
Korekcija kratkoročne vremenske prognoze radarskim
snimcima i strojnim učenjem

Orlić, Sara

Master's thesis / Diplomski rad

2025

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:279240

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-29

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:279240
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://zir.nsk.hr/islandora/object/fer:13301
https://repozitorij.unizg.hr/islandora/object/fer:13301
https://dabar.srce.hr/islandora/object/fer:13301

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 121

WEATHER NOWCASTING USING RADAR IMAGING AND

MACHINE LEARNING

Sara Orlić

Zagreb, February 2025

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 121

WEATHER NOWCASTING USING RADAR IMAGING AND

MACHINE LEARNING

Sara Orlić

Zagreb, February 2025

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 03 October 2024

MASTER THESIS ASSIGNMENT No. 121

Student: Sara Orlić (0036525955)

Study: Information and Communication Technology

Profile: Control Systems and Robotics

Mentor: assoc. prof. Vinko Lešić, PhD

Title: Weather nowcasting using radar imaging and machine learning

Description:

Weather forecasting today most commonly uses systems based on numerical weather prediction. Such systems
enable forecasting of several days ahead but are not suitable for predictions in shorter time intervals.
Nowcasting, as an immediate weather prediction, is defined as a detailed description of current weather
conditions and the prediction of changes expected within a few hours in a specific area. The thesis task is to
study machine learning approaches that can be applied to improve short-term weather forecasts using radar
images. For selected weather variables, with emphasis on precipitation, it is required to perform training and
testing on an available dataset and analyse the obtained results.

Submission date: 14 February 2025

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 3. listopada 2024.

DIPLOMSKI ZADATAK br. 121

Pristupnica: Sara Orlić (0036525955)

Studij: Informacijska i komunikacijska tehnologija

Profil: Automatika i robotika

Mentor: izv. prof. dr. sc. Vinko Lešić

Zadatak: Korekcija kratkoročne vremenske prognoze radarskim snimcima i strojnim
učenjem

Opis zadatka:

Za vremensku prognozu danas se najčešće koriste sustavi bazirani na numeričkom predviđanju vremena. Takvi
sustavi omogućavaju dobivanje prognoze za nekoliko dana unaprijed, ali nisu pogodni za prognoziranje u
kraćim vremenskim intervalima. Prognoza neposrednog razvoja vremena (eng. nowcasting) definirana je kao
detaljan opis trenutnih vremenskih prilika i predviđanje promjena koje se mogu očekivati unutar par sati na
određenom području. U radu je potrebno proučiti pristupe strojnog učenja koji se mogu primijeniti za korekciju
kratkoročne vremenske prognoze koristeći radarske snimke. Za odabrane vremenske varijable s naglaskom na
padaline potrebno je provesti učenje i testiranje na dostupnom skupu podataka te analizirati dobivene rezultate.

Rok za predaju rada: 14. veljače 2025.

Contents

1 Introduction . 3

2 Radar Composites and Data Preparation 6

2.1 Description of the Dataset . 7

2.2 Data Preprocessing . 8

2.3 Data Shaping for the Model . 9

2.3.1 Issues with Raw Data and Solutions 9

2.3.2 Input and output format . 10

3 Prediction model . 12

3.1 Neural networks . 12

3.1.1 Convolutional Neural Networks (CNNs) 14

3.1.2 Recurrent Neural Networks(RNNs) 16

3.1.3 Long Short-Term Memory Networks (LSTMs) 17

3.2 Convolutional LSTM Architecture . 19

3.2.1 Comparing ConvLSTM with CNNs and LSTMs 19

3.2.2 Encoder-Decoder Structure . 21

4 The Model . 22

4.1 Model Architecture . 24

4.1.1 Encoder Decoder Architecture . 24

4.1.2 ConvLSTM2D Layers . 25

4.1.3 Batch Normalization . 26

4.1.4 TimeDistributed Layer . 27

4.2 Model Training and Optimization . 28

4.2.1 Splitting the data . 28

1

4.2.2 Loss Function . 28

4.2.3 Optimizer and Learning Rate . 29

4.2.4 Early Stopping and Regularization 30

4.2.5 Training Procedure and Hyperparameters 31

4.3 Training on Supek Supercomputer . 32

4.3.1 Motivation for Using High-Performance Computing (HPC) 32

4.3.2 Configuring the Training Environment 32

5 Results and Discussion . 35

5.0.1 Training and validation loss . 35

5.0.2 Precipitation forecast . 38

5.0.3 Precipitation nowcasting metrics 45

6 Conclusion . 47

References . 49

Abstract . 54

Sažetak . 55

2

1 Introduction

In today’s rapidly evolving world, the demand for precise weather forecasts has become

increasingly critical. Due to this requirement nowcasting, or the short-term forecasting

of weather conditions, has becomemore andmore common. Nowcasting tries to provide

highly accurate, localized information about precipitation intensity over the next few

minutes or hours [1]. Such forecasts play a crucial role in enabling early warnings for

regions tending to serious weather events, optimizing agricultural operations by helping

farmers in rainfall preparation, and supporting planning in airports and other critical

infrastructure. Additionally, accurate nowcasting contributes to disaster management,

improves energy grid stability during damaging conditions, and supports urbanmobility

planning during sudden weather changes. As it is written in [2]: "According to a recent

report from theWMO (WorldMeteorological Organization), over the past 50 years, more

than 34% of all recorded disasters, 22% of related deaths (1.01 million) and 57% of related

economic losses (US$ 2.84 trillion) were consequences of extreme-precipitation events."

Given the need for high accuracy and precision in precipitation prediction, nowcasting

is significantly different from standard weather forecasting tasks.

Traditionally, numerical weather prediction (NWP) models have been the primary

tool for weather forecasting, including precipitation prediction. These models rely on

solving complex systems ofmathematical equations that simulate atmospheric processes.

However, they are computationally intensive and less effective for short-term forecasting

due to the fine temporal and spatial resolution required. This limitation highlights the

need for alternative approaches that can deliver real-time, high-resolution predictions

[3]. The rapid growth of artificial intelligence (AI) has significantly impacted many sci-

entific fields, includingweather and climatemodeling. Machine learning (ML) and deep

learning (DL) have becomepowerful tools for identifying patterns and relationships in at-

3

mospheric data. Unlike traditional weather prediction models, ML and DLmethods use

large datasets to uncover trends and dynamics in weather systems. Over the last decade,

improvements in computing power and access to vast weather datasets have made these

approaches increasingly popular, especially for precise tasks like nowcasting [4]. Radar

imaging has showed as a great tool in this context, offering detailed spatiotemporal data

on precipitation intensity and distribution. That is why radar images meet demands of

nowcasting.

This study focuses on developing a deep learning-based model for short-term precip-

itation forecasting using radar imaging. Given the spatiotemporal complexity of radar

data, a Convolutional Long Short-Term Memory (ConvLSTM) model with an encoder-

decoder architecture was chosen. This structure combines convolutional layers, which

capture spatial patterns, with LSTM units, which model temporal dependencies, mak-

ing it well-suited for weather nowcasting tasks[4]. The model was trained on high-

resolution radar composites provided by the Croatian Meteorological and Hydrological

Service. Two different training approaches were explored: teacher forcing and autore-

gressive forecasting. In the teacher-forcing approach, the model learns by always us-

ing the correct past radar frame (ground truth) as input, ensuring stable and accurate

predictions[5]. This method helps the model learn precipitation patterns effectively, but

it is not practical for real-world forecasting, where future ground truth is unknown. On

the other hand, in the autoregressive approach, the model generates predictions sequen-

tially, using its own previous outputs as inputs for future frames. This method better rep-

resents real forecasting conditions but can suffer from error accumulation, where small

mistakes grow over time, reducing accuracy in long-term predictions. Amajor challenge

in training the model was data imbalance, as radar images contain large areas without

precipitation, making it difficult for the model to focus on relevant rainfall patterns. To

address this, aWeightedMean Squared Error (MSE) loss function was used, giving more

importance to precipitation areas. This adjustment helped improve the model’s ability

to predict both rainfall intensity and movement, making it more effective in handling

real-world weather forecasting tasks.

To train the model effectively, the radar data goes through a preprocessing pipeline

that includes filtering, normalization, and transformation. The data is first cleaned to

4

remove corrupt ormissing frames, ensuring that only complete radar sequences are used.

Next, background noise and non-relevant regions are filtered out, focusing the model on

precipitation zones. The dataset is then rescaled and normalized, ensuring that pixel

values are properly adjusted for deep learning. Given the high computational demands

of training a ConvLSTM-based model on spatiotemporal data, training was made on the

Supek supercomputer, using high-performance computing (HPC) resources to overcome

memory and processing constraints. The use ofmulti-GPUacceleration allowed efficient

batch processing, significantly reducing training time.

5

2 Radar Composites and Data

Preparation

Radar composites are images obtained from meteorological radars. The basic principle

of meteorological radar operation involves emitting short, directed pulses of electromag-

netic radiation into the atmosphere and then detecting the energy reflected by potential

targets. Depending on the wavelength of the emitted radiation and the properties of the

target, reflectionmay ormaynot occur [6]. Radar composites are actually spatiotemporal

maps of precipitation intensities determined from radar imaging. Their biggest advan-

tage is real-time availability which can help in detecting disasters in short-term weather

prediction.

