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Sequential Linear Programming With Adaptive
Linearization Error Limits for All-Time Feasibility

Dorijan Leko , Graduate Student Member, IEEE, and Mario Vašak , Senior Member, IEEE

Abstract—This letter presents an enhanced Trust Region
Method (TRM) for Sequential Linear Programming (SLP)
designed to improve the initial feasible solution to a con-
strained nonlinear programming problem while maintaining
the interim solutions feasibility throughout the SLP itera-
tions. The method employs a polytopic sub-approximation
of the feasible region, defined around the interim solution
as a level set based on variable limits for the linearization
error. This polytopic feasible region is established by using
a trust region that ensures that maximum limits of the
linearization errors are respected. The method adaptively
adjusts the size of the feasible region during iterations to
achieve convergence to a local optimum by employing vari-
able linearization error limits. Local convergence is attained
by reducing the size of the trust radius. A case study
illustrates the effectiveness of the proposed method, which
is compared to the benchmark TRM that uses heuristic
limits on the permissible changes in manipulated variables.

Index Terms—Optimization algorithms, optimization,
computational methods.

I. INTRODUCTION

SEQUENTIAL Linear Programming (SLP) is an
optimization technique designed to approximately solve

nonlinear programming (NLP) problems [1]. This iterative
method relies on local linearizations at interim solution points,
typically achieved through first-order Taylor series expansion,
to identify (local) optimal solutions. The linear approximation
effectively captures the behavior of the original nonlinear
problem in the vicinity of the interim solution. Thus, SLP
requires well-defined moving limits at these points to maintain
interim solution feasibility throughout the iterations and to
ensure convergence of the solution.

There are two main classes of methods for navigating the
manipulated variables through the SLP iterations. The first

Received 16 September 2024; revised 17 November 2024; accepted
2 December 2024. Date of publication 18 December 2024; date of
current version 30 December 2024. This work was supported by
the European Union from the European Regional Development Fund
through the Operative Programme Competitiveness and Cohesion
2014–2020 for Croatia within the Project ‘Dynamic Predictive Health
Protection of an Electric Vehicle Battery’ (EVBattPredtect) under
Contract KK.01.1.1.07.0029 and the Project ‘Machine Learning-Based
Model of Battery Cell Aging for Online Battery Pack Health Protection’
(MLBattProt) under Project NPOO.C3.2.R3-I1.04.0263. Recommended
by Senior Editor S. Olaru. (Corresponding author: Dorijan Leko.)

The authors are with the Department of Control and Computer
Engineering, University of Zagreb Faculty of Electrical Engineering and
Computing, 10000 Zagreb, Croatia (e-mail: dorijan.leko@fer.unizg.hr;
mario.vasak@fer.unizg.hr).

Digital Object Identifier 10.1109/LCSYS.2024.3519547

class, line search methods [2], focuses on finding the best
direction before determining the permissible step size. The
second class, central to this letter, involves Trust Region
Methods (TRMs) [3], where the trust region of moving
limits is established first, followed by identifying the best
solution within that region. The size and shape of the trust
region can significantly impact the feasibility of the solutions
generated during the iteration process. Trust region methods
can incorporate feasibility checks to ensure that proposed
solutions adhere to constraints, which is crucial for practical
applications. However, these feasibility checks can require
numerous iterations, which may significantly increase the
solving time [4].

In practice, developing an efficient algorithm that addresses
a wide range of NLP problems is still challenging. Thus,
ensuring feasibility in TRM across different applications has
a significant focus of research in recent years [5]. Notable
examples include a feasible SLP algorithm for time-optimal
control problems proposed in [6], an Anderson-accelerated
feasible SLP algorithm in [7], and an almost feasible SLP
algorithm [8]. Additionally, a contextual optimization method
based on sample-based trust region dynamics is presented
in [9], along with trust-region inverse reinforcement learn-
ing [10] and a TRM for data-driven iterative learning
control [11]. Nevertheless, the benchmark TRM applicable to
a wide class of nonlinear problems relies on adaptive heuristic
limits for permissible changes in manipulated variables [12].

