
Koopman operator based model predictive control of
vehicle dynamics

Švec, Marko

Doctoral thesis / Disertacija

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Electrical Engineering and Computing / Sveučilište u Zagrebu, Fakultet
elektrotehnike i računarstva

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:168:051099

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-23

Repository / Repozitorij:

FER Repository - University of Zagreb Faculty of
Electrical Engineering and Computing repozitory

https://urn.nsk.hr/urn:nbn:hr:168:051099
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fer.unizg.hr
https://repozitorij.fer.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fer:12934
https://dabar.srce.hr/islandora/object/fer:12934

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Marko Švec

KOOPMAN OPERATOR BASED MODEL
PREDICTIVE CONTROL OF VEHICLE DYNAMICS

DOCTORAL THESIS

Zagreb, 2024

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Marko Švec

KOOPMAN OPERATOR BASED MODEL
PREDICTIVE CONTROL OF VEHICLE DYNAMICS

DOCTORAL THESIS

Supervisor: Professor Jadranko Matuško, PhD

Zagreb, 2024

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Marko Švec

MODELSKO PREDIKTIVNO UPRAVLJANJE
DINAMIKOM VOZILA TEMELJENO NA

KOOPMANOVOM OPERATORU

DOKTORSKI RAD

Mentor: Prof. dr. sc. Jadranko Matuško

Zagreb, 2024.

Doctoral thesis is made at the University of Zagreb Faculty of Electrical Engineering and Com-
puting, Department of Electric Machines, Drives and Automation

Supervisor: Professor Jadranko Matuško, PhD

Thesis contains 149 pages

Thesis no.:

iv

about the supervisor

Jadranko Matuško was born in Metković in 1975. He received his B.Sc., M.Sc. and Ph.D.
degrees in electrical engineering from the University of Zagreb, Faculty of Electrical Engineer-
ing and Computing (FER), Zagreb, Croatia, in 1999, 2003 and 2008, respectively. He spent the
academic year 2011/2012 at the University of California, Berkeley, USA, as a visiting researcher.

Since October 2008, he has been with the Department of Electric Machines, Drives and
Automation at FER. In January 2024 he was promoted to tenured full professor in the same
department. He coordinated 2 national and participated in 14 national and 5 international scientific
projects. He is a member of the Scientific Center of Excellence for Data Science and Cooperative
Systems. He has published over 60 papers in journals and conference proceedings in the domains
of optimal control, intelligent control and estimation, and mechatronic systems. He is an author
of one national and one international patent.

Prof. Matuško is a member of IEEE and KoREMA. He has been a Proceedings editor for 9
international conferences and a Program Committee chair for 8 international conferences. He is
a member of the editorial board of one scientific journal.

v

o mentoru

Jadranko Matuško rođen je u Metkoviću 1975. godine. Diplomirao je, magistrirao i doktori-
rao na Sveučilištu u Zagrebu Fakultetu elektrotehnike i računarstva (FER) 1999., 2003. odnosno
2008. godine. Akademsku 2011./2012. proveo je na usavršavanju na Sveučilištu u Berkeleyu, Cali-
fornia, SAD.

Od listopada 2008. zaposlen je Zavodu za elektrostrojarstvo i automatizaciju Fakulteta elek-
trotehnike i računarstva kao docent. U siječnju 2024. godine izabran je u zvanje redovitog profesora
u trajnom zvanju na istom Zavodu. Bio je voditelj dva domaća znanstveno istraživačka projekta te
sudjelovao na 14 domaćih i 5 međunarodnih projekata. Član je znanstvenog centra izvrsnosti za
znanost o podatcima i kooperativne sustave. Objavio je preko 60 radova u časopisima i zbornicima
međunarodnih znanstvenih skupova iz područja optimalnog upravljanja, inteligentnog upravl-
janja i estimacije te mehatroničkih sustava. Autor je jednog domaćeg i jednog međunarodnog
patenta.

Prof. Matuško član je stručnih udruga IEEE i KoREMA. Bio je urednik 9 zbornika radova
znanstvenih skupova te bio predsjednik organizacijskog ili programskog odbora 8 znanstvenih
skupova. Član je uredničkog odbora jednog znanstvenog časopisa.

vi

zahvala

Želio bih zahvaliti svome mentoru, profesoru Jadranku Matušku, koji mi je davne 2017. godine
predložio da upišem doktorat. Sasvim je evidentno da bez njega ne bi bilo ni ove disertacije. Hvala
profesore što ste mi omogućili da radim na zanimljivim projektima, podržavali moju znatiželju
i minimalno me obasipali poslom koji nije vezan za moj doktorat, omogućivši mi tako da se
posvetim vlastitom istraživanju. Tek sad shvaćam koliko mi je to zapravo značilo.

Posebnu zahvalu zaslužuje i profesor Šandor Ileš koji se prema meni odnosio kao prema
vlastitom studentu, iako službeno nije imao nikakve obaveze pomagati mi. Hvala na svom
utrošenom vremenu na ispravljanje mojih grešaka, na svim profesionalnim i osobnim savje-
tima i svom znanju koje si podijelio sa mnom. Uistinu je bio užitak raditi s tobom.

Hvala i svim kolegama sa ZESA-e. Kao jedan od rijetkih automatičara na zavodu punom
elektrostrojara, imao sam priliku steći razna znanja van svoje domene i neopisivo sam zahvalan
na toj prilici. Osim toga, kave su uvijek bile zabavne i pune smijeha.

Jedno veliko hvala mojim cimerima, a posebice Bojanu i Josipu, s kojima sam najviše profe-
sionalno surađivao. Hvala na svoj pomoći i svemu što ste me naučili.

Hvala profesoru Zlatku Drmaču na objašnjenju Koopmanovog operatora. Hvala i Vítu Cibulki
na svim raspravama o Koopmanovom operatoru i strojnom učenju.

Mojim dragim prijateljima, hvala na zabavnim trenucima punima smijeha i šale. Hvala na
svim feštama, društvenim igrama i glupim forama koje su mi pomogle da nakratko pobjegnem
od obaveza i stresa.

Hvala mojoj obitelji, posebice mojim roditeljima, Blaženki i Damiru, na svemu što su učinili za
mene, i baki Danici na svoj podršci i odličnoj hrani. Pružili ste mi topli dom, sigurnost i beskrajnu
ljubav. Bez vaše podrške sigurno ne bi bilo ni mog uspjeha i zbog svega toga bit ću vam zauvijek
zahvalan. Dodatno, hvala mami što je slušala moja objašnjenja raznih matematičkih koncepata,
stvarno je puno pomoglo.

Na kraju, želio bih zahvaliti mojoj Mariji. Hvala ti na svoj podršci, razumijevanju i prvenstveno
strpljenju. Bez tvoje ljubavi, osmijeha i pametnih savjeta, ovaj period bi mi bio puno teži. Hvala ti
što si me ohrabrivala kroz svaku fazu ovog izazova, slušala me kad bih beskrajno pričao o temama
koje su zanimljive samo meni, i bila moj najveći oslonac kad mi je sve djelovalo preteško. Tvoja
ljubav i vjera u mene značili su mi više nego što riječima mogu opisati.

vii

abstract

Over the past decade, the global market for electric and hybrid vehicles has grown significantly,
leading to technological innovations that are transforming the automotive industry.This increasing
popularity has accelerated the development of autonomous vehicles and vehicle dynamics control
systems, which require robust and efficient control strategies to ensure optimal performance.

This thesis investigates the use of the Koopman operator with model predictive control (MPC)
to leverage performance and computational challenges in real-time vehicle dynamics control.The
Koopman operator provides a linear representation of nonlinear systems and enables simplified
control of complex dynamical systems. By integrating the Koopman operator into traditional
nonlinear MPC (NMPC), a Koopman MPC (KMPC) framework is created that transforms
nonlinear optimization problems into quadratic optimization problems.This change improves
computational efficiency with minimal impact on control accuracy.

The thesis covers a number of topics that are essential for vehicle dynamics control systems. It
begins with an examination of the key concepts of vehicle dynamics models and the fundamentals
of model predictive control (MPC). It then introduces the theory of the Koopman operator and
discusses various data-driven methods for identifying Koopman models, including extended
dynamic mode decomposition (EDMD) and deep dynamic mode decomposition (Deep-DMD).
In addition, a novel method called enhanced extended dynamic mode decomposition (E2DMD)
is introduced, together with three different numerical approaches to its implementation. In
the remainder of the thesis, the application of the Koopman operator to basic vehicle models is
investigated, integrating different Koopman-basedmodels into theMPC framework. Furthermore,
a torque vectoring algorithmusingKMPC is developed and a comparative analysis with established
MPC strategies is performed. Furthermore, the thesis describes the experimental validation of
these control strategies using a scaled vehicle model on a treadmill. It details the setup, data
acquisition and compares the performance of NMPC and KMPC offering insights into the
effectiveness of these control strategies.

The results highlight the potential of Koopman-based controllers to bridge the gap between
the high control performance of NMPC and the computational efficiency required for practical
use.The thesis also presents new Koopman operator identification methods and a novel approach
to generate learning data through nonlinear model identification as an intermediate step.These
innovations show promising future directions for research and development in the field of vehicle
dynamics control.

keywords: vehicle dynamics, model predictive control, direct yaw moment control, torque
vectoring, Koopman operator, model identification, extended dynamic mode decomposition

viii

sažetak

modelsko prediktivno upravljanje dinamikom vozila temeljeno na
koopmanovom operatoru

Tijekomposljednjih deset godina, globalni tržišni udio električnih i hibridnih vozila neprekidno
raste. Proizvođači automobila i političari aktivno rade na daljnjem jačanju ovog trenda, što
potvrđuju razne studije, kao i opsežna medijska pokrivenost i svakodnevna zapažanja. Ovaj trend
ne samo da označava prelazak na drugačije načine prijevoza, već također otvara nove mogućnosti
za daljnji razvoj sustava upravljanja dinamikom vozila. Također potiče razvoj autonomnih vozila,
koja bi mogla revolucionirati naš pristup mobilnosti, logistici i sigurnosti. U ovom kontekstu,
razvoj robusnih i učinkovitih upravljačkih strategija ključan je za iskorištavanje punog potencijala
ovih tehnoloških napredaka.

Jedna od najsofisticiranijih tehnika u području automatike je model prediktivno upravljanje
(MPC), koje optimizira upravljačke akcije na temelju predikcije budućih stanja sustava. MPC je
poznat po svojoj sposobnosti da se izravno nosi s višedimenzionalnim sustavima i ograničenjima,
što ga čini idealnim za kompleksne sustave dinamike vozila. Kada se koriste detaljni nelinearni
modeli za prikaz dinamike vozila, rezultat je skup algoritama koje nazivamo nelinearni MPC
(NMPC). NMPC se bavi nelinearnim optimizacijskim problemima koji mogu biti računski
zahtjevni, što predstavlja izazov za aplikacije u realnom vremenu.

Koopmanov operator nudi obećavajuće rješenje ovog problema. Izvorno predstavljen u er-
godičkoj teoriji, Koopmanov operator omogućuje linearnu reprezentaciju nelinearnih dinamičkih
sustava transformiranjem prostora stanja u (teorijski beskonačno dimenzionalni) prostor os-
motrivih funkcija. Ova transformacija omogućuje primjenu linearnih upravljačkih tehnika, čak i
za nelinearne sustave, čime se znatno pojednostavljuje računska složenost. Međutim, u praksi
se koristi konačno-dimenzionalna aproksimacija Koopmanovog operatora, što dovodi do novih
potencijalnih problema.

Integracijom Koopmanovog operatora u MPC, tradicionalni NMPC algoritmi mogu se trans-
formirati u tzv. Koopman MPC (KMPC) algoritme, koji mogu formirati linearne ili kvadratne
optimizacijske probleme, što je znatno brže i lakše riješiti. Prema postojećoj literaturi, ovaj pristup
zadržava većinu preciznosti povezane s NMPC-om zahvaljujući visokoj dimenzionalnosti prostora
stanja, ali također značajno povećava brzinu rješavanja problema. Iz tog razloga korištenje MPC-a
temeljenog na Koopmanovom operatoru, može postići "najbolje iz oba svijeta": održavanje visokih
performansi u predikciji i upravljanju dinamikom vozila, uz poboljšanje računske učinkovitosti,
što je ključno za primjene u stvarnom vremenu.

Glavna motivacija ovog rada je razviti upravljački okvir koji ne samo da zadovoljava visoke
performansemodernih vozila, već i prevladava računske izazove u stvarnom vremenu. Istraživanje

ix

ima za cilj pokazati izvedivost i prednosti ovog inovativnog pristupa. Razvojem algoritama,
simulacija i praktičnom primjenom, cilj je otvoriti put responzivnijim, učinkovitijim i sigurnijim
vozilima. Nadalje, integracijom tehnika dubokog učenja za aproksimaciju modela Koopmanovog
operatora, ova disertacija također ima za cilj potaknuti daljnju suradnju između istraživača u
području automatike i umjetne inteligencije - sinergiju koja će vjerojatno postati sve važnija u
budućnosti.

Izvorni doprinosi ove disertacije odnose se na numeričke metode za identifikaciju Koop-
manovog operatora i primjenu identificiranih modela u prediktivnim algoritmima za upravljanje
dinamikom vozila. U suštini, predstavljaju fuziju metoda strojnog učenja i klasičnog modeliranja
dinamičkih sustava, analizirajući prednosti i nedostatke svakog pristupa. Doprinos se sastoji od
tri dijela, koja su, zajedno s kratkim objašnjenjima, navedena u nastavku.

1. Metoda za identifikaciju modela dinamike vozila temeljena na Koopmanovom operatoru,
pogodna za primjenu u prediktivnim upravljačkim algoritmima.

Ovaj dio doprinosa temelji se na prijedlogu nekoliko numeričkih metoda za identifikaciju
modela temeljenih na Koopmanovom operatoru i istraživanju njihove učinkovitosti u mod-
eliranju dinamičkih sustava, s naglaskom na dinamiku vozila. Osnovna ideja je zamijeniti
postojeće nelinearne modele modelima zasnovanim na Koopmanovom operatoru kako bi
se smanjila računska složenost prilikom izračunavanja predikcija, bez značajnog pogoršanja
točnosti istih. Kao početna metoda korištena je proširena dinamička modalna dekompozi-
cija (EDMD), na temelju koje su razvijene tri nove numeričke metode: redukcija vektora
baznih funkcija diskretnim odabirom, algoritam učenja predikcije u više koraka i redukcija
vektora baznih funkcija kao problem optimizacije hiperparametara. Ove metode zajed-
nički se nazivaju poboljšana proširena dinamička modalna dekompozicija (E2DMD). Osim
navedenih, prilagođena je i korištena postojeća metoda poznata kao duboka dinamička
modalna dekompozicija (Deep-DMD). Svi modeli temeljeni na Koopmanovom operatoru
su evaluirani i uspoređeni međusobno, kao i s nelinearnim i s modelima temeljenim na
klasičnoj linearnizaciji oko radne točke. Pokazali su obećavajuće rezultate, što opravdava
njihovu primjenu u prediktivnim upravljačkim algoritmima.

2. Algoritam modelskog prediktivnog upravljanja distribucijom zakretnog momenta kotača s
ciljem poboljšanja upravljivosti vozila, temeljen na modelu vozila identificiranom s Koop-
manovim operatorom.

Ovaj dio doprinosa zasniva se na korištenju modela temeljenih na Koopmanovom opera-
toru (razvijenih kao dio prvog dijela doprinosa) u algoritmima modelskog prediktivnog
upravljanja za dinamiku vozila. Testirano je nekoliko pristupa, počevši od onih temeljenih
na jednostavnim bicikl i dvotračnim modelima vozila, koji su poslužili kao dokaz kon-
cepta. Pristup je dodatno generaliziran i primijenjen na prediktivno vektoriranje zakretnog
momenta koristeći složenije modele, što je testirano u CarMaker-u, programskom alatu
za simulaciju dinamike vozila visoke vjernosti. Regulatori temeljeni na Koopmanovom
operatoru pokazali su dobre performanse i nisku računsku složenost, potvrđujući time
hipotezu. U konačnici, razvijen je sličan upravljački algoritam i primijenjen na skaliranom
vozilu koje se kreće na pokretnoj traci. Ovaj put, regulator temeljen na Koopmanovom

x

operatoru pokazao je ne samo dobru računsku izvedbu, već i veću otpornost na vremenska
kašnjenja u usporedbi s nelinearnim regulatorom.

3. Tehnika za generiranje skupa podataka za učenje Koopmanovog operatora najprije stvaran-
jem nelinearnog modela iz eksperimentalnih podataka i zatim simulacijom različitih sce-
narija koristeći taj model.

Glavna komponenta svakemetodemodeliranja temeljene na podacima su sami podaci. Skup
podataka mora biti dovoljno velik i informativan, inače je gotovo nemoguće postići dobru
točnost modela. Međutim, prilikom prikupljanja podataka iz simulacije ili eksperimenta,
ponekad nije moguće isprobati sve zamislive kombinacije ulaznih signala ili obuhvatiti
cijelu relevantanu regiju unutar prostora stanja. To može biti posljedica ograničenja sustava,
lošeg dizajna eksperimenta ili može jednostavno biti preskupo. Ovaj doprinos predlaže
korištenje identifikacije parametara standardnog nelinearnog modela kao međukoraka za
generiranje skupa podataka. Prvo se prikuplja manji broj uzoraka iz eksperimenta. Zatim
se odabire odgovarajući nelinearni model, a njegovi se parametri određuju na temelju
prikupljenih podataka. To je iterativni proces u kojem se model može modificirati dok se ne
postigne zadovoljavajuća točnost. Nakon toga, ovaj nelinearni model koristi se za simulaciju
velikog broja trajektorija koje bi formirale novi skup podataka. Konačni model se zatim
određuje na temelju ovog novog skupa podataka. Ovaj pristup koristi se za identifikaciju
Koopmanovog operatora i pokazuje dobru izvedbu. Osim toga, provedena je analiza veličine
skupa podataka gdje su eksperimentalni i simulacijski podaci izravno uspoređeni.

Disertacija se sastoji od sedam poglavlja, od kojih svako započinje sažetkom koji opisuje
njegov sadržaj. Nakon toga slijedi sustavna prezentacija problema i pregled postojeće literature
u području, ako je relevantno za poglavlje. Nakon glavne rasprave, dan je prikaz najvažnijih
rezultata i doprinosa. Prvo poglavlje opisuje motivaciju za istraživanje provedeno u disertaciji,
navodi dijelove doprinosa i objašnjava strukturu rada. Pregled ostalih poglavlja dan je u nastavku
teksta.

poglavlje 2. U ovom poglavlju izložene su matematičke osnove svih metoda i koncepata o
kojima se raspravlja kasnije u disertaciji. Prvo su predstavljeni modeli dinamike vozila, kao što su
dvotračni i bicikl model, kao i različite formulacije klizanja kotača. Zatim se ispituje složenost
modeliranja sila na gumama i njihova ovisnost o različitim faktorima. U odjeljku o modelskom
prediktivnom upravljanju razmatraju se njegovi temelji, primjene i problemi, s naglaskom na
njegove linearne i nelinearne oblike. Poglavlje također obrađuje teorijski okvir Koopmanovog
operatora i njegovu upotrebu u pretvaranju nelinearne dinamike u linearnu, ističući ograničenja
zbog njegove (teorijske) beskonačne dimenzionalnosti. Na kraju, rasprava se usmjerava na sustave
upravljanja dinamikom vozila, posebno aktivne sigurnosne sustave kao što su ABS, ESC i TV,
naglašavajući njihovu važnost u poboljšanju stabilnosti i sigurnosti vozila.

poglavlje 3. Ovo poglavlje bavi se različitim metodama identifikacije Koopmanovih mod-
ela temeljenih na podacima. U početku se raspravlja o dobro poznatim metodama, proširenoj
dinamičkoj modalnoj dekompoziciji (EDMD) i dubokoj dinamičkoj modalnoj dekompoziciji
(Deep-DMD), koje su detaljno objašnjene u prethodnim studijama. Zatim se uvodi nov pristup

xi

nazvan poboljšana proširena dinamička modalna dekompozicija (E2DMD), koji predstavlja jedan
od ključnih doprinosa ove disertacije. Objašnjava se logika ove metode, nakon čega slijedi prikaz
tri numerička pristupa za razvoj takvih modela: redukcija vektora baznih funkcija diskretnim
odabirom (E2DMD-DS) , algoritam učenja predikcije u više koraka (E2DMD-MS) i redukcija
vektora baznih funkcija kao problem optimizacije hiperparametara (E2DMD-HO). Poglavlje
također kratko spominje druge pristupe temeljene na podacima. Na kraju, ocjenjuju se različiti
linearni prediktori primjenom na trima ustaljenim referentnim dinamičkim sustavima: Van der
Polovom oscilatoru, prigušenom Duffingovom oscilatoru i bilinearnom motoru. Rezultati ovih
simulacija zatim se uspoređuju i analiziraju.

Ključni nalazi uključuju dosljedno poboljšanje performansi prediktora kako se dimenzija
prostora stanja povećava. Također su pronađene iznenađujuće varijacije u performansama Deep-
DMD-a, što bi moglo ukazivati na probleme u arhitekturi ili dizajnu neuronske mreže. Rješavanje
problema Deep-DMD-a također bi moglo poboljšati performanse E2DMD-MS metode, budući
da se obje treniraju sličnim algoritmima. Očekuje se da će E2DMD-HO i E2DMD-MS imati
slične performanse zbog korištenja afine transformacije, dok bi E2DMD-DS trebala biti manje
učinkovita zbog binarnih vrijednosti i odsutnosti vektora pomaka. Međutim, rezultati ovog is-
traživanja, iz kojih se mogu izvući različiti zaključci, sugeriraju da metoda optimizacije korištena
za učenje može značajno i neočekivano utjecati na performanse prediktora. Na kraju, bitno je
napomenuti da odabir numeričke metode za učenje aproksimacije Koopmanovog operatora ovisi
o dinamičkom sustavu koji je predmet istraživanja.

poglavlje 4. Poglavlje istražuje kako se Koopmanov operator može koristiti za modeliranje
i upravljanje dinamikom vozila koristeći osnovne modele vozila i uzdužno klizanje guma kao
ulazni signal. Početni dio ispituje upotrebu EDMD algoritma za identifikaciju bicikl modela koji
ne uključuje model gume. Ovaj model se zatim uspoređuje s modelima generiranim klasičnom
linearizacijom oko radne točke. Daljnja validacija provodi se integracijom ovog modela u MPC
algoritam i testiranjem na nelinearnom bicikl modelu vozila. Proces identifikacije modela i dizajn
prediktivnog regulatora provjeravaju se korištenjemMATLAB-a i Simulinka. Sljedeći odjeljak
ispituje primjenu Koopmanovog operatora za identifikaciju dvotračnog modela vozila, koji se
zatim kombinira sa strategijom vektoriranja zakretnog momenta pomoću MPC-a. Ovaj dio
poglavlja posebno se fokusira na poboljšanje stabilnosti ručno upravljanih vozila i predstavlja
inovativan pristup primjeni izravnog upravljanja zakretnim momentom s linearnimMPC-om
temeljenim na Koopmanovom operatoru. EDMDmetoda ponovno se koristi za aproksimaciju
modela, uzimajući u obzir potrebu za linearnim odnosom između propagacije stanja sustava i
ulaza, kako je raspravljeno u prethodnom poglavlju. Ovaj linearni odnos, koji obično nije prisutan
u modelima vozila, uspostavlja se konstrukcijom specifičnih nelinearnih transformacija. Nakon
točnog razvoja modela, isti se koristi za razvoj KMPC algoritma, koji se zatim uspoređuje s
linearnim vremenski promjenjivim MPC-om za različite predikcijske horizonte. KMPC postiže
bolje rezultate u svim testnim scenarijima, kako u pogledu upravljačkih performansi, tako i u
pogledu vremena izvođenja.

poglavlje 5. Ovo poglavlje bavi se razvojem i primjenom algoritama prediktivnog vektori-
ranja zakretnog momenta koristeći Koopmanov operator. Započinje sveobuhvatnim pregledom
literature o sustavima upravljanja dinamikom vozila, uspoređujući tradicionalne upravljačke

xii

tehnike kao što su ABS, ESC i tempomat, koje se oslanjaju na heurističke algoritme ili jednostavne
matematičke modele, sa sofisticiranijim nelinearnim modelima i upravljačkim strategijama. Ova
rasprava ističe nedostatke postojećih pristupa i predlaže Koopmanov operator kao održiv alat
za poboljšanje upravljanja vozilima u scenarijima u kojima nelinearni efekti dolaze do izražaja.
Sljedeći dio poglavlja posvećen je upotrebi Koopmanovog operatora za modeliranje dinamike
vozila. Obuhvaća identifikaciju parametara nelinearnog modela, nakon čega slijedi prikupljanje
podataka i proces identifikacije Koopmanovih modela. Učinkovitost ovih modela ocjenjuje se
korištenjem skupova podataka za treniranje i validaciju. U trećem odjeljku predstavljaju se lin-
earni vremenski promjenjivi MPC (LTV-MPC), KoopmanMPC i nelinearni MPC za vektoriranje
zakretnog momenta te se raspravlja o njihovim razlikama i potencijalnim problemima. Nakon
matematičke formulacije, ovi regulatori ocjenjuju se u simulatoru visoke vjernosti u četiri različita
scenarija. Ishodi se temeljito analiziraju, pružajući kritičku usporedbu učinkovitosti i izvodljivosti
korištenja sustava prediktivnog vektoriranja zakretnog momenta temeljenih na Koopmanovom
operatoru u odnosu na druge metode.

Rezultati objašnjavaju kompromise između računske učinkovitosti i upravljačkih performansi.
NMPC dosljedno pokazuje superiorne sposobnosti manevriranja, posebno u eksperimentima
na visokim brzinama na stazi, što je potvrđeno dosljedno nižim normaliziranim vrijednostima
funkcije cilja zatvorenog kruga. Međutim, to dolazi s višim računskim zahtjevima, što se odražava
u dužim vremenima izvođenja, posebno kada se produlji predikcijski horizont. To naglašava kri-
tični kompromis između upravljačkih performansi i računske izvedivosti, osobito u primjenama
u stvarnom vremenu gdje je brzina izvođenja vrlo važna. S druge strane, regulatori temeljeni na
Koopmanovom operatoru, posebno E2DMD-MPC i Deep-DMD-MPC, nude uravnotežen kom-
promis između računske učinkovitosti i upravljačkih performansi. Njihova sposobnost postizanja
konkurentne učinkovitosti uz značajno kraća vremena izvođenja čini ih kvalitetnom alternativom,
posebno za scenarije u kojima su računalni resursi ograničeni ili je izvođenje u stvarnom vremenu
ključno. Deep-DMD-MPC posebno pokazuje značajno poboljšanje u upravljačkoj učinkovitosti
kako se predikcijski horizont povećava. Međutim, također pokazuje slabe performanse u nekim
situacijama s malim predikcijskim horizontom, što ukazuje na nepredvidivost i kompleksnost
identifikacije, vjerojatno zbog neuronske mreže koja je temelj modela. LTV-MPC, unatoč svojoj
teorijskoj jednostavnosti i nižim računskim zahtjevima u odnosu na NMPC, pokazuje lošije
performanse u pogledu upravljačkih performansi u većini scenarija. Njegove performanse su
znatno bolje u eksperimentu na niskoj brzini na Nürburgringu, što sugerira je bolje prilagođen
slučajevima gdje su nelinearnosti manje izražene ili predvidljive.

poglavlje 6. Poglavlje istražuje upravljanje dinamikom vozila kroz eksperimente koristeći
skalirani model vozila na pokretnoj traci kako bi se evaluirali upravljački algoritmi. Započinje
prikazom eksperimentalnog postava i pregledom literature. Detaljno se opisuje identifikacija
parametara nelinearnog modela vozila kroz izravne eksperimente, mjerenja i testove, uz validaciju
usporedbom snimljenih signala s predikcijama modela. Nakon toga, fokus se prebacuje na iden-
tifikaciju Koopmanovog modela koristeći EDMD algoritam, uključujući generiranje podataka,
strategije uzorkovanja i proces učenja modela. Učinkovitost modela demonstrira se korištenjem ra-
zličitih skupova podataka i testnih scenarija, s posebnimnaglaskomna to kako veličina i raspodjela
skupova podataka utječu na točnost modela. Osim toga, ovo poglavlje ocjenjuje NMPC i KMPC
strategije i predstavlja detaljne rezultate eksperimentalnih testova s oba kontrolera, uključujući

xiii

postavke, vrijeme izvršavanja i performanse za specifične manevre. Analiziraju se efekti različitih
referenci i duljine predikcijog horizonta na performans regulatora te se eksperimentalni rezultati
uspoređuju sa simulacijom.

Sveukupni zaključak ove analize je da KMPC može nadmašiti NMPC u pogledu stabilnosti
i učinkovitosti, što je posebno primjetno kada su prisutna velika vremenska kašnjenja u sus-
tavu. Iako NMPC ima veći potencijal pod simuliranim idealnim uvjetima, manje je učinkovit u
stvarnim uvjetima zbog većih računskih zahtjeva i komunikacijskog kašnjenja. S druge strane,
KMPC pokazuje niže iznose funkcije cilja zatvorenog kruga i značajno brža vremena izvođenja,
što ga čini prikladnijim za primjene u stvarnom vremenu. Čak i kada se predikcijski horizont
produži, što poboljšava performanse praćenja KMPC-a, povećanje vremena izvođenja ostaje
unutar prihvatljivih granica za rad u stvarnom vremenu.

poglavlje 7. Zadnje poglavlje sažima najvažnije rezultate i znanstvene doprinose te daje pri-
jedloge za buduće pravce istraživanja.

Sveukupno, ova disertacija naglašava kritičnu važnost odabira prave upravljačke strategije
koja ne samo da uzima u obzir nelinearnost dinamike vozila, već se i usklađuje s računalnim
ograničenjima primjene u stvarnom vremenu. Stečeni uvidi naglašavaju potencijal regulatora
temeljenih na Koopmanovom operatoru kao pristupa koji nudi strateški kompromis između
visokih performansi NMPC algoritama i niske računske složenosti potrebne za praktičnu imple-
mentaciju. Nadalje, predstavljene su neke nove metode identifikacije Koopmanovog operatora,
kao i novi pristup za generiranje podataka za učenje korištenjem identifikacije nelinearnih modela
kao međukoraka.

ključne riječi: dinamika vozila, modelsko prediktivno upravljanje, direktno upravljanje
zakretnim momentom, vektoriranje zakretnog momenta, Koopmanov operator, identifikacija
modela, proširena dinamička modalna dekompozicija

xiv

contents

1 introduction 1
1.1 Motivation and problem statement1
1.2 Original contributions2
1.3 Outline of the thesis3

2 general background 6
2.1 Vehicle dynamics models6

2.1.1 Bicycle model6
2.1.2 Two-track model8
2.1.3 Alternative slip formulation10

2.2 Tire force modelling11
2.2.1 Magic Formula for tire modelling11
2.2.2 Linear tire model11
2.2.3 Tire force coupling12
2.2.4 Piecewise linear tire model12

2.3 Model predictive control13
2.3.1 Linear quadratic regulator14
2.3.2 Linear model predictive control16
2.3.3 Dense vs. sparse formulations17
2.3.4 Nonlinear model predictive control19
2.3.5 Reference tracking20
2.3.6 Soft constraints21

2.4 Koopman operator21
2.4.1 Theoretical background22
2.4.2 Koopman operator eigenfuncions23
2.4.3 Koopman operator for non-autonomous systems24
2.4.4 Applications25

2.5 Vehicle dynamics control systems26
2.6 Summary28

3 data-driven koopman identification 29
3.1 Extended dynamic mode decomposition29

3.1.1 EDMD for autonomous systems29
3.1.2 EDMD for non-autonomous systems30
3.1.3 EDMD for general nonlinear systems31

xv

3.1.4 Basis functions31
3.2 Deep dynamic mode decomposition32

3.2.1 Multiple step prediction error minimization33
3.2.2 Learning algorithm34

3.3 Enhanced extended dynamic mode decomposition34
3.3.1 Basis function dimension reduction36
3.3.2 Basis function reduction by discrete selection38
3.3.3 Multiple step prediction learning algorithm41
3.3.4 Basis function reduction as a hyperparameter optimization problem 41

3.4 Other approaches42
3.5 Simulation results43

3.5.1 Learning algorithm setup44
3.5.2 Van der Pol oscillator simulation45
3.5.3 Damped Duffing oscillator simulation49
3.5.4 Bilinear motor simulation53
3.5.5 Concluding remarks58

3.6 Summary59

4 koopman-based vehicle control using tire slip 60
4.1 Koopman operator-based control using bicycle model60

4.1.1 Three state bicycle model without tire model60
4.1.2 Koopman model identification61
4.1.3 Koopman MPC design63
4.1.4 Reference generation64
4.1.5 Input mapping64
4.1.6 Simulation results64

4.2 Koopman operator-based control using two-track model65
4.2.1 Two-track model without tire model66
4.2.2 Koopman model identification66
4.2.3 Linear time-variant model67
4.2.4 Koopman MPC design69
4.2.5 Simulation results70

4.3 Summary74

5 koopman-based predictive torque vectoring 75
5.1 Existing work75
5.2 Koopman model identification77

5.2.1 Nonlinear vehicle model parameter identification77
5.2.2 Data collection78
5.2.3 Learning Koopman model80
5.2.4 Predictor comparison82

5.3 MPC design83
5.3.1 Linear time-variant MPC84
5.3.2 Koopman operator-based MPC86

xvi

5.3.3 Nonlinear MPC87
5.4 Simulation results88

5.4.1 Batch of randomized test runs89
5.4.2 Nürburgring racetrack experiment92
5.4.3 Nürburgring racetrack low speed experiment95
5.4.4 Hockenheimring racetrack experiment97
5.4.5 Concluding remarks100

5.5 Summary102

6 experimental investigation 103
6.1 Experimental setup103

6.1.1 Background103
6.1.2 Setup description104

6.2 Vehicle parameters identification106
6.3 Koopman model identification108

6.3.1 Data collection109
6.3.2 Learning Koopman model109
6.3.3 Dataset distribution110
6.3.4 Predictor performance analysis111

6.4 Model predictive control115
6.4.1 Nonlinear MPC115
6.4.2 Koopman operator-based MPC116
6.4.3 Cost function and constraints117

6.5 Experimental results and discussion117
6.5.1 Controller setup117
6.5.2 Multiple lane change manoeuvre118
6.5.3 Double lane change manoeuvre120
6.5.4 Prediction horizon change effect121
6.5.5 Sensitivity to delays123
6.5.6 Concluding remarks125

6.6 Summary126

7 conclusion and future research directions 127

bibliography 130

list of figures 140

list of tables 144

curiculum vitae 146

publications 147

životopis 149

xvii

1
Introduction

The introduction chapter outlines the motivation for the research conducted in
the thesis, beginning with arguments supporting the growing need for advanced vehicle

dynamics control algorithms. It introduces (nonlinear) model predictive control as a viable
method to address these challenges. Additionally, it proposes the Koopman operator as a viable
alternative to conventional nonlinear models and provides justification for this perspective.The
chapter then describes the original contributions of the thesis and concludes with an overview of
the thesis structure and a summary of the content of each chapter.

1.1 motivation and problem statement

Over the last ten years, the global market share of electric and hybrid vehicles has been steadily
rising. Manufacturers and policy makers are actively working to further strengthen this trend,
as evidenced by various studies, e.g. [1, 2], as well as widespread media coverage and everyday
observations.This trend not only signals a shift towards other modes of transport, but also opens
up new avenues for the further development of vehicle dynamics control systems. It also promotes
the development of autonomous vehicles [3], which are expected to revolutionize our approach
to mobility, logistics and safety. In this context, the development of robust and efficient control
strategies is crucial to exploit the full potential of these technological advances.

One of themost sophisticated techniques in the field of control engineering is model predictive
control (MPC), which optimizes current control actions based on a prediction of future system
states. MPC is known for its ability to deal explicitly with multivariable systems and constraints,
making it ideal for complex vehicle dynamics systems. When detailed nonlinear models are used
to capture vehicle dynamics, the approach evolves into nonlinear MPC (NMPC). NMPC deals
with nonlinear optimization problems that can be computationally intensive, which is a challenge
for real-time applications.

The Koopman operator offers a promising solution to this challenge. Originally introduced in
ergodic theory, the Koopman operator provides a linear representation of nonlinear dynamical
systems by transforming the state-space into a (theoretically infinite dimensional) space of observ-
able functions.This transformation enables the application of linear control techniques, even for
nonlinear systems, and thus considerably simplifies the computational complexity.The problem,
of course, is that in practice a finite dimensional approximation of the Koopman operator is used,
which introduces another set of potential issues.

By incorporating the Koopman operator into MPC, the traditional NMPC algorithms can be

1

1.2 original contributions 2

transformed into so-called Koopman MPC (KMPC) algorithms, which can then form a linear
or quadratic optimization problem that is much faster and easier to solve. According to the
existing literature, this approach retains much of the precision associated with NMPC due to
the high-dimensional lifting of the state-space, but gains significantly in computational speed.
Thus, by using the Koopman operator-based MPC, one should achieve the "best of both worlds":
maintaining high accuracy in predicting and controlling vehicle dynamics while improving
computational efficiency, which is crucial for real-time applications.

The main motivation behind this thesis is to develop a control framework that not only meets
the high performance requirements of modern vehicles, but also overcomes the computational
challenges of real-time vehicle control. The research aims to demonstrate the feasibility and
benefits of this innovative approach, which may bring the field of control engineering closer to a
new standard for vehicle dynamics control.Through the development of algorithms, simulations
and practical application, the goal is to pave the way for more responsive, efficient and safer
vehicles. Furthermore, by integrating deep learning techniques to approximate Koopman operator
models, this work also aims to encourage further collaboration between control engineering and
artificial intelligence researchers - a synergy that is likely to become increasingly important in the
future.

1.2 original contributions

The original contributions of the thesis revolve around numerical methods for Koopman operator
identifcation and the application of the identified models in predictive algorithms for vehicle
dynamics control. Essentially, they represent a fusion of machine learning methods and classical
dynamic system modelling, analyzing the advantages and disadvantages of each approach.The
contributions with a brief explanation follow below.

• Amethod for identifying a vehicle dynamicsmodel based on theKoopman operator, suitable
for applications in predictive control algorithms.

The contribution is based on the proposal of several numerical methods for the identi-
fication of Koopman operator models and the investigation of their performance in the
modelling of dynamical systems, with a focus on vehicle dynamics. The core idea is to
replace existing nonlinear models with Koopman operator models in order to reduce the
computational complexity while calculating predictions without significantly degrading
the prediction accuracy. Extended dynamic mode decomposition (EDMD) is used as the
starting method, on the basis of which three novel numerical methods are developed: basis
function reduction by discrete selection, multiple step prediction learning algorithm and
basis function reduction as a hyperparameter optimization problem.These methods are
collectively referred to as enhanced extended dynamic mode decomposition (E2DMD). In
addition, an existing method called deep dynamic mode decomposition (Deep-DMD) is
adapted and used. All Koopman-based models are evaluated and compared with each other
and with nonlinear and Taylor linearization-based models.They showed promising results,
which justifies their application in model predictive control algorithms.

1.3 outline of the thesis 3

• Model predictive control algorithm of wheel torque distribution with the aim of improving
vehicle handling, based on a vehicle model identified with the Koopman operator.

The contribution consists of using some of the better performing Koopman operator-based
models (developed as a part of the first contribution) in model predictive control algorithms
for vehicle dynamics. Several approaches are tested, starting with those based on simple
bicycle and two-track vehicle models with multiple assumptions, that served as a proof-of-
concept.The approach is further generalized and applied to predictive torque vectoring
using higher complexity models, which is tested in CarMaker, a high-fidelity simulation
software for vehicle dynamics. The Koopman operator-based controllers showed good
performance and a really low computational cost, confirming the hypothesis. Finally, a
similar control algorithm is developed and applied to a scaled vehicle running on a treadmill.
This time, theKoopman-based controller showed not only good computational performance
but also higher robustness against time delay compared to a nonlinear controller.

• A technique for generating a Koopman operator learning dataset by first creating a nonlinear
model from experimental data and then simulating different scenarios with this model.

The main component of any data-driven modelling method is the data itself.The dataset
must be large and informative enough, otherwise it is almost impossible to achieve good
model performance. However, when collecting the data from the simulation or experiment,
it is sometimes not possible to try all conceivable input signal combinations or to capture
the entire state-space region of interest. This may be due to system limitations or poor
experiment design, or it may simply be too costly. This contribution proposes using a
standard nonlinear model parameter identification as an intermediate step for dataset
generation. First, a smaller number of samples are collected from the experiment.Then, a
suitable nonlinearmodel is selected and its parameters are determined based on the collected
data. This is an iterative process in which the model can be modified until satisfactory
accuracy is achieved. Subsequently, this nonlinear model is used to simulate a large number
of trajectories that would form the new dataset.The final model is then determined based
on this new dataset.This approach is used for the identification of the Koopman operator
and shows good performance. In addition, an analysis of the dataset size is performed
where experimental and simulation data are directly compared.

1.3 outline of the thesis

The thesis consists of seven chapters, each beginning with a summary outlining its content.This
is followed by a systematic presentation of the problem and an overview of the existing literature
in the field, where relevant to the chapter. After the main discussion, a summary of the most
important results and contributions is given.The following section provides an overview of the
thesis, accompanied by a summary of the content of the individual chapters.

chapter 2. The chapter outlines the mathematical basis for all methods and concepts
discussed later in the thesis. First, vehicle dynamics models, such as the two-track and the bicycle
model, as well as different slip formulations are presented. Next, the complexity of modelling tire
forces and their dependence on various factors are examined.The section on model predictive

1.3 outline of the thesis 4

control (MPC) looks at its fundamentals, applications and challenges, focusing on both its linear
and nonlinear forms. The chapter also addresses the theoretical framework of the Koopman
operator and its use in converting nonlinear dynamics into linear representations, noting the
limitations due to its (theoretical) infinite dimensionality. Finally, the discussion turns to vehicle
dynamics control systems, in particular active safety systems such as ABS, ESC and TV, and their
importance in improving vehicle stability and safety is emphasized.

chapter 3. This chapter deals with various methods for the data-driven identification of
Koopman models. Initially, it discusses the well-established methods of extended dynamic mode
decomposition (EDMD) and deep dynamic mode decomposition (Deep-DMD), which have been
thoroughly detailed in previous studies. It then introduces a novel approach called enhanced
extended dynamic mode decomposition (E2DMD), marking one of the key contributions of this
thesis. The logic behind this method is explained, followed by a presentation of three unique
numerical techniques for developing such models: discrete basis function selection, a multiple
step prediction learning algorithm, and basis function reduction viewed through the lens of
hyperparameter optimization.The chapter also briefly mentions other data-driven approaches for
identifying Koopman models. Finally, various linear predictors are evaluated by applying them to
three recognized benchmark dynamical systems: the Van der Pol oscillator, the damped Duffing
oscillator and the bilinear motor.The results of these simulations are then compared, analyzed
and summarized in the concluding remarks.

chapter 4. The chapter explores how the Koopman operator can be used to model and
control vehicle dynamics using basic vehicle models and longitudinal tire slip as input.The initial
section examines the use of the EDMD algorithm to identify a bicycle model that does not include
a tire model.This model is then compared to the models generated by a Taylor expansion-based
linearization. Further validation is performed by integrating this model into an MPC framework
and testing it on a nonlinear bicycle vehicle model. Both the model identification process and
the design of the predictive controller are verified using MATLAB and Simulink.The subsequent
section examines the application of the Koopman operator to identify a two-track vehicle model,
which is then combined with a torque vectoring control strategy through MPC. In particular, this
part of the chapter focuses on enhancing the stability of manually steered vehicles and presents
an innovative approach to applying direct yaw moment control with linear MPC based on the
Koopman operator model.The EDMDmethod is again used to approximate the model, taking
into account the need for a linear relationship between the propagation of the system states and
the inputs, as discussed in a previous chapter.This linear relationship, which is not usually present
in vehicles, is established by constructing specific nonlinear transformations. After accurately
developing the model, it is used to develop a linear KMPC algorithm, which is then compared to
a linear time-variant MPC over different prediction horizons.

chapter 5. This chapter deals with the development and application of a model predic-
tive torque vectoring algorithm using the Koopman operator. It begins with a comprehensive
review of the literature on vehicle dynamics control systems, comparing traditional control tech-
niques such as ABS, ESC and cruise control — which rely on heuristic algorithms or simple
mathematical models — with more sophisticated nonlinear models and control strategies.This

1.3 outline of the thesis 5

discussion highlights the flaws of existing approaches and proposes the Koopman operator as a
viable means of improving vehicle control in scenarios in which nonlinear effects occur.The next
part of the chapter is devoted to the use of the Koopman operator for modelling vehicle dynamics.
It covers the identification of nonlinear model parameters, followed by data acquisition and the
process of identifying Koopman models.The effectiveness of these models is assessed using both
training and validation datasets, with selected predictors included in the design of the control
system. In the third section, the linear time-variant MPC, the Koopman MPC and the nonlinear
MPC for torque vectoring are presented and their nuances and potential challenges are discussed.
Following the theoretical presentation, these controllers are evaluated in a high-fidelity simulation
setup in four different scenarios.The outcomes are thoroughly reviewed and discussed, providing
a critical comparison of the effectiveness and feasibility of using Koopman-based predictive torque
vectoring systems against other methods.

chapter 6. The chapter investigates vehicle dynamics control through experiments
using a scaled vehicle model on a treadmill to evaluate control algorithms. It begins with an
overview of the experimental setup and a literature review.The identification of nonlinear vehicle
model parameters through direct experiments, measurements and tests is described in detail,
with validation by comparing these results with model predictions. Afterwards, the focus shifts to
the identification of the Koopman model using the EDMD algorithm, including data generation,
sampling strategies and themodel learning process.The effectiveness of themodel is demonstrated
using different datasets and test scenarios, with a particular focus on how the size and distribution
of the datasets affect model accuracy. In addition, this chapter evaluates the NMPC and KMPC
strategies and presents detailed results from experimental tests with both controllers, including
setup, execution times, and performance for specific manoeuvres.The effect of different references
and prediction horizons on the control performance is analyzed and the experimental results are
compared with the simulation.

chapter 7. The final chapter summarises the most important results and scientific
contributions of the thesis and makes suggestions for future research directions.

