical flow does not give us precise values of distances to objects but for our

purpose, a relative relation of distances will suffice.

36

Methodology

Traditional methods for computing optical flow like Horn-Schunck [59] or Lucas-Kanade [60]

did not yield satisfying results for our data so we decided to use a more complex implementa-

tion developed by C. Liu in his doctoral thesis [61]. The algorithm is based on [62] and [63].

In [62] the authors propose a novel approach that integrates several concepts for computing

optical flow. They combine three assumptions: a brightness constancy assumption, a gradi-

ent constancy assumption which makes the method robust against gray value changes, and

a discontinuity-preserving spatiotemporal smoothness constraint. In [63] authors propose a

combined local-global method that combines robustness to noise of local methods with global

approaches that yield dense flow fields.

Feature Extraction

For this method, we focused more on finding a texture feature that would better fit our data.

There are many different methods for calculating texture features in images. Since we are

interested in texture features that include orientation of the texture, we decided to use a two-

dimensional Continuous Wavelet Transform (2D CWT) which is characterized by a rotation

parameter, in addition to the usual translations and dilations [56].

The 2D CWT is a decomposition of an image on a set of dilated, rotated and translated

versions of a single function called the mother wavelet. The scale dependence allows sensitiv-

ity to variations in resolutions, while the rotation dependence leads to robust behavior under

varying target orientations. 2D CWT is a linear transformation and is easily understood from

its definition as a convolution:

S(
−→
b ,a,θ) =

∫
ψ

*

(
rθ

(−→x −
−→
b

a

))
s(−→x)d2x (3.7)

where s(−→x) is the input grayscale image and ψ is the analyzing mother wavelet, which is

translated by
−→
b , dilated by a and rotated by an angle θ (rθ is the rotation operator) [56].

The type of wavelet chosen depends on the precise application. We considered using

isotropic wavelets instead of anisotropic oriented wavelets but initial experiments showed better

performance when using oriented wavelets which are required for detecting patterns in differ-

ent directions. Several oriented wavelets were considered and tested but the oriented Morlet

wavelet showed the best performance, i.e. the lowest error rate in falsely detecting green ob-

jects as vegetation. The Morlet mother wavelet in frequency domain is defined as:

ψ(ωx,ωy) = e
−σ2

(
(ωx−ω0)

2+
(εωy)

2

2

)
(3.8)

where σ is the spread factor, ω0 is the shift in frequency domain and ε is the anisotropy factor.

The effective support of the function ψ(ωx,ωy) is an ellipse centered at ω0 and elongated in the

37

Methodology

ωy direction, thus contained in a convex cone, that becomes narrower as ε increases [56].

The Morlet mother wavelet is shown in Fig 3.16.

(a) (b)

Figure 3.16: Morlet mother wavelet: (a) in 1D, (b) in 2D

Using the Morlet oriented wavelet for 2D CWT gives us five free parameters for tuning:

scales a, orientations θ , σ , ω0 and ε . Modifying these parameters will dictate how the wavelet

looks like, which will affect the types of features being detected. For example, if we modify the

scale or the orientation parameters we will have better detection of these scales and rotations

respectively. The changes in the anisotropy factor ε will result in varying magnitude as shown

in Fig. 3.17.

Figure 3.17: The effect of changing the ε parameter

Increasing σ will increase the number of waves as shown in Fig. 3.18.

Lastly, increasing ω0 will increase the width of the mother wavelet as shown in Fig. 3.19.

38

Methodology

Figure 3.18: The effect of changing the σ parameter

Feature Ranking

The same method for feature ranking as described in 3.1.2 was also used here to extract the best

ranking features. As we already mentioned, using the Morlet oriented wavelet for 2D CWT

gives us five parameters for tuning. Increasing ω0 and σ increases the number of waves and

the width of the mother wavelet function respectively. More waves are required in order to

detect image regions where the same pattern (e.g. leaves and grass) repeats several times. The

anisotropy factor ε does not influence this property and was therefore set to 1. For selecting

scales a, rotations θ , σ and ω0 we used feature ranking. A feature vector containing the se-

lected color features and wavelet coefficients with scales ranging from 1 to 10 with an arbitrary

increment of 0.5 and orientations from 0 to 7π

8 with an increment of π

8 was ranked.

For statistical significance, ranking was repeated 10 times on different sample sets. L, A

and B features were always the three top ranking features which indicate the importance of

color features. Small scales up to 5 and scales larger than 9 always had the smallest scores

and that is why we decided to use the scale range from 5 to 9. Best ranked orientations were

orientations = [π

8 ,
2π

8 , 6π

8 , 7π

8] which was as expected because orientations around 0 and π

2 are

more common in non-vegetation segments in images than the other orientations.

After finding the best scales and rotations ranking was done for features with varying σ and

ω0. Best ranked were σ = 2 and ω0 = 6 which were used in our method.

Finally, we used the oriented Morlet wavelet with selected parameters obtained via ranking

and filtered the original image for nine selected scales and for four selected rotation angles. We

summed up the CWT coefficients for every scale and rotation and thus got one feature which

holds information from all selected rotations and scales. The calculated texture feature was

39

Methodology

Figure 3.19: The effect of changing the ω0 parameter

added to the feature vector alongside color features.

Training the Classifier

For the classifier, we, again, selected an SVM model with the radial basis kernel to train.

The data is normalized before training, and training is done using the Gaussian Radial Basis

Function kernel with the scaling factor (Sigma) set to 1. Sequential Minimal Optimization is

the method used for finding the separating hyperplane.

Postprocessing

The classification is done on the pixel level which, again, leaves room for a morphological

operation-based postprocessing step similar to ones used before. Postprocessing is done in

three steps as described in Chapter 3.2.2.

For achieving the final results we used a circular structuring element with a radius of 3

pixels, we remove groups that are less than 3000 pixels and filled patches less than 750 pixels.

Experiments and Results

The optical flow computation returns the horizontal and vertical components of the flow field

computed from two consecutive frames. We used these components to generate a velocity-

squared output. From this we chose our area of interest based on the calculated amounts of mo-

tion. Because our database contains recordings with varying views (the camera’s tilt changes)

we had to find the optimal amount of motion that will be suitable for determining the area of

interest in all these images. Our experiments have shown that 60% of the components with

40

Methodology

Table 3.2: Classification Results.

Feature vector Accuracy

AB 89,9947%

CieLAB 91,9015%

CieLAB + 2D CWT 93,89%

CieLAB + 2D CWT + Pre-processing + Post-processing 96,10182%

highest motion is the optimal amount for our problem. The described process of determining

the area of interest is shown in Fig. 3.20.

(a) (b)

(c) (d)

Figure 3.20: Determining the area of interest: (a) Original image, (b) Velocity-squared output calculated
from optical flow, (c) 60% components with highest motion, (d) Final area of interest

Adding the texture feature did not only improve detection in problematic images (Fig. 3.21(d)),

but it improved the overall accuracy of per-pixel classification compared to using only color fea-

tures as seen in Table 3.2.

With these features the green object in Fig. 3.21(a) is much better classified as non-vegetation

seen in Fig. 3.21(d) compared to Fig. 3.21(c) where only color features were used. In Fig. 3.21(e)

we show the vegetation class labeled in the area of interest in which the misclassified pixels can

be seen. To correct this we are using the postprocessing step. The result of postprocessing is

shown in Fig. 3.21(f).

41

Methodology

(a) (b) (c)

(d) (e) (f)

Figure 3.21: Detection example for a problematic image: (a) Original image, (b) Area of interest, (c)
Detection using only color features, (d) Detection using color and texture features, (e) Vegetation class
labeled, (f) Result after classification and postprocessing

Some additional results of vegetation detection using the method presented in this chapter

are shown in Fig. 3.22. The advantage of using optical flow for determining the area of inter-

est instead of using a fixed window can be seen in Fig. 3.22(k). Using the same window for

Fig. 3.22(g) and Fig. 3.22(j) would not give correct areas of interest in both cases. A fixed

window would not include the bushes in Fig. 3.22(j) in our area of interest, although it should.