The benchmark trust region subproblem is formulated as
follows:

min
x∈F

c
(
x∗) + ∇c

(
x∗)�(

x − x∗)

s.t. ‖x − x∗‖ ≤ δ. (1)

Here, the vector x ∈ R
n represents the decision vector within

the feasible set F ⊂ R
n. The vector x∗ ∈ R

n denotes
the operating point, and c : R

n → R is a continuous
differentiable function. The parameter δ ∈ R+ represents the
trust radius. The operator ∇ denotes the gradient, whereas ‖·‖
indicates the Euclidean norm. The trust radius is determined
heuristically based on performance in the previous iteration.
If the objective function is successfully minimized and the
feasibility of the original optimization problem is maintained,
the trust radius is increased by a specified value for the next
iteration. Conversely, if these conditions are not satisfied, the
trust radius is decreased, and the calculation of the trust region
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subproblem is repeated. The parameters such as initial trust
radius and navigation factors between iterations are typically
set heuristically, often informed by the scale of the problem
or domain knowledge.

This letter presents an enhancement of the benchmark
TRM (1) that ensures the feasibility of the interim solution
in each SLP iteration without requiring heuristic trust region
parameters. The methodology employs variable linearization
error limits to construct feasible regions around the interim
solution by adaptively adjusting the size of the trust region
that ensures that limits of the linearization errors are respected.
The trust region is defined as a level set of the linearization
error limit, evaluated using the Lagrange remainder [13] within
a predefined domain. Consequently, the method requires
that all functions are twice continuously differentiable, with
their second derivatives bounded over the specified domain.
Throughout the iterative process, convergence of the local
solution is achieved by adaptively adjusting the trust radius.

The contributions of this letter are as follows:
• Enhanced benchmark TRM to ensure solution feasibility

in each SLP iteration without compromising the solving
complexity;

• Introduced two offline procedures for polytopic sub-
approximation of the feasible region around the interim
solution, each suited to different problem sizes;

• Developed procedure for dynamically adjusting the size
of the trust radius by adaptively modifying variable
linearization error limits with the intention to generate
large feasible regions and thus facilitate convergence to
the SLP solution.

The proposed TRM consists of both offline and online com-
ponents. The offline part involves determining the polytopic
sub-approximation of the trust region as a level set of the
linearization error limit around the interim solution. The online
part includes solving iterative subproblems, which encompass
navigating the trust radius between iterations and solving the
linear program of the subproblem.

This letter is organized as follows. Section II presents the
problem setup and objectives of the proposed TRM. Section III
outlines the procedures for polytopic sub-approximation of
the trust region. Section IV discusses the navigation of
linearization error limits through SLP iterations to achieve con-
vergence. The scalability of the proposed method is analyzed
in Section V. Finally, Section VI applies the proposed method-
ology to solve a constrained NLP problem and compares its
benefits with the benchmark TRM that uses heuristic limits on
permitted changes of manipulated variables.

II. PROBLEM SETUP

This section introduces the problem setup and outlines the
objectives of the enhanced Trust Region Method (TRM) for
solving constrained nonlinear programming (NLP) problems:

min
x∈X

g0(x) s.t. g(x) ≤ 0, (2)

where the vector x ∈ R
n represents the decision variables

bounded by the set X ⊂ R
n. The cost function g0 : Rn → R

and constraint function g : Rn → R
p are twice continuously

differentiable. The feasible region F ⊂ R
n is defined by the

nonlinear constraints as follows:

F = {x ∈ X : g(x) ≤ 0}. (3)

The objective is to enhance the benchmark TRM (1) by
ensuring feasibility at each SLP iteration through the con-
sideration of linearization error limits, while maintaining a
comparable solving complexity for the NLP problems defined
in (2). To establish feasibility around the interim solution, it
is essential to introduce the definitions of the trust region and
the indented half-space, as outlined on the generic constraint
function below.

Let a generic scalar function f : R
n → R be twice

continuously differentiable (i.e., f is of class C2) on a closed
convex set X ⊂ R

n. Suppose there exists x ∈ X such that
f (x) ≤ 0. Additionally, the function is linearized at a feasible
operating point x∗ ∈ X , where f (x∗) ≤ 0 as follows:

fL(x) = f
(
x∗) + J�

f

(
x − x∗), Jf = ∇f

(
x∗), (4)

where Jf ∈ R
n represents the Jacobian of the function f at

the operating point x∗. Furthermore, let the linearization error
limit be represented by a positive real number, i.e., RL ∈ R+.

Definition 1: The trust region T ⊂ R
n of a generic function

f is defined as a level set of the linearization error limit around
an operating point, characterized by the following condition:

T
(
f , x∗, RL

) = {
x ∈ X

∣∣ |f (x) − fL(x)| ≤ RL
}
.