2
General background

This chapter provides an overview of the mathematical foundations of all the methods
and concepts discussed later in the thesis. In the first sections, models of vehicle dynamics,

including bicycle and two-track models, are introduced and alternative slip formulation is pre-
sented.The challenges of tire force modelling and its relationship to various influencing variables
are mentioned. Model predictive control (MPC) and its logic, applications and challenges are
described, with emphasis on its linear and nonlinear variants.The theoretical structure of the
Koopman operator and its applications in converting nonlinear to linear dynamics are discussed,
albeit with the practical limitations imposed by its infinite dimension. Finally, the chapter deals
with vehicle dynamics control systems, focusing on active systems such as ABS, ESC and TV and
emphasizing their role in improving vehicle stability and safety.

2.1 vehicle dynamics models

The control strategies used in this thesis (namely the model predictive control described in Section
2.3) depend on accurate and reliable dynamical models to predict and optimize the future states
of a system.This section therefore introduces two common vehicle dynamics models: the bicycle
model and the two-track model.The bicycle model, known for its simplicity and computational
efficiency, provides a basic approximation of vehicle behaviour.The two-track model, on the other
hand, provides a more detailed representation by taking into account the width of a vehicle and
the dynamics of the individual wheels.

2.1.1 Bicycle model

In this section, the single-track, or bicycle, model of a vehicle shown in Figure2.1is presented.
The bicycle model reduces a vehicle to two wheels (front and rear) aligned along a single axis.
This abstraction simplifies the equations of motion and allows a clearer focus on longitudinal and
lateral dynamics without introducing additional complexity.

vx

vy
l r

θz
.

l f

Ffy
w

Frx
Fry

Ffx

Ffy Ffx
w

δ f
X

Y

Figure 2.1: Bicycle model of a vehicle.

6

2.1 vehicle dynamics models 7

The continuous-time bicycle model is based on the model described in [4] and can be formu-
lated as follows:

mv̇x = mθ̇zvy + F f x + Frx −
1
2
cwρAwvx

√
v2x + v2y , (2.1)

mv̇y = −mθ̇zvx + F f y + Fr y −
1
2
cwρAwvy

√
v2x + v2y , (2.2)

Jz θ̈z = l f F f y − lrFr y , (2.3)
Jwω̇● = T● − fw●F●z − Rw●Fw●x − bw●ω●, (2.4)

Ẋ = vx cos θz − vy sin θz , (2.5)
Ẏ = vx sin θz + vy cos θz . (2.6)

The symbols ● ∈ { f , r} denote the front and rear wheels. Within the given framework, the
variables vx , vy, and θz represent the longitudinal velocity, the lateral velocity, and the yaw angle,
respectively.The mass of the vehicle is denoted by m, the moment of inertia by Jz, and the wheel
moment of inertia by Jw .The distances of the axles from the center of gravity (CoG) are represented
by l f and lr.The drag force is described by the air density ρ, the drag coefficient cw , and the area
Aw exposed to the airflow. Only the airflow that is opposite to the trajectory of the vehicle’s center
of gravity is taken into account here.The forces acting on the vehicle body in the longitudinal and
lateral directions are symbolized by F●x and F●y, respectively.The wheel dynamics is described
by the equation (2.4), which establishes the relationship between the wheel rotational velocities
ω●, the input wheel torques T●, the wheel radius Rw●, the longitudinal wheel forces Fw●x , the wheel
rolling resistance fw●, the wheel viscous friction bw● and the vertical wheel forces F●z. In addition,
the longitudinal and lateral position of the vehicle in the global coordinate system are denoted by
the variables X and Y , respectively.

The forces acting on the axles in the vehicle coordinate system are described by the following
equations:

F f x = Fw
f x cos δ f − Fw

f y sin δ f , Frx = Fw
rx ,

F f y = Fw
f x sin δ f + Fw

f y cos δ f , Fr y = Fw
ry .

(2.7)

Here, δ f represents the steering angle. Tire forces for a given axle are

Fw●x = f wx (α●, s●x , µ, F●z),
Fw●y = f wy (α●, s●x , µ, F●z),

(2.8)

where f wx and f wy are the corresponding tire models, µ is the coefficient of friction (which is
assumed to be the same for all wheels) and F●z is the vertical wheel force.The longitudinal slip
and lateral slip angle are:

s●x =
⎧⎪⎪⎨⎪⎪⎩

Rw●ω●−vw●x
Rw●ω● , vw●x ≤ Rw●ω●, Rw●ω● ≠ 0,

Rw●ω●−vw●x
vw●x , vw●x > Rw●ω●, vw●x ≠ 0,

(2.9)

and
α● = arctan(v

w●y
vw●x) . (2.10)

2.1 vehicle dynamics models 8

The velocities of the wheels can be determined using the following equations:

vwf x = v f x cos δ f + v f y sin δ f , vwrx = vrx , (2.11)

vwf y = −v f x sin δ f + v f y cos δ f , vwry = vr y , (2.12)

and the velocities v●x and v●y using:
v f x = vx , v f y = vy + l f θ̇z , vrx = vx , vr y = vy − lr θ̇z . (2.13)

In general, assuming flat road (road slope of ϕ = 0○), and neglecting air drag and suspension
model, vertical tyre load forces are:

F f z =
m
2
(g lr

l f + lr
− ax

h
l f + lr

) , Frz =
m
2
(g

l f
l f + lr

+ ax
h

l f + lr
) , (2.14)

where ax = v̇x − θ̇zvy is the longutidinal acceleration, h height of the center of gravity (CoG), and
g the gravitational constant. However, in this thesis, load transfer effects are disregarded, and the
calculation of vertical forces is performed as:

F f z =
mglr
l f + lr

, Frz =
mgl f
l f + lr

. (2.15)

2.1.2 Two-track model

Contrary to the previous section, here the two-track is described and depicted in Figure2.2. This
model assumes that the vehicle has four independent wheels and has front-wheel steering.The
model can be formulated as follows:

mv̇x = mθ̇zvy + F f l x + F f rx + Frlx + Frrx −
1
2
cwρAwvx

√
v2x + v2y , (2.16)

mv̇y = −mθ̇zvx + F f l y + F f r y + Frl y + Frr y −
1
2
cwρAwvy

√
v2x + v2y , (2.17)

Jz θ̈z = l f (F f l y + F f r y) − lr (Frl y + Frr y) +w (−F f l x + F f rx − Frlx + Frrx) , (2.18)
Jwω̇●⋆ = T●⋆ − fw●F●⋆z − Rw●Fw●⋆x − bw●ω●⋆, (2.19)

Ẋ = vx cos θz − vy sin θz , (2.20)
Ẏ = vx sin θz + vy cos θz . (2.21)

The symbols ● ∈ { f , r} denote the front and rear wheels, while ⋆ ∈ {l , r} correspond to the
left and right wheels. Most of the variables are the same as in Section2.1.1, with a few additions.
The marking w stands for half the track width of the vehicle. The forces acting on the vehicle
body in the longitudinal and lateral directions are symbolized by F●⋆x and F●⋆y respectively. In
the wheel dynamics equation, the wheel rotational velocities are ω●⋆, the input wheel torques T●⋆,
the longitudinal wheel forces Fw●⋆x and the vertical wheel forces F●⋆z.

The longitudinal and lateral forces impacting the vehicle’s chassis are denoted by

F f⋆x = Fw
f⋆x cos δ f − Fw

f⋆y sin δ f , Fr⋆x = Fw
r⋆x ,

F f⋆y = Fw
f⋆x sin δ f + Fw

f⋆y cos δ f , Fr⋆y = Fw
r⋆y .

(2.22)

2.1 vehicle dynamics models 9

vx

vy

l r

θz
.

w

w

l f

Ffly
w

Frlx
Frly

Frrx
Frry

Fflx

Ffly Fflx
w

δ f

Ffrx
w

δ f
Ffrx

Ffry
Ffry
w

X

Y

Figure 2.2: Two-track model of a vehicle.

The tire forces are nonlinear and can be described by the following models:

Fw●⋆x = f wx (α●⋆, s●⋆x , µ, F●⋆z),
Fw●⋆y = f wy (α●⋆, s●⋆x , µ, F●⋆z).

(2.23)

The longitudinal slip, s●⋆x , and the lateral slip angle, α●⋆, are commonly defined as:

s●⋆x =
⎧⎪⎪⎨⎪⎪⎩

Rw●ω●⋆−vw●⋆x
Rw●ω●⋆ , vw●⋆x ≤ Rw●ω●⋆, Rw●ω●⋆ ≠ 0,

Rw●ω●⋆−vw●⋆x
vw●⋆x , vw●⋆x > Rw●ω●⋆, vw●⋆x ≠ 0,

(2.24)

and
α●⋆ = arctan(v

w●⋆y
vw●⋆x) . (2.25)

Under the same assumptions as in (2.14), vertical tyre load forces are:

F f lz =
m
2
(g lr

l f + lr
− ax

h
l f + lr

− ay
h
w
) , (2.26a)

F f rz =
m
2
(g lr

l f + lr
− ax

h
l f + lr

+ ay
h
w
) , (2.26b)

Frlz =
m
2
(g

l f
l f + lr

+ ax
h

l f + lr
− ay

h
w
) , (2.26c)

Frrz =
m
2
(g

l f
l f + lr

+ ax
h

l f + lr
+ ay

h
w
) , (2.26d)

where ax = v̇x − θ̇zvy is the longutidinal and ay = v̇y + θ̇zvx lateral acceleration. Once the load
transfer effects are disregarded the forces are:

F f⋆z = mglr
2(l f + lr)

, Fr⋆z = mgl f
2(l f + lr)

. (2.27)

The velocities of the wheels in wheel coordinate system are:

vwf⋆x = v f⋆x cos δ f + v f⋆y sin δ f , vwr⋆x = vr⋆x , (2.28)

vwf⋆y = −v f⋆x sin δ f + v f⋆y cos δ f , vwr⋆y = vr⋆y . (2.29)

2.1 vehicle dynamics models 10

The velocities v●⋆x and v●⋆y can be expressed as:

v f l x = vx −wθ̇z , v f l y = vy + l f θ̇z , (2.30)
v f rx = vx +wθ̇z , v f r y = vy + l f θ̇z , (2.31)
vrlx = vx −wθ̇z , vrl y = vy − lr θ̇z , (2.32)
vrrx = vx +wθ̇z , vrr y = vy − lr θ̇z . (2.33)

2.1.3 Alternative slip formulation

To enhance the numerical stability of the discussed vehicle models, Micheli et al. proposed a
different slip equation as a solution to the issues of dividing by small numbers in equations (2.24)
and (2.25), as documented in [5].This modification becomes especially beneficial under low-speed
scenarios. Inspired by their method, here a new definition for longitudinal slip is offered, expressed
as:

s●⋆x =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sdrive●⋆ , vw●⋆x ≤ Rw●ω●⋆,
sbrake●⋆ , vw●⋆x > Rw●ω●⋆,

(2.34)

with

sdrive●⋆ = (Rw●ω●⋆ − vw●⋆x)Rw●ω●⋆
(Rw●ω●⋆)2 + ε0 , (2.35a)

sbrake●⋆ = (Rw●ω●⋆ − vw●⋆x)vw●⋆x
vw●⋆x2 + ε0 , (2.35b)

and the slip angle as

α●⋆ = arctan(vw●⋆yvw●⋆x
vw●⋆x2 + ε0) . (2.36)

Note that ε0 can be set to arbitrary value, which ever works the best for a given application.The
effects of a various ε0 values are visible in Figure2.3. This shows that the proposed change only
affects the model at velocities close to zero.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

50

100

150

200

vx (m/s)

v x
in
ve
rs
e(
s/
m
)

1/vx
vx/(v2x + 10−6)
vx/(v2x + 10−4)
vx/(v2x + 10−3)

Figure 2.3: Modified slip denominators for different coefficient ε0.

2.2 tire force modelling 11

2.2 tire force modelling

Components that can significantly affect dynamic behaviour of a vehicle are its tires. In fact,
tire-ground interaction is the only source of force and torque generation between the vehicle and
the road, so it is important to model it accurately.This chapter focuses on tire models, which aim
to describe the complex relationships between forces, torques, and the numerous variables that
influence them.

2.2.1 Magic Formula for tire modelling

There are plenty of tire force models suggested in the literature, such as the brush tire model [6]
or the TMeasy [7] model. However, one of the most widely adopted tire models in both academia
and industry is the Magic Formula.This empirical model, developed by Pacejka [8], is known
for its ability to fit a wide range of tire characteristics. The Magic Formula is mainly used for
describing the lateral and longitudinal forces acting on a tire.

The basic form of the Magic Formula for tire force F(σ) is given by:

F(σ) = D sin (C arctan (Bσ − E(Bσ − arctan(Bσ)))) , (2.37)

where σ represents the slip generalization, i.e. σ ∈ {sx , α}, depending on whether we are modelling
longitudinal or lateral force. In other words, Fx = F(sx), while Fy = F(α).The tire model coeffi-
cients are denoted by B,C ,D, and E.The coefficients are usually determined through curve fitting
of empirical tire data, and are generally assumed to be different for longitudinal and lateral forces.
These parameters can also vary depending on several conditions like load, inflation pressure,
and tire temperature, among others.The Magic Formula’s adaptability and accuracy in various
operating conditions make it a go-to choice for realistic vehicle simulations.

2.2.2 Linear tire model

While the Magic Formula provides an excellent approximation of real-world tire behaviour, there
are instances where a simpler, linear model may suffice, especially in control system design or for
real-time simulations. A linear tire model can be derived based on the Magic Formula.

The linearized tire model can be obtained by taking the first-order Taylor series expansion of
the Magic Formula around a small slip value:

F ≈ F0 +
dF
dσ
∣
σ=σ0 (σ − σ0) (2.38)

In this equation, F0 is the force at the nominal (or operating) slip value σ0, and dF
dσ is the rate of

change of lateral force with respect to the slip at σ0.
The linear tire model assumes that this rate of change, often called the longitudinal stiffness

for longitudinal forces and cornering stiffness for lateral forces, remains constant over a small
range of slip values. Usually, one chooses origin (sx0 = 0 and α0 = 0○) as a stationary point, in
which case the linear tire models can be written as:

F l in
x =

dFy

dsx
∣
sx=sx0

= Cxsx , F l in
y =

dFy

dα
∣
α=α0
= −Cyα. (2.39)

2.2 tire force modelling 12

By linearizing the Magic Formula, one can create a simplified model that is computationally
efficient and suitable for control systems design. However, it is important to note that the linear
model may not be accurate for larger deviations in the operating conditions, especially when it
comes to high-speed cornering or rapid changes in road surface friction.

2.2.3 Tire force coupling

Earlier sections explored the production of lateral and longitudinal tire forces when either pure
longitudinal slip or pure slip angle is present. However, when both types of slip coexist, adjustments
to the tire force equations are required.This is to ensure that the vector sum of the generated forces
does not surpass the maximum allowable limit.This phenomenon can be effectively represented
using the concept of the friction circle [9].

The friction circle serves as a graphical tool to visualize the limits of a tire’s grip. Within this
circle, both longitudinal (acceleration and braking) and lateral (cornering) forces operate.The
relationship between these forces is known as tire force coupling and can be mathematically
expressed as:

F2
x + F2

y ≤ (µFz)2. (2.40)

Here, Fx represents the longitudinal forces, Fy represents the lateral forces, and µFz is themaximum
frictional force that the tire can generate.

In practical terms, this equation implies that as you use more of the tire’s capacity for accelera-
tion (Fx), you have less available for cornering (Fy), and vice versa. Understanding this balance is
critical for vehicle control and is foundational in both automotive design and high-performance
driving.

2.2.4 Piecewise linear tire model

In order to keep the simplicity of the linear tiremodel, but also to account formaximum achievable
force value, here a piecewise linear approach is proposed.The model limits the linear tire model to
its maximum value and introduces longitudinal and lateral force coupling to emulate the friction
circle.The model can be represented by the following equations:

F sat
x =max (−µFz , min (Cxsx , µFz)) ,

F sat
y =max (−µFz , min (−Cyα, µFz)) ,

(2.41a)

β = arctan(
F sat
y

F sat
x
), ∣∣F ∣∣ =min(

√
(F sat

x)
2 + (F sat

y)
2, µFz) ,

Fx = ∣∣F ∣∣ cos β, Fy = ∣∣F ∣∣ sin β.
(2.41b)

This formulation simplifies the process of model identification by reducing the number of param-
eters compared to more complex models such as the Magic Formula. Despite the reduction in
parameters, this approach still provides a sufficiently accurate representation within the desired
operating region for the applications demonstrated in this disertation.

Graphical comparison between described tire models can be seen in Figure2.4.

2.3 model predictive control 13

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

0

1

σ

F/F
z

Magic Formula
linear
piecewise linear

Figure 2.4: Comparison of normalized forces for different tire models without coupling effect (either pure
longitudinal slip or pure slip angle).

2.3 model predictive control

Model predictive control (MPC) is a versatile and advanced method in the area of control systems,
often outperforming controllers designed using other techniques. Predominantly used formultiple-
input, multiple-output (MIMO) systems, it offers a robust framework for dealing with a diverse
range of complex scenarios.The idea emerged in the 1960s, but the real success in process industry
and theoretical development began in the 1980s [10].

The fundamental logic of MPC resonates with intuitive human decision-making processes.
This process involves using a mathematical model to predict system behaviour for a finite number
of future time steps. Simultaneously, the controller chooses themost effective future path according
to a defined performance measure or cost that needs to be minimized.This concept is known as
a receding horizon control (RHC) strategy, where the system state is continuously measured or
estimated and new optimal control inputs are calculated at each sampling point on a receding
horizon (Figure2.5).

In contrast toMPC, conventional controlmethods react to errors that occur without predicting
the future behaviour of a system.They also do not take into account any constraints, whereas
MPC explicitly includes these in its design. Constraints can be physical (like actuator limits),
performance-based (such as allowable overshoot), or even safety-related (like temperature or
pressure tolerances). Unlike classical control methods that need to keep set points far from these
limits, potentially leading to suboptimal operation, MPC computes the optimal set point and
operational behaviour while respecting the constraints.

MPC employs algorithms for solving constrained finite-horizon optimal control problems.
Advanced computational algorithms have greatly enhanced the speed and reliability of the mathe-
matical calculations essential for MPC.This is crucial, especially when the system has to adapt to
unexpected changes or disturbances.

Despite its high performance and systematic constraint handling, MPC does pose some
challenges. Ensuring real-time execution, closed-loop stability, robustness, and feasibility can be
complex, given the intricate mathematics involved. However, thanks to significant advancements
in computer hardware, software, sensors, and communication technologies, the benefit-to-cost
ratio for implementing such computationally demanding systems has greatly improved.These
technological breakthroughs have not onlymadeMPCmore accessible but also suitable for various

2.3 model predictive control 14

control input

control input

future

future

past

past

prediction horizon

prediction horizon

reference

reference

t+1 t+k+1 t+N +1p

measured
output

measured
output

predicted
output

predicted
output

predicted input

predicted input

optimize over
N stepsp

shift horizon

apply input at t
... and repeat

Figure 2.5: Model Predictive Control working principle.

applications beyond the process industry, such as automotive, power systems, and computer
control, even down to the milli, micro, and nanosecond timescales.

In summary, model predictive control offers a dynamic, adaptable, and highly efficient ap-
proach to system control. It is particularly effective in managing complex MIMO systems and
stands out for its ability to consider constraints explicitly, making it invaluable across diverse
industries and applications.

2.3.1 Linear quadratic regulator

The simple optimal control algorithm, which has no constraints other than the system dynamics
and has a quadratic cost function, is called a linear quadratic regulator (LQR). Its task can be
interpreted as the regulation of the system state xk to the origin while minimizing the control
effort. For more details on LQR, please refer e.g. to [11].

Finite-horizon discrete-time linear quadratic regulator (FDLQR) is a receding horizon con-
troller with state feedback control law u = κ(x) computed by minimizing the following cost
function:

J(xt) ∶= min
ut ,...,ut+N−1 xTt+NPxt+N +

t+N−1
∑
k=t xTkQxk + uT

k Ruk ,

s.t. xk+1 = Axk + Buk , k = t, . . . , t + N − 1,
xt = x(t),

(2.42)

2.3 model predictive control 15

where xk is the state and uk the control input at the prediction step k, P = PT ⪰ 0, Q = QT ⪰ 0
and R = RT ≻ 0 are weight matrices of corresponding dimensions, N ∈ N is prediction horizon
and x(t) (known) initial state value.

In case the prediction horizon is infinite, i.e. N →∞, one gets what is called discrete linear
quadratic regulator (DLQR) and quite often this is the version reffered to when LQR is mentioned
in the literature.
The optimization problem (2.42) now becomes

J∞(xt) ∶= min{ut ,... }
∞
∑
k=t x

T
kQxk + uT

k Ruk ,

s.t. xk+1 = Axk + Buk , k = t, . . .
xt = x(t).

(2.43)

The optimal control law can be expressed as

ut = −K∞xt , (2.44)

with
K∞ = [R + BTP∞B]−1 BTP∞A, (2.45)

where P∞ is the solution of the discrete algebraic Riccati equation:

P∞ = Q + ATSP∞ [In + BR−1BTP∞]−1 A. (2.46)

Additionally to positive definitness condition of matrices Q and R, in order to guarantee that a
unique solution exists that asymptotically stabilizes the closed-loop system, the pair (A, B) is has
to be stabilizable and the pair (A,Q) has to be detectable. Under those assumptions the following
holds:

• The equation (2.46) has a unique positive semi-definite solution, P∞ ⪰ 0.
•With the control law (2.44) and control matrix (2.45) the closed-loop system

xt+1 = (A− BK∞)xt (2.47)

is asymptotically stable.

• The optimal cost function value is given by

J∗∞(xt) = xTt P∞xt , (2.48)

which is, at the same time, Lyapunov function of the closed-loop system.

General convention is to ommit∞ symbol when expressing Lyapunov function and control
law, in other words P = P∞ and K = K∞.

2.3 model predictive control 16

2.3.2 Linear model predictive control

Linear model predictive control (LMPC) problem can be defined similarly to the LQR problem
(2.42) with additional linear inequality constraints included:

J(xt) ∶= min
ut ,...,ut+N−1 J f (xt+N) +

t+N−1
∑
k=t Js (xk ,uk),

s.t. xk+1 = Axk + Buk , k = t, . . . , t + N − 1,
(xk ,uk) ∈ X ×U,
xt+N ∈ X f ,
xt = x(t).

(2.49)

In this problem Js (xk ,uk) is the stage cost and J f (xt+N) is a terminal cost function. State and input
constraints are represented by polyhedral sets X and U, while X f ⊆ X is a polyhedral terminal
target set or terminal constraint. The solution of the problem are the optimal state sequence
[xt , xt+1, . . . , xt+N] and the optimal control input sequence [ut ,ut+1, . . . ,ut+N−1] [12].

Most common choices for the stage and terminal cost are quadratic and linear norm cost:

• Quadratic cost:The stage and terminal cost are given by quadratic functions

Js(x,u) ∶= ∥x∥2Q + ∥u∥
2
R = xTQx + uTRu, J f (x) ∶= ∥x∥2P = xTPx, (2.50)

where P = PT ⪰ 0, Q = QT ⪰ 0 and R = RT ≻ 0 are weight matrices of corresponding
dimensions. MPC with quadratic cost can be translated into a quadratic program(QP).

• Linear norm cost:The stage and terminal cost are formed by l1- or l∞-norms

Js(x,u) ∶= ∥Qx∥p + ∥Ru∥p, J f (x) ∶= ∥Px∥p with p ∈ {1,∞}. (2.51)

Matrices Q and R are assumed to be non-singular, whereas P is assumed to have a full
column rank. Optimization problem with linear norm cost can be translated into a linear
program(LP).

It has been stated in the section2.3.1that, for the special case of an infinite horizon (N →∞)
the closed-loop system with this controller has some useful properties, such as unique solution
and guaranteed stability.The RHC law does not necessarily have those properties. Moreover, it
can be proven that, in general, stability and feasibility are not ensured by the RHC law [13].The
following theorem states the necessary assumptions for proving stability and feasibility.

Theorem 2.1. Let X0 be the set of feasible initial states and x+ the state at the next sampling time.
Consider that the following assumptions hold:

1. The stage cost is a positive definite function, i.e. it is strictly positive and zero only at the origin.

2. The terminal set is positively invariant under the local control law κ(x):

x+ = Ax + Bκ(x) ∈ X f ∀x ∈ X f .

All state and input constraints are satisfied in X f :

X f ⊆ X, κ(x) ∈ U ∀x ∈ X f .

2.3 model predictive control 17

3. The terminal cost is a continuous Lyapunov function in the terminal set X f :

J f (x+) − J f (x) ≤ −Js (x, κ(x)) ∀x ∈ X f .

Then the closed-loop system under the MPC control law is stable in X0.

Since terminal sets require advanced tools to compute and reduce region of attraction, they
can usually be ommited [14].

To sumarize, when linearMPC ismentioned, this usuallymeans that the optimization problem
consisting has a quadratic cost function, linear equality constraints (linear system dynamics)
and linear inequality constraints (polyhedral sets). Such optimization problem has the following
formulation:

J(xt) ∶= min
ut ,...,ut+N−1 xTt+NPxt+N +

t+N−1
∑
k=t xTkQxk + uT

k Ruk ,

s.t. xk+1 = Axk + Buk , k = t, . . . , t + N − 1,
Fxk +Guk ≤ h,
FNxt+N ≤ hN ,
xt = x(t),

(2.52)

with F andG and FN being matrices and h and hN constraint vector of corresponding dimensions.

2.3.3 Dense vs. sparse formulations

To solve MPC problems numerically, one typically utilizes a pre-existing solver. For LMPC as
represented in equation (2.52), a solver designed for quadratic programming, such as simplex or
barrier solver from Gurobi [15] or OSQP [16], is employed. In this context, the MPC problem
should be shaped into a standard quadratic program as depicted below:

min
z

1
2
zTHqpz + fTqpz,

s.t. Ainz ≤ bin ,
Aeqz = beq .

(2.53)

In the above equation, Hqp represents a positive definite cost matrix fqp is a linear cost vector, Ain

and Aeq denote linear inequality and equality matrices, while bin and beq are the inequality and
equality vectors, respectively. Two different approaches which can be used are here reffered to as
the sparse and dense MPC formulations.
Dense formulation: Lets define agrregated state and input vectors as Xt = [xTt , xTt+1, ...xTt+N]T and
Ut = [uT

t ,uT
t+1, ...uT

t+N−1]T .Then one can rewrite the state propagation equality from (2.52) as

Xt = Axt +BUt , (2.54)

with matrices

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
A
A2

⋮
AN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0
B 0 . . . 0
AB B . . . 0
⋮ ⋮ ⋱ 0

AN−1B AN−2B . . . B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.55)

2.3 model predictive control 18

where I is an identity matrix of appropriate size. Combining (2.52) with (2.54), the optimization
problem becomes the following:

min
Ut , xt

xTt (ATQA)xt +UT
t (BTQB +R)Ut (2.56a)

s.t. FAxt + (FB +G)Ut ≤ H, (2.56b)
xt = x(t). (2.56c)

In the equations (2.56a) - (2.56c), bold symbols denote extended matrices and vectors Q =
diag(Q ,Q , . . . , P), R = diag(R, R, . . . , R), F = diag(F , F , . . . , FN), G = diag(G ,G , . . . ,G) and
H = [h, h, . . . ,hN]T of the corresponding dimesion. In such a formulation, the cost function and
constraints contain only the initial state vector xt and the input vector sequenceUt , which reduces
the size of the optimizer.This QP can be transformed into (2.53) via the following equations:

z = [xTt ,UT
t]

T ,
Hqp = 2 diag (ATQA, BTQB +R) , fqp = 0,

Ain = diag (FA, FB +G) , bin = H,
Aeq = [I, 0] , beq = x(t).

The dense formulation results in a smaller optimizer vector size, but may be numerically less
stable due to the numerous numerical operations required to determine the optimization vectors
and matrices.
Sparse formulation: In contrast to the dense formulation, where the goal is to reduce the size of
the optimizer by incorporating the system dynamics into the cost and constraint matrices, the
sparse formulation aims to take advantage of a matrix sparsity structure that some solvers can use
to solve quadratic programs more efficiently.The main idea is to add all the states and inputs to
the optimizer, which leads to the following:

z = [xTt , xTt+1, ...xTt+N ,uT
t ,uT

t+1, ...uT
t+N−1]T ,

Hqp = 2 diag (Q ,Q , . . . , P, R, R, . . . R) , fqp = 0,

Ain =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

F 0 . . . 0 G 0 . . . 0
0 F . . . 0 0 G . . . 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 . . . FN 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, bin =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
h
⋮
hN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Aeq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 . . . 0 0 0 . . . 0
A −I 0 . . . 0 B 0 . . . 0
0 A −I . . . 0 0 B . . . 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 . . . A −I 0 0 . . . B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, beq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t)
0
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Although it can be efficiently solved by QP solvers that can use the sparsity pattern to speed up
the computations, the sparse formulation usually leads to a large optimizer vector.

Both formulations have their advantages and disadvantages, and it is up to the user to choose
which one is more appropriate for a given application. However, it is important to note that
the sparse formulation can be advantageous when the state-space is relatively small, while for
applications with a large number of states, the dense formulation is usually more efficient.

2.3 model predictive control 19

2.3.4 Nonlinear model predictive control

Nonlinear model predictive control (NMPC) has emerged as a compelling alternative to its linear
counterpart for solving complex control problems that involve nonlinear system dynamics, which
are quite comon in engineering and science. As the name suggests, NMPC employs a nonlinear
model of the system to predict future states and calculate the control inputs that optimize a
particular objective function. As in LMPC, objective function is usually a composite metric that
aims to minimize tracking errors, control effort, and potentially other objectives.

The mathematical foundation of NMPC involves solving a constrained nonlinear optimization
problem at each time step.The problem can be formally written as follows:

J(xt) ∶= min
ut ,...,ut+N−1 J f (xt+N) +

t+N−1
∑
k=t Js (xk ,uk)

s.t. xk+1 = f(xk ,uk), k = t, . . . , t + N − 1,
(xk ,uk) ∈ X ×U,
xt+N ∈ X f

xt = x(t),

(2.57)

where f(xk ,uk) is the nonlinear system dynamics and Js (xk ,uk) and J f (xt+N) (potentially) non-
linear stage and terminal cost, respectively. State set X and input set U, as well as terminal set X f

can now be described by nonlinear inequalites and don’t have to be convex. Since the stability
and feasibility assumptions presented in the Section2.3.2did not rely on linearity, results can be
directly extended to the problem2.57. However, computing the function J f (xt+N) and the set X f

can be very difficult. For NMPC, this is usually computed based on linearization, and the terminal
set and terminal cost for the linearized system are used around the equilibrium.

Just as it is the case with LMPC, to avoid generalization using set notation, NMPC can be
written as:

J(xt) ∶= min
ut ,...,ut+N−1 J f (xt+N) +

t+N−1
∑
k=t Js (xk ,uk)

s.t. xk+1 = f(xk ,uk), k = t, . . . , t + N − 1,
h(xk ,uk) ≤ 0,
hN(xt+N) ≤ 0,
xt = x(t).

(2.58)

In the previous equation, h(xk ,uk) and hN(xt+N) are vector-valued (nonlinear) functions repre-
senting stage and terminal constraints.

Due to the nonlinear nature of the optimization problem, solving NMPC in real time becomes
computationally demanding. Some of the common techniques to solve these challenges are
mentioned here:

• Interior-point methods: Interior-point methods are designed to handle inequality constraints
effectively by transforming them into equality constraints. A barrier function is introduced
to the original problem, thereby creating a new problem that only involves equality con-
straints.The solutions to the modified problem converge to the original problem as the
barrier parameter approaches zero [17].

2.3 model predictive control 20

• Sequential quadratic programming (SQP): One of the most commonly used methods for
solving nonlinear optimization problems is sequential quadratic programming. SQP ap-
proximates the nonlinear problem by solving a sequence of quadratic sub-problems.This is
done by linearizing the constraints and approximating the objective function around the
current point.Then, the quadratic problem is solved, and the solution serves as the initial
guess for the next iteration.This process continues until convergence criteria are met [18].

• Real-time iteration (RTI) scheme: In real-time applications where computational resources
are limited, the real-time iteration scheme can be particularly useful.The RTI scheme splits
the nonlinear optimization problem into preparation and feedback phase. Preparation phase
includes warm-starting the optimization using initial guess based on the solution from the
previous iteration. During that time, measurement and/or state estimation is performed to
obtain the latest information about the system states, after which the quadratic sub-problem
is solved. Contraray to SQP in which the optimization is done to full convergence, here only
one iteration of the underlying optimization algorithm is applied.The process is repeated
in real time, allowing NMPC to be used in fast-changing systems [18].

• Approximation methods: When the control problem is too complex to be solved exactly in
real time, approximation methods such as explicit NMPC [19] or machine learning-based
approaches can be used (as in [20] or [21]).These methods aim to approximate the optimal
control law either by partitioning the state-space or by training a model to emulate the
control behaviour.

In summary, NMPC provides a flexible and powerful framework to control nonlinear systems
effectively. However, solving the associated nonlinear optimization problem in real time remains
a challenge. A variety of methods are available to tackle this challenge, each with its pros and
cons.The choice of method often depends on the specific requirements of the application, such as
the need for real-time performance, the complexity of the nonlinearities, and the availability of
computational resources.

2.3.5 Reference tracking

Many real-world control applications are focused on following a desired reference trajectory
rather than merely stabilizing around a specific steady state. To accomplish this, the standard
MPC algorithm can be adapted to include a penalty term for deviations from both the desired
state and input references.The modified cost function is expressed as:

J(xt ,Xre f ,Ure f) ∶= min
ut ,...,ut+N−1 J f (xt+N − xre ft+N) +

t+N−1
∑
k=t Js (xk − xre fk ,uk − ure f

k),

s.t. xk+1 = Axk + Buk , k = t, . . . , t + N − 1,
(xk ,uk) ∈ X ×U,

xt+N ∈ Xre f
f

xt = x(t).

(2.59)

Equation (2.59) shows linear MPC with time dependant input and state reference signals. In it,
xre fk and ure f

k are state and input references time step k and Xre f
f is an invariant terminal target

2.4 koopman operator 21

set that is parametrized by the reference. State and input reference sequences are marked by
Xre f = [xre ft , xre ft+1 , . . . , xre ft+N] and Ure f = [ure f

t ,ure f
t+1 , . . . ,ure f

t+N], respectively.
Alternatively, one can also penalize the output yk = Cxk for deviating from its desired reference

yre fk . Both of these strategies produce comparable outcomes but are reliant on the accuracy of
the model being used. If the model is not precise, the output will not closely follow the desired
reference. Various techniques for achieving accurate, offset-free tracking of references have been
studied, as indicated in literature such as [12] and the references therein.

2.3.6 Soft constraints

Constraints within control algorithm can be categorized as either hard or soft. Hard constraints
usually result from the physical limitations of the actuators or the system as a whole.These are
non-negotiable limits that must never be exceeded. Soft constraints, on the other hand, are more
flexible and relate to preferred performance and safety limits of the system.While hard constraints
are usually tied to inputs and strictly must not be violated, system constraints are generally soft. A
violation of these soft constraints is permitted for a short period of time, usually due to errors in
the system modelling or external disturbances. In standard MPC formulations, such as2.49or
2.57, any breach of these constraints would render the problem infeasible. To overcome this, soft
constrained MPC introduces slack variables, denoted as εk, into the cost function:

J(xt) ∶= min
ut ,...,ut+N−1
εt ,...,εt+N−1

J f (xt+N) + Jε(εt+N) +
t+N−1
∑
k=t Js (xk ,uk) + Jε(εk)

s.t. xk+1 = Axk + Buk , k = t, . . . , t + N − 1,
Fxk +Guk ≤ h + εk ,
FNxt+N ≤ hN + εt+N ,
xt = x(t),

(2.60)

If no constraints are violated, the slack εk variables will be forced by the cost term Jε(εk) to
have zero value, making the soft constrained MPC formulation equivalent to the standard MPC.
However, if constraints are only mildly exceeded, the problem remains solvable [22].

2.4 koopman operator

The last section mentions both the advantages and weaknesses of linear and nonlinear MPC.
Ideally, onewould like to have the predictive capabilities ofNMPCwhilemaintaining the simplicity
and efficiency of LMPC.The Koopman operator presents an approach that effectively combines
these properties. Recent developments acknowledge the Koopman operator theory as a novel
perspective on dynamical systems, highlighting the evolution of measurements g(x) of a state x.
Bernard O. Koopman, in 1931, ilustrated the ability to represent a nonlinear dynamical system
via an infinite-dimensional linear operator within a Hilbert space of measurement functions
tied to the system’s state [23], which was later generalized by Koopman and von Neumann to
systems with continuous eigenvalue spectrum [24]. Known as the Koopman operator, its linearity
and spectral decomposition provide a comprehensive insight into the behaviour of nonlinear
systems. However, its infinite-dimensional character, which is a result of unbounded degrees of

2.4 koopman operator 22

freedom which describe all conceivable measurement functions g of the state vector x, reduces its
practicality.

For a long time there was practially no advancement in the filed, until Mezić and his col-
laborators brought it to life at the begining of this century [25, 26, 27, 28, 29]. Ever since then,
the primary research focus is to formulate matrix-based, finite-dimensional approximations of
the Koopman operator, with the eventual aim of developing globally linear models of nonlinear
systems. The attraction of translating nonlinear dynamics into linear terms is a result of the
superior estimation and prediction capabilities of nonlinear models, along with the numerous
control methods available for linear systems. Nonetheless, developing a finite-dimensional version
of the Koopman operator is pragmatically challenging, requiring a precise determination of a
large, yet finite, number of unknown observable functions [30].

2.4.1 Theoretical background

The Koopman operator advancesmeasurement functions of the state with the flow of the dynamics.
We examine complex-valued measurement functions, denoted g ∶ X → C which belong to an
infinite-dimensional Hilbert space. Often referred to as observables, these functions are distinct
from the unrelated concept of the observability in control theory.

To begin with, lets consider a discrete-time autonomous system:

xt+1 = f(xt),
yt = h(xt),

(2.61)

where the current state vector is xt ∈ X ⊂ Rnx , the subsequent state vector xt+1 ∈ X ⊂ Rnx and the
current output vector yt ∈ Y ⊂ Rny .The Koopman operator K ∶ H →H is an infinite-dimensional
linear operator that acts on measurement functions g according to:

Kg = g ○ f , (2.62)

where ○ is the composition operator. For a discrete-time system (2.61), this becomes:

Kg(xt) = g(f(xt)) = g(xt+1), (2.63)

Concisely, the Koopman operator formulates an infinite-dimensional linear dynamical system
that advances the state observation gt = g(xt) to the succeeding time step:

g(xt+1) = Kg(xt). (2.64)

It is crucial to note that this is applicable for any observable function g and for any state xt.
Schematic overview of the method is depicted in Figure2.6.

The Koopman operator is linear, which follows from the linearity of the addition operation in
function spaces:

K(α1g1(x) + α2g2(x)) = α1g1(f(x)) + α2g2(f(xk))
= α1Kg1(x) + α2Kg2(x).

(2.65)

The linear dynamical system (2.64) is analogous to the dynamical systems (2.61). It is notewor-
thy that the original state x could serve as the observable, with the infinite-dimensional operator

2.4 koopman operator 23

Koopman
operatornonlinear

mapping

(nonlinear) dynamical
system

X

Figure 2.6: Schematic illustration the Koopman operator.

K still advancing this function. Nonetheless, while the observable g = xmight present a straight-
forward representation within a selected basis for Hilbert space, it may evolve into an exceedingly
complex form upon successive iterations through the dynamics.Thus, deriving a representation
for K may not be simple or straightforward.

For sufficiently smooth dynamical systems, it is also possible to define the continuous-time
analogue of the Koopman dynamical system

ġ(x) = Kg(x). (2.66)

Although continuous-time Koopman systems won’t be discussed in this disertation, the following
example tries to clarify the main idea of the Koopman operator for the case where its finite
dimenstional representation exists [31].

Example 2.1. Consider an example system with a single fixed point, described as follows:

ẋ1 = µx1
ẋ2 = λ(x2 − x21)

(2.67)

When λ < µ < 0, this system demonstrates a slow attracting manifold specified by x2 = x21 . By incor-
porating the nonlinear measurement g = x21 into the state x, one can construct a three-dimensional
Koopman invariant subspace. Within this framework, the system’s behaviour is represented by linear
dynamics:

d
dt

⎡⎢⎢⎢⎢⎢⎣

y1
y2
y3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

µ 0 0
0 λ −λ
0 0 2µ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

y1
y2
y3

⎤⎥⎥⎥⎥⎥⎦
,
⎡⎢⎢⎢⎢⎢⎣

y1
y2
y3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x1
x2
x21

⎤⎥⎥⎥⎥⎥⎦
. (2.68)

2.4.2 Koopman operator eigenfuncions

The Koopman operator possesses linearity, an attribute that is notably advantageous, yet its
infinite-dimensionality introduces challenges in representation and computation. Rather than

2.4 koopman operator 24

encapsulating the progression of all measurement functions within a Hilbert space, applied
Koopman analysis attempts to pinpoint crucial measurement functions that linearly evolve with
the flow of the dynamics. Eigenfunctions of the Koopman operator provide a unique set of
measurements that exhibit linear behaviour over time. Indeed, a main motivation for adopting the
Koopman framework lies in its capacity to simplify the dynamics through the eigen-decomposition
of the operator.

A discrete-time Koopman eigenfunction ϕ(x) corresponding to eigenvalue λ satisfies

ϕ(xt+1) = Kϕ(xt) = λϕ(xt). (2.69)

A central challenge in modern applied dynamical systems is how to obtain Koopman eigenfunc-
tions either from data or from analytical expressions.The identification of these eigenfunctions
enables globally linear representations of strongly nonlinear systems. In other words, nonlinear
dynamics become entirely linear when expressed in eigenfunction coordinates represented by
ϕ(x). For instance, any conserved quantity within a dynamical system, like the constant function
ϕ = 1, is a Koopman eigenfunction and corresponds to an eigenvalue λ = 0 for any dynamical
system.

Additionally, depending on the dynamical system, there may be a finite set of generator
eigenfunction elements that may be used to construct all other eigenfunctions. In discrete time,
we find that the product of two eigenfunctions ϕ1(x) and ϕ2(x) is also an eigenfunction

K(ϕ1(x)ϕ2(x)) = ϕ1(f(x))ϕ2(f(x)) = λ1λ2ϕ1(x)ϕ2(x) (2.70)

corresponding to a new eigenvalue λ1λ2 given by the product of the eigenvalues of ϕ1(x) and
ϕ2(x).

2.4.3 Koopman operator for non-autonomous systems

The general representation of a discrete-time nonlinear non-autonomous dynamical system is
expressed as follows:

xt+1 = f(xt ,ut)
yt = h(xt).

(2.71)

In this equation, the current state is xt ∈ X ⊂ Rnx , the subsequent state xt+1 ∈ X ⊂ Rnx , the current
input ut ∈ U ⊂ Rnu and the current output yt ∈ Y ⊂ Rny .The transition is denoted by f , and the
output mapping by h.The augmented state evolution is described by the equation

χt+1 = f̂(χt) = [f(xt ,ut)
SUt

] . (2.72)

Here χt = [xt Ut]T represents the extended state vector and Ut = [ut ,ut+1, ...u∞] ∈ l(U) an
infinite dimensional sequence of input vectors. S denotes the left shift operator, where Sut = ut+1.
The Koopman operator, denoted asK ∶H →H, is associated with the dynamics given by equation
(2.72), and it is defined as

Kψ(χt) = ψ(f̂(χt)) = ψ(χt+1). (2.73)

In the above equation, ψ ∶ Rnx × l(U)→ C is a lifting function belonging to the function spaceH,
which remains invariant under the action of the Koopman operator. For further insights on this
subject, please refer to [32].

2.4 koopman operator 25

2.4.4 Applications

Over the past decade, there has been a growing focus on researching the use of Koopman operator
methods for state estimation and control. Pioneering work in the field of estimation includes
the concept of the Koopman Observer Form (KOF), introduced by Surana et al. in [33] and [34],
where the potential of the Koopman operator to construct KOF was demonstrated in a general
setting.This approach extends the scope of linear observers similar to Luenberger/Kalman to a
wider range of applications.