Figure 2.1: Radar on a specially designed tower located at meteorological radar center Uljenje
in Croatia [6]

6

2.1 Description of the Dataset

The radar images used in this research were obtained from the Croatian Meteorolog-

ical and Hydrological Service (hrv. Državni hidrometeorološki zavod, DHMZ). These

datasets were accessed and retrieved from DHMZ’s online servers over a period from

December 2022 to July 2024. The radar data was collected at five-minute intervals, pro-

viding high temporal resolution essential for the goals of this study. The Figure2.2 is

example of one picture retrieved from DHMZ’s webpage.

Figure 2.2: Example of radar composite retrieved from Croatian Meteorological and Hydrologi-
cal Service (DHMZ) webpage [7]

The radar composites display precipitation intensities, which are represented in the

legend located at the bottom of each image. The unit of measurement for these inten-

sities is mm/h, indicating the estimated rainfall rate. The legend’s scale is non-linear to

cover a wide range of precipitation intensities, from lighter rain to heavy downpours,

showing valid representation of varying weather conditions. Explanation of precipita-

tion intensity is showed in Table2.1.

7

Table 2.1: Description of precipitation intensities

Precipitation intensity [mm/h] Description

0.1 - 1 Insignificant to low
1 - 5 Low to medium
5 - 25 Medium to strong
25 - 100 Strong to very strong
> 100 Extreme, thunderstorm

The geographical coverage of the radar includes whole Croatia, extending to sur-

rounding areas. However, due to external factors such as technical malfunctions, some

portions of the data are corrupted or incomplete making them unable for further pro-

cessing.

2.2 Data Preprocessing

The original radar composites have a resolution of 720px x 751px, whichmakes them too

large for efficient processing. Hence, images are cropped to size 142px x 77px, reducing

their dimensionality andmaking themmore suitable for use in the deep learningmodel.

The cropped images focus on the area around the city of Rijeka and its surroundings

2.3. Rijeka was chosen as the focus area because of its high annual rainfall, making it an

ideal region for studying precipitation patterns and testing the model. The images are

represented in RGB format, consisting of matrices with dimensions 142 x 77 x 3, where

the first two dimensions correspond to the spatial resolution, and the third represents

the three color channels (red, green, and blue).

Figure 2.3: Cropped image showing area of Rijeka

For images to be compatible with further processing, they need to meet with criteria

8

for deep learning model. The primary goal of this preparation is to preserve the spa-

tiotemporal dependencies within the data, as these relationships are essential for accu-

rate weather predictions. The frames are divided into batches to preserve spatiotemporal

dependencies. Each batch consists of 28 samples, with 14 used as input and 14 used for

predictions. Determining the appropriate number of batches was challenging due to the

limited timeframe of the dataset and the presence of days without precipitation. These

dry periods also made it difficult to ensure that each batch contained consecutive frames

with rainfall. To address this, a filtering process was applied. For each batch, the first

and last frames were analyzed by comparing the colors in the legend to the precipitation

regions on the radar images. A threshold for precipitation intensity was defined, and at

least one of the two frames (first or last) had to meet this minimum threshold. If this

condition was satisfied, the batch was considered valid and contained a sufficient per-

centage of precipitation for the task. Number of batches should be big enough for model

to have data to work with and to show sufficient results. Therefore, number of batches

is 5800 containing 28 frames per batch. But because of a lot batches not meeting the cri-

teria for precipitation percentage that number of batches is 2553. That is 71484 images

which is not sufficient number.

2.3 Data Shaping for the Model

2.3.1 Issues with Raw Data and Solutions

Themain challengewith images, such as the one shown in Figure 2.3, was that theywere

not suitable for direct input into the model. This was due to the presence of background

colors and other irrelevant details that could confuse the model. The goal was to focus

entirely on the precipitation areas. To address this, all background colors, boundaries,

and non-relevant parts of the images were replaced with black. As a result, the original

three-dimensional RGB color channels were transformed into a single grayscale chan-

nel, where precipitation areas are highlighted, and the background remains black. To

identify precipitation regions, we compared the colors on the legend with the colors on

the radar images. A mapping was created between the colors in the legend and their

corresponding precipitation intensities. Since there are more colors on the images than

intensity levels in the legend, we introduced a tolerance range to match similar colors

9

to the correct intensity values. Precipitation intensities in the legend range from very

low (0.1 mm/h) to very high (250 mm/h). These intensities were scaled to a range of

[0.3, 1.2] to differentiate very low precipitation values from zero, which represents non-

precipitation. This scaling ensures that the model can accurately interpret the intensity

levels. The final preprocessed image used as input for the model is shown in Figure 2.4.

Figure 2.4: Final grayscaled image

The same image, but represented using the Viridis colormap from Matplotlib [8], is

shown in Figure 2.5.

Figure 2.5: Image represented using the Viridis colormap, generated with Matplotlib

2.3.2 Input and output format

The dataset is then prepared for themodel. The input dataset is structuredwith the shape

[batch size, number of input images, height, width]. In this setup, the number of input

images is 14. Asmentioned before, each sequence contains 28 imageswhich are split into

two parts: the first 14 images are used as input, and the remaining 14 images are used

10

as the output for predictions. The output data represents the next 14 consecutive radar

frames that follow the input sequence. The model’s goal is to learn patterns from the

input frames and use this knowledge to predict what the radar images will look like for

the following time steps. In essence, the output data acts as the future that themodel tries

to forecast based on the given past. This setup allows the model to focus on predicting

short-term changes in precipitation, which is crucial for accurate nowcasting.

11

3 Prediction model

In this chapter, we will look at how neural networks are used to work with radar im-

ages that change over time. Neural networks are powerful tools for finding patterns in

complex data, like weather radar images. We will start by discussing what are basic neu-

ral networks, then discussing about Convolutional Neural Networks (CNNs), which are

great at understanding the spatial details in images, and Long Short-Term Memory Net-

works (LSTMs), which are designed to handle changes over time in sequential data. Fi-

nally, we will focus on how these two methods are combined in the ConvLSTM model.

This model is especially useful for weather predictions because it can capture both the

spatial patterns and how they evolve over time.

3.1 Neural networks

Neural networks are subset of machine learning and a type of deep learning algorithm

inspired by the structure and functioning of the human brain. Just as biological neurons

in the brain process and transmit information through electrical signals, artificial neural

networks consist of interconnected nodes, or neurons, that process and transmit data.

This design mimics how the brain learns and adapts by forming connections between

neurons, making neural networks capable of learning complex patterns from data [9].

A single node, or neuron, is the fundamental building block of a neural network. A

visual representation of how a single node operates is shown in Figure 3.1. Each node

takes inmultiple inputs, processes them, and produces a single output. The inputs, often

represented as X, come with associated weights (W) that determine their importance to

the node. These inputs are combined into an intermediate value (H) through a weighted

sum, adding an additional constant value called bias (B) for extra flexibility. Mathe-

matically, this is represented as in equation(3.1). The intermediate value is then passed

12

through an activation function (f()), which determines whether the node should pass its

output forward. The activation function introduces nonlinearity, enabling the network

to handle more complex relationships in the data. The final output from the node (Y) is

then used in further computations within the network.

𝐻 =
∑
(𝑊 ⋅ 𝑋) + 𝐵 (3.1)

Figure 3.1: Single neuron functionality [10]

In Figure 3.2, we can see an example of a neural network with four layers. The first

layer is the input layer, where we provide the data that the neural network will use to

learn. This could be anything, like radar images or numerical data. The last layer is the

output layer, which gives us the final result that the network is predicting or learning,

such as a future weather map or a specific value. Between these are the hidden layers,

which perform the actual computations needed to process the input data and transform

it into the output. When we feed data into the input layer, the values are passed through

the network layer by layer. Each node in a layer takes the values from the previous layer,

multiplies them by their respective weights, adds a bias, and applies an activation func-

tion to produce its output. This process, called forward propagation, continues until

we reach the output layer, where the network produces its final prediction.

13

The neural network learns by comparing its output to the actual target value or im-

age using a loss function, which measures how far off the prediction is. Based on this

error, the network adjusts its weights and biases in a process called backpropagation.

During backpropagation, the error is propagated backward through the network, and the

weights are updated using an optimization algorithm like gradient descent. This process

is repeated many times over multiple rounds of training, allowing the neural network to

improve its predictions and learn from the data.

Neural networks are particularly well-suited for handling spatiotemporal data, such

as radar images used inweather prediction, due to their ability to capture both spatial and

temporal patterns. The output layer of such a neural network generates a set of pixel

values that represent the predicted radar image, arranging these pixels into the correct

dimensions (height, width, and color channels) to form the image.

Figure 3.2: Representation of neural network drawn with [11]

3.1.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks, commonly called CNNs are specialized type of neural

network design to work well with images. Convolutional layers are the fundamental

building blocks of CNNs. These layers are designed to process data with a spatial struc-

ture, by applying a mathematical operation called convolution. We define convolution

as the scalar product of one function with respect to the shifted and reflected second

function[12]. The general equation for convolution in 2D is denoted as in equation(3.2).

Where I is denoting input image with pixels values at position (𝑖 +𝑚, 𝑗 + 𝑛). 𝐾(𝑚, 𝑛) is

the kernel value at position (𝑚, 𝑛). The ranges𝑚min, 𝑛min and𝑚max, 𝑛max are determined

14

by the values at which 𝐼 and 𝐾 are defined.

𝑆(𝑖, 𝑗) =
𝑚𝑚𝑎𝑥∑

𝑚=𝑚𝑚𝑖𝑛

𝑛𝑚𝑎𝑥∑
𝑛=𝑛𝑚𝑖𝑛

𝐼(𝑖 +𝑚, 𝑗 + 𝑛) ⋅ 𝐾(𝑚, 𝑛) (3.2)

Convolution in images involves sliding a small matrix, known as a kernel or filter,

over the input image to perform element-wisemultiplication and summation. This oper-

ation produces a newmatrix called a featuremap, which highlights important features

from the input. Kernel with size 3x3 going over initial image is shown in Figure3.3.