Definition 2: The indented half-space I ⊂ R
n of a generic

function f is defined as a half-space in which the linearized
generic function fL satisfies the constraint f (x) ≤ 0 under the
following condition:

I
(
f , x∗, RL

) = {
x ∈ X

∣∣ f (x) = fL(x) + RL ≤ 0
}
.

The intersection of the trust region and the indented half-
space constructs a feasible region around an operating point,
as stated in the following proposition.

Proposition 1: For any feasible operating point x∗ ∈ X
such that f (x∗) ≤ 0, it is guaranteed that the constraint
f (x) ≤ 0 is satisfied for all

x ∈ T
(
f , x∗, RL

) ∩ I
(
f , x∗, RL

)
, RL ∈ [

0,−f
(
x∗)].

Proof: Let x∗ ∈ X be any feasible operating point, thus
f (x∗) ≤ 0. The linearized constraint function at this point is
given by (4) as fL(x) = f (x∗) + J�

f (x − x∗).
1. For all x ∈ T (f , x∗, RL) ∩ I(f , x∗, RL), the following
inequalities must hold:

|f (x) − fL(x)| ≤ RL and fL(x) + RL ≤ 0.

2. From these inequalities, f (x) can be expressed as:

fL(x) − RL ≤ f (x) ≤ fL(x) + RL ≤ 0.

3. Since x∗ is a feasible operating point with f (x∗) ≤ 0, using
the inequalities above and (4), it follows that:

f (x) ≤ 0 for all 0 ≤ RL ≤ −f
(
x∗).

Thus, for any feasible operating point x∗ and linearization error
limit RL ∈ [0,−f (x∗)], it is guaranteed that the constraint
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f (x) ≤ 0 holds for all x in the intersection of the trust region
and the indented half-space.

The condition that ensures feasibility (Proposition 1) is
extended to the case of multiple constraints defined by p
generic constraint functions, such as f1 ≤ 0, . . . , fp ≤ 0,
which share the same properties as f . Thus, the intersected
feasible region F∩ ⊂ R

n is determined as the level set of p
linearization error limits around the interim solution:

F∩
(
x∗, RL1, . . . , RLp

) =
p⋂

i=1

Fi
(
fi, x∗, RLi

)
, (5)

where Fi ⊂ R
n represents the feasible region for the fi con-

straint function, defined as the intersection of its trust region
Ti and indented half-space Ii: Fi(fi, x∗, RLi) = Ti(fi, x∗, RLi)∩
Ii(fi, x∗, RLi).

III. SUB-APPROXIMATION OF THE TRUST REGION

This section describes two offline procedures for the
polytopic sub-approximation of the feasible region around
an interim solution, based on the intersection of the trust
region and the indented half-space (Proposition 1). Both
procedures leverage the characterization of linearization error
via the Lagrange remainder to establish the polytopic sub-
approximation of the trust region.

The linearization of the generic function f is achieved
by employing the first-order Taylor series and its Lagrange
remainder, as stated in the following theorem.

Theorem 1 [13]: The first-order Taylor series and its
Lagrange remainder of the function f for any x ∈ X around
the operating point x∗ ∈ X is given by:

f (x) = f
(
x∗) + ∇f

(
x∗)�(

x − x∗) + R(x),

where the remainder R : R
n → R is given in Lagrange’s

form by

R(x) = 1

2

(
x − x∗)�∇2f (ξ(x))

(
x − x∗), (6)

for some ξ(x) ∈ {x∗ + c(x − x∗) | c ∈ [0, 1]}.
The absolute value of the Lagrange remainder can be over-

approximated when all second-order partial derivatives of the
function f are bounded on a specific domain, as stated in the
following corollary.

Corollary 1 [13]: If all second-order partial derivatives,
that form the Hessian matrix of the function f are bounded by a
bounding-range matrix M ∈ R

n×n such that |∇2f (ξ(x))| ≤ M
for all ξ(x) ∈ {x∗ + c(x − x∗) | x ∈ X , c ∈ [0, 1]}, then the
Lagrange remainder can be over-approximated by |R(x)| ≤
Rm(x),

Rm(x) = 1

2
|x − x∗|�M|x − x∗|, (7)

where the absolute value of a vector is applied element-wise.
A sub-approximation of the trust region around an operating

point, denoted by T̂ ⊂ R
n, is characterized by ensuring

that the linearization error does not exceed its limit. This is
achieved by employing an over-approximation of the Lagrange
remainder, as stated in the following corollary.