The application of the Koopman operator in control systems, including practical control
scenarios, is described in detail in works such as [35].These include studies such as experimen-
tal applications of the Koopman operator in active learning for control and the application of
Koopman-based control in ultrahigh-precision positioning. Additional application examples are
closed-loop control of a robot with spherical casing [36], fractional order PID control of a MEMS
gyroscope [37] and many others.

Brunton and colleagues [31] were among the first to address the problem of optimal control
via the Koopman operator, focusing on the selection of observable functions that enable the
application of optimal linear control strategies to nonlinear problems.Their study emphasized
the effectiveness of nonlinear observable subspaces in creating Koopman operator-based optimal
control laws for fully nonlinear systems using linear optimal control techniques such as LQR.

In the field of predictive control, Korda and Mezić [32] provide a comprehensive theoreti-
cal framework for MPC using a Koopman operator-derived linear model (KMPC). Addition-
ally, Zhang [38] and Mamakoukas [39], along with their teams, further investigate robust MPC
techniques based on the Koopman model. So far, KMPC has found its application in various
engineering fields.The study by Narasingam et al. [40] effectiveness of KMPC in controlling a
continuously stirred tank reactor process, achieving robust closed-loop stability. Similarly, Korda
et al. [41] applied KMPC for the transient stabilization of a power system. In [42], the authors also
demonstrated the application of finite control set KMPC in the control of electrical drives, which
is a pioneering real-world application in power electronics. In the field of robotics, Bruder et al.
[43] implemented KMPC for soft robot trajectory tracking illustrating its superiority in guiding
a robot along a predefined path compared to a standard linear model-based MPC controller.
Further experimental validation was done in [44], where a variant of MPC called quasi-LPVMPC
was used and tested on a 3-degree-of-freedom gyroscope and demonstrated excellent tracking
capabilities.The method described in this paper extends the concept of KMPC by converting the
Koopman model into a quasi-LPVmodel through linearization instead of using it directly. KMPC
was also used in nonlinear flow control [45] and model identification as well as feedback control
of a hydraulic fracturing process [46]. Chen et al. [47] introduced a data-driven predictive control
strategy using the Koopmanmodel for automatic train contol systems to address challenges related
to operational safety, comfort, and parking precision amid uncertain train dynamics and actuator
constraints. Wang et al. [48] proposed a method combining deep neural networks with Koopman
theory for linear modelling and control of nonlinear robotic systems, which improved accuracy
and control in mobile robot experiments beyond conventional approaches without the need for
pre-existing knowledge of the system dynamics. Furthermore, the authors in [49] addressed the
complexity of controlling soft actuators with pronounced nonlinearity and proposed an improved
KMPC framework for effective model-based control. Finally, the work described in [50] discusses

2.5 vehicle dynamics control systems 26

the challenges associated with accurate modelling and control of infinite-degree-of-freedom
continuum manipulators with high flexibility using KMPC, while in [51] the authors propose a
multi-criteria optimization of HVAC operation of buildings using Koopman predictive control
and deep learning.

Many different use cases are mentioned in this overview, but it still only represents a small part
of the diverse and rapidly changing application possibilities of the Koopman operator. A detailed
overview of vehicle dynamics control with the Koopman operator is presented in Chapter5.

2.5 vehicle dynamics control systems

The safety mechanisms in motor vehicles can be divided into passive and active systems, each of
which offers different ways of dealing with collisions and preventing accidents. Passive systems,
such as seat belts and airbags, are activated in the event of an accident in order to prevent injuries.
Active systems, on the other hand, work preventively and use various electronically controlled
modules to avoid accidents. The latter use a series of sensors and algorithms that manipulate
a vehicle’s components to assist the driver in maintaining control. This section presents some
standard vehicle dynamics control systems, a subset of active safety functions.While these systems
differ in their mechanisms, they all aim to improve the stability and traction of the vehicle by
monitoring and modulating its operating parameters and assisting the driver [9,52,53].

Anti-lock braking system (ABS):This system prevents the wheels from locking under heavy
braking and ensures that traction is maintained, preventing the vehicle from skidding uncontrol-
lably.The ABS adjusts the brake fluid pressure in real time to prevent the wheels from locking
and to improve the driver’s control of the vehicle. It integrates speed sensors, electronic control
units and hydraulic actuators to efficiently modulate brake pressure to maintain optimum friction
between the tyres and the road, ensuring a shorter stopping distance and sustained steerability
during emergency braking.

Electronic stability control (ESC): ESC regulates vehicle stability by preventing the vehicle from
skidding when cornering sharply or on slippery surfaces. It uses sensors to monitor the condition
of the vehicle and uses the data to apply different braking forces to the individual wheels and steer
the vehicle in the desired direction. ESC automatically brakes individual wheels to counteract
understeer or oversteer, ensuring that the vehicle maintains the trajectory desired by the driver,
especially in situations where vehicle stability is at risk. Various manufacturers develop their own
versions of ESC that are tailored to their vehicle design.

Active steering system (ASS): Active steering (or steer-by-wire) changes the angle and/or torque
of the vehicle’s steering wheel to assist the driver in manoeuvreing.The angle of the front wheels
is calculated by combining two factors. One aspect is influenced by the driver’s input via the
steering wheel, while the other is controlled by the steer-by-wire control system. This system
subtly modifies the driver’s steering movements to prevent skidding, while ensuring that the
vehicle maintains the path desired by the driver without noticeable intervention.The driver’s tasks
can generally be divided into two main areas. Following the path, which is perceived as the main
task, and damping disturbances. If the steer-by-wire system is designed to take care of the latter,

2.5 vehicle dynamics control systems 27

the driver can concentrate better on the important task of following the chosen path.

Torque vectoring (TV): If the ESC is activated and the differential brake is applied while the
vehicle is accelerating, this can reduce acceleration and not produce the longitudinal response
desired by the driver. A viable solution to this problem could be an active torque distribution
system for all-wheel drive (AWD), also known as active torque vectoring.The term "all-wheel
drive" means that the torque is distributed to all four wheels.The integration of differentials on
the front and rear axles and a transfer case 1 enables the AWD function. The differentials on
each axle ensure that the left and right wheels turn at different speeds, which is crucial when
cornering, as one wheel travels along a path with larger radius and has to turn faster.The active
torque distribution system uses the differentials to distribute the required torque individually
to each wheel so that the yaw rate can be controlled without having to apply the brakes. This
system is becoming increasingly popular in modern electric vehicles, especially those with a
wheel-integrated motor structure where the motors can be independently controlled [54,55].

Direct yaw moment control (DYC): A system that uses the longitudinal forces of the tires to
control the lateral movement of the vehicle. The term is often used to describe a category of
stability control systems that includes both ESC and TV as well as other similar systems [56].
However, car manufacturers use different terms for yaw stability control systems, each of which
may have its own characteristics and a slightly different meaning. In this thesis, the terms TV and
DYC are used as synonyms.

Traction control system (TCS): The TCS prevents the wheels from spinning during accelera-
tion by modulating the engine power to the wheels. With the help of sensors that monitor the
wheel speed, the system reduces excessive power that could cause the wheels to spin and ensures
optimum contact and traction on the road.This is particularly important when accelerating on
uneven or slippery roads to ensure that the vehicle maintains its stability and stays on the intended
path.

Cruise control system (CC): Cruise control is mainly used on open highways and maintains the
speed set by the driver without the driver having to constantly press the accelerator pedal.

Adaptive cruise control (ACC): ACC extends the basic functions of a conventional cruise control
system. It works like a standard cruise control system when no obstacles are detected in the
direction of travel and maintains a constant speed. If a vehicle ahead is detected, especially on
highways, ACC switches from a speed maintenance algorithm to a distance control algorithm.
Vehicles using ACC must be equipped with sensors such as radar or lidar to detect vehicles ahead.
In addition, ACC not only controls the throttle, but also applies the brakes in its distance control
mode.

1 An intermediate gearbox that transfers power from the transmission to the driven axles of four-wheel drive, all-wheel
drive and other multi-axle vehicles.

2.6 summary 28

2.6 summary

The chapter provides a comprehensive overview of the various aspects of vehicle dynamics, control
systems and modelling methods. It begins with vehicle dynamics models, explaining the concepts
of the two-track and the bicycle model, followed by an introduction of alternative slip formulation.
The following sections address the problem of tire force modelling, examining various methods
for accurately representing the complex relationships between tire forces, torques and other
influencing variables.

Model predictive control (MPC) is examined, outlining its fundamentals, applications and
challenges. This section discusses its inherent logic, which mimics human decision-making
processes by using mathematical models to predict system behaviour and optimize control inputs
based on a defined performance measure.The different versions of MPC, such as linear model
predictive control and nonlinear model predictive control, are described in detail, including their
formulations, limitations and computational approaches.

Another section introduces the Koopman operator and discusses its theoretical framework and
practical applications in transforming nonlinear into linear dynamical systems.The theory revolves
around the evolution of measurements and operates in an infinite-dimensional Hilbert space of
measurement functions. While the Koopman operator is linear and its spectral decomposition
provides revealing insights into the behaviour of nonlinear systems, its practical applicability is
limited by its infinite-dimensional nature.

Finally, the chapter provides an insight into vehicle dynamics control systems. Various active
control systems such as the anti-lock braking system (ABS), the electronic stability control (ESC)
and the torque vectoring system (TV) are presented. In addition, their role in increasing vehi-
cle stability, ensuring traction and avoiding accidents by dynamically modulating the vehicle’s
operating parameters is emphasised.

3
Data-driven Koopman identification

The third chapter deals with different techniques for data-driven identification of Koop-
manmodels.The first two sections introduce the widely recognized extended dynamicmode

decomposition and deep dynamic mode decomposition, which are extensively documented in the
literature.These concepts are then extended to what is referred to as enhanced extended dynamic
mode decomposition, one of the fundamental contributions of this thesis.The rationale behind
this approach is elaborated, and three distinct numerical methods for obtaining such models are
presented and explained: basis function reduction by discrete selection, multiple step prediction
learning algorithm and basis function reduction as a hyperparameter optimization problem.
Additionally, some other data-driven Koopman identification approaches are briefly mentioned.
The concluding section provides an evaluation of various linear predictors using three established
benchmark dynamical systems: the Van der Pol oscillator, the damped Duffing oscillator and the
bilinear motor.The simulation results are compared and analyzed, and concluding remarks are
made.

3.1 extended dynamic mode decomposition

In their work [57], the authors introduced extended dynamic mode decomposition (EDMD) as
a method that utilizes data to approximate the Koopman operator using a dictionary of basis
functions. It is said that these functions span the subspace of observables.

3.1.1 EDMD for autonomous systems

For the uncontrolled (autonomous) system (2.61), the approximation is done by solving the
optimization problem

min
A

NK

∑
j=1 ∥Φ(x

j
t+1) − AΦ(x j

t)∥
2
2, (3.1)

where z jt = Φ(x
j
t) = [ϕ1(x j

t) . . . ϕnψ(x
j
t)]T ∈ Rnϕ is a vector of lifting (basis) functions for the

j-th sample.The states xt and xt+1 are obtained by simulating the nonlinear system model and NK

is the cardinality of the simulated dataset (number of simulated time steps). Important to note
is that the states may, but do not have to be a part of a trajectory. It is sufficient to perform NK

different one-step simulations with random samples from the state-space, i.e. from the intervals
of interest which are subsets of the state-space, as initial conditions.

29

3.1 extended dynamic mode decomposition 30

The dynamics (2.61) is approximated by a discrete-time linear system with matrix A ∈ Rnϕ×nϕ :
zt+1 = Azt . (3.2)

If the vector of lifting functions is the state vector itself, i.e. zt = xt, the method is called
dynamic mode decomposition (DMD) [58].

3.1.2 EDMD for non-autonomous systems

For the controlled (non-autonomous) system (2.71), that approximation can be achieved by solving
the following optimization problem:

min
A,B

NK

∑
j=1 ∥Φ(x

j
t+1)− [A B]Ψ(x j

t ,u
j
t)∥

2
2, Ψ(x j

t ,u
j
t) = [Φ(x

j
t)T (u

j
t)T]

T
. (3.3)

Here, z jt = Φ(x
j
t) = [ϕ1(x j

t) . . . ϕnϕ(x
j
t)]T ∈ Rnϕ again represents a vector of lifting or basis

functions, and u j
t denotes an input vector for the jth sample.The states xt and xt+1 are obtained

either by collecting data from the real system or by simulating the nonlinear model of a system.
NK represents the number of simulated time steps or the cardinality of the dataset.The dynamics
(2.71) is approximated by a discrete-time linear system with matrices A ∈ Rnϕ×nϕ and B ∈ Rnϕ×nu :

zt+1 = Azt + But ,
ŷt = Czt .

(3.4)

The output estimate is ŷt ∈ Rny , while the output mapping is determined by the matrix C ∈ Rny×nϕ .
The matrix C is obtained by minimizing the least square cost

min
C

NK

∑
j=1 ∥y

j
t − CΦ(x

j
t)∥

2
2, (3.5)

This step is the same for both autonomous and non-autonomous systems.
The analytical solution of the problem (3.3) is

[A B] = VWT(WWT)†, (3.6)

where † denotes the Moore-Penrose Pseudoinverse and
V = [Φ(x1t+1) Φ(x2t+1) . . . Φ(xNK

t+1)]RnΦ×NK ,
W = [Ψ(x1t ,u1

t) Ψ(x2t ,u2
t) . . . Ψ(xNK

t ,uNK
t)] ∈ R(nΦ+nu)×NK .

In an equivalent way we can obtain matrix C, i.e. solution to (3.5), as

C = YZT(ZZT)†, (3.7)

where
Y = [y1t y2t . . . yNK

t] ∈ Rny×NK ,
Z = [Φ(x1t) Φ(x2t) . . . Φ(xNK

t)] ∈ RnΦ×NK .

ThemappingΨ(x j
t ,u

j
t) in the optimization problem (3.3) is structured such that it has a computable

solution and a linear predictor (3.4) is obtained [32]. In other words, this requires that the system
dynamics from (2.71) has the following form:

xt+1 = f(xt) + But . (3.8)

This is an important constraint that affects the way in which the state and input space can be
defined in order for the method to be applicable.

3.1 extended dynamic mode decomposition 31

3.1.3 EDMD for general nonlinear systems

In case one would like to use EDMD to model a system where the form (3.8) is not satisfied (e.g. a
bilinear system), one possible approach is to rewrite it in the extended space x̃ = [xT uT]T and
treat the control input as a state variable. With this approach, the original discrete-time system

xt+1 = f(xt ,ut),
ut+1 = ut + ∆ut ,

(3.9)

is rewritten as follows
x̃t+1 = f(x̃t) + B∆ut , (3.10)

where the change of the control input is considered as the new control input. With such an
approach, it is possible to lift the autonomous dynamics using the Koopman operator, and the
overall system dynamics remain linear for both the control input and the state. It is important to
note that, if some of the inputs satisfy requested linear relationship, they don’t have to be included
in the extended space.

3.1.4 Basis functions

Similar to other spectral methods, the precision and convergence speed of the EDMD rely on the
chosen set of basis functions, which define the subspace of observables.This set, often referred
to as the dictionary, is typically selected by an engineer who is creating the system identifica-
tion algorithm. In [57] the authors suggest various potential choices basis functions, including
polynomials [59], Fourier modes [60], radial basis functions [61], and spectral elements [62].

The best selection of these functions is usually dependent on the specific dynamics of the
system under study and the chosen data sampling methodology.Therefore, it is also beneficial to
incorporate functions that reflect the inherent dynamics of a system, as Korda et. al. did in [41].
In the context of this thesis, the focus is on polynomials and thin spline radial basis functions, in
addition to functions that are intrinsic to vehicle dynamics.

Polynomial basis comprises monomials of the state vector elements, as described by the following
equation:

Pd = {
nx
∏
j=1 x

v j
j ∣ v j ∈ N ∪ {0},

nx
∑
j=1 v j ≤ d}, (3.11)

where d denotes the order of the basis Pd .They have the capability to interpolate various nonlinear
functions, but the their dimensionality increases rapidly as the order increases.

Example 3.1. Let us consider a state vector x ∈ R2 and a polynomial basis of order d = 3. In this
case, the newly generated extended state-space vector is equal to

Φ([x1 x2]T) = [x1 x2 x21 x1x2 x22 x31 x21 x2 x1x22 x32 1]T . (3.12)

The order of the basis elements within the vector can be different (here the original states are at the
beginning for the sake of simplicity).

3.2 deep dynamic mode decomposition 32

Thin spline radial basis functions (RBFs) are powerful tools for multidimensional interpolation,
with applications ranging from numerical analysis tomachine learning and data-drivenmodelling.
Among the different types of RBFs, thin spline radial basis functions are particularly notable for
their smoothing properties and computational efficiency.

Thin spline radial basis functions are defined as functions that depend only on the radial
distance from a center point c j:

ϕ j(x) = ∥x − c j∥22 log ∥x − c j∥2 (3.13)

To prevent the squared term from disproportionately influencing the value of the function, it is
necessary to normalize the function arguments to fit within a unit hypercube.

Thin spline radial basis functions offer a robust and flexible approach to interpolation problems.
Their ability to produce smooth interpolants with minimal curvature makes them a tool of choice
in many fields which require the reconstruction of functions from scattered data.

3.2 deep dynamic mode decomposition

In this section, the main idea of the deep dynamic mode decomposition (Deep-DMD) algorithm
is described. Recently, a lot of similar approaches emerged in the literature, e.g. [63], [64], [65],
[66] and [67], but the one described here is inspired by [68].

In the context of EDMD, the selection of basis functions is a manual process undertaken by
the algorithm designer. However, in Deep-DMD, this task is automated through the implemen-
tation of a deep neural network (DNN). The primary function of the DNN in Deep-DMD is
to autonomously determine the subspace of the Koopman operator.This differs from the other
approaches where DNN is used for system identification because those methods usually directly
model the propagation, whereas Deep-DMDmodels state vector encoding and propagation is
done in a linear fashion. For analytical purposes, the dynamics (2.71) approximated byDeep-DMD
can be expressed in the following manner:

Φe(xt+1, θe) = [A B]Ψe(xt ,ut , θe),
ŷt = CΦe(xt , θe),

(3.14)

whereΨe(xt ,ut , θe) = [Φe(xt , θe)T uT
t]

T ∈ RnΦe+nu .The extended state is denoted as zt = Φe(xt , θe) ∈
RnΦe , with Φe being the encoder neural network, parametrized by θe which includes weights and
biases.

Figure3.1depicts the Deep-DMD algorithm utilizing an neural network encoder framework.
This structure features an encoder, composed of fully-connected neural network layers, responsible
for converting the initial state into a higher-dimensional space.The weights A and B are connected
to the encoder’s final layer and operate without activation functions.These weights are ideally
trained concurrently with the encoder. However, if the encoder faces unforeseen errors or a
vanishing gradient problem, A and B can be retrained with the frozen encoder network in the
final stage of training, potentially reducing the effectiveness of Deep-DMD to that of standard
EDMD. Specifically, the output at time t for any hidden layer l can be expressed as:

hl
t = σ l (W lhl−1

t + bl) . (3.15)

3.2 deep dynamic mode decomposition 33

+

tx

...

tu

tz

t+1z t+1y

e

...

...
...

...

...

tx

Figure 3.1: Deep-DMD framework diagram for a single step prediction.

In this equation, W l ∈ Rn l×n l−1 and bl ∈ Rn l represent the weight matrix and the bias vector of
the l-th hidden layer, respectively, where nl denotes the number of neurons in that layer. σ l is
the activation function of the hidden layer l , which is one of the L layers of the encoder, where L
denotes the total number of encoder layers.The initial input for the first layer is the state vector
itself, i.e. h0

t = xt . In cases where the lifted state vector also contains the original state vector, the
output of the encoder is given as follows:

Φe(xt , θe) = [xTt (hL
t)T]T . (3.16)

Here, hL
t ∈ RnΦe−nx represents the output from the final neural network layer of the encoder.

3.2.1 Multiple step prediction error minimization

Instead of minimizing single step prediction errors (3.3) and (3.5), Deep-DMD minimizes the
multi step prediction error, which should increase numerical stability of the algorithm and chances
of finding a good local optimum (which is a known issues in neural network training).The output
prediction in p steps is

ŷt+p = Cẑt+p, (3.17)

where ẑt+p is the p step approximation starting from xt :

ẑt+p = ApΦ(xt) +
p

∑
j=1 A

j−1But+p− j. (3.18)

The cost function for a given time step t is given as a sum of multiple components, each of
which serves a different purpose:

Lt = α1Lt
o,x + α2Lt

x ,x + α3Lt
x ,o + α4Lt∞. (3.19)

The first component accounts for the reconstruction error in the original state-space:

Lt
o,x =

1
p

p

∑
j=1 ∥yt+ j − CΦ(xt)∥

2
2. (3.20)

3.3 enhanced extended dynamic mode decomposition 34

The second one is the mean of prediction errors along the p time steps:

Lt
x ,x =

1
p

p

∑
j=1 ∥yt+ j − Cẑt+ j∥

2
2. (3.21)

To ensure a low prediction error in the lifted state-space, the following cost function is minimized:

Lt
x ,o =

1
p

p

∑
j=1 ∥Φ(xt+ j) − ẑt+ j∥

2
2. (3.22)

To remove the high amplitude outliers, l∞ norm is used, i.e.

Lt∞ = 1
p

p

∑
j=1 ∥yt+ j − CΦ(xt)∥∞ +

1
p

p

∑
j=1 ∥yt+ j − Cẑt+ j∥∞. (3.23)

Finally, to avoid overfitting, regularization cost is added:

Lreg = ∥G∥22 + ∥h∥22 + ∥A∥22 + ∥B∥22 + ∥C∥22. (3.24)

The final cost function, averaged over NK training samples equals

L = 1
NK

NK

∑
t=1 L

t + α5Lreg , (3.25)

where scalar weights α1, . . . , α5 determine relative influence of a given component on the complete
cost. Weights are chosen depending on a specific application, and some of them can be set to zero
if appropriate.

3.2.2 Learning algorithm

Learning is performed in batch mode.The data is split into training and validation sets, and early
stopping is implemented as a regularization technique to prevent overfitting (together with the
regularization described in (3.24)).The implementation is described in Algorithm1. In it, emax is
the maximum number of training epochs, vp is the violation patience, i.e. the number of epochs
for which the algorithm "tolerates" that the validation loss does not decrease, ne is the evaluation
epoch number, bs is the batch size and lr the learning rate.
EDMDmodel retraining can be done after the learning process has been completed.The main
idea is to perform the original EDMD least square minimization (3.6) and (3.7), but this time
the previously learned deep encoder (3.16) is used as the basis function.The reason for this are
possible numerical problems that can occur when executing Algorithm1.

3.3 enhanced extended dynamic mode decomposition

The equations (3.3) and (3.5) demonstrate how the EDMD approximation can be computed easily
and quickly. However, the method suffers from the curse of dimensionality, which can cause
even larger numerical errors due to the enormous size of the vectors Φ(xt) and Ψ(xt ,ut) [69].
Additionally, it only minimizes a single step prediction error, which can become problematic as
the numerical errors multiply with increasing prediction horizon. On the other hand, Deep-DMD,

3.3 enhanced extended dynamic mode decomposition 35

Algorithm 1: Deep-DMD learning procedure
Data: Xtrain, Utrain, Ytrain, Xval id , Uval id , Yval id

Init: A, B,C , θe , emax , α1 . . . α5 , p, vp, ne , bs, lr
Result: Abest , Bbest ,Cbest , θe ,best

1 train_data ← {Xtrain ,Utrain ,Ytrain};
2 val idation_data ← {Xval id ,Uval id ,Yval id};
3 model ← {A, B,C , θe};
4 v ← 0;
5 model_best ← model ;
6 Lbest ←∞;
7 for e = 0 ∶ emax do
8 if e mod ne == 0 then
9 Lval id ← loss(val idation_data, p);
10 if Lval id < Lbest then
11 Lbest ← Lval id ;
12 model_best ← model ;
13 v ← 0;
14 else
15 v ← v + 1;
16 end
17 if v == vp then
18 break;
19 end
20 end
21 batch_data = create_batches(train_data, bs);
22 for b = 0 ∶ bs do
23 Lbatch ← loss(batch_data[b], p);
24 model .backward(Lbatch); //calculate gradients

25 model .update(optimizer(lr)); //update parameters

26 end
27 end

since it contains a neural network based encoder, has a high chance of experiencing convergence
problems if all the hyperparameters are not chosen very carefully.

Here a method called enhanced extended dynamic mode decomposition (E2DMD) , which
has the potential to handle all of these problems, is presented.The approximated model resulting
from E2DMD can be written as:

wt+1 = Awt + But

ŷt = Cwt ,
(3.26)

where wt = Φ̃(xt) is the reduced dimension encoding of the basis function vector zt , such as the

3.3 enhanced extended dynamic mode decomposition 36

one used in (3.4). System matrices are, as for EDMD, obtained by minimizing the cost function

min
A,B

NK

∑
j=1 ∥Φ̃(x

j
t+1)− [A B] Ψ̃(x j

t ,u
j
t)∥

2
2, Ψ̃(x j

t ,u
j
t) = [Φ̃(x

j
t)T (u

j
t)T]

T
, (3.27)

and output matrix by minimizing

min
C

NK

∑
j=1 ∥y

j
t − CΦ̃(x

j
t)∥

2
2. (3.28)

The E2DMD algorithm was first proposed in [70], and its more detailed description is given in
the following text.

3.3.1 Basis function dimension reduction

E2DMD reduces the dimension of the originally set basis function vector zt ∈ Rnϕ to an arbitrary
dimension nw such that nx < nw < nϕ:

wt = Gzt + h, (3.29)

resulting in a new basis function vector wt ∈ Rnw , thus avoiding the curse of dimensionality.
Mapping (3.26), uses the optimal matrix G ∈ Rnw×nΦ and the vector h ∈ Rnw to extract as much
useful information as possible from the vector zt .

The new basis vector can also directly contain the original state vector, i.e.

wt = [xTt w̃T]T , (3.30)

where in this case the reduced basis vector w̃t ∈ Rnw−nx is obtained from

w̃t = Gwzt + hw , (3.31)

with the optimal matrix Gw ∈ R(nw−nx)×nΦ and the vector h ∈ Rnw−nx .
The diagram of the method is shown in Figure3.2, while the numerical matrix calculation is

described in the following lemma.

Lemma 3.1. Let us define matrices V ∈ R(nΦ+nu)×NK , W ∈ RnΦ×NK , Z ∈ RnΦ×NK and Y ∈ Rny×NK as
in (3.6) and (3.7), reduction matrix G ∈ Rnw×nΦ and bias vector h ∈ Rnw . In addition, lets define
the bias matrix H = [h h . . .h] ∈ Rnw×NK , the block diagonal matrix G = diag (G , Iu) consisting
of the matrix G and the identity matrix Iu ∈ Rnu×nu , and the bias matrix extended with zeros
H = [HT 0T]T ∈ R(nw+nu)×NK .The analytical solution of the problem (3.27) can then be written as

[A B] = (GV +H)(WTGT +HT)((GW +H)(WTGT +HT))†,

Similarly, the solution of (3.28) is

C = Y(ZTGT +HT)((GZ +H)(ZTGT +HT))†.

3.3 enhanced extended dynamic mode decomposition 37

Proof.The matrices V, W, Y and Z are defined for the basis Φ(x) as

V = [Φ(x1t+1) Φ(x2t+1) . . . Φ(xNK
t+1)] ,

W = [Ψ(x1t ,u1
t) Ψ(x2t ,u2

t) . . . Ψ(xNK
t ,uNK

t)] ,
Y = [y1t y2t . . . yNK

t] ,
Z = [Φ(x1t) Φ(x2t) . . . Φ(xNK

t)] ,

(3.32)

and for such formulation, the system matrices Ao, Bo and Co can be found using:

[Ao Bo] = VWT(WWT)†,
Co = YZT(ZZT)†.

(3.33)

These matrices represent the solution of the problems (3.3) and (3.5), i.e. the approximation of the
Koopman operator with EDMD (without dimension reduction). Let us define transformed matrices
Ṽ , W̃ and Z̃, which represents the system with a reduced basis Φ̃(x):

Ṽ = [Φ̃(x1t+1) Φ̃(x2t+1) . . . Φ̃(xNK
t+1)] ,

W̃ = [Ψ̃(x1t ,u1
t) Ψ̃(x2t ,u2

t) . . . Ψ̃(xNK
t ,uNK

t)] ,
Z̃ = [Φ̃(x1t) Φ̃(x2t) . . . Φ̃(xNK

t)] .
(3.34)

For the reduced system, the matrices A, B and C are calculated as:

[A B] = ṼW̃T(W̃W̃T)†,
C = YZ̃T(Z̃ Z̃T)†.

(3.35)

The basis reduction transformation (3.29) is equivalent to

Φ̃(xt) = GΦ(xt) + h. (3.36)

By substituting vectors Φ̃(x) in (3.34) by (3.36) and defining ĥ = [hT 0T]T , we get

Ṽ = [GΦ(x1t+1) + h, GΦ(x2t+1) + h, . . .GΦ(xNK
t+1) + h] ,

W̃ = [GΨ(x1t ,u1
t) + ĥ, GΨ(x2t ,u2

t) + ĥ . . .GΨ(xNK
t ,uNK

t) + ĥ] ,
Z̃ = [GΦ(x1t) + h, GΦ(x2t) + h, . . .GΦ(xNK

t) + h] .
(3.37)

Since the reduction transformation is affine, (3.37) can be written as

Ṽ = G [Φ(x1t+1), Φ(x2t+1), . . . Φ(xNK
t+1)] + [h h . . .h] ,

W̃ = G [Ψ(x1t ,u1
t) Ψ(x2t ,u2

t) . . . Ψ(xNK
t ,uNK

t)] + [ĥ ĥ . . . ĥ] ,
Z̃ = G [Φ(x1t) Φ(x2t) . . . Φ(xNK

t)] + [h h . . .h] ,
(3.38)

which, after combining the initial definitions with (3.32), becomes:

Ṽ = GV +H, W̃ = GW +H, Z̃ = GZ +H. (3.39)

By substituting (3.39) into (3.35), we get

[A B] = (GV +H)(WTGT +HT)((GW +H)(WTGT +HT))†,
C = Y(ZTGT +HT)((GZ +H)(ZTGT +HT))†,

(3.40)

which proves the lemma.

3.3 enhanced extended dynamic mode decomposition 38

+

+

~

tx

tu

tz tw

t+1yt+1w

Figure 3.2: E2DMD framework diagram for a single step prediction.

Lemma3.1shows how the procedure for calculating Koopman model matrices for E 2DMD
method looks like. However, the problem is obviously nonlinear since the optimization variables
G and h cannot be expressed explicitly. In the rest of the section, three different optimization
methods are proposed to solve this problem.

3.3.2 Basis function reduction by discrete selection

One of the ways to train E2DMD is to omit the bias vector h and constrain the reduction matrix G
so that a binary selection matrix is created, which is referred to as Gb.The term binary selection
matrix describes a matrix that consists exclusively of zeros and ones and is used to select certain
elements from a vector. When multiplied by a vector, this matrix produces a new vector whose
elements are a subset of the original vector. In addition, all its rows are unique, i.e. each row selects
a different element from the original vector.The equation (3.29) then becomes

wt = Gbzt , (3.41)

while the solution to the problems (3.27) and (3.28) is given by the Corollary3.1. In addition,
Example3.2illustrates the form which the matrix Gb should have.

Corollary 3.1. Let us define matrices V ∈ R(nΦ+nu)×NK , W ∈ RnΦ×NK , Z ∈ RnΦ×NK and Y ∈ Rny×NK

as in (3.6) and (3.7) and the reduction matrix Gb ∈ Rnw×nΦ . In addition lets define the block diagonal
matrix Gb = diag (Gb , Iu) consisting of the matrix Gb and the identity matrix Iu ∈ Rnu×nu . The
analytical solution of the problem (3.27) can then be written as

[A B] = GbVWTGT
b (GbWWTGT

b)†.

Equivalently, the solution of (3.28) is

C = YZTGT
b (GbZZTGT

b)†.

Proof. Consider the equations proved in Lemma3.1. Substituting the matrix G with the binary
selection matrix Gb and setting the bias vector h = 0 directly proves the corollary.

3.3 enhanced extended dynamic mode decomposition 39

Example 3.2. Let us define original basis vector z = [z1 z2 z3 z4 z5]T and reduced basis vector
w = [w1 w2 w3]T = [z2 z5 z1]T .The corresponding binary selection matrix equals

Gb =
⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 0 1
1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

To find the optimal selection matrix Gb, one can choose any discrete optimization algorithm,
but here the iterated local search with simulated annealing was applied.The main idea behind
the algorithm is to initialize the matrix Gb as a unit matrix concatenated with a zero matrix and
then randomly swap its columns to find the best nw-dimensional choice of all nΦ basis vector
components. Additionally, Metropolis heuristics, the reheating trick and random reordering
of the matrix columns were applied to increase the chances of finding a good solution [71]. A
good solution is the one that has the lowest mean multiple step prediction error evaluated on the
validation set.This error is described as

L = 100
Nval id p

Nval id

∑
j=1

p−1
∑
k=0
∥ŷ j

k − y
j
k∥2

∥y j
k∥2

, (3.42)

where y j
k is the real and ŷ

j
k predicted output value for j-th trajectory at step k, Nval id is the number

of samples in the validation set and p the number of prediction steps.The following text gives a
brief introduction to the concepts described, while the pseudocode for the optimization is given
in Algorithm2. Within this algorithm, the number of training epochs is represented as emax , the
violation patience as vp, the evaluation epoch number as ne , the initial temperature as Tinit , and
the temperature reduction coefficient as αtemp.

Iterated local search (ILS) is a metaheuristic algorithm used to solve optimization problems,
especially those where the search for an optimal solution is complex or computationally expensive.
The main idea behind ILS is the repeated application of a local search algorithm from different
starting points in the search space. It is particularly effective because it combines the depth of
local search (thoroughly exploiting the current area of the search space) with the breadth of
global search (exploring new and potentially more promising areas of the search space through
perturbation).This makes it a powerful tool for problems where the solution landscape is rugged
with many local optima, such as planning, routing, or combinatorial optimization tasks. A more
detailed explanation can be found in [72].
Simulated annealing (SA) is an optimization technique based on the annealing process in metal-
lurgy. In annealing, a material is heated and then slowly cooled to reduce defects and increase
its strength. Simulated annealing applies this concept to find an approximate solution to an op-
timization problem, which is particularly useful for finding a global optimum in a large search
space with many local optima. It is especially powerful for problems where the solution space
is large, such as scheduling, routing or optimising complex functions. Its ability to avoid local
optima makes it a preferred choice in many real-world applications, although it is not guaranteed
to find the absolute best global solution.The theory explaining the algorithm and some examples
are given in [71].

3.3 enhanced extended dynamic mode decomposition 40

Algorithm 2: Simulated annealing optimization of a binary selection matrix
Data: Ztrain, Utrain, Ytrain, Zval id , Uval id , Yval id

Init: emax , vp, ne , Tinit , αtemp, p
Result: Aglob_best , Bglob_best ,Cglob_best ,Gb,glob_best

1 train_data ← {Ztrain ,Utrain ,Ytrain};
2 val idation_data ← {Zval id ,Uval id ,Yval id};
3 Gb ← [I, 0]; //identity matrix concatenated with zeros

4 Gb,best , Lbest ← Gb , ∞;
5 Gb,glob_best , Lglob_best ← Gb,best , Lbest ;
6 v ← 0;
7 T ← Tinit ;
8 for e = 0 ∶ emax do
9 if e mod ne == 0 then
10 Gb ← randomize_al l_columns(Gb);
11 else
12 Gb ← randoml y_swap_two_columns(Gb); //local search

13 end
14 A, B,C ← calculate_model(train_data,Gb);
15 Lval id ← loss(val idation_data,A, B,C ,Gb , p);
16 if Lval id < Lbest then
17 Gb,best , Lbest ← Gb , Lval id ;
18 else

//Metropolis heuristics

19 if rand_number < exp(−(Lval id − Lbest)/T) then
20 Gb,best , Lbest ← Gb , Lval id ;
21 end
22 end
23 if Lbest < Lglob_best then
24 Gb,glob_best , Lglob_best ← Gb,best , Lbest ;
25 v ← 0;
26 else
27 v ← v + 1;
28 end
29 if v < vp then
30 T ← αtempT ; //reduce the temperature

31 else
32 T ← Tinit ; //reinitialize the temperature

33 end
34 end
35 Aglob_best , Bglob_best ,Cglob_best ← calculate_model(train_data,Gb,glob_best);

3.3 enhanced extended dynamic mode decomposition 41

3.3.3 Multiple step prediction learning algorithm

The second approach to train E2DMD proposed in the thesis is to use multiple step prediction
error minimization as in3.2.1. The procedure is the same as for Deep-DMD, only the structure of
the encoder changes.The learning procedure is specified in Algorithm3.

Algorithm 3: E2DMDmultiple step minimization learning procedure
Data: Xtrain, Utrain, Ytrain, Xval id , Uval id , Yval id

Init: A, B,C ,G , h, emax , α1 . . . α5 , p, vp, ne , bs, lr
Result: Abest , Bbest ,Cbest ,Gbest , hbest

1 train_data ← {Xtrain ,Utrain ,Ytrain};
2 val idation_data ← {Xval id ,Uval id ,Yval id};
3 model ← {A, B,C ,G , h};
4 v ← 0;
5 model_best ← model ;
6 Lbest ←∞;
7 for e = 0 ∶ emax do

//gradient descend and early stopping logic is the same as in

Algorithm1

8 end

Although this method is implemented similarly to Deep-DMD, it does not require any form of
neural network, making it easier and faster to train. As with Deep-DMD, EDMDmodel retraining
can be performed after running the Algorithm3, if required.

3.3.4 Basis function reduction as a hyperparameter optimization problem

In the previous text, when solving the E2DMD problem, all matrices were considered to be a
solution of the same optimization problem. Alternative point of view is to consider the matrix
G and the vector h from the affine transformation (3.29) as hyperparameters of the underlying
EDMD optimization problem.

Hyperparameters are the parameters of the algorithm that are not learned from the data, but
set prior to the training process. In the case of neural networks, these are the learning rate, the
number of hidden layers and neurons in a neural network, regularization terms and many others.
In contrast to the model parameters, which are learned during training, the hyperparameters are
(traditionally) set by the engineer and can significantly influence the performance of the model.
In hyperparameter optimization, numerical algorithms are used to automatically find the best (or
more often good) hyperparameter combination, which is crucial in machine learning to improve
the performance of the models. It also significantly reduces the time required for model tuning.
The flowchart of a typical hyperparameter optimization algorithm is depicted in Figure3.3.

Various methods can be used for this purpose, including grid and random search, Bayesian
optimization, genetic algorithms, tree-structured Parzen estimator (TPE) [73], covariance matrix
adaptation evolution strategy (CMA-ES) [74] and others.
Tree-structured Parzen estimator is a Bayesian optimization approach which models the prob-
ability distribution of hyperparameters as a function of the results. It divides the search space

3.4 other approaches 42

Training
set

Validation
set

Model weight optimization

Hyperparameter optimization

Calculate new
hyperparameters

Update model of
hyperparameters

Train Evaluate
hy

pe
rp

ar
am

et
er

s

va
li

da
ti

on
 s

co
re

Create model

Figure 3.3:The flowchart for hyperparameter optimization.

into regions and uses Parzen window estimators to approximate the distribution within these
regions. The process is iterative and focuses more on promising regions over time. It is more
efficient compared to random search, adjusts the search based on previous results, improves over
iterations, and is suitable for high-dimensional spaces. However, it is more complex to implement
than simpler methods such as grid or random search, the initial definition of the search space can
affect efficiency and it is computationally intensive. For more detailed explanation, please refer to
[73] and the references therein.

In this thesis, hyperparameter optimization is viewed as an outer loop in the learning process,
where the basis reduction is performed in this outer loop (selection of hyperparameters G and h),
while the EDMD problem is solved in the inner loop.The algorithmminimizes the mean multiple
step prediction error (3.42) and uses the Optuna framework [75] and its implementation of the
TPE method [76,77] with a maximum of nt trials. 1

3.4 other approaches

The existing body of literature includes a variety of methods for numerically determining the
Koopman operator model, with some notable examples highlighted here.

One such technique is Generalized Laplacian Analysis (GLA), as discussed in [78]. GLA en-
ables the calculation of Koopmanmodes for a function vector, provided the Koopman eigenvalues
are known, by utilizing time series data. However, the functions must be within the span of the
eigenfunctions for GLA to be effective. Since GLA imposes significant prerequisites and has its
limitations, it is more suited as an analytical tool than a computational one, as the authors note
in [27]. A study done by Korda and Mezić in [79] offers a more practical approach, constructing
Koopman operator eigenfunctions directly from data, assuming known eigenvalues.This method
is optimization-based and does not require dictionary selection. Another approach, Data-Driven
Encoding (DDE) of the Koopman operator, calculates inner products from data of nonlinear

1 Although the simulated annealing approach in Algorithm2could also be considered as hyperparameter optimization,
it is this change of viewpoint that allows the optimization problems to be separated and allows existing hyperparameter
optimization frameworks to be used for this task.

3.5 simulation results 43

dynamic systems. An efficient algorithm for computing these inner products is presented in [80].
In [81], the authors introduce Koopmanizing flows, a novel continuous-time framework for learn-
ing linear predictors in nonlinear dynamics.This method involves a latent linear system, related
diffeomorphically, unfolding into a linear predictor through a monomial basis. It simultaneously
learns the lifting, linear dynamics, and state reconstruction, with an unconstrained Hurwitz matri-
ces parameterization ensuring asymptotic stability regardless of operator approximation accuracy.
The Freeman method, as described by Cibulka et al. in [82], presents a dictionary-free Koopman
model with a nonlinear input transformation.This approach differs from others by eliminating the
need for a dictionary and incorporating a nonlinear input transformation, enhancing prediction
accuracy with minimal ad hoc adjustments. It also facilitates input quantization and exploits
symmetries to reduce computational costs, both offline and online.

Though these methods are valuable, they are beyond the scope of this thesis and arementioned
merely for reference.

3.5 simulation results

In this section, the comparison of different linearization-based approaches is presented:

1.classical EDMD-based Koopman model,

2.Deep-DMD-based model,

3.discrete selection based E 2DMD (described in3.3.2, referred to as E 2DMD-DS),

4. multiple step predictionminimizing E2DMD (described in3.3.3, referred to as E 2DMD-MS),

5. E2DMD trained with hyperparameter optimization approach (described in3.3.4, refered to
as E2DMD-HO),

6.model based on local linearization of the dynamics at the origin (refered to as LIN 0),

7. model based on local linearization of the dynamics at a given initial condition x0 (refered
to as LIN x0).

The approaches are evaluated on three dynamical systems that often serve as benchmarks for
such problems, similarly as was done in [32] and [79].These systems and data collection methods
are as follows:

• Van der Pol oscillator with dynamics given by

ẋ1 = 2x2,
ẋ2 = −0.8x1 + 2x2 − 10x21 x2 − u.

(3.43)

In order to collect the data required for model identification, the system dynamics are
sampled using the Runge-Kutta method of order four with a discretization interval of
Ts = 0.01 seconds.This process involves simulating 1000 different trajectories, each over a
span of 200 sampling intervals, which is equal to 2 seconds per trajectory. For each trajectory,
the control input is a randomly generated signal that is uniformly distributed in the unit
interval [−1, 1].The starting points of these trajectories are also determined randomly, with
their initial conditions uniformly distributed within the unit box, i.e. [−1, 1]2.

3.5 simulation results 44

• Damped Duffing oscillator described by

ẋ1 = x2,
ẋ2 = −0.5x2 − x1(4x21 − 1) + 0.5u.

(3.44)

The procedure for data collection is done using the same method and parameters as for
Van der Pol oscillator.

• Bilinear motor characterized by the following equations:

ẋ1 = −
Ra

La
x1 −

km
La

x2u −
ua

La
,

ẋ2 = −
B
J
x2 −

km
J
x1u −

τl
J
.

(3.45)

In the above equation, x1 represents the rotor current, x2 is the angular velocity and u is
the stator current, which is the control input.The parameters of the system are as follows
La = 0.314, Ra = 12.345, km = 0.253, J = 0.00441, B = 0.00732, τl = 1.47, ua = 60. This
model is particularly characterised by its bilinear nature, which connects the state and
the control input.The control input u is physically limited to the range u ∈ [−4, 4], but is
rescaled to [−1, 1] for the analysis.
To derive the Koopman operator, the scaled dynamics of the system is discretized using the
Runge-Kutta method of order four with a discretization interval Ts = 0.01 seconds.This
involves simulating 1000 trajectories, each consisting of 200 sampling steps, also equivalent
to 2 seconds per trajectory.The control input for each trajectory is a randomly generated
signal, uniformly distributed within the interval [−1, 1]. The initial conditions for these
trajectories are also randomly set, uniformly distributed within the [−1, 1]2 unit box.

In the following text, the procedures for lifting system dynamics and learning different linear
predictors are given, together with simulation experiment description and detailed statistics.