Figure 3.3: Example of the first 3 steps of a convolution with kernel size 3x3 over a 5x5 array of
an image. The resulting pixel values correspond to the sum of the element-wise multiplication of
the initial pixels-dashed lines and the kernel. [13]

The kernel is a small matrix of weights that is learned during training. Each kernel

focuses on detecting specific patterns, such as edges, corners, or textures, within the in-

put image. For example, one kernelmight detect horizontal edges, while another focuses

on vertical edges. By applying multiple kernels, convolutional layers extract various spa-

tial features from the input data, which are then passed to the next layers for further

processing.

In the context of radar images, which represent precipitation intensity across a ge-

ographical area, CNNs dominate at detecting spatial patterns by processing the images

layer by layer. By stacking multiple convolutional layers, CNNs are able to identify in-

creasingly complex features. The initial layers focus on basic patterns like edges, while

deeper layers combine these features to recognize larger, more meaningful structures,

15

such as the shape of a storm system [14].

3.1.2 Recurrent Neural Networks(RNNs)

A recurrent neural network also called RNN is extension of traditional feedforward neu-

ral network. TheRNN is having recurrent hidden statewhich allows it to handle variable-

length sequence and it depends on activation time from previous state [15]. Recurrent

Neural Networks (RNNs) can be understood as a series of connected copies of the same

network, where each step passes information to the next. This architecture is designed to

make use of the sequential nature of data. The term "recurrent" comes from the fact that

these networks perform the same operation at each step of a sequence, with the output

at one step depending on both the current input and the outputs of previous steps. This

is achieved by looping the output of the network at time t back as input for the network

at time 𝑡 + 1. These loops allow the network to retain information from earlier steps in

the sequence, effectively creating a memory that helps it understand patterns over time

[16].

In Figure3.4 we can see representation of RNN unrolled structure. The network is

expanded over time, showing its structure for a sequence of time steps. Each node corre-

sponds to a specific point in time and represents the state of the network at that moment.

In this architecture, the network can process a unique input (𝑥𝑡) at each time step and

produce a corresponding output (ℎ𝑡) for that same time step. At the same time, the net-

work maintains a memory state that carries information about everything that has hap-

pened in previous time steps up to the current point (t). This design allows the network

to consider both the current input and past inputs, making it well-suited for sequential

data.

Figure 3.4: Unrolled RNN structure [16]

16

3.1.3 Long Short-Term Memory Networks (LSTMs)

Long Short-Term Memory Networks, known as LSTMs are a particular kind of RNN.

LSTMs are designed to learn long-term dependencies thanks to their unique structure,

which includes special components called gates that control the flow of information.

Unlike regular neurons, the hidden layers in LSTMs are made up of Memory Cells

(MCs). Diagram that represents one LSTMmemory cell is presented in Figure 3.5 These

memory cells can either keep or forget information about past states of the network,

depending on the instructions from the gates. Each gate is made up of a combination of

a neuron with a sigmoidal activation function and a pointwise multiplication operation,

which together decide how much information to keep or discard [17]. This structure

allows each memory cell’s output to consider the entire sequence of past states, making

LSTMs especially effective for processing time-series data with long-term dependencies.

Figure 3.5: A single LSTMMemory Cell [18]

A single LSTM cell consists of: forget gate 𝑓𝑡, input gate 𝑖𝑡, cell candidate 𝑐𝑡, output

gate 𝑜𝑡, cell state 𝑐𝑡 and hidden state ℎ𝑡:

• Forget Gate decides what information to discard from the previous cell state up

until this point.

• Input Gate decides what new information to store in the cell state.

• Cell Candidate is the potential new cell state based on the current input and hid-

17

den state.

• Output Gate controls how much of the cell state will be used to compute the hid-

den state(output).

• Cell State is the memory of the LSTM, combining new information with the re-

tained memory.

• Hidden State is encoding of the most recent time step 𝑡 − 1 and can be processed

to obtain more meaningful data.

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 +𝑈𝑓ℎ𝑡−1 + 𝑏𝑓),

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 +𝑈𝑖ℎ𝑡−1 + 𝑏𝑖),

𝑐𝑡 = tanh(𝑊𝑐𝑥𝑡 +𝑈𝑐ℎ𝑡−1 + 𝑏𝑐),

𝑐𝑡 = 𝑓𝑡◦𝑐𝑡−1 + 𝑖𝑡◦𝑐𝑡,

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 +𝑈𝑜ℎ𝑡−1 + 𝑏𝑜),

ℎ𝑡 = 𝑜𝑡◦ tanh(𝑐𝑡).

(3.3)

In equation(3.3), 𝜎(⋅) is the sigmoid function, 𝑊 and 𝑏 are respectively the weight

matrix and bias of the gates or cell state. Operator "◦" denotes element-wise multiplica-

tion or Hadamard product. The cells are managed by several gates. When a new input

comes, input gate 𝑖𝑡 decides whether information will be accepted to the cell or not. If

forget gate 𝑓𝑡 is activated, it decides if past cell status 𝑐𝑡−1 will be "forgotten" or sent to

further processing. The output gate 𝑜𝑡 propagates whether latest cell state 𝑐𝑡 will be sent

to hidden state (final state) ℎ𝑡 [19].

One key advantage of using thememory cell and gates to regulate information flow is

their ability to prevent gradients from vanishing too quickly, a significant issue in vanilla

RNN models [20]. This mechanism, often referred to as constant error carousels [17],

effectively traps the gradient within the cell, ensuring it persists over time and enhances

the model’s capacity to learn from long-term dependencies.

18

3.2 Convolutional LSTM Architecture

3.2.1 Comparing ConvLSTM with CNNs and LSTMs

A deep learning model called Convolutional Long Short-Term Memory (ConvLSTM)

combines the advantages of Long Short-Term Memory (LSTM) and Convolutional Neu-

ral Networks (CNNs) into a single architecture. This model is particularly effective for

processing spatiotemporal data, such as radar images, which require both spatial feature

extraction and temporal sequence modeling. Unlike traditional CNNs, which analyze

spatial structures in static images, or standard LSTMs, which process sequential data by

flattening images instead of using their 2D structure, ConvLSTM is designed to preserve

spatial information while capturing temporal dependencies, making it highly suitable

for weather prediction tasks [21].

ConvLSTMachieves this by replacing the fully connected layers(dense layers) in stan-

dard LSTMs with convolutional layers, allowing it to process input data while maintain-

ing its spatial structure. In contrast to traditional LSTMs, where state transitions rely on

dense matrix multiplications, ConvLSTM performs convolution operations at each step

of the LSTM cell as shown in Figure3.6. This means that instead of processing isolated

numerical values, it operates on entire feature maps, enabling the network to analyze

how precipitation evolves over time while maintaining spatial consistency.

Figure 3.6: Structural differences between LSTM anf ConvLSTM [22]

As shown in Figure3.7, each gate in the ConvLSTM cell applies convolutional kernels

over local neighborhoods in both the input data and the previous hidden state. This

effectively acts like a sliding filter across the 2D spatial domain, rather than using dense

transformations that discard spatial relationships.

19

Figure 3.7: Inner structure of ConvLSTM [21]

The input-to-state and state-to-state transitions in ConvLSTM are handled through

3D tensors, where the last twodimensions represent spatial structure (rows and columns)

and last one representing number of featuremaps (channels/filters) (Figure3.8). That al-

lows the model to keep critical spatial details that would otherwise be lost in a standard

LSTM [19].

Figure 3.8: Representation of 2D and 3D tensor in imaging [23]

The key equations that are similar to standard LSTM but with convolution operator

are shown in equation(3.4)

20

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ 𝑥𝑡 +𝑈𝑓 ∗ ℎ𝑡−1 + 𝑏𝑓),

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ 𝑥𝑡 +𝑈𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖),

𝑐𝑡 = tanh(𝑊𝑐 ∗ 𝑥𝑡 +𝑈𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐),

𝑐𝑡 = 𝑓𝑡◦𝑐𝑡−1 + 𝑖𝑡◦𝑐𝑡,

𝑜𝑡 = 𝜎(𝑊𝑜 ∗ 𝑥𝑡 +𝑈𝑜 ∗ ℎ𝑡−1 + 𝑏𝑜),

ℎ𝑡 = 𝑜𝑡◦ tanh(𝑐𝑡).

(3.4)

3.2.2 Encoder-Decoder Structure

The encoder-decoder structure was first proposed in Sequence to Sequence Learning with

Neural Networks [24] as a powerful framework for sequence-to-sequence tasks. It has

been widely applied in areas such as machine translation, speech recognition, and time-

series forecasting due to its ability to encode past information into a compressed rep-

resentation and use it to generate future sequences. The fundamental idea behind this

architecture is to use an encoder to process and extractmeaningful features froman input

sequence and a decoder to transform this information into a structured output sequence.

The encoder-decoder structure is a widely used deep learning architecture designed

for tasks that require transforming an input sequence into an output sequence, making it

ideal for precipitation nowcasting with ConvLSTM. This approach is particularly useful

when dealing with spatiotemporal data, as it allows the model to compress important

information from past radar images and use it to predict future frames.

In the context of precipitation nowcasting, the encoder-decoder structure is partic-

ularly useful for modeling spatiotemporal dependencies in radar images. The encoder

processes a sequence of past radar images, capturing both spatial patterns (storm struc-

tures, cloud formations) and temporal dynamics (movement, intensity changes). The

extracted information is stored in a latent representation, which serves as a summary of

the input sequence. The decoder then takes this representation and generates the next

sequence of radar images, predicting howprecipitation is likely to evolve. This sequential

processing allows the model to learn from past weather conditions and forecast future

precipitation patterns with high accuracy.