Corollary 2: If all second-order partial derivatives of the
function f are bounded by a bounding-range matrix M ∈ R

n×n

so that |∇2f (ξ(x))| ≤ M for all ξ(x) ∈ {x∗ + c(x − x∗) | x ∈
X , c ∈ [0, 1]}, then the sub-approximation of the trust region
T̂ (f , x∗, RL) ⊂ T (f , x∗, RL) can be characterized as a level set
of the linearization error limit around the feasible operating
point, as follows:

T̂
(
f , x∗, RL

) =
{

x :
1

2
|x − x∗|�M|x − x∗| ≤ RL

}
.

Proof: The trust region around the operating point x∗ ∈ X is
defined by the condition that the linearization error is bounded
by a limit RL:

|R(x)| ≤ Rm(x) ≤ RL, x ∈ X .

By using the over-approximation of the Lagrange remainder
given in (7), where |∇2f (ξ(x))| ≤ M for all ξ(x) ∈ {x∗+c(x−
x∗) | x ∈ X , c ∈ [0, 1]}, it is straightforward to characterize
the region where the linearization error does not exceed its
limit, thereby defining T̂ (f , x∗, RL) as the sub-approximation
of the trust region T (f , x∗, RL).

The quadratic form of the trust region T̂ is symmetric
and can be either convex or non-convex, depending on the
eigenvalues of the bounding-range matrix M. Due to the
symmetry of the quadratic form stemming from the absolute
value applied, it is enough to find the approximation of the
quadratic form in the first orthant (all elements of x − x∗ are
non-negative in it) and map it to the other orthants.

A potentially non-convex set is sub-approximated by a con-
vex set Tc(f , x∗, RL) ⊂ R

n such that Tc ⊆ T̂ . This is achieved
by eliminating negative eigenvalues in the orthonormal basis:

Tc =
{

x :
1

2

(
x − x∗)�Mc

(
x − x∗) ≤ RL

}
, (8)

where Mc ∈ R
n×n is a positive semi-definite matrix defined

as Mc = 0.5V(D + |D|)V�. Here, the diagonal matrix D =
V�MV is obtained through the Gram-Schmidt procedure [14]
to find an orthonormal basis in R

n by the orthogonal matrix
V ∈ R

n×n.

A. Polytopic Sub-Approximation of the Trust Region

The quadratic form of the trust region sub-approximation
is not suitable for use in SLP. Therefore, the following two
propositions outline procedures for constructing a polytopic
sub-approximation of the trust region as a level set of the
linearization error limit around an operating point. The first
procedure offers a polytopic sub-approximation using a hyper-
rectangle constructed by 2n hyperplanes in R

n, whereas the
second procedure provides a polytopic sub-approximation
using a “gem” shape constructed by 2n hyperplanes.

A hyper-rectangle is defined by its center (the operating
point x∗ ∈ R

n) and half-lengths along each dimension h =
(h1, . . . , hn) ∈ R

n, with hi ≥ 0 for i = 1, 2, . . . , n.
Proposition 2: The maximal volume hyper-rectangle

Pt(f , x∗, RL) ⊂ R
n inscribed within the trust region such that

Pt ⊆ Tc, can be expressed as a level set of the linearization
error limit around the feasible operating point, as follows:

Pt = {
x : x∗ − h(RL) ≤ x ≤ x∗ + h(RL)

}
, (9)
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where h(RL) represents the half-lengths as functions of the
linearization error limit. The half-lengths are obtained by
maximizing the volume inside the convex trust region Tc, as
follows:

max
h(RL)

2n
n∏

i=1

hi(RL)

s.t. hT(RL)Mch(RL) − 2RL = 0. (10)

Proof: To find the maximal volume hyper-rectangle
inscribed within the ellipsoid of the convex trust region defined
by (8), the following optimization problem is set up:

max
h(RL)

2n
n∏

i=1

hi(RL)

s.t.
1

2

(
x − x∗)�Mc

(
x − x∗) ≤ RL,

x∗ − h(RL) ≤ x ≤ x∗ + h(RL),

hi(RL) ≥ 0, i = 1, 2, . . . , n. (11)

To ensure the hyper-rectangle fits within the ellipsoid and its
volume is maximized, the vertices must satisfy the ellipsoid
equality, i.e., hT(RL)Mch(RL) = 2RL. Thus, the optimization
problem can be reformulated to (10).