Good performance of detecting vegetation in shade can be seen in Fig. 3.22(e) and (h). One

more example of correctly detecting green object as nonvegetation can be seen in Fig. 3.22(o).

The edges of the car are falsely detected because edges have high information content and dif-

fer from the smooth areas of the car. The color features were the best ranked ones and that is

why little difference in calculated texture features will lead to misclassification. Although the

green car is not completely correctly classified we are satisfied with this result because without

using any texture features the whole car is detected as vegetation. Using a preprocessing step

did help in finding our detection area but it has its drawbacks. We see in Fig. 3.22(b), (h), (k)

and (n) the optical flow did not perform perfectly. The small patches in Fig. 3.22(b) and (h) are

easily fixed in the postprocessing step. In Fig. 3.22(k) and (n) the asphalt is labeled as not in

our area of interest. This happens because the asphalt’s lack of detail makes it difficult to match

corresponding features between two frames, so no motion is detected. These mistakes are not

critical to our application because the vegetation parts of the image have greater detail and those

parts of the image are correctly labeled.

42

Methodology

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 3.22: Additional results of vegetation detection: (a) The original image; (b) AOI with the cor-
rectly included lamppost; (c) Detected vegetation in the AOI; (d) The original image; (e) AOI with good
performance in shade; (f) Detected vegetation in shade in the AOI; (g) The original image; (h) AOI with
a incorrectly included vegetation patch; (i) Detected vegetation in the AOI; (j) The original image; (k)
AOI with the correctly included vegetation bushes; (l) Detected vegetation in the AOI; (m) The original
image; (n) AOI with the correctly included car and incorrectly excluded asphalt; (o) Detected vegetation
in the AOI

Problems

∙ Introducing the preprocessing step did improve accuracy in the area of interest but deter-

mining the area is calculation heavy. Is the slight per-pixel accuracy improvement worth
43

Methodology

the increased calculation time?

∙ In all methods presented so far, in addition to a trained classifier, we have used additional

pre and/or post steps to improve the algorithm. As a long term solution, we did not like

this because these additional steps are experimentally determined and we do not have a

generalization guarantee.

∙ From the beginning, our goal was to develop an efficient standalone classifier and that is

why, as the next step in our research, we turned to the promising area of deep learning.

44

Methodology

3.3.4 Deep learning - Fully Convolutional Neural Network

In this section, we will introduce the basic concepts and the terminology related to Convolu-

tional Neural Networks and present the developed method for vegetation detection.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs, ConvNets) [64, 65, 66] are in many ways similar to

the so-called "ordinary" Neural Networks (NN). They are made up out of neurons that have

learnable weights and biases. Neurons are organized into layers where the input data represents

the input layer, followed by one or more hidden layers and a loss function on the last layer.

Each neuron in an NN applies some function to the input values coming from the receptive

field in the previous layer. The function that is applied to the input values is specified by a

vector of weights and a bias. These parameters are learned with stochastic gradient descent and

computed with backpropagation.

Unlike a regular NN, the CNNs assume that the input is an image. The layers of a CNN

have neurons arranged in 3 dimensions: width, height, and depth where the depth corresponds

to the third dimension of the image given as input (e.g. RGB image). There are different

types of layers that can be used to construct a deep NN. Different layers perform different

transformations on their inputs and some are better suited for certain tasks than others. e.g.

convolutional layers are likely used for image data [66].

In CNN terminology, the hidden layers, i.e. the convolution layers consist of filters which

are n×n matrices design to detect a certain pattern in an image. Filters are also called kernels

or feature detectors. By sliding the filter over the image and computing the dot product forms

the so-called Convolved Feature or Activation Map or the Feature Map. Filters act as feature

detectors from the original input image. The more filters we have, the more image features get

extracted and the better our network becomes at recognizing patterns in unseen images. Images

contain multiple types of patterns (edges, textures, shapes, etc.) and these filters are used to

detect different types of patterns. For example, an edge detector would be a filter that detects

edges. Others are used to detect corners, circles, squares, etc.

When dealing with high-dimensional inputs such as images, it is impractical to connect

neurons to all neurons in the previous layer. Instead, each neuron is connected only to a local

region of the input volume. This region is called the receptive field of the neuron (equivalently

this is the filter size) as shown in Fig 3.23. Each neuron in the convolutional layer is connected

only to a local region in the input volume spatially but to the full depth (i.e. all color channels).

There are three main types of layers commonly used to build ConvNet architectures [66]:

∙ Convolutional Layer

45

Methodology

Figure 3.23: A graphical representation of the receptive field of a neuron

It computes the output of neurons that are connected to local regions in the input, each

computing a dot product between their weights and a small region they are connected to

in the input volume.

When working with CNNs the term "volume" is used to describe the layer’s inputs and

outputs. During the forward pass, each filter is used to slide (convolve) across the width

and height of the input volume and compute dot products between the entries of the

filter and the input. As a result, we will get a 2-dimensional activation map for every

filter used. The activation map gives the responses of a filter at every spatial position.

The network will learn filters that activate when they see some type of visual feature

such as an edge of some orientation. These activation maps are stacked along the depth

dimension and they make up the output volume. This results in an output volume of

[width×height ×number_o f _ f ilters] dimensions as shown in Fig.3.24.

Figure 3.24: A graphical representation of a filtering sequence and building the output volume of acti-
vation maps

There are three hyperparameters that control the size of the output volume:

– Depth - corresponds to the number of filters we would like to use, each learning

46

Methodology

to look for something different in the input. For example, if the first Convolutional

Layer takes as input the raw image, then different neurons along the depth dimension

may activate in the presence of various oriented edges, or blobs of color. We will

refer to a set of neurons that are all looking at the same region of the input as a depth

column.

– Stride - the stride with which we slide the filter. When the stride is 1 then the filters

move one pixel at a time. When the stride is 2 then the filters jump 2 pixels at a time

as they are slid around. This will produce spatially smaller output volumes.

– Zero-padding - sometimes it will be convenient to pad the input volume with zeros

around the border. This feature is what allows us to control the spatial size of the

output volumes

It is a convention to apply a nonlinear layer (or activation layer) immediately after each

convolutional layer. In the past, nonlinear functions like tanh and sigmoid were used, but

researchers found out that ReLU layers work far better because the network is able to

train a lot faster (because of the computational efficiency) without making a significant

difference to the accuracy.

ReLU stands for Rectified Linear Unit and is a non-linear operation. Its output is given

by:

f (x) = max(0,x) (3.9)

ReLU is an element wise operation (applied per pixel) and replaces all negative values

in the feature map with zero. The purpose of this layer is to introduce nonlinearity to a

system that basically has just been computing linear operations during the convolutional

layers (element-wise multiplications and summations). Nonlinearity makes it easy for the

model to generalize or adapt with a variety of data and to differentiate between the output.

It also helps to alleviate the vanishing gradient problem [49, 64]. The vanishing gradient

problem is a difficulty found in training artificial neural networks with gradient-based

learning methods and backpropagation. In such methods, each of the neural network’s

weights receives an update proportional to the partial derivative of the error function

with respect to the current weight in each iteration of training. The problem is that in

some cases, the gradient will be vanishingly small, effectively preventing the weight from

changing its value. In the worst case, this may completely stop the neural network from

further training.

This layer increases the nonlinear properties of the model and the overall network without

affecting the receptive fields of the convolutional layer. The output feature map of this

layer is also referred to as the ‘Rectified’ feature map.