3.5.1 Learning algorithm setup

As mentioned earlier, a total of Ns = 200000 samples were generated for each system.This dataset
was subsequently split into training and validation sets, with the training set consisting of 85%
of the total data, which equates to Ntrain = 170000 samples, and the validation set containing
Nval id = 30000 samples. Moreover, each method employed in this section requires an additional
set of parameters, outlined as follows:

• EDMD: trained exclusively using the training data (no consideration for validation data as
it is not part of the standard algorithm),

• Deep-DMD: encoder with a total of L = 5 layers, where n1 = 32, n2 = 64, n3 = 128, n4 = 64
and n5 = nΦe − nx ; activation function for the layers n1 to n4 is the rectified linear unit
(ReLU) and for n5 the hyperbolic tangent; weights α1 = 1, α2 = 1, α3 = 0.3, α4 = 10−9 and
α5 = 10−9, maximum number of training epochs emax = 10000, number of prediction steps
p = 25, violation patience vp = 5, number of evaluation epochs ne = 5, batch size bs = 64
and learning rate lr = 10−4; EDMD retraining was used; state included in the lifted state
vector;

3.5 simulation results 45

• E2DMD-DS: number of training epochs emax = 10000, violation patience vp = 100, random-
ization epoch number ne = 100, initial temperature Tinit = 1000, temperature reduction
coefficient αtemp = 0.99, and a number of prediction steps p = 200; state included in the
lifted state vector;

• E2DMD-MS: employs the same parameters as Deep-DMD (those that are applicable);
EDMD retraining was used; state included in the lifted state vector;

• E2DMD-HO: number of trials nt = 250 and prediction horizon p = 200, encoder weigth
and bias values limited to [−1, 1]; state included in the lifted state vector.

3.5.2 Van der Pol oscillator simulation

In the study of the Van der Pol oscillator, two distinct sets of basis functions were employed:

1. Thin plate spline radial basis functions (RBFs) with centers selected via a uniform distribu-
tion in the unit box.The total number of different RBFs is 100, with the state also included
in the basis function vector (ϕ1 = x1, ϕ2 = x2).This leads to a lifted state- space dimension
of nΦ = 102.

2.Polynomial basis of order d = 15, resulting in a lifted state-space dimension of nΦ = 136.

The following experiments compare all linearization approaches mentioned at the beginning
of the section, for both RBF and polynomial basis functions.The initial conditions and the control
input for the simulation are random and uniformly distributed within the [−0.7, 0.7]2 box and
[−1, 1] unit interval, respectively.The sample time equals Ts = 0.01 s, while the simulation lasts for
the total of Tsim = 3 seconds.The quality of the predictors is evaluated using mean normalized
prediction error (MNPE):

MNPE = 100
Nsim

Ns im−1
∑
k=0
∥ŷk − yk∥2
∥yk∥2

, (3.46)

with ŷk being the predicted and yk real output value at time step k. Output mapping is an identity
matrix, i.e. y = [x1 x2]T .

MNPE was computed by conducting 5000 simulation runs, and the following tables present
its mean, median, minimum, and maximum values. They serve to better illustrate the error
distribution, but for predictor performance evaluation only mean and median will be used, since
extreme values can occur due to unusually "hard" trajectory or numerical error.

Table3.1provides a comparison of various linear predictors. Firstly, it is evident that all
Koopman models exhibit significantly superior performance, characterized by considerably lower
MNPE, compared to models linearized around the origin or initial state.This observation alone
justifies the utilization of EDMD and Deep-DMDmethods, although it is worth noting that such
findings are well-documented and extensively studied in existing literature (refer to, for example,
[32] and [48]). Furthermore, for nominal basis vector sizes both EDMD approaches demonstrate
slightly superior performance compared to Deep-DMD, with the EDMD utilizing a polynomial
basis showing the best performance when considering mean and median error metrics. It is
possible that this is influenced by the stochastic nature of RBFs and the neural network encoder,
although a comprehensive analysis of this aspect is beyond the scope of this thesis. A graphical
representation of a single run validating these results can be found in Figure3.4.

3.5 simulation results 46

Table 3.1: MNPE comparison of different linear predictors for Van der Pol oscillator.

Model MNPE [%]
Mean Median Min Max

EDMD-RBF (nΦ = 102) 16.227 14.029 3.5815 157.18
EDMD-Poly (nΦ = 136) 14.511 13.009 5.2381 138.62
Deep-DMD (nΦe = 100) 19.147 17.032 3.4076 107.84

LIN 0 1254.3 1141.2 7.7125 3213.1
LIN x0 48043 301.9 8.6791 1.4519 ⋅106

0 0.5 1 1.5 2 2.5 3−1
−0.5

0

0.5

1

1.5

t(s)

x 1

nonlinear
LIN 0
LIN x0
EDMD-RBF (nΦ = 102)
EDMD-Poly (nΦ = 136)
Deep-DMD (nΦe = 100)

0 0.5 1 1.5 2 2.5 3−0.5

0

0.5

1

1.5

t(s)

x 2

Figure 3.4: Predictor comparison for Van der Pol oscillator with x0 = [−0.62 0.26]T and random input
signal.

The following text presents an in-depth experimental investigation of the proposed E2DMD
methods. In Table3.2, you can find the errors associated with multiple predictors, all operating in
an extended state-space with a dimension of nw = 5. Additionally, Figure3.5illustrates a single
trajectory. It is noteworthy that all of these predictors exhibit substantial errors and are capable of
accurately predicting true trajectories only over a limited prediction horizon.

Table 3.2: MNPE comparison of different Koopman models with reduced state-space of size nw = 5 for Van
der Pol oscillator.

Model MNPE [%]
Mean Median Min Max

Neural network basis
Deep-DMD (nΦe = 5) 44.66 41.083 10.291 194.61

RBF basis
E2DMD-DS (nw = 5) 50.017 41.054 20.061 272.42
E2DMD-MS (nw = 5) 88.706 80.925 22.992 251.44
E2DMD-HO (nw = 5) 48.399 42.664 18.673 152.42

Polynomial basis
E2DMD-DS (nw = 5) 41.259 36.258 18.85 169.13
E2DMD-MS (nw = 5) 61.232 53.94 12.826 238.41
E2DMD-HO (nw = 5) 52.863 47.164 21.97 156.31

3.5 simulation results 47

Notably, only the subset of states sampled from the polynomial basis vector (E2DMD-DS)
eventually converges to the actual trajectory, but this result does not justify the utilization of such
a model. In terms of mean and median errors, Deep-DMD outperforms most of the predictors,
with the exception of E2DMD-DS using an RBF basis.

−1
−0.5

0

0.5

1

x 1

RBF basis Polynomial basis

0 0.5 1 1.5 2 2.5 3−1
−0.5

0

0.5

1

t(s)

x 2

0 0.5 1 1.5 2 2.5 3
t(s)

nonlinear Deep-DMD (nΦe = 5) E2DMD-DS (nw = 5)
E2DMD-HO (nw = 5) E2DMD-MS (nw = 5)

Figure 3.5: Comparison of different Koopman models with reduced state-space of size nw = 5 for Van der
Pol oscillator with x0 = [−0.62 0.26]T and random input signal.

Errors and trajectories for experiments conducted using predictors of dimension nw = 25 are
available in Table3.3and Figure3.6. These results demonstrate lower MNPE when compared to
predictors with a dimension of nw = 5, accompanied by an extended time horizon over which they
can accurately reconstruct the given trajectory. It is important to note that these time horizons
still depend on factors such as the input, initial conditions, and the chosen predictor.

Table 3.3: MNPE comparison of different Koopman models with reduced state-space of size nw = 25 for
Van der Pol oscillator.

Model MNPE [%]
Mean Median Min Max

Neural network basis
Deep-DMD (nΦe = 25) 34.269 32.38 7.8399 209.91

RBF basis
E2DMD-DS (nw = 25) 28.205 25.094 7.6633 253.95
E2DMD-MS (nw = 25) 51.133 45.9 7.5924 169.36
E2DMD-HO (nw = 25) 27.397 24.426 5.9043 276.44

Polynomial basis
E2DMD-DS (nw = 25) 31.534 27.513 15.6 201.29
E2DMD-MS (nw = 25) 42.078 34.749 8.91364 673.03
E2DMD-HO (nw = 25) 35.62 33.323 11.769 385.87

3.5 simulation results 48

For nw = 25 Deep-DMD performs well, outperforming most of the models, but it is surpassed
by E2DMD-DS and E2DMD-HO when using an RBF basis, as well as E2DMD-DS when using a
polynomial basis.

−1
0

1

x 1

RBF basis Polynomial basis

0 0.5 1 1.5 2 2.5 3−1
−0.5

0

0.5

1

t(s)

x 2

0 0.5 1 1.5 2 2.5 3
t(s)

nonlinear Deep-DMD (nΦe = 25) E2DMD-DS (nw = 25)
E2DMD-HO (nw = 25) E2DMD-MS (nw = 25)

Figure 3.6: Comparison of different Koopman models with reduced state-space of size nw = 25 for Van der
Pol oscillator with x0 = [−0.62 0.26]T and random input signal.

Table3.4presents MNPE values for predictors with a state-space size of nw = 50. Notably,
predictors utilizing an RBF basis outperform those using a polynomial basis, with the top per-
formers once again being E2DMD-DS and E2DMD-HO. However, in this case, Deep-DMD does
not exhibit the same level of performance as seen in previous examples, as all the RBF-based pre-
dictors perform better, along with E2DMD-DS with a polynomial basis. Corresponding trajectory
examples can be found in Figure3.7.

Table 3.4: MNPE comparison of different Koopman models with reduced state-space of size nw = 50 for
Van der Pol oscillator.

Model MNPE [%]
Mean Median Min Max

Neural network basis
Deep-DMD (nΦe = 50) 25.58 23.783 6.1033 124.81

RBF basis
E2DMD-DS (nw = 50) 18.721 16.402 4.543 139.93
E2DMD-MS (nw = 50) 24.572 22.032 7.1997 179.76
E2DMD-HO (nw = 50) 19.639 17.354 4.3959 208.32

Polynomial basis
E2DMD-DS (nw = 50) 24.22 21.554 4.5095 109.55
E2DMD-MS (nw = 50) 33.645 28.196 8.2145 398.2
E2DMD-HO (nw = 50) 26.931 23.854 5.1865 357.64

3.5 simulation results 49

−1
0

1

x 1
RBF basis Polynomial basis

0 0.5 1 1.5 2 2.5 3−1
−0.5

0

0.5

1

t(s)

x 2

0 0.5 1 1.5 2 2.5 3
t(s)

nonlinear Deep-DMD (nΦe = 50) E2DMD-DS (nw = 50)
E2DMD-HO (nw = 50) E2DMD-MS (nw = 50)

Figure 3.7: Comparison of different Koopman models with reduced state-space of size nw = 50 for Van der
Pol oscillator with x0 = [−0.62 0.26]T and random input signal.

3.5.3 Damped Duffing oscillator simulation

In this analysis of the damped Duffing oscillator, the same methodology as outlined in3.5.2was
used. Two types of basis functions were utilized, i.e. thin plate spline radial basis functions with a
lifted state-space dimension of nΦ = 102 and a polynomial basis of the 15th order with nΦ = 136.

The experiments compared various linearization methods mentioned earlier in the section.
The initial conditions and the control inputs for the simulations were randomly selected the same
way as for the Van der Pol oscillator, while the effectiveness of the predictors was again assessed
using the metric3.46.

In Table3.5one can find the mean, median, minimum and maximumMNPE values. These
values are calculated by averaging the errors from 5000 simulation cycles. Similar to the observa-
tions made with the Van der Pol oscillator, the Koopman models perform significantly better than
the standard linearized models when applied to the Duffing oscillator. Deep-DMD again falls
behind compared to the EDMDmethods with RBF and polynomial basis, with a performance
gap exceeding a factor of 3.

Table 3.5: MNPE comparison of different linear predictors for damped Duffing oscillator.

Model MNPE [%]
Mean Median Min Max

EDMD-RBF (nΦ = 102) 8.81 6.0412 0.46685 463.46
EDMD-Poly (nΦ = 136) 8.3558 4.9683 0.3290 238.51
Deep-DMD (nΦe = 100) 25.402 19.156 0.83253 663.38

LIN 0 468.79 309.04 0.020536 2769.3
LIN x0 121.57 113.92 0.042793 1566.8

3.5 simulation results 50

The average outcomes find support in the performance of a single trajectory illustrated in
Figure3.8. In this particular trajectory, the EDMD-RBF model has an error rate of 6.9%,the
EDMD-Poly model of 2.55%, and the Deep-DMDmodel has a higher error of 13.95%.

0 0.5 1 1.5 2 2.5 3−2
−1.5
−1
−0.5

0

t(s)

x 1

nonlinear
LIN 0
LIN x0
EDMD-RBF (nΦ = 102)
EDMD-Poly (nΦ = 136)
Deep-DMD (nΦe = 100)

0 0.5 1 1.5 2 2.5 3−1

−0.5

0

0.5

t(s)
x 2

Figure 3.8: Predictor comparison for damped Duffing oscillator with x0 = [−0.74 − 0.6]T and random
input signal.

The Table3.6presents errors that reinforce the observation that, on average, predictors with a
state-space dimension of nw = 5 struggle to make accurate predictions of real trajectories. Models
employing radial basis function reduction perform better than those utilizing polynomial basis
reduction, with Deep-DMD falling somewhere in between. A specific example of a trajectory that
illustrates these predictions can be seen in Figure3.9.

Table 3.6: MNPE comparison of different Koopman models with reduced state-space of size nw = 5 for
damped Duffing oscillator.

Model MNPE [%]
Mean Median Min Max

Neural network basis
Deep-DMD (nΦe = 5) 47.354 42.837 4.5246 425.49

RBF basis
E2DMD-DS (nw = 5) 42.445 36.672 0.75585 709.54
E2DMD-MS (nw = 5) 49.165 41.091 1.9935 600.87
E2DMD-HO (nw = 5) 37.147 32.764 0.95286 681.74

Polynomial basis
E2DMD-DS (nw = 5) 56.899 51.677 8.2602 374.57
E2DMD-MS (nw = 5) 52.965 41.716 2.901 1450
E2DMD-HO (nw = 5) 50.018 45.091 7.8628 407.93

3.5 simulation results 51

−1
−0.5

0

0.5

x 1
RBF basis Polynomial basis

0 0.5 1 1.5 2 2.5 3−1
−0.5

0

0.5

1

t(s)

x 2

0 0.5 1 1.5 2 2.5 3
t(s)

nonlinear Deep-DMD (nΦe = 5) E2DMD-DS (nw = 5)
E2DMD-HO (nw = 5) E2DMD-MS (nw = 5)

Figure 3.9: Comparison of different Koopman models with reduced state-space of size nw = 5 for damped
Duffing oscillator with x0 = [−0.74 − 0.6]T and random input signal.

For nw = 25 the errors are smaller than for nw = 5, but still quite significant.This information
is presented in Table3.7and Figure3.10. When it comes to the model comparison, both the
polynomial basis vector reduction and the RBF basis vector reduction as well as Deep-DMD
perform similarly. In this particular case, however, the polynomial basis version of E2DMD-MS
stands out as the worst model, but achieves a relatively small minimumMNPE value.

Table 3.7: MNPE comparison of different Koopman models with reduced state-space of size nw = 25 for
damped Duffing oscillator.

Model MNPE [%]
Mean Median Min Max

Neural network basis
Deep-DMD (nΦe = 25) 28.022 22.527 1.4965 458.82

RBF basis
E2DMD-DS (nw = 25) 19.369 14.51 1.135 444.89
E2DMD-MS (nw = 25) 31.845 23.708 1.7862 829.02
E2DMD-HO (nw = 25) 21.273 16.269 1.3793 567.01

Polynomial basis
E2DMD-DS (nw = 25) 20.621 16.37 1.4006 484.95
E2DMD-MS (nw = 25) 49.758 37.009 1.2386 435.91
E2DMD-HO (nw = 25) 31.003 26.677 1.7604 322.35

3.5 simulation results 52

−1
−0.5

0

x 1
RBF basis Polynomial basis

0 0.5 1 1.5 2 2.5 3−1
−0.5

0

0.5

1

t(s)

x 2

0 0.5 1 1.5 2 2.5 3
t(s)

nonlinear Deep-DMD (nΦe = 25) E2DMD-DS (nw = 25)
E2DMD-HO (nw = 25) E2DMD-MS (nw = 25)

Figure 3.10: Comparison of different Koopmanmodels with reduced state-space of size nw = 25 for damped
Duffing oscillator with x0 = [−0.74 − 0.6]T and random input signal.

Table3.8presents the MNPE values for models with a state-space dimension of nw = 50.These
models exhibit lower errors compared to those with smaller dimensions. Notably, the models
utilizing polynomial basis reduction perform less effectively than those employing RBF basis
reduction. Furthermore, in this specific context, Deep-DMD demonstrates inferior performance
compared to most models, except for the polynomial basis version of E2DMD-MS.The subpar
performance of E2DMD-MS is also visually represented in Figure3.11. In contrast, the other
models appear to provide relatively accurate predictions of the system’s behaviour.

Table 3.8: MNPE comparison of different Koopman models with RBF basis and reduced state-space of size
nw = 50 for damped Duffing oscillator.

Model MNPE [%]
Mean Median Min Max

Neural network basis
Deep-DMD (nΦe = 50) 20.758 15.198 0.51734 668.83

RBF basis
E2DMD-DS (nw = 50) 11.596 8.9162 0.74944 677.75
E2DMD-MS (nw = 50) 16.137 12.564 1.3637 491.88
E2DMD-HO (nw = 50) 11.613 8.5644 1.0996 433.61

Polynomial basis
E2DMD-DS (nw = 50) 17.169 12.897 0.88135 583.49
E2DMD-MS (nw = 50) 31.501 21.74 0.67343 1042.9
E2DMD-HO (nw = 50) 17.277 13.039 1.3875 438.29

3.5 simulation results 53

−1
−0.5

0

x 1
RBF basis Polynomial basis

0 0.5 1 1.5 2 2.5 3−1
−0.5

0

0.5

1

t(s)

x 2

0 0.5 1 1.5 2 2.5 3
t(s)

nonlinear Deep-DMD (nΦe = 50) E2DMD-DS (nw = 50)
E2DMD-HO (nw = 50) E2DMD-MS (nw = 50)

Figure 3.11: Comparison of different Koopman models with reduced state-space of size nw = 50 for damped
Duffing oscillator with x0 = [−0.74 − 0.6]T and random input signal.

3.5.4 Bilinear motor simulation

Unlike systems previously discussed, the bilinear motor model does not satisfy a linear state-input
relationship described by (3.8). Consequently, the state-space of the bilinear motor model (3.45),
as elaborated in3.1.3, requres an expansion by incorporating an input as a new state in order to
learn EDMD-based models.This additional state is defined as x3 = u, and the input of the model
is updated to the derivative of the original input signal, symbolized as ũ = u̇.The modified model
is expressed as follows:

ẋ1 = −
Ra

La
x1 −

km
La

x2x3 −
ua

La
,

ẋ2 = −
B
J
x2 −

km
J
x1x3 −

τl
J
,

ẋ3 = ũ.

(3.47)

This extended nonlinear model’s primary use was in learning Koopman models, whereas the
simulations utilized the original bilinear motor model as referenced in equation (3.45).

Once again, two types of basis functions were used:

1. A set of 100 thin plate spline radial basis functions with centers sampled randomly across
the unit box using a uniform distribution, and the original states were included in the
expanded state-space vector. Lifted state-space has a dimension of nΦ = 103.

2. A polynomial basis of the order d = 8, which expanded the lifted state-space dimension to
nΦ = 165.

The experiments evaluate the performance of the linearization techniques previously men-
tioned. Random selection of initial conditions and control inputs was employed, sampled from a

3.5 simulation results 54

uniform distribution within the [−1, 1]2 box and the [−1, 1] unit interval, respectively.The simula-
tions were conducted with a set sampling time of Ts = 0.01 seconds and lasted for Tsim = 1 second
each.The output mapping was defined as y = [x1 x2]T and the efficiency was evaluated using3.46.

A bilinearmotormodel seems to be easy to identify with Koopman operator-based approaches,
as can be seen from the comparison in Table3.9and Figure3.12, where various linear predictors
were evaluated.Notably, both EDMDmethods and theDeep-DMDmethod exhibit nearly identical
performance and significantly outperform the traditional linearized models.This is particularly
true for the LIN 0 model, as its responses show a rapid and substantial increase in (absolute)
value.

Table 3.9: MNPE comparison of different linear predictors for bilinear motor.

Model MNPE [%]
Mean Median Min Max

EDMD-RBF (nΦ = 103) 12.776 11.871 3.4923 73.64
EDMD-Poly (nΦ = 165) 12.355 11.598 3.4339 91.867
Deep-DMD (nΦe = 100) 12.31 11.546 3.4302 87.151

LIN 0 12463 12333 7412 22101
LIN x0 45.477 36.985 5.8264 319.11

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

t(s)

x 1

0 0.2 0.4 0.6 0.8 1

−1

0

1

t(s)

x 2

nonlinear
LIN 0
LIN x0
EDMD-RBF (nΦ = 103)
EDMD-Poly (nΦ = 165)
Deep-DMD (nΦe = 100)

Figure 3.12: Predictor comparison for bilinear motor with x0 = [0.4 0.65]T and random input signal.

The claim that Koopman operator approaches can effectively capture the bilinear motor model
is supported by the results presented in Table3.10. In this table, it is clear that even in cases
where the dimensionality is significantly reduced (nw = 5), the mean normalized prediction error
remains small. However, it should be noted that this claim does not apply when considering the
optimized discrete selection (E2DMD-DS) from the radial basis function (RBF) basis vectors.
Furthermore, the claim does not apply to E2DMD-HO, for both the RBF and the polynomial
basis reduction. An illustrative example of such a scenario is shown in Figure3.13.

3.5 simulation results 55

Table 3.10: MNPE comparison of different Koopman models with reduced state-space of size nw = 5 for
bilinear motor.

Model MNPE [%]
Mean Median Min Max

Neural network basis
Deep-DMD (nΦe = 5) 15.067 14.06 3.6133 114.76

RBF basis
E2DMD-DS (nw = 5) 25.996 25.29 3.7378 106.33
E2DMD-MS (nw = 5) 15.023 13.645 2.9147 51.694
E2DMD-HO (nw = 5) 36.706 34.577 3.5545 100.24

Polynomial basis
E2DMD-DS (nw = 5) 13.104 12.164 3.4536 115.64
E2DMD-MS (nw = 5) 14.328 13.346 3.3613 110.09
E2DMD-HO (nw = 5) 92.227 85.7 4.5666 292.05

−0.5
0

0.5

1

x 1

RBF basis Polynomial basis

0 0.2 0.4 0.6 0.8 1

−1
0

1

t(s)

x 2

0 0.2 0.4 0.6 0.8 1
t(s)

nonlinear Deep-DMD (nΦe = 5) E2DMD-DS (nw = 5)
E2DMD-HO (nw = 5) E2DMD-MS (nw = 5)

Figure 3.13: Comparison of different Koopman models with reduced state-space of size nw = 5 for bilinear
motor with x0 = [0.4 0.65]T and random input signal.

3.5 simulation results 56

With an increase in the dimensionality of the lifted state-space to nw = 25, the performance of
the associated predictor also demonstrates improvement. In Table3.11, it becomes evident that
nearly all mean normalized prediction error (MNPE) values approach those of the non-reduced
predictors.The only exception is the E2DMD-HO based model with a polynomial basis.These
findings are substantiated by the accompanying graphs in Figure3.14.

Table 3.11: MNPE comparison of different Koopman models with reduced state-space of size nw = 25 for
bilinear motor.

Model MNPE [%]
Mean Median Min Max

Neural network basis
Deep-DMD (nΦe = 25) 12.608 11.854 3.412 81.652

RBF basis
E2DMD-DS (nw = 25) 13.355 12.082 3.7011 60.88
E2DMD-MS (nw = 25) 12.919 12.284 2.9244 53.7
E2DMD-HO (nw = 25) 12.912 11.98 2.9262 47.567

Polynomial basis
E2DMD-DS (nw = 25) 12.29 11.521 3.438 91.674
E2DMD-MS (nw = 25) 13.667 12.797 3.3835 68.662
E2DMD-HO (nw = 25) 20.284 15.426 2.8414 186.65

−0.5
0

0.5

1

x 1

RBF basis Polynomial basis

0 0.2 0.4 0.6 0.8 1

−1
0

1

t(s)

x 2

0 0.2 0.4 0.6 0.8 1
t(s)

nonlinear Deep-DMD (nΦe = 25) E2DMD-DS (nw = 25)
E2DMD-HO (nw = 25) E2DMD-MS (nw = 25)

Figure 3.14: Comparison of different Koopman models with reduced state-space of size nw = 25 for bilinear
motor with x0 = [0.4 0.65]T and random input signal.

3.5 simulation results 57

As the state-space dimension of the models keeps increasing and reaches nw = 50, they come
even closer to achieving accuracy levels similar to the original non-reduced models.The outcomes
presented in Table3.12closely resemble those found in Table3.9, while the responses depicted in
Figure3.15bear a resemblance to those in Figure3.12.

Table 3.12: MNPE comparison of different Koopman models with reduced state-space of size nw = 50 for
bilinear motor.

Model MNPE [%]
Mean Median Min Max

Neural network basis
Deep-DMD (nΦe = 50) 12.365 11.613 3.4331 84.459

RBF basis
E2DMD-DS (nw = 50) 13.045 11.973 3.0681 54.123
E2DMD-MS (nw = 50) 12.568 11.789 3.1137 47.747
E2DMD-HO (nw = 50) 12.578 11.799 3.2082 51.125

Polynomial basis
E2DMD-DS (nw = 50) 12.418 11.665 3.439 101.37
E2DMD-MS (nw = 50) 13.651 13.158 3.4005 73.023
E2DMD-HO (nw = 50) 14.05 12.769 2.6828 121.49

0

0.5

1

x 1

RBF basis Polynomial basis

0 0.2 0.4 0.6 0.8 1

−1
0

1

t(s)

x 2

0 0.2 0.4 0.6 0.8 1
t(s)

nonlinear Deep-DMD (nΦe = 50) E2DMD-DS (nw = 50)
E2DMD-HO (nw = 50) E2DMD-MS (nw = 50)

Figure 3.15: Comparison of different Koopman models with reduced state-space of size nw = 50 for bilinear
motor with x0 = [0.4 0.65]T and random input signal.

3.5 simulation results 58

3.5.5 Concluding remarks

The different methods showed varying performance when applied to the different dimensions
of the lifted state-spaces and the specific dynamical systems in question. Table3.13displays the
combinations of dynamical systems and lifted state-space dimensions together with the specific
E2DMD numerical method that performed best in terms of mean MNPE for each pair. E2DMD-
DS performed best in most cases, while E2DMD-MS consistently performed worst. It is also
worth noting that, contrary to expectations based on previous studies (such as [68] and [67]),
Deep-DMD only outperformed the proposed predictors in certain cases.

Table 3.13:The combination of state-space dimension and dynamical system, along with the E2DMD
method which performed the best in the specific scenario.

System Van der Pol
oscillator

Damped Duffing
oscillator

Bilinear motor

nw 5 25 50 5 25 50 5 25 50
RBF basis HO HO DS HO DS DS MS HO MS

Polynomial basis DS DS DS HO DS DS DS DS DS

An important observation is that the optimizationmethods used for E2DMD rely on stochastic
algorithms, leading to potential variations in performance upon repeated learning. Additionally,
in the case of the bilinear motor, the mean errors exhibited similar values, particularly for nw = 25
and nw = 50. Several important findings emerge from this analysis:

•For nw = 5, all predictors performed poorly, limiting the significance of their comparison.

• Increasing the lifted state-space dimensions generally led to improved model performance,
which is consistent with previous research, e.g. [83].

• Surprisingly, the Deep-DMD algorithm deviated from expectations, possibly indicating
problems with the network architecture, loss function or other design features, though
these are beyond the scope of this thesis.

• E2DMD-HO and E2DMD-MS are likely to perform similarly well as they both use an
affine transformation, whereas E2DMD-DS with its binary values and lack of a bias term is
expected to perform less effectively.The fact that this investigation yielded different results
suggests that the choice of training optimization method can have a significant and often
unexpected impact on predictor performance.

• Given the similarity between E2DMD-MS and Deep-DMD algorithms, addressing Deep-
DMD problems could also improve the performance of E2DMD-MS.

• E2DMD simplifies the reduction of lifted state-space compared to manual selection in
EDMD and includes fewer hyperparameters than Deep-DMD, making it easier to fine-
tune.

• Ultimately, the choice of numerical method depends on the specific dynamical system
under investigation.

3.6 summary 59

3.6 summary

In this chapter, various techniques for data-driven identification of Koopmanmodels are presented.
The first two sections introduce the well-recognized extended dynamic mode decomposition
(EDMD) and deep dynamic mode decomposition (Deep-DMD), which have been extensively
documented in the literature, serving as the foundation for subsequent discussions.

The core contribution of this thesis lies in the introduction of enhanced extended dynamic
mode decomposition (E2DMD).This novel approach aims to employ an affine transformation to
reduce the dimensionality of the lifted state vector used in EDMD, while striving to minimize any
impact on model accuracy. It simplifies the reduction of lifted state-space compared to manual
selection in EDMD and includes fewer hyperparameters than Deep-DMD, making it easier to
fine-tune.Three distinct numerical methods for obtaining E2DMD models are presented and
explained:

1. Basis function reduction by discrete selection (E2DMD-DS):This method systematically
selects certain elements from the original basis function vector to reduce the basis function
dimensionality and still efficiently capture essential system dynamics.

2. Multiple step prediction learning algorithm (E2DMD-MS): A learning algorithm which
uses the same optimization method as Deep-DMD with the changed encoder structure.

3. Basis function reduction as a hyperparameter optimization problem (E2DMD-HO): Treat-
ing basis function reduction as a hyperparameter optimization problem allows for opti-
mization problem separation and enables usage of existing hyperparameter optimization
frameworks for this purpose.

In addition to E2DMD, other data-driven Koopman identification approaches are briefly
mentioned to provide a broader perspective.

The chapter concludes with an evaluation of the linear predictors using three benchmark
dynamical systems: the Van der Pol oscillator, the damped Duffing oscillator and the bilinear
motor. The simulation results are compared and analyzed to evaluate the effectiveness of the
different methods in capturing the system dynamics.

Key findings include a consistent improvement in predictor performance as the dimension of
the state-space increases. Surprising variations inDeep-DMDperformancewere also found, which
could indicate architectural or design issues. Solving Deep-DMD problems may also improve
the performance of E2DMD-MS, as both are trained with similar algorithms. E2DMD-HO and
E2DMD-MS are expected to perform similarly due to the use of an affine transformation, while
E2DMD-DS is expected to be less effective due to the binary values and the absence of a bias
term.The results of this study, from which different conclusions can be drawn, suggest that the
optimization method used for training can have a significant and unexpected impact on the
performance of the predictor.

Finally, the choice of numerical method depends on the specific dynamical system under
investigation.This is also confirmed by the results in Chapter5, where the analysis leads to different
conclusions regarding the proposed approaches.

4
Koopman-based vehicle control using tire slip

In this chapter the application of the Koopman operator for modelling and controlling
vehicle dynamics using basic vehicle models and longitudinal tire slip is investigated, focusing

on two different proof-of-concept approaches.The first section deals with the identification of
a bicycle model, without a tire model, using the EDMD algorithm.The obtained model is then
compared with the models created using Taylor expansion based linearization. Further validation
is performed by incorporating this model into the MPC design and applying it to the nonlinear
bicycle vehicle model. Both the model identification and the predictive controller design were val-
idated using MATLAB and Simulink.The second section deals with the Koopman operator-based
identification of a two-track vehicle model integrated with a torque (slip) vectoring algorithm via
MPC. In this part, efforts to improve the stability ofmanually steered vehicles are emphasized, with
a novel attempt to implement DYC with linear MPC based on the Koopman operator model.The
EDMDmethod is again used for the model approximation, with the additional consideration of
the requirement for a linear dependence of the system state propagation on the inputs mentioned
in3.1.3. This linear dependency, which is generally not present in vehicles, is achieved by carefully
selected nonlinear transformations. Once an accurate model is created, it is used to formulate
a linear KMPC algorithm. This KMPC is then compared with a linear time-variant MPC for
different prediction horizons.

4.1 koopman operator-based control using bicycle model

This section introduces the research conducted in [84]. It involves the application of the EDMD
identification method as outlined in [83] to the bicycle vehicle model equipped with front-wheel
steering. Furthermore, the approach is expanded by incorporating linear MPC design. Unlike
the approach described in [68], this method utilizes tire slip on both wheels, in addition to the
steering angle, as control inputs, represented as u = [δ f s f x srx]T .

4.1.1 Three state bicycle model without tire model

When the EDMDmethod is employed to approximate the model of a system, it requires a linear
relationship between state derivatives and inputs, as dictated by the methodology outlined in3.1.
To achieve this, the original bicycle model, detailed in2.1.1, is simplified by excluding equations

60

4.1 koopman operator-based control using bicycle model 61

(2.4) to (2.6), resulting in the following expressions:

mv̇x = mθ̇zvy + F f x + Frx −
1
2
cwρAwvx

√
v2x + v2y , (4.1)

mv̇y = −mθ̇zvx + F f y + Fr y −
1
2
cwρAwvy

√
v2x + v2y , (4.2)

Jz θ̈z = l f F f y − lrFr y . (4.3)

In this reduced model, the state vector is represented as x = [vx vy θ̇z]T , and the input vector is
replaced by ū = [F f x F f y Frx]T .This simplified model is employed for system identification in
4.1.2and for MPC system design in4.1.3. Meanwhile, the linear force model (2.39) is utilized to
convert input forces into steering angles and tire slips in4.1.5. The parameter values of the model
are given in Table4.1.

Table 4.1: Vehicle model parameters

Parameter Description Value Unit
m mass of the vehicle 1752 kg
l f front axle to CoG distance 1.435 m
lr rear axle to CoG distance 1.31 m
Jz moment of inertia around yaw axis 2286 kg m2

cw drag coefficient 0.31 -
ρ air density 1.2 kg / m 3

Aw surface exposed to the air flow 2.2 m2

Cx longitudinal tire stiffness 87712 N
Cy lateral tire stiffness 51488 N/rad

4.1.2 Koopman model identification

To initiate the process of identifying a vehicle dynamics model, the first step involves selecting the
learning dataset. All state variables are sampled uniformly from predefined intervals: vx ∈ [10, 50]
m/s, vy ∈ [−30, 30]m/s, and θ̇z ∈ [−10, 10] rad/s. Simultaneously, forces are uniformly sampled
within the interval [−Fm , Fm], where Fm ∈ {5, 50, 500, 5000} N. Each interval consists of Ns = 20
samples. When combined in all possible combinations, these sampled vectors result in a dataset
containing a total of 4 ⋅ 204 values.

The subsequent step is the selection of basis functions denoted as ϕ(⋅). In the absence of
specific recommendations for the basis function vector, polynomial basis functions are opted for,
as suggested in [83].This polynomial basis consists of monomials derived from the elements of
the state vector:

Pd = {vax ⋅ vby ⋅ θ̇c
z ∣ a, b, c ∈ N ∪ {0}, a + b + c ≤ d}, (4.4)

where d represents the order of the basis Pd .The EDMD-based model is learned using bases of
varying orders. Subsequently, simulations are conducted with the corresponding models, and the
root mean square error (RMSE) is computed using the following formula:

RMSE = 100
√
∑k ∥x̂k − xk∥22√
∑k ∥xk∥22

. (4.5)

4.1 koopman operator-based control using bicycle model 62

Here, x̂ and x represent the state vectors obtained at time step k from the Koopman operator-
based approximation and the actual nonlinear system, respectively. RMSE is assessed across
5000 trajectories, featuring the same initial condition distribution as the learning dataset, with a
sampling time of Ts = 0.01 s and each trajectory being composed of Ntra j = 30 samples. RMSE
values for various basis orders are presented in Table4.2.

Table 4.2: Bicycle model prediction RMSE for polynomial basis functions of different orders.

d 1 2 3 4 5 6 7 8 9
RMSE [%] 43.33 36.29 14.56 9.71 8.65 20.18 61.47 123.66 2509.78

Finally, polynomial basis function of order d = 4 is selected, resulting in an average RMSE
of 9.7089 % and a basis cardinality of nΦ = 35. This choice is made as increasing the order to
d = 5 leads to a more than 50 % increase in cardinality, while the RMSE improvement is less
than one percent. An example simulation is depicted in Figure4.1. In this simulation, predictions
are restarted every ∆t = 0.5 s to emulate MPC execution. A comparison is made between the
real nonlinear model, the linear model approximated by the Koopman operator with a poly-
nomial basis of order d = 4, the model iteratively linearized at each restart of the prediction
(every 0.5 s), and a model linearized around the origin. The initial state is randomly set as
x0 = [37.7777 −8.2569 −1.5693]T , and the input signal is randomly sampled from a uniform
distribution within the interval [−50000, 50000] N. It is evident that the Koopman operator
results in a superior approximation compared to the other two linear approximations.

20

30

40

v x
(m

/s
)

nonlinear
Koopman model
linearized iteratively
linearized at x0

0

20

v y
(m

/s
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4
−2
0

2

4

t (s)

θ̇ z
(r
ad
/s
)

Figure 4.1: Comparison between Koopman model, iteratively linearized model and the model linearized at
the origin. Approximations are done for the bicycle vehicle model.

4.1 koopman operator-based control using bicycle model 63

4.1.3 Koopman MPC design

The initial step in the development of the KMPC system involves the identification of the linearized
Koopmanmodel, as illustrated in3.1. This identifiedmodel is then utilized to lift the current system
state into a newly created higher-dimensional space. Subsequently, this linear model is employed
for the propagation of the system state within theMPC algorithm. Once the optimization problem
is resolved, an input transformation process is carried out to convert wheel forces into steering
angles and tire slips, which are subsequently applied to the vehicle.The process diagram is depicted
in Figure4.2, and the required steps are enumerated as follows:

1.Measure the current state xt .

2.Utilize the identified model to determine the elevated state zt and forward it to the MPC.

3. Solve the MPC problem and obtain the optimal control input ūt in the form of longitudinal
and lateral tire forces.

4. Convert the optimal forces (vector ūt) into steering angles and tire slip (vector ut) and apply
them to the vehicle.

x t+1= f(x ,u)
y = h(x)

t t

t t

t

z = Az + Bu
z = Φ(x)
y = Cz

k k+1

setpoint

Koopman system

Input mapping

MPC

u = λ(u)

4.

t

t

3.

1. 2.

t t

t

t tt+1
vx

vy

l r

θz

.

l f

Ffy
w

Frx

Fry

Ffx

Ffy

Ffx
w

δ f

Vehicle

-

-

Figure 4.2: Diagram showing KMPC framework. All the steps are executed in a loop.

The formulation of the MPC problem can be described as follows:

min
Ūt

J(zt , ūt−1,Yre f
t , Ūt)

s.t. zk+1 = Azk + Būk , k = t, . . . , t + N − 1,
yk = Czk ,
Ekūk ≤ ek ,
zt = Φ(x(t)),
ūt−1 = ū(t − 1).

(4.6)

Here, Ūt = [ūt , ūt+1, ...ūt+N−1] represents the input sequence, Yre f
t = [y

re f
t , yre ft+1 , ...yre ft+N] represents

the reference sequence, and yk = [vxk θ̇zk]T is the output vector.The matrix Ek and the vector ek
represent the input constraint.The cost function is given by:

J(zt , ūt−1,Yre f
t , Ūt) =

t+N−1
∑
k=t ∥ūk∥2S + ∥∆ūk∥2R +

t+N
∑
k=t ∥yk − y

re f
k ∥

2
Q , (4.7)

4.1 koopman operator-based control using bicycle model 64

where Q = QT ⪰ 0, R = RT ⪰ 0 and S = ST ⪰ 0 are the weight matrices and ∆ūk = ūk − ūk−1 is the
input rate.

4.1.4 Reference generation

The estimation of the yaw rate reference is performed using a kinematic bicycle model with zero
slip angles on all wheels, as outlined in [9]:

θ̇re f
z =

vre fx

l f + lr
tan δ f . (4.8)

However, it is worth noting that this model is particularly applicable for describing vehicle motion
at low velocities.Therefore, at higher velocities, the controlled vehicle may not be able to reach
the generated references.The reference vector comprises the longitudinal velocity and yaw rate,
denoted as yre f = [vre fx θ̇re f

z]T .

4.1.5 Input mapping

The tire forces, represented as ūt = [F f x F f y Frx]T , derived from the MPC algorithm, need to
be converted into steering angle and tire slips, denoted as ut = [δ f s f x srx]T , before they can
be applied to the system. In other words, the transformation ut = λ(ūt) must be determined.
To achieve this transformation, the equations from (2.10) to (2.13) are employed to establish an
expression describing the front tire slip angle α f = α f (δ f) based on the measured state vector.
Subsequently, by inverting (2.7) and combining it with (2.39), a set of nonlinear equations is
obtained:

F f x = Cxs f x cos δ f + Cyα f (δ f) sin δ f ,
F f y = Cxs f x sin δ f − Cyα f (δ f) cos δ f ,
Frx = Cxsrx .

(4.9)

These equations are then solved for ut using a trust-region algorithm [85], with the previously
applied input vector ut−1 serving as the starting point.

4.1.6 Simulation results

The simulation is performed with MATLAB, and the MPC optimization problem is formulated
with the YALMIP toolbox [86] and then solved with the Gurobi solver [15].The controller is tested
using a sine with dwell manoeuvre [87], involving a variable longitudinal velocity reference.

Sample time equals T = 0.01 s, prediction horizon N = 10 and the rest of the parameters are:

•input constraint: ūmax = −ūmin = [F c
f x F c

f y F c
rx]T ,

F c
f x = F c

rx =
3.5
100

Cx , F c
f y =

5○π
180○Cy ,

•input rate constraints: ∆ ūmax = −∆ūmin = [∆F c
f x ∆F c

f y ∆F c
rx]T ,

∆F c
f x = ∆F c

rx =
0.75
100

Cx , ∆F c
f y =

0.5○π
180○ Cy ,

4.2 koopman operator-based control using two-track model 65

•input weight matrix:

S = diag
⎛
⎝

1
F c
f x

2 ,
1

F c
f y

2 ,
1

F c
rx

2
⎞
⎠
,

•input rate weight matrix:

R = diag
⎛
⎝

1
∆F c

f x
2 ,

1
∆F c

f y
2 ,

1
∆F c

rx
2
⎞
⎠
,

•tracking error weight matrix:
Q = diag (105, 105) .

Input constraints and input rate constraints are established based on the associated tire slip and
slip angle constraints, and these considerations hold true when dealing with small steering angles.

Figure4.3illustrates that the MPC effectively regulates the longitudinal velocity and yaw rate
of the vehicle. However, there is a significant increase in the yaw rate tracking error between t1 = 4
s and t2 = 5 s.The optimal tire forces as well as the steering angle and tire slip are shown in Figure
4.4. It is worth noting that the tire forces always remain within the predefined limits due to the
imposition of hard constraints. Furthermore, the tire slip values also remain within their limits.
Although this is true in this particular case, it may not be the case in a general scenario. This
observation is due to the fulfillment of the small steering angle assumption as described in4.1.3.
The example shows that the proposed approach is suitable for controlling vehicle dynamics, even
if the system does not guarantee perfect tracking of the reference trajectory.

0 2 4 6 8 10

50

60

70

80

t(s)

v x
(k
m
/h
)

reference
KMPC

0 2 4 6 8 10
−40
−20

0

20

40

t(s)

θ̇ z
(○ /

s)

Figure 4.3: Longitudinal velocity vx and yaw rate θ̇z response for the bicycle vehicle model.

4.2 koopman operator-based control using two-track model

This section presents the research carried out in [88].The work described here is based on the
bicycle model control described in4.1, but aims to control the two-track vehicle model with front
wheel steering. In this method, in addition to the steering angle, the tire slip on all four wheels is
also used as a control input, represented as u = [δ f s f l x s f rx srlx srrx]T .

4.2 koopman operator-based control using two-track model 66

−10
−5
0

5
δ f
(○)

−4
−2
0

2

4

s f
x(
%
)

constraint
control input

0 2 4 6 8 10
−4
−2
0

2

4

t(s)

s r
x(
%
)

−2,000
0

2,000

F f
x(
N
)

constraint
control input

−5,000
0

5,000

F f
y(
N
)

0 2 4 6 8 10

−2,000
0

2,000

t(s)

F r
x(
N
)

Figure 4.4: Optimal forces obtained from the MPC (right) together with their hard constraints and final
control inputs (left) calculated from forces using input mapping described in4.1.5.

4.2.1 Two-track model without tire model

Similarly as done in4.1.1for the bicycle model, here the model introduced in2.1.2can be simplified
by omitting (2.19) - (2.21):

mv̇x = mθ̇zvy + F f l x + F f rx + Frlx + Frrx −
1
2
cwρAwvx

√
v2x + v2y , (4.10)

mv̇y = −mθ̇zvx + F f l y + F f r y + Frl y + Frr y −
1
2
cwρAwvy

√
v2x + v2y , (4.11)

Jz θ̈z = l f (F f l y + F f r y) − lr (Frl y + Frr y) +w (−F f l x + F f rx − Frlx + Frrx) . (4.12)

In that case, the input vector becomes ū = [F f l x F f l y F f rx F f r y Frlx Frrx]T , making the derivatives
linearly dependent on the input. Nevertheless, implementing this model requires a sophisticated
low-level force controller.This model is used for vehicle dynamics identification and controller
design in sections4.2.2and4.2.4. The model parameters remain identical to those specified for
the bicycle model, as detailed in Table4.1.