The optimization problem (10) can be effectively solved
using Lagrange multipliers [15], allowing the half-lengths to
be explicitly obtained as functions of the linearization error
limit.

Another possible procedure for sub-approximating the trust
region using a “gem” shape formed by 2n half-spaces is
introduced below.

Proposition 3: The polytopic sub-approximation of the
trust region Pt(f , x∗, RL) ⊂ R

n, such that Pt ⊆ Tc, can be
obtained using a “gem” shape as a level set of the linearization
error limit around the feasible operating point:

Pt =
{

x : diag
(

M + V|D|V�) 1
2 |x − x∗| ≤ 2R

1
2
L

}
, (12)

where D = V�MV is a diagonal matrix. The operator diag(·)
returns a row vector of the matrix diagonal, whereas the square
root and absolute value operators are applied element-wise.

Proof: To obtain a polytopic sub-approximation of Tc as
a “gem” shape, each orthant is approximated by a half-
space as a level set of the linearization error limit around
the operating point. The vertices correspond to the maximum
possible displacements around the operating point along the
coordinate axes, depending on the linearization error limit:
|�xmax,j| =

√
2RL
Mcj

, j = 1, . . . , n, where Mcj is the jth

diagonal element of the matrix Mc. Thus, the polytopic level

set Pt can be expressed as
∑n

j=1|
xj−x∗

j
�xmax,j

| ≤ 1, from where the
final form (12) follows.

IV. ADAPTIVE LIMITS AND CONVERGENCE

This section describes the navigation of the adaptive lin-
earization error limits through SLP iterations, focusing on
adjusting the size of the trust radius and the distance between
the operating point and the indented half-space.

The trust radius rT ∈ R+ is defined as the shortest distance
from the operating point to the boundary of the polytopic sub-
approximation of the trust region, as described in (9) or (12).
It can be expressed as a function of the linearization error limit
in the following form:

rT(RL) =
√

RL

α(Mc)
, (13)

where the constant α(Mc) ∈ R+ depends on the matrix Mc.
For a polytopic sub-approximation using the hyper-rectangle
in (9), α(Mc) is determined using Lagrange multipliers. For
the polytopic sub-approximation represented in (12), α(Mc) =
1
4

∑n
j=1 Mcj, where Mcj is the jth diagonal element of the

matrix Mc.
The minimal distance d ∈ R+ between the feasible oper-

ating point and the indented half-space can be expressed as
a function of the linearization error limit and the operating
point:

d
(
x∗, RL

) = |f (x∗)| − RL

‖Jf ‖ , Jf = ∇f
(
x∗). (14)

The relationship between the trust radius and the minimum
distance to the indented half-space is governed by the lin-
earization error limit, as stated in the following proposition.

Proposition 4: The linearization error limit RL ∈
(0, |f (x∗)|) is defined as a function of the feasible operating
point, such that the condition d(x∗, RL) = rT(RL) is satisfied,
as follows:

RL
(
x∗) = |f (x∗)| + a −

√
a2 + 2a|f (x∗)|, a = ‖Jf ‖2

2α(Mc)
. (15)

Proof: The relationship for RL(x∗) is defined to maximize
the length of the trust radius, which is achieved when the
condition d(x∗, RL) = rT(RL) holds, serving as a solution to
the quadratic equation.

To prove that the linearization error limit RL is correctly
defined, it is necessary to demonstrate that RL takes values
in the interval (0, |f (x∗)|) for all possible values of a. Firstly,
RL is a monotonically decreasing function of a because R′

L <

0 for all a > 0. Secondly, its behavior is analyzed on its
domain:

1. As a → 0, RL approaches |f (x∗)|.
2. By using L’Hospital rule, it follows that as a → ∞, RL

approaches 0.
Thus, it is established that RL varies continuously between

these bounds. Therefore, for any possible value of a, it follows
that:

RL ∈ (
0, |f (x∗)|).

A. Convergence of the TRM

The objective is to ensure convergence in minimizing the
cost function to the local optimum, as stated in the following
proposition.