∙ Pooling Layer
It is common to periodically insert a Pooling layer in-between successive Convolutional

47

Methodology

layers in a ConvNet architecture. Its function is to progressively reduce the spatial size of

the data (downsampling) which reduces the number of parameters and computations in

the network. This also controls overfitting.

The Pooling Layer operates independently on every depth slice of the input and resizes

it spatially. The most common form of pooling is applying the maximum operation on

windows of size 2x2 applied with a stride of 2. This downsamples every depth slice in

the input by 2 along both width and height.

Pooling makes the network invariant to small transformations, distortions, and transla-

tions in the input image. A small distortion in the input will not change the output of

Pooling since we take the maximum value in a local neighborhood.

∙ Fully-Connected Layer
This layer computes the class scores. The Fully Connected layer is a traditional Multi-

Layer Perceptron that uses a softmax activation function in the output layer. The term

“Fully Connected” implies that every neuron in the previous layer is connected to every

neuron on the next layer.

The output from the convolutional and pooling layers represent high-level features of

the input image. The purpose of the Fully Connected layer is to use these features for

classifying the input image into various classes based on the training dataset.

Note that some layers contain parameters and others don’t. In particular, the Convolutional

and the Fully-Connected layers perform transformations that are a function of not only the ac-

tivations in the input volume but also of the parameters (the weights and biases of the neurons).

On the other hand, the ReLU and the Pooling layers will implement a fixed function. All the

parameters are trained with gradient descent so that the class scores that the ConvNet computes

are consistent with the labels in the training set for each image.

A Fully Convolutional neural network (FCN) is a normal CNN, where the last fully-

connected layer is substituted by another convolution layer with a large receptive field, i.e. the

last fully-connected layer is converted to a big enough convolutional layer [35]. Fully con-

volutional indicates that the neural network is composed of convolutional layers without any

fully-connected layers. A CNN with fully connected layers is just as end-to-end learnable as a

fully convolutional one. The main difference is that the fully convolutional network is learning

filters everywhere. Even the decision-making layers at the end of the network are filters.

Vegetation Detection using Fully Convolutional Networks

Our method is inspired by work presented in [35] where authors used deep neural networks for

semantic segmentation and scene parsing. Fig. 3.25 illustrates our proposed FCN architecture.

The architecture is adapted from the VGG16 architecture [67] which won the ILSVRC14.

48

Methodology

C
o
n
v

R
e
L
U

C
o
n
v

R
e
L
U

P
o
o
l
1

C
o
n
v

R
e
L
U

C
o
n
v

R
e
L
U

P
o
o
l
2

C
o
n
v

R
e
L
U

C
o
n
v

R
e
L
U

C
o
n
v

R
e
L
U

P
o
o
l
3

C R C R C R
P
4

C R C R C R
P
5

C R C R

.

.

.

+

+

Score7

Score4

Prediction
pool3

Prediction
pool4

.

.

.

.

.

.

Deconvolution

Deconvolution

Deconvolution

Prediction

Input data
Predicted

dense output

Final
output

Softmax

Forward / Inference

Backward / Learning

64

256

512
512

4096

128

2

2

2

+

C
R
P

- Convolutional layer
- ReLU layer
- Pooling layer
- Prediction layer
- Deconvolution layer
- Softmax layer
- Fusion layer

Legend

Thresholding

Figure 3.25: A graphical representation of the used FCN for detecting roadside vegetation. As input,
the net receives raw RGB images. The net consists of 15 Convolutional layers followed by 15 Rectified
Linear Unit activation functions. Max pooling is used to spatially reduce the data size. A Convolutional
prediction layer is added at each of the coarse output locations. The prediction layer is followed by a
deconvolution layer used to upsample the coarse outputs to the size of the input data. The final result is
achieved by appending a Softmax layer at the end of the network followed by thresholding of the dense
output to achieve the final result.

The input layer consists of RGB images from our database. Each layer of data in the FCN

is a three-dimensional array of size [h×w× d], where h and w are the height and width of

the images respectively, and d is the feature or channel dimension which, in this case, is three.

An FCN naturally operates on an input of any size and produces an output of corresponding

spatial dimensions. Both inference and learning are performed whole-image-at-a-time by dense

feed-forward computation and back-propagation through the whole net.

The net consists of 15 convolutional layers marked as ’Conv’ or ’C’ in Fig. 3.25 followed

by the same number of activation functions marked as ’ReLU’ or ’R’. The numbers under the

’Conv’ and ’ReLU’ layers represents the number of channels of the output data related to that

layer, i.e. the size of the output volume.

Max pooling layers are implemented after several ’Conv’ and ’ReLU’ layers to spatially

reduce the data size. Subsampling in the layers is necessary to keep filters small and computa-

tional requirements reasonable.

The final classification layer from the VGG16 architecture is removed and all, fully con-

nected layers are converted to convolutions. A 1× 1 convolution with channel dimension 2 to

predict vegetation and non-vegetation (background) in images is added at each of the coarse

output locations. The prediction layer is followed by a deconvolution layer used to upsample

49

Methodology

the coarse outputs to the size of the input data.

The subsampling through the net affects the dimensions of the output which are reduced,

and depending on the subsampling factor (stride) the output is more or less coarse and limits

the scale of detail in the upsampled output. To address this, skip steps are added which combine

lower layers with finer strides and the final prediction layer. This is achieved by adding an

additional convolution layer on top of ’Pool4’ (in Fig. 3.25 the layer marked as ’Prediction

pool4’) to produce additional class predictions. These predictions are fused with the predictions

computed on top of the last convolution layer (marked as ’Score7’) by adding a 2x upsampling

layer and summing both predictions (this is done in the fusion layer shown in Fig. 3.25). This

trend is continued by using the predictions from ’Pool3’ with 2x upsampling of predictions

fused from ’Pool4’ and ’Score7’ building the net FCN-8s described in [35].

The networks subsampling layers reduced the size of the image which needs to be restored in

order to properly compare the result to the ground truth and to backpropagate the correct values

for parameter update in the training process. Some generic upsampling algorithm could be

applied to the result to achieve this but in [35] this was solved by adding a learnable upsampling

layer which upsamples the feature map in a learnable way. This added learnable upsampling

layer is called the ’Deconvolution’ layer whose task is to take a low-resolution input and produce

a high-resolution output, i.e. to perform upsampling. In the bottom right corner in Fig. 3.25 we

see the predicted dense output of the network and the final result achieved by appending a

Softmax layer at the end of the network.

The output of the network is an image where each pixel value represents the probability of

each pixel being a vegetation pixel. In order to get a binary image, a fixed threshold is applied.

The threshold value was calculated by using a Receiver Operating Characteristic (ROC).

Data

The FCN in Fig. 3.25 is trained for segmentation by fine-tuning all layers to learn from whole

image inputs and whole image ground truths. The images in our database are recorded in full

HD resolution, but in order to keep the training time of the FCN reasonable, we resized our

images to 540×960 resolution.

FCN training parameters

Optimization of the network is done by fine-tuning the VGG16 network originally trained for

image recognition. All layers of the network are fine-tuned using Stochastic Gradient Descent

with the momentum of 0.9. We use a batch size of 20 images, weight decay of 5−4, fixed

learning rate of 10−4 and all skip layers at once. To properly evaluate how our model would

generalize to an independent data set we used 10-fold cross-validation to measure the perfor-

mance and to validate the results. A single fold of data was trained through 50 epochs.

50

Methodology

The new parameters of the prediction and fusion layers acting on ’Pool3’ and ’Pool4’ are

zero-initialized so that the net starts with unmodified predictions. Upsampling to the input

dimensions is done by deconvolution layers within the net. The final deconvolutional layer is

fixed to bilinear interpolation, while intermediate upsampling layers are initialized to bilinear

upsampling and then learned.