21

4 The Model

The goal of precipitation forecasting is to predict future radar frames based on a fixed

sequence of input frames. As previously mentioned, the focus area is the region around

Rijeka, where precipitation occurs frequently throughout the year. To achieve accurate

forecasting, we use a deep learning model based on the Encoder-Decoder ConvLSTM

architecture, implemented using TensorFlow/Keras.

Themodel follows an encoder-decoder structure to process radar image sequences ef-

ficiently. The encoder consists of three ConvLSTM layers, which extract both spatial and

temporal patterns from the input sequence and it compresses them. This compressed

information is then passed to the decoder, which reconstructs future frames step by step.

Instead of predicting all frames at once, the decoder generates one frame at a time, using

its previous output as the next input. This iterative approach ensures better temporal

consistency and smoother predictions. The final frame predictions are produced using a

Conv2D layer, mapping the extracted features to a single-channel precipitation intensity

map.

Below, there are described the key components of the model, including encoder-

decoder structure, the ConvLSTM2D layers, batch normalization, the TimeDistributed

layer, kernel sizes, filter configurations. The shape of data is (None, 14, 77, 142, 1). None

represents flexible batch sizes in Keras architecture and it means it can be any value dur-

ing training, number of input samples is 14, height and width are (77,142) and number

of channels is 1 as grayscaled data has one channel. Full system architecture from be-

ginning with preprocessing of data, Supek supercomputer usage and model structure is

provided in Figure4.1.

22

Figure 4.1: System architecture

23

4.1 Model Architecture

4.1.1 Encoder Decoder Architecture

The encoder-decoder architecture used in this model is designed to efficiently process

sequences of radar images for precipitation forecasting. The model follows a two-step

approach: the encoder compresses a sequence of past frames into a meaningful repre-

sentation, and the decoder then generates future frames based on this learned represen-

tation.

In this study, two different training approaches were explored for the ConvLSTM-

based Encoder-Decoder model in precipitation nowcasting: basic encoding-forecasting

network also called autoregressive model and teacher forcing. Both approaches fol-

low the same fundamental encoder-decoder structure, where the encoder processes past

radar frames, extracting spatial and temporal dependencies, while the decoder generates

future frames based on the learned representation. However, the key difference between

these approaches lies in how the decoder receives input during training. The Figure

4.2 illustrates the autoregressive encoder-decoder model, where the encoder compresses

past frames into hidden states and cell stats that are then passed to the decoder. Au-

toregressive models generate data sequentially, meaning each new output depends on

the previous ones. In this approach, the decoder starts with an empty (zero) frame and

generates each future frame step by step, using its own previous output as input for the

next timestep. This approach closely represents real-world forecasting, as it simulates

how precipitation develops over time without access to future frames. However, a major

challenge of this method is error accumulation—if the model makes a small mistake in

an early timestep, itmay propagate through the sequence, affecting following predictions

[25]. Additionally, this approach is computationallymore expensive, as each framemust

be generated sequentially.

The Figure4.3 demonstrates teacher forcing, an alternative training strategy where

the decoder is provided with ground-truth future frames instead of its own predictions.

In this approach, at timestep 𝑘, instead of using its previously predicted frame 𝑘−1 as in-

put, the model is fed the actual ground-truth frame 𝑘 − 1 from the dataset. This method

significantly improves training stability and convergence, allowing the model to learn

24

Figure 4.2: Autoregressive encoding-forecasting ConvLSTM network [26]

faster by always receiving the correct input. However, teacher forcing has never learned

to rely on its own predictions. While teacher forcing accelerates training, it is not practi-

cal for real-time applications, as it does not reflect the actual conditions of precipitation

forecasting.

Figure 4.3: Basic encoding-forecasting ConvLSTM network

4.1.2 ConvLSTM2D Layers

We use ConvLSTM2D from tensorflow.keras.layers, which is an extension of LSTMs that

incorporates convolutional operations inside its gates. The function’s key parameters in

the model include:

• filters – The number of feature maps learned at each ConvLSTM layer.

• kernel_size - The size of the convolutional filter applied at each step.

• padding=’same’ - Adds additional rows and columns of pixels around the edges

of the input data so that the size of the output feature map is the same as the size of

the input data. This is achieved by adding rows and columns of pixels with a value

of zero around the edges of the input data before the convolution operation.

• return_sequences=True – Ensures that each ConvLSTM layer returns the en-

tire sequence, allowing temporal dependencies to be preserved throughout the net-

25

work.

• input_shape=(num_input_frames, 77, 142, 1) – Defines the shape of the input

sequence (time steps, height, width, channels).

EachConvLSTM2D layer applies convolutional filters to extract spatial features. For

first layer we use bigger kernel sizes like 7x7 or 5x5 because it attempts to capture wider

spatial context. In precipitation data, storms can have large spatial coverage, so a bigger

kernel can gather a broader region of rainfall patterns right away. Aswe go deeper, kernel

sizes are decreasing in size like 3x3. With that size it is easier to capture small patterns.

It is still good to capture local structures.

Filters represent how many distinct feature maps each layer can learn. Regarding

number of filters, they are increasing in size as we go deeper into network. Smaller

number of filters at beginning means computation cost is lower (16, 32). Later, network

is learning more complex patterns, so number of filters is increasing (64, 128) . As well

there aremore abstract features, whichmight requiremore channels to represent distinct

precipitation structures, movements, different intensities etc.

A 7x7 kernel is used for the first layer, which can capture broader spatial dependen-

cies because first layer is not yet focused on fine details. Number of filters or feature

maps for first layer is 32. Second layer uses kernel of size 5x5 as it can improve the fea-

tures extracted by the first layer. Chosen number of filters for second layer is 64. Last two

ConvLSTM2D layers use 3x3 kernel and number of feature maps 64, 128 respectively for

last layer.

4.1.3 Batch Normalization

Batch Normalization (BatchNorm) is a technique used to keep the input values of

each layer stable during training. It works by adjusting the distribution of activations

(outputs of neurons) within each mini-batch. This is done by adding extra layers that

modify the activation values so that theirmean becomes zero and their variance becomes

one. After this normalization step, the values are usually scaled and shifted using train-

able parameters, allowing the model to maintain its flexibility in learning patterns. The

normalization process takes place before the non-linearity of the previous layer and it

26

is applied to reduce big weights [27]. Independently for each feature in the batch it is

computed :

�̂�𝑖 =
𝑥𝑖 − 𝜇√
𝜎2 + 𝜖

. (4.1)

In equation(4.1) 𝜇 represent mean of inputs and 𝜎2 represents variance of inputs. 𝜖

is added for numerical stability.

After normalization, the inputs are scaled and shifted using learnable parameters 𝛾

and 𝛽, as shown in equation(4.2).

𝑦𝑖 = 𝛾 ⋅ �̂�𝑖 + 𝛽 (4.2)

Batch normalization is especially useful in ConvLSTMmodels, where activations can

vary significantly due to the complex interactions between spatial and temporal depen-

dencies.

4.1.4 TimeDistributed Layer

In teacher-forcing model decoder processes a sequence of frames at once, so we use

TimeDistributed from tensorflow.keras.layers, to apply the sameConv2Doperation across

all time steps. This ensures that eachpredicted frame in the output sequence goes through

the same transformation. Output at the end has one output channel (filters=1), as we

are predicting grayscale precipitation maps. The kernel size is 1×1, meaning the layer

acts as a final mapping function rather than learning spatial features. In contrast, in the

auto-regressive model, you generate one frame at a time in a loop. At each iteration you

only have a single frame (no extra time dimension) so you can apply a standard Conv2D

directly without wrapping it in TimeDistributed.

27

4.2 Model Training and Optimization

4.2.1 Splitting the data

Dataset is split into train and validation sets. Train set is used for learning the patterns

in data. The model adjusts its internal parameters during this phase to minimize the

prediction error. Validation set is used to determine how well model is preforming and

based on validation loss weights are being updated to improve generalization. Train set

consists of 80% of data and remaining 20% represents validation set. Initially dataset was

split into train, validation and test set but there were too little data to work with.

4.2.2 Loss Function

The main problem with dataset is its extreme imbalance because most pixels contain no

precipitation (zeros), forming the majority of the dataset. Only a small portion of pixels

represent actual precipitation, which is crucial for accurate forecasting.

The MSE loss function handles equally the error raised by the samples across whole

dataset, this happens to be true for problems with balanced dataset. However, the model

being developed is biased toward the majority values when it comes to the unbalanced

dataset [28]. For precipitation data, if we used standard MSE, the model would be bi-

ased towardsminimizing errors on background pixels, potentially ignoring precipitation

regions. That is why we are introducing weighted Mean Squared Error which is ap-

plying higher weights to precipitation pixels. For that reason the loss function forces

themodel to prioritize learning from precipitation areas, leading to improved forecasting

accuracy.