Proposition 5: The convergence of the minimization of the
cost function is achieved by the following conditions:

∇g0
(
x∗)�(

x − x∗) + RL0
(
x∗) ≤ 0, x ∈ Pt

(
g0, x∗, RL0

)
,
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where the linearization error limit on the cost function is
adaptively determined by RL0(x∗) = ‖∇g0(x∗)‖2

α(Mc)
.

Proof: To ensure the convergence of the minimization of the
cost function, its progress through the iterations must satisfy
the following condition:

g0
(
x∗) + ∇g0

(
x∗)�(

x − x∗) + RL0
(
x∗) ≤ Ci−1, (16)

where Ci−1 = g0(x∗) represents the interim value of the cost
function from the previous iteration i − 1, while ensuring
that the linearization error remains within its limit, i.e., x ∈
Pt(g0, x∗, RL0). The trust radius of the objective function
and the distance between the operating point and the con-
straint (16) are determined as follows:

rT(RL0) =
√

RL0

α(Mc)
, d

(
x∗, RL0

) = RL0

‖∇g0(x∗)‖ . (17)

For d(x∗, RL0) = rT(RL0), it follows that RL0(x∗) =
‖∇g0(x∗)‖2

α(Mc)
. Thus, when the gradient of the objective function

is equal to zero, convergence of the solution is achieved,
indicating that a local minimum has been found.

V. ALGORITHM SCALABILITY

This section presents the overview and scalability analysis
of the proposed enhanced TRMs. The NLP problem (2) is
addressed as outlined below:

min
xi∈X

g0
(
x∗

i−1

) + ∇g0
(
x∗

i−1

)�(
xi − x∗

i−1

) + RL0
(
x∗

i−1

)

s.t. ∇g0
(
x∗

i−1

)�(
xi − x∗

i−1

) + RL0
(
x∗

i−1

) ≤ 0,

xi ∈ I∩ =
p⋂

j=1

I
(
gj, x∗

i−1, RLj
)
, (18)

xi ∈ T∩ =
p⋂

j=0

Pt
(
gj, x∗

i−1, RLj
)
,

where x∗
0 ∈ F is the initial feasible operating point and

i = {1, 2, . . .} denotes the iteration index. Linearization error
limits are determined based on interim solution so that RL0
is determined according to Prop. 5, while RLj is determined
according to Prop. 4. In case the solution approached the
constraint defined with the function fj such that fj(x∗

i−1) +
fε ≥ 0, where fε ∈ R+ is a numerical tolerance, one can try
to minimize the criterion along this function with RLj(x∗

i−1) :=
−fj(x∗

i−1). Otherwise, the local convergence is achieved.
The primary computational cost arises from solving the

subproblem at each iteration by linear programming, with time
efficiency depending on the problem size. The size of the
TRM subproblem defined in (18) can be analyzed in relation
to the number of decision variables n and the number of linear
constraints Nc. Since the two procedures for polytopic sub-
approximation of the trust region (propositions 2 and 3) exhibit
different complexities, the number of constraints in the linear
programs solved through the SLP iterations varies significantly
with respect to the approach used.

TABLE I
TOTAL NUMBER OF LINEAR CONSTRAINTS FOR TRM SUBPROBLEMS

When the trust regions are sub-approximated by hyper-
rectangles (according to Prop. 2), the intersected trust region
T∩ can be simplified as follows:

T∩ = {
x : x∗ − hmin ≤ x ≤ x∗ + hmin

}
,

hmin = min
(
h0(RL0), h1(RL1), . . . , hp

(
RLp

))
, (19)

where the operator min(·) returns the minimal half-lengths
along each dimension, identifying the n minimum values from
p + 1 vectors. Thus, the first approach (Prop. 2) provides a
minimal representation of the intersected trust region using
2n half-spaces at each iteration, same as benchmark TRM. In
contrast, the second approach (Prop. 3) does not efficiently
yield a minimal half-space representation of the intersected
trust region, resulting in a total of (p+1)2n half-spaces. Table I
summarizes the concerned linear program size, i.e., the total
number of linear constraints in it, comparing the proposed
enhanced TRMs with the benchmark TRM. The presented
numbers reflect the worst-case scenario, where the cost and
all constraints are strictly nonlinear functions.