The dense output of the network was thresholded to get a binary classification image as

the final output where the ’ones’ represent the positive class which, in this case, is vegetation

and the ’zeros’ represent everything classified as non-vegetation. In order to find an optimal

threshold, the True Positive Rate (TPR) and the False Positive Rate (FPR) were calculated for a

range of thresholds. By plotting the TPR against the FPR we get the ROC curve for our method.

The TPR and FPR were calculated for every image in the database. An example of ROC curves

for some of the images is shown in Fig. 3.26.

Figure 3.26: The performance of the binary classifier for various threshold values was evaluated by
using ROC curves. They were used for determining the optimal threshold for the last layer of the FCN
which thresholded the dense output of the network. In this figure, the ROC curve is shown only for some
images but a detailed analysis of the whole database was done. Similar results are obtained in a wide
range of thresholds, but in this thesis the presented results were obtained with the threshold zero.

Using ROC curves to evaluate the performance of a binary classifier is common and efficient

because it shows the balance between true positives and false positives. A random result would

be represented by a diagonal line, and a perfect result would be in the error-free point where

FPR = 0 and T PR = 1. For our classifier, similar results are obtained in a wide range of

thresholds, which can be seen from the ROC curves in Fig. 3.26 where depending on the image,

different thresholds give a better ratio of TPR and FPR (closer to the error-free point). This

also indicates that the classifier performance is not sensitive to the chosen threshold. Results

presented here were obtained with the threshold zero.

All models were trained and tested using the "Convolutional Neural Networks for MATLAB

- MatConvNet" library [68] on NVIDIA GTX 970 graphics card.

51

Methodology

Experiments and Results

This method is based on training a classifier using features that are learned from data and not

enforced by designers. In order to show the advantages of deep learning techniques in Table 3.3

we compare FCN results to methods based on manually selected features.

The methods presented in Table 3.3 are vegetation detection methods published in [69]

and [70]. These methods are comprised of a combination of pre- and post-processing steps

which we covered in the previous chapters of this thesis.

The method published in [69] consists of a preprocessing step in which an area of interest

is determined using optical flow as described in Chapter 3.3.3. The vegetation detection al-

gorithm is executed inside of the calculated area of interest. With this approach, samples that

belong to objects further from the camera which lack in detail the most are excluded from the

classification process which in turn decreases the number of samples for classification.

The method published in [70], in addition to the preprocessing step for determining the

AOI as in Chapter 3.3.3, it has even a postprocessing step used to correct the output of the

classifier by using morphological operations to remove or fill solitary groups of pixels which

are presumed to be misclassified.

In addition to these two methods, we also included the results of the method from [70]

without any pre- or post-processing steps in order to have a result comparable to the FCN result

which also does not have any additional processing steps.

Table 3.3: Comparison of per-pixel accuracy for different vegetation detection techniques.

Method Remark Accuracy

[69] Preprocessing 93.3247%

[70] Pre- and post-processing 96.10182%

Color + CWT + SVM as described in Chapter 3.3.3 Hand crafted features 93.89%

FCN 96.257%

Fig. 3.27 shows a comparison of VVI and GRVI-based methods to machine learning ones.

The binary output in Fig. 3.27(c) and in Fig. 3.27(g) is the result of a conventional machine

learning technique based on training an SVM classifier with manually selected features. Both

machine learning-based methods (SVM and FCN) gave better results than the VVI and GRVI-

based ones. Conventional machine learning misclassified some parts of the problematic objects

(Fig. 3.27(c) and Fig. 3.27(g)) which is an improvement compared with the amount of misclas-

sified pixels in Figures 3.27(a), 3.27(e), 3.27(b) and 3.27(f) which are the result of thresholding

VVI and GRVI respectively.

52

Methodology

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.27: Result comparison between simpler methods based on VVI and GRVI and machine
learning-based methods on two examples of problematic images. Binary classification result of: (a)
VVI, (b) GRVI, (c) SVM, (d) FCN, (e) VVI, (f) GRVI, (g) SVM, (h) FCN

FCN shows further improvement in classification of problematic images compared to the

SVM-based technique which can be seen when comparing Fig. 3.27(c) to Fig. 3.27(d) and

Fig. 3.27(g) to Fig. 3.27(h). The green objects are correctly classified as non-vegetation. Even

in Fig. 3.27(h) the vegetation behind the pedestrians was succesfully detected which shows that

a FCN can successfully detect vegetation that is further away from the camera.

The FCN-based method outperforms the SVM-based machine learning method (without

pre- and/or post-processing steps) not only in correctly classifying problematic images but in

overall per-pixel accuracy. One more example is given in Fig. 3.28. The edges of the green car

are falsely detected in Fig. 3.28(c) because they represent high-frequency content. This results

in similar values of the calculated texture feature for both the edges and for vegetation. The fully

trained deep network did not have this problem. The final output from the network increased

the True Negative Rate for this image from 75.56% to 97.6%.

The per-pixel accuracy of the SVM-based method and the method presented in [69] is sim-

ilar and the small difference is not statistically significant. The features used to train the SVM

classifier in all three SVM-based methods are very similar, so the fact that they all achieve

similar results is not surprising. The main difference in the feature set is the selection of color

features. In [70] the CieLAB color space components were used as color features, while in [69]

the color components from multiple color spaces were ranked using feature ranking and the

best-ranked color components were used to construct a color feature vector.

The method presented in [70] has higher per-pixel accuracy compared to other SVM-based

methods due to an additional postprocessing step which also makes it incomparable to the FCN

method.

The advantage of FCN is that it has no need for pre- or post-processing to outperform all

other presented methods in every way. Also, raw data is used as input which frees the designers

53

Methodology

(a) (b) (c)

(d) (e) (f)

Figure 3.28: Comparison of machine learning method with manually selected features and FCN method
with RGB input for a problematic image: (a) Original image, (b) Binary classification result of SVM
method, (c) Image visualization of classification result using the SVM method, (d) Predicted Dense Out-
put of FCN, (e) Final result of thresholding the image (d), (f) Image visualization of FCN classification
result

of manually selecting features for training.

Finally, the FCN performance was evaluated given a different representation of input data.

The model was trained with three different sets of input: RGB, HSV and YUV images. A

comparison of per-pixel accuracy is visible in Table 3.4. From Table 3.4 it can be concluded

that there is no significant difference between using RGB, HSV or YUV images as input to

FCN. This can also be seen from Fig. 3.29 with the example of the problematic image 3.28(a).

Table 3.4: Per-pixel accuracy of FCN performance with three different sets of input: RGB, HSV and
YUV images.

Input type Accuracy

FCN + RGB images 96.257%

FCN + HSV images 95.15%

FCN + YUV images 94.53%

54

Methodology

(a) (b) (c)

(d) (e) (f)

Figure 3.29: Comparison of FCN performance on a problematic image using different color spaces as
input data: (a) Result achieved with RGB data, (b) Result achieved with HSV data, (c) Result achieved
with YUV data, (d) Binary result achieved with RGB data, (e) Binary result achieved with HSV data, (f)
Binary result achieved with YUV data

55

Methodology

3.4 Final Discussion and results

Most of the research done in the area of vegetation detection is done on satellite images or

other multi-modal recordings. This is a result of previous work done in remote sensing where

specific Near Infra Red spectral features were shown to be highly indicative of vegetation. This

discovery had an impact on all research that followed which were based on NIR and other

modalities invisible to the human eye. Our main focus was on research and development of a

vegetation detection method based on using visible spectrum features exclusively. When we

started investigating this (some findings were published in 2014.) there was no such research

been done by anyone else.

Machine learning techniques are widely used in various image processing applications from

segmentation, object detection, recognition, and classification. Such approaches show the best

results in these areas so we, also, focused on machine learning techniques while developing our

vegetation classification algorithm. Machine learning methods are mostly based on a labeled

dataset which is used to train the algorithm to the desired task. In our case, we had to record

and label the dataset in order to start training and testing our classifier. We started our research

with simpler approaches and in every following method, we addressed some problems we had

with the previous one. In the end, we have a comprehensive analysis of the possible issues and

we propose solutions for those issues.