The equation(4.3) represents describedweighted Mean Squared Error:

ℒ𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑀𝑆𝐸 =
1

𝑁

∑
𝑖

𝑤𝑖 ⋅ (𝑦𝑡𝑟𝑢𝑒,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)
2. (4.3)

Where 𝑤𝑖 is the weight assigned to each pixel, defined as in equation(4.4):

28

𝑤𝑖 =

⎧
⎨⎩
𝑤𝑒𝑖𝑔ℎ𝑡_𝑓𝑎𝑐𝑡𝑜𝑟, if 𝑦𝑡𝑟𝑢𝑒,𝑖 ≥ 0.3 (precipitation pixel)

1, if 𝑦𝑡𝑟𝑢𝑒,𝑖 = 0 (background pixel).
(4.4)

The functionmodifies the standardMSE loss by introducing aweight factor that gives

more importance to precipitation pixels than background pixels. Used weight factor was

3.0 making it not to large so the model is not predicting too much false positive. This is

ensuring that error in precipitation areas contribute more to total loss, so the model tries

not to miss precipitation. ℒ𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑀𝑆𝐸 in equation(4.3) is the total weighted MSE loss. 𝑁

is the total number of pixels in the batch. 𝑦𝑡𝑟𝑢𝑒,𝑖 represents actual value(ground truth) of

the 𝑖-th pixel.

4.2.3 Optimizer and Learning Rate

In deep learning, the learning rate (𝜂) determines how large the steps are when updat-

ing the model’s weights in order to minimize the loss function. This process is guided by

an optimization algorithm, often Gradient Descent, which moves the model’s parame-

ters in the direction that reduces the error.

The learning rate controls how fast or slow this descent happens. If the learning rate

is too high, the model might take large steps, overshooting the minimum and causing

instability, making it difficult to converge. If the learning rate is too low, themodelmakes

very small adjustments, leading to slow convergence, which can result in unnecessarily

long training times[29].

To handle this issue, learning rate schedulers are often used to adjust the learning

rate dynamically during training. In this study, we use ReduceLROnPlateau from ten-

sorflow.keras.callbacks, which reduces the learning rate when the model’s improvement

slows down. This techniquemonitors the validation loss and, if it does not decrease for a

set number of epochs, the learning rate is automatically reduced. By lowering the learn-

ing rate at the right time, this scheduler helps the model converge efficiently and stably,

without requiring the learning rate to be manually tuned at every step. These schedules

have to be defined in advance and because of that are unable to adapt to a dataset’s char-

acteristics [30]. In the model we set patience parameter to 5, which represent number of

29

epochs with no improvement after which learning rate will be reduced.

Adam (AdaptiveMoment Estimation) is an extension of Stochastic Gradient De-

scent (SGD) that automatically adjusts the learning rate for each parameter during train-

ing. This makes it particularly effective for complex models like ConvLSTM, where op-

timal learning rates can vary across different weights. In this study, we use the Adam

optimizer from tensorflow.keras.optimizers, which is one of the most commonly used op-

timization algorithms in deep learning. It performs well on non-stationary problems,

such as precipitation forecasting, where data patterns change over time.

In this implementation, Adam is used with a learning rate scheduler (ReduceLROn-

Plateau) to dynamically reduce the learning ratewhen training improvements slowdown,

ensuring efficient and stable convergence.

4.2.4 Early Stopping and Regularization

Early Stopping is a formof regularization used to prevent overfitting. Itmonitors a spec-

ified performance metric, such as validation loss, during training. If this metric doesn’t

improve for a defined number of epochs (patience), training is stopped. This approach

ensures the model doesn’t continue to learn noise from the training data, which can de-

grade its performance on unseen data. [31].

Figure 4.4: Early stopping halts the training after defined number of epochs [32]

30

In themodel Early Stopping is implementedusing tensorflow.keras.callbacks.EarlyStopping.

Early Stopping and ReduceLROnPlateau combined make a training more efficient. With

these two callbacks we are giving the model a chance to escape local minimum and pre-

vent overfittitng.

4.2.5 Training Procedure and Hyperparameters

To get the best results when training a deep learning model, batch size and number

of epochs must be carefully chosen. While epochs specify how many times the model

sees the complete dataset during training, batch size dictates howmany samples are pro-

cessed prior to updating the model’s weights. A larger batch size generally leads to more

stable updates but requires more memory, while a smaller batch size allows for finer

weight updates but may introduce more noise. Equally it is important to choose the

appropriate number of epochs, too few epochs may lead to underfitting, while too many

may cause overfitting, where themodel learns patterns specific to the training data rather

than generalizing to unseen data [33].

In this study, adjusting these parameters was particularly challenging due to the com-

putational demands of the ConvLSTM model. Training required processing large se-

quences of high-resolution radar images while preserving spatial and temporal depen-

dencies. Running this model on a local machine proved to be computationally expensive

and impractical, as training iterations were extremely slow, and memory limitations re-

stricted batch sizes. The model’s complexity, together with the need for multiple hyper-

parameter adjustments, resulted in long training times, making it difficult to efficiently

optimize the network.

While training deep learningmodels on standardhardware can be practical for smaller

architectures, handling spatiotemporal radar data with ConvLSTM required access to

more powerful computing resources.

31

4.3 Training on Supek Supercomputer

4.3.1 Motivation for Using High-Performance Computing (HPC)

As mentioned before, due to computational constraints, it was necessary to use the Su-

pek supercomputer for training. The high-performance computing (HPC) environment

provided the necessary GPU acceleration and memory capacity to process large batches

and speed up training significantly [34]. This allowed for more efficient experimenta-

tion, enabling adjustments to batch size, learning rate, and other hyperparameters in a

possible timeframe.

4.3.2 Configuring the Training Environment

The access to usage of supercomputer Supek was provided by Srce, Sveučilišni račun-

ski centar in Zagreb. For this study we used their service - Advanced computing (hrv.

Napredno računanje).

The Supek supercomputer provides scientists with a cutting-edge computing envi-

ronment for High-Performance Computing (HPC). HPC enables the execution of com-

putationally intensive applications that require significant processing power and various

computational resources, includingCPUcores, accelerators such asGPUs,memory, stor-

age, and high-speed networking. Supek is built using HPE Cray technology, featuring a

total of 8,384 CPU cores and 81 GPUs, along with 32 TB of RAM. It delivers a compu-

tational power of 1.25 PFLOPS, making it the first petascale supercomputer in Croatia

[35]. Figure4.5 is representing Supek which is located on campus Borongaj in Zagreb.

Job submission with PBS

Using the Supek supercomputer for training deep learning models involves a structured

approach to job submission and resourcemanagement. The process is made through the

Portable Batch System (PBS), a job scheduler that efficiently allocates computational

resources [37].

To execute a training task, you create a job script—named run.sh—which specifies

the required resources and execution parameters. This script is then submitted to the

PBS queue using the qsub run.sh command.

32

Figure 4.5: Supercomputer Supek based in Zagreb [36]

Listing 4.1: Example Job Script run.sh

#!/bin/bash

#PBS -q gpu

#PBS -l select =1: ncpus =16: ngpus =2: mem=32GB

#PBS -l walltime =06:00:00

#PBS -N precipitation_prediction

#PBS -o output.log

#PBS -e error.log

#PBS -V

Load the TensorFlow module

module load scientific/tensorflow /2.10.1 - ngc

Execute the training script

run -singlenode.sh /user/project/model.py

With this script, it is requested one node with 16 CPU cores, 2 GPUs and 32GB of

memory. It is also assignedwalltime formaximum job duration of 6 hours, where towrite

output and error logs. Also it is important to note that it is needed to load TensorFlow

33

module version 2.10.1 optimized for NVIDIA GPUs as these are Supek’s requirements.

TensorFlow Implementation on Supek

Supek provides optimized TensorFlow modules for efficient deep learning training. As

alreadymentioned by loading the appropriateTensorFlowmodule (scientific/tensorflow/2.10.1-

ngc), we are ensuring compatibility with Supek’s hardware and software environment.

There is possibility to run TensorFlow scripts on single node, multiple GPUs on single

node (like in run.sh script above) or mulitple GPUs on mulitple nodes. With that set-

tings we need to be careful to adjust everything so themodel works correctly on different

number and sizes of GPUs. Efficient usage of RAM and storage is crucial as well. The

#PBS -l command specifies thememory requirements, ensuring that the job is allocated

sufficient RAM. For storage, it’s important to manage input data and model checkpoints

carefully, especially when dealing with large datasets [38] .

After Training on Supek

Because there is no direct terminal for real-time monitoring, standard output and error

streams are automatically redirected to output.log and error.log files. As the train-

ing script executes on the supercomputer, any print statements, logs, or error messages

appear in these log files instead of a normal console. Once the job finishes, the trained

model and any visualization images are saved in the job’s working directory on the HPC

system. By inspecting the output.log file, we can verify that the training completed

successfully, while the error.log file captures any runtime errors. After the job fin-

ishes, users can retrieve these logs and images from the HPC’s file system to analyze the

model’s performance in detail.

34

5 Results and Discussion

In this study, aConvLSTM-basedEncoder-Decodermodelwas developed to predict short-

termprecipitation using radar images. The goalwas to forecast future radar frames based

on a fixed-length sequence of past frames. Two different training approaches were im-

plemented: auto-regressive prediction and teacher forcing, each with its advantages and

challenges in real-world forecasting.

To evaluate themodel’s performance,WeightedMean SquaredError (WeightedMSE)

loss was used as the primary metric to ensure an evaluation of precipitation forecasts.

This approach gives higher importance to precipitation regions, addressing the data im-

balance issue, where most pixels contain no rainfall. To monitor the model’s training

process, loss curves for both training and validation loss were plotted, providing insights

into convergence behavior, overfitting, and generalization performance. Also to better

present model performance, couple of forecasting metrics were presented - critical suc-

cess index (CSI), false alarm rate (FAR), probability of detection (POD). They are com-

monly used in weather nowcasting to show model behavior.

The model was trained and tested using high-performance computing resources on

the Supek supercomputer, allowing faster computation and better preformance.