4.2.2 Koopman model identification

The first phase in the development of a vehicle dynamics model involves the selection of a
suitable dataset. This dataset is generated by uniformly sampling the system state vector xt =
[vx vy θ̇z]T within specified ranges: vx ∈ [10, 50]m/s, vy ∈ [−30, 30]m/s, θ̇z ∈ [−10, 10] rad/s.
In addition, the input forces are sampled from the range [−Fm , Fm], where Fm is part of the set
{10, 50, 500, 1000, 5000, 10000} N. Each range comprises Ns = 25 sample points, resulting in a

4.2 koopman operator-based control using two-track model 67

total number of 6 ⋅254 unique data points in the dataset. To predict the next state xt+1, the nonlinear
system is simulated with a sampling time of Ts = 0.01 s. It is important to note that varying the
number or distribution of samples Ns can affect the prediction accuracy of the resulting model.
However, this aspect of the study is not investigated in this context.

Once the dataset is generated, the next step is to determine the specific nonlinear state
combinations to be included, i.e. selecting the basis functions, referred to as ϕ(⋅). Similar to the
identification of the bicyclemodel, polynomial basis functions, as shown in equation (4.4), are used.
Additionally, this basis is extended to include the slip angle vector α = [α f l(0○) α f r(0○) αrl αrr]T ,
which is calculated under the assumption that δ f = 0○. Consequently, the comprehensive basis is
represented as follows:

Bd = {Pd , α}. (4.13)

The slip angle vector α is included in the basis to simplify the input handling, as described
in Section4.2.4. To identify the degree d that provides optimal accuracy, an averaged RMSE, as
defined in equation (4.5), is calculated over multiple trajectories.This evaluation includes 15000
trajectories, each comprising up to 50 samples with a sample time of Ts = 0.01 s. Both the initial
conditions and the input sequences are uniformly sampled from the same distribution used for
the training dataset.This analysis is restricted to samples that are within the specified ranges of
the state and input vectors, as the accuracy of the RMSE would be compromised outside of these
limits.The results are shown in Table4.3.

Table 4.3: Two-track model prediction RMSE for polynomial basis functions of different orders.

Order 1 2 3 4 5 6 7 8
RMSE [%] 26.50 12.24 4.44 2.37 1.50 1.25 1.14 1.11

A polynomial basis function of order d = 5 is chosen for the simulation, based on its average
RMSE of 1.5006% and a basis cardinality of nΦ = 60.This decision is made because the RMSE for
d ≥ 5 shows negligible fluctuations.The simulation updates its predictions every ∆t = 0.5 s, which
is consistent with the timing of the MPC execution, supporting the use of this model for MPC
design in Section4.2.4. Figure4.5shows a specific simulation scenario where each system received
a randomly chosen input signal that is uniformly distributed in the range [−10000, 10000] N,
while the initial state is set randomly to x0 = [32.5698 − 9.1526 2.5326]T . In this case, the RMSE
is 0.3163% for the Koopman system, 58.0229% for the linearized system around x0 and 20.7010%
for the system with iterative linearization.The Koopman operator shows superior approximation
accuracy compared to the other methods tested, both the iteratively linearized model and the
model linearized around x0.

4.2.3 Linear time-variant model

In this section, linear time-variant (LTV) model is used for comparison with Koopman based
model. To define it, lets start by defining the nonlinear model (2.16) - (2.18) with linear tire model
described in2.2.2and tire slips used as inputs, i.e. u = [δ f s f l x s f rx srlx srrx]T .This model can be
written in compact form as

ẋ(t) = f(x(t),u(t)). (4.14)

4.2 koopman operator-based control using two-track model 68

26

28

30

32

34

v x
(m

/s
)

nonlinear
Koopman model
linearized iteratively
linearized at x0

−20
−10
0

10

v y
(m

/s
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−4
−2
0

2

t(s)

θ̇ z
(r
ad
/s
)

Figure 4.5: Comparison between Koopman model, iteratively linearized model and the model linearized at
the origin. Approximations are done for the two-track vehicle model.

The discrete-time version of this model is given by:

xt = fd(xt ,ut). (4.15)

LTV model is then formulated similarly to the one proposed in [89].The prediction of the state
vector at time k is

xk+1 = Atxk + Btuk + dk , k = t, . . . , t + N − 1. (4.16)

In this representation, the discrete-time system defined by the matrices At and Bt is derived by
linearizing the equation (4.14) around the current state xt and the previous input ut−1, after which
the resulting linear system is discretized using bilinear transform. Additionally, dt represents the
deviation of the nonlinear model’s steady-state response from that of the LTV model:

dk = x̂k+1 − Atx̂k − Btut−1,
x̂k+1 = fd(x̂k ,ut−1), x̂t = xt .

(4.17)

A similar method is described in more details in Chapter5.

4.2 koopman operator-based control using two-track model 69

4.2.4 Koopman MPC design

The KMPC problem is structured as follows:

min
Ūt ,Et J(zt , ūt−1,Yre f

t , Ūt , Et)

s.t. zk+1 = Azk + Būk , k = t, . . . , t + N − 1,
yk = Czk ,
Ekūk ≤ ek ,
Fkzk+1 ≤ fk + εk ,
εk ≥ 0,
zt = Φ(x(t)),
ūt−1 = ū(t − 1).

(4.18)

Here, the notation aligns with that in (4.6) with Et = [εt , εt+1, ...εt+N−1] being the slack vector
sequence. Cost function equals

J(zt , ūt−1,Yre f
t , Ūt , Et) =

t+N−1
∑
k=t ∥ūk∥2S + ∥∆ūk∥2R +

t+N
∑
k=t ∥yk − y

re f
k ∥

2
Q +

t+N−1
∑
k=t p∥εk∥2I . (4.19)

In this context, weight matrices are as defined in (4.7), with the addition of p ≥ 0 representing the
slack weight and I indicating the identity matrix of the corresponding size.The term ∆ūk denotes
the input rate.

The text below details two critical observations that play a key role in shaping the state and
input constraints for the given design:

1. Force transformation: To ensure that the state propagation depends linearly on the inputs,
the input vector is chosen as ū = [F f l x F f l y F f rx F f r y Frlx Frrx]T . With a precise prediction
of the steering angle, this input vector and its rate can be transformed from the coordinate
system of the vehicle to that of each individual wheel.The transformed input vector uw =
[Fw

f lx Fw
f l y Fw

f rx Fw
f ry Fw

rlx Fw
rrx]T results from the following equation:

uw
k = T(δk)ūk ,

∆uw
k = T(δk)∆ūk + ∆δk∆T(δk)ūk ,

(4.20)

where T(δk) = diag(T0(δk), T0(δk), I2) and ∆T(δk) = diag(∆T0(δk), ∆T0(δk), I2) are
block diagonal matrices composed of rotation matrices

T0(δk) = [
cos δk sin δk
− sin δk cos δk

] , ∆T0(δk) = [
− sin δk cos δk
− cos δk − sin δk

] (4.21)

and I2 is the 2 × 2 identity matrix.

2. Slip angle identity: According to [90], the slip angles of the front wheel tires, as shown in
(2.25), can be expressed in the following manner:

α f⋆(δ f) = arctan(
v f⋆y
v f⋆x) − δ f = α f⋆(0○) − δ f . (4.22)

Note that the slip angles α f⋆(0○) are already included in the basis outlined in (4.13) and can
therefore be easily extracted from the vector zt .

4.2 koopman operator-based control using two-track model 70

The matrices Ek and Fk as well as the vectors ek and fk can be uniquely reconstructed using
the following constraints.The constraints for the input and its rate of change are

ūmin ≤ T(δk)ūk ≤ ūmax ,
∆ūmin ≤T(δk)∆ūk + ∆δk∆T(δk)ūk ≤ ∆ūmax ,

(4.23)

and the constraints for the state are:

αmin − εmin
k ≤ αk − ∆k ≤ αmax + εmax

k , εmin
k ≥ 0 εmax

k ≥ 0, (4.24)

where the vector ∆k = [δk δk 0 0]T is defined. In addition, two equality constraints are introduced
to ensure the feasibility of the lateral forces at any given time:

Fw
f l y = −Cy (α f l(0○) − δ f) , Fw

f ry = −Cy (α f r(0○) − δ f) . (4.25)

This linear force model is applicable because the constraints in (4.24) keep the tire forces within
their linear range.

After determining the optimal solution ū∗ from (4.18), the control input is derived as u∗ =
[δ f s∗f l x s∗f rx s∗rlx s∗rrx]T . Here, each optimal slip value is calculated as s∗●⋆x = Fw∗●⋆x/Cx .

4.2.5 Simulation results

The performance of the proposed controller is evaluated and compared with that of the LTV-
MPC, using identical parameters for comparison. Given that the input space for the LTV-MPC is
different from that of the KMPC, the input weight matrices are adjusted to S = 0 and R = 0.The
chosen sampling interval is Ts = 0.01 s, and the other parameters are set as follows:

•longitudinal force inequality constraints: Fw
x ,max = −Fw

x ,min = 0.05Cx ,

•longitudinal force rate constraints: ∆ Fw
x ,max = −∆Fw

x ,min = 0.0075Cx ,

•slip angle constraints: αmax = −αmin = 5○,
•tracking error weight matrix and slack weight: Q = diag (1, 100), p = 108.

Force inequality constraints implicitly define slip and slip rate constraints as smax = −smin = 5 %
and ∆smax = −∆smin = 0.75 %. Lateral force equality constraints are set as (4.25).

The simulations are run in MATLAB, where the MPC optimization problems are structured
in a dense format and solved with the OSQP solver [16]. By converting to a dense format, the
performance of the MPC algorithm becomes independent of the size of the state vector, ensuring
that the KMPCmaintains consistent execution times regardless of the lifted state-space dimensions
[32].These algorithms are evaluated using the sine with dwell manoeuvre [87] assuming accurate
steering angle prediction. Sine with dwell is often used to test active stability systems, so it is
expected that the reference yaw rate trajectory will not be reached. Instead, it is important that
the vehicle remains stable throughout the manoeuvre, and the performance of the controllers is
compared in terms of execution time and closed-loop cost.

Figure4.6shows a comparative analysis of the responses of LTV-MPC and KMPC for a
prediction horizon of N = 5. From this comparison, it can be seen that KMPC provides better

4.2 koopman operator-based control using two-track model 71

tracking of the longitudinal velocity reference, while the yaw rate responses of both controllers
appear almost identical. KMPC achieves these responses with reduced slip, as depicted in Figure
4.7.This reduction in slip is associated with lower energy consumption. As can be seen in Figure
4.8, although violations of the slip angle limit occur with both controllers, the peak values of these
violations are lower with KMPC.

0 2 4 6 8 10
20

40

60

80

100

t(s)

v x
(k
m
/h
)

reference
KMPC
LTV-MPC

0 2 4 6 8 10

−50
0

50

t(s)

θ̇ z
(○ /

s)
Figure 4.6: Longitudinal velocity vx and yaw rate θ̇z response for N = 5 and two-track vehicle model.

−5
0

5

s f
l(%

)

constraint
KMPC
LTV-MPC −5

0

5

s f
r(
%
)

0 2 4 6 8 10
−5
0

5

t(s)

s r
l(%

)

0 2 4 6 8 10
−5
0

5

t(s)

s r
r(
%
)

Figure 4.7: Optimal slip ratio for N = 5 and two-track vehicle model.

Figure4.9compares the responses for a prediction horizon of N = 20. Here, the longitudinal
velocity response is similar to that observed for N = 5, with the KMPC again performing better,
whereas the yaw rate response shows better results with the LTV-MPC, although at the cost of
violating soft constraints related to slip angle.The optimal slip ratio is illustrated in Figure4.10.
These graphs reveals that, unlike the LTV-MPC, the KMPC rarely reaches slip ratio saturation, a
behaviour consistent with the results for N = 5. Nevertheless, after the manoeuvre, at t1 = 6.5 s,
both controllers continue to demand non-zero slip on the left front and rear wheels, even though
the vehicle maintains a constant speed.This results in the left front wheel (s f l) trying to accelerate
while the left rear wheel (srl) tries to brake, a situation that is neither efficient nor safe, highlighting
a potential flaw in the design of the control algorithm.The slip angle response depicted in Figure
4.11shows that the KMPC keeps the slip angle within the limits, while the LTV-MPC still violates
these constraints, though to a lesser extent compared to the scenario with N = 5.

4.2 koopman operator-based control using two-track model 72

−5
0

5

α f
l(○)

constraint
KMPC
LTV-MPC

−5
0

5

α f
r(
○)

0 2 4 6 8 10

−5
0

5

t(s)

α r
l(○)

0 2 4 6 8 10

−5
0

5

t(s)

α r
r(
○)

Figure 4.8: Slip angle response for N = 5 and two-track vehicle model.

0 2 4 6 8 10
20

40

60

80

t(s)

v x
(k
m
/h
)

reference
KMPC
LTV-MPC

0 2 4 6 8 10

−50
0

50

t(s)

θ̇ z
(○ /

s)

Figure 4.9: Longitudinal velocity vx and yaw rate θ̇z response for N = 20 and two-track vehicle model.

−5
0

5

s f
l(%

)

constraint
KMPC
LTV-MPC −5

0

5

s f
r(
%
)

0 2 4 6 8 10
−5
0

5

t(s)

s r
l(%

)

0 2 4 6 8 10
−5
0

5

t(s)

s r
r(
%
)

Figure 4.10: Optimal slip ratio for N = 20 and two-track vehicle model.

4.2 koopman operator-based control using two-track model 73

−5
0

5
α f

l(○)
constraint
KMPC
LTV-MPC

−5
0

5

α f
r(
○)

0 2 4 6 8 10
−5
0

5

t(s)

α r
l(○)

0 2 4 6 8 10
−5
0

5

t(s)

α r
r(
○)

Figure 4.11: Slip angle response for N = 20 and two-track vehicle model.

Table4.4displays the normalized closed-loop costs for each of the four test scenarios. In these
comparisons, the closed-loop costs associated with the KMPC are consistently lower than those of
the LTV-MPC across both prediction horizons. In addition, a significant decrease in costs can be
observed with the extension of the prediction horizon.This reduction is anticipated, as it reflects
the controller’s improved prediction of future events.

Table 4.4: Normalized closed-loop cost

Prediction horizon LTV-MPC KMPC
N = 5 1 0.9004
N = 20 0.2506 0.0151

Table4.5presents the execution times recorded for each algorithm at every time step of the
simulation, totaling 10,000 samples1. As indicated in the table, the KMPC not only achieves a
lower cost but also demonstrates smaller average execution times.

Table 4.5: Algorithm execution times (ms)

Controller N = 5 N = 20
Mean Median Min Max Mean Median Min Max

KMPC 7.2 5.8 4.3 655.4 63.2 49.5 46.2 1243.2
LTV-MPC 28.1 15.4 13.5 560.6 93.8 50.9 48.1 1415.9

All the results presented in this section demonstrate the applicability of KMPC for vehicle
dynamics control and state its advantages over standard methods such as LTV-MPC. Nevertheless,
this method still uses overly simplified vehicle model, which makes it less suitable for real-world
applications.This approach is generalized in Chapter5, where a different version of the KMPC
algorithm capable of controlling more complex vehicle models is presented.

1 Experiments were conducted on a computer equipped with an Intel Core i5-7600K CPU at 3.8 GHz, 8 GB of RAM,
and running Windows 10.

4.3 summary 74

4.3 summary

This chapter presents two different applications of the Koopman operator, in particular the EDMD,
for modelling and controlling vehicle dynamics using simple vehicle models and longitudinal tire
slip as input. Both are simple proof-of-concept approaches proposed in [84] and [88].

The first section shows how the Koopman operator is used for identifying vehicle dynamics.
A simplified bicycle model, excluding a tire model, is used to generate the dataset for the EDMD
algorithm.This algorithm then approximates a linear model in a higher dimensional state-space
and shows promising results that outperform traditional Taylor expansion based linearization
models in predicting system trajectories. For further validation, this model is integrated into an
MPC design and tested with the original vehicle model, confirming the effectiveness and potential
of the method for vehicle motion control.

In the second section, the focus shifts to the identification of a two-track vehicle model using
the Koopman operator, integrated with an MPC algorithm.The EDMDmethod is again used for
approximation, and its accuracy is validated against a nonlinear vehicle model. Once sufficient
model accuracy is achieved, it is used to develop a linear KoopmanMPC algorithm.This algorithm
is then compared to the LTV-MPC for prediction horizons of N = 5 and N = 20, using the sine
with dwell algorithm.The Koopman MPC algorithm performs better in all test scenarios in terms
of both closed-loop cost and execution times.

These results underline the effectiveness of Koopman MPC in controlling vehicle dynamics
and highlight its advantages over conventional approaches such as LTV-MPC. However, it is
noteworthy that this method is still based on overly simple vehicle models, which limits its
practical applicability in real-world scenarios.

5
Koopman-based predictive torque vectoring

This chapter presents the implementation of the Koopman operator-based model
predictive torque vectoring algorithm and is an extension of the work done in [70]. It

begins with a literature review that includes a thorough investigation of existing vehicle dynamics
control systems. Conventional control strategies such as ABS, ESC and cruise control, which are
based on heuristic algorithms or basic mathematical models, are compared with more advanced
nonlinear models and control laws.This section highlights the limitations of current methods
and introduces the Koopman operator as a potential solution to improve vehicle control under
nonlinear conditions.The following section focuses on the application of the Koopman operator
for modelling of vehicle dynamics. First, a nonlinear model parameter identification is presented,
then the methods for data acquisition and Koopman model identification are introduced.The
novelty of the proposed methods is their applicability to more general contexts, as they are not
based on specific assumptions, as is the case with the approaches presented in Chapter4. The
performance of the obtained models (predictors) is evaluated on both training and test datasets
and some of these predictors are selected for the design of control system. In the third section, the
linear time-variant MPC, the Koopman MPC and the nonlinear MPC for torque vectoring are
explained in detail and their differences and possible problems are mentioned. Although a version
of the LTV-MPC is already described in Section4.2.3, here a slightly different and more detailed
derivation is presented. After the mathematical description, the given controllers are tested in a
high-fidelity simulation environment using four different test cases.The results are documented
and discussed, critically analyzing the performance and practicality of Koopman-based predictive
torque vectoring systems in comparison to other strategies.

5.1 existing work

Section2.5provides a brief overview of the vehicle dynamics control systems. In contrast to
conventional systems such as ABS, ESC or cruise control, which are usually based on heuristic
algorithms or basic mathematical models [9], current algorithms often use nonlinear models and
sophisticated control laws [53]. Given that a vehicle is a complex, nonlinear dynamical systemwith
coupled lateral and longitudinal dynamics and nonlinear tire behaviour, accurately modelling
its behaviour under various conditions is a challenge. In [91], a comparative analysis of three
commonmodelling techniques is presented: 1. nonlinear physicalmodels, 2. linear physicalmodels
and 3. data-driven models.The results show that data-driven models predict vehicle behaviour
under standard driving conditions better than models based on physical principles. James and

75

5.1 existing work 76

Anderson’s research [92] on longitudinal dynamics models demonstrates that the precision of
linear data-driven models can be superior to that of nonlinear physical models under normal
driving conditions, while being simpler and more suitable for control system design.

Different control structures, employing both linear and nonlinear vehicle models, can be
utilized to implement TV control algorithms.These often include PI controllers [93], PID-based
and sliding mode algorithms [94, 95],H∞ controllers [96] and fuzzy control TV [97, 98]. However,
using such controllers can make it difficult to apply constraints to control inputs and states. MPC
can help mitigate this problem. Since vehicle dynamics models are generally nonlinear, NMPC
provides more accurate predictions of future behaviour [99, 100, 101], but the integration of non-
linear models inMPC can lead to non-convex optimization problems, often posing difficulties due
to multiple local optimal points. On the other hand, linear models result in simpler optimization
problems that can be solved more efficiently. For this purpose, linear time-invariant (LTI) or linear
time-variant (LTV) models are typically used [102, 89], although these may lead to significant
prediction inaccuracies, especially over longer prediction horizons [18]. To use a nonlinear model
and manage its computational complexity, one approach is to simplify the model, for example by
applying the model reduction techniques described in [103]. Alternatively, the Koopman operator
can be used to develop a linear model with increased accuracy.

In vehicle dynamics identification, the Koopman operator was first applied to a simple single-
track vehicle model in [83].The study employed twomethods for selecting basis functions: EDMD
and the eigenfunction approach. While EDMD yielded good results for a model excluding tire
nonlinearity, the eigenfunction approach excelled in modelling tire nonlinearities, albeit without
considering inputs.This method, enhanced to include inputs, was later adopted in [104] for linear
MPCdesign, demonstrating interesting outcomes. It successfully stabilized a vehicle in a 90-degree
drift, a scenario dominated by nonlinearities, yet struggledwith basic steeringmanoeuvres. Further
exploration of the EDMDmethod using a simple bicyclemodel was done in [84] andwas expanded
to a two-track model in [88] as detailed in Chapter4. Both applications surpassed LTV models in
trajectory prediction. Another application of the Koopman operator for vehicle dynamics control
is illustrated in [68], where the Deep-DMDmethod was applied. Using this technique, a KMPC
system was developed that includes the steering angle and the engine throttle as control inputs.
The effectiveness of this controller was demonstrated by testing it with an autonomous vehicle
model in a sophisticated simulation environment, where it achieved notable tracking performance.
This approach was further refined in [66], where a deep learning method called Deep Direct
Koopman (DDK) was introduced. In DDK, the Koopman eigenvalues and the input matrix are
learned directly, resulting in a model that is represented in an LTI form with a diagonal state
transition matrix.This format makes it suitable for systems where the inputs need to be taken into
account. Using the DDK model, a linear MPC was developed and deployed to control a vehicle in
a high-fidelity simulator.This implementation confirmed the method’s ability to efficiently track
point-to-point trajectories in real time. DMD was employed for vehicle dynamics identification
and lane-keeping control in [105, 106], while [107] investigated the vertical stabilization of off-
road vehicles. In [108], an MPC formulation with a vehicle model based on a bilinear Koopman
operator for real-time trajectory planning for autonomous driving is presented. Yu et al. [109]
used DMD and EDMDmethods to build KMPC and use it to control a vehicle in various test
scenarios, and concluded that this approach reduces the computational cost compared to NMPC.
The eco-driving problemwas formulated as a KMPC in [110, 111] to reduce the computational effort

5.2 koopman model identification 77

and enable real-time implementation.The KMPC was integrated into a high-fidelity simulator,
tested using a selected route scenario and demonstrated the efficacy considering nonlinearities
compared to a linear approach. Sassella and associates[112] implemented ABS based on Koopman
MPC and compared it with NMPC and an LTV-MPC (referred to as a linear constant-speedmodel
in the paper). Simulation tests showed that the Koopman-based solution is feasible in practise as
it leads to a trade-off between tracking performance and computation time. Guo et al. [113] opted
for a different approach and used the Koopman operator to capture the intrinsic characteristics
of the driver-vehicle system dynamics and develop a shared controller.They discovered that an
online update mechanism for the Koopman model is of great importance to capture the adaptive
behaviour of the driver in the course of the driver-automation interaction.The work by Chen
et al. [114] proposes a safety command governor for autonomous vehicles using a Deep-DMD.
This method, which has been validated through extensive testing, outperforms conventional and
data-driven models in accurately handling nonlinear vehicle dynamics. It ensures vehicle safety
and stability through the integration of control barrier functions (CBFs) and a QP optimization
process that significantly improves lateral stability and computational efficiency.

As mentioned in Section2.4.4, since this is an active field of research, new applications of
the Koopman operator appear quite frequently.The same applies to applications in the field of
vehicle dynamics. However, most of the work referenced in this section mainly focuses on two
key concepts: 1) Koopman operator-based models offer a trade-off in between classical linear
and nonlinear models when it comes to model complexity and prediction performance, and 2)
the KMPC approach reduces computational cost compared to NMPC.This is also the main idea
behind the work presented in the rest of the chapter.

5.2 koopman model identification

To identify the model, a learning dataset must first be created. Two different approaches can be
used for this purpose:

1.simulate several trajectories directly in a high-fidelity simulation environment (this corre-
sponds to conducting experiments when a real vehicle is available);

2. create a nonlinear model based on the data from a high-fidelity simulation environment or
a real vehicle and simulate different scenarios with this model.

In this thesis, the second approach is used, representing one of its contributions. A more detailed
analysis of the approach is provided in Chapter6.

5.2.1 Nonlinear vehicle model parameter identification

In this chapter, the high-fidelity model is used to generate data and calibrate the nonlinear
model, which is then treated as a ground-truth model to generate new data for training the linear
Koopman model.Therefore, it is necessary to validate the accuracy of the nonlinear model.The
high-fidelity simulation software of choice is CarMaker by IPG Automotive. An example vehicle
during a manoeuvre in CarMaker is shown in Figure5.1.

The structure of the nonlinear vehicle dynamics model is as described in2.1.2, with piecewise
linear tire model and tire force coupling, but without alternative slip formulation and wheel

5.2 koopman model identification 78

Figure 5.1: Vehicle in the Car Maker simulation software.

viscous friction. For the sake of clarity, lets write this particular system compactly as:

ẋ(t) = f(x(t),u(t)). (5.1)

State and input vectors are x = [vx vy θ̇z ω f l ω f r ωrl ωrr]T and u = [δsw Tf l Tf r Trl Trr]T , and the
parameters of the model are given in Table5.1. In this input vector formulation, δsw is the steering
wheel angle, which is equal to

δsw = iswδ f . (5.2)

Most of the parameters in the table are taken directly from CarMaker, with the exception of the
longitudinal tire stiffness Cx f and Cxr on the front and rear axle, the lateral tire stiffness Cy f and
Cyr on the front and rear axle, the rolling resistance f f and fr on the front and rear wheels and the
steering wheel ratio isw , which are determined using the MATLAB System Identification Toolbox
on the basis of numerous experiments recorded from CarMaker. 1The comparison between the
CarMaker data and the derived nonlinear model is shown in Figure5.2.

5.2.2 Data collection

The dataset is created by randomly sampling the initial state vector and the input vector sequence
of p steps from a uniform distribution, after which the system (5.1) is simulated starting from
the sampled initial states and excited by the sampled input sequences. The set of initial states
{vx0, vy0, θ̇z0} is sampled from the given intervals: vx0 ∈ [20, 150] km/h, vy0 ∈ [−45, 45] km/h,
θ̇z0 ∈ [−45, 45] ○/s, while the wheels are assumed to be free rolling, i.e. ω f⋆0 = vx0/Rw f and
ωr⋆0 = vx0/Rwr.The input sequence is sampled from intervals T●⋆ ∈ [−500, 500] Nm and δsw ∈
[−20isw , 20isw] ○. In addition, the steering rates are limited to ∆δsw ∈ [−4isw , 4isw] ○. In this way,
both the continuity and the smoothness of the sample input trajectory are taken into account.
Constraints can be imposed on the torque rate ∆T●⋆, but realistic constraints would be greater
than the torque limits T●⋆, as it is assumed that we have an electric powertrain that can reach
maximum torque in a few milliseconds.This means that the torque rate limits are always met and
are therefore redundant.

The dataset has a sample time of Ts = 0.05 s and consists of Ns = 200000 sample trajectories
that are p = 15 steps long, resulting in Ntotal = 3 ⋅106 sample points. Of these points, Nnl = 2464528,

1 Although some of these parameters can be found in CarMaker for default tire models, they are not correct for the
custom piecewise linear model used in this chapter.

5.2 koopman model identification 79

Table 5.1: Vehicle model parameters

Parameter Description Value Unit
m mass of the vehicle 1599.98 kg
l f front axle to CoG distance 1.311 m
lr rear axle to CoG distance 1.311 m
w half of the wheel track 0.8035 m
Jz moment of inertia around yaw axis 2393.665 kg ⋅m2

cw drag coefficient 0.37 -
ρ air density 1.2 kg/m3

Aw surface exposed to the air flow 2.156 m2

µ road coefficient of friction 1 -
Cx f front axle longitudinal tire stiffness 9.0903 ⋅ 104 N
Cy f front axle lateral tire stiffness 3.0419 ⋅ 104 N/rad
Rw f front axle effective tire radius 0.336705 m
Jw f front wheel moment of inertia 2.084 kg ⋅m2

f f front wheel rolling resistance 0.001 -
Cxr rear axle longitudinal tire stiffness 1.8831 ⋅ 105 N
Cyr rear axle lateral tire stiffness 2.4165 ⋅ 105 N/rad
Rwr rear axle effective tire radius 0.33601 m
Jwr rear wheel moment of inertia 1.985 kg ⋅m2

fr rear wheel rolling resistance 0.0143 -
isw steering wheel ratio 13.4684 -
bw● front/rear axle viscous friction 0 Nm/(rad/s)

50

100

150

200

v x
(k
m
/h
)

CarMaker
nonlinear model

0 20 40 60 80 100 120 140 160 180 200

−10
0

10

t(s)

θ̇ z
(○ /

s)

Figure 5.2: CarMaker and nonlinear model comparison.

i.e. about 82.15 % covers nonlinear regions of the tire slip angles. Nonlinear regions refer to the
areas outside the linear force range, which means that the forces in the model (2.41a) are saturated.

5.2 koopman model identification 80

Figure5.3shows ten different example trajectories (each marked with a different color).

50

100

150

v x
(k
m
/h
)

−40−20
0
20
40

v y
(k
m
/h
)

0 0.2 0.4 0.6−40
−20

0
20
40

t(s)

θ̇ z
(○ /

s)

−2000
200

δ s
w
(○)

−500
0

500

T f
l(N

m
)

−500
0

500

T f
r(
N
m
)

−500
0

500

T r
l(N

m
)

0 0.2 0.4 0.6
−500

0

500

t(s)

T r
r(
N
m
)

Figure 5.3: Example state (on the left) and input (on the right) trajectories.

5.2.3 Learning Koopman model

After the dataset has been created, the basis functions ϕ(⋅)must be selected. As suggested in Chap-
ter4, the polynomial basis Pd was chosen and extendedwith slip angle vector α = [α f l α f r αrl αrr]T ,
so that the final basis is as follows:

Bd = {Pd , α}. (5.3)

To ensure a linear state-input relationship, two different approaches are proposed in Chapter
4, both assuming a small slip angle, i.e. a linear tire model. Here, a more general approach is
proposed.The key idea is to add the steering wheel angle to the state-space of the nonlinear system
(5.1), while the steering wheel rate becomes a new input.There is no need to add torques to the
modified state-space, as it can be seen from (2.19) that the state propagation already depends
linearly on torques.The modified state and input vectors are

x̃ = [vx vy θ̇z ω f l ω f r ωrl ωrr δsw]T ,
ũ = [∆δsw Tf l Tf r Trl Trr]T .

(5.4)

The output is defined as:
ỹ = [vx θ̇z δsw α f l α f r αrl αrr]T . (5.5)

To improve the numerical stability of the learning algorithm, the collected data is normalized
to the range [−1, 1] according to the following rule:

xnorm = 2
x − xmin

xmax − xmin
− 1. (5.6)

The learning dataset is divided into a training set of size Ntrain = 140000 and a validation set
of size Nval id = Nl earn − Ntrain = 30000.The test set contains Ntest = Ns − Nl earn = 30000 samples.

5.2 koopman model identification 81

It is used to evaluate the performance of the identified model and contains data samples that are
different from those used for learning.

The methods used for learning different Koopman predictors are those described in Chapter
3, with the addition of multiple step prediction minimization EDMD (denoted as EDMD-MS).
EDMD-MSworks in the same way as the E2DMD-MSmethod, but does not reduce the state-space,
i.e. the reduction equation (3.29) becomes wt = zt .

The methods have the following parameters:

• EDMD: trained exclusively using the training data (no consideration of validation data, as
this is not part of the standard algorithm),

• Deep-DMD: encoder with a total of L = 5 layers, where n1 = 32, n2 = 64, n3 = 128, n4 = 64
and n5 = nΦe − nx ; activation function for the layers n1 to n4 is the rectified linear unit
(ReLU) and for n5 the hyperbolic tangent; weights α1 = 1, α2 = 1, α3 = 0.3, α4 = 10−9 and
α5 = 10−9, maximum number of training epochs emax = 100000, number of prediction steps
p = 15, violation patience vp = 25, number of evaluation epochs ne = 5, batch size bs = 256
and learning rate lr = 10−4; state included in the lifted state vector;

• E2DMD-DS: number of training epochs emax = 10000, violation patience vp = 100, random-
ization epoch number ne = 100, initial temperature Tinit = 1000, temperature reduction
coefficient αtemp = 0.99, and a number of prediction steps p = 15; state included in the lifted
state vector;

• E2DMD-MS: uses the same parameters as Deep-DMD (those that are applicable); state
included in the lifted state vector;

• EDMD-MS: uses the same parameters as Deep-DMD and E2DMD-MS (those that are
applicable);

• E2DMD-HO: number of trials nt = 250 and prediction horizon p = 15, encoder weight and
bias values limited to [−1, 1]; state included in the lifted state vector.

Since the states are included in the lifted state vectors, an additional implementation detail
used in the learning algorithms for Deep-DMD, E2DMD-MS and EDMD-MS is a partially hard-
coded output matrix. In other words, the matrix C used to extract the output (5.5) from the lifted
state-space vector is defined as follows:

C = [CT
const , CT

α]
T , (5.7)

where

C =
⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 . . .
0 0 1 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 1 0 . . .

⎤⎥⎥⎥⎥⎥⎦
(5.8)

extracts the states vx , θ̇z and δsw , while the matrix Cα extracts the slip angle vector α and is
discovered by the learning algorithm. This trick embeds existing system knowledge into the
learning algorithms and helps to learn predictors with higher prediction performance.

5.2 koopman model identification 82

5.2.4 Predictor comparison

The performance of the learned models is evaluated on learning (training + validation) and test
sets using the MNPE (3.46), averaged over all learning/test set trajectories. The orders of the
polynomial basis in (5.3) are set to d = 2, d = 3 and d = 4, resulting in basis function vectors
of size nΦ = 49, nΦ = 169 and nΦ = 499, respectively.The reduced basis functions are set to the
dimension nw = 50. The resulting errors are shown in Table5.2. For the sake of simplicity, all
errors are normalized by the EDMD error (nΦ = 499), which equals MNPEEDMD = 1.5615 %.

Table 5.2: Learning and test set normalized error

Model nΦ Learning set error Test set error

EDMD
49 1.2404 1.231
169 1.0538 1.0461
499 1 0.9919

Deep-DMD - 0.7555 0.7552

EDMD-MS
49 1.1814 1.1737
169 1.052 1.0435
499 0.9402 0.9362

E2DMD-DS 169 1.8644 1.8442
499 1.8249 1.8096

E2DMD-HO 169 1.0574 1.0498
499 1.2034 1.1949

E2DMD-MS 169 1.0011 0.9965
499 0.9175 0.913

Based on the information provided, it can be concluded that the EDMD models perform
better as the size of the basis function vector increases.This trend supports the hypothesis that
larger basis function vectors can capture the system dynamics more accurately, which emphasises
the importance of model complexity for prediction accuracy. Furthermore, the EDMD-MS
results suggest that multiple step minimization has the potential to improve model performance
compared to single step minimization in EDMD.

The Deep-DMDmodel outperforms all variants of EDMDmodels, including standard EDMD,
EDMD-MS, and variants of E2DMD, on both learning and test sets.This superior performance
of Deep-DMD indicates that it is able to leverage deeper representations to capture the system
dynamics more effectively than the polynomial basis functions used by the EDMD variants.

Despite the reduction of the basis functions to a dimension of nw = 50, some of the E2DMD
models maintain relatively good performance.This reduction likely limits the model complexity
and thus possibly prevents overfitting. However, the E2DMD variants showmixed results. E2DMD-
DS performs significantly worse compared to the other models, indicating that it is not as effective
in capturing systemdynamics of vehiclemodels. Conversely, the variants E2DMD-MS andE2DMD-
HO show competitive or improved performance compared to standard EDMD, especially at higher
dimensions of the basis function vectors.

In essence, the data indicates a complex interaction between the dimensionality of the basis
function vector, model simplification strategies, and the specific configurations of the EDMD
framework in accurately modelling the system dynamics.The outstanding performance of Deep-

5.3 mpc design 83

DMD highlights the potential benefits of integrating deep learning approaches with dynamic
mode decomposition, while the different results of E2DMD variants emphasize the crucial role of
selecting the appropriate learning algorithm. Moreover, the results presented here do not match
those obtained in Section3.5, where simpler models were identified. The conclusion could simply
be that not all methods are equally efficient or suitable for identifying all systems. However, this
investigation falls outside the scope of this thesis.

Figure5.4shows the comparison of the responses of EDMD, E 2DMD-MS with nΦ = 499
and Deep-DMD for one of the well-predicted trajectories from the test set. In this example,
E2DMD outperforms EDMD, with Deep-DMD performing best, confirming the results presented
previously. It is interesting to note that Deep-DMD is the only method able to successfully capture
yaw rate changes, while the other methods assumed a nearly linear behaviour.These three models
are used for MPC development in the remainder of the chapter.

146

147

148

149

v x
(k
m
/h
)

−10
0

10

θ̇ z
(○ /

s)

0 0.2 0.4 0.6

100

150

200

250

t(s)

δ s
w
(○)

nonlinear
EDMD
E2DMD
Deep-DMD

−25−20
−15−10
−5

α f
l(○)

−25−20
−15−10
−5

α f
r(
○)

−8−6
−4−2
0

α r
l(○)

0 0.2 0.4 0.6
−8−6
−4−2
0

t(s)

α r
r(
○)

Figure 5.4: Open loop predictions of different Koopmanmodels. Errors of the givenmodels areMNPEEDMD
= 0.3284 %, MNPEE2DMD = 0.2641 % and MNPEDeep-DMD = 0.1771 %.

5.3 mpc design

As mentioned in Section2.3, an MPC uses a model of a system to predict its future behaviour
over a finite horizon, choosing the optimal control input sequence to minimize the desired cost
function. Since the model (5.1) is nonlinear and we want to have a convex optimization problem
as part of predictive controller, a model approximation must be used. In this section, two such
MPC versions for torque vectoring applications are derived: LTV-MPC and MPC based on the
Koopman operator. Additionally, the NMPC using a full nonlinear vehicle model is described
and later used as a benchmark.

5.3 mpc design 84

5.3.1 Linear time-variant MPC

Let us define the discrete-time model of the system (5.1) in the following form:

xt+1 = fd(xt ,ut)
yt = Hxt .

(5.9)

To formulate the corresponding LTV-MPC optimization problem, there are two possible
approaches [18]:

1.create the discrete-time model (5.9) and linearize it;

2.linearize the continuous-time model (5.1) and then discretize the resulting linear model.

The second approach is used in this chapter.
The LTV model is obtained by linearizing (5.1) and is similar to the model in4.2.3. Assume

the prediction of the state vector at time k ∈ {t, t + 1, . . . , t + N − 1}.Then the LTV model can be
written as follows:

xk+1 = Ak,txk + Bk,tuk + dk,t , (5.10)

where Ak,t and Bk,t represent discrete-time systemmatrices. By linearizing the model (5.1) around
x̂t and ut−1 we obtain continuous-time system matrices 2

Ac
k,t =

∂f
∂x
∣
x̂t ,ut−1

, Bc
k,t =

∂f
∂u
∣
x̂t ,ut−1

. (5.11)

These matrices are transformed using the bilinear transform to obtain the discrete-time system
matrices Ak,t and Bk,t as follows:

Ak,t = (Inx −
Ts

2
Ac

k,t)
−1
(Inx +

Ts

2
Ac

k,t) , Bk,t = Ts (Inx −
Ts

2
Ac

k,t)
−1
Bc
k,t , (5.12)

where Ts is the sample time and Inx ∈ Rnx×nx identity matrix.
The signal dk,t represents the deviation of the steady-state response of the LTV model from

the nonlinear model:
dk,t = x̂k+1 − Ak,tx̂k − Bk,tut−1. (5.13)

The prediction of the state trajectory x̂k is calculated using the system model, the current state
and the previous input value:

x̂k+1 = fd(x̂k ,ut−1), x̂t = xt . (5.14)

The difference to the LTV model (4.16) is the iterative linearization around the predicted state
trajectory and not just around the current state.This can lead to a more accurate linear model (if
the actual trajectory does not deviate far from the predicted trajectory) than linearization around
the current state.

2 Although not explicitly mentioned, all models in the thesis assume some kind of redefinition of non-differentiable
functions to support linearization as proposed in [115].

5.3 mpc design 85

The model (5.10) enables us to formulate the MPC as a quadratic program given by:

min
Ut ,Et J(xt ,ut−1,Yre f

t ,Ut , Et) (5.15a)

s.t. xk+1 = Ak,txk + Bk,tuk + dk,t , k = t, . . . , t + N − 1, (5.15b)
yk = Hxk , (5.15c)
umin ≤ uk ≤ umax , (5.15d)
∆umin ≤ ∆uk ≤ ∆umax , (5.15e)
αmin − εmin

k ≤ αk+1 ≤ αmax + εmax
k , (5.15f)

εk ≥ 0, (5.15g)
xt = x(t), (5.15h)
ut−1 = u(t − 1). (5.15i)

In the described problem formulation, the variables are as follows: yk = [vxk θ̇zk]T stands for
the output vector, the input rate is given by ∆uk = uk − uk−1, the slip angle vector is αk =
[α f l ,k α f r,k αrl ,k αrr,k]T , εk = [εmin

k εmax
k]

T is the slack variable vector, Ut = [ut ,ut+1, ...ut+N−1]
control input sequence, Yre f

t = [y
re f
t , yre ft+1 , ...yre ft+N] reference sequence and Et = [εt , εt+1, ...εt+N−1]

slack vector sequence.
The cost function (5.15a) can be written as

J(⋅) = Jre f + Ju + J∆u + JT + Jε (5.16)

and consists of five parts:

•reference tracking cost

Jre f =
t+N
∑
k=t ∥yk − y

re f
k ∥

2
Q , Q = QT ⪰ 0,

•input cost

Ju =
t+N−1
∑
k=t ∥uk∥2R , R = RT ⪰ 0,

•input rate cost

J∆u =
t+N−1
∑
k=t ∥∆uk∥2R∆

, R∆ = RT
∆ ⪰ 0,

•front to rear torque difference cost

JT =
t+N−1
∑
k=t ∥∆Tk∥2S , S ≥ 0,

•slack variable cost
Jε =

t+N−1
∑
k=t p∥εk∥2I , p ≥ 0,

5.3 mpc design 86

with Q, R, R∆, which are weight matrices, S torque difference weight, p slack weight and I the
identity matrix of corresponding size.

Two remarks are worth mentioning:
1) Torque difference cost:The torque difference is given by ∆Tk = Tf l ,k + Tf r,k − Trl ,k − Trr,k.

Including the torque difference between the front and rear axles in the cost function prevents the
controller from exhibiting behaviour such as maintaining zero torque sum by using Tf l + Tf r =
−(Trl + Trr), which was noticed before. Although such torque distribution is feasible, it is also
very inefficient and impractical and should therefore be avoided.

2) Slip angle constraints: For implementation purposes, slip angle constraints (5.15f) are defined
using the state vector, i.e. as a polytopic constraint

Exk ≤ εk , (5.17)

where

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−g f l ,k + f f l ,k tan αmin
−g f r,k + f f r,k tan αmin
−grl ,k + frl ,k tan αmin
−grr,k + frr,k tan αmin
g f l ,k − f f l ,k tan αmax
g f r,k − f f r,k tan αmax
grl ,k − frl ,k tan αmax
grr,k − frr,k tan αmax

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g f l ,k = [− sin δ̂ f ,k , cos δ̂ f ,k , l f cos δ̂ f ,k +w sin δ̂ f ,k , 01×4] ,
g f r,k = [− sin δ̂ f ,k , cos δ̂ f ,k , l f cos δ̂ f ,k −w sin δ̂ f ,k , 01×4] ,

grl ,k = grr,k = [0, 1, −lr , 01×4] ,
f f l ,k = [cos δ̂ f ,k , sin δ̂ f ,k , l f sin δ̂ f ,k −w cos δ̂ f ,k , 01×4] ,
f f r,k = [cos δ̂ f ,k , sin δ̂ f ,k , l f sin δ̂ f ,k +w cos δ̂ f ,k , 01×4] ,

frl ,k = [1, 0, −w , 01×4] ,
frr,k = [1, 0, w , 01×4] .

The matrix E results from the system equations (2.25) and (2.28)-(2.33).The estimate of the front
wheel steering angle δ̂ f ,k are optimal values that were calculated in the previous optimization
cycle. Otherwise, the constraint (5.17) would not be linear.

5.3.2 Koopman operator-based MPC

In Chapter3, a discrete-time model approximated by EDMD or Deep-DMD is referred to as (3.4),
while the model approximated by one of the E2DMD variants is referred to as (3.26).The reason
for this is to emphasise the difference between the basis vector z and the reduced basis vector
w. In this chapter, the dynamics of all Koopman-based models is written as (3.4) for simplicity,
regardless of the method.