Now, when deep learning is gaining more momentum and it is being used in a variety of

applications it seemed like a logical continuation of our previous work to investigate this new

approach to try and solve our problem more effectively. In the last couple of years some re-

searchers have been investigating the application of various deep learning methods in remote

sensing where, again, the algorithms are performed on multispectral data for vegetation detec-

tion and monitoring. There is no research done specifically for detecting vegetation using deep

learning and color images only (recorded by a simple camera).

The results we accomplished show that deep learning outperforms all other methods and can be

used as a tool for detection without using special equipment for NIR recordings. This research

represents the first step into a various number of possible applications for vegetation detec-

tion including classification of different vegetation types which could have potential usages in

habitat mapping, monitoring vegetation not only in urban environments but wherever a vehicle

with a camera can go. Our goal, in the beginning, was to provide support for an autonomous

vehicle to maintain roadside vegetation, but now, with proof that detection can be done with a

significantly high accuracy rate, we can consider other possibilities.

To compare our work with other deep learning-based applications would be difficult since

the results obtained in such a way would be hard to interpret. There is no other research done in

the specific area of vegetation detection by using only the visible spectrum information based

56

Methodology

on new methods like Fully Convolutional Networks or other deep learning methods. Object

detection and recognition in images and in video is a highly developed area. In contrast, recog-

nizing regions or surfaces in cluttered natural scenes containing multiple object categories (such

as cloud, sky, water, vegetation, etc.) is relatively less explored and vegetation detection falls

into that category. That is why all research done in object recognition compared to our findings

would not be statistically significant.

It should be made clear that many publications mentioning successful vegetation detection

often indicate some very specific species of vegetation or a very limited dataset. And these

approaches are then just used for robots operating in a specific environment or for satellite

images. They are not used for roadside vegetation detection using a camera mounted on a

vehicle. Due to different goals, those methods cannot be directly compared to our method for

detection of vegetation.

In Table 3.5 we summarize the results presented throughout this thesis. We present the

accuracy achieved only by the classifier and excluding the results achieved with the pre- and/or

post-processing steps. Since we had a specific application in mind we added these steps in order

to develop a better and more optimal solution for such usage. These algorithms were published

and their performance was addressed in the previous chapter (Chapter 3.3.4).

Here, we want to focus only on the performance of the classifiers.

Table 3.5: Vegetation detection results summary.

Feature vector Accuracy Feature vector Accuracy

CieLAB 91,9015% AB 89,9947%

YUV 91,8235% UV 61,7462%

HSV 91,4285% HS 88,7151%

RGB 89,6314%

VVI 58,342%

GRVI 67,617%

Color + Entropy 92,436%

Color + CWT 93,89%

FCN 96,257%

Even though vegetation indices are the number one metric for vegetation detection in re-

mote sensing, the same does not apply for indices based on the visible spectrum values. When

working with RGB values the results are sensitive to changes in luminance due to its additive

nature which makes working with this color space not so robust. Analysis of results obtained

by calculating and thresholding these indices showed that this kind of approach is not usable

57

Methodology

in an on-ground scenario. Even using machine learning methods and training classifiers with

color features from different color spaces did not yield satisfactory results. However, we did

draw some conclusions from these experiments:

∙ VVI and GRVI performed with lowest classification accuracy which is not surprising due

to lack of information in these vegetation indices

∙ Slightly better performance is achieved when using the lightness component together with

the color components

∙ CieLAB, YUV, and HSV color spaces perform similarly and are giving slightly higher ac-

curacy results compared to RGB which was expected due to the fact that every component

contains luminance information which makes it more sensitive to luminance changes

Using only color features resulted in false positive detections of objects similar to vegetation

in color which is a problem, especially if the intended use of the algorithm is to aid in roadside

maintenance where it is important to know if, for example, a green car is not vegetation. We

expanded the feature vector with texture features in order to differentiate these false positives

from vegetation. First, we used a simple feature to describe texture - entropy, followed by a more

complex one based on CWT. Both approaches showed improvement in correctly classifying

parts of the problematic objects, even though the overall per-pixel accuracy improved only

slightly. That is why we put more focus on these problematic images/scenes and developed

further improvements with the goal to minimize these issues and not just paying attention to

the overall per-pixel accuracy. CWT as a texture descriptor has shown improvements in these

problematic images compared to using only color or using color with entropy. CWT is powerful

due to its robustness to orientation and scale which for vegetation means a lot since in real-world

applications one can expect blades of grass to go in all sorts of directions, and different types of

vegetation will have leaves of different sizes so the scale invariance also makes a difference.

We also presented some possible pre- and post-processing steps which were tested in order

to improve the overall detection method, but for every improvement, there was a compromise

(e.g. speed) and that was something we wanted to avoid.

In the final step of our research, we looked for a possible solution that would not depend on

any additional steps in order to achieve satisfactory performance, especially for the problematic

images we mentioned. FCN proved to be the solution we were looking for. FCN outperformed

all other methods regardless of the additional steps used. Even the True Negative Rate increased

significantly which was more important for our intended usage then the per-pixel accuracy

which was also significantly higher than in other cases.

Training a classifier using features that are learned from data and not enforced by designers

proved to give the best results for detecting roadside vegetation.

58

Chapter 4

Conclusion

Most of the research done in the area of vegetation detection is done on satellite images or

other multi-modal recordings. This is a result of previous work done in remote sensing where

specific Near Infra Red spectral features were shown to be highly indicative of vegetation. This

discovery had an impact on all research that followed which were based on NIR and other

modalities invisible to the human eye.

Our main focus was research and development of a vegetation detection method using fea-

tures from the visible spectrum exclusively. Our goal was to provide support for an autonomous

vehicle in roadside maintenance, but once vegetation is detected it can further be classified

which would provide information about different types of vegetation not only in urban areas but

wherever a vehicle with a camera can go.

Detecting roadside vegetation is a specific application for which we had to record a database of

images containing roadside vegetation in various conditions. Creating the database and labeling

the recorded data was the first step in our research. Once we had the data we decided to use

machine learning to train a classifier for differentiating vegetation from non-vegetation.

The first developed method was based on using only color features for training an SVM

classifier. The goal was to determine if there is a difference in detection accuracy when using

different color spaces or does the classifier perform better when we exclude the luminance

component since that is one of the biggest issues when working with real-life recordings.

We concluded that using the lightness component together with color performed slightly

better than without it and that from all four color spaces evaluated CieLAB, YUV and HSV

performed similarly and they all resulted in slightly higher per-pixel classification accuracy

compared to RGB. In the end, CieLAB had the highest accuracy of 91,9015% and it was chosen

as the color feature in the following methods.

To solve the issues of falsely detecting green (and other vegetation-like colors) objects as

vegetation we added a new feature for describing texture. We started with a simple texture

feature - entropy which is described as a measure of disorder in a system. The idea was that

59

Conclusion

vegetation areas will have a bigger amount of disorder, compared to cars, pedestrians, asphalt

and other roadside objects. This approach did not improve the per-pixel accuracy drastically

(92,436%), but it did manage to correctly classify some objects or parts of objects similar to

vegetation in color. Here, we added a postprocessing step in order to improve detection bound-

aries, but we were not satisfied with the performance of the added texture feature because some

parts of problematic objects where the entropy is high are still falsely detected as vegetation.

In order to improve these results we had to add a more complex feature that would describe

texture and be scale and rotation invariant. Using CWT in a combination with feature ranking

we calculated a texture feature that was determined to contain the most significant information.

The SVM classifier trained with such features resulted in an slight increase in per-pixel accuracy

(93,89%) and in a slight improvement when classifying problematic images.