5.0.1 Training and validation loss

For model that was trained with teacher-forcing method, number of epochs were set

to 30 and it was used both Early Stopping and reducing of learning rate. Figure5.1 shows

training and validation loss in a model trained using teacher forcing. The initial learn-

ing rate was set to 0.0001, and it was automatically reduced twice using the ReduceL-

ROnPlateau strategy, which monitors validation loss and decreases the learning rate by

a factor of 0.5 when no improvement is observed for four consecutive epochs. The first

35

reduction occurred at around epoch 11, lowering the learning rate to 0.00005, followed

by another reduction at epoch 22, bringing it down to 0.000025. At the start of training,

both the training and validation loss dropped quickly, meaning the model was learning

useful patterns from the data. As training continued, the loss kept decreasing but at a

slower pace, and small ups and downs started appearing. This suggests that the model

was fine-tuning its predictions rather thanmaking big improvements. Since the training

and validation loss followed a similar pattern, it shows that the model was not overfit-

ting. This shows that teacher approach is not experiencing unseen data because it was

learning from ground truth and that model does not have high peeks in learning curve.

Figure 5.1: Plot of Training and Validation loss for model with teacher-forcing

The loss curve for the autoregressive ConvLSTMmodelwith an encoder-decoder

architecture is very unstable and shows a lot of ups and downs, which means the model

had trouble learning properly and making good predictions shown in Figure5.2. Unlike

the teacher-forcing method, where the model always learns from the correct answers at

each step, the autoregressivemodelmakes predictions based on its ownprevious guesses.

This creates a problem called error accumulation—if the model makes a small mistake

early on, that mistake keeps growing as it continues predicting, leading to worse results

over time[39]. The big jumps in the validation loss suggest that the model struggled to

stay consistent when making predictions. Also, early stopping happened quite early in

36

training, meaning the model couldn’t improve much and even started overfitting (mem-

orizing the training data instead of learning useful patterns) or making predictions that

got worse instead of better. Unlike the autoregressive model, the teacher-forcing model

Figure 5.2: Plot of Training and Validation loss for autoregressive model

had a much smoother and more stable loss curve, with both training and validation loss

gradually decreasing in a similar way. Thismeans themodel was learning in a steady and

controlled manner without sudden changes. Because it always used the correct answers

(ground truth) during training, it avoided the problem of errors building up over time,

which helped it make better predictions on new data. While the autoregressive model

struggled to stay accurate when making future predictions, the teacher-forcing model

performed more consistently throughout training. Both models used early stopping and

learning rate adjustments, but they had different outcomes. The teacher-forcing model

improved its predictions step by step, while the autoregressivemodel remained unstable,

with unpredictable changes in validation loss.

37

5.0.2 Precipitation forecast

Teacher-forcing approach

To see howmodel is behaving on already seen data - train set there is Figure5.3 showing

14 input frames used for precipitation forecasting on the left side of the image, which

represent the initial conditions for the model. These frames have been denormalized,

meaning they reflect real-world precipitation intensity values. They are not represented

in scaled version of data that was fed to the model. Middle and right frames provide

a comparison between the ground truth (actual precipitation frames) and the model’s

predicted frames. Ground truth frames from 1 to 14 are actually frames from 14 to 28

that are following input frames.

To evaluate how themodel generalizes to unseen data, Figure5.4 presents predictions

on the validation dataset. Similar to the training set visualization, the left side of the

image displays the 14 input frames that serve as initial conditions for forecasting and

middle and right shows ground truth and predictions, respectively. Unlike the training

case, where themodel had already seen similar patterns during training, these validation

predictions assess how well the model can generalize to new sequences without prior

exposure.

With the teacher-forcing approach, the model makes predictions that look very sim-

ilar to the actual ground truth images. The predicted precipitation patterns match well

with the expected ones, showing that the model correctly captures how rainfall moves

and changes over time. This happens because, during training, the model always uses

the correct previous frame as input, helping it learn more accurately. The visualization

clearly shows that the predictions remain stable and follow the real patterns closely. The

results are well-organized and easy to understand, making it simple to check how accu-

rate the forecast is. This proves that training with teacher forcing helps the model learn

effectively, allowing it to make high-quality predictions without big mistakes building

up over time.

38

Figure 5.3: Teacher forcing approach for train set. On the left first 14 input frames that were fed
to model, middle frames are representing next 14 frames of ground truth, on the right there are
predictions that should resemble ground truth 39

Figure 5.4: Teacher forcing approach for validation set. On the left first 14 input frames that
were fed to model, middle frames are representing next 14 frames of ground truth, on the right
there are predictions that should resemble ground truth 40

Autoregressive model approach

Next, there are images showing results of the autoregressive model approach for pre-

cipitation forecasting. Figure5.5 shows frames for train data. It represents the 14 input

frames on the left, while in themiddle there is ground truth (actual precipitation frames)

and model’s predicted frames on the right. Unlike the teacher-forcing approach, the au-

toregressive model generates predictions based on its own previous outputs rather than

using the actual ground truth at each step.

The Figure5.6 shows frames for validation data. Here we can see that error accumu-

lated over time is giving worse outputs as time is progressing.

41

Figure 5.5: Autoregressive model approach for train set. On the left first 14 input frames that
were fed to model, middle frames are representing next 14 frames of ground truth, on the right
there are predictions that should resemble ground truth 42

Figure 5.6: Autoregressive model approach for validation set. On the left first 14 input frames
that were fed to model, middle frames are representing next 14 frames of ground truth, on the
right there are predictions that should resemble ground truth 43

The predictions from the autoregressivemodel are noticeably less accurate compared

to those from the teacher-forcing model. Initially, the first few predicted frames show

some resemblance to the actual precipitation patterns, but as the prediction sequence

continues, the model starts to lose important details, and the predicted precipitation ar-

eas fade or become deformed. This happens due to error accumulation—if the model

makes a small mistake early on, that error carries over into the next step, which is then

used as input for future predictions. As a result, the errors keep growing, leading to an

increasing mismatch between predictions and actual precipitation patterns.

Unlike the teacher-forcing model, which produces stable and well-structured fore-

casts, the autoregressive model struggles with consistency and accuracy over longer se-

quences. The loss of detail and the breakdown of precipitation patterns in later frames

suggest that the model has difficulty maintaining reliable predictions as it moves further

into the future. One major reason for this is the limited amount of training data, espe-

cially the small number of samples containing heavy rainfall events. Since themodel did

not see enough examples of extreme weather conditions during training, it struggles to

accurately predict them when they appear in the forecast.

Additionally, issues with the dataset itself contributed to these problems. Some im-

ages in the dataset were corrupted or contained errors, so it was hard to find batches with

28 consecutive frames. Because of that, number of batches and total images were very

small. Another interesting issue is seen in the first predicted frame, where the model

predicts too much heavy rain compared to the actual ground truth. This happens be-

cause the model was trained entirely in an autoregressive manner, meaning it always

used its own past predictions during training. If the training data lacks enough diverse

examples—especially for rare extreme rainfall events—themodel can develop biases and

misjudge the initial state, leading to false rainfall predictions. This error in the first frame

sets off a chain reaction, causing the errors to grow as the model continues predicting

future frames. The combination of insufficient diverse data, errors in the dataset, and

the natural tendency of autoregressive models to accumulate mistakes contributed to

the weaker predictions compared to teacher-forcing method. Improving the dataset by

increasing the number of high-intensity rainfall events could help the model perform

better in future experiments.

44

5.0.3 Precipitation nowcasting metrics

In precipitation nowcasting, we often convert predictions and ground-truth data into

simple rain/no-rainmaps using a chosen threshold. For this task it was taken 0.3 because

below that threshold all pixels were treated as no rain and everything above that it was

rain. Once we do this, we can count how many times the model correctly predicts rain

(hits), how many times it predicts rain when it’s actually dry (false alarms), and how

many times it misses real rain (misses). Three useful metrics come from these counts:

the Probability of Detection (POD), which tells us how often the model successfully

catches real rain events. The False Alarm Ratio (FAR), which reveals how frequently

the model predicts rain when there’s none. The Critical Success Index (CSI), a single

score combining hits, misses, and false alarms into an overall measure of performance.

Taken together, these metrics show how well the model identifies where and when rain

will fall, helping us understand both its accuracy and its tendency to over- or under-

predict rain events in real situations.

Equations(5.1) show how the POD, FAR and CSI are calculated.

𝑃𝑂𝐷 =
hits

hits + misses
,

𝐹𝐴𝑅 =
false alarms

hits + false alarms
,

𝐶𝑆𝐼 =
hits

hits + misses + false alarms
.

(5.1)

Teacher-forcing approach

Table 5.1: Precipitation nowcasting metrics shown on teacher-forcing approach

Teacher-forcing approach POD FAR CSI

train set 0.86 0.033 0.83
validation set 0.81 0.075 0.76

The teacher-forcing model performs exceptionally well on the training set, achiev-

ing a high CSI (0.83), meaning it correctly captures most rain/no-rain events. It has an

extremely low FAR (0.033), so when it predicts rain, it’s rarely wrong. Its POD (0.86) is

strong, meaning it successfully identifies most precipitation events. On the validation

set, the CSI remains high (0.76), showing good forecasting skill, but the false alarm rate

45

increases slightly (0.075), meaning it predicts rain incorrectly a bit more often. The POD

remains solid (0.81), still detectingmost rain events, thoughwith slightly less confidence.

This is expected because themodelwas trained by always seeing the correct previous step

(teacher-forcing), which makes it highly accurate for familiar patterns.