5.3 mpc design 87

With that taken into consideration, the KMPC is formulated as a quadratic problem of the
following form:

min
Ũt ,Et J(xt , ũt−1,Yre f

t , Ũt , Et) (5.18a)

s.t. zk+1 = Azk + Buk , k = t, . . . , t + N − 1, (5.18b)
ỹk = Czk , (5.18c)
yk = Hre f ỹk , (5.18d)
ũmin ≤ ũk ≤ ũmax , (5.18e)
∆ũmin ≤ ∆ũk ≤ ∆ũmax , (5.18f)
δmin ≤ δsw ,k+1 ≤ δmax , (5.18g)
αmin − εmin

k ≤ αk+1 ≤ αmax + εmax
k , (5.18h)

εk ≥ 0, (5.18i)
zt = Φ (x̃(t)) , (5.18j)
ũt−1 = ũ(t − 1). (5.18k)

The variables in the KMPC are as in the problem (5.15), with the difference that here the extended
state vector x̃, the input vector ũ and the output vector ỹ are defined in (5.4) - (5.5). Since the
output vector also contains slip angle, the equations (5.18d), (5.18h) and (5.18g) represent linear
constraints without further changes:

yk = Hre f ỹk = [I2, 02×5] ỹk ,
αk = Hαỹk = [04×3, I4] ỹk ,

δsw ,k = Hδỹk = [01×2, 1, 01×4] ỹk .
(5.19)

Comparing the formulations (5.17) and (5.19), it becomes clear that the Koopman operator
can be used to create a convex optimization problem in a simple and straightforward manner.

5.3.3 Nonlinear MPC

To formulate the corresponding optimization problem as a nonlinear program, the equation (5.1)
must be discretized.There are two main approaches to achieve this [116]:

1.direct discretization of the nonlinear system;

2. utilization of direct single or multiple shooting methods, often in conjunction with a
numerical integration technique like Runge-Kutta or similar methods.

By applying one of these techniques, a discrete-time, nonlinear model is obtained, which is
denoted as follows:

xt+1 = fnd(xt ,ut)
yt = Hxt .

(5.20)

Note that this model does not necessarily have to correspond to (5.9), which depends on the
method and/or numerical solver used.

5.4 simulation results 88

The resulting optimization problem can be expressed as a nonlinear program, given by:

min
Ut ,Et J(xt ,ut−1,Yre f

t ,Ut , Et) (5.21a)

s.t. xk+1 = fnd(xk ,uk), k = t, . . . , t + N − 1, (5.21b)
yk = Hxk , (5.21c)
umin ≤ uk ≤ umax , (5.21d)
∆umin ≤ ∆uk ≤ ∆umax , (5.21e)
αmin − εmin

k ≤ αk+1 ≤ αmax + εmax
k , (5.21f)

εk ≥ 0, (5.21g)
xt = x(t), (5.21h)
ut−1 = u(t − 1). (5.21i)

The notations are the same as in (5.15). Nonlinear programs like these are commonly solved using
interior-point methods or sequential quadratic programming, as mentioned in Section2.3.4.

5.4 simulation results

In this section, the controllers based on E2DMD-MS with nΦ = 499 (E2DMD-MPC) and Deep-
DMD (Deep-DMD-MPC) from Section5.2.3are compared with the LTV-MPC, the EDMD-MPC
proposed by Korda and Mezić in [32] and the NMPC.

The experiments are carried out using MATLAB Simulink and CarMaker simulation software
on a computer with an Intel Core i9-10900K CPU running at 3.7 GHz, with 64 GB of RAM and
running Windows 10.The LTV-MPC, EDMD-MPC, E2DMD-MPC and Deep-DMD-MPC are
solved with the OSQP [16] and NMPC with the FORCESPRO solver [117, 118]. All controllers
are tested with the same parameters and their performance was compared.The sample time is
Ts = 0.05 s, while the remaining parameters are:

•reference tracking weight matrix: Q = diag (2 ⋅ 104, 104),

•input weight matrix: Ru = diag (0, 0.01, 0.01, 0.01, 0.01),

•input rate weight matrix: Rdu = diag (0, 0.01, 0.01, 0.01, 0.01),

•front to rear torque difference weight and slack weight: S = 1, p = 108,

•slip angle constraints: αmax = 3 ○, αmin = −3 ○,
•torque constraints: Tmax = 500 Nm, Tmin = −500 Nm,

•torque rate constraints: ∆ Tmax = 500 Nm, ∆Tmin = −500 Nm.

In all simulations, the steering angle δsw was set by the corresponding manoeuvre reference, i.e.
the performance of TV for manually steered vehicle is evaluated.This is the reason why steering
angle and steering angle rate constraints are omitted. It can be stated that torque rate constraints
are equal to torque constraints, effectively eliminating rate constraints.This is not necessarily the
case, but led to good results in the following experiments. In a real environment, the dynamics of

5.4 simulation results 89

the electric motor and the driver should be taken into account, which may require a different set
of parameters.

The experiments were conducted with three different tests, each with two different prediction
horizons N = 5 and N = 15.The test cases are:

• batch of experiments using random initial conditions and (semi-)random references (tested
using a nonlinear model in Simulink),

•N ürburgring racetrack experiment (tested in CarMaker),

•N ürburgring racetrack low speed experiment(tested in CarMaker),

•Hockenheimring racetrack experiment (tested in CarMaker).

5.4.1 Batch of randomized test runs

In this section, the proposed controllers are tested on a set of random trajectories.This is important
because the simulation results corresponding to a particular initial condition and manoeuvre
are not sufficient to show that the proposed KMPC is indeed effective for a range of operating
conditions.The effectiveness of the proposed approach can be better demonstrated by testing
with random initial conditions and manoeuvres. However, it is not always realistic to start the
test with an arbitrary initial condition and apply a random reference.This is due to the fact that
the torque vectoring system is usually activated when driving straight ahead above a certain
longitudinal velocity before the driver performs a manoeuvre.That being said, initializing the
vehicle with a random lateral velocity and yaw rate (i.e. a random side-slip angle) would require
the introduction of an additional controller acting as a driver, and in this case does not show real
applicability of the approach.Therefore, the experiments carried out here are based on the three
different manoeuvres:

1.step steer
δsw ,re f (t) = δsw ,max (1 − exp(

t − 10
0.1
)) S(t − 10)

S(t) stands for a step function. In this way, the equation represents a step steer signal that
is filtered by a first-order function to reduce the jerk.The steering is 0 until tstart = 10 s.

2.sine with dwell (SWD)

0 2 4 6 8 10 12 14 16 18 20

−δsw ,max

δsw ,max

t(s)

δ s
w
,r
ef
(○)

Figure 5.5: Sine with dwell steering signal.

5.4 simulation results 90

3.sine steer
δsw ,re f (t) = δsw ,max sin (2π fre f t)

The initial longitudinal velocity was sampled from vx0 ∈ [20, 150] km/h, while the lateral
velocity and yaw rate were set to vy0 = 0 km/h, θ̇z0 = 0 ○/s and the wheels were assumed to be
rolling freely, i.e. ω f⋆0 = vx0/Rw f and ωr⋆0 = vx0/Rwr. The longitudinal velocity reference was
sampled from vre f ∈ [40, 150] km/h, the predetermined steering wheel angle amplitude from
δsw ,max ∈ [−10isw , 10isw] ○ and the sine steer frequency from fre f ∈ [0.05, 1] Hz. The yaw rate
reference is defined by a kinematic model of the vehicle [55]:

θ̇z,re f =
vx ,re f

l f + lr + Kuv2x ,re f
tan(

δsw ,re f
isw
) , (5.22)

where Ku is the understeer gradient

Ku =
m (lrCyr − l fCy f)
(l f + lr)Cy fCyr

. (5.23)

The simulation time was Tsim = 20 s and a total of Nexp = 300 experiments are performed, 100
for each previously mentioned manoeuvre.The Table5.3compares the average normalized closed-
loop costs 3, while the Table5.4shows the mean, median, minimum and maximum execution
times averaged over Nexp experiments.The comparison between the two tables shows revealing
contrasts and performance metrics.

Looking first at the closed-loop cost, it is clear that the NMPC outperforms the other methods
across both prediction horizons (N = 5 and N = 15), as it offers the lowest cost and thus has a
higher efficiency in handling manoeuvres. Interestingly, although E2DMD-MPC, Deep-DMD-
MPC and EDMD-MPC show relatively similar performance in terms of cost terms, the efficiency
of LTV-MPC decreases as the prediction horizon increases, as evidenced by the significant cost
increase at N = 15.

When it comes to execution times, the situation changes. Although NMPC has better cost
efficiency, it requires significantly longer execution times.This is particularly evident when the
prediction horizon extends to N = 15, where its execution time dramatically surpasses that of the
other controllers. In contrast, E2DMD-MPC and Deep-DMD-MPC not only offer competitive
cost efficiency, but also benefit from significantly lower execution times, indicating a balance
between efficiency and computational demand. While EDMD-MPC and LTV-MPC are generally
slower than the former two methods, they show a different increase in execution time with the
prediction horizon.This applies in particular to the LTV-MPC, which may reflect the underlying
inefficiencies under certain conditions.

This analysis highlights the trade-offs between computational efficiency and execution speed of
differentMPCmethods, withNMPC excelling inmanoeuvre handling at the cost of computational
effort, whereas E2DMD-MPC and Deep-DMD-MPC represent a balanced compromise between
the two metrics.

The vehicle responses for one of the manoeuvres are shown in Figure5.6for horizon N = 5
and Figure5.7for N = 15.The graphs depict what is reported in the Table5.3and discussed in the

3The normalized costs are first calculated for each run and then averaged over all experiments.

5.4 simulation results 91

Table 5.3: Random manoeuvres average normalized closed-loop cost

Prediction
horizon

E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

N = 5 1 0.9940 1.0345 1.5337 0.9484
N = 15 1.1325 1.0772 1.1314 4.0914 0.9295

Table 5.4: Random manoeuvres average execution times (ms)

Controller N = 5 N = 15
Mean Median Min Max Mean Median Min Max

E2DMD-MPC 3.419 3.232 1.871 10.289 22.616 21.010 18.020 44.334
Deep-DMD-MPC 2.900 2.720 1.880 7.725 21.901 20.560 17.972 40.995
EDMD-MPC 6.829 6.121 2.554 27.113 29.160 26.461 20.186 73.273
LTV-MPC 6.312 5.934 5.632 15.709 34.709 31.396 29.703 152.988
NMPC 34.793 35.199 20.187 43.198 94.549 98.697 50.127 123.504

previous paragraph. NMPC shows superior behaviour for both prediction horizons, while LTV-
MPC undoubtedly performs the worst. Koopman-based controllers all exhibit similar behaviour
as well as performance degradation with increasing prediction horizon.

0 5 10 15 20

60

80

100

t(s)

v x
(k
m
/h
)

reference
E2DMD-MPC
Deep-DMD-MPC
EDMD-MPC
LTV-MPC
NMPC

0 5 10 15 20
−50

0

50

t(s)

θ̇ z
(○ /

s)

Figure 5.6: Output tracking during one of the sine steer manoeuvres and N = 5.

0 5 10 15 20
40

60

80

100

t(s)

v x
(k
m
/h
)

reference
E2DMD-MPC
Deep-DMD-MPC
EDMD-MPC
LTV-MPC
NMPC

0 5 10 15 20
−50

0

50

t(s)

θ̇ z
(○ /

s)

Figure 5.7: Output tracking during one of the sine steer manoeuvres and N = 15.

5.4 simulation results 92

5.4.2 Nürburgring racetrack experiment

Studying long-term performance comparisons between the different approaches is useful because
it represents a more relevant mode of operation for the (racing) vehicle than a simple short-term
manoeuvre. In this section, a reference profile based on the Nürburgring racetrack is used to
compare the aforementioned controllers.The total duration of the driving cycle is Tsim = 344.75 s,
i.e. slightlymore than 5.7minutes.The experiments are performed using CarMaker to demonstrate
the applicability of the approach to high-fidelity models which include unmodeled dynamics.
Table5.5shows the comparison of the normalised closed-loop costs, with the nominal cost for
E2DMD-MPC and N = 5 is equal to 2.4759 ⋅ 108.The Table5.6shows the execution times.

NMPC stands out for its efficiency in manoeuvre handling, as shown by the lowest normalized
closed-loop cost for both prediction horizons. This superior performance is especially visible
for N = 15. However, this comes at a significant computational cost as execution times increase
significantly with the prediction horizon.This trade-off highlights the potential limitations of
NMPC in real-time applications, despite its good control capabilities. LTV-MPC, on the other hand,
is consistently the least efficient in terms of normalized closed-loop cost, with its performance
deteriorating even further as the prediction horizon increases. Combined with a considerable
range in execution times, especially at N = 15, it is therefore unsuitable for real-time applications.

As in the previous section, the Koopman-based controllers show similar control performance
for N = 5.When the prediction horizon increases to N = 15, the cost of E2DMD-MPC and EDMD-
MPC increases significantly, indicating their limitations for longer predictions. On the other
hand, Deep-DMD-MPC shows better adaptation to longer horizons, indicated by a reduction in
cost, making it a viable option for scenarios requiring longer predictions. Interestingly, this is in
contrast to the results obtained for random manoeuvres in the Table5.3.

In terms of computational efficiency, E2DMD-MPC and Deep-DMD-MPC are almost twice as
fast as EDMD-MPC and even faster than other controllers due to the smaller size of the state-space.
This in turn makes them a balanced compromise among the tested methods, E2DMD-MPC for
N = 5 and Deep-DMD-MPC for N = 15.

Table 5.5: Nürburgring experiment normalized closed-loop cost

Prediction
horizon

E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

N = 5 1 1.0477 1.0059 6.3028 0.8737
N = 15 1.7107 0.8336 1.6083 6.6278 0.5981

Table 5.6: Nürburgring experiment execution times (ms)

Controller N = 5 N = 15
Mean Median Min Max Mean Median Min Max

E2DMD-MPC 2.647 2.069 1.940 13.118 21.463 19.929 18.414 47.264
Deep-DMD-MPC 2.466 2.075 1.963 21.209 21.237 19.659 18.285 40.304
EDMD-MPC 4.555 2.976 2.672 34.182 23.919 21.951 19.981 71.386
LTV-MPC 7.222 6.701 6.229 82.599 33.972 32.109 30.458 204.227
NMPC 36.256 35.952 4.641 47.087 105.570 104.433 12.519 137.344

5.4 simulation results 93

Figure5.8and Figure5.11show the system outputs during the entire manoeuvre for both
prediction horizons. Since the experiment is slightly longer and it is difficult to visualize all signals
at once, shorter time windows are shown. Figures5.9and5.10show the output signals and slip
angle responses for N = 5 and Figure5.12and Figure5.13for N = 15.

These enlarged graphs support the results given in the Table5.5and show that the performance
of E2DMD-MPC, EDMD-MPC and LTV-MPC decreases with increasing prediction horizon.
This becomes especially clear when looking at the behaviour of the longitudinal velocity in the
time interval t1 ∈ [160, 175] s. E2DMD-MPC and EDMD-MPC exhibit a visible deterioration
in performance with increasing prediction horizon, while LTV-MPC performs poorly in both
cases. In contrast, Deep-DMD shows an improvement in performance when examining slip angle
responses in the time inteval t2 ∈ [155, 170] s. For N = 5, a constraint violation can be observed,
which arguably increases the cost value.These violations occur when the controller aims to brake
and reduce the longitudinal velocity. As the prediction horizon increases, constraints are no
longer violated.This happens several times during the manoeuvre, and at N = 15 the violation of
constraints is either reduced or completely eliminated.

The performance of NMPC is good for both prediction horizon lengths, and it is difficult to
see differences in the graphs.

50

100

150

v x
(k
m
/h
)

reference E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
−50

0

50

t(s)

θ̇ z
(○ /

s)

Figure 5.8: Output tracking during Nürburgring experiment with N = 5.

5.4 simulation results 94

150 160 170 180 190 200

50

100

150

t(s)

v x
(k
m
/h
)

reference E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

150 160 170 180 190 200

−40
−20

0

20

40

t(s)

θ̇ z
(○ /

s)

Figure 5.9: Output tracking during Nürburgring experiment with N = 5 (shorter time window).

−4
−2
0

2

4

α f
l(○)

constraint E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

−2
0

2

4
α f

r(
○)

150 160 170 180 190 200
−5

0

5

t(s)

α r
l(○)

150 160 170 180 190 200

−4
−2
0
2
4

t(s)

α r
r(
○)

Figure 5.10: Slip angles during Nürburgring experiment with N = 5 (shorter time window).

50

100

150

v x
(k
m
/h
)

reference E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
−50

0

50

t(s)

θ̇ z
(○ /

s)

Figure 5.11: Output tracking during Nürburgring experiment with N = 15.

5.4 simulation results 95

150 160 170 180 190 200

50

100

150

t(s)

v x
(k
m
/h
)

reference E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

150 160 170 180 190 200

−40
−20

0

20

40

t(s)

θ̇ z
(○ /

s)

Figure 5.12: Output tracking during Nürburgring experiment with N = 15 (shorter time window).

−4
−2
0

2

α f
l(○)

constraint E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

−2
0

2

4

α f
r(
○)

150 160 170 180 190 200
−4
−2
0

2

4

t(s)

α r
l(○)

150 160 170 180 190 200
−4
−2
0

2

4

t(s)

α r
r(
○)

Figure 5.13: Slip angles during Nürburgring experiment with N = 15 (shorter time window).

5.4.3 Nürburgring racetrack low speed experiment

This section presents a comparison of the already introduced controllers during a low-speed run
on a Nürburgring racetrack in CarMaker. Once again, controller prefromance and execution
times are evaluated for the prediction horizons N = 5 and N = 15 and are given in Table5.7. The
duration of the experiment is Tsim = 250 s and the absolute value of the E2DMD-MPC cost is
2.291 ⋅ 106.

At the shorter prediction horizon of N = 5, the performance of the strategies varies, with
E2DMD-MPC and EDMD-MPC having normalized costs close to or slightly above 1, indicating
less efficient optimization for short-term predictions. In contrast, Deep-DMD-MPC, LTV-MPC
and NMPC exhibit better efficiency and achieve normalized costs below 1, indicating that they
are more capable of minimizing costs in the short term. Among these, LTV-MPC stands out
as the most efficient strategy for this time horizon. When the prediction horizon extends to
N = 15, the dynamics between the strategies shifts.The performance of E2DMD-MPC deteriorates
slightly, indicating a potential decline in efficiency for longer-term predictions. On the other hand,
the performance of Deep-DMD-MPC sees a significant improvement, with the normalized cost
decreasing substantially, highlighting its potential for effective long-term prediction. EDMD-MPC
shows a slight decrease in normalized cost compared to its performance at N = 5, but does not

5.4 simulation results 96

outperform the other strategies.
Remarkably, both LTV-MPC and NMPC demonstrate a significant improvement in their

ability to minimize costs over longer prediction horizon, with NMPC showing the best overall
performance. The results for NMPC are consistent with those of the previous two sections,
while LTV-MPC performs significantly better at lower speeds and even outperforms the other
controllers for N = 5.This makes sense as in this case the nonlinear effects are not present and
this representation of the model is very similar to the nonlinear one.The differences between
LTV-MPC and NMPC probably result from the fact that different optimizers are used for solving
them. Deep-DMD-MPC is again the only Koopman-based MPC where the cost decreases with
increasing prediction horizon.

The execution times from the Table5.8are similar to those from previous experiments, with
NMPC being the slowest and E2DMD-MPC and Deep-DMD-MPC being the fastest control
methods.

Table 5.7: Slow Nürburgring experiment normalized closed-loop cost

Prediction
horizon

E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

N = 5 1 0.9847 1.0855 0.9438 0.9534
N = 15 1.0696 0.6745 1.0294 0.6358 0.6339

Table 5.8: Slow Nürburgring experiment execution times (ms)

Controller N = 5 N = 15
Mean Median Min Max Mean Median Min Max

E2DMD-MPC 2.146 2.063 1.934 5.912 20.718 19.503 18.372 41.225
Deep-DMD-MPC 2.081 2.031 1.904 6.719 20.814 19.434 18.374 36.096
EDMD-MPC 3.233 2.989 2.702 14.445 22.879 21.436 20.031 50.516
LTV-MPC 7.197 6.777 6.243 87.500 32.868 32.620 31.088 104.173
NMPC 33.270 33.097 31.466 40.737 95.730 94.967 89.622 120.256

Figure5.14and Figure5.15depict output responses and are intended to show what the ma-
noeuvre looks like, but don’t provide any additional information about the performance.

0 50 100 150 200

20

40

60

t(s)

v x
(k
m
/h
)

reference E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

0 50 100 150 200

−20
0

20

t(s)

θ̇ z
(○ /

s)

Figure 5.14: Output tracking during slow Nürburgring experiment with N = 5.

5.4 simulation results 97

0 50 100 150 200

20

40

60

t(s)

v x
(k
m
/h
)

reference E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

0 50 100 150 200

−20
0

20

t(s)

θ̇ z
(○ /

s)

Figure 5.15: Output tracking during slow Nürburgring experiment with N = 15.
5.4.4 Hockenheimring racetrack experiment

This section presents the analysis of the Hockenheimring racetrack in CarMaker. It is another
experiment conducted under higher speed conditions and provides several insightful conclusions.
The normalized closed-loop costs for N = 5 and N = 15 are listed in Table5.9, while the nominal
value of the E2DMD-MPC cost is 3.6393 ⋅ 108.The duration of the experiment is Tsim = 297.7 s.

Firstly, NMPC is again characterized by its superior tracking performance (lowest closed-loop
cost) over both evaluated prediction horizons, indicating its robustness under different conditions.
LTV-MPC consistently shows lower performance at both prediction horizons, characterizing
it as the least effective MPC strategy in this experiment. E2DMD-MPC and EDMD-MPC both
maintain relatively consistent and moderate performance across different conditions. Although
they do not outperform NMPC, their reliability shows that they are a viable option in certain
circumstances, although not always the most efficient.

The performance of Deep-DMD-MPC for this manoeuvre is particularly noteworthy as it
performs very poorly forN = 5 (high cost) and improves significantly when the prediction horizon
is extended to N = 15. Although it underperforms for the short horizon, its efficiency increases
for longer prediction periods, indicating its potential advantages in more complex or extended
scenarios.

The computational costs are documented in the Table5.10in terms of execution times. The
results are very similar to those mentioned in the previous three sections. E2DMD-MPC and
Deep-DMD-MPC have the lowest execution times, while NMPC has the highest.

Table 5.9: Hockenheimring experiment normalized closed-loop cost

Prediction
horizon

E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

N = 5 1 4.1689 1.0037 3.9029 0.9270
N = 15 1.6154 0.7444 1.4675 3.0408 0.6284

Figure5.16contains the comparison of the output signals for N = 5 for the entire run, while
the shorter time window is shown in Figure5.17. Corresponding side slip angles are shown in
Figure5.18. Output responses for N = 15 are shown in the same way in Figure5.19and Figure5.20,
while the side slip angles can be seen in Figure5.21. Based on the longitudinal velocity responses,

5.4 simulation results 98

Table 5.10: Hockenheimring experiment execution times (ms)

Controller N = 5 N = 15
Mean Median Min Max Mean Median Min Max

E2DMD-MPC 2.784 2.071 1.947 17.546 19.941 18.742 18.430 38.409
Deep-DMD-MPC 2.986 2.037 1.917 31.302 20.285 18.786 18.305 42.679
EDMD-MPC 5.023 2.918 2.569 39.329 22.580 21.254 19.952 60.549
LTV-MPC 7.143 6.601 6.005 87.116 33.193 31.671 30.805 282.542
NMPC 37.182 37.132 5.007 46.473 109.909 111.328 13.047 133.229

it is easy to see that LTV-MPC does not follow the reference for neither prediction horizon. If
we also consider the time intervals t1 ∈ [110, 120] s and t2 ∈ [130, 140] s, a deterioration of the
reference tracking for E2DMD-MPC and EDMD becomes clear in the case of a longer prediction
horizon.

The poor performance of Deep-DMD-MPC for N = 5 causes yaw rate spikes on several
occasions, some of which occur at about ts1 = 20 s, ts2 = 100 s, ts3 = 190 s, and ts4 = 280 s.The same
can be seen in Figure5.16, where it is clear that other methods do not exhibit the same behaviour.
These spikes are caused by side slip angle contraint violations shown in Figure5.18, which are
caused by badly allocated wheel torques. Looking at the vehicle responses for N = 15, it is obvious
that these spikes do not occur. Similar results are reported for Nürburgring experiment in Section
5.4.2, but to a much lesser extent. In other words, the slip angle constraint violations are not as
extreme, so the corresponding cost value degradation is smaller.

50

100

150

v x
(k
m
/h
)

reference E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

−40
−20

0

20

40

t(s)

θ̇ z
(○ /

s)

Figure 5.16: Output tracking during Hockenheimring experiment with N = 5.

5.4 simulation results 99

100 110 120 130 140 150

50

100

150

t(s)

v x
(k
m
/h
)

reference E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

100 110 120 130 140 150

−40
−20

0

20

40

t(s)

θ̇ z
(○ /

s)

Figure 5.17: Output tracking during Hockenheimring experiment with N = 5 (shorter time window).

0

10

α f
l(○)

constraint E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

−5
0

5

10

15

α f
r(
○)

100 110 120 130 140 150

0

10

t(s)

α r
l(○)

100 110 120 130 140 150

0

10

t(s)

α r
r(
○)

Figure 5.18: Slip angles during Hockenheimring experiment with N = 5 (shorter time window).

50

100

150

v x
(k
m
/h
)

reference E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
−40
−20

0

20

40

t(s)

θ̇ z
(○ /

s)

Figure 5.19: Output tracking during Hockenheimring experiment with N = 15.

5.4 simulation results 100

100 110 120 130 140 150
50

100

150

t(s)

v x
(k
m
/h
)

reference E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

100 110 120 130 140 150
−40
−20

0

20

40

t(s)

θ̇ z
(○ /

s)

Figure 5.20: Output tracking during Hockenheimring experiment with N = 15 (shorter time window).

−2
0

2

α f
l(○)

constraint E2DMD-MPC Deep-DMD-MPC EDMD-MPC LTV-MPC NMPC

−2
0

2

4

α f
r(
○)

100 110 120 130 140 150

−2
0

2

4

t(s)

α r
l(○)

100 110 120 130 140 150

−2
0

2

4

t(s)

α r
r(
○)

Figure 5.21: Slip angles during Hockenheimring experiment with N = 15 (shorter time window).

5.4.5 Concluding remarks

The comprehensive simulations and analyzes presented in this study evaluate the performance of
various MPC strategies, including E2DMD-MPC, Deep-DMD-MPC, EDMD-MPC, LTV-MPC,
and NMPC, in a spectrum of dynamic vehicular manoeuvres and racetrack simulations. Using
simulation environments such as MATLAB Simulink and CarMaker and utilizing the computing
capacity of a high-performance computer setup, these controllers are systematically compared
with each other under uniform test parameters.The efficiency of the controllers is benchmarked
through random manoeuvres as well as high and low speed experiments on the Nürburgring and
Hockenheimring racetracks.

The results explain the trade-offs between computational efficiency and manoeuvre handling
performance. NMPC consistently shows superior manoeuvreing capabilities, especially in high-
speed racetrack experiments, as evidenced by the consistently lower normalized closed-loop costs.
However, this comes at the cost of higher computational demands, which is reflected in longer
execution times, especially when the prediction horizon is extended.This highlights the critical
trade-off between control performance and computational feasibility, particularly in real-time
applications where execution speed is very important.

On the other hand, Koopman-based controllers, specifically E2DMD-MPC and Deep-DMD-

5.4 simulation results 101

MPC, offer a balanced compromise between computational efficiency and control performance.
Their ability to achieve competitive efficiency at significantly lower execution times makes them
a viable alternative, especially for scenarios where computational resources are limited or real-
time responses are crucial. Deep-DMD-MPC in particular shows a remarkable improvement in
efficiency as the prediction horizon gets longer, emphasising its potential in scenarios that require
larger prediction windows. However, it also shows poor performance in some situations with
small prediction horizon, indicating unpredictability and tuning complexity likely due to the
neural network background.

LTV-MPC, despite its theoretical simplicity and lower computational cost than NMPC, under-
performs in terms of control efficiency in most scenarios. Its performance is significantly better
in the low-speed Nürburgring experiment, suggesting that it may be better suited for applications
where the nonlinearities are less pronounced or more predictable.

In summary, this study not only provides valuable insights into the comparative performance
of different MPC strategies in complex vehicular control scenarios, but also emphasises the crucial
importance of balancing control performance and computational efficiency.The results underline
the potential of Koopman-based controllers as a promising middle ground that offers a viable
compromise between the high control performance of NMPC and the computational efficiency
required for real-time applications.

5.5 summary 102

5.5 summary

This chapter deals with the comparative analysis of different model predictive control strategies
for vehicle dynamics control, with a focus on torque vectoring applications.The work presented
here is based on [70].The chapter begins with a literature overview, highlighting the evolution
from conventional control systems to more complex models that account for the nonlinear dy-
namics of vehicle behaviour. The discussion then transitions to the exploration of Koopman
model identification, where the potential of the Koopman operator to linearize nonlinear dy-
namics is showcased. In this section, the process of model identification using the Koopman
operator is outlined and a comprehensive approach to capturing vehicle dynamics through linear
approximations is presented.

In the following section, the design of several MPC approaches is explained, including the
linear time-variant MPC (LTV-MPC), the Koopman operator-based MPC (KMPC) and the
nonlinear MPC (NMPC). Particular attention is paid to the formulation of these controllers and
the integration of constraints, which are important for the effective implementation of torque
vectoring control strategies.

Through simulations of randomized test runs and experiments on renowned racetracks like
Nürburgring andHockenheimring, the chapter evaluates the performance of E2DMD-MPC,Deep-
DMD-MPC, EDMD-MPC, LTV-MPC and NMPC.This evaluation sheds light on the trade-offs
between model complexity, computational efficiency and control performance. NMPC proves to
be the superior strategy in terms of manoeuvre handling, but incurs a higher computational cost.
Conversely, Koopman-based controllers, in particular E2DMD-MPC and Deep-DMD-MPC, offer
a promising trade-off between computational complexity and control efficiency, although their
effectiveness varies with the prediction horizon. E2DMD-MPC proves to be more consistent in the
experiments. On the other hand, although the performance of Deep-DMD-MPC is superior to
other Koopman-based controllers at longer prediction horizons, it shows performance fluctuations
and occasionally poor performance at shorter horizons.

The chapter concludes by emphasising the importance of selecting an appropriate control
strategy based on the application, including real-time control capabilities and the degree of
nonlinear dynamics involved.The comparative analysis presented here provides a foundation for
understanding the problems of advanced Koopman operator-based control strategies in vehicle
dynamics.

6
Experimental investigation

The sixth chapter presents an experimental investigation of vehicle dynamics control,
focusing on an approach that uses a scaled vehicle model on a treadmill to test control

algorithms. It begins with a description of the experimental setup, along with a brief literature
overview. In the following section, the identification of the nonlinear vehicle model parameters is
presented. It is carried out through experiments that include direct measurements and systematic
tests, and is validated by comparing the experimental data with the model predictions. The
chapter further presents the identification of the Koopman model using the EDMD algorithm.
This section details the generation of datasets, the sampling strategy and the model learning
process, demonstrating the effectiveness of the model using different datasets and test scenarios.
A unique aspect of this discussion is the examination of the impact of dataset size and distribution
on the predictive accuracy of the EDMDmodel. Further, the NMPC and KMPC strategies are
presented and evaluated. Detailed experimental results are documented for both controllers, which
includes the controller setup, execution times and performance analysis for two test manoeuvres,
multiple and double lane change. Finally, the effects of different references and prediction horizons
on the control performance are evaluated and some of the experimental results are compared to
simulations, followed by concluding remarks.

6.1 experimental setup

6.1.1 Background

Driven by the ambition to improve vehicle dynamics control systems, engineers and researchers
have sought innovative techniques to experimentally validate control algorithms. Many research
groups have recently employed scaled vehicle models for this validation, as highlighted in [119,
120,121,122].

With the increasing complexity of these systems, the need for more realistic and flexible test
setups has also increased. To bypass the limitations associated with the use of scaled models and
to facilitate the testing of control algorithms under different road conditions without the logistical
problems of obtaining a track, several research teams have introduced the concept of the road
simulator.This concept serves as a laboratory-based test platform for vehicle dynamics control, as
described in [123, 124, 125, 126].The setup includes a treadmill for testing control algorithms at
high speeds in a limited area.The success of this approach depends critically on the integration of
precise sensor systems to measure the position and orientation of the vehicle on the treadmill.

103

6.1 experimental setup 104

These sensors are essential for real-time feedback to the control algorithms, enabling precise
changes and optimizations according to dynamic conditions. In addition, treadmill configurations
can be augmented with additional degrees of freedom, including variable track inclinations,
to better simulate a range of road conditions, from flat to downhill, and allow for a thorough
evaluation of control strategies for vehicle dynamics.

In the mentioned papers, the dynamic similarity between the scaled and the full-size vehicle
is achieved by applying the Buckingham Π theorem [127]. It allows the reduction of the original
parameters to a (possibly smaller) set of dimensionless parameters. By ensuring that these dimen-
sionless parameters are equivalent between the scaled model and the full-size vehicle, one can
more accurately predict the behaviour of the full-size system based on tests conducted with the
scaled model.

6.1.2 Setup description

The control algorithm developed in this research is evaluated using a scaled vehicle on a treadmill.
Figures6.1and6.2show the treadmill and the scaled vehicle respectively. The same experimental
setup with slightly different parameters such as tires and mass distribution was previously used in
[128,129,130,115].

Figure 6.1: Treadmill with the scaled vehicle.

An Optitrack V120 Duo optical tracking system, equipped with two overhead cameras, is used
to monitor the vehicle’s position and velocity.Three markers are attached to the vehicle so that the
system can precisely track the center of gravity.The wheel speeds are measured using Hall sensors
on the motors.The reference for the longitudinal velocity is generated with a PI controller that
controls the position of the vehicle.The setpoints for lateral position and yaw rate, on the other
hand, are calculated based on the desired trajectory, which depends on the current position of the
vehicle.The control algorithm runs on a dSPACE MicroLabBox with a dual-core 2 GHz processor.

6.1 experimental setup 105

Figure 6.2: Scaled vehicle used in experiments.

The scaled vehicle is powered by four independent motors, with the steering angle controlled by a
servo motor. To increase the complexity of the manoeuvres and reduce the friction between the
treadmill and the vehicle, low-friction tires are used.

visual

feedback

dynamical

interaction

Optitrack V120: Duo PC workstation

treadmill

scaled vehicle dSPACE

MicroLabBox

ethernet

USB

UART

encoder signalanalog voltage

Figure 6.3: System diagram of the experimental setup.

Figure6.3illustrates the system diagram, and the operation process of the setup is outlined as
follows:

1. The longitudinal and lateral position of the vehicle’s center of gravity (CoG) is captured by
stereo cameras, while wheel speeds are measured with Hall sensors.

6.2 vehicle parameters identification 106

2. The camera image is processed and filtered on a PC workstation. All calculated states (with
the exception of wheel speeds) are then transmitted to theMicroLabBox platform via Ether-
net.The wheel speeds are transmitted directly from the vehicle via UART communication.
The operator uses the dSPACE ControlDesk software on the PC workstation for the input
settings.

3. The control algorithm running on theMicroLabBox platform receives the measured values
as input to calculate the optimal torque and steering signals, which are then sent back to the
vehicle via UART. At the same time, the speed of the treadmill is monitored via an encoder
and adjusted by changing the analog voltage signal at one of the terminals of the treadmill’s
motor power converter.

4. Responding to these signals, the vehicle modifies its movement, resulting in dynamic
interaction with the treadmill.

5. This entire process is cyclical and starts again at step 1.

6.2 vehicle parameters identification

Similar to the previous chapter, the parameters for the nonlinear vehicle model are initially
determined through the analysis of experimental trajectories.The configuration of this model
follows the structure outlined in2.1.2, incorporating a piecewise linear tire model, a coupling of
tire forces and an alternative slip formulation.The model is compactly represented by the equation

ẋ(t) = f(x(t),u(t)). (6.1)

Here, the state vector is defined as x = [vx vy θz θ̇z ω f l ω f r ωrl ωrr Y]T , and the input vector is
defined as u = [δ f Tf l Tf r Trl Trr]T .

Important parameters such as the mass, length and moment of inertia of the vehicle are either
measured directly or calculated using conventional experiments. However, other parameters such
as the tire stiffness coefficients Cy f and Cyr, the rolling resistances f f and fr, the axle viscosity
bw and the tire friction coefficient µ have to be estimated. For this purpose, experimental input-
output data is collected and the target parameters are determined using the System Identification
Toolbox in MATLAB.The identified parameters are listed in Table6.1, and comparisons between
the recorded experimental data used for identification and the predictions of the nonlinear model
are shown in Figure6.4and Figure6.5.

The figures illustrate the responses of the vehicle in terms of longitudinal velocity, yaw angle,
yaw rate and global lateral position. It can be observed that the responses for vx (longitudinal
velocity) and θ̇z (yaw rate) have very small prediction errors. In contrast, the errors for θz (yaw
angle) and Y (lateral position) accumulate over time, which is due to the fact that these quantities
are determined by integrating the yaw rate and vehicle velocities. However, when employing
receding horizon strategies likeMPC, themodel is only used for short-term predictions.Therefore,
Figures6.4and6.5also show a simulated response where the simulation is reset every Tres = 2
seconds, effectively minimizing the simulation errors.

The prediction accuracy for the experiments shown in the figures was quantitatively evaluated
for different restart intervals using theMNPE (3.46) with Nsim = Tsim/Ts as the number of samples.

6.2 vehicle parameters identification 107

0

0.5

1

1.5

v x
(m

/s
)

recorded data simulation restarted simulation

−10
0

10

θ z
(○)

−20
0

20

θ̇ z
(○ /

s)

0 2 4 6 8 10 12 14 16 18 20 22
−0.2

0

0.2

t (s)

Y
(m

)

Figure 6.4: Recorded experimental compared to simulated data for vx ≈ 1 m/s.

0
0.5
1

1.5
2

v x
(m

/s
)

recorded data simulation restarted simulation

−10
0

10

θ z
(○)

−200
20
40

θ̇ z
(○ /

s)

0 2 4 6 8 10 12 14 16 18
−0.2

0

0.2

t (s)

Y
(m

)

Figure 6.5: Recorded experimental compared to simulated data for vx ≈ 1.5 m/s.

6.3 koopman model identification 108

Table 6.1: Scaled vehicle parameters

Parameter Description Value Unit
m mass of the vehicle 1.35 kg
l f front axle to CoG distance 0.128 m
lr rear axle to CoG distance 0.128 m
w half of the wheel track 0.08 m
Jz moment of inertia around yaw axis 0.03373 kg ⋅m2

bw● front/rear axle viscous friction 5 ⋅ 10-5 Nm/(rad/s)
f● front/rear wheel rolling resistance 0.0017 m
Cx● front/rear axle longitudinal tire stiffness 24.995 N
Cy● front/rear axle lateral tire stiffness 21.4842 N/rad
Rw● front/rear axle effective tire radius 0.0315 m
Jw● front/rear wheel moment of inertia 3.697 ⋅ 10-5 kg ⋅m2

µ equivalent friction coefficient 0.9 -
ε0 slip denominator coefficient 10-4 -

Here, the sample time is Ts = 1 ms, and the total simulation time Tsim is adjusted to ensure a fair
comparison between the two experiments. To facilitate the comparison, the errors are normalized
to the highest observed error, namely MNPE(Tres = 20s). The results, shown as a bar chart in
Figure6.6, support the claim that reducing the prediction horizon also reduces the prediction
error, making this model suitable for MPC algorithms.

1 2 4 5 10 20
0

0.5

1

Tres (s)

M
N
PE

no
rm

vx ≈ 1 m/s
vx ≈ 1.5 m/s

Figure 6.6: Normalized MNPE for two different experiments and various simulation restart times.

6.3 koopman model identification

As mentioned in Section5.2, the dataset for learning the Koopman model can be created in
one of the following ways: 1) performing simulations of multiple trajectories in a high-fidelity
simulation environment (or using experiments with real vehicles) or 2) using a nonlinear model
according to the first principles, whose parameters are determined using data obtained either from
a high-fidelity simulation environment or a real vehicle, and then simulating different scenarios
with this model. As in the previous chapter, the second approach is chosen here, but the first
approach is used for comparison.

6.3 koopman model identification 109

6.3.1 Data collection

The dataset is generated by uniformly sampling the initial state vector and the input vector
sequence over p steps. The system (6.1) is then simulated using the sampled initial states and
excited by the sampled input sequences.The initial states vx0, vy0, θz0, θ̇z0 and Y0 are sampled from
certain intervals while the wheels were assumed to be rolling freely.The input sequence is sampled
within specific intervals. In addition, the torque rates are restricted. In this way, both the continuity
and smoothness of the sample input trajectory are taken into account.The steering wheel angle
rate ∆δ f can also be restricted. In this chapter however, this condition is as the servomotor can
reach the maximum angle within a few milliseconds. This means that the limit values for the
steering rate are always complied with and are therefore redundant.

The dataset comprises a total of Ns = 200000 sample trajectories, each consisting of p = 25
steps with a sample time of Ts = 0.05s.The values and ranges of the numerical data are as follows:
vx0 ∈ [0.1, 2.5] m/s, vy0 ∈ [−0.5, 0.5] m/s, θz0 ∈ [−30, 30] ○, θ̇z0 ∈ [−90, 90] ○/s, Y0 ∈ [−1, 1] m,
ω●⋆0 = vx0/Rw f ,r, T●⋆ ∈ [−50, 50] mNm, δsw ∈ [−15, 15] ○ and ∆T●⋆ ∈ [−12.5, 12.5] mNm. The
number of sample points in the dataset is equal to Ntotal = Ns ⋅ p = 5 ⋅ 106. Of these points,
Nnl = 1488470, i.e. about 29.77% covers nonlinear ranges of tire slip angles.The definition of the
nonlinear ranges is the same as in Section5.2.2, i.e. they are the regions outside the linear force
range, which in the model (2.41a) means that the forces are saturated.The dataset was additionally
divided into learning and test sets, with the learning set containing Nl earn = 160000 and the test
set Ntest = 40000 trajectories.

6.3.2 Learning Koopman model

Similar to the one in the Section5.2.3, the polynomial basis Pd , defined by (3.11), is chosen to form
the set of basis functions ϕ(⋅).The difference here is that the side slip angles are not added to the
basis.

A linear state-input relationship is achieved by extending the state-space of the nonlinear
system (6.1) by the steering angle, while the steering rate becomes a new input. In this case, the
extended state and input vectors are

x̃ = [vx vy θz θ̇z ω f l ω f r ωrl ωrr Y δsw]T ,
ũ = [∆δsw Tf l Tf r Trl Trr]T .

(6.2)

To improve the numerical stability of the learning algorithm, the collected data was normalized
to the range [−1, 1] using (5.6).

By specifying the order d of the basis Pd , the size of the extended state-space is determined.
The larger the original state-space is, the faster the size of the extended state-space grows with
increasing order d. In (6.2) the size of the state-space is nx = 10.

Based on the collected data described in the previous subsection, different EDMDmodels
are identified for different order values.The performance of the identified models is evaluated
on learning and test sets using the MNPE (3.46) averaged over all trajectories of a given set.The
MNPE values for different orders are given in the Table6.2together with the corresponding size
of the extended state-space nΦ.

By examining the numerical data in the table, one can see how quickly nΦ increases. In
contrast, MNPE does not seem to show a monotonic behaviour and has a local minimum for the

6.3 koopman model identification 110

Table 6.2: MNPE errors evaluated on learning and test set

d 1 2 3 4 5
nΦ 11 66 286 1001 3003

MNPElearn [%] 0.9409 0.8452 0.8692 0.8930 0.8828
MNPEtest [%] 0.9464 0.8447 0.8702 0.8935 0.8832

order d = 2. Here local is emphasised because it is not certain that this is actually the global error
minimum, as the error could decrease for a higher order. However, due to the rapid growth of the
extended state space, it is pointless for practical use in control applications to increase the order
further, as this would greatly increase the memory and computational hardware requirements.

6.3.3 Dataset distribution

In the following, the Koopman model with polynomial basis of order d = 2 is used. To justify its
applicability to a real system, it is compared to the experimentally recorded data using a restarted
simulation in a similar way as in Section6.2. It is also compared to Koopman models of the same
size learned from the following data:

1. experimental data used for the identification of the nonlinear model in Section6.2, with a
total of 852 samples, of which 9.9532% are in nonlinear tire regions,

2. partial dataset 1 (PD1): 5 ⋅ 105 samples from the nominal dataset described in Section6.3.1
with 29.75% of the samples in nonlinear regions,

3. partial dataset 2 (PD2): 5 ⋅ 104 samples from the nominal dataset with 30.16% of the samples
in nonlinear regions,

4. partial dataset 3 (PD3): 5000 samples from the nominal dataset with 29.98% of the samples
in nonlinear regions,

5. partial dataset 4 (PD4): 500 samples from the nominal dataset with 34.8% of the samples in
nonlinear regions.

The distribution of the sampled state and input trajectories from the nominal and experimental
datasets as well as from PD3 and PD4 is shown in Figure6.7and Figure6.8. The datasets PD1 and
PD2 are not shown in order to keep the graphs clear and visible.