In the end, the trained classifier represented one part of a bigger pipeline that consisted of

additional pre- and/or post-processing steps. The classifiers results were improved (96,10182%)

due to these additional steps, but we were not satisfied because these additional steps increased

the methods complexity which resulted in higher training and classification times.

Now, when deep learning is gaining more momentum and is being used in a variety of ap-

plications it seemed like a logical continuation of our previous work to investigate this approach

and try to solve our problem more effectively. In the last couple of years some researchers have

been investigating the application of various deep learning methods in remote sensing where,

again, the algorithms are performed on multispectral data for vegetation detection and moni-

toring. There is no research done specifically for detecting vegetation using deep learning and

color images only (recorded by a simple camera).

The results we accomplished with a trained Fully Convolutional Network show that deep

learning outperforms all other methods and can be used as a tool for detection without using

special equipment for NIR recordings. We have compared the performance of the proposed

method with other published methods for roadside vegetation detection and the results show that

the FCN outperforms all other presented methods in per-pixel accuracy and that the performance

of the proposed method in problematic cases is where its advantage is most evident.

This research represents the first step into a various number of possible applications for

vegetation detection including classification of different vegetation types which could have

potential usages for detecting and mapping habitats, monitoring vegetation not only in urban

environments but wherever a vehicle with a camera can go. Our goal, in the beginning, was

to provide support for an autonomous vehicle to maintain roadside vegetation, but now, with

proof that detection can be done with a significantly high accuracy rate, we can consider other

possibilities.

The results achieved provides us with many possibilities for future work where the vegeta-

tion detection could just be the first step in a bigger system.

60

Bibliography

[1] Carranza, E. J. M., Hale, M., “Remote detection of vegetation stress for mineral explo-

ration”, in Geoscience and Remote Sensing Symposium, 2001. IGARSS ’01. IEEE 2001

International, Vol. 3, 2001, str. 1324-1326 vol.3.

[2] Pan, Z., Wang, F., Xia, L., Wang, X., “Feature extraction for urban vegetation stress iden-

tification using hyperspectral remote sensing”, in Information Science and Engineering

(ICISE), 2010 2nd International Conference on, 2010, str. 250-254.

[3] Arnold, T., Biasio, M. D., Fritz, A., Leitner, R., “Uav-based measurement of vegetation

indices for environmental monitoring”, in 2013 Seventh International Conference on Sens-

ing Technology (ICST), Dec 2013, str. 704-707.

[4] Ghazal, M., Khalil, Y. A., Hajjdiab, H., “Uav-based remote sensing for vegetation cover

estimation using ndvi imagery and level sets method”, in 2015 IEEE International Sympo-

sium on Signal Processing and Information Technology (ISSPIT), Dec 2015, str. 332-337.

[5] Zhang, X., Song, Y., Wang, S., Zhang, L., Zhang, X., “A method for extracting veg-

etation information of urban underlaying surface oriented to eco-environmental quality

assessment”, in 2017 IEEE International Geoscience and Remote Sensing Symposium

(IGARSS), July 2017, str. 3479-3486.

[6] Langford, Z. L., Kumar, J., Hoffman, F. M., “Convolutional neural network approach

for mapping arctic vegetation using multi-sensor remote sensing fusion”, in 2017 IEEE

International Conference on Data Mining Workshops (ICDMW), Nov 2017, str. 322-331.

[7] Zhan, Z., Lai, B., “Vegetation detection of close-range images for landslide monitoring”,

in Computer Vision in Remote Sensing (CVRS), 2012 International Conference on, 2012,

str. 13-18.

[8] Chowdhury, S., Verma, B., “A novel feature extraction technique to retrieve vegetation

class for fire risk assessment”, in Signal Processing and Communication Systems (IC-

SPCS), 2014 8th International Conference on, Dec 2014, str. 1-6.

61

Bibliography

[9] Chowdhury, S., Verma, B., Stockwell, D., “A novel texture feature based

multiple classifier technique for roadside vegetation classification”, Expert Systems

with Applications, Vol. 42, No. 12, 2015, str. 5047 - 5055, dostupno na:

http://www.sciencedirect.com/science/article/pii/S0957417415001542

[10] Bradley, D., Unnikrishnan, R., Bagnell, J., “Vegetation detection for driving in complex

environments”, in Robotics and Automation, 2007 IEEE International Conference on,

2007, str. 503-508.

[11] Da-xue, L., Tao, W., Bin, D., “Fusing ladar and color image for detection grass off-road

scenario”, in Vehicular Electronics and Safety, 2007. ICVES. IEEE International Confer-

ence on, 2007, str. 1-4.

[12] Nguyen, D. V., Kuhnert, L., Kuhnert, K. D., “Spreading algorithm for efficient vegetation

detection in cluttered outdoor environments”, Robotics and Autonomous Systems, Vol. 60,

No. 12, 2012, str. 1498 - 1507.

[13] Nguyen, D. V., Kuhnert, L., Jiang, T., Thamke, S., Kuhnert, K. D., “Vegetation detection

for outdoor automobile guidance”, in Industrial Technology (ICIT), 2011 IEEE Interna-

tional Conference on, 2011, str. 358-364.

[14] Nguyen, D. V., Kuhnert, L., Thamke, S., Schlemper, J., Kuhnert, K. D., “A novel approach

for a double-check of passable vegetation detection in autonomous ground vehicles”, in

Intelligent Transportation Systems (ITSC), 15th International IEEE Conference on, 2012,

str. 230-236.

[15] Nguyen, D. V., Kuhnert, L., Kuhnert, K. D., “Structure overview of vegetation detection. A

novel approach for efficient vegetation detection using an active lighting system”, Robotics

and Autonomous Systems, Vol. 60, No. 4, 2012, str. 498 - 508.

[16] Bengio, Y., “Deep learning of representations for unsupervised and transfer learning”,

in Proceedings of ICML Workshop on Unsupervised and Transfer Learning, ser.

Proceedings of Machine Learning Research, Guyon, I., Dror, G., Lemaire, V., Taylor, G.,

Silver, D., (ur.), Vol. 27. Bellevue, Washington, USA: PMLR, 02 Jul 2012, str. 17–36,

dostupno na: http://proceedings.mlr.press/v27/bengio12a.html

[17] Zafarifar, B., de With, P., “Grass field detection for TV picture quality enhancement”,

in Consumer Electronics, 2008. ICCE 2008. Digest of Technical Papers. International

Conference on, 2008, str. 1-2.

[18] Herman, S., Janssen, J., Bellers, E., Wendorf, J., “Automatic segmentation-based grass

detection for real-time video”, uS Patent 6,832,000. Dec. 14 2004.

62

http://www.sciencedirect.com/science/article/pii/S0957417415001542
http://proceedings.mlr.press/v27/bengio12a.html

Bibliography

[19] The Planetary Habitability Laboratory, “Planetary habitability laboratory”, http://phl.upr.

edu/projects/visible-vegetation-index-vvi, 2014.

[20] Takeshi, M., Nasahara, K. N., Oguma, H., Tsuchida, T., “Applicability of green-red vege-

tation index for remote sensing of vegetation phenology”, Remote Sensing, Vol. 2, 1/2010

2010, str. 2369 - 2387.

[21] Fan, H., Mei, X., Prokhorov, D., Ling, H., “Cross datasets vegetation detection with spatial

prior and local context”, in 2016 IEEE Intelligent Vehicles Symposium (IV), June 2016,

str. 735-740.

[22] Jordan, C. F., “Derivation of leaf-area index from quality of light on the forest

floor”, Ecology, Vol. 50, No. 4, 1969, str. 663-666, dostupno na: https:

//esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1936256

[23] Barroso, C., Monteiro, I., “Monitoring vegetation from space”,

http://www.eumetrain.org/data/3/36/print.htm, 2010.