Autoregressive model approach

Table 5.2: Precipitation nowcasting metrics shown on autoregressive model approach

Autoregressive model approach POD FAR CSI

train set 0.566 0.190 0.499
validation set 0.679 0.419 0.456

The auto-regressive model feed its own predictions back as input, mimicking real-

world forecasting. It has a moderate CSI (0.45–0.50), indicating decent but not perfect

performance. On the validation set, the false alarm rate (FAR) rises significantly (0.42

versus 0.19 in training), meaning it falsely predicts rain more often on new sequences.

However, it also detects actual rain events more aggressively, with a higher POD (0.68 on

validation versus 0.57 in training). This suggests that the model is better at catching real

precipitation but does so at the cost of more false alarms. This trade-off is common in

precipitation forecasting, going for higher detection can lead to more incorrect predic-

tions, impacting overall accuracy [19].

Comparing the two, the teacher-forcing model excels in controlled training condi-

tions because it always gets the correct previous step as input, making its predictions

highly accurate. The auto-regressive model, while less accurate overall, is more realis-

tic because it learns to handle its own predictions over multiple steps. As a result, it

performs better in real-world forecasting, where errors can accumulate over time.

46

6 Conclusion

This study explored the use of deep learning models for precipitation forecasting using

satellite image sequences. Two main approaches were tested: the teacher-forcing model

and the autoregressive model. The results showed that the teacher-forcing model pro-

vided more stable and structured predictions, while the autoregressive model struggled

with errors building up over time, leading to less accurate forecasts. The teacher-forcing

approach performed well because it always used the correct past frames during training,

allowing it to make reliable predictions. In contrast, the autoregressive model predicted

each new frame based on its own past predictions, which caused small mistakes to grow

and made long-term forecasts less reliable. Another issue in the autoregressive model

was overestimating precipitation in the first predicted frame, likely due to biases in the

training data and the small number of extreme weather events in the dataset. Addition-

ally, the dataset contained some corrupted images and inconsistencies, which may have

negatively affected the model’s learning process.

To improve futuremodels, several key changes should bemade. First, expanding and

improving the dataset by including more extreme rainfall events would help the model

learn better patterns. Second, instead of fully autoregressive training, a hybrid approach

could be used, where the model gradually shifts from using real past frames to using its

own predictions, making it more stable. Third, better loss functions and regularization

techniques could be introduced. Additionally, exploring newer architectures like Trans-

formers. Also problem can be viewed from other angle - not having another inputs like

course of wind, terrain of the surrounding area on the map, sea influence and a lot of

other variables that significantly contribute to model predictions.

Despite its challenges, this research highlights the potential of deep learning models

in precipitation forecasting. While the teacher-forcing model provided better short-term

47

accuracy, the autoregressive model faced difficulties in long-term predictions. By ad-

dressing these issues and applying the suggested improvements, future models could

provide more accurate and reliable weather forecasts.

48

References

[1] F. Schmid, Y. Wang, and A. Harou. Nowcasting guidelines – a summary. [On-

line]. Available: https://wmo.int/media/magazine-article/nowcasting-guidelines-

summary

[2] Y. Zhang, M. Long, K. Chen, L. Xing, R. Jin, M. I. Jordan, and J. Wang, “Skilful

nowcasting of extreme precipitation with nowcastnet,” Nature, vol. 619, no. 7970,

pp. 526–532, 2023. https://doi.org/10.1038/s41586-023-06184-4

[3] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W. chun Woo, “Deep

learning for precipitation nowcasting: A benchmark and a new model,” 2017,

available at https://arxiv.org/abs/1706.03458.

[4] S. Chen, G. Long, J. Jiang, D. Liu, and C. Zhang, “Foundation models for weather

and climate data understanding: A comprehensive survey,” 2023. [Online].

Available: https://arxiv.org/abs/2312.03014

[5] J. Brownlee. (2021) What is teacher forcing for recurrent neural networks?

Accessed: January 2025. [Online]. Available: https://machinelearningmastery.

com/teacher-forcing-for-recurrent-neural-networks/

[6] Daljinska meteorološka mjerenja - radari. [Online]. Available: https://meteo.hr/

infrastruktura.php?section=mreze_postaja¶m=dmm

[7] Dhmz radar composites. Accessed: January 2025. [Online]. Available: https://

meteo.hr/naslovnica_radarska-slika.php?tab=radari&idr=kompozit¶m=stat

[8] Colormap reference. Accessed: January 2025. [Online]. Available: https:

//matplotlib.org/stable/gallery/color/colormap_reference.html

49

https://wmo.int/media/magazine-article/nowcasting-guidelines-summary
https://wmo.int/media/magazine-article/nowcasting-guidelines-summary
https://doi.org/10.1038/s41586-023-06184-4
https://arxiv.org/abs/1706.03458
https://arxiv.org/abs/2312.03014
https://machinelearningmastery.com/teacher-forcing-for-recurrent-neural-networks/
https://machinelearningmastery.com/teacher-forcing-for-recurrent-neural-networks/
https://meteo.hr/infrastruktura.php?section=mreze_postaja¶m=dmm
https://meteo.hr/infrastruktura.php?section=mreze_postaja¶m=dmm
https://meteo.hr/naslovnica_radarska-slika.php?tab=radari&idr=kompozit¶m=stat
https://meteo.hr/naslovnica_radarska-slika.php?tab=radari&idr=kompozit¶m=stat
https://matplotlib.org/stable/gallery/color/colormap_reference.html
https://matplotlib.org/stable/gallery/color/colormap_reference.html

[9] What is a neural network? Accessed: January 2025. [Online]. Available:

https://www.ibm.com/think/topics/neural-networks

[10] H. Bommana. (2019) Single node representation. Accessed: January 2025.

[Online]. Available: https://miro.medium.com/v2/resize:fit:1400/format:webp/

1*SaQMHTLi4C7MIA4IzjAXJw.png

[11] A. LeNail. (2023) Nn-svg: Neural network svg generator. Accessed: January 2025.

[Online]. Available: https://alexlenail.me/NN-SVG/index.html

[12] J. Krapac and S. Šegvić. Konvolucijski modeli. Accessed: January 2025. [Online].

Available: https://www.zemris.fer.hr/~ssegvic/du/du2convnet.pdf

[13] J. Padarian, A. B. Mcbratney, and B. Minasny. Representation of kernel with

size of 3x3 and corresponding feature map. Accessed: January 2025. [Online].

Available: https://www.researchgate.net/figure/Example-of-the-first-3-steps-of-a-

convolution-of-a-3x3-filter-over-a-5x5-array-image_fig1_329241581

[14] J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “Enhanced radar imaging using

a complex-valued convolutional neural network,” 2018. [Online]. Available:

https://arxiv.org/abs/1712.10096

[15] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated

recurrent neural networks on sequence modeling,” 2014. [Online]. Available:

https://arxiv.org/abs/1412.3555

[16] H. D. Trinh, “Data analytics for mobile traffic in 5g networks using machine

learning techniques,” 2020. [Online]. Available: https://api.semanticscholar.org/

CorpusID:230701926

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735

[18] J. Luo and X. Zhang, “Convolutional neural network based on attention

mechanism and bi-lstm for bearing remaining life prediction,” vol. 52, no. 1, pp.

1076–1091, 2022. https://doi.org/10.1007/s10489-021-02503-2

50

https://www.ibm.com/think/topics/neural-networks
https://miro.medium.com/v2/resize:fit:1400/format:webp/1*SaQMHTLi4C7MIA4IzjAXJw.png
https://miro.medium.com/v2/resize:fit:1400/format:webp/1*SaQMHTLi4C7MIA4IzjAXJw.png
https://alexlenail.me/NN-SVG/index.html
https://www.zemris.fer.hr/~ssegvic/du/du2convnet.pdf
https://www.researchgate.net/figure/Example-of-the-first-3-steps-of-a-convolution-of-a-3x3-filter-over-a-5x5-array-image_fig1_329241581
https://www.researchgate.net/figure/Example-of-the-first-3-steps-of-a-convolution-of-a-3x3-filter-over-a-5x5-array-image_fig1_329241581
https://arxiv.org/abs/1712.10096
https://arxiv.org/abs/1412.3555
https://api.semanticscholar.org/CorpusID:230701926
https://api.semanticscholar.org/CorpusID:230701926
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s10489-021-02503-2

[19] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W. kin Wong, and W. chun Woo,

“Convolutional lstm network: A machine learning approach for precipitation

nowcasting,” 2015. [Online]. Available: https://arxiv.org/abs/1506.04214

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

http://www.deeplearningbook.org.

[21] G. Farooque, L. Xiao, J. Yang, and A. B. Sargana, “Hyperspectral image

classification via a novel spectral–spatial 3d convlstm-cnn,” Remote Sensing,

vol. 13, p. 4348, 10 2021. https://doi.org/10.3390/rs13214348

[22] L. Li and N. Sun, “Attention-based dsc-convlstm for multiclass motor imagery

classification,” Computational Intelligence and Neuroscience, vol. 2022, pp. 1–13,

05 2022. https://doi.org/10.1155/2022/8187009

[23] R. Behera. Numerical algorithms and tensor learning laboratory. Accessed:

January 2025. [Online]. Available: https://cds.iisc.ac.in/faculty/ratikanta/lab.html

[24] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural

networks,” 2014. [Online]. Available: https://arxiv.org/abs/1409.3215

[25] A. Lamb, A. Goyal, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio, “Professor

forcing: A new algorithm for training recurrent networks,” 2016. [Online].