Figure6.7shows the distribution of a triplet {vx , vy , θ̇z}, while the other states are omitted
for the sake of simplicity. These omitted states can be derived by integrating the represented
states (θz and Y) or are approximately proportional to them (ω●⋆). Likewise, Figure6.8shows
the distribution of the inputs. However, as not all inputs can be shown in a single plot, only the
triplet {δ f , Tsum , Tdi f f } is presented. Torque sum Tsum = Tf l + Tf r + Trl + Trr is responsible for
the propulsion of the vehicle in the longitudinal direction, while Tdi f f = Tf r + Trr − Tf l − Trl is
proportionally related to the yaw moment and supports the steering system in manoeuvreing the
vehicle.

It is obvious from the graphs that PD3 is a subset of the nominal dataset, while PD4 is a subset
of PD3. However, both of them cover reasonably large portion of the nominal dataset, especially

6.3 koopman model identification 111

PD3. On the other hand, data collected from the experiment is concentrated around few points
and covers small portion of the state and input space.

0 1 2

−0.4
−0.2

0

0.2

0.4

vx (m/s)

v y
(m

/s
)

nominal data PD3 PD4 experimental data

0 1 2−100
−50

0

50

100

vx (m/s)

θ z
(○)

−0.4 −0.2 0 0.2 0.4−100
−50

0

50

100

vy (m/s)

θ̇ z
(○ /

s)

Figure 6.7:The distribution of the sampled state trajectories from different datasets.

−20 −10 0 10 20−200
−100

0

100

200

δ f (○)

T s
um

(m
N
m
)

nominal data PD3 PD4 experimental data

−20 −10 0 10 20−200
−100

0

100

200

δ f (○)

T d
if

f
(m

N
m
)

−200 −100 0 100 200−200
−100

0

100

200

Tsum (mNm)

T d
if

f
(m

N
m
)

Figure 6.8:The distribution of the sampled input trajectories from different datasets.

6.3.4 Predictor performance analysis

In this section, the performance of the predictors is evaluated using three different test scenarios,
all of which contain themultiple lane changemanoeuvre used in [115]:

1.trajectory from the experimental dataset at vx = 1.5 m/s,

2.slow drive trajectory at vx = 0.5 m/s,

3.trajectory including acceleration.

1. Trajectory from the experimental dataset at vx = 1.5m/s

This test contains predictor comparison using one of the experimental trajectories contained in
the experimental dataset, in other words, a training set for a predictor based on experimental data.
The performance of the predictor for different sizes of the prediction horizon p is presented in

6.3 koopman model identification 112

Table6.3. It is evident that as the prediction horizon decreases, the prediction error also decreases,
highlighting a fundamental relationship between the prediction horizon and the associated
accuracy.This trend is consistent across all datasets. In terms of dataset size, models learned from
nominal data, PD1 and PD2 datasets have very similar errors for all sizes of prediction horizon.
For PD3 and PD4-based models, the errors are larger, which is probably due to the size of the
dataset and the random selection of data points.

Furthermore, the Koopman model learned from the experimental data shows a much smaller
prediction error for all horizons p, which is to be expected since it was trained on the same data,
while the other predictors used datasets that do not contain the given trajectory. Although the
prediction errors of the other Koopmanmodels are larger, they are still reasonably small, especially
for control system design, which will be shown later in this chapter.

Table 6.3: MNPE [%] errors for different prediction horizon p using identification data

p 2 5 10 25 50 100
nominal data 0.0108 0.0662 0.1801 0.6293 1.6144 5.1431

experimental data 0.0013 0.0032 0.0041 0.0067 0.0073 0.0106
PD1 0.0109 0.0666 0.1810 0.6319 1.6130 5.0204
PD2 0.0111 0.0674 0.1834 0.6428 1.6819 6.5342
PD3 0.0138 0.0789 0.2049 0.6920 1.8370 5.9777
PD4 0.0198 0.0810 0.1916 0.6734 1.6759 20.706

The corresponding trajectory and the comparison of some predictors are shown in Figure6.9.
The simulations are restarted at intervals of Tres = p ⋅ Ts = 1.25s.This resulted in a MNPE(Tres =
1.25 s) = 0.6293% for the model trained on the nominal dataset, a MNPE(Tres = 1.25 s) = 0.6734%
for the model trained on the PD4 dataset and a MNPE(Tres = 1.25 s) = 0.0067% for the model
derived from experimental data.

2. Slow drive trajectory at vx = 0.5m/s

For the second test, a trajectory with a constant velocity of vx = 0.5 m/s is used. Table6.4lists
the prediction errors for different prediction horizons. As in the previous test, the errors increase
with increasing prediction horizon. In addition, the models learned from the nominal dataset,
PD1 and PD2 again have similar performance, while the performance for PD3 decreases slightly.
The PD4-based model deteriorates the performance for p ∈ {2, 5}, improves it for p ∈ {10, 25, 50}
and then deteriorates strongly for p = 100.

The cardinality of the experimental dataset (852 samples) is between the cardinality of PD3
(5000 samples) and PD4 (500 samples), but the model learned from the experimental dataset
demonstrates much larger errors than the other models (except for the model trained on PD4 for
p = 100).This is to be expected since the experimental dataset is sparse and does not contain the
test trajectory.

The Figure6.10shows the predictor comparison for Tres = 1.25s with MNPE(Tres = 1.25 s)
= 8.0793% for the model trained on the nominal dataset, MNPE(Tres = 1.25 s) = 4.3313% for the
model trained on the PD4 dataset and a MNPE(Tres = 1.25 s) = 23.423% for the model derived
from experimental data. Looking at the responses of the predictors, one can conclude that while

6.3 koopman model identification 113

0

0.5

1

1.5

v x
(m

/s
)

recorded data nom. data model PD4 model exp. data model

−10
0

10

θ z
(○)

−20
0

20

θ̇ z
(○ /

s)

0 2 4 6 8 10 12 14 16

−0.2
0

0.2

t (s)

Y
(m

)

Figure 6.9: Recorded identification test data compared to predition of simulation and experimental data
based Koopman models for Tres = 1.25.
Table 6.4: MNPE [%] errors for different prediction horizon p during slow drive test

p 2 5 10 25 50 100
nominal data 0.1227 0.5376 1.6350 8.0793 24.840 69.004

experimental data 0.8083 1.6208 4.0043 23.4229 73.0029 233.392
PD1 0.1228 0.5425 1.6552 8.1661 25.080 70.419
PD2 0.1276 0.5628 1.7095 8.4225 25.978 71.547
PD3 0.1316 0.5663 1.7068 8.7397 27.698 69.017
PD4 0.2396 0.5691 1.2553 4.3313 10.365 1.55 ⋅ 103

the models for nominal data and PD4 perform better than the model for experimental data, none
of them seem to be great (the responses look quite inaccurate). However, the following chapter
shows that this can still work quite well when used in a closed loop.

3. Trajectory including acceleration

The last test scenario includes a trajectory with acceleration and the error results are given in
Table6.5. It shows that the errors increase with increasing prediction horizon, just like in the two
previous test cases. Models learned from nominal data, PD1 and PD2 datasets show very similar
errors for all prediction horizons, while the errors increase for the PD3 and PD4 datasets due to
the significant decrease in sample points they contain. In this scenario, the trend is consistent, in
contrast to what was previously observed with other test data.

Themodel for the experimental data performs the worst at all lengths of the prediction horizon,
as indicated by very large errors.

6.3 koopman model identification 114

0
0.2
0.4
0.6
0.8

v x
(m

/s
)

recorded data nom. data model PD4 model exp. data model

−20
0

20

θ z
(○)

−20
0
20
40

θ̇ z
(○ /

s)

0 5 10 15 20 25 30 35 40

−0.2
0

0.2

t (s)

Y
(m

)

Figure 6.10: Recorded slow drive test data compared to predition of simulation and experimental data
based Koopman models for Tres = 1.25.

Table 6.5: MNPE [%] errors for different prediction horizon p during acceleration test

p 2 5 10 25 50 100
nominal data 0.0089 0.0556 0.1823 0.8386 2.4539 6.7576

experimental data 11.904 49.322 72.562 81.543 94.885 2.45 ⋅ 103
PD1 0.0089 0.0553 0.1807 0.8275 2.4098 6.4734
PD2 0.0089 0.0548 0.1797 0.8239 2.3804 6.7743
PD3 0.0101 0.0606 0.1910 0.8494 2.4690 7.2220
PD4 0.0138 0.0770 0.2682 1.5699 5.0420 276.67

The simulation comparison for Tres = 1.25s is shown in Figure6.11. The errors for the given test
case are MNPE(Tres = 1.25 s) = 0.8386% for the model trained on the nominal dataset, MNPE(Tres

= 1.25 s) = 1.5699% for the model trained on the PD4 dataset and a MNPE(Tres = 1.25 s) = 81.543%
for the model derived from experimental data.

The figures, tables and corresponding analysis show that the Koopman models learned from
simulation data perform better than those learned from experimental data, except when evaluated
on experimental data itself. The errors increase with increasing prediction horizon and with
decreasing cardinality of the dataset (with a few exceptions that are probably due to randomness).
This information indicates that the developed model accurately describes nonlinear scaled vehicle
dynamics and can therefore be used for the development of control systems. Furthermore, this
justifies the approach proposed at the beginning of the section (and in5.2), where known model
information can be used to augment a smaller experimental dataset and generate a larger dataset
through simulations.

6.4 model predictive control 115

0

0.5

1

1.5

v x
(m

/s
)

recorded data nom. data model PD4 model exp. data model

−20−10
0
10
20

θ z
(○)

−40−20
0
20
40

θ̇ z
(○ /

s)

0 2 4 6 8 10 12 14 16 18

−0.2
0

0.2

t (s)

Y
(m

)

Figure 6.11: Recorded acceleration test data compared to predition of simulation and experimental data
based Koopman models for Tres = 1.25.

The identification of nonlinear models in this context can be regarded as a well-structured
data compression method in which the original experimental data is the one which is being
compressed, the identified nonlinear model is the compressed data itself, and other datasets are
uncompressed data generated from the compressed data (model) using the data decompression
method (nonlinear model simulation). While the information about the experimental data is
encoded in the parameters of the nonlinear model, the model also contains additional information
about the physical process encoded in its structure. For this reason, much less data is required to
determine the parameters compared to an unstructured model based on the Koopman operator,
for example.

6.4 model predictive control

This section deals with the derivation of two versions of MPC for torque vectoring applications: 1)
NMPC and 2) KMPC.The former uses a nonlinear vehicle model, while the latter relies on the
Koopman model obtained by EDMD from the nominal dataset described in Section6.3.1.

6.4.1 Nonlinear MPC

The ordinary differential equation in (6.1) represents the nonlinear dynamics of the system. In
order to formulate the corresponding optimization problem as a nonlinear program, the equation
must be discretized. By applying some of the techniques from5.3.3, a discrete-time nonlinear
model is obtained, which is denoted as fnd .

6.4 model predictive control 116

The resulting optimization problem can be expressed as a nonlinear program, given by:

min
Ut

J(xt ,ut−1,Yre f
t ,Ut) (6.3a)

s.t. xk+1 = fd(xk ,uk), (6.3b)
yk = Cnlxk , (6.3c)
umin ≤ uk ≤ umax , (6.3d)
∆umin ≤ ∆uk ≤ ∆umax , (6.3e)
xt = x(t), (6.3f)
ut−1 = u(t − 1). (6.3g)

Here x(t) represents the current state measurements, and u(t − 1) denotes the previously applied
control inputs. The change in control inputs is represented by ∆uk = uk − uk−1. The control
input sequence is denoted as Ut = [ut ,ut+1, ...,ut+N−1], and the reference sequence is denoted as
Yre f

t = [y
re f
t , yre ft+1 , ..., yre ft+N].

6.4.2 Koopman operator-based MPC

KMPC uses the model of the form (3.4) learned by EDMD as described in Section6.3.1. The
control algorithm is formulated as a quadratic problem with the following structure:

min
Ũt

J(x̃t , ũt−1,Yre f
t , Ũt) (6.4a)

s.t. zk+1 = Azk + Buk , (6.4b)
yk = Czk , (6.4c)
ũmin ≤ ũk ≤ ũmax , (6.4d)
∆ũmin ≤ ∆ũk ≤ ∆ũmax , (6.4e)
δmin ≤ δsw ,k ≤ δmax , (6.4f)
zt = Φ (x̃(t)) , (6.4g)
ũt−1 = ũ(t − 1). (6.4h)

In the equations (6.4g) and (6.4h), the variables x̃(t) and ũ(t − 1) represent the current extended
state measurement or the extended control input that was applied in the previous time step. In
addition, ∆ũk = ũk − ũk−1 denotes the change in the extended input.The extended control input
sequence is referred to as Ũt = [ũt , ũt+1, ...ũt+N−1].The main difference between the KMPC and
the NMPC described in the equations (6.3a) - (6.3g) (and already mentioned in previous chapters)
is that the KMPC leads to a quadratic optimization problem, which is convex and generally easier
to solve. However, since the Koopman-based model is an approximation of the nonlinear model,
a higher prediction error is to be expected. In addition, the extended state-space is often much
larger than the original one, which can lead to problems with certain KMPC formulations. To
solve this problem, a dense MPC formulation is used, as described in Section2.3.3, to mitigate the
problems arising from the high dimensionality of the system.

6.5 experimental results and discussion 117

6.4.3 Cost function and constraints

The goal of the controller is to find a balance between minimizing the deviations of the system
state from the reference trajectory and minimizing the control effort, which represents the total
energy consumption.The cost function (6.3a) can be expressed as follows:

J(xt ,ut−1,Yre f
t ,Ut) = Jt+N (xt+N , yre ft+N) +

t+N−1
∑
k=t Jk (xk ,uk , ∆uk , yre fk) , (6.5)

where
Jk (xk ,uk , ∆uk , yre fk) = ∥yk − y

re f
k ∥

2
Q + ∥uk∥2R + ∥∆uk∥2R∆

(6.6)

represents the stage cost, and

Jt+N (xt+N , yre ft+N) = ∥yt+N − yre ft+N∥
2
P (6.7)

is the terminal cost. In these equations, Q, R, R∆ and P are positive definite weight matrices.The
system states being tracked in this case are the longitudinal velocity, the yaw angle and the lateral
position in the global coordinate system.These states can be obtained from the full state variables
by a linear transformation, namely y = Cnlx = [vx θz Y]T , where Cnl represents the corresponding
selection matrix.
The cost function (6.4a) in KMPC is defined in the sameway as (6.5), with the following differences
in the notation: the state vector x is replaced by the extended state vector x̃, the input vector ũ is
replaced by the extended input vector x̃ and the output equation is y = Cz.

The constraints for the control inputs are determined by the actuator dynamics and can be
summarized as follows:

δ f min ≤ δ f ≤ δ f max ,
Tmin ≤ T●⋆ ≤ Tmax ,

∆δ f min ≤ ∆δ f ≤ ∆δ f max ,
∆Tmin ≤ ∆T●⋆ ≤ ∆Tmax .

(6.8)

To ensure feasibility and computational efficiency, the system states are unconstrained and kept
within a feasible working region by enforcing reference tracking through the definition of the
cost function.

6.5 experimental results and discussion

6.5.1 Controller setup

The control algorithms are exectuted on the dSPACE MicroLabBox platform and solved with the
FORCESPRO solver [117], [118].The sampling time is set to Ts = 50 ms, while the weight matrices
and constraints are as follows:

Q = diag (1, 5, 20) , R = diag (2, 25, 25, 25, 25) ,
R∆ = diag (5, 100, 100, 100, 100) ,
∆δ f max = −∆δ f min = 54.55 ○,
Tmax = −Tmin = 50 mNm,

∆Tmax = −∆Tmin = 12.5 mNm.

6.5 experimental results and discussion 118

Although the terminal weight matrix P is normally used to approximate the costs for the infinite
horizon, P is chosen here as P = Q for the sake of simplicity.

TheNMPCoptimization problem (6.3) is solved in real time using the sequential quadratic pro-
gramming (SQP) algorithm.The discretization is performed using the FORCESPRO continuous-
time dynamics equality option, with the integrator type set toERK4 and the number of intermediate
integration nodes set to 60.The KMPC optimization problem (6.4) is formulated with YALMIP
[86] and solved with the primal-dual interior-point method. In both cases, the optimization of
the linear algebra operations is used to accelerate the code execution on the dSPACE platform.

6.5.2 Multiple lane change manoeuvre

Figure6.12and Figure6.14illustrate the performance of reference tracking and control inputs
during a user-defined test manoeuvre referred to as amultiple lane change (MLC).This manoeuvre
is defined by the following expressions:

Yre f = −
Ymax

2
(2 tanh(κX) − tanh(4κ(X − dX1)) + tanh(4κ(X − dX1 − dX2))),

θz,re f = arctan(
Ẏre f

Ẋ
) .

(6.9)

Here the distance parameters are defined as Ymax = 0.15 m, dX1 = 15 m, dX2 = 5 m, and the
curvature factor is κ = 2 m−1.The purpose of this manoeuvre was to simulate a lane change in
the initial section, followed by a fast obstacle avoidance in the second section.The experiment is
performed for vx ≈ 1 m/s and vx ≈ 2 m/s with prediction horizon N = 5 and steering angle limited
to δ f max = −δ f min = 10 ○.

The right-hand plots in Figure6.13and Figure6.15show the differential torque Tdi f f , i.e. the
difference between the torques acting on the right and left wheels. This difference leads to an
additional yaw moment of the vehicle (as previously defined in Section6.3.3). The similarity with
the steering angle graph indicates that the steering system and torque vectoring work together to
control the yaw angle of the vehicle. Figure6.12shows that NMPC has a larger overshoot when
tracking the longitudinal velocity vx ≈ 1 m/s and the lateral position, but overall behaves quite
similarly to KMPC. One can see that the references for NMPC and KMPC are not identical, which
is due to the fact that they are influenced by the higher-level PI position controller.

Larger discrepancies arise when the same test manoeuvre is performed at a longitudinal
velocity of vx ≈ 2 m/s, as in Figure6.14. In this case, the overshoot of the NMPC is much larger
than that of the KMPC when tracking all three output signals, which is probably due to an
increased numerical sensitivity to environmental disturbances, such as vibrations of the treadmill,
that occur at higher velocity.The corresponding input signals are given in Figure6.15and show
an increased steering wheel and differential torque effect in the case of the NMPC, confirming
previous observations.

The described behaviour is quantitatively supported in the Table6.6. In it, the costs of the
KMPC control loop are lower than those of the NMPC for both test cases. In addition, the
execution times of KMPC are about 10 times lower than those of NMPC. Due to these two
characteristics, KMPC is more suitable for real-time predictive control.

6.5 experimental results and discussion 119

0

0.5

1

v x
(m

/s
)

NMPC reference NMPC KMPC reference KMPC

−20
0
20

θ z
(○)

0 2 4 6 8 10 12 14 16 18 20 22 24

−0.2
0

0.2

X (m)

Y
(m

)

Figure 6.12: Tracked states during MLC manoeuvre for N = 5 at vx ≈ 1 (m/s).

0 5 10 15 20 25
−10

0

10

X(m)

δ f
(○)

constraint NMPC KMPC

0 5 10 15 20 25

−50

0

50

X(m)

T d
if

f(
m
N
m
)

Figure 6.13: Inputs during MLC manoeuvre for N = 5 at vx ≈ 1 (m/s).

0

1

2

v x
(m

/s
)

NMPC reference NMPC KMPC reference KMPC

−20
0
20

θ z
(○)

0 2 4 6 8 10 12 14 16 18 20 22 24
−0.4
−0.2

0

X (m)

Y
(m

)

Figure 6.14: Tracked states during MLC manoeuvre for N = 5 at vx ≈ 2 (m/s).

6.5 experimental results and discussion 120

0 5 10 15 20 25
−10

0

10

X(m)

δ f
(○)

constraint NMPC KMPC

0 5 10 15 20 25

0

50

100

X(m)

T d
if

f(
m
N
m
)

Figure 6.15: Inputs during MLC manoeuvre for N = 5 at vx ≈ 2 (m/s).

Table 6.6: MLC manoeuvre closed-loop costs and execution times for N = 5
Velocity vx ≈ 1(m/s) vx ≈ 2(m/s)
Controller NMPC KMPC NMPC KMPC

Cost 16.401 16.096 42.618 12.393

Execution
time [ms]

Mean 21.1 2.1 21.5 2.1
Median 21.0 2.1 21.5 2.1
Max 22.8 2.8 23.5 2.5
Min 20.5 1.9 20.7 1.9

6.5.3 Double lane change manoeuvre

The secondmanoeuvre chosen was a double lane change described in [131].The desired orientation
and lateral position of the vehicle were governed by the following set of equations:

Yre f = 0.1 arctan (Φ) ,

θz,re f =
Dy1

2
(tanh(Z1) + 1) −

Dy2

2
(tanh(Z2) + 1),

Z1 =
S
dx1
(X − Xs1) −

S
20

,

Z2 =
S
dx2
(X − Xs2) −

S
20

,

Φ =
1.2Dy1

Dx1
(1
cosh(Z1)

)
2

−
1.2Dy2

Dx2
(1
cosh(Z2)

)
2

,

(6.10)

where S = 24, Dx1 = 25, Dx2 = 21.95, Dy1 = 4.05, Dy2 = 5.7, Xs1 = 5.719 and Xs2 = 8.645. As in the
previous section, the test is performed for vx ≈ 1 m/s and vx ≈ 2 m/s, the prediction horizon is
N = 5 and the steering angle is constrained to δ f max = −δ f min = 10 ○.

Figure6.16shows the state tracking for both NMPC and KMPC at a longitudinal velocity of
vx ≈ 1 m/s. Apart from minor differences in the longitudinal velocity tracking, the responses of
both controllers look almost the same. However, it can be seen in the Figure6.17that the NMPC
uses a larger differential torque to steer the vehicle along the desired path, which consequently
leads to a velocity increase.

When the same manoeuvre is repeated at vx ≈ 2 m/s, the tracking performance of the NMPC
deteriorates, as yaw angle fluctuations and lateral overshoot of the position occur (or rather
undershoot, depending on how one looks at it).This behaviour can be seen in Figure6.18. The

6.5 experimental results and discussion 121

0

0.5

1

v x
(m

/s
)

NMPC reference NMPC KMPC reference KMPC

−20−10
0
10

θ z
(○)

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

X (m)

Y
(m

)

Figure 6.16: Tracked states during DLC manoeuvre for N = 5 at vx ≈ 1 (m/s).

0 5 10 15 20
−10

0

10

X(m)

δ f
(○)

constraint NMPC KMPC

0 5 10 15 20

0

20

X(m)

T d
if

f(
m
N
m
)

Figure 6.17: Inputs during DLC manoeuvre for N = 5 at vx ≈ 1 (m/s).

oscillations and undershoot are caused by steering oscillations and a large differential torque,
as shown in Figure6.19. A direct analysis of the tracking performance of the KMPC cannot be
carried out using the graphs provided.

The results from the figures are supported by the numbers fromTable6.7, which also shows the
already mentioned performance degradation of the NMPC with increasing velocity. Additionally,
the closed-loop cost analysis indicates performance improvement for KMPC with the velocity
increase. For vx ≈ 1 m/s, the performance of both controllers is almost the same.

In terms of execution time, the results confirm what is mentioned for the MLC experiment,
i.e. the computational speed of KMPC is approximately 10 times higher than that of NMPC for
both test runs.

6.5.4 Prediction horizon change effect

In this section, the effect of changing the length of the prediction horizon for KMPC is investigated.
The experiment was done at vx ≈ 1.5 m/s for prediction horizon of N = 5 and N = 10.The steering
angle limit was lowered to δ f max = −δ f min = 3 ○ to force the torque vectoring system to engage.
The same test is omitted for NMPC as it cannot run in real time for the prediction horizon N = 10.

In Figure6.20it is shown that the vehicle tracks the desired references better with a larger

6.5 experimental results and discussion 122

0

1

2

v x
(m

/s
)

NMPC reference NMPC KMPC reference KMPC

−20
−10
0
10

θ z
(○)

0 2 4 6 8 10 12 14 16 18 20

−0.20
0.2
0.4

X (m)

Y
(m

)

Figure 6.18: Tracked states during DLC manoeuvre for N = 5 at vx ≈ 2 (m/s).

0 5 10 15 20
−10

0

10

X(m)

δ f
(○)

constraint NMPC KMPC

0 5 10 15 20

0

50

X(m)

T d
if

f(
m
N
m
)

Figure 6.19: Inputs during DLC manoeuvre for N = 5 at vx ≈ 2 (m/s).

Table 6.7: DLC manoeuvre closed-loop costs and execution times for N = 5
Velocity vx ≈ 1(m/s) vx ≈ 2(m/s)
Controller NMPC KMPC NMPC KMPC

Cost 5.469 5.414 13.326 3.981

Execution
time [ms]

Mean 20.9 2.1 21.3 2.1
Median 20.9 2.1 21.3 2.1
Max 21.7 2.4 22.5 2.3
Min 20.4 1.9 20.6 1.9

prediction horizon, which is to be expected.This is illustrated by Figure6.21, which shows how
the controller with N = 10 provides a larger differential torque when the steering angle limit is
reached and allows the vehicle to stay on the desired path. Consequently, the closed-loop cost
decreases as the prediction horizon increases, as indicated in the Table6.8. On the contrary, as the
prediction horizon increases, computational time also increases. In this case, it increased more
than 10 times on average.

6.5 experimental results and discussion 123

0
0.5
1

1.5
2

v x
(m

/s
)

N = 5 reference N = 5 N = 10 reference N = 10

−20
−10
0
10

θ z
(○)

0 2 4 6 8 10 12 14 16 18 20
−0.2

0
0.2
0.4

X (m)

Y
(m

)

Figure 6.20: Tracked states during DLC manoeuvre for KMPC with N = 5 and N = 10 at vx ≈ 1.5 (m/s).

0 5 10 15 20

−2
0

2

X(m)

δ f
(○)

constraint N = 5 N = 10
0 5 10 15 20

0

20

40

X(m)

T d
if

f(
m
N
m
)

Figure 6.21: Inputs during DLC manoeuvre for KMPC with N = 5 and N = 10 at vx ≈ 1.5 (m/s).

Table 6.8: DLC manoeuvre comparison for KMPC with N = 5 and N = 10 at vx ≈ 1.5(m/s)

Prediction horizon N = 5 N = 10
Cost 8.716 3.094

Execution
time [ms]

Mean 2.1 23.5
Median 2.1 23.5
Max 2.6 29.9
Min 1.9 21.4

6.5.5 Sensitivity to delays

The information that was not mentioned before is that the experimental setup has a delay of
approximately Tdelay ≈ 100 ms in the control loop, which is caused by the discretization and
the communication channels. In this section, the consequences of this delay are investigated
by comparing some of the experimental results with those of the corresponding simulations.
Specifically, both MLC and DLC manoeuvre tests are simulated for the default horizon N = 5 and
longitudinal velocity vx ≈ 2 m/s and their output responses and closed-loop costs are reported.

Figure6.22shows the results for theMLCmanoeuvre forNMPC andKMPC. The experimental
results are compared with the simulation results with and without the delay Tdelay. First of all, it

6.5 experimental results and discussion 124

is observed that the performance of both controllers is different in simulation and experiment,
which is probably due to unmodeled dynamics and environmental influences such as vibrations
of the treadmill. In addition, the responses of NMPC and KMPC deteriorate when the delay is
added to the simulation and are slightly more similar to the experimental results. However, the
NMPC leads to greater overshoot (especially in the experiment) in the longitudinal velocity and
lateral position, as well as oscillations in the steady state, which does not occur with the KMPC.

0

1

2

v x
(m

/s
)

NMPC

experimental reference experimental signal
simulated reference simulated signal
simulated signal (delay)

0

1

2

KMPC

−20
0

20

θ z
(○)

−20
0

20

0 5 10 15 20 25
−0.4
−0.2

0

X (m)

Y
(m

)

0 5 10 15 20 25

−0.2
−0.1

0
0.1

X (m)

Figure 6.22: Experiment and simulation comparison of MLC manoeuvre for NMPC (left) and KMPC
(right) with N = 5 at vx ≈ 2 (m/s).

The results for the DLC manoeuvre are shown in Figure6.23, where a similar behaviour can
be seen.The simulation results without delay are similar for both NMPC and KMPC, while in
the results of the simulation with delay and the experiment NMPC again induces oscillations.
Especially in the experiment, it also causes larger overshoots of vx and Y .

The closed-loop costs are listed in Table6.9and also illustrate the described behaviour. The
results of the simulation without delay indicate that NMPC performs better than KMPC for
both manoeuvres, which makes sense since the Koopman model is only an approximation of the
corresponding nonlinear model. On the other hand, the results from the simulation with delay
and the experimental results confirm what has already been said in previous sections and show
that NMPC can perform much worse than KMPC. This indicates the sensitivity of NMPC to
system delays. However, a more detailed investigation of this effect is beyond the scope of this
thesis.

Table 6.9: Experiment and simulation closed-loop cost comparison

manoeuvre Simulation Simulation with delay Experiment
NMPC KMPC NMPC KMPC NMPC KMPC

MLC 8.934 10.227 21.687 15.827 42.618 12.393
DLC 3.475 5.817 4.127 6.401 13.326 3.981

6.5 experimental results and discussion 125

0

1

2

v x
(m

/s
)

NMPC

experimental reference experimental signal
simulated reference simulated signal
simulated signal (delay)

0

1

2

KMPC

−20
−10
0

10

θ z
(○)

−20
−10
0

10

0 2 4 6 8 10 12 14 16 18 20

−0.2
0

0.2

0.4

X (m)

Y
(m

)

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

X (m)

Figure 6.23: Experiment and simulation comparison of DLCmanoeuvre for NMPC (left) and KMPC (right)
with N = 5 at vx ≈ 2 (m/s).

6.5.6 Concluding remarks

The overall conclusion of this analysis is that KMPC can outperform NMPC in terms of stability
and efficiency, which is particularly noticeable when large time delays are present in the system.
While NMPC has greater potential under simulated ideal conditions, it is less effective under
real-world conditions due to higher computational demand and communication delays. KMPC,
on the other hand, demonstrates lower closed-loop costs and significantly faster execution times,
making it more suitable for real-time applications. Even if the prediction horizon is extended,
which improves the tracking performance of KMPC, the increase in computation time remains
within acceptable limits for real-time operation.

To summarise, despite the theoretical advantages of NMPC, KMPC is a more feasible, ro-
bust and computationally efficient solution for real-time control applications, especially under
conditions with higher speeds and communication delays.

6.6 summary 126

6.6 summary

This chapter focuses on the evaluation of the Kooopman-basedMPC in a real-world test setup.The
experimental validation of the control algorithms is performed using a scaled vehicle model and a
treadmill that serves as a road simulator.These innovative techniques allow testing under different
road conditions without the logistical challenges of a real (race) track.The setup includes a scaled
vehicle on a treadmill monitored by an optical tracking system and wheel speed sensors. A control
algorithm running on a dSPACE MicroLabBox platform evaluates the vehicle’s performance based
on input from these sensors.

The chapter further deals with the identification of vehicle parameters using experimental
data and the MATLAB System Identification Toolbox.This method is used to determine critical
parameters such as tire stiffness, rolling resistance or tire friction, which are essential for the
accurate simulation of vehicle dynamics but can be difficult to measure directly.

After the identification process, a Koopman model is learned using the EDMD algorithm.
In this case, the data for learning the Koopman model was generated by simulating multiple
trajectories with the previously identified nonlinear vehicle model. Different datasets, including
real experimental data and simulations, are used to train and validate these models and compare
their effectiveness in different driving scenarios.

Two MPC strategies, namely NMPC and KMPC, are formulated for the application of torque
vectoring.These strategies aim to optimize the driving performance of the vehicle by adjusting the
torque distribution between the wheels considering constraints such as actuator dynamics.The
performance of these MPC strategies is evaluated through experimental tests, including multiple
and double lane change manoeuvres, under different conditions.

The experiments reveal the strengths and limitations of NMPC and KMPC. While NMPC
offers theoretical advantages in terms of control accuracy, in practice it faces problems such as
computational complexity and sensitivity to time delays, especially at higher speeds. On the other
hand, KMPC shows promising results in real-time applications, which are characterized by lower
computational complexity and robustness to time delays.

In conclusion, this chapter presents a comprehensive approach for the development and
testing of advanced vehicle dynamics control systems. It highlights the potential of using scale
models and road simulators for experimental validation, the importance of accurate identification
of vehicle parameters, and the effectiveness of Koopman-based MPC strategies in improving
vehicle handling and performance.

7
Conclusion and future research directions

This thesis introduces a novel approach to advanced vehicle dynamics control systems,
focusing on the integration of the Koopman operator with model predictive control (MPC).

Each section builds on a comprehensive framework that aims to improve both the understanding
and practical application of Koopman operator-based vehicle control, especially in real-time
scenarios.

The thesis begins by providing a theoretical basis for key topics in Chapter2. First, models of
vehicle dynamics such as the two-track and bicycle models were examined, with aspects such as
tire models and alternative slip formulations.The intricacies of model predictive control were
then explained, distinguishing between linear and nonlinear MPC and exploring both dense
and sparse formulations. In addition, key vehicle dynamics control systems such as ABS, ESC
and torque vectoring were introduced and their important role in improving vehicle safety and
performance was emphasized. Furthermore, the thesis addresses the Koopman operator, which
provides a method for converting nonlinear dynamics into linear representations, although its use
is limited by its infinite-dimensional scope.The overview of the theoretical background provides
essential tools for the discussions in the rest of the thesis.

The first contribution is the development of amethod for identifying a vehicle dynamics model
based on the Koopman operator suitable for applications in predictive control algorithms. To
achieve this, three different numerical methods were used to approximate the Koopman operator:
extended dynamic mode decomposition (EDMD), deep dynamic mode decomposition (Deep-
DMD) and a newly proposed method, called enhanced extended dynamic mode decomposition
(E2DMD).This novel method incorporates an affine transform to reduce the dimensionality of
the lifted state vector in traditional EDMD, maintaining model accuracy while simplifying the
process and reducing the hyperparameter complexity compared to Deep-DMD.Three different
numerical approaches for the implementation of E2DMD were elaborated: basis function reduc-
tion by discrete selection (E2DMD-DS), which selects specific elements from the basis function
vector; a multiple step prediction learning algorithm (E2DMD-MS), which modifies the encoder
structure similarly to Deep-DMD; and basis function reduction as a hyperparameter optimiza-
tion problem (E2DMD-HO), which integrates well with existing hyperparameter optimization
frameworks. The evaluation of these methods by simulations with the Van der Pol oscillator,
the damped Duffing oscillator and the bilinear motor yielded several conclusions. First, there
was a consistent improvement in prediction performance with increasing dimensionality of the
state-space. However, unexpected fluctuations in the performance of Deep-DMDpoint to possible
architectural improvements from which the E2DMD-MSmethod could also benefit. Furthermore,

127

conclusion and future research directions 128

the hypothesis that E2DMD simplifies the reduction of the lifted state-space compared to manual
selection in EDMD was confirmed. It also contains fewer hyperparameters than Deep-DMD,
which facilitates fine-tuning. Finally, the results indicate that the effectiveness of each method
varies depending on the dynamical system, suggesting that the choice of numerical method should
be tailored to the system under investigation.

Following the initial tests performed with benchmark dynamical models, the application of
the Koopman operator, in particular using the EDMD algorithm, to improve the control of vehicle
dynamics by using simple models is presented in Chapter4. Steering angle and longitudinal slip
were used as input signals. First, the Koopman operator was applied to a bicycle model, where
EDMD successfully approximates a higher-dimensional linear model that outperforms traditional
linearizationmethods in predicting system trajectories.The effectiveness of this model was further
validated by integrating it into an MPC setup, highlighting its potential for vehicle motion control.
The second part of the chapter deals with a two-track vehicle model using the Koopman operator
with an MPC algorithm for torque vectoring.The EDMD-based model showed superior accuracy
and efficiency in predictive control and outperforms the linear time-varying MPC (LTV-MPC) in
various metrics in test scenarios.These results underline the effectiveness of Koopman MPC in
vehicle dynamics control, which offers significant advantages over conventional methods.This
result relates to both the first and second contributions, which involves the development of an
MPC algorithm for wheel torque distribution using a vehicle model identified with the Koopman
operator. However, the contributions are not fully addressed here, as the reliance on simplified
models highlights the need for additional research to confirm the validity of these methods in
more complex, real-world scenarios.

The validation in more complex scenarios is carried out in Chapter5and Chapter6. First,
through detailed simulations in MATLAB Simulink and CarMaker, strategies such as E2DMD-
MPC, Deep-DMD-MPC, EDMD-MPC, LTV-MPC and NMPC were investigated for their effi-
ciency and control performance in dynamic manoeuvres and experiments at the Nürburgring
and Hockenheimring race tracks. NMPC showed superior manoeuvreing capabilities at the cost
of higher computational effort, especially at longer prediction horizons, illustrating the classic
trade-off between computational efficiency and control performance. Conversely, Koopman-based
controllers, namely E2DMD-MPC and Deep-DMD-MPC, offered a promising balance by achiev-
ing competitive control performance at significantly lower computational cost, making them
suitable for scenarios with real-time requirements. Deep-DMD-MPC performed particularly
well at longer prediction horizons, although there is some variability in performance at shorter
horizons. While LTV-MPC is less computationally intensive than NMPC, it generally performed
worse than all other MPC versions, except at low speeds and predictable conditions.

The experimentswith real-world scenarioswere conducted on a test setup that includes a scaled
vehicle model on a treadmill that mimics real road conditions, without the logistical overhead of
actual track testing.The conclusions drawn here differ from those based on simulation results.
Despite the theoretical advantages of NMPC under ideal conditions, its practical application is
hindered by its high computational cost and sensitivity to time delays (due to the discretization of
communication), making it less suitable for real-world scenarios in its current form. In contrast,
KMPC not only offers faster execution times, but is also more robust to time delays and scales well
with extended prediction horizons while remaining within feasible limits for real-time operation.
This may seem counterintuitive at first glance and definitely requires further investigation.

conclusion and future research directions 129

Finally, the third contribution, namely a technique for generating aKoopman operator learning
dataset by first creating a nonlinear model from experimental data and then simulating different
scenarios with this model, was also applied in Chapter5, while a more detailed presentation is
given in Chapter6. The analysis supported by figures and tables shows that the Koopman models
derived from simulation data generally perform better than the models based on experimental
data, with the exception of the evaluations on the experimental data itself.These results confirm
the effectiveness of simulation-based models in capturing nonlinear, scaled vehicle dynamics and
validate their application in the development of control systems.They also support the approach
of replacing small experimental datasets with simulated data to increase the size and improve the
information content of the dataset, which in turn increases the accuracy of the models trained
on it. In this context, the identification of nonlinear models acts as a structured method for data
compression, where the experimental data is compressed into a model and other datasets are
generated from this model, which is similar to a process of data decompression by nonlinear
model simulation.

Overall, this thesis highlights the critical importance of choosing the right control strategy
that not only takes into account the nonlinearity of vehicle dynamics, but also aligns with the
computational constraints of real-time applications.The insights gained here emphasise the poten-
tial of Koopman-based controllers as a viable middle ground that offers a strategic compromise
between the high control performance of NMPC and the necessary computational efficiency for
practical implementation. Furthermore, some novel Koopman operator identification methods as
well as a new approach to generate learning data by using nonlinear model identification as an
intermediate step are presented.

Future research could focus on further improving the proposed E2DMD and Deep-DMD
methods as well as the numerical algorithms used to learn such models. It would also be valuable
to further explore the dataset generation process discussed in Section6.3.3and investigate how
to create a dataset of minimal size that is still sufficiently informative to accurately identify a
Koopman model based on its samples. Furthermore, future studies may focus on the integration
of physics-informed machine learning (PIML) with the Koopman operator framework to im-
prove the accuracy of complex vehicle dynamics models.The main goal of PIML is to develop
machine learning models that integrate physical laws as constraints, ensuring compliance with
the fundamental principles of the systems under investigation. Such approaches have already
been explored in control engineering [132], for modelling vehicle dynamics [133] and even in
the context of the Koopman operator [134, 135].The combination of PIML with the Koopman
operator could lead to an improvement in the prediction accuracy, computational efficiency and
interpretability of Koopman-based models, which would undoubtedly benefit the field of modern
vehicle control systems.

bibliography

[1] R. R. Kumar and K. Alok, “Adoption of electric vehicle: A literature review and prospects
for sustainability,” Journal of Cleaner Production, vol. 253, p. 119911, 2020.

[2] M. Muratori, M. Alexander, D. Arent, M. Bazilian, P. Cazzola, E. M. Dede, J. Farrell,
C. Gearhart, D. Greene, A. Jenn et al., “The rise of electric vehicles—2020 status and
future expectations,” Progress in Energy, vol. 3, no. 2, p. 022002, 2021.

[3] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous driving:
Common practices and emerging technologies,” IEEE access, vol. 8, pp. 58 443–58 469, 2020.

[4] D. Schramm, M. Hiller, and R. Bardini, “Vehicle dynamics,” Modeling and Simulation.
Berlin, Heidelberg, vol. 151, 2014.

[5] F. Micheli, M. Bersani, S. Arrigoni, F. Braghin, and F. Cheli, “NMPC trajectory planner for
urban autonomous driving,” Vehicle System Dynamics, pp. 1–23, 2022.

[6]H. Pacejka, Tire and vehicle dynamics, 3rd ed. Elsevier, 2012.

[7] W. Hirschberg, G. Rill, and H. Weinfurter, “Tire model TMeasy,” Vehicle System Dynamics,
vol. 45, no. Sup. 1, pp. 101–119, 2007.

[8] H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle System Dynamics,
vol. 21, no. Sup. 001, pp. 1–18, 1992.

[9]R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media, 2011.

[10] J. B. Rawlings, D. Q. Mayne, and M. Diehl,Model predictive control: theory, computation,
and design. Nob Hill Publishing Madison, WI, 2017, vol. 2.

[11]S. V. Rakovi ć and W. S. Levine, Handbook of model predictive control. Springer, 2018.

[12] M. N. Zeilinger, “Real-time model predictive control,” Ph.D. dissertation, ETH Zurich,
2011.

[13] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and hybrid systems.
Cambridge University Press, 2017.

[14] L. Grüne, “NMPC without terminal constraints,” IFAC Proceedings Volumes, vol. 45, no. 17,
pp. 1–13, 2012.

130

bibliography 131

[15] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online].
Available:https://www.gurobi.com

[16] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an operator splitting
solver for quadratic programs,”Mathematical Programming Computation, vol. 12, no. 4, pp.
637–672, 2020. [Online]. Available:https://doi.org/10.1007/s12532-020-00179-2

[17] I. M. Bomze, V. F. Demyanov, R. Fletcher, T. Terlaky, I. Pólik, and T. Terlaky, “Interior point
methods for nonlinear optimization,” Nonlinear Optimization: Lectures given at the CIME
Summer School held in Cetraro, Italy, July 1-7, 2007, pp. 215–276, 2010.

[18] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From linear to nonlinear
MPC: bridging the gap via the real-time iteration,” International Journal of Control, vol. 93,
no. 1, pp. 62–80, 2020.

[19] A. Grancharova and T. A. Johansen, Explicit nonlinear model predictive control:Theory and
applications. Springer Science & Business Media, 2012, vol. 429.

[20] D. Limon, J. Calliess, and J. M. Maciejowski, “Learning-based nonlinear model predictive
control,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 7769–7776, 2017.

[21] D. Masti and A. Bemporad, “Learning nonlinear state-space models using autoencoders,”
Automatica, vol. 129, p. 109666, 2021.

[22] M. N. Zeilinger, M. Morari, and C. N. Jones, “Soft constrained model predictive control
with robust stability guarantees,” IEEE Transactions on Automatic Control, vol. 59, no. 5, pp.
1190–1202, 2014.

[23] B. O. Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proceedings
of the national academy of sciences of the united states of america, vol. 17, no. 5, p. 315, 1931.

[24] B. O. Koopman and J. v. Neumann, “Dynamical systems of continuous spectra,” Proceedings
of the National Academy of Sciences, vol. 18, no. 3, pp. 255–263, 1932.

[25] I. Mezić and A. Banaszuk, “Comparison of systems with complex behavior,” Physica D:
Nonlinear Phenomena, vol. 197, no. 1-2, pp. 101–133, 2004.

[26] I. Mezić, “Spectral properties of dynamical systems, model reduction and decompositions,”
Nonlinear Dynamics, vol. 41, pp. 309–325, 2005.

[27] M. Budišić, R. Mohr, and I. Mezić, “Applied koopmanism,” Chaos: An Interdisciplinary
Journal of Nonlinear Science, vol. 22, no. 4, 2012.

[28] I. Mezić, “Analysis of fluid flows via spectral properties of the Koopman operator,” Annual
review of fluid mechanics, vol. 45, pp. 357–378, 2013.

[29] Y. Lan and I. Mezić, “Linearization in the large of nonlinear systems and Koopman operator
spectrum,” Physica D: Nonlinear Phenomena, vol. 242, no. 1, pp. 42–53, 2013.

https://www.gurobi.com
https://doi.org/10.1007/s12532-020-00179-2

bibliography 132

[30] S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Machine learning, dynam-
ical systems, and control. Cambridge University Press, 2022.