[24] Krizhevsky, A., Sutskever, I., Hinton, G. E., “Imagenet classification with deep convo-

lutional neural networks”, in Advances in Neural Information Processing Systems 25,

Pereira, F., Burges, C. J. C., Bottou, L., Weinberger, K. Q., (ur.). Curran Associates, Inc.,

2012, str. 1097–1105.

[25] Simonyan, K., Zisserman, A., “Very deep convolutional networks for large-scale image

recognition”, CoRR, Vol. abs/1409.1556, 2014.

[26] Li Deng, B. K., Geoffrey Hinton, “New types of deep neural network learning for speech

recognition and related applications: An overview”, in IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), May 2013, May 2013.

[27] Ciresan, D., Giusti, A., Gambardella, L. M., Schmidhuber, J., “Deep neural networks

segment neuronal membranes in electron microscopy images”, in Advances in Neural

Information Processing Systems 25, Pereira, F., Burges, C. J. C., Bottou, L., Weinberger,

K. Q., (ur.). Curran Associates, Inc., 2012, str. 2843–2851.

[28] Farabet, C., Couprie, C., Najman, L., LeCun, Y., “Learning hierarchical features for

scene labeling”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35,

No. 8, Aug 2013, str. 1915-1929.

[29] Ganin, Y., Lempitsky, V. S., “N4-fields: Neural network nearest neighbor

fields for image transforms”, CoRR, Vol. abs/1406.6558, 2014, dostupno na:

http://arxiv.org/abs/1406.6558

63

http://phl.upr.edu/projects/visible-vegetation-index-vvi
http://phl.upr.edu/projects/visible-vegetation-index-vvi
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1936256
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1936256
http://arxiv.org/abs/1406.6558

Bibliography

[30] Gupta, S., Girshick, R. B., Arbelaez, P., Malik, J., “Learning rich features from

RGB-D images for object detection and segmentation”, CoRR, Vol. abs/1407.5736, 2014,

dostupno na: http://arxiv.org/abs/1407.5736

[31] Hariharan, B., Arbeláez, P., Girshick, R., Malik, J., “Simultaneous detection and segmen-

tation”, in European Conference on Computer Vision (ECCV), 2014.

[32] Pinheiro, P. H. O., Collobert, R., “Recurrent convolutional neural networks for scene

parsing”, CoRR, Vol. abs/1306.2795, 2013, dostupno na: http://arxiv.org/abs/1306.2795

[33] dos Santos, C. N., Gatti, M., “Deep convolutional neural networks for sentiment analysis

of short texts.”, in COLING, 2014, str. 69–78.

[34] Ciresan, D. C., Meier, U., Gambardella, L. M., Schmidhuber, J., “Convolutional neural

network committees for handwritten character classification”, in 2011 International Con-

ference on Document Analysis and Recognition, Sept 2011, str. 1135-1139.

[35] Shelhamer, E., Long, J., Darrell, T., “Fully convolutional networks for semantic

segmentation”, CoRR, Vol. abs/1605.06211, 2016, dostupno na: http://arxiv.org/abs/

1605.06211

[36] Audebert, N., Saux, B. L., Lefèvre, S., “Semantic segmentation of earth observation data

using multimodal and multi-scale deep networks”, CoRR, Vol. abs/1609.06846, 2016,

dostupno na: http://arxiv.org/abs/1609.06846

[37] Valada, A., Oliveira, G., T.Brox, Burgard, W., “Robust semantic segmentation using deep

fusion”, in Robotics: Science and Systems (RSS 2016) Workshop, Are the Sceptics

Right? Limits and Potentials of Deep Learning in Robotics, 2016, dostupno na:

http://lmb.informatik.uni-freiburg.de/Publications/2016/OB16d

[38] Potena, C., Nardi, D., Pretto, A., “Fast and accurate crop and weed identification with

summarized train sets for precision agriculture”, in Intelligent Autonomous Systems 14,

Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H., (ur.). Cham: Springer

International Publishing, 2017, str. 105–121.

[39] Suarez, P. L., Sappa, A. D., Vintimilla, B. X., “Learning image vegetation index through

a conditional generative adversarial network”, in 2017 IEEE Second Ecuador Technical

Chapters Meeting (ETCM), Oct 2017, str. 1-6.

[40] Jin, X., Han, J., K-Means Clustering. Boston, MA: Springer US, 2010, str. 563–564,

dostupno na: https://doi.org/10.1007/978-0-387-30164-8_425

64

http://arxiv.org/abs/1407.5736
http://arxiv.org/abs/1306.2795
http://arxiv.org/abs/1605.06211
http://arxiv.org/abs/1605.06211
http://arxiv.org/abs/1609.06846
http://lmb.informatik.uni-freiburg.de/Publications/2016/OB16d
https://doi.org/10.1007/978-0-387-30164-8_425

Bibliography

[41] Krejcie, R. V., Morgan, D. W., “Determining sample size for research activities”, Educa-

tional and psychological measurement, Vol. 30, No. 3, 1970, str. 607–610.

[42] Guyon, I., Elisseeff, A., “An introduction to variable and feature selection”, J. Mach.

Learn. Res., Vol. 3, Mar. 2003, str. 1157–1182.

[43] Japkowicz, N., Shah, M., Evaluating Learning Algorithms: A Classification Perspective.

Cambridge University Press, 2011.

[44] Burges, C. J., “A tutorial on support vector machines for pattern recognition”, Data

Mining and Knowledge Discovery, Vol. 2, No. 2, Jun 1998, str. 121–167, dostupno na:

https://doi.org/10.1023/A:1009715923555

[45] Hofmann, M., “Support vector machines — kernels and the kernel trick”, Houptseminar

report 2006, 2006.

[46] Mitchell, T. M., Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill, Inc., 1997.

[47] Goodfellow, I., Bengio, Y., Courville, A., Deep Learning. MIT Press, 2016, http://www.

deeplearningbook.org.

[48] LeCun, Y., Bengio, Y., Hinton, G. E., “Deep learning”, Nature, Vol. 521, No. 7553, 2015,

str. 436–444, dostupno na: https://doi.org/10.1038/nature14539

[49] Nielsen, M. A., “Neural networks and deep learning”, dostupno na: http:

//neuralnetworksanddeeplearning.com/ 2018.

[50] Tesauro, G., “Practical issues in temporal difference learning”, Mach. Learn., Vol. 8, No.

3-4, May 1992, str. 257–277, dostupno na: https://doi.org/10.1007/BF00992697

[51] Hinton, G. E., Osindero, S., Teh, Y.-W., “A fast learning algorithm for deep belief

nets”, Neural Comput., Vol. 18, No. 7, Jul. 2006, str. 1527–1554, dostupno na:

http://dx.doi.org/10.1162/neco.2006.18.7.1527

[52] Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., “Greedy layer-wise training of

deep networks”, in Advances in Neural Information Processing Systems 19, Schölkopf,

B., Platt, J. C., Hoffman, T., (ur.). MIT Press, 2007, str. 153–160, dostupno na:

http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf

[53] Dougherty, E., An introduction to morphological image processing, ser. Tutorial texts in

optical engineering. SPIE Optical Engineering Press, 1992.

[54] Kachigan, S., Multivariate Statistical Analysis: A Conceptual Introduction. Radius Press,

1991, dostupno na: https://books.google.hr/books?id=eJhpAAAAMAAJ

65

https://doi.org/10.1023/A:1009715923555
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1038/nature14539
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.1007/BF00992697
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
https://books.google.hr/books?id=eJhpAAAAMAAJ

Bibliography

[55] Gonzalez, R. C., Woods, R. E., Eddins, S. L., Digital Image Processing Using MATLAB.

Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2003.

[56] Antoine, J. P., “The continuous wavelet transform in image processing”, BCWI Quarterly,

Vol. 11, No. 4, 1998, str. 323-345.