Available: https://arxiv.org/abs/1610.09038

[26] S. Shastri, K. Singh, S. Kumar, P. Kour, and V. Mansotra, “Time series forecasting

of covid-19 using deep learning models: India-usa comparative case study,”

Chaos, Solitons and Fractals, vol. 140, p. 110227, 2020. https://doi.org/https:

//doi.org/10.1016/j.chaos.2020.110227

[27] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normalization

help optimization?” 2019. [Online]. Available: https://arxiv.org/abs/1805.11604

[28] L. Raguram and V. S, “A weighted mean square error technique to train deep

belief networks for imbalanced data,” International journal of simulation: systems,

science and technology, vol. 19, 02 2019. https://doi.org/10.5013/IJSSST.a.19.06.14

51

https://arxiv.org/abs/1506.04214
http://www.deeplearningbook.org
https://doi.org/10.3390/rs13214348
https://doi.org/10.1155/2022/8187009
https://cds.iisc.ac.in/faculty/ratikanta/lab.html
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1610.09038
https://doi.org/https://doi.org/10.1016/j.chaos.2020.110227
https://doi.org/https://doi.org/10.1016/j.chaos.2020.110227
https://arxiv.org/abs/1805.11604
https://doi.org/10.5013/IJSSST.a.19.06.14

[29] S. Ruder, “An overview of gradient descent optimization algorithms,” 2017.

[Online]. Available: https://arxiv.org/abs/1609.04747

[30] “Neural networks for signal processing ii. proceedings of the ieee-sp workshop

(cat. no.92th0430-9),” in Neural Networks for Signal Processing II Proceedings of the

1992 IEEE Workshop, 1992. https://doi.org/10.1109/NNSP.1992.253714

[31] L. Prechelt, Early Stopping — But When? Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012, pp. 53–67. https://doi.org/10.1007/978-3-642-35289-8_5

[32] R. Gençay. Early stopping. Accessed: January 2025. [Online]. Available:

https://www.researchgate.net/figure/Early-stopping-based-on-cross-validation_

fig1_3302948

[33] Epochs, batch size, iterations - how are they important to training ai and

deep learning models. Accessed: January 2025. [Online]. Available: https:

//www.sabrepc.com/blog/Deep-Learning-and-AI/Epochs-Batch-Size-Iterations

[34] P. Imperatore, A. Pepe, and E. Sansosti, “High performance computing in satellite

sar interferometry: A critical perspective,” Remote Sensing, vol. 13, no. 23, 2021.

https://doi.org/10.3390/rs13234756

[35] Napredno računanje. Accessed: January 2025. [Online]. Available: https:

//www.srce.unizg.hr/napredno-racunanje

[36] Supercomputer supek. Accessed: January 2025. [Online]. Available: https:

//www.srce.unizg.hr/vijesti/izdvajamo-iz-sn-96-usporedba-superracunala-supek-

s-vrhunskim-europskim-superracunalima/879

[37] Pokretanje i upravljanje poslovima(supek). Accessed: January 2025. [On-

line]. Available: https://wiki.srce.hr/spaces/NR/pages/121966084/Pokretanje+i+

upravljanje+poslovima+Supek

[38] Tensorflow supek. Accessed: January 2025. [Online]. Available: https:

//wiki.srce.hr/spaces/NR/pages/121964613/TensorFlow

52

https://arxiv.org/abs/1609.04747
https://doi.org/10.1109/NNSP.1992.253714
https://doi.org/10.1007/978-3-642-35289-8_5
https://www.researchgate.net/figure/Early-stopping-based-on-cross-validation_fig1_3302948
https://www.researchgate.net/figure/Early-stopping-based-on-cross-validation_fig1_3302948
https://www.sabrepc.com/blog/Deep-Learning-and-AI/Epochs-Batch-Size-Iterations
https://www.sabrepc.com/blog/Deep-Learning-and-AI/Epochs-Batch-Size-Iterations
https://doi.org/10.3390/rs13234756
https://www.srce.unizg.hr/napredno-racunanje
https://www.srce.unizg.hr/napredno-racunanje
https://www.srce.unizg.hr/vijesti/izdvajamo-iz-sn-96-usporedba-superracunala-supek-s-vrhunskim-europskim-superracunalima/879
https://www.srce.unizg.hr/vijesti/izdvajamo-iz-sn-96-usporedba-superracunala-supek-s-vrhunskim-europskim-superracunalima/879
https://www.srce.unizg.hr/vijesti/izdvajamo-iz-sn-96-usporedba-superracunala-supek-s-vrhunskim-europskim-superracunalima/879
https://wiki.srce.hr/spaces/NR/pages/121966084/Pokretanje+i+upravljanje+poslovima+Supek
https://wiki.srce.hr/spaces/NR/pages/121966084/Pokretanje+i+upravljanje+poslovima+Supek
https://wiki.srce.hr/spaces/NR/pages/121964613/TensorFlow
https://wiki.srce.hr/spaces/NR/pages/121964613/TensorFlow

[39] R. Parthipan, M. Anand, H. M. Christensen, J. S. Hosking, and D. J. Wischik,

“Defining error accumulation in ml atmospheric simulators,” 2024. [Online].

Available: https://arxiv.org/abs/2405.14714

53

https://arxiv.org/abs/2405.14714

Abstract

Weather nowcasting using radar imaging and machine learning

Sara Orlić

This study investigates the use of Convolutional Long Short-Term Memory (ConvL-

STM) networks for precipitation nowcasting using radar images. The model integrates

Convolutional Neural Networks (CNNs) for spatial feature extraction and Long Short-

Term Memory (LSTM) networks for capturing temporal dependencies. The model is

based on an encoder-decoder architecture. A key focus of this study is the comparison

between two forecasting approaches: teacher-forcing and autoregressive prediction. The

teacher-forcingmodel receives the actual ground truth as input at each step during train-

ing. In contrast, the autoregressivemodel generates forecasts by feeding its own previous

predictions as input, mimicking real-world conditions. A key challenge is the data im-

balance, where precipitation covers only a small portion of radar images. To address this,

a WeightedMean Squared Error (MSE) loss function is applied. Training was performed

on the Supek supercomputer, using high-performance computing to overcome standard

hardware limitations. The results show that ConvLSTM effectively predicts short-term

precipitation, achieving high spatial and temporal accuracy. Techniques like adaptive

learning rate scheduling and early stopping further optimize training efficiency, demon-

strating the potential of deep learning for improving weather nowcasting.

Keywords: deep learning; weather prediction; machine learning; ConvLSTM; high-

performance computing

54

Sažetak

Korekcija kratkoročne vremenske prognoze radarskim

snimcima i strojnim učenjem

Sara Orlić

Ovaj rad istražuje primjenu konvolucijskih mreža s dugom kratkoročnom memori-

jom (ConvLSTM) za kratkoročnuprognozu oborina korištenjem radarskih snimaka. Mo-

del objedinjuje konvolucijske neuronske mreže (CNN) za izdvajanje prostornih značajki

i mreže s dugom kratkoročnom memorijom (LSTM) koja je sposobna uočiti dugoročne

vremenske ovisnosti. Model je temeljen na arhitekturi enkoder-dekoder. Poseban nagla-

sak u radu stavljen je na usporedbu dvaju pristupa prognoziranju: teacher-forcing i auto-

regresivno predviđanje. Teacher-forcingmodel tijekom treniranja u svakomvremenskom

koraku kao ulaz prima stvarne vrijednosti iz skupa podataka. Nasuprot tome, autoregre-

sivni model koristi vlastita prethodno predviđena stanja kao ulaz za sljedeći vremenski

korak, oponašajući stvarne uvjete prognoze. Glavni izazov je neuravnoteženost poda-

taka, jer oborine zauzimaju samo mali dio radarskih snimaka. Kako bi se to riješilo, pri-

mjenjuje se funkcija gubitka Weighted Mean Squared Error (MSE). Treniranje podataka

se provodilo na superračunalu Supek, uz visoke računalne performanse koje omogućuju

zaobilaženje standardnih hardverskih ograničenja. Rezultati pokazuju da ConvLSTM

učinkovito predviđa kratkoročne oborine, postižući veliku prostornu i vremensku toč-

nost. Tehnike poput adaptive learning rate scheduling i early stopping dodatno pobolj-

šavaju učinkovitost treniranja, čime dokazujemo da je duboko učenje dobar pristup za

poboljšanje vremenske prognoze za kratkoročno predviđanje vremena (nowcasting).

Ključne riječi: duboko učenje; vremenska prognoza; strojno učenje; ConvLSTM; na-

55

predno računanje

56

	Introduction
	Radar Composites and Data Preparation
	Description of the Dataset
	Data Preprocessing
	Data Shaping for the Model
	Issues with Raw Data and Solutions
	Input and output format

	Prediction model
	Neural networks
	Convolutional Neural Networks (CNNs)
	Recurrent Neural Networks(RNNs)
	Long Short-Term Memory Networks (LSTMs)

	Convolutional LSTM Architecture
	Comparing ConvLSTM with CNNs and LSTMs
	Encoder-Decoder Structure

	The Model
	Model Architecture
	Encoder Decoder Architecture
	ConvLSTM2D Layers
	Batch Normalization
	TimeDistributed Layer

	Model Training and Optimization
	Splitting the data
	Loss Function
	Optimizer and Learning Rate
	Early Stopping and Regularization
	Training Procedure and Hyperparameters

	Training on Supek Supercomputer
	Motivation for Using High-Performance Computing (HPC)
	Configuring the Training Environment

	Results and Discussion
	Training and validation loss
	Precipitation forecast
	Precipitation nowcasting metrics

	Conclusion
	References
	Abstract
	Sažetak