[31]S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koopman invariant subspaces
and finite linear representations of nonlinear dynamical systems for control,” PloS one,
vol. 11, no. 2, p. e0150171, 2016.

[32] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman
operator meets model predictive control,” Automatica, vol. 93, pp. 149–160, 2018.

[33] A. Surana and A. Banaszuk, “Linear observer synthesis for nonlinear systems using Koop-
man operator framework,” IFAC-PapersOnLine, vol. 49, no. 18, pp. 716–723, 2016.

[34] A. Surana, “Koopman operator based observer synthesis for control-affine nonlinear sys-
tems,” in 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016, pp.
6492–6499.

[35] A.Mauroy, I. Mezić, and Y. Susuki,The Koopman Operator in Systems and Control: Concepts,
Methodologies, and Applications. Springer Nature, 2020, vol. 484.

[36] I. Abraham, G. De La Torre, and T. D. Murphey, “Model-based control using Koopman
operators,” arXiv preprint arXiv:1709.01568, 2017.

[37] M. Rahmani and S. Redkar, “Data-driven Koopman fractional order PID control of a
MEMS gyroscope using bat algorithm,” Neural Computing and Applications, pp. 1–10, 2023.

[38] X. Zhang, W. Pan, R. Scattolini, S. Yu, and X. Xu, “Robust tube-based model predictive
control with Koopman operators,” Automatica, vol. 137, p. 110114, 2022.

[39] G. Mamakoukas, S. Di Cairano, and A. P. Vinod, “Robust model predictive control with
data-driven Koopman operators,” in 2022 American Control Conference (ACC). IEEE,
2022, pp. 3885–3892.

[40] A. Narasingam and J. S.-I. Kwon, “Koopman Lyapunov-based model predictive control of
nonlinear chemical process systems,” AIChE Journal, vol. 65, no. 11, p. e16743, 2019.

[41] M. Korda, Y. Susuki, and I. Mezić, “Power grid transient stabilization using Koopman
model predictive control,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 297–302, 2018.

[42] S. Hanke, S. Peitz, O. Wallscheid, S. Klus, J. Böcker, and M. Dellnitz, “Koopman operator-
based finite-control-set model predictive control for electrical drives,” arXiv preprint
arXiv:1804.00854, 2018.

[43] D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, and R. Vasudevan, “Data-Driven Control
of Soft Robots Using Koopman OperatorTheory,” IEEE Transactions on Robotics, vol. 37,
no. 3, pp. 948–961, 2020.

[44] P. S. Cisneros, A. Datar, P. Göttsch, and H. Werner, “Data-Driven quasi-LPV Model Predic-
tive Control Using Koopman Operator Techniques,” IFAC-PapersOnLine, vol. 53, no. 2, pp.
6062–6068, 2020.

bibliography 133

[45] H. Arbabi, M. Korda, and I. Mezic, “A data-driven Koopman model predictive control
framework for nonlinear flows,” arXiv preprint arXiv:1804.05291, 2018.

[46] A. Narasingam and J. S.-I. Kwon, “Application of Koopman operator for model-based
control of fracture propagation and proppant transport in hydraulic fracturing operation,”
Journal of Process Control, vol. 91, pp. 25–36, 2020.

[47] B. Chen, Z. Huang, R. Zhang, W. Liu, H. Li, J. Wang, Y. Fan, and J. Peng, “Data-driven
Koopmanmodel predictive control for optimal operation of high-speed trains,” IEEE Access,
vol. 9, pp. 82 233–82 248, 2021.

[48] X. Wang, Y. Kang, and Y. Cao, “Deep Koopman operator based model predictive control
for nonlinear robotics systems,” in 2021 6th IEEE International Conference on Advanced
Robotics and Mechatronics (ICARM). IEEE, 2021, pp. 931–936.

[49] J. Wang, B. Xu, J. Lai, Y. Wang, C. Hu, H. Li, and A. Song, “An Improved Koopman-MPC
Framework for Data-Driven Modeling and Control of Soft Actuators,” IEEE Robotics and
Automation Letters, vol. 8, no. 2, pp. 616–623, 2022.

[50] H. Wang, W. Liang, B. Liang, H. Ren, Z. Du, and Y. Wu, “Robust position control of
a continuum manipulator based on selective approach and Koopman operator,” IEEE
Transactions on Industrial Electronics, 2023.

[51] M. Soleimani, F. N. Irani, M. Yadegar, and M. Davoodi, “Multi-objective optimization of
building HVAC operation: Advanced strategy using Koopman predictive control and deep
learning,” Building and Environment, vol. 248, p. 111073, 2024.

[52] K. Reif, “Brakes, brake control and driver assistance systems,”Weisbaden, Germany, Springer
Vieweg, 2014.

[53]P. Lugner et al., Vehicle dynamics of modern passenger cars. Springer, 2019.

[54] M. Vignati, E. Sabbioni, and D. Tarsitano, “Torque vectoring control for IWM vehicles,”
International Journal of Vehicle Performance, vol. 2, no. 3, pp. 302–324, 2016.

[55] G. Park, K.Han, K.Nam,H. Kim, and S. B. Choi, “TorqueVectoringAlgorithmof Electronic-
Four-Wheel DriveVehicles for Enhancement of Cornering Performance,” IEEETransactions
on Vehicular Technology, vol. 69, no. 4, pp. 3668–3679, 2020.

[56] Q. Wang, Y. Zhuang, J. Wei, and K. Guo, “A driver model–based direct yaw moment
controller for in-wheel motor electric vehicles,” Advances in Mechanical Engineering, vol. 11,
no. 9, p. 1687814019877319, 2019.

[57] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data-driven approximation of the
Koopman operator: Extending dynamicmode decomposition,” Journal of Nonlinear Science,
vol. 25, no. 6, pp. 1307–1346, 2015.

[58] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” Journal
of fluid mechanics, vol. 656, pp. 5–28, 2010.

bibliography 134

[59]J. P. Boyd, Chebyshev and Fourier spectral methods. Courier Corporation, 2013.

[60]L. N. Trefethen, Spectral methods in MATLAB. SIAM, 2000.

[61] H. Wendland, “Meshless Galerkin methods using radial basis functions,”Mathematics of
computation, vol. 68, no. 228, pp. 1521–1531, 1999.

[62] G. Karniadakis and S. J. Sherwin, Spectral/Hp element methods for computational fluid
dynamics. Oxford University Press, USA, 2005.

[63] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear embeddings of
nonlinear dynamics,” Nature communications, vol. 9, no. 1, p. 4950, 2018.

[64] E. Yeung, S. Kundu, and N. Hodas, “Learning deep neural network representations for
Koopman operators of nonlinear dynamical systems,” in 2019 American Control Conference
(ACC). IEEE, 2019, pp. 4832–4839.

[65] Y. Han, W. Hao, and U. Vaidya, “Deep learning of Koopman representation for control,” in
2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020, pp. 1890–1895.

[66] Y. Xiao, “DDK: A deep Koopman approach for dynamics modeling and trajectory tracking
of autonomous vehicles,” arXiv preprint arXiv:2110.14700, 2021.

[67] H. Shi and M. Q.-H. Meng, “Deep Koopman operator with control for nonlinear systems,”
IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7700–7707, 2022.

[68] Y. Xiao, X. Zhang, X. Xu, X. Liu, and J. Liu, “Deep neural networks with Koopman operators
for modeling and control of autonomous vehicles,” IEEE Transactions on Intelligent Vehicles,
vol. 8, no. 1, pp. 135–146, 2022.

[69] M. O. Williams, C. W. Rowley, and I. G. Kevrekidis, “A kernel-based approach to data-
driven Koopman spectral analysis,” arXiv preprint arXiv:1411.2260, 2014.

[70] M. Švec, Š. Ileš, and J. Matuško, “Predictive Direct Yaw Moment Control Based on the
Koopman Operator,” IEEE Transactions on Control Systems Technology, 2023.

[71] D. Delahaye, S. Chaimatanan, and M. Mongeau, “Simulated annealing: From basics to
applications,” Handbook of metaheuristics, pp. 1–35, 2019.

[72] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search,” in Handbook of
metaheuristics. Springer, 2003, pp. 320–353.

[73] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter optimiza-
tion,” Advances in neural information processing systems, vol. 24, 2011.

[74] N. Hansen, “The CMA evolution strategy: A tutorial,” arXiv preprint arXiv:1604.00772, 2016.

[75] T. Akiba, S. Sano, T. Yanase, T. Ohta, andM. Koyama, “Optuna: ANext-generationHyperpa-
rameter Optimization Framework,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2019.

bibliography 135

[76] Y. Ozaki, Y. Tanigaki, S. Watanabe, and M. Onishi, “Multiobjective tree-structured parzen
estimator for computationally expensive optimization problems,” in Proceedings of the 2020
genetic and evolutionary computation conference, 2020, pp. 533–541.

[77] Y. Ozaki, Y. Tanigaki, S. Watanabe, M. Nomura, and M. Onishi, “Multiobjective tree-
structured Parzen estimator,” Journal of Artificial Intelligence Research, vol. 73, pp. 1209–1250,
2022.

[78] A. Mauroy, I. Mezić, and J. Moehlis, “Isostables, isochrons, and Koopman spectrum for
the action–angle representation of stable fixed point dynamics,” Physica D: Nonlinear
Phenomena, vol. 261, pp. 19–30, 2013.

[79] M. Korda and I. Mezić, “Optimal construction of Koopman eigenfunctions for prediction
and control,” IEEE Transactions on Automatic Control, vol. 65, no. 12, pp. 5114–5129, 2020.

[80] J. Ng andH.H. Asada, “Data-Driven Encoding: ANewNumericalMethod for Computation
of the Koopman Operator,” IEEE Robotics and Automation Letters, 2023.

[81] P. Bevanda, M. Beier, S. Kerz, A. Lederer, S. Sosnowski, and S. Hirche, “Diffeomorphically
learning stable Koopman operators,” IEEE Control Systems Letters, vol. 6, pp. 3427–3432,
2022.

[82] V. Cibulka, M. Korda, and T. Haniš, “Dictionary-free Koopman model predictive control
with nonlinear input transformation,” arXiv preprint arXiv:2212.13828, 2022.

[83] V. Cibulka, T. Haniš, and M. Hromčík, “Data-driven identification of vehicle dynamics
using Koopman operator,” in 2019 22nd International Conference on Process Control (PC19).
IEEE, 2019, pp. 167–172.

[84] M. Švec, Š. Ileš, and J. Matuško, “Model predictive control of vehicle dynamics based on
the Koopman operator with extended dynamic mode decomposition,” in 2021 22nd IEEE
International Conference on Industrial Technology (ICIT), vol. 1. IEEE, 2021, pp. 68–73.

[85] Y.-x. Yuan, “Recent advances in trust region algorithms,”Mathematical Programming, vol.
151, no. 1, pp. 249–281, 2015.

[86] J. Löfberg, “YALMIP : A Toolbox for Modeling and Optimization in MATLAB,” in In
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[87] F. Bruzelius, “A theoretical justification of the sine with dwell manoeuvre,” Vehicle System
Dynamics, vol. 53, no. 4, pp. 493–505, 2015.

[88] M. Švec, Š. Ileš, and J. Matuško, “Predictive approach to torque vectoring based on the
Koopman operator,” in 2021 European Control Conference (ECC). IEEE, 2021, pp. 1341–1346.

[89] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. E. Tseng, “A linear time varying model
predictive control approach to the integrated vehicle dynamics control problem in au-
tonomous systems,” in 2007 46th IEEE Conference on Decision and Control. IEEE, 2007,
pp. 2980–2985.

bibliography 136

[90] M. Abramowitz and I. A. Stegun,Handbook of mathematical functions with formulas, graphs,
and mathematical tables. US Government printing office, 1970, vol. 55.

[91] B. A. H. Vicente, S. S. James, and S. R. Anderson, “Linear System Identification Versus
PhysicalModeling of Lateral-LongitudinalVehicleDynamics,” IEEETransactions onControl
Systems Technology, 2020.

[92] S. James and S. R. Anderson, “Linear system identification of longitudinal vehicle dynamics
versus nonlinear physical modelling,” in 2018 UKACC 12th International Conference on
Control (CONTROL). IEEE, 2018, pp. 146–151.

[93] L. Zhang,H.Ding, Y.Huang,H.Chen, K.Guo, andQ. Li, “An analytical approach to improve
vehicle maneuverability via torque vectoring control: theoretical study and experimental
validation,” IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4514–4526, 2019.

[94] L. De Novellis, A. Sorniotti, P. Gruber, and A. Pennycott, “Comparison of feedback control
techniques for torque-vectoring control of fully electric vehicles,” IEEE Transactions on
Vehicular Technology, vol. 63, no. 8, pp. 3612–3623, 2014.

[95] Y. Chen and J.Wang, “Adaptive energy-efficient control allocation for planarmotion control
of over-actuated electric ground vehicles,” IEEE Transactions on Control Systems Technology,
vol. 22, no. 4, pp. 1362–1373, 2013.

[96] Q. Lu, A. Sorniotti, P. Gruber, J.Theunissen, and J. De Smet, “H∞ loop shaping for the torque-
vectoring control of electric vehicles: Theoretical design and experimental assessment,”
Mechatronics, vol. 35, pp. 32–43, 2016.

[97] A. Parra, A. Zubizarreta, J. Pérez, andM. Dendaluce, “Intelligent torque vectoring approach
for electric vehicles with per-wheel motors,” Complexity, vol. 2018, 2018.

[98] A. Parra, D. Tavernini, P. Gruber, A. Sorniotti, A. Zubizarreta, and J. Pérez, “On nonlinear
model predictive control for energy-efficient torque-vectoring,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 1, pp. 173–188, 2020.

[99] E. Siampis, E. Velenis, S. Gariuolo, and S. Longo, “A real-time nonlinear model predictive
control strategy for stabilization of an electric vehicle at the limits of handling,” IEEE
Transactions on Control Systems Technology, vol. 26, no. 6, pp. 1982–1994, 2017.

[100] M.Dalboni, D. Tavernini, U.Montanaro, A. Soldati, C. Concari,M.Dhaens, andA. Sorniotti,
“Nonlinear model predictive control for integrated energy-efficient torque-vectoring and
anti-roll moment distribution,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 3, pp.
1212–1224, 2021.

[101] T. Fu, H. Zhou, and Z. Liu, “NMPC-based path tracking control strategy for autonomous
vehicles with stable limit handling,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 12, pp. 12 499–12 510, 2022.

bibliography 137

[102]G. Palmieri, O. Barbarisi, S. Scala, and L. Glielmo, “A preliminary study to integrate LTV-
MPC lateral vehicle dynamics control with a slip control,” in Proceedings of the 48h IEEE
Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference. IEEE, 2009, pp. 4625–4630.

[103] H. Kanchwala and C. Bordons, “Improving handling performance of an electric vehicle
using model predictive control,” SAE Technical Paper, Tech. Rep., 2015.

[104] V. Cibulka, T. Haniš, M. Korda, and M. Hromčík, “Model Predictive Control of a Vehicle
using Koopman Operator,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 4228–4233, 2020.

[105] J. S. Kim, Y. S. Quan, and C. C. Chung, “Data-Driven Modeling and Control for Lane
Keeping System of Automated Driving Vehicles: Koopman Operator Approach,” in 2022
22nd International Conference on Control, Automation and Systems (ICCAS). IEEE, 2022,
pp. 1049–1055.

[106] ——, “Koopman Operator-based Model Identification and Control for Automated Driving
Vehicle,” International Journal of Control, Automation and Systems, vol. 21, no. 8, pp. 2431–
2443, 2023.

[107] J. Buzhardt and P. Tallapragada, “AKoopman operator approach for the vertical stabilization
of an off-road vehicle,” IFAC-PapersOnLine, vol. 55, no. 37, pp. 675–680, 2022.

[108] S. Yu, C. Shen, and T. Ersal, “Autonomous driving using linear model predictive control
with a Koopman operator based bilinear vehicle model,” IFAC-PapersOnLine, vol. 55, no. 24,
pp. 254–259, 2022.

[109] S. Yu, E. Sheng, Y. Zhang, Y. Li, H. Chen, and Y. Hao, “Efficient nonlinear model predictive
control of automated vehicles,”Mathematics, vol. 10, no. 21, p. 4163, 2022.

[110] S. Gupta, D. Shen, D. Karbowski, and A. Rousseau, “Koopman model predictive control for
eco-driving of automated vehicles,” in 2022 American Control Conference (ACC). IEEE,
2022, pp. 2443–2448.

[111] D. Shen, J. Han, D. Karbowski, and A. Rousseau, “Data-driven design of model predic-
tive control for powertrain-aware eco-driving considering nonlinearities using Koopman
analysis,” IFAC-PapersOnLine, vol. 55, no. 24, pp. 117–122, 2022.

[112] A. Sassella, V. Breschi, M. Korda, and S. Formentin, “Model-based and Koopman-based
predictive control: a braking control systems comparison,” IFAC-PapersOnLine, vol. 56,
no. 3, pp. 325–330, 2023.

[113] W. Guo, S. Zhao, H. Cao, B. Yi, and X. Song, “Koopman operator-based driver-vehicle
dynamic model for shared control systems,” Applied Mathematical Modelling, vol. 114, pp.
423–446, 2023.

[114] H. Chen, X. He, S. Cheng, and C. Lv, “Deep KoopmanOperator-Informed Safety Command
Governor for Autonomous Vehicles,” IEEE/ASME Transactions on Mechatronics, 2024.

bibliography 138

[115] M. Švec, J. K. Hromatko, and Š. Ileš, “Testing Nonlinear Predictive Torque Vectoring on a
Scaled Car Driving on a Roadway Simulator,” in 2023 31st Mediterranean Conference on
Control and Automation (MED). IEEE, 2023, pp. 920–925.

[116] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient numerical methods for nonlinear
MPC and moving horizon estimation,” Nonlinear model predictive control: towards new
challenging applications, pp. 391–417, 2009.

[117] Embotech AG, “FORCESPRO,” 2014–2023. [Online]. Available:https://forces.embotech.
com

[118] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “FORCES NLP: an efficient implementa-
tion of interior-point methods formultistage nonlinear nonconvex programs,” International
Journal of Control, pp. 1–17, 2017.

[119] A. Mehra, W.-L. Ma, F. Berg, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Adaptive cruise
control: Experimental validation of advanced controllers on scale-model cars,” in 2015
American Control Conference (ACC). IEEE, 2015, pp. 1411–1418.

[120] Z. Xu,M.Wang, F. Zhang, S. Jin, J. Zhang, and X. Zhao, “PaTAVTT: A hardware-in-the-loop
scaled platform for testing autonomous vehicle trajectory tracking,” Journal of Advanced
Transportation, vol. 2017, 2017.

[121] K. Berntorp, T. Hoang, R. Quirynen, and S. Di Cairano, “Control architecture design for
autonomous vehicles,” in 2018 IEEE Conference on Control Technology and Applications
(CCTA). IEEE, 2018, pp. 404–411.

[122] A.Verma, S. Bagkar,N.V. S. Allam,A. Raman,M. Schmid, andV.N.Krovi, “Implementation
and Validation of Behavior Cloning Using Scaled Vehicles,” SAE Technical Paper, Tech.
Rep., 2021.

[123] S. Brennan and A. Alleyne, “The Illinois Roadway Simulator: A mechatronic testbed for
vehicle dynamics and control,” IEEE/ASME Transactions on Mechatronics, vol. 5, no. 4, pp.
349–359, 2000.

[124] ——, “Using a scale testbed: Controller design and evaluation,” IEEE Control Systems
Magazine, vol. 21, no. 3, pp. 15–26, 2001.

[125] ——, “Dimensionless robust control with application to vehicles,” IEEE Transactions on
Control Systems Technology, vol. 13, no. 4, pp. 624–630, 2005.

[126] S. Lapapong, V. Gupta, E. Callejas, and S. Brennan, “Fidelity of using scaled vehicles for
chassis dynamic studies,” Vehicle System Dynamics, vol. 47, no. 11, pp. 1401–1437, 2009.

[127] E. Buckingham, “On physically similar systems; illustrations of the use of dimensional
equations,” Physical review, vol. 4, no. 4, p. 345, 1914.

https://forces.embotech.com
https://forces.embotech.com

bibliography 139

[128] P. Makarun, G. Josipović, M. Švec, and Š. Ileš, “Testing predictive vehicle dynamics control
algorithms using a scaled remote controlled car and a roadway simulator,” in 2021 Inter-
national Conference on Electrical Drives & Power Electronics (EDPE). IEEE, 2021, pp.
177–182.

[129] I. Šolc, P. Makarun, J. K. Hromatko, and Š. Ileš, “Testing direct yaw moment control using
a scaled car and a roadway simulator,” in 2022 45th Jubilee International Convention on
Information, Communication and Electronic Technology (MIPRO). IEEE, 2022, pp. 800–
805.

[130] Š. Ileš,M. Švec, P.Makarun, and J. K.Hromatko, “Predictive direct yawmoment control with
active steering based on polytopic linear parameter-varyingmodel,” in 2022 8th International
Conference on Control, Decision and Information Technologies (CoDIT), vol. 1. IEEE, 2022,
pp. 920–925.

[131] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, andD.Hrovat, “MPC-BasedApproach to Active
Steering for Autonomous Vehicle Systems,” International Journal of Vehicle Autonomous
Systems, vol. 3, pp. 265–291, 2005.

[132] T. X. Nghiem, J. Drgoňa, C. Jones, Z. Nagy, R. Schwan, B. Dey, A. Chakrabarty, S. Di Cairano,
J. A. Paulson, A. Carron et al., “Physics-Informed Machine Learning for Modeling and
Control of Dynamical Systems,” in 2023 American Control Conference (ACC). IEEE, 2023,
pp. 3735–3750.

[133] W. Wei, G. Yin, and T. He, “Physics-Informed Data-Based LPV Modeling and Validations
of Lateral Vehicle Dynamics,” IEEE Transactions on Intelligent Vehicles, 2023.

[134] J. Rice, W. Xu, and A. August, “Analyzing Koopman approaches to physics-informed
machine learning for long-term sea-surface temperature forecasting,” arXiv preprint
arXiv:2010.00399, 2020.

[135] P. J. Baddoo, B. Herrmann, B. J. McKeon, J. Nathan Kutz, and S. L. Brunton, “Physics-
informed dynamic mode decomposition,” Proceedings of the Royal Society A, vol. 479, no.
2271, p. 20220576, 2023.

list of figures

Figure 2.1 Bicycle model of a vehicle.6
Figure 2.2 Two-track model of a vehicle.9
Figure 2.3 Modified slip denominators for different coefficient ε0.10
Figure 2.4 Comparison of normalized forces for different tire models without cou-

pling effect (either pure longitudinal slip or pure slip angle).13
Figure 2.5 Model Predictive Control working principle.14
Figure 2.6 Schematic illustration the Koopman operator.23
Figure 3.1 Deep-DMD framework diagram for a single step prediction.33
Figure 3.2 E2DMD framework diagram for a single step prediction.38
Figure 3.3 The flowchart for hyperparameter optimization.42
Figure 3.4 Predictor comparison for Van der Pol oscillator with x0 = [−0.62 0.26]T

and random input signal.46
Figure 3.5 Comparison of different Koopman models with reduced state-space

of size nw = 5 for Van der Pol oscillator with x0 = [−0.62 0.26]T and
random input signal.47

Figure 3.6 Comparison of different Koopman models with reduced state-space
of size nw = 25 for Van der Pol oscillator with x0 = [−0.62 0.26]T and
random input signal.48

Figure 3.7 Comparison of different Koopman models with reduced state-space
of size nw = 50 for Van der Pol oscillator with x0 = [−0.62 0.26]T and
random input signal.49

Figure 3.8 Predictor comparison for dampedDuffingoscillatorwith x0 = [−0.74 − 0.6]T

and random input signal.50
Figure 3.9 Comparison of different Koopman models with reduced state-space of

size nw = 5 for damped Duffing oscillator with x0 = [−0.74 − 0.6]T and
random input signal.51

Figure 3.10 Comparison of different Koopman models with reduced state-space of
size nw = 25 for damped Duffing oscillator with x0 = [−0.74 − 0.6]T and
random input signal.52

Figure 3.11 Comparison of different Koopman models with reduced state-space of
size nw = 50 for damped Duffing oscillator with x0 = [−0.74 − 0.6]T

and random input signal.53
Figure 3.12 Predictor comparison for bilinear motor with x0 = [0.4 0.65]T and ran-

dom input signal.54

140

list of figures 141

Figure 3.13 Comparison of different Koopman models with reduced state-space of
size nw = 5 for bilinear motor with x0 = [0.4 0.65]T and random input
signal.55

Figure 3.14 Comparison of different Koopman models with reduced state-space of
size nw = 25 for bilinear motor with x0 = [0.4 0.65]T and random input
signal.56

Figure 3.15 Comparison of different Koopman models with reduced state-space of
size nw = 50 for bilinear motor with x0 = [0.4 0.65]T and random input
signal.57

Figure 4.1 Comparison between Koopman model, iteratively linearized model and
the model linearized at the origin. Approximations are done for the
bicycle vehicle model.62

Figure 4.2 Diagram showing KMPC framework. All the steps are executed in a
loop.63

Figure 4.3 Longitudinal velocity vx and yaw rate θ̇z response for the bicycle vehicle
model.65

Figure 4.4 Optimal forces obtained from the MPC (right) together with their hard
constraints and final control inputs (left) calculated from forces using
input mapping described in4.1.5.66

Figure 4.5 Comparison between Koopman model, iteratively linearized model and
the model linearized at the origin. Approximations are done for the
two-track vehicle model.68

Figure 4.6 Longitudinal velocity vx and yaw rate θ̇z response for N = 5 and two-
track vehicle model.71

Figure 4.7 Optimal slip ratio for N = 5 and two-track vehicle model.71
Figure 4.8 Slip angle response for N = 5 and two-track vehicle model.72
Figure 4.9 Longitudinal velocity vx and yaw rate θ̇z response for N = 20 and two-

track vehicle model.72
Figure 4.10 Optimal slip ratio for N = 20 and two-track vehicle model.72
Figure 4.11 Slip angle response for N = 20 and two-track vehicle model.73
Figure 5.1 Vehicle in the Car Maker simulation software.78
Figure 5.2 CarMaker and nonlinear model comparison.79
Figure 5.3 Example state (on the left) and input (on the right) trajectories.80
Figure 5.4 Open loop predictions of different Koopman models. Errors of the

given models are MNPEEDMD = 0.3284 %, MNPEE2DMD = 0.2641 % and
MNPEDeep-DMD = 0.1771 %.83

Figure 5.5 Sine with dwell steering signal.89
Figure 5.6 Output tracking during one of the sine steer manoeuvres and N =

5.91
Figure 5.7 Output tracking during one of the sine steer manoeuvres and N =

15.91
Figure 5.8 Output tracking during Nürburgring experiment with N = 5.93
Figure 5.9 Output tracking during Nürburgring experiment with N = 5 (shorter

time window).94

list of figures 142

Figure 5.10 Slip angles during Nürburgring experiment with N = 5 (shorter time
window).94

Figure 5.11 Output tracking during Nürburgring experiment with N = 15.94
Figure 5.12 Output tracking during Nürburgring experiment with N = 15 (shorter

time window).95
Figure 5.13 Slip angles during Nürburgring experiment with N = 15 (shorter time

window).95
Figure 5.14 Output tracking during slowNürburgring experimentwithN = 5. 96
Figure 5.15 Output tracking during slowNürburgring experimentwithN = 15. 97
Figure 5.16 Output tracking duringHockenheimring experimentwithN = 5. 98
Figure 5.17 Output tracking duringHockenheimring experimentwithN = 5 (shorter

time window).99
Figure 5.18 Slip angles during Hockenheimring experiment with N = 5 (shorter

time window).99
Figure 5.19 Output tracking duringHockenheimring experimentwithN = 15. 99
Figure 5.20 Output tracking duringHockenheimring experimentwithN = 15 (shorter

time window).100
Figure 5.21 Slip angles during Hockenheimring experiment with N = 15 (shorter

time window).100
Figure 6.1 Treadmill with the scaled vehicle.104
Figure 6.2 Scaled vehicle used in experiments.105
Figure 6.3 System diagram of the experimental setup.105
Figure 6.4 Recorded experimental compared to simulated data for vx ≈ 1m/s. 107
Figure 6.5 Recorded experimental compared to simulated data for vx ≈ 1.5m/s. 107
Figure 6.6 NormalizedMNPE for two different experiments and various simulation

restart times.108
Figure 6.7 The distribution of the sampled state trajectories fromdifferent datasets. 111
Figure 6.8 The distribution of the sampled input trajectories fromdifferent datasets. 111
Figure 6.9 Recorded identification test data compared to predition of simulation

and experimental data based Koopman models for Tres = 1.25.113
Figure 6.10 Recorded slow drive test data compared to predition of simulation and

experimental data based Koopman models for Tres = 1.25.114
Figure 6.11 Recorded acceleration test data compared to predition of simulation and

experimental data based Koopman models for Tres = 1.25.115
Figure 6.12 Tracked states during MLC manoeuvre for N = 5 at vx ≈ 1 (m/s). 119
Figure 6.13 Inputs during MLC manoeuvre for N = 5 at vx ≈ 1 (m/s).119
Figure 6.14 Tracked states during MLCmanoeuvre for N = 5 at vx ≈ 2 (m/s). 119
Figure 6.15 Inputs during MLC manoeuvre for N = 5 at vx ≈ 2 (m/s).120
Figure 6.16 Tracked states during DLC manoeuvre for N = 5 at vx ≈ 1 (m/s). 121
Figure 6.17 Inputs during DLC manoeuvre for N = 5 at vx ≈ 1 (m/s).121
Figure 6.18 Tracked states during DLC manoeuvre for N = 5 at vx ≈ 2 (m/s). 122
Figure 6.19 Inputs during DLC manoeuvre for N = 5 at vx ≈ 2 (m/s).122
Figure 6.20 Tracked states during DLCmanoeuvre for KMPCwith N = 5 and N = 10

at vx ≈ 1.5 (m/s).123

list of figures 143

Figure 6.21 Inputs during DLC manoeuvre for KMPC with N = 5 and N = 10 at
vx ≈ 1.5 (m/s).123

Figure 6.22 Experiment and simulation comparison of MLC manoeuvre for NMPC
(left) and KMPC (right) with N = 5 at vx ≈ 2 (m/s).124

Figure 6.23 Experiment and simulation comparison of DLC manoeuvre for NMPC
(left) and KMPC (right) with N = 5 at vx ≈ 2 (m/s).125

list of tables

Table 3.1 MNPE comparison of different linear predictors for Van der Pol oscilla-
tor.46

Table 3.2 MNPE comparison of different Koopman models with reduced state-
space of size nw = 5 for Van der Pol oscillator.46

Table 3.3 MNPE comparison of different Koopman models with reduced state-
space of size nw = 25 for Van der Pol oscillator.47

Table 3.4 MNPE comparison of different Koopman models with reduced state-
space of size nw = 50 for Van der Pol oscillator.48

Table 3.5 MNPE comparison of different linear predictors for damped Duffing
oscillator.49

Table 3.6 MNPE comparison of different Koopman models with reduced state-
space of size nw = 5 for damped Duffing oscillator.50

Table 3.7 MNPE comparison of different Koopman models with reduced state-
space of size nw = 25 for damped Duffing oscillator.51

Table 3.8 MNPE comparison of different Koopman models with RBF basis and
reduced state-space of size nw = 50 for dampedDuffing oscillator. 52

Table 3.9 MNPE comparison of different linear predictors for bilinearmotor. 54
Table 3.10 MNPE comparison of different Koopman models with reduced state-

space of size nw = 5 for bilinear motor.55
Table 3.11 MNPE comparison of different Koopman models with reduced state-

space of size nw = 25 for bilinear motor.56
Table 3.12 MNPE comparison of different Koopman models with reduced state-

space of size nw = 50 for bilinear motor.57
Table 3.13 The combination of state-space dimension and dynamical system, along

with the E2DMDmethod which performed the best in the specific sce-
nario.58

Table 4.1 Vehicle model parameters61
Table 4.2 Bicycle model prediction RMSE for polynomial basis functions of differ-

ent orders.62
Table 4.3 Two-track model prediction RMSE for polynomial basis functions of

different orders.67
Table 4.4 Normalized closed-loop cost73
Table 4.5 Algorithm execution times (ms)73
Table 5.1 Vehicle model parameters79
Table 5.2 Learning and test set normalized error82

144

list of tables 145

Table 5.3 Random manoeuvres average normalized closed-loop cost91
Table 5.4 Random manoeuvres average execution times (ms)91
Table 5.5 Nürburgring experiment normalized closed-loop cost92
Table 5.6 Nürburgring experiment execution times (ms)92
Table 5.7 Slow Nürburgring experiment normalized closed-loop cost96
Table 5.8 Slow Nürburgring experiment execution times (ms)96
Table 5.9 Hockenheimring experiment normalized closed-loop cost97
Table 5.10 Hockenheimring experiment execution times (ms)98
Table 6.1 Scaled vehicle parameters108
Table 6.2 MNPE errors evaluated on learning and test set110
Table 6.3 MNPE [%] errors for different prediction horizon p using identification

data112
Table 6.4 MNPE [%] errors for different prediction horizon p during slow drive

test113
Table 6.5 MNPE [%] errors for different prediction horizon p during acceleration

test114
Table 6.6 MLCmanoeuvre closed-loop costs and execution times forN = 5120
Table 6.7 DLCmanoeuvre closed-loop costs and execution times forN = 5122
Table 6.8 DLC manoeuvre comparison for KMPC with N = 5 and N = 10 at

vx ≈ 1.5(m/s)123
Table 6.9 Experiment and simulation closed-loop cost comparison124

curiculum vitae

Marko Švec was born in Zagreb, Croatia, in 1994. He completed the natural sciences and
mathematics program at the Lucijan Vranjanin Gymnasium in Zagreb in 2013. He earned the
academic title of master of science in electrical engineering and information technology (summa
cum laude) in 2018 after completing his graduate studies at the University of Zagreb, Faculty of
Electrical Engineering and Computing (FER). He completed the first semester of his graduate
program at Chalmers University of Technology in Gothenburg, Sweden, as part of the Erasmus+
student exchange program. Between the first and second year of his graduate studies, he attended
a summer internship at GlobalLogic in Zagreb.

During his studies, he received the University of Zagreb scholarship multiple times, and for
outstanding achievement in his second year of undergraduate studies, he was given the "Josip
Lončar" award in 2015.

After his graduate studies, he was employed as a researcher in the Laboratory for Mechatronic
Systems at the Department of Electric Machines, Drives and Automation at FER. During his
employment at FER, he participated in scientific projects Advanced Methods and Technologies in
Data Science and Cooperative Systems (DATACROSS), Dynamic Predictive Health Protection of
an Electric Vehicle Battery (EVBattPredtect), and Predictive Vehicle Dynamics Control (PVDC).
Besides these projects, he also worked on the development of a torque vectoring system for Rimac
Technology. Since August 2023, he has been employed as a research and development engineer at
Visage Technologies, where he works on visual safety systems in the automotive industry.

His main areas of interest are model predictive control and advanced methods for nonlinear
systems identification. He has published his research results in one journal and eleven conference
papers, and his work on the EVBattPredtect project resulted in one patent. His other interests
include mechatronics, intelligent systems with a focus on their application in the automotive
industry, and mathematical optimization.

146

publications

patents

1. J. Matuško, Š. Ileš, M. Švec, A. Krishnakumar. System for electric vehicle dynamics control
which considers calculated restrictions for protection of vehicle battery integrity. Patent No.
P20220282, 2024.

journal publications

1. M. Švec, Š. Ileš and J. Matuško, "Predictive Direct Yaw Moment Control Based on the
Koopman Operator," in IEEE Transactions on Control Systems Technology, 2023, vol. 31, no.
6, pp. 2912-2919.

conference publications

1. J. K. Hromatko, M. Švec, and Š. Ileš, “Autonomous Path Following Using Data-Driven
Predictive Control,” in 2023 27th International Conference on SystemTheory, Control and
Computing (ICSTCC). IEEE, 2023, pp. 368–373.

2. M. Švec, B. V. Belina, Š. Ileš, and J. Matuško, “Nonlinear Predictive Torque Vectoring with
Brake Blending for Electric Road Vehicles,” in 2023 IEEE Vehicle Power and Propulsion
Conference (VPPC). IEEE, 2023.

3. M. Švec, J. K. Hromatko, and Š. Ileš, “Testing Nonlinear Predictive Torque Vectoring on
a Scaled Car Driving on a Roadway Simulator,” in 2023 31st Mediterranean Conference on
Control and Automation (MED). IEEE, 2023, pp. 920–925.

4. Š. Ileš, M. Švec, P. Makarun, and J. K. Hromatko, “Stabilizing direct yaw moment control
based on a flexible set-membership constraint,” in 2022 30th Mediterranean Conference on
Control and Automation (MED). IEEE, 2022, pp. 289–294.

5. Š. Ileš, M. Švec, P.Makarun, and J. K. Hromatko, “Predictive direct yawmoment control with
active steering based on polytopic linear parameter-varyingmodel,” in 2022 8th International
Conference on Control, Decision and Information Technologies (CoDIT), vol. 1. IEEE, 2022,
pp. 920–925.

6. P. Makarun, G. Josipović, M. Švec, and Š. Ileš, “Testing predictive vehicle dynamics con-
trol algorithms using a scaled remote controlled car and a roadway simulator,” in 2021

147

publications 148

International Conference on Electrical Drives & Power Electronics (EDPE). IEEE, 2021, pp.
177–182.

7. M. Švec, Š. Ileš, and J. Matuško, “Predictive approach to torque vectoring based on the
Koopman operator,” in 2021 European Control Conference (ECC). IEEE, 2021, pp. 1341–1346.

8. M. Švec, Š. Ileš, and J. Matuško, “Model predictive control of vehicle dynamics based on
the Koopman operator with extended dynamic mode decomposition,” in 2021 22nd IEEE
International Conference on Industrial Technology (ICIT), vol. 1. IEEE, 2021, pp. 68–73.

9. M. Švec, Š. Ileš, and J. Matuško, “Sliding Mode Control of Custom Built Rotary Inverted
Pendulum,” in 2020 43rd International Convention on Information, Communication and
Electronic Technology (MIPRO). IEEE, 2020, pp. 943–947.

10. B. Spahija, M. Švec, J. Matuško, and Š. Ileš, “Successive Linearization Based Predictive
Vehicle Torque Vectoring,” in 2019 International Conference on Electrical Drives & Power
Electronics (EDPE). IEEE, 2019, pp. 267–271.

11. M. Švec, K. Hrvatinić, Š. Ileš, and J.Matuško, “Predictive Torque Vectoring Vehicle Control
Based on a Linear Time Varying Model,” in 2019 42nd International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2019,
pp. 960–965.

životopis

Marko Švec rođen je u Zagrebu, Hrvatska, 1994. godine. Prirodoslovno-matematički smjer
Gimnazije Lucijana Vranjanina završio je 2013. godine u Zagrebu. Akademski naziv magistar
inženjer elektrotehnike i informacijske tehnologije (summa cum laude) stekao je 2018. godine
završivši diplomski studij na Sveučilištu u Zagrebu, Fakultetu elektrotehnike i računarstva (FER).
Prvi semestar diplomskog studija završio je na Chalmers University of Technology u Göteborgu,
Švedska, u sklopu Erasmus+ studentske razmjene. Između prve i druge godine diplomskog studija
pohađao je ljetnu praksu u kompaniji GlobalLogic u Zagrebu.

Tijekom studija više je puta nagrađen stipendijom Sveučilišta u Zagrebu, a za izvrstan uspjeh
na drugoj godini preddiplomskog studija uručeno mu je priznanje "Josip Lončar" (2015.).

Nakon diplomskog studija zaposlen je kao istraživač u Laboratoriju zamehatroničke sustave na
Zavodu za elektrostrojarstvo i automatizaciju na FER-u. Tijekom zaposlenja na FER-u sudjeluje na
znanstvenim projektima Napredne metode i tehnologije u znanosti o podatcima i kooperativnim
sustavima (DATACROSS), Dinamička prediktivna zaštita integriteta baterije električnog vozila
(EVBattPredtect) i Prediktivno upravljanje dinamikom vozila (PVDC). Osim navedenih projekata,
sudjelovao je i na razvoju sustava upravljanja raspodjelom pogonskog momenta za kompaniju
Rimac Technology. Od kolovoza 2023. godine zaposlen je kao inženjer istraživanja i razvoja u
kompaniji Visage Technologies gdje se bavi vizualnim sigurnosnim sustavima u automobilskoj
industriji.

Njegova glavna područja interesa su modelsko prediktivno upravljanje i napredne metode
identifikacije nelinearnih dinamičkih sustava. Rezultate svojih istraživanja objavio je u jednom
časopisnom i jedanaest konferencijskih znanstvenih radova, a njegov rad na projektu EVBattPred-
tect rezultirao je jednim patentom. Ostali mu interesi uključuju mehatroniku, inteligentne sustave
s naglaskom na njihovu primjenu u automobilskoj industriji i matematičku optimizaciju.

149

	Contents
	1 Introduction
	1.1 Motivation and problem statement
	1.2 Original contributions
	1.3 Outline of the thesis

	2 General background
	2.1 Vehicle dynamics models
	2.1.1 Bicycle model
	2.1.2 Two-track model
	2.1.3 Alternative slip formulation

	2.2 Tire force modelling
	2.2.1 Magic Formula for tire modelling
	2.2.2 Linear tire model
	2.2.3 Tire force coupling
	2.2.4 Piecewise linear tire model

	2.3 Model predictive control
	2.3.1 Linear quadratic regulator
	2.3.2 Linear model predictive control
	2.3.3 Dense vs. sparse formulations
	2.3.4 Nonlinear model predictive control
	2.3.5 Reference tracking
	2.3.6 Soft constraints

	2.4 Koopman operator
	2.4.1 Theoretical background
	2.4.2 Koopman operator eigenfuncions
	2.4.3 Koopman operator for non-autonomous systems
	2.4.4 Applications

	2.5 Vehicle dynamics control systems
	2.6 Summary

	3 Data-driven Koopman identification
	3.1 Extended dynamic mode decomposition
	3.1.1 EDMD for autonomous systems
	3.1.2 EDMD for non-autonomous systems
	3.1.3 EDMD for general nonlinear systems
	3.1.4 Basis functions

	3.2 Deep dynamic mode decomposition
	3.2.1 Multiple step prediction error minimization
	3.2.2 Learning algorithm

	3.3 Enhanced extended dynamic mode decomposition
	3.3.1 Basis function dimension reduction
	3.3.2 Basis function reduction by discrete selection
	3.3.3 Multiple step prediction learning algorithm
	3.3.4 Basis function reduction as a hyperparameter optimization problem

	3.4 Other approaches
	3.5 Simulation results
	3.5.1 Learning algorithm setup
	3.5.2 Van der Pol oscillator simulation
	3.5.3 Damped Duﬃng oscillator simulation
	3.5.4 Bilinear motor simulation
	3.5.5 Concluding remarks

	3.6 Summary

	4 Koopman-based vehicle control using tire slip
	4.1 Koopman operator-based control using bicycle model
	4.1.1 Three state bicycle model without tire model
	4.1.2 Koopman model identification
	4.1.3 Koopman MPC design
	4.1.4 Reference generation
	4.1.5 Input mapping
	4.1.6 Simulation results

	4.2 Koopman operator-based control using two-track model
	4.2.1 Two-track model without tire model
	4.2.2 Koopman model identification
	4.2.3 Linear time-variant model
	4.2.4 Koopman MPC design
	4.2.5 Simulation results

	4.3 Summary

	5 Koopman-based predictive torque vectoring
	5.1 Existing work
	5.2 Koopman model identification
	5.2.1 Nonlinear vehicle model parameter identification
	5.2.2 Data collection
	5.2.3 Learning Koopman model
	5.2.4 Predictor comparison

	5.3 MPC design
	5.3.1 Linear time-variant MPC
	5.3.2 Koopman operator-based MPC
	5.3.3 Nonlinear MPC

	5.4 Simulation results
	5.4.1 Batch of randomized test runs
	5.4.2 Nürburgring racetrack experiment
	5.4.3 Nürburgring racetrack low speed experiment
	5.4.4 Hockenheimring racetrack experiment
	5.4.5 Concluding remarks

	5.5 Summary

	6 Experimental investigation
	6.1 Experimental setup
	6.1.1 Background
	6.1.2 Setup description

	6.2 Vehicle parameters identification
	6.3 Koopman model identification
	6.3.1 Data collection
	6.3.2 Learning Koopman model
	6.3.3 Dataset distribution
	6.3.4 Predictor performance analysis

	6.4 Model predictive control
	6.4.1 Nonlinear MPC
	6.4.2 Koopman operator-based MPC
	6.4.3 Cost function and constraints

	6.5 Experimental results and discussion
	6.5.1 Controller setup
	6.5.2 Multiple lane change manoeuvre
	6.5.3 Double lane change manoeuvre
	6.5.4 Prediction horizon change effect
	6.5.5 Sensitivity to delays
	6.5.6 Concluding remarks

	6.6 Summary

	7 Conclusion and future research directions
	Bibliography
	List of figures
	List of Figures

	List of tables
	List of Tables

	Curiculum vitae
	Publications
	Životopis