[57] Saxena, A., Chung, S. H., Ng, A. Y., “Learning depth from single monocular images”, in

In NIPS 18. MIT Press, 2005.

[58] Wedel, A., Franke, U., Klappstein, J., Brox, T., Cremers, D., “Realtime depth estimation

and obstacle detection from monocular video”, in Pattern Recognition (Proc. DAGM), ser.

LNCS, et al., K. F., (ur.), Vol. 4174. Berlin, Germany: Springer, September 2006, str.

475–484.

[59] Horn, B. K., Schunck, B. G., “Determining optical flow”, Cambridge, MA, USA, Tech.

Rep., 1980.

[60] Lucas, B. D., Kanade, T., “Optical navigation by the method of differences”,

in Proceedings of the 9th International Joint Conference on Artificial Intelligence.

Los Angeles, CA, USA, August 1985, 1985, str. 981–984, dostupno na: http:

//ijcai.org/Proceedings/85-2/Papers/060.pdf

[61] Liu, C., Beyond Pixels: Exploring New Representations and Applications for Motion

Analysis. MIT, 2009.

[62] Brox, T., Bruhn, A., Papenberg, N., Weickert, J., “High accuracy optical flow estimation

based on a theory for warping”, Pajdla, T., Matas, J., (ur.), Vol. 3024. Prague, Czech

Republic: Springer, May 2004, str. 25–36.

[63] Bruhn, A., Weickert, J., Schnörr, C., “Lucas/kanade meets horn/schunck: Combining local

and global optic flow methods”, Int. J. Comput. Vision, Vol. 61, No. 3, Feb. 2005, str. 211–

231.

[64] O’Shea, K., Nash, R., “An introduction to convolutional neural networks”, ArXiv e-prints,

11 2015.

[65] Krizhevsky, A., Sutskever, I., Hinton, G. E., “Imagenet classification with deep

convolutional neural networks”, in Advances in Neural Information Processing Systems

25, Pereira, F., Burges, C. J. C., Bottou, L., Weinberger, K. Q., (ur.). Curran

Associates, Inc., 2012, str. 1097–1105, dostupno na: http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

66

http://ijcai.org/Proceedings/85-2/Papers/060.pdf
http://ijcai.org/Proceedings/85-2/Papers/060.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Bibliography

[66] Karpathy, A., “Cs231n convolutional neural networks for visual recognition”, http://

cs231n.github.io/convolutional-networks/, 2017.

[67] Simonyan, K., Zisserman, A., “Very deep convolutional networks for large-

scale image recognition”, CoRR, Vol. abs/1409.1556, 2014, dostupno na: http:

//arxiv.org/abs/1409.1556

[68] Vedaldi, A., Lenc, K., “Matconvnet – convolutional neural networks for matlab”, in Pro-

ceeding of the ACM Int. Conf. on Multimedia, 2015.

[69] Harbaš, I., Subašić, M., “Cwt-based detection of roadside vegetation aided by motion

estimation”, in Visual Information Processing (EUVIP), 2014 5th European Workshop

on, Dec 2014, str. 1-6.

[70] Harbaš, I., Subašić, M., “Motion estimation aided detection of roadside vegetation”, in

Image and Signal Processing (CISP), 2014 7th International Congress on, Oct 2014, str.

420-425.

67

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

Biography

Iva Harbaš was born on 22nd of April in 1988. in Cazin, Bosnia and Herzegovina. There, she

finished high school after which, in 2007. she enrolled at the Faculty of Elctrical Engineering

and Computing in Zagreb.

Iva attended the Faculty from 2007. to 2012. During this time she got her Bachelor of

Science in Computing degree in the year 2010. where she specialized in Information Pro-

cessing and Multimedia Systems. In 2012. she finished the study program Information and

Communication Technology which awarded her with a Master of Science in Information and

Communication Technology degree. She graduated Magna cum Laude.

That same year she enrolled in the postgraduate doctoral study of Computing where she

started her PhD education. In the following year, Iva started working on an European IPA

IIIc project at her alma mater. For two years she worked as a part of a team researching and

developing computer vision solutions for safe traffic from where she got the topic for her PhD

thesis. During this time her work was mostly oriented in the field of computer vision, image

processing and machine learning.

In 2015., after the project finished Iva worked in a startup company after which she moved

to Ericsson Nikola Tesla, Zagreb where she is currently employed as a software developer.

List of published papers

Paper in Journal

1. Harbaš, Iva; Prentašić, Pavle; Subašić, Marko. Detection of roadside vegetation using

Fully Convolutional Networks. Image and Vision Computing. 74 (2018); 1-9 (journal

article).

Papers on International Conferences

1. Harbaš, Iva; Subašić, Marko. "Detection of Roadside Vegetation Using Features from

the Visible Spectrum", Mipro 2014 proceedings, Biljanović, Petar, editor(s). Opatija,

Croatia, 2014. 1454-1459 (lecture,international peer-review,published,scientific).

68

Bibliography

2. Harbaš, Iva; Subašić, Marko. "CWT-based Detection of Roadside Vegetation Aided by

Motion Estimation", Visual Information Processing (EUVIP), 2014 5th European Work-

shop on. Paris, 2014. (poster,international peer-review,published,scientific).

3. Harbaš, Iva; Subašić, Marko. "Motion Estimation Aided Detection of Roadside Vegeta-

tion", Image and Signal Processing (CISP), 2014 7th International Congress on. Dalian,

2014. (lecture,international peer-review,published,scientific).

4. Harbaš, Iva; Banić, Nikola; Jurić, Darko; Lončarić, Sven; Subašić, Marko. "Com-

puter vision-based advanced driver assistance systems", Proceedings of KoREMA. Šakić,

Željko, editor(s). Zagreb, 2014. 17-20 (lecture,international peer-review,published,expert).

69

Životopis

Iva Harbaš je rod̄ena 22. travnja 1988. godine u Cazinu, Bosna i Hercegovina. Tamo je završila

srednju školu, a 2007. godine upisuje Fakultet elektrotehnike i računarstva u Zagrebu.

Pohad̄ala je FER od 2007. do 2012. godine. Za to vrijeme stekla je diplomu sveučilišnog

prvostupnika inženjera računarstva u 2010. godini, gdje se specijalizirala u području obrade

informacija i multimedijskih sustava. Nakon toga, 2012. godine je završila studijski program

’Informacijska i komunikacijska tehnologija’ i stekla zvanje magistra inženjera informacijskih

i komunikacijskih tehnologija. Diplomirala je Magna cum Laude.

Iste godine upisala je poslijediplomski doktorski studij računarstva gdje je započela dok-

torski studij. Sljedeće godine, Iva je počela raditi na IPA IIIc Europskom projektu gdje je dvije

godine radila kao dio tima koji je istraživao i razvijao rješenja za siguran promet bazirana na

računalnom vidu odakle je dobila temu za doktorsku disertaciju. Tijekom tog vremena bavila

se istraživanjem i razvojem u području računalnog vida, obrade slika i strojnog učenja.

U 2015. godini, nakon završetka projekta, godinu dana je radila u istraživačkom timu jednog

startupa, nakon čega se zaposlila u Ericsson Nikola Tesla u Zagrebu gdje je trenutno zaposlena.

70

	Introduction
	Motivation
	Dissertation structure

	Related Works
	Detection based on input data
	Methods based on the visible spectrum
	Methods based on the invisible spectrum

	Detection based on Machine Learning
	ML based on selected features
	ML based on learned features

	Methodology
	Data
	Selecting the training set
	Feature ranking

	Classification tools
	Classifiers
	Postprocessing
	Validation

	Classification methods
	Classification based on color features only
	Color and texture features
	Color and CWT-based texture features
	Deep learning - Fully Convolutional Neural Network

	Final Discussion and results

	Conclusion