Consequently, the enhanced TRM based on Prop. 2 exhibits
a comparable time complexity to the benchmark TRM, while
additionally ensures feasibility at each iteration. Since the
SLP with the enhanced TRM will never result in an interim
infeasible solution and since it uses large feasible regions
by selecting linearization errors according to Prop. 4, it is
expected to converge faster to the SLP solution compared to
the SLP with benchmark TRM. Although the second enhanced
TRM provides better sub-approximation of the trust region
and thus larger feasible regions, the interim LP complexity is
compromised as the dimension n and number of constraints
p in the original NLP increase. Therefore, its benefits are
emphasized for problems with low p and n.

VI. CASE STUDY

This section presents two examples of solving NLP prob-
lems using the proposed enhanced TRMs and comparing them
to the benchmark TRM (1).

1) The First Example: The following constrained NLP
problem is considered:

min
x1,x2

− x4
1x2

s.t. x1 ≥ 0, x2 ≥ 0,

g1(x1, x2) = x2
1 + x2

2 − 25 ≤ 0,

g2(x1, x2) = 4e0.08(x1+1) + x2 − 7 ≤ 0.

Both the proposed enhanced TRMs and the benchmark
TRM were applied to solve this NLP problem for 100
randomly generated initial feasible points, x∗

0k ∈ F , k =
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TABLE II
PERFORMANCE METRICS TABLE FOR THE FIRST EXAMPLE

1, . . . , 100 where the optimal solution x∗ = (4.8, 6) is
calculated.

All three methods successfully minimized the cost function
at x∗ = (4.8, 0.6), achieving a cost value of g0(x∗) =
−318.5, although with notable differences in performance.
Performance metrics, including the number of constraints Nc
in the SLP subproblem, the average number of iterations n̄i and
average total computation times t̄, are summarized in Table II.
The computation time reflects the entire online procedure;
for the proposed enhanced TRMs, it includes the time taken
to solve all linear programs in the subproblems and to
calculate adaptive linearization error limits until convergence
is achieved. The computation time of the benchmark TRM
additionally includes the time required to find the feasible
region at each SLP iteration. All computations were conducted
using MATLAB with IBM ILOG CPLEX on a computer
equipped with an AMD Ryzen 7 PRO 4750U processor,
running at a clock speed of 1.7 GHz.

The results align with expectations. The enhanced TRM
featuring a “gem”-shaped trust region demonstrated the best
performance for this example. This can be attributed to the
small size of the NLP problem, where all three methods exhibit
similar time complexity. The “gem”-shaped trust region allows
for larger volume trust regions, facilitating faster convergence.
In contrast, the benchmark TRM encountered numerous infea-
sible subproblems while determining the feasible region at
each iteration. Its initial trust region is set to 10% of the
maximum range of the feasible region, with a changing factor
of 10% applied to adjust the trust region for feasibility between
SLP iterations.

2) The Second Example: The optimization problem for
determining the State of Energy (SoE) for battery cell
from [16] is considered:

max
p̄0,...,p̄N−1

±
N−1∑

i=0

p̄i,

s.t. x(0) = x0, xi+1 = f(xi, p̄i),

p̄i ∈ [Pmin, Pmax], ibat,i ∈ [Imin, Imax],

ubat,i ∈ [Umin, Umax], u−
bat,i ∈ [Umin, Umax]

i = 0, 1, . . . , N − 1,

where x ∈ R
3 is the system state, p̄ is the average power input,

ubat and ibat are battery voltage and current, respectively.
The test was conducted with a prediction horizon of

N = 10, indicating the use of 10 optimization variables, and
involved 20 different initial states x0. Table III summarizes the
performance metrics for this numerical experiment. Notably,
the enhanced trust region method (TRM) utilizing a “hyper-
rectangle” shape outperforms the others, as it swiftly identifies
the minimum and maximum admissible trajectories for average

TABLE III
PERFORMANCE METRICS TABLE FOR THE SECOND EXAMPLE

powers on the prediction horizon. The second enhanced TRM
with a “gem” shape achieves optimal results in 17 iterations,
capitalizing on the largest trust region; however, it also entails
a more complex subproblem with 110 constraints.

VII. CONCLUSION

In this letter, we propose an enhanced Trust Region Method
(TRM) for Sequential Linear Programming (SLP). Subject to
initial solution feasibility, it guarantees that all linear programs
through the SLP iterations will result in a feasible solution for
the original nonlinear program that is approximately solved
by the SLP. The interim feasible regions through iterations
are kept large by adaptively changing the linearization error
limits used in the construction of trust regions, and this
effectively reduces the number of LP iterations and the overall
computation time needed to converge to the SLP solution.
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